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Preface

 

Because of rapid developments in computer technology and computational techniques, advances in a
wide spectrum of technologies, and other advances coupled with cross-disciplinary pursuits between
technology and its applications to human body processes, the field of biomechanics continues to evolve.
Many areas of significant progress can be noted. These include dynamics of musculoskeletal systems,
mechanics of hard and soft tissues, mechanics of bone remodeling, mechanics of implant-tissue interfaces,
cardiovascular and respiratory biomechanics, mechanics of blood and air flow, flow-prosthesis interfaces,
mechanics of impact, dynamics of man–machine interaction, and more. 

Needless to say, the great breadth and significance of the field on the international scene require several
volumes for an adequate treatment. This is the fourth in a set of four volumes, and it treats the area of
biofluid methods in vascular and pulmonary systems.

The four volumes constitute an integrated set that can nevertheless be utilized as individual volumes.
The titles for each volume are

Computer Techniques and Computational Methods in Biomechanics
Cardiovascular Techniques
Musculoskeletal Models and Techniques
Biofluid Methods in Vascular and Pulmonary Systems

The contributions to this volume clearly reveal the effectiveness and significance of the techniques
available and, with further development, the essential role that they will play in the future. I hope that
students, research workers, practitioners, computer scientists, and others on the international scene will
find this set of volumes to be a unique and significant reference source for years to come.



 

© 2001 by CRC Press LLC

 

The Editor

 

Cornelius T. Leondes,

 

 B.S., M.S., Ph.D., Emeritus Professor, School of Engineering and Applied Science,
University of California, Los Angeles has served as a member or consultant on numerous national
technical and scientific advisory boards.  Dr. Leondes served as a consultant for numerous Fortune 500
companies and international corporations.  He has published over 200 technical journal articles and has
edited and/or co-authored more than 120 books.  Dr. Leondes is a Guggenheim Fellow, Fulbright Research
Scholar, and IEEE Fellow as well as a recipient of the IEEE Baker Prize award and the Barry Carlton
Award of the IEEE.



 

© 2001 by CRC Press LLC

 

Contributors

 

Sunil Acharya

 

University of Akron
Akron. Ohio

 

Gary T. Anderson

 

University of Arkansas
Little Rock, Arkansas

 

Joseph P. Archie, Jr.

 

University of North Carolina
Chapel Hill, North Carolina

 

Lloyd H. Back

 

Jet Propulsion Lab
Irvine, California

 

R.K. Banerjee

 

Kettering University
Flint, Michigan

 

Heinrich Brinck

 

FH Gelsenkirchen
Recklinghausen, Germany

 

Y.I. Cho

 

Drexel University
Philadelphia, Pennsylvania

 

Antonio Delfino

 

Swiss Federal Institute of Technology
Grolley, Switzerland

 

Pierre-André Doriot

 

University Hospital
Geneva, Switzerland

 

Pierre-André Dorsaz

 

University Hospital
Geneva, Switzerland

 

Phillip Drinker

 

Hood Laboratories, Inc.
Pembroke, Massachusetts

 

Ding-Yu Fei

 

Virginia Commonwealth University
Richmond, Virginia

 

Don Fei

 

Forest Hills, New York

 

J.J. Fredberg

 

Harvard School of Public Health
Boston, Massachuestts

 

G.M. Glass

 

Hood Laboratories, Inc.
Pembroke, Massachusetts

 

Daniel Isabey

 

INSERM
Créteil, France

 

M.V. Kaufmann

 

Silicon Spice, Inc.
Mountain View, California

 

Clement Kleinstreuer

 

North Carolina State University
Raleigh, North Carolina

 

Andre Langlet

 

L’Universite d’Orleans-Bourges
Bourges, France

 

Ming Lei

 

CFD Research Corporation
Huntsville, Alabama

 

B. Louis

 

INSERM
Créteil, France

 

James Moore

 

Florida International University
Miami, Florida

 

S. Naili

 

University of Paris
Créteil, France

 

Masahide Nakamura

 

Akita University
Akita, Japan

 

Christian Ribreau

 

LGMPB-IUT
Cachan, France

 

Stanley E. Rittgers

 

University of Akron
Akron, Ohio

 

W. Rutishauser

 

University Hospital
Geneva, Switzerland

 

B.R. Simon

 

The University of Arizona
Tucson, Arizona

 

Marc Thiriet

 

INRIA
Le Chesnay, France

 

Jürgen Werner

 

Ruhr University
Bochum, Germany

 

Lisa X. Xu

 

Purdue University
West Lafayette, Indiana

 

Ryuhei Yamaguchi

 

Shibaura Institute of Technlogy
Tokyo, Japan

 

Paul P.T. Yang

 

Southeast Permanente 
Medical Group

Jonesboro, Georgia

 

Wen-Jei Yang

 

University of Michigan
Ann Arbor, Michigan 



 

© 2001 by CRC Press LLC

 

Contents

 

1

 

Hemodynamics Simulations and Optimal Computer-Aided Designs of 
Branching Blood

 

Clement Kleinstreuer, Ming Lei, and Joseph P. Archie, Jr.

 

2

 

Techniques in Fluid Dynamical Wall Shear Phenomena and Their 
Application in the Blood Fl ow

 

Masahide Nakamura

 

3

 

A Measurement Method for Wall Shear S tress and Fluid Mechanical 
Application for Vascular Disease

 

Ryuhei Yamaguchi

 

4

 

Techniques for Measuring Blood Fl ow in the Microvascular Circulation

 

Lisa X. Xu and Gary T. Anderson

 

5

 

Finite Element Models for  Arterial Wall Mechanics and Transport

 

B.R. Simon and M.V. Kaufmann

 

6

 

A Three-Dimensional Vascular Model and Its Application to the 
Determination of the Spatial  Variations in the Arterial,  Venous, and 
Tissue Temperature Dis tribution

 

Jürgen Werner and Heinrich Brinck

 

7

 

Arterial Fluid Dynamics:  The Relationship to Atheroscle rosis and 
Application in Diagnostics

 

James E. Moore, Jr., Antonio Delfino, Pierre-André Doriat, Pierre-André Dorsaz, and 
W. Rutishauser

 

8

 

Computational Fluid Dynamics Modeling Techniques Using Fini te 
Element Methods to Predict Arterial Blood Fl ow

 

R. K. Banerjee, L.H. Back, and Y.I. Cho

 

9

 

Numerical S imulation Techniques and Their Application to the Human 
Vascular System

 

Ding-Yu Fei, Stanley E. Rittgers, Don Fei, and Sunil Acharya



 

© 2001 by CRC Press LLC

 

10

 

Flow in Thin-Walled Collapsible Tubes

 

M. Thiriet, S. Naili, A. Langlet, and C. Ribreau

 

11

 

Techniques in the Modeling and S imulation of Blood Fl ows at the Aortic 
B ifurcation with Flexible Walls

 

Wen-Jei Yang and Paul P.T. Yang

 

12

 

Airway Dimensions in the Human Determined by Non-Invas ive 
Acoustic Imaging

 

B. Louis, P. Drinker, G.M. Glass, D. Isabey, and J.J. Fredberg



 

© 2001 by CRC Press LLC

 

1

 

Hemodynamics
Simulations and

Optimal Computer-
Aided Designs of

 

Branching Blood Vessels

 

1.1 Introduction
1.2 Background Information

 

The Biomedical Problem • Current Problem Solutions

 

1.3 Theory

 

Indicator Equations • Severity Parameters • Flow Waveform 
Parameter • Basic Transport Equations and Auxiliary Condition

 

1.4 Numerical Method and Model Validation 

 

Numerical Method • Grid Generation • Discretized Equations • 
Model Validation 

 

1.5 Results and Discussion 

 

Carotid Artery Bifurcation • Bypass Graft-to-Artery 
Anastomosis 

 

1.1 Introduction

 

Approximately one-quarter million United States citizens each year undergo either carotid endarterec-
tomy for stroke prevention or lower extremity bypass to regain the ability to walk. These arterial recon-
structions, as well as others, involve complex flows in branching blood vessels. Both early and late
operative failures are due in part to the non-uniform hemodynamics, or disturbed flow related to the
reconstruction geometry and its particular flow input waveform. Optimization of the arterial reconstruc-
tion of carotid endarterectomies and anastomotic bypass grafts to minimize blood flow disturbances may
be crucial in significantly reducing the probability and degree of early postoperative thrombosis and
restenosis due to myointimal proliferation and recurrent atherosclerosis. These adverse events can lead
to stroke or limb loss and associated disability or mortality. Patient-derived risk factors that influence
clinical outcomes of vascular surgical procedures can be favorably modified or controlled, but this lies
outside the scope of this review. We have analyzed the effects of geometry and input waveform on
disturbed flow in these two arterial systems and have completed work on the theoretical optimization of
the branching blood vessel geometries. The methodology has been established, and an extended analysis
of computationally derived junction geometries employing available graft material for clinical testing is
being initiated.

 

Clement Kleinstreuer

 

North Carolina State University
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CFD Research Corporation
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The primary hemodynamic parameters employed to quantitatively assess disturbed flow patterns
include the wall shear stress in general and the temporal and spatial gradients of wall shear stress in
particular. Radial blood pressure variations, peak arterial wall stress and strain values, as well as blood
particle trajectories and surface depositions can be used as additional indicators of non-uniform hemo-
dynamics and, therefore, susceptible sites to arterial diseases. Optimal reconstructive and anastomotic
geometries are computationally designed by iteratively minimizing disturbed flow in three-dimensional
branching blood vessels utilizing realistic human hemodynamic input, boundary, and auxiliary condi-
tions. The severity of the potentially harmful hemodynamic factors, in conjunction with the extent of
the affected wall surface areas, is expressed in terms of dimensionless groups in order to map and rank
various blood vessel configurations and reconstructions as a function of their propensity towards
restenosis.

 

1.2 Background Information

 

This section summarizes the negative impact of arterial diseases, i.e., thrombosis, atherosclerosis, and
hyperplasia, on branching blood vessels, mainly the carotid artery bifurcation as well as the distal end
of femoral to popliteal or tibial bypass grafts, and briefly reviews current problem solutions. A detailed
review of links between abnormal particle-hemodynamics and the onset of arterial disease processes may
be found elsewhere.

 

1

 

The Biomedical Problem

 

Atherosclerosis is a disease of large and medium-size arteries and is the chief cause of death and disability
in the United States and most of the western world. Bypass grafting and endarterectomy have been used
for four decades to prevent or delay these events. Carotid endarterectomy for stroke prevention has a
relatively low but significant 1% to 4% incidence of early post-operative thrombosis, a 2% to 6% early
stroke rate, and a 3% to 10% incidence of significant, i.e., greater than 50%, restenosis due to myointimal
hyperplasia in the first few years and later due to recurrent atherosclerosis.

 

2–8

 

 Similarly, lower extremity
synthetic bypass grafts may fail due to restenosis and/or thrombosis. The one-year failure rate is approx-
imately 15%, while 60% to 70% fail within five years.

 

9,10

 

Newer investigative procedures such as balloon angioplasty with or without stenting, laser ablation,
or catheter atherectomy are not addressed here, but some of the results presented here may be relevant
to those potentially important but unproven reconstruction techniques.

It is generally accepted that critical hemodynamic parameters, particularly related to the wall shear
stresses, are directly linked to the localized onset and occurrence of thrombosis, myointimal proliferation,
and atherosclerosis. Because each arterial disease process is different, selective hemodynamic factors have
to be employed as indicators of locations and extents of susceptible sites in branching arteries. While
abnormal hemodynamic factors influence the localization of arterial diseases, their causes are linked to
other adverse events including patient-derived risk factors such as smoking, diet, diabetes, hypertension,
exercise level, and genetic make-up. The problems being considered are influenced by numerous factors
including the arterial reconstruction geometry as well as the type of graft material, placement of the
anastomotic junctions, and graft diameter.

 

11–20

 

 The underlying hypothesis for the initiation of
atherosclerosis

 

21

 

 is that of a response to endothelial injury or dysfunction, leading to high cell turnover
and leaky junctions,

 

22

 

 individual bond rupture of the endothelial cells,

 

23–25

 

 high blood pressure induced
arterial wall stress and strain,

 

26

 

 and/or prolonged zero-tension state of the endothelial-cells.

 

27,28,68,86

 

 As a
result, at lesion prone sites in branching arteries, endothelial permeability to macromolecules (e.g., low
density lipoprotein (LDL)) and to certain cells (e.g., monocytes) is enhanced. In addition to triggering
the locally increased lipid flux into the arterial wall as well as foam cell formation, mechanical events
may produce changes in gene expression that lead to excessive release of growth factors and subsequent
smooth muscle cell proliferation, platelet aggregation, and thrombi formation (Figs. 1.1a and 1.2). Similar
events triggered by non-uniform hemodynamic forces can lead to myointimal hyperplasia. In fact,
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restenosis two years after an arterial reconstruction is considered a continuum transition from hyperplasia
to atherosclerosis. This occurs at the toe and heel of the junction of graft-artery bypass configurations
along its suture line, and on the bed of the host artery across from the junctions (Figs. 1.1b and 1.2).
Hyperplasia followed by atherosclerosis, additional smooth muscle cell proliferation, intra-plaque hem-
orrhage, and fibrosis all produce restensosis after bypass surgery.

 

29–33

 

 The anastomotic toe area of the
arterial wall most frequently experiences restenosis, which probably leads to graft failure. Even more
dangerous is the specter of early post operative complications due to thrombosis. The relations between
non-uniform hemodynamics and thrombogenesis have been reviewed,

 

34

 

 and further discussions may be
found elsewhere.

 

1

 

(A)

(B)

FIGURE 1.1

 

Examples of occlusive diseases in branching vessels: (A) atherosclerotic stenosis at the carotid artery
bifurcation; (B) femoral to popliteal bypass graft with restenosis in the region of the distal anastomosis.
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Current Problem Solutions

 

Significant progress in state-of-the-art computational fluid flow simulations of branching blood vessels
has been made in the past decade. For example, Perktold and co-workers

 

35,36

 

 computed the flow field in
a normal carotid artery for the transient three-dimensional flow of a non-Newtonian fluid. Giddens
et al.,

 

16

 

 Nerem,

 

15

 

 Lou and Yang,

 

37

 

 and Xu and Collins

 

38

 

 reviewed relevant experimental and numerical
fluid dynamics as well as blood rheology studies related to bifurcating arteries including bypass grafts.
Numerous researchers have studied various links between non-uniform hemodynamics and abnormal
biological events, but only a few provided quantitative correlations and/or systematically analyzed vessel
geometries which may mitigate atherosclerotic plaque formation and/or excessive hyperplasia.

 

27,39–49

 

There are some generally accepted criteria for the selection of the size and composition of prosthetic
grafts, such as diameter, the thrombogenicity of flow surfaces, biocompatibility, suturability, porosity,
and compliance match.

 

50,51

 

 However, there are no identified optimal criteria for the geometric design of
graft-artery anastomoses. Since graft failure can be caused by myointimal hyperplasia and atheroma
developments in the anastomotic region, the geometric design of the junction is very important. For
example, based on an energy loss model, Strandness and Sumner

 

52

 

 suggested that the graft-to-artery
angle should be as acute as possible, and the graft diameter should be slightly larger than the distal artery
but slightly smaller than the proximal artery to which it is sutured. Except for some of the studies cited
above, little effort has been made to improve the geometrical design of graft-artery junctions.

Currently, most lower extremity arterial bypasses are performed on an ad hoc basis depending on the
varying experience and decisions of the surgeon, and the patient’s arterial anatomy. However, the rela-
tionship between disturbed flow and stenosis is gaining recognition, and a few surgeons are investigating
the role of the anastomotic geometry and hemodynamics on bypass graft patency rates for coronary
bypasses and limb bypasses. Examples include the Taylor patch, the St. Mary’s boot, composite prosthetic
vein grafts, synthetic cuffs, hoods, etc. One of the more promising graft-to-artery anastomotic geometries
is the Taylor-patch.

 

10

 

 However, the surgical technique is complicated, resulting in varying geometries and

 

FIGURE 1.2

 

Non-uniform hemodynamic factors triggering abnormal biological events.

Events of Atherogenesis
Injury of endothelium
Endothelial clefts & cracks
Enhanced wall permeability
LDL accumulation
Monocyte migration into wall
Smooth muscle cell proliferation
Intimal thickening
Plaque formation & stenosis
Thrombosis; sudden occlusion

Damage of endothelium
Scar tissue formation
Enhanced wall permeability
Platelet & lipid accumulation
EC & SMC proliferations
Intimal thickening
Plaque formation & hemorrhaging
Anastomotic restenosis
Thrombosis; graft failure

Intimal Hyperplasia

High/low shear stresses (τw)
Spatial & temporal τw variations
Hypertension & hypercholesterolemia
Arterial wall stress & strain
Stagnation/long particle residence time
Compliance mismatch (vascular grafts)

Hemodynamic Factors

PHYSICO-BIOLOGICAL INTERACTIONS:
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mixed results. Similarly, there has been a concentrated effort during the past decade to improve the
clinical outcomes of carotid endarterectomies. This effort has been centered around the increased use of
vein or synthetic patch reconstruction.

 

2,3,53

 

 We have achieved encouraging results with customized carotid
reconstruction based on operative findings

 

54,55

 

 and preliminary hemodynamic simulation results,

 

49,56,57

 

however there is ample room for significant improvement in outcome.

 

1.3 Theory

 

Optimal computer-aided design of branching blood vessels mitigating arterial diseases requires one or
more representative hemodynamic predictors based on sound physico-biological hypotheses. A correct
hypothesis regarding atherogenesis or intimal hyperplasia must provide a reasonable biological explanation
of the mechanisms of these disease processes. In other words, a hypothesis without biological basis is very
likely a wrong hypothesis no matter how closely it may match particular distribution patterns of intimal
thickening.

 

1

 

 In the present review focusing on the mitigation of restenosis due to myointimal hyperplasia
and/or renewed atheroma, criteria for disturbed flow include very low or very high values of the wall shear
stress (WSS), low oscillatory shear, and sustained spatial wall shear stress gradients (WSSG). Specific
indicator equations for the localization of atherosclerosis or intimal hyperplasia are described below in
conjunction with the basic transport equations, constitutive equations, and auxiliary conditions.

 

Indicator Equations

 

In general, the nine-component stress tensor reduces at the wall to a two-component shear stress vector, i.e.,

(1.1a,b)

where 

 

τ

 

w,m

 

 acts in the mean temporal direction of and 

 

τ

 

w,n

 

 is perpendicular to 

 

τ

 

w,m

 

 (Fig. 1.3a), while

 

τ

 

w

 

 is the magnitude of the local instantaneous wall shear stress in N/m

 

2

 

. Time averaging over the input
cycle of duration T produces

(1.1c)

Near-zero WSS regions are associated with longer residence times of blood particles (e.g., platelets,
monocytes, etc.) and micro-emboli formation.

The oscillatory shear index (OSI) has been defined

 

39

 

 as

(1.2a)

and more recently

 

58

 

 as

(1.2b)
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where Eq. 1.2b is easier to use without giving significantly different contours. Here, T is the period of
the input pulse, is the wall shear stress acting opposite to  the mean wall shear stress, and is
the instantaneous wall shear stress vector. OSI values vary between 0 and 0.5, with OSI = 0.5 indicating
strong sustained oscillatory wall shear effects which previously have been correlated with atherosclerotic
lesion developments in carotid bifurcations.

 

39

 

The wall shear stress gradient (WSSG) captures the aggravating impact of temporal and spatial changes
in wall shear on the lumen surface. It was suggested that when compared to clinical observation, high
sustained, i.e., time averaged WSSG values can be correlated with the onset of atherosclerosis or, following
different biochemical mechanisms, with hyperplasia.

 

23-25,28–35

 

 Specifically,

(1.3a)

where

(1.3b)

and WSSG

 

0

 

 is an assumed reference value. The wall shear stress gradient is obtained by taking the spatial
derivatives to the wall shear stress vector,  which results in an asymmetrical two-dimen-
sional tensor, :

(1.4)

The four components of the wall shear stress gradient differ in their impact upon the endothelial cells.
The diagonal components,

,

generate intercellular tensions, while the off-diagonal components, 

generate intercellular shearing forces (Fig. 1.3b). The former may cause the widening and shrinking of
the cellular gaps; the latter causes relative movement of adjacent cells. It is assumed that the components
influencing the intercellular tension, which leads to dysfunction and elevated permeability of the endot-
helium, are most important. The use of absolute values takes care of both the positive and negative
components of the WSSG. The threshold or reference value for the negative WSSG to trigger the cell
response toward enhanced permeability may be different from that of the positive WSSG. However, since
there is no experimental data available yet, this combination is probably the simplest and most effective
way for calculating the WSSG. Our studies indicated that the positive and negative WSSGs have similar
distribution patterns in the distal anastomoses. Furthermore, Kleinstreuer et al.
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 showed that integration
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of |WSSG| over a given flow input cycle filters out minor temporal changes and yields sustained spatial
WSSG distributions.

 

Severity Parameters

 

Hemodynamic severity parameters indicate the relative impact and extent of arterial diseases. For exam-
ple, regions of high wall shear stress, important in the thrombi initiation phase, as well as near-zero wall
shear stress and long particle residence time, important in the thrombi formation phase, can be combined
in a dimensionless form as

(1.5)

where 

 

A

 

τ

 

, 

 

high

 

 is the area of high wall shear stress, 

 

τ

 

w, high

 

 is the high wall shear stress, 

 

A

 

0

 

 is a reference area
such as the junction lumen surface, 

 

τ

 

0

 

 is the Poiseuille shear stress at the mean Reynolds number in the
inlet tube (based on inlet tube diameter; Re = UD/

 

ν

 

), 

 

A

 

τ

 

=0

 

 is the area of the near-zero wall shear stress,
and 

 

κ

 

 is a weighting factor.

 

(A)

(B)

FIGURE 1.3

 

Wall stress and wall shear stress gradients: (a) stresses on an arterial surface; (b) forces generated by
non-zero WSSGs.
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The severity parameter to assess restenosis, e.g., neo-intimal hyperplasia and renewed atheroma for-
mation, is based on the wall shear stress gradient and particle residence time (PRT):

(1.6)

where 

 

A

 

WSSG

 

 is the impact area based on high sustained WSSG values, and 

 

A

 

PRT

 

 is equivalent to the area
of the near zero wall shear stress.

Equation 1.2 could be used as an alternative severity parameter for restenosis assessment.

 

Flow Waveform Parameter

 

The degree of disturbed flow and, therefore, the likelihood of endothelial dysfunction are strongly
dependent upon the arterial geometry and the flow input waveform. In order to obtain a quantitative
correlation between a flow waveform and its effects, a dimensionless parameter, N, based on the Wom-
ersley number, is proposed, which captures the main features of a given input pulse,

(1.7)

Here, 

 

α

 

 is the number of positive and negative flow portions of the input pulse, e.g., 

 

α

 

 = 1 for the exercise
pulse without reverse flow, and 

 

α

 

 = 3 for the resting pulse with a reverse flow portion. 

 

Wo

 

 = r

 

0

 

(2

 

π

 

ƒ/

 

ν

 

)

 

1/2

 

represents the Womersley number, a ratio of transient inertia vs. viscous forces, with r

 

0

 

 representing a
reference inlet radius, f representing the pulse frequency, and 

 

ν

 

 representing the fluid’s kinematic viscosity.
The extremes of an input pulse are given by 

 

Re

 

max

 

 and 

 

Re

 

min

 

, while 

 

Re

 

area

 

 is the time averaged value of
|

 

Re

 

in

 

(

 

t

 

)|:

(1.8)

Clearly, the flow waveform parameter 

 

N

 

 represents the main characteristics of a given input pulse in
terms of disturbed flow impact, including the oscillatory nature and the intensity of the pulse. In general,
the larger the value of 

 

N

 

, the more complex the flow waveform, possibly resulting in non-uniform
hemodynamics in particular junction areas of branching blood vessels.

 

Basic Transport Equations and Auxiliary Condition

 

Human blood is generally incompressible and non-Newtonian. Since turbulence rarely appears in the
normal artery system,

 

15,39,59

 

 blood flow is assumed to be laminar and unsteady. Furthermore, it is assumed
that the wall is rigid, although it could be permeable, for example, to low density lipoprotein (LDL)
transport. The rigid-wall assumption is conservative, i.e., distensible surfaces typically generate lower
wall shear stresses.

Assuming the above, the governing equations for blood flow can be written as:

 

60

 

1. Continuity:

(1.9)
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2. Momentum Transfer:

(1.10)

where = ( u, v, w ) or ( v

 

1

 

, v

 

2

 

, v

 

3

 

 ) is velocity vector, 

 

p

 

 is pressure, 

 

t

 

 is time, 

 

ρ

 

 is constant blood density,

 

D

 

/

 

Dt

 

 is a substantial derivative

and 

 

∇

 

 is the spatial gradient operator. The blood rheology is represented by the stress tensor , with
the following relations:

1. Power-law fluid

(1.11)

2. Casson fluid

(1.12a)

Here,

is the rate-of-strain tensor, m = 0.1101 dyn-s

 

n

 

/m

 

2

 

, and n = 0.7073 for the power-law fluid. The apparent
viscosity, 

 

η

 

, is a function of the shear rate given by an extended Casson model
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 as:

(1.12b)

where 
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 is the hematocrit and 
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 is the second scalar invariant of , i.e.,

(1.13)

Writing out the right hand side in a component form, we have:

(1.14)
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)1/2 and C2 = 0.18
(dyn s/cm2)1/2 based on Merrill’s experimental data.62 Fig. 1.4 shows the variation of blood viscosity η
(Eq. 1.12) with shear rate
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The asymptotic value of the viscosity is η∞ = 0.0324 dyn s/cm2 for 40% hematocrit which, according to
Merrill, is appropriate as the shear rate approaches infinity. This asymptotic viscosity is often taken as
an approximate Newtonian viscosity, µ. However, the asymptotic value given by Merrill is higher than
the value predicted by the Casson model in the range of high shear rates ( 1000 < ·γ < 3000) which also
is the upper limit of shear rates in this study. Thus, for computations at moderately high shear rates,
values of µ = 0.0348 dyn s/cm2, i.e., ν = 0.033 cm2/s, are assumed to guarantee a smooth transition from
the Casson model to the limiting Newtonian behavior. At the lower end of the shear rate range, this
model is only suitable for ·γ > 1 s–1; therefore, η = η ·γ=1 = 0.1444 (dyn s/cm2) when ·γ < 1 s–1, which is
the zero shear rate condition.

The boundary conditions for solving these equations are given below.

Inlet Conditions

A transient parabolic velocity profile is specified at the inlet. The inlet length is made sufficiently long
(le > 10 da, where da is the diameter of the artery) so that the inlet velocity profile has no obvious influence
on the flow pattern in the junction area. Therefore, the inlet conditions can be expressed as:

(1.15)

(1.16)

where is the outward unit normal vector of the surface at the inlet, is the unit tangential vector, and
ui is a given velocity distribution, varying with time.

Outlet Conditions

A nominal Neumann boundary condition is applied to the velocity field:

(1.17)

FIGURE 1.4 Blood viscosity variation with shear rate.
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Usually, there are two outlets, one toward downstream and one toward upstream (Figs. 1.5–1.7). Varying
flow partition between these two outlets is specified. The given flow rate ratio must be satisfied through
a global mass balance. The length of the downstream outlet is made longer than the upstream outlet
(ld ≥ 11 da vs. lu ≥ 7 da) since a large portion of the flow goes through the downstream outlet. Zero-
pressure condition is applied to one outlet, leaving the other outlet free.

Wall Boundary Conditions

At the impermeable wall, the following velocity conditions are imposed:

(1.18)

(1.19)

1.4 Numerical Method and Model Validation

Investigation of the hemodynamics in branching vessels and the effects of hemodynamic factors influ-
encing atherogenesis and/or neo-intimal hyperplasia can be carried out through in vitro fluid flow and
cell culture experiments, computer simulations, animal studies, and clinical testing. For engineers, infor-
mation is obtained mainly through laboratory experiments and computer simulations. During the past
two decades, considerable progress has been made in both model bifurcation flow measurements and
in vitro cell culture experiments. Laser Doppler anemometers have played an important role in obtaining
quantitative measurements of velocity profiles in vitro model studies.63–65 The photochromic tracer tech-
nique has been recently used to indirectly determine the wall shear stress at selected locations as a function
of time.66 Doppler ultrasound technique is a powerful tool for the measurement of detailed flow patterns
in vivo.67 Cell culture experiments provide us with a lot of useful information about endothelial cell
response to changes in the hemodynamic environment and, therefore, greatly advance our knowledge of
the arterial wall-blood flow interactions. However, experiments have their limitations.1 Numerical sim-
ulation is an alternative approach to obtain quantitative information about flow patterns and wall shear
stresses at bifurcations. It becomes more and more important in hemodynamics since it can provide
details of the entire flow field and calculate values of disease indicators such as the wall shear stress and
wall shear stress gradient quite easily and accurately, especially for complicated geometries under pulsatile
flow conditions. Another major advantage of computational study is its flexibility in parametric studies.
Recent developments of computer technologies and CFD tools make three-dimensional pulsatile flow
simulations possible in branching blood vessels such as the carotid artery bifurcation and femoral end-
to-side anastomosis.

In this section, we will describe the numerical method used to solve the basic equations governing
blood flow, the key aspects of mesh generation, and numerical code validation.

Numerical Method

All the numerical calculations in this chapter have been carried out with a finite volume-based CFD
package, FLOW3D, now CFX from AEA Technologies (Bethel Park, PA). The features, enhancements,
and usage of this package are described by Lei.68 A short overview of the finite volume method (FVM)
or control volume method (CVM) is provided below.

The momentum and any scalar transport equations can be rewritten in a general form as:

(1.20)
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where φ is any dependent variable, Γ is the general diffusion coefficient which may be a function of the
flow field, and ΣS represents source or sink terms.

This generalized equation can be expressed again in normal form as:

(1.21)

where L(·) is a nonlinear operator. The purpose of conducting numerical calculations is to find an
approximate solution of φ. Let φ* be the unknown approximate solution. Substituting φ* into Eq. 1.21
yields:

(1.22)

where R is called the residual of L(φ*). It is evident that R → 0 if φ* approaches φ. So, we require:

(1.23)

where W is a weighting function, and the integration is performed over the entire computational domain
Ω. We solve Eq. 1.23 for a suitable φ*expression as an approximation of φ instead of solving Eq. 1.21
directly. This is called the method of weighted residuals (MWR).69 The type of weighting function W
selected determines the type of MWR used. For example, in the Galerkin finite element method, the
domain Ω is discretized employing finite elements, and the weighting functions are chosen to be the
basis functions of the trial solution. With respect to the finite volume method, we divide the calculation
domain Ω into finite, non-overlapping subdomains or control volumes Vi (i = 1, 2,....., N ), and set the
weighting function to be unity over one subdomain at a time and zero everywhere else. This way, we
obtain N algebraic weighted-residual equations which can be used to find the value of φ* at each control
volume, i.e.,

(1.24)

Equation 1.24 implies that the integral of the residual over each control volume must become zero, i.e.,
the integral conservations of mass flow and momentum are satisfied over each control volume. This is
the essence of the finite (or control) volume method.

Grid Generation

Proper mesh generation is one of the most challenging tasks in computational fluid dynamics analysis.
In this study, a body-fitted coordinate system has been used (Fig. 1.5), and a multi-block grid structure
has been implemented (Fig. 1.6). Each block is a topologically rectangular grid and has a local coordinate
system (i,j,k) assigned in addition to the global coordinate system (x,y,z). A two-component surface
coordinate system (m,n) has been used for the calculation of wall values (Fig. 1.5). The surface coordinate
system varies from point to point with m being chosen to follow the local temporal mean wall shear
stress direction and n being the direction perpendicular to m. A multi-block grid is generated by merging
(or gluing) all the blocks together (Fig. 1.6). A special block arrangement has been employed to avoid
finite volume distortion especially at the bifurcation corners. All present geometries are assumed to be
symmetrical about a vertical symmetry plane, therefore, only half of each flow domain is simulated. A
typical number for the total elements is 16,940 for the streamline connector shown in Fig. 1.7. Further
mesh refinement may be necessary in order to ensure mesh-independence.

L φ( ) = 0

L Rφ*( ) =

WRdΩ
Ω
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Discretized Equations

As indicated previously, the finite volume method (FVM) is a kind of conservative finite-difference
method, where the physical domain is discretized into multiple control volumes. Then, with all variables
defined at the center of the control volumes, each equation is integrated over each control volume to
obtain a discrete equation which connects the variable at the center of a control volume with its neighbors.
The integration of the generalized governing equation (Eq. 1.20) with the continuity equation being
excluded) results in:

(1.25)

FIGURE 1.5 Coordinate systems.

FIGURE 1.6 Multi-block structures for three-dimensional distal anastomosis.

FIGURE 1.7 Computational grid for distal anastomosis.
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All terms in the equation are discretized in space using a second-order centered differencing scheme,
except for the advection terms. For the time derivative terms, a fully implicit backwards difference time
stepping procedure has been implemented. For the advection terms, the hybrid differencing scheme70 is
used and the convection coefficients are obtained by using the Rhie-Chow interpolation formula.71 With
the use of the Rhie-Chow algorithm, a staggered grid approach is not necessary, which saves memory
when using body-fitted coordinates. The major achievement of the Rhie-Chow algorithm lies in the fact
that it provides a prescription for implementing the standard primitive variable algorithms, such as
SIMPLE, using a non-staggered grid, while avoiding the well known problem of checker-board oscillations
associated with the use of non-staggered grids. The source term for each equation is written as:

(1.26)

where Sp is non-positive and Su is positive. The Sp term enhances the diagonal of the matrix giving more
diagonal dominance and better solution behavior. The final discretization formulations have the form

(1.27)

Here, subscript nb denotes each of the six neighboring nodes, i.e., U (up), D (down), N (north), S (south),
E (east), and W (west); Ap and Anb are coefficients. The diagonal coefficient of the matrix, Ap, is given as:

(1.28)

where CU and the other components of Eq. 1.28 are the convection coefficients at corresponding interfaces
denoted by the subscripts; the last term stands for the transient effect carried from the previous time
step, in which V is the control volume. In the steady-state case, the sum of the convection coefficients in
this expression describes the conservation of mass and thus goes to zero in a converged solution.

The continuity equation is replaced by the pressure-correction equation derived by using the SIMPLE
or SIMPLEC algorithm.70,72 The resulting equation has the form

(1.29)

where P' is the corrected pressure, bnn and bp = Σnn bnn are coefficients, mp is the residual mass source,
and S' is the additional source term due to non-orthogonality.

The discretized transport equations (1.27) are solved iteratively. There are two levels of iteration: an
inner iteration to solve for the spatial coupling (non-linearity) for each variable, and an outer iteration
to solve for the coupling between variables. Thus, each variable is taken in sequence, while we regard all
other variables as fixed. The coefficients of the discretized equations are always reformed, using the most
recently calculated values of the variables, before each inner iteration. Stone’s method has been used to
solve the linearized transport equations for each variable. The SIMPLEC velocity-pressure coupling
algorithm, which has been proven to be less sensitive to the selection of under-relaxation factors and
therefore is less demanding, has been chosen. The convergence of the iterations is controlled by the mass
source residual (the error in continuity) alone. For the transient problems, varying time steps are used
depending on the magnitude of the Reynolds number and the slope of the input pulse. More time steps
are used for the deceleration phase than for the acceleration phase. Doubling the time steps results in
only an approximate 3% difference in the maximum value of the calculated wall shear stress gradient
with the same accuracy of final convergence. The mass flux boundary condition is updated each iteration.
To eliminate the start-up effect in transient flow, the computations continue over at least four periods.
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The computational work has been carried out on a DEC Alpha 3000 machine (Model 300 LX, 96 MB
RAM). The convergence criterion was a mass residual of less than 1.0 × 10–6 kg/s or 1.0 × 10–3 g/s with
maximum outer iterations limited to 200 to 300 during the start-up periods. Fig. 1.8 shows the conver-
gence processes and relative errors of several sample cases and demonstrates that 200 outer iterations are
enough for most of the time steps. Usually, whether the process at a time step converges or not can be
determined after approximately 60 iterations. After approximately 100 iterations, the mass residual
approaches a steady value which is different for different time steps, but depends on the Reynolds number
at a specific time step and its increment (∆Re) as well as its location on the input curve. In general, the
exercise femoral pulse has the fastest convergence rate since the slope of the curve and the difference
between the maximum and minimum Reynolds numbers are the smallest. The value of the under-
relaxation has no obvious influence on the final convergence, as long as it is not too aggressive.

Model Validation

For both the particular bypass junctions and the deviations from the natural carotid artery bifurcations
considered in this study, detailed quantitative experimental data are lacking. Thus, especially for the wall
shear stress gradient (WSSG), direct comparisons with experimental measurements cannot be made at
this time. Nevertheless, in order to test the accuracy and validity of the finite volume code for the
hemodynamics simulations in branching arteries, we have conducted several model validation runs.

Test on Inlet Length

In general, the velocity profile at an arbitrary entrance point may not be parabolic at any time for a
branching artery segment under pulsatile flow conditions. However, when we add a sufficiently long
conduit to the flow inlet and specify a time-varying parabolic velocity profile at the extended inlet, correct
input conditions can be restored for the junction flow. Alternatively, measured transient inlet profiles at
a fixed location could be employed as inlet conditions. To determine the minimum length required for
an inlet conduit, three-dimensional pipe flow with the standard and resting input pulse for the femoral
artery has been selected as an example. Fig. 1.9 demonstrates that the fully developed velocity profiles
are not parabolic at most of the time steps even if a parabolic profile is prescribed at the inlet, which is
quite different from steady flow results. Fig. 1.10 presents the wall shear stress distributions in the tube
at different time steps. When the flow is fully developed, the wall shear stress distribution should be a
horizontal line with zero spatial gradient. The inlet length, represented here by 8da, is determined by this
condition. In summary, one can conclude the following:

• It is easier and better to use an extended inlet length and specify parabolic inlet velocity profiles
as a function of time.

• When a time-varying parabolic velocity profile is specified at the inlet, there exists a minimum
inlet length necessary to establish the correct flow field.

• The minimum inlet length is not determined by the maximum Reynolds number, but by the shape
of the flow input waveform. Usually, a longer inlet length is required for the decelerating flow since
it is less stable than the accelerating flow and needs a longer distance to become fully developed.

• The inlet length requirements are quite similar for two- and three-dimensional flows.

It is worth noting that the inlet lengths analyzed are quite different from the entrance lengths displayed
in fluid dynamics textbooks, where le is the distance for steady uniform inlet flow to become fully
developed in a channel or pipe.

Test on the Mesh Size and Error Estimation

There are two types of errors which determine the accuracy of numerical simulations. One is called
round-off error, which is introduced by the floating-point representation of numbers in computers. The
other is called truncation error, which is introduced by the discretization of governing equations and the
flow domain. The former is determined by the arithmetic precision of computers, so it is referred to as
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machine error. Proper programming can reduce the accumulation and propagation of this error, but
cannot eliminate it. Fortunately, this round-off error is always much smaller than the truncation so that
its presence has no obvious influence on the accuracy of numerical simulations. Truncation error is the
major source of inaccuracy. It is determined by the mesh size, degree of element distortion or mesh
transformation, the discretization method (numerical scheme), as well as the convergence criterion if an

FIGURE 1.8 Convergence processes for sample cases: (a) three-dimensional aorto-celiac
junction; (b) 1:1 base case distal anastomosis; (c) 2:1 S-connector.
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iterative method is chosen to solve the matrix equations. We can always choose the best numerical schemes
and most suitable convergence criterion based on our knowledge, but there is no best mesh size since
the truncation error is proportional to it. Usually, the smaller the mesh size, the smaller the truncation
error. However, at a certain mesh density, as the mesh becomes smaller and smaller, the round-off error
may play an important role in determining the accuracy of numerical calculations. The mesh density is
often limited due to the memory and speed limitations of the computer. Thus, not only the accuracy,
but also the cost and the availability of computing resources is essential to the determination of an ideal
mesh size, as pointed out by Lei,68 who conducted test runs on the effect of mesh size in terms of cost
and accuracy, in a three-dimensional T-junction model.

FIGURE 1.9 Flow field variations during an aorto-celiac input pulse.
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Comparison with LDA Measurements
In order to test the validity of the numerical code for pulsatile flow simulations, we compared numerical
results with the LDA measurements of Khodadadi et al.64 in a plane 90° T- junction with sinusoidal input
flow waveforms. Fig. 1.11 shows the grid and the input pulse with a mean Reynolds number of 106. The
branch-to-main channel flow rate ratio is set equal to 0.7. The comparisons of velocity profiles at several
locations between numerical results and experimental data are shown in Figs. 1.12 to 1.14. Most of these
locations are in the disturbed flow regions. It is postulated that if the velocity profiles match the exper-
imental results in the disturbed flow regions, the whole flow field will match. From these graphs, we can
see that the numerical results are in agreement with the experimental results.

Comparison with Particle Tracer Study
By using the photochromic tracer technique, Ohja73 quantitatively measured the temporal variations of
the velocity field, from which he computed the wall shear stresses at several locations in a 45° distal
anastomosis model with the proximal end of the host vessel completely occluded. Unfortunately, there
are no quantitative velocity profiles presented. We carried out three-dimensional numerical simulation
in the same geometry with the same input pulse (Fig. 1.15a). The input pulse can be expressed in terms
of the Reynolds number as

(1.30)

where ω = 2πƒ, ƒ is the pulse frequency, and Rem is the mean Reynolds number. The values of the
parameters are provided in Table 1.1. The results are shown in Fig. 1.15. The mid-plane velocity vector
plot at one time step is included to show the flow condition. The wall shear stress variations at the three
locations are compared with Ohja’s measurements in Fig. 1.15b, which shows there is agreement between
the numerical results and experimental measurements.

FIGURE 1.10 Wall shear stress distributions at different time steps in a pulsatile flow.
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Validation Run for Carotid Artery Bifurcation (CAB)

 

A velocity profile comparison is made between the experimental measurements of Rindt et al.,

 

74

 

 who
constructed a rigid two-dimensional plexiglass model of the normal CAB, and those of the current
numerical model. The dimensions of the plexiglass model are similar to those given by Bharadvaj et al.,

 

75

 

with the major difference being the bifurcation angle and the entrance region of the external carotid
artery (ECA). The angle created by the axis of the ECA and the horizontal in the plexiglass model of
Rindt et al.

 

74

 

 is 30°, as opposed to an angle of 25.1° in the model of Bharadvaj et al.

 

75

 

 Also, unlike the
model of Bharadvaj et al.,

 

75

 

 the diameter of the ECA remains constant for a short distance after the ECA
entrance, then quickly converges to the distal diameter of the ECA as given by Bharadvaj et al.,

 

75

 

 whereas
the present model and the model of Bharadvaj et al.

 

75

 

 have a gradual taper of the diameter beyond the
entrance to the ECA. Velocity measurements in the model were taken using LDA. In the experimental
model, the dimensions of Bharadvaj et al.

 

75

 

 are scaled up 2.5 times to increase the relative size of the
model to the sample volume of the laser. The fluid used by Rindt et al.

 

74

 

 was a water/sterilized milk
mixture (7000:1); since the water/milk volume ratio is so high, the density and viscosity of water at
normal room temperature were used without significantly affecting the accuracy of the experiment.
Finally, the flow rate ratio between the internal carotid artery (ICA) and ECA was 65/35, as determined
by integrating the velocity profiles in each branch.

Unlike the experimental model, the current numerical model is not scaled up from the dimensions
of Bharadvaj et al.,

 

75

 

 and blood, instead of the water/milk mixture, is a non-Newtonian fluid. The scaling
of the model and the use of a different fluid does not create a problem because the dynamic similitude
is assured by using the same input Reynolds number vs. the time pulse used by Rindt et al.

 

74

 

 The purpose
of the input pulse used by Rindt et al.,

 

74

 

 shown as an inset to Fig. 1.16, was used for validation of the
numerical model. The ICA to ECA flow rate division was set constant at 65/35 throughout the pulse to
match the boundary conditions of the experimental model.

Fig. 1.16 depicts some results of the validation run. The solid lines show the velocity profiles as predicted
by the present numerical model at the snapshot in time, S8, as indicated in the inset, while the circles
indicate the velocity profiles as measured by Rindt et al.

 

74

 

 There are slight differences in the profiles at
the entrances to the ECA, ICA, and the two profiles downstream of the entrance to the ICA. At the
entrance to the ICA, the predicted numerical velocities near the divider wall are greater than the measured
experimental velocities, while at the entrance to the ECA, the opposite trend is present. The other profiles
in the ICA also show numerical velocities greater than the experimental velocities at some locations in
the profile — near the divider wall for the profile at the mid-sinus, and near the non-divider wall for

 

FIGURE 1.11

 

Sinusoidal input pulse and computational grid for a plane T-junction.
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the profile at the end of the sinus. This implies that the flow rate ratio between the ICA and the ECA
does not exactly equal 65/35 at this time level, which is believable due to the extreme difficulty in forcing
a constant flow rate ratio in an experimental pulsatile flow. Other sources of discrepancies between the
numerical and the experimental velocities could be the difficulty in measuring the near wall velocities
with LDA techniques, round-off error in the numerical calculations, and the fact that the experimental
velocities are obtained by measuring them from graphs.

 

74

 

 Considering these possible sources of error,

 

FIGURE 1.12

 

Velocity profiles u(t) at (a) x/H = –0.5; and (b) x/H = 0.5 in comparison with LDA measurements.
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the small discrepancies between the velocity profiles shown in Fig. 1.16 indicate that the current numerical
model can accurately predict the transient velocity field in the carotid artery bifurcation.

In summary, based on the model validation studies, we are confident that the numerical code used is
sufficiently accurate for flow simulations in branching arteries and graft-bypass junctions. The data
comparisons also instill confidence that the computed wall shear stress gradients are sufficiently accurate
for: (1) the simulation study for the rabbit aorto-celiac junction; (2) computer-aided design of near
optimal graft-artery connectors; and (3) hemodynamics simulations of carotid artery bifurcations.

 

FIGURE 1.13

 

Velocity profiles u(t) at (a) x/H = 1.0; and (b) x/H = 10.0 in comparison with LDA measurements.
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FIGURE 1.14

 

Velocity profiles v(t) at (a) y/H = 1.5; and (b) y/H = 10.0 in comparison with LDA measure-
ments.
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1988. With permission.)
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Flow Parameters for Ohja’s Experiment
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FIGURE 1.15

 

(a) Mid-plane velocity vector field at t = 318 ms in an occluded distal anastomosis model; (b) com-
parison between measured wall shear stress variations and predicted results.
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Source: 

 

Ohja, M., 

 

J. Biomech.,

 

 26, 1377,
1993. With permission from Elsevier Science.)

 

FIGURE 1.16

 

Comparison of several velocity profiles as computed in the current numerical model and as mea-
sured by Rindt et al.
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 at time level S8 as shown in the inset. (

 

Source:

 

 Rindt, C.C.M., von Steenhoven, A.A., and
Reneman, R.S., 

 

J. Biomech.

 

, 21, 985, 1988. With permission from Elsevier Science.)
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1.5 Results and Discussion

 

Two types of branching blood vessels have been selected for optimal design considerations, i.e., the carotid
artery bifurcation and the distal end femoral graft-artery bypass. Both theoretical designs are based on
the minimization by trial-and-error of the time-averaged wall shear stress gradient, assuming that a
complicated terminal graft segment merges perfectly with an idealized, i.e., circular, artery. Additional
disturbed flow predictors to be minimized and more formal nonlinear multivariable optimization meth-
odology to determine the best junction geometries are discussed as future work.

 

Carotid Artery Bifurcation

 

As mentioned earlier, significant progress in state-of-the-art computational fluid flow simulations of
branching blood vessels has been made in the past decade. For example, Perktold,

 

35

 

 Perktold et al.,

 

36

 

 and
Lee and Chiu

 

76

 

 computed the flow fields in a normal carotid artery for the transient three-dimensional
flow of a non-Newtonian fluid. Giddens et al.,

 

16

 

 Nerem,

 

15

 

 Lou and Yang,

 

37

 

 and Xu and Collins

 

38

 

 reviewed
other relevant experimental and numerical fluid dynamics as well as blood rheology studies related to
branching blood vessels. Numerous researchers have studied various links between non-uniform hemo-
dynamics and abnormal biological events, but only a few provided quantitative correlations and system-
atically analyzed vessel geometries which may mitigate renewed atherosclerotic plaque formation.

 

36,39,41,47

 

Currently, most carotid endarterectomy reconstructions are performed on an 

 

ad hoc

 

 basis depending
on the varying experience and decisions of the surgeon, and the patient’s arterial anatomy. There has
been a concentrated effort in the past decade to improve the clinical outcomes of carotid endarterectomies.
This effort has been centered around the increased use of vein or synthetic patch reconstruction.

 

2–3,53

 

Encouraging results have been achieved with customized carotid reconstruction based on operative
findings

 

54,55

 

 and preliminary hemodynamic simulation results.

 

47

 

A typical flow input waveform and three geometric configurations of the carotid bifurcation studied
are demonstrated in Figs. 1.17 a–d, of which the base case geometry (Fig. 1.17b) has been taken from
Bharadvaj et al.

 

75

 

 For the computational analysis, the arteries were divided into control-volume meshes
within which the numerical solutions for the pressures, velocities, and the associated stresses are obtained.
In zones that were shown to have disturbed flow, the finite volumes were made smaller in order to obtain
more accurate results. Final mesh-independence of all results was successfully tested. All three carotid
bifurcations had the same inlet and outlet diameters. The bifurcation angles in the three geometries were:
50° for the natural geometry, 30° for the patch reconstructed geometry, and 25° for the smoothly tapered
geometry. The same input velocity waveform was used for all three configurations. The computational
analysis was transient two-dimensional, and the walls were assumed rigid. While the wall compliance
effect is generally very small and negligible in older patients, the two-dimensional assumption requires
some elaboration. For flow conduits with a symmetry plane as assumed for the carotid artery bifurcation,
mid-plane velocity fields are basically the same between two-dimensional and three-dimensional flows
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because the circumferential velocity component is zero in the bifurcation plane. Thus, the effects of
geometry changes discussed in this chapter refer to the blood vessels’ mid-plane shapes.

As discussed in the Theory Section, transient laminar incompressible flow was assumed. The basic
fluid mechanics equations and suitable boundary conditions were used to describe the flow.
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 In this
analysis, blood was treated as both a Newtonian fluid and power-law fluid in order to demonstrate the
impact, if any, of fluid rheology. At the common carotid inlet, a time-dependent parametric velocity
profile

 

75

 

 was assumed with a maximum Reynolds number of about 800 and a minimum of about 200.
The reference length for the instantaneous Reynolds number is the common carotid inlet diameter of
8 mm and an average blood viscosity of 0.0324 dyn s/cm

 

2

 

. The usual assumption of no-slip or zero
velocity at the wall was utilized. In order to simplify the analysis of the results, the wall shear stresses
and shear stress gradients were non-dimensionalized and time-averaged over the input cardiac cycle.
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Time-averaging does not change the wall shear stress or wall shear stress gradient results along the walls
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(A)

 

(B)

(C)

(D)

 

FIGURE 1.17

 

(A) The flow pulse in the Common Carotid Artery and control volume meshes for the (B) base case;
(C) patch reconstruction; and (D) smoothly tapered geometry.
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because the integration process gave average sustained magnitudes not very different from their major
transient values.
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 The time for one cardiac cycle was arbitrarily chosen to be one second.

 

Mid-Plane Velocity Vector Profiles

 

The velocity field in a complex flow system is a good quantitative indicator of disturbed flow structures.
Except at the systolic peak (time level S

 

3

 

 in Fig. 1.17a), reverse flow can be observed in the normal
carotid artery bifurcation (NCAB) at all other critical time levels, especially in the carotid bulb
(Figs. 1.18a-d). Flow separation and reversal occur because of inlet flow deceleration coupled with
adverse pressure gradients caused by conduit widening. Both overcome the relatively small inertia forces
present near the wall. 

Wall Shear Stress Distributions 

The magnitude and distribution of the time-averaged and non-dimensionalized wall shear stresses for
both Newtonian and non-Newtonian fluids are shown in Figs. 1.19a-c for the three carotid bifurcation
geometries, respectively. The differences generated by the blood rheology are most notable for the normal
carotid bifurcation. The non-Newtonian fluid predicts recirculating zones with high and low wall stresses
in the outer wall of the internal carotid artery of both the normal carotid bulb and the patch reconstructed
carotid artery. Wall shear stress peaks and troughs appear when blood vessel geometry changes occur.
As expected, the junction of the internal and external carotid arteries (walls II and III) exhibits similar
behavior with a rapid decrease in the shear stresses at the stagnation point.

 

Wall Shear Stress Gradients (WSSG)

 

The magnitude and distribution of the time-averaged and non-dimensionalized WSSG for both Newto-
nian and non-Newtonian fluids are shown in Figs. 1.20a-c for the three carotid bifurcation geometries,
respectively. As expected, all three carotid artery geometries have a high WSSG at the internal-external
carotid junction (walls II and III) that rapidly decreases. Peak wall shear stress gradients are bimodal on
the lateral walls (walls I and IV) or the normal carotid bifurcation. The extent of susceptible sites for
atherosclerotic developments compares favorably with data from angiograms. The peak WSSG in the
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FIGURE 1.18

 

Velocity vector plots in the NCAB assuming blood to be a power law fluid for (a) time level S
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; (b) time
level S
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; (c) time level S
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; and (d) time level S

 

6

 

.
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patch reconstructed carotid artery is somewhat higher and located at the distal end of the patch on walls
I and II (Fig. 1.20b). However, in the smoothly tapered carotid bifurcation, peak WSSGs are quite low
and primarily occur on the lateral or divider walls near the bifurcation (Fig. 1.20c).

 

Summary

 

These results predict a marked dependency of both wall shear stresses and wall shear stress gradients on
the geometry of the carotid artery bifurcation. Specifically, large sustained stress gradients occur locally,
which may trigger a cascade of biological events leading to the development of atherosclerotic lesions.
The normal or primary reconstructed carotid artery with a bulb segment is predicted to have relatively
high wall shear stress gradients in the bulb, a site of atherosclerotic developments.
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 Reconstruction
with a patch decreases the flow disturbances and wall shear stress gradient in the bifurcation area, but
transfers the peak values downstream to the distal end of the patch. A smoothly tapered reconstruction
with a lower bifurcation angle and eliminated bulb segment appears to be the most favorable hemody-
namic configuration in terms of minimal wall shear stress gradients. The bifurcation or stagnation point
has high shear stress gradients in all three geometries. This is to be expected and probably is not clinically
important because of the minimal amount of wall surface involved and special apex cell structure
encountered.

To extrapolate these results to carotid endarterectomy reconstruction is interesting. The optimal
reconstruction technique and geometry remain to be defined, but these results may give direction. Some
surgeons believe patch reconstruction is unnecessary except perhaps in selected cases, while others prefer
routine patch reconstruction. Both methods have been shown to give excellent short- and long-term
results. Perhaps the optimal reconstruction is a smoothly tapered transition from the common carotid
artery to the internal carotid, such as that produced by inter-positioning grafting with autologous
saphenous veins. However, the problem of technical errors produced in small arteries, residual proximal
and distal atherosclerotic disease, and a thrombogenic endarterectomized surface remain. 

In spite of these problems, carotid endarterectomy in the hands of a technically skilled and experienced
surgeon has a very low incidence of early post-operative neurological complications from thrombosis
and/or embolisms. Optimal reconstruction may further improve outcome. Specifically, consideration
should be given to reconstructive techniques that are smoothly tapered with a minimal endarterectomized
surface and a complete endarterectomy. Plication shortening of the internal carotid artery endarterecto-
mized segment with a gradually tapered patch or primary closure may give an optimal hemodynamic
geometry. In summary, optimal reconstruction may include elimination of the carotid bulb, reduction
of the bifurcation angle, and avoidance of acute diameter changes such as that produced at the distal end
of a patch.

 

Bypass Graft-to-Artery Anastomosis

 

In general, the graft-artery bypass has two types of configurations, i.e., end-to-side (Fig. 1.21a) and end-
to-end (Fig. 1.21b). The first configuration, like branching arteries, may have different branching angles
(

 

α

 

 and 

 

β

 

), graft-to-artery diameter ratios (d

 

g

 

/d

 

a

 

), tapering of the host artery (d

 

a1

 

 > d

 

a2

 

), junction
curvatures, and placement of the graft relative to an arterial branch. There is still much work necessary
to sort out the impact of various geometric and material variables on the hemodynamics around the
junctions under different flow conditions. The second configuration, which has varying angle and
diameter ratio, is outside the scope of our concern.

Figs. 1.22a-c show the geometric configurations of typical end-to-side anastomoses. In this study, we
will focus on the distal (recipient) end anastomosis because most of the graft failure is caused by the
distal end intimal hyperplasia development, especially for synthetic grafts.
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 Conventional 30° distal
anastomoses commonly seen in vascular bypass surgeries with graft-to-artery diameter ratios of 1:1 and
2:1 and a standard flow rate ratio Q

 

g

 

:Q

 

a

 

:Q

 

u

 

 = 100:80:20 have been considered as base cases.
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 The 2:1 or
larger diameter ratio anastomoses are often used in arteries with small diameters such as below-knee
popliteal and tibial arteries.
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 It is worth noting that the suture line of the anastomosis usually does
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not meet with the horizontal diametric plane of the artery due to the nature of common surgical
procedures, which causes a slight cross-sectional area reduction and shape change (from circular to
elliptic) of the graft near the suture line.
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 The 2:1 graft-to-artery anastomosis has an even larger graft
area reduction and shape change as it approaches the suture line. Based on these two configurations, a
variety of geometric changes including the Taylor patch,
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 the effects of branching angle, graft-to-artery
diameter ratio, the junction surface curvature, and the position of suture line, etc., have been investigated,
and near optimal designs of the distal end anastomosis are suggested based on our WSSG predictor
model. Additional effects such as blood rheology, flow rate ratios, and input flow waveforms have been
investigated elsewhere.
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Two basic input flow waveforms are used in this study for the distal end anastomoses in the femoral
artery region. One is called the resting pulse, which is taken from patients at a quiescent state as illustrated
in Fig. 1.23a.
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 The frequency for this pulse (ƒ) is 60 beats/min with the maximum and mean Reynolds
numbers (

 

Re

 

max

 

 and 

 

R

 

e

 

mean

 

) equal to 600 and 113.5, respectively. Another waveform is called the exercise
pulse, which is taken from patients under moderate exercise conditions as shown in Fig. 1.23b.
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 The
frequency for this pulse ƒ is equal to 100 beats/min with 

 

Re

 

max

 

= 480 and 

 

Re

 

mean

 

=356.5. The mean flow
rate under the exercise pulse is about three times larger than that under the resting pulse. The resting
pulse can be approximated by the following formula:
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(1.31)

where the Reynolds number Re can be replaced by the flow rate Q since 
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 = 4
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πµ
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, and the angular
frequency 
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 can be a function of time, e.g., 
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 = 
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0
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. In Fig. 1.23a, n = 1.5, 

 

ω

 

0 

 

= 15.17, a = 8.357, and

 

(A)

FIGURE 1.19

 

The time-averaged, non-dimensionalized wall shear stress along all four walls: (a) NCAB; (b) patch
reconstructed geometry; (c) tapered geometry.
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(B)

(C)
FIGURE 1.19 (CONTINUED)
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Re

 

0

 

 = 2708.7. By properly choosing the parameters 

 

Re

 

0

 

, a, and 

 

ω

 

 (

 

t

 

), the features of the curve, i.e., the
maximum value of 

 

Re

 

 and its location 

 

t

 

max 

 

(time at 

 

Re

 

max

 

), the main and secondary forward flow periods,
and the period and magnitude of the reverse flow can be manipulated to fit the physiological flow curves
at most of the locations in the artery system.
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Since the diameter of the arteries of interest varies from location to location and from one person to
another, we normalize it to d

 

a 

 

= 1.0 cm for our numerical analyses, which results in a scaling factor S

 

f 

 

=
d

 

a

 

/d

 

a
*

 

between the numerical model and the actual physical model, with d

 

a
*

 

being the original arterial
diameter. All other geometric dimensions are multiplied by this factor. By keeping the Reynolds number
unchanged, the velocity in the scaled model becomes and the flow rate increases by the factor
S

 

f

 

. As a result, the wall shear stress and wall shear stress gradient calculated are

where the superscript 

 

*

 

 denotes the values in the prototype. Therefore, the actual values for the wall shear
stress and wall shear stress gradient should be the calculated values multiplied by S

 

f
2

 

and S

 

f
3

 

respectively.
In the following, the data presented are the calculated values. When comparing with experimental results
in different size arteries of different individuals or species, one should take into account the effects of
these scaling factors.

 

Base Case

 

The d

 

graft

 

:d

 

artery

 

 = 1:1, 30° distal anastomosis (i.e., the base case) is the most common configuration
encountered in vascular graft-bypass surgery.
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 The lowest point of the suture line is 
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 above the

 

(A)

FIGURE 1.20

 

The time-averaged, non-dimensionalized wall shear stress gradients along all four walls: (a) NCAB;
(b) patch reconstructed geometry; (c) tapered geometry.
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(B)

(C)
FIGURE 1.20 (CONTINUED)
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horizontal arterial mid-plane. We take Q

 

g

 

:Q

 

a

 

:Q

 

u 

 

= 100:80:20 as the standard flow rate ratio, i.e., 20% of
the blood coming from the bypassing graft flows back toward the upstream artery section since there are
often small arterial branches in that region which need blood supply. Other flow rate ratios are taken as
variations to this standard ratio. The two flow waveforms shown in Fig. 1.23a and b, representing both
resting and active states of the human body, are applied to this configuration as the input pulses because
they envelope a large spectrum of flow waveforms in the femoral artery. The results are presented below,
including the transient flow fields, transient and time-averaged wall shear stresses, and wall shear stress
gradients. The oscillatory shear index (OSI) as defined in Eq. 1.2a is plotted for comparison purpose.

 

Flow Field

 

Figs. 1.24a-c show the velocity vector fields in the vertical mid-plane and horizontal arterial mid-plane
(A-A view) for the base case I distal anastomosis at three typical time levels of the resting pulse,
representing the flow acceleration phase (t

 

1

 

), the flow deceleration phase (t

 

2

 

), and the reverse flow phase
(t

 

3

 

). During the acceleration phase (Fig. 1.24a), the flow is relatively smooth around the junction. No
obvious flow recirculation can be seen in both the vertical and horizontal mid-planes. There is a flow
stagnation point on the arterial floor, or bed, close to the upstream corner of the junction. During the
deceleration phase (Fig. 1.24b), the flow stagnation point on the arterial floor moves downstream to the

 

FIGURE 1.21

 

General artery-graft bypass configurations.
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center of the junction. A large recirculating zone appears just upstream of the stagnation point in the
host artery. The velocity is increased in the center region of the flow duct and retarded near the wall. A
small quasi-static flow region on the artery side near the toe can be observed in the vertical mid-plane.
In the horizontal mid-plane (A-A view), an obvious U-shaped forward-flow/back-flow boundary can be
detected with the zero-flow point moving upstream towards the center and downstream near the wall.
The secondary flow in the graft (B-B view) is not significant, but in the artery (C-C view) it forms two
vortices rotating in the opposite directions. During the reverse flow phase (Fig. 1.24c), the velocity is
large around the heel and toe and small in the center of the flow duct. Vortices appear in both the artery
and the graft. The stagnation point on the arterial floor moves further downstream and separates the
two large vortices in the host artery. Secondary flow is again very small in the branch and relatively large
in the host artery, which means the flow in the artery is more disturbed. In summary, the flow is smoother

 

FIGURE 1.22

 

Typical end-to-side anastomoses.
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in the acceleration phase and more disturbed in the deceleration and reverse flow phases. The velocity
is always small in the upstream artery section due to the low flow rate ratio.

Figs.1.25a and b show the velocity vector fields of the base case I configuration at two typical time
levels of the exercise pulse, i.e., the peak flow phase (t

 

1

 

) and the minimum flow phase (t

 

2

 

). The peak flow
phase is at the end of the flow acceleration, which shows a recirculating zone upstream of the stagnation
point (Fig. 1.25a). The flow pattern in the horizontal mid-plane is similar to the flow pattern in the
deceleration phase of the resting pulse (Fig. 1.25b). The minimum flow phase (Fig. 1.25b) is at the end
of the flow deceleration, showing a remarkable recirculating region in the artery near the junction heel,
which is similar to the deceleration phase of the resting pulse. However, the flow is much more skewed
in the downstream artery section in the vertical mid-plane, and it forms M-shaped velocity profiles in
the horizontal mid-plane. Therefore, a stronger secondary flow is expected in the downstream artery
(C-C view). There is no secondary flow in the graft (B-B view).

The stagnation point on the arterial floor is moving all the time as illustrated in Fig. 1.26. With the
resting pulse, it moves from heel to toe during forward flow phases, covering a wide range of arterial
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FIGURE 1.23

 

Input flow waveforms for distal anastomosis in the femoral artery region: (a) resting pulse; (b) exercise
pulse.
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floor at the junction. At the end of the flow deceleration and during reverse flow phase, the stagnation
point is either non-existent or not well defined. While under the exercise pulse condition, the stagnation
point moves only a short distance. It is almost stationary at the middle of the junction. It appears closer
to the heel when the Reynolds number is large and farther when the Reynolds number is small.

 

Wall Shear Stress Vectors

 

Figs. 1.27a-c and 1.28a and b show the three-dimensional surface plots of the wall shear stress vectors
at different time levels with the resting and exercise pulses, respectively. The 

 

τ

 

w

 

 vector plots provide a
different view for the blood flow behavior around the anastomosis. These graphs demonstrate that during
the flow acceleration phase (Fig. 1.27a), the wall shear stress has a very uniform distribution pattern. The
only low shear stress region is around the stagnation point and extends into the whole upstream portion
of the artery because of the small upstream flow rate. The relatively high shear stress regions appear
around the heel and toe. During the deceleration phases (Figs. 1.27b and 1.28b), nearly the entire graft
surface experiences low shear stresses although the Reynolds number is the same as during the acceleration
phase. The heel and toe areas of the junction are still relatively high shear stress regions, but the extent

 

FIGURE 1.24

 

Flow fields in the vertical mid-plane and other view planes for the base case distal anastomosis at
three typical time levels with the resting pulse.
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of the stress is greatly reduced. Another phenomenon evident is that the wall shear stress downstream
of the stagnation point increases significantly compared with the acceleration phase. However, beyond
the heel, 

 

τ

 

w

 

 drops rapidly. In comparison, the reverse flow phase (Fig. 1.27c) has a relatively smoother

 

τ

 

w

 

 distribution pattern than the deceleration phase. There is a small low shear region on the arterial floor
opposite the toe. The peak flow interval of the exercise pulse (Fig. 1.28a) has a 

 

τ

 

w

 

 distribution pattern
intermediate to the acceleration and deceleration phases. The wall shear stress distribution in the graft
is quite smooth, similar to the acceleration phase of the resting pulse; however, the distribution in the
artery is similar to the deceleration phase. Again, according to the wall shear stress distribution patterns,
we can conclude that more flow disturbances are introduced during the flow deceleration phase.

 

Comparison of the WSSG with Other Physical Indicators

 

Figs. 1.29a-c and 1.30a-c show the time-averaged wall shear stress and wall shear stress gradient as well
as the OSI around the base case distal anastomosis with the resting and exercise pulses, respectively. For
both pulses, the wall shear stress contours show high shear regions (

 

τ

 

w > 1.5 τ0) at the heel and on both
sides of the stagnation point zone (Figs. 1.29a and 1.30a). There are low shear regions ( τw < 0.5 τ0) in
the stagnation point zone, the toe area, and at the middle of the suture line. Except for these regions,
nearly the entire graft surface and the upstream artery section are in the low shear region. The high shear
stress region in the downstream artery also extends far from the junction area. Therefore, the high/low
shear stress models and the safe τw band width concept cannot pinpoint the susceptible sites for intimal
hyperplasia development. The OSI distribution pattern is different for the two pulses. For the resting

FIGURE 1.25 Flow fields in the vertical mid-plane and other view planes for the base case distal anastomosis at two
typical time levels with the exercise pulse.
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pulse (Fig. 1.29c), large OSIs appear in the stagnation point region, the upper wall of the upstream artery
a short distance from the heel, and along the suture line. However, for the exercise pulse (Fig. 1.30c), the
large OSIs appear only at the center of the suture line and the upper wall of the upstream artery. The
heel, toe, and arterial floor all experience low OSI values, which does not match the clinical observations
about the intimal hyperplasia distribution patterns.13 In contrast, the WSSG contours consistently show
large non-zero WSSGs around the critical areas for both input pulses and match the in vivo intimal
hyperplasia distribution patterns (Figs. 1.29b and 1.30b). These graphs also demonstrate that the maxi-
mum WSSGs are proportional to the mean Reynolds number of the input pulse.

Effects of Suture Line Position
The suture line of the base case distal (recipient) anastomosis does not match the width of the horizontal
arterial mid-plane due to the slit-like incision and the contraction of the cutting edge (the oval on the
A-A view plane vs. the arterial boundaries in Figs. 1.24 and 1.25). The width of the oval (projection of
the suture line onto the A-A plane) is dependent on the graft material. The softer the graft, the narrower
the oval. What will happen if the anastomotic orifice is not squeezed and the suture line descends to
meet the horizontal arterial mid-plane? The following graphs show the results in a modified 1:1 30° distal
anastomosis with the suture line matching the width of the artery and with smoothed wall curvatures
at the junction heel and toe.

Figs. 1.31a and b show the velocity vector plots for the modified base case configuration at two typical
time levels of the exercise pulse. The flow fields in both vertical and horizontal mid-planes are obviously
smoother than for the original geometry, especially at the minimum flow point (t2) (Figs. 1.31a and b).
The secondary flow in the artery is substantially reduced. Other noticeable changes of the flow field are
the velocity increase at the toe and the decrease at the heel, both in the artery. Consequently, the low
shear stress region at the toe on the artery side is gone, and the high shear region upstream of the
stagnation point region is greatly reduced (Fig. 1.32a). Other features of the time-averaged wall shear
stress contours remain. However, the time-averaged WSSG contours show a great reduction of the
maximum WSSG value (from 171.2 in Fig. 1.30b to 52.7 in Fig. 1.32b). The WSSG value around the toe
area is below the first contour value (6.0). For an artery with diameter larger than 5 mm (Sf = 2), the

FIGURE 1.26 Movement of the stagnation point on the arterial floor in the base case distal anastomosis for both
the resting and exercise flow waveforms.
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actual |WSSG| there is below 48 dyn/cm3, which is possibly lower than the critical value of WSSG (e.g.,
WSSGltv = 60 dyn/cm3, a value suggested for New Zealand Rabbits). This means that intimal hyperplasia
could be prevented in the toe area for arteries with diameters larger than 5 mm with the modified 1:1
base case geometry. However, for arteries with diameters less than 5 mm, further geometric improvements
are needed.

Taylor Patch Connector

The Taylor patch is a surgical technique developed by Dr. Taylor and his medical group for synthetic
graft artery bypasses.10 The basic idea is to use a vein patch connecting the synthetic graft and the artery
(Fig. 1.33) so that the compliance mismatch between the graft and the artery can be mitigated and a
smaller branch angle can be achieved. The patency rate associated with the use of the Taylor patch
connector is relatively higher than the use of the basic 30° connectors. We include this anastomotic
configuration in our model studies for comparison purposes. Since the shape and diameter ratio of the

FIGURE 1.27 Three-dimensional surface plots of the wall shear stress vectors for the 1:1 30° distal anastomosis at
three typical time levels with the resting pulse.
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Taylor patch vary from time to time and from location to location, depending on the size of artery and
the surgeon’s personal experience, we selected the 2:1 graft-to-artery diameter ratio and made the shape
as shown in Fig. 1.33 according to the description and sketches of Taylor et al.10 For simplicity, the entire
anastomosis is assumed to be rigid. The resting pulse is used as the input flow waveform and the standard
flow rate ratio, i.e., Qg:Qa:Qu = 100:80:20, is assumed for this geometry. The results are presented below.

Figs. 1.34a-c are the velocity vector plots for the Taylor patch connector at three typical time steps of
the resting pulse. During the flow acceleration phase (t1), the flow is relatively smooth in the whole area
with increased velocity at the exit of the junction due to the area reduction. The stagnation point on the
arterial floor is close to the heel. There is no noticeable recirculating zone. The secondary flow in the
downstream artery is very weak. During the deceleration phase (t2), an obvious recirculating zone appears
in the upstream artery near the junction heel. The secondary flow in the C-C view plane becomes much
stronger than during the acceleration phase although the magnitude of the velocity is much smaller than
that of the main flow. During the flow reverse phase (t3), low velocities are everywhere in the center
regions of the junction, the graft, and the artery. Relatively high velocities appear at the heel and toe.
The secondary flow is much weaker than the deceleration phase.

Figs. 1.35a-c show the various indicators for the Taylor patch under resting conditions. The time-
averaged wall shear stress contours (Fig. 1.35a) show two tiny high shear stress regions with one at the
heel and another on the arterial floor opposite the toe. Nearly the entire remaining area, except near the
toe, is exposed to low shear stresses. According to low shear stress theories, this implies the whole junction
area, except the toe area, is susceptible to intimal hyperplasia development. This does not match clinical
observations. The time-averaged WSSG contours are quite simple, which demonstrates two distinct areas
of high WSSG values, one at the heel and one at the toe. The small area of high WSSG on the arterial
floor around the stagnation point region, which appeared in the 2:1 base case anastomosis, does not
appear for this configuration. The WSSG values at both the heel and toe are larger than those in the 2:1

FIGURE 1.28 Three-dimensional surface plots of the wall shear stress vectors for the 1:1 30˚ distal anastomosis at
two typical time levels with the exercise pulse.
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base case due to the relatively sharper geometric changes at those two corners. However, the high WSSG-
values are confined to the two small areas. The remaining area around the junction is below the minimum
WSSG value (1.5). The severity parameter (SRE2) (Eq. 1.6) for the Taylor patch is about 1.126, which is
less than that for the 2:1 base case (1.318) under the same flow conditions. The OSI contours are similar
to the 2:1 base case with one additional high OSI region in the curved hood area of the junction. If the
critical OSI value is set to 0.3 or lower, the predicted susceptible sites will be too large. If the cut-off value
is set to 0.45, the whole toe area will be a low OSI region, which means that the toe area will be free of
intimal hyperplasia development. However, the toe area is in fact the most susceptible and critical site
for intimal hyperplasia. Only the WSSG model can give the correct prediction here.

Optimal Design of the Distal End Anastomotic Connector

In the previous sections, we saw that geometric changes had substantial effects on the flow and WSSG
distribution patterns around the anastomotic area. As shown by Lei,68 a 30° S-shaped connector constituted

FIGURE 1.29 Three-dimensional contour plots of (a) time-averaged wall shear stress; (b) time averaged WSSG;
and (c) OSI for the 1:1 30˚ distal anastomosis with the resting pulse.
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a remarkable improvement over all other geometric configurations based on the reduction of WSSGs
over the entire junction area. Further improvement of the S-connector can be achieved by using variable
anastomotic angles at the graft end so that the curvatures of the junction at the heel and toe can be
determined separately based on the reduction of the WSSGs at these locations. The sketch and control
parameters for the new S-connector designs are illustrated in Figs. 1.36a and b. The starting angle (α1)
of the S-connector at the heel, which determines the junction curvature there, is set to 45° because this
value is proven to be the best angle at the upstream corner of the junction.52 The second angle (α2),
which is defined as the angle of the tangential line at the inflection point of the downstream hood curve,
should be as small as possible depending on the diameter ratio and the cutting length (lcut) required. The
smaller the angle, the longer the cutting length.

As an example, we present two S-connector designs here. One has a 2:1 diameter ratio with α1 = 45°
and α2 = 35°, which results in a cutting length of lcut ~ 7.766 da (Fig. 1.37a). If the second angle (α2) is

FIGURE 1.30 Three-dimensional contour plots of (a) time-averaged wall shear stress; (b) time averaged WSSG;
and (c) OSI for the 1:1 30° distal anastomosis with the exercise pulse.
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FIGURE 1.31 Flow fields in the vertical mid-plane and other view planes for the 1:1 30° distal anastomosis with a
modified suture line position under the resting pulse.

FIGURE 1.32 Three-dimensional contour plots of (a) time-averaged wall shear stress; and (b) time-averaged WSSG
for the 1:1 30˚ distal anastomosis with a modified suture line position under the exercise pulse.
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set to 25° with the same diameter ratio, the cutting length will be about 11.6 da, which is too long. The
second design reduces the graft-to-artery diameter ratio (dg/da) to 1.6 and sets α2 = 25°, which requires
a cutting length of about 9.79 da (Fig. 1.37b). Both designs show remarkable improvement on the
reduction of WSSG values around the junction (Figs. 1.37a and b). The maximum WSSG values at the
heel are greatly reduced with both designs compared to the 30° S-connector68 even though a higher

FIGURE 1.33 The Taylor patch (redrawn).10

FIGURE 1.34 Mid-plane velocity vector plots for the Taylor patch at four typical time levels with the resting pulse.
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frequency (100/min vs. 60/min) exercise pulse is used. In the next section, we will show that a higher
frequency generates larger WSSGs. The second design (1.6:1 S-connector) with a smaller downstream
angle (α2) shows a further reduction of the WSSG value in the toe area. Although the 2:1 S-connector
with a 45°/35° combination shows a wide area of non-zero WSSGs in the toe region due to a larger angle
α2, the magnitude of the WSSG is small, i.e., smaller than both the Taylor patch connector and the 30°
S-connector.68 Under the resting pulse condition (Figs. 1.38a and b), even smaller WSSG are obtained at
the toe area. A small non-zero WSSG region appeared on the arterial floor for the 1.6:1 S-connector with
the exercise pulse but vanished with the resting pulse. A slight increase of the WSSG at the heel makes
no significant difference since the location of the high WSSG area is within the graft, which contributes
less to the intimal hyperplasia development compared with the WSSGs at the toe.

Figs. 1.39a and b show the velocity vector fields for these two S-connectors with the exercise pulse.
No significant difference is observed. The velocity in the graft is larger in the 1.6:1 S-connector than in
the 2:1 S-connector, which is expected. The secondary vortices in the downstream artery in the first
design are slightly stronger than the second design. Both of them are much weaker than the Taylor patch
(Fig. 1.34b). The location and movement of the stagnation point on the arterial floor are similar for these
two designs. Figs. 1.40a and b show the movement of the stagnation point under the resting pulse for

FIGURE 1.35 Three-dimensional contour plots of (a) time-averaged wall shear stress; (b) time-averaged WSSG;
and (c) OSI for the Taylor patch with the resting pulse.



© 2001 by CRC Press LLC

the two S-connectors. The stagnation point region is closer to the heel for the 1.6:1 S-connector, but the
trend of stagnation point movement is similar.

Figs. 1.41a and b show the wall shear stress vector plots for these two designs at a typical time step of
the exercise pulse. A relatively uniform wall shear stress distribution over the junction area is achieved.

The temporal variations of the wall shear stress and wall shear stress gradient at ten critical points in
the 2:1 S-connector configuration with both the exercise and resting pulses are plotted in Figs. 1.42a
and b and 1.43a and b. From Figs. 1.42a and b, one can see that although the wall shear stress differs at
different points, its variations with time at all points almost exactly follow the input flow waveforms
which are represented by the wall shear stress variations at the control points (artery inlet with the same
amount of flow; dotted lines). Note that the absolute values of the wall shear stresses are used here. For
the exercise pulse (Fig. 1.42a), relatively large wall shear stress variations occur at the junction heel (points
1, 10) and toe (points 4-6). The magnitude of τw at the toe is larger than the control point, however, the
temporal gradient is comparable with the control point. Therefore, according to the temporal wall shear
stress gradient hypothesis, the S-connector configuration should be basically spared of intimal hyperplasia
development under the exercise pulse condition. However, with the resting pulse (Fig. 1.43b), the junction
heel and toe as well as all other locations have quite large temporal wall shear stress gradients. Hence,
the prediction is quite dependent on the input flow waveform. It can be expected that a flat input flow
waveform with a large flow rate will generate zero temporal τw gradient in the entire junction area. As
discussed for the aorto-celiac junction, the temporal τw gradient is completely determined by the mag-
nitude of the local mean wall shear stress and the flow waveform. Therefore, it cannot be used as an
independent predictor.

The temporal variations of the wall shear stress gradient also basically follow the input flow waveforms
at all points (Fig. 1.43a and b). This time, the heel (point 1) has the largest WSSG variation instead of
the toe for both pulses. The stagnation point region (point 7), which has the smallest τw variation, has

FIGURE 1.36 Sketch and design parameters for the new S-connector.
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a relatively large WSSG variation. Some low shear stress locations (points 9,10) also have relatively large
WSSG variations. However, like the wall shear stress variation, the temporal WSSG variation is determined
by the time-averaged WSSG and the flow waveform. It is not very useful for the prediction of possible
intimal hyperplasia development sites.

Effects of Flow Input Waveforms

The blood flow waveform varies from one location to another in the artery system and from resting to
exercise following human activities. It is also different from person to person and may change during
sickness. In order to accommodate these facts, we investigated the effects of input flow waveform on the
WSSG distribution pattern by varying the frequency, mean Reynolds number (or mean flow rate), and
shape of the flow waveform in the 2:1 S-connector (45°/35°) and the 2:1 anastomosis.

Figs. 1.44a and b demonstrate the effect of frequency on the WSSG distribution around the 2:1
S-connector based on the resting pulse. Fig. 1.44a is the result under the standard resting pulse with a

FIGURE 1.37 Three-dimensional contour plots of the time-averaged WSSG for the S-connector designs under
exercise pulse conditions: (a) 2:1 S connector with 45°/35° angle combination; (b) 1.6:1 S-connector with 45°/25°
angle combination.
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frequency ƒ = 60/min, which is a duplicate of Fig. 1.38a shown here for easy comparison. When the
frequency is increased to 100/min with the shape and Remean unchanged, the WSSG values are increased
at both the junction heel and toe (Fig. 1.44b). The extent of non-zero WSSG regions are also enlarged.
Figs. 1.45a and b show the effect of the mean Reynolds number based on the exercise pulse. When Remean

is lowered from 356.5 (Fig. 1.45a) to 113.5 (Fig. 1.45b) by keeping the frequency and waveform
unchanged, the WSSG value is dramatically reduced. Note that the lowest contour line value is reduced
to 1.0 since the WSSG is very small under the low Remean flow conditions.

Figs. 1.46a-c show the WSSG distribution patterns in the 2:1 base case anastomosis under different
input flow waveforms, the exercise pulse (ƒ = 100/min, Remean = 356.5), the resting pulse (ƒ = 60/min,
Remean = 113.5), and the Inokuchi pulse (ƒ = 60/min, Remean = 142.0). The results show that the high
frequency, large mean flow input pulse yields the largest WSSG values and affected regions. The Inokuchi
pulse has a larger Remean than the resting pulse but generates smaller WSSGs.

The results presented above demonstrate that the WSSG distribution depends not only on the fre-
quency and mean Reynolds number of the input flow waveform, but also on the shape of the waveform.

FIGURE 1.38 Three-dimensional contour plots of the time-averaged WSSG for the S-connector designs under
resting pulse condition: (a) 2:1 S-connector (45°/35°), (b) 1.6:1 S-connector (45°/25°).
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To quantitatively assess the impact of the input flow conditions on the WSSG distribution at the anas-
tomotic site, the severity parameter defined in Eq. 1.6 is calculated and correlated to the characteristic
flow waveform parameter N defined in Eq. 1.7 for these two geometries. The threshold value, WSSG0,
is assumed to be 1.5 dyn/cm3 for the calculation. The results are shown in Table 1.2 and plotted in
Fig. 1.47. The graph establishes a roughly linear correlation, i.e.,

(1.32)

Here the coefficients m and b are functions of the geometry. Different geometries may have different
correlation coefficients. For the S-connector, we have approximately m = 1.05 dyn/cm3 and b = –2.99
dyn/cm3. For the 30° 2:1 anastomosis geometry, m ≈ 8.4 dyn/cm3 and b ≈ –74.0 dyn/cm3. Since SRE is
always greater than zero, this linear regression is valid for N ≥ Ncr only, where Ncr is a critical value of N.
When N is less than Ncr , a new form of correlation should be established. We can approximately set Ncr

equal to 5 for the S-connector and 9.5 for the 30° 2:1 anastomosis geometry. From Fig. 1.47, one can
conclude that the severity of the 30° 2:1 anastomosis geometry is strongly influenced by the flow input
waveform, whereas the newly designed S-connector is much less sensitive to the flow waveform. This is
a big advantage of the S-connector over the conventional graft-artery bypass configurations. Although

FIGURE 1.39 Velocity vector fields for the S-connector designs: (a) 2:1 S-connector (45°/35°); (b) 1.6:1 S-connector
(45°/25°).

S mN bRE = +
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the results presented here may not be exact, the trend predicted is correct. One could use these results
as a guide in the design of new geometric configurations or in the evaluation of the severity of natural
arterial branches or surgical reconstructions.

Summary

In this chapter, the transient three-dimensional flow fields in different distal end-to-side anastomoses
have been numerically analyzed with two basic input flow waveforms, the resting pulse and the exercise
pulse. The wall shear stress (WSS) and wall shear stress gradient (WSSG) as well as the oscillatory shear

FIGURE 1.40 Movement of the stagnation point for the S-connector designs under resting
pulse conditions.
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index (OSI) have been calculated and their distribution patterns have been compared with published
clinical observations of restenosis, e.g., intimal hyperplasia and renewed atheroma developments in the
graft-artery junction area. The WSSG appears to be a logical indicator of non-uniform hemodynamics
in the anastomotic junction and, therefore, a suitable predictor for intimal hyperplasia and/or athero-
sclerotic lesion developments. The WSSG has many advantages over other physical disease indicators
such as OSI and high/low WSS models. First, the high WSSG values are always located around the
junction area in the common regions of intimal hyperplasia developments, i.e., the junction heel and
toe, the suture line, and the arterial floor (bed). Second, the WSSG distribution pattern is unique and
does not vary significantly with time, i.e., the time-averaged WSSG has the same predictive power as
the transient one. Third, the WSSG appears to be the best simple parameter for the representation of
disturbed flows in the branching blood vessels. For example, a geometric configuration which generates
large secondary flow or recirculating flows is always associated with large WSSGs, while those configu-
rations with smooth flow fields always have small WSSGs. Finally, the WSSG concept has a solid biological
background. It can be explained by the zero-tension hypothesis which encapsulates existing theories on
atherosclerotic lesion formation and neo intimal hyperplasia development.68 The high/low shear stress
models, the OSI and the temporal variations of the wall shear stress and wall shear stress gradient were
all somewhat inadequate for the prediction of sites susceptible to restenosis. However, variations in radial
pressure gradients, arterial wall stress and strain, as well as blood particle depositions will be analyzed
in future works.

FIGURE 1.41 Three-dimensional surface plots of the wall shear stress for the S-connector designs at a typical time
level with the exercise pulse.
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In turn, the WSSG predictor model has also been used as a guide for the theoretically optimal design
of the distal end graft-artery bypass configurations aiming at the elimination or at least mitigation of
intimal hyperplasia and/or atheroma. The basic design parameters and the direction for possible further
improvements of the junction geometry have been established. From the simulation results, the suggested
near-optimal designs show a significant reduction of WSSG values at the junction. Except for the heel,
the whole junction area, including the toe and arterial floor, exhibits low WSSGs. Complete elimination
of WSSGs at the junction heel seems impossible for a flow division with backflow. Hence, a pre-
manufactured biocompatible insert which maintains all optimal geometric parameters would be a good
solution for many reasons. The detailed three-dimensional geometric data sets may be found in Lei.68

The results presented here indicate that hemodynamically optimal designs are feasible and should be
viewed qualitatively.

Extrapolating these results to clinical practice is interesting. If an optimal terminal graft design is
manufacturable with several sizes to match arterial diameters and is as easily sutured as a standard end-
to-side anastomosis, it may be clinically effective in decreasing the incidence of graft failure. While the
thrombogenicity of graft surfaces continues to be a major problem with synthetic materials, an optimally

FIGURE 1.42 Temporal variations of the wall shear stress at ten critical points in the 2:1 S-connector: (a) exercise
pulse; (b) resting pulse.
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designed terminal geometry may offer some protection against not only myointimal developments, but
also the initiation of thrombosis. It is well known that high shear rates from markedly disturbed flows
are harbingers of the onset of thrombosis.85 The proposed hemodynamically optimal terminal graft
geometry may reduce the incident of thrombosis.

The finding that a 1.6 to 1 graft-to-artery diameter ratio optimizes hemodynamics is of interest.
However, a 2:1 ratio with a simpler input waveform and sub-optimal geometry56 was comparable. This
suggests that standard 6 mm and 8 mm diameter synthetic grafts can be used for femoro-popliteal
bypasses, as the ratios are within this window. The results of using these standard grafts for smaller tibial
arteries and higher ratios have not been investigated by us.

Since presently no optimal synthetic graft material or geometric configuration is available for clinical
use, it is interesting to extrapolate our results to the present technique. We suggest that distal end-to-
side anastomosis be performed in a way that allows a smooth transitional curvature at the heel if
possible. While the graft-to-artery bevel angle described herein is not of major importance because of

FIGURE 1.43 Temporal variations of the WSSG at ten critical points in the 2:1 S- connector: (a) exercise pulse; (b)
resting pulse.
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the optimization of geometry with a smooth transition, it may be advisable to construct the heel with a
10° to 15° heel angle between the graft and artery. The former may be achievable with a cuff-type
anastomosis, and the latter by cutting the graft at an appropriate small bevel angle. More importantly,
the toe region should be a gradual transition in curvature and cross-sectional area. This recommendation
is very similar to the one designed to minimize wall shear stress gradients at the distal end of a carotid
endarterectomy patch.47 This is perhaps best achieved by modifying the cut of the distal end of the graft
so that the resulting shape, while still holding the graft flat, looks like a lazy S with a length three or four
times the graft diameter, a sharp angle of incidence at the heel relative to the longitudinal axis, and a
tapered narrowing toe segment that looks very much like a tapered carotid endarterectomy patch.

FIGURE 1.44 Three-dimensional contour plots of the time-averaged WSSG for the 2:1 S-
connector with the resting pulse of different frequencies.
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FIGURE 1.45 Three-dimensional contour plots of the time-averaged WSSG for the 2:1 S-connector with the exercise
pulse of different mean Reynolds numbers.
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FIGURE 1.46 Three-dimensional contour plots of the time-averaged WSSG for the 2:1 30° anastomosis with
different input flow waveforms.
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TABLE 1.2 Correlation Between Characteristic Flow Waveform 
Parameter N and Severity Parameter SRE for 2:1 S-Connector (45°/35°) 
and the 2:1 30° Anastomosis Geometry

Input Pulse Exercise Resting Inokuchi84

f (min–1) 100 60 100 60
Remean 356.5 113.5 113.5 142.0
Remax 480 600 501
Remin 295 –67.8 –38.4
Rearea 356.5 217.3 145.0
α 1 3 3
Wo 8.91 6.90 8.91 6.90
N 12.36 6.98 11.81 15.24 10.72
SPS

a [dyn/cm3] 10.38 4.34 9.48 12.39 —
SPa

a [dyn/cm3] 33.90 — 22.20 — 18.80

a S = S-connector (45°/35°); a = 2:1 30‚ anastomosis.

FIGURE 1.47 Correlation between characteristic flow waveform parameter N and severity parameter SRE2 for the
2:1 S-connector (45°/35°) and the 2:1 30° anastomosis.
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2.1 General Introduction

 

Wall shear stress is one of the most significant parameters of fluid mechanics. This parameter plays an
important role in evaluating the pressure loss of fluids through the pipeline as well as the force received
from the fluids. Therefore, many experimental and theoretical studies were performed to evaluate the
behavior of wall shear stress under engineered conditions. Wall shear stress is very significant in bio-
mechanics as well. That is, many experimental and theoretical results suggest that wall shear stress may have
a strong relationship to atherogenesis.

 

1

 

 The detailed mechanics of atherosclerosis have not yet been estab-
lished, but it has been suggested that atherosclerosis will more readily occur in regions where wall shear
stress is relatively low.
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 The study of wall shear stress may therefore be useful in the prevention of some
arterial lesions such as atherosclerosis. However, the evaluation of wall shear stress of blood flow through
the artery involves great difficulty, and the behavior of wall shear stress 

 

in vivo

 

 is complicated because:

1. The blood flow through the artery is a pulsatile flow.
2. The geometry of the arterial wall changes with time.
3. The blood has a remarkable non-Newtonian effect in the low shear rate region.
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Of course, there are many other factors which contribute to the difficulty in evaluating wall shear stress,
but these factors are beyond the scope of present consideration. In this chapter, we will introduce the
experimental method of evaluating the wall shear stress of a fully developed pulsatile flow through a
straight pipe.

 

2

 

 Next, we will introduce the theoretical method of evaluating the wall shear stress of an
unsteady flow through a two-dimensional channel with an oscillating wall.
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 The effective range of these
methods is limited, but the methods have some very interesting features and will provide useful infor-
mation. Finally, we will introduce the numerical results concerning the effect of a non-Newtonian fluid
on the distribution of wall shear stress. The experimental and theoretical results presented here will be
important as the basic data necessary to understand the behavior of wall shear stress 

 

in vivo

 

.

 

2.2 Wall Shear Stress of a Fully Developed Pulsatile Pipe Flow 

 

under the Blood Flow Conditions through the Aorta

 

Introduction

 

The most simplified model of blood flow in an artery is a fully developed pulsatile flow through a straight
pipe. Many studies were performed to evaluate the flow structure of a fully developed pulsatile flow
through a straight pipe. For example, the analytical solution in a laminar flow region was derived by
Womersley
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 and Uchida.
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 The fully developed pulsatile flow in a turbulent region was investigated
systematically by Ohmi et al.
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 However, the condition of blood flow through the aorta lies in the laminar-
turbulent transitional region. Therefore, it is expected that the blood flow through the aorta will have a
very complicated structure. There is still much more to be studied about the transitional pulsatile flow.
For this reason, an experimental investigation of the fully developed sinusoidal pulsatile flow in a straight
pipe at a transitional Reynolds number is performed to evaluate the relationship between section averaged
axial velocity, pressure gradient, and wall shear stress.
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Of course, the value of wall shear stress can be measured by the velocity distribution in the vicinity
of the wall, however, the measurement of unsteady velocity distributions in the vicinity of the wall is
difficult. So, wall shear stress is often measured by the electrochemical method
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 or the flush-mounting
probe.
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 The basis of the electrochemical method is that the wall shear stress is proportional to the cube
of electric current flowing between each electrode and counterelectrode.
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 Using the flush-mounting
probe, the wall shear stress is determined from the relationship between the wall shear stress and the
heat flux from the probe to the fluid.
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 Although the calibration of these methods is not easy, the methods
are widely applied, and the reliability of these methods has been demonstrated by many researchers.

The following section introduces an easier method

 

2

 

 which can be applied to the measurement of wall
shear stress in a fully developed unsteady flow through a straight pipe. The application range of the
present method is narrow but still very effective for solving our problem.

 

Methods

 

In order to understand the principle of our method, we considered the fully developed unsteady pipe
flow through a straight pipe, as shown in Fig. 2.1. The equation governing the flow is written as follows:

(2.1)

where 

 

ρ

 

 denotes the density of the fluid, 

 

u

 

 denotes the axial component of the velocity, 

 

t

 

 denotes the time,

 

p

 

 denotes the pressure, 

 

τ

 

 denotes the shear stress in the fluid, and (

 

r,z

 

) denotes the coordinate components
of radial direction and axial direction. In the case of a laminar flow region, the value of 

 

τ

 

 is written as follows:

(2.2)
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where 

 

µ

 

 denotes the viscosity coefficient. In the case of a turbulent flow region or transitional flow region,
the reliable equation corresponding to Eq. 2.2 is unknown, but one should note that Eq. 2.2 is not
necessary for this discussion. The following equation can be obtained by integrating Eq. 2.1 along the
radial direction from 0 to 

 

D

 

/2.

(2.3)

where –

 

u

 

 denotes the section averaged axial velocity, 

 

τ

 

w

 

 denotes the wall shear stress, and 

 

D

 

 denotes the
diameter of the pipe. Eq. 2.3 is the desired result, and this equation represents the balance of force acting
on the fluid. This equation is valid for the fully developed pipe flow in either a laminar flow region or
a turbulent flow region. Using this equation we can easily obtain the wall shear stress 

 

τ

 

w 

 

from the section
averaged axial velocity and the pressure gradient.

The basic behavior of wall shear stress in a transitional region was investigated on the basis of this
method. The experimental apparatus is shown in Fig. 2.2. As the non-Newtonian effect of blood does
not play as important a role in a high shear rate region as it does concerning bllod flow in the aorta,
water was used as a substitute for blood in this study. Water was pumped from the reservoir to the
constant head tank. The flow rate from the constant head tank to the test section is controlled by the
valve (2), and the pulsation is generated by the piston (3), which is driven by the scotch-yoke mechanism.
The motion of the piston can be closely approximated according to the sinusoidal curve. The back pressure
tank (4) is set up to decrease the load of the piston rod. The inner diameter of the test section (plexiglas
tube) is 14 mm, and the length of the straight pipe upstream of the test section is about 200

 

D

 

, which is
much longer than the length of the entrance region. So, the fully developed flow is considered established
in the test section.

The pressure gradient and the section averaged axial velocity were measured by a variable reluctance-
type pressure sensor (Celesco Co., model P7D) and an electromagnetic flowmeter (Yamatake-Honeywell
Co., MagneW-3000), respectively. When measuring section averaged axial velocity and pressure gradient,
we had to pay attention to the frequency response of these apparatus, and the calibration of these
apparatus had to be thoroughly performed. The frequency response of an electromagnetic flowmeter for
industrial use is generally not that good. In addition, the natural frequency of the pressure measuring
system is low compared to the natural frequency of the pressure sensor. One should note that the natural
frequency of the pressure measuring system is strongly affected by the mount-method of the pressure
sensor. To improve the frequency response of the pressure measuring system, we increased the diameter
of the pressure hole and decreased the volume of the cavity (Fig. 2.3).

The experimental conditions were as follows:

(2.4)

 

FIGURE 2.1

 

Model of a fully developed unsteady flow in a straight pipe.
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where <Re> denotes the time-averaged Reynolds number in a cycle, 

 

ω

 

* denotes the non-dimensional
angular frequency, and 

 

∆

 

u

 

* denotes the non-dimensional amplitude of the section averaged axial velocity.
These parameters are defined as follows:

where –<

 

u

 

> denotes the time-averaged section averaged axial velocity in a cycle, 

 

ω

 

 denotes the angular
frequency, and 

 

∆

 

u

 

 denotes the amplitude of the section averaged axial velocity.
An approximated analysis was performed to compare the calculated results with the experimental

results. This analysis was performed on the basis of Eq. 2.3 and the following sinusoidal waveform of the
pressure gradient.

 

FIGURE 2.2

 

Experimental apparatus: (1) pump; (2) diaphragm valve; (3) piston; (4) back pressure tank; (5)
electromagnetic flowmeter; (6) variable inductance-type pressure transducer; (7) DC canceller; (8) low-pass filter;
(9) DC amp.; (10) data recorder.

 

FIGURE 2.3

 

Installation of a pressure transducer (cavity type).
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(2.5)

where <

 

∂

 

p

 

/

 

∂

 

z

 

> denotes the time-averaged pressure gradient in a cycle. The wall shear stress was not
calculated from Eq. 2.3 directly, but the wall shear stress in a steady pipe flow can be obtained using the
following equations:

 (2.6)

where the subscript s denotes the value of the steady flow. In Eq. 2.6, the value of  

 

λ

 

s

 

 can be calculated
using the following equations (Poiseuille’s law and Blasius’s law):

(2.7)

where Re

 

S

 

 denotes the Reynolds number of the steady flow (= –

 

ρ

 

u

 

s

 

D

 

/

 

µ

 

). In this section, the approximated
analysis was performed based on the assumption that these equations are effective under unsteady flow
conditions (quasi-steady approximation). On the basis of this assumption, the wall shear stress in Eq. 2.3
is written as follows:

(2.8)

The value of 

 

λ

 

(

 

t

 

) can be obtained by replacing Re

 

s

 

 in Eq. 2.7 with –

 

ρ

 

u

 

(

 

t

 

)

 

D

 

/

 

µ

 

. By substituting Eq. 2.8 into
Eq. 2.3, the ordinary differential equation of –

 

u

 

(

 

t

 

) is derived, and the change of the section averaged axial
velocity and the wall shear stress can be calculated numerically.

We expected that the characteristics of the flow are strongly affected by the ratio of three terms in
Eq. 2.3. So, we introduced the non-dimensional parameters which denote the ratio of these three terms.
In this section, the following non-dimensional parameters are adopted.

 

6

 

(2.9)

where 

 

∆τ

 

w

 

 denotes the amplitude of the wall shear stress in a cycle. The first parameter in this equation
denotes the ratio of the amplitude of the inertial term to the amplitude of the pressure gradient term,
while the second parameter denotes the ratio of the amplitude of the viscous term to the pressure gradient
term. The characteristics of the wall shear stress can be discussed based on 

 

Φ

 

z

 

,1

 

 in Eq. 2.9.

 

Results and Discussion

 

The experimental results of 

 

Φ

 

z

 

,1

 

 are shown in Figs. 2.4 and 2.5. In these figures, the time-averaged Reynolds
number is approximately 1.1 

 

×

 

 10

 

4

 

, and the pulsatile frequency is 0.30Hz and 0.19Hz, respectively. The
abscissa of these figures is the non-dimensional amplitude of section averaged axial velocity. The calcu-
lated 

 

Φ

 

z

 

,1

 

 based on the quasi-steady approximation is shown by the dot-dash line and the calculated 

 

Φ

 

z

 

,1

 

based on Womersley’s solution is shown by the dotted line.. The following findings were obtained from
these figures:

1. Non-dimensional amplitude 

 

∆

 

u

 

* does not have a strong effect on 

 

Φ

 

z

 

,1

 

.
2. The experimental results lie between the results calculated using the turbulent quasi-steady approx-

imation and the results calculated using Womersley’s solution.
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Knowledge of the flow laminarization is essential to understand the pulsatile flow at a transitional
Reynolds number. The laminarized pulsatile flow was studied by many researchers whose studies showed
that the pulsation changed the flow at Re = 1.0 

 

×

 

 10

 

4

 

 from the fully turbulent state to the conditionally
turbulent state.
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 If the pulsation weakens the turbulence of the flow, the characteristics of the pulsatile

 

FIGURE 2.4

 

Experimental results at <Re> = (1.2 ± 0.1) 

 

×

 

 10

 

4

 

, 

 

ω

 

* = 95 ± 2. Circles represent experiments, the
intermittent dashed line represents results calculated based on the turbulent quasi-steady approximation, and the
dotted line represents results calculated based on Womersley’s solution. (

 

Source:

 

 Nakamura, M., Sugiyama, W., and
Haruna, M., 

 

Trans. ASME, J. Biomech. Eng.

 

 115, 412–417, 1993. With permission.)

 

FIGURE 2.5

 

Experimental results at <Re> = (1.2 ± 0.1) 

 

×

 

 10

 

4

 

, 

 

ω

 

* = 59 ± 2. Circles represent experiments, the inter-
mittent dashed line represents results calculated based on the turbulent quasi-steady approximation, and the dotted
line represents results calculated based on Womersley’s solution. (

 

Source:

 

 Nakamura, M., Sugiyama, W., and
Haruna, M., 

 

Trans. ASME, J. Biomech. Eng.

 

 115, 412–417, 1993. With permission.)
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flow will lie at an intermediate state between the laminar flow and turbulent flow. The experimental
results in Figs. 2.4 and 2.5 are explained by this discussion. Of course, the laminarization effect is not
included in the quasi-steady approximation.

Figs. 2.6 and 2.7 show the experimental results when <Re> is approximately 8.5 

 

×

 

 10

 

3

 

. Fig. 2.6 shows
that the value of 

 

Φ

 

z

 

,1

 

 increases with the increase in 

 

∆

 

u

 

*, and the value of 

 

Φ

 

z

 

,1

 

 in a high 

 

∆

 

u

 

* region is
greater than the results calculated using the turbulent quasi-steady approximation. However, this char-
acteristic is not evident in Fig. 2.7. To understand these results, the bursting frequency (ƒ

 

B

 

) was intro-
duced. The characteristic of the pulsatile flow at a transitional Reynolds numbers depends on the ratio
of the pulsatile frequency to the bursting frequency.
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 Narasimha and Narayanan represent the bursting
frequency with the following equation:

(2.10)

The pulsatile velocity components exhibited an overshoot in the Stokes layer (near the wall) when the
ratio of the pulsatile frequency to the bursting frequency was of the order of unity.
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 Since the pulsatile
frequency of Fig. 2.6 is closer to the bursting frequency than the pulsatile frequency of Fig. 2.7, the
overshoot effect in Fig. 2.6 will be clearer than the one in Fig. 2.7. Since the overshoot of the pulsatile
velocity component derives the increase in the amplitude of the wall shear stress, the increase in 

 

Φ

 

z

 

,1

 

 can
be explained by the overshoot effect. In addition, Fig. 2.6 suggests that the increase in the pulsatile
amplitude strengthens the overshoot effect of the pulsatile velocity component.

Figs. 2.8 and 2.9 show the experimental results of 

 

Φ

 

z

 

,1

 

 when <Re> is approximately 4000. Fig. 2.8
shows that the value of 

 

Φ

 

z

 

,1

 

 is greater than the results calculated using the turbulent quasi-steady
approximation through the whole range of the non-dimensional amplitude. This result means that the
overshoot effect of the pulsatile velocity components near the wall plays an important role in the whole
range of Fig. 2.8. This result is explained by the approach of the pulsatile frequency to the bursting
frequency.

 

FIGURE 2.6

 

Experimental results at <Re> = (8.5 ± 0.5) 

 

×

 

 10

 

3

 

, 

 

ω

 

* = 96 ± 3. Circles represent experiments, the inter-
mittent dashed line represents results calculated based on the turbulent quasi-steady approximation, and the dotted
line represents results calculated based on Womersley’s solution. (

 

Source:

 

 Nakamura, M., Sugiyama, W., and
Haruna, M., 

 

Trans. ASME, J. Biomech. Eng.

 

 115, 412–417, 1993. With permission.)
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The effect of the Reynolds number on the value of 

 

Φ

 

z

 

,1

 

 is shown in Fig. 2.10. In this figure, the shadowed
portion shows the range of the time-averaged Reynolds number in the human aorta.

 

11

 

 Moreover, one
should note that the value of 

 

ω

 

* in the human aorta is approximately 100. This figure shows that the
parameters of the aorta lie in the region corresponding to a maximum of 

 

Φ

 

z

 

,1

 

. Since 

 

Φ

 

z

 

,1

 

 is the ratio of

 

FIGURE 2.7

 

Experimental results at <Re> = (8.5 ± 0.5) 

 

×

 

 10

 

3

 

, 

 

ω

 

* = 60 ± 3. Circles represent experiments, the inter-
mittent dashed line represents results calculated based on the turbulent quasi-steady approximation, and the dotted
line represents results calculated based on Womersley’s solution. (

 

Source:

 

 Nakamura, M., Sugiyama, W., and
Haruna, M., 

 

Trans. ASME, J. Biomech. Eng.

 

 115, 412–417, 1993. With permission.)

 

FIGURE 2.8

 

Experimental results at <Re> = (4.2 ± 0.2) 

 

×

 

 10

 

3

 

, 

 

ω

 

* = 90 ± 4. Circles represent experiments, the inter-
mittent dashed line represents results calculated based on the turbulent quasi-steady approximation, and the dotted
line represents results calculated based on Womersley’s solution. (

 

Source:

 

 Nakamura, M., Sugiyama, W., and
Haruna, M., 

 

Trans. ASME, J. Biomech. Eng.

 

 115, 412–417, 1993. With permission.)
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the amplitude of the wall shear stress to the amplitude of the pressure gradient, this result suggests that
the parameters of the aorta are suitable to generate the pulsatile flow with a large amplitude of the wall
shear stress. Many studies concerning the relationship between the wall shear stress and some arterial
lesions (for example, atherosclerosis) have been performed and suggest that an increase in wall shear
stress prevents the development of arterial lesions.1 Our experimental results demonstrate the important
role of blood flow parameters in the aorta. Of course, this is only a hypothesis that explains the role of
blood flow parameters in the aorta; more detailed studies should be performed in the future.

The wall shear stress can be obtained accurately if we obtain the accurate flow rate and pressure
difference. The measurements of flow rate and pressure difference are much easier to obtain than the
measurement of wall shear stress in general. The advantage of this method is clear. Additionally, we
should note that Eq. 2.3 is effective for a non-Newtonian fluid. So, our method can be applied to the
measurement of the wall shear stress of a non-Newtonian fluid in the future.

2.3 Wall Shear Stress of the Pulsatile Flow through a 
Two-Dimensional Channel with an Oscillating Wall

Introduction

The flow pattern in the vicinity of the oscillating wall is essential in understanding the blood flow through
the artery. Therefore, this flow attracted the interest of many researchers,3,12 and the flow structure in the
vicinity of the oscillating wall was gradually revealed by their research. On the other hand, we expect
that the oscillation of the wall has a strong influence on the wall shear stress, but investigations into the
relationship between the wall oscillation and wall shear stress are limited compared to investigations into
the relationship between the flow pattern and the vicinity of the oscillating wall.3 As the experimental
measurements of wall shear stress in the vicinity of the oscillating wall will involve great difficulty, the
experimental techniques are beyond the scope of this section.

FIGURE 2.9 Experimental results at <Re> = (4.2 ± 0.2) × 103, ω* = 58 ± 2. Circles represent experiments, the inter-
mittent dashed line represents results calculated based on the turbulent quasi-steady approximation, and the dotted
line represents results calculated based on Womersley’s solution. (Source: Nakamura, M., Sugiyama, W., and
Haruna, M., Trans. ASME, J. Biomech. Eng. 115, 412–417, 1993. With permission.)
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Methods

The model used in this calculation is shown in Fig. 2.11. The laminar pulsatile flows through a two-
dimensional channel constructed of a fixed wall (upper wall) and an oscillating wall (lower wall) were
analyzed numerically. The height of the lower wall F(x,t) is given by:

(2.11)

where t denotes the time, x denotes the coordinate component (see Fig. 2.11), D0 denotes the channel
width, hm denotes the amplitude of the wall oscillation, and T0 denotes the period of the wall oscillation.
This equation shows that the center of oscillation lies at x/D0 = 2.0, and the oscillation range of the wall
is limited to the range of x/D0 = 1.0 to x/D0 = 3.0. Additionally, the flow rate at the inlet is demonstrated
by the following equation:

(2.12)

where Q10 denotes the time-averaged flow rate, ε denotes the non-dimensional amplitude of the flow
rate, and δ denotes the phase lag between the flow rate and the wall oscillation. This equation was used
to determine the boundary condition at the inlet.

The basic equations are written as follows:

(2.13)

FIGURE 2.10 Effect of the Reynolds number on the value of Φz,1. Circles represent experiments, the intermittent
dashed line represents results calculated based on the turbulent quasi-steady approximation, and the dotted line
represents results calculated based on Womersley’s solution. (Source: Nakamura, M., Sugiyama, W., and Haruna,
M., Trans. ASME, J. Biomech. Eng. 115, 412–417, 1993. With permission.)
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(2.14)

where ω denotes the vorticity, φ denotes the stream function,∇2 denotes the two-dimensional Laplacian,
and ν denotes the kinetic viscosity coefficient. These equations are very popular in the numerical
calculation of a two-dimensional flow. We then introduced the following coordinate transformation from
x, y, t to ξ,η,τ.13

(2.15)

Using this transformation, the positions of the upper and lower walls were transformed from y = d0 and
y = F to η = D0 and η = 0. That is, the moving boundary problem was transformed into the fixed
boundary problem. The importance of this coordinate transformation is clear. In the transformation
from (x, y, t) to (ξ,η,τ), the following relationships are effective:

(2.16)

where

(2.17)

(2.18)

The boundary conditions of our calculations were as follows: the fully developed pulsatile flow pattern
through the two-dimensional channel was used as the inlet boundary condition (x/D0 = 0). A value of
zero-pressure was used as the boundary condition at the outlet (x/D0 = 10.0). In addition, natural
boundary conditions were used for all other variables at the outlet. At the upper wall of the channel
(y = D0), it is obvious that the boundary condition of φ is φ = φ0 (constant). Additionally, the boundary
value of ω at the upper wall was determined from Wood’s condition.14 At the lower wall (y = F), the
boundary condition for φ was determined from the following equations:

(2.19)

The boundary value of ω at the lower wall was determined from Wood’s condition, too.
The non-dimensional parameters which characterize the flow pattern of our analysis are the Reynolds

number, the Strouhal number, the non-dimensional amplitude of section averaged axial velocity, the
non-dimensional height of the wall oscillation, and the non-dimensional phase lag between the wall

FIGURE 2.11 Two-dimensional channel with an oscillating wall.
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oscillation and the flow pulsation. The Reynolds number and the Strouhal number are defined by the
following equations:

(2.20)

(2.21)

Of course, the non-dimensional amplitude of the section averaged axial velocity is shown by the value
of ε in Eq. 2.12 and the non-dimensional amplitude of the wall oscillation is defined by hm/D0 in Eq. 2.11.
In addition, the non-dimensional phase lag between the wall oscillation and the flow pulsation is defined
by δ/T0 in Eq. 2.12.

In our analysis, the calculated region was transformed into the rectangular region as mentioned above.
Therefore, we adopted the finite difference method for the numerical calculation. As the method of
discretization, the fully implicit scheme was adopted to stabilize the numerical calculation. The final
sparse non-symmetric linear system resulting from this procedure is denoted by Ax = b, where A denotes
the n × n nonsymmetric matrix (known), b denotes the vector (known), and x denotes the solution
vector of this linear system. Since most CPU time is dissipated by the calculation of this solution, we
selected the effective numerical algorithm for this linear system. The numerical solution methods for
linear equations are divided into the two groups: direct method and iterative method. A direct method
has an algorithm with a finite number of steps, while an iterative method generates a sequence of solution
vectors which converge to the solution. It is well known that compared to a direct method, an iterative
method is advantageous for the calculation of large linear equations. We adopted the CGS (conjugate
gradient squared) method.15 It has been suggested that the CGS method is one of the most effective
iterative methods for solving non-symmetric linear equations.16 The algorithm of the CGS method is
written as follows:15 

Step 1: Let m = 0. Choose x0 and compute p0 = e0 = r0 = b – Ax0. 
Step 2: Compute:

Step 3: Let m = m + 1. 
Step 4: Repeat steps two and three until convergence is reached.

The distribution of stream function and vorticity can be calculated from these procedures, and the
velocity vector (u,v) can be easily obtained from the stream function.

(2.22)
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The wall shear stress can be calculated from the velocity distributions in the vicinity of the wall. Addi-
tionally, the pressure distributions can be calculated from the velocity vectors. The Navier-Stokes equa-
tions in the (ξ,η,τ) system are written as follows:

where µ denotes the viscosity coefficient. The pressure distribution is easily calculated from these equa-
tions and the velocity vector (u,v).

Results and Discussion

Fig. 2.12 shows the calculated stream lines at Re = 500, St = 0.03, hm/D0 = 1/3, ε = 0.22, and δ/T0 = 0.725.
Because the flow pattern on the downstream side of the oscillating wall is very interesting, the stream
lines between x/D0 = 2.0 and x/D0 = 7.0 are also shown. In addition, the channel width of these figures
is enlarged in order to more easily understand the characteristics of the flow pattern. Fig. 2.12a shows
the stream lines at t/T0 = 0.0, i.e., the height of the oscillating wall has a minimum value. Therefore, the
dip forms in the lower wall, and the separation bubble is located in this dip. Fig. 2.12b shows the stream
lines at t/T0 = 0.25, i.e., the height of the oscillating wall becomes zero at this time. However, the stream
lines are not parallel to the wall because of the unsteady effect. Fig. 2.12c shows the stream lines at
t/T0 = 0.50, i.e., the height of the oscillating wall has a maximum value at this time. So, stenosis develops
at this time, and a large separation bubble is evident. In addition, we should note the existence of a
separation bubble in the vicinity of the upper wall. Fig. 2.12d shows the stream lines at t/T0 = 0.75, i.e.,
the height of the oscillating wall becomes zero at this time.

FIGURE 2.12a Stream lines for an oscillating wall (Eq. 2.11). t/T0 = 0.00; Re = 500; St = 0.03, hm/D0 = 1/3; ε = 0.22;
δ/T0 = 0.725.

FIGURE 2.12b Stream lines for an oscillating wall (Eq. 2.11). t/T0 = 0.25; Re = 500; St = 0.03, hm/D0 = 1/3; ε = 0.22;
δ/T0 = 0.725.
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It is apparent that the length of the separation bubble is affected by flow conditions. Therefore, we
examine the relationship between the length of separation bubble Ls and phase lag δ/T0. The length of
separation bubble Ls at t/T0 = 0.5 is shown in Table 2.1. In this table, Ds denotes the height of the oscillating
wall at t/T0 = 0.5, and “steady” denotes the results under steady flow conditions with the same Reynolds
number (Re = 500). Table 2.1 demonstrates that the length of a separation bubble can be controlled by
the phase lag; the important role of phase lag to the flow patterns is obvious.

Next, we considered the distributions of wall shear stress. The distributions of wall shear stress at the
upper wall and lower wall are shown in Figs. 2.13a-d. In those figures, the wall shear stress at the upper
wall is represented by a dotted line, and the wall shear stress at the lower wall is by a solid line. Fig. 2.13a
shows the distributions of wall shear stress at t/T0 = 0.0, i.e., the height of the oscillating wall has a
minimum value. Due to the existence of a separation bubble, the negative wall shear stress region appears
in the lower wall. Fig. 2.13b shows the distributions of wall shear stress at t/T0 = 0.25. Since the height
of the oscillating wall is zero at this time, the value of the wall shear stress is almost constant. Fig. 2.13c
shows the distributions of wall shear stress at t/T0 = 0.50. A sharp peak of wall shear stress is evident at
the lower wall. One should note that the peak position lies in the upstream side of stenosis (x/D0 < 2.0),
which is not in conflict with the results of the fixed wall.17 Fig. 2.13d shows the distribution of wall shear
stress at t/T0 = 0.75. This figure demonstrates the fluctuations in the distribution of wall shear stress far
away from the stenosis. This result will be explained by the flow of the separation bubble.

FIGURE 2.12c Stream lines for an oscillating wall (Eq. 2.11). t/T0 = 0.50; Re = 500; St = 0.03, hm/D0 = 1/3; ε = 0.22;
δ/T0 = 0.725.

FIGURE 2.12d Stream lines for an oscillating wall (Eq. 2.11). t/T0 = 0.75; Re = 500; St = 0.03, hm/D0 = 1/3; ε = 0.22;
δ/T0 = 0.725.

TABLE 2.1 Length of Separation Bubble at t/T0 = 0.5

Phase Lag (δ/T0)  Ls/Ds

–0.025 6.8
0.225 5.9
0.475 6.0
0.725 6.8
Steady 6.3
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FIGURE 2.13a Wall shear stress for an oscillating wall (Eq. 2.11). The solid line represents the lower wall, and the
dotted line represents the upper wall. t/T0 = 0.00; Re = 500; St = 0.03, hm/D0 = 1/3; ε = 0.22; δ/T0 = 0.725.

FIGURE 2.13b Wall shear stress for an oscillating wall (Eq. 2.11). The solid line represents the lower wall, and the
dotted line represents the upper wall. t/T0 = 0.25; Re = 500; St = 0.03, hm/D0 = 1/3; ε = 0.22; δ/T0 = 0.725.

FIGURE 2.13c Wall shear stress for an oscillating wall (Eq. 2.11). The solid line represents the lower wall, and the
dotted line represents the upper wall. t/T0 = 0.50; Re = 500; St = 0.03, hm/D0 = 1/3; ε = 0.22; δ/T0 = 0.725.

FIGURE 2.13d Wall shear stress for an oscillating wall (Eq. 2.11). The solid line represents the lower wall, and the
dotted line represents the upper wall. t/T0 = 0.75; Re = 500; St = 0.03, hm/D0 = 1/3; ε = 0.22; δ/T0 = 0.725.
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Fig. 2.14 shows the minimum and maximum wall shear stress of the upper and lower wall at each
time. In this figure, the labels max and min denote the maximum and minimum value, and the labels
UP and LO denote the upper and lower wall, respectively. Fig. 2.14 shows that the wall shear stress of
the lower wall reaches its minimum and maximum values at about t/T0 = 0.60. On the other hand, the
height of the oscillating wall reaches its maximum value at t/T0 = 0.50. The mechanics of this difference
are explained by the growth time of the separation bubble.

It is apparent that the phase lag between the wall oscillation and the pulsation of the bulk flow has a
strong influence on the distribution of wall shear stress. The maximum and minimum wall shear stress
in a cycle are shown in Table 2.2 as a function of phase lag. In this table, the values of wall shear stress
are normalized by µu0/D0 .

This table shows that phase lag has a strong effect on wall shear stress, and the reversal of wall shear
stress at the upper wall can be prevented by selecting the appropriate phase lag. In other words, we can
prevent the flow separation in the vicinity of the upper wall by selecting the appropriate phase lag. It is
well known that the flow separation has a strong influence on the pressure loss or generation of some
arterial lesions.18 Therefore, this result has important consequences for engineering as well as biome-
chanics. Additional detailed studies should be performed in the future.

Application I: Pressure Loss of Pulsatile Flow through a Two-Dimensional 
Channel with an Oscillating Wall

From a practical viewpoint, pressure loss is one of the most important factors, so we considered the
pressure loss of the pulsatile flow through a two-dimensional channel with an oscillating wall. The
relationship between the wall oscillation and the pressure loss has attracted the interest of many research-
ers in relation to the drag-reduction mechanism of dolphins and the pressure loss of blood flow in the
artery. However, the detailed numerical analysis has not yet been performed, and there is still much more
to be studied.

FIGURE 2.14 Maximum and minimum wall shear stress vs. time for an oscillating wall (Eq. 2.11).
Max = maximum; min = minimum; LO = lower wall; UP = upper wall. Re = 500; St = 0.03, hm/D0 = 1/3; ε = 0.22;
δ/T0 = 0.725.

TABLE 2.2 Influence of Phase Lag on the Maximum and Minimum Wall Shear Stress in a Cycle

 Maximum Wall Shear Stress Minimum Wall Shear Stress

Phase Lag (δ/T0)  UP  LO  UP  LO

 –0.025  28.3  86.1  –3.240  –36.4
 0.225  24.1  84.4  0.929  –36.3

 0.475  14.8  63.3  0.467  –35.2
 0.725  19.4  61.7 –3.910  –35.7

Steady  21.2  72.6  –0.927  –35.9
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Since the calculation models and methods are almost identical to those discussed earlier in this section,
we will present the calculation results directly. Of course, pressure is a function of x,y,t (see Fig. 2.11),
but it is apparent that the value of the y-component does not have a strong effect on the pressure.
Therefore, we introduced the average pressure along the y-direction within a channel:

(2.23)

Fig. 2.15 shows the calculated distribution of –p at Re = 500, St = 0.01, hm/D0 = 0.3, ε = 0.61, and
δ/T0 = 0.695. The ordinate there is non-dimensional pressure, and the value of the pressure at the inlet
(x/D0 = 0) is set at zero. The sharp change of the pressure distribution was found in the vicinity of
x/Do = 2.0. Of course, this sharp change is explained by the pattern of the wall oscillation (see Eq. 2.11).

The most interesting result of this analysis is the relationship between the pressure drop and the wall
oscillation from a practical viewpoint. Therefore, we defined the following parameter:

(2.24)

The calculated ∆p– is shown in Figs. 2.16a-d. In those figures, the value of the non-dimensional phase
lag δ/TI0 is –0.055, 0.195, 0.445, and 0.695, respectively, and the non-dimensional amplitude of the wall
oscillation lies in 0.1–0.4. Figs. 2.16a, b, and d show that the pattern of the pressure drop is strongly
distorted by the increase in hm/D0. However, Fig. 2.16c shows that the pattern of the pressure drop is
hardly affected by the increase in hm/D0 , thereby demonstrating the importance of the phase lag between
the pulsation of the bulk flow and the wall oscillation. To understand the meaning of the wall oscillation,
the pressure drop of the pulsatile flow through the channel with a fixed stenosis was calculated for
reference. The calculation conditions were the same as the conditions of Figs. 2.16a-d except for the form
of the lower wall, which is represented by the following equation:

(2.25)

FIGURE 2.15 Pressure distribution for an oscillating wall (Eq. 2.11). Re = 500; St = 0.01, hm/D0 = 0.3; ε = 0.61;
δ/T0 = 0.695.
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The calculated pressure drop based on Eq. 2.25 is shown in Fig. 2.17, which also demonstrates that the
absolute value of the pressure drop at the fixed wall is greater than the absolute values of the pressure
drop at the oscillating wall (Fig. 2.16). In addition, the pattern of the pressure drop in Fig. 2.17 (fixed
wall) resembles the sine curve as compared to the results of Fig. 2.16 (oscillating wall) with one exception
(Fig. 2.16c). Next, we considered the blood flow through the artery as an application of these results.
The flow through the oscillating stenosis is easily found in the cardiovascular system.19 Many studies
were performed to evaluate the behavior of blood flow through the oscillating stenosis. Among them, a
very interesting model study was performed by Rabinovitz et al.20 They studied the interaction between
the oscillating stenosis and the pulsatile blood flow, and they found that the oscillating stenosis had the
strong effect of distorting the waveform of the pressure curve compared with the fixed stenosis. In
addition, they found that this result was related to some arterial disease (tetralogy of Fallot). Clearly, our
numerical results do not conflict with their experimental results, and our investigation theoretically
supports their results.

We next introduce the non-dimensional coefficient of an additional pressure drop due to the wall
oscillation. First, we divided the cycle-averaged pressure drop into two terms:

(2.26)

where < > denotes the cycle-averaged value, and ∆p0 denotes the cycle-averaged pressure drop of the
pulsatile flow through a two-dimensional channel with parallel walls (F(x,t) = 0.0). We easily calculated
the value of ∆p0 using Womersley’s two-dimensional solution. Therefore, the additional pressure drop
due to the wall oscillation is denoted by ∆p′. On the basis of this result, the non-dimensional coefficient
of the additional pressure drop due to the wall oscillation was defined as follows:

(2.27)

The purpose of our study was to evaluate the basic behavior of the value λ. The calculated results are
shown in Fig. 2.18, which demonstrates that an increase in hm/D0 increases the value of λ, and we can
suppress the increase in the additional pressure drop by selecting the phase lag between the pulsation of
the bulk flow and the wall oscillation. In addition, Fig. 2.18 shows that the value of λ satisfies the following
inequality:

(2.28)

These results are worthy of attention and will be important when evaluating the role of wall oscillation. 

FIGURE 2.16a Pressure difference between x/D0 0.0 and x/D = 10.0 for an oscillating wall (Eq. 2.11). Re = 500;
St = 0.01; ε = 0.61; δ/T0 = –0.055.
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Next, we investigated the effect of the period of wall oscillation by calculating the pressure drop based
on the following:

(2.29)

FIGURE 2.16b Pressure difference between x/D0 0.0 and x/D = 10.0 for an oscillating wall (Eq. 2.11). Re = 500;
St = 0.01; ε = 0.61; δ/T0 = 0.195.

FIGURE 2.16c Pressure difference between x/D0 = 0.0 and x/D = 10.0 for an oscillating wall (Eq. 2.11). Re = 500;
St = 0.01; ε = 0.61; δ/T0 = 0.445.

FIGURE 2.16d Pressure difference between x/D0 = 0.0 and x/D = 10.0 for an oscillating wall (Eq. 2.11). Re = 500;
St = 0.01; ε = 0.61; δ/T0 = 0.695.
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The calculated results of λ based on Eq. 2.29 are shown in Fig. 2.19. The calculation conditions there
were the same as the calculation conditions shown in Fig. 2.18 except for the period of the oscillating
wall. Fig. 2.19 shows that the phase lag between the pulsation of the bulk flow and the wall oscillation
does not have a strong effect on the value of λ. In addition, Fig. 2.19 shows that the calculated results of
λ satisfy Inequality 2.28. Figs. 2.18 and 2.19 show that the wall oscillation described by Eqs. 2.11 and
2.29 does not decrease the pressure drop through the channel. The relationship between the wall oscil-
lation and the pressure drop through the channel was studied by many researchers, some of whom
suggested that the wall oscillation could decrease the pressure drop through the channel.21 Clearly, this
is in conflict with the calculation results described above. The reason for this contradiction can be
explained by the form of the wall oscillation. It is apparent that the actual pattern of the wall oscillation
has a more complicated form as compared to the form shown in Eqs. 2.11 and 2.29. A numerical study
based on the other wall oscillation patterns should be performed in the future.

Application II: Influence of the Wall Oscillation on the Structure of 
the Separation Bubble

In the numerical analysis mentioned above, the geometry of the flow domain was a two-dimensional
channel with parallel walls when the oscillation of the wall did not occur (F(x,y) = 0.0). So, the separation
bubble did not exist when the oscillation of the wall did not occur. We considered the flow through a
two-dimensional channel which experienced stenosis and found the existence of the separation bubble
possible even if the wall oscillation does not occur. It is clear that the flow pattern in the area of stenosis
is strongly affected by the oscillation of the wall. The purpose of this section is to evaluate the change of
the separated flow region due to the wall oscillation.

FIGURE 2.17 Pressure difference between x/D0 = 0.0 and x/D = 10.0 for a fixed wall (Eq. 2.25). Re = 500; St = 0.01;
ε = 0.61.

FIGURE 2.18 The value of λ for an oscillating wall (Eq. 2.11) and a fixed wall (Eq. 2.25). Re = 500; St = 0.01;
ε = 0.61.
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The calculation model is shown in Fig. 2.20. In this model, the geometry of the lower wall F(x,t) is
demonstrated by the following equations:

(2.30)

where G0(x) denotes the geometry of fixed stenosis, and G1(x,t) denotes the oscillating component of the
wall. The constant β denotes the position of the oscillating region. In order to simplify the problem, the
pulsation effect of the bulk flow is not taken into consideration. So, the inlet flow rate Q is represented
by Q = Qf (constant). The basic equations and the numerical calculation methods are almost identical
to the basic equations and numerical calculation methods mentioned above. Therefore, the detailed
explanations of those methods are omitted here and the calculated results are presented directly.

First we investigated the distributions of wall shear stress. The distributions of wall shear stress in the
vicinity of the oscillating region are shown in Fig. 2.21, where τw denotes the wall shear stress, and the
values of β and hw/D0 are set at 3.0 and 0.02, respectively. The Reynolds number and Strouhal number
are used to denote the effect of the bulk flow rate and the period of wall oscillation. These parameters
are defined as follows:

FIGURE 2.19 The value of λ for an oscillating wall (Eq. 2.29) and a fixed wall (Eq. 2.25). Re = 500; St = 0.01;
ε = 0.61.

FIGURE 2.20 Two-dimensional channel with fixed stenosis and an oscillating wall.
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where the value of Re is 500 and the value of St is 0.1. This figure shows that the oscillation of the wall
decreases the separated flow region (τw < 0 region) even if the amplitude of the wall oscillation is much
smaller than the height of the stenosis or the channel width. This result is worthy of attention. Fig. 2.22
shows the calculated distribution of wall shear stress when the amplitude of the oscillating wall hw/D0 is
0.04. The calculation conditions of this figure are the same as the conditions of Fig. 2.21 except for the
amplitude of the oscillating wall. The decrease in the separated flow region in Fig. 2.22 is much more
noticeable than the decrease in the separated flow region in Fig. 2.21. This result is easy to understand.
The length of the separated flow region is shown in Fig. 2.23 as a function of time. In this figure, Ls

denotes the length of the separation bubble. The relationship between time and the length of the
separation bubble can be determined from this figure.

FIGURE 2.21 Wall shear stress for an oscillating wall with fixed stenosis (Eq. 2.30). Re = 500; β = 3.0; St = 0.1;
hw/D0 = 0.02.

FIGURE 2.22 Wall shear stress for an oscillating wall with fixed stenosis (Eq. 2.30). Re = 500; β = 3.0; St = 0.1;
hw/D0 = 0.04.

FIGURE 2.23 Length of separated flow region for an oscillating wall with fixed stenosis (Eq. 2.30). Re = 500; β = 3.0;
St = 0.1.
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Next we examined the effect of oscillating position on the length of the separated flow region. The
position of the oscillating region is characterized by the value of β (Eq. 2.30). The calculated length of
the separated flow region is shown in Fig. 2.24 as a function of time. The values of β = 3.0, 3.5, and 4.0
are used here. Figure 2.24 shows that the decrease in the separated flow region is noticeable when the
value of β is set at 3.0. However, the length of the separated flow region does not decrease when the value
of β is set at 4.0. Fig. 2.21 demonstrates that the separated flow region lies in the range of 2.4 ≤ x/D0 ≤
3.6 if wall oscillation does not occur. Clearly, wall oscillation in the vicinity of the separated flow region
does decrease the length of the separated flow region.

Next we examined the effect of wall oscillation period Tw. This parameter is characterized by the
Strouhal number (St). The calculated results are shown in Fig. 2.25, demonstrating that the Strouhal
number has a strong effect on the length of the separated flow region.

These figures and calculations allowed us to determine the conditions necessary to decrease the length
of the separated flow region. These conditions have never been discussed in the literature. As mentioned
above, flow separation is significant to the fields of engineering and biomechanics. The implication of
these results will become clear in the future.

FIGURE 2.24 Length of separated flow region for an oscillating wall with fixed stenosis (Eq. 2.30). Re = 500; St = 0.1;
hw/D0 = 0.02.

FIGURE 2.25 Length of separated flow region for an oscillating wall with fixed stenosis (Eq. 2.30). Re = 500; β = 3.0;
hw/D0 = 0.02.
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2.4 Wall Shear Stress of a Non-Newtonian Fluid through an 
Axisymmetric Diffuser

Introduction

The fact that blood is a non-Newtonian fluid is very significant in a low shear rate region.22 The mean
shear rate of blood flow was evaluated by some researchers who found that the mean shear rate of the
venous flow was lower than that of the arterial or capillary flows. Therefore, it was necessary to consider
the non-Newtonian effect of blood when we analyzed the blood flow through the vein. One of the most
famous features of venous blood flow is the large amplitude self-excited oscillation between the blood
flow and the venous tube.23 Many laboratory experiments were performed, and the existence of this self-
excited oscillation was confirmed in vitro. When this large amplitude self-excited oscillation occurs, the
divergent and convergent parts of the tube are developed instantaneously. It is clear that the flow
separation occurs in the divergent part of the collapsed tube. Many researchers suggested that this flow
separation plays an important role in the self-excited oscillation.24 Therefore, investigation of the sepa-
ration phenomena in the divergent part of the collapsed tube becomes a very important subject for the
clarification of self-excited oscillation.

We numerically studied the laminar steady flow of a non-Newtonian fluid through an axisymmetric
diffuser. The steady flow through an axisymmetric diffuser was studied by many researchers, none of
whom accounted for the non-Newtonian property of the fluid. The purpose of our calculation was to
describe the numerical techniques for a non-Newtonian fluid and to obtain detailed information of the
steady separation flow of a non-Newtonian fluid.

Methods

Generally, the Casson model22 is used as a constitutive equation for blood. The schematic flow curve of
a Casson fluid is shown in Fig. 2.26, which demonstrates that the apparent viscosity of a Casson fluid
diverges when the shear rate becomes zero. This is not compatible with the measured data.25 Therefore,
the modified Casson model which possesses the upper limit of the apparent viscosity was used. This
equation is written as follows:

(2.31)

(2.32)

(2.33)

where µa denotes the apparent viscosity of Casson fluid, µ denotes the constant corresponding to the
viscosity coefficient, py denotes the yielding stress, eij denotes the shear rate of the i,j component
(i, j = r,ϕ,z), and β denotes the non-dimensional constant related to the upper limit of the apparent
viscosity. In these equations, the cylindrical coordinate system  (r,ϕ,z) is used. Eq. 2.32 agrees with the
Casson model within the limits of β → 0. The value of β is set at 0.01 by considering the upper limit of
the apparent viscosity of blood.25 If the value of β becomes twice as large as this value, the calculated
results change by about 1%. Clearly the calculated results are hardly affected by the value of β. Hereafter,
this modified Casson model is referred to simply as the Casson model.

µ µa yJ p J= ( ) + ( )





−2
2

1 4 1 2
2

2
1 22

/ /
//

J e e e e e err zz r zr r2

2 2 2 2 2 2
2= + +



 + + +



ϕϕ ϕ ϕ/

if  then J p J py y2

2

2

2
< ( ) = ( )β µ β µ/ /



© 2001 by CRC Press LLC

Basic equations for the axisymmetric incompressible steady flows are written as follows:

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

where u denotes the r-component of the velocity vector, v denotes the z-component of the velocity vector,
and ρ denotes the density of the fluid.

The following constants are used in this calculation; these constants are determined to simulate the
blood flow:

The geometry of the axisymmetric divergent tube is shown in Fig. 2.27. The geometry of this model
is determined by the following three values: n, θ, and D0. The straight tube is arranged on the upstream
and downstream sides of the divergent tube. The straight tube on the downstream side shows the
uncollapsed venous tube. The boundary conditions are shown by the following equations:

FIGURE 2.26 Schematic flow curve of a Casson fluid.
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(1) inlet:

(2.39)

(2.40)

where

In these equations, Ru denotes the pipe radius of the upstream side. These equations represent the fully
developed velocity profile of a Casson fluid in a straight pipe. A depiction of the shape of the collapsed
tube24 showed that the convergent angle was much smaller than the divergent angle. Therefore, the
velocity profile at the entrance to the divergent tube is similar to the fully developed velocity profile in
a straight pipe. The reason for using the fully developed velocity profile in a straight pipe as the inlet
boundary condition is easily understood by the following:

(2) outlet:

(2.41)

where fz denotes the axial component of boundary force. These boundary conditions are similar to the
ones used in the calculation of entry flow26 and the condition of pressure is used for the convenience of
numerical calculation.

(3) wall:

(2.42)

(4) center:

(2.43)

Many numerical methods have been applied to the calculation of viscous flow. We adopted the finite
element method, which has an advantage compared to the finite difference method when solving for the
viscous flow in complex geometry. The finite element used in this calculation is triangular. In addition,
second and first order interpolation functions are used for the calculation of velocity and pressure
distributions, respectively. By integrating the product of the Navier-Stokes equation (Equations 2.34 and
2.35) and the second order interpolation function over one element, we obtained the basic algebraic
equations. The remaining equation was obtained by integrating the product of the mass conservation
equation (Eq. 2.36) and the first order interpolation function over one element. Detailed explanations
of these calculations are provided elsewhere.17

The calculation conditions correspond to the venous flow conditions of man and dog. The Reynolds
number lies in the range of 70–900, and the diameter D0 lies in the range of 0.6–2.0 cm. The mean shear
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rate of the venous flow lies in the range of 30–100 s–1, which is a low value compared to the artery or
capillary flows.

Results and Discussion

The separated flow region is one of the most important parameters for biomechanics, and many impor-
tant results (e.g., behavior of wall shear stress) can be estimated using this parameter. The calculated
results are shown in Figs. 2.28–2.30. In these figures, the longitudinal axis represents the Reynolds number,
and the latitudinal axis represents the non-dimensional axial direction. In addition, the separated flow
region is denoted by the inner part of these curves. The Reynolds number is defined as follows:

(2.44)

where –v denotes the section averaged axial velocity in the downstream side of the diffuser. Fig. 2.28
shows the separated flow region at n = 1, D0 = 2.0 cm, and θ = 6 deg. One should note that flow separation
does not occur in the case of a Casson fluid. Fig. 2.29 shows the separated flow region at n = 1, D0 = 2.0 cm,
and θ = 8 deg. Figs. 2.28 and 2.29 illustrate that the effect of a non-Newtonian fluid is a decrease in the
length of the separated flow region. Fig. 2.30 shows the separated flow region at n = 1, D0 = 2.0 cm, and
θ = 10 deg. This figure demonstrates that the increase in the divergent angle decreases the difference in
the separated flow region between a Newtonian fluid and a Casson fluid. As mentioned above, the
apparent viscosity of a Casson fluid increases with a decrease in the shear rate. So, the apparent viscosity
of a Casson fluid in the vicinity of the separation and reattachment points becomes very large. Therefore,
it is clear that this increased apparent viscosity prevents the reverse flow. On the other hand, it is obvious
that an increase in the divergent angle causes the flow to undergo a sudden change and decreases the
low shear rate region. So, the increase in the divergent angle will weaken the effect of a non-Newtonian
fluid. The above calculations are explained by these considerations. As mentioned above, the flow
separation has a strong relationship to the self-excited oscillation of the venous tube. Many researchers
have suggested that flow separation is essential to self-excited oscillation.24 Therefore, our calculation
results suggest that the non-Newtonian property of blood will have the effect of restraining the self-
excited oscillation of the venous tube. This demonstrates the important role of the non-Newtonian
property of blood. Of course, we cannot draw conclusions from this theory without further study.

In the industrial world, a diffuser is used to convert kinetic energy to pressure. In addition, some
researchers have suggested that this energy conversion rate is strongly related to the self-excited oscillation
of the venous tube.24 Therefore, we examined the energy conversion rate of a diffuser. We first calculated
the pressure recovery based on Bernoulli’s formula. We easily obtained the following equation from
Bernoulli’s formula:

FIGURE 2.27 Model of a divergent tube.

Re /= ρ µvD0
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(2.45)

where denotes the section averaged pressure difference between z = nD0 and z = 0 (obtained from
Bernoulli’s formula), denotes the section averaged pressure obtained from Bernoulli’s formula, and
Du denotes the diameter of the upper tube (Fig. 2.27). Of course, the value of the practical pressure

FIGURE 2.28 Separation and reattachment points. n = 1; θ = 6 deg; D0 = 2.0 cm.

FIGURE 2.29 Separation and reattachment points. n = 1; θ = 8 deg; D0 = 2.0 cm.

FIGURE 2.30 Separation and reattachment points. n = 1; θ = 10 deg; D0 = 2.0 cm.
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recovery is small compared with the value of Eq. 2.45. So, we define the energy conversion rate η with
the following equation:

(2.46)

where denotes the practical section averaged pressure recovery between z = nD0 and z = 0. The
calculated energy conversion rate is shown in Figs. 2.31 and 2.32. In these figures, the longitudinal axis
represents the energy conversion rate, and the latitudinal axis represents the angle of divergence
(Fig. 2.27). These figures show that the non-Newtonian property of a fluid increases the energy conversion
rate. This result can be explained by the decrease in the separated flow region due to the non-Newtonian
property of fluid. In addition, these figures show that an increase in the Reynolds number causes a
decrease in the energy conversion rate. This result can be explained by the increase in the separated flow
region due to the increase in the Reynolds number.

These calculation results prove that a non-Newtonian fluid has the effect of restraining the flow
separation and increasing the energy conversion rate. These results clearly illustrate the excellent prop-
erties of a non-Newtonian fluid and suggest that the non-Newtonian property of blood plays an important
role in the maintenance of life.

FIGURE 2.31 Efficiency of the pressure conversion rate. n = 1; Re = 600; D0 = 2.0 cm.

FIGURE 2.32 Efficiency of the pressure conversion rate. n = 1; Re = 900; D0 = 2.0 cm.
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2.5 Concluding Remarks

This chapter describes some experimental and numerical techniques for evaluating the distribution of
wall shear stress. The effective range of these techniques is limited, but the techniques have some very
interesting features. In addition, the results obtained based on these techniques were discussed in detail,
we defined the blood flow parameters in the aorta, characterized wall oscillation, and identified the non-
Newtonian property of blood. Our results suggest the dexterous nature of blood flow.

As mentioned above, the role of wall shear stress on the arterial lesions has not yet been established,
and many problems remain unsolved in the field of biomechanics. Therefore, more detailed studies
should be performed in the future. Specifically, the study of blood flow from a biological viewpoint is
essential.
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Velocity, pressure, and wall shear stress are important factors in fluid mechanics. Particularly, wall shear
stress, i.e., skin friction, which acts as the interface between fluids and the boundary wall, is the most
fundamental fluid-dynamic factor. In spite of its importance, there are few effective measurement meth-
ods for wall shear stress. This chapter describes an effective method for measuring wall shear stress and
its application to an arterial model.

 

3.1 Introduction

 

There are several measurement probes of wall shear stress, such as the preston tube, the hot film probe,
the pitot tube, and the hot wire probe. Using the preston tube, the wall shear stress at a smooth surface
is calculated from the difference between the total pressure and the static pressure which is measured by
the surface pitot tube attached to the boundary wall. The hot film probe calculates the wall shear stress
with the analogy of heat transfer at the boundary wall. Using the pitot tube and the hot wire probe, the
wall shear stress is calculated from the velocity gradient at the boundary wall after measuring the velocity
profile. The methods described above only allow indirect measurement of wall shear stress by calculating
pressure, heat transfer rate, and the velocity profile at the boundary wall. Furthermore, the flow field
around the measurement probe is disturbed by these probes. Generally, the wall shear stress is a very
sensitive flow factor. Therefore, direct measurement of wall shear stress is desirable.
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The electrochemical method, which is based on mass transfer, is a direct measurement method for
wall shear stress. Chemical engineers, who are primarily interested in operations involving liquids, most
frequently use this method of electrochemical reaction. Under diffusion-controlling conditions, this
method enables the measurement of the mass transfer rate and the wall shear stress at a liquid-solid
interface. Although the electrochemical method is very effective for measuring the wall shear stress in a
liquid flow, it should be noted that there are several limitations of this method. First, it is limited to
liquid flow. Accordingly, the data of mass transfer are limited for high Schmidt numbers. Second, only
a few special chemical agent-water mixtures in which a diffusion-controlling electrolytic reaction occurs
can be employed as the working solution. Third, after an experiment, we cannot drain the working
solution into the sewage channel, because the working fluid contains strong acidic or alkaline components
with ionized heavy metal ions. Furthermore, we cannot use this method for a velocity higher than the
critical velocity at which the reaction resistance at the cathode becomes relatively significant compared
to the decreasing resistance of diffusion. Although there are a few disadvantages to this method, the
electrochemical method enables the direct measurement of the distribution of shear stress along the wall
in series, and makes it easy to clarify the fluid dynamical and physiological implications of the distribution
of wall shear stress.

Furthermore, the laser Doppler velocimeter is the strongest weapon for measuring velocity. Although
this equipment is characterized by quick time response and high space resolution, it is very expensive.
Although the laser Doppler velocimeter has several advantages, it is not a direct measurement probe, i.e.,
the velocity gradient, the wall shear stress, is calculated only after obtaining the velocity profile in the
vicinity of boundary wall.

On the other hand, the wall shear stress, which is a hemodynamic factor, is considered important for
the initiation and development of arterial disease. Atherosclerotic originates in strongly disturbed regions
such as areas of stenosis, the aortic arch, and the arterial branch. The development of atherosclerosis
may be closely related to the physiological response of the arterial wall to shear stress on a localized basis.
Therefore, wall shear stress is the most important factor affecting the interface between blood flow and
the arterial wall.

 

3.2 Electrochemical Method for Measuring Wall Shear Stress

 

Concept

 

It is difficult to directly measure the velocity gradient near a boundary wall because the boundary layer
is so thin that any measurement probe disturbs the flow. However, the electrochemical method, which
uses polarization at a small electrode smoothly embedded in the boundary wall, can be applied to obtain
the velocity gradient at the wall, i.e., the wall shear stress.

 

1–3

 

The electrochemical method. by which wall shear stress is measured. is based on mass transfer. In
electrode reactions, concentration polarization and chemical polarization exist in series, i.e., the ions
transfer from the bulk of the solution to the surface of the electrode where the chemical and physical
changes occur. In measuring the mass transfer rate by using electrochemical reactions, it is better and
more common to make the chemical polarization negligible because the mass transfer coefficients are
most easily obtained from the limiting current when the concentration at the liquid-solid interface can
be measured as zero.

The ions are transferred from the bulk of the solution to the surface of the test electrode principally
by migration due to the electrical potential field, diffusion due to the concentration difference, and
convection due to the flow movement. Assuming the transfer is steady and the fluid flows parallel to the
electrode surface, the effect of convection vanishes because there is no bulk flow perpendicular to the
electrode surface. Migration will not occur if a large excess of a supporting electrolyte is added to the
solution. If such electrolytes, which do not react at the test electrode, exist in the solution in relatively
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high concentration and have high conductivity compared with the reacting ions, the migration current
becomes negligible. The electrolysis current develops from the reaction of ions which reach the electrode
surface. This reaction is called the diffusion-controlling reaction. The ion, i.e., mass, transfer flux N is
given by the following equation which is the analogy between heat and mass transfer.

(3.1)

where 

 

θ

 

∞

 

 and 

 

θ

 

w

 

 are the concentration in the bulk solution and at the surface of the cathode, respectively,
and 

 

α

 

 denotes the mass transfer coefficient.
The current 

 

i

 

 is related to the mass (ion) transfer flux N according Farady’s law:

(3.2)

where Ac and F are the cathode area and Faraday’s constant 65,900 c/M, respectively. Substituting Eq. 3.1
into Eq. 3.2, we obtain the following:

(3.3)

When the migration in the electrical potential field is negligible as mentioned above, the mass transfer
is analogous to the heat transfer at a wall with a constant temperature and may be correlated to the result
of the heat transfer.

The limiting current can be obtained from the potential-current curve as shown in Fig. 3.1. As the
applied negative potential of the cathode is made higher, the current increases exponentially due to the
concentration decrease 

 

θ

 

w

 

 at the electrode surface. Under conditions of limiting current, the ions are
transferred from the bulk of the solution to the surface of the electrode principally by diffusion due to
the concentration gradient. Thereafter, it approaches a constant current, i.e., a limiting current, asymp-
totically, because the concentration at the surface of the electrode becomes zero from 100 mV to –400 mV
(Fig. 3.1). Under conditions of limiting current, the increasing potential does not result in an increase
in the rate of the reaction. As the ion concentration 

 

θ

 

w

 

 of the electrode surface becomes zero at a limiting
current, Eq. 3.3 is simplified as follows:

(3.4)

Under the same conditions, the limiting current is exactly proportional to the bulk concentration. As
distinguished in Fig. 3.1, a further increase of potential over the limiting current region causes a steep
increase in current due to the discharge by a secondary reaction such as hydrogen evolution on the
cathode. Finally, the cathode surface will be dissolved and damaged.

 

Principle

 

The basic electric circuit used in the electrochemical method is shown in Fig. 3.2. The electrolytic
solutions employed to measure the mass transfer rate are the redox systems. There are two redox systems
which are suitable to the electrochemical method: one is the mixture solution composed of potassium
ferricyanide K

 

3

 

Fe(CN)

 

6

 

 and potassium ferrocyanide K

 

4

 

Fe(CN)

 

6

 

, and the other is the copper sulfate
solution CuSO

 

4

 

.
The former electrolytic solution is composed of potassium ferrocyanide K

 

4

 

Fe(CN)

 

6

 

, potassium ferri-
cyanide K

 

3

 

Fe(CN)

 

6

 

, and potassium hydroxide KOH (or sodium hydroxide NaOH) as a supporting
electrolyte. These chemical agents are ionized in water as follows:

N w= −( )∞α θ θ

i AcFN=

i Ac F w= −( )∞  α θ θ

i Ac F= ∞  αθ
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In the polarization of this electrolytic solution, only two ferricyanide Fe(CN)

 

3–
6

 

and ferrocyanide ions
Fe(CN)

 

4–
6

 

react at the cathode and anode as follows:

(3.5)

(3.6)

In this reaction, the presence of dissolved oxygen influences the mass transfer measurement. It is better
to remove oxygen from the test solution and seal the surface of this solution with an inert gas such as
the nitrogen gas N

 

2

 

.
The latter solution is composed of copper sulfate CuSO

 

4

 

 and sulfuric acid H

 

2

 

SO

 

4

 

 as a supporting
electrolyte. In polarization, the following reaction occurs at the cathode and anode:

 

FIGURE 3.1

 

Limiting current.

 

FIGURE 3.2

 

Electric circuit for electrochemical method.
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When this solution is employed, we should pay attention to the condition of the cathode surface, i.e.,
the cathode surface will change with time due to copper deposition during polarization.

When measuring the wall shear stress and the mass transfer rate, the former electrolytic solution is
preferred as a typical working fluid, because the shape of the cathode surface has not changed with time
during measurement, and there is no effect on the flow pattern around the cathode surface. It is
recommended that metals such as platinum or nickel, which have as high a hydrogen overvoltage as
possible and are inert in acidic solutions, are selected as the electrode material. Furthermore, an anode
with a large surface area and a cathode with a much smaller surface area should be coupled in order to
maintain the reductive reaction controlled at the cathode. The addition of an excess of a supporting
electrolyte to the solution has an advantage for eliminating the migration in practical operation—it
makes the electric resistance of the solution negligible.

In the electrolysis cell, the oxidative and the reductive reactions occur at the anode and cathode as
expressed in Eqs. 3.5 and 3.6, respectively. Through this oxidative-reductive reaction, the ferricyanide
ion Fe(CN)

 

3–
6

 

is transferred from the bulk of the solution to the cathode surface and converted to the
ferrocyanide ion Fe(CN)

 

4–
6

 

at the cathode as expressed in Eq. 3.5, i.e., the ion transfer rate is equivalent
to the current 

 

i

 

 flowing between the anode and cathode.
For the sake of simplicity, we consider a two-dimensional steady flow over the flat plate as shown in

Fig. 3.3. The mass transfer flux N is also expressed in Fick's diffusion law as follows:

(3.7)

where D is the diffusion coefficient. As the Schmidt number Sc 

 

≈

 

 10

 

3

 

 is very high in the present solution,
the thickness 

 

δ

 

c

 

 of the mass transfer boundary layer is much thinner than that 

 

δ

 

 of the viscous layer in
the present electrolytic solution, i.e., 

 

δ

 

c

 

 = 

 

δ

 

(S

 

c

 

)

 

–1/3

 

 

 

≅

 

 

 

δ

 

/10, the velocity profile within the mass transfer
boundary layer is linearly proportional to the distance y from the wall. The diffusion in the transverse
direction z is neglected, the same as the velocity v in the direction y. Then, the diffusion equation is
governed by the following expression:

(3.8)

where the flow velocity u near the wall is replaced by 

 

κ

 

y, 

 

κ

 

 being the velocity gradient 

at the wall. The boundary conditions associated with Eq. 3.8 are as follows:

(3.9a)

(3.9b)

Using the coordinate transformation variable, 
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/9Dx)
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, the following ordinary differential equa-
tion is obtained under the boundary conditions:
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(3.10)

At the boundary,

(3.11a)

(3.11b)

Eq. 3.10 can be easily solved for the concentration profile:

(3.12)

where 

 

Γ

 

 denotes the gamma function, 

 

Γ

 

(4/3) = 0.8930. The mean mass transfer flux N across the length 

 

�

 

of the cathode is obtained from Eqs. 3.7 and 3.12 as follows:

(3.13)

Since the wall shear stress is expressed as follows,

(3.14)

the wall shear stress is exactly associated with the current 

 

i

 

 using Eqs. 3.2, 3.13, and 3.14.

(3.15)

where

(3.16)

The coefficient B depends on the shape of the cathode, the property of electrolytic solution, and the
temperature. Therefore, the wall shear stress 

 

τ

 

w

 

 is proportional to the cube of current 

 

i

 

 under the limiting
current.

 

Measurement Method

 

The general concept of the electric circuit and the flow circuit employed in the measurement is illustrated
in Fig. 3.4. The electrolytic solution composed of 0.01 M potassium ferrocyanide K
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potassium ferricyanide K

 

3

 

Fe(CN)

 

6

 

, and 1.0 M potassium hydroxide KOH (or sodium hydroxide NaOH)
as a supporting electrolyte is employed as the working fluid. In order to remove the oxygen dissolved in
the working fluid, the nitrogen gas is continuously injected into the electrolytic solution in the reservoir.
In order to measure the natural potential of the flow circuit, which is an absolute potential against the
ground, the electrolytic solution within the flow circuit is connected to the reference electrode through
the Luggin capillary. When the potential voltage is applied between the cathode and the anode by means
of the potentiostat, the oxidative and reductive reactions occur at the anode and the cathode, respectively,
and the current 

 

i

 

 corresponds to the ion transfer rate between the anode and the cathode.
The typical polarization curve, i.e., the current density vs. the cathode potential, is shown in Fig. 3.5.

The current density is constant from 100 mV to –600 mV, i.e., the increasing potential does not result
in an increase of current because the concentration 

 

θ

 

w

 

 at the cathode surface vanishes as expressed in
Eq. 3.4. This constant current is called the limiting current. By increasing the flow rate under the same
conditions of electrolysis, the value of the limiting current rises and the flat portion of the polarization
curve disappears above a certain upper limit of the flow rate as shown in Fig. 3.6. In such situations, the
limiting current is no longer indicated since the reaction is too slow to remove all ions reaching the
electrode surface. In other words, the thickness 

 

δ

 

c

 

 of the mass transfer boundary layer will be comparable
to that 

 

δ

 

 of the viscous layer as described earlier. This upper limit of the flow rate is called the critical
flow rate. Therefore, the electrochemical method cannot apply beyond the critical flow rate.

One measurement example of the measurement of the limiting current vs. the absolute potential is
shown in Fig. 3.7a. This limiting current is measured in the fully developed laminar steady flow through
the parallel rectangular channel with a width of 4 mm and at the cathode area of 10 

 

×

 

 30 mm

 

2

 

 embedded
in the channel wall. As the mean velocity U increases, the flat portion of the limiting current becomes
narrower. Another example is the measurement of limiting current vs. reference potential in the fully
developed laminar steady flow through a straight circular tube with a diameter of 24 mm as shown in
Fig. 3.7b. The cathode, which has a diameter of 0.5 mm, is embedded in the tube wall perpendicular to
the tube axis. The natural potential of this flow circuit is about 280 mV, i.e., this value corresponds to
zero potential of the reference potential. The flat portion of the limiting current is measured from 150 mV
to –150 mV.

The relationship between the current 

 

i

 

 and the wall shear stress 

 

τ

 

w

 

 is shown in Fig. 3.8. The current
is measured in the fully developed laminar steady flow through the straight circular tube with a diameter
of 24 mm as described in Fig. 3.7b. When measuring, the reference potential is set up at –30 mV. The

 

FIGURE 3.3

 

Velocity and concentration profile in boundary layer.
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wall shear stress 

 

τ

 

w

 

 is theoretically estimated from the velocity profile of the Poiseuille flow using the
flow rate Q. In the laminar flow region, the wall shear stress 

 

τ

 

w

 

 is exactly proportional to the cube of the
current 

 

i

 

 up to Re = 1200. The results mentioned in the application section below are calculated from
this calibration line, and the high value beyond the region shown in Fig. 3.8 is extrapolated. The appli-
cation limit of the electrochemical method is shown in Fig. 3.9. Open and closed symbols denote the
wall shear stress measured using the electrochemical method and the wall shear stress estimated from
the velocity profile obtained by the laser Doppler velocimeter, respectively. In Fig. 3.9, we have adopted
the data measured using the electrochemical method as a true value. The value measured by the laser
Doppler velocimeter is inaccurate because the velocity near the tube wall is sensitive and depends on the
accuracy of the measurement position. The wall shear stress measured using the electrochemical method
coincides with the wall shear stress estimated from the velocity profile up to a Reynolds number of 4000.
Although the wall shear stress might be measured above Re = 4000 by using the electrochemical method,
the result would be overestimated compared to the true value. Actually, above RE = 6000, the wall shear
stress measured by the electrochemical method is twice as large as the wall shear stress estimated from
the velocity profile.

 

FIGURE 3.4

 

Electric and flow circuit.

 

FIGURE 3.5

 

Typical limiting current.
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Creation Process of a Test Electrode

 

The material of the electrode, the flow channel, the adhesive agent, and the creation process are described
in this section.

 

Electrode

 

There are two metals suitable for creating the test electrode, i.e., nickel and platinum. The properties of
nickel and platinum are tough and mild, respectively. Although platinum is expensive, it is easy to process
and makes it possible to polish the surface of the electrode by hand. Therefore, platinum is more popular
as the test electrode material because the polishing process is easier for platinum than for nickel.

 

Flow Channel

 

There are two types of flow channel, i.e., a circular channel drilled into the acrylic rectangular block and
the acrylic circular tube as shown in Figs. 3.10 and 3.11, respectively.

 

Adhesive Agent

 

Epoxy adhesive and acrylic cement are the two possible adhesive agents. Although it is easy to embed
the platinum wire electrode using the epoxy adhesive, the epoxy resin is apt to absorb the water within
the electrolytic solution causes the surface shape around the wire electrode to deform. The deformation
of the surface around the wire electrode disturbs the flow pattern on the electrode. The wall shear stress
cannot be exactly measured since the wall shear stress is very sensitive to the flow disturbance. Therefore,
acrylic cement is frequently employed as the adhesive agent.

 

How to Embed a Wire Electrode

 

One half-channel plate and the cross-sectional view of the wire electrode with a diameter of 0.5 mm
embedded in the channel wall is also shown in Fig. 3.10. When experimenting, another half-channel
plate is symmetrically assembled with it.

In order to embed the wire electrode, the slot is cut by a milling cutter with the radius of the circle
1 mm thick. After milling, there will definitely be some residual stress around the slot. In order to remove
the residual stress, an annealing process needs to be performed, i.e., the channel plate is placed in a
furnace and kept at a constant temperature of 70°C for at least three hours. After annealing, the wire

 

FIGURE 3.6

 

Critical flow rate.



 

© 2001 by CRC Press LLC

 

electrode is glued into the slot using acrylic cement. After glueing, residual stress occurs again because
the acrylic cement contracts during the hardening process. So, the acrylic model with the wire electrode
embedded must be again placed in the constant temperature furnace for three hours to undergo the
annealing process. If the residual stress caused by machining and gluing is not removed, many cracks
will appear around the test electrode. The appearance of cracks results in the increase of the surface area
of the test electrode. After several annealing processes, the wall surface with the embedded wire electrode
is polished by hand using sand paper and emery paper until the wall surface approaches a smooth,
mirror-like surface.

In order to embed the wire electrode in the circular tube as shown in Fig. 3.11, the hole is drilled
perpendicular to the tube axis. In the same process as described above, the wall surface with the embedded
wire electrode is polished by hand.

 

FIGURE 3.7a

 

Limiting current measured at an electrode with area of 10 

 

×

 

 30 mm

 

2

 

 in a rectangular channel with
a width of 4 mm.

 

FIGURE 3.7b

 

Limiting current measured at an electrode with a diameter of 0.5 mm in a circular tube with a
diameter of 24 mm.
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Effective Surface Area

 

This section describes a voltage-sweep polarographic method

 

4

 

 for the effective measurement of the surface
area of an electrode. The real surface area of a metal electrode is generally different from its projected
or geometrical area because of surface curvature or an irregular geometry. This is particularly true for
the round platinum wire electrode embedded at the curvature wall. This situation may arise where the
surface of the electrode has an irregular geometry which makes mechanical or optical measurements
difficult. Actually, it is difficult to measure the surface area of an electrode embedded along the stenosis
inside the circular tube employed in our recent work. The polarographic method is a simple technique
which overcomes such difficulty.

We considered a stationary test electrode whose circular cross-sectional surface was exposed in a redox
solution at rest. If the initial potential was zero, ferricyanide was not reduced at the electrode. As the

 

FIGURE 3.8

 

Calibration between current 

 

i

 

 and wall shear stress 

 

τ

 

w

 

.

 

FIGURE 3.9

 

Comparison of wall shear stress measured with electrochemical method with that estimated from the
velocity profile measured by laser Doppler velocimeter.
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negative potential was continuously increased, a charging current developed until it reached plateaus as
shown in Fig. 3.12. Then, the reductive current in the system increased as the ferricyanide ion diffused
from the bulk solution to the cathode and reacted at the cathode surface. At a higher negative potential,
the system became concentration diffusion limited since reduction at the cathode surface was relatively
fast compared to the transfer rate of the ferricyanide ion to the cathode. The diffusion rate of the
ferricyanide ions toward the cathode did not depend on the cathode potential because the electric field
was saturated with a high concentration of non-reducible ions. A region of depletion of ferricyanide ion
extended further and further from the cathode surface and the current decreased. Thus, the current
reached a maximum value called the peak current 

 

i

 

p

 

. Mathematical analysis of the diffusion equations
for this system has been presented by Meites

 

5

 

 as follows:

(3.17)

 

FIGURE 3.10

 

Side view of a test electrode embedded in an acrylic plate.

 

FIGURE 3.11

 

Electrode embedded in a circular tube.

i Kn D A vp c= ( )∞
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where 

 

A

 

c

 

 represents the cross-sectional area of the electrode, 

 

D

 

 represents the diffusion coefficient of the
electrolytic solution, 

 

θ

 

∞

 

 represents the bulk concentration, v represents the voltage ramp rate, n represents
the number of electron exchanges per molecule, and 

 

K

 

 represents the numerical constant.
The original solution was derived for one-dimensional diffusion to a recessed electrode surface through

a stagnant fluid, which does not accurately describe our experimental system. Therefore, for our system,
the equation constant was decided empirically, and the voltage-sweep polarographic method was per-
formed by checking the dependence of peak current 

 

i

 

p

 

 on two parameters, electrode area 

 

A

 

 and voltage
ramp rate 

 

v

 

.
When experimenting with the voltage-sweep polarographic method, four electrodes with wire diam-

eters of d = 0.5 mm embedded along the surface of the stenosis model were used as shown in Fig. 3.13.
The axes of the four electrodes were perpendicular to the axis of the stenosis. Although the diameter of
the four electrodes is same, the surface area exposed to the electrolytic solution is different, i.e., the shape
of the standard electrode E

 

0

 

 is circular, and the shapes of electrodes E

 

1

 

, E

 

2

 

, and E

 

3

 

 are elliptical. Therefore,
the surface area of electrodes E

 

1

 

, E

 

2

 

, and E

 

3

 

 embedded at the stenosis are larger than that of the standard
electrode E

 

0

 

. The minor diameter of the ellipse embedded in the stenosis is approximately the same as
the diameter of the wire electrode, and the major diameter d

 

s

 

 is longer than the diameter d = 0.5 mm.

Several voltage ramp rates between 50 and 100 mV/s are applied to each of four electrodes E

 

0

 

, E

 

1, E2,
and E3, and the peak current is measured. The data from a typical test for the electrode E0 showing
electrode current and applied potential at three different voltage ramp rates, are shown in Fig. 3.12. The
peak current ip, measured from the plateau to its maximum, is about 13.5 µA at a voltage ramp rate
v = 100 mV/s. As the applied voltage proceeds from an initial value of +300 mV toward more negative
voltages, the current rises and falls after reaching a peak value ip. The peak current is plotted vs. the
voltage ramp rate in Fig. 3.14 for four electrodes. The functional dependence of peak current on voltage
ramp rate is clarified, i.e., the peak current is proportional to the square root of the voltage ramp rate.

Using this functional dependence, the unknown areas of electrodes E1, E2, and E3 are geometrically
shown in Fig. 3.15 at the voltage ramp rate of 70 mV/s. Since the area of electrode E0 is known, the

FIGURE 3.12 Typical chart of current from test electrode E2 obtained by the potential sweep method.
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unknown areas of electrode E1, E2, and E3 are easily estimated from Fig. 3.15. The real areas of electrode
E1, E2, and E3 are 1.09, 1.32, and 1.06 times as large, respectively, as the area of the standard electrode E0.

Frequency Characteristics and Limitations

The flow in the large human artery is pulsating with a wave form which is expressed in at least four
harmonic components. In order to employ the electrochemical wall shear probes for the measurement
of instantaneous wall shear stress in pulsating flow models, the frequency response of the probes must
be exactly known. Several theoretical investigations have been made to determine the response of wall
shear probes subjected to nonreversing unsteady flows, and an attempt to extend the analysis to reversing
flows has also been made.6,7 Several experimental studies of the frequency response of local electrochem-
ical wall shear probes have been performed.8–10

The objective of this section was to experimentally assess the frequency response of electrochemical
mass transfer wall shear probes. Attention was restricted to laminar flow, because under normal condi-
tions, the flow in the human circulatory system is laminar. Only nonreversing flow was studied, because
no satisfactory theory exists for the reversing flow despite the effort which has been made to consider
the reversing flow problem. In order to establish the frequency characteristics of wall shear probes, we
considered the case of a fully developed laminar pulsating flow through a straight circular tube with a
sinusoidal component superimposed on a steady mean flow, since the instantaneous wall shear stress for
this flow can be exactly evaluated.11,12

The experiments were carried out using the same electrolytic solution and the same flow circuit as in
Fig. 3.4 except for stenosis, i.e., the inner diameter of the straight circular tube is D0 = 24.5 mm, and the
diameter of the platinum test electrode is d = 0.5 mm. The wall shear stress was measured in the fully
developed laminar pulsating flow with an amplitude A of flow rate. The pulsating flow rate is expressed
as the following equation:

(3.18)

where Q, Q0, and ω are the instantaneous, the mean flow rates, and the angular velocity of pulsating
frequency, respectively. The measurement was conducted using a mean Reynolds number of Re = 800, a
flow amplitude of A = 0.3 and several non-dimensional frequencies of α = R0 (ω/ν)1/2 ≤ 10.

The comparison of the wave form of measured wall shear stress in the straight circular tube during
one period to the exact solution is shown in Figs. 3.16a, b, and c at α = 3.3, 6.6, and 10.4, respectively.

FIGURE 3.13 Electrode embedded around stenosis.

Q Q A t/ sin0 1= + ω
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The wave form of the flow rate is also indicated in these figures. The measured wall shear stress is estimated
from the result calibrated in a steady Poiseuille flow as shown in Fig. 3.9, i.e., τw = Bi3. In these figures,
the wall shear stress is normalized by the Poiseuille flow, i.e., τw = 2.0 in a mean steady flow.

At α = 3.3, the measured wall shear stress closely corresponds to that of the exact solution. At α = 6.6,
the amplitude of measured wall shear stress is still similar to that of the exact solution. However, the
phase lead appears at α = 6.6. At a higher frequency of α = 10.4, the amplitude of the measured wall shear
stress becomes smaller than that of the exact solution, and the phase lead becomes much larger. The

FIGURE 3.14 Data replotted as peak current ip vs. the square root of the voltage ramp rate for four electrodes.

FIGURE 3.15 Data replotted as peak current ip vs. electrode area for four electrodes.
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frequency characteristics are shown in Fig. 3.17. The amplitude ratio σ is defined as the ratio of the
amplitude of the measured wall shear stress to the amplitude corresponding to the quasi-steady flow.
The phase lead δ is also defined as the phase difference between the time ωt = π/2 at a maximum flow
rate and the time at a maximum wall shear stress. The phase lead δ reaches a maximum at α = 7.0, and

(A)

(B)

(C)

FIGURE 3.16 Comparison of experimental and exact solution of wall shear stress in a pulsating flow: (a) α = 3.3,
A = 0.30; (b) α = 6.6, A = 0.30; (c) α = 10.4, A = 0.30.
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the amplitude ratio σ is the same as the exact solution until δ = 7.0. There are several reports concerning
the frequency characteristics of the electrochemical wall shear probe.7–9 According to the definition by
Mao and Hanratty,9 the criterion parameter ω+N1/3L+2/3 is about 0.38 in the present study of Re = 800,
α = 6.6, and A = 0.30. And the criterion parameter λ defined by Pedley7 is about 0.30. This parameter
lies on the boundary between the quasi-steady flow and the fully developed pulsating flow. Therefore,
this method is considered valid in the range α < 7 for the pulsating flow of Re = 800 and A = 0.30.

3.3 Application

Physiological View

Flow behavior through the artery is closely associated with vascular disease such as atherosclerosis. From
the viewpoint of hemodynamics, it is well known that vascular disease occurs in highly disturbed regions
of stenosis, branching arteries, and large curvature wall.13–15 Concerning the generation and development
of atherosclerotic disease, there are two major hypotheses,16,17 i.e., low shear stress and high shear stress.
Furthermore, it has been reported that the shape of an endothelial cell is distorted in the direction of its
action by the wall shear stress.18,19 Clearly, fluid mechanical factors such as wall shear stress and vortex
may determine the sites where atherosclerotic disease will generate and develop.

The arterial branch is well known as one of the predilection regions where atherosclerotic disease
frequently generates and develops. There are many experimental reports describing the flow situation
through the branch involving flow pattern, velocity profile, wall shear stress, and vortex. Generally, it is
assumed that in the two-dimensional branch flow, the wall shear stress is high around the apex and low
along the proximal wall of the daughter tube. Lutz et al.,20 and El Masry and Feuerstein21 measured the
wall shear stress in the three-dimensional mesenteric branch with a daughter tube bifurcated from a
parent tube at 45°. They suggested that the wall shear stress along the proximal wall of the daughter tube
is not necessarily low and varies with magnitude, and the variation of wall shear stress might be associated
with the site of vascular disease. Karino et al.22,23 visualized the flow in the T-branch and observed that,
at the proximal wall of the daughter tube, there are small reversing flows, not stagnating flows, and there
are a pair of helical flows within the daughter tube. In the internal carotid artery, Ku et al.24 measured
the wall shear stress at several locations and clarified that the wall shear stress is low and the intimal
thickness becomes thicker at the outer wall of the internal carotid artery, where the flow separates.
Concerning the wall shear stress in casts of a human aortic branch with flexibility, Duncan et al.25

measured the wall shear stress at 19 locations. They clarified that, due to pulsation, the cast compliance
reduced shear rates at the outer wall, while the shear rate was increased at the inner wall along the flow
divider.

FIGURE 3.17 Frequency characteristics of wall shear stress in a pulsating flow.
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The flow field in several branch models was numerically estimated using the two-dimensional numer-
ical analysis.26,27 These results show that the wall shear stress near the apex becomes extremely high but
is low downstream of the upstream corner of the daughter tube. Recently, the flow pattern through the
three-dimensional symmetrical branch was numerically calculated using a finite control volume method.
Perktold et al. indicated that, in the flow field through the T-branch in a pulsating flow, the regions of
high and low wall shear stress are close to each other.28

Concerning atherosclerotic disease at the branch of the artery, experimenting on animals and patho-
logical observation has been very revealing. The observed results of pathological research show that
atherosclerosis exists around the apex of the branch, i.e., the region of high shear stress,29,30 in small
animals. In contrast, atherosclerotic disease occurs at the outer wall of the daughter tube, i.e., the region
of low shear stress,31,32 in large animals. The site of atherosclerotic disease varies in each experiment,
which may be related to the different feeding method of cholesterol lipids, the flow pattern, and the flow
distribution ratio in each tube. Yamaguchi et al.33 indicated in their recent investigation that atheroscle-
rosis in the inferior mesenteric artery proliferates at the proximal wall where the wall shear stress is lower
than that around the apex. This inferior mesenteric artery site resembles the mesenteric branch model
studied by Lutz et al., and El Masry and Feuerstein.20,21 However, since the measuring region covered in
the experiment was not wide enough, the behavior of wall shear stress in the daughter tube is not
adequately clarified.

It is also interesting to examine the flow situation through the stenosis. In the flow field through the
stenosis, high wall shear stress occurs in the vicinity of low wall shear stress, i.e., high wall shear stress
appears just upstream of the stenosis, and low wall shear stress appears downstream of the stenosis where
the flow separates.34

Stenosis Model

In this section, the behavior of wall shear stress in the developing process of the occlusion in an arterial
wall, such as stenosis, has been experimentally described in a laminar pulsating flow.35 The wall shear
stress has been locally measured using the electrochemical method, which is based on the reduction of
the ferricyanide ion on an electrode embedded in the tube wall. Furthermore, this flow has been numer-
ically analyzed using a finite element method.

Experiment and Numerical Approach

Apparatus
The configuration of axisymmetric stenosis expressed by a cosine curve is shown in Fig. 3.18. In the
experiment, three stenosis ratios were employed, i.e., δ/R = 0.1, 0.2, and 0.3, where δ and R = 12 mm are
the height of the stenosis and the radius of the straight tube, respectively. The length of the stenosis is
the same as the diameter of the straight tube. In order to measure the wall shear stress, 34 platinum test
electrodes with diameters of 0.5 mm were embedded in the bottom wall upstream and downstream of
the stenosis.

FIGURE 3.18 Sketch of flow field and arrangement of electrodes.
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As shown in Fig. 3.19, the working fluid flows from the constant head tank into the model stenosis
through the inlet straight circular tube with a length of 2 m. Through an electromagnetic flowmeter, the
working fluid flows into the flow control orifice and returns to the reservoir1, within which the working
fluid was maintained at a constant temperature. The control orifice had a slit aperture port with a width
of 10 mm and a height of 1 mm. The aperture area sinusoidally changes around a mean area in the
direction of width by an eccentric cam. Therefore, the flow rate is expressed as a summation of the steady
and pulsating flow rates. The experiment was carried out in the sinusoidal laminar pulsating flow of a
non-dimensional pulsating frequency of α = R(ω/ν)(1/2) = 7.0 with the mean flow rate of
Re = 2RU/ν = 560 and the non-dimensional amplitude of flow rate of A = 0.3, where Re, U, ν, and ω are
the Reynolds number, the mean velocity, the kinetic viscosity, and the pulsating angular velocity, respec-
tively. The wall shear stress was also measured in a steady flow corresponding to the maximum, mean,
and minimum flow rates in a pulsating flow.

Measurement
In measuring the wall shear stress, the electrolytic solution composed of 0.01 M potassium ferricyanide,
0.01 M potassium ferrocyanide, and 1.0 M potassium hydroxide as a supporting electrolyte was employed
as the working fluid. The property of the working fluid was approximately the same as that of distilled
water, i.e., ρ = 1.044 g/cm3, and ν = 0.839 × 10–6 m2/s at a temperature of 303 K. The wall shear stress was
measured using the electrochemical method as previously described.

Numerical Analysis
The flow pattern and the wall shear stress through the axisymmetric stenosis were also calculated using
a finite element method.36 The fluid was assumed to be Newtonian. The governing equations were the
axisymmetric momentum equation and the continuity equation. The number of rectangular finite
elements was 637, and the number of grids was 2745. The boundary condition for velocity in the upstream
inlet section was provided by the fully developed laminar pulsating flow,11,12 and the fluid was no-slip
on the tube wall.

Results

Steady Flow
The distribution of the wall shear stress around the stenosis in a steady flow of δ/R = 0.3 is shown in
Fig. 3.20. The Reynolds numbers indicated in this figure correspond to the maximum, mean, and
minimum flow rates in a pulsating flow as described below. The ordinate denotes the non-dimensional
wall shear stress normalized by the wall shear stress of the Poiseuille flow at Re = 560 in the upstream

FIGURE 3.19 Experimental apparatus and flow circuit.
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straight tube, i.e., the wall shear stress τw in the upstream straight tube at Re = 560 is 2.0. The abscissa
is normalized by the tube radius R. The solid line denotes the numerical result.

The wall shear stress reached its maximum just upstream of the narrowest section of the stenosis and
increased with the Reynolds number. Except for δ/R = 0.1, the flow separated, and the wall shear stress
was negative downstream of the stenosis and its absolute value was small. Therefore, although the wall
shear stress was small downstream of the stenosis, the gradient of wall shear stress with respect to the
tube axis became markedly large at the narrowest section.

Pulsating Flow
The instantaneous wall shear stress was calculated from the relationhip τw = Bi3 based on the steady flow
as shown in Fig. 3.9. The instantaneous wall shear stress at the maximum and minimum flow rates in a
pulsating flow of Re = 550, α = 6.6, and A = 0.34 is shown in Figs. 3.21a, b, and c. This pulsating flow
was laminar and turbulence never occurred. The wall shear stress τw in this figure is normalized by the
wall shear stress of the Poiseuille flow corresponding to the mean flow rate, i.e., the wall shear stress in
the steady flow corresponding to the mean flow rate is τw = 2.0. The gradient of wall shear stress with
respect to the tube axis becomes markedly large downstream of the narrowest section, i.e., around the
separation point. The magnitude of this gradient increases at a period of increasing flow rate. Although
not indicated at α = 3.3, the gradient of wall shear stress near the separation point becomes much larger
with the pulsating frequency.

The oscillation shear index (OSI)24 is shown in Fig. 3.22 for the above results. Although not indicated,
the OSI in δ/R = 0.1 is zero at any location because there is no separation flow behind the stenosis as
shown in Fig. 3.21a. In δ/R = 0.2 and 0.3, the OSI is not zero around the separation point just downstream
of the narrowest section of the stenosis or the reattachment point behind the stenosis. Therefore, the
flow direction periodically changes at both the separation point and the reattachment point.

Remarks

The gradient of wall shear stress with respect to the tube axis becomes very large just downstream of the
narrowest section of the stenosis although the wall shear stress is low near this point. Furthermore, the
OSI has a finite value near the separation point. Therefore, around the separation point just downstream
of the narrowest section, the flow direction periodically changes with the large gradient of wall shear stress.

FIGURE 3.20 Distribution of wall shear stress around stenosis in a steady flow.
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45° Bifurcation Model

In this section, the wall shear stress and the flow pattern through the 45° branch model in laminar steady
and pulsating flows have been experimentally clarified by the electrochemical method and by flow
visualization. The daughter tube bifurcates from the parent tube at 45°. This model simulates the artery
site from the abdominal aorta to the mesenteric artery.10,20,21,33 The experiments were performed for two
flow distribution ratios downstream of each tube.

Experiment

Branch model
The schematic view of the experimental apparatus and the flow circuit is shown in Fig. 3.23. Through
the inlet tube with the length of 2.2 m, the working fluid flowed from the constant head tank into the
test branch. It then returned to the reservoir1, within which the working fluid was maintained at a constant
temperature (±0.2 K). The flow rate downstream of each tube was measured by an electromagnetic
flowmeter. In our experiment, the sinusoidal pulsating flow was produced by the change of peripheral
resistances, i.e., the constriction of the flow control orifice. In the case of an even flow distribution ratio,
the flow control orifice as shown in Fig. 3.23 has two slit aperture ports with a width of 10 mm and a
height of 1 mm. These aperture ports, through which the working fluid issues in the atmosphere,
sinusoidally change around a mean area in the direction of width by an eccentric cam. So, the flow rate
in both the downstream parent tube and the daughter tube is a sinusoidal pulsating flow superposed on
the steady flow. Therefore, the flow rate through the upstream parent tube is expressed as a summation
of the flow rate in both downstream tubes.

The configuration of the branch model is shown in Fig. 3.24. The daughter tube (diameter D1 = 14 mm)
bifurcates at 45° from the parent tube (diameter D0 = 24.0 mm) with a radius of curvature of RD = 3.5 D0

at the proximal wall. The cross-sectional area ratio D1
2/(D0

2+D1
2) is 0.25. The branch model is comprised

of two separate acrylic plates that are 30 mm thick. These two plates, fixed by tightening eight screws,
are milled by 24 mm and 14 mm drills in the parent tube and in the daughter tube, respectively. After
milling, two separate half-branch plates are also cut along the proximal wall with a radius of curvature
RD = 3.5 D0 using the ball end mill with a diameter of 12.5 mm. The junction with a discontinuous ridged
surface between parent and the daughter tubes is smoothly polished by hand. The one half-bifurcation
plate employed in the measurement of wall shear stress and the cast made of plaster are shown in
Figs. 3.25a and b, respectively. As shown in Fig. 3.25, the junction has a smooth surface connection
between the parent and daughter tubes.

The coordinate system and the measuring position of wall shear stress are also shown in Fig. 3.24. The
origin at which the y-axis of the daughter tube intersects with the x-axis of the parent tube is defined as
the branch point. The plane which includes both axes x and y is defined as the common median plane
and is installed horizontally. The electrode Ai is along the outer wall of the parent tube, Bi is along the
proximal wall, Ei is along the distal wall of the daughter tube, and Fi is along the inner wall of the parent
tube. Approximately 130 platinum test electrodes (diameter 0.5 mm) are embedded in the common
median plane. A cross-sectional view of the electrodes Ai, Bi, Ei, and Fi embedded in the common median
plane is shown in Fig. 3.10. The center of these electrodes deviates from the common median plane by
3 and 6 degrees in the parent tube and daughter tube, respectively.

Wall Shear Stress and Flow Visualization
When measuring the wall shear stress, the electrolytic solution composed of 0.01 M potassium ferricy-
anide K3Fe(CN)6, 0.01 M potassium ferrocyanide K4Fe(CN)6, and 1.0 M potassium hydroxide KOH as a
supporting electrolyte were employed as the working fluid. The property of the working fluid was
approximately the same as that of distilled water, i.e., ρ = 1.044 g/cm3, ν = 0.839 × 10–6m2/s at a temper-
ature of 303 K. The wall shear stress is measured using the electrochemical method. The flow pattern is
visualized by a dye injected from the parent tube upstream of the branch point.
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Results

In this experiment, the author aimed to simulate the flow situation through the 45° branch model such
as the flow from the artery site to the mesenteric artery from the abdominal aorta. The effects of both
the flow distribution ratio into each downstream tube and the pulsation on the wall shear stress have
been studied. The measurements were carried out in the following range: the Reynolds number is
approximately Re = UD0/ν = 800, where U is the mean velocity in the upstream parent tube. The flow
distribution ratios are the geometrical flow ratio (QD/QT = 0.30) approximately equal to the cross-
sectional area ratio D1

2/(D0
2 + D1

2) such as rest and the even flow ratio (QD/QT = 0.51) as another typical
flow condition such as exercise. The non-dimensional pulsating frequency is α = 6.6 and the non-
dimensional flow amplitude in the sinusoidal pulsating flow is A = 0.30.

Generating System of Pulsating Flow
It is also necessary to examine the generating system of the pulsating flow. In order to examine the flow
wave at the entrance of the junction, the wave forms of wall shear stress in A1 (x/R0 = –9.6), at the outer
wall of the parent tube, and B1 (x/R0 = –9.6), at the proximal wall, are shown in Fig. 3.26. The pulsating
flow is produced by the displacement of the flow control orifice. This displacement corresponds to the
change of aperture area in the flow control orifice. Therefore, the flow wave is expressed by the displace-
ment of the flow control orifice. It is assumed that these wave forms of wall shear stress at A1 and B1

sinusoidally change in the sine wave. The magnitude of the wall shear stress at B1 is a little larger than
that at A1, because the core flow in this section is beginning to deflect to the daughter tube. Therefore,
it is considered that the flow rates in both the parent and the daughter tubes sinusoidally change in the
sine wave, and the flow distribution ratio QD/QT does not change with time in a pulsating flow. This is
an important characteristic in the current generating system of the pulsating flow.

Flow Visualization
The flow pattern visualized by a dye stream in a steady flow is shown in Fig. 3.27 for QD/QT = 0.51. The
shutter speed in the following photos is 1/60 second. Dye injected from the outer wall of the parent tube
separates near the branch point as shown in Fig. 3.27a. As it is displayed in this figure, one of the dye
streams flows downstream and the other turns along both the top and bottom walls of the parent tube.

(A)

FIGURE 3.21 Instantaneous wall shear stress at maximum flow rate (ωt = π/2) and minimum flow rate (ωt = 3π/2)
around stenosis in a pulsating flow:  δ/R = 0.1;  δ/R = 0.2;  δ/R = 0.3.
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Then, the dye flows into the daughter tube as a pair of helical flows after impinging the proximal wall
near B19 (y/R1 = 3.5). The dye injected from the core flow above the common median plane flows into
the daughter tube with skewing, and then it approaches the proximal wall near B26 (y/R1 = 8.3) as shown
in Fig. 3.27b. These two points B19 and B26 correspond to the position of two relative maxima of wall
shear stress at the proximal wall as discussed in the next section.

In the case of QD/QT = 0.30, the separation flow at the outer wall of the parent tube appears more
clearly as shown in Fig. 3.28a. Although a pair of helical flows go downstream with skewing in the
daughter tube, there is no separation flow at the proximal wall as shown in Fig. 3.28b. It is assumed that
the separation flow does not occur in this model at the daughter tube with a large radius of curvature,

(B)

(C)

FIGURE 3.21 (CONTINUED)
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because the flow region along the proximal wall is compensated by a pair of helical flows transferred into
the daughter tube from the separation region of the parent tube.

Wall Shear Stress in Steady Flow
The distributions of wall shear stress for even and geometrical flow distribution ratios in a steady flow
are shown in Figs. 3.29 and 3.30, respectively. Left and right side figures indicate the distribution at the
parent tube and daughter tube, respectively. The abscissas are taken so that x is in the direction of parent
tube, y is in the direction of daughter tube, and they are normalized by the tube radii R0 and R1,
respectively. The wall shear stress τw is normalized by the Poiseuille flow upstream of the parent tube,
i.e., τw(= τT) = 2.0 denotes the wall shear stress of the Poiseuille flow upstream of the parent tube. The
asymptotic values τT, τP, and τD denote the wall shear stress of the Poiseuille flow at each tube. The vertical
lines through the symbol in Fig. 3.29c indicate the fluctuation about the time-averaged wall shear stress.

For an even flow distribution ratio QD/QT = 0.51 at Re = 790 as shown in Fig. 3.29b, the wall shear
stress along the outer wall (Ai, ∆) of the parent tube deviates from τT = 2.0 and decreases downstream

FIGURE 3.22 Oscillation shear index around stenosis in a pulsating flow.

FIGURE 3.23 Experimental apparatus and flow circuit.
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FIGURE 3.24 Flow field and electrode arrangement in 45° bifurcation model.

(a)

(b)

FIGURE 3.25 (a) Half-bifurcation plate in measurement; (b) Cast of 45° bifurcation model.
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of the parent tube. It adopts a negative value for the range of 0 < x/R0 < 10 downstream of the branch
point, since the separation occurs in this region as evidenced by the flow visualization shown in Fig. 3.27a.
Along the inner wall (Fi, ◊) of the parent tube, the wall shear stress becomes extremely high, and it sharply
decreases as going downstream. Along the proximal wall (Bi, �) within the parent tube, the wall shear
stress around B8 just upstream of the daughter tube is a little larger than τT = 2.0. It is presumed that
this elevation results from the deflection of the core flow toward the daughter tube. Flowing into the
daughter tube, the wall shear stress steeply increases and attains its first relative maximum of about 6 × τT

at B19 (y/R1 = 3.5). As shown in Fig. 3.27a, position B19 corresponds to the first point of the proximal
wall where dye injected from the outer wall of the parent tube impinges. Downstream, the wall shear

(a)

(b)

FIGURE 3.26 (a) Comparison of measured wall shear stress at A1 (x/R0 = –9.60) and exact wall shear stress in a
pulsating flow (Re = 800, α = 6.6, A = 0.31); (b) Comparison of measured wall shear stress at B1 (x/R0 = –9.60) and
exact wall shear stress in a pulsating flow (Re = 800, α = 6.6, A = 0.31).
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stress suddenly decreases and then again increases, and reaches its second relative maximum at B26

(y/R1 = 8.3). As shown in Fig. 3.27b, position B26 is the second point of the proximal wall where dye
injected from the core flow approaches. Afterwards, the wall shear stress along the proximal wall varies
significantly with position in the form of a damped sine wave and approaches the asymptotic value τD.
Along the distal wall (Ei, �), the wall shear stress becomes extremely high around the apex and steeply
approaches τD. The relative maximum at E3 corresponds to the relative minimum at B23, and E6 corre-
sponds to the second relative maximum at B26. Thus, the locations of the extreme values at the distal
wall correspond to those at the proximal wall. Therefore, the sinusoidal variation of wall shear stress
along the proximal wall results from the secondary helical motion of fluid transferred into the daughter
tube from the separation region of the parent tube with skewing. The variation of wall shear stress
becomes more remarkable with the increase of the Reynolds number. Due to turbulence, the disturbance
occurs downstream of both tubes in the case of Re = 1040 as shown in Fig. 3.29c. The critical Reynolds
number for the present model at an even flow distribution ratio is less than 1000.

For a geometrical flow distribution ratio QD/QT = 0.30 as shown in Fig. 3.30, the general tendency of
wall shear stress is similar to that for an even flow distribution ratio although the magnitude is smaller.
The wall shear stress along the proximal wall in the daughter tube reaches a single relative maximum
around B20 (y/R1 = 4.2). Position B20 corresponds to the point on the proximal wall where dye injected
from the outer wall of the parent tube impinges, as shown in Fig. 3.28a. The secondary helical velocity
becomes smaller with the decrease of the flow rate into the daughter tube. At the same Reynolds number
of Re ≈ 800, the wall shear stress at F1 around the apex in QD/QT = 0.30 is smaller than that in QD/QT = 0.51
despite the increase of the flow rate into the parent tube. The fluid velocity approaching the apex in
QD/QT = 0.51 has approximately the maximum velocity of the Poiseuille flow upstream of the parent

(a)

(b)

FIGURE 3.27 Flow visualization at an even flow ratio [Re = 800, QD/QT = 0.51, O.W. = outer wall, P.W. = proximal
wall, y/R1(B19) = 3.5, y/R1(B26) = 8.3]. (a) Dye streamline from outer wall of parent tube; (b) dye streamline from
core flow above common median plane.
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tube, while in QD/QT = 0.30 it is smaller than its maximum velocity. Therefore, the wall shear stress at
F1 around the apex in QD/QT = 0.30 is smaller than that in QD/QT = 0.51.

As decided in the flow visualization, there is no separation flow along the proximal wall, so that the
relative maxima at B19, B26 in Fig. 3.29b, and B20 in Fig. 3.30 would be positive.

Wall Shear Stress in Pulsating Flow
The distributions of instantaneous wall shear stress at a maximum flow rate (ωt* = π/2) and a minimum
flow rate (ωt* = 3π/2) for an even flow distribution ratio in the sinusoidal pulsating flow of Re = 800,
α = 6.6, and A = 0.31 are shown in Figs. 3.31a and b, respectively. The asymptotic values τT, τP, and τD

denote the instantaneous wall shear stress at each time in the pulsating flow through each straight tube.
The general tendency of wall shear stress is similar to that of a steady flow. The distribution is larger at
a maximum flow rate and smaller at a minimum flow rate. Along the proximal wall (Bi, �) in the
daughter tube, the wall shear stress varies significantly with position in the form of a damped sine wave,
comparable to what occurs around the apex. Along the distal wall (Ei, �), the wall shear stress also varies
with the reverse phase against the proximal wall.

The distribution of the wall shear stress amplitude ∆τw at an even flow distribution ratio in the pulsating
flow is shown in Fig. 3.32a. The asymptotic values ∆τT, ∆τP, and ∆τD denote the amplitude of wall shear
stress at Re = 800, α = 6.6, QD/QT = 0.51, and A = 0.31 through each straight tube. The general tendency
of this amplitude distribution is similar to the distribution of wall shear stress in a steady flow. The
amplitude at each downstream tube has a slight scatter which is caused by turbulence occurring down-
stream of both tubes. The similarity between the distribution of wall shear stress in a steady flow and
the amplitude distribution of wall shear stress in a pulsating flow suggests that there is a severe change
of wall shear stress along the proximal wall, and its time variation becomes more obvious at the site

(a)

(b)

FIGURE 3.28 Flow visualization at a geometrical flow ratio [Re = 810, QD/QT = 0.30, O.W. = outer wall,
P.W. =  proximal wall, y/R1(B20) = 4.2]. (a) Dye streamline from the outer wall of parent tube; (b) dye streamline
from the proximal wall of parent tube.



© 2001 by CRC Press LLC

where the magnitude of the wall shear stress is large. Also, the flow condition of Re = 800, α = 6.6, and
A = 0.31 might be regarded as the quasi-steady flow. The amplitude of the wall shear stress at a geometrical
flow distribution ratio is shown in Fig. 3.32b. Although the tendency is similar to that of an even flow
distribution ratio, the variation of the amplitude is smaller.

General Feature of Wall Shear Stress and Physiological Implications
The flow situation through the 45° asymmetric branch model employed in this study is characterized
around the branch point, particularly in the daughter tube at even flow distribution ratio. When
approaching the daughter tube, the wall shear stress is a little larger than that of the Poiseuille flow
upstream of the parent tube. Flowing into the daughter tube, the wall shear stress steeply increases and,
at B19 (y/R1 = 3.5), reaches the first relative maximum which is several times larger than that of the
Poiseuille flow upstream of the parent tube. Downstream, the wall shear stress sharply decreases and
then again increases, and reaches its second relative maximum at B26 (y/R1 = 8.3). Afterwards, the wall
shear stress asymptotically approaches the wall shear stress τD. It is worth mentioning that the magnitude
of these relative maxima along the proximal wall is comparable to the magnitude around the apex, and
the wall shear stress reaches an extremely high value at E1 just downstream of the apex. Although
downstream it sharply decreases and approaches the asymptotic wall shear stress, the wall shear stress
sinusoidally varies along the distal wall and reaches a relative maximum at E3 and a relative minimum
at E6. These sinusoidal variations of wall shear stress along both the proximal and the distal walls relate
to the secondary helical motion of fluid transferred into the daughter tube from the separation region
of the parent tube with skewing, as shown in Fig. 3.27. At the outer wall of the parent tube, the wall
shear stress decreases from τT and becomes negative around the branch point where the separation occurs,
as depicted by the visualization. Further downstream, it increases and asymptotically approaches the wall
shear stress τp of the Poiseuille flow downstream of the parent tube. The aforementioned tendencies
appear to be severe with the increase of the flow rate into the daughter tube.

The diameter ratio of D1/D0 = 0.58 in the experimental branch model is different than that of
D1/D0 = 0.41 in the physiological condition.33 However, the flow situation of this model helps to clarify
the flow characteristics through the 45° branch. Furthermore, this study has mainly been conducted in
an even flow distribution ratio, although the flow distribution ratio is not proportional to the one in the
physiological condition. In the case of Re = 820 and QD/QT = 0.30 in Fig. 3.30, the wall shear stress reaches
one maximum value at B20 (y/R1 = 4.2) and seems to reach a second maximum value around B25

(y/R1 = 7.6). This tendency markedly appears in an even flow distribution ratio. Therefore, the even flow
distribution ratio emphasizes the flow behavior in the daughter tube.

The distribution of wall shear stress measured in this section has several physiological implications.
In small animals atherosclerosis has been observed around the apex,29,30 and the wall shear stress high
around the apex. In contrast, atherosclerosis in comparatively large animals such as humans has been
pathologically observed at the entrance of the daughter tube along the proximal wall.33 The magnitude
of wall shear stress is generally considered small along the proximal wall, and the mass transfer rate
dependent on the shear rate would be also smaller in this region. According to the results of this study,
the wall shear stress immediately upstream of the entrance to the daughter tube is not necessarily small,
and the wall shear stress along the proximal wall of the daughter tube has a magnitude comparable to
the wall shear stress around the apex. This stress magnitude becomes several times larger than that of
the Poiseuille flow upstream of the parent tube. Certainly, since the electrode E1 is embedded about
10 mm downstream of the apex, the wall shear stress at the site between the apex and location E1 would
be larger than that at E1. The wall shear stress along the proximal wall varies significantly with position
in the form of a damped sine wave. The behavior of wall shear stress in this region might correspond to
the change of wall shear stress indicated by Perktold and Peter,28 i.e., zones of small and large wall shear
stress are close to each other. Therefore, the results of this study suggest that the gradient of wall shear
stress with respect to the tube axis and the time variation of wall shear stress are closely associated with
the generation and development of atherosclerosis.
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Remarks

In this section, the wall shear stress in the 45° bifurcation model has been experimentally studied in both
steady and pulsating flows. The distribution of wall shear stress is characterized along the wall of the
daughter tube. After flowing into the daughter tube, the wall shear stress sinusoidally varies along the
proximal wall, and its magnitude is comparable to its magnitude along the distal wall around the apex.
For the pulsating flow of Re = 800, α = 6.6, QD/QT = 0.51, and A = 0.30, the wall shear stress along the
proximal wall markedly changes and its time variation appears more obvious at the site where the
magnitude of the wall shear stress is large. These results suggest that the gradient of wall shear stress with
respect to the tube axis and the time variation of wall shear stress are closely associated with the generation
and development of atherosclerosis.

(a)

(b)

FIGURE 3.29 Distribution of wall shear stress at an even flow ratio in steady flow: (a) Re = 570; (b) Re = 790;
(c) Re = 1040.
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(c)
FIGURE 3.29 (CONTINUED)

FIGURE 3.30 Distribution of wall shear stress at a geometrical flow ratio in steady flow (Re = 820).
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(a)

(b)

FIGURE 3.31 Distribution of instantaneous wall shear stress at an even flow ratio in a pulsating flow (Re = 800,
α = 6.6, A = 0.31). (a) Maximum flow rate: ωt = π/2; (b) minimum flow rate: ωt = 3π/2.
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FIGURE 3.32a Amplitude of wall shear stress at an even flow ratio in a pulsating flow (Re ≈ 800, α = 6.6, A ≈ 0.31).
QD/QT = 0.51.

FIGURE 3.32b Amplitude of wall shear stress at an even flow ratio in a pulsating flow (Re ≈ 800, α = 6.6, A ≈ 0.31).
QD/QT = 0.30.
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Techniques for
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in the Microvascular

 

Circulation

 

4.1 Introduction
4.2 Thermal Clearance Techniques

 

Bioheat Transfer Equation • Thermal Pulse Decay Technique • 
Self-Heated Thermistor Method • Other Heat Dilution 
Methods

 

4.3 Indicator Techniques
4.4 Imaging Techniques

 

Single Photon Emission Computed Tomography (SPECT) • 
Positron Emission Tomography (PET) • Ultrafast Computed 
Tomography (CINE) • Magnetic Resonance Imaging

 

4.5 Doppler Techniques

 

Ultrasound Doppler • Laser and Optical Doppler

 

4.6 Plethysmography Techniques

 

4.1 Introduction

 

Blood flow in microcirculation, including the capillary network plus small arterioles and venules of less
than 100 

 

µ

 

m in diameter, is usually referred to as perfusion, which is defined as the blood flow rate per
unit tissue volume. Perfusion plays an important role in the local transport of oxygen, nutrients, phar-
maceuticals, and heat throughout the body. Measurements of tissue blood flow are important for a wide
variety of clinical areas. Perfusion is an important parameter in determining the viability of tissue and
organ transplants and for assessing the prognosis of patients with ischemic heart disease. It can play a
significant role in determining brain damage in stroke victims, as well as determining the state of diseased
kidneys, livers, pancreas, and lung tissue. Perfusion is also a factor in many drug studies, in thermal
dosimetry during hyperthermia, in treatment of cancer, and in laser photocoagulation of tumors. Despite
its clinical significance, there is at present no ideal way to measure perfusion. The purpose of this chapter
is to briefly describe some of the main techniques for measuring tissue perfusion, with a discussion of
the advantages and limitations of each technique. Special attention is given to the thermal pulse decay
and self-heated thermistor methods. Other techniques discussed include thermal clearance, indicator,
imaging, Doppler methods, and plethysmography.
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4.2 Thermal Clearance Techniques

 

Thermal clearance techniques for measuring blood flow are based on the basic principles of heat transfer
in blood perfused tissue. Although it is difficult to evaluate tissue blood flow by heat analysis, the problem
becomes less complex if the tissue of interest is far away from the body surface. In that case, heat exchange
between the tissue and the environment by condensation, evaporation, and radiation can be neglected,
and heat transfer is limited to conduction and convection. Depending on the direction of the associated
temperature gradient, conduction causes heat to be either gained or lost due to the direct transfer of
intramolecular energies to adjacent tissue at a different temperature. The rate of conduction is dependent
on the thermal conductivity of tissue, an intrinsic thermal property of a homogeneous, isotropic solid
mass in a thermal steady state. Heat is also transferred in a perfused tissue by convection, as blood,
lymph, and other body fluids flow through the tissue. The convective component of heat transfer is
proportional to the difference in temperature between the tissue and the fluid flowing through it. Blood
flow rate, often called blood perfusion rate, plays an important role in convection in a living tissue.
Sometimes, the term effective thermal conductivity is used as a lumped parameter describing the com-
bined thermal effect of conduction and convection in perfused tissue. Thermal clearance techniques all
require an initial temperature perturbation and thus involve a transient measurement. However, the
induced heat field needs to be weak enough that it does not affect the regional blood flow.

 

 1–3

 

Thermal clearance techniques to measure perfusion are based on the premise that heat flux due to
conduction can be separated from heat flux due to convection (e.g., blood flow). Either theoretical or
empirical models of heat transfer due to blood flow are then used to quantitatively evaluate the perfusion
rate in a given tissue. Searching for an accurate model of perfusion has attracted a great deal of attention
over the last several decades.

 

4–7

 

 The well known Pennes bioheat equation

 

8

 

 was developed in 1948 based
on the assumption that blood–tissue heat transfer takes place in capillary beds. This model assumes that
the temperature of venous blood is in equilibrium with the local tissue temperature while that of arterial
blood is not. It has since been shown that blood–tissue heat transfer actually starts to occur in pre-
capillary beds and therefore the basis for the Pennes equation is questionable.

 

7

 

 However, the Pennes
equation-based models have yielded realistic predictions in strong agreement with experimental data
under a variety of conditions.

 

9–15

 

In the following sections, an introduction to the theoretical basis and assumptions of the Pennes
bioheat transfer equation will be provided. Then, various thermal clearance techniques including the
pulse decay method,

 

12

 

 transient thermistor,

 

16

 

 and sinusoidal techniques,

 

17,18

 

 developed based on this and
similar equations will be discussed, respectively. Finally, other thermal clearance techniques based on
theories of either the Fick relation or effective thermal conductivity will be briefly discussed.

 

Bioheat Transfer Equation

 

The mathematical formulation of the Pennes heat transfer equation in blood perfused tissue is given as:

 

8

 

(4.1)

Originally applied to predict temperature fields in the human forearm, this equation has become well
known as the bioheat equation. It is a relatively simple modification of the ordinary heat conduction
equation (the first two terms), in which the contribution of moving blood is treated as a volumetric
isotropic heat source (the third term) and metabolic heat production (the fourth term). This equation
was developed based on the assumption that the major blood–tissue thermal energy exchange occurs in
capillaries, where the vessel surface area is large and blood flow velocity is very low. The thermal
contribution of blood can then be modeled as if it enters an imaginary pool at the same temperature as
that in major supply arteries, 

 

T

 

a

 

. Due to its immediate thermal equilibration with the surrounding tissue,
blood exits the pool and enters the venous circulation at the tissue temperature 
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t
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transferred by the flowing blood can therefore be described by a nondirectional heat source, the magni-
tude of which is proportional to the blood perfusion rate (

 

ω

 

b

 

; ml/s/ml) and the temperature difference
between the arterial blood and local tissue. This term is often referred to as the Pennes perfusion term,
which neglects all pre- and post-capillary heat exchange between the blood and tissue. Although it has
been questioned since its inception over 50 years ago,

 

4–7,19

 

 the Pennes perfusion term has often been
applied successfully in estimations of blood perfusion in tissue far away from large vessels, where the
collective treatment of the vasculature in a continuum formulation is valid for blood vessels of terminal
arterial branches and small vessels.

 

Thermal Pulse Decay Technique

 

Approach

 

The thermal pulse decay (TPD) technique for the determination of local blood perfusion and tissue
thermal conductivity is based on a comparison of measured and simulated temperature decays following
a very short and small heating pulse. The technique was initiated by Chen and Holmes

 

12

 

 and was
subsequently enhanced during the following ten years.

 

20–25

 

 A solution of the Pennes bioheat transfer
equation (Eq. 1.1) was used to build the theoretical model for this technique. The model considers a
tissue sphere which is small enough to assume both a uniform blood perfusion rate (

 

ω

 

b

 

; ml/s/ml) and
uniform thermal properties, but sufficiently large to simulate the thermistor bead as a point source located
at the sphere center. Densities and heat capacities of the blood and tissue are assumed to be equal, and
the initial and boundary conditions are:

 (4.2)

where 

 

T

 

ss

 

 is the initial steady state tissue temperature. A heat pulse is deposited locally in tissue through
a very small thermistor bead as:

 (4.3)

where 

 

P

 

 is the deposited power, and 

 

δ

 

(0) is the Dirac delta function. The temperature of the arterial
blood (

 

T

 

a

 

) and the metabolic heat source term (

 

q

 

mb

 

) in Eq. 4.1 can be eliminated from the calculation
by considering only the decay of transient temperature elevation 

 

θ

 

 = 

 

T

 

t

 

 - 

 

T

 

ss

 

 after the pulse heating. Thus,
for the tissue surrounding the thermistor bead, Eq. 4.1 becomes:

 (4.4)

(4.5)

For the limiting case of an infinitesimally small probe with an infinitesimally short heating pulse, the
solution of Eq. 4.4 for the interval of temperature decay takes the form:

 (4.6)

(4.7)
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Using the relations:

(4.8)

Eq. 4.6 becomes nondimensionalized as:

(4.9)

Due to the fact that the bead diameter is nearly zero compared to the large measuring tissue volume, the
temperature of the tissue adjacent to the thermistor bead surface can be approximated using r = 0.0 in
Eq. 4.9. The tissue conductivity and blood perfusion rate are calculated simultaneously by comparing
predicted and measured temperatures so that the least squares of deviations between them are minimized.
A computing algorithm has been developed based on the above mentioned scheme:

 

23

 

Probe Design

 

In the TPD measuring system, a thermistor bead probe is used first to deposit the heating pulse and
afterwards to measure the tissue temperature. Fig. 4.1 shows that each probe consists of one or two small
(0.15 mm dia.) thermistor beads situated at the end or near the middle of a glass fiber reinforced epoxy
shaft. The diameter of the finished probe is typically 0.3 mm, and the length can vary as desired. Probes
are structurally strong and, because the end can be sharpened to a point, they are capable of piercing
most tissues with very minimal trauma.

The thermistor microprobe functions as a temperature sensing element when it forms one arm of a
resistance bridge (Fig. 4.2). Typically, as described by Arkin et al.,

 

23

 

 the bead used has a resistance 

 

R

 

p

 

 = 2000

 

Ω

 

 ± 5% at 25

 

o

 

C. The thermistor resistance–temperature relationship can be expressed as:

(4.10)

 

R

 

pk

 

 is the bead resistance evaluated at 

 

T

 

k

 

 = 311.15 K, a value which represents the center of the working
range in living tissue. At this temperature, the thermal response time of the thermistor bead is about 10
msec in water. Temperature calibration against a thermometer traceable to NBS standard establishes
values for 

 

R

 

pk

 

 and 

 

β

 

 for each probe assembly.

 

Instrumentation Hardware and Software

 

The TPD bridge unit includes a total of six bridge circuits. Each bridge circuit consists of a computer
controlled and relay-activated thermistor heating circuit, an electrically isolated resistance bridge circuit,
and an Analog Devices instrumentation amplifier (model 286J) which amplifies (

 

×

 

100) the output of
the resistance bridge. A two-conductor and shielded probe interface cable is provided for each bridge
channel to serve as a connection between the thermistor bead probe and the TPD bridge unit. One end
of the interface cable plugs into the socket on the front panel of the bridge unit, while the other end is
designed to receive the probe assembly. When it is connected to the unit, the thermistor bead resistance
located in the measurement probe serves as an arm of a resistance bridge. The output voltage channels
of the unit are connected to a Burr-Brown PCI–20002M Analog Input Module mounted on a PCI–20041C
High Performance Carrier Board located inside the computer. The thermistor pulse heating circuitry
within the bridge unit is computer controlled from an I/O port (P5) located on the PCI–20041C board.
Changes in the value of the bead resistance result in changes in the measured bridge output voltage, from
which the bead temperature can be calculated from Eq. 4.10. As shown in Fig. 4.3, the menu driven
supporting software written in FORTRAN
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 permits the user to control the duration of the heating pulse,
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FIGURE 4.1

 

Thermistor bead microprobe configuration for the TPD system.

 

FIGURE 4.2

 

The resistance bridge for measuring variations of probe resistance.
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the data acquisition, and storage. The software also provides an on-line calculation of the tissue thermal
conductivity (

 

k

 

t

 

) and the local blood perfusion rate (

 

ω

 

b

 

) using the iterative algorithm described above.
Calibration of the TPD system involves the thermistor bead probe calibration as described above,

trimming the instrumentation amplifier, and balancing the resistance bridge. On the front panel of the
TPD bridge unit, the bridge-trim switch is provided to assure that a zero voltage input to the amplifier
produces a zero voltage output. After the instrumentation amplifier has been properly trimmed, a
phantom thermistor probe with a measured resistance R = 1310 ± 5 

 

Ω

 

 is plugged into the end of the
probe interface cable. With the indicating dial on the front panel set to 310, the output voltage of the
bridge (as viewed on the TPD screen shown in Fig. 4.3) should be 0.000 ± 0.015 VDC. If this condition
is not observed, it may be necessary to remove the dial from the shaft of the variable resistance and adjust
the position of the shaft to obtain the desired output voltage. This sequence of switch placements and
resistor adjustments needs to be repeated for each bridge channel contained within the bridge unit. Bridge
elements can be expected to change their properties slightly with time and environmental (room)
temperature. Therefore, it is not unreasonable to expect that periodic re-balancing of the bridge circuit
may be necessary. With the calibrated system, the accuracy of the temperature measurement is

 

�

 

θ

 

 = ± 0.003°C.

 

Error and Sensitivity Analyses

 

There are two main types of possible errors in the TPD technique.

 

20

 

 The first is related to the measuring
errors in tissue temperature (± 0.003°C), the supplied power (5 mW ± 15%), and the length of the
heating pulse (3 sec ± 0.003). The second type of error may result from the inexact nature of the model,
such as neglecting the probe diameter and fluctuations of the baseline temperature measurement. Fig. 4.4
plots the overall maximum error for a typical set of experimental conditions, as well as the specific
contribution of each measured parameter to the overall error. Immediately after the cessation of the
heating pulse, the primary error is caused by the fact that the thermistor bead has a finite size which is

 

FIGURE 4.3

 

The user’s interface for the TPD system.
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not equal to zero. However, this error diminishes very quickly with time. This is mainly because the
sampling tissue volume becomes larger as time increases, so the assumption of zero bead diameter is
more realistic. After a long period of time, on the other hand, the main error comes from the imprecise
temperature measurement. Although the measurement error is very small (± 0.003°C), it is rather
constant. The relative temperature rise induced by the heating pulse decays with time, so that the error
becomes an increasing fraction of the measured temperature. It is important to note that for the applied
set of parameters, the overall maximum error is basically a combination of the error caused by the bead
size and the error in measured temperature. Other measured quantities have only secondary contribu-
tions. Thus, the optimal measurement interval of time mentioned earlier has to be implemented by
compromising these two errors. In practical measurement, the following parameters have been used:

 

20

 

t

 

p

 

 = 3 sec; k

 

t

 

 = 0.5 W/m/k; 

 

�

 

θ

 

 = ± 0.003°C; P = 5mW. The analysis assumes the existence of a linear
relationship between the dependent variables and the measured parameters in the neighborhood of the
point of calculation. Thus, the change of the dependent variable with a small change of each parameter
may be estimated by its first partial derivative. For the perfusion rate, 
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ω

 

 = 

 

�

 

θ

 

 (

 

∂

 

ω

 

b

 

/

 

∂

 

θ

 

); whereas 

 

�

 

k

 

 = 

 

�

 

θ

 

(

 

∂

 

k/

 

∂

 

θ

 

) for the tissue conductivity, while the first derivatives of 

 

θ

 

 to 

 

ω

 

b

 

 or to k can be obtained from
Eq. 4.6. Fig. 4.5 compares the overall errors in conductivity and perfusion rate at two different perfusion
rates (3 ml/min/gm and 6 ml/min/gm). For a short time after the power is shut off, the primary error is
associated with the measurement of the perfusion rate. However, for very high perfusion rates and long
sampling times, the predominant error will be associated with tissue conductivity. In other words, the
measuring sensitivities for conductivity and perfusion rate vary with respect to time and the local
perfusion rate, respectively. From Fig. 4.5, one can anticipate that the sensitivity of the perfusion mea-
surement will decrease at low perfusion rates but increase for the conductivity measurement because of
the dominance of conduction. More importantly, Fig. 4.5 reveals an optimal measuring interval of time
(MIT) dependent on the local perfusion rate. For example, if the local perfusion rate is 3 ml/min/gm or
higher, the MIT was selected to be 3s < t < 6s after the heating pulse. In this case, the sensitivity can be
as high as about 99% for the conductivity and 97% for the perfusion rate. On the other hand, with lower
perfusion rates and small conduction effects, the MIT needs to be shifted to the right in Fig. 4.5 so that
the convection effect can be distinguished. Nevertheless, due to the fact that the relative temperature rise
induced by the heating pulse decays with time, the temperature measurement error becomes more
dominant in this region. Therefore, for very low perfusion measurements, the TPD technique is not
strongly recommended.

 

FIGURE 4.4

 

Contribution of measured parameters to the maximum overall error for a typical set of experimental
conditions.
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 (Courtesy of ASME. With permission.)
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Self-Heated Thermistor Method

 

Background

 

There are several variations of the original self-heated thermistor method to measure perfusion, but most
of them are based on the same principle. Chato

 

26

 

 was the first to suggest that perfusion can be calculated
from the amount of power necessary to cause a set increase in thermistor temperature. The basic technique
involves placing a miniature thermistor bead in perfused tissue and heating it to a predetermined
temperature. As the bead temperature begins to rise, both perfusion and intrinsic tissue conductivity act
to carry heat away from the thermistor. The contributions of perfusion and intrinsic tissue conductivity
to the total heat transfer can be lumped together into an effective thermal conductivity term, which is
the apparent conductivity the tissue would have if one did not know that perfusion was present. From
the power required to maintain a set temperature rise in a thermistor, the effective thermal conductivity
of the perfused tissue can be determined. Perfusion is then calculated based on either a theoretical or
empirical model of the heat transfer due to perfusion. As mentioned earlier, the correct model of perfusion
is a hotly debated issue, and appears to be tissue dependent. For example, a model developed by Pennes

 

8

 

has been shown to work well for the pig renal cortex

 

15

 

 and the rat liver,

 

17

 

 while a small artery model
(SAM)

 

18

 

 works better for the canine kidney. Weinbaum and Jiji

 

6

 

 and Valvano and Anderson

 

17,18

 

 developed
a general method for determining perfusion models for given tissues based on the vasculature of the tissue.

Several people have contributed to the development of the self-heated thermistor technique. Chato
started with a simplified view of the thermistor as a lumped mass and then solved the bioheat equation
for the perfused tissue surrounding the thermistor bead. Balasubramanium and Bowman

 

16

 

 relaxed
Chato’s simple assumption by modeling the thermistor as a sphere with a distributed mass. Jain

 

27

 

developed a model that described the thermistor as having a spherical heat generating center surrounded
by a passive glass shell. Afterwards, Valvano et al.

 

17

 

 obtained a closed form transient solution for mea-
surements of thermal conductivity and diffusivity. Hayes and Valvano

 

28

 

 confirmed the thermal conduc-
tivity measurement equation of Valvano et al. for more realistic thermistor shapes and heating patterns.
Valvano

 

29

 

 and Anderson

 

30

 

 showed that a thermistor heated with a combination of steady-state and
sinusoidal power could simultaneously measure the intrinsic and effective thermal conductivities of
perfused tissue, thus simplifying the quantitative evaluation of absolute perfusion rates.

 

Approach

 

The theory behind the steady-state self-heated thermistor technique is based on solutions to a bioheat
equation. The general form of the bioheat equation is

 

FIGURE 4.5

 

Typical errors in estimation of conductivity and blood perfusion rate as a function of time for various
perfusion rates.
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 (Courtesy of ASME. With permission.)
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(4.11)

where 

 

ρ

 

t

 

c

 

t

 

 is the heat capacity of tissue, 

 

k

 

t

 

 is the conductivity of tissue, and 

 

T

 

t

 

 is the temperature rise in
tissue. The metabolic heat generation 

 

q

 

mb

 

 can be ignored if it is spatially and temporally uniform or is
much smaller than 

 

q

 

ext

 

, the volumetric power applied to the thermistor. 

 

q

 

ext

 

 can be a steady-state, transient,
or combination of steady-state and periodic sources. 

 

q

 

ves

 

 is the heat transfer due to major vessels in an
organ. The following analysis assumes that there are no major vessels in the field of influence of the
thermistor, and this term will be ignored.

If the shape of a thermistor is approximated as a sphere, then the equations for a bead embedded in
nonperfused tissue become:

(4.12)

(4.13)

where r is radial distance from the thermistor center and a is the radius of the thermistor. Five boundary
and initial conditions are in effect. Before heating begins, the tissue and thermistor are at a uniform
temperature:

(4.14)

There is no heat flux at the center of the thermistor:

(4.15)

The temperature at the tissue–thermistor boundary matches:

(4.16)

The heat flux at the tissue–thermistor boundary also matches:

(4.17)

Since the thermistor is a finite heat source in an infinite medium:

(4.18)

A steady-state solution to Eqs. 4.12–4.18 with 

 

q

 

ext

 

 held constant allows the extraction of thermal conduc-
tivity from the ratio of the average thermistor temperature (

 

∆

 

T

 

) to applied power (

 

P

 

):

(4.19)

ρ ∂
∂t t

t
t t perf ext mb vesc

T

t
k T q q q q= ∇ + + + +2

ρ ∂
∂b b

b
b b extc

T

t
k T q r a= ∇ + <2

ρ ∂
∂t t

b
t tc

T

t
k T r a= ∇ >2

T Tt b= = 0

∂ ∂T r rb / = =0 0

T T r ab t= =

k
T

r
k

T

r
r ab

b
t

t∂
∂

∂
∂

= =

lim
r

tT
→∞

= 0

k
a T

P k

t

b

=
−

1

4 1

5

π ∆



 

© 2001 by CRC Press LLC

 

where

(4.20)

(4.21)

In perfused tissue, the effects of tissue conductivity and perfusion are combined into an effective con-
ductivity term, 

 

k

 

eff

 

:

(4.22)

where

(4.23)

To measure the intrinsic tissue conductivity, either blood flow must be temporarily stopped and Eq. 4.19
used, or a transient heating technique must be employed. Fig. 4.6 shows a typical graph of 

 

k

 

eff

 

 vs. perfusion
rate in an alcohol-fixed canine kidney.

 

3

 

 The effective conductivity with no perfusion is taken to be the
tissue intrinsic conductivity.

 

FIGURE 4.6

 

k

 

eff

 

 vs. perfusion in a canine kidney. Data was taken with a Thermometrics P100 thermistor.
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Perfusion can be determined from keff  and kt  either empirically or from theoretical considerations. For
some perfusion models, most notably the widely used Pennes formulation, perfusion rate can be calcu-
lated directly from theory. Pennes8 proposed that blood–tissue heat transfer takes place in the capillary
bed, and that the temperature of venous blood is in equilibrium with the local tissue temperature, while
that of arterial blood is not. For Pennes’ model:

(4.24)

where ωb is perfusion, Ta is the temperature of arterial blood, and Tt is the tissue temperature. Perfusion
is then related to keff  by:32

(4.25)

Other models have no simple analytical solution and an experimental relation between the effective
thermal conductivity and perfusion must be determined. These empirical determinations require a
calibration plot of perfusion vs. (keff  – kt) for the tissue type of interest. A typical setup for performing
this calibration is shown in Fig. 4.7. Tissue is placed in a temperature controlled water bath to minimize
temperature drifts in the tissue during the measurements. The tissue is then perfused with a fluid, typically
degassed saline or a mannitol-saline solution.31 Care must be taken not to allow bubbles to flow into the
tissue, as they can get trapped in capillaries and block further flow. Flow through the tissue can be varied
by changing the pressure, and is measured by weighing the amount of effluent that exits the tissue in
one minute. The tissue is then injected with a dye such as Evans Blue and dissected to determine where
perfusion occurred. The perfused volumes of tissue are weighed, and perfusion is calculated by dividing
the flow rate by the weight of the perfused tissue. A plot of (keff  – kt) vs. perfusion rate is used as a
calibration curve for measurements in live tissue.

Sensitivity Analysis

Once the relationship between perfusion and thermistor temperature is known, it is possible to analyze
the sensitivity of the measurement. Several factors affect the measurement of tissue conductivity, including
the thermal properties of the thermistor and its size. Intrinsic tissue conductivity, kt , and effective
conductivity, keff , are both determined by the thermistor temperature rise, ∆T, for a given applied power,
P. Because increasing the applied power causes the thermistor temperature to increase, ∆T/P is a constant
for a given intrinsic tissue conductivity kt (as is indicated by Eq. 4.19). The sensitivity of the conductivity
measurement to thermistor temperature can be derived by differentiating Eq. 4.19 with respect to ∆T:

FIGURE 4.7 Setup to determine keff vs. perfusion curves for different tissues.
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(4.26)

Eq. 4.26 shows ∂kt /∂∆T is approximately proportional to a/a2, and therefore the sensitivity increases as
the thermistor size decreases. As will be discussed later, practical considerations put a limit on the
minimum size of the thermistor.

Measurements of perfusion depend on developing a theoretical or empirical relation between perfusion
and keff  – kt . Both analytical and empirical models require several input parameters, each of which is
known only to a limited accuracy. Thermistor bead radius, thermistor conductivity, and intrinsic tissue
conductivity are known only to within a certain percentage error, and vary from one probe or tissue to
another. The average temperature rise in the thermistor bead is subject to noise, computer roundoff
errors, and other perturbations in the measurement system. If empirical relations are used, then a
technique such as factorial analysis33 must be employed to determine the sensitivity of the measurement
to uncertainties in the values of these parameters. However, if relationships such as those given by Eq. 4.19,
4.22, and 4.25 are known, limits on the accuracy of the measurements can be determined analytically by
one or both of the following equations:34

(4.27)

(4.28)

where (parameter) is thermistor radius, intrinsic tissue conductivity, thermistor conductivity or ther-
mistor temperature rise, and ∆ (parameter) is the uncertainty in that parameter. Table 4.1 shows how
each uncertainty affects knowledge of the perfusion rate. Uncertainties in tissue and thermistor conduc-
tivities are the largest contributors to ambiguity in the measurements, followed by noise in the thermistor
temperature. Uncertainties in the perfusion measurement are much smaller for high blood flow rates
(100 mL/100 g/min) than for lower rates (10 mL/100 g/min). Although this analysis assumes the Pennes
formulation of heat transfer, other models have shown the same relative contribution of each factor to
uncertainties in the perfusion measurement.

Practical Considerations

The above formulation contains several assumptions that are not strictly correct. For example, thermistors
are not spherical, but have a somewhat irregular shape. Also, power deposition in a self-heated thermistor

TABLE 4.1 Sensitivities of Perfusion Measurement to Uncertainties in Probe Parameters for the 
Pennes Model

Parameter 
(Units)

Nominal 
Value

Perturbation 
(Percent)

(∆ω/ω) 
ω = 10ml/100 g/min

(∆ω/ω) 
ω = 100 ml/100 g/min

a (cm) 0.050 0.0005 0.02 0.02
1%

km (W/cm-°C) 0.005 0.0001 0.69 0.23
2%

kb (W/cm-°C) 0.001 0.00002 0.67 0.21
2%

∆T (°C) 4.000 0.02 0.34 0.11
0.5%
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is not uniform, but concentrated in the center of the device. For practical reasons, the thermistors used
are usually not constructed of a single material, but have a protective glass coating around them. In
addition, the thermal properties of the transducer are usually unknown.

To overcome these obstacles, calibrations must be performed on the thermistor probes before perfusion
measurements can be taken. During measurements, Eq. 4.19 is replaced with:

(4.29)

Calibration coefficients k1 and k2 are typically determined by taking thermistor measurements in glycerol
and agar-gelled water (at 300°C, kglycerol = 2.86 × 10–3 W/cm/°K; kwater = 6.13 × 10–3 W/cm/°K). Eq. 4.19
demonstrates that k1 is a function of thermistor conductivity, while k2 depends on thermistor radius:

(4.30)

(4.31)

Despite the many deviations of actual thermistors from the theory, Eq. 4.29 has been shown to remain
valid28,34 for non-ideal devices.

Another factor that needs to be considered when taking measurements is temperature drifts over time.
The effective conductivity measurement (Eq. 4.22) is quite sensitive to changes in temperature, with as
little as a 0.02°C change in temperature causing a 34% error at low perfusion rates. It generally takes a
self-heated thermistor about five minutes to reach steady-state, making small drifts in ambient temper-
ature likely. Typically, a probe will consist of two devices: a self-heated thermistor to measure perfusion
and a sensing thermistor to measure drifts in tissue temperature over time (Fig. 4.8). The sensing
thermistor must be far enough from the heated device to be outside its heating volume of influence, but
close enough to minimize spatial differences in temperature between the two thermistors. A separation
of 1–2 cm is typically used.

FIGURE 4.8 Diagram of a typical thermistor probe.
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The sensitivity of the perfusion measurement to small changes in measured temperature necessitates
careful calibration of thermistor resistance vs. temperature curves. The temperature is typically fit to:

(4.32)

where Rt is the resistance of the thermistor and an are calibration coefficients. A quartz thermometer,
accurate to 0.005°C, is often used as a temperature reference. Less accurate references can be used if many
reference temperatures are taken and care is used to eliminate systematic errors in data collection.

Many circuits can be used to either measure thermistor resistance or heat the thermistor by applying
a voltage across it. The sensitivity of the measurement necessitates the use of low noise and precision
elements, however. Care must be taken not to self-heat the sensing thermistor, especially when small
diameter devices are used (a ≤ 0.15 cm). The amount of self-heating incurred can be estimated from:

(4.33)

where P = I2R is the power applied to the thermistor. Assuming a thermistor conductivity kb ≈ 0.001
W/cm/°C and a tissue conductivity kt ≈ 0.005 W/cm/°C, then ∆T ≈ 32 P/a. For a self-heating effect of
less than 0.01°C, P ≤ 0.0003 a, where P is measured in watts and a in cm.

The size and type of thermistor play an important role in perfusion measurements. The sensitivity of
the tissue conductivity measurement increases as thermistor size decreases. However, this does not
necessarily mean the sensitivity of the perfusion measurement also increases with smaller thermistors,
as is indicated in Table 4.1. Another factor that must be considered is contact resistance between the
probe and tissue, which for small thermistors can be variable. On the other hand, large thermistors can
compress the tissue surrounding them, thus affecting the perfusion rate in the immediate vicinity.

Thermistor construction can also affect the perfusion measurements. Bare thermistors are fragile, and
must be coated with a waterproof sealant to prevent the electrodes from shorting together. Often, a small
amount of moisture will seep into the probe during measurements, thus slightly altering the resistance
vs. temperature calibration. For this reason, many thermistors come with a protective glass coating that
makes them durable and easy to use. Hayes16 showed that Eq. 4.29 is still valid for the glass coated
thermistors. In the author’s experience, glass coated thermistors with a total diameter of 0.09–0.16 cm
(0.035–0.06 inches) give the most reliable measurements.

Measurement Volume

The temperature rise of a thermistor will be most affected by the thermal properties of tissue closest to
the bead. The volume of tissue that has an effect on ∆T is called the measurement volume. It is possible
to determine how large this volume is for a steady-state heating. Balasubramanium16,32 derived equations
to describe the average temperature rise in a thermistor, the temperature field in a thermistor, and the
temperature field in homogeneous tissue due to heating a spherical thermistor with a time dependent
source. The steady-state form of Balasubramanium’s equations can be derived more easily:

(4.34)

(4.35)

where qb = Γ is the constant volumetric power applied to the thermistor. Note that Γ is the applied power
divided by the volume of the thermistor:
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(4.36)

where the boundary conditions defined in Eqs. 4.14–4.18 still apply. By integrating Eqs. 4.34 and 4.35
and applying the boundary conditions, a solution to this system can be found. It is assumed that the
perfusion term, qperf, is either equal to zero or can be accounted for by modifying the conductivity term,
km, into an effective conductivity, keff . The resulting solution allows description of the average temperature
rise in a thermistor (∆T), the temperature field in a thermistor (Tb(r)), and the temperature field in
homogeneous tissue due to heating a spherical thermistor (Tt(r)):

(4.37)

(4.38)

where Ts is the temperature at the surface of the bead.

 (4.39)

(4.40)

If a shell of material is placed around the thermistor so that the radius of the thermistor plus the shell
is rshell , then Eqs. 4.37 and 4.40 remain valid, but the surface temperature of the thermistor becomes:

(4.41)

One can extend the above analysis to include a system with an infinite number of shells of material
around a spherical thermistor. It can be shown by induction that Eqs. 4.37 and 4.40 still apply for this
system, but the thermistor surface temperature now becomes:

(4.42)

where kshell,i is the thermal conductivity of the material in the shell i and rshell,i is the radius from the
thermistor center to the outer edge of shell i. Now set the thickness of each shell equal to ∆ so that for
all i the following relationship is true:

(4.43)
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Substituting ∆ into Eq. 4.42 and rearranging terms yields:

(4.44)

Taking the limit as ∆ goes to 0, the equation for Ts becomes:

(4.45)

where the tissue conductivity k(r) is heterogeneous in the r direction, but homogeneous in the θ and ϕ
directions. Substituting Eqs. 4.45 and 4.40 into Eq. 4.22 yields:

(4.46)

where keff is the apparent conductivity of the heterogeneous tissue as seen by the thermistor. Let b be the
distance at which:

(4.47)

Now define the measurement volume:

(4.48)

The term p in Eq. 4.47 indicates the amount of the keff signal that comes from a sphere of tissue with
radius b. If the conductivity k(r) in Eq. 4.48 is homogeneous, the steady-state measurement volume of a
thermistor depends only on its radius, a. Table 4.2 gives values of the radial measurement b and mea-
surement volume for given values of p . For example, 75% of the signal measured by the thermistor is
determined from the tissue properties within 4 thermistor radii, 90% of the thermistor signal comes
from within 10 thermistor radii, and 99% of the signal comes from within 100 radii.

TABLE 4.2 Thermistor Measurement Lengths and Measurement Volumes 
for Various Values of Measurement Volume Parameter p

Percent of Signal p Measurement Length b Measurement Volume

25 1.3a 5.7a3

50 2a 29a3

75 4a 260a3

90 10a 4200a3

95 20a 33,000a3

99 100a 4.2 × 106a3
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The measurement volume of the probe vs. thermistor diameter is plotted in Fig. 4.9 for p = 90%. Note
that the measurement volume of a thermistor is proportional to the cube of its radius. A large thermistor
is therefore less sensitive to nonuniformities in the thermal properties of small areas of tissue immediately
surrounding it. Such nonuniformities might be caused by tissue disturbance during probe insertion and
thermistor–tissue thermal contact resistance.

Transient Measurements

Eq. 4.22 works well for measuring perfusion, but ∆T/P takes at least five minutes to reach a steady state
value in most situations. However, Chato26 suggested that it is also possible to estimate the final ∆T/P
from the initial responses of a thermistor to an applied power. In the absence of perfusion, Balasubra-
manium 32 has demonstrated experimentally and Valvano17 has demonstrated analytically that the tran-
sient power follows t–1/2. The situation may be more complex in perfused tissue. Using the Pennes model,
Valvano has shown analytically that the transient power does not follow t–1/2 exactly, but rather:

(4.49)

where z = ωbρbl cbl /ctrt, while Γ and β are the coefficients of steady-state and transient power, respectively.
Balasubramanium,32 Valvano,17 and Patel36 have all used this information to estimate the steady-state
response of a thermistor from its transient response to the applied power:

(4.50)

where P(t) is the applied power, ∆T(t) is the temperature rise in the thermistor, t is time, and I and S
are coefficients that depend on tissue properties.

FIGURE 4.9 The measurement volume of the probe vs. thermistor diameter.
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Three methods have been used to implement this technique. Bowman37 and Valvano17,18 utilized an
electronic feedback circuit to maintain the thermistor at a fixed heated temperature, Th. If the tissue
baseline temperature Ts is constant, the probe temperature rise ∆T = Th – Ts will also be fixed. The second
method involves using a computer control loop to maintain constant power across the thermistor and
measuring the temperature response. Finally, a steady voltage can be applied across the thermistor and
both power and thermistor temperature rise while being simultaneously measured. In all three cases,
P/∆T can be calculated from measurements of applied power and/or temperature as a function of time
and fit to Eq. 4.50. The steady-state P/∆T response is then 1/I. In practice, these methods work best if
the first several seconds of power and temperature information are thrown away before attempting to fit
the data to Eq. 4.50.

Simultaneous Measurements of Tissue Conductivity and Perfusion

The above techniques all require knowledge of intrinsic tissue conductivity to calculate an absolute
perfusion rate. Usually, conductivity must be measured in the absence of perfusion, making such deter-
minations difficult. Valvano29,30 proposed a clever method to simultaneously measure both tissue intrinsic
conductivity and the effective conductivity of perfused tissue. In this technique the thermistor is heated
with a combination of steady state and sinusoidal power:

(4.51)

The resulting thermistor temperature rise is fit to the same form equation:

(4.52)

where φ is the phase difference between the applied sinusoidal power and the resulting thermistor
temperature. Intrinsic and effective conductivities are calculated from the following empirical equations:

(4.53)

(4.54)

Coefficients k1–k4 are experimentally determined by operating the thermistor probe in media of known
thermal conductivities. If a thermistor is assumed to be spherical and all thermistor parameters are
known, then k1 and k2 can be calculated from Eq. 4.19. Since the size, shape, and thermal properties of
thermistors vary, calibration coefficients are used. Eq. 4.53 is simplified from Eq. 4.22. Eq. 4.54 has no
analytic basis, but has been verified numerically and experimentally.30 Experimental results have shown
that tissue intrinsic conductivity can be measured in the presence of perfusion by selecting an appropriate
sinusoidal heating frequency.

Fig. 4.10 shows how ksin, the conductivity calculated by Eq. 4.54, varies with perfusion for heating
periods of 20 and 200 seconds. The data was collected in an alcohol-fixed canine kidney that was perfused
using the setup in Fig. 4.7. In this case, ksin is insensitive to perfusion at a heating period of 20 seconds,
but a pronounced linear relationship is apparent at a heating period of 200 seconds.

The reason the technique works is that heat is applied and then removed before blood flow can have
an effect on the thermistor. Although much of the literature on heat transfer due to perfusion assumes
that blood flow in the capillaries plays a major role in determining the temperature fields in tissue, this
assumption is questionable. First, the temperature of blood equilibrates with that of its surrounding
tissue in the arteries and arterioles long before it reaches the capillaries. There is, therefore, little heat
transfer due to differences in temperature between the capillary blood and tissue. Second, the pervasive-
ness of capillaries in tissue allows blood to flow in several directions at once. Often, the flows in different

P A B ft= + ( )sin 2π

∆T C D ft= + +( )sin 2π φ
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directions cancel out, leaving little net flow of blood in a given direction. As a result, heat transfer in a
perfused volume of tissue is dominated by the largest blood vessels in that volume. Often, these are small
arteries and arterioles that are 30–200 microns in diameter. Measurements of tissue intrinsic conductivity
require a heating period fast enough to be unaffected by blood flowing in these small arteries.

The lower limit of the sinusoidal heating period is determined by the thermal diffusivity of the tissue.
As the heating period decreases, so does the volume of tissue heated by the thermistor. The measured
conductivity in the resulting small measurement volume can be strongly influenced by the traumatized
tissue immediately surrounding the thermistor. This is illustrated in Fig. 4.10, which shows considerable
difference in unperfused tissue (ωb = 0) between ksin with a heating period of 20 seconds, ksin with a
heating period of 40 seconds and keff . When the thermistor was inserted into the kidney cortex, it squeezed
the tissue immediately surrounding it. This had the effect of lowering the thermal conductivity of the
compressed tissue. The measurement with the 20 second heating period has the smallest measurement
volume and thus is most influenced by the compressed tissue. The steady-state keff  measurement has the
largest measurement volume and is least influenced by traumatized tissue. All three measurements were
taken with a 0.06 inch diameter thermistor. Smaller thermistors will cause less tissue trauma, but may
also produce less consistent measurements.

Other Heat Dilution Methods

Two methods that employ coarser approximations than those employed in the bioheat transfer equation
have been used for many years to estimate tissue perfusion. One method follows the Fick relation, which
assumes that heat transfer in blood and tissue by conduction may be neglected. In this case, the rate of
change of internal energy in response to a bolus or steady infusion (or removal) of heat is balanced by
convective transport of heat by the tissue blood supply and local heat generation rate.

As a matter of interest, the simple washout model was originally developed by Gibbs39 some 60 years
ago. Many approximate methods for estimating perfusion by heat clearance have been developed based

FIGURE 4.10 The relationship between ksin and perfusion for heating periods of 20 and 200 seconds. Data was
taken with a Thermometric P60 thermistor.
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on this analysis. A thermoelectric probe, supplied with a constant amount of heat, was inserted in a tissue
through which blood was flowing. The temperature sensed by the probe varied inversely with the flow
of blood. That is, an increased flow of blood would cool the probe, and a decreased flow heated it up.
By correlating the probe temperature with the blood flow, an index of the blood flow rate was obtained.
Using this technique, measurements were taken in the cat kidney cortex and muscle, respectively.

Perl and Hirsch9 improved the empirical technique reported by Stow and Scheive.40 The probe
employed in their study consisted of a hypodermic needle with a thermistor placed near the tip. Heat
was injected continuously into a small volume of tissue, and the temperature difference between heated
and unheated tissue regions was monitored. The blood flow to the tissue was suddenly stopped for a few
seconds. A sudden change in the rate of perfusion elicited a discontinuous change in the temporal
derivative of temperature, which served to approximate conductive heat flux. A relationship was then
produced between blood perfusion rate and the rate of change of internal energy. This measuring
technique was tested on the dog and rabbit kidney, and satisfactory results were found at low blood flow.
Difficulties in providing a total occlusion of the blood supply and other errors inherent in approximating
heat diffusion by the clamping maneuvers limited the successful extension of this method.

Cameron 41 provided a heat clearance method for measuring regional cerebral cortical blood flow,
involving the injection of a small amount of cool saline into the cerebral circulation. Blood flow was
estimated from the slope of the subsequent thermal clearance curve, with temperature being measured
by a small thermistor probe situated under the dura in contact with cerebral cortical tissue. The accuracy
of the simple washout method is of concern because the negligence of heat conduction causes an
overestimation of perfusion, especially with low blood flow rates. In other words, reasonable accuracy
can be achieved only when the convective effect is much stronger than that of the conduction in the
measured tissue region.

Another approximation method is based on the measurement of effective thermal conductivity, which
has recently been developed to a higher degree.11,16,42–46 The principle of this method is to measure the
temperature difference which is established between a heated and an unheated probe. A thermistor
embedded in tissue is heated for a very short time and the temperature difference between sensors located
a known distance apart is measured. The system is modeled as a steady, spherically symmetric heat source
conducting into an infinite thermal mass. The resulting equation (the well known heat conduction
equation) is solved and the effective thermal conductivity includes the intrinsic thermal conductivity
(without perfusion) and a convective heat transport contribution. With a no-flow calibration under
otherwise identical conditions, the ratio of effective to intrinsic conductivity can then be correlated with
the perfusion rate. Similar techniques have been used to measure blood perfusion in brains, kidneys,
spleens, and thyroids.47–50 However, the drawback of this method is its requirement of a no-flow calibra-
tion, since it is difficult to fully stop the blood supply to most organs.

4.3 Indicator Techniques

In addition to heat clearance, other indicator dilution techniques have also been developed and used
widely for the estimation of tissue blood perfusion.51–54 The general method follows from the Fick relation,
in which the net transport of any indicator into a region of interest is balanced by the transient buildup
or removal of the indicator. These techniques have been developed based on the following principal
assumptions: (1) when the indicator is injected into a tissue, the blood flow system is assumed to be in
a steady state; (2) indicator diffusion equilibrium between tissue and capillary blood is reached before
sample collection; (3) the tissue of interest is isotropic; and (4) recirculation of the indicator can be
neglected.

Indicators that have been used for organ blood flow analysis include injected radioactive and other
diffusible inert gases,55 and a locally generated hydrogen ion.56 Perfusion measurements with diffusible
tracers are based on conservation of mass as described by Fick’s Law.51,57 The basic idea is that the amount
of tracer taken up by tissue equals the quantity supplied by the arteries minus the amount leaving through
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the veins. Blood flow is normalized by a unit of organ mass (usually 100 grams) to get perfusion rate. It
is typically assumed that the venous concentration of tracer is proportional to the tissue concentration:

(4.55)

where Co is the tissue concentration of the tracer, and Cv is the venous concentration. The change in
tissue tracer concentration is then described by:

(4.56)

where ωb is the perfusion rate (mL/100 g/min). Perfusion is determined from the slope of the tissue
concentration washin or washout curve. In certain cases, an integral form of Eq. 4.56 can be used.
Difficulties in applying this technique include accurate determination of tracer concentration in tissue,
controlling for nonuniform inflow concentrations, recirculation of the tracer during measurements, and
nonuniform partitioning of the tracer.

In trapped indicator methods, radio-labeled indicators, fluorescent microspheres, or aggregated albu-
min are distributed to a capillary bed in proportion to the local flow rate.58–60 These nondiffusible tracers
remain inside the capillary walls and do not enter the tissue. Blood flow can be derived from classical
indicator-dilution theory,61,62 which states that flow in a tube can be calculated by knowing the mass of
an injected indicator, its average concentration, and its time course. Perfusion is determined by measuring
the concentration of the indicator in a given volume of tissue. In addition to the general assumptions
for the indicator techniques stated earlier, this model assumes: (1) complete mixing of the indicator;
(2) the volume of the indicator is negligible; (3) there is no extravascular loss of indicator; and (4) the
contrast density can be accurately measured. Considering that outflow of the indicator from the tissue
is much slower than inflow, perfusion is proportional to the ratio of peak concentration of the indicator
in tissue to the area of the indicator clearance curve in the supply artery:

(4.57)

where ∆Ct (tm) is the maximum change in tissue concentration, tf is the time when all the indicator has
cleared the organ, and Ca is the arterial input concentration of the indicator. Alternately, perfusion can
be calculated by determining the volume distribution of the tracer (Vd) and its mean transit time (MTT),
the average time it takes a molecule of tracer to traverse the tissue:57,62

(4.58)

This second method requires knowledge of the tracer distribution volume and the shape of the bolus of
tracer injected into the tissue. Both these quantities are difficult to determine, making the use of this
technique problematic.

4.4 Imaging Techniques

Imaging methods show great promise for one day being able to provide absolute quantitative information
on organ perfusion in a clinical setting. Advances in equipment speed and resolution make this a rapidly
advancing field. At present, several imaging methods allow for semi-quantitative evaluation of perfusion.
Typically, a tracer that can be monitored is injected into the blood and its concentration over time in
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the tissue of interest is recorded. The tissue is usually divided into discrete regions of interest (ROI), with
perfusion in each ROI assumed to be uniform. Difficulties in evaluating the exact concentrations of the
tracer lead to a myriad of different algorithms for extracting perfusion. Often, realistic perfusion rates
can be derived only with the use of empirically obtained constants or correction factors, making the
measurements semi-quantitative. Problems common to many imaging methods include motion artifacts
associated with increasing blood volume with increasing perfusion rate, and nonlinearities in the rela-
tionship of tracer concentration and perfusion.

Techniques currently being used or examined for perfusion measurements include Magnetic Resonance
Imaging (MRI), ultrafast computed tomography (CINE), Single Photon Emission Computed Tomogra-
phy (SPECT), and Positron Emission Tomography (PET). The majority of studies in the literature focus
on measurements of perfusion in the myocardium or brain, with fewer reports concentrating on tissue
blood flow in the lungs, liver, pancreas, skeletal muscle, or kidney. Despite the many hardware options
for obtaining images, there are only two different general approaches to measuring perfusion using
imaging methods. Both approaches involve the injection and monitoring of tracers in the blood. Diffusible
tracers pass through the capillary walls and are exchanged with tissue, while nondiffusible tracers remain
inside the blood vessels at all times.

Single Photon Emission Computed Tomography (SPECT)

SPECT has been used for perfusion studies in the myocardium and brain.63–68 Numerous diffusible
radiotracers are used in SPECT perfusion studies, including 201TI, 18FDG, and 99mtechnetium-labeled
tracers such as 99mTc-MIBI, 99mTc-sestamibi, and 99mTc-teboroxime for evaluating coronary artery disease.
Brain investigations have utilized 99mTc-HMPAO, 99mTc-ECD, and 123I-IMP. These radioactive tracers are
injected into a vein, and perfusion is calculated from the time course of tissue activity counts of radiation
from the tissue of interest compared to counts from a reference area, such as the aorta. The sensitivity
of SPECT is limited by image artifacts caused by uneven attenuation of the signal in different tissues.
Often, a correction factor and empirical linearization constants are used to determine absolute perfusion
rates, making this a semi-quantitative technique. The advantage of SPECT is its relatively low cost and
the wide availability of both the equipment and tracers needed to carry out perfusion studies.

Positron Emission Tomography (PET)

Like SPECT, PET uses radiolabeled diffusible tracers to measure perfusion.65,69–71 Typical tracers include
15O-water, 82Rb, and 13N-ammonia. Tissue activity counts are collected for the tissue of interest and a
convenient artery. Perfusion is then numerically calculated, taking into account the effects of metabolism
on the tracer. PET is currently the imaging method that provides the most reliable quantitative data on
perfusion. PET is several times more sensitive to radiotracers than SPECT, has a higher spatial resolution,
and is not as susceptible to attenuation artifacts. A wide range of perfusion rates (2 to > 400 mL/100 g/min)
have been reportedly measured with PET.65,71 Its major disadvantage is its high cost and the limited
number of institutions that have access to PET hardware.

Ultrafast Computed Tomography (CINE)

CINE uses a nondiffusible iodinated contrast agent to measure perfusion in the heart.61,62,72–74 The
indicator is rapidly injected intravenously, and the exponential time course of the agent is monitored
in the myocardium and aorta or left ventricle. Perfusion can be estimated from the ratio of the peak
tissue concentration to the arterial output curve. CINE has been used to assess relative myocardial
perfusion in humans, but has several limitations. CINE has been shown to underestimate perfusion,
especially at high flow rates.74 CT scanners are prone to image artifacts that produce nonlinearities in
CT count measurements.62 Also, high iodine concentrations can introduce nonlinearities through beam
hardening effects.
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Magnetic Resonance Imaging

Magnetic resonance imaging is still an experimental method of measuring perfusion, but rapid improve-
ments in MRI equipment make it a method that shows good promise.57,75–79 Both diffusible and nondif-
fusible tracers can be used. With diffusible tracers (e.g., CH19F3, D2O, and 17O-water), a bolus of indicator
is rapidly injected into a vein or right ventricle. Arterial input functions are assessed with MRI or other
methods, and washout curves in tissue are measured by measuring either pixel intensities or integrated
spectral line areas. A commonly used paramagnetic contrast agent is gadolinium diethylenetriamine
pentacetic acid (Gd-DTPA). Gd-DTPA is freely diffusible in most tissue, but can be considered nondif-
fusible in the brain. Perfusion in the brain and heart has been reported using the mean transit time
method with Gd-DTPA.57,76,77 An interesting technique for measuring perfusion in the brain uses the
water in blood as a contrast agent. Protons are imparted with saturated spins in the neck region, and
their flow through the brain is mapped. Present difficulties with MRI methods include low signal to noise
ratios and/or relatively slow imaging times. The introduction of scanners with stronger magnets and
more stable hardware is expected to alleviate both these problems.

4.5 Doppler Techniques

Doppler techniques are used to measure blood flow rates based on the shift in frequency of the reflected
ultrasound (or laser) caused by moving red cells. If the applied signal has a frequency of f0 and the
detected wave frequency is f, then the change in frequency when the source and detector approach each
other with velocity v is,

(4.59)

When vs » v and the detector is stationary, the frequency shift is doubled,

(4.60)

where ± is for the red cell moving toward or away from the detector, and θ is the incident angle of the beam.

Ultrasound Doppler

Ultrasound is a term for sound waves with a frequency above the audible range. For diagnostic use,
frequencies between 1 and 10 MHz are applied. All Doppler ultrasound systems may be grouped in
general as either pulsed wave (PW) or continuous wave (CW). PW systems use a single transducer for
transmission and reception and define the measurement volume by timing the echo signals. CW systems,
commonly used for peripheral circulation measurements, employ separate transducers for transmission
and reception. In these systems, the measurement volume is defined by the intersection of the two
transducers’ directivity functions.

Ultrasound Doppler has been widely used for non-invasive measurement of the velocity of blood
within the body in fields such as cardiology,80–83 cerebral circulation,84 obstetrics,85–98 skin circulation,99–101

and tumor circulation.102 However, systems for applications to capillary blood flow estimation are still
under development. This is because the frequency shift from the relatively low flow velocity in capillary
beds is quite small, and the echoes from the red cells are difficult to separate from those of the
surrounding tissue. To overcome these difficulties, a system has been designed based on the modified
conventional CW Doppler ultrasound by adding an extra frequency converter, a coherent demodulation,
and a spectrum analyzer with fast Fourier transform (FFT).103 This system has been developed by
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employing a heterodyne demodulation technique to avoid the attenuation of the low Doppler shift
through any filtering.104 A high frequency pulsed ultrasonic Doppler system was also proposed for tissue
perfusion measurement.105

The inherent visual appeal of color Doppler flow imaging has caused this field to develop rapidly as
a new generation of sonographic imaging devices capable of displaying regional venous flow106 has
emerged. In peripheral vascular imaging, an angle must be created between the face of the linear
transducer and blood flowing vessels that are parallel to the skin surface. Color assignment is dependent
on the frequency shift determined by both the velocity of the moving red cells and the angle of insonation
between the ultrasound beam and the blood stream. In general, a light color hue is used to encode greater
frequency shift. Flow rate sensitivity can be varied by changing the pulse repetition rate for the recorded
Doppler signal. When the sampling rate is decreased, the system becomes more sensitive to slower flow.
Although the image provided by the color Doppler system appeals to the user, this technique for flow
measurement is limited to a qualitative rather than quantitative study due to the difficulties involved
with calibration and color resolution of the system.

Laser and Optical Doppler

Laser Doppler velocimetry (LDV) has been commonly used for skin perfusion measurements.107–112 The
LDV instrument operates on the same Doppler principle as that used for ultrasound devices, except that
light is substituted for sound. The laser light (i.e., from a 5 mW He-Ne @ fs = 4.75 × 1014 Hz) is transmitted
to the skin through a quartz optical fiber. The light is then backscattered from both stationary skin
components and moving objects, primarily erythrocytes in capillaries. The backscattered light consisting
of mixed frequency waves is transmitted to a photodiode through another optical fiber. The output signal
from the photodiode is composed of a spectrum of Doppler-shifted frequencies from which the blood
flow rate can be obtained by taking the normalized root mean square bandwidth of the signals. However,
this technique has limited application due to the lack of depth of penetration of the laser beam.

An optical Doppler technique using noncoherent light generated by optical arrangements113 is an
alternative to the laser Doppler method for velocity determinations in small vessels. To implement an
optical Doppler system, light and dark patterns must be superimposed on the real image of the vessel to
be studied before the light focuses on each sensor. Low-capacitance photodiodes are used as optimal
sensors to minimize noise and to allow nonelectronic subtraction to complete the differential aspect of
the gratings. After optimizing noise figures by bandpass filtering signals before frequency conversion,
average blood cell velocities are calculated from the resulted frequency. This method has its limitation
in requiring a transparent preparation to allow transmission and reflection of light from the object, in
addition to the limited penetration depth also apparent in the laser Doppler method.

4.6 Plethysmography Techniques

The mercury-in-rubber strain gauge has also been used as a means of measuring limb blood flow.114–116

The technique is based on measurement of changes in limb volume due to blood flow. Calibration of
the strain gauge plethysmography can be accomplished either mechanically stretching the gauge or by
electrical calibration. The former requires some necessarily bulky apparatus and suffers from inaccuracy
due to limb movement. The latter measures the change in resistance of a mercury-in-rubber strain gauge,
which is related to its length, and thus the circumference of the limb. Changes in limb volume are therefore
directly proportional to changes in resistance, which can be measured by constructing the strain gauge
as one arm of a Whetstone bridge.

Limb blood flow can be measured by applying an occlusive cuff and a distal strain gauge on the limb.
The cuff is rapidly inflated to a pressure which is sufficient to stop venous return from the limb while
still allowing arterial inflow. The output of the plethysmography is recorded and the initial slope of this
volume is used to calculate flow rate into the limb. Percentage change in limb volume per unit of time
is usually expressed as blood flow per tissue in cm3/100 cm3/min. With this technique, the accuracy of
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measurements can be influenced by the sensitivity of the instrument and the electrical calibration. The
pulsatility of the measured curves caused by systolic and diastolic cycles can make the slope greater or
lower than the proper value.

Infrared photoplethysmography also allows a non-invasive monitoring of the cutaneous microcircu-
lation of the finger according to changes of reflected radiation intensity.117 However, the flow rate can
only be examined qualitatively and is affected by the limb position and the degree of venous filling.

Nomenclature

a thermistor bead diameter
C tracer concentration
CINE ultrafast computed tomography
CT computed tomography
CW continuous wave
c specific heat
FFT fast Fourier transform
f frequency
I current
k thermal conductivity
LDV laser Doppler velocimetry
MIT measuring interval of time
MRI magnetic resonance imaging
MTT mean transit time
P volumetric supply power
PET positron emission tomography
PW pulsed wave
q volumetric heat rate
R resistance
ROI region of interest
SPECT single photon emission computed tomography
T temperature
TPD thermal pulse decay
t time
V volume distribution of tracer
v velocity

Greek
α thermal diffusivity
β coefficient of the thermistor bead or power
� the smallest measurable value
θ temperature elevation from the steady state
� ratio of the tracer concentrations of tissue and blood
ρ density
ω perfusion rate

Subscript and Superscript
a arterial
b bead or blood
bl blood
d distribution
m modified
mb metabolic
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p pulse
s surface or sound
ss steady state
t tissue
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5.6 Conclusion

 

5.1 Abstract

 

Arterial structural mechanics have been studied for almost two centuries. This chapter surveys the
development and use of finite element models (FEMs) for the analysis of arterial structures, principally
addressing the mechanics of the walls of large arteries. We consider representative applications of FEMs
for the study of the mechanics of normal and diseased arteries. Special attention is given to the coupled
interactions between structural response and transport phenomena in the arterial wall. Some applications
of arterial wall FEMs in conjunction with computational fluid dynamics (CFD) are also introduced. Our
presentation is based on a general theory that uses a porohyperelastic-transport-swelling (PHETS) model
to account for coupled elastic response and the transport of mobile tissue fluid and dissolved species. A
soft tissue structure is viewed as a fluid-saturated porous medium (continuum), i.e., a porous solid
(fibrous matrix) in which an incompressible fluid (water) flows. The transport of mobile species (solute)
in this fluid is accomplished by both diffusion and convection processes that are influenced by large
deformations of the porous solid. Arterial FEMs are classified and described according to material law,
e.g., we discuss hyperelastic (HE) and porohyperelastic (PHE) models of arteries as special cases of the
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PHETS formulation. An equivalence is noted for PHETS models and multiphasic mixture-based models
for soft tissues. FEMs developed using commercial programs, such as ABAQUS, and specialized finite
element programs are also presented. Normal arterial response is considered with HE-FEMs, and an
initial FEM of the tissue remodeling processes (evidenced as “opening angles”) is described. Mobile tissue
fluid motion in the arterial wall is simulated using PHE-FEMs subjected to quasi-static and cyclic loading
conditions. Mobile species transport in the arterial wall (here considering a single uncharged species) is
illustrated using the PHETS material law in FEMs of rabbit aortas. FEM results are compared to exper-
imental data where both diffusion and convection of labeled albumin are significant. FEMs using HE
theory are described for the study of diseased states associated with atherosclerosis and aneurysms.
Combined HE-FEMs and CFD simulations are illustrated as an introduction to the complex fluid-
structure interaction problems associated with vascular mechanics. In the future, PHETS models in
conjunction with CFD models should provide fundamental quantitative information relating arterial
blood flow, wall shear, endothelial damage, transport, and wall mechanics that may, in turn, lead to a
better understanding of atherogenesis at specific sites in the arterial tree. Such FEMs and associated
experimental studies will also be useful for the fundamental understanding of structural-transport and
active tissue remodeling and ingrowth associated with the design of tissue-engineered vascular grafts.
PHETS-FEMs will find application in the design and simulation of catheter-based local drug delivery
systems where species transport in arterial tissues after angioplasty is of prime importance for the optimal
administration of substances that may prevent recurrence of atherogenesis in the arterial wall.

 

5.2 Introduction

 

The mechanics of the arterial wall have been studied for nearly two hundred years, beginning with the
early efforts of well known scientists such as Robert Hooke and Thomas Young. The structure of the wall
of a large artery is complex and serves the primary function of carrying flowing blood from the heart to
the microcirculation where the exchange of oxygen and other substances can be accomplished. A large
artery is a thick tube composed of soft tissue organized in three layers — the intima, media, and adventitia.
The intima is the thin innermost layer composed of endothelial cells, basal lamina, and a subendothelial
layer of collagen, elastin, and smooth muscle. The media contains smooth muscle and elastic laminar
networks of elastic fibrils and collagen. The adventitia is the outermost layer containing collagen fibers,
ground substance, nerves, and blood vessels (vasa vasorum).

A large artery is subjected to pulsatile pressures as well as significant axial tethering forces, and exhibits
visible deformation and a highly nonlinear material response. Life scientists and engineers have studied
the arterial wall in order to obtain a basic understanding of its mechanics and physiology. Quantitative
biomechanical structural analyses should be able to provide predictions of deformation and stresses in
normal and diseased arteries. Such analyses should be useful in the investigation of the relation of wall
strains and stresses to the observed active remodeling of the arterial wall. In addition, biomechanicians
are attempting to understand the interrelationships among blood flow, arterial wall mechanics, fluid-
species transport, and atherogenesis. Such information would also be of fundamental importance in the
development of catheter-based local drug delivery systems, which introduce substances that are to be
transported into the arterial wall after angioplasty. A quantitative description of the active response of
arterial wall tissue to mechanical, biological, and chemical conditions is also necessary in order to design
and develop modern tissue-engineered vascular grafts and other arterial prostheses.

The structural response of a large artery is characteristically complex and includes the nonlinear,
history-dependent response of a nonhomogeneous anisotropic tube undergoing finite deformations. At
the outset, the finite strain elasticity theory has provided analytical solutions for arterial mechanical
studies. The artery is usually assumed to be an incompressible, hyperelastic material so that the defor-
mation field can be determined analytically. Then the resulting strains and stresses can be calculated
using the constitutive law. However, analytical solutions are only available for homogeneous materials
and relatively simple boundary conditions and geometries. During the last thirty years, numerical finite
element models (FEMs) have been developed for the detailed study of the arterial wall and other biological
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structures. Such FEMs can provide solutions for both compressible and incompressible materials in non-
homogeneous biological structures that are complex in shape and exhibit highly nonlinear material
response with finite strains. History-dependence and transport processes can also be included in the
FEMs. Thus, the FEM has become the most popular method for structural analysis of soft arterial tissues.
A quantitative knowledge of the material constitutive law is a key ingredient to successful finite element
modeling of arterial structures. It is not our intent to describe the numerous studies of the material
properties of the arterial wall. The reader is referred to the works of Hayashi

 

1

 

 and Humphrey

 

2

 

 for critical
reviews of research in this area.

The scope of this chapter is limited to the consideration of FEMs of arterial structures that are based
on elastic, poroelastic (or biphasic), and porohyperelastic-transport-swelling (or triphasic/multiphasic)
theories. No intrinsically viscoelastic models will be considered. Mixture and poroelastic theories have
been applied to model cardiac structures (e.g., Huyghe

 

3

 

). Both poroelastic

 

4,5

 

 and biphasic models

 

6,7 

 

have
been developed for the study of soft tissues. The equivalence of poroelastic and biphasic (mixture) models
was illustrated by Simon.

 

8 

 

These models have been extended to the triphasic-mixture model

 

9 

 

and the
porohyperelastic-transport-swelling (PHETS) model.

 

10,11

 

 An equivalence between PHETS models and
multiphasic-mixture models for soft tissues can also be established. A brief summary is presented of the
PHETS field theory that serves as the basis for classification of the FEMs described in this chapter. We
consider hyperelastic (HE) and porohyperelastic (PHE) models as special cases of the PHETS theory. A
PHE soft tissue is viewed as a fluid-saturated porous medium (continuum) composed of an incompress-
ible HE porous solid (fibrous matrix). An incompressible mobile fluid (water) flows through this highly
deformable porous solid. In the PHETS soft tissue model, mobile species are considered to be dissolved
in this fluid. The experimental basis for the use of poroelastic models for arterial tissues has been discussed
by a number of authors (e.g., Kenyon

 

12,13

 

 and Jayaraman

 

14

 

). Chuong and Fung

 

15 

 

have also described the
effects of mobile tissue fluid motion in the arterial wall. The PHETS formulations and FEMs given in
this chapter have been discussed by Simon

 

8 

 

and Kaufmann et al.

 

11 

 

and were developed fully by Kauf-
mann.

 

16

 

 We begin with a brief development of a PHETS formulation that includes the effects of a single,
uncharged species, leaving the description of PHETS models including electrical effects to other publi-
cations.

 

5.3 PHETS Theoretical Basis

 

Fundamental Fields and Preliminary Kinematics

 

We consider soft tissue to be a continuum composed of an incompressible, porous solid, an incompress-
ible fluid, and one neutral species dissolved in the fluid. The theory is readily extended to multiple
dissolved charged species. Unless noted otherwise, summation is implied only for repeated subscripts (

 

i

 

,

 

j

 

, 

 

k

 

, 

 

l

 

, etc.). The superscript 

 

η

 

 denotes all constituents, with 

 

η

 

 = (

 

s

 

, 

 

f

 

, 

 

c

 

), i.e., the solid, fluid, and neutral
species, whereas superscripts 

 

α

 

, 

 

β

 

, and 

 

γ

 

 denote (

 

f

 

, 

 

c

 

). A particle of constituent 

 

η

 

 is located at 

 

X

 

i

 

η

 

 at time

 

t

 

0

 

. Its current position at time 

 

t

 

 is given as At time

 

 t

 

, the apparent domain of all
constituents coincides with the domain of the solid so that 

In this section we summarize a mixed PHETS formulation in which the fundamental fields are the
displacement of the solid, 

 

u

 

i

 

, the pore fluid stress, 

 

π

 

ƒ

 

, and the concentration of the mobile species, 

 

c

 

. The
displacement of the solid is

(5.1)

and the velocity of the solid is

(5.2)
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where a superposed dot denotes the material time derivative defined with respect to the solid, i.e.,

(5.3)

The total displacement, 

 

u

 

i

 

, will be represented without the superscript 

 

s

 

, whereas the solid velocity, 

 

v

 

i
s

 

,
will be represented with the superscript 

 

s

 

 to distinguish it from the other constituent velocities. The
volume strain, 

 

J

 

, deformation gradients, 

 

F

 

ij

 

 and 

 

F

 

ij
–1

 

, and Finger’s strain tensor, 

 

H

 

ij

 

, are

(5.4)

The apparent relative velocities of the fluid and the species are

 (5.5)

where, for example, 

 

v

 

i

 

ƒ

 

is the average velocity of the fluid at 

 

x

 

i

 

 and 

 

t.

 

 Here, 

 

v

 

i

 

ƒ

 

is defined so that the fluid
volume flow rate through a unit area perpendicular to the 

 

x

 

i

 

-axis is 

 

nv

 

i

 

ƒ

 

. A similar view applies to 

 

v

 

i

 

c

 

.  The
fluid fully saturates the pores in the solid skeleton, and the volume of the dissolved species is neglected.
Then the porosity of the fluid-saturated material, 

 

n

 

, is the ratio of the fluid volume, 

 

dV

 

ƒ

 

, to the total
volume, 

 

dV

 

, i.e.,

(5.6)

Assuming the solid material is incompressible, the porosity is given as

(5.7)

where is the porosity in the fluid-saturated reference configuration.
The concentration of the species dissolved in the fluid is defined as the mass of the species per unit

of fluid volume,

(5.8)

The apparent density of the 

 

η

 

 constituent (mass per unit of total tissue volume) is

where is the true density and is the volume fraction of the 

 

η

 

 constituent
per unit of total volume. The apparent density of the species (per unit of total tissue volume), 
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 = 

 

dm
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,
is related to the concentration as 
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Phenomenological Equations

 

The phenomenological equations relate electrochemical potentials to drag forces and provide a starting
point for the theory. The general form of these equations (including electrical effects) can be obtained
from entropy inequalities and expressed in terms of absolute velocities

 

9 

 

or in terms of the relative fluid
and species velocities.

 

16 

 

Here, we specialize the equations of Kaufmann

 

16

 

 for a single neutral species to
the form

(5.9)

(5.10)

where 

 

µ

 

ƒ

 

 and 

 

µ

 

c

 

 are chemical potentials, a

 

ij

 

αβ

 

are drag coefficients, and the pore fluid stress 

 

π

 

ƒ

 

 = (pore
fluid pressure). We eliminate the relative species velocity in the formulation by solving Eq. 5.10 for 

 

v

 

cr
i

 

 , i.e.,

(5.11)

where

(5.12)

The phenomenological equation in the form of Equtation 5.11 can be used to develop either the Eulerian
or Lagrangian PHETS formulations of the field equations.

 

Eulerian PHETS Initial Boundary Value Problem

 

The kinematic equations include strain and deformation measures and gradients in the fundamental
fields. The strain can be characterized using the Eulerian strain tensor, 

 

E

 

ij

 

*

 

. The spatial velocity gradient
is split into the symmetric velocity strain or rate of deformation tensor, 

 

D

 

ij

 

, and the anti-
symmetric vorticity or spin tensor, 

 

W

 

ij

 

. These tensors are

(5.13)

The pore fluid stress gradient, 

 

e

 

i

 

π

 

,  is

(5.14)

and the relative volumetric fluid strain rate is The species concentration gradient, 

 

e

 

i
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, is

(5.15)
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The conservation equations include conservation of momentum and mass. The quasi-static equations
of motion (no body forces) in terms of total Cauchy stress, 

 

σ

 

ij

 

, are given as

(5.16)

Assuming that soft tissue is composed of an incompressible, porous solid material that is saturated by
an incompressible fluid, the conservation of solid and fluid mass equation becomes

(5.17)

The conservation of species mass equation is given in terms of concentration as

(5.18)

where is the relative species flux.
The constitutive equations include definitions of the effective stress, the generalized Darcy law, and

the relative species flux. The total Cauchy stress is expressed in terms of effective stress, 

 

σ

 

ij
e

 

, and pore
fluid stress, 

 

π

 

ƒ

 

, as

 (5.19)

where, again 

 

π

 

ƒ

 

 = –(pore fluid pressure), which is indeterminate subject to the constraint of Eq. 5.17.
Eq. 5.11, when substituted into Eq. 5.9, produces a generalized Darcy Law identifying pressure gradients
(mechanical and chemical) that act to produce fluid velocity relative to the deforming solid, i.e.,

(5.20)

where

(5.21) 

Here, 
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ij

 

 is the hydraulic permeability and 
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c

 

/
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x

 

j 

 

is an osmotic pressure gradient obtained in the
generalized Darcy Law and has the form

(5.22)

When Eq. 5.11 for 

 

v

 

i
cr

 

is used in the definition of the relative species flux, then

 (5.23)
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The mechanical property functions appearing in Eqs. 5.22 and 5.23 are given below.

Principles of Virtual Velocities

Both the Eulerian and Lagrangian principles of virtual velocities (PVVs) are used as a basis for FEMs,
as well as to identify the appropriate correspondence rules for stresses and relative velocities in the
formulation of the PHETS field problem. The Eulerian PVVs in mixed form are

(5.24)

(5.25)

(5.26)

where is the unit normal to the area dA. Using appropriate correspondence rules, Eqs. 5.24–5.26 can
be transformed into mixed Lagrangian PVVs of the form

(5.27)

(5.28)

(5.29)

where is the unit normal to the area dA0 . Note that a specified surface flux, has been introduced
in Eq. 5.29 to avoid a spurious reflection of mass transfer in the FEM due to convection at the boundary
(see the ABAQUS manual17), i.e.,

(5.30)

Lagrangian PHETS Initial Boundary Value Problem

In the total Lagrangian formulation, all field variables are considered to be dependent on Xi and t, i.e.,
the displacement is ui = ui(Xj, t) = xi – Xi, πƒ = πƒ(Xj, t), c = c(Xj, t), etc. The relations between field
variables described in the Eulerian and Lagrangian PVVs allow the identification of correspondence rules.
The classical correspondence rules18 relate Cauchy stress to the first and second Piola-Kirchhoff stresses,
which are defined below. The relative fluid and species velocities are also related by correspondence rules;
e.g., consider the relative fluid velocity, vi

ƒr, which will be referred, in the Lagrangian sense, to the reference
configuration. We define a Lagrangian relative fluid velocity, ṽi

ƒr , that corresponds to vi
ƒr so that the same

relative fluid mass flow rate occurs through the faces dA and dA0 , i.e., 
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A similar correspondence rule applies to relative species velocities, and i.e., with definitions of
Eulerian and Lagrangian relative species flux given as the correspondence is

(equal relative species flux through corresponding faces dA and dA0). Then, using
the Nanson formula19 for an incompressible fluid corresponds to

5.(31)

Lagrangian strain and deformation measures and gradients include Green’s strain, Eij, and Green’s
strain rate,

·
Eij,

(5.32)

and the pore fluid stress gradient, 

(5.33)

The Lagrangian relative volumetric fluid strain rate is and the constraint that both solid
and fluid materials are incompressible has the form The species concentration gradi-
ent, is

(5.34)

The Lagrangian form for the quasi-static equations of motion (no body forces) is

(5.35)

where the first and second Piola-Kirchhoff stresses are , respectively.
The Lagrangian form for conservation of solid and fluid mass becomes

(5.36)

for the case where both solid and pore fluid materials are incompressible. The conservation of species
mass has the Lagrangian form

 (5.37)

The Lagrangian form of the constitutive equations includes the effective stress, the generalized Darcy
law, and the relative species flux. The second Piola-Kirchhoff stress is expressed in terms of effective
stress, Sij

e , and pore fluid stress, πƒ, as
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(5.38)

where πƒ is indeterminate. The Lagrangian form of the generalized Darcy Law is

(5.39)

where is the Lagrangian hydraulic permeability and, again,  is the gradient in pore fluid
stress. The generalized osmotic pressure gradient, ∂πc/∂Xi , is

(5.40)

The Lagrangian form for relative species flux, defined as is

(5.41)

We now have corresponding Eulerian and Lagrangian PHETS theories that provide partial differential
equations to be solved for ui , πƒ, and c subject to boundary conditions and initial conditions.

Material Properties in the PHETS Formulations

Two corresponding sets of material properties have been identified — one associated with the Eulerian
formulation and the other with the Lagrangian formulation. Direct mathematical relations exist between
these material properties. By the principle of equipresence, the Eulerian properties are dependent on Eij

*

and c, whereas the Lagrangian properties depend on Eij and c. The porous solid material is characterized
by a generalized effective strain energy density function, Ue, which defines the effective stress as

(5.42)

Isotropic forms for the material properties are noted elsewhere in this chapter. The necessary Eulerian
material properties are the effective stress, σij

e ;  chemical potentials, µc and µƒ; coupling coefficients, lijcc ;
convection coefficients, bij

cƒ; chemical swelling parameters, and permeability, kij . The
remaining material property functions obtained from these basic properties are

(5.43)

where the diffusion coefficients are dij
cc and hijkl

c .  The Eulerian and Lagrangian mechanical properties and
chemical potentials correspond directly, and the Lagrangian property list is the same as the Eulerian list,
with properties identified with a superposed tilde. The scalar chemical potential functions have the same
value in both descriptions, but are functions of different variables, e.g., etc. Other
relations between Lagrangian and Eulerian material properties are
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(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

Thus, we have complete sets of anisotropic material property functions, which can be quantified by
experimental methods and introduced in appropriate FEMs. Additionally, the distribution of the porosity
in the reference configuration, n0 = n0(Xi), must also be known so that the current porosity can be
calculated using n = 1 – J–1 (1 – n0).

Equivalence of Poroelastic and Mixture-Based Biomechanical Models

Biphasic-mixture theory and FEMs have been used by a number of research groups to study soft
tissues.6,7,20 At this point, we note that PHE models and biphasic models as applied to soft tissues are
equivalent.8 The biphasic models are formulations using absolute fundamental fields (e.g., vi

ƒ, etc.)
whereas relative fields [e.g.,  etc.] are used in PHE models. A change in variables provides
the relation between the equivalent biphasic and PHE models, i.e., 

The PHE property is equal to the biphasic property with and
the PHE permeability, kij, is equal to the biphasic permeability. Representative functional forms for Sij

SE and
permeability can be found in Spilker et al.20 This equivalence means that the ABAQUS finite element
program (HE material and pore pressure elements with nonlinear permeability) and our PHETS finite
element program should be useful for the analysis of soft tissue structures where either biphasic or
poroelastic constitutive theories and material properties are available. Similarly, it can also be shown that
the PHETS model is equivalent to the triphasic model for soft hydrated tissues, the former being based
on field variables (fluid flow, species flux, etc.) viewed relative to the deforming solid and the latter based
on the corresponding absolute field variables. Thus, PHETS FEMs can be used for analysis of soft tissues
that are described using equivalent triphasic (or multiphasic) models.

5.4 Finite Element Models (FEMs)

Various FEMs, including displacement, mixed, and hybrid formulations, have been utilized to study soft
tissue structures, including arteries. Both Eulerian- and Lagrangian-based FEMs have been developed;
e.g., the ABAQUS program is Eulerian-based and can solve both HE and PHE (or equivalent biphasic)
field problems. In this chapter we use a total Lagrangian view to illustrate the modeling approach for a
PHETS FEM based on a mixed formulation (since when solid and fluid materials are incompressible, πƒ

is indeterminate). The primary variables are ui (interpolated using quadratic functions of Xi), πƒ, and c
(both interpolated using linear functions of Xi) given as21

k̃ JF k Fij im mn jn= − −1 1

l̃ JF l Fij
cc

im mn
cc

jn= − −1 1

˜ ˜ ˜
d l

c
ij
cc

ij
cc

c

= ∂µ
∂

˜ ˜ ˜
h l

E
ijkl
c

ij
cc

c

kl

= ∂µ
∂

b̃ F b Fij
cf

im mk
cf

kj= −1

v n v vi
fr

i
f

i
s= −( ),

v n v v v u n ni
f

i
fr

i
s

i
s

i ij
s

ij ij
f

ij
s

ij
s

ij
f f

ij= − = = − = −( ) =−1 1, ˙ , ˆ ˆ , ˆ , ˆ .σ σ σ σ σ σ π δ and 

S U Eij
e e

ij= ∂ ∂/ S Eij
SE s

s ij
s= ( )ρ ∂ψ ∂0 / , E Eij ij

s= ,



© 2001 by CRC Press LLC

(5.49)

(5.50)

(5.51)

Bold characters denote matrices, and barred quantities represent the unknown time-dependent nodal
quantities. Here, summation is implied for repeated subscripts N and M, which denote the number of
nodes in the finite element, and are interpolation functions of Xi. The unknown
nodal quantities are

(5.52)

Symmetric stress and strain tensors are represented as column matrices using the vector-tensor notation
of Zienkiewicz,22 e.g., ET = (E11 E22 E33 E12 E23 E31), etc. The Green’s strain can be written in terms of
displacements as

(5.53)

After interpolation using Eq. 5.49, Eij can be split into linear (small strain) and nonlinear components as

(5.54)

and the rate of Green’s strain is interpolated as

(5.55)

The gradients in pore fluid stress and concentration are interpolated as

(5.56)

(5.57)

where ∇ denotes the spatial gradient operator matrix that contains ∂/∂Xi .
Using these interpolations with the Lagrangian PVVs produces the discretized elemental conservation

equation

(5.58)

where p is a time-dependent vector of nodal unknowns, i.e.,

(5.59)

and ĉ is the elemental generalized damping matrix. Internal and external nodal forces are

δ δ δ δ˙ ˙ , ˙ ˙ , ,u N u u N u ui N
u

Ni
u

i N
u

Ni
u= = = =u N u N u

δπ δπ δπ π π ππ π π πf
M M

f f f
M M

f fN N= = = =N N,

δ δ δc N c c c N c cM
c

M
c

M
c

M
c= = = =N N,

N N NN
u

M M
c, ,π   and

u

c

T
N N N

fT f f
M
f

T
M

u u u u u u

c c c

= 〈 … 〉 = 〈 … 〉

= 〈 … 〉
11 12 13 1 2 3 1 2

1 2

, π π π π

E
u

X

u

X

u

X

u

X
ij

i

j

j

i

k

i

k

j

= + +






1

2

∂
∂

∂
∂

∂
∂

∂
∂

E E E B B u B u= + = +






=0

1

2
NL o

u
NL
u u

˙ ˙ ˙E B B u Bu= +( ) =o
u

NL
u

e f f fπ π ππ π π= ∇ = ∇ =N B

e cc c c= ∇ = ∇ =N Bc c

ˆ ˙c p P P+ =int ext

p u cT T f TT= ( )π



© 2001 by CRC Press LLC

(5.60)

(5.61)

Specific forms for the entries in Eqs. 5.49–5.61 are given in Kaufmann.16 The global form of Eq. 5.58 after
standard assembly procedures is

(5.62)

For static analysis, the first term in Eq. 5.62 is zero. Our PHETS FEM program solves quasi-static problems
using a predictor-corrector method in which the time-stepping options include forward difference,
backward difference, or a trapezoidal Crank-Nicholson formula followed by the Newton-Raphson iter-
ation to achieve convergence.16 A modified Petrov-Galerkin approach based on Yu and Heinrich23,24 is
used to eliminate artificial diffusion and numerical dispersion due to the presence of convection terms
in the relative species flux equation. The incremental effective static problem solutions are carried out
using a nonsymmetric, banded equation solver.

5.5 Application of FEMS to Arterial Structures

In this section we present a selected review of the literature (as well as some recent results from our
ongoing research) in order to illustrate the application of FEMs to the analysis of various arterial
structures. A review of multiphase poroelastic FEMs for soft tissue structures was presented by Simon.8

Some of the literature associated with finite element analysis of large arteries was also reviewed by Simon
et al.25 In this chapter, selected references from those reviews are included and additional works are cited.
Again, only HE, PHE, and PHETS FEMs are considered here. However, one of the earliest FEMs of a
blood vessel appeared in Wiederhielm et al.26 and included both the elastic and the viscoelastic material
behavior of an arteriole. Many FEMs of arterial structures were not developed using commercial pro-
grams. Recently, commercial programs such as ABAQUS, ANSYS, and MARC have been used for both
HE and PHE finite element analyses. Following are some illustrations of the use of FEMs to study normal
large arteries, diseased arteries, arterial grafts, arterial angioplasty, and arterial aneurysms. We have also
included some examples of combined structural FEMs and computational fluid dynamics (CFD) models
that have been used to study coupled arterial wall motion and blood flow.

FEMs of Normal Large Arteries

Hyperelastic (HE) FEMs 

HE constitutive law has been used by various researchers to develop FEMs of normal arteries. The pore
fluid and dissolved species are then omitted in the PHETS formulation above. Early arterial FEMs were
developed based on transversely isotropic HE material models.27,28 Simon et al.29 used these properties
in a FEM of a sector of the arterial wall including a simulated vasa vasorum. Flow in the vasa vasorum
calculated from FEM results was comparable to experimental observations. Ayorinde et al.30,31 presented
FEMs based on isotropic HE properties of canine aortas (with and without the influence of anesthetics).
Material laws were quantified and stresses calculated in the aortic wall. Vawter32 developed HE FEMs to
study the lung parenchyma, including hemodynamics, surface tension effects, and stress concentrations
in the structure. Pleural pressures were found to affect vessel diameter whereas perivascular pressure is
more important in determining flow resistance. More recently, Vorp et al.33 coupled a nonlinear FEM
with experimental data using a least-squares algorithm to carry out material identification for canine
carotid and aortic tissue. Orthotropic, compressible HE constitutive laws were quantified, and stress
distributions were calculated.
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 HE FEMs have been used to simulate remodeling in arterial tissues. Chuong and Fung,34 Liu and
Fung,35 and Fung36 (among other investigators) have described active remodeling effects in arterial tissues
evidenced as opening angles. Opening angles are observed when the cross section of an excised vessel is
cut through the thickness and placed in a physiological solution. Formulas for the calculation of stresses
in blood vessels including opening angles are given by Fung.36 In the absence of this opening angle, an
artery is usually analyzed as a thick-walled HE cylinder where severe stress gradients develop during
stretching and pressurization. The opening angle (associated with remodeling) may serve to reduce these
gradients and the levels of stress that develop at the intimal surface where fragile endothelial cells reside.
We used the ABAQUS program to study the arterial wall deformation and stress distributions associated
with opening angles.16 The material properties were based on the HE part of the PHE aortic models
described below. Opening angles were introduced in a FEM of an idealized quarter-sector of an aorta
(Fig. 5.1) that was subjected to an internal pressure of 100 mm Hg and held at constant length. The
opening angle shown in this figure corresponds to Fung’s θ0 = π/2, and FEM results were compared with
FEM results from the same model with no opening angle (θ0 = π). As expected, circumferential stresses
were reduced with increased opening angles (θ0 = π/2), whereas in the absence of an opening angle
(θ0 = π), significant stress gradients developed with highly elevated levels occurring at the internal surface
(Fig. 5.2). We are currently developing more detailed FEMs that include opening angles in both PHE
and PHETS material models.

Porohyperelastic (PHE) FEMs of Arterial Structures

The PHE theory is a special case of the PHETS theory, above, for which tissue fluid motion is included
and the dissolved species are ignored. Early efforts to model arterial tissue characterized as PHE materials
were reported by Kenyon13 and later by Jayaraman14,37 and Jain and Jayaraman38 using analytical methods.
We considered the PHE response of arteries in Simon et al.39,40 using representative states, including, (1)
the undrained condition, a rapid inflation for which, given the low arterial permeability, the response is
incompressible; (2) the drained condition, a steady-state, compressible inflation for which there is no
relative fluid motion when the pore pressure becomes uniform; and (3) the intramural flowing condition,
a pressurized steady-state (representative of mean in vivo pressures) in which the vessel is inflated until
motionless, but a steady relative tissue fluid flow remains within the arterial wall. Internal pressures, axial

FIGURE 5.1 ABAQUS finite element model to simulate an opening angle (θ0 = π/2) observed in an arterial segment.
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stretch, pore fluid pressure, relative tissue fluid flow, and vessel dimensions were calculated using both
ABAQUS and our PHE FEMs program. These parameters were also measured in experiments. We
characterized mobile tissue fluid flow through the arterial wall by measuring the motion of an air bubble
placed in a small-caliber tube in the inflation cannula (Fig. 5.3). The volume flow rate through the arterial
wall can be determined from vB , the velocity of this air bubble. Details of these tests and the experimental
apparatus shown in Fig. 5.3 may be found in Simon et al.40 Some representative results of these experi-
ments and FEMs will be highlighted below.

The first poroelastic FEMs for the arterial cross section used u-π mixed procedures based on a linear
isotropic theory and allowed detailed description of both steady-state and transient arterial wall strains
and stresses, pore fluid pressure, and relative tissue fluid flow.41,42 A reversed inward flow of fluid was
noted at the external arterial surface for early times after step pressurization. This inward flow was also
discussed by Kenyon13 and appears again in other results given below. These specialized PHE FEMs of
Simon et al.41 were extended by Simon and Gaballa43 to study rabbit aortas and included the characteristic
material nonlinearity and finite-strain response of arterial tissue. A compressible form for Ue (see Chuong
and Fung15) and simplified forms for permeability were introduced in the FEMs. Pressure-radius curves
(for the undrained, drained, and flowing cases) and wall stress and pore fluid gradients were calculated.
In related works, we reported more detailed PHE material properties (Ue and strain-dependent perme-
ability) and used FEMs to calculate wall stress gradients and transient pore fluid pressure gradients.44,45

In Yuan and Simon,46 we described a PHE FEM based on a penalty method in which large arteries were
simulated using an exponential, neo-Hookean PHE form for Ue. Deformations, stresses, pore fluid
pressure, and relative fluid motion were calculated for both transient and steady states.

PHE FEMs were used in conjunction with experimental studies on rat carotid arteries with simulated
congestive heart failure produced by coronary ligation.47,48 HE law and hydraulic permeability were
introduced into large-strain PHE FEMs. This analysis indicated that heart failure conditions resulted
in decreased radial stress gradients and increased circumferential stress gradients. Material response
was also determined for these arteries after treatments with the drugs captopril and hydralazine.
Captopril treatment resulted in decreased wall stresses, whereas hydralazine treatment showed no effect
on wall stresses.

FIGURE 5.2 Comparison of circumferential stress, σθ, vs. undeformed radius, R, due to applied pressure, axial
force, and an opening angle obtained from the ABAQUS FEM of an arterial segment (θ0 = π, no opening angle;
θ0 = π/2, opening angle shown in Fig. 5.1).
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Recently, we used the ABAQUS finite element program to develop FEMs that combine HE material
law and pore pressure element capabilities to simulate rabbit aortas.39 The modeling procedure presented
here illustrates the use of such commercial programs for the PHE analysis of soft arterial tissue. The
ABAQUS FEM of an axisymmetric segment of an aorta subjected to finite plane strain (axial stretch and
internal pressure) is shown in Fig. 5.4. The FEM is composed of 43 eight-noded quadrilateral pore
pressure elements (ABAQUS element CAX8P), providing spatially and temporally converged results.
ABAQUS utilizes the Eulerian FEM formulation, and time integration is accomplished using a backward-
difference scheme with subsequent Newton-Raphson iterations at each time step. Finite displacements
were prescribed at the top of the model and suppressed at the bottom to impose finite axial stretch
(λ = 1.5), and the segment was pressurized. The PHE material law was introduced by combining the
pore pressure element with the UHYPER option in ABAQUS. Structurally, the material was considered
to be homogeneous and isotropic, i.e., the intima and media were assigned the same elastic properties,
whereas the intimal and medial permeabilities were different (see below). The relatively loose adventitia
was removed in the experiments and was not included in the FEM.

FIGURE 5.3 Experimental apparatus for determination of internal pressure, dimensions, and air bubble velocity,
vB , for in situ rabbit aortas. (Source: Simon, B.R., ASME, J. Biomech. Eng., 120, 188, 1998. With permission.)

FIGURE 5.4 Axisymmetric plane strain FEM (PHE and PHETS materials) of a rabbit aorta including intima (I)
and media (M). The adventitia was removed in the experiments. (Source: Simon, B.R., Int. J. Sol. Struct., 35, 5021,
1998. With permission from Elsevier Science.)
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These vessels were also studied experimentally and were subjected to undrained, drained, and steady-
state flow conditions in order to determine material parameters in Ue and kij .40 The aortas were assumed
to be isotropic so that Ue is dependent on where the deviatoric invariants are

Then the effective stress was derived in a form compatible with ABAQUS as

(5.63)

where DEV is the deviatoric operator. A generalized compressible, isotropic Fung form for Ue was
developed (based on experimental data) as

(5.64)

where φ is a function of strain invariants assumed as

(5.65)

for the isotropic case. The UHYPER option in ABAQUS was used to introduce this form for Ue in the
FEMs. The intima was treated as a thin layer with low stiffness and was neglected structurally. The values
for the material constants of the media (obtained using our data-reduction procedures and experimental
data) are C0 = 8133 N/m2, C1 = 0.907, C2 = 0.002475, and K/ = 20.

Pressure-radius curves for undrained and drained conditions are shown in Fig. 5.5, where FEM results
are compared to experimental measurements. The flowing state was characterized by plots of free tissue
fluid flow (bubble velocity, vB) vs. pressure in the aortic segments. Assuming isotropy, the hydraulic
permeability is In ABAQUS, is assumed to be a function of e, the voids ratio, where
e = dVƒ/dVs = n/(1 – n) for a saturated material. The function for was determined from exper-
imental data from de-endothelialized and intact rabbit aortas. The media was considered to be a PHE
material, and our experimental data indicate that medial permeability is nearly constant, i.e., 

The medial permeability value for was comparable to permeability values reported for other soft
biological tissues.6,13 The intima is a relatively thin layer and is not a PHE material, but it was represented
by PHE elements in order to give an initial approximation to the complex behavior of this layer of the
arterial wall. Again based on our experiments, the intimal elements were assigned a nonlinear perme-
ability, determined as a function of e from our experimental data.40

ABAQUS FEMs were used to simulate two flowing test experiments, one for intact vessels and a second
for de-endothelialized vessels. Fig. 5.6 shows the FEM predictions and experimental data for the bubble
velocity, vB , for these conditions. The de-endothelialized test provided the constant value for , which
was then used with the intact test data to determine the function for the intima. Fig. 5.7
shows intimal and medial permeabilities vs. voids ratio, e, obtained from our data-reduction procedures.40

The bubble velocity curve for the intact vessel shown in Fig.  5.6 is indicative of the varying hydraulic
resistance associated with the intima, i.e., as pressure increases, the intimal permeability decreases (intimal
hydraulic resistance increases). Initially, vB increases with pressure and then exhibits a characteristic dip
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at physiological pressure levels (100 mm Hg) as intimal permeability decreases during further pressur-
ization. Eventually, further increases in pressure result in an increasing flow trend through the wall.
Note that further research is needed in order to properly characterize the complex transport properties
of the intima.

Fig. 5.8 shows pore fluid pressure distributions in the arterial wall at various times after inflation. At
times very soon after the step loading, the fluid pressure takes on significant negative values that produce

FIGURE 5.5 Experimental and FEM results for internal pressure (P/C0) vs. external radius (λθe
 = re/Re) data for

intact rabbit aortas subjected to undrained (rapid inflation) and drained (steady state, πƒ = 0) conditions. (Source:
Simon, B.R., Int. J. Sol. Struct., 35, 5021, 1998. With permission from Elsevier Science.)

FIGURE 5.6 Experimental and FEM results for air bubble velocity (vB) vs. pressure (P/C0) data for intact and de-
endothelialized rabbit aortas subjected to steady-state pressurization. (Source: Simon, B.R., Int. J. Sol. Struct., 35,
5021, 1998. With permission from Elsevier Science.)
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an inward flow at the intimal and at the external surface. Again, similar results were seen in earlier
poroelastic FEMs of arteries43 and have been noted by Kenyon.13 There is also a marked drop in the pore
fluid pressure across the intimal barrier associated with the relatively low permeability (high resistance)
of the endothelium. These pore pressure gradients are related to water and species transport in the arterial
wall. A typical wall stress plot (no-opening-angle case) is shown in Fig. 5.2 for an aorta experiencing
steady-state flow conditions. Significant gradients develop in the axial and circumferential stresses due
to the exponential form of Ue. We note that stress and pore fluid pressure gradients may be significantly
altered by the initial bending stresses associated with observed opening angles,36 as illustrated in
Fig. 5.2 above.

FIGURE 5.7 Hydraulic permeability of the intima, kINT , and the media kMED , vs. voids ratio, e, for the rabbit aorta.

FIGURE 5.8 Transient pore fluid pressure (–πƒ/C0) vs. undeformed radius (R) for internal pressure, P = 100 mm
Hg. Time (sec) after pressurization ranges from 0+ to steady-state conditions.
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PHE Analysis of a Simulated Cardiac Cycle Using ABAQUS

The ABAQUS program was used to simulate cyclic pressurization of a large artery composed of PHE
material in order to study free tissue fluid motion that may occur during a cardiac cycle. A sawtooth
pressure–time function with a frequency of 1 Hz and pressure variation between 80 and 120 mm Hg
was applied to the FEM to approximate the cardiac cycles. The FEMs were cycled until a repeating
response was produced in each subsequent cycle, and results were then analyzed. Significant spatial
variations in pore fluid pressure distribution and the associated fluid flux (relative fluid velocity) were
noted within the arterial wall. A representative plot of pore fluid pressure vs. position in the arterial wall
is shown in Fig. 5.9 for the systolic part of the simulated cardiac cycle. Fig. 5.10 shows the corresponding
relative mobile fluid velocity profile in the arterial wall for the systolic portions of the cardiac cycle. The
velocity profiles shown represent the conditions at maximum (120 mm Hg) and minimum (80 mm Hg)
pressure levels in each cycle. The relative velocity is nearly zero at the internal surface when P = 80 mm
Hg, whereas the relative velocity reaches a maximum value at this same location when P = 120 mm Hg.
Furthermore, at 120 mm Hg, the relative fluid velocity plot indicates that fluid is imbibed at both the
internal and external surfaces of the artery. There are also regions within the wall where the tissue fluid
flow changes direction, resulting in a churning effect during the cardiac cycle. Similar results were
produced in the diastolic phase of the cardiac cycle. Such relative fluid velocity profiles were presented
for the first time by Kaufmann16 and are significant in that they illustrate possible influences of relative
mobile fluid motion on species transport that occurs in the arterial wall. These results have implications
regarding normal or pathological transport processes in the arterial wall. This fluid flow field in the
arterial wall is also important for understanding the transport processes associated with the delivery of
drugs or other substances to the interior of the arterial wall during the cardiac cycle. We are currently
developing more detailed arterial FEMs based on the PHETS theory in order to study both water and
species transport during cyclic loading.

FIGURE 5.9 Fluid pressure (–πƒ) distribution in the deformed arterial wall (r) at various times (0 ≤ t/tc ≤ 0.33)
during systole of a simulated cardiac cycle (80 ≤ P ≤ 120 mm Hg).
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Porohyperelastic-Transport-Swelling (PHETS) FEMs of Arteries

Our first PHETS theory and FEMs were based on the linear forms of the field equations above and did
not include convection or osmotic pressure gradient effects.49,50 The theoretical basis and the extension
of the associated FEMs to finite strains, nonlinear materials, and coupled convection effects were intro-
duced by Simon8 and were fully developed by Kaufmann.16 A specialized PHETS finite element program
for transient analysis of soft tissues was also developed by Kaufmann. This PHETS program allows the
study of both HE and PHE models as special cases of the general PHETS approach. The accuracy of this
program was verified by comparing the results with HE and PHE analyses obtained analytically and using
ABAQUS. In addition, our PHETS FEM results matched results for a rigorous ABAQUS test problem,
thereby verifying the PHETS FEM solution using the Petrov-Galerkin method for convection-dominated
transport problems. Here we briefly highlight some recent applications of this PHETS FEM program to
the study of species and fluid transport in the walls of large arteries.

In Simon et al.,10 a PHETS theory and FEM were described for soft tissues in general, with specific
application to arterial mechanics, and material properties were identified and quantified experimentally.
In companion papers, examples were given using PHETS FEMs for mechanical-transport analysis of
rabbit aortas.51,52 These first formulations were limited to small strains, and transient tissue displacements
and concentration profiles of a single uncharged species were predicted. We have extended these first
transport models to include the finite strain, nonlinear response, and the associated diffusive and con-
vective transport in the arterial wall using the PHETS theory.11 Our initial nonlinear PHETS FEMs did
not include the following effects: the osmotic pressure gradient coupling term, ∂πc/∂xi , strain dependence
in electro-chemical potentials, or applied electrical potentials. Labeled albumin was considered to be a
single, uncharged, mobile species. The hyperelastic function Ue was assumed to be independent of
albumin concentration and had the exponential form given in Eq. 5.64, with the material constants C0,
C1, C2, and K ′ reported above for λ = 1.5. PHETS FEM-based generalized least squares data-reduction
procedures were developed for determination of the drained bulk modulus parameter (K ′), permeability,
diffusion, and convection material properties for rabbit aortas needed in the PHETS FEMs.53 We con-
sidered the intima and media of aortas (adventitia removed) and assumed isotropy so that

FIGURE 5.10 Eulerian relative fluid velocity (vƒr
r ) distribution in the deformed arterial wall (r) at two times (t/tc = 0

and t/tc = 0.333) during a systole, simulated cardiac cycle (80 ≤ P ≤ 120 mm Hg).
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where k, d, and b are isotropic Eulerian permeability, diffusion, and convection coefficients. Only the
radial component of these material properties (e.g., k = krr , etc.) was used in the FEMs. Furthermore,
based on experimental observations, we assumed that the medial and intimal properties kMED , dMED , bMED ,
dINT , and bINT are all constant, whereas kINT is not constant (as noted above). Experimental data were
obtained from our laboratory and from the experiments of Tedgui and Lever.54 The intima is a complex
layer that is represented by PHETS finite elements, but kINT , dINT , and bINT are again associated with thin-
layer approximations (i.e., resistance in the layer). We determined values for C0 , C1′, and C2′ for the media
using the undrained and drained test data given above. The form of kINT and the values for K ′, kMED ,
dINT , dMED , bINT , and bMED were determined in the least squares optimization procedure. The procedure
was applied separately to (1) determine kINT and kMED from free tissue flow data in the aortic wall;
(2) determine the dMED and dINT from the concentration profiles of labeled albumin in a diffusion test at
zero internal pressure (P = 0); and (3) determine bMED and bINT and based on the steady-state concentra-
tion profiles for labeled albumin in Tedgui and Lever’s54 tests (P = 70 and 180 mm Hg) with both diffusion
and convection. Optimal values determined for all material parameters (C0 , C1′,  C2′,  dMED , dINT , bMED ,
bINT , and kMED) and kINT will be presented in other publications. Some typical results are shown in Fig. 5.11,
where Tedgui and Lever’s54 steady-state concentration profiles of labeled albumin are compared to our
PHETS FEM predictions. In their experiments, rabbit aortas were held at steady internal pressure levels
(70 and 180 mm Hg) and the concentration of labeled albumin was elevated in the external bath
surrounding each vessel. Thus, the pressurized arterial wall was subjected to diffusion of labeled albumin
inward from the external surface in combination with convection associated with water flux outward
from the internal surface. This procedure was carried out for intact, as well as damaged (de-endothelial-
ized), vessels (P = 70 and 180 mm Hg). The effects of large strains on the shape of the albumin concen-
tration profiles in the arterial wall are clearly seen in Fig. 5.11. The PHETS FEM results agree very well
with the experimental measurements. Further details of this recent work are given in Simon et al.10

FEMs of Diseased Arteries

Finite element methods with HE material laws have been used to simulate diseased conditions principally
associated with atherosclerosis in large arteries. Chandran et al.55 studied the effects of local variations

FIGURE 5.11 Steady-state labeled albumin concentration profiles (c/cB) in the deformed arterial wall: finite element
results compared with Tedgui and Lever’s54 experimental data; cB = bath concentration of albumin. (Source: Simon, B.R.,
Int. J. Sol. Struct., 35, 5021, 1998. With permission from Elsevier Science.)
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of elastic properties in the aortic arch for both normal and arteriosclerotic conditions. Fenton et al.56,57

analyzed vasoconstrictions at arterial branches and suggested that the flow divider may be a site of disease
initiation (due to both flow stresses and structural stresses). It was noted that vasoconstriction and tensile
stress actually may tear arterial tissue. Coronary and carotid arteries were described by Keeny and
Richardson58 using FEMs that included possible local mechanical failure in the intima due to the presence
of atherosclerotic plaque. MacWilliams et al.59 related wall deformation and endothelial permeability to
lipid transport in rabbit aortas that were experimentally subjected to stenosis. Their FEMs suggest that
wall longitudinal shear changed sign rapidly near the stenosis. The occurrence of rounded polygonal
endothelial cells in the arterial wall was strongly correlated with regions of elevated longitudinal shear
stress. The permeability of such polygonal endothelial cells was thought to be abnormally high, thus
increasing the potential for lipoprotein uptake by the arterial wall. Additionally, these structural FEMs
were associated with flow models of stenoses.60,61 

Vito et al.62,63 developed FEMs of diseased and normal arterial cross sections and found significant
changes in stress with variations in plaque elastic modulus, relative size, and medial tears. Thubrikar
et al.64 calculated stresses in bovine arterial branches associated with variations in the branch geometry,
wall thickness, orthotropic material properties, and incremental pressure loads. Maximum stresses were
independent of elastic properties and occurred at the proximal and distal regions of the ostium. Stresses
at the inner surface of the branch were 3 to 4 times greater than stresses in straight segments. Salzar
et al.65 used these same FEMs to study relations between atherosclerosis and wall stress in human carotid
arterial bifurcations. Parametric studies varying wall thickness and mechanical properties revealed areas
of stress concentration in the arterial walls at the point of bifurcation and the sinus bulb that were
correlated with the location of lesion formation. Aoki and Ku66 developed large-deformation FEMs (using
the ANSYS program) to identify stress concentrations and the buckling pressures associated with the
collapse of diseased arteries with eccentric cross sections. Their HE FEMs may allow the prediction of
locations for plaque-cap rupture due to compressive stresses. Veress et al.67 modeled pressurized coronary
artery walls with FEMs including plaque morphology. Lipid maps were used to define lesion dimensions
and wall stress distributions were classified and quantified for four different patient age ranges. The
location of the highest stress in the 15–19 age group shifted from the healthy wall region opposite the
lesion to the normal intima adjacent to the plaque cap. This trend increased with age, and Veress et al.67

suggested that age-related development of atherosclerosis may lead to increased localized wall stress and
plaque rupture. Hayashi and Imai68 simulated atherosclerotic walls of large arteries using large-strain
FEMs based on nonlinear HE properties of plaque and the media. The isotropic strain energy density
functions were based on tensile test data. Elevated stresses in the inner wall of an atheroma were predicted,
and the possibility of surface fracture of plaques was suggested.

FEMs of the Arterial Wall and CFD Models

In recent years, structural FEMs have been used in conjunction with computational fluid dynamics (CFD)
to study the interaction between flowing blood and the mechanical/transport response of the arterial
wall and its possible relations to atherosclerosis. Following are a few examples of this type of combined
FEM development. We present these examples to show a starting point for more detailed studies of the
interactions between flowing blood and arterial wall mechanics. In particular, we anticipate that a
combination of PHETS FEM and CFD models will be developed to link transport processes in flowing
blood with associated water and species transport in the wall.

Perktold and Rappitsch69 surveyed the overall role of coupled structural FEMs and CFD models in
understanding the fluid dynamic-induced mechanisms for atherogenesis. The interactions of arterial wall
mechanics and local blood flow phenomena in a human carotid arterial bifurcation had been considered
earlier by Perktold and Rappitsch.70 The pulsatile, non-Newtonian flow field (time-dependent Navier-
Stokes equations) and the arterial wall (nonlinear thin shell theory, incremental linear elasticity) were
both analyzed using coupled FEMs. A significant reduction of flow separation and decrease in wall shear
stress were noted when rigid arterial wall models were replaced by distensible wall models. Rappitsch
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and Perktold71 studied flow and convection-dominated diffusion oxygen transport processes in local
constrictions that simulated stenoses. They demonstrated the effects of wall shear stress and recirculating
flow on concentration distribution and mass transfer in the walls of abdominal aortas. Coupled CFD
and FEMs were developed to solve the incompressible Navier-Stokes equations (blood is assumed to be
a Newtonian fluid) and the convection-diffusion mass transport equation using a streamline upwind
procedure for the transport equation and a special sub-element technique. Constant and shear-dependent
wall permeabilities were introduced. Permeability was shown to have a strong influence on flux and
interfacial concentration profiles along the wall. The flow significantly influenced mass transport; e.g.,
in the reversed flow region downstream of a stenosis, the oxygen concentration was decreased to 75%
of the inlet concentration value. Xu et al.72 coupled FEMs of blood flow (again using time-dependent
Navier-Stokes equations) and the arterial wall (linear elastic, small-displacement model) to predict time-
dependent wall displacement and stress fields and the flow field for physiological situations. Heil and
Pedley73 used Lagrangian nonlinear shell FEMs coupled with viscous fluid flow models using lubrication
theory to study flow in collapsible arteries. Pre-buckling deformation, structural stability, and nonsym-
metric buckling were examined at various axial stretch levels in simulated experimental configurations.

Some FEMs of Other Arterial Structures

FEMs have been developed for a number of other arterial structures that deserve note. Intracranial
saccular aneurysms were studied using symmetric and nonsymmetric FEMs by Kyriacou and Hum-
phrey.74 Representative geometries and two-dimensional HE constitutive laws were developed based on
an exponential strain energy function. The maximum stresses increased with an increased neck/height
ratio and were always at the fundus, whereas rupture was near the neck for axisymmetric lesions.

Balloon angioplasty was simulated by Oh et al.75 using the ABAQUS program. Large-strain FEMs of
balloon angioplasty procedures on atherosclerotic arteries used HE material properties for both arterial
tissue and plaque. Three typical plaque configurations were subjected to balloon dilatation. Intimal
splitting, intimal–medial dehiscence, and medial stretching were studied using deformations and stress
distributions predicted by FEMs.

Arterial grafts and stents have been considered using FEMs. Chandran et al.76 studied the effects of
pressure loading on the compliance mismatch in an artery–graft anastomosis and found regions of
increased compliance and relatively large wall stresses that may be related to a loss of patency in small-
diameter vascular grafts. Subsequently, Chandran et al.77 developed linear isotropic elastic FEMs of end-
to-end anastomoses of arteries with vein grafts, Dacron grafts, and polytetrafluoroethylene (PTFE) grafts.
They evaluated the distribution of compliance and stresses due to compliance mismatch and found a
hypercompliant zone on the arterial side and high wall tensile stresses on the graft side of the anastomosis.
Furthermore, hypercompliance was larger in Dacron and PTFE grafts than in vein grafts, but tensile
stresses were larger in the vein grafts than in the synthetic grafts. They noted that increasing graft diameter
to increase flow may result in a significant increase in hypercompliance on the arterial side of the
anastomosis.

Ballyk et al.78,79 considered the stresses in end-to-side anastomoses using FEMs composed of cubic
Lagrangian isoparametric elements (linear elastic material) to model the large-strain shell equations.
Stress concentrations and elevated stress gradients were predicted at the arterial-graft junction, supporting
the view that intimal hyperplasia is part of a remodeling process that attempts to reduce mechanical
stress to physiological levels in the arterial graft structure.

Vascular stents have been studied using FEMs. Borgersen and Sakaguchi80 used the MARC/MENTAT
program (MARC Analysis Research Corp., Palo Alto, CA) to simulate the contact problem associated
with the inflation of a stent. Separate three-dimensional structural models of the catheter balloon, barrel
stent, and arterial wall were developed, and a three-dimensional contact algorithm was introduced. The
balloon and stent were considered to be nonlinear HE, whereas the arterial tissue was considered to be
a linear elastic material. A surgical pressurization schedule was simulated and initial results for deforma-
tion and stress levels were obtained. During expansion to surgical pressurization levels, both the balloon
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and the stent contacted the artery. During de-pressurization of the balloon, the stent was allowed to relax
and be compressed radially by the arterial wall.

5.6 Conclusion

This chapter has provided an overview of techniques in finite element modeling of the arterial wall that
include the coupled effects associated with finite strains and mobile fluid/species transport in this soft
biological tissue. These techniques have been classified and described by the material model used in each
FEM. Arterial FEMs considered first were HE (hyperelastic) analyses, followed by the PHE (porohyper-
elastic/biphasic) and PHETS (porohyperelastic-transport-swelling/triphasic/multiphasic) analyses. The
emphasis of the chapter is on the use of the latter two models in studies where species and fluid flux (as
well as structural response) were determined using FEMs of large arteries based on appropriate experi-
mental data. Applications of the finite element analysis of arterial structures included studies of normal
and diseased arteries, as well as aneurysms. Combined FEM and CFD models were also introduced. FEMs
of arterial grafts and stents were discussed briefly.

Specific attention was given to the PHETS formulation using a mixed FEM as a general theoretical
framework that allowed the consideration of finite strain, fluid transport, and the transport of a single
uncharged mobile species. These initial models were based on a simplified isotropic strain energy func-
tion. The intima and media were included in the FEMs and experimental models, for which the adventitia
had been removed. Water permeabilities and species transport properties were also simplified and con-
sidered only for the radial direction for the media and intima. Experimental data were matched by FEM
predictions for a number of different conditions including undrained, drained, flowing, and transport
of labeled albumin. Of particular note is the close agreement obtained using the PHETS FEM to simulate
species transport experiments. The model accurately predicted the concentration profiles of labeled
albumin in the wall of both intact and damaged (de-endothelialized) rabbit aortas, where both diffusion
and convection were significant.

There are a number of directions for future research and extension of the present PHETS FEM
capabilities for arterial mechanics. At the outset, experimental observations are a key ingredient in all
future developments. These initial models can be extended to include the characteristic anisotropy of
the arterial wall. This can be accomplished by carrying out biaxial and triaxial testing including bending,
twisting, or other deformational states that excite the directional coupling in the HE material law of the
PHETS models. The anisotropic forms of permeability can be quantified by characterizing the diagonal-
ized form (principal vlaues) of the permeability tensor and permeability functions. The next stage of
modeling could be based on the assumption that the radial, circumferential, and axial directions are the
principal directions for the permeability tensor. Anisotropic effects in the diffusion and convection
properties will require significant theoretical and experimental efforts. The initial results described here
provide a beginning for such research.

Various soft tissue research efforts (e.g., Gu et al.81) have been developing theories that include the
fixed charges in soft tissues and the associated effects on solutes (e.g., NaCl) and water transport. These
methods can be included in the extension of the PHETS model to include charged mobile species. The
theoretical basis for this extension is given by Kaufmann.16

The future goals for any study of arterial wall transport will include the accurate simulation of the
transport of relatively large molecules, such as LDL cholesterol. Clearly, the modeling of such a large
species or the consideration of multiple interacting charged species will introduce more complexity. The
models described in this chapter provide a beginning for combined FEM and experimental procedures,
which are essential for the development of the appropriate theory and experiments associated with
transport simulations for LDL in arterial tissues.

The role of smooth muscle in the arterial wall should also be investigated. Smooth muscle has been
rendered passive in many of the models described here. However, PHETS FEMs can be used for the
simulation of both passive and active smooth muscle states, and the resulting structural and transport
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response can be determined. Further development of the PHETS model and experiments will be necessary
in order to characterize the role of arterial smooth muscle in wall mechanics and transport.

We anticipate that tissue remodeling effects (e.g., opening angles) will be included in future PHETS
FEMs. We currently measure opening angles in all tests on rabbit aortas. The techniques for simulation
of opening angles, initiated here using ABAQUS, can be introduced in the arterial PHETS FEMs in order
to establish the effects of such prestress conditions on the overall and local transport of water and mobile
species in the deforming arterial wall.

The development of PHETS FEMs subjected to cyclic pressures associated with the cardiac cycle seem
especially promising. Our initial results from such cyclic ABAQUS FEMs using only the PHE model (no
mobile species) revealed complicated mobile tissue fluid motion in the arterial wall at normal and
hypertensive mean pressure levels. The next step will be to add representative mobile species to the FEMs
in order to quantify transport of free tissue fluid and various species during the cardiac cycle.

Our first FEMs have considered the intima to be very thin, with average (thin-layer) PHETS material
properties. It would be especially interesting to consider the intimal layer (endothelium, elastic mem-
brane, etc.) in greater detail. The PHETS continuum model has provided an initial quantitative view of
the overall transport across this thin layer. However, it is now appropriate to extend modeling to the
micro-scale of the intima. A recent paper by Huang et al.82 describes such a model. Micro-scale models
could be combined with the PHETS macro-scale simulation of the media. Also, the adventitia deserves
more attention in order to complete the modeling of a large artery. The mechanics and transport in this
layer await quantitative study that will have significance in the understanding of species transport pro-
cesses through this outer layer associated with normal function, as well as the design of local drug delivery
systems that introduce substances at the external wall surface.

Inclusion of complicated osmotic effects in the electro-chemical-mechanical osmotic driving fluid
pressure gradient, ∂π c/∂Xi , can also be initiated as an extension of the PHETS models described in this
chapter. This would include the study of electrical potentials and charged species effects using a combi-
nation of FEM simulation, experimental testing, and extended PHETS FEM-based data-reduction pro-
cedures. Strain-dependent chemical potentials and concentration dependence in Ue can also be studied
based on the initial results given in this chapter.

Once the PHETS arterial wall model extensions are underway (including development of fully three-
dimensional FEMs), we anticipate that significant new knowledge regarding normal and diseased states
in the arterial system will be obtained by combining PHETS FEMs with modern computational fluid
dynamics (CFD) models of large arterial structures. The study of fluid-structure interaction, local wall
shear and normal stresses, and species transport (LDL, etc.) should lead to important basic information
and possible new insights regarding the complex processes associated with atherogenesis. Atherosclerosis
has been associated with numerous aspects of the mechanics of flowing blood in the regions where the
disease is known to first develop in the arterial tree. But atherosclerosis is a disease of the arterial wall.
Thus, detailed PHETS FEMs of the arterial wall coupled with CFD models of blood flow conditions
should quantify stress and transport phenomena that could be related to the development of arterial
disease in specific sites in the walls of various arterial structures. Micro-scale models for the intima could
also be introduced in this study.

One should also be able to use PHETS FEMs to study the effects of known causal factors for athero-
genesis, such as hypertension, elevated LDL levels, altered states of smooth muscle tension, alterations
in the arterial wall associated with remodeling, damage, etc. These FEMs will allow quantitative prediction
of the response of the wall to such factors applied singly or in various combinations to study complex
interactions among these causal factors. For example, one might study the effect of elevated blood pressure
and elevated LDL in the blood using a PHETS FEM of a bifurcation in a large artery — a site implicated
in early stages of atherogenesis.

This chapter has presented a few early FEMs of arterial grafting and stents. The PHETS modeling
capability should find further application in the design and development of arterial grafts. The emerging
field of tissue engineering of such arterial grafts provides problems in which more generalized PHETS
FEMs should be useful. We have begun the development of such models for the study of PTFE materials
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to quantify the transport of water, blood, and other substances in order to design better arterial grafts.
The complex processes associated with tissue remodeling and ingrowth may eventually be quantified and
more fully understood using extended PHETS FEMs supported by experimental data.

An important future application of the PHETS model will include the study of local drug delivery
systems. A typical delivery system configuration is associated with angioplasty and utilizes the balloon
to contact the vascular wall and deliver drugs by diffusive and convective transport. Our models of arterial
wall mechanics and species transport can be introduced in PHETS FEMs of the balloon–arterial contact
configuration and the resulting delivery of species to wall tissues could be quantified. We have initiated
the development of such models, beginning with water transport simulation using ABAQUS, and are
currently extending the approach using our PHETS FEMs.

Finally, we point out that the PHETS theory and FEMs described in this chapter should find applica-
tions in the quantitative study of many other highly deformable hydrated soft-tissue structures (cardio-
vascular, articular cartilage, intervertebral disc, etc.). Such studies can be developed with either PHETS
material laws or equivalent multiphase material laws (using the direct mathematical relationships between
multiphase and PHETS material properties) in PHETS FEMs of biological structures where nonlinear
structural response coupled with free-tissue fluid motion and charged species transport are of interest.
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Convection material properties

B Shape function derivative matrix
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Eij Green’s strain
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Strain-dependent relative species flux coefficients

I1, I2 Strain invariants

Deviatoric strain invariants

J Volume strain

Relative species flux

Hydraulic permeability

K Stiffness matrix

K ′ Drained bulk modulus parameter

Coupling coefficients

n, n0 Porosity

Unit normal vectors

N Interpolation function

P Mechanical pressure

p Vector of nodal unknowns

PHE Porohyperelastic

PHETS Porohyperelastic-transport-swelling

PVVs Principle of virtual velocities

r Deformed radius; Eulerian radial direction

R Undeformed radius; Lagrangian radial direction

Sij Second Piola-Kirchoff stress

t Time

Tij First Piola-Kirchoff stress

ui Displacement

Solid (total) velocity

Ue Effective strain energy density function

V Volume

Apparent relative velocity of α constituent (α = f, c)

Solid velocity 

Velocity of the α constituent (α = f, c)

vΒ Bubble velocity

Wij Vorticity of spin tensor

Position vector of η constituent (η = s, f, c)

∇ Del operator

Greek
α Opening angle

δij Kronecker delta

δ( ) Virtual quantity
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λR,λΘ,λZ Principle stretch ratios

Chemical potential of α constituent (α = f, c)

πƒ Pore fluid stress

True density of α constituent (dmα/dVα, α = ƒ, c)

ρα Apparent density of � constituent (dmα/dV , α = ƒ, c)

σij Total Cauchy stress

φ Quadratic strain parameter

φα Volume fraction of α constituent

Superscripts

d Drained

e Effective

exp Experimental

f Fluid phase

s Solid phase

η, ξ Constituents, i.e., s, f, c

Subscripts

i,j,k,l,m,n Spatial directions, i.e., 1, 2, 3; R, Θ, Z; etc.

i Internal

e External

INT Intima

MED Media

M, N Node numbers

0 Initial or Reference
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6.1 Introduction

 

Convective heat transfer via the blood plays an essential role in homeothermy of the human body. Pennes

 

1

 

proposed quantifying heat transfer effects in perfused biological tissue by a heat source/sink term. This
term is proportional to the perfusion rate and the difference between the tissue temperature and the
global arterial blood temperature (bio-heat approach). The underlying assumption was that all heat
transfer occurs in the capillaries. Pre-arteriole and post-venule heat transfer was neglected. Weinbaum
et al.

 

2,3

 

 questioned the validity of the bioheat equation that had been used for many years in the analysis
of thermal problems in perfused tissue. They proposed a new bioheat transfer equation.
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It is the merit of Weinbaum and Jiji

 

4

 

 that they drew attention to the fact that countercurrent heat
exchange in small arteries and veins is of importance under certain conditions. Countercurrent heat
transfer helps to conserve heat in conditions of severe cold. Intervessel heat exchange is significant
especially during periods of minimal blood flow. A new bioheat transfer equation was presented by
Weinbaum and Jiji in 1985

 

4

 

 and further developed by Zhu et al.

 

5

 

 and Song et al.

 

6,7

 

 This model quantifies
tissue heat transfer with a single equation that is independent of any blood temperature. To account for
the enhancement of heat transfer near vessels not in thermal equilibrium, an enhanced thermal conduc-
tivity term is introduced.

In an exacting discussion (Wissler,

 

8,9

 

 Weinbaum and Jiji

 

10

 

), the underlying assumptions in the new
model were questioned. In their early work, Weinbaum and Jiji assumed that the mean of arterial (

 

T

 

a

 

)
and venous (Tv) blood temperatures were equal to the mean tissue temperature 

 

T

 

t

 

: ((

 

T

 

a 

 

+ 

 

T

 

v

 

)/2 

 

≈

 

 

 

T

 

t

 

). In
later papers (Zhu et al.,

 

5

 

 Weinbaum and Jiji

 

11

 

), a slightly different hypothesis was introduced (see below).
They, too, assumed that there is negligible heat transfer between the countercurrent artery–vein pairs
and the surrounding tissue. Wissler is convinced that a source/sink term of the form proposed by Pennes
belongs to the bioheat equation. In his opinion, the old form of the bioheat equation yields more realistic
results than the new form. He presented an alternative model

 

9

 

 which computes the spatial variations in
the arterial, venous, and tissue temperatures. Wissler’s model consists of three equations and can be
incorporated into finite-difference whole body models. Unfortunately, Wissler did not suggest any algo-
rithm to calculate the heat transfer parameters which are used to quantify the heat flow between the
vessels and between the vessels and the tissue.

A model by Baish et al.

 

12

 

 derives the relationship between the countercurrent and vessel/tissue heat
transfer parameters and the morphology of the vascularity. Some crucial simplifications restrict the
applicability in whole body models. The model does not consider axial conduction through the tissue
cylinder along the vessel axes. Only heat transfer perpendicular to a vessel pair is described.

Charny and Levin

 

13

 

 incorporated the Baish model into a system of heat balance equations similar to
those proposed by Wissler. They called this one-dimensional model the three-equation model and used
the predictions of this model to evaluate the models of Pennes and Weinbaum and Jiji. In a later paper,
Charny et al.

 

14

 

 found that the two approximate formulations were each appropriate in different tissue
regimes and under certain physiological conditions. They proposed that a hybrid model would be most
appropriate for simulations of bioheat transfer in perfused tissue.

 

14

 

The vascular network in the muscle tissue near the skin surface is a region of special interest within
the systemic circulation.

Chen and Holmes

 

15

 

 defined twelve categories of vessels according to their diameter and calculated the
equilibration length, i.e., the length over which the temperature difference is reduced by a factor e. This
length depends on the blood velocity, which means that a vessel category which is in thermal equilibrium
at a basal blood velocity may not be in equilibrium at high blood flow. Nevertheless, from such calcu-
lations it became clear that the equilibrium of blood temperature with tissue takes place between the
terminal arterial branches and the pre-capillary arterioles, and not in the capillaries, as had been previ-
ously assumed. Fig. 6.1 schematically shows the changes of blood temperature as the blood traverses the
systemic circulation. Blood at arterial temperature T

 

0

 

 is distributed to tissues which are warmer (upper
branch of the curve in Fig. 6.1) or cooler (lower branch) than T

 

0

 

. Blood temperature rapidly equilibrates
with tissue temperature after leaving the terminal arterial branches and attains the tissue temperature
prior to entering the arterioles. Beyond the venules, major changes in temperature are the result of mixing
at venous confluences. Mixed vena cava blood returns to the heart at a temperature close to arterial
temperature.

The object of our study was to develop a three-dimensional and vascular model

 

16

 

 in which convective
heat exchange between feeder vessels and the tissue is calculated without any assumptions other than
values for the Nusselt number. The Nusselt number is a dimensionless parameter to quantify the heat
transfer coefficient at the vessel wall. The contributions of these thermally significant vessels are treated
individually and not collectively. We examined the way in which the vascular geometry and blood flow
rate influence the heat transported in perfused tissue under basal and extreme conditions. A small scale
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vascular model of this kind can be used for several purposes. For the purpose of studying hyperthermia
as a cancer therapy, significant localized variations in temperature and heat flux are of great interest.
Since the basic vascular model presented here is calculated without less crucial assumptions, it is possible
to test the validity of assumptions inherent in the formulations of other bioheat transfer concepts.

 

6.2 The Vascular Model

 

Description of the Vascular Model

 

A three-dimensional vascular model was constructed to compute the spatial variations in the arterial,
venous, and tissue temperatures. This model was developed by considering closely spaced, countercurrent
pairs of thermally significant vessels of radii A and V, assumed to run in z-direction (Fig. 6.2). The vessels
are surrounded by a tissue cylinder of radius Rt.

The model will be applied to the cross-sectional area of a human extremity. A schematic axial view of
a limb is shown in Fig. 6.2, where one can see the idealized three layer organization of the vasculature
of the peripheral circulation: the core contains the countercurrent central artery and vein and the
surrounding tissue. These vessels are the starting points of a countercurrent arterio-venous network in
the muscle layer. The countercurrent pairs of arteries and veins are constantly branching. The counter-
current network in the muscle tissue typically consists of eight generations of paired vessels. The muscle
layer is surrounded by the skin layer in which the blood is supplied by isolated larger riser vessels. The
thickness of each layer is illustrated in the left part of Fig. 6.2.

 

Core Layer

 

The core layer in the center of the limb contains the central countercurrent artery and vein. In the
calculations presented here, the artery and vein are not incorporated explicitly into the model. Conductive
heat transfer through the vessel walls is neglected. A no-flux condition is enforced at the bottom of the

 

FIGURE 6.1

 

Schematic representation of the blood temperature profile of the systemic circulation (modified after
Chen and Holmes, N.Y. Acad. Sc.,1980). Ta

 

0

 

 = arterial temperature; numbers 1–12 = category of vessel.
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core layer. Blood is supplied in a radial direction through two separate systems of vessels: the muscle
circulation and the cutaneous circulation.

 

Muscle Layer

 

The total thickness of the muscle layer is L

 

m

 

 = 0.048 m. The vasculature is described in detail. It is assumed
that the vessels vary in spacing (Sp), radius (A,V), number density (Nd), and flow velocity (U) only as
a function of tissue depth z. By cutting the tree in different planes parallel to the surface of the ground
one gets eight sections according to the eight vessel generations. Another not-crucial assumption is that
the geometrical parameters remain constant along one vessel generation n: Sp(n), A(n), V(n), Nd(n).
Convenient functional forms for the variation of the vascular geometry in the muscle layer in the radial
direction have been proposed by Song et al.

 

7

 

 The cross-sectional area of the surrounding tissue cylinder
is equal to the inverse of the vessel pair density: 1/Nd(n) = 

 

π

 

Rt

 

2

 

(n). The Krogh-type tissue cylinder is
affected only by the blood vessel pair which is located along its central axis. No-flux boundary conditions
are enforced around the tissue cylinder walls in x-direction and y-direction. Although the radius V of a
vein is often two or three times larger than the radius A of the corresponding artery, calculation is also
done with equal-sized vessel pairs so that the results may be compared to the results of other analytic or
simulation models; e.g., the so-called Baish-values

 

12

 

 can only be calculated under the condition A = V.
The model can compute the temperature distribution around vessels of unequal size without changes.
In order to simplify the boundary calculations, the circular cross-sections of the blood vessels and the
tissue cylinder were transformed to square boundaries of equivalent hydraulic diameter D

 

h

 

 = 4 times
cross-sectional area/perimeter. The arteriole, venule, and capillary bed heat transfer between blood and
tissue was calculated using Pennes’ traditional bioheat equation,

 

1

 

 which is generally accepted.
Two measures reduce the computational costs: no heat flux occurs across the Krogh-type cylinder

walls. Out of each branching generation one vessel pair with its sourrounding tissue cylinder is taken to
calculate the temperature profile in three dimensions. Since the cross-sectional area of a tissue cylinder
has symmetry in relation to the x-axis, a no-flux condition is assumed across the x-axis to calculate the
temperature profile on half of the cross-sectional area.

 

FIGURE 6.2

 

Schematic view of the three-layer organization of a limb including the vascular of the peripheral
circulation. Amplification: Schematic view of a countercurrent vessel pair surrounded by a tissue cylinder of Krogh-
type. A = radius of artery; V = radius of vein; Sp = spacing between vessels; Rt = radius of tissue cylinder. The z-
coordinate is measured in a radial direction perpendicular to the skin surface which is also the direction of the large
scale temperature gradient.
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Skin Layer

 

Blood is supplied to the skin by isolated larger riser vessels. The arterial blood that enters the cutaneous
plexus in the skin is assumed to have the same temperature T

 

a0

 

 as the arterial blood in the central artery.
Upon entering the small vertical riser vessels, the blood equilibrates immediately to the local tissue
temperature. This warm blood perfusion is modeled as a distributed volumetric heat source with the
traditional Pennes source term. The skin layer exchanges heat at its surface with its surroundings by
radiation, convection, conduction, and evaporation.

 

Geometrical and Vascular Parameters

 

The quantities L, Sp, A, Rt, and U/U

 

0

 

 are functions of the vessel generation number n. These data are
summarized in Table 6.1.

Variation in angular direction is not considered. Because no heat flux occurs across the Krogh-type
cylinder walls, the calculations are not only representative for a longitudinal slice but for the whole
extremity in general. The distinction between three basic regions in the limb is typical for surface tissue
in general. Only the relative dimension and the layer thickness vary over the body.

Blood flow is considered to be steady and laminar, because in microcirculation, steady or quasi-steady
flow conditions dominate. Vessel tapering and wall distensibility are not taken into account. To describe
the heat transfer between vessel and tissue in microcirculation, the use of the asymptotic values of the
Nusselt number seems to be appropriate. A local Nusselt number is incorporated into the vascular model
to account for entrance effects or local marginal layer conditions. In the calculations presented here,
however, an overall Nusselt number value of 4.0 is used to describe the heat exchange between vessel and
tissue. This value was proposed by Chato.

 

16

 

Equations

 

The general diffusion equation is solved using implicit finite difference methods with linear and nonlinear
boundary conditions. The passive system is described by the diffusion equation in the form:

(6.1)

(6.2)

where 

 

c

 

 = specific heat [J/kg/°C], 

 

ρ

 

 = density [kg/m

 

3

 

], 

 

λ

 

 = thermal conductivity [W/m/°C)], 

 

T

 

 = tissue
temperature °C, 

 

t

 

 = time [s], 

 

Q

 

 = heat source [W/m

 

3

 

], 

 

Q

 

met

 

 = metabolic heat source, 

 

Q

 

perf

 

 = perfusion
heat source, and 

 

x

 

,

 

y

 

, and 

 

z

 

 = coordinates [m].

 

TABLE 6.1

 

Geometrical and Vascular Parameters (mm or N.D.)

 

n L Sp A = V Rt U/U

 

0

 

Sp/A

 

Core 2.00 — — 12.97 — —
1 19.13 .1922 .3845 12.97 1.0 .5
2 11.66 .1056 .2112 9.17 .9975 .5
3 7.11 .0611 .1217 6.48 .8968 .5
4 4.33 .0434 .0747 4.59 .6996 .6
5 2.64 .0578 .0496 3.24 .4556 1.2
6 1.61 .1035 .0358 2.29 .2388 2.9
7 .98 .1595 .0281 1.62 .0961 5.7
8 .60 .2074 .0237 1.15 .0257 8.8
Skin 2.00 — — 1.15 — —

c T t x T x y T y z T z Qρ ∂ ∂ ∂ ∂ λ ∂ ∂ ∂ ∂ λ ∂ ∂ ∂ ∂ λ ∂ ∂⋅ = ⋅( ) + ⋅( ) + ⋅( ) +/ / / / / / /

Q Q Qperf met= +
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The heat transfer from the feeder vessels running in z-direction is calculated individually, not collec-
tively in a continuum formulation. Continuum formulations are only used for vessels running perpen-
dicular to the z-direction. Here the arteriole, venule and capillary bed heat transfer between blood and
tissue is calculated using the traditional perfusion source term first defined by Pennes. But in this term,
the global arterial blood temperature 

 

T

 

a

 

0

 

 is replaced by the local arterial blood temperature 

 

T

 

a

 

(

 

z

 

,

 

t

 

).

(6.3)

where 

 

ω

 

 = tissue perfusion [m

 

3

 

 blood/s/m

 

3

 

 tissue], 

 

c

 

b

 

 = specific heat of blood [J/kg/°C], 

 

ρ

 

b

 

 = density of
blood [kg/m

 

3

 

], and 

 

T

 

a

 

 = arterial blood temperature [°C].
Since the temperature of blood in the vessels changes with time, it is necessary to write two more

equations. The arterial and venous temperatures are computed along the length of a one-dimensional
countercurrent network in z-direction. Heat transfer at the vessel walls is regarded as laminar heat transfer
in a circular tube. The temperatures along the vessels are considered to be quasi steady-state (since the
time constant for vessels is essentially the transit time of blood through the vessel
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). The parameters and
coordinates of laminar flow in an artery are demonstrated in Fig. 6.3.

The heat flow through a vessel surface area (

 

P

 

a

 

dz

 

) is equal to the change in energy of the arterial blood
along 

 

dz

 

 in steady-state.

(6.4)

where 

 

T

 

w,a

 

 = arterial wall temperature [°C], 

 

F

 

a

 

 = cross-sectional area of the artery [m
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], and 

 

U

 

a

 

 = blood
velocity in the artery [m/s].

The value 
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a

 

 is determined by using the local Nusselt number 

 

Nu

 

a

 

(

 

z

 

) to describe this heat exchange.
The value

(6.5)

is called the Stanton number. With the relationship

(6.6)

 

FIGURE 6.3

 

Three-dimensional view of an artery with parameters and coordinates of laminar flow.

Q z t c T Tperf b b a,( ) = ⋅ ⋅ −( )ω ρ
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and assuming 

 

α

 

a

 

 = const along [0,

 

∆

 

z

 

], one obtains by integration

(6.7)

The mean arterial blood temperature 

 

T

 

m,a

 

 along 

 

∆

 

z

 

 can be calculated from

(6.8)

where 

 

∆

 

z

 

 = nodal spacing in z-direction. The three-dimensional energy balance (Eq. 6.1) is subject to a
convective boundary condition along the arterial and venous wall. At the tissue-vessel interface it is:

(6.9)

where 
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 = the coordinate axis perpendicular to the vessel direction.
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 is determined the same way as 

 

T

 

a

 

. It is necessary to account for the relative average volumetric
blood flow rate 

 

g

 

 entering the venous flow. Blood is equilibrated within the tissue it perfuses. Upon
returning to the vein, the capillary blood will be at the local mean tissue temperature 
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.

(6.10)

The mean tissue temperature 
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) is calculated using an area-weighted average of the node tempera-
tures 
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). The true venous return temperature depends on the vascular geometry of the venules
and small veins re-entering the countercurrent vein. For a basal perfusion rate, the blood in these vessels
may re-enter the vein at a temperature near 
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w,v

 

. At high perfusion rates, the venous return temperature
assumes a value somewhere between 
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 and 
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t . The difficulty is that there is at present no theory for
predicting this temperature. As the temperature difference |
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)| is comparatively small (Fig. 6.4),
it seems to be acceptable to take the 
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 limit for the solution procedure. Note that the limit 
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equal to the blood temperature 
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 in the countercurrent vein: 
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(6.11)

At the surface of the skin, the rate at which heat is transported to the surface by conduction is equal
to the rate of heat removal from the surface by radiation, conduction, convection, and evaporation.

(6.12)

The muscle tissue surrounding the vessel pair was subdivided into blocks. The corresponding three-
dimensional nodal network consists of 187,892 nodes.

To get an impression, see the grid pattern for n = 3 with a resolution of 80 

 

×  30 gridpoints (gp). The
nodal network together with the absolute and relative dimensions is presented in Fig. 6.5.

A central difference approximation is done using an irregular grid. The nodal spacings in x-direction
and y-direction are small around the vessels and in the spacing between the vessels. The nodal spacings
at the vessel walls are up to 64 times smaller than the nodal spacings at the tissue cylinder wall. The
arterial and venous walls comprise 56, 48, 32, or 24 gridpoints. At the interface in z-direction between
two tissue cylinder ends, gridpoints with the same position within the grid are associated with each other.
When the three-dimensional tissue temperature profile and the one-dimensional blood temperature
profiles are calculated for one cylinder, the neighbouring tissue cylinders provide fixed boundary values.

T z T T T ka za w a a w a( ) = + ( ) −( )⋅ ⋅( ), , exp0

T T T z T k zm a w a a a a, , /= + ( ) − ( ) ⋅( )( )∆ ∆0

− = ⋅ −( )λ∂ ∂ αT n T Ta m a/ ,

T g T g Tv v t= −( )⋅ + ⋅1 0.

T z T z T z T zw v v w v t, ,( ) − ( ) ≈ ( ) − ( )

− ⋅ = + + +λ ∂ ∂T n q q q qrad cond conv eva/
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The correspondent gridpoint temperatures and the temperature of the blood leaving the neighboring
tissue cylinder are assumed to be fixed for one time step.

Environmental Conditions

Three different cases denoted R, W, and C were studied. Emphasis was laid on those physiological features
which influence the convective heat transfer directly, like the perfusion rate or the blood velocity in the
tissue layers. Rather extreme values for these features were chosen to demonstrate the influence of these

FIGURE 6.4 Mean tissue, wall, and blood temperatures along the eight vein generations in case of exercise and cold.
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factors. In case R, the steady-state tissue and blood temperature distribution was calculated under resting
conditions. In case W, exercise was modeled by increasing the metabolic heat source by a factor of 100.0.
The metabolism remained constant at this maximum level until steady-state occurred. This is an idealized
assumption because of this high level of exercise. The blood perfusion rate in the muscle was assumed
to be elevated to a maximum by a factor of 20.0. In case C, the ambient temperature was decreased to
5.0°C. Subsequently, the skin blood flowrate decreased to the minimum level because of this cold
environment. The blood entered the countercurrent network in the muscle tissue, the core, and the skin
with a constant temperature Ta0 throughout the time. The parameters are listed in Table 6.2.

Numerical Methods

The three-dimensional diffusion equation with coefficients as functions of location and time is solved
by a finite-difference method, i.e., by a modification of the alternating direction implicit method (ADI),
first reported by Douglas and Rachford.20 The program is processed by a Control Data CYBER 205 vector
computer. To achieve increases in computational speed on vector computers, one must use special
algorithms for parallel/vector machines. Most of the computational time (TCPU) in the program is used
to solve tridiagonal systems of linear equations by the parallel direct solution procedure cyclic reduction
(CR). There are great irregularities in the underlying nodal network. The minimum spacing between
two nodes is 0.007 mm, and the maximum spacing is 2.1 mm, which is 300 times greater. The explicit
computation of the blood temperatures is loosely coupled to the computation of the three-dimensional
tissue temperature profiles. For these reasons, one has to choose a very small time step, ∆t = 0.1 s. Each
time step requires 1.5 CPU-s. The time consumption for a steady-state computation is about 30.0 CPU-h.

FIGURE 6.5 Schematic view of the irregular grid in x- and y-direction with gridpoint resolution (upper panel)
and dimensions within the irregular grid (lower panel). gp = number of gridpoints; s1, s2, and s3 = regions with
different nodal distances.
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Temperature Profiles due to Different Thermal Conditions

The vascular model calculates the tissue temperatures T(x,y,z) in three dimensions. Blood temperatures
Ta(z), and Tv(z) and heat flows qa(z), and qv(z) are calculated in the direction of the vessels. The mean
tissue temperature Tt(z) perpendicular to the vessels and the mean temperature Tsp(z) in the spacing
between the vessels is extracted from T(x,y,z).

Fig. 6.6 shows a two-dimensional tissue temperature profile around a vessel pair embedded in muscle
tissue. The profile is located in the middle of the muscle layer. Resting conditions are assumed. Because
the underlying grid is not equally spaced, the diagram is not in linear scale. The cross-sectional area
around a vessel pair has mirror symmetry in relation to the x-axis.

The tissue temperatures range from temperature Ta(z) of the arterial blood to temperature Tv(z) of
the venous blood. The temperature domains are represented by graphic patterns. It can be concluded
from the distribution of the patterns that there is a greater temperature gradient around the artery than

TABLE 6.2 Parameters Used for Three Environmental Conditions

Parameter Rest Exercise Cold Unit

Qmet,core 245.0 245.0 245.0 W/m3

Qmet,muscle 245.0 24500.0 245.0 W/m3

Qmet, skin 245.0 245.0 245.0 W/m3

ωcore 0.0005425 0.0005425 0.0005425 m3/sm3

ωmuscle 0.0005425 0.01085 0.0005425 m3/sm3

ωskin 0.0005425 0.0005425 0.00001 m3/sm3

Tu 30.0 30.0 5.0 °C
qeva 10.0 W/m2

v 0.0 m/s
Nu 4.0 N.D.
Ta0 37.5 °C
ct = cb 3800.0 J/kg°C
ρt = ρb 1050.0 kg/m3

λt = λb 0.465 W/m°C

FIGURE 6.6 Two-dimensional temperature profile in the middle of the muscle tissue perpendicular to the vessels
under resting conditions.
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around the vein, and that the mean tissue temperature Tt(z) is closer to the temperature Tv(z) of the
venous blood while the mean tissue temperature of the spacing between the vessel is exactly the arithmetic
mean of the blood temperatures: Tsp = (Ta + Tv)/2.

Characterizing temperatures for this z-location are:

Tv = 37.0 < Tt,min = 37.02 < Tt = 37.12 < Tsp = 37.16 < Tt,max = 37.3 < Ta = 37.33

Fig. 6.7 demonstrates temperature profiles of the mean tissue temperatures Tt and Tsp and the blood
temperatures Ta and Tv in the radial direction in cases R, W, and C. The arterial blood temperature Ta

increases slightly in case W and decreases in cases R and C along the length of the countercurrent network.
In light of this computational result, the assumption of a constant arterial blood temperature throughout
the muscle tissue is not correct.1 In a very cold environment, the arterial blood temperature decreases
from 37.5°C to 30°C in the outer section of the muscle tissue.

There must be pre-arteriole heat transfer between the blood and tissue which cannot be neglected,
especially in a cold environment and when the perfusion rate is small. As evident from the arterial blood
temperatures calculated in case W, the influence of pre-arteriole heat transfer decreases when the perfu-
sion rate is high. At the end of the vascular tree, blood is equilibrated with the surrounding tissue:
Tt = Ta = Tv.

For equally sized countercurrent vessels, the arithmetic mean of the blood temperatures is equal to
the mean tissue temperature of the spacing between the vessels at any given location along the branching
network: Tsp ≈ (Ta + Tv)/2. If the metabolic rate and the perfusion rate are high (W), the tissue temperature
exceeds the arithmetic mean of the blood temperature by 0.1–0.3°C as well as the blood temperatures.
The temperature of small volumes of tissue near the vessel walls is significantly lower than the mean
tissue temperature.

In a cold environment, the mean tissue temperature falls below the arithmetic mean of the arterial
and venous blood temperatures by about 0.1-0.5°C. The assumption Tt =(Ta + Tv)/2 is approximately
valid for only a very small region of the muscle tissue near the skin where the blood is nearly equilibrated
with the tissue. This, however, is one crucial assumption inherent in the early work of Weinbaum and
Jiji.4 They assumed that for equally sized countercurrent vessels, (Ta + Tv)/2 is equal to Tt at any given
location along the branching network, which, according to our detailed model, does not seem to be
correct, and which was already questioned by Wissler.8

Furthermore, results show (Fig. 6.8) that Weinbaum and Jiji’s later hypothesis d(Ta + Tv)/dz ≈ dTt/dz
is questionable, too. Fig. 6.9 shows the heat flows qa and qv W/m from the tissue into the vessels. When
the metabolic rate is low, in cases R and C, there is heat loss from the arterial blood and heat gain to the
vein. The heat flow out of the artery is slightly greater than the heat flow into the vein. When the metabolic
rate is high (W), the direction of the heat flows is reversed. In this case, the amount of heat flow into
the artery is twice as great as the heat flow out of the vein. It is interesting that, in spite of the fact that
the mean tissue temperature Tt(z) lies above both blood temperatures Tt(z) and Tv(z), there is a heat
flow out of the vein. This is a consequence of the tissue cooling by the artery in the neighborhood of the
vessel pair: Tw,v ≤ Tv ≤ Tt (see Fig. 6.4). There is a net heat flow from the vessels to the tissue, even though
the vessels are closely coupled.

The layer of fat between the muscle and the skin can be treated as a pure conduction layer. This layer
is thin compared to the muscle layer. It was shown that the blood in the vessels of the muscle tissue
adjacent to the skin is equilibrated with the surrounding tissue. It is not essential to make a distinction
between the two layers. The temperature within the vessel is not uniform. Baish et al.12 note that the
thermal resistance within the vessel cannot be neglected when the spacing between the vessels is small.
Using a Nusselt number close to 4,21 allowance is made for the thermal resistance within the vessels.
Wissler18 calculates that the Nusselt number equals 48/11 = 4.364. He notes that this is correct, even when
the temperature profile in blood is markedly skewed due to the presence of the other vessel, and that the
value does not depend on either intervessel distance or the relative diameters of the two vessels. It is
appropriate to use the cup-mixed, mean blood temperatures in computations. Zhu et al.21 demonstrated
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FIGURE 6.7 Radial temperature profiles of tissue temperatures and blood temperatures in cases of rest, exercise,
and cold.
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that the result is also true for countercurrent heat exchange in a tissue cylinder in which there is not
perfect countercurrent heat exchange. In further computations, the value of 48/11 for the Nusselt number
should be used instead of the value 4.

An even more sophisticated model would have to include time varying arterial temperature (Ta0) in
the central artery and the effects of central and local thermoregulation on blood flow and evaporation
rate in the skin layer.

FIGURE 6.8 Tissue temperature gradient dTt /dz compared with the mean blood temperature gradient
d(Ta + Tv)/2/dz under resting conditions in z-direction.

FIGURE 6.9 Heat flow from the tissue into the artery and vein in cases of cold and exercise.
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Conclusions from the Vascular Model

The three-dimensional vascular model presented here is unique in its implementation of the vascular
system explicitly in terms of the physical details. The pre-arteriole and post-venule vessels of the muscle
layer are incorporated into the model. The arterial blood temperature is not constant along the length of
the countercurrent network. The deviation from the arterial blood temperature at the beginning of the
vascular tree increases when the perfusion rate is small. The temperature equilibrium occurs with the
passage of blood through the vascular tree in the muscle tissue near the skin surface. At the end, the blood
is equilibrated with the surrounding tissue. Radial temperature profiles of the mean tissue temperature
and the mean tissue temperature of the spacing between the vessels were presented for various conditions.
Blood temperature profiles and profiles describing heat flow across the vessel walls were calculated.

Assumptions inherent in bioheat formulations of Pennes1 and Weinbaum and Jiji4 for the convective
heat transfer were questioned.

When the perfusion rate is high and when, at the same time, there is a high metabolic rate, there is a
heat flow into the artery and a minor heat flow out of the vein. This is obviously a countercurrent effect.
The vascular model presented here treats the effect of blood perfusion on a vessel-by-vessel basis and
predicts the temperature in and near individual blood vessels. However, detailed information about
vascular geometry is rarely available. Even when it is, the resulting computational task is formidable.
Such a model is useful only in modeling small volumes of tissue. Whole body models, however, should
be constructed without the physical details of the vascular system.

6.3 The Efficiency Function Approach

The Efficiency Function

Because of its complexity, a vascular model, although delivering valuable results substantially more
reliable than those of former nonvascular models, cannot be routinely used as a module for thermoreg-
ulatory whole body models, where a simple module is required for the perfusion term (Qperf) in the heat
balance differential Eq. 6.1.

The classical bioheat approach by Pennes1 for perfusion is as follows:

(6.13)

i.e., the perfusion term is the product of perfusion ω, specific heat cb of blood, density ρb of blood, and
difference of arterial blood temperature Ta0 (assumed to be constant with respect to the local coordinate)
and mean local tissue temperature Tt. The results of the vascular model confirmed the assumption that
such an approach, although very easy to use, may lead to wrong computations and conclusions, especially
at a low perfusion rate or, worse, under non-homogeneous conditions (e.g., local hyperthermia). There-
fore, we computed an efficiency function (EF)23 dependent on perfusion ω and radial coordinate r to
compensate for the deficiencies of the bioheat approach:

(6.14)

Since the function should follow the conditions:
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we chose the following form:

(6.16)

L(r) and F(r) are parameter functions, the values of which were varied in a way that the computed
temperature profiles were in good compatibility with the results of the complex vascular model (see
Fig. 6.11).

To be able to incorporate this alternative model easily into whole body models,24–28 the parameter
function was simplified by assuming constancy within the generations of the branching vascular tree.
Good agreement between the predictions of the vascular model and the predictions of the nonvascular
model using the modified perfusion term was achieved, defining the parameter functions L and F for an
inner muscle layer (subscript i , four further generations of the vascular tree) and an outer layer
(subscript o , four further generations of the vascular tree). The values determined by minimizing both
the mean difference of the two predictions and the maximal deviation were Fi = 0.0004, Li = 1.065,
Fo = 0.005, and Lo = 1.023. The inner layer typically is 9–10 times thicker than the outer layer. In our
standard computations, the thickness of the inner and outer layers were 4.5 cm and 0.5 cm, respectively.
Fig. 6.10 shows the EF graph for the inner and outer muscle layers as a function of the perfusion rate.
EF ≠ 1 denotes a correction of the Pennes term. In the perfusion interval, EFi increases from 0.58 to 1.03
and EF0 from 0.09 to 0.7. This means that the classical Pennes term has to be corrected in the inner
muscle layer at low perfusion rates, whereas in the outer layer it also has to be modified at higher perfusion
rates. At low rates, the outer layer has, more or less, the properties of a conduction layer (EF → 0). Outside
the muscle tissue, a correction of the Pennes term is not necessary (EF = 1).

FIGURE 6.10 Efficiency function for inner muscle layer EFi (four generations of the vascular tree) and for outer
muscle layer EFo (four further generations) as a function of the perfusion rate. EF = 1 means no correction of the
Pennes bioheat term.

EF r L r F r rω ω, / /( ) = ( ) + ( ) ( )[ ]1
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After determination of EF, the perfusion term Qperf in Eq. 6.14 may be determined and used for the
heat balance, Eq. 6.1. Additionally, the heat balance for the blood has to be modified slightly. To calculate
mean venous temperature (Tv0) of the blood returning from the muscle tissue to the central vein, a local
effective temperature (Tef(r) is defined as:

(6.17)

Tv0 is calculated using a perfusion-weighted average of this effective tissue temperature Tef (r):

(6.18)

Although this efficiency function approach is formally very similar to the bioheat approach, it has
essentially different properties as it comprises implicitly pre-arteriole and post-venule heat transfer, as
well as countercurrent heat transfer in neighboring artery–vein pairs. The formal simplicity of the
essential Eqs. 6.13 and 6.14, however, has not changed.

Validation of the Efficiency Function Concept

First we compared results for a human extremity obtained by the simplifed nonvascular models to those
computed by the exact vascular model. Again, three situations are examined: (1) resting comfortable
conditions: ambient temperature (30°C), basal metabolic rate (245 W/m3), and perfusion
(5.4 · 10–4 m3/s–1m–3); (2) cold stress (5°C) with maximal vasoconstriction in the skin (10–5 m3 · s–1 · m–3);
to create difficult non-homogeneous testing conditions, shivering is not initiated; and (3) maximal
exercise at 30°C is simulated by increasing metabolic heat production in the muscles involved by a factor
of 100, inducing a maximal perfusion of ≈ 10–2 m3 · s–1m–3. Again, to create extreme testing conditions,
sweat production is not initiated. The other physical and physiological parameters used are the same as
listed in the above report on the vascular model.

FIGURE 6.11 Predicted temperature profiles for comfort conditions, cold, and maximal exercise. Temperature of
central artery of core assumed to be 37.5°. Eight muscle layers (of decreasing thickness) according to vessel generations
of countercurrent arteriovenous tree. Bars represent the exact vascular model. Non-vascular approaches are denoted
by: bio = Pennes’ bio heat; ef = efficiency function; sig = Baish/Wissler/Charny-Levin; and wj = Weinbaum-Jiji.

T r Ef r T r EF r Tef a( ) = ( )⋅ ( ) + − ( )( )⋅ω ω, ,1 0

T r T r dr r drv ef
r r
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Because we are not dealing with whole body models, the temperature of the central artery in the
extremity is chosen arbitrarily (37.5°C in these comparative computations). The comparison is presented
in Fig. 6.11. As the x-axis indicates, there is a core layer, eight generations of the vascular tree in the
muscle (1–8), and a skin layer; because these 10 layers are of different thickness, there is no linear
horizontal scale. If we compare the profiles calculated with the nonvascular models to those gained by
the vascular model, it is evident that the bioheat approach delivers satisfactory results in heat stress
conditions (which, if the heat is not induced locally, yield a rather homogeneous temperature distribution
in the tissue). However, in indifferent and especially cold conditions (where temperatures diverge very
much), the bioheat approach delivers temperatures deviating by about 2.5°C from those obtained by the
vascular model, an inaccuracy that can be compensated to a large extent by using the EF, the maximal
deviations of which are about 0.3°C. As heat transfer from the vessels is neglected in the model of
Weinbaum and Jiji (denoted by wj in Fig. 6.11), the tissue profile exceeds or falls below the expected
profile. The assumptions made in the wj-model are valid only in a small region of the muscle tissue near
skin where the blood is nearly equilibrated with the tissue. The Baish-Wissler/Charny-Levin approach
(denoted by sig in Fig. 6.11), mentioned above delivers results comparable to the EF approach, the
advantage of the latter being the easy implementation in a whole body model.

In the next step, we tried to validate the computations by available experimental data. This, however,
involved new difficulties. Exact temperature profiles within the human body are scarcely available, and
if they are, there is a span of experimental values due to intraindividual and interindividual differences.
There is not a complete set of necessary parameter values, and there are problems with measuring
techniques often implying errors greater than those inherent in recent model computations. Even with
modern techniques, exact profiles can hardly be obtained without extensive mathematical corrections.29,30

The temperature of the tissue surrounding the central artery and vein has not been measured. Moreover,
this area, represented in the model as the central core layer, in reality is assymetrically situated within
the extremity. Despite of all these problems we used the experimental data by Pennes.1 Radial temperature
profiles in the forearm of nine subjects were measured showing a considerable span of ≈ 2°C. Ambient
temperature was, on average, 26.6°C. Ta0 was estimated by Pennes to be 36.25°C. Local metabolic rate,
perfusion, and evaporative rate were not recorded. In Fig. 6.12 the averaged experimental profile is
compared to the nonvascular model computations (bio, ef, sig, wj) which are, with the exception of the
wj-model, within the span and accuracy of the experimentally determined values. As expected, the bioheat
approach delivers high temperature values in the muscle tissue near the skin as the heat source term
operates in this region with an unrealistically high blood temperature, an error which is avoided in the
EF approach.

Conclusions about the Efficiency Function Approach

The main shortcoming of the classical Pennes bioheat approach, which was used for more than 40 years
in various applications, is the assumption that convective heat transfer takes place exclusively in the
capillaries, thereby neglecting the most essential heat transfer in the arterio-venous networks of medium
diameter in muscle tissue. Therefore, the application of the bioheat approach has been seriously ques-
tioned, although Pennes himself demonstrated a reasonable compatibility of computed and measured
temperature profiles in the human forearm under resting conditions (Fig. 6.12). The vascular model
enabled the simulation of vascular architecture with a degree of precision previously unknown, although
still idealized, so that its results may be taken as a criterion for the applicability of simple nonvascular
models using substitutional processes for the description of the real heat transfer. Their fundamental
significance as simple and practicable means for the estimation of heat flow and temperature distributions
is not questioned in light of the fact that vascular models are of a complexity that does not allow general
application and implementation. We conclude that the classical bioheat approach is, despite its short-
comings, suited to the estimation of temperature distributions of sufficient homogeneity, meaning that
its results are good for overall heat stress and may be satisfactory for comfort conditions. Unreliable
results must be expected when the body is subjected to cold stress or when local hyperthermia is present,



© 2001 by CRC Press LLC

as, for example, applied in clinical radio-frequency or microwave treatments (see below). We offer an
improvement of the bioheat approach using the EF, which implicitly takes into account heat transfer in
arterio-venous countercurrent networks and is easily applicable, because, in essence, it is a factor with
which the bioheat term has to be multiplied. However, the EF has to be used in dependence of the
perfusion rate and depth of the tissue. For muscle tissue of the skeleton, the function presented in Fig. 6.10
should be generally applicable, whereas for skin, the bioheat approach does not seem to need substantial
correction. Preferably, the outer skin layer should be treated as a pure conduction layer. If significant
heat transfer to or from large central vessels is expected, it has to be determined by separate heat balance
equations. Estimation of heat transfer in special organs with a vascular architecture significantly different
from the arterio-venous tree presented in Fig. 6.2 may need a different EF.

6.4 The Vascular Model and the Efficiency Function Approach 
in Hyperthermia Treatment

The central aim of loco-regional hyperthermia in conjunction with radio- or chemotherapy is to heat
tumor tissue in such a way that the temperature throughout the tumor is above therapeutic level
(42–43°C) and to limit increase in the neighboring tissue to avoid any destruction or pain. Tumor

FIGURE 6.12 Experimental validation using Pennes’ experimental data (mean values of nine subjects at 26.6°C
ambient temperature and an arterial influx temperature of 36.25°C. Radial temperature profile of human forearm
compared to the predicted profiles of the nonvascular models. z = coordinate perpendicular to the skin: model
specification: bioheat (bio); Weinbaum/Jiji (wj); Charny/Levin (sig); efficiency factor model (ef); and measured
profile (pen).



© 2001 by CRC Press LLC

regrowth is often observed, possibly because it takes place particularly in the vicinity of vessels30 where
insufficient heating can be predicted by our computations.

For an estimation of the temperature profiles induced by an external radiofrequency heat source, we
used the vascular model and compared the results obtained with those computed by use of non-vascular
models.32 A human extremity under resting conditions (air temperature 29°C, relative humidity 40%, air
velocity 0.2 m/s) was submitted to a heat source homogeneously distributing 77,275 W/m3, a value
proposed by Charny and Levin.32 This means that about 73.6 W/kg were applied. The hyperthermia
simulation lasted 15 minutes. We used a simple control algorithm of blood flow (suggested by Charny
and Levin32), assuming an initial perfusion level of 5.4 × 10–4 m3s–1m3, which is augmented by a factor of
10 if tissue temperature exceeds a threshold (42.5 and 43°C were tested). The local heat input temperatures
for separate control of core, muscle, and skin were mean temperatures of the core section, the muscles
of a Krogh-cylinder, and the corresponding skin section. The inflow temperature of the central artery in
the computation was assumed to be constant at 37.5°C. Within the arterio-venous countercurrent branch-
ing tree, the diameters of the arterial vessels are supposed to be one-half of those of the venous vessels.
Between skin and environment there is a heat exchange by conduction, convection, radiation, and evap-
oration. The same complete boundary conditions as in whole body models26–28 were used.

Temperature Profiles

For a first survey, Fig. 6.13 shows an example of the temperature distribution at the end of the hyper-
thermia simulation computed by the vascular model in a muscle layer perpendicular to the direction of
the vessels and containing the vessels of the second generation of the vascular tree. Note again that a
highly irregular grid is used in the computation: the outer section comprises the majority of the area
and therefore predominantly determines mean tissue temperature. The arterial cup-mixing temperature
in this section tends to be about 38°C, the venous temperature is about 42°C, and the tissue temperature
varies from about 38°C to about 43°C. From Fig. 6.13 it is obvious that the gradient near the artery is
much greater than near the vein. The dynamics of temperature and heat flow in the same muscle layer
(second vessel generation) are presented in Fig. 6.14. Mean tissue temperature in that layer starts at 37.6°C
and stabilizes, after a strong initial increase, at about 42.4°C. The increase is stopped by the onset of the
postulated blood flow regulation (see above). Similar dynamics are observed regarding the temperature
of the tissue situated between the vessels (spacing), stabilizing at 39.9°C, and the vessel temperatures,
both of which are lower than the mean tissue temperature of the whole muscle section. The arterial
temperature is increased several times by about 0.8°C, an effect which is moderately reflected in the
venous temperature.

Under resting conditions, we computed an arterial blood velocity in this layer of 0.0296 m/s. Due to
the assumed augmented blood flow, this value increases to 0.296 m/s. Therefore, the arterial blood is
hardly warmed up on its way through the muscle and its temperature is considerably lower than the
mean tissue temperature. The tissue in the vicinity of the artery and the countercurrent blood of the
vein are cooled. Consequently, even the venous blood temperature is lower than the mean tissue tem-
perature, although it is warmed up in the capillaries to local tissue temperature. Because of the strong
external heat source, the cooling effect of the artery is confined to tissue very near to the vessel. The
vessel wall temperature is influenced by both the blood temperature and the temperatures of the sur-
rounding tissue. The controller-induced dynamics are inversely reflected in the heat flows and corre-
sponding blood temperatures.

Fig. 6.15 demonstrates the tissue temperature profiles of non-vascular approaches in comparison with
results obtained by the vascular model. The latter were computed for two cases: (1) diameters of the
veins equal to those of the arteries; and (2) venous diameters doubled as compared to the arterial ones.
From Fig. 6.15 it is obvious that the variation of the proportion of diameters does not influence the
results to a significant extent. The results of the wj-approach are not included in this figure, as they are
far beyond the range of the other results, if we apply realistic boundary conditions between skin and



© 2001 by CRC Press LLC

environment. The profiles would become comparable to the other computation only if arterial influx
temperature was changed.

Note that layers 5–8 (Fig. 6.15) constitute only about 10% of the whole muscle thickness. Taking into
account that a heat exchange between central vessels and the core would decrease core temperature, the
temperature drop from the core to the first muscle section will be smaller in the vascular and EF
computations. The distinct maximum in all computations, except in the bioheat approach, is due to the
cooling processes within the vascular tree, which decrease with increasing approach to the superficial
layers, whereas the cooling power from the environment increases. The bioheat approach exhibits a profile
around the chosen threshold temperature (42.5°C). As it does not take into account any local convective
processes, the typical course of the profile obtained by the vascular model cannot be obtained. We
conclude that the bioheat approach should be considered unsuitable for simulating such local hyperther-
mia problems. Both the Baish-Wissler/Charny-Levin and the efficiency function approach reflect the

FIGURE 6.13 Vascular model: Hyperthermia simulation, time 15 min. x/y temperature profile of the muscle layer
containing the second vessel generation (i.e., the middle of the muscle) of the extremity.

FIGURE 6.14 Vascular model: Hyperthermia simulation. Dynamics of temperatures and heat flows into vessels of
the muscle layer of Fig. 6.13.
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local temperature pattern. Minimal deviations from the results of the complex vascular model are
obtained by the efficiency factor model, although the implementation of this (see above) is very easy,
like that of the bioheat approach.

Fig. 6.16 shows arterial and venous temperatures, mean tissue temperature, and the mean temperature
in the space between the vessels as a function of depth of tissue at the end of the hyperthermia simulation
using the complex vascular model. Blood temperatures are distinctly lower than mean tissue tempera-
tures. The temperature between the vessels is, in spite of the external heat source, determined by the
blood temperatures. It is approximately equal to the arithmetic mean of both blood temperatures. This
temperature is therefore rather low over a wide area, meaning that there may be insufficient heating at
least between the vessels. Looking again at Fig. 6.14, we recognize these cooler areas in the vicinity of the
artery. Temperatures lower than 40.7°C comprise layers around the artery of about double vessel radius.
However, taking into account the irregular grid of Fig. 6.14, it is computed that more than 90% of the
area has a temperature greater than 42.2°C. Cooler areas, although comprising a very small portion of
the tissue, are especially obvious around the vessels of the first generation and may be essential for
hyperthermia treatment. In the area of the first generation, we computed that 9.6% of the tissue is cooler
than 42.0°C. The total area with a temperature that is less than or equal to 42°C is about 6%.

FIGURE 6.15 Radial profiles of spatial mean tissue temperature in an extremity after 15 min. of hyperthermia.
Comparison of results from the vascular model (bars) with two different proportions of vessel diameters and from
various non-vascular models. Number of muscle layer 1–8 according to vessel generation. Width of muscle layers
diminishes dramatically (see non-linear cm-scale and scale in Fig. 6.2).
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Conclusions from Hyperthermia Simulations

The strength of the vascular model is that, for the first time, while using the parameter set well established
by former investigations,6,7 heat transfer is taken into account on a vessel-by-vessel basis in a three-
dimensional counter current arterio-venous tree, without using a substitutional process. The weak point
is that, because of its complexity, it is not generally applicable. That is why we looked, like others before,
for an adequate substitutional process that is based on the results of the complex vascular model. By this
means, we claim that the Pennes bioheat approach is substantially improved by the EF concept. This was
also attempted by the wj-approach which, since its introduction, has undergone many modifications and
supplements. We think that its shortcomings in our computations are primarily due to the fact that it
does not cope with realistic boundary conditions by conduction, convection, radiation, and evaporation
at the skin. Even the modified version from 199234 is characterized by the authors as, (Weinbaum et al.,)
“of somewhat limited usefulness in whole limb heat transfer.” Again a hybrid model, in which either the
bioheat or Weinbaum/Jiji terms are applied, is proposed. We argue that in light of the improvement of
the bioheat term by the efficiency function, this is an avoidable complexity, particularly when one realizes
that the proposed wj-term refers to only 10% of the muscle (layers 5–8). The vascular model may be
supplemented in two respects that will, however, not alter the principal results and conclusions. The
small amount of heat transfer of central vessels to the core section could be modeled explicitly. Also, the
fat layer is not treated explicitly because it can be treated as a pure conduction layer and the blood in

FIGURE 6.16 Various radial temperature profiles after 15 min. of hyperthermia computed by the vascular model.
(Taking into account that in contrast to Fig. 6.15 there is a linear abscissa now, the temperature profile of the mean
tissue temperature is the same in the two figures).
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the vessels of muscle tissue adjacent to the skin is equilibrated with the surrounding tissue, so it is not
essential to make a distinction between this muscle and the fat layer.

We realize that blood flow regulation is far more complicated than in these computing examples. There
are both central and local mechanisms that vary throughout the body. Sekins et al.35 documented the
effect of the threshold temperature. According to their results, Charny and Levin36 suggested the following
control mechanism: if tissue temperature reaches a critical level, blood flow increases linearly. If it falls
again below this level, blood flow retains the present status. Such dynamics are called type II-properties
by Roemer et al.37 Besides the effect of different blood flow in normal and tumor tissue, we have to take
into account that, in practical applications, an attempt is made to focus the external heat on the tumor
by using special applicators. It was demonstrated that the bioheat model is not suited to the simulation
of local hyperthermia. The assumption of constant arterial temperature throughout the tissue is wrong
and causes the flat temperature profiles.

Charny and Levin35 determined the conditions of a hyperthermia treatment that will lead to a systemic
heating, i.e., a warming up of the central blood and, thus, of greater parts of the body. To take into
account such effects, whole-body thermal models have to be coupled with vascular models. Consequently,
central thermoregulatory control comes into play, and the assumption of a constant central arterial
temperature has to be abandoned. This was achieved by Charny and Levin,38 who presented a three-
dimensional thermal and electromagnetic model of whole-limb heating. A three-dimensional finite-
element model of a tumor-bearing human lower leg was constructed and mathematically attached to a
whole body thermal model. For heat transfer between blood and tissue, the bioheat approach was used.
Tests should be made as to whether such a comprehensive and useful model could still profit from the
improvement of the bioheat approach, presented here by use of the vascular model and the efficiency
function model.
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7.1 Introduction

 

Blood flow patterns have been a topic of interest to engineers and clinicians from the early days of both
disciplines. One of the most well-known equations describing fluid flow through a pipe is named for
Jean Poiseuille, a physician who derived his equation in an investigation of blood flow in 1843. Beyond
the interest in blood flow as a naturally occurring physical phenomenon, much research has been devoted
to investigating the possibility that certain blood flow patterns are involved in the formation of diseases.
From a clinical point of view, blood flow patterns have been more of a subject of curiosity rather than
scientific investigation, although clinicians are increasingly applying knowledge of fluid dynamics to
improve diagnostic capabilities.
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The common ground that has provoked extensive interaction between engineers and medical scientists
in the investigation of blood flow patterns is the study of disease. Atherosclerosis is the most common
disease affecting the cardiovascular system and is the leading cause of death and disability in western
countries. Atherosclerosis is manifested in the form of narrowing blood vessels called stenoses. If the
narrowing becomes severe enough, the supply of blood to the distal tissues may be compromised. The
amount of blood that can flow through an artery depends on the pressure gradient, the viscosity of blood,
and the diameter. The pressure gradient from the entrance of the aorta to the vena cava is approximately
120 mmHg in systole for healthy individuals. The dynamic viscosity of blood in large and medium size
arteries (> 1 mm in diameter) is a constant four centipoise. Changes in diameter are, therefore, the most
common causes for reductions in blood supply to a particular region. Basic work in fluid dynamics
demonstrates that flow is proportional to diameter to the fourth power. This strongly non-linear rela-
tionship means that once a stenosis appears in an artery, further reductions in diameter, even small ones,
can create large reductions in flow rate.

Various factors such as high blood pressure, high blood cholesterol levels, cigarette smoking, and a
sedentary lifestyle have been identified to help indicate if an individual is at risk of developing athero-
sclerosis. However, none of these factors can explain why the disease develops only in certain arteries,
because their effects are felt throughout the cardiovascular system. The arteries most commonly affected
are the carotid, coronary, and femoral arteries, and the abdominal aorta. It is quite rare for other arteries
to be affected to a clinically significant degree. The highly localized nature of atherosclerosis has led to
the hypothesis that mechanical factors such as blood flow patterns may be involved in its formation.
Much research has been devoted to more specifically identify the exact mechanical conditions that lead
to atherosclerosis formation. Flow analysis techniques have advanced to the point that the flow in any
artery can be accurately modeled with either experimental or numerical techniques. At the same time,
vascular biologists and clinical investigators have incorporated the use and understanding of mechanical
stimuli such as fluid flow in biological and 

 

in vivo

 

 experiments aimed at better understanding athero-
sclerosis formation.

 

7.2 Basics of Arterial Fluid Mechanics

 

The cardiovascular system presents quite a challenging problem to engineers. Arteries are compliant
(flexible) pipes that are continually curving and branching. The heart provides a complex, time-varying
output of blood and pulse pressure waves that propagate down the system through the expansion of
arteries. Compared to a typical industrial piping system that includes a steady flow producing pump and
rigid pipes that remain straight for fairly long lengths, the arterial system is much more complex. However,
the tools used to analyze flow through both systems are very much the same. One of the most basic
parameters in determining flow patterns in any flow situation is the Reynolds number:

(7.1)

where V is the average flow velocity, D is a length scale (such as pipe diameter), and 

 

ν

 

 is the kinematic
viscosity. The Reynolds number, representing the ratio of inertial to viscous effects, was named after
Osborne Reynolds, who performed some of the most important fundamental work on fluid mechanics
in the late 1800s. In pipe flow, a Reynolds number of less than approximately 2500 indicates that the
flow should be laminar. For laminar flow, the relationship between flow rate and pressure gradient
through a long straight pipe (Poiseuille flow) is

(7.2)
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where Q is the volume flow rate, 

 

ρ

 

 is the fluid density, and dp is the pressure difference along an axial
length dz. The velocity profile (fluid velocity plotted vs. radial position) for the Poiseuille flow is parabolic
in shape, with the maximum value of velocity occurring at the center of the tube.

At Reynolds numbers of greater than 2500, the flow should begin to become turbulent. Under normal
physiological conditions, the largest Reynolds number that would be encountered in the cardiovascular
system would be approximately 2100 (for exercise conditions in the ascending aorta). Thus, blood flow
in most healthy situations should be laminar, or at least not turbulent. In fact, the flow in most arteries
would be most properly classified somewhere in between laminar and turbulent. The presence of cur-
vature and branches can provoke the development of secondary flow patterns such as large-scale vortices.
These vortices typically appear as regular, periodic phenomena and thus do not exhibit the chaotic
behavior associated with turbulence.

Curved tube flows have long been associated with vortex formation. Dean was one of the first to
rigorously study flow in curved tubes.

 

1,2

 

 He used a perturbation technique to predict the flow field in
slightly curved tubes and was able to obtain an analytical first order solution. More recent studies have
employed numerical methods that permit the analysis of more strongly curved tubes, as are found in
the cardiovascular system.

 

3

 

 In a curved tube, the fluid swirls from the inner wall of curvature to the outer
wall through the middle of the tube, and from the outer wall to the inner wall along the side walls of
the tube (Fig. 7.1). Another consequence of curvature is that the velocity profile in the tube is skewed
toward the outer wall of curvature (when the flow is fully developed), creating a lower wall shear rate at
the inner wall than at the outer wall. Branches may also provoke vortex formation, but the degree to
which this occurs depends strongly on the amount of blood that exits the branch. This has been
demonstrated most effectively using laboratory models of branching tubes. When the percentage of parent
vessel blood flow that exits the branch is greater than 10%, a vortex forms in the parent vessel near the
site of the branch.

 

4

 

 Similar flow patterns occur in bifurcations, where a parent vessel splits into two
basically equal daughter branches (Fig. 7.1).

 

FIGURE 7.1

 

Illustration of the effects of geometric features on blood flow patterns. For straight tubes (A), the
velocity profile is parabolic (in the case of steady flow), with its maximum value located at the center of the tube
(Poiseuille flow). There are no secondary (cross-stream) velocities present. In a branching region (B), the velocity
profile is skewed toward the flow divider wall. There are secondary velocities present that swirl the fluid from the
outer wall to the inner wall along the side walls. In curved sections (C), the velocity profile is skewed toward the
outer wall of curvature, and similar secondary flows are present. The shaded areas would be subjected to relatively
low shear stresses. For pulsatile flow, these areas may be subjected to oscillating wall shear stress. Such areas of the
vasculature are sites of atherosclerosis development.
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The pulsatile nature of the cardiac output is also an important factor in determining blood flow
patterns. Perhaps because this flow situation rarely occurs in industrial piping systems, not much was
known about pulsatile flow phenomena until the 1950s. The most important parameter in describing
pulsatile flows is the Womersley parameter:

(7.3)

where 

 

ω

 

 is the radian frequency of the heartbeat. The Womersley parameter represents the ratio of
unsteady to viscous effects. This dimensionless parameter arose during an analytical study of oscillatory
flow in a straight pipe.

 

5

 

 In this case, the equations governing fluid flow yield an exact solution. At
Womersley parameters of less than approximately 4, the flow is dominated by viscous effects. The velocity
profiles tend to be nearly parabolic in shape. At higher Womersley parameter values, unsteady effects
become more important, and the velocity profiles may take on complex m-shapes, with a core of nearly
inviscid (plug) flow in the middle. The unsteadiness also affects the appearance of turbulence. Experi-
mental studies employing hot film anemometry

 

6

 

 have demonstrated that higher frequency pulsatile flows
are more protected from turbulence because the chaotic velocity fluctuations associated with turbulent
flow require a certain amount of time to develop fully. It has also been observed that turbulence is more
likely to develop during flow deceleration.

 

7

 

 Analysis of pulsatile flow in curved tubes has demonstrated
that vortex formations similar to those observed for steady flow are present, but the velocity profile may
be skewed toward the inner wall of curvature in a purely oscillatory flow.

 

8

 

 The flow instabilities created
by branches are also present with pulsatile flow. However, like turbulent fluctuations, they tend to be less
prevalent when the flow is accelerating. The intensity of the vortex formation at a branch increases with
increasing values of Re and 

 

α

 

.

 

9

 

Blood flow patterns are also affected by the fact that the viscosity of blood is not constant under all
conditions. Blood is a non-Newtonian fluid that exhibits shear-thinning behavior. That is, blood becomes
more viscous at lower shear rates. This phenomenon occurs due to the formation of chains of red blood
cells called rouleaux, and is related to the initiation of the clotting process. Under the flow conditions
present in most large and medium-sized arteries, this behavior primarily affects the flow near the middle
of the artery where the shear rate is lowest. Thus, the wall shear rates and wall shear stresses are not
greatly affected.

 

10

 

 In most arterial flow studies where the wall shear stress is the primary interest, the
non-Newtonian behavior of blood is usually neglected.

Another factor that has a relatively minor effect on overall blood flow patterns is the compliance of
the vessel wall. While a reduction in the shear rate amplitude in compliant tubes as opposed to rigid
tubes has been noted, the spatial distribution of the wall shear rate in fully three-dimensional arterial
models does not change greatly with the addition of wall compliance.

 

11

 

 As with the non-Newtonian
behavior of blood, the importance of vessel wall compliance depends on the type of information desired.
If the goal is to determine the overall distribution of wall shear stress in an artery, then the vessel wall
compliance may be neglected. However, it is possible with current computer technology to construct a
fully three-dimensional model of blood flow in an artery that includes non-Newtonian fluid behavior as
well as vessel wall compliance.
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 Similar capabilities exist for constructing laboratory flow models.

 

12

 

One aspect of vessel wall compliance that is important in the overall functioning of the cardiovascular
system is the compliance of arteries. The compliance of the aorta is responsible for a phenomenon known
as the Windkessel effect. The on-or-off nature of the flow from the heart is smoothed by the expansion
of the aorta during systole. Thus, the aorta acts as a capacitor that helps propel blood distally during
diastole. Another important consequence of arterial compliance is the propagation of pressure pulse
waves along the arterial tree. The contraction of the heart and subsequent ejection of blood into the
aorta creates a pressure wave that propagates along the aorta. This propagation does not occur as a sound
wave traveling in the blood itself, but rather as a progressive expansion of the arterial wall. However,
there are many similarities with the propagation of sound. Thus, the tools for analyzing pressure waves

α ω= D

v2
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in arteries are often borrowed from acoustics. One factor that is common to both fields is the phenomenon
of wave reflections at sites of changing impedance. In the arterial system, the most significant pressure
wave reflection sites are branches. The speed of propagation of pressure waves in arteries may be
approximated with the Moens-Korteweg equation:

(7.4)

where E is the elastic modulus of the wall material, h is the wall thickness, and 

 

ρ

 

 is the density of blood.
The propagation speed in the aorta would be expected to be approximately 10 m/s (as compared to the
maximum blood flow velocity of approximately 1 m/s). Thus, wave propagation phenomena in arteries
are often addressed with the assumption that the wavelengths are much larger than the vessel diameters.
This simplifying assumption has led to much progress in understanding wave propagation in arteries.
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7.3 Atherosclerosis and the Involvement of Fluid Mechanics

 

Investigations of Arterial Flow Patterns

 

Interest in the role of blood flow in the development of arterial diseases predates much of the work in
basic fluid mechanics. One of the early pioneers to study the cellular aspects of disease formation was
Ludwig Virchow, whose first publication concerning arterial disease appeared in 1847.
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 Virchow readily
subscribed to the theory that an inflammation of the inner arterial surface was the starting point for
atherosclerosis. He proposed that mechanical or chemical factors led to inflammatory reactions in the
arterial wall. Virchow described the histological structure of atherosclerotic plaques with great detail and
clarity and correctly recognized that they formed beneath the intima. His numerous histological obser-
vations led him to contend that atherosclerosis did not develop due to clotting. Furthermore, he showed
considerable insight by distinguishing between atherosclerotic plaques and fatty streaks, which he stated
were superficial collections of fat and had very little to do with even initiating atherosclerosis.

Much of the work that followed Virchow’s mechanical irritant hypothesis was directed more toward
the solid mechanics of the artery wall. Beginning with the work of Roy,

 

15

 

 several other investigators

 

16–18

 

studied the mechanics of the artery wall in an attempt to explain the localization of atherosclerosis. The
shift toward the study of blood flow patterns and their possible involvement in atherogenesis began in
the 1950s with the work of Gofman and Texon. (In fact, Virchow’s original hypothesis did not exclude
blood flow patterns, which certainly qualify as mechanical. It just appears that subsequent researchers
interpreted it as solid mechanical.) Gofman appears to have been the first to mention fluid mechanics
specifically as a localizing factor,

 

19

 

 but he did not pursue his hypothesis with any scientific study. Texon

 

20

 

followed shortly thereafter with a more specific hypothesis of how hemodynamic factors can account for
the distribution of atherosclerosis. Noting the predilection of the disease to the inner walls of curved
arteries, Texon applied the knowledge gained from Dean’s studies of flow in curved tubes

 

1,2

 

 to propose
the first specific relationship between flow and atherogenesis. Texon proposed that because the pressure
at the inner wall of a curved tube is lower than that at the outer wall, the endothelium at the inner wall
may be denuded by a suction effect. Of course, the static arterial pressure is much greater than the local
reduction in pressure due to curvature, so negative pressures would never be reached in normal physi-
ological flow situations. Nevertheless, this theory opened the door to more detailed studies of arterial
flow patterns and their involvement in atherogenesis.

Fox and Hugh

 

21

 

 were the first to perform blood flow simulations aimed at a better understanding of
atherogenesis. Noting that atherosclerosis generally forms in the inner walls of curved vessels and along
the lateral, or outer walls of branched vessels, they proposed that boundary layer separation occurs at
these locations and leads to the deposition of blood-borne platelets and cholesterol. In this context,
boundary layer separation refers to the phenomenon of retrograde velocities that may occur near the
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outer walls of branching arteries. These are typically zones of relatively low flow velocity, i.e., zones of
low wall shear stress (Fig. 7.1). Fox and Hugh constructed two-dimensional channel flow models of
arteries and scattered aluminum powder over the surface to visualize the flow patterns. Their experiments
clearly demonstrated flow separation along the inner walls of curved channels and along the lateral walls
of branching channels, but they employed only steady flow conditions. In pulsatile flow, the definition
of boundary layer separation is less clear than for steady flow. Pulsatile flow in straight tubes can effectively
separate because flow deceleration often leads to negative near-wall velocities, meaning that the entire
tube circumference would be subjected to boundary layer separation for at least some portion of the
cardiac cycle.

The potentially damaging effects of flow on the cells that line the insides of arteries were first dem-
onstrated by Fry.
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 His experiments consisted of inserting a cylinder with an eccentric passageway into
the aortas of dogs so that the section of arterial wall still exposed to flow would be subjected to high
shear stresses. He demonstrated that shear stresses in excess of 380 dynes/cm

 

2

 

 damage the cells that line
the inner surfaces of arteries (endothelial cells). He proposed that the endothelium in sections of the
arterial system that are subjected to such high shear stresses would be damaged and develop atheroscle-
rosis. However, shear stresses in the normal, non-diseased cardiovascular system would never be expected
to be so high, even under exercise conditions. Nevertheless, the debate over the merits of the high shear
stress and low shear stress (i.e., boundary layer separation) theories lasted well into the 1980s.

Subsequent flow studies in more realistic arterial models tended to support the low wall shear stress
theory. Caro et al.
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 performed steady flow simulations in a cast of a human aorta and noted that locations
of early atheroma coincided with locations of relatively low near-wall flow velocity. They proposed that
the mechanism for atherosclerosis development may be flow-mediated mass transfer of blood-borne
substances into and out of the artery wall. In one of the first detailed, quantitative studies of blood flow,
Friedman et al.
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 modeled blood flow in the aortic bifurcation and found that both high and low wall
shear stresses occurred where lesions develop. The highest wall shear stresses that were predicted were
approximately 30 dynes/cm

 

2

 

, an order of magnitude below Fry’s damage threshold. It was therefore
concluded that low wall shear stresses were likely to be more consistent with plaque development. The
flow model in this case was a two-dimensional numerical model. While the use of a two-dimensional
model limited the applicability of the results, the use of a numerical technique in the mid–1970s predated
the appearance of user-friendly computational fluid dynamics (CFD) software packages. Later work by
the same group
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 made use of a transparent cast of an actual human aorta obtained at autopsy. This cast
was mounted in a pulsatile flow system where three-dimensional laser Doppler anemometer (LDA)
measurements were performed. Correlations with intimal thickening measurements from the same aorta
demonstrated that mean and pulse (maximum–minimum) wall shear rates correlated inversely with
intimal thickening (e.g., a low mean wall shear rate coincided with high intimal thickening). The aorta
model used in this study did not include any of the major branches that appear just distal to the
diaphragm, nor the curvature of the aorta as it follows the spine in the lower back. Nevertheless, the use
of an LDA to perform accurate measurements of arterial flow patterns represents a significant advance-
ment in understanding their role in atherogenesis.

Numerous arterial model flow studies, performed in the 1980s, attempted to elucidate further the
relationship between shear stress and intimal thickening. Friedman’s group continued to employ com-
putational methods and the LDA to explore the effects of individual variations in geometry on the flow
patterns that were previously associated with intimal thickening.
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 They concluded that naturally
occurring individual variations in factors such as branching angle, branch asymmetry, and flow divider
curvature are large enough to create or eliminate the low wall shear stresses associated with atherogenesis.
This may help explain why some people are more susceptible to plaque development than others. Their
studies were mainly concerned with the aortic bifurcation, but the hemodynamic phenomena observed
in their studies should be applicable to some extent to all branching vessels.

In a more extensive study of aortic bifurcation flow, Friedman et al.
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 performed LDA measurements
in casts of ten different human aortas and correlated the results with intimal thickness data from the
same aortas. They noted that early intimal thickening was greatest in locations of relatively high shear
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stress, but the thickness in these areas appeared to plateau over time. The intimal thickness in areas of
low shear stress, initially lower than that found in high shear stress areas, gradually increased to higher
values. Thus, in the long-term, low wall shear stress appeared to be more consistent with clinically
significant disease formation.

While Friedman’s work concentrated on individual vessel geometries, there was other ongoing
research at that time that analyzed the flow patterns in vessel geometries obtained by averaging geometric
data from a larger population. Steady flow visualization
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 and LDA measurements
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 were performed in
a carotid artery model constructed with the average geometry of 124 angiograms. Those studies iden-
tified the lateral wall of the carotid sinus as a location of low wall shear stress. The stagnation of flow
in this region was further confirmed using steady and pulsatile flow visualization.
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 Quantitative LDA
measurements under pulsatile flow conditions confirmed that the mean wall shear stress was relatively
low at the lateral wall of the carotid sinus, and clearly demonstrated the oscillatory nature of the shear
stress in this region. In one of the most often cited studies in this field, Ku et al.
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 correlated specific
shear stress indices with intimal thickness data obtained from victims of non-atherosclerosis related
deaths at autopsy. It was found that mean shear stress correlated negatively with intimal thickness, as
did maximum shear stress. Additionally, a new index of shear stress oscillation was established, the
oscillatory shear index (OSI),
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 is the component of wall shear stress acting in the direction opposite
to the mean flow, and 
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 is the period of the cardiac cycle. There was a significant positive correlation
noted between OSI and intimal thickness, indicating that atherosclerosis is more likely to develop in
locations where the shear stress oscillates between positive and negative values within the cardiac cycle.

Investigations of flow patterns in other commonly diseased vessels have resulted in similar conclusions.
In the left main coronary artery bifurcation, Friedman et al.
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 noted negative correlations between mean
shear stress and intimal thickness, and maximum shear stress and intimal thickness. The shear stresses
were evaluated using LDA measurements in a cast model, as was done earlier by the same authors for
the aortic bifurcation. No shear stress oscillation was noted in their results. He and Ku
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 constructed a
numerical model of the same left coronary artery bifurcation based on average measurements compiled
from different sources. They correlated their shear stress measurements with the distribution of athero-
sclerotic lesions as demonstrated in a previous study. They reported an inverse relationship between
mean wall shear stress and lesion formation, as well as between maximum wall shear stress and lesion
formation. Their results also demonstrated very little shear stress oscillation. However, both of these
coronary artery studies featured a static geometry. As may be ascertained from coronary angiograms, the
geometry of the coronary arteries is dynamic in nature due to the contraction of the myocardium. The
movement and deformation of the coronary arteries occur most swiftly in systole and can have significant
effects on the flow patterns. Moore et al.
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 studied the effects of physiological axial movement on pulsatile
flow in a straight tube model of the left coronary artery and concluded that taking the movement into
account doubled the OSI predicted when movement was neglected. The presence of oscillating shear
without vessel movement (not noted in the study of Friedman et al.) was due to the fact that a slightly
different volume flow waveform was used. The effects of movement and deformation need to be explored
in more detail in order to conclusively establish the relationship between wall shear stress and intimal
thickness in the coronary arteries.

Flow studies in a model of the abdominal aorta based on an average geometry demonstrated corre-
lations between mean wall shear stress and intimal thickness and between OSI and intimal thickness,
but not between maximum shear stress and intimal thickness.
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 The glass tube aorta model used in this
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study was based on the average measurements of 55 bi-planar angiograms and included seven major
branches as well as the curvature of the aorta. Volume flow waveforms in the suprarenal and infrarenal
aorta were carefully controlled to exhibit the bi-phasic and tri-phasic shapes that have been clearly
demonstrated 

 

in vivo

 

.
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 Pulsatile flow visualization revealed significant vortex formation beginning at the
level of the renal arteries, and a stagnation zone along the posterior wall of the infrarenal that split and
continued along the lateral-posterior walls of the aortic bifurcation.
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 Subsequent pulsatile velocity
measurements using magnetic resonance imaging velocimetry (MRIV) confirmed this general flow
behavior and provided shear stress data for correlation with intimal thickness measurements. As with
the carotid and coronary arteries, a negative correlation between mean shear stress and intimal thickness
was noted. The OSI was found to positively correlate with intimal thickness. In contrast to the studies
of the coronary and carotid artery, no significant correlation with maximum shear stress or its inverse
could be found. In this study, the spatial variations in maximum shear stress were very different from
the spatial distribution of mean wall shear stress. For the cases of the carotid and coronary arteries, these
shear stress indices had similar distributions, resulting in similar correlations with intimal thickness.
Thus, the unique aspects of flow in the abdominal aorta provided delineation between the correlations
with mean and maximum shear stresses that could not have been detected in the carotid and coronary
artery studies.

In practically all of these studies that correlated wall shear stress and atherosclerosis development,
rigid wall models and Newtonian fluids were employed. As mentioned earlier, these factors have a minor
effect on the overall flow patterns. The more specific question of whether or not these factors affect the
correlation between wall shear stress and atherogenesis was addressed by Friedman et al.
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 They concluded
that using rigid wall models and Newtonian fluids had no effect on the slopes of the correlations between
intimal thickness and any normalized shear rate measure.

Advances in CFD capabilities in recent years facilitated the return to the question of flow-mediated
mass transfer. The analogy between heat and mass transfer meant that CFD techniques that couple flow
solutions with heat transfer analysis could be exploited to produce information on the mass transfer of
blood-borne solutes into and out of the artery wall. At first, these techniques were applied to the study
of flow in simplified arterial geometries such as axisymmetric narrowings.
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 In general, it was found
that solute concentration and wall flux are reduced in the separation zones distal to the narrowings. The
effects of flow on mass transfer were even more significant when the permeability of the wall was specified
as a function of the shear rate.
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In Vitro

 

 Studies of the Effects of Flow on the Artery Wall

 

Research on the effects of fluid shear stress on vascular endothelial cells has also advanced since Fry’s
experiments. Aided by advances in cell culturing techniques and the biological sciences in general, devices
to subject cells to physiologically realistic mechanical conditions 

 

in vitro

 

 were developed with the goal
of providing information on the interaction of fluid mechanics and biological responses. Such informa-
tion would be complementary to the flow studies outlined above in determining if and why certain flow
patterns lead to atherosclerosis formation. There were two devices developed that were capable of
subjecting cultured endothelial cells to shear stress. The first was the parallel plate flow chamber, in
which a nourishing culture medium was pumped through a chamber with a rectangular cross-section.
The bottom plate of the chamber was coated with endothelial cells that could be viewed directly through
the transparent walls of the chamber using phase-contrast microscopy. The length and width of the
chamber were much larger than the height, providing Poiseuille flow conditions over the vast majority
of the surface. Knowledge of the height of the gap between the upper and lower plates, the flow rate
and fluid properties allowed the calculation of the shear stress in the chamber. This device was first
employed to study the effects of flow over bovine kidney cells.
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 The other device, similar to a cone-
and-plate viscometer, features a spinning cone that is placed a short distance above a flat plate onto
which cells have been cultured.
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 The small gap and slight angle of the cone provide a nearly uniform
shear stress field on the plate.
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The results of studies that employed these devices demonstrate a very strong relationship between flow
and endothelial cell behavior. At first it was observed that the morphology of endothelial cells changes
with the presence of flow-induced shear stress. In static culture, endothelial cells have a relatively round,
cobble-stone appearance. Within 24–48 hours following the application of flow, the cells take on a more
elongated shape and align with the direction of flow.
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 Later experiments with a parallel plate flow
chamber confirmed this behavior.
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 The effects of pulsatile shear stress on endothelial cell morphology
depend on whether or not the shear stress and sheer stress amplitude reverse during the cardiac cycle.
Helmlinger et al.
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 used a parallel plate flow chamber to subject endothelial cells to varying degrees of
oscillating shear stress. The imposition of a low amplitude oscillating component on a steady mean shear
stress caused the cells to be less aligned than those subjected to the same level of steady shear stress. With
high amplitude oscillating shear stress, the cells detached completely within 24 hours.

Two separate studies of vascular endothelial cell morphology obtained from autopsy specimens sup-
ported these 

 

in vitro

 

 results. Examination of fetal aortas demonstrated that endothelial cells in relatively
straight regions of the aorta appeared uniformly aligned with the flow direction.
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 In regions near
branches, the cells’ alignment was along the direction of streamlines that one would expect for flow near
a branch. On the surface of the aortic valve sinus, where randomly oriented turbulent-like flow patterns
were noted, the cells were irregular in shape, size, and orientation. A study of the endothelial cell structure
of rabbit aortas also reported alignment of cells in the expected flow directions in straight and branched
segments.
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In addition to morphological effects, other aspects of endothelial cell behavior are also affected by
shear stress. Advances in biological assay capabilities and molecular biology techniques have allowed
researchers to investigate many aspects of endothelial cell behavior in the presence of flow. It is known
that shear stress affects the production of vasoactive substances such as endothelin
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 and prostacyclin.
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The ability of these substances to provoke the contraction or relaxation of the medial vascular smooth
muscle suggests that endothelial cells play a role in determining the local resistance to flow. The level of
production of these substances depends on the type of shear stress applied (steady, pulsatile, reversing,
or non-reversing), suggesting a highly sophisticated flow-sensing mechanism within the cell. Other
substances whose production by endothelial cells has been shown to be affected by flow include the
attachment molecules ICAM–1, VCAM–1, and E-selectin.
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 These substances may play an important role
in atherogenesis because of their role in the recruitment of monocytes into the arterial wall. Excessive
monocyte recruitment is considered a key event in atherosclerosis development. Other aspects of endot-
helial cell behavior that have been shown to be affected by flow include cytoskeletal structure, cell stiffness,
proliferation rates, and endocytosis.
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All of these aspects of endothelial cell behavior that are affected by flow are expected to play at least
a minor role in the development and/or progression of atherosclerosis. The morphology of the cells is
important because the presence of gaps between cells can lead to increases in endothelial layer perme-
ability.

 

53

 

 Additionally, if endothelial cells detach in response to highly oscillating shear stress 

 

in vivo

 

, as
was observed 

 

in vitro

 

,
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 then the permeability in regions exposed to oscillating shear stresses may be
greatly increased. The production of endothelin was found to be maximal at very low shear stresses.
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 In
addition to its vasoactive properties, endothelin is also a simulator of smooth muscle cell proliferation,
another key event in atherosclerosis formation. It has also been observed that the expression of attachment
molecules increases with oscillating shear stress.
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 Thus, in separate experiments (often performed with
different types of cells and different apparati), endothelial cell activities that would seem to lead to
atherosclerosis formation increase in the presence of low and/or oscillating shear stress. These results
tend to support the hypothesis put forth by the arterial model flow studies that low and oscillating wall
shear stresses lead to atherosclerosis formation.

 

Additional Studies of Arterial Flow Patterns and Atherogenesis

 

There have also been several flow-related 

 

in viv

 

o studies that have contributed to the knowledge of the
potential role of fluid mechanics in atherogenesis. The inherent difficulty of performing 

 

in vivo

 

 experiments
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has been a limiting factor, as has the fact that atherosclerosis forms over decades (much longer than a typical
research grant). Nevertheless, the information gained appears to support the results obtained with 

 

in vitro

 

flow models and cell culture studies. Zarins et al.
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 surgically created local coarctations in the aortas of
cynomolgus monkeys that were subsequently fed an atherogenic diet. It was found that the region directly
within the coarctation was spared of lesions. Distal to the coarctations, significantly more lesions formed
and appeared to be localized to the regions where one would expect flow separation. Later work by the
same group showed that increasing the flow rate through an artery by surgically creating an arterio-venous
fistula provoked diameter changes that maintained the same level of shear stress as sham operated controls.
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Other 

 

in vivo

 

 studies have demonstrated that endothelial permeability varies along the arterial tree, with
areas near branches showing higher degrees of permeability.
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The flow modeling techniques applied in the study of flow in healthy vessels have also been extended
to the analysis of flow in vessels where disease is or has been developing. Much of the basis for this work
extends from the hypotheses put forth by Friedman.
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 He proposed that different thickening histories at
sites exposed to high and low shear rates were due to the presence of multiple, competing shear-dependent
processes in the vessel wall, and he proposed a model to describe this behavior. Numerical flow simula-
tions coupled with a similar wall shear stress–plaque formation law were used to simulate the formation
of atherosclerosis in the aortic bifurcation.
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 They concluded that low wall shear stresses were most
consistent with the onset of the disease, but that areas of both low and high wall shear stress showed
accelerated plaque growth during subsequent disease formation. A similar flow simulation in the carotid
bifurcation also produced lesions similar to those found 

 

in vivo

 

.
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 In that study, it was also noted that
the shear stress field created by the presence of slight intimal thickening was more homogeneous than
with no intimal thickening. This indicates that intimal thickening may be a means by which the artery
attempts to even out the wall shear stress distribution. The development of clinically significant athero-
sclerosis may be the result of this process becoming unstable.

The presence of stenosis within a blood vessel can have a variety of effects on the blood flow patterns.
Clinically, the most important effect is the increase in flow resistance that, when the body fails to properly
compensate, can lead to tissue death. The pressure drop across a region of stenosis depends most strongly
on the percent reduction in diameter (or area), which produces a large amount of pressure head loss
from flow separation and turbulence.
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 The actual viscous pressure head loss is much smaller under most
physiological blood flow conditions. As will be discussed below, the occurrence of turbulence near the
stenosis in and of itself is an important and useful clinical phenomenon. Stenoses that reduce the cross-
sectional area of the artery by more than 89% can initiate the onset of turbulent flow distal to the stenosis,
even at Reynolds numbers as low as 200.
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Another potentially important clinical phenomenon associated with stenoses is the collapse of the
artery. While arteries typically become stiffer with age, atherosclerotic stenoses may still be compliant.
As blood flows through these constrictions, the static pressure within the lumen falls because of the
Bernoulli effect. It has been hypothesized by several authors that such high-grade stenoses may collapse
under physiological conditions.
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 If this is the case, the flow through the artery may be severely limited
due to the even greater reduction in cross-sectional area. The subsequent collapse of the tube can have
additional effects on the flow rate. Flow through elastic tubes can be limited (choked) under certain
circumstances, as described by Conrad.
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 Flow choking is an important physiological consequence which
could limit blood flow during a high-demand situation where the distal resistance is dramatically lowered.
Shapiro and others have developed a one-dimensional fluid mechanic model of tube collapse and flow
choking which uses an analogy to transonic, compressible flows and supercritical flows in channels.
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Ku et al.

 

68

 

 have applied this theory to estimate the flow conditions needed to induce collapse in a high-
grade arterial stenosis. Collapse was predicted for a wide variety of physiological arterial stiffnesses, flows,
and pressures.
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7.4 Application of Arterial Fluid Mechanics in Diagnostics

 

When the presence of diseases such as atherosclerosis restricts the supply of blood to certain tissues, there
is obvious clinical interest in the important variables such as pressure and flow. The measurement of
blood pressure by direct or indirect methods is a very common diagnostic procedure. The capability to
measure flow is more recent but is gaining in importance. Advances in diagnostic capabilities have
provoked clinicians to learn more about pressure, flow, and other important flow variables. This addi-
tional knowledge is also applied in developing and evaluating new treatment procedures.

The concept that blood pressure, particularly pulse pressure, might be indirectly related to disease far
predates all studies of any direct relationship. One can indeed imagine that an abnormally weak pressure
pulse at palpation was recognized as a negative symptom thousands of years ago. Nowadays, we know
quite a lot about pressure pulses, and palpation yields much more differentiated diagnostic information
than it did 100 years ago. For example, diseases of the heart valves can be identified more or less precisely
in certain cases.
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 Palpation of arterial pulses is, of course, limited to the few sites where a greater artery
is relatively close to the skin (e.g., the carotid arteries). Palpation of the femoral arteries is possible only
in certain cases. In 1971, the American Heart Association found it useful to publish a monograph that
lists publications issued on cardiovascular auscultation and photocardiography from 1820 to 1966.
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The stethoscope allows one to hear, rather than merely feel, arterial pulses under certain conditions.
The microphone (which was the high-tech version of the stethoscope thirty years ago) set the stage for
developments in the field of mechanography (phonocardiogram, apexcardiogram, carotidogram, etc.).
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With apexcardiograms and carotidograms, the low frequency pressure fluctuations felt in palpation are
transduced into audible frequencies. While stethoscopes and microphones may yield a rather deformed
image of pressure pulses, they usually result in a better representation of flow pulses. To record apexcar-
diograms or carotidograms, one uses, instead, special transducers with a rather large time constant (on
the order of seconds).

The development of more powerful techniques in recent decades has, regrettably, reduced somewhat
the importance of empirical knowledge of pressure and flow pulses. Doppler ultrasound introduced a
more quantitative means to hear flow pulses than either the stethoscope or microphone. It also extended
the subcutaneous depth to which one could evaluate flow. Furthermore, tight arterial stenoses can be
localized on the basis of the higher audio frequencies (higher Doppler shift) associated with increased
flow velocity. The spectral broadening in the Doppler signal may also be used as a diagnostic parameter.
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In some cases, one may even determine if an artery that cannot be directly visualized is severely obstructed
by the use of a deductive diagnostic scheme. For example, one can determine which one of the two
posterior cerebral arteries is impaired by a severe stenosis by performing different Doppler measurements
on the anterior arteries.
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In the 1970s, ultrasound imaging modalities became commercially available which were soon com-
pleted by Doppler capabilities. Today, one can hear and visualize blood flows (in color) in their anatomical
context (Fig. 7.2).
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 This is, of course, superior to what can be achieved by palpation or with a microphone.
In many cases, Doppler ultrasound can be used to assess instantaneous blood flow semi-quantitatively
(for example, the flows across the cardiac valves) or even quantitatively (in some larger arteries). In the
last few years, methods for use in nuclear magnetic resonance (NMR or MRI) examinations were also
developed.
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 For example, one may obtain detailed information on flow in the larger vessels such as
the aorta
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 or the carotid artery.
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 The usefulness of MRI angiography remains limited due mainly to
spatial resolution problems. The applicability to coronary arteries in particular is further hindered by
the movement of these arteries during the cardiac cycle and by the movement of the chest cavity as a
whole due to breathing. A further problem that arises is the signal loss that occurs due to turbulence
distal to stenoses.

 

79

 

 Thus, there remain several significant obstacles preventing the use of MRI for the
evaluation of coronary artery disease.



 

© 2001 by CRC Press LLC

 

Due to their non-invasiveness, the techniques mentioned so far provide only limited information.
Furthermore, the quality of the information can vary greatly. Therefore, non-invasive techniques have
not been able to totally replace invasive ones. Among the invasive techniques, (x-ray) angiography is
probably the most powerful because of its unsurpassed spatial and temporal resolutions.

 

80

 

 It is indis-
pensable in the examination of the coronary and cerebral arteries. Although angiography is one of the
most powerful tools used to diagnose atherosclerosis, there are significant drawbacks. It requires invasive
catheterization and the injection of radiopaque dye into the patient (Fig. 7.3). Thus, angiography is a
potentially expensive and at least mildly risky procedure. Other disadvantages include the lack of infor-
mation regarding flow reserve, the vessel wall, and the exact nature of the plaque.

Angiography may also provide hemodynamic information. For example, a record of the instantaneous
left ventricular pressure is an important, basic tool for evaluating all types of heart disease.
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 In valvular
diseases, additional pressure recordings in other cardiac chambers and in the great cardiac vessels are
usually required. For better accuracy, one can use strain-gauge pressure transducers mounted on the tips
of catheters or guide wires. Pressure pulses can then be recorded without distortions, which is not the
case with fluid-filled catheters.

 

82

 

 Radiopaque contrast agents also provide some valuable hemodynamic
information. For instance, observation of the spatial-temporal propagation of the contrast agent provides
a subjective impression of the flow pulse.
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 Quantitative assessments of flows or flow pulses require,
however, mathematical-physical models and sophisticated computations that involve the gray levels of
the image pixels.
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A further reason why angiography still plays a dominant role is that it is the only imaging modality
that simultaneously allows for intravascular interventions. Techniques such as balloon angioplasty are
gaining popularity due to the fact that the trauma and expense associated with surgery can be avoided
in many cases. Intravascular interventions are now routinely performed directly following angiography.
In neuroradiology, their importance is growing rapidly. As will be illustrated later, recent developments
in these fields could make hemodynamic aspects become increasingly important.

 

FIGURE 7.2

 

Color Doppler ultrasound image of a stenosis on the right internal carotid artery (ICA). Where the
vessel caliber is reduced by the atheromatous plaques (indicated by arrows), the flow velocity is higher (blue instead
of yellow or red).
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Because the heart is a vital organ, cardiac diseases can have very severe or life-threatening consequences.
Furthermore, heart failure eventually affects other organs (the lungs, for example).
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 The development
of stenoses in the coronary arteries (commonly referred to as coronary artery disease or CAD) is, therefore,
one of the most important clinical manifestations of this disease.

 

FIGURE 7.3

 

Angiographic view of the left coronary artery (LCA). The vessel is injected with a radiopaque solution
for temporary opacification. Upper panel: As clearly visible at left, one main branch of the LCA, the left anterior
descending coronary artery (LAD) ends abruptly because it is occluded. Lower panel: Same view after successful
(artificial) recanalization.
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Even though the limitation of blood flow is the most important aspect of CAD, the diagnosis of CAD
does not require the measurements of flow or flow pulses. The occurrence of chest pain and dyspnea
usually yields a reliable indication, which is often reinforced by a positive ECG exercise test.
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 The initial
diagnosis is then confirmed usually by cardiac catheterization, which basically includes a recording of
the instantaneous left ventricular pressure, a left ventricular angiogram, and coronary angiography. These
evaluations provide reliable information on the morphologic state of the coronary arteries as well as a
subjective evaluation of the flow conditions. There are also rare cases in which these arteries seem
completely normal. The diagnosis may then be “Syndrome X.” Various hypotheses have been proposed
to explain this phenomenon: disease of the micro-vessels, steal effects, regional spasmic constriction of
the arterioles, etc. Pressure recordings in the cardiac chambers and in the aorta provide quite a lot of
information about the state of the myocardium and the valves.
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 As a rule, cardiac output (mean forward
flow per minute) is only calculated in the case of valvular disease.
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 The cardiac flow pulse could be
determined by computing the temporal evolution of the left ventricular volume, but this is practically
never done. (The left ventricular volume can itself be calculated by geometric or densitometric methods.
As a rule, it is determined only for end diastole and/or end systole and used to calculate left ventricular
ejection fraction.)

The therapeutic goal in the case of CAD is simple: to restore as best as possible the equilibrium between
the oxygen demand of the myocardium and its supply by the coronary arteries, at least for the situations
in daily life and, hopefully, for several years. In some cases (e.g., stenosis of the left main coronary artery),
coronary artery bypass graft (CABG) surgery is the preferred method.
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 In other patients, vessel patency
can be achieved by drug therapy (e.g., reduction of the oxygen demand by decreasing the resistance of
the peripheral vessels or of the coronary arteries and/or the arterioles, etc.). Another technique that is
gaining in popularity is percutaneous transluminal coronary angioplasty (PTCA).

 

89

 

The drawback to PTCA is that it may be only moderately effective, despite a high rate of initial
reopening (about 90% for skilled operators).
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 The primary reason is that the dilated lumen may close
again after some minutes, hours, or days (known as sudden occlusion). This occurs when the stenotic
plaque has not been sufficiently deformed by balloon inflation. Plaques may be quite elastic, and may
require enormous deformation to be plastically deformed. The second reason is that restenosis occurs
in a significant percentage of patients (15 to 50%, depending on the patient population, the kind of
lesions, etc.)
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 In an attempt to solve these problems, many clinicians implant stents, but the success is
only moderate, at least at present.
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Because the problem of restenosis remains, fluid dynamics could become attractive for the following
reasons. First of all, PTCA is relatively expensive, especially if it is supplemented by stenting or if it must
be repeated. Furthermore, some patients will require CABG surgery sooner or later.
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 Consequently, it
is important to restrict PTCA to cases where it is most likely to be beneficial. PTCA also has other negative
aspects. PTCA partially removes the obstacle to flow, but the lesion is merely pushed back into the vessel
wall. Stenting may help by holding the lesion away from the lumen, but the lesion will still be present.
It may therefore be preferable not to dilate stenoses which do not limit flow under resting conditions.
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If this is the case, the risk remains that the plaque will continue to develop into a more serious blockage.
Unfortunately, there are no reliable means of predicting the course of development. PTCA also assumes
that the patient accepts living with some restrictions. Assuming that all these aspects will be clarified one
day, one will have to determine, in the catheterization laboratory, to what extent a stenosis limits the flow.

Methods to determine flow limitations as a result of stenosis are already available. One can, for instance,
assess quantitatively the coronary flow reserve distal to a stenosis by the use of angiographic flow
measurement techniques.
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 Alternatively, a method based on pressure measurements has been proposed.

 

93

 

These techniques are, however, not yet widely used. When they are used, it is often to assess the success
of PTCA and stenting, rather than in the initial treatment decision process.

A third possibility is the recently developed FloWire Doppler device (Cardiometrics, Mountain View,
CA).
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 It is essentially an ultrasonic transducer mounted at the tip of a catheter guide wire (with a diameter
of 0.46 or 0.36 mm) connected to an apparatus which computes and displays the instantaneous maximal
velocity in the region of the sample volume. With this device, the time evolution of the flow velocity
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during the cardiac cycle can be continuously recorded at any (accessible) arterial site. Normal and
abnormal flow pulse patterns in the left and right coronary arteries have also been assessed, as well as
the ranges of maximal and average flow velocity in the different coronary arteries.
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 One can also compare
the averaged maximal velocities proximal and distal to a stenosis. According to some authors, the ratio
of these two averaged velocities provides an indication of the functional severity of a stenosis.
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In summary, pressures, pressure pulses, flows, and flow pulses provide diagnostic information, but
this information is seldom sufficient for the final diagnosis in any situation when assessed non-invasively.
This is not really surprising because these four parameters are only symptoms and not causes. The
availability of powerful imaging modalities means that someday one will be able to see why pressure or
flow pulses are abnormal instead of merely documenting that they are abnormal. For example, with
Doppler echography once can see blood regurgitates through a diseased cardiac valve, but one would
like to see the valve itself to determine if valve replacement is indicated. For the same reasons, broad-
band screenings of populations at risk of CAD are not highly attractive. However, in the near future,
hemodynamic aspects could be more and more involved in the decision makings in PTCA.

 

7.5 Conclusions

 

There is much evidence that blood flow patterns are involved in the development and progression of
atherosclerosis. Unfortunately, all of this evidence is indirect. Atherosclerosis develops over decades, and
so it is difficult to track the development of the disease in detail. It is even more difficult to monitor
arterial flow patterns over such a time period, especially considering all of the changes that occur in the
factors that determine blood flow patterns. Arterial geometry changes may occur over periods of months
to years. The mean flow rates through individual arteries and the pulse rate may change from minute to
minute, depending on the level of activity. These factors will be extremely difficult, if not impossible, to
overcome. Advancement in the knowledge of the role of hemodynamics in atherogenesis will come from
designing scientific studies that more closely approximate the 

 

in vivo

 

 situation.
There are several researchers who are making efforts to combine studies of the solid mechanics of the

artery wall with the fluid dynamics studies outlined above. Knowledge of the solid wall stresses in the
artery wall is limited due to the extremely complex nature of the problem. This complexity is being
somewhat alleviated by the application of state-of-the-art finite element techniques that can more closely
replicate the 

 

in vivo

 

 geometry and complex mechanical behavior.

 

11,97,98

 

 There are also a few groups that
are studying the effects of combined fluid shear stress and cyclic substrate stretch on endothelial cells.

 

99,100

 

The morphological effects of combined shear stress and cyclic stretch include an enhanced elongation
and alignment with the flow direction than that which is found for cells subjected to the same levels of
only one mechanical stimulus or the other.
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 All of these studies indicate that the inclusion of solid and
fluid mechanics will be important in future investigations of atherogenesis.

The further application of fluid mechanics in diagnostic medicine will enhance the prevention and
treatment of the deadly effects of atherosclerosis. As with all new medical technologies, it will take time
for fluid mechanics to be fully accepted as a standard diagnostic tool.
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8.1 Introduction

 

In the past, the study of hemodynamics has been approached from many different directions, by researchers
from disciplines as diverse as medicine and engineering. In attempting to match the knowledge of fluid
dynamics to the clinical reports of the patterns of arterial disease, researchers have discovered insufficiencies
on both sides. This study identifies a fig methodology to address some unanswered questions. The
broad objective of this hemodynamic study is to develop the capability for numerical prediction.

This investigation presents 

 

in vivo

 

 measurements of flow quantities and subsequent numerical flow
and pressure calculation and validation, using measured flow parameters, vessel dimensions, and blood
viscosity in a mildly tapered femoral artery of a living dog. While such a combined experimental–calcu-
lation approach may appear straightforward in principle, it is fraught with concerns about the reliability
of 

 

in vivo

 

 measurements and the appropriateness of the method of flow calculation with regard to the
non-Newtonian viscosity of blood, wall and inlet boundary conditions, and handling of the non-linear
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convective acceleration terms and coupling of the pressure and velocity fields during the cardiac cycle.
Moreover, giving statistical significance to such an approach would generally require numerous experi-
ments and theoretical comparisons —  a procedure which is beyond the scope of most detailed flow
investigations such as this one.

Our study is modest and more along the lines of a bioengineering approach. We posed the question:
What is the most accurate procedure for numerically calculating and validating arterial flows using 

 

in vivo

 

measurements? In order to answer the question realistically, we identified two possible approaches and
posed subsequent questions:

• What level of approximation is required to adequately describe the measured variation of pressure
change with time, 

 

∆

 

p

 

(

 

t

 

)

 

 

 

and time-averaged pressure drop 

 

∆

 

p

 

a

 

, across a mildly tapered femoral 
artery segment of a dog given the measured velocity waveform 

 

u

 

(

 

t

 

)?

• What level of approximation is required to adequately describe the measured variation of velocity
with time, 

 

u

 

(

 

t

 

), and time-averaged velocity, 

 

u

 

a

 

, given the measured pressure change with time,

 

∆

 

p

 

(

 

t

 

)?

Clearly, the two approaches above are diametrically opposed, but the answer to either question would
lead to the objective of this study. This question requires accurate measurements of 

 

∆

 

p

 

(

 

t

 

), 

 

u

 

(

 

t

 

), and,
thus, 

 

∆

 

p

 

 vs. 

 

u

 

, which is of interest in and of itself for physiological flow and is rarely measured or reported
in the literature. In the flow calculations, blood viscosity was assumed to be dependent upon shear rate
as prescribed through the second invariant of the rate of strain tensor which, in turn, results in relatively
unimportant elastic and time relaxation effects. This is believed to be a reasonable approximation for
blood flow through arteries the size of the femoral artery in a dog.

On the other hand, since the arterial wall is, in general, very complex, being anisotropic (elastin,
collagen, smooth muscle), viscoelastic (creep, stress relaxation, hysteresis), and under a mean and fluc-
tuating state of three-dimensional stresses, it is very difficult to specify its dynamic behavior with certainty
in computational methods. Clearly, the simplest assumption from a calculation point of view is to neglect
wall interaction and motion, which is known to be relatively small, carry out the flow calculation for an
assumed rigid wall, and then compare the calculations to 

 

in vivo

 

 flow data to appraise the extent to which
the flow and pressure fields can be described. This is the approach used in this investigation. It is believed
to provide some insight into arterial hemodynamics and flow calculation assumptions, albeit for a single
vessel of specific size, shape, segment length, and particular pressure and velocity waveforms. Also, some
implications with regard to 

 

in vitro

 

 arterial vessel model flow studies are inferred from this study since
it provides an 

 

in vivo

 

 reference datum for construction of models with similar 

 

∆

 

p

 

 and 

 

u

 

 characteristics
during the cardiac cycle.

 

8.2 Background and Literature Review

 

In order to achieve the above-mentioned objectives, various issues must first be addressed. For any study
in arterial blood flow dynamics, the following important issues require review:

1. The behavior of blood, the principle fluid;
2. The physiological flow regime, expressed in terms of the Reynolds number, the Womersley number,

and the Dean number (for flow in curved geometry); and
3. The characteristics of blood ejection from the heart, which is pulsatile (unsteady) in nature.

First, we must consider the nature of the principal fluid, blood, itself. In large arteries (and in smaller
ones like the femoral artery) which originate from the heart, blood, for most practical purposes, behaves
as a homogeneous and continuous fluid medium, with characteristics similar to a Newtonian fluid, that
is, a fluid in which the shear stress is linearly proportional to the rate of deformation. Further down the
circulatory tree this assumption becomes increasingly less satisfactory, and by the time blood reaches the
arterioles that feed the capillary bed, its rheology is complex. In flow through the capillaries, the concept
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of a continuous fluid medium loses meaning, and the motion must instead be treated in terms of
individual deformable erythrocytes (red blood cells) being transported by the surrounding plasma
through narrow passageways sometimes smaller in diameter than the diameter of the erythrocyte itself
in its relaxed state.

Second, when dealing with physiological applications, we must closely study the flow regimes, which
are at least as complex and varied as the nature of the fluid itself. The character of a flow regime may be
expressed, in most cases, in terms of its Reynolds number, a dimensionless parameter which measures
the ratio of inertial force to viscous force acting on a fluid. In flows with a high Reynolds number, fluid
inertia is the dominant force; in flows with a low Reynolds number, a viscous effect predominates. In
the heart and aorta, the Reynolds number is high, approaching values for the transition (Re = 2000 ~
3000) from a laminar to a turbulent flow. The Reynolds number decreases as the blood proceeds down
the arterial tree; in the capillaries, the flow is in the so-called Stokes regime, where viscous forces
overwhelm the inertial forces. Given its Reynolds number, the flow through most arteries such as the
femoral artery is considered to be laminar.

A third factor requiring close attention is the pulsatile (unsteady) nature of blood flow from the heart.
This adds to the complexity of the problem. Arterial vessels are often curved and branched, producing
complicated secondary motions of blood and entry phenomena which are far more difficult to analyze
than the fully developed flow in a straight tube of infinite length. A further complication is the disten-
sibility of arterial vessels, which deform in a viscoelastic fashion under pressure variations associated
with the pulsatility of the blood flow.

This study focuses only on flow behavior. However, many other arguments based on chemical pro-
cesses, mass transfer, and various other unexplained, naturally occurring phenomena have been made.
Although various authors have reported experimental and numerical procedures for obtaining the pres-
sure–flow relationship, the numerical prediction of an 

 

in vivo

 

 pressure drop using the Navier–Stokes
equations with the convective terms in an arterial geometry with physiological shape has not been
documented in full.

Flow reversal in a dog’s artery and phase lag between the pressure gradient and the flow have been
reported by McDonald and his co-workers

 

17

 

 and have also been numerically studied by Womersley.

 

21,22

 

A factor of only ± 1.8% radial dilitation 

 

∆

 

r

 

w

 

/

 

r

 

w

 

- is reported for the resting iliac artery of a dog.

 

17

 

Compliance of the resting femoral artery of a dog will be even smaller than the iliac artery. Ling et al.

 

15

 

have reported that, for a dog aorta, flow profiles developed locally and transiently during the passage
of the pressure-gradient wave. 

 

In vivo

 

 velocity and shear rate data have indicated relatively flat velocity
profiles. Back et al.

 

2

 

 have measured 

 

in vitro

 

 pulsatile velocity and pressure in a human femoral artery
model with a reverse lumen curvature. Talbot and Berger

 

19

 

 have illustrated the relationship of the
acceleration and deceleration of velocity to the pressure distribution. For a steady flow analysis, Back
et al.

 

1

 

 have measured flow resistance in models of a curved femoral artery of a human. They have
predicted that in order to have a fully developed secondary flow, a relatively high Dean number and
curved segment angle are required.

The measured non-Newtonian properties of blood, i.e., shear thinning and viscoelasticity, have been
reported in the literature.

 

14,16

 

 The importance of the non-Newtonian properties of blood in flow simu-
lations have been demonstrated.

 

7,10

 

 Flow measurements in an atherosclerotic, curved, tapered femoral
artery model of a human have been performed by Back et al.

 

3

 

 For a straight tapered model of the smooth
femoral artery, the mean flow measurements have shown significant pressure drop which can be estimated
from momentum considerations using the assumption of a local Poiseuille flow. For a mildly tapered
femoral artery of a dog, the numerical study of Banerjee et al.

 

7
 

 

has predicted oscillatory shear stress and
a phase lag between pulsatile pressure drop and velocity.

Based on the questions posed earlier and discussion of possible approaches, this study was divided
into two parts. Study 1 attempted to propose a method to calculate pressure changes in an artery of a
dog using an arterial angiogram, the non-Newtonian viscosity of blood, and an instantaneous velocity
measurement by non-invasive means. Study 2 attempted to propose an alternate method to calculate
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velocities using instantaneous pressure gradient measurements. Clearly, either of the two studies validated
experimental results with numerical methods.

 

8.3 Uncertainties in the Proposed Studies

 

Experimental Uncertainties

 

Rather than using 

 

in vitro

 

 measurements, these studies aimed to compare and validate the numerical
calculations with 

 

in vivo

 

 measurements. It is to be noted that, in the past, 

 

in vitro

 

 measurements were
generally found to be easier to compare with numerical calculations since it is comparatively simpler to
control any 

 

in vitro

 

 experiment

 

8

 

 than to control an 

 

in vivo

 

 experiment. In view of this, Studies 1 and 2
were difficult exercises since they involved the greater uncertainties that accompany 

 

in vivo

 

 measurements.
Also, it is practically impossible to measure, and hence numerically verify, 

 

in vivo

 

 velocity profiles at
any instant of time near the wall region. At any instant of time, the Doppler flow cuff measures a spatial
average velocity only in the core region and excludes the near-wall region of an artery. However, through
calibration, the spatial average velocity across the artery is determined. Nevertheless, this poses a difficulty
in specifying temporal and spatial dependent velocity boundary conditions, as may be observed in
Study 1. In contrast, the measurement of pressure drop is usually more accurate and reliable; hence, such
a pressure boundary condition is easy to apply, as may be seen in Study 2. Clearly, from a calculational
point of view, Study 1 has greater uncertainties than Study 2.

 

Numerical Uncertainties

 

It should be noted that the heart rate of a dog (128 beats/min) is one-and-a-half times faster than the
heart rate of a human (75 beats/min), and, therefore, the rate of change of an instantaneous boundary
condition over a pulse cycle is higher for a dog than for a human. In general, a numerical calculation
for a dog artery has a more stringent condition than for a human artery.

For a numerical simulation of flow, particularly pulsatile flow, calculation of pressure is inherently
difficult. Since pressure calculation involves second-order spatial derivatives and a first-order temporal
derivative of velocity, any sharp variation in the inlet boundary conditions, as in the case of pulsatile
flow, significantly affects the pressure calculation.

Since velocity is used as an inlet boundary condition, as in Study 1, an inherent mass balance is
automatically achieved. Only the momentum balance needs to be performed in the flow domain. In
contrast, when a pressure boundary condition is applied, as in Study 2, both mass and momentum
balances need to be achieved. Clearly, from a numerical point of view, Study 2 is more difficult than
Study 1.

 

8.4 Experimental Method

 

The animal experiments were performed in Dr. Crawford’s laboratory at the USC School of Medicine
using instrumentation transported from the Jet Propulsion Laboratory (JPL) to USC with subsequent
data reduction at JPL. The animals used were mongrel dogs which were unclaimed at local government
pounds. They were certified by USC veterinarians for single experiment utilization, and the experimental
protocol was approved by the USC Animal Experimental Board.

Methods for measuring 

 

in vivo 

 

static pressure changes along a segment of the femoral artery without
inserting a catheter into the lumen, which can disturb the flow, were investigated initially. One way to
take this measurement is by inserting a small plastic tube with a flared end through an incision in the
artery wall. By suturing the artery around the tube with the flared end flush with the inner arterial wall
surface, we are able to replicate a sidewall static pressure tap. This technique, however, has not proved
successful in measuring the 

 

in vivo

 

 static pressure change along a length of an artery because the procedure
causes local vaso-constriction and some thrombosis at the injured sites. Consequently, the narrowing of
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the arterial cross-sectional area in the vicinity of the plastic tubes precludes obtaining meaningful
measurements.

Another way to measure static pressure changes is to use small arterial branches as pressure taps. This
involves severing a branch some distance from the main lumen, inserting a small plastic tube, and tying
the tube externally to prevent blood leakage. Care must be exercised during the experiment to prevent
clotting in the plastic tube by frequent flushing with heparin. This technique is used in the animal
experiments, and details are reported here.

Animals were lightly anesthetized with ketamine–xylazine given intramuscularly, and a transcutane-
ous catheter was placed into a dorsal foreleg vein, maintained open with a heparin lock, for control in
case vascular support or euthanasia became necessary. Under this light anesthesia, transoral tracheal
intubation was performed, and anesthesia was controlled thereafter using inhalation nitrous oxide/meth-
oxyflurane with 20% oxygen and assisted respiration. An angiography catheter was then introduced into
a femoral artery and advanced to the aortic bifurcation for the injection of standard angiographic
contrast material.

The opposite femoral artery was surgically exposed from 1 cm beyond the inguinal ligament to the
adductor canal, and side (muscular) branches were identified. Most of these were ligated, but at appro-
priate distances some are cannulated for lateral wall pressures. An L and M Doppler flow meter is
positioned just after the proximal pressure tap. Flow measurements, absolute and differential pressures,
and angiograms are taken during resting and vasodilated flow (adenosine or the radiographic contrast
agent renografin). Correlation of angiograms and physiological data is made by use of a radiation sensitive
voltage producing device in the radiographic field. Just after euthanasia by a large injection of pentobar-
bital while the animals are still anesthetized, post-mortem casts are made of the vascular segment using
a silicone rubber bolus.
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 Care is taken to obtain mean 

 

in vivo

 

 arterial reference diameters by adjusting
the perfusion pressure. Details on the measurements, instrumentation, and data acquisition system are
given below.

 

Technical Details, Instrumentation and Data Acquisition System

 

For studying the femoral artery, contralateral femoral artery catheters were used to measure iliac bifur-
cation pressures with the tip positioned with a fluoroscope. The tip of the probe was closed and faced
downstream. The static pressure holes were on the side. The transducer control instrumentation was
part of the EforM in the USC laboratory. This transducer was calibrated with a mercury manometer.

Based on a pre-test angiogram, a section of the femoral artery was selected between two branches.
Any intervening branches were tied off. The two end branches were isolated, cannulated with a static
pressure tube, and each branch was sutured tightly around its tube. A fluoroscope was used to position
the pressure tap tube normal to the artery with the tip at the wall location. The tube was then secured
in position to the surrounding tissue. The animal’s leg was positioned so that the arterial section was
level. The pressure tap tubes were connected to the two sides of the Validyne differential pressure
transducer (model number DP103-20), which has a frequency response of at least 1000 Hz for incom-
pressible fluid such as blood, and appropriate valving to permit frequent flushing and zero checking
(Fig. 8.1). The transducer was filled with heparin solution used in frequent flushing to prevent clotting
at the tips. 100 cm of water at the full scale diaphragm plate were used in the transducer to minimize
the time delay of the response due to fluid movement as the transducer diaphragm deflected. A 200 Hz
low-pass internal filter was used. The excitation voltage and calibration for the differential pressure
transducer were determined at JPL under static and steady flow conditions with a water manometer. The
instantaneous 

 

in vivo 

 

pressure difference signals were quite smooth.
The velocity measurement was made with an L and M Doppler flowmeter. Based on the pre-test

angiogram, the position for the flow cuff in a relatively straight section of the artery was selected. The
appropriate sized flow cuff was placed around the vessel. The skin incision flaps were pulled up and
secured, forming a wall to hold the saline solution in which the flow cuff was immersed. For blood flow,
an 8.2 MHz excitation signal provided a good output. Both the time-mean and instantaneous fluctuating
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signals were obtained with the unit. The fluctuating signal had a high noise level even with a steady flow
in bench experiments at JPL. A 30 Hz internal low pass filter was used to obtain a localized 0.03 s average
throughout the approximate 0.47 s heartbeat of a dog. Filtering below 30 Hz has been observed to reduce
the level of the peaks. The instrument was calibrated at JPL for steady flow of blood through silicon
tubing. These calibrations have been shown to be good for the mean of a fluctuating flow in bench tests
at JPL.

Additional instrumentation (Fig. 8.1) from JPL provided for the amplification/attenuation and/or time
averaging of the three fluctuating signals and their recording on a magnetic tape cassette in the ± 1 volt
range. A fourth channel was used for voice documentation during the tests.

Several angiograms of the arterial section were obtained during the experiments. The renografin
solution injection for these angiograms caused vasodilation. Data was normally obtained during this
process.

At a later date, the recorded data was reduced at JPL. The schematic for the instrumentation used to
retrieve the tape recorded signals is given in Fig. 8.2. The smoothly varying differential pressure signal

 

FIGURE 8.1

 

Instrumentation schematic for acquiring the fluctuating pressure, pressure drop, and velocity mea-
surements during the 

 

in vivo

 

 animal experiments at USC for display on the EforM (channels 1, 2, 4, and 6), evaluation
of the time-averaged readings during the test, and recording on the cassette tape recorder for subsequent analysis.
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was used to provide a marker via a trip circuit and a pulse generator. This marker was used to excite the
correlator and initiate a 256 point additive accumulation during the next window, which was typically
0.4 s. Generally, 80 to 160 such sums were averaged at each time t in the cardiac cycle. The resulting
distribution was displayed on the oscilloscope, could be plotted on the X-Y plotter, and was sent in digital
form at 110 baud to a computer for further processing.

Correlator settings and reference information such as the mean readings into and out of the tape
recorder were also keyed into the computer via a teletype. Each signal on a given segment of tape was
thus processed individually, but always relative to the timing of the differential pressure signal. The
computer corrected for the calibrations of the various instruments used to process the signal and provided
a plot of the data.

Interpretation of these results required knowledge of the physical topography of the vessel section and
the blood properties. The former was obtained using the densitometric image scanning methods devel-
oped by the JPL Biomedical Image Processing Laboratory. Therefore, the lateral extent and the cross-
sectional area along the vessel section could be obtained from the angiograms. Background interference
could be corrected for by using a pre-angio x-ray. Direct visual comparisons could also be made with
the silicone cast of the section.

The viscosity of the blood drawn from the animal was measured with a Brookfield cone and plate
viscometer, which measures the shear stress at shear rates up to 450/s. These measurements were made
at several temperatures including the 

 

in vivo

 

 temperature with a chemically stabilized sample stored under
refrigeration. The density was obtained by weighing 10 cc of this blood sample.

 

Arterial Geometry

 

A tracing of the x-ray of a portion of the femoral artery of a dog where the measurements are taken is
shown in Fig. 8.3. The pressure drop across the segment is measured by using two small branch arteries

 

FIGURE 8.2

 

Instrumentation schematic for the analysis of the tape recorded fluctuating signals at JPL. Averaged
cyclic distributions synchronized using the pressure drop signal were obtained on the correlator for subsequent
processing on the computer. The time average of the signals was also evaluated.
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which are ligated and connected by tubing to a Validyne transducer. The cuff for the Doppler flowmeter
is located near the first branch, as shown in Fig. 8.3.

For Studies 1 and 2, the vessel segment (Fig. 8.3) is simplified and kept relatively straight with mild
taper. The vessel diameter at the first branch tap (referred to as port 1) is d

 

1

 

 = 3.8 mm, and at the second
branch tap (referred to as port 2) is d

 

2

 

 = 3.6 mm. The axial distance between the branch pressure taps
is 52 mm, so that the ratio of axial distance and diameter d

 

1

 

 of the vessel segment is 13.7.

 

Formulation

 

The objective of this numerical study was to obtain the time-dependent solution of an incompressible,
non-Newtonian fluid for the selected geometry (Fig. 8.3). The flow is described by the conservation
equations of fluid mass and momentum. A finite element method (FEM) was used to solve the two
conservation equations and, therefore, to obtain the velocity, wall shear stress, and pressure distributions.
These two equations are presented as follows:

(8.1)

and

(8.2)

where 

 

i

 

, 

 

j

 

 = 1, 2 for axisymmetric flows, 

 

u

 

i

 

 is the ith component of the velocity vector, 

 

ρ

 

 is density, 

 

σ

 

ij

 

is stress tensor, and 

 

f

 

i

 

 is the body force. Furthermore,

(8.3)

(8.4)

(8.5)

Here, 

 

p

 

 is the pressure, 

 

τ

 

ij

 

 is the deviatoric stress tensor, 

 

ε

 

ij

 

 is the shear rate tensor, 

 

η

 

ij

 

 is the tensor viscosity,
and 

 

δ

 

ij

 

 is the Kronecker delta. This study was conducted using the axisymmetric coordinate system with
symmetry about the z-axis, i.e., all field quantities were independent of 

 

θ

 

, and the circumferential
component of velocity 

 

u

 

θ

 

 was zero. Axial components of flow were reported as a function of r along the
z-direction.

The stress vector 

 

s

 

i

 

 at a point on the boundary of a fluid element is defined by

(8.6)

 

FIGURE 8.3

 

X-ray tracing of a portion of the femoral artery of a living dog. Ligated small branch arteries are
marked port 1 and 2.
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For a known element and the solution field, the stress component 

 

s

 

i

 

 on the boundary at the Gaussian
integration points was evaluated. Subsequently, the normal and tangential components of stress vectors
were obtained after applying the appropriate transformations.

The Galerkin formulation

 

5

 

 using finite elements was applied here in order to discretize the above
continuity and momentum equations; this resulted in a set of non-linear algebraic equations of the form

(8.7)

where 

 

U

 

 = (

 

u

 

1

 

 

 

u

 

2

 

), 

 

V

 

 = (

 

u

 

1

 

 

 

u

 

2

 

 

 

P

 

), 

 

K

 

(

 

U

 

) is the global system matrix developed from the momentum
balance, 

 

M

 

 is the mass matric, 

 

u

 

i

 

 is the velocity unknown, and 

 

F

 

 is the forcing function (including body
forces and boundary conditions). Four nodal quadrilateral elements were considered for this study. The
mesh plot for the artery is shown in Fig. 8.4.

In order to numerically solve the momentum and continuity equations for velocity and pressure fields,
various solution techniques were used. In a FEM, solution techniques include mixed and penalty for-
mulations. For the mixed formulation, both velocity and pressure in the momentum and continuity
equations are independent variables and were solved simultaneously, whereas for the penalty formulation,
only velocity is an independent variable, and pressure was approximated by the dilation rate of liquid.
In other words, the FEM was not directly applied to the system of equations but rather to a perturbed
system of equations in which the continuity requirement was weakened by a penalty parameter, 

 

ε

 

. The
pressure was approximated as follows:

(8.8)

For high aspect ratios of the elements, a small penalty parameter is recommended. Physically, this can
be equated to simulating a flow that has an insignificant compressibility effect. This approach has the
advantage of eliminating one of the dependent variables 

 

p

 

*, which is then recovered by post-processing
from the velocity field by

(8.9)

Clearly, both the pressure and velocity fields must be determined in the calculation method. Considering
the merits and demerits of numerical schemes and associated inlet boundary conditions, a penalty
formulation was used for Study 1, whereas a mixed formulation was chosen for Study 2.

The matrix equation (8.7), representing a discrete analog of the original equations for an individual
fluid element, was constructed, assembled, and solved. For spatial integration, the number of iteration
steps was limited to ten at each time step with a combination of the successive substitution and quasi-
Newtonian scheme.

 

FIGURE 8.4

 

The mesh plot of the femoral artery shown in Fig. 8.3. For Studies 1 and 2 the vessel segment is
simplified and kept relatively straight with mild taper.

MV K U V F U˙ ,+ ( ) = ( )

u pi i, ,= − = × −ε ε  where  1 10 9
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© 2001 by CRC Press LLC

 

The numerical simulation of a pulsatile flow required a time integration method. The implicit time
integration scheme used in this study was the second-order trapezoidal method with a variable time step,
which is dependent on the magnitude of temporal inlet velocity and its gradient change. Depending on
the physiological velocity pulse shape, the time steps were varied between 1 

 

×

 

 10

 

–4

 

 to 1 

 

×

 

 10

 

–5

 

 s. The
finite-element computer code

 

13

 

 was used to formulate and solve this matrix equation. For the present
study, a Sun Ultrasparc 2 with a speed of 200 MHz, 256 MB RAM, and a 4 GB disk was used and the
post-processed results are down loaded to an IBM-PC computer for plotting the results.

In comparison to the core elements of the artery, the element sizes near the wall were kept small in
order to achieve accuracy for flow parameters. The aspect ratio of the elements was chosen to be less
than 10. For validation of the numerical computation, two separate computer modeling runs were
performed at peak systolic flow with different convergence criteria as follows: both the relative velocity
error with respect to the previous step and the relative residue error compared to the initial value were
set to be 2% and 1%.

 

9

 

 Furthermore, the overall convergence was confirmed by increasing the total number
of meshes by 20% over that of the previous run, and the two results were compared to check for accuracy.
When the improvement with 20% more meshes was less than 1% in velocity vectors, wall shear stress,
and pressure, the computation was considered to be accurate. In addition, the available experimental
data and the numerical prediction of pressure drop were compared. The analysis of results is from the
computation with the least CPU time, i.e., with less than 2% for both relative velocity error and relative
residue error. The CPU time for each time step is approximately 4.38 s for Study 1 and 2.86 s for Study 2.

 

Boundary Conditions

 

Study 1 was conducted with a pulsed velocity inlet condition whereas a pressure gradient was used in
Study 2. The inlet conditions used in both studies were obtained from 

 

in vivo

 

 experimental data. The
outflow boundary conditions did not need to be specified at the exit since its values were effectively
determined by extrapolation similar to the finite difference schemes. A no-slip boundary condition was
specified on the rigid arterial wall. Since the artery was relatively straight, the flow domain was modeled
as axi-symmetric. Specific details of boundary conditions for each study are provided below.

 

Boundary Conditions for Study 1

 

Obtaining an accurate 

 

in vivo

 

 instantaneous velocity inlet profile with a non-invasive method is difficult;
such an instantaneous velocity profile could have a spatial velocity distribution that is either parabolic,
uniform, or any combination of the two. Given this experimental difficulty and uncertainty, the measured
core velocity is the most accurate and must be considered. Since the femoral segment is deep within the
circulation and is branch-free upstream, the numerical calculations were performed for the instantaneous
velocity and a parabolic spatial inlet flow condition for which 

 

u

 

cl

 

 is twice the calibrated spatial mean
velocity 

 

u

 

c

 

. Fig. 8.5a shows the calibrated in vivo spatial mean velocity, as measured by an ultrasound
Doppler flow cuff. Further details are provided in the results section below.

The inlet core velocity ucl obtained by curve fitting is shown in Fig. 8.6a, and used as an input for the
present numerical simulation. The calculations are started at an axial distance of 2 cm upstream of port 1
for calculational stability purposes. The selected time steps for flow analysis are marked from 1 to 8 on
the pulse.

Boundary Conditions for Study 2

Measured pulsed pressure drop was applied at the inlet section where port 1 is located (Fig. 8.6b). Since
there was hardly any arterial curvature, the pressure variation in the radial direction was kept constant.
Based on the applied pressure drop at the inlet, the flow field developed in the flow domain. For Study 2,
since pressure drop was the boundary condition, the flow domain was truncated at port 1 and port 1
locations.

Determination of multi-dimensional arterial flow through viscoelastic vessels is beyond the scope of
current computational capability. In the literature, physiological wall motion data for a dog is available4

which may be useful in developing simpler interactive computer codes.
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FIGURE 8.5 Doppler flow velocity, pressure drop, and pressure measurements in the femoral artery of a dog. The
dashed curves are mean values. The in vivo spatial mean velocity uc in the femoral artery along a pulse cycle was
obtained by a calibrated Doppler flow cuff (Fig. 8.5a). Arterial pressure drop and pressure are shown in Fig. 8.5b
and Fig. 8.5c, respectively.
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Non-Newtonian Blood Viscosity

In order to calculate the shear rate-dependent non-Newtonian viscosity in the flow field, the local shear
rate, ·γ, was calculated from the velocity gradient through the second invariant of the rate of strain tensor,
IIγ,· as follows:

(8.10)

After the local viscosity is determined by the blood model, Eq. 8.11, the local shear stress, τ (= η ·γ), is
calculated. Schneck’s best three variable model (B3VM)20 was used in our earlier calculations. However,
during the course of Studies 1 and 2, a more accurate blood model, namely the Carreau model,10 was used.

Non-Newtonian Blood Viscosity for Studies 1 and 2

The Carreau model was used to represent the shear rate-dependent non-Newtonian blood viscosity whose
model constants were obtained by a curve fitting of available shear rate-dependent blood viscosity data
in the literature.10

FIGURE 8.6 In vivo core velocity uc1 pulse along the time steps for which flow data are reported in this chapter
(Fig. 8.6a). In vivo pressure drop between ports 1 and 2 is shown in Fig. 8.6b. The pulse rate is 128 beats/min.
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(5.11)

where λ (characteristics time) = 3.313 s, n = 0.3568, ηO = 0.56 poise, and η∞ = 0.0345 poise. The
dimensionless frequency parameter (α = 0.5 d √(ω/ν)) calculated based on infinite shear rate viscosity
for a dog was 3.7.

8.5 Results

Animal Hemodynamic Data

The Doppler blood flow velocity measurements and pressure drop measurements are shown in Fig. 8.5
as a function of time in the same plot. From these two measurements, ∆p vs. u is plotted to show hysteresis
effects (Fig. 8.7).

The flow signal was tri-phasic with a brief period of reverse flow during the early part of diastole. At
peak systole, the largest instantaneous pressure drop of –4.5 mm Hg was measured. The largest instan-
taneous pressure rise of +2.7 mm Hg occurred during flow reversal. During both of these peak conditions,
there was little phase lag as is evident in Fig. 8.5 .

To help identify the loop type hysteresis curve (Fig. 8.7), points labeled A through H are shown along
the velocity wave form in Fig. 8.5 for a cardiac cycle beginning with the systolic phase (point A). During
blood flow acceleration to peak flow, points A, B, and C lay along the upper branch of the hysteresis
curve (Fig. 8.7), while during the flow deceleration phase from peak to reverse flow, points C, D, and E
lay along the lower branch. For the second flow acceleration phase during diastole, points E, F, and G
transize from the lower branch of the hysteresis curve to the upper branch vicinity. During the latter part

FIGURE 8.7 Hysteresis plot of pressure change ∆p vs. uc in the femoral artery of a dog. Points A through H are
identified in Fig. 8.5a along the velocity pulse for a cardiac cycle.
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of diastole where flow deceleration occurs again, points G, H, and A loop above the upper branch of the
hysteresis curve to begin again the next cardiac cycle which is also shown in Fig. 8.7.

In addition to the pulsatile flow data, there is also interest in the mean flow data. The resting heart rate
of a dog is 128 beats/min and therefore, the period, T, of a heart beat is 0.47 s. Using a digital voltmeter
as shown in the previous section, the time-averaged blood flow velocity, ua = 15.1 cm/s, and time-averaged
pressure drop, ∆pa = –0.59 mm Hg, were obtained and are shown in Fig. 8.5 by the dashed curves. In this
case, the ratio of peak pressure drop at peak velocity to the mean value, ∆pp/∆pa , was 7.6, thus indicating
the relatively large variations in instantaneous pressure change compared to the mean value, including
during the flow reversal phase. The corresponding value of the ratio of peak flow velocity to the mean
value, up/ua , was 3.3, a value which is less than half of the pressure drop ratio, ∆pp/∆pa . A more complicated
pressure change–flow relationship relative to the mean flow value was evident during diastole.

To place the hemodynamic data in perspective, some comments are in order. Measurement of the
viscosity of the dog’s blood at the in vivo temperature gave η = 0.037 poise, and the measured blood
density, ρ, was equal to 1.04 g/cm3. The time-averaged flow rate Qa (= ua A1) based on the upstream
vessel diameter d1 (3.8 mm) was 102 ml/min. Since the mean flow Reynolds number Rea (= 4 Qa /πνd1)
was only 161, the flow was expected to be laminar. Considering the mean diameter (d

–
= 3.7 mm), the

time-averaged value of the pressure drop ∆pa  using the Poiseuille relation

(8.12)

was –0.54 mm Hg. A further correction for mildly uniform taper was made from the momentum
consideration;2 this then gave a value of ∆pa= –0.57 mm Hg. Since the measured value of ∆pawas only
about 3% higher, this afforded a reasonable estimate of the mean pressure drop and instilled confidence
in the accuracy of the measurement technique. Also considering the mean diameter (d

–
= 3.7 mm), the

time-averaged value of the wall shear stress (τw)a using the Poiseuille relation

(8.13)

was 12.7 dynes/cm2.
Finally, although the dimensionless frequency parameter, (α = 0.5 d1√(ω/ν)) was 3.7 and hysteresis

effects were evident during the flow acceleration and deceleration phases of the cardiac cycle, phase
variations between the velocity and pressure difference signals were relatively small at peak systole.

With the experimental data at hand, we turned to the task of numerically calculating the flow field
and pressure differences by solving the momentum conservation equations, including the shear rate-
dependent viscosity of blood.

Flow Calculation Description

This section has been divided in two parts: the results of Study 1 are followed by the results of Study 2.
This section clearly demonstrates the agreement and disagreement between experimental measurement
and numerical calculation. The calculations in Study 1 for a parabolic inlet profile were consistent with
the Doppler flowmeter calibration where core flow velocities were about twice the spatial mean velocities
shown in Fig. 8.5, unlike the earlier calculations7 which corresponded to assumed lower centerline
velocities, which were incorrectly interpreted from the Doppler calibration, by a factor of about two.
Also, these calculations used a more accurate Carreau model for shear rate-dependent non-Newtonian
blood viscosity (η) than the Wilburn and Schneck model20 used in the earlier calculations.7

Flow Calculation for Study 1

Temporal and spatial variations of the velocity profile were obtained along the radial directions of ports
1 and 2, whereas shear rate and non-Newtonian viscosity were reported at each port location. Shear

∆p Q da a= −128 1 4η π/

τ η πw a aQ d( ) = 32 3/
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stress was calculated along the arterial wall between ports 1 and 2. In vivo pressure drop measurements
across the ligated arteries (ports 1 and 2), which were connected to the tubing leading to a pressure
transducer, were reported along with the validation of numerical pressure drops between ports 1 and 2.

This section presents detailed flow analysis for parabolic inlet velocity profiles. Results for the systolic
acceleration (Fig. 8.6a) are represented by time steps 1 and 2, whereas results for systolic deceleration are
represented by time steps 3 and 4. Time steps 5 and 6 represent an accelerating negative flow and a
decelerating negative flow for early diastole, respectively. Time steps 7 and 8 represent an accelerating
and decelerating positive flow for late diastole, respectively. Fig. 8.6a indicates the exact time that corre-
sponds to the number of the time step; the figure shows that the velocity at the inlet is positive for time
steps 1-4, 7, and 8, and negative for 5 and 6.

Velocity Distribution for Parabolic Inlet Velocity Profile
Fig. 8.8a shows the spatial distribution of the axial velocity profile for different time steps at port 1. The
instantaneous velocity profiles of curves 1–4 are positive, with a centerline velocity that rises to 93 cm/s
near peak systole; for curve 5, a flow reversal with velocity –7.2 cm/s is obtained near the wall, although
the core velocity is still positive with a value of 9.7 cm/s. In contrast, the velocity for curve 6 is less
negative with a maximum value of –2 cm/s near a distance halfway along the radius. For late diastolic
flow, curves 7 and 8 show similar velocity profiles with a lower magnitude than that observed during
systolic flow. Flow reversal near the wall during the late decelerating flow with a positive core velocity is
an interesting phenomenon. Since the calculations were initiated upstream of port 1, some flow devel-
opment occurred before port 1 during the cardiac cycle. For example, during flow acceleration phases
(curves 2 and 7) the core velocity profiles became flatter than the inlet profiles, and during the reverse
flow phase (curves 5 and 6) the velocity profiles became M-shaped as noted.

Similar trends were observed at port 2 (Fig. 8.8b) with variations of velocity caused by the mild taper.
Due to the gradual taper of the artery, a higher core velocity of 51 cm/s was obtained at port 2 (compared
to 45 cm/s at port 1) for curve 2 during the accelerating phase of the systolic flow. This trend was partially
reversed during the decelerating phase of the systolic flow. At port 2, the centerline velocity for curves 3
and 4 were 90 cm/s and 70 cm/s, respectively, whereas at port 1 the values were 93 cm/s and 69 cm/s,
respectively. Furthermore, in comparison to port 1, curve 5 at port 2 showed a slightly higher value for
the reversed peak flow with a value of –7.6 cm/s. The velocity for curve 6 had a maximum value of
–2.1 cm/s.

Shear Rate for Parabolic Inlet Velocity Profile
For a single cardiac pulse with a parabolic velocity profile, an oscillating wall shear may be observed in
Figs. 8.9a and b. Spatial variations in the shear rate for selected time steps 1-8 (Fig. 8.6a) are shown in
Fig. 8.9a (port 1) and 8.9b (port 2) with arrow marks indicating the oscillations at the wall regions. The
magnitude of the wall shear rate at each time step is larger at port 2 than at port No. 1, indicating the
effect of the taper.

Fig. 8.9c shows the complete time history for the entire pulse cycle. At port 1, the shear rate varied
from zero to a maximum value of 1350 s–1 at t = 0.089 s (before peak systole, between time steps 2 and
3 of Fig. 8.9) and attained a zero shear rate during the decelerating phase of late systole (between time
steps 4 and 5). It then reached a maximum negative shear rate of –310 s–1 at t = 0.225 s (early diastole,
near the peak negative velocity after time step 5) which was followed by a shear rate of 494 s–1 at t = 0.296 s
(before the late diastolic peak positive flow, after time step 7). At port 2 (Fig. 8.9c) the shear rate varied
from zero to a maximum positive value of 1555 s–1 at t = 0.089 s and attained a zero shear rate value
during the decelerating phase of late systole, before reaching a minimum shear rate of –340 s–1 at t =
0.225 s, which was followed by a shear rate of 565 s–1 at t = 0.296 s before the peak diastolic positive flow.

The steeper slope in the curve of the wall shear rate vs. time at port 2 compared to port 1 (Fig. 8.9c)
was due to the taper during both acceleration and deceleration. This in turn affected the non-Newtonian
viscosity, the shear stress, and the pressure drop. The systolic decelerating slope of the shear rate at port
2 was greater than at port 1, causing the shear rate lines (Fig. 8.9c) to intersect after time step 4 at
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t = 0.205 s. At port 2, the magnitude of the extremum values of the wall shear rate was larger than that
for port 1. This can be attributed to the arterial taper.

Non-Newtonian Viscosity of Blood
The non-Newtonian viscosity of blood was modeled using whole blood. The non-Newtonian blood
viscosity at the wall is presented in Fig. 8.10 for the parabolic inlet flow. It is apparent that for high shear,
the non-Newtonian viscosity is low and vice-versa. In Fig. 8.9c, the shear rate at port 2 is higher than that
at port 1, resulting in a lower non-Newtonian viscosity. The viscosity during systole, in general, is smaller
than that during diastole. At peak systole in Fig. 8.10, the non-Newtonian viscosity is 0.037 poise (1 poise
= 0.1 Pa/s) which is the infinite shear rate viscosity measured using dog blood in a cone and plate
viscometer. Near the zero shear rate, the non-Newtonian viscosity is 0.16 poise, which is approximately
four times the infinite shear rate viscosity. The non-Newtonian viscosity oscillates during the decelerating
part of systole which is due to the oscillation in shear rate between positive and negative values.

Due to the higher systolic decelerating slope for the parabolic inlet condition (Fig. 8.9c), the shear rate
at port 2 at the end of systole and at the beginning of diastole was lower (larger negative value) than at
port 1, which caused a locally lower value of the non-Newtonian viscosity (Fig. 8.10).

FIGURE 8.8 Radial velocity distribution, with a parabolic spatial inlet condition, for different time steps along a
pulse cycle at port 1 (Fig. 8.8a) and port 2 (Fig. 8.8b).
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FIGURE 8.9a-b Radial shear rate distribution, with a parabolic spatial inlet condition, for different time steps along
a pulse cycle at port 1 (Fig. 8.9a) and port 2 (Fig. 8.9b).

FIGURE 8.9c Temporal variation of wall shear rate distribution at port 1 and port 2 for a parabolic spatial inlet
condition.
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Shear Stress
Fig. 8.11 shows the instantaneous shear stress along the arterial wall for parabolic inlet conditions. The
shear stress at the wall illustrates the combined effect of instantaneous wall shear rate and local non-
Newtonian viscosity.

During the systolic acceleration at port 2, the wall shear stress shown in Fig. 8.11 increases from zero
to more than 47 dynes/cm2, followed by a drop to a value of less than –13 dynes/cm2 during early diastole
(time step 5). Subsequently, during the late diastolic phase (time step 7), the shear stress rises to a positive
value of more than 22 dynes/cm2 followed by a reduction to zero at the end of a pulse cycle. the maximum
value of the wall shear stress is 57.0 dyn/cm2 at t = 0.089 s (before peak systole between time steps 2
and 3). As observed in Fig. 8.11, the effect of the taper is indicated by a gradual rise in the magnitude of
shear stress with axial distance for all the time steps.

FIGURE 8.10 Temporal variation of non-Newtonian viscosity at the wall for port 1 and port 2 for parabolic spatial
inlet conditions.

FIGURE 8.11 Wall shear stress distribution for different time steps along a pulse cycle between ports 1 and port 2
for parabolic spatial inlet conditions.



© 2001 by CRC Press LLC

Pressure Drop
Since Banerjee et al.6 reported pressure drop results calculated for different discontinuous pressure
formulations (e.g., bilinear, linear with local basis function, and linear with global basis function), only
the results obtained using the discontinuous bilinear pressure formulation5 are presented here for the
parabolic inlet condition. The pressure drop calculated for different pressure formulations is presented
in Banerjee et al.6 Curve 1 in Fig. 8.12 represents the pressure drop for the parabolic inlet condition.
Curve 2 represents the experimentally obtained in vivo pressure drop measurements.

For the parabolic inlet condition, the calculated pressure drop has a maximum value of –6.7 mm Hg
at t = 0.087 s (represented by the upward spike) during peak systole and reaches 3.1 mm Hg at t = 0.192 s
during early diastole (represented by the downward spike). Experimentally measured peak pressure drops
are –4.5 mm Hg at t = 0.110 s during systole and 2.7 mm of Hg at t = 0.225 s during the early diastolic
phase of flow. For mid-diastole, the second peak pressure drop is also overestimated (–3.0 compared to
–1.7 mm Hg) and in late diastole, a pressure rise was calculated but a pressure drop was measured.
Numerical calculation of the average pressure drop is –0.645 mm Hg for the parabolic inlet condition,
whereas experimental data show a value of –0.59 mm Hg. The 10% difference between the calculated
and measured average pressure drops, shown in Fig. 8.12 by the horizontal lines, is relatively small
compared to the ∆p oscillations during the cardiac cycle.

FIGURE 8.12 Temporal variation of pressure drop at the wall between ports 1 and 2 along a pulse cycle (Fig. 8.12a).
Instantaneous pressure drops for parabolic spatial conditions are plotted along with in vivo data obtained in a living
dog. Also plotted is the time-averaged pressure. Fig. 8.12b is the measured inlet core velocity ucl (same plot as in Fig.
8.6a). Figs. 8.12a and b should be read in conjunction to calculate the phase angle.
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During the acceleration part of the flow, the predicted peak pressure drop –∆pp is obtained at t = 0.087 s
for the parabolic inlet conditions (Fig. 8.12a). From Fig. 8.12b, a peak Doppler velocity uc-p is obtained
at t = 0.12 s. This clearly indicates a phase lag between predicted ∆pp and measured uc-p that amounts to
θ = –25°, since uc-p lags predicted –∆pp . At the beginning of diastole, flow reversal occurred (ucl = –7.7 cm/s
at t = 0.24 s). The peak in the predicted adverse pressure gradient +∆pp occurred at an earlier time so
that the phase angle was –37°. For the second smaller peak flow, uc-p at t = 0.33 s, the phase angle was
about –27°. These calculated phase angles are within the range of 0° to –60° known for physiological
flows, and indicate a hysteresis effect between predicted ∆p peaks and measured uc . Moreover, the
predicted ∆p peaks appear to precede the measured ∆p peaks by phase angles of –18° to –46°, progressively
increasing during the cardiac cycle.

Flow Calculation for Study 2

Results of the numerical calculations where the measured pressure gradient ∆p(t) was used to calculate
the flow field are shown in Figs. 8.13a and b. Fig. 8.13a shows the pulsatile Doppler blood flow mean
velocity uc(t) and the spatial average instantaneous mean velocity, defined as 

FIGURE 8.13 Temporal variation of velocity at cuff location along a pulse cycle (Fig. 8.13a). Instantaneous velocities
(spatial average and peak) are plotted along with the in vivo spatial mean uc data obtained in a living dog. Also plotted
are the time-averaged velocities. Fig. 8.13b is the measured –∆p in mm Hg (same plot as in Fig. 8.6b). Figs. 8.13a
and b should be read in conjunction to calculate the phase angle.
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(8.14)

and centerline velocity ucl(t) obtained from the calculations. Also shown are the time-averaged velocities
of the pulse cycle. Plotted below these results is the measured pressure drop ∆p(t) (Fig. 8.13b). The phase
angle θ between the measured peak ∆p and peak uc-p signals was calculated as before. That is, if the peak
∆p signal occurs at ωt1 , and the peak uc-p signal occurs at ωt2 = ωt1 – θ, then since the circular frequency
ω is equal to πf (= 2π/τ), the phase angle θ becomes 360 (t2 – t1)/T°.

Fig. 8.13a shows that during systole where flow acceleration occurs, at peak flow the mean –up is
50.8 cm/s at t = 0.152 s, which is very near the Doppler velocity uc-p (49.4 cm/s at t = 0.107 s), and the
phase angle θ between ∆pp and –up is about –35° since –up lags –∆pp . At the beginning of diastole, the
adverse pressure gradient is peak +∆pp , flow reversal occurs, and the peak mean value ––up is –10.3 cm/s
at t = 0.293 s, which is about 2.9 times larger than –uc-p (–3.58 cm/s at t = 0.236 s). The +∆pp

––up phase
angle increased to about –50°. For the second smaller peak flow during mid-diastole where flow accel-
eration occurred again, –up ~ uc-p , similar to the value during systole. The –∆pp , ––up phase angle further
increased to about –75°. The next cardiac cycle began before the mean –u decreased much at the end of
diastole during the deceleration phase, presumably due to the large phase lag. Fig. 8.13a also shows that
the ratio of predicted center line to mean velocity ucl-p /up

– is less than the Poiseuille value of 2, being 1.5
at peak systole, 1.4 for peak reverse flow, and 1.8 for the second smaller peak flow.

In the physiological case, phase angles are near zero for peak flow (systole) and reverse flow, and
positive for the second peak flow (mid-diastole). Values of θ are positive because uc-p occurred before ∆pp .

Calculated phase angles are associated with the pressure gradient

accelerating or decelerating the mean flow, i.e., Q(t) = –u(t) A including convective acceleration terms.
Radial variation in pressure across the flow is negligible. The force balance on an element volume Adz
in the axial direction z is

(8.15)

Thus, the pressure force must overcome the wall shear force to provide the net force necessary to provide
convective and unsteady flow accelerations and decelerations. The calculated phase angles between
measured ∆pp and predicted –up are nearly within the range of 0° to –60° known for physiological flows.
However, using the measured ∆p as input, the calculated velocities, particularly during diastole, are out
of phase and consequently not in agreement with the measured mean flow velocities. Flow reversal in
femoral artery of a dog and phase lag between pressure gradient and flow have been reported by McDonald
and his co-workers.17 In their case however, the agreement is much better between observed (high speed
cinematography) and calculated velocities from a derived pressure gradient

(8.16)
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where

is the time derivative of arterial pressure, and c is the recorded value for the peak to peak wave speed.
Fig. 8.13a also shows the time-averaged mean velocity –ua obtained by integration over the cardiac

cycle along with the measured time integrated mean flow velocity uc-a. The value of –ua = 16.9 cm/s is
about 12% larger than the Doppler value –uc-a = 15.1 cm/s, but the difference is relatively small compared
to the velocity variations during the cardiac cycle.

In the calculations, the femoral artery of the dog was assumed to be rigid. Whereas the dynamic
distensibility D or compliance c(= D/2) of the vessel wall was not measured, the measured arterial blood
pressure Pa(t) at the iliac bifurcation was used to estimate the magnitude of wall movement during the
cardiac cycle from

(8.17)

The mean blood pressure
—
Pa = 72 mm Hg and the peak systolic and minimum diastolic pressures were

92 and 52 mm Hg, respectively (Fig. 8.5). By using a value of D = 0.0013 1/mm Hg for the normal dog
femoral artery,18 the systolic and diastolic excursions from the mean wall radius were estimated to be
about the same, and the total excursion

was 2.6%. These estimated changes in lumen size during a heartbeat are not believed to significantly alter
the findings of this investigation in which wall motion was neglected during systole where axial flow
velocities are high. However, during early diastole, where flow velocities are low and flow reversal occurs,
radial recoil of the vessel wall may induce axial velocities no longer negligible. In this case, the coupled
equations of blood flow and wall motion would need to be considered.

8.6 Discussion

The numerical estimation of an instantaneous pressure drop for a pulsatile velocity or vice-versa is a
challenging task. For blood flow, the non-Newtonian nature of blood viscosity poses an additional
challenge in the calculation of the flow field. In the present case, temporal and spatial variations of shear
rate and velocity add further complexity to the problem. Sharp changes in the instantaneous inlet
boundary condition create numerical oscillations in the calculated data. In order to minimize these
oscillations, the time-dependent inlet boundary condition is smoothened, as shown in Fig. 8.6a.

In the present analysis, numerical calculations are conducted for two consecutive pulse cycles in order
to compare them and to obtain accurate results; the results for the second pulse cycle are calculated in
continuation of the first one. Complete numerical data are reported only for the second cycle. Some
important observations are noted as follows:

Discussion for Study 1

• Near peak systole, where sharp changes in velocity occur, less oscillation of pressure data are
observed for the second cycle than the first cycle.
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• The numerical calculation begins during the late accelerating phase of the systole, i.e., at about
0.05 s prior to the peak systolic velocity. Hence, the peak systolic pressure drop for the first cycle
is meaningless and is ignored. When the peak pressure drop is compared between the second and
third cycles, only a 0.13% change is observed.

• Determining the in vivo velocity pulse by non-invasive means such as the Doppler flow cuff allows
the physiological pressure drop to be calculated. The in vivo prediction of pressure drop using an
angiogram alone has a potential application from a medical diagnostic point of view, because it
allows quantification of the physiological flow parameters in arterial blockages or stenoses.

Discussion For Study 2

• The problem is solved for three consecutive pulse cycles. It was observed that the results of the
second and third cycles are within 1% of each other. It is evident that a repetitive solution is
obtained from the second cycle and, therefore, the results for the second cycle are presented.

• For a practical scenario, the in vivo pressure measurements can be obtained using invasive means
such as catheters. However, the pressure measured by a catheter needs to be modified in order to
avoid the errors caused by the change in the pressure field due to insertion of a catheter.

8.7 Summary and Conclusions

The observations made in the present study may be summarized as follows.

Experimental Study

The velocity waveform for the femoral artery of a dog was tri-phasic with relatively small phase variations
between the measured velocity and pressure drop at peak forward and reverse flow conditions. Hysteresis
effects were observed during the flow acceleration and deceleration phases of the cardiac cycle.

Numerical Study

Summary and Conclusions for Study 1

1. Determining the in vivo velocity pulse by non-invasive means such as the Doppler flow cuff allows
the physiological pressure drop to be calculated.

2. The calculation of instantaneous pressure drop across a segment of the femoral artery of a dog
was found to be in reasonable agreement with the measured in vivo pressure drop during the
cardiac cycle. The shape of the inlet velocity profile was assumed to be parabolic since the femoral
segment was deep in the circulation and branch-free upstream (pressures were measured in ligated
branches). Numerical calculation of the time-averaged pressure drop over the cardiac cycle was
about 10% higher than the measured in vivo value, which could also be estimated by using the
mean flow Poiseuille relation with a momentum correction for the vessel taper.

3. A phase lag between predicted peak ∆pp and measured peak Doppler velocity uc-p at systolic peak
flow, early in diastole, and in mid-diastole, was calculated in the range of phase angles θ of –25°
to –37°. The predicted ∆p peaks preceded the measured ∆p peaks at peak systolic flow, early in
diastole, and in mid-diastole by phase angles of –18° to –46°.

4. For the parabolic inlet condition, the mild taper of the artery caused some changes in both shear
rate and stress; specifically, a higher magnitude of oscillating shear rate at the wall during both
systole and diastole was observed downstream. Furthermore, the steeper gradient of wall shear
rate due to its taper affected not only the non-Newtonian viscosity of blood and the shear stress,
but also the pressure.
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Summary and Conclusions for Study 2

1. A progressive increase in phase lag between the inlet pressure gradient and calculated mean flow
was predicted. The phase lag increased from a few degrees during early systole to about –75°
during late diastole. A similar result has been reported by McDonald and his co-workers.17 Their
results show an increase of phase lag from zero degrees during early systole to about –58° during
late diastole.

2. The time-averaged mean velocity –ua obtained by integration over the cardiac cycle is found to be
about 12% larger than the measured time-integrated Doppler flow velocity ua-c.

3. The magnitude of the measured peak velocities uc is found to be in fair agreement with the
calculated mean velocities –ua . This fact is clearly evident when the systolic part of the pulse cycle
and the time-averaged values are compared. This observation can also be made with caution in
the diastolic region. In the diastolic region, the calculated phase difference is comparatively higher
than the experimental observations, resulting in apparent disagreement in the instantaneous
velocities. This needs to be investigated further from the perspective of viscoelastic wall effect.

From the comparisons of numerical Studies 1 and 2, we conclude that to estimate the pressure
drop–flow rate relationship in the mildly compliant femoral artery wall of the dog by using rigid wall
theory, it may be better to use the measured velocity than the measured pressure gradient as input into
the calculation. Hence, it is essential to use an accurate temporal and spatial distribution of velocity inlet
profile for the calculation in order to obtain an accurate pressure distribution. An earlier study12 has
suggested this approach, i.e., used the measured flow rate to estimate the mean wall shear stress in an
elastic artery model. Our study determined that by using the measured Doppler flow velocity as input,
the calculated ∆p is in fairly good agreement with the measured ∆p, but is still somewhat out of phase.
On the other hand, using the measured ∆p as input, the calculated velocities, particularly during diastole,
are more out of phase and not in agreement with the magnitude of the measured flow velocities.

It is believed that the calibrated Doppler flowmeter provides reliable flow velocity measurements. The
very high frequency excitation signal provides nearly instantaneous Doppler frequency shift data even
with an internal low pass filter as discussed in the Experimental Method section above. The validyne
differential pressure transducer has a high frequency response, and, with calibration, also accurately
measures the instantaneous ∆p. Therefore, the physiological phase difference between the ∆p and u
signals are shown in Fig. 8.5 and in the ∆p-u hysteresis curve in Fig. 8.7. Reproduction of physiological
measurements such as these is a challenging chore for computational fluid mechanics.

In vivo measurements in the laboratory have repeatedly shown that the velocity pulse and the pressure
drop are not only dependent on the physiological location of the artery, but also vary from one individual
dog to another. The results reported in earlier work6 are for a femoral artery of a different dog with a
similar trend of measured instantaneous velocity but with a different magnitude. Hence, a unique set of
results for any dog, or, in other words, a generalization of results, is practically impossible. This study
has attempted to propose a method to calculate pressure and velocity changes in an artery using an
arterial angiogram, the non-Newtonian viscosity of blood, and an instantaneous velocity or pressure
pulse. In conclusion, the hemodynamic measurements reported herein are believed to provide a set of
consistent data that may be useful in subsequent studies of arterial flows and numerical flow calculation
methods. Clearly, more work is needed to acquire a better understanding of arterial flow and pressure
variation along vessels during the cardiac cycle.
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Nomenclature

A = cross-sectional area

D = distensibility

c = compliance

d = lumen diameter

l = length of the vessel segment

nj = normal vector

p = pressure

p1 = wall pressure at reference location (initial node)

pi = wall pressure at any downstream nodes

Q = flow rate

rw = lumen radius

si = stress vector

t = time

T = period of heart beat

ui = velocity vector

z = distance along the main lumen

α = dimensionless frequency parameter, or Womersley number

γ· = shear rate

ε = penalty parameter

η = viscosity

θ = phase angle between ∆p and u

ν = kinematic viscosity (= η/ρ)

ρ = density

σij = stress tensor

ω = circular frequency, 2π/T

τw = wall shear stress

Subscripts

a = time-averaged

c = Doppler measurement

cl = centerline condition

p = peak value

∆ = difference

* = numerically computed value

Superscripts

(–) = spatial average
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9.3 Applications

 

Numerical Study of Flow in End-to-Side Distal Anastomosis: 
Three-Dimensional Models under Steady Flow Conditions • 
Numerical Study of Flow in Y-Shaped Bifurcations: Three-
Dimensional Models under Steady Flow Conditions • 
Numerical Study of Flow through Stenosed Coronary Arteries: 
Two-Dimensional Models under Pulsatile Flow Conditions • 
The Effects of Non-Newtonian Flow and Vessel Distensibility

 

9.4 Summary

 

9.1 Introduction

 

Numerical or computational model studies have been widely accepted as extremely valuable tools to
study and predict the behavior of biomechanical systems. When a numerical model is correctly established
and tested, it can be used to interpret experimental results, predict changes in outcome parameters with
respect to variations of other variables, evaluate existing and new theories, and help design new bio-
mechanical systems such as artificial organs. Along with theoretical analysis and experimental methods,
numerical simulation has become one of the three major approaches for biomechanical studies.

Generally speaking, theoretical studies can provide fundamental information and governing equations
for the behavior of mechanical systems. For most biomechanical systems, the geometrical structures are
complex and vary individually within a relatively large range. Therefore, theoretical studies of those
systems usually involve more complex equations and boundary conditions than those of simple mechan-
ical systems. The equations involved in biomechanical systems are often partial differential equations.
Except for some simple geometries with simple physical conditions, no exact solutions may be obtained
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for these equations. Therefore, while theoretical studies often provide the governing equations for the
behavior of biomechanical systems, the solutions for particular systems may not be available.

Normally, experimental studies are capable of providing information most closely resembling real
situations. However, suitable equipment and proper experimental settings are required. For biomechan-
ical systems, these experiments may include either 

 

in vitro

 

 or 

 

in vivo

 

 models. Although experimental
studies are widely used to investigate biomechanical systems, they can suffer from practical difficulties
and high operating costs. Due to the limitations of current technologies, some physical parameters in
biomechanical systems are difficult to measure. For example, wall shear rate measurements, which are
of prime interest in hemodynamic studies in the vascular system, are difficult to obtain experimentally.
For 

 

in vitro

 

 experiments, such measurements are typically taken using vessel models with transparent
walls and refractive index-matched fluids using laser Doppler anemometry at numerous axial sites.
Obtaining accurate velocity recordings near the wall is difficult, however, due to the relatively small
velocities present and lower particle density. In addition, because of the complexity and variation of
geometries in biomechanical systems and the sophisticated nature of the measurement instrumentation,
the operating costs may be very high. For example, an attempt to study a physical phenomenon as a
function of several parameters in the system requires a series of models. Due to the complexity of
geometries required in these models, the experiments would be very expensive as well as time consuming.

Numerical model studies are generally capable of solving problems with complex geometries and
physical conditions. Many problems which cannot be solved by theoretical studies may be solved numer-
ically. Numerical model studies usually include several variables as input parameters. With proper mod-
ifications of a numerical model, it is not difficult to study the changes in one or several parameters as
functions of other parameters. For this reason, numerical model studies are usually more flexible than
the corresponding experimental studies. Another advantage of the numerical method over the experi-
mental method is that some physical parameters which are difficult to measure experimentally are readily
obtained with numerical simulations. For example, shear rates along the wall at any site in a flow system
can be calculated easily from the numerical results whereas they are difficult to obtain using experimental
methods as mentioned previously. The major limitation of the numerical model study is that it is unable
to solve problems if they are governed by phenomena which cannot be described in mathematical terms.
In addition, the accuracy of some numerical model studies may be limited by computer execution time
and/or memory space when complex equations and boundary conditions are involved. With improve-
ment of computer and modeling technologies, more complex structures and more input parameters may
possibly be included in numerical simulations of biomechanical systems. It is expected that numerical
models will play a more important role in the investigation of biomechanical systems in the future.

It should be noted that, although a numerical model study can sometimes replace an experimental
study, numerical simulations and experiments are often complementary. In practice, experiments are
often preceded by numerical model studies, and numerical simulations are validated by experiments.
Sometimes, the input parameters for a numerical study may be obtained directly from an experimental
study. The combination of an analytical study, a numerical simulation, and experimental observation
provides the most powerful approach to comprehensive analysis of biomechanical systems.

The numerical method applies a variety of technologies including mathematics, physics, computer
science, and engineering. Finite element technologies are usually employed in these studies. Applications
of numerical model studies in biomechanical systems include a variety of fields, such as studies of the
hemodynamics of the cardiovascular system, analyses of the mechanics of major human structures such
as the head, heart, lung, bones, and joints, analyses of soft tissue mechanics, and mechanics of artificial
organs. Many textbooks have been published to introduce the methodologies of numerical methods and
their applications in many different fields.

 

1,18,57,60,62

 

 The goal of this chapter is to introduce techniques
involved in a numerical model study of hemodynamics in the vascular system with the emphasis on
large and middle size vessels. Particular examples of this application include the fluid flow fields in
three-dimensional steady flow models of an end-to-side graft anastomosis and the Y-branched bifurcation,
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and two-dimensional pulsatile flow models of a stenosed coronary artery. The reader is assumed to have
a fundamental knowledge of fluid dynamics and finite element techniques.

 

9.2 Numerical Methods

 

Governing Equations for Blood Flow

 

Conservation of linear momentum and conservation of mass are the primary laws governing blood flow
in humans. The equations of conservation of linear momentum, or Navier-Stokes equations in a Cartesian
coordinate system for an incompressible and Newtonian fluid, are: 

(9.1)

The continuity equation is:

(9.2)

where the subscript 
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 directions,
respectively; 

 

p
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is the pressure, and 

 

ρ

 

 and 

 

µ

 

 are the density and dynamic viscosity of the fluid, respectively.
Here we assume that the numerical models use a fluid with the same properties as the biological system,
i.e., 

 

ρ

 

 and 

 

µ

 

 are the same for the physical system and the model.
To simplify the expressions, the above equations can be expressed in vector form as:

(9.3)

(9.4)

where is the velocity vector, and
–
ƒ

 

b

 

 is the vector of body force per unit of volume. 
The effect of body force in the above equations is generally not significant and can be ignored for the 
study of blood flow in vessels.

When performing a numerical study, we can use non-dimensional parameters to simplify the simu-
lation. In these cases, reference values are selected for normalization purposes. When different references
are selected, the appearance of the equations may be different. Because blood flows in vessels are generally
considered as either steady or pulsatile, we can select an 
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as the reference or characteristic length, 
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 as
the reference velocity, and 
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 as the reference angular frequency, where 

 

T

 

0

 

 is the reference period.
Usually, the vessel diameter, the average velocity along a cross section of the vessel, and the angular
frequency of the base harmonic of the pulsatile flow are selected as the reference length, velocity, and
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angular frequency, respectively. The normalized non-dimensional length, time, velocity, and pressure are
expressed as:

(9.5)

Substituting the above relationships into Eqs. 9.3 and 9.4 and ignoring the terms of body force, the
modified form of the Navier-Stokes equation for a pulsatile, incompressible, and Newtonian fluid can
be expressed as:

(9.6)

The continuity equation is

(9.7)

where is the normalized non-dimensional flow velocity vector, and 
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 is the Reynolds
number:

(9.8)
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 is the kinematic viscosity and 
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 is the Womersley number:

(9.9)

To study blood flow in the vascular system, the initial and boundary conditions can be described as:

(9.10)
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described as
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where –

 

n  

 

is the normal unit vector at the outflow boundary. The shear stress at a vessel wall is

(9.13)

where 

 

γ

 

w

 

 is the shear rate; 

 

u

 

t

 

 is the tangential velocity and –

 

n 

 

is the normal unit vector at the wall.

 

Finite Element Formulation

 

From the above discussion, it is apparent that for a three-dimensional flow field, we need to solve a set
of coupled equations consisting of the three momentum equations and the continuity equation to obtain
the three velocity components and the pressure in the field. As a general consideration, one could put
the four variables together to solve the equations. However, since the continuity equation does not include
the pressure variable, many methods can be used to simplify the calculation and save computational time
and computer memory. To simplify the description of the derivation, we first put the four variables
together to solve the equations. The methods used to simplify the calculation in the realistic development
of algorithms will then be introduced.

To solve the equations, let us first define two operators –
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) and 
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)– as:

(9.14)
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(9.15)

For the differential equations defined in domain 
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, we need to find the solutions of:

(9.16)

We seek the approximate solutions for the equations as:

and simplify the expression as:

(9.17)
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(9.19)

Let us first consider 

 

�

 

l

 

. We can use a weighted residual method which requires that the weighted error,
or residual, goes to zero in the domain 

 

Ω

 

. That is,

(9.20)

where 

 

Ψ

 

n

 

 represents arbitrary weighted functions. The introduction of the weighted functions will allow
us to obtain the necessary number of linearly independent algebraic equations to match the unknown
parameters. As derived in Appendix A at the end of this chapter, three sets of algebraic matrix equations
can be obtained for each element as:

(9.21)

where the expressions of the parameters 
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 are shown in Appendix A.
Similarly, when we consider the error 

 

�

 

w

 

, a fourth set of algebraic matrix equations can be obtained as:

(9.22)

where the expression of is shown in Appendix A.
The four sets of algebraic matrix equations for each element with the boundary conditions are the

algebraic equations we need to solve to obtain the approximate solutions for the governing equations.
As mentioned previously, since the parameter of pressure is not included in the continuity equation,

several methods can be used to simplify the calculation. One of them is to use a lower order shape
function for the pressure variable or to set it as a constant value for each element. Because pressure does
not appear in the continuity equation, it is not the primary parameter and does not need to be continuous
across the inter-element boundaries. To simplify the simulation, we can replace Eq. 9.17 with:

(9.23)
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 Following a similar procedure to
that described above, we can obtain the approximate solutions. The minimum continuity requirements
for each element for this method are: (
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) are linear in 

 

x

 

, 

 

y
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 is a constant.
Another method, the penalty function method,

 

22,66,71

 

 considers the continuity equation as a constraint
to the Navier-Stokes equation. In this method, a term involving the pressure is added to the continuity
equation as:

(9.24)

∈ =








 ≠

=
∑w k k

k

m

W u N
1

0

∈ = ∈ =∫l l ndΨ Ω
Ω

0

∂
∂

+ + +( ) + − +








 =

= = ====
∑ ∑ ∑∑∑∑ u

t
D u u v w E p H u F u Gk

kn k

k

k k k kn k kn k kn

k

m

k kn

k

m

k

m

k

m

n

m

1 1 1111

0
,

u Ik kn

k

m

n

m

⋅ =
==

∑∑
11

0

Ikn

u u N p p Jk k

k

m

k k

k

e

= =
= =

∑ ∑
1 1

  and  

∇⋅ + =u pξ 0



 

© 2001 by CRC Press LLC

 

where 

 

ξ

 

 is a small parameter of order 10

 

–6

 

. This modification allows the momentum and continuity
equations to be decoupled but introduces a small error in the order of 

 

≤
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1/2

 

.

 

55.56

 

 Cuvelier et al.

 

22

 

 indicate
that the penalty function method yields a 10-fold decrease in computational requirements.

A different and popular approach to solving the governing equations is to use the stream function 

 

Λ

 

and the vorticity 

 

ζ as the primary variables and indirectly calculate the velocity and pressure in the flow
field.1,57 

Let us consider two-dimensional situations. The stream function and vorticity in the flow field can be
expressed as:

(9.25)

Because the continuity equation is identically satisfied by the stream function, the three coupling
equations for a two-dimensional flow field can be reduced to two second-order equations. Furthermore,
if only the stream function Λ is introduced, the three coupling equations for a two-dimensional flow
field can be reduced to a single fourth-order equation. Since the number of coupled equations is reduced,
the computation is greatly simplified.

Shape Function and Local and Global Coordinates

The determination of the shape or interpretation function is an important step in the numerical simu-
lation. Let us consider two-dimensional situations and define Nk as a shape function which is a component
in a linear equation

(9.26)

where U(x,y) is a potential function within an element and Uk is the potential value at node k
(k = 1, 2, … m). Fig. 9.1 shows samples of an element having m nodes (Fig. 9.1a) and 3 nodes (Fig. 9.1b)
in a global coordinate system. As an example, the shape functions derived for the triangle element shown
in Fig. 9.1b are shown in Appendix B at the end of this chapter.

FIGURE 9.1 A two-dimensional element having (a) m nodes and (b) three nodes in a global coordinate system.
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For an element having a more complex shape function and/or a large number of nodes, derivation of
the shape function is more complex. It can be greatly simplified if local or element coordinates are
assigned for each element. For example, a square element with the origin of its local coordinates attached
to its geometric center (Fig. 9.2a) can be used for a two-dimensional, 4-node element (Fig. 9.2b) in the
global coordinates. Also, a cube element with the origin of its local coordinates attached to the center of
the cube (Fig. 9.3a) can be used for a three-dimensional, 8-node element (Fig. 9.3b). The procedure to
derive the shape functions in the local coordinates is similar to that in global coordinates. The results
for the elements shown in Figs. 9.2a and 9.3a are listed in Appendix C at the end of this chapter. The
shape functions obtained in local coordinates need to be transferred to corresponding global coordinates.
The formula for the transformation between local and global coordinates in two-dimensional situations
is also provided in Appendix C.

FIGURE 9.2 A two-dimensional quadrilateral element in (a) a local coordinate system and (b) a global coordinate
system.

FIGURE 9.3 A three-dimensional hexahedral element in (a) a local coordinate system and (b) a global coordinate
system.
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Considerations for Pulsatile Flow

For simulating blood flow, we can use either a steady flow or pulsatile flow model. For steady flow, the
time-dependent term in the Navier-Stokes equation, i.e., –∂u/∂t, can be ignored and the calculation greatly
simplified. When a pulsatile flow model is used, the problem naturally becomes time-dependent. The
finite element formulation of time-dependent problems involves two steps: spatial approximation and
temporal approximation. Derivation of formulations presented in the previous sections deal with spatial
approximation. The time-dependent term has not yet been considered. The step of time approximation
often uses finite difference formulae for the time derivatives. This step converts the differential equations
into a set of algebraic equations among the velocity values at time ts = s∆t, where ∆t is the time
increment between two simulations of the spatial approximation and s is an integer. All time approxi-
mation schemes seek to find at time ts using the known value(s) of –u from a previous time or times,
i.e.,  etc. The choice of using one or more previous value(s) is dependent on the requirement
of accuracy and the relative slope of the change of velocity to the time interval selected. Because those
approaches are discussed in detail by many textbooks, we will not include those formulae here.

In the temporal approximation, the velocity profiles and/or pressure gradient in the inlet of the vessel
at different times or phases within the cardiac cycle are usually needed to serve as the boundary
conditions. To simulate real vessels or experimental models, we can measure the flow rate or the pressure
gradient waveform experimentally in the vessel or model to provide the boundary conditions.
Womersley73 and Nichols and O’Rourke47 described a method to predict the velocity profiles from the
pressure gradient in an axisymmetrical rigid pipe. Very often, the flow rate waveform may be easier to
measure because currently available pressure transducers normally need access holes on the pipe wall
while many transducers for flow rate measurements do not have such a requirement. By modifying
Womersley’s formulae,27 we can also use the measured flow rate to predict the velocity profiles at different
phases within a pulsatile cycle.

Using a Fourier series, any shape of a pulsatile flow rate can be expressed as:

(9.27)

where the subscript b again represents the biological or physical system, qb is the measured flow rate
waveform, Q0b is the steady flow component, n is an integer, Qnb is the nth harmonic of the flow rate, ωb

and tb are anglular frequency and time, respectively, and θnb is the angular phase of the nth harmonic.
The velocity profiles in a straight rigid pipe at any phase can be calculated from the superimposition of
the velocity profiles generated from each component of flow rate at the same phase. For a fully developed
flow, the velocity profile generated by the steady flow term Qob is a parabolic distribution, i.e.,

(9.28)

where rb is the distance between the observation point to the central axis of the pipe, Rb is the radius of
the pipe, and Vmb is the peak velocity at the central axis of the pipe.

For an arbitrary sinusoidal flow rate with an anglular frequency nωb ,

(9.29)

the pressure gradient that drives the flow rate along the tube is

(9.30)
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where ∆pb is the magnitude of the pressure gradient with the relationship of

(9.31)

and

(9.32)

where µ is the viscosity and αn is the Womersley number for that frequency with

(9.33)

M10′ and �10 are two parameters related to αn , which can be found from the tabulated data by Womersley73

and McDonald.42 When α > 10,

When the pressure gradient is determined, we can follow the procedure described by Womersley47,73

to calculate the velocity profiles at different phases for this frequency. In the same way, we can calculate
the velocity profiles for different harmonics. As mentioned previously, the velocity profiles at different
phases for a pulsatile flow can be obtained by superimposing the velocity profiles calculated from the
steady flow rate plus a series of harmonics. The number of harmonic terms included in the simulation
will depend on the accuracy required.

The Reynolds number and Womersley number are two important parameters for characterizing the
flow features. In order to keep dynamic similarity, when we use numerical methods to study steady flow,
we should use the same Reynolds number (Eq. 9.8) for both the biological system and the numerical
model, i.e.,

(9.34)

where Db is the diameter of the vessel, Ub is the average velocity in the vessel, and v is the kinematic
viscosity of the fluid. This is called Reynolds number modeling. When performing a numerical study
under pulsatile flow conditions, both the Reynolds number and the Womersley number (Eq. 9.9) should
be kept the same for the biological system and the model. In these cases, we should also have

(9.35)

where ωb and ω are the angular frequencies of the basic harmonic for the biological system and model,
respectively.
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9.3 Applications

Extensive investigations have been performed to study the hemodynamic features of the vascular system
using numerical simulations. Emphasis has been placed on the hemodynamics of vessels with complex
geometry such as branched bifurcations and graft anastomoses, and diseased vessels with stenoses and
aneurysms. The basic information sought in these studies includes (1) the fundamental hemodynamic
characteristics of different types of vessels; (2) the variations in those hemodynamic features with respect
to changes in vessel geometry and flow conditions; and (3) the relationships between the hemodynamic
features and vessel diseases. The primary goal of these studies is to use the findings from these observations
to improve the diagnosis and/or treatment of those diseases.

In numerical simulation, the basic hemodynamic features studied in vessels are the velocity vector
fields in different planes and the velocity profiles along different cross-sections. The overall flow pattern,
which may include flow skewing, reversed flow, flow separation, and stagnation, and secondary flow are
revealed using graphical representations of those data. Various other parameters such as shear stress,
streamline contours, vorticity contours, and particle paths can be derived based on the velocity and
pressure data.

Among the derived parameters, the shear stress along the vessel wall is particularly important because
there is increasing evidence that shear stress plays an important role in the formation and progress of
some vascular diseases, particularly atherogenesis. Currently, two theories based on low shear and high
shear exist to explain the role of shear stress in atherogenesis. Caro et al.11 reported that low shear stress
is associated with arterial atherogenesis. This may be caused by the reduced mass transfer rate in the low
shear stress area of the arterial wall. Here, nutrients are prevented from reaching the vessel wall23 and
lipids are easily stagnated along the wall.10 Many other studies6,7,24,38,45,58,68,77 also support this view of low
shear effects. On the other hand, Fry32 reported that high shear stress on the wall may damage the
endothelium of the vessel wall. His experiments showed that the walls of vessels obtained from dogs
became degraded after being exposed to a shear stress of 380 dyne/cm2 for one hour. This finding is
supported by the clinical study of femoral atherogenesis by Cho et al.16 and Back et al.2 Because both low
and high shear stresses may be causal agents, it is necessary to analyze the effects of wall shear stress
according to the particular conditions of the vessel.

In this section, we present three typical applications of numerical simulation in the vascular system.
First, the results of three-dimensional steady flow models of end-to-side distal graft anastomoses with
different angles and flow rates are presented. The emphasis in this application is on the variation of
velocity vector plots and shear rates in the central plane of the vessels. This application demonstrates the
utility of numerical simulation in helping surgeons make decisions about revascularizing diseased or
injured arteries. Second, numerical results of three-dimensional steady flow in Y-shaped bifurcation
models are presented. Here, the emphasis is placed on the velocity distributions within different cross-
sectional planes. This application demonstrates the utility of numerical methods for evaluating the
feasibility and/or accuracy of new experimental techniques. Third, numerical results of two-dimensional
stenosed coronary artery models under pulsatile flow conditions are presented. In addition to the velocity
distribution and shear rate, the results of particle tracking and pressure contours are also used to assess
hemodynamic features. This application demonstrates the use of numerical methods to study changes
in hemodynamic features associated with the severity of disease.

The results presented for each application are based on vascular models studied by the authors’ group.
Results from similar studies performed by other groups are presented for comparison. Since this chapter
deals mainly with numerical simulation, detailed descriptions of other experimental methods such as
magnetic resonance imaging and ultrasound Doppler color imaging will not be included. Readers may
refer to the cited papers and other textbooks to familiarize themselves with those techniques.
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Numerical Study of Flow in End-to-Side Distal Anastomosis: 
Three-Dimensional Models under Steady Flow Conditions

Numerical studies of the hemodynamics of end-to-side anastomosis have been performed by many
groups. Pietrabissa et al.54 reported results under two-dimensional steady flow conditions. Fei et al.28

presented results in three-dimensional models under steady flow conditions; this work included investi-
gations of the effect of different angles between the graft and the host artery and different flow rates.
Steinman et al.66 presented results of a two-dimensional model under pulsatile flow conditions. The effect
of wall distensibility with a two-dimensional model under pulsatile flow conditions was studied by
Steinman and Ethier,65 and the effect of non-Newtonian fluid was reported by Ballyk et al.3 As mentioned
previously, the basic results to be presented in this section were obtained by the authors’ group.28

The Models and Results of Numerical Simulation

Fig. 9.4 shows a typical three-dimensional mesh of the distal anastomosis models generated for the study.
Fluid enters at the upper left vessel (referred to as the graft) and exits from the right end of the horizontal
vessel (referred to as the artery). The left end of the artery is blocked to simulate an occluded vessel.
While arterial occlusion may or may not be present clinically, incorporation of this feature would require
specification of boundary conditions (i.e., magnitude of retrograde flow, proximal artery pressure, etc.)
not readily known. The length of the graft is 20 cm and the length of the artery is 28 cm. Both vessels
have a radius of 1 cm. A zero reference position within the model was defined as the intersection of the
geometric center lines of the graft and artery branches. A total of 6272 brick elements consisting of eight
nodes each were generated throughout the entire region with the mesh density being gradually increased
in the region close to the anastomosis. Using fluid properties typical of those for human blood (µ = 0.035
poise, ρ = 1 gm/cm3, and v = 0.035 cm/s), steady, parabolic velocity profiles at Reynolds numbers of 100
and 205 were specified as entrance boundary conditions. These Reynolds number values are typical of
iliofemoral bypass grafts with marginal and adequate clinical flow rates, respectively, which may vary
with the patency of the patient’s distal runoff vessels.4,5,78 Zero velocities were assigned to all vessel walls
and the occluded end of the artery as boundary conditions. A total of seven geometric models were
examined by varying the angle of distal anastomosis over a range of 20, 30, 40, 45, 50, 60, and 70 degrees.
Approximately 40 velocity profiles were taken along the artery in each model using a cross-section
perpendicular to the flow axis. The component of the velocity vector parallel to the vessel walls was used
to calculate the shear rate at each wall. This shear rate was then converted to a normalized shear rate,
NSR, representing the ratio of the local shear rate at the wall to the corresponding value at the entrance
of the graft.

The results are shown as follows.

Velocity Vector Plots
Fully developed parabolic flow was obtained at the graft inlet and at the artery outlet (L/D = 10) of all
models with Re = 100, while the profile was skewed slightly toward the outer wall at the artery outlet for
all models with Re = 205. Enlarged views of the velocity vector plots in the anastomotic region are shown
in Figs. 9.5a and 9.5b for the case of a 45° distal anastomotic angle with Re = 100 and 205, respectively.
Within the anastomosis, the velocity profile is skewed toward the outer wall with a stagnation point
occurring almost directly opposite the midpoint of the graft lumen along the outer wall. A weak vortex
is formed within the entire diameter of the closed end of the artery just upstream of the stagnation point.
A very small separated flow region is seen along the inner wall of the artery just downstream of the
anastomosis for Re = 205. These characteristic features are generally seen in all modeled cases with the
exception that the inner wall separation zone does not occur in cases with Re = 100 for anastomotic
angles less than 60° and in cases with Re = 205 for anastomotic angles less than 45°. Furthermore, it was
observed that the site of the stagnation point consistently moved further downstream relative to the toe
of the graft/artery anastomosis with decreasing anastomotic angles. Velocity vectors within cross-sectional
planes perpendicular to the arterial axis of 30° and 45° models (Figs. 9.6a and 9.6b) show that symmetric
vortices are formed upstream in the graft/artery anastomosis. These vortices are initially centered toward



© 2001 by CRC Press LLC

the outer and lateral walls of the artery and gradually shift toward the vessel center line with increasing
distance downstream. The cross-sectional velocity magnitudes for Re = 205 are two times those for
Re = 100 and are seen to rapidly dissipate with axial distance. The flow patterns are very similar for the
anastomotic angles of 30° and 45°, with the maximum velocities being reduced by approximately 35%
in the 30° angle model from those in the 45° angle at corresponding Reynolds numbers.

Wall Shear Rates on the Graft
For Re = 100, the normalized shear rates (NSR) along the inner wall were all larger than or equal to 1.0
for angles greater than 45°. In the case of the 45° model, for example, NSR = 1.0 over a distance from
the entrance of the graft (L/D = –10) to a position at L/D = –1.2 and then increased to approximately
2.2 at the vessel wall junction. For angles less than 40°, the inner wall NSR was less than 1.0 along a
distance near the junction (–2 ≤ L/D ≤ –0.8, –2.8 ≤ L/D ≤ –0.5, and –3.8 ≤ L/D ≤ –0.4 for angles of 40°,
30°, and 20°, respectively) with the lowest values being 0.95, 0.85, and 0.63 for the 40°, 30°, and 20°
angles, respectively. Along the outer wall, NSR increased from 1.0 at the graft entrance to values up to
1.68 (range: 1.68 to 1.08) at the wall junction for all angles from 20° to 50°. For the 60° and 70° angle
cases, NSR dropped below 1.0 between –1.5 ≤ L/D ≤ –1.0 and continued to decrease to 0.95 and 0.78,
respectively at the wall junction. 

For Re = 205, the normalized shear rates along the inner wall were all larger than or equal to 1.0 for
angles greater than 40°, increasing sharply near the junction (range: 1.58 to 2.9 for angles 40° to 70°).
For the 30° and 20° cases, NSR fell to 0.94 and 0.70, respectively within –1 ≤ L/D ≤ 0. Along the outer
wall, NSR increased from 1.0 at the graft entrance to values up to 1.50 (range: 1.50 to 1.06) at the wall
junction for all angles from 20° to 45°. For the 50°, 60°, and 70° angle cases, NSR dropped below 1.0
between –1.5 ≤ L/D –0.5, and continued to decrease to 0.99, 0.85, and 0.68, respectively at the wall
junction.

Wall Shear Rates on the Artery
Normalized shear rates at Re = 100 for anastomotic angles of 20° to 70° are displayed along the artery
inner and outer walls in Figs. 9.7 and 9.8, respectively. Inner wall NSR (Fig. 9.7) upstream of the anas-
tomosis sharply fell to zero and then became slightly negative compared to relatively high graft inlet

FIGURE 9.4 Three-dimensional mesh used in numerical simulation of arterial bypass graft distal anastomosis
with angles of 20°–70°. Insert shows mesh detail at anastomotic junction.
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values with the overall shear rates being consistently lower for larger angles. Inner wall NSR downstream
of the anastomosis likewise decreased rapidly from graft inlet values and were negative for angles greater
than 60°. For all angle cases, however, NSR returned to inlet values within 10 diameters downstream.
Outer wall NSR (Fig. 9.8) were negative upstream of the anastomosis and decreased to zero within three
diameters for all angles with the maximum negative values increasing with larger angles. A stagnation
point was also seen, upstream of the anastomosis, whose location approached the axial reference with
increasing angles. Shear rates increased downstream of the stagnation point with the magnitude and
location of the peak increasing with the degree of the anastomotic angle. Again, NSR returned to inlet
values within 10 diameters downstream in all angle cases.

NSR at Re = 205 for anastomotic angles of 20° to 70° are displayed along the artery inner and outer
walls in Figs. 9.9 and 9.10, respectively. The overall findings for models with Re = 205 corresponded to
those for Re = 100 with the primary exception that inner wall shear rates (Fig. 9.9) were considerably
lower just downstream of the anastomosis and became negative for angles greater than 45°. Additionally,
NSR did not return to inlet values within 10 diameters downstream for any angle models. Along the
outer wall (Fig. 9.10), the same general trends were seen as with Re = 100 except that the NSR were
consistently more negative upstream of the anastomosis and more positive downstream of the anasto-
mosis than corresponding values observed at the lower flow rate. Again, shear rates did not return to
inlet values within 10 diameters downstream for any angle models.

Utility of the Computational Simulation: Helping Surgeons Make Decisions in 
Vascular Surgery

The findings from the above study clearly document the potent influences of graft angle and flow rate
on flow patterns and wall shear rates within bypass graft end-to-side distal anastomoses. Characteristic
of all distal end-to-side anastomoses is a skewed velocity profile which produces low, and often reversed,
velocities along the wall in the proximal artery and in regions of the anastomotic toe and heel, while
producing elevated forward velocities along the distal outer wall of the artery. In particular, for a
proximally occluded artery, a graft distal anastomosis with a 20° angle produced the least amount of flow

FIGURE 9.5 Velocity vectors in the plane of symmetry for a 45° anastomotic angle at (a) Re = 100 and (b) Re = 205.
(Note: Velocity vectors are plotted at mesh nodes and do not lie along tube diameters.)
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separation and shear rate extremes along the artery walls as compared to anastomoses with angles up to
70°. This finding is primarily related to the occurrence of velocity skewing toward the outer wall as flow
enters from the graft into the artery. The resultant high velocities along the outer wall are offset by lower,
potentially reversed, velocities which maintain a net constant flow rate at all cross-sections. With a low
angle of entry, the fluid inertial forces undergo less redirection in the anastomosis, and, thus, experience
reduced skewing effects. For a given anastomotic angle, an increase in Reynolds number from 100 to 205
decreased the normalized wall shear rates along the inner arterial wall while increasing the magnitude
of the normalized wall shear rates along the outer arterial wall. The absolute values of the wall shear rate
for all arterial wall sites, however, were generally higher at Re = 205.

The implications of the presence of well defined vortices within the artery cross-section would be
expected to produce a flushing effect especially along the inner artery wall. Presence of these secondary
motions does not affect shear rates along the plane of symmetry but would increase shear rates along
the artery wall away from the plane of symmetry in a circumferential direction. Since the strength of
these secondary motions and, therefore, the convection of high axial momentum from the outer wall
toward the inner wall, increased with the degree of the anastomotic angle, it is concluded that these
effects account for the shorter length of the corresponding separation zones seen near the toe region
(Figs 9.7 and 9.9). This effect appears especially obvious for angles greater than or equal to 50° for
Re = 100 and greater than or equal to 40° for Re = 205.

The above numerical results correlate well with several in vitro experiments.21,36,48 In particular, the
model used by Keynton et al.36 exactly matched conditions of the above study for distal anastomotic
angles of 30°, 45°, and 60°. Those results documented flow patterns similar to the above study, where

FIGURE 9.6 Velocity vectors in the cross-sectional planes at L/D = 0, 1, and 3 for (a) a 45* anastomotic angle and
(b) a 30° anastomotic angle. The cases of Re = 100 (left) and Re = 205 (right) along with maximum in-plane velocities,
VM, and relative graphical velocity scale factors (SF) are shown in each panel.
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peak shear rates were found to be located at similar axial positions but with generally higher values. The
discrepancy in magnitudes may be due to measurement noise artifacts in the experimental study and
larger radial intervals in the numerical study. Keynton et al.36 also observed flow reversals in a separation
zone at the toe region near the anastomosis but only for the 60° angle of distal anastomosis at a Reynolds
number of 205. This differs somewhat with the above results where flow reversals were seen at Re = 100
for graft angles of 60° and 70° as well as at Re = 205 for graft angles greater than or equal to 45°, and
may be due to the limited ability of the laser Doppler anemometer to access the entire toe region. Based
on the relative magnitude of lowest shear rates, those investigators recommended an angle of 45° or
possibly 30° for the anastomosis and concluded that 60° would be undesirable.

While the effects of pulsatile flow were not incorporated into the above simulations, a further analysis
was performed in the same distal anastomotic models under pulsatile conditions simulating those in the
iliofemoral region (Remean = 459, Repeak = 459, and α = 3.56) using ultrasonic Doppler color flow imaging.59

While it was not possible to obtain the same degree of measurement resolution as in the above numerical
model, the findings from that study showed that there was wide variation in velocities over time. However,
the areas of low velocity and flow separation along the inner arterial wall and within the entire anastomosis
were minimized for the 30° angle at each of three critical time intervals during the cardiac cycle. Flow
visualization images obtained by Bassiouny et al.5 within models made from transparent silicon casts of
actual anastomotic junctions also revealed a stagnation point along the arterial floor together with low
and oscillating shear. High shear occurred in the hooded graft while low shear regions formed along the
lateral walls and the heel of the anastomoses.

The above comparisons with experimental results are encouraging and give credibility to the numerical
techniques employed in the above study. Steinman et al.65 used a numerical simulation to obtain flow
patterns and wall shear stress maps under pulsatile flow conditions in a two-dimensional rigid walled

FIGURE 9.7 Normalized Shear Rates (NSR) along the inner wall of the artery at Re = 100 for anastomotic angles
of (a) 20° to 45° and (b) 45° to 70°.
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model of a 45° distal anastomosis. They found a mobile recirculating region along the anastomotic toe
with an initially elevated wall shear stress which sharply dropped to negative values over the next one
diameter downstream along the artery. Narrowly elevated wall shear stresses were also seen at the heel
region which rapidly fell to zero further upstream. A transition in wall shear stress was seen along the
bed of the artery going from a negative value upstream of the anastomosis, through a stagnation point,
to positive downstream of the anastomosis. The authors concluded that sites of intimal hyperplasia
correlated with large values of wall shear stress and/or large temporal variations in wall shear stress.
While these results are consistent with the above basic results, emphasis on high wall shear stresses along
relatively narrow distances at the graft/artery junctions rather than on the nearby low wall shear stresses
acting over larger distances results in an apparently conflicting conclusion regarding the nature of
hemodynamic effects upon intimal hyperplasia. From chronic canine studies using vein and polytetra-
fluoroethylene grafts,6,64 it has been shown that intimal hyperplasia at the distal anastomosis occurs
primarily in graft regions just proximal to the anastomosis and along the toe, heel, and floor of the host
artery. Furthermore, inverse correlations between wall shear rate and thickness of intimal hyperplasia
have been consistently reported by other studies.5,7,24,38,45 It is our conclusion, therefore, that it is important
to find ways to minimize the extent of low shear rate regions in the bypass graft distal anastomosis.

The results obtained from the above numerical simulation would suggest the following recommenda-
tions for the region of a bypass graft distal anastomosis:

1. Grafts should be placed with a minimal distal anastomotic angle (preferably 20° or less).
2. Grafts should be exposed to high flow as opposed to low flow conditions.

The preceding application demonstrates that a numerical study may assist surgeons in making deci-
sions about graft surgery since graft angle is a factor which can be directly controlled by the surgeon

FIGURE 9.8 Normalized Shear Rates (NSR) along the outer wall of the artery at Re = 100 for anastomotic angles
of (a) 20°–45° and (b) 45°–70°.
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through operative procedures. The requirement for high flow conditions might be implemented by pre-
operative selection of vessels with good distal run-off and/or use of a post-operative exercise regimen.

Numerical Study of Flow in Y-Shaped Bifurcations: Three-Dimensional 
Models under Steady Flow Conditions

The hemodynamic features in the aortic (Y-shaped) bifurcation have been studied by many groups using
numerical simulations. Friedman et al.30 (two-dimensional pulsatile flow), Friedman and Ehrlich31

(two-dimensional steady flow), Einav and Stolero25 (two-dimensional pulsatile flow), Yung et al.76

(three-dimensional steady flow), Thiriet et al.69 (three-dimensional steady flow), and Fei et al.29

(three-dimensional steady flow) reported the results of numerical simulations under different geometry
and flow rate conditions with rigid wall and Newtonian flow models. Lou and Yang studied the effect of
non-Newtonian blood flow40 and flexible walls39 under two-dimensional pulsatile flow conditions. Again,
the example presented in this section is based on results obtained by the authors’ group.29 

The Model and the Results of Numerical Simulation

Fig. 9.11 shows the generated mesh of the model used in this study. The diameters (D) of the three
branches were all 2.54 cm and the bifurcation angle was 60°. A reference position (A in Fig. 9.11) was
defined as the intersection of the central axes of the inlet vessel and the two outlet branches. The length
of the inlet vessel was 2 D and the lengths of the two outlets were 5.5 D from the reference position. A
total of 13,140 brick elements consisting of eight nodes each were generated throughout the entire model,
with the mesh density being gradually increased near the branch point. In Cartesian coordinates, the
mid-plane of the bifurcation (passing through the three central axes of the tubes) was oriented along the

FIGURE 9.9 Normalized Shear Rates (NSR) along the inner wall of the artery at Re = 205 for anastomotic angles
of (a) 20°–45° and (b) 45°–70°.
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XZ plane, with the inlet branch along the Z axis. Again, the fluid viscosity and density were set to 0.035
poise and 1 mg/cm3, respectively. A rigid vessel wall and an incompressible, Newtonian fluid were
assumed. From the limited data available in man, the peak Reynolds number for the abdominal aorta
proximal to the bifurcation is between 400 and 1100, and for the common iliac artery it is between 390
and 620.47 To study the hemodynamic features in reasonably physiological flow conditions, Reynolds
numbers of 250, 500, and 750 were selected to perform the simulation. For each Re number, correspond-
ing parabolic velocity profile was assigned on the inlet surface of the inlet vessel. Again, zero velocities
were assigned at all vessel walls as boundary conditions.

To demonstrate the results, several planes are pre-defined. The mid-plane of the bifurcation mentioned
above is denoted L1 (for longitudinal plane 1). Another plane L2 is defined to be parallel to L1 but off-
center by 0.2 D; the offset direction is arbitrary, due to symmetry. The orientations of other particular
planes selected for examination are shown in Fig. 9.12. Five cross-sectional planes (normal to both L1
and the vessel axis) present transverse views of the fluid motion. One (C0) is on the inlet side, 1 D
upstream from the reference point. Four others (C1, C2, C3, and C4) are on the rightward outlet branch
at distances of 1.5 D, 2.5 D, 3.5 D, and 4.5 D downstream from the reference point, respectively. Three
planes normal to L1, positioned along the right outlet branch direction are also defined as normal plane
N2 (passing through the central axis) and N1 and N3, which are parallel to N2 but 0.4 D off the central
axis toward the inner and outer walls, respectively.

Fig. 9.12 shows the velocity vector plot at Re = 500 in plane L1 (the mid-plane) of the bifurcation. It
can be seen that the velocity profiles are laminar and nearly parabolic in the inlet vessel and skew toward
the dividing (inner) wall in the outlet branches. Fig. 9.12 also shows large asymmetric velocity peaks near
the divider walls at the inlets of the daughter branches, which then diminish and migrate toward the

FIGURE 9.10 Normalized Shear Rates (NSR) along the outer wall of the artery at Re = 205 for anastomotic angles
of (a) 20°–45° and (b) 45°–70°.
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center line as the fluid proceeds downstream. The peak velocities obtained at different Re at the inter-
sections of plane L1 with planes C0 and C1 and the ratios of peak velocities at C1 and C0 (peak ratio)
are listed in Table 9.1. It can be seen that with higher Re the ratio increases, indicating that the peak
velocity within each outlet branch approaches that of the inlet vessel.

Fig. 9.13 displays the superimposed velocity profiles at four sites from longitudinal planes L2 (off-
center) and L1 (mid-plane) at Re = 750. The profiles originate from the intersections of planes L2 and
C1–C4 (Fig. 9.13a) and the intersections of planes L1 and C1–C4 (Fig. 9.13b), as indicated in the figure
legends. In the off-center velocity profiles (Fig. 9.13a), a distinct secondary velocity maximum is observed
near the outer wall in the outlet branch, causing the profile to assume a skewed M-shape. Conversely, in
the mid-plane velocity profiles (Fig. 9.13b) the secondary peaks are much less apparent. In these figures
(and subsequent velocity profile plots), r/R is the normalized radial distance, where r is the distance from
the observed point to the central axis of the tube and R is the tube radius. Negative and positive values
denote proximity to the inner and outer walls, respectively.

Flow profiles in the three normal planes (N1–N3) of the rightward outlet branch were also examined.
Fig. 9.14 presents velocity profiles from the inner wall (a), central axis (b), and outer wall planes (c) at
Re = 250. As before, the four superimposed velocity profiles represent the four axial positions C1–C4.
The origin of each velocity profile in Fig. 9.14 is again defined by the intersections of planes N1, N2, and
N3 with C1–C4, as indicated in the figure legends. As expected, all velocity profiles in these planar
orientations exhibit axial symmetry, but the flow patterns vary significantly among the three (N1–N3)
planes. The N1 plane (Fig. 9.14a) reveals a relatively high flow velocity near the branch point, but reduced
velocity distally. In the N2 plane (Fig. 9.14b), the velocity profile exhibits a central minimum proximal
to the branch point, but gradually approaches a parabolic shape further downstream. Contrary to the
results from plane N1, the flow velocity within plane N3 (Fig. 9.14c) is virtually zero near the bifurcating

FIGURE 9.11 Three-dimensional mesh used in numerical simulation of Y-shaped bifurcation with a branch angle
of 60°. Point A indicates the intersection of the three vessel axes.
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position and accelerates only moderately thereafter, as seen from the velocity scale. This is expected,
because plane N3 passes through the zone of stasis in the outlet branch. The results also indicate the
appearance of a slight central velocity minimum at the most proximal position, with subsequent resto-
ration of a parabolic profile.

Finally, cross-sectional views along the outlet branch of the model at positions C1 through C4 were
also examined (Fig. 9.15) at Re = 250. The view orientation in these figures is such that the opposite
outlet branch is located to the left. From Fig. 9.15a it can be seen that the radial flow patterns exist as
two mirror-image vortices separated by a horizontal plane of symmetry, where the highest radial com-
ponents of velocity are located near the flow divider wall. Further downstream (Fig. 9.15b–d) the radial
flow intensity gradually subsides. Although not shown, similar results were observed at higher Re, with
proportional increases in radial flow velocities, and increased compression of the highest radial velocity
components along the divider wall. Furthermore, within the inlet vessel (plane C0; results not shown),
the numerical results revealed a complete absence of radial motion at any Re.

FIGURE 9.12 Numerical velocity vector plot in mid-plane (L1) at Re = 500, showing planes selected for study.

TABLE 9.1 Peak Velocity Measured on the Mid-Plane L1 at the Cross Section Line C0 on the 
Inlet Vessel and at C1 on the Right Outlet Vessel Using Numerical Simulation (NS) and MRI

Re
Peak at C0 

NS
(cm/s) 
MRI

Peak at C1 
NS

(cm/s) 
MRI

Peak Ratio 
NS

(%) 
MRI

250 6.9 7.3 5.0 5.3 72.5 72.6
500 13.8 14.4 12.9 13.5 93.5 93.8
750 20.7 21.8 19.8 20.7 95.7 95.0
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Utility of the Computational Simulation: Evaluating a New Experimental Method or 
Procedure

The results of the numerical simulations in the above study agree very well with others previously
reported69,76 in terms of both axial and radial flow patterns. In addition to the observation of the flow
patterns at different cross-sections, the results of the above simulation were also used to evaluate several
MRI bolus-tracking sequences for visualizing the flow field. In these cases, the numerical results served
as standard references to compare with the results obtained from the MRI study. The MR images were
acquired from an in vitro experimental model having the same geometry and flow conditions as those
in the numerical simulation. A detailed description of the experimental model and the MRI method have
been presented previously.29 Conceptually, the MRI system used several modified pulse sequences to
excite several bands or tags almost simultaneously on a selected slice, which is the image plane.

FIGURE 9.13 Numerical velocity profiles at Re = 750 originating at the intersections of planes C1-C4 with the
(a) off-center plane (L2) and (b) mid-plane (L1) of the bifurcation.

FIGURE 9.14 Numerical velocity profiles at Re = 250 originating at the intersections of planes C1-C4 with the
normal planes (a) N1, (b) N2, and (c) N3.
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After an adjustable time-of-flight (TOF) delay, the position information of the tags was acquired. Upon
reconstruction, any flow-induced motion was revealed as a displacement of the tags in the image. This
procedure permits the simultaneous observation of axial or radial flow profiles at multiple sites. By
altering the orientation and position of the imaging plane, the flow profiles were examined in various
planar views through the model bifurcation.

Fig. 9.16 shows the MR image in the mid-plane (L1) of the bifurcation at Re = 500. The flow conditions
are the same as those shown in Fig. 9.12. Velocity profiles along horizontal lines at intervals of 0.21 D
are displayed in the image. The TOF for this image is 100 ms. The original tagged positions are the
parallel dark bands evident in the static fluid outside the bifurcation. Within the flow vessel, each tag
has been swept forward by fluid motion over the TOF interval. It is clear that the velocity profiles are
laminar and nearly parabolic in the inlet vessel and skew toward the dividing (inner) wall in the outlet
branches as can be seen in the numerical results (Fig. 9.12). Very good agreement was observed in the
flow pattern from these two figures. Very good agreements were also observed in the flow patterns in
MR images (not shown) on the longitudinal planes L2 (off-center) and L1 (mid-plane) at Re 750 (compare
to Fig. 9.13) and on the three normal planes (N1–N3) of the rightward outlet branch at Re 250 (compare
to Fig. 9.14). Fig. 9.17 shows the MRI velocity profiles in the cross-section planes C1–C4. Radial motion
in Fig. 9.17 was investigated using four narrow bands intersecting at the center of the tube; the TOF was
200 ms. These results can be compared with the numerical velocity vector plots shown in Fig. 9.15. For
easy comparison, the corresponding tag positions from the MR images are indicated in Fig. 9.15a as aa’,
bb’, cc’, and dd’. Again, two symmetrical vortices with velocity distributions in accord with the numerical
results are evident, as is the corresponding reduction of vortical motion downstream.

To make quantitative comparisons with the numerical results, the peak velocities at the intersections
of plane L1 with planes C0 and C1 as well as the ratio of peak velocities at C1 and C0 (peak ratio) were
calculated from the MR images and listed in Table 9.1. The agreement was found to be very good, with
a maximum discrepancy of 6% (referenced to the numerical results) in the peak velocities. The discrep-
ancy in peak ratios between the two methods was also very small (less than 1%). The above results
demonstrated that numerical simulation can be used to evaluate the feasibility and accuracy of a devel-
oped experimental method.

FIGURE 9.15 Numerical radial velocity vector plots at Re = 250 in cross-sectional planes (a) C1, (b) C2, (c) C3,
and (d) C4.
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FIGURE 9.16 MR image using time-of-flight (TOF) of 100 ms, showing velocity profiles in mid-plane (L1) at
Re = 500.

FIGURE 9.17 MR image using TOF = 200 ms, showing radial velocity profiles at Re = 250 in cross-sectional planes
(a) C1, (b) C2, (c) C3, and (d) C4.
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Numerical Study of Flow through Stenosed Coronary Arteries: 
Two-Dimensional Models under Pulsatile Flow Conditions

Many studies have been carried out to observe the flow patterns in stenosed coronary arteries using
numerical simulations.37,46,70,74 The results presented in this section are based on a study from our group
which made detailed investigations of the flow patterns through moderate (75% area reduction) and
severe (95% area reduction) asymmetric stenoses of the coronary artery. The purpose of the study was
to determine if the extreme hemodynamic conditions produced were sufficient to stimulate clotting
responses in the blood which would lead to a rapid thrombus formation. The existence of such a sequence
of events would provide a better understanding of the underlying initiating conditions as well as insight
into possible preventative treatments.

The Models and the Results of Numerical Simulation

Fig. 9.18 shows the two-dimensional mesh of one of the two stenosed arterial models (95% area
reduction case) used in the study. Since stenoses are predominantly asymmetric and varied in shape, a
Gaussian geometry with arbitrary standard deviation was used along the mid-plane. The height of the
Gaussian distribution was suitably adjusted to obtain two different degrees of stenoses: 75% and 95%
area reductions.

In order that the simulation approximate actual coronary arterial conditions, the initial and boundary
conditions of the flow were matched to those of patients under resting conditions. These were first
simulated in a scaled-up in vitro experimental model9 and then the inlet pressure waveform required to
generate the desired flow waveform was used as the driving boundary condition for the computational
model. The differential pressure waveforms obtained from in vitro models are shown in Fig. 9.19. The
average and first 10 harmonic terms for each waveform were used for the simulation. The average
Reynolds numbers at the inlet of the model and the peak Reynolds numbers at the throat of the stenoses
were used as matching parameters. The arterial model simulated was considered to be rigid, and a
Newtonian laminar flow was assumed in order to simplify the problem.

FIGURE 9.18 (a) Full two-dimensional mesh of axisymmetric 95% area reduction stenosis. (b) Zoom of stenotic
throat region showing fine mesh density near crown of stenosis and disease-free wall.
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Velocity Data
Overall observations of the flow fields for the two degrees of stenoses (Figs. 9.20 and 9.21) showed a
strong jetting effect at the stenosis through the majority of the cardiac cycle. Also, there was a recirculation
zone downstream, whose length was determined by the jet reattachment length. Velocity fields for the
75% area reduction stenosis are presented in Fig. 9.20 where the velocity plot is color coded with red
corresponding to the extreme high velocities and blue corresponding to the extreme low velocities.
Velocities in early diastole were small (5 cm/s) and there was no jet formation. The jet velocity accelerated,
however, with the up-slope of the input pressure waveform, reaching its maximum (~1 m/s) just after
the peak inlet diastolic pressure was achieved (Figs. 9.20a and c). As the jet became stronger in late
diastole, the reattachment point moved away from the stenosed wall and elongated the recirculation zone
up to 5 diameters. This effect was reversed in systole when the jet weakened, causing shrinkage of the
recirculation zone and strong flow reversal.

The velocity field for the 95% area reduction stenosis (Fig. 9.21) showed a trend qualitatively similar
to that of the 75% area reduction stenosis. Flow acceleration was higher compared to the 75% case, since
the time required to reach peak pressure was approximately the same in both cases and the peak pressure
for the 95% case was much higher than that for the 75% case. The greater area reduction for the 95%
case caused the jet to become very narrow (Fig. 9.21a) in the throat region compared to the 75% case.

However, the stronger jet created much stronger vortices alongside the jet. As peak flow was attained,
the jet reached a maximum velocity of 1.57 m/s with a maximum reattachment length of about 4
diameters. The recirculation zone, just downstream of the stenosis, had a larger height compared to that
of the 75% area reduction case and split into three predominant vortices at peak flow conditions. As the
diastolic phase ended, the flow decreased and caused strong reversals. This effect decreased as the
upstream low pressure front traveled downstream. The velocities then reached their lowest values in late
systole (~ 8 cm/s).

Shear Data
The velocity fields described above were used to directly compute shear rates present in the flow field at
corresponding times. Figs. 9.20 and 9.21 compare the velocity profile at the time interval of peak flow

FIGURE 9.19 Differential pressure wave forms obtained from in vitro models and employed as input driving
conditions for the numerical simulations. Broken line = 75% area reduction; solid line = 95% area reduction.
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with the corresponding shear contours for the 75 and 95% area reduction cases, respectively. The highest
shear zones were observed just upstream of the stenosis crown where the jet began separating from the
stenotic wall (Figs. 9.20b and d and 9.21b) with the shear rates on the jet boundary near the undiseased
wall being nearly as elevated. Other high shear zones were concentrated along the jet boundary and at
the moving reattachment point downstream. The elevated shear rates alongside the jet decreased in
magnitude with distance downstream. Furthermore, when flow reversal was strongest in late diastole,
the shear rate at the reattachment point became comparable to those at the crown of the stenosis. The
maximum shear rate for the 75% area reduction case was of the order of 700 1/s (Fig. 9.20b), while the

FIGURE 9.20 Solutions for 75% area reduction stenosis at peak flow: (a) velocity field, (b) shear rate field, (c) zoom
of velocity field at stenotic throat, and (d) zoom of shear rate field at stenotic throat. Color scale for velocity:
VMAX = 89 cm/s. Color scale for shear rate: SRMAX = 488 1/s.

FIGURE 9.21 Solutions for 95% area reduction stenosis at peak flow: (a) velocity field and (b) shear rate field.
Color scale for velocity: VMAX = 139 cm/s. Color scale for shear rate: SRMAX = 1630 1/s.
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corresponding shear rate for the 95% area reduction stenosis was of the order of 1900 1/s (Fig. 9.21b).
A comparison of shear and pressure contours at the peak velocity interval for the 95% area reduction
case is shown in Fig. 9.22. It is clear that an extreme pressure buildup (Fig. 9.22b) occurs just upstream
of the stenosis with low negative pressures at the crown of stenosis. Thus, the maximum pressure gradient
occurs in a region very close to where the highest shear stresses exist, compounding the potential for
mechanical disruption of the plaque.

Particle Tracking
Particle tracking data was obtained for several particles “seeded” at specific locations using the velocity
and pressure data for each time step stored in memory. To evaluate the potential for particles to be
stimulated by elevated hemodynamic shear stress,34 a platelet stimulation function along a given path
was defined as

(9.36)

where τ is the shear stress and Texp is the exposure time. Fig. 9.23a shows various particle paths through
the 75% area reduction stenosis. These particles were chosen to illustrate movement along (1) the disease-
free wall; (2) the mid-stream; and (3) the diseased wall and, thus, provide a broad range of PSF values.
Particles at similar locations in the 95% area reduction simulation were also observed (Fig. 9.23b). Shear
stresses and PSF values were computed along each particle path over a cardiac cycle. Of particular interest
were the results for particles labeled #1 in the stenoses simulations (Figure 9.23b) as these were the cases
which experienced the maximum shear and PSF values, generally occurring near the crown of the stenosis.
A shear history along the path of particle #1 is shown in Fig. 9.24. Here, stresses are seen to gradually
increase upon approach to the stenosis and then suddenly rise 1–2 orders of magnitude near the crown,
falling sharply upon exit. Similarly, the PSF is seen to abruptly rise from a near-zero level to an extreme
value at the stenosis crown before sharply falling to unstenosed values just downstream. At no point,
however, did these values reach the minimum necessary to elicit serotonin release from platelets under
steady flow conditions.34

FIGURE 9.22 Solutions for 95% area reduction stenosis at peak flow: (a) shear rate field and (b) pressure field
zoomed at stenosis crown. Color scale for shear rate: SRMAX = 1630 1/s. Color code range for pressure: PMIN = –2850
dynes/cm2; PMAX = 8750 dynes/cm2.

PSF T= × ( )τ exp

.0 45
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Utility of the Computational Simulation: Hemodynamic Changes Associated with Disease 
Severity

The above basic results are in good agreement with other computational70 and experimental8,17,48 studies.
Numerical simulation of stenosed arterial flow by Tutty70 showed qualitatively similar features. In par-
ticular, the changes in vortex structure, reattachment length, and the location of the flow separation zone
are qualitatively in agreement with the above basic results. The variation of shear stress along the diseased
wall also showed similar patterns with the peak shear stress occurring at the flow separation point

FIGURE 9.23 Particle paths through 95% area reduction stenosis: (a) arbitrary particles entering along vessel wall
and in mid-stream, and (b) selected particles exhibiting maximum shear stresses (#1), travel outside the separation
zone (#2), and complex path within the separation zone (#3).

FIGURE 9.24 Shear stress (squares) and platelet stimulation function (triangles) values along path for particle #1
(Fig. 9.23b) from entrance to crown of stenosis.
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upstream of the stenosis crown. A quantitative comparison is not possible as the input flow conditions
and degree of stenoses used were different from the basic simulation.

The time variation of the velocity field throughout the entire cardiac cycle confirms the ultrasonic
Doppler Color Flow studies by Boreda et al.8 The variation of velocity at the inlet and throat of the
stenosis was qualitatively similar to the input pressure variation during a cardiac cycle. However, the
velocity at the throat of the stenosis reaches its peak at an instant following the time at which the pressure
at the inlet is maximum. This time lag was smaller for the 95% area reduction stenosis compared to the
75% area reduction stenosis as the initial acceleration (in early diastole) for the 95% stenotic case was
much higher.

The magnitude of shear rates obtained in the basic results are of a comparable order to those obtained
by Markou et al.41 and Sakariassen and Barstad.61 However, the peak wall shear rates (at a given Reynolds
number) obtained in the above results are underestimates of corresponding values presented by Cho and
Kensey.17 This was primarily attributed to the particular geometry of the stenosis used in the present
study. The pressure distribution obtained at each time of the simulation agreed closely with the study
by Tutty.70 Cho and Rittgers79 have shown that the maximum pressure drop is increased at higher Reynolds
numbers and that the variation of pressure drop along the axis is decreased at higher Reynolds numbers.
These results were in agreement with observations from the results of our study. Even though pressure
variations by themselves were not the primary objectives of the study, their validity also implies the
correctness of a pressure driven simulation.

An experimental investigation of coronary flow through arteries with similar degrees of stenosis by
Boreda et al.8 showed shear stresses of the same magnitude as the present simulation. This is in agreement
with studies by Markou et al.41 and Sakariassen and Barstad61 which showed increased platelet deposition
with increased degrees of stenoses under controlled biochemical conditions.

The above results demonstrated that numerical simulation is a suitable means for observing hemo-
dynamic changes associated with different disease severity in the coronary artery.

The Effects of Non-Newtonian Flow and Vessel Distensibility

Most of the numerical simulations of blood flow in the large and middle size vessels consider blood as
a Newtonian fluid and use rigid vessel walls to simplify the computation. In general, the non-Newtonian
effect of flow is small in those vessels because the shear rate is high and the viscosity of fluid can be
considered constant. However, low shear exists in some regions such as near bifurcations, graft anasto-
moses, stenoses, and aneurysms. Blood in those regions appears to have non-Newtonian properties. The
effects of a non-Newtonian fluid on flow patterns were studied by several groups.

When considering non-Newtonian effects, the viscosity term in Eq. 9.1 or Eq. 9.6 will not be a constant
but rather a function of shear rate. Generally speaking, the Casson model12 is known to adequately
represent blood rheology. For the Casson model, an effective or apparent viscosity is defined40 as:

(9.37)

where τ is shear stress, γ is shear rate, τy is the yield shear stress, and η is the Casson viscosity or limiting
apparent viscosity given by

where ρ is the density and ν is the kinematic viscosity. The value of the yield shear stress for blood can
be found in the literature.40
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The Casson equation is valid for blood viscosity over a wide range of cell concentrations and shear
rates of 0.1 to 20 1/s19,43 or 1 to 100,000 1/s.13,14 At shear rates over 50 1/s15 or 100 1/s,35 the blood behaves
like a Newtonian fluid.

To approximate the complex rheological behavior of blood in a pulsatile flow model, the apparent
viscosity used by Perktold and Rappitch53 was

(9.38)

The parameters in this equation (µ∞ , µ0 , λγ , and b) were obtained from experimental data using a
curve-fitting procedure.

Lou and Yang39 studied the non-Newtonian behavior of blood under pulsatile flow conditions at the
aortic bifurcation. Their results showed that the non-Newtonian property of blood did not drastically
change the flow patterns, but caused an appreciable increase in the shear stresses and a slightly higher
resistance to both flow separations and phase shifts between flow layers.

In stenosed arterial flow, the introduction of a non-Newtonian viscosity model has been shown to
affect the reattachment length.17 This is primarily due to the low shear rate present in the jet and
recirculation zones. The results by Nakamura and Tadashi46 showed that the non-Newtonian property
of blood reduced the distortion of the flow pattern, as well as the pressure and shear stress at the portion
of the wall associated with the stenosis.

Perktold et al. studied the pulsatile non-Newtonian flow characteristics in a bifurcation with an
aneurysm50 and in a three-dimensional carotid bifurcation model.51,52 Lou and Yang39 and Perktold and
Rappitch53 reported results on non-Newtonian effects in a bifurcation flow field. All comparisons between
Newtonian and non-Newtonian conditions showed no significant changes in general flow patterns and
rather minor differences in the basic flow characteristics.

The effects of vessel distensibility have also been studied. In those studies, the vessel walls were modeled
as thin-walled vessels. Steinman and Ethier67 reported results in a distensible end-to-side anastomosis
model. The comparison between distensible-walled and rigid-walled simulations showed moderate
changes in wall shear stress at isolated locations, primarily the bed, toe, and heel. Lou and Yang39

performed computer simulations of blood flow at the aortic bifurcation assuming flexible walls. Their
results showed that wall expansion reduced flow reversals or eddies during the decelerating systole while
wall contraction restricted them during diastole. The shear stresses at a flexible bifurcation were about
10% lower than those at a rigid one. The effect of wall distensibility in a stenosed model was studied by
Siebes63 who showed that the wall motion downstream from a coronary stenosis was greater than that
in a normal artery and increased the possibility of post-stenotic dilation. The shear stress was not observed
to change dramatically. Results from the carotid bifurcation model53 showed that flow separation and
recirculation decreased slightly in the sinus and increased somewhat in the bifurcation region; the wall
shear stress decreased by 25% in the distensible model.

9.4 Summary

Numerical model studies in biomechanical systems encompass very broad and different fields. We have
presented a few examples of the application of numerical simulation techniques to the vascular system.
Typical flow features in bypass graft end-to-side distal anastomoses, Y-shaped arterial bifurcations, and
coronary arterial stenoses have been presented. It has been shown that numerical methods can be used
to (1) study the major flow features in the vascular system; (2) observe the relationship between hemo-
dynamic features and vessel disease; and (3) potentially assist in the treatment of some of those diseases.
By benefiting from further developments in computer technology and modeling techniques, it is expected

µ γ µ µ µ
λγ

( ) = + −( )
+( )∞ ∞0

1

1
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that numerical model studies will play an even more important role in cardiovascular biomechanics in
the future.
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Appendix A. Derivation of the Finite Element Formulation

Using the Galerkin method, we choose Ψn = Nn for Eq. 9.20 in the text. The following Galerkin formulae
can be obtained:

That is

We define
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such that

(A1)

Because are constants for the calculation at a fixed time, when we derive L1 , the term  can
be taken out of the integration and

(A2)
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This can be expressed as

(A4)

where

(A5)

L3 can be derived as
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In order to simplify the computation, we can use the following formulae from vector analysis. That is26

where –s  is the outward normal unit vector. Therefore

This can be written as

(A8)

where
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(A10)

The results can be summarized as

(A11)
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Using the similar derivation for error �w (Eq. 9.19 in the text), we have

These equations can be expressed in a vector form as

(A13)

where

(A14)

Considering n from 1 to m, we obtain the fourth set of m2 matrix equations for the element:

(A15)
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After simple algebra derivation, we obtain

where the coefficients of the linear equation are

and the terms a2, b2 , and c2 and a3 , b3 , and c3 can be derived from the cyclic permutations of indices.
Let A = the area of the element, then

The derivatives of the shape function are
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and

The element matrices for the linear element can be easily derived using formulae from a math
handbook; that is,

where a, b, and c are the exponents of the shape function N1 , N2 , N3 . For example,

and

Appendix C. Shape Functions for a Square and Cubic Element in 
Local Coordinates, and the Transformation between 
Local and Global Coordinates

For a square element in local coordinates shown in Fig. 9.2a, the derivation of the shape function and
its derivatives are very similar to the procedure described in Appendix B. The results are

where i = 1, 2, 3, 4; εi = –1, 1, 1, –1; and ηi = –1, –1, 1, 1.
For a cubic element (Fig. 9.3), the shape function and its derivatives are
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where i = 1, 2, 3, 4, 5, 6, 7, 8; εi = –1, 1, 1, –1, –1, 1, 1, –1; ηi = –1, –1, 1, 1, –1, –1, 1, 1; and ζi = –1,
–1, –1, –1, 1, 1, 1, 1.

The relationship between two-dimensional and global coordinates is described as follows. Suppose
that the global coordinate and the local coordinate have a transformation

We have

where W is an arbitrary variable and J is Jacobi’s matrix as
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These formulas provide the transformation between local and global coordinates.

f x y dxdy f x y J d d, , , , .( ) = ∈( ) ∈( )( ) ∈∫∫ ∫∫ η η η
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Collapsible Tubes
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The Starling Resistor • The Pressure–Area Relationship • Flow 
Experiments • Forced Flow Experiments

 

10.3 Tube Law

   

Unstressed Configuration Dependent Collapse • Description of 
the Tube Law • The Opposite Wall-Edge Contact • 
Normalization • Normalized Similarity Law • Analytical 
Expressions of the Tube Law • Positive Transmural Pressure

 

10.4 Tube Law Dependent Data

   

Wave Speed and Critical Flow Rate • The Reynolds Number • 
Head Losses and Shape Factor • Wall Shear Stresses in 
Uniformly Collapsed Tubes • Kinetic Energy and Momentum 
Coefficients

 

10.5 The One-Dimensional Model

   

Similarity Conditions

 

10.6 Collapsed Tube Flow Experiments

   

Steady Flow Experiments • Unsteady Flow Experiments

 

10.7 Physiological Applications

  

10.8 Conclusion

   

10.1 Introduction

 

Context

 

The importance of collapsible tube flow emerges from cardiovascular, pulmonary, and urinary physio-
logical or pathophysiological problems and related diagnostic (e.g., forced expiration in lung function
testing) or therapeutic (e.g., external cuff) techniques. Studies were aimed at understanding the flow
behavior in the deformable conduit.

 

1–3

 

 Physiological fluids (blood, air, and urine) are indeed conveyed
in compliant vessels which undergo deformations under varying transmural pressures 

 

p

 

, defined as the
difference between the internal and the external pressures 

 

p = p

 

i

 

 – p

 

e

 

.
Arteries dilate while pressure waves travel through the vascular bed. The cross-sectional luminal area

 

A

 

i

 

 varies whereas 

 

p 

 

evolves in a range of positive values. The cross-sectional shape may be affected due
to the non-uniform distribution of 

 

p

 

 over the entire tube perimeter and to the neighboring structures.
Veins, respiratory conduits, and urethrae may experience changes both in cross-sectional area and shape
when they are subjected to negative transmural pressures during natural or functional testing maneuvers.
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The collapsing process is characterized by large variations in 

 

A

 

i

 

 associated with small variations of 

 

p

 

 when

 

p

 

 is slightly negative.
The collapsing process of a straight flexible pipe is illustrated in Fig. 10.1. The tube loading is such

that contact occurs between the opposite walls. This phenomenon is emphasized throughout this chapter. 

 

Concepts

 

The dynamics of collapsible pipes depend upon the coupling between the fluid and the flexible wall via
the non-linear relationship, the tube law, which relates 

 

p

 

 to 

 

A

 

i

 

. The tube law is described in section 10.3,
after a brief literature review (section 10.2).

The pressure waves of small amplitudes propagate with a speed 

 

c

 

, which depends on the fluid inertia
and the wall compliance (transverse propagation mode). This physical quantity can thus be derived from
the tube law. The critical flow-rate 

 

q*

 

 (superscript * stands for critical) is related to the luminal area by

 

q*

 

 = 

 

A

 

i

 

c

 

. For a given specific energy 

 

p + 

 

ρ

 

U

 

2

 

/2 

 

in the cross-section (where 

 

U

 

 is the cross-sectional average
fluid velocity), it is the optimal flux of a fluid that can be conveyed by the local adaptation of the tube
cross-section.

 

4

 

 The relationship between 

 

q*

 

 and 

 

p

 

 is given in section 10.3. 
The hydraulic quantities of interest, in particular head loss and wall shear stress, are determined in

specific configurations corresponding to a uniform longitudinal cross-section along the entire tube length
(

 

dA

 

i

 

/

 

dx

 

 = 0, 

 

∀

 

x

 

; 

 

x

 

: axial direction, see section 10.4). These configurations may be demonstrated by flows
with combined gravity and friction for particular angles of tube inclination at given transmural pressures.

 

5,6

 

The one-dimensional study of collapsible tube flow has been developed by different research groups.
The transmural pressure is supposed to be uniformly distributed in every tube section and transversal
bending effects are assumed to be predominant. The one-dimensional model takes into account the wave
propagation; it shows, thus, the possible occurrence of critical conditions. A significant dimensionless
parameter is indeed associated with this theory:

 

1

 

 the speed index 

 

S = U/c, 

 

which plays the role of the
Froude number in open-channel flows or the Mach number in isentropic gas flow, due to resemblances
between these three types of flows. For slightly negative transmural pressures, the tube collapse induces
a fluid acceleration while the high compliance entails a low wave speed; the flow may thus become critical

 

FIGURE 10.1

 

Stationary collapse of a horizontal straight flexible tube attached at both ends to rigid circular ducts.
The thin-walled tube has an unstressed elliptical cross section. The cross-sectional area and shape depend on the
transmural pressure distribution, i.e., from the flow-dependent internal pressure field when the external pressure is
uniform. Contact occurs between opposite walls; the tube lumen is then composed of two lobes in the present
example. Top: pipe axial configuration in the vertical centerplane. Mid: upper tube face with the contact region (dark
area). Bottom: cross-sectional shape, before and after contact, are given for some labeled stations (1 to 4).
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(

 

S

 

 = 1). In other words, critical conditions are reached when the volume flow rate 

 

q

 

 becomes equal to
the critical flow rate 

 

q*

 

. When 

 

q

 

 = 

 

q*

 

, the local specific energy reaches a minimum. The cross-section where

 

S

 

 = 1 is the critical section. In the standard steady one-dimensional model, the occurrence of a critical
condition may predict flow limitation (the outlet pressure information cannot migrate upstream from
the critical section). Possible transitions from subcritical to supercritical flows (or conversely) may occur.
In particular, a transition to a supercritical flow may be induced by a forced tube throat (the narrowest
cross section).

 

1

 

 An elastic jump, where 

 

S

 

 = 1, may appear between the supercritical and subcritical flow
segments, where locally 

 

dA

 

i

 

/dx

 

 

 

→

 

 

 

∞

 

; the elastic jump is characterized by a strong flow deceleration.

 

7–9

 

Choking may arise when the longitudinal space gradient of the cross-sectional area 

 

dA

 

i

 

/dx

 

 

 

→

 

 –

 

∞

 

. 
Collapsible duct flows exhibit several physical phenomena of interest, such as the occurrence of

(1) critical flows (

 

S

 

 = 1 in a critical section); (2) transcritical flows from subcritical (

 

S

 

 < 1) to supercritical
(

 

S

 

 > 1) flows and conversely; (3) transitions between laminar and turbulent flow regimes; and (4) oscillations
of various modes under either previously steady or unsteady conditions (forced flow or forced wall
motions).

The critical phenomenon is evoked as one of the possible causes for the breakdown of steadiness.
Other mechanical factors may induce flow unsteadiness, like the flow separation in the divergent down-
stream from the throat of the collapsed tube.

 

2,10–12

 

 
The classical equations of fluid dynamics are provided in two different applications of the one-

dimensional model (section 10.5). Typical experiments on flow through collapsed tubes are given in
section 10.6.

 

10.2 A Cursory Literature Review

 

Some early theoretical models were based on the assumption of a continuous variation in cross-sectional
area without any change in circular shape, the effective cross-sectional area being equal to the collapsed
tube at the same pressure.

 

13,14

 

 The mechanical features of collapsible tubes as related to the contact
between opposite walls were omitted. Both tube shape and cross-sectional area are actually quite signif-
icant. The lumped parameter model is based on the assumption that the geometry of the flexible pipe
is specified by the cross-sectional area 

 

A

 

i

 

 at the throat of the collapsed tube, which depends on the throat
transmural pressure.

 

2,10,15

 

 Wave propagation and its related phenomena are neglected.
In the most developed one-dimensional models, axial wall bending is taken into account.

 

11,12,16,17

 

 In
the one-dimensional theory, the homogeneous incompressible fluid is supposed either inviscid or viscous,
with or without spatial distribution of wall stiffness and the unstressed cross-sectional area, whether
body forces exist or not.

Theoretical approaches have been, until recently, solely devoted to limited dynamical aspects due to
the complex behavior of the compliant tube-fluid couple. Different classes of models may be defined:
(1) models describing the steady flow before the occurrence of any steadiness breakdown; (2) models
aimed at stability analysis; and (3) models intended for oscillation analysis. Improved numerical simu-
lations are now emerging. For instance, the oscillation modes have been shown to be strongly affected
by the motion of the separation point behind the downstream throat.

 

18

 

 A three-dimensional tube defor-
mation has been very recently investigated at a very low Reynolds number.

 

19

 

 
Most of the above-mentioned collapsible tube flow properties arise from experimental observations.

The earliest experiments were performed on a very simple test section, the so-called Starling resistor.

 

20–24

 

The Starling Resistor

 

The Starling resistor is composed of a thin-walled compliant straight pipe of a given length 

 

L

 

, mounted
on rigid tubings at its ends and enclosed in a rigid transparent chamber (Fig. 10.2). The chamber pressure

 

p

 

e

 

 surrounding the flexible pipe can be adjusted. The upstream end is connected to a constant-head
supply reservoir via an upstream valve. The downstream end drains the fluid out of the test segment via
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a possible downstream adjustable constriction. Both the inlet 

 

p

 

i

 

1

 

 and the outlet 

 

p

 

i

 

2

 

 internal pressures can
be set at fixed values.

Among the input data to be measured prior to any investigation, some can be defined as reference
quantities, because they either affect the tube mechanics or are scaling factors. The tube deformation
depends strongly on the tube ellipticity 

 

k

 

0

 

.

 

25

 

 The ellipticity 

 

k

 

0
†

 

 is the ratio between the major semi-axis

 

a

 

0

 

 and the minor semi-axis of the elliptical mid-line in the unstressed (subscript 0) tube configuration
(obviously, 

 

k

 

0

 

 is equal to unity when the unstressed cross-section is circular). The description of the
collapse of a flexible pipe shows that the characteristic pressure 

 

K

 

 is proportional to the flexural rigidity

 

D

 

. The scale of 

 

K

 

 depends upon geometrical and mechanical constants in the unstressed configuration,
such as unstressed wall thickness 

 

h

 

0

 

, the Young modulus 

 

E

 

, and the Poisson coefficient 

 

ν

 

: 

The tube deformation law must be known to interpret the experimental results observed in a simple
physical model like the Starling resistor.

 

The Pressure–Area Relationship

 

Mechanical models of the wall deformation of a collapsible tube of infinite length have been created in
order to derive the tube law as applied to homogeneous material.

 

25–28

 

 The relationship between the
transmural pressure and the luminal area of a collapsible tube exhibits a sigmoidal shape with a high
tube compliance in the range of slightly negative transmural pressures, i.e., before any wall contact.
Different experimental techniques have been developed to validate the mechanical models and to measure
the cross-sectional area during experiments. The easiest method is based on volume change measurements
for given transmural pressure variations in tubes of two different lengths in order to eliminate end
effects.

 

29

 

 The luminal shape and area can be investigated from collapsed tube casts

 

5,30

 

 by the endoscopic
technique or by cross beaming on the collapsed pipe with a laser sheet.

 

31

 

 The optical stereoscopic

 

FIGURE 10.2

 

The Starling resistance. Straight thin-walled flexible pipe mounted on rigid tubes at its ends and
enclosed in a rigid transparent chamber. The external pressure 

 

p

 

e

 

 is adjustable. The flow rate 

 

q

 

 is caused by the
upstream pressure 

 

p

 

u

 

. The internal pressures 

 

p

 

i

 

 are measured at two stations: (1) either in the downstream segment
of the entry rigid tube or in the entrance region of the floppy tube and (2) either more or less upstream from the
compliant tube outlet or downstream from it. The results are strongly affected by the location of the pressure
measurement sites. Local adjustable constrictions are sometimes added to the flow circuit upstream 

 

R

 

1

 

 and down-
stream R2 from the compliant tube.

†The geometrical parameter k0 is named the ellipticity so that it cannot be confused with the eccentricity (1 – k–2
0 )1/2

or the width-to-height ratio of the collapsed cross section defined also as the eccentricity.19

K Eh a= −( )( )0
3 2

0
36 1/ ν .
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technique monitors the pipe shape and computes the outer cross-sectional area along the whole tube
length.32,33 This method can be used under either static conditions or during flow; the luminal area is
obtained from the external tube geometry, assuming a constant wall thickness during the deformation.
Impedance methods sense the local axial electrical field produced by an impressed current, using catheters
inside the tube lumen (Mc Clurken method).7 However, the luminal area is measured independently
from the pipe shape. Besides, such catheters disturb both the flow and the tube collapse. The transformer
principle method34 uses a single-turn sensing coil embedded in the tube wall, which is very fragile and
which cannot be used in unsteady experiments. Ultrasound imaging has been used as the reference
method, but it necessitates a careful positioning of the probes. This method proposes to compute the
bending stiffness and the derived mechanical quantities.35 

Flow Experiments

In flow experiments (set up under steady conditions but with a possible unsteadiness during manip-
ulations), different kinds of relationships between the pressure drop ∆p = p1 – p2 and the volume flow
rate q are obtained, depending on whether the external pressure pe , the downstream transmural pressure
p2 = pi2 – pe , or the upstream transmural pressure p1 = pi1 – pe are held constant30 (Fig. 10.3).

In an initial set of experiments,23 pe remains constant whereas q changes. The iso-pe q – ∆p curve,
obtained for a constant constriction R2 downstream from the collapsible tube, reaches a peak at the end
of the fully collapsed tube stage, when the internal pressure measured upstream from the collapsible tube
pi1 is close to pe .23 Larger flow rates induce a progressive opening of the tube from the tube entry and
cause the tube hydraulic resistance to be negative (during the partially collapsed tube phase, the pressure
drop vs. the flow rate relationship exhibits a negative slope). Oscillations can be observed in the pres-
sure–flow domain. At high flow rates, the pressure drop in the distended tube is approximately the same
as that of a liquid flow in a rigid tube of the same shape (open tube phase).

In a second set of experiments, the pressure pe is adjusted in order to maintain p2 constant for the
whole range of investigated values of the flow rate q (iso-p2 curves). At rest in a horizontal tube, the
internal pressure is uniform and the tube is entirely collapsed if p2 is set at a sufficiently low value. With
increasing pi1 or decreasing pi2 , while the upstream region of the tube gradually opens, the flow rate
increases up to a plateau for a particular level of pressure drop: a pressure drop limitation (pressure drop
independent of the flow rate) is observed.37–42 Unsteadiness may arise in the plateau region.38,43 

FIGURE 10.3 Relationships between the pressure drop ∆p and the volume flow rate q for a given constant outlet
transmural pressure p2 (left), inlet transmural pressure p1 (mid), or external pressure pe (right) in the Starling resistor.
Dashed-line arrows indicate an increase in constant-set algebraic pressure and dashed curves indicate the critical
conditions. ∆p – q curves in iso-p2 conditions exhibit pressure drop limitation, flow limitation in iso-p1 conditions,
and negative resistance in iso-pe conditions.23,38 (Source: Bonis, M. and Ribreau, C., ASME, J. Biomech. Eng., 103,
27–31, 1981, Conrad, W.A., IEEE Trans. Biomed. Eng., 16, 284, 1969. With permission.)
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In a third set of experiments, a flow rate limitation (flow rate independent of the pressure drop) occurs
when the transmural pressure p1 is kept constant (iso-p1 curves).44 For a particular value of the pressure
drop, q reaches its maximum. Unsteadiness occurs after this maximum.

Instabilities or/and oscillations are observed in the plateau region of the iso-p2 curves in the neigh-
borhood of the maximal q of the iso-p1 curves and in the region of negative resistance of Conrad’s
experiment. In particular, self-sustained oscillations may arise.23,38,43,45,46 The modes of oscillation of
specific wave shape and frequency can be mapped on a plane where coordinates stand for the upstream
head propelling the fluid and the downstream transmural pressure.47 

Forced Flow Experiments

Experiments with either periodic input of flow or with imposed wall motions can be carried out. In the
1960s, the first forced flow experiments were performed in collapsible tubes.23 They led to the forced Van
der Pol’s equation. Iso-p1

– pressure–flow curves in pulsatile flow (non-zero mean –p sinusoidal pressure)
exhibit flow limitation similar to the steady situation previously reviewed. However, the maximum flow
rate depends on both the amplitude and the frequency of the input flow oscillations.48 Such studies may
be closely in keeping with medical applications; for instance, a multicompartment lumped-parameter
model (each vascular element is composed of a capacitance, a resistance, and an inertial inductance) can
be aimed at studying regional blood flow under cardiopulmonary resuscitation by intrathoracic and
abdominal pressure variations.49 The filling process was shown to depend on both the circumferential
and axial stiffness. Collapsible tube flow experiments were performed to study the sliding massage effects
on venous flow;50 an additional flow due to the pulling motion of a roller on the floppy tube was shown
to depend on the initial flow rate and transmural pressure, degree of obstruction, roller speed, tube
properties, and possible flow via an in-parallel tube modeling a venous anastomosis. In collapsible tubes
subjected to pressure ramps, like the blood vessels in limbs swathed in cuffs, a supercritical flow stage
can be observed after the peak flow in the downstream segment or in the entire tube for a sufficient
pressurization rate.51 In the context of leg pressurization–depressurization cycles, time-dependent filling
of collapsed vessels was investigated theoretically and experimentally.52 Imposed wall motions, more
precisely the sinusoidal motion of one compliant wall of a rigid channel, were also used to study the
unsteady flow separation and eddy development which are involved in collapsible tube flow behavior.53

10.3 Tube Law

Unstressed Configuration Dependent Collapse

The reference pipe configuration is supposed to be stress-free (in particular, p = 0). When the unstressed
cross-section is circular and p < 0, the compliant tube keeps a circular cross-section down to the buckling
pressure pb . Moreover, from this mechanical state, a small decrease in transmural pressure p produces a
large change in cross-sectional shape and area Ai .

Different modes of collapse can be observed according to the number N of lobes, lobes being the open
parts of the collapsed tube lumen which are associated with symmetry axes. Using computational thin-
shell models of deformation in flexible tubes of infinite length and with a purely elastic wall, the buckling
pressure is shown to be proportional to n2 – 1.26,54 Experimental evidence of such collapsing modes was
obtained, the cross-section shape displaying usually four, three, or two lobes either in tubes subjected to
longitudinal bending effects30 or in short and thin-walled pipes.31 

However, physiological vessels and their polymeric models more often present a non-circular
unstressed cross section, the shape of which is commonly assumed to be elliptical. In that case, the tube
collapses with two-fold symmetry at a distance from the tube ends. 
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Description of the Tube Law

The presentation of the tube law is limited to the collapse of tubes of elliptical unstressed cross-sections
(ellipticity k0, Fig. 10.4). The origin of the bidimensional Cartesian system (y, z) is located at the ellipse
center. The tube center line is the x-axis with unit vector i. Let s be the curvilinear abscissa along the
mid-line of any cross-section of the tube wall, with the origin at point M0 of minimal curvature in the
unstressed configuration,† where the opposite wall distance becomes minimal during the tube deflection.
At each point M of the mid line, unit tangent t, unit normal n, and i define the local directed coordinate
frame. Let θ be the oriented angle between the local horizontal axis and the tangent.

The infinitely long tube is supposed to be straight, and the wall thin, homogeneous, and purely elastic.
Both the geometry and the mechanical properties are uniform. The flexible pipe is subjected to a uniform
transmural pressure p. The wall thickness, much less than the lowest curvature radius of the wall mid-
line (h0(dθ/ds) << 1), is assumed to remain constant during the collapse. Moreover, the mid-surface is
deformed without extension.

Three characteristic transmural pressures are of interest in the collapse: (1) the ovalisation pressure
pp , for which the curvature at M0 is locally equal to zero (an oval-shaped cross-section with parallel
opposite edges); (2) the point-contact pressure pc , at which the opposite sides touch for the first time;
and (3) the line-contact pressure pl ,when the curvature at the contact point is equal to zero for the second
time. Three modes of collapse are thus defined using the distinguishing pressures 0, pc , and pl  (Fig. 10.5):

1. Mode 1 corresponds to the collapse before contact (pc  < p ≤ 0), characterized by a high tube
compliance. The transversal density of the distributed external force f induced by the transmural
pressure load is given by f = pn. The stress resultant acting from one part of the wall to the other
T(s) is continuous everywhere.

†At the material point M0 (0, a0/k0), s = 0.

FIGURE 10.4 Cartesian frame (y, z) of the cross-section with unit vector set {j, k}. The tube center line is the x-
axis with unit vector i. The dashed line represents the elliptical mid-line (ellipticity k0) of the wall of thickness h0

and the local oriented coordinate system (n,t), where n is the unit outward normal and t the tangent on the curvilinear
abscissa s (s = 0 at M0).
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2. Mode 2 is characterized by a contact at a single point (pl  ≤ p ≤ pc). The curvature at the contact
point decreases from a finite value down to zero. A contact reaction appears (see below), and the
stress resultant is discontinuous at the contact point (s = 0).

3. Mode 3 is defined by a contact on a line segment (p < pl). The contact segment lengthens while
the transmural pressure decreases from pl . Just below pl , the contact reaction splits into two
concentrated reactions applied at both ends of the contact segment ±sc where T is continuous.
The transversal density f is thus given by either f = pn along the open part of the cross-section or
by f = (r(s) + p)n on the contact line (r(s): normal reaction distribution).

The stress resultant T and the bending moment M verify the equilibrium equations of the elastic wall
on each side of any concentrated force application point:

(10.1)

(10.2)

FIGURE 10.5 The three collapse modes in the case k0 = 1.6 and h0/a0 = 0.1: top pc < p ≤ 0, mid pl ≤ p ≤ pc , and
bottom p < pl . Reaction loading at contact between opposite walls of the flexible pipe:
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The loading singularity is added to the set of equations via a discontinuity condition. Integration of the
equilibrium equations gives T and M.25,28 The constitutive law of the elastic material states that M is
linearly proportional to the curvature change in any point of the wall cross-section mid-line:

(10.3)

where  is the flexural rigidity. Note that when the mid-line is assumed to be
superimposed to the wetted perimeter χi , as soon as the contact occurs the boundary conditions become
z(0) = 0 rather than z(0) = h0/2 in mode 2 and z(sc) = 0 rather than z(sc = h0/2 in mode 3. The merging
of the mid-line and the luminal line is pure mathematical abstraction and the computed cross-sectional
area is approximated (Fig. 10.6). The tube law is highly non-linear: as soon as p becomes slightly negative,
the tube transverse configuration can undergo huge changes.

FIGURE 10.6 Relation between the transmural pressure p (kPa) and the tube cross-sectional area Ai (cm2), focused
on collapse modes 2 and 3. Comparison between simulations, using either the condition z(0) = 0 (continuous line)
or the condition z(0) = h0/2 (dashed line) at contact, and experimental results (◊) on a flexible pipe with the following
properties:
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The Opposite Wall-Edge Contact

The contact generates a local reaction R0 at the contact point (s = 0), which increases when p decreases
from pc (R0(pc)) down to pl (R0(pl)). As soon as p undergoes an infinitesimal decrease, say p = pl– , the
reaction initiates its splitting into two components Rc (pl–) = (1/2) R0 pl). When p < pl, the reaction is
distributed along the contact segment of length 2 sc, with maxima Rc(p) located at both ends of the
contact segment (s = ± sc). These points, associated with a concentrated force, migrate laterally when p
continues to decrease, whereas the reaction amplitude exerted on the line of contact, which spreads out,
increases.

The contact reactions induce discontinuities in the first derivative dAi/dp at pc and in the second one
d2 Ai/dp2 at pl .27,55 Such discontinuities probably affect the mechanical behavior of the fluid–tube couple.
The discontinuities in the first derivative at pc and in the second derivative at pl are exhibited by a break
in the slope and by a bending of the tube law respectively (Fig. 10.8). The discontinuities were not always
taken into account, and continuously derivable analytic expressions of the Ai(p) relationship were pro-
posed over the whole range p ≤ 0.1

Normalization

Dimensionless variables are defined as:†

The pressure scale is given by  The quantity (K/ρ1/2 is taken as the speed scale††

(ρ = fluid density). Consequently, the flow rate scale is Ai0(K/ρ)1/2.
The tube deformation, from rest to the line-contact pressure pl , is illustrated in Fig. 10.7, using

normalized quantities p̃ and Ãi . A two-dimensional bending model of a homogeneous tube shows that
the tube law depends upon the ellipticity k0 (Fig. 10.8). With the following kinematic boundary conditions

in mode 2 and  in mode 3, both p̃ c and p̃l are affected by k0 and h̃0

(Fig. 10.9).28†††

Normalized Similarity Law (p̃ ≤ p̃l)

The pressure–area relationship for p̃ ≤ p̃l is expressed by the following equation:

(10.4)

†The unstressed cross-sectional area Ai0 is the characteristic area used in general. However, due to the elliptical
configuration and to the twin lobe shape, the square of the unstressed major semi-axis (the transverse length scale)
of the tube cross-section is a possible area scale.56

††The usual characteristic velocity (K/ρ)1/2 is a propagation-like scale in elastic medium, but other scales can be used.
†††The iso- p̃c(k0) and iso- p̃l(k0) relationships depend on the way the normalization is defined. One usually

uses the unstressed major semi-axis a0 in the expression of the pressure scale K. For a given geometry k0 of the mid-
line, an increase in  implies an algebraic increase in both p̃c and p̃l . Depending on k0 and , minimal values for
both distinguishing contact pressures are observed for ~ 1.4 < k0 < ~ 2. This apparent paradox is attributed to the
length scale. The normalization with scale a0 is associated with different unstressed perimeters χ0 for various k0 (a
larger ellipticity is associated with a smaller perimeter and hence with less material over which the external forces
are distributed). The quantity χ0/4 can be used as transverse length scale; it gives various normalized shapes with
constant perimeter whatever k0 . The pressure scale becomes and the characteristic
flow rate is 
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where (Fig. 10.10).28 This equation, inferred from numerical data, means
that the tube shape remains similar to the twin-lobed distinguishing configuration, i.e., to the line-contact
shape at pl ,˜ when p̃ is further decreasing.†

The similarity tube law is classically written n = 3/2 when the unstressed cross-section
is circular and  = 0.26,57 In the latter case, the similarity solution is exact. The similarity law exponent
n increases with k0 for a given h0 . For instance for h0  = 0 (when the mid-line is merged with the wetted
perimeter), n rises from 3/2 for k0 = 1.005 to 2 for k0 = 2.8 and up to 9/4 for k0 = 10.

Analytical Expressions of the Tube Law

Analytical expressions are very helpful in collapsible tube flow computations or experimental post-
processings. Three types of formulae can be defined: (1) expressions derived from the similarity law; (2)
fit polynomials; and (3) equations based on integration of the critical flow curve.††

Several expressions are proposed by different groups of investigators (Table 10.1). These expressions
do not take into account the derivative discontinuities of the tube law and its related physical phenomena.

FIGURE 10.7 Deformation of a collapsible tube obtained from a computation of the bending without extension
of a thin homogeneous elastic shell subjected to a uniform loading. Unstressed elliptical cross section (ellipticity of
1.005) with the following boundary conditions: in contact-point mode and in contact-line mode.
In a bilobal collapsing mode, the outer tube edges bulge out whereas the faces collapse toward the cross-section
center. Wall positions are plotted during the collapse from rest (p̃ = 0) down to the contact point (p̃c = –2.64) and
to the contact line ( p̃ l = –5.20) with the following set of  dimensionless transmural pressures

and cross-sectional areas 

†When p̃ < p̃l , a specific mapping can always be determined between any collapsed cross-section of the inves-
tigated pipe of ellipticity k0, and a distinguishing collapsed cross-section of an equivalent tube of unstressed ellipticity
k00 , having a similar shape at its own line-contact transmural pressure, say p̃ll(k00).56 The p̃ll cross-section can be
obtained from the p̃l cross-section by an affine transformation in the z̃-direction with the ratio G2 = k0/k00 =

 = ; the similar open region of the collapsed cross-section is computed with the ratio
 The lower limit of the validity range of G1 and G2 is at least equal

to about 30pl
††The algebraic description of the tube law in each defined pressure range must be consistent with the one-

dimensional theory since both Ã vs. p̃ and Ã vs. q̃* relationships are relevant (see section 10.5) The analytical
equations of the tube law insure the discontinuity of the functions at the contact condition

The curve is fitted piecewise from numerical data.
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Algebraic expressions of type (3) are more recent,56 using nine coefficients, which are plotted in
Figs. 10.11 to 10.13 for k0 = 1.005 and for the ellipticity range.1,2,10 The relationships p̃(Ãi) have been
given for the description of the tube law in the three pressure intervals:

(10.5)

FIGURE 10.8 Numerical laws for three ellipticities: k0 = 1.005 (continuous line), 2.8 (dashed line), and 10
(dotted line), with the characteristic values (◊) corresponding to the displayed characteristic shapes (unstressed
elliptical, oval-shaped, point-, and line-contact).

TABLE 10.1 Some Analytical Tube-Law Expressions of the Literature
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1, 10

10

11

58

59

˜( ˜ )p Ai

˜ ( ˜ )
˜ ( ˜ )

˜ ( ˜ )
˜ ( ˜ exp{ ( . ˜ )})

˜ ( ˜ ˜ )

˜ ( ˜ ˜ )

/

/

/

/

p A

p A

p A

p A A

p A A

p A A

i

i

i

i i

i i

i i

= −
= −
= − +

= − + −
= −
= −

−

−

−

−

1

100 1

100 0 95

3 2

1
3 2

2 3 4
20 3 2

4 3 2

κ
κ κ κ

˜

˜

˜ .
˜ .

A

A

A

A

i

i

i

i

<
≥
≤
>

1

1

0 95

0 95

˜ ln ˜ ˜ / ˜ ˜ ˜ ˜

˜ exp ˜ ˜ ˜ ˜

˜ exp ˜

p A A A p p p

p A p p p

p A

lc i lc lc i lc i lc l c

cp i cp cp c p

po i po

cp

po

= − ( )− + ≤ ≤( )
= { } −( )[ ] + ≤ ≤( )
= { } −

−( )

−( )

α α γ

α β γ

α β

β

β

2 2 2 2

2 1

2 1

2 2

2 2 1

2 2

β β/

/

/ 11 0( )[ ] + ≤ ≤( )γ po pp p˜ ˜



© 2001 by CRC Press LLC

Positive Transmural Pressure

The cross-section is circular with unstressed radius a0; the pressure forces are balanced by wall tangential
stresses. The deformed cross-section remains circular when p > 0. Let be the tension coefficients
associated with the principal axes of the tube 

FIGURE 10.9 Dimensionless point-contact and line-contact pressure changes with the tube ellipticity k0 for four
values of the dimensionless wall thickness (0.1, 0.05, 0.02, and 0 from top to bottom).

FIGURE 10.10 Coefficient of the similarity law (Eq. 10.4), computed with the condition z(0) = 0 at
contact. The symbol o is used for the tube ellipticity k0 = 1.005.
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The non-linear elastic behavior of the tube can be given by the following expression:29

(10.6)

where ξ is an empirical coefficient taking into account, among other factors, the non-isotropy of the
tube material. The coefficient ξ is close to the proposed correction factor:

10.4 Tube Law Dependent Data

The tube law dependent hydraulic quantities are determined in uniform configurations of the collapsed
tube, i.e., of a constant cross-section along the entire tube length. Velocity fields are computed assuming
a fully developed, steady, incompressible laminar flow through a smooth-walled collapsed pipe.

Wave Speed and Critical Flow Rate

The speed c of small pressure wave propagation in a long straight collapsible tube containing an incom-
pressible fluid is given by the following equation:

(10.7)

This relationship assumes (1) a purely elastic thin wall and a constant geometry along the whole tube
length in the reference configuration; (2) a negligible wall inertia; and (3) a one-dimensional fluid motion.
The speed of the elasto-hydrodynamics coupling wave is thus computed from the tube law. Experimental
observations have shown that the wave speed reaches its minimum when contact between the opposite
walls occurs.55

FIGURE 10.11 Variations of the coefficients α lc (mid-continuous line), βlc (bottom-dashed line), γlc (top-dotted
line) of the analytical generalized tube law (Eq. 10.5) with the tube ellipticity for the pressure range (collapse
mode 2). Symbols are used for the peculiar ellipticity k0 = 1.005: * for α lc , # for βlc , and o for γlc .
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A critical flow rate q* = Aic can be computed for each area of the cross-section. Due to the discontinuity
induced by the wall contact, the critical conditions are different on the right (qc+)* and left (qc–)* sides of
the discontinuity (Fig. 10.14). The slope of the q* vs. Ai curve depends on the tube law parameter M :

(10.8)

FIGURE 10.12 Variations of the coefficients αcp (top-continuous line), βcp (mid-dashed line), γcp (bottom-dotted
line) of the analytical generalized tube law (Eq. 10.5) with the tube ellipticity for the pressure range (collapse
mode 1). Symbols are used for the peculiar ellipticity k0 = 1.005: * for αcp , # for βcp , and o for γcp .

FIGURE 10.13 Variations of the coefficients αpo (top-continuous line), βpo (mid-dashed line), γpo (bottom-dotted
line) of the analytical generalized tube law (Eq. 10.5) with the tube ellipticity for the pressure range (collapse
mode 1). Symbols are used for the peculiar ellipticity k0 = 1.005: * for αpo , # for βpo , and o for γpo .
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with M =  The sign of parameter M influences the pressure wave propagation.61

When M > 0, a compressive wave steepens and a rarefaction wave broadens, and the converse is true
when M < 0.1,9

In the pressure range p ≤ pl , the parameter M is given for thin-walled collapsible tubes of unstressed 
elliptical cross-sections by M [n(k0 , h̃0)] = 2 – n. It takes the following values for given (k0, h̃0) couples: 
M [n(1, 0)] = 1/2, M [n(2.8, 0)] = 0, and M [n(10, 0)] = –1/4. The slope of the relationship between q* 
and Ai is positive when M > 0 and negative when M  < 0.28

As will be seen in section 10.5, the flow depends not only on the sign of (1 – S2) but also on the sign
of the wave number M.1,62 Both the wave speed c and the wave number M  are very important properties
of the tube law.

In the pressure range p ≤ pl , the similarity law gives:

(10.9)

The Reynolds Number

The Reynolds number Re can be expressed in dimensionless form† by:

(10.10)

FIGURE 10.14 Relationship between the natural logarithm of the dimensionless cross-sectional area Ãi and the
natural logarithm of the normalized critical flow rate q̃* for different tube ellipticities: k0 = 1.005 (continuous line),
2.8 (dotted line), and 10 (dashes line), using the condition z(0) = 0 at contact. Between the characteristic values (Ãi0 ,
Ãip , Ãic , Ãil), the lines correspond to affine functions which fit the non-displayed computed points. When p ≤ pl ,
both the value and the sign of the slope of the relationship are affected by the tube ellipticity.
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where γ = a0(ρK)1/2/µ is a viscous effect parameter,† and µ is the fluid dynamic viscosity.††

In the range p ≤ pl , the fluid domain may be decomposed into two fluid regions: an area of very small
velocity magnitude near the contact point, where the viscous effects are predominant, and an outer zone.
One may suppose that the flow regime is mainly affected by this second region. Consequently, the usual
cross-length scale, i.e., the hydraulic perimeter dh = 4Ai/χi , and the inertial effects might be underesti-
mated. The supposed laminar-turbulent transition may be computed using the equivalent-tube model
(Fig. 10.15). Each lobe of the line-contact cross-section can be modeled by a fluid domain of the same
area and the same wetted perimeter, which includes an inner rectangular zone of large aspect ratio, and
an outer circular region. The radius of the latter is calculated such that the head loss through the equivalent
cross-section is equal to the head loss through the actual one. The ratio between the Reynolds numbers
in the actual and circular domains is found to be proportional to the ratio between the model radius
and the actual wetted perimeter. Assuming a critical Reynolds number of 2000 in the circular duct, a
critical value in the collapsed tube is proposed to be equal to 1200 for the whole range p ≤ pl when k0 =
1.005.63 Note that only experiments should determine the transition regime, hence the critical Reynolds
number.†††

Head Losses and Shape Factor

The viscous head losses per unit of length ƒv (q) in smooth-walled uniformly collapsed tubes are given
by††††

(10.11)

where Λ is the friction head loss coefficient: Λ = ƒL/Re and Λ = ƒT/Re1/4 (ƒL and ƒT are laminar and
turbulent shape factors).††††† The shape factors depend on the transmural pressure p and on the
ellipticity k0.

Laminar Pattern

The analytical solution is known for p̃ = 0:

(10.12)

Additionally, the laminar shape factor ƒL is computed for the following characteristic values of the
transmural pressures p̃p , p̃c , and p̃l , (Table 10.2).63

In the range p̃ ≤ p̃l , 

†Note that γ is the ratio between the square root of the product of the inertia and the elastic forces and viscous
forces.

††Note that in a given tube conveying a given fluid at a given flow rate, when the tube wetted perimeter remains
constant, i.e., for p ≥ pl , Re is constant along the whole collapsed tube length. But when the opposite walls are in
contact over a line segment, the hydraulic perimeter and consequently Re vary along the tube length.

†††The critical Reynolds number for laminar-turbulent transition was found experimentally to be equal to about
2800 for the approximately point-contact shaped duct.63

††††Another usage gives the friction coefficient Cf , related to the wall shear stress τw by the formula τw = Cf ρU2/2. 
Here, ƒυ = (χi/Ai)τw , which means that the dimensionless hydraulic loss factor Λ = 4 Cf for uniformly collapsed 
conduits.

†††††It is well known that the stronger the flow resistance induced by a given cross-section shape, the higher the
shape factor: ƒL increases with the width to height ratio for a rigid duct of rectangular cross-section, with the ellipticity
of rigid pipes of elliptical cross-section, and with the internal to external diameter ratio of annuli between two rigid
concentric cylinders.
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(10.13)

where G2 is 

and

The theoretical values are close to experimental data in a tube of ellipticity k0 = 1.6 in the range [pp ,– 0]
(difference of about 2%); they are slightly overestimated in the range (difference of about 10%).

Turbulent Pattern

The value of the turbulent shape factor ƒT = 0.26 in the transmural pressure range p̃ ≤ p̃c was deduced
from experimental data, specifically in an inclined collapsed tube in uniform state.56 During collapse
mode 1, the classical value ƒT = 0.316 is used.

Wall Shear Stresses in Uniformly Collapsed Tubes

The Navier-Stokes equation, with the previous hypotheses, can be written as:

(10.14)

The normalization of the fluid velocity may be chosen in order to keep constant either ƒυ , whatever Ai ,
or q consistently with the mass conservation when Ai is continuously varying.† The velocity scale is given
either by (a0

2ƒυ /µ) or by q/a0
2 in the first and second kind of normalization respectively. Let υ = µu/a0

2ƒυ .

TABLE 10.2 Values of the Laminar Shape Factor in the Characteristic 
Tube Shapes for Different Ellipticities

k0 1 2 3 10
fL0 64 67 71 77
ƒLp 71 75 79 86
ƒLc 50 49 48 47
ƒLl 37 36 35 33

†The velocity scale can be derived from the normalization of Eq. 10.14. When the velocity scale a0
2ƒυ /µ is chosen,

the pressure drop per unit length ƒυ  = ∆pg /L is constant, whatever Ai (∆pg  = ∆p in a horizontal tube). For a given
cross-section, q and ƒυ  are proportional; the proportionality factor is the so-called conductivity σ(Ai):26 q = σƒυ .
When the flow rate q is kept constant,19 the velocity scale is defined by the ratio between the flow rate and the suitable
area scale a0

2. In both cases, the velocity scale is different from the previously defined scale. The ratio of the constant
pressure drop normalized fluid velocity to constant flow rate normalized fluid velocity is given by the ratio of the
two scales, say 
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The Poisson equation (10.14) in the fluid domain Ω̃, which here is the cross-section of the tube lumen,
with the no-slip conditions on the cross-section boundary, becomes:

(10.15)

Examples of velocity distributions are illustrated for three different transmural pressures in Figs. 10.16
to 10.18. The fluid moves in parallel layers whose boundaries are shaped by the tube wall.

The axial component of the shear stress† is given by:

(10.16)

where ny and nz are the components of the outer normal unit vector n along the cross-section wall.
The distribution of the wall shear stresses along the lumen perimeter χ̃i is affected by the tube cross-

sectional shape. Figs. 10.19 and 10.20 show the variations of the wall shear stress and of the wall curvature
over one-fourth of the perimeter for p̃p and p̃c . The ratio between the two normalized shear stresses is
given by the inverse of the ratio of the velocity scales, for example µσ/a0

4. The conductivity vs. cross-
sectional area relationship is displayed in Fig. 10.21.

FIGURE 10.15 Actual line-contact cross-section and its model for Reynolds number computa-
tions. The vertical lines define the position of the contact point (± s̃c) and the origin of the wall curvilinear abscissa.

†The shear stress scale is given by a0ƒυ and µq/a0
3 in first and second kinds of normalization respectively.
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FIGURE 10.16 Axial velocity distribution in the cross-section of a uniformly collapsed tube (k0 = 1.005) conveying
a steady fully-developed laminar flow for the normalized transmural pressure p̃p . The flow velocity is normalized
with the scale 

FIGURE 10.17 Axial velocity distribution in the cross-section of a uniformly collapsed tube (k0 = 1.005) conveying
a steady fully-developed laminar flow for p̃c .
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FIGURE 10.18 Axial velocity distribution in the cross-section of a uniformly collapsed tube (k0 = 1.005) conveying
a steady fully developed laminar flow for p̃l .

FIGURE 10.19 Variation of the dimensionless wall shear stress τ̃ w (top-continuous line) along the quarter of the
wetted perimeter of the tube cross-section and of the wall dimensionless curvature (bottom-dotted line) at p̃p in
laminar fully developed flow (k0 = 1.005). The normalization is based on constant flow rate (stress scale: µq/a0

3).
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FIGURE 10.20 τ̃w (top-continuous line) and wall dimensionless curvature changes (bottom-dotted line) at p̃c in
laminar fully developed flow (k0 = 1.005).

FIGURE 10.21 ln ˜(σ/σ0)˜ vs. ln(Ãi) relationships for different ellipticities (k0 = 1.005, 2, 3, 5, and 10 from bottom
to top). The points on the curves define the characteristic values (Ãi0 , Ãip , Ãic , Ãil), The conductivity σ is normalized
with the scale a0

4/µ; σ̃0 = π/[4k0(1 + k0
2)].
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Kinetic Energy and Momentum Coefficients

In order to take into account the transverse distribution of the flow velocity, kinetic energy α k
† and

momentum αm coefficients should be introduced in the one-dimensional model:

The velocity distribution must then be known in order to compute these coefficients. Analytical expres-
sions are obtained for both coefficients in the range p ≤ pl and interpolated when pl ≤ p ≤ 0.63

10.5 The One-Dimensional Model

One-dimensionality is based upon several hypotheses: (1) the longitudinal area gradient is sufficiently
small,†† (2) the tube axis remains straight during the test; and (3) the wall inertia and the fluid motion
due to the collapsing process are negligible. The tube wall material is usually assumed to be homogeneous
and purely elastic.

The set of equations is composed from the mass and momentum conservation equations associated
with the tube law. The straight tube is inclined with an angle β with respect to the horizontal (sin β =
–dZ/dx; x is the streamwise coordinate and Z is the upward vertical direction). For the sake of simplicity,
the tube is supposed to be subjected to a uniform and constant external pressure pe. Moreover, the flowing
fluid is assumed to be incompressible (Mach number Ma < 0.2). The wave speed depends mainly on the
tube compliance.

In steady tests, mass conservation gives the relationship between the steady cross-sectional average of
the velocity U and the luminal area Ai :

(10.17)

The differential expression of the speed index is given by

(10.18)

The space gradient of the cross-sectional area may be written in a differential form typical of the one-
dimensional steady model.1 †††

(10.19)

†In collapsible tube flows, because of the axial cross-sectional area changes, the following coefficient η may be used:64

††The no-cross flow hypothesis is open to criticism, especially in the downstream collapsible tube segment. It is
in conflict with the critical flow concept associated with sudden variation in cross-sectional area (dAi/dx → ± ∞).
The axial space derivative of Ai is generally studied in the collapsible tube literature and may be found to be large,
at least locally.

†††Two terms always appear in the differential equation of the one-dimensional model of flow in inclined pipe: a
propagation-dependent term 1 – S2 and a gravity friction term ρg sin β – ƒυ . Because the luminal area depends on
the axial coordinate Ai[p(x)], contrary to the uniformly-collapsed tube situation (see section 10.4), the head loss is
denoted here as ƒυ (x, q).
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The longitudinal configuration of the flexible pipe depends then on the respective magnitude
of the viscous and hydrostatic terms (Table 10.3). Elastic jump may occur in a cross-sectional
expansion (dAi /dx → + ∞), downstream from a super-critical (S > 1) flow segment, or choking in
a throat (dAi /dx →  – ∞).† A peculiar configuration corresponds to the uniform longitudinal shape
dAi /dx = 0; the viscous forces balance the hydrostatic pressure forces whatever the cross-section.
Examples of Ai longitudinal variations for given flow rates are illustrated in the case of subcritical
flows for both horizontal (Fig. 10.22) and downward inclined tubes (Figs. 10.23 and 10.24).

†The spatial derivative of the speed index dS/dx can be obtained using Eq. 10.18. The sign of dS/dx depends on
the sign of – MdAi/dx.

TABLE 10.3 Sign of dAi/dx from Eq. 10.19

S < 1 S = 1 S > 1

(ρg sin β – ƒυ) < 0 < 0 ∞ > 0
(ρg sin β – ƒυ) = 0 0 0/0 0
(ρg sin β – ƒυ) > 0 > 0 ∞ < 0

FIGURE 10.22 Dimensionless cross-sectional area Ãi vs. dimensionless axial length x̃. Horizontal flow
(λ/γ = 0.0073) Top: k0 = 1.005, p̃2 = p̃c , q̃ = q̃c +* ; mid: k0 = 1.005, p̃2 =2.5 p̃l , q̃c +* < q̃ < q̃c –* ; bottom panel

with constant downstream transmural pressure p̃ 2 = 5 p̃ l , k0 = 10, q̃ = 0.105 and q̃c +* . The parameters λ, γ, and δ
are defined at the end of section 5 (paragraph similarity conditions).
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FIGURE 10.23 Dimensionless cross-sectional area Ãi vs. dimensionless axial length x̃. Downward flow with con-
stant downstream transmural pressure p̃2 in a compliant tube (k0 = 1.005, n = 3/2, M > 0). Top: λ/γ = 0.035, δ sin
β = 50, p̃2 = 10 p̃l , q̃ = 0 and q̃2*; Bottom: λ/γ = 0.014, δ sin β = 216, p̃2 = p̃l , q̃ = 0 and q̃1*.

FIGURE 10.24 Dimensionless cross-sectional area Ãi vs. dimensionless axial length x̃. Downward flow with constant
downstream transmural pressure p̃2 in a compliant tube (k0 = 10, n = 9/4, M < 0, λ/γ = 0.014). Top: δ sin β = 112, p̃2

= 5 p̃l , q̃ = 0, q̃+, and q̃1*; Bottom: δ sin β = 431, p̃2 = p̃l , q̃ = 0 and q̃2*. In some traces, the wholly (superscript +)
or partial uniform configuration is observed.
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In horizontal tubes, Eq. 10.19 becomes: dAi/dx = – (Ai/ρc2)(ƒυ /(1 – S2)). The sign of dAi/dx depends
only on the sign of 1 – S2, because ƒυ is positive. If S < 1, the tube is convergent streamwise and conversely.
Due to the discontinuity, dAi/dx → – ∞ in the mid-tube segment, while, in the absence of any discontinuity
in the tube law, dAi/dx → – ∞ only at the tube exit, where c reaches its lowest values.

In inclined tubes, the hydrostatic pressure distribution induces a divergent or convergent tube shape
at rest, whether the flow is downward (β > 0) or upward (β < 0). The speed-index dependence of the
tube axial configuration convecting an ascending flow is similar to the dependence in horizontal tubes.
In a descending flow, dAi/dx depends on the respective magnitude of hydrostatic and viscous effects.
Stationary flow simulations are performed with constant p2 and increasing flow rates up to critical
conditions S = 1 (Figs. 10.23 and 10.24). The head loss is maximum in the most collapsed tube segment.
Hence, the hydrostatic effect balances the viscous effects first on the tube entry. With further increases
in flow rate, an upstream uniform segment occurs and lengthens. The axial shape of the collapsed tube
can become uniform over its entire length, as long as the flow remains subcritical. Then, the uniform
tube disappears, but a uniform upstream segment still exists. Whereas the flow rate continues to rise,
the uniform segment shortens and expands transversely, p2 remaining constant. When the numerical
experiments are carried out with a constant inlet cross-section, an entry uniform segment cannot appear.
However, the tube can become uniform along its entire length for a given flow rate as soon as the
unconstrained pressure p2 reaches the imposed entry pressure p1.

The one-dimensional model predicts not only the occurrence of a critical section but also the existence
of critical uniform pipe segments (dAi/dx = 0 and S = 1). The critical conditions are reached at once
either in the upstream uniform segment or at the downstream end, whether the inlet cross-sectional area
Ai1 is greater than Ai2 or not, and whether M is positive or not.

Mass and momentum conservations in the case of the one-dimensional unsteady flow give the fol-
lowing system of equations:

(10.20)

Similarity Conditions

The similarity conditions between two experiments are given by dimensionless governing parameters.
The tube law must be of the same type, i.e., same k0 ; the flow regime is either laminar or turbulent. A
set of dimensionless parameters† can be actually defined: (1) an aspect ratio λ = L/a0 , which can also be
considered as an axial viscous effect parameter; (2) γ = a0(ρK)1/2/µ, which is a combination of elastic,
inertial, and viscous forces; and (3) for gravity-friction flows, a hydrostatic effect parameter δ = ρgL/K.
A flow-pattern dependent group of the two first quantities λ /γm (m = 1 or m = 1/4, whether the regime
is laminar or turbulent) has been found to give a suitable similarity parameter in the description of the
∆p – q curves. High values of λ /γ indicate that, for given tube properties, the viscous forces affect the
flow significantly. When gravity and friction are combined, the hydrostatic similarity parameter δ sin β
must be added. This parameter is needed to adjust the tube inclination angle to the space available for
the set-up.

†Using the unstressed perimeter χ0/4 as the transverse characteristic length, the tube’s aspect ratio is expressed by
λ = 4 L/χ0 and λ/γ = 16 µL/χ0

2(ρK) 1/2.
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10.6 Collapsed Tube Flow Experiments

Steady Flow Experiments

Horizontal Tube

Experiments have been performed on a Starling resistor in order to investigate the behavior of the
tube–flow couple at constant outlet pressure p2 .65 The flow is induced by a constant head reservoir. The
rigid chamber is filled with air so that the pressure is adjustable. The passage through the chamber is
made with elastic membranes (Fig. 10.25) in order to reduce end effects as much as possible. The inlet
internal pressure was measured in the collapsible pipe via a small tube bonded on the flexible tube wall,
and the outlet was in a small box located at the exit of the test section. Note that the water-filled tube
was maintained horizontally in the air-filled chamber by means of thread as in a hammock.

The similarity criterion λ /γ was validated by subcritical laminar flow experiments performed under
different conditions.66 In a first set of experiments, the physical quantities were measured in two tubes,
A and B, of different properties (Fig. 10.26). The parameter γ is imposed by both fluid and tube properties;
λ is adjusted in order to satisfy the similarity condition λ /γ = constant in laminar flow. Experimental
iso-p2 ∆p – q curves (Fig. 10.26) are similar when the similarity criterion is satisfied. A second series of
experiments was carried out with a rubber tube B, through which a water-glycerol mixture was flowing
(Fig. 10.27). the experimental results show that when the similarity condition λ /γ = constant is respected,
the data obtained for given dimensionless p2 are similar, except for the critical conditions. This criterion
is therefore able to take into account variations in both tube and fluid properties, whatever the collapsed
tube configuration, with or without contact.

Numerical tests were carried out with the assumption of a subcritical laminar flow.56 † A reasonable
agreement was found for p2 > pl between dimensionless numerical and experimental iso-p2 ∆p – q curves.
When p2 < pl , the numerical predictions do not fit the experimental results, in particular the slopes of
the curves at very low flow are very different. The discrepancy can be imputed only to the wetted tube
perimeter χi  (Eq. 10.22), i.e., to experimental contact artifacts (Fig. 10.28). Indeed, during the collapse,
in the absence of a foam bed, a single contact point exists in the folded cross sections and χi remains

FIGURE 10.25 Bonis experimental set-up. The compliant tube is attached at both ends to elastic membranes (em).
The water-filled tube is maintained horizontally in the air-filled chamber with a set of suspension threads (t),
responsible for changes in contact conditions (see text).
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constant until the transmural pressure becomes sufficiently small to set upright the lobes on the threads.
The occurrence of the line of contact is thus delayed. Therefore, when computed from the tube law, the
absolute value of the line-contact pressure pl  and the wetted perimeter χi  are both underestimated. The
suspension threads induce a stiffening effect; the tube law no longer applies. Another set of experiments
was performed with a horizontal tube lying both on a foam bed and on a set of V-shaped plates to
minimize any artifact bearing on the contact phenomenon; the lobes of the collapsed tube may lie without
folding. Good agreement is then found between numerical and experimental data, in particular between
the slopes at the origin.

†The axial gradient in p is derived from Eq. 10.19, noting that Ai/ρc2 = dAi/dp :

(10.21)

The normalized governing equation for horizontal flow (β = 0), using the dimensionless variables defined in
section 10.3 and after some algebra, becomes:

(10.22)

Note that for a given flow rate q̃, for a given q̃2 , and for a given λ /γ ratio, the pressure gradient depends on χ̃i/χ̃ i0.

FIGURE 10.26 Pressure drop p̃1 – p̃2 vs. flow rate q̃ curves at constant normalized outlet pressure p̃2 for eight
series of experimental values performed from top to bottom at p̃2 = –26.4 (◊ and +), –19.8 (� and ×), –13.2 (�

and *), and –6.6 (◊ and +). Two tubes A (◊, ×, �) and B (+, �, *) with the following properties and corresponding
values of the dimensionless parameters: 
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FIGURE 10.27 Pressure drop p̃1 – p̃2 vs. flow rate q̃ curves in tube B (see Fig. 10.26) at constant outlet pressure p̃2

for 12 series of experimental values from top to bottom at p̃2 =–26.4 (◊, +, �), –19.8 (�, *, ×), –13.2 (+, �, ◊), and
–6.6 (*, �, ×) for 20, 40, and 50% glycerol-water mixtures respectively, with the following properties and values of
the dimensionless parameters: 

FIGURE 10.28 Top: foam beds are inserted between perspex regularly spaced V-shaped supports in order to prevent
the tube folding (i.e., a curvature of the opposite walls in the same direction). Bottom: thread-induced collapse with
folding of a water-filled flexible tube in an air-filled chamber. The occurrence of the line of contact is delayed. In
such tests, the previously described model of the tube deformation is not suitable.
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Inclined Tube

Gravity-friction flows have been explored in thin-walled long collapsible tubes put in an air-filled rigid
box.6 The silicon-rubber tube, attached to rigid ducts at both ends, lays on a foam bed and on a set of
V-shaped plates (Fig. 10.29) to ensure the alignment of rigid and water-filled floppy tube axes and to
prevent the folding of the cross-section (see comments in the previous section). Both entry (p1) and exit
(pd) pressures are measured. The water flow is induced by a constant head tank (head of 2.5 m with
respect to the tube axis in a horizontal position). The flow rate is adjusted by a downstream valve.†

Downward (0 to 90°) and upward (–20 to 0°) flows were investigated.
In upward pipes, a flow-limiting throat appears quickly and the iso-p2 q – ∆p curves do not exhibit

any plateau. The downward inclined tube is divergent at rest, because of the hydrostatic effects. The
downstream transmural pressure pd is set to negative values. The highly collapsed tube opens gradually
while the flow rate is increased. When the pressure drop ∆p is equal to zero (the measurement stations
are sufficiently remote from the tube attachments), the tube configuration is uniform between the
pressure taps p1 and pd . Flow data in uniformly collapsed inclined tubes†† are given in Fig. 10.30.

Circular and elliptical attachments were used. The downstream pressure (pd) was measured at 150 mm
(p3) or 15 mm (p2 , i.e., possibly in the experimentally imposed divergent) using circular attachments
and 60 mm upstream from the collapsible tube outlet at a single station using elliptical attachments.
Three modes of operation for each kind of flow (horizontal, ascending, and descending) were defined:
(1) circular attachment and p2 constant; (2) circular attachment and p3 constant; and (3) elliptical
attachment and p2 constant. The attachment condition plays an important role, because it affects the
outlet divergent shape and the longitudinal deformation.††† Results in a downward inclined tube (incli-
nation angle of 45° with the three modes of operation are illustrated by iso-pd ∆p – q curves (Figs. 10.31

FIGURE 10.29 Experimental set-up. The flow may be either descending (β > 0) from the vertical position or
ascending (β < 0) from –20°. The three pressure measurement stations are labeled pi1 near the tube entry and pi2

and pi3 in the downstream segment. Pressure taps are located at the tube lateral edges.

†The downstream valve entry pressure is given by 190.5 q–0.12, where the pressure and flow rate units are Pa and
cm3/s–1, respectively.
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to 10.33). When mode 1, which is the usual mode, is operated, the experimental curves are stopped when
the flow rate reaches the threshold set by the experimental bench. Fluctuations and oscillations are
observed in the plateau region for a flow rate more or less close to the curve knee. With mode 2, a
disruption is observed after the uniform state conditions; a downstream throat appears. Stability is thus
tightly linked with location of the pd measurement station; the greater the local wall axial tension the
steadier the flow for modes 1 and 2. The mode 3 iso-p2 ∆p – q curves resemble the mode 1 plots. However,
strong fluctuations appear at high flow rates when the downstream divergent angle is smaller.

The bulge displayed in Fig. 10.34 is located near the downstream end of an inclined collapsed tube.
The tube axial configuration may be decomposed into three segments. Segment I is the highly collapsed
part (p ≤ pc) where the line of contact shortens in the streamwise direction to reach a distal point of

††In uniform tubes (superscript +), computations from the force balance ρg sin β+ = ƒυ
+ were performed both for

laminar and turbulent flows. Computational and experimental results are in agreement. The equilibrium equation,
for example, in turbulent flow, is given by:

where  is a tube-dependent coefficient. In this set of experiments, the above equation
becomes, with SI units:

The experimental pressure-dependent shape factors are given below for the investigated pressures:

†††The collapsible tube flow behavior depends strongly on the location of the measurement site of the downstream
internal pressure. In other experiments in horizontal tubes, pi2 is measured in the rigid hydraulic circuit downstream
from the collapsible tube.

FIGURE 10.30 Experimental data in uniformly collapsed tube flow conditions (superscript +) for an inclination
angle ranging from 0° to 90° at p+ = –1 (×), –1.5 (�), –2 (+), and –3 kPa (◊), and computational results from the
force balance equation in a turbulent pattern (q in cm3/s–1).
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FIGURE 10.31 Pressure drop p1 – p2 (kPa) vs. descending flow rate q (cm3/s) curves in iso-p2 conditions in a 45°
inclined tube. Mode of operation 1: circular attachment, L = 1.2 m, p3 = –3 (◊), –2 (+), –1.5 (�), and –0.2 kPa (×).
Peculiar points are connected by labeled lines which define the beginning of fluctuations (f) and the beginning of
low-frequency small-amplitude oscillations (o), which grow with further increase in flow rate. The governing param-
eters are γ = 3584, λ = 50, and δ = 369. The tube properties are the following: 

FIGURE 10.32 Pressure drop p1 – p3 (kPa) vs. descending flow rate q (cm3/s) curves in iso-p3 conditions in a 45°
inclined tube. Mode of operation 2: circular attachment, L = 1065 mm, p2 = –3 (◊), –2 (+), –1.5 (�), –1 (×), and
–0.4 kPa ( �). For definitions of labeled lines, see Fig. 10.31. The governing parameters are γ = 3584, λ = 56, and δ = 416.
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contact at its exit (dAi/dx increases progressively). Segment II is shaped like a bulge: dAi/dx rises, becomes
nul, and decreases rapidly. Segment III is the downstream throat (locally, dAi/dx → – ∞) at the entrance
of the exit divergent. This peculiar configuration67 may be the consequence of a non-stationary process.18

Flow Limiter

A specific device, the flow limiter, has been used to investigate the flow limitation in horizontal flows
with constant inlet transmural pressure (p1 = 0). The test section is composed of a compliant pipe enclosed
in two coaxial transparent rigid cylinders (Fig. 10.35). The fluid simultaneously enters the collapsible
tube and fills the space between the two chambers, so that p1 is held constant at zero (∆p = – p2). Water
glycerol mixtures were used. The liquid leaves the flexible pipe through a short rigid bend† to avoid air
trapping in the flexible pipe. Both pe and q are measured.

Experimental flow rate – p2 vs. q curves can be subdivided into six successive phases (Fig. 10.35).
During phase 1, the tube collapses progressively while q is increasing. Phase 2 is characterized by an
unsteady collapse; both p2 and q decrease without oscillations. When the collapsing wave reaches the
downstream end, a sudden additional narrowing is observed, which induces a backward-running pressure
wave. Phase 3 corresponds to a new steady state, defined by a very small decrease in flow rate. Phases 4
through 6 belong to the inverse path of the test, displaying a hysteresis. An unsteady re-opening of the
conduit is observed during phase 5. In phase 6, the flow is again steady.

In Fig. 10.36, the greater µ, the higher the slope of the curves and the lower the flow rate at which
phase 2 is initiated. The steady flow is bounded by the theoretical curve based on the critical flow rate
associated with p2 . Flow limitation (beginning of phase 2) seems to appear with the onset of tube
instability: the flow-rate is the maximum obtainable flow rate (q = q2*). In phases 3 and 4, the flow rate

FIGURE 10.33 Pressure drop p1 – p2 (kPa) vs. descending flow rate q (cm3/s) curves in iso-p2 conditions in a 45°
inclined tube. Mode of operation 3: elliptical attachment, L = 1065 mm, p2 = –2 (◊), –1.5 (+), –1 (�), and +4.2 kPa
(×). For definitions of labeled lines, see Fig. 10.31; label p means a tube pinch without significant change in p2. The
governing parameters are γ = 3584, λ = 50, and δ = 369.

†The head loss (in Pa) of the rigid segment downstream from the compliant test section depends on the flow rate
for a given flowing fluid, according to the following formulae: 1.11 q + 2.96, with q in cm3/s–1, for a fluid viscosity
µ of 1.3 × 10–3 Pa/s and of 3.41 q + 4.80 for µ of 15.9 × 10–3 Pa.s. The internal pressure at the flexible pipe exit can
thus be estimated.
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variations follow a path parallel to the critical outlet flow rate. For the highest viscosity (plot d of
Fig. 10.36), the flow rate q remains lower than q2* during phases 1 and 2, does not follow the q2* traces

during phase 3, and does not exhibit hysteresis.

Unsteady Flow Experiments

Unsteady flow experiments have been performed in collapsible tubes subjected to pressure ramps in
either a Starling resistance type model51,52 or in a two-serial element model, composed of a balloon and
a flexible straight tube of elliptical unstressed cross-section.68 The latter model is briefly presented
(Fig. 10.37). the model was placed in a rigid box. A negative pressure was initially set in the box to
determine the initial volume of the compliant structure. The pressure in the box was then raised to a
maximum in a given time span.

The flow rate time evolution can be subdivided into three successive stages (Fig. 10.38): (1) a phase
of flow acceleration characterized by a rapid increase in flow rate up to a maximum reached for pc < p2 < 0;
(2) a brief phase of flow limitation, during which q decreases quickly whereas ∆p = p1 – p2 and pe continue
to rise; and (3) a drainage phase. The speed indices (S1 and S2) can be estimated from pressure and exit
flow rate measurements at the pressure-measurement sections when the tube law is known, neglecting
the collapse flow due to the wall motion.† The flow becomes critical (S2 = 1) simultaneously with the
peak flow, before the opposite walls come into contact at the tube exit.†† When contact between opposite
walls occurs at the tube outlet, S2 reaches its maximum. Due to the contact discontinuity, S2 then drops
abruptly. Soon afterwards, p1 becomes negative. The critical section travels upstream, followed by the
point-contact section, to reach the pipe inlet in a very short time. The critical section migrates with a
decaying critical transmural pressure p* (x) while q is decreasing.70 The final period of phase 2 is

FIGURE 10.34 Collapsed downward tube configuration with a downstream bulge. The downstream tube segment
exhibits three segments: segment I, the highly collapsed part, segment II, the bulge, and segment III, the distal
constriction. The tube properties are given in Fig. 10.31.

†This hypothesis is questionable in the range pc < p < 0, where the tube compliance is important. However, ∂Ai/∂p
becomes negligible when p < pl .

††The numerical results, in good agreement with experimental data, show that the peak flow is critical, with
pc < p2 < 0.69
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characterized by a slightly supercritical flow in the entire tube.† The flow then returns to a subcritical
state throughout the entire conduit, the flow velocity being too low; the viscous forces are then dominant
in the fully collapsed tube.††

Variations in the rate of pressurization were investigated, too. The stronger the initial rate of pressur-
ization, the shorter the time required for the critical section to appear at a given station of the pipe, the
greater the peak flow, and the higher the value of the critical transmural pressure p*. The flow rate
depends, therefore, on the pressure history. However, the timespan of critical section motion along the
pipe is almost constant. Similar findings were observed experimentally51 and in human healthy subjects.

FIGURE 10.35 Top: the flow limiter device. The inlet transmural pressure p1 is nul because of negligible entry
effects (the collapsible tube chamber senses p1 ; the fluid inside is at rest during the stationary state). Bottom: flow
rate vs. pressure drop relationship of the flow limiter device. Six phases can be defined (see text). Hysteresis is observed
between the increasing flow rate (from zero, “forth test’) and decreasing flow rate (“back test”) experimental curves.
In forth tests, instabilities arise from critical conditions.

†Flow-rate changes during this stage may be understood with the help of the following equation, derived from
the mass and momentum conservation principles:

(10.23)

During the entire test, the axial pressure gradient ∂p/∂x is negative, whereas the terms ∂q/∂x and ƒυ are positive. The
third term of Eq. 10.23 is positive when S > 1; ∂q/∂t must be negative.

††When S1 < 1, q decreases with time when the viscous effects are predominant (see Eq. 10.23).

ρ υ/ / / /A q t U q x S p x f∂ ∂ + ∂ ∂ + − ∂ ∂ + =( ) ( )2 1 0
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The external pressure maximum was also modified. The flow-limiting site does not reach the pipe inlet
when the external pressure maximum is below a given threshold. A decrease in initial negative external
pressure pe (0) induces an increase in the total exhaled volume and a higher peak flow, which appears
later, p2 remaining nearly constant. In experiments with smaller pressurization rates, the flow was found
to remain subcritical during the entire operation.†

10.7 Physiological Applications

Collapsible tube flow investigations can either be focused on the flow behavior with applications to
physiological flows, directed toward the fluid–solid coupled stability with applications to vascular and

FIGURE 10.36 Relationships between the pressure drop –p2 (kPa) and the volume flow rate q (ml/s) curves in the
flow limiter device for four water–glycerol mixtures of increasing viscosity from a to d. Direction of flow rate changes
is indicated by arrows. The critical flow rate q* (Ai2) is also plotted (thick line). The four plots, a to d, are decomposed
in order to display the high pressure range [4, 18] (kPa) including the contact condition (top), and the low pressure
range [0, 0.2] (kPa) including the flow-limitation region (bottom). The tube and flow properties are given below,
with the similarity-condition parameter λ/γ: 

†Eq. 10.23 shows that a peak flow may occur while the flow remains subcritical; indeed, ∂q/∂t = 0 when S < 1
because ∂q/∂x > 0 and ∂p/∂x < 0.
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pulmonary auscultation sounds, 71,72 or aimed at describing the fluid-dependent displacement of the solid
boundary with applications to cardiac valve motions.73

Physiological conduits vary both in size and structure along their length. Axial changes in bending
stiffness have been taken into account in some works.59–74 Yet, the sigmoidal shape of the Ai(p) relationship
is observed in every compliant duct, whether the wall is relatively homogeneous in size and in mechanical
properties or is made of a composite material of non-uniform geometry.75 As a consequence, the cross-
sectional area decreases very quickly for slightly negative transmural pressures down to its opposite wall
contact value in test sections as well as in vivo.76

The venous circulation is characterized by the vein compliance, which allows the storage of blood
volume (up to 70%) in the venous network; veins are thus modeled by thin-walled floppy tubes. Flows
with combined friction and gravity have been investigated in order to model the downward blood flow
in superficial veins supposed to be subjected, at least partially, to the atmospheric pressure. The external
jugular veins of the giraffe provides a useful physiological model to explore the gravity effects because
of the large range in the pressure gradient. Additionally, the veins of test pilots experience an added
acceleration term.77

The time-mean exit pressure in proximal veins is controlled by the heat pump to fit the physiological
requirements. However, at the exit of any capillary network remote from permanent sources of unsteadi-
ness, the pressure can be supposed to be constant, especially in the rigid skull. Whether the inlet of an
isolated vein, like the external jugular vein, is located downstream from a capillary network or the
outlet of a distal vein is the junction with an in-parallel capillary network, the venous blood can be
assumed to flow either under inlet or outlet constant conditions, respectively. Blood in superficial veins,
in their natural environment or slightly pressurized by support stockings, is conveyed under constant
external pressure.

FIGURE 10.36 (CONTINUED)
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Many scenarios in terms of tube axial profiles and critical conditions can occur (see section 10.4).
Critical conditions may be attained either at the tube entrance or exit or at an intermediate site because
of the tube law discontinuity. Such phenomena provide a mechanical process liable to produce a quick
transient regulation of blood flow. This physical mechanism can be understood as the first step of a local
regulation, which can be taken over later by a biochemical regulation of the vasomotor tone set by flow-
induced stresses on the endothelial cells. The biochemical regulation is associated with the local release
of substances like endothelin, prostacyclins, nitric oxide, etc. The nitric oxide, which induces a relaxation
of the vascular tone, might require the shortest possible response time, the magnitude being of order of
100 ms. The low time-constant mechanical flow regulation can be set for a faster response.

The shear stress distribution is affected by the cross-sectional shape and the wall curvature changes.
A set of shear stress magnitudes has been computed for different veins of known diameters and given
flow rates, assuming a steady laminar developed flow (Table 10.4). For a given flow rate and azimuth,
the wall shear stress can increase up to 30 times from the open section (p = 0) to the point-contact
section in steady flow (see Figs. 10.19 and 10.20). Furthermore, at a given station, the more collapsed
the cross-section, the greater the circumferential variation in wall shear stress. Consequently, the endot-
helium, subjected to huge changes in tangential stress, might limit the stress range by releasing substances
which, acting on the adjoining media cells, might locally modify the lumen size.

FIGURE 10.37 The monoalveolar model (top) is composed of a compliant balloon whose inner wall is covered
with soft foam and a flexible pipe in series. Internal pressures are measured in the balloon piA , near the tube inlet
pi1 and near the outlet pi2 . The deformable model, placed in a transparent rigid box on a foam bed, is first inflated
and then submitted to a pressure ramp (bottom). The flow rate is measured at the tube exit.
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The confluence of vein tributaries is located at the lateral edges of the veins, while the venous valvules,
aimed at avoiding backflow during transient external compression, are inserted on the flat sides. These
sides might come into contact temporarily but repeatedly during the venous lifespan, and, undergoing
strong reaction forces, experience tissue fatigue and possible damage. Such contact reactions might, in
the long run, induce a functional deficiency of valvules, without locking the venous return.

Unsteady flow experiments have been performed in order to model venous flow under muscle con-
traction, external cuff compression,51 or forced expiration maneuvers.68 The latter test is commonly
performed in lung function testing to quantify the pulmonary function loss especially in patients with
chronic obstructive lung disease. The forced expiration test corresponds to the quickest exhalation of the
vital capacity, which is the maximal volume of air that can be expelled from the lungs after a complete
inspiration. Flow limitation has been demonstrated from iso-p1 ∆p – q curves (i.e., in iso-volume
conditions),78 when the lung volume is lower than 75% of the vital capacity.

Flow limitation may be linked to a critical condition (see section 10.6). The results obtained from
simple models of the respiratory network have been validated by in vivo experiments, during which both
the flow rate and the tracheal cross-section areas were measured.76 The trachea collapses very early and
quickly, the peak flow occurring during the first 300 ms of the maneuver. During this period, the tracheal
area is reduced to 40% of its initial size. All conditions required for critical conditions are set up with
such catastrophic changes associated with the wave of collapse. Estimates of the local velocity and wave
speed were of the same order of magnitude. A critical flow is highly probable, which could explain the
occurrence of the peak flow and the flow pattern, at least for a short period after the peak flow.

FIGURE 10.38 Time variations of the volume flow rate q and of the speed indices computed at the measuring
stations of the downstream (S2, dashed line) and upstream (S1, dotted line) transmural pressure p in a monoalveolar
compliant model. Three phases are defined: phase I of flow acceleration, phase II of wave-speed flow limitations
(S ≥ 1), and phase III of viscous drainage.

TABLE 10.4 Estimated Maximal Shear Stresses at the Venous Wall from 
the Normalized Value τw (pc)

~ (see Fig. 10.20), using the Scale µq/0
3 and 

Assuming a Blood Dynamic Viscosity of mPa.s

a0 (mm) q (cm3.s–1) τw (Pa)

12.5 75.00 5.68
5 1.9 2.25
1.5 0.13 5.70
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10.8 Conclusion

The one-dimensional model has been very useful in the investigation of flow in collapsible tubes. However,
the one-dimensionality of fluid flow is based on a set of hypotheses which are incompatible with the
complexity of flow behavior. Criticisms may be directed toward the fluid mechanics side as well as to the
solid mechanics aspects.

In a one-dimensional model, momentum and kinetic energy coefficients should be introduced in order
to take into account the non-uniform velocity distribution in any collapsed pipe cross-section. However,
these coefficients are usually supposed to be equal to unity. Furthermore, as soon as the opposite walls
come into contact, the flow splits into two separate streams. The upstream and downstream effects of
the stream division on the flow field are ignored. Transverse velocities involved during the wall motion
are also neglected. Above all, the axial change in cross section area may be found to be experimentally
important (Fig. 10.34). Downstream from the constriction designed by the collapsed tube, an induced
divergent segment can be associated with jet and flow separation. Flow separation strongly affects the
pressure distribution and the tube mechanics. Additionally, the three-dimensional flow through the elastic
jump has been experimentally demonstrated.7

In the standard one-dimensional model, the physical agents of the longitudinal flexural deformation
of the tube are not taken into account. They can be incorporated in a more complex way than in the
standard model via the local axial tension.11,12,16,17 These factors are important because they affect the
stability of the fluid–tube couple. However, a detailed analysis of the actual mechanics of the fluid–tube
couple will need future three-dimensional studies both in fluid mechanics and in solid mechanics. At
the present time, three-dimensional models, oversimple in fluid mechanics but more complex in solid
mechanics and incorporating contact, are in progress.19 Time-dependent velocity profiles measured by
laser Doppler velocimetry in an oscillating collapsible tube79 confirm the need to venture deeper. However,
advanced models do not necessarily enhance the knowledge of the physiological system of interest.

Nomenclature

Tube-Dependent Variables

A : area a0 : major semi-axis
c : wave speed D : flexural rigidity
E : Young modulus F : polynomial function
ƒ : friction shape factor f : external forces
G : mapping coefficient h : wall thickness
K : pressure scale k0 : tube ellipticity
L : tube length M : bending moment
M : tube law parameter N : lobe number
n : normal n : similarity tube law exponent
p : transmural pressure R : contact reaction
r : reaction distribution s : curvilinear abscissa
T : stress resultant t : tangent
β : tube inclination angle θ : (j,t) angle
ν : Poisson coefficient ξ : correction factor
χ : tube perimeter
αpo , βpo , γpo : tube law coefficients for pp < p ≤ 0
αcp , βcp , γcp : tube law coefficients for pc < p ≤ pp

α lc , βlc , γlc : tube law coefficients for pl < p ≤ pc
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Fluid-Dependent Variables

ƒυ : head loss per unit length Ma : Mach number
m : flow pattern exponent q : volume flow rate
R : flow resistance S : speed index
Re : Reynolds number u : fluid velocity
U : cross-sectional average velocity αk : kinetic energy coefficient
υ : dimensionless velocity γ = a0(ρK)1/2/µ
αm : momentum coefficient ∆p : axial pressure drop
δ = ρgL/K λ = L/a0

Λ : head loss coefficient ρ : fluid density
µ : fluid dynamic viscosity τ : shear stress
σ : conductivity

Other Variables

g : gravity t : time
Z : ascending vertical axis
{x, y, z} : cartesian coordinates with unit vector set {i, j, k}

Sub- and Superscripts
.̃ : normalized ·– : time mean
·* : critical ·0 : unstressed
·b : buckling ·p : for first parallel (wall edges)
·c : point-contact at p = pc ·l : line-contact at p = pl

·L : laminar ·T : turbulent
·1 : tube entry ·2 : tube exit
·d : downstream tube segment ·u : upstream (head tank)
·e : external ·i : internal, luminal
·+ : right of discontinuity ·– : left of the discontinuity
·g : driving (pressure) ·w : wall
·A : alveolar (balloon) ·+ : uniform axial shape
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11.3 Numerical Models
11.4 Aortic Bifurcation with Flexible Walls

This article presents a computer simulation of blood flow through the aortic bifurcation with flexible
walls. A two-dimensional numerical model is employed to describe the blood flow and the wall
behavior is delineated by a linear viscoelastic constitutive equation. The arbitrary Lagrangian-Eulerian
method is adopted to deal with the moving boundaries. The successive-over-relaxation method is
employed to solve both the vorticity and Poisson equations. It is disclosed that flexible walls do not
significantly affect the overall flow patterns but tend to facilitate flow reversals or eddies during
expansion but restrict them during contraction. A flexible bifurcation experiences shear stresses
approximately 10% lower than those of a rigid one.

 

11.1 Introduction

 

An artery consists of a tube lined by endothelium. The tube wall consists of three layers: tunica intima,
tunica media, and tunica adventitia. The flattened surface cells of the tunica intima are longitudinally
oriented. The tunica intima includes subendothelial connective tissue and an elastic tissue layer designated
the lamina elastica interna. Surrounding these inner layers is a relatively thick tunica media composed
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of smooth muscle and elastic tissue in varying proportions. The outer covering of an artery is the tunica
adventitia, composed mainly of collagenous fibers.

The representative disease of arteries is atherosclerosis. Curvatures, junctions, and bifurcations of the
large and medium arteries are severely affected by atherosclerosis. In the aorta, the abdominal segment
is more severely affected than the arch or the thoracic segment. The blood flows in these regions are
disturbed and the arterial walls are exposed to either high or low shear stresses. Many experimental and
theoretical studies have been conducted to investigate the role of fluid dynamics in atherogenesis. Com-
prehensive reviews pertinent to the subject are available.

 

1–3

 

 Various studies

 

2

 

 favor the association of a low
shear region with atherosclerosis. 

Lou and Yang

 

3

 

 reviewed and critiqued biofluid studies at various arterial bifurcations. They found that
the coronary arteries are highly vulnerable to atherosclerosis and that a strong association exists between
the sites of atherosclerosis and the inner walls of the curved coronary arteries. In order to understand
the mechanism of localization of atherosclerosis, Tokuda et al.

 

4

 

 and Kajiya et al.

 

5

 

 conducted studies
comparing the relationship between the flow structure and the morphology function of endothelium at
a location of favorable artherogenesis with the relationship at an unfavorable location. They found that
in the region of unfavorable atherogenesis:

1. Stress fibers are distributed mainly near the base of endothelium but also extend into the tunica
media. Like cell nuclei, they are aligned perfectly parallel with the flow direction.

2. Acetyl LDL (lipoprotein) is distributed mainly in the endothelial layer and practically none is
distributed in the tunica media.

In contrast, in the region of favorable atherogenesis, shear flow velocity is low, flow separation exists,
and flow is more oscillatory. Most importantly, the alignment of stress fibers is nonhomogeneous with
lower density and alignment of nuclei is also random.

In order to determine the fluid dynamic aspects of the mechanism of atherosclerosis, modeling and
simulation techniques are employed to analyze flow structure at arterial bifurcations.

 

11.2 Physical Models for Arterial Bifurcations

 

The modeling and simulation of blood flows are the most popular and well-documented subjects in the
field of biofluid mechanics. Fig. 11.1 

   

6

  

 illustrates how they can be modeled, from the simplest combination
of a steady, one-dimensional, laminar viscous flow of a Newtonian fluid in a long straight tube of constant
cross-section to the most complicated model of an unsteady, three-dimensional, pulsatile flow of a non-
Newtonian fluid in a short, tapered tube with a flexible wall, imbedded in a flexible bed. Fig. 11.1 can
be used as a reference in the study of flows at an arterial bifurcation.

 

Geometry

 

Many bifurications exist in the arterial system and they can be classified into two general shapes. One
type is Y-shaped, and has two branches of comparable sizes originating from the end of a trunk. The
aortic, carotid, iliac, neural, and coronary bifurcations belong to this category. The other group is
T-shaped, with a single side branch growing from a relatively continuous trunk. The renal, femoral,
celiac, and mesenteric bifurcations belong to this class. However, when two bifurcations are close to each
other, hydrodynamic interference exists between them, and it is necessary to treat them as a single unit.
For example, the left and right renal bifurcations are almost perpendicular to the abdominal aorta and
on opposite sides, thus forming a cross shape. The superior mesenteric and celiac bifurcations are situated
next to each other on the same side of the abdominal aorta, forming a

 

 

 

π

 

 shape.
Fig. 11.2 depicts schematics of idealized Y- and T-bifurcations. The two most employed geometric

parameters in the former case are the bifurcation angle, 

 

β

 

, defined as the angle between two branch axes,
and the area ratio 

 

(AR) 

 

which is the ratio of the sum of the two branch areas to the trunk area. In general,

 

β

 

 is equal to the sum of individual bifurcation angles 

 

β

 

1

 

 and 

 

β

 

2

 

, and 

 

AR

 

 is equal to the sum of individual
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area ratios 

 

AR

 

1

 

 and 

 

AR

 

2

 

. In contrast, an idealized T-shaped bifurcation has only a (total) bifurcation
angle, 

 

β

 

, and three area ratios, 

 

AR

 

, 

 

AR

 

1

 

, and 

 

AR

 

2

 

, as defined for an asymmetric Y-shaped bifurcation.
Branch 1 is the side branch and branch 2 is a straight continuation of the trunk. Physiologically, 

 

AR

 

2

 

 

 

is
close to unity while 

 

AR

 

1

 

 is much less than unity. In general, 

 

AR 

 

ranges from 0.52 to 1.39 in human
arteries and changes with age. The average 

 

AR

 

 for the aortic bifurcation varies from 1.1 in early infancy
to 0.75 in the fifth decade. The 

 

AR

 

 is related to the shear stress level, flow field, and pressure wave
reflection at bifurcation. In the aortic bifurcation, an increase in 

 

AR

 

 leads to a reduction in shear level
in the branches and a noticeable increase in the duration of reverse flow distal to the lateral junctions.
In the abdominal bifurcation, however, a reduction in 

 

AR

 

 values from 1.15 leads to an increase in the
pulse wave reflection.

 

Blood and Its Rheology

 

It is commonly believed that the non-Newtonian effect is small in large vessels where the shear rate is
high. However, low shear spots are also found near bends and bifurcations. Lou and Yang

 

3

 

 used the

 

FIGURE 11.1

 

Selection of models for arterial flow analyses. (

 

Source:

 

 Stettler, J.C., Niederer, P., Anliker, M., and
Casty, M., 

 

Ann. Biomed. Eng.

 

, 9, 1665, 1981. With permission from AIP.)
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Casson model, which is known to adequately represent non-Newtonian blood rheology. The Casson
model expresses the blood stress 

 

(

 

τ

 

)

 

 strain rate ·(

 

γ

 

) relation as

(11.1)

where 

 

τ

 

o

 

 denotes the yield stress and 

 

η

 

 is the Casson viscosity or the limiting apparent viscosity. A power
law non-Newtonian fluid model was employed to study flow in renal and general T-shaped bifurcations.
It has the form of

(11.2)

where 

 

b

 

 and 

 

n

 

 are constants. The model lacks the yield stress to address the low shear rate region. Another
power law expression was derived by Walburn and Schneck which includes the hematocrit and two
adjustable parameters. The Herschel-Bulkley equation is a power law model with an additional yield
stress term, as

 

(11.

 

3)

It fails to fit the flow rate-pressure relationship for blood over a wide range of shear rates. All the models
described above are for steady flow and do not address the time-dependent behaviors that arterial blood
shows.

 

Numerical Bifurcation Studies

 

Numerous investigators have employed the Casson model in numerical studies of arterial bifurcation.
For example, Lou and Yang

 

1,10

 

 used a range of the yield stress, 0.0477, 0.1, and 0.143 dyn/cm

 

2

 

, with a
dynamic viscosity of 0.048 poise. The non-Newtonian effect on the fluid dynamics in arterial bifurcations
was found to be insignificant.

 

Experimental Bifurcation Studies

 

The Separan solutions of various compositions with the power law type rheological behavior were used
in experimental studies of arterial bifurcations. One example is

 

(11.

 

4)

Experimental results showed dramatic non-Newtonian influence globally compared with numerical
simulations with the Casson model.

 

FIGURE 11.2

 

Schematics of idealized bifurcation shapes, (a) Y-shaped and (b) T-shaped.
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Arterial Wall Models

 

As noted in the introduction section, the arterial walls are made of composite materials consisting of
three major layers: the intima, media, and adventitia. From the viewpoint of material strength, the intima
contributes little to the mechanical strength of the walls and has a layer of endothelial cells in direct
contact with blood. The media, consisting of smooth muscle and elastin embedded in collagen and an
amporphous gel, provides the main strength of the wall. The adventitia consists of smooth muscles and
connective tissues, such as collagen, elastic, and amorphous material. Its structure is loose and irregular.

The complicated structure causes arterial walls to exhibit nonlinear and viscoelastic rheological behav-
ior. Different layers are so structured that the wall becomes stiffer as it is stretched. In addition, the
arteries are subject to large initial deformation. Thus, the formulation of a complete artery model becomes
a difficult task.

Three basic artery models are classified based on their geometric arrangements. The types are inde-
pendent rings, thin membranes, and thick membranes. The thick membrane model is the best, while
the thin membrane model is more realistic than the independent rings model. Each of these three basic
models can be further classified elastic and viscoelastic models, based on constitutive behavior. Elastic
and viscoelastic models can be further divided into linear, incrementally linear, and nonlinear models.

For wall modeling, potential simplifications can be made on longitudinal movement, external restraint
on radial expansion, inertial effect from wall mass, linearity, independent rings, and viscoelasticity. The
viscoelastic wall model yields results closer to normal physiological conditions than the elastic wall model,
while a dissipative wall is more effective than a dissipative fluid in eliminating the high frequency oscillations.

As the material for arterial walls, silicon rubber has been used in all 

 

in vitro

 

 experimental simulations
for distensible fiburcations, with a glass (rigid) model to determine the effect of the wall distensibility.
In general, the major shortcomings of the experimental studies include lack of data or characterization
of the viscoelasticity; lack of identical rigid models, especially those with the same curvatures at the flow
divider and laterial junctions, for comparison; and lack of a precise means of directly measuring the
shear rate at walls.

 

Fluid Dynamic Parameters

 

In dealing with a vessel bifurcation into two branches, two flow ratios are needed to determine the
distribution of the flow in the branches:

 

QR

 

1

 

 = flow in branch 1/total flow

 

QR

 

2

 

 = flow in branch 2/total flow

The flow is said to be balanced if the ratio of two flow ratios is equal to that of two area ratios, i.e.,

 

QR

 

1

 

/

 

QR

 

2

 

 = AR

 

1

 

/

 

AR

 

2

 

.

 

For a physiologically pulsatile flow in the cardiovascular system, a complete description demands an
entire time history of the flow or one representative Reynolds number 

 

(Re)

 

 plus a time history of a
normalized flow. This represents the best approach to obtain more accurate results than the use of the
Reynolds number at the peak, minimum, and average flow rates in a cycle, the Womersley number

 

 (

 

α

 

)

 

of the base harmonic, or the Strouhal number 

 

(St)

 

. Here,

 

D

 

 denotes the hydraulic diameter; 

 

V

 

, characteristic velocity; 

 

ν

 

, kinematic viscosity; and 

 

ω

 

, angular
frequency. Hence the three dimensionless numbers are interrelated as

Re , ,

/

= =





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In an arterial bifurcation, secondary flow is a spiral flow pattern from the outer wall to the inner wall
in the bifurcation plane, and in the opposite direction along the upper and bottom walls. Flow depends
on the interplay among the viscous forces, Coriolis force owing to the change of flow direction, other
inertial forces, and the axial pressure gradient. It is harder to detect secondary flow in a pulsatile flow
than to detect it in a steady flow. However, it induces a higher shear rate along the inner wall and either
enhances or induces flow separation along the outer wall in a bifurcation.

 

Experimental Methods

 

Experimental approaches in biofluid dynamics at arterial bifurcations include flow visualization, velocity
measurement, and shear rate or stress measurement. Flow visualization derives qualitative information
from the overall flow field that can then be converted into quantitative data through the application of
an image processing technique. In the study of arterial bifurcations, streaming birefringence, dye injection,
particle tracers, hydrogen bubbles, and MRI (magnetic resonance image) may be used. Invasive hot-wire
probes and noninvasive LDV (laser Doppler velocimetry) are available for 

 

in vitro

 

 bifurcation studies.
Noninvasive UDV (ultrasonic Doppler velocimetry) and MRI can be adopted for 

 

in vivo

 

 studies. LDV
with an optical fiber is feasible for an 

 

in vivo

 

 study, but the technique is invasive. In addition, digitized
cineangiography and a combination of particle tracers and cinephotography have also been used.

One of the main pursuits in arterial bifurcation studies is the measurement of wall shear stresses.
Three methods can be used for indirect wall shear rate evaluations: 

(1) Using an opaque coating layer on the surface, an electrochemical probe, or a hot-film probe. 
(2) Using the velocity profile derived from a nonlinear theory or wave equation together with measured

pressures at two neighboring stations, or a flow rate.
(3) Extrapolating the wall shear rate from the measured point velocity at desired sites.

The difficulty of precisely locating an arterial wall, especially a distensible wall, causes errors in velocity
and position values, resulting in errors in the shear rate values. Another important source of errors is
the curve-fitting procedure because the spatial resolutions for most commercial LDVs and the distance
limit required to avoid light scattering at the liquid-wall interface are of the same order of magnitude as
the boundary layer thickness of a physiologically pulsatile flow at a bifurcation.

 

11.3 Numerical Models

 

Numerical models have evolved from two-dimensional (2D) to three-dimensional (3D) geometries, from
Newtonian to non-Newtonian flows, and from rigid to distensible walls. In the case of arterial bifurcations,
various simplifications have been imposed on complex wall geometry by using straight lines, round-up
area ratios, round-up bifurcation angles, and the adoption of coordinate transformations and finite
element methods. It has been reported that the use of round corners can avoid unrealistic wall shear
stress peaks and exaggerated flow separations that are obtained from sharp corners at the flow divider
and lateral junctions.

Two sets of variables have been in use in computational fluid dynamics: the velocity and pressure set
and the stream function and vorticity set. The first set evaluates the wall shear rate indirectly by taking
the derivative of the resulting velocity. As a consequence, errors in the shear rate and the velocity introduced
by a mesh of low resolution can be significant in dealing with arterial bifurcations, that have thin boundary
layers. In contrast, with the use of the stream function and vorticity set, the error arises directly from the
process of solving a system of equations, because the wall shear rate is equal to the wall vorticity.

Due to the geometric complexity of a bifurcation, the 3D computational model has begun to surface
only in recent years. The majority of the numerical models for arterial bifurcations are two-dimensional.
Hence, the validity of 2D models needs to be examined.

The 2D model has three disadvantages or problems. First is its inability to provide 3D information.
It is fortunate that major atherogenic sites around arterial bifurcations are more concentrated in
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bifurcation planes, which coincide with 2D planes, especially in early stages of atherosclerosis. The second
problem is the difficulty of keeping the branch-to-trunk Womersley number ratio in a 2D model identical
to that of the physiological bifurcation. The third problem with a 2D model is its lack of mechanism to
accommodate secondary flow. Nevertheless, for the carotid bifurcation, a 2D model can provide basic
information on the complexity of the flow field similar to that provided by a 3D model. For the aortic
bifurcation, the results for a 2D model show a good agreement with those from the MRI for pulsatile flows.

In general, a 3D model is better than a 2D model in exhibiting overall flow patterns. However, a 3D
model without proper flow pulsation, 

 

Re

 

, 

 

AR

 

, corner curvature, and spatial resolution may not give good
results. The complexity of 3D modeling makes it difficult to produce a relatively fine mesh. Hence, a
careful 2D model can provide a basic flow pattern without substantial errors, although it fails to accom-
modate secondary flow.

 

11.4 Aortic Bifurcation with Flexible Walls

 

In order to demonstrate the technique of modeling, this section presents a 2D numerical model for blood
flow at the aortic bifurcation with flexible walls.

 

8,9

 

 The model is a Y-shaped bifurcation, as shown on the
left side of Fig. 11.2. It is symmetric with respect to the trunk center line. Flow rates into the two branches
are equal, i.e., 

 

QR

 

1

 

 = QR

 

1

 

 = 0.5. Because of symmetry, the problem can be solved in one half of the flow
domain.

Fig. 11.3 depicts a physiologically pulsatile flow rate over one cycle, adopted from Stettler et al.

 

7

 

 A
Reynolds number is defined in the trunk, with the flow rate at peak 1 in a phasic flow rate profile
calculated as

(11.5)

where 

 

L

 

 is the characteristic length, equal to the trunk hydrodynamic diameter, chosen to be 15 mm,
and 

 

V

 

 is the characteristic velocity, equal to the mean velocity across a hydrodynamically equivalent
circular pipe. At the kinematic viscosity 

 

ν

 

 of 4.5 

 

×

 

 10

 

–6

 

 m

 

2

 

/s, the 

 

Re

 

pt

 

 is equal to 1300. The time-average
Reynolds number in the trunk over a cardiac cycle is 181, a laminar flow. Blood is treated as a Newtonian
fluid in this section; the non-Newtonian effect has been presented elsewhere1.

 

10,11

 

 The area ratio 

 

AR

 

varies from 0.75 to 1.0 and 1.1, while the bifurcation angle 

 

β

 

 

 

is 75 degrees, which is within the physiological
range. In pulsatile flow, Lou

 

1

 

 derived the Womersley number for a channel as

 

(11.

 

6)

where 

 

H

 

l

 

 

 

is the half width of a channel. At 

 

H

 

l

 

 

 

of 3.75 mm (15 mm ÷ 4), 

 

α

 

 is 8.8623 for a heart beat of
60 beats/min.

The vorticity transport and Poisson equations read

(11.7)

(11.8)
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Here,

(11.9a)

(11.9b)

and

(11.10a)

(11.10b)

where 

 

(x

 

, 

 

y)

 

 denotes the spatial domain; 

 

(

 

ξ

 

, 

 

η

 

)

 

, referential domain; 

 

t

 

, time; 

 

ω

 

, vorticity, 

 

ψ

 

, stream function;
and 

 

x

 

t

 

 

 

and 

 

y

 

t

 

, mesh velocities in the 

 

x

 

 and 

 

y 

 

directions, respectively. 

 

C

 

i

 

’s 

 

for 

 

i 

 

= 0, 1, 2, 3, 4, and 5 are
some coordinate transformation coefficients.

The arbitrary Lagrangian Eulerian (ALE) method is employed for the Lagrangian viewpoint to take
care of moving boundaries and for the Eulerian viewpoint to avoid large grid distortions.

No-slip conditions apply along the solid walls, which are constant 

 

ξ

 

 lines, with fluid particles moving
with the boundary. The walls are allowed to move only in the normal direction but not in the tangential.
A potential flow region exists along the center line of the trunk, which is a constant 

 

η

 

 line, where 

 

ω

 

 is
equal to zero. No flow is allowed across the line of symmetry, and 

 

ψ

 

 is constant along the boundary. The
inlet is at some constant 

 

ξ

 

 line, with a fully developed flow. The pulsatile blood flow profile (Fig. 11.3)
proximal to the aortic bifurcation is imposed at the inlet. Much of the flow activity is limited to the
systole with a period of 1 sec in a normal case, typical in the descending aorta, iliac arteries, and femoral
arteries. The exit of the branch corresponds to another constant 

 

ξ

 

 line, at a nearly fully developed flow.
The second derivative of stream function and the first derivative of vorticity are set equal to zero in the
axial direction.

A linear incremental model is used to describe the wall flexibility. A wall stiffness k is defined as the
ratio of pressure change 

 

∆

 

p 

 

to area change 

 

∆

 

A

 

, all in the dimensionless versions. The Voight model, one
of the linear viscoelastic models, is employed to depict wall viscoelasticity. In the computer program, the
wall displacement, instead of the area change, is directly calculated using

(11.11)

 

FIGURE 11.3 Physiologically pulsatile flow rate over one cycle. (Source: Stettler, J.C., Niederer, P., Anliker, M., and
Casty, M., Annuals Biomed. Eng., 9, 1665, 1981. With permission.)
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Here, p denotes the dynamic pressure; Dn , normal wall displacement (positive for an outward moving
wall); and C, wall damping constant.

The pressure is calculated only along its solid walls for the determination of wall movements. Along
a solid wall with no movement in the axial or tangential direction, the Navier-Stokes equations can be
simplified to

(11.12)

Here, n is a coordinate normal to the wall and s denotes a coordinate along the wall, positive downstream
and negative upstream; s is zero at the vertex and hip for the inner and outer walls, respectively. The
pressure along the walls can be obtained by integrating the above equation. In order to start computing
p from the inlet, Lou1 developed a simple model that delivers a physiologically pulsatile pressure profile
at the inlet.

The finite difference method is used in numerical analysis. The first derivatives of vorticity in the
convective terms in the vorticity transport equation are treated by a hybrid upwind scheme. All other
spatial derivatives in the governing equations are discretized by a central difference scheme for interior
nodes. The vorticity at a solid wall is calculated using Wood's approximation. The stream function at a
solid wall is derived from the inlet flow rate using continuity. Both the vorticity transport and Poisson
equations are solved using the successive over-relaxation (SOR) technique. The enforced inlet flow rate
data are smoothed with the cubic spine, which ensures continuous pressure and rate of change, thus
yielding stable wall motion and numerical results.

Fig. 11.4 shows a computational mesh with 41 nodes across a channel and 87 nodes along the axial
direction. It is nonuniform to give the best resolution around the hip and the vertex and near the walls.
The convergence in vorticity with respect to the grid size is within 1% in both the axial and width
directions. The time integration of the vorticity is performed implicitly to ensure stability, while the
pressure is calculated explicitly in order to reduce the computing time. The time step size is 0.5 degrees
in a cardiac cycle of 360 degrees, small enough to induce practically no error in the time integration.

Typical results are presented in Figs. 11.5 through 11.9 for REpt = 1300, α = 8.8623, β = 75 degrees,
ri/L = 0.15, and ri/L = 0.2. The velocity profiles and moving wall positions are presented at six phase
angles in Fig. 11.5. The dotted lines are zero-p (or reference) wall positions. Overall flow patterns for
flexible wall cases are similar to those for rigid wall cases. In Figs. 11.6 and 11.8, the sign of the vorticity
along the inner wall is reversed. The vorticity is positive when the flow is forward, and negative when

FIGURE 11.4 Mesh network for numerical computations, 41 nodes across the branch and 87 nodes along the axis
(showing only a part around the bifurcation).
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the stream is reversed. The absolute vorticity value is used to evaluate the average absolute vorticity.
Fig. 11.7 illustrates reverse flow patterns along the walls. The dotted areas show reverse flows. A point is
dotted if the flow is reversed at that particular position (s) and time (phase angle). It is observed that
dots are clustered around the hip and vertex, because of a high concentration of computational nodes,
and between 40 and 140 degrees, because the results are screened more frequently (once every 1 degree).
No permanent eddy appears due to the pulsatile nature of a physiological flow and the vertex wedge
effect. A temporary eddy exists downstream of the hip under certain conditions, such as a large area
ratio. The tiny vertex point is characterized by a low shear stress. Two high shear stress regions exist, one
on the outer wall peaking at a point immediately distal to the hip and the other on the inner wall peaking
at a point distal to the vertex. The peak value on the inner wall is higher than that on the outer wall.
They are induced by the wedge effect of the vertex.

Fig. 11.9 shows time histories of the flow rate, Q, outer wall pressure, p, normal wall displacement,
Dn, and vorticity, ω at s = – 0.9, 0, and 0.9. The maximum values and corresponding phase angles for Q
are listed in the figure. It is revealed that8

1. The pressure drop through a bifurcation is small compared with the pressure itself.
2. The flow resistance and consequent pressure drop increase with the wall stiffness and the damping

ratio. The effect of the damping ratio is relatively small in the physiological range.

FIGURE 11.5 Velocity profiles and moving wall positions, with the dotted lines showing zero-p (or reference) wall
positions.
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3. Flexible walls smooth out the peaks of a pulsatile flow rate as the flow travels downstream.
4. The time history of wall movement resembles that of pressure. The wall movement lags behind

the pressure in the artery and the magnitude of the phase increases with the damping ratio.
5. The wall expansion tends to induce flow reversals or eddies during the decelerating systole, while

contraction tends to restrict them during the diastole.
6. The wall shear stress leads the flow rate in time. The wall flexibility enhances the phase advance.
7. A flexible bifurcation experiences lower shear stresses and has lower shear stress concentration

factors than its rigid counterpart. This effect is amplified for a bifurcation with a smaller area ratio.

FIGURE 11.6 Velocities along the walls at various phase angles, with the shear stress in dyn/cm2 which is equal to
1.24 times the dimensionless vorticity.
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FIGURE 11.7 Reversed flow patterns along the walls, with the dotted areas showing reverse flows. A point is dotted
if the flow is reversed at that particular position (s) and time (phase angle).

FIGURE 11.8 The maximum, minimum, average absolute, and maximum-minimum vorticities along the walls,
with the shear stress in dyn/cm2 which is equal to 1.24 times the dimensionless vorticity.
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12.1 Introduction

 

Whenever possible, tools used to evaluate the structures and mechanical properties of the respiratory
system should be noninvasive and require little cooperation from the subject. In 1956, Dubois et al.

 

1

 

 were
among the first to successfully meet this challenge. They determined mechanical properties of the lung
from its response to external pressure oscillations imposed at the airway opening. Their work was the
first of many studies of frequency response of the normal and abnormal lung.

 

2

 

 Early studies focused on
low frequencies (< 100 Hz), where the wavelength sound waves are much longer than the dimensions of
typical respiratory structures. In that case, lumped parameter models are sufficient to describe the
frequency-dependent behavior of the respiratory system.

 

3

 

 Lumped parameter models are characterized
by the fact that they have no spatial extent. At higher frequencies (250 Hz through 10 to 12 kHz), however,
wavelengths become as small as airway dimensions or smaller, and it therefore becomes necessary to take
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into account the spatial properties of the airway tree, including local airway geometry, local wall prop-
erties, and branching. In these circumstances spatially distributed models along the system have to be
used.

 

3

 

 This also suggests that the high frequency response of the respiratory system could be used to infer
geometrical information about the airway tree.

The acoustic reflection method gives the longitudinal cross-sectional area profile along the airway, and
is a good example of spatial consideration in oscillation mechanics of the lungs. Knowledge of the area
profile is potentially useful in understanding the structure and the function associated with oral airway,
larynx, glottis, trachea, pulmonary airways, and nasal airway in health and in disease. The pathologies
that can be studied with this method, and for which the method could be a diagnostic tool, include
obstructive sleep apnea, obstructive pulmonary disease, asthma, tracheal stenosis, and nasal obstruction.
The acoustic reflection method has also been used to study musical instruments in the wind group, such
as brasses and alphorns.

 

4

 

In the next section of this chapter, we examine the basic physical principles of the acoustic reflection
method and its associated computational algorithms. We then describe the underlying assumptions and
the various limits imposed by those assumptions. We also point out the different methods that have been
proposed to overcome those limits. In the following section, we review the different strategies proposed
in the literature for fabrication of a working apparatus. In the last two sections, we present some of the
principal applications of the acoustic reflection method that have been established in the literature.

 

12.2 Principle of the Acoustic Reflection Method

 

The acoustic reflection method is based upon the analysis of planar acoustic wave propagating in
rigid ducts.

 

Acoustic Propagation Wave in a Duct

 

For small amplitude, one-dimensional wave propagation of a nonviscous gas in a rigid duct under
adiabatic conditions, the equations for conservation of momentum and mass

 

5,6

 

 take the forms:

(12.1)

(12.2)

where A is the cross-sectional area of the duct, 

 

q

 

v

 

 is the flow rate, 

 

x

 

 is the spatial coordinate, 

 

t

 

 is the time,

 

ρ

 

0

 

 is the density of the fluid at equilibrium, 

 

p

 

0

 

 is the equilibrium pressure, 

 

p

 

 is the pressure variation
(the acoustic pressure), 

 

γ

 

 is the ratio of the specific heat at constant pressure of the gas to specific heat
at constant volume, and 

 

∂

 

/

 

∂

 

t

 

 is the Eulerian time derivative.
Differentiating Eq. 12.1 by 

 

x

 

 and Eq. 12.2 by 

 

t

 

 allows the elimination of qv, and thus gives the classical
wave equation:

(12.3)

By defining 

 

ψ

 

 = 
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 – 

 

x

 

/

 

c

 

 and 

 

ϕ

 

 = 

 

t

 

 + 

 

x

 

/

 

c

 

, the general solution to Eq. 12.3 can be given as:

(12.4)
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Eqs. 12.4 and 12.1 give the general solution for the flow rate:

(12.5)

Both 

 

p

 

 and 

 

q

 

v

 

 are the sum of two waves that propagate with the same wave speed, 

 

c

 

, but in opposite
directions; 

 

f

 

 propagates in the positive 

 

x

 

 direction while 

 

g

 

 propagates in the negative 

 

x

 

 direction. Moreover,
for waves propagating in the same direction, the ratio of the pressure to the flow is a constant, 

 

ρ

 

0

 

.

 

c

 

/

 

A

 

.
This ratio, called characteristic (or specific)

 

7

 

 acoustic impedance,

 

5

 

 is a pure real number, which means
that any pressure wave is in phase with its associated flow rate wave. The values of 

 

f

 

 and 

 

g

 

 are determined
from the boundary and initial conditions of the problem.

Such a description of wave propagation can be interpreted as well in the frequency domain. Consider
the harmonic time dependence of all time varying quantities. Pressure and flow rate can then be written
under the form: W{

 

ω

 

,

 

x

 

}

 

.

 

e

 

j

 

ω

 

t

 

 with 

 

ω

 

 being the radian frequency and 

 

j

 

2

 

 = –1. W{

 

ω

 

,

 

x

 

} is a function of both

 

x

 

 and 

 

ω

 

. Eqs. 12.1 and 12.2 may be recast in form of the classic transmission line equations:

(12.6)

(12.7)

Any elemental segment of the duct can be represented by an electrical analog model (see Fig. 12.1).
This model is composed of series impedance, Zs, and shunt admittance, Ys, per unit duct length. Zs is
a pure self-inductance, whose value is given by Eq. 12.6 (

 

I

 

g

 

 = 

 

ρ

 

0

 

/

 

A

 

), taking into account the gas inertia,
for a flat velocity profile; 1/Ys is the impedance due to a pure compliance inductance, whose value is
given by Eq. 12.7 (

 

C

 

g

 

 = 

 

A

 

/[

 

ρ

 

0

 

 · c

 

2

 

]), taking into account the gas compressibility, for a pure adiabatic
transformation.

 

FIGURE 12.1

 

Equivalent transmission line element for an infinitesimal length of tube, 

 

δ

 

x

 

. The associated model
assumes a one-dimensional lossless wave propagation and rigid wall duct. The series impedance per unit duct length,
Zs, takes into account gas inertia while the shunt admittance per unit duct length, Ys, takes into account the
compressibility of the gas. Zs and Ys are not frequency dependent.
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Reflection upon a Singular Site of Reflection

 

Consider two semi-infinite, straight, gas-filled, rigid-walled uniform tubes with two distinct cross-sec-
tional areas connected to their ends (see Fig.12.2). Within the first tube (on the left side), a planar pressure
wave, 

 

p

 

i

 

(

 

t

 

,

 

x

 

), propagates to the right and becomes incident upon the second tube (on the right side). As
this incident wave impinges upon the interface between the two tubes, a reflected wave propagating in
the first tube arises while a transmitted wave propagates in the second tube. The reflected wave, 

 

p

 

r

 

(

 

t

 

,

 

x

 

),
propagates to the left while the transmitted wave, 

 

p

 

t

 

(

 

t

 

,

 

x

 

), propagates to the right. Each pressure wave is
associated with a flow rate wave propagating in the same direction and with the same velocity. Writing
the continuity of both pressure and flow rate at the connection of the two tubes, 

 

x

 

 = 

 

x

 

0

 

, gives two relations:

(12.8)

Using Eqs. 12.4 and 12.5 permits elimination of the flow rate:

(12.9)

Using the first relation to eliminate 

 

p

 

t

 

 in the second relation, it follows that:

(12.10)

Eq. 12.10 shows that by measuring the amplitude of the incident and reflected pressure wave, the value
of 

 

A

 

1

 

 can be determined if 

 

A

 

0

 

 is known. Since the wave propagation is assumed to be nonviscous, incident
and reflected pressure waves can be measured at any point of the first tube and corrected for the
propagation delay without loss of information.

Therefore,

Measuring the round trip propagation delay, 2.

 

τ

 

, also permits determination of the position of the first
tube end, i.e.,

 

Reflection upon Multiple Sites of Reflection

 

Consider, now, n + 1 straight, gas-filled, rigid-walled uniform tubes with distinct cross-sectional areas,
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1

 

, …, 
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n

 

+1

 

 connected each one to the next in series at 
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 = 
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0
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x

 

1

 

, …, 

 

x

 

n

 

+1

 

. At each site of reflection,
the same analysis as that made for a single site of reflection can be applied, except for two aspects. First,
the incident wave for the k

 

th

 

 site is the transmitted wave through the k – 1 sites ordered before this k

 

th

 

site. Secondly the reflected wave for the k

 

th

 

 site includes also the reflected waves due to the sites ordered
beyond. The reflected wave at 

 

x

 

 = 

 

x

 

0

 

 can be written under the form:
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(12.11)

where 

 

r

 

i

 

 designates the reflection coefficient at the distance 

 

x

 

 = 

 

x

 

i

 

. This coefficient would give the ratio
between incident and reflected wave at this distance only if the reflection site at 

 

x

 

 = 

 

x

 

i

 

 was a single site
of reflection:

(12.12)

Note that 

 

k

 

i

 

 is a function of both 

 

r

 

0

 

, 

 

r

 

1

 

, …, 

 

r

 

i–

 

2

 

 and 

 

r

 

i–

 

1

 

. This problem was studied by Ware and Aki,

 

8

 

 who
showed that 

 

k

 

i

 

{} may be computed using a recursive procedure. This property allowed them to develop
an efficient algorithm to determine the different reflection coefficients when the incident wave, 

 

p

 

i

 

(

 

t

 

,

 

x

 

0

 

),
is of the form 

 

δ

 

(

 

t

 

) and 

 

δ(t) is the well-known Dirac delta function (δ(t) = 1 if t = 0; δ(t) = 0 if t # 0).
In this case, the reflected wave is called the impulse response. This algorithm is based upon the property
that ki is a function of both r0, r1, …, ri–2 and ri–1  but not of ri. The reflection coefficient may then be
computed incrementally. First r0 is determined with the reflected wave measured at the initial time, i.e.,
the time (t = 0) where the incident wave is in x = x0. Indeed, due to the properties of Dirac delta function,
Eq. 12.11 gives pr(t = 0; x0) = r0. Then, using the predetermined value of r0, r1 is calculated with the
reflected wave measured at t = 2(x1 – x0)/c . Using the values of r1 and r0, r2 is determined; the procedure
continues until rn is calculated.

FIGURE 12.2 Schematic of two semi-infinite, straight, gas-filled, rigid-walled uniform tubes with two distinct
cross-sectional areas connected to their ends. An incident pressure wave, pi(t,x), propagating in the first tube impinges
upon the tube connection, giving rise to a transmitted wave in the second tube, pt(t,x), and to a reflected wave in
the first one, pr(t,x). Axial position = x. Distance of the connection = x0.
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Thus, the measurement of the impulse response permits determination of the sequence of reflection
coefficients. Introducing those coefficients in Eq. 12.12 allows estimation of the different unknown cross-
sectional areas. Moreover, the round-trip propagation delay, Ti ,  permits a straightforward estimation of
the locations of all reflection sites:

(12.13)

Reflection upon a Tube with a Continuous Longitudinal Area Profile Variation

This problem is a generalization of the discrete problem addressed in the previous section. In this case,
the cross-sectional area, A, in Eqs. 12.1 and 12.2 is a continuous function of x, and Eq. 12.3 should be
replaced by:

(12.14)

where

that can be recast as:

(12.15)

Eq. 12.15 is recognized as a one-dimensional Schroedinger equation with a potential, q(ζ). Ware and
Aki8 showed that this equation can be recast in a form of a Gel’fand-Levitan integral equation, and that
q(ζ) can be estimated from the knowledge of the impulse response, as defined previously. This potential
is a real number which is a function of the cross-sectional area of the duct, A(ζ). If this potential is
known, it can be integrated in order to infer A as a function of ζ, which is simply x/c, so the cross-
sectional area of the duct can be inferred as a function of the spatial coordinate.

In summary, the longitudinal gradient of internal cross-sectional area, A{x}, along a singular duct can
be inferred from the impulse response if both the wave speed and the initial section are known.

Independently, more or less similar theories were developed by Sondhi and Gopinath9–11 and by
Schroeder.12 Nevertheless, beyond validation of these theories in models, these methods were never used
to successfully study airway dimensions in animals or humans. For example, Schroeder’s method,12 based
upon the measurement of singularities (poles and zeroes) of the lip impedance function, required some
extremely constraining boundary conditions not really compatible with physiological and clinical appli-
cations. The vocal tract had to be assumed to be closed at the glottis and the length of the vocal tract
had to be assumed to be constant at some estimated value. The methods developed subsequently avoided
these shortcomings. Based upon the analysis of Ware and Aki,8 Jackson et al.13 studied excised canine
lungs, and Fredberg and coworkers obtained the first successful measurements in human subjects, and
described the roles of the carrier gas, the physiologic sources of error, the wall elasticity, loss, and
concomitant flow.7,14–17
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12.3 Physical Idealizations Required by the Acoustic 
Reflection Method

The main assumptions of the previous formulation are one-dimensional wave propagation, linear behav-
ior of the system, lossless wave propagation, rigid wall, and homogeneous gas in a single duct.

One-Dimensional Wave Propagation

The one-dimensional propagation of pressure wave along the longitudinal direction of a duct implies
that the variations of acoustic pressure along the radial direction of the duct are negligible. This fails to
be so5,6,15 when acoustic cross modes, i.e., the nonplanar modes, begin to propagate. This occurs when
the wave-length, 2π/ω, is less than twice the value of the radial dimension of the duct. Thus, the higher
bound of the frequency to ensure one-dimensional propagation assumption is roughly: fmax ≈ c/2d, where
d is the local duct diameter. Considering a maximal radial dimension of about 3 cm, the frequency of
the acoustic pressure should not be higher than 6 kHz in air.

The first consequence of this limit was in the initial embodiment of the working apparatus. The authors
used a casted, custom-made mouthpiece to fill the oral cavity between the lips and the hard palate.14,17–22

Indeed, the transverse dimension of the mouth cheek-to-cheek (4 to 8 cm) was the most susceptible
location for the generation of acoustic cross-modes. Subsequently, Rubinstein et al.23 showed that this
precaution was not required; replacement of the casted mouthpiece by a scuba-diving mouthpiece did
not introduce significant artifacts in estimates of pharyngeal, glottic, or tracheal areas. It seems that when
the lips are pushed forward and tightly sealed around the scuba-diving piece, the distances between the
cheeks are naturally reduced so that the one-dimensional assumption is not violated.

The second consequence is that the higher bound of the frequency determines the spatial resolution
of the method. The spatial resolution is the distance over which the inferred area accommodates to step
changes of area. In the case of lossless wave propagation in rigid ducts, the resolution can be crudely
approximated as one-sixth of the shortest wavelength of the pressure wave.7,14,15 Of course, this resolution
is altered both by viscosity and wall nonrigidity. Practically, the resolution obtained is in the range of
1 cm.7

Linear Behavior (Acoustic Linear Theory)

In the above wave propagation description we have used an equation of motion in which the pressure
variations are assumed to be small enough that the acoustic approximation holds and variations in
pressure to the first order are retained. The amplitude of the acoustic pressure used with the acoustic
reflection technique is very small (about 1 cm H2O ≈ 1 hPa) compared with atmospheric pressure. Thus,
the assumption of acoustic linear theory seems to be reasonable to describe the wave propagation used
with the acoustic reflection method.

Lossless Wave Propagation

In Eqs. 12.1 and 12.2, we have assumed nonviscous gas and adiabatic conditions. In fact gases like air
are viscous, and isothermal wall conditions seem to be more realistic for the boundary condition. When
the duct is circular, several authors24–29 described an analytical solution, taking into account viscosity and
realistic thermodynamic boundary conditions. In this case, the schematic of Fig. 12.1 can still be used
to represent the oscillatory flow but the series impedance and the shunt admittance have to be modified.
Zs is replaced by Zp which is composed by a resistance, Rν, in series with a self inductance, Iν. Ys is
replaced by Yp that is composed by a resistance, Rt, in parallel with a compliance, Ct. Rν takes into
account viscous losses, whereas Iν takes into account the gas inertia. Rt represents the thermal losses,
while Ct represents the gas compression. The parameters Rν and Iν depend on the radial profile of flow
velocity and appear as functions of the Womersley number,
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where d is the diameter and ν is the kinematic viscosity of the gas. The parameters Rt and Ct depend on
the radial profile of the temperature and appear to be functions of both α and of the Prandtl Number Pr. 

In Fig. 12.3 we plotted Zp and Yp as a function of α when the gas is air (Pr = 0.707). At the higher
α values, Iν tends toward Ig and Ct tends toward Cg as defined in Eqs. 12.6 and 12.7. Moreover, for these
higher α values, the series impedance Zp tends toward Zs; Rν can be neglected in front of the impedance
associated to Iν (j.ω.Iν). In the same way, for the higher α values, (Yp)–1 tends to (Ys)–1; Rt can be
neglected for the computation of (Yp)–1. For the lower α values, Rt and Rν cannot be neglected and the
model associated with the acoustic reflection method is no longer valid. It means that to use the acoustic
reflection method there is a low limit on α. It introduces a low limit on the frequency that depends on
the diameter, the viscosity, and the Prandtl number of the gas. For example, considering a 1.2 cm diameter
duct filled with air, using the lossless model (Eqs. 12.6 and 12.7), introduces errors in Zs and in Ys that
are less than 5% if the frequency is above 60 Hz. The lower bound of the frequency to ensure the lossless
propagation assumption is roughly:

FIGURE 12.3 Series impedance, Zp (continuous line), and inverse of shunt admittance, Yp–1 (dashed line), for
viscous gas (Prandtl number for air = 0.707) and isothermal thermodynamic wall condition plotted as function of
the Womersley number, α. The series impedance and the shunt admittance were normalized by their values obtained
in nonviscous and adiabatic transformation model, i.e., with the model used for the acoustic reflection method. Top:
modulus; bottom: argument.
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Rigid Wall

Propagation in a Nonrigid Walled Tube

When the walls are not rigid, the term ∂A/∂t is no longer equal to zero. The temporal variation of area
should be introduced in the equations for conservation of mass (Eq. 12.2). This equation can be recast as:

(12.16)

while Eqs. 12.1 and 12.6 (for conservation of momentum) are not modified by the temporal variation
of the area. The solutions of Eqs. 12.6 and 12.16 are:

Both p and qv represent the sum of two waves which propagate with the same wave speed, cw, but
whose amplitude is attenuated by a factor (1/e) within a distance da; 

A segment of the conduct is represented by introducing in the electrical schematic a shunt admittance
Yd in parallel to Ys (see Fig. 12.4). This pathway is represented by a compliance, Cd = ∂A/∂p , called local
dynamic compliance of the duct. Cd is not necessarily a real number because it depends on the elastic,
resistive, and inertial properties of the airway wall.6,14,30–35

The consequences of assuming nonrigid walls upon the area inferred with the acoustic method are
complicated. For example, consider two semi-infinite, straight, gas-filled, uniform tubes with two distinct
cross-sectional areas connected to their ends (see Fig. 12.2). The first tube is rigid-walled. The wall of
the second tube is purely elastic (Cd1 = ∂A1/∂P is a real number). Using the same procedure described
earlier, it is easy to show:

Thus, the area inferred from Eq. 12.10 (A1 = r0 · A0), when the wall rigidity is assumed, would overestimate
the area of the second tube. On the contrary, if the second tube was rigid-walled and the wall of the first
tube was elastic, the area inferred from Eq. 12.10 would underestimate the area of the second tube. Finally,
the wall nonrigidity modifies the wave speed which introduces an error on the determination of distance
of the reflection site.
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Limits of the Wall Rigidity Assumption in Airway

For simplicity, let us consider a model of locally reacting airway wall responses; the area of a section
depends only on the local parameter occurring in this section. Theoretically, it is clear that this model
may represent an oversimplification of the dynamic airway behavior.14 Nevertheless, measurements of
wave propagation characteristics in excised trachea showed that such a model represents the dynamic
behavior of canine trachea33 and calf trachea36 fairly well at the high frequencies used in the acoustic
reflection method.

The wall of the duct has a non-negligible mass. This mass confers inertia per unit length, Id, to the
duct wall.33 When the duct is circular, the volumetric inertia per unit of tube length is given by

where d is the internal diameter, th is the thickness of the wall, and ρd is the density of the wall tissue.
This inertia should be taken into account in the determination of the local dynamic compliance of the
duct. The impedance due to inertia (Id · ω) increases with ω, while the impedance due to the gas
compliance decreases as 1/ω. The wall rigidity assumption is justified if the former is much larger than
the latter. The lowerbound of the frequency to ensure wall rigidity assumption is roughly

This lower bound of frequency decreases as the mass wall per unit length (d · th · ρd) increases. This fact
was experimentally corroborated by Brooks et al.17 in excised canine trachea. They found that adding
wall mass with petroleum jelly significantly enhanced the accuracy of the trachea area inferred by acoustic
reflection.

FIGURE 12.4 Equivalent transmission line element for an infinitesimal length of tube with nonrigid wall. Zs and
Ys are defined by the rigid wall model. The local compliance of the duct, Cd, is not necessarily a real number and it
could be frequency dependent in the frequency range used with the acoustic reflection method.
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To overcome this limit, the initial idea was to increase the working frequency range. Unfortunately,
this procedure tended to be in conflict with the one-dimensional propagation assumption. To overcome
this dilemma, Fredberg et al.14 proposed use of a 78% He–22% O2 mixture rather than air. Indeed, the
wave speed of this mixture is 1.8 times higher than that of air. For this mixture, the higher bound of the
frequency to ensure one dimensional propagation assumption (fmax ≈ c /2d) is almost twice as high as
the bound of air, which allows the bandwidth to be extended up to 12 kHz. These authors showed that
such a mixture permits accurate inferences of the airway area in a healthy adult from the mouth to the
carina. By comparison, using air under the same conditions permits accurate inferences only up to the
glottis, but strongly overestimates the area of the trachea by a factor as large as 250%. The airway wall
rigidity assumption for such a bandwidth is corroborated by Rice’s measurement of sound speed in upper
airways of anesthetized dogs.37 Indeed, this author finds that the wave speed at frequencies above 10 kHz
was the wave speed in free field, i.e., the wave speed, c, defined in Eq. 12.3.

Recently, another procedure was proposed by Louis et al.38 to de-emphasize the effects of the wall
nonrigidity. Rather than extending the bandwidth up to 12 kHz, those authors proposed to introduce a
numerical high pass filter of the impulse response. This is intended to reduce that part of the response
spectrum (low frequencies) where the influence of local wall dynamics is the greatest. A 250 Hz cutoff
frequency associated with a linear phase finite impulse response (FIR) filter with a 125-point hamming
window, was found sufficient to minimize the effects of wall nonrigidity in estimating pulmonary airway
response. Fig. 12.5 illustrates this procedure. The area-distance functions of a human healthy subject
obtained (1) with the He and O2 mixture, (2) with air without a high-pass filter, and (3) with the high-
pass filter are plotted graphically. When the high-pass filter is used, the results obtained in air are in close
agreement with the results obtained with He and O2 mixture. When the high-pass filter was not used
with air, the area of the subglottic region was clearly overestimated. This procedure permits accurate
inferences of the airway area from the mouth up to the carina using air as breathing gas. This is important
because it permits considerable simplification of the apparatus and the measurement procedures.

Homogeneous Gas

The acoustic reflection method requires a homogeneous gas in the duct. Indeed, the reflection sites are
determined by the longitudinal gradient of the characteristic impedance. Consider the two semi-infinite
uniform tubes discussed in Section 12.2 (see Fig. 12.2) that were filled with two distinct gases. The gases

FIGURE 12.5 Pulmonary airway area-distance function from the mouth to the carina of a healthy subject. Effect
of the high-pass filter procedure used to de-emphasize the wall nonrigidity artifact. The area vs. distance curve was
inferred using the two-microphone strategy with (1) He and O2 mixture, (2) with air and without impulse-response
high-pass filter procedure, and (3) with air and a high pass filter procedure of the impulse response. Results obtained
with He and O2 mixture are considered “gold standard” results. The error bars are the standard deviations associated
with the areas inferred by 10 repeated pressure acquisitions. The position of different landmarks are indicated by
the arrows
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had distinct densities (ρ0, ρ1) and distinct wave speeds (c0 and c1). In this case, Eq. 12.8 is still valid, but
Eq. 12.10 should be replaced by:

(12.17)

The analysis of the reflection gives the variation of the characteristic impedance (ρ · c/A) which can give
the area variation only if both density and wave speed are constant. Moreover, the variation of wave
speed introduces an error on distance of the reflection sites.

Gas is not exactly homogeneous in the pulmonary airway. Under usual conditions, the inspiratory gas
is generally dry air at 20°C while the expiratory gas is humid air with CO2 at 37°C. Nevertheless, those
differences are slight and in first approximation they will not modify the density and the wave speed.
The effect of accumulation of carbon dioxide on the method was investigated by D’Urzo et al.18 who
measured the area of a glass model with different concentrations of CO2 up to 10%. Those authors found
that the variations introduced by the different concentrations of CO2 are well within the inherent run-
to-run variation of this technique.

Single Duct

The algorithm is written for a duct without bifurcations. Sidell and Fredberg,7 who simulated different
branching networks, showed that the Ware and Aki algorithm8 cannot be expected to infer the summed
cross-sectional area of asymmetric branching networks of ducts. From the clinical point of view, this
means that the acoustic reflection method does not rest on firm theoretical footings when applied to
distal regions in the lung. Nevertheless, if all parallel pathways had identical properties, then the reflective
waves in all parallel pathways would be identical and would simultaneously emerge from the duct
network. In this case, the algorithm permits accurate inferences for the summed cross-sectional area. 

This probably explains why Jackson et al.13 found in airway casts that the method was able to correctly
infer the summed cross-sectional area of the main stem bronchi up to 6 cm past the carina. The single-
duct assumption also requires that the velum be closed in order to infer the geometries of more distal
structures. Generally the velum closes if a subject breathes through the mouth without wearing nose-
clips.14,15,17 When a subject wears noseclips, the velum is not so systematically closed, and this invalidates
the measurement. Fortunately, the open velum is easily detected on the area-distance plots.15,23 Indeed,
the open velum introduces a clear overestimation of the sub-velum airway area and a dramatic increase
in the run-to-run variation (see Fig. 12.6).

12.4 Impulse Response Measurement and Digital 
Signal Processing

The cross-sectional area can be inferred from the impulse response, h(t, x0), via the Ware and Aki
algorithm.8 To measure the impulse response, different strategies were proposed in the literature.

The One-Microphone Strategy

This strategy attempts to obtain the impulse response from the separate values of both incident and
reflected pressure waves. By definition, the impulse response is the reflected wave when the incident wave
is of the form of the Dirac delta function, δ(t). In a real system a pressure wave of the form δ(t) cannot
be achieved . Nevertheless, there is a relation between h(t, x0), pi(t, x0), and pr(t, x0) whatever the form
of pi(t, x0) is.
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(12.18)

The ⊗ denotes the convolution integral. If both pr(t, x0) and pi(t, x0) are known, h(t, x0) can be determined
using a variety of deconvolution algorithms.

The Time Window Approach

In 1971 Sondhi and Gopinath9,10 suggested a technique to separate pr(t, x0) and pi(t, x0) using only a
single pressure transducer. Consider a wave tube with one of its ends connected to a sound source and
the other end connected to the airway opening (see Fig. 12.7, top). An incident pressure wave of short
but finite duration is generated by the sound source. This incident wave is recorded by the pressure
transducer at a fixed distance, L1, from the airway opening. The incident wave impinges upon the airway
opening and creates a reflected wave that is also recorded by the transducer. If the duration of the incident
wave, Ti , is less than the round-trip propagation delay between the pressure transducer and the airway
opening, i.e., if Ti < 2 L1/c, the incident wave and the reflected wave are non-overlapping in time. These
two waves are easy to separate and identify in the recording of the transducer (see Fig. 12.7, bottom).
The main constraint of this technique is to obtain a sufficiently short incident wave to avoid a too-long
wave tube. This strategy was successfully developed by Fredberg et al.39–41 It was applied to infer areas of
excised dog lungs and pulmonary cast,13,42 and later used to infer nasal airway areas43–47 and upper airway
area up to the glottis.48

The Single Calibration Approach

A variant of this first approach was proposed by Fredberg et al. in 1980.14,16 Rather than using time
window technique, this approach relied upon a highly reproducible sound source with a calibration
procedure to effect the separation of overlapping incident and reflected waves. Consider a horndriver
connected to a wave tube with a pressure transducer. The calibration procedure consists of connecting
the wave tube to a tube of the same diameter also called the calibration tube (see Fig. 12.8, top). Since
there is no reflection site on the wave tube or the calibration tube, the recorded pressure, pcal(t,0), is the
incident wave, pi(t, 0). With the calibration tube removed and the airway connected (see Fig. 12.8, middle)

FIGURE 12.6 Representative example of unacceptable pulmonary airway area-distance plots arising when the velum
is open (dashed line). The results are compared to those obtained with a closed velum (continuous line). The results
were obtained using the two-microphone strategy with air and using the impulse-response high-pass filter procedure.
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the recorded pressure, p(t,0) is the superposition of the incident wave, pi(t, 0), and of the reflected wave,
pr(t, 0). The reflected wave is then extracted by simple subtraction:

(12.19)

This approach permitted accurate and reproducible in vivo airway area reconstruction in
humans.14,17–23,49–52 In the first attempts using this approach, the calibration tube was replaced by a slide
valve considered an ideal reflector. The pressure recorded during the calibration was: pcal(t, 0) = 2pi(t,0).

A hidden constraint pertains to both approaches. The associated theory assumes implicitly that the
wave tube has no reflection site. The horndriver is a major and unavoidable reflection site. The reflected
wave that comes from the airway opening impinges upon the horndriver and creates a secondary reflected
wave. Let us take the time origin at the moment when the incident wave is created by the sound source.
The secondary reflected wave reaches the pressure transducer after  tmax  = L2/c + 2(L1 + L2)/c (see Fig. 12.8,
bottom). After that, the secondary reflected wave included in the recorded pressure acts as a new incident
wave that is not taken into account by the time window technique or by the calibration procedure.
Incident and reflected waves cannot be separated after tmax, so the area cannot be inferred for distance
beyond xmax = (c · tmax – L2/c)/2 = L1 + L2. As a result of this constraint, the distance separating the
loudspeaker from the pressure transducer, L2, must be larger than the maximum airway penetration
depth of interest, xmax – L1.

Opening the second extremity of the wave tube to permit spontaneous breathing during measurement
(as in Fig. 12.8) introduces another length constraint. The sound source creates a wave that propagates
toward this tube extremity. This wave impinges upon this end and creates a secondary reflected wave

FIGURE 12.7 Top: Schematic of the wave tube for measuring the area by the one-microphone strategy using the
time window approach. This schematic corresponds also to the set-up used by the one-microphone strategy with
the dual calibration procedure. Bottom: Schematic of the pressure vs. time recorded by the transducer if the incident
wave is short enough to avoid overlapping in time between the incident wave and the reflected wave. In such a case,
the pressure recorded before t1 is the incident wave while the pressure recorded after t1 is the reflected wave.
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propagating back to the sound source. This secondary reflection acts as a secondary incident wave
(Fig. 12.8, bottom). This secondary incident wave arrives at the pressure transducer after a propagation
delay of t = (2(L3 – L2) + L2)/c . The secondary incident wave is then superposed to the first incident and
reflected wave, which prohibits the use of the time window technique (Sondhi’s approach). In this case,
the distance separating the end of the wave tube and the loudspeaker, L3 – L2, should be larger than the
distance of maximum penetration in the airway, xmax, to ensure that the new incident wave arrives only
after that the data acquisition has been completed. The single calibration procedure (Fredberg’s approach)
does not have this constraint. As a result of these length constraints, instruments for pulmonary appli-
cation (from the mouth to the carina) described in the literature were 2 m or more in length which is
hardly consistent with standard clinical applications.

FIGURE 12.8 Schematic of the wave tube for measuring the area by the one-microphone strategy using the singular
calibration approach. Top: The calibration tube is connected; there is no reflection site; the recorded pressure, pcal(t,0)
is the incident pressure. Middle: The airway is connected to the wave tube; the recorded pressure is the sum of the
incident and reflected waves; the reflected wave is obtained by subtracting pcal(t,0) from the recorded pressure. Bottom:
Schematic diagram (time vs. axial position) of reflections resulting from the impulse generated by the horndriver.
The maximum distance which can be investigated, xmax, depends (1) on the distance between the horndriver and the
airway opening, and (2) on the distance between the horndriver and the wave tube extremity opened to the
atmosphere; xmax is the smallest value of these two distances.
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The Dual Calibration Approach

To de-emphasize this length constraint, Marshall53 proposed another variation of this one-microphone
strategy. This variation did not explicitly separate incident and reflected waves, but used the Fourier
transform and its inverse function. This variation is based upon a double calibration procedure associated
with a measurement. The first calibration gives the incident wave. The second one gives the impulse
response of the horndriver. Then, the measurement gives the impulse response of the airway. Consider
the geometry in Fig. 12.7. The recorded pressure is given by:

Then,

(12.20)

h(t,0) designates the impulse response of the airway including the part of wave tube located between the
pressure transducer and the airway opening; hh(t,0) designates the impulse response of the source sound
including the part of wave tube located between the pressure transducer and the source sound. Using
the Fourier transform, Eq. 12.20 becomes:

(12.21)

where F (capital letter), function of (ω, x), designates the Fourier transform of f (lowercase letter) function
of (t, x). Using the properties of the binomial series Eq. 12.21 becomes

(12.22a)

(12.22b)

(12.22c)

The first step of the calibration consists of connecting to the wave tube a calibration tube with the same
dimension as in the single calibration approach. There is no site of reflection; h(t,0) = 0; H(ω,0) = 0.
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The recorded pressure is the incident pressure (Eq. 12.22a). The second step of the calibration is closing
the wave tube by a slide valve. This slide valve is considered as an ideal reflector,

Associated with the knowledge of Pi(ω,0) determined at the first calibration step, this permits us to obtain
Hh(ω,0) via Eq. 12.22b. The measurement then involves connecting the airway to the wave tube and
measuring the pressure. The recorded pressure immediately shows H(ω,0), via Eq. 12.22c where both
Pi(ω,0) and Hh(ω,0) were determined during the calibration steps. Performing the inverse Fourier trans-
form gives the impulse response. This strategy permits an arbitrarily short wave tube. It was developed
and used by Marshall53 to infer the area from glass tube models up to three times the wave tube length
but it was not validated in living subjects. Indeed, to our knowledge, this approach will not allow the
subject to breathe freely during the measurement. A convective flow engendered by breathing flow
modifies the wave speed and thus modifies Hh(ω,0) which would thereby not be the same between the
calibration time and the measurement time.

The Two-Microphone Strategy

This strategy attempts to obtain the impulse response without explicitly separating incident and reflected
pressure waves. In principle, simultaneous pressure recording at two distinct sites of a wave tube is
sufficient to determine the impulse response of the airway. Such a strategy, developed by Louis et al.54 to
infer airway area, was inspired by Schroeder’s work and followed a similar two-transducer approach used
by Seybert et al., Chung et al., and Krishnappa and Bodén et al.55–61 to measure duct acoustic input
impedance (but not duct dimensions).

Principle of the Two-Microphone Approach

Consider an horndriver connected to a wave tube with two distinct pressure transducers (Fig.12.9). The
pressure recorded in the two distinct sites are given by:

(12.23a)

(12.23b)

The propagation delays, τ, of the two waves between the transducer sites are given by:

(12.23c)

(12.23d)

(12.23e)

The impulse response of the airway including the part of the wave tube located between the second
transducer (x = 0) and the attached airway is given by:

(12.23f)
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The impulse response of the second end of the wave tube including horndriver and part of the wave tube
up till the first transducer is given by:

(12.23g)

Using 12.23c and 12.23d, Eqs. 12.23f, 12.23a, and 12.23b can be recast in the frequency domain as:

(12.24a)

(12.24b)

(12.24c)

Adding Eqs. 12.24a through 12.24c, we get:

(12.25a)

(12.25b)

From Eq. 12.26a and 12.26b, it is easy to show

which can be recast as

or in the time domain:

(12.26)

If τ and the pressures in x = 0 and x = –L are known, h(t,x0) can be determined from Eq. 12.26 using a
variety of deconvolution algorithm. Because of the additive length of wave tube between the second
microphone (x = 0) and the airway opening without any reflection site, the early portions of the recorded
pressure at the two measurement sites are identical except for the propagation delay. The comparison of
the two-microphone outputs in the early parts of their respective transients permits us to determine the
propagation delay, τ. The wave speed is obtained from τ: c = L /τ which permits us to determine, via
Eq. 12.13, the distance at which the reflection sites are located.

No assumptions concerning non-overlapping time windows or secondary reverberation from the
sound source, were made. Acoustic reverberation within the wave tube is implicitly permitted by the
two-microphone method since Eq. 12.26 does not contain the quantity hh(t, –L). Moreover, there is no
length constraint upon the wave tube with this approach, so that the wave tube length can be considerably
reduced by comparison with the one-microphone strategy. A 10 cm long wave tube and a 20 cm long
wave tube were tested for nasal applications54 and for pulmonary applications.37 The results obtained
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were substantially equivalent to the results obtained by the classical one-microphone method. Remark-
ably, although the two-transducer system was potentially noisier, the coefficient of variation associated
with the dual-transducer system was barely increased in comparison with the single transducer system.

Convective Flow

A convective flow, such as the one engendered by breathing, slightly modifies the associated theory of
the two-microphone strategy. Propagation depends on the direction of the propagation. Eqs. 12.23c,
12.23d, and 12.23e are replaced by

(12.27a)

(12.27b)

with

(12.27c)

The τi is the propagation delay of the incident wave and τr is that of the reflected wave; u is the mean
velocity of the steady flow in the duct, which is taken to be positive in the x direction (→ + x). In this
case Eq. 12.26 should be replaced by:

or in the time domain:

(12.28)

The τi can be directly measured by comparing the two-microphone outputs in the early part of their
respective transients, while The τr can be inferred from Eq. 12.27c if u is known, and h(t,0) can be
inferred from Eq. 12.28 using a variety of deconvolution algorithms. Using simulation technique,

FIGURE 12.9 Schematic of the wave tube used for measuring area by the two-microphone strategy. The pressure,
sum of the incident, and the reflected waves, are recorded in two loci of the wave tube to infer the area, A, vs. the
axial position, x. The 0 and -L represent the distances of the two pressure transducers. This strategy does not require
preliminary calibration procedure.
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Louis et al.37,62 showed at least to a first approximation that the effects of the convective flow due to quiet
breathing may be neglected. When the convective flow is neglected, i.e., when we assume τr = τi , τr is by
a factor,

where M is the Mach number, M = u/c, the τr = τi  assumption is valid if M << 1. In the present
embodiment of the two-transducer system (bandwidth, wave tube dimension, gas, investigation distance
< 60 cm), the authors found that if M was less than 0.045, the relative error on the inferred area was less
than 10%. Moreover for the higher Mach number values a correction is always possible if we know the
value of the convective flow.

The two-microphone strategy has advantages in that it permits (1) miniaturization of the wave tube
(small dead space), (2) absence of a calibration procedure, and (3) the ability for the subject to breathe
air during measurement.37,54,63 This allows in vivo measurement under varied and difficult conditions as
encountered in intensive care units,64,65 with a sleeping patient during obstructive sleep apnea, or during
parabolic flight.

Signal Processing

Deconvolution Algorithm

With the time window approach, the single calibration approach, and the two-microphone method, the
impulse response can be obtained after the deconvolution of an equation of the form:

(12.29)

h(t) is the unknown impulse response, x (t) is the input function, and y(t) is the output function. For
the one-microphone strategy, x (t) = pi(t,0) and y(t) = pr(t,0). For the two-microphone strategy, x (t) =
p(t,–L) – p(t – τ,0) and y(t) = p(t + τ,0) – p(t, –L). Once Eq. 12.29 is discretized by the Riemann sum
approximation, h(t) can be computed in a manner analogous to the standard time domain deconvolution
algorithm:66

(12.30)

∆t is the sampling period of the discretization, while x(0 · ∆t) denotes the first non-zero discrete value
of x (t), and n is an integer. The deconvolution problem, known in the acoustic field as an inverse problem,
is numerically ill-posed. This means that small perturbations in the input and output functions can lead
to wild oscillations of the numerical solutions of the impulse responses that do not make sense. To de-
emphasize this instability, a regularization procedure was used. The computational algorithm implied by
Eq. 12.30 remains stable only if x(0 · ∆t) was larger than some minimal value.54 The regularization
procedure introduces a threshold to define the first non-zero value of x (t) (see Fig. 12.10). The data
corresponding to earlier times are neglected and that gives a first approximation of the impulse response.
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Because this regularization procedure introduces an error upon the determination of h, a correction time
sequence was added. This correction was generated by convoluting the early part of the neglected time
sequence with the first approximation of the impulse response, h1(t). Indeed, Eq. 12.29 can be recast as:

(12.32)

where xn(t) is the early part of x (t) neglected by the threshold procedure and xt (t) is the truncated part
of x (t) defined by this threshold procedure (see Fig. 12.10):

Eq. 12.32 can be recast as:

(12.33)

where Ø is the deconvolution operator. If we consider that the impulse response is approximated by h1

well enough to compute the effect of the early part of the time sequence previously neglected, the corrected
second approximation is given by:

(12.34)

This procedure of correction can be theoretically repeated as long as we wish:

Nevertheless, such correction re-introduces some instability in the solution, so the procedure is generally
repeated once or twice. Regularization and correction secure both adequate stability and accuracy of the
method.37,54,64,65 Eq. 12.29 can also be deconvoluted in the frequency domain.13,14,16,42 In this case h(t) is
the inverse Fourier transform function of the ratio Y(ω)/X(ω). The time domain algorithm was chosen
because it offers substantial saving in computation time compared with the Fourier transform tech-
nique.17 Time domain computation requires only the signal up to the time corresponding to the deepest
penetration of interest. Use of the deconvolution algorithm with the Fourier transform method requires
the entire pressure signal (time truncated waveforms yield incorrect results) and generates the entire
impulse response signal of which only the earliest portion is used to infer area. This time saving was
especially important in the 1980s17 because it permitted area reconstruction in quasi-real time (one area
reconstruction per second). Twelve years later, considering the great increases in microcomputer power,
the interest in time computation savings offered by the time domain deconvolution is perhaps more
questionable.

Data Filtering

Pressure data and impulse response are also moderately band pass filtered. The low pass tends to de-
emphasize the instability of the impulse response and tends to eliminate artifacts associated with acoustic
cross-mode. The high pass de-emphasizes artifacts associated with airway wall nonrigidity. It also tends
to eliminate physiologic noise associated with breathing and tends to ensure the lossless propagation
assumption.
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12.5 Nasal Applications

Measurements of the geometry of the nasal cavity via the acoustic reflection method were recently
introduced by Hilberg et al.43 Those authors validated the method by comparing acoustic measurement
results with the results obtained by CT scan in cadavers and by water displacement in healthy humans.
Since their study was done, acoustic reflection technology has proven to be a useful tool to detect changes
in the nasal cavity produced by decongestants, posture, nasal functioning, intramuscular steroid injec-
tions of nasal polyps, or nasal histamine challenges.67–70 The method was also used to evaluate nasal
obstruction due to chronic rhonchopathies46 and obstruction caused by septal deviation before and after
septoplasty.44,71 

The authors found satisfactory correlation between subjective assessments of nasal patency and
acoustic rhinometry results. The acoustic reflection method, called acoustic rhinometry for nasal appli-
cations, presents the advantage of being noninvasive and producing objective documentation of the
nasal cavity with a quantitative evaluation and topical data on mucosal and skeletal changes in response
to physiological states or artificial manipulation (decongestion, surgery, etc.). By comparison, if CT
scanning is suitable for a three-dimensional reconstruction of the nasal tract, it only shows a static
picture. Classical rhinomanometry shows the resistance of the nasal tract, but it cannot furnish details
about the location of an obstruction.

Generally, acoustic rhinometry results are clinically analyzed by focusing upon the cross-sectional areas
at specific locations of the area distance curve. Indeed, this curve is usually described on the basis of two
or three relative minima, called notches (see example in Fig. 12.11, top). Considering that the first notch
corresponded to the minimal cross-sectional area (MCA) in 134 normal subjects, Lenders and Pirsig45

concluded that the first notch corresponded to the functional isthmus nasi. They also concluded that the
second notch corresponded to the head of the inferior turbinate. Similar results were reported by Grymer
et al.44 and by Kunkel et al.72 Nevertheless, other studies without changing the interpretations of the
different notches, showed that MCA was not systematically in the first notch. The bottom section of
Fig. 12.11 presents an example where the MCA is in the second notch due to hypertrophy of the inferior
turbinate in the left nostril. 

The different studies comparing results obtained with acoustic rhinometry and those obtained with
CT scan or magnetic resonance imaging revealed satisfactory correlations among the methods applied
to the anterior part of the nose cavity, i.e., from the nostril to the second notch. Acoustic rhinometry
results seemed to overestimate the area of the posterior part of the nasal cavity, i.e., the area of the region
lying after the second notch.43,70,73 Using a nasal cavity cast made by a stereolithographic method, Hilberg
et al.47 showed that this overestimation was introduced by the presence of the maxillary sinuses. The

FIGURE 12.10 Representative example of the discrete record of input function used in time domain deconvolution.
∆t is the sampling frequency; x(0 · ∆t) is the true first non-zero value of the input function; x(g · ∆t) is the first non-
zero value of the input function determined by the threshold procedure; xn(t) and xt(t) are successively the parts of
the input function neglected and truncated by the threshold procedure.
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presence of sinuses when the ostia is open tends to violate the single duct assumption. Part of the acoustic
wave would be transmitted in the sinuses via the ostia, which would introduce an overestimation of the
inferred area as in the case of the open velum (see “Single Duct” in Section 12.3). Therefore, the degree
to which acoustic rhinometry can be used to evaluate airway area of the posterior part of the nasal cavity
is questionable. On the other hand, such a property may present some positive aspects. First of all, it
may suggest that the acoustic technique may be potentially for obtaining information about sinus and
ostium pathology. Further studies have to be done to reject or confirm such speculation. Second, even

FIGURE 12.11 Typical acoustic rhinometry area-distance curves inferred with the two-microphone strategy in
patients of the Hospital Henri-Mondor, Créteil, France. The interpretation of the different characteristic points of
the curves (notches) is indicated in the text. Top: Example of the effect of a vasoconstrictor in a patient with rhinitis.
Bottom: Example of a patient with an obstruction in his left nostril due to turbinate hypertrophy. The curve of the
left nostril is compared to the normal curve obtained in the right nostril. Using a vasoconstrictor prior to measurement
permits de-emphasis of the artifacts linked with nasal cycle.
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if sinuses engender an overestimation of the area of the posterior part of the nasal cavity, the method
still permits comparisons in this region. Indeed, in a group of 20 children, the change in the volume of
the nasopharynx after adenoidectomy, i.e., in a nasal part far after the second notch as inferred by acoustic
rhinometry, was found highly proportional to the volume of the adenoid removed.74

For those applications, the investigation distances of interest are short (< 15 cm). That almost erases
the disadvantage of the wave tube length constraints encountered with the one-microphone strategy.
Nasal breathing during measurement generates positive or negative intranasal pressure and noise that
can alter the shape of the nasal cavity. The recommendation is to perform measurement during a brief
breathing pause.75 Other types of error are acoustic leaks76 and the distortion of the vestibulum nasi by
a nose-piece.77 Special care in the choice of nose-piece size will minimize the distortion of the vestibulum
nasi. The use of gel between nose-piece and nostril can ensure a good seal.77 Moreover, using head support
and wave tube support77 permitted enhancement of the reproducibility of the measurement, a reduction
of interoperator variability, and standardization of the angle between wave tube and nostril that can be
another source of error.78

12.6 Pulmonary Applications

Pulmonary applications follow three distinct stages: (1) a validation stage in which the results of the
acoustic reflection method were compared in vitro and in vivo to the results obtained with different
techniques considered as reference methods, (2) a second stage at which the method was used to better
understand the physiopathology of the upper airway; (3) a third stage in which the method was used for
direct clinical application.

Validation of the Method

The first validation of the method was realized in vitro through use of a 16 cm depth test cavity by Sondhy
and Gopinath in 1971.9 Later, Jackson et al.42 compared the area of dried excised dog lung inferred with
acoustic method to the area inferred by radiographic bronchograms. These early in vitro studies were
followed by the measurement of a cast of a human airway,13 a rigid glass model simulating pharyngeal-
laryngeal-tracheal regions,17,48,53,79 and a combination of compliant tube and rigid glass model simulating
the upper airway from the mouth to the carina.37 In all of these studies, acoustic measurements were in
good agreement compared with measurements obtained by radiographic or direct methods.

The first in vivo validation of the method was made by Fredberg et al.14 who compared the tracheal
areas of healthy subjects inferred with acoustic method to areas measured by bilateral radiography. The
authors found a satisfactory correlation between the two methods. Their findings were confirmed by
Brooks et al.17 and D’Urzo et al.19 who found differences of less than 10% between the results measured
by acoustic reflection and results from CT scan or lateral radiography. The measurement of glottis area
by acoustic reflection was validated by d’Urzo et al.80 with similar degree of correlation and much later
by Zhou et al.81 who followed vocal cord movement. Marshall et al.48 compared the acoustic and the
magnetic resonance imaging (MRI) methods of assessing pharyngeal areas in ten normal subjects. They
observed that only the inference of the maximal hypopharyngeal area was statistically different in com-
paring the two methods. To explain this difference, the authors pinpointed three facts: (1) the uncertainty
of the MRI associated to the pixel size was ±19% for an area of 1 cm2 and it was ±14% for an area of
2 cm2; (2) the acoustic method shows an instantaneous image of the upper airway while MRI shows an
image corresponding to an average over many breaths including effects of possible swallowing; and (3) the
MRI image can be affected by a non-ideal tissue/air contrast.

Applications

The first field of application of the acoustic reflection method concerned the structure and the function
of the upper airway and especially of the pharyngeal regions in patients with obstructive sleep apnea
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(OSA). In 1984 Rivlain et al.82 showed that the area of the pharyngeal region, defined as the region from
the hard palate up to the glottis, was significantly smaller in nine awake patients with OSA than in
normal controls. Later, Brown et al.83 found that by measuring upper airway areas at different pharyngeal
pressures, patients with OSA showed larger pharyngeal compliance than those in the normal control
group. These results were extended to the snorer population. Snoring is considered a precursor of OSA.84

The authors found that snorers without OSA and patients with OSA had similar pharyngeal areas at
functional residual capacity; at residual volume, the pharyngeal areas of snorers without OSA were larger
than those of patients with OSA. This finding was confirmed for obese women by Rubinstein et al.85

Using acoustic reflection to evaluate the changes in pharyngeal area with lung volume in awake patients,
Hoffstein et al.86 showed that the lung volume associated with changes in pharyngeal area is related to
the severity of sleep apnea.

The acoustic reflection method also showed that the pharyngeal area changed from the supine to the
upright position and that those changes are quantitatively different in patients with OSA and normal
subjects.51,87,88

Another application of the acoustic reflection method concerns the structure and the dynamic of the
trachea. Hoffstein and Zamel20 showed that acoustic technique was a rapid and noninvasive method
capable of identifying and quantifying tracheal stenosis prior the development of characteristic abnor-
malities in the flow volume curve. Many investigations involved healthy subjects. Hoffstein89 systemati-
cally analyzed the relationship between the tracheal area and maximal expiratory flow. They found that
tracheal area varies with lung volume. 

Hoffstein and co-authors21,90 also showed that hysteresis of airways and tracheal distensibility can be
noninvasively assessed via the acoustic reflection method. This last application is a clear example of the
possibility of providing noninvasive dynamic images of the airways. In Hoffstein’s study, measurements
made during inspiration and expiration were separated and airway areas were reconstructed at a rate
slightly above 3 per second. Brooks et al. showed that men have larger trachea size areas than women
and that these differences are not functions of body size.91 The method was also used to evaluate the
tracheal response during isocapneic hypoxia.92 The acoustic reflection technique was used to assess airway
tone in patients with asthma.93,94 The effects of different phamacologic agents such as methacholine,
histamine, LTC4,95 procaterol hydrocloride, and ipratropium bromide96 upon the upper airway were also
tested with the help of the acoustic reflection method.

Due to the improvement of the method associated with the two-microphone strategy, it was possible
to apply the method at bedside in an intensive care unit. Van Surrel et al.64 have shown that the method
permits assessment of the patency of the adult endotracheal tube (ETT) in mechanically ventilated
patients by assessing the extent and locus of the accumulation of mucus deposited at the wall of the ETT.
It was later shown that this method did not even require interruption of the artificial ventilation during
the measurement.65 Routine assessment of the ETT may help reduce the consequences of ETT obstruction
with regard to the risk of emergency extubation. The method also permits a noninvasive estimate of the
work of breathing due to the ETT,65 assuming that the pressure drop through an adult mucus-lined ETT
is determined by the Blasius resistance formula.97 This formula relates pressure drop and inner geometry
of the tube in fully developed and hydraulically smooth turbulent flow. Postulating that this formula
would remain locally applicable in any segment of the ETT, Heyer et al.65 showed that the determination
of the inner ETT geometry by acoustic reflection allowed accurate estimation of the pressure drop as
well as the work of breathing due specifically to the ETT.

The acoustic reflection method was also adapted to the assessment of the neonatal pediatric ETT.98 During
this study, the authors observed another exciting possibility. The method allowed us to characterize and
detect early the well-known problem of ETT obstruction due to head position99 when babies are ventilated
in womb posture. To avoid some muscular atrophy and bone development problems, head position is
regularly modified (from left to right and inversely). Occasionally the distal extremity of the ETT abuts the
tracheal wall, which produces a dramatic obstruction that can compromise the benefits of mechanical
ventilation in newborns. Generally, this problem is suspected after an episode of hypercapnia. In their study,
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Jarreau et al.98 observed that such a situation is clearly visible and thus detectable on the acoustic profiles
which exhibit a major decrease in area of the region immediately following the distal extremity of the ETT
(see Fig. 12.12). These area profiles are easy to distinguish from normal situations.

12.7 Conclusion

The acoustic reflection method is a powerful tool for studying the physiopathological properties of the
upper airways. It now permits an accurate noninvasive and reproducible measurement of the upper
airway area at bedside and in clinical situations. The short duration of the measurement (≅ 5 ms) in
comparison with the breathing period also allows clinicians to estimate the upper airway geometry under
both static and dynamic conditions. Such a tool should lead to a better understanding of the structure
and function of the upper airway in health as well as in disease.

The method is robust and easy to use. The recent improvements of the method (miniaturization and
use of air as a breathing gas) should lead to new applications of the method, especially in the severe
clinical conditions of an intensive care unit.
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