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ABSTRACT
This short book provides basic information about bioinstrumentation and electric circuit theory.

Many biomedical instruments use a transducer or sensor to convert a signal created by the body

into an electric signal. Our goal here is to develop expertise in electric circuit theory applied

to bioinstrumentation. We begin with a description of variables used in circuit theory, charge,

current, voltage, power and energy. Next, Kirchhoff ’s current and voltage laws are introduced,

followed by resistance, simplifications of resistive circuits and voltage and current calculations.

Circuit analysis techniques are then presented, followed by inductance and capacitance, and

solutions of circuits using the differential equation method. Finally, the operational amplifier

and time varying signals are introduced. This lecture is written for a student or researcher or

engineer who has completed the first two years of an engineering program (i.e., 3 semesters of

calculus and differential equations). A considerable effort has been made to develop the theory

in a logical manner—developing special mathematical skills as needed. At the end of the short

book is a wide selection of problems, ranging from simple to complex.

KEYWORDS
Bioinstrumentation, Circuit Theory, Introductory Biomedical Engineering, Sensors,

Transducers, Circuits, Voltage, Current
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Preface

This short book on bioinstrumentation is written for a reader who has completed the first two

years of an engineering program (i.e., three semesters of calculus and differential equations).

A considerable effort has been made to develop the theory in a logical manner—developing

special mathematical skills as needed.

I have found it best to introduce this material using simple examples followed by more

difficult ones.

At the end of the short book is a wide selection of problems, ranging from simple to

difficult, presented in the same general order as covered in the textbook.

I acknowledge and thank William Pruehsner for the technical illustrations. Portions of

this short book are from Chapter 8 of Enderle, J. D., Blanchard, S. M., and Bronzino, J. D.,

Introduction to Biomedical Engineering (Second Edition), Elsevier, Amsterdam, 2005, 1118 pages,

with Sections 1, 2 and 13 contributed by Susan Blanchard, Amanda Marley, and H. Troy Nagle.
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1

C H A P T E R 1

Introduction

This short book provides basic information about bioinstrumentation and electric circuit theory.

Many biomedical instruments use a transducer or sensor to convert a signal created by the body

into an electric signal. Our goal here is to develop expertise in electric circuit theory applied

to bioinstrumentation. We begin with a description of variables used in circuit theory, charge,

current, voltage, power, and energy. Next, Kirchhoff ’s current and voltage laws are introduced,

followed by resistance, simplifications of resistive circuits and voltage and current calculations.

Circuit analysis techniques are then presented, followed by inductance and capacitance, and

solutions of circuits using the differential equation method. Finally, the operational amplifier

and time-varying signals are introduced.

Before 1900, medicine had little to offer the typical citizen because its resources were

mainly the education and little black bag of the physician. The origins of the changes that

occurred within medical science are found in several developments that took place in the applied

sciences. During the early 19th century, diagnosis was based on physical examination, and

treatment was designed to heal the structural abnormality. By the late 19th century, diagnosis

was based on laboratory tests, and treatment was designed to remove the cause of the disorder.

The trend towards the use of technology accelerated throughout the 20th century. During

this period, hospitals became institutions of research and technology. Professionals in the areas

of chemistry, physics, mechanical engineering, and electrical engineering began to work in

conjunction with the medical field, and biomedical engineering became a recognized profession.

As a result, medical technology advanced more in the 20th century than it had in the rest of

history combined (Fig. 1.1).

During this period, the area of electronics had a significant impact on the development

of new medical technology. Men such as Richard Caton and Augustus Desire proved that

the human brain and heart depended upon bioelectric events. In 1903, William Einthoven

expanded on these ideas after he created the first string galvanometer. Einthoven placed two

skin sensors on a man and attached them to the ends of a silvered wire that was suspended

through holes drilled in both ends of a large permanent magnet. The suspended silvered wire

moved rhythmically as the subject’s heart beat. By projecting a tiny light beam across the silvered
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1750

1800

1850

1900

1950

2000

1752 – Ben Franklin flew his kite in the storm.

1774 – John Walsh proved electricity 
passes through humans.

1791 – Galvani published his findings
on “animal electricity.“    

1800 – Volta built the first battery.

1820 – Oersted discovered electromagnetism.
Ampere measured the magnetic effect 
of an electric current.

1860 – Maxwell worked out the mathematical
equations for the laws of
Electricity and magnetism.

1886 – Hertz discovered the electromagnetic wave.

1897 – Thomson discovered electrons.

1903 – Einthoven discovered the galvanometer.
1909 – Millikan measured the charge of the 
electron.

1920s – Television was invented.

1935 – Amplifiers were used to record EEGs.

1948 – Transistors become readily available. 

1959 – First transistor-based computer was made.

1972 – First CAT machine was made.
First microprocessor was used.

1785 – Coulomb worked out the laws
of attraction and repulsion between

electrically charged bodies.

1826 – Ohm formulated law of 
electrical resistance.

1831– Faraday and Henry found 
that a moving magnet would induce
an electric current in a coil of wire.

1895 – Roentgen discovered X-rays. 

1904 – Fleming invented the vacuum tube. 

1929 – Hans Berger recorded the first EEG. 

1948 – The first large scale
computer was built.

1960 – Chardock and Greatbatch
created the first implantable pacemaker

1981 – IBM introduced the
first personal computer

FIGURE 1.1: Timeline for major inventions and discoveries that led to modern medical instrumenta-

tion.
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wire, Einthoven was able to record the movement of the wire as waves on a scroll of moving

photographic paper. Thus, the invention of the string galvanometer led to the creation of the

electrocardiogram (ECG), which is routinely used today to measure and record the electrical

activity of abnormal hearts and to compare those signals to normal ones.

In 1929, Hans Berger created the first electroencephalogram (EEG), which is used to

measure and record electrical activity of the brain. In 1935, electrical amplifiers were used to

prove that the electrical activity of the cortex had a specific rhythm, and, in 1960, electrical

amplifiers were used in devices such as the first implantable pacemaker that was created by

William Chardack and Wilson Greatbatch. These are just a small sample of the many examples

in which the field of electronics has been used to significantly advance medical technology.

Many other advancements that were made in medical technology originated from re-

search in basic and applied physics. In 1895, the X-ray machine, one of the most important

technological inventions in the medical field, was created when W. K. Roentgen found that

X-rays could be used to give pictures of the internal structures of the body. Thus, the X-ray

machine was the first imaging device to be created.

Another important addition to medical technology was provided by the invention of

the computer, which allowed much faster and more complicated analyses and functions to be

performed. One of the first computer-based instruments in the field of medicine, the sequential

multiple analyzer plus computer, was used to store a vast amount of data pertaining to clinical

laboratory information. The invention of the computer made it possible for laboratory tests to

be performed and analyzed faster and more accurately.

The first large-scale computer-based medical instrument was created in 1972 when the

computerized axial tomography (CAT) machine was invented. The CAT machine created an

image that showed all of the internal structures that lie in a single plane of the body. This

new type of image made it possible to have more accurate and easier diagnosis of tumors,

hemorrhages, and other internal damage from information that was obtained noninvasively.

Telemedicine, which uses computer technology to transmit information from one medical

site to another, is being explored to permit access to health care for patients in remote locations.

Telemedicine can be used to let a specialist in a major hospital receive information on a patient

in a rural area and send back a plan of treatment specific for that patient.

Today, there is a wide variety of medical devices and instrumentation systems. Some are

used to monitor patient conditions or acquire information for diagnostic purposes, e.g. ECG

and EEG machines, while others are used to control physiological functions, e.g. pacemakers

and ventilators. Some devices, like pacemakers, are implantable while many others are used

noninvasively. This chapter will focus on those features that are common to devices that are

used to acquire and process physiological data.
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5

C H A P T E R 2

Basic Bioinstrumentation System

The quantity, property, or condition that is measured by an instrumentation system is called the

measurand (Fig. 2.1). This can be a bioelectric signal, such as those generated by muscles or the

brain, or a chemical or mechanical signal that is converted to an electrical signal. Sensors are

used to convert physical measurands into electric outputs. The outputs from these biosensors

are analog signals, i.e. continuous signals, which are sent to the analog processing and digital

conversion block. There, the signals are amplified, filtered, conditioned, and converted to digital

form. Methods for modifying analog signals, such as amplifying and filtering an ECG signal,

are discussed later in this chapter. Once the analog signals have been digitized and converted

to a form that can be stored and processed by digital computers, many more methods of signal

conditioning can be applied.

Basic instrumentation systems also include output display devices that enable human

operators to view the signal in a format that is easy to understand. These displays may be

numerical or graphical, discrete or continuous, and permanent or temporary. Most output

display devices are intended to be observed visually, but some also provide audible output, e.g.

a beeping sound with each heart beat.

In addition to displaying data, many instrumentation systems have the capability of storing

data. In some devices, the signal is stored briefly so that further processing can take place or so

that an operator can examine the data. In other cases, the signals are stored permanently so that

different signal processing schemes can be applied at a later time. Holter monitors, for example,

acquire 24 hrs of ECG data that is later processed to determine arrhythmic activity and other

important diagnostic characteristics.

With the invention of the telephone and now with the Internet, signals can be ac-

quired with a device in one location, perhaps in a patient’s home, and transmitted to an-

other device for processing and/or storage. This has made it possible, for example, to pro-

vide quick diagnostic feedback if a patient has an unusual heart rhythm while at home. It

has also allowed medical facilities in rural areas to transmit diagnostic images to tertiary care

hospitals so that specialized physicians can help general practitioners arrive at more accurate

diagnoses.
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Sensor Calibration

A/D

Analog 
Processing

Signal 
Processing

Data 
Storage

Control &
Feedback

Output 
Display

Data 
Transmission

FIGURE 2.1: Basic instrumentation systems using sensors to measure a signal with data acquisition,

storage and display capabilities, along with control and feedback.

Two other components play important roles in instrumentation systems. The first is the

calibration signal. A signal with known amplitude and frequency content is applied to the

instrumentation system at the sensor’s input. The calibration signal allows the components of

the system to be adjusted so that the output and input have a known, measured relationship.

Without this information, it is impossible to convert the output of an instrument system into

a meaningful representation of the measurand.

Another important component, a feedback element, is not a part of all instrumentation

systems. These devices include pacemakers and ventilators that stimulate the heart or the lungs.

Some feedback devices collect physiological data and stimulate a response, e.g. a heart beat or

breath, when needed or are part of biofeedback systems in which the patient is made aware

of a physiological measurement, e.g. blood pressure, and uses conscious control to change the

physiological response.
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C H A P T E R 3

Charge, Current, Voltage,

Power and Energy

3.1 CHARGE
Two kinds of charge, positive and negative, are carried by protons and electrons, respectively.

The negative charge carried by an electron, qe , is the smallest amount of charge that exists and

is measured in units called Coulombs (C).

qe = −1.602 × 10−19 C

The symbol q (t) is used to represent charge that changes with time, and Q for constant charge.

The charge carried by a proton is the opposite of the electron.

Example 3.1. What is the charge of 3 × 10−15g of electrons?

Solution

Q = 3 × 10−15g × 1 kg

103 g
× 1 electron

9.1095 × 10−31 kg
× −1.60219 × 10−19C

electron

= −5.27643 × 10−7 C

3.2 CURRENT
Electric current, i(t), is defined as the change in the amount of charge that passes through a

given point or area in a specified time period. Current is measured in amperes (A). By definition,

one ampere equals one coulomb/second (C/s).

i(t) = dq

dt
(3.1)

and

q (t) =
t∫

t0

i(λ) dλ + q (t0) (3.2)
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Circuit
element

Circuit
element

i

i

FIGURE 3.1: A simple electric circuit illustrating current flowing around a closed loop.

Current, defined by Eq. (3.1), also depends on the direction of flow as illustrated in the circuit

in Fig. 3.1.

Example 3.2. Suppose the following current is flowing in Fig. 3.1.

i(t) =
{

0 t < 0

3e−100t A t ≥ 0

Find the total charge.

Solution

Q =
∞∫

−∞
idt =

∞∫
0

3e−100tdt = − 3

100
e−100t

∣∣∣∣∞
t=0

= 0.03 C

Consider Fig. 3.1. Current is defined as positive if

(a) A positive charge is moving in the direction of the arrow

(b) A negative charge is moving in the opposite direction of the arrow

Since these two possibilities produce the same outcome, there is no need to be concerned as to

which is responsible for the current. In electric circuits, current is carried by electrons in metallic

conductors.

Current is typically a function of time, as given by Eq. (3.1). Consider Fig. 3.2 with the

current entering terminal 1 in the circuit on the right. In the time interval 0–1.5 s, current is

positive and enters terminal 1. In the time interval 1.5–3 s, the current is negative and enters

terminal 2 with a positive value. We typically refer to a constant current as a DC current, and



P1: KDD

MOBK036-03 MOBK036-Enderle.cls November 1, 2006 21:38

CHARGE, CURRENT, VOLTAGE, POWER AND ENERGY 9

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2 2.5 3
t

(s)

i

(A)

Circuit
element

i 1

2
i

FIGURE 3.2: (Left) A sample current waveform. (Right) A circuit element with current entering

terminal 1 and leaving terminal 2. Passive circuit elements have two terminals with a known voltage–

current relationship. Examples of passive circuit elements include resistors, capacitors and inductors.

denote it with a capital letter such as I indicating it does not change with time. We denote a

time-varying current with a lower case letter, such as i(t),or just i .

3.2.1 Kirchhoff ’s Current Law

Current can flow only in a closed circuit, as shown in Fig. 3.1. No current is lost as it flows

around the circuit because net charge cannot accumulate within a circuit element and charge

must be conserved. Whatever current enters one terminal must leave at the other terminal.

Since charge cannot be created and must be conserved, the sum of the currents at any node,

that is, a point at which two or more circuit elements have a common connection, must equal

zero so no net charge accumulates. This principle is known as Kirchhoff ’s current law (KCL),

given as

N∑
n=1

in(t) = 0 (3.3)

where there are N currents leaving the node. Consider the circuit in Fig. 3.3. Using Eq. (3.3)

and applying KCL for the currents leaving the node gives

−i1 − i2 + i4 + i3 = 0

The previous equation is equivalently written for the currents entering the node, as

i1 + i2 − i4 − i3 = 0
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i1 i2

i3

i4

FIGURE 3.3: A node with 4 currents.

It should be clear that the application of KCL is for all currents, whether they are all leaving or

all entering the node.

In describing a circuit, we define its characteristics with the terms “node”, “branch”, “path”,

“closed path” and “mesh” as follows.

• Node: A point at which two or more circuit elements have a common connection.

• Branch: A circuit element or connected group of circuit elements. A connected group

of circuit elements usually connect nodes together.

• Path: A connected group of circuit elements in which none is repeated.

• Closed Path: A path that starts and ends at the same node.

• Mesh: A closed path that does not contain any other closed paths within it.

• Essential Node: A point at which three or more circuit elements have a common con-

nection.

• Essential Branch: A branch that connects two essential nodes.

In Fig. 3.4, there are five nodes, A, B, C, D and E, which are all essential nodes. Kirchhoff ’s

current law is applied to each of the nodes as follows.

Node A: −i1 + i2 − i3 = 0

Node B: i3 + i4 + i5 − i6 = 0

Node C: i1 −i4 − i8 = 0

Node D: −i7 − i5 + i8 = 0

Node E: −i2 + i6 + i7 = 0

Kirchhoff ’s current law is also applicable to any closed surface surrounding a part of the circuit.

It is understood that the closed surface does not intersect any of the circuit elements. Consider

the closed surface drawn with dashed lines in Fig. 3.4. Kirchhoff ’s current law applied to the

closed surface gives

−i1 + i4 + i5 + i7 = 0
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Circuit
element

Circuit
elementi1

Circuit
element

Circuit
element

Circuit
element

Circuit
element

Circuit
element

A

B

C

D

E

i2
i3

i4

i5

i6

i7

i8

Closed surface

FIGURE 3.4: A circuit with a closed surface.

3.3 VOLTAGE
Voltage represents the work per unit charge associated with moving a charge between two points

(A and B in Fig. 3.5), and given as

v = dw

dq
(3.4)

The unit of measurement for voltage is the volt (V). A constant (DC) voltage source is denoted

by V while a time-varying voltage is denoted by v(t), or just v. In Fig. 3.5, the voltage, v,

between two points (A and B), is the amount of energy required to move a charge from point

A to point B.

Circuit
element

i 1

2B

A +
v
-

FIGURE 3.5: Voltage and current convention.
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Circuit
element

Circuit
element

Circuit
element

Circuit
element

Circuit
element

+
v3

-

-
v4

+

+
v5

-

+   v1 - +   v2 -

CP1 CP2

CP3

FIGURE 3.6: Circuit illustrating Kirchhoff ’s voltage law. Closed paths are identified as CP1, CP2

and CP3.

3.3.1 Kirchhoff ’s Voltage Law

Kirchhoff ’s voltage law (KVL) states the sum of all voltages in a closed path is zero, or

N∑
n=1

vn(t) = 0 (3.5)

where there are N voltage drops assigned around the closed path, with vn(t) denoting the

individual voltage drops. The sign for each voltage drop in Eq. (3.5) is the first sign encountered

while moving around the closed path.

Consider the circuit in Fig. 3.6, with each circuit element assigned a voltage, vn, with a

given polarity, and three closed paths, CP1, CP2 and CP3. Kirchhoff ’s voltage law for each

closed path is given as

CP1: −v3 + v1 − v4 = 0

CP2: v4 + v2 + v5 = 0

CP3: −v3 + v1 + v2 + v5 = 0

Kirchhoff ’s laws are applied in electric circuit analysis to determine unknown voltages and

currents. Each unknown variable has its distinct equation. To solve for the unknowns using

MATLAB, we create a matrix representation of the set of equations and solve. This method is

demonstrated in many examples in this book.
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Example 3.3. Find I1, I2 and I3 for the following circuit.

Circuit
Element

Circuit
ElementI1

Circuit
Element

Circuit
Element

Circuit
Element

Circuit
Element

A

B C
I2 I3

2A

3A 4A

Solution. We apply KCL first at node C, then B and finally A.

Node C: −2 + I3 + 4 = 0; I3 = −2 A

Node B: I2 + 3 − I3 = 0; I2 = I3 − 3 = −5 A

Node A: − I1 − I2 + 2 = 0; I1 = 2 − I2 = 7 A

3.4 POWER AND ENERGY
Power is the rate of energy expenditure given as

p = dw

dt
= dw

dq

dq

dt
= vi (3.6)

where p is power measured in watts (W), and w is energy measured in joules ( J). Power is

usually determined by the product of voltage across a circuit element and the current through it.

By convention, we assume that a positive value for power indicates that power is being delivered

(or absorbed or consumed) by the circuit element. A negative value for power indicates that

power is being extracted or generated by the circuit element, i.e., a battery.

Figure 3.7 illustrates the four possible cases for a circuit element’s current and voltage

configuration. According to convention, if both i and v are positive, with the arrow and polarity

shown in Fig. 3.7A, energy is absorbed (either lost by heat or stored). If either the current arrow

or voltage polarity is reversed as in B and C, energy is supplied to the circuit. Note that if both

the current direction and voltage polarity are reversed together, as in D, energy is absorbed.
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Circuit
element

i 1

2

+
v

-

p vi=

Circuit
element

i

1

2

+
v

-

p = −vi

Circuit
element

i

1

2

-
v

+

p = vi

Circuit
element

i 1

2

-
v

+

p = −vi

A B

C D

FIGURE 3.7: Polarity references for four cases of current and voltage. Cases A and D result in positive

power being consumed by the circuit element. Cases B and C result in negative power being extracted

from the circuit element.

A passive circuit element is defined as an element whose power is always positive or zero,

which may be dissipated as heat (resistance), stored in an electric field (capacitor) or stored in

a magnetic field (inductor). We define an active circuit element as one whose power is negative

and capable of generating energy.

Energy is given by

w(t) =
t∫

−∞
pdt (3.7)

3.5 SOURCES
Sources are two terminal devices that provide energy to a circuit. There is no direct voltage–

current relationship for a source; when one of the two variables is given, the other cannot be

determined without knowledge of the rest of the circuit. Independent sources are devices for

which the voltage or current is given and the device maintains its value regardless of the rest of

the circuit. A device that generates a prescribed voltage at its terminals, regardless of the current

flow, is called an ideal voltage source. Figure 3.8A and B shows the general symbols for an ideal

voltage source. Figure 3.8C shows an ideal current source that delivers a prescribed current to
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VS
+
-VS IS

A B C

FIGURE 3.8: Basic symbols used for independent sources. (A) Battery. (B) Ideal voltage source. Vs can

be a constant DC source (Battery) or a time-varying source. (C) Ideal current source Is.

VS I S
+
-

FIGURE 3.9: Basic symbols used for dependent or controlled sources. (Left) Controlled voltage source.

The voltage Vs is a known function of some other voltage or current in the circuit. (Right) Controlled

current source. The current Is is a known function of some other voltage or current in the circuit.

the attached circuit. The voltage generated by an ideal current source depends on the elements

in the rest of the circuit.

Shown in Fig. 3.9 are a dependent voltage and current source. A dependent source takes

on a value equaling a known function of some other voltage or current value in the circuit. We

use a diamond-shaped symbol to represent a dependent source. Often, a dependent source is

called a controlled source. The current generated for a dependent voltage source and the voltage

for a dependent current source depend on circuit elements in the rest of the circuit. Dependent

sources are very important in electronics. Later in this chapter, we will see that the operational

amplifier uses a controlled voltage source for its operation.

Example 3.4. Find the voltage V3 for the circuit shown in the following figure.

10V

5A

-
+

I2

+
- 5V

3A

2I2
-
++

V3

-
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Solution. Current I2 equals 5 A because it is in the same branch as the 5 A current source. The

voltage across the dependent voltage source on the right side of the circuit equals 2I2 = 10 V.

Applying KVL around the outer closed path gives

−V3 − 5 − 10 = 0

or

V3 = −15 V
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Resistance

4.1 RESISTORS
A resistor is a circuit element that limits the flow of current through it and is denoted with

the symbol . Resistors are made of different materials and their ability to impede current

is given with a value of resistance, denoted R. Resistance is measured in Ohms (�), where

1 � = 1 V/A. A theoretical bare wire that connects circuit elements together has a resistance of

zero. A gap between circuit elements has a resistance of infinity. An ideal resistor follows Ohm’s

law, which describes a linear relationship between voltage and current, as shown in Fig. 4.1,

with a slope equal to the resistance.

There are two ways to write Ohm’s law, depending on the current direction and voltage

polarity. Ohm’s law is written for Fig. 4.2A as

v = i R (4.1)

and for Fig. 4.2B as

v = −i R (4.2)

In this book, we will use the convention shown in Fig. 4.2A to write the voltage drop across a

resistor. As described, the voltage across a resistor is equal to the product of the current flowing

through the element and its resistance, R. This linear relationship does not apply at very high

voltages and currents. Some electrically conducting materials have a very small range of currents

and voltages in which they exhibit linear behavior. This is true of many physiological models

as well: linearity is observed only within a range of values. Outside this range, the model is

nonlinear. We define a short circuit as shown in Fig. 4.3A with R = 0, and having a 0 V voltage

drop. We define an open circuit as shown in Fig. 4.3B with R = ∞, and having 0 A current

pass through it.

Each material has a property called resistivity (ρ) that indicates the resistance of the

material. Conductivity (σ ) is the inverse of resistivity, and conductance (G) is the inverse of
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I
(A)

V
(V)

Slope = R

FIGURE 4.1: Voltage–current relationship for a resistor.

A
i(t)

R
+

v(t)
−

B

i(t)

R
+

v(t)
−

FIGURE 4.2: An ideal resister with resistance R in Ohms (�).

i

+

v = 0 V

−

0R =    Ω

A.  Short Circuit

+

v

−

R = ∞

B.  Open Circuit

i = 0 A

FIGURE 4.3: Short and open circuits.
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resistance. Conductance is measured in units called siemens (S) and has units of A/V. In terms

of conductance, Ohm’s law is written as

i = Gv (4.3)

Example 4.1. From the following circuit, find I2, I3 and V1.

R2

R1 5 Ω

5 Ω

5A

50 V
I3

I2

+

V1

−

8 A

10 A

Solution. First we find I2 by applying KCL at the node in the upper left of the circuit.

−5 + I2 + 8 = 0

and

I2 = −3 A

Current I3 is determined by applying KCL at the node on the right of the circuit.

10 + I3 − 8 = 0

and

I3 = −2 A

Voltage V1 is determined by applying KVL around the lower right closed path and using

Ohm’s law.

−V1 − 50 + 5I3 = 0

V1 = −50 + 5 × (−2) = −60 V

4.2 POWER
The power consumed by a resistor is given by the combination of Eq. (3.6) and either Eq. (4.1)

or (4.2) as

p = vi = v 2

R
= i2R (4.4)
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and given off as heat. Equation (4.4) demonstrates that regardless of the voltage polarity and

current direction, power is consumed by a resistor. Power is always positive for a resistor, which

is true for any passive element.

Example 4.2. Calculate the power in each element.

18 V 5I1 3 Ω

I1

Solution. We first note that the resistor on the right has 18 V across it, and therefore the

current through it, according to Ohm’s law, is 18
3

= 6 A. To find the current I1 we apply KCL

at the upper node, giving

−I1 − 5I1 + 6 = 0

or

I1 = 1 A

The power for each of the circuit elements is

p18V = −I1 × 18 = −18 W

p5i1
= −18 × 5I1 = −90 W

p3 � = 182

3
= 108 W

In any circuit, the power supplied by the active elements always equals the power consumed.

Here, the power generated is 108 W and the power consumed is 108 W, as required.

Example 4.3. Electric safety is of paramount importance in a hospital or clinical environment.

If sufficient current is allowed to flow through the body, significant damage can occur, as

illustrated in the following figure.
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0.0001 0.001 0.01 0.1 1.0 10.0 100.0

Current (A)

Threshold of
perception

Let-go
current

Respiratory paralysis, Fatigue, Pain

Ventricular fibrillation

Sustained myocardial
contraction

Burns, Injury

For instance, a current of magnitude 50 mA (dashed line) is enough to cause ventricular fibril-

lation, as well as other conditions. The figure on the left shows the current distribution from a

macroshock from one arm to another (Redrawn from Enderle et al., Introduction to Biomedical

Engineering, 2000). A crude electric circuit model of the body consisting of two arms (each with

resistance RA), two legs (each with resistance RL), body trunk (with resistance RT), and head

(with resistance RH) is shown in the following figure on the right.

+-

VS

RT

RH

RA RA

RL RL
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Since the only elements that form a closed path that current can flow is given by the source in

series with the two arms, we reduce the body electric circuits to

RA

RAVS

I

If RA = 400 � and Vs = 120 V, then find I .

Solution. Using Ohm’s law, we have

I = Vs

RA + RA

= 120

800
= 0.15 A

The current I is the current passing through the heart, and at this level it would cause ventricular

fibrillation.

4.3 EQUIVALENT RESISTANCE
It is sometimes possible to reduce complex circuits into simpler and, as we will see, equivalent

circuits. We consider two circuits equivalent if they cannot be distinguished from each other by

voltage and current measurements, that is, the two circuits behave identically. Consider the two

circuits A and B in Fig. 4.4, consisting of combinations of resistors, each stimulated by a DC

voltage Vs . These two circuits are equivalent if IA = IB . We represent the resistance of either

circuit using Ohm’s law as

REQ = Vs

IA

= Vs

IB

(4.5)

Thus, it follows that any circuit consisting of resistances can be replaced by an equivalent circuit

as shown in Fig. 4.5. In another section on a Thévenin equivalent circuit, we will expand this

remark to include any combination of sources and resistances.



P1: KDD

MOBK036-04 MOBK036-Enderle.cls November 1, 2006 16:19

RESISTANCE 23

Circuit
AVS

IA

Circuit
BVS

IB

FIGURE 4.4: Two circuits.

4.4 SERIES AND PARALLEL COMBINATIONS OF RESISTANCE
4.4.1 Resistors in Series

If the same current flows from one resistor to another, the two are said to be in series. If these

two resistors are connected to a third and the same current flows through all of them, then the

three resistors are in series. In general, if the same current flows through N resistors, then the

N resistors are in series. Consider Fig. 4.6 with three resistors in series. An equivalent circuit

can be derived through KVL as

−Vs + IR1 + IR2 + IR3 = 0

or rewritten in terms of an equivalent resistance REQ as

REQ = Vs

I
= R1 + R2 + R3

Circuit
AVS

IA

VS

IA

REQ

FIGURE 4.5: Equivalent circuits.
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R1

R2

R3

VS

I

FIGURE 4.6: A series circuit.

In general, if we have N resistors in series,

REQ =
N∑

i=1

Ri (4.6)

4.4.2 Resistors in Parallel

Two or more elements are said to be in parallel if the same voltage is across each of the resistors.

Consider the three parallel resistors as shown in Fig. 4.7. We use a shorthand notation to

represent resistors in parallel using the ‖ symbol. Thus in Fig. 4.7, REQ = R1 ‖ R2 ‖ R3. An

equivalent circuit for Fig. 4.7 is derived through KCL as

−I + Vs

R1

+ Vs

R2

+ Vs

R3

= 0

VS R3R2R1

I

FIGURE 4.7: A parallel circuit.
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or rewritten in terms of an equivalent resistance REQ as

REQ = Vs

I
= 1

1
R1

+ 1
R2

+ 1
R3

In general, if we have N resistors in parallel,

REQ = 1
1

R1
+ 1

R2
+ · · · + 1

RN

(4.7)

For just two resistors in parallel, Eq. (4.7) is written as

REQ = R1 ‖ R2 = R1 R2

R1 + R2

(4.8)

Example 4.4. Find REQ and the power supplied by the source for the following circuit.

2 Ω

5 V 12 Ω 12 Ω 12 Ω

3 Ω

2 Ω 2 Ω

I

Solution. To solve for REQ, apply from right to left the parallel and series combinations. First,

we have two 2 � resistors in parallel that are in series with the 3 � resistor. Next, this group

is in parallel with the three 12 � resistors. Finally, this group is in series with the 2 � resistor.

These combinations are shown in the following figure and calculation:

2 Ω

5 V 12 Ω 12 Ω 12 Ω

3 Ω

2 Ω 2 Ω

I

2‖2 =1 Ω

3+1= 4 Ω12‖12‖12 =4 Ω

4‖4=2 Ω

2+2 = 4 Ω
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REQ = 2 � + ((12 � ‖ 12 � ‖ 12 �) ‖ (3 � + (2 � ‖ 2 �)))

= 2 +
((

1
1
12

+ 1
12

+ 1
12

)
‖

(
3 + 1

1
2

+ 1
2

))
= 2 + ((4) ‖ (3 + 1)) = 2 + 2 = 4 �

Accordingly,

I = 5

REQ

= 5

4
= 1.25 A

and

p = 5 × I = 6.25 W

4.5 VOLTAGE AND CURRENT DIVIDER RULES
Let us now extend the concept of equivalent resistance, REQ = V

I
, to allow us to quickly calculate

voltages in series resistor circuits and currents in parallel resistor circuits without digressing to

the fundamentals.

4.5.1 Voltage Divider Rule

The voltage divider rule allows us to easily calculate the voltage across a given resistor in a series

circuit. Consider finding V2 in the series circuit shown in Fig. 4.8, where REQ = R1 + R2.

Accordingly,

I = Vs

REQ

= Vs

R1 + R2

R1

R2VS

I

+
V2

−

FIGURE 4.8: Voltage divider rule circuit.
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VS R2R1

I

I1 I2

FIGURE 4.9: Current divider rule circuit.

and therefore

V2 = IR2 = Vs
R2

R1 + R2

This same analysis can be used to find V1 as

V1 = Vs
R1

R1 + R2

In general, if a circuit contains N resistors in series, the voltage divider rule gives the voltage

across any one of the resistors, Ri , as

Vi = Vs
Ri

R1 + R2 + · · · RN

(4.9)

4.5.2 Current Divider Rule

The current divider rule allows us to easily calculate the current through any resistor in parallel

resistor circuits. Consider finding I2 in the parallel circuit shown in Fig. 4.9, where REQ = R1 R2

R1+R2
.

Accordingly,

I2 = Vs

R2

and

Vs = I
R1 R2

R1 + R2
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yielding after substituting Vs

I2 = I

1
R2

1
R1

+ 1
R2

In general, if a circuit contains N resistors in parallel, the current divider rule gives the current

through any one of the resistors, Ri , as

Ii = I

1
Ri

1
R1

+ 1
R2

· · · + 1
RN

(4.10)

Example 4.5. For the following circuit, find I1.

5 A 10/3 Ω 2 Ω

1 Ω

12 Ω 12 Ω 12 Ω

I1

Solution. We solve this circuit problem in two parts, as is evident from the redrawn circuit

that follows, by first finding I2 and then I1.

5 A 10/3 Ω 2 Ω

1 Ω

12 Ω

REQ

12 Ω 12 Ω

I1

I2

To begin, first find REQ, which, when placed into the circuit, reduces to three parallel resistors

from which I2 is calculated. The equivalent resistance is found as

REQ = 1 + (12 ‖ 12 ‖ 12) = 1 + 1
1
12

+ 1
12

+ 1
12

= 5 �
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Applying the current divider rule on the three parallel resistors, 10
3

‖ 2 ‖ REQ, we have

I2 = 5

(
1
5

3
10

+ 1
2

+ 1
5

)
= 1 A

I2 flows through the 1 � resistor, and then divides into three equal currents of 1
3

A through each

12 � resistor. The current I1 can also be found by applying the current divider rule as

I1 = I2

(
1
12

1
12

+ 1
12

+ 1
12

)
=

1
12

1
12

+ 1
12

+ 1
12

= 1

3
A
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C H A P T E R 5

Linear Network Analysis

Our methods for solving circuit problems up to this point have included applying Ohm’s law

and Kirchhoff ’s laws, resistive circuit simplification, and the voltage and current divider rules.

This approach works for all circuit problems, but as the circuit complexity increases, it becomes

more difficult to solve problems. In this section, we introduce the node-voltage method and

the mesh-current method to provide a systematic and easy solution of circuit problems. The

application of the node-voltage method involves expressing the branch currents in terms of

one or more node voltages, and applying KCL at each of the nodes. The application of the

mesh-current method involves expressing the branch voltages in terms of mesh currents, and

applying KVL around each mesh. These two methods are systematic approaches that lead to a

solution that is efficient and robust, resulting in a minimum number of simultaneous equations

that saves time and effort.

In both cases, the resulting linear set of simultaneous equations is solved to determine the

unknown voltages or currents. The number of unknown voltages for the node-voltage method

or currents for the mesh-current method determines the number of equations. The number of

independent equations necessitates:

• N-1 equations involving KCL at N-1 nodes for the node-voltage method. This number

may be fewer if there are voltage sources in the circuit.

• N-1 equations involving KVL around each of the meshes in the circuit for the

mesh-current method. This number may be fewer if there are current sources in the

circuit.

As we will see, MATLAB is ideal for solving problems that involves solution of simulta-

neous equations, providing a straightforward tool that minimizes the amount of work.

5.1 NODE-VOLTAGE METHOD
The use of node equations provides a systematic method for solving circuit analysis problems by

the application of KCL at each essential node. The node-voltage method involves the following

two steps:
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R+
V1

−

+
V2

−

+  V  −IA

(A)

R+
V1

−

+
V2

−

− V +

(B)

IB

FIGURE 5.1: Ohm’s law written in terms of node voltages.

1. Assign each node a voltage with respect to a reference node (ground). The reference

node is usually the one with the most branches connected to it, and is denoted with the

symbol . All voltages are written with respect to the reference node.

2. Except for the reference node, we write KCL at each of the N-1 nodes.

The current through a resistor is written using Ohm’s law, with the voltage expressed as

the difference between the potential on either end of the resistor with respect to the reference

node as shown in Fig. 5.1. We express node-voltage equations as the currents leaving the node.

Two adjacent nodes give rise to the current moving to the right (like Fig. 5.1A) for one node, and

the current moving to the left (like Fig. 5.1B) for the other node. The current is written for (A)

as IA = V
R

= V1−V2

R
and for (B) as IB = V

R
= V2−V1

R
. It is easy to verify in (A) that V = V1 − V2

by applying KVL.

If one of the branches located between an essential node and the reference node contains

an independent or dependent voltage source, we do not write a node equation for this node,

because the node voltage is known. This reduces the number of independent node equations

by one and the amount of work in solving for the node voltages. In writing the node equations

for the other nodes, we write the value of the independent voltage source in those equations.

Consider Fig. 5.1 (A) and assume the voltage V2 results from an independent voltage source

of 5 V. Since the node voltage is known, we do not write a node voltage equation for node 2

in this case. When writing the node-voltage equation for node 1, the current IA is written as

IA = V1−5
R

. Ex. 5.1 further illustrates this case.

Example 5.1. Find V1 using the node-voltage method.

1/2 Ω 1/2 Ω

1/3 Ω 1/4 Ω5 V 3 A

+

V1   

−
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Solution. This circuit has two essential nodes, labeled 1 and 2 in the redrawn circuit that follows,

with the reference node and two node voltages, V1 and V2, indicated. The node involving the 5 V

voltage source has a known node voltage and therefore we do not write a node equation for it.

1/2 Ω 1/2 Ω

1/3 Ω 1/4 Ω5 V 3 A

+

V1   

−

+

V2

−

1 2

Summing the currents leaving node 1 gives

2(V1 − 5) + 3V1 + 2(V1 − V2) = 0

which simplifies to

7V1 − 2V2 = 10

Summing the currents leaving node 2 gives

2(V2 − V1) + 4V2 + 3 = 0

which simplifies to

−2V1 + 6V2 = −3

The two node equations are written in matrix format as[
7 −2

−2 6

] [
V1

V2

]
=

[
10

−3

]
and solved with MATLAB as follows:

� A = [7 − 2; −2 6];

� F = [10; −3];

� V = A\F

V =
1.4211

−0.0263

Thus, V1 = 1.4211 V.
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Generally, the coefficient for the node voltage is the sum of the conductances connected to

the node. The coefficients for the other node voltages are the negative of the sum of conductances

connected between the node voltage and other node voltages. If the input consists of a set of

current sources applied at each node, then the node equations have the following form.

G1,1V1 − G1,2V2 − · · · − G1,N−1VN−1 = I1

−G2,1V1 + G2,2V2 − · · · − G2,N−1VN−1 = I2

...

−G N−1,1V1 − G N−1,2V2 − · · · − G N−1,N−1VN−1 = IN

(5.1)

Equation (5.1) is put in matrix form for solution by MATLAB as⎡⎢⎢⎢⎢⎣
G1,1 −G2,1 · · · −G1,N−1

−G2,1 G2,2 · · · −G2,N−1

. . .

−G N−1,1 −G N−1,2 · · · G N−1,N−1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

V1

V2

...

VN−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
I1

I2

...

IN−1

⎤⎥⎥⎥⎥⎦ (5.2)

Note the symmetry about the main diagonal where the off-diagonal terms are equal to each

other and negative. This is true of all circuits without dependent sources. A dependent source

destroys this symmetry. In general, if a circuit has dependent sources, the node-voltage approach

is the same as before except for an additional equation describing the relationship between the

dependent source and the node voltage. In cases involving more than one dependent source,

there is one equation for each dependent source in terms of the node voltages.

Example 5.2. For the following circuit, find V3 using the node-voltage method.

1/2 Ω

5 A 1/3 Ω

1/4 Ω

3 A 1 Ω

1/4 Ω

2Id

Id+

V3

−
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Solution. Notice that this circuit has three essential nodes and a dependent current source.

We label the essential nodes 1, 2 and 3 in the redrawn circuit, with the reference node at the

bottom of the circuit and three node voltages V1, V2 and V3, as indicated.

1/2 Ω

5 A 1/3 Ω

1/4 Ω

3 A 1 Ω

1/4 Ω

2Id

Id+

V3

−

+

V2

−

+

V1

−

1 2 3

Note that Id = V3 according to Ohm’s law. Summing the currents leaving node 1 gives

5 + 2 (V1 − V2) + 2Id + 4 (V1 − V3) = 0

which reduces to

6V1 − 2V2 − 2V3 = −5

Summing the currents leaving node 2 gives

−2Id + 2 (V2 − V1) + 3V2 + 4 (V2 − V3) = 0

which simplifies to

−2V1 + 9V2 − 6V3 = 0

Summing the currents leaving node 3 gives

4 (V3 − V2) − 3 + V3 + 4 (V3 − V1) = 0

reducing to

−4V1 − 4V2 + 9V3 = 3
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The three node equations are written in matrix format as⎡⎢⎣ 6 −2 −2

−2 9 −6

−4 −4 9

⎤⎥⎦
⎡⎢⎣V1

V2

V3

⎤⎥⎦ =

⎡⎢⎣−5

0

3

⎤⎥⎦
Notice that the system matrix is no longer symmetrical because of the dependent current source,

and two of the three nodes have a current source giving rise to a nonzero term on the right-hand

side of the matrix equation.

Solving with MATLAB gives

� A = [6 −2 −2; −2 9 − 6; −4 −4 9];

� F = [−5; 0; 3];

� V = A\F

V =
−1.1471

−0.5294

−0.4118

Thus V3 = −0.4118 V.

If one of the branches has an independent or controlled voltage source located between

two essential nodes as shown in Fig. 5.2, the current through the source is not easily expressed

in terms of node voltages. In this situation, we form a supernode by combining the two nodes.

The supernode technique requires only one node equation in which the current, IA, is passed

through the source and written in terms of currents leaving node 2. Specifically, we replace

IA with IB + IC + ID in terms of node voltages. Because we have two unknowns and one

supernode equation, we write a second equation by applying KVL for the two node voltages 1

+

V1

−

VΔ

+−

+

V2

−

1 2

IA IC

ID

IB

FIGURE 5.2: A dependent voltage source is located between nodes 1 and 2.
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and 2 and the source as

−V1 − V� + V2 = 0

or

V� = V1 − V2

Example 5.3. For the following circuit, find V3.

2 A 1/2 Ω

1/4 Ω

1/3 Ω 1 A

1 V

1/2 Ω

1/5 Ω

+

V3   

−

Solution. The circuit has three essential nodes, two of which are connected to an independent

voltage source and form a supernode. We label the essential nodes as 1, 2 and 3 in the redrawn

circuit, with the reference node at the bottom of the circuit and three node voltages, V1, V2 and

V3 as indicated.

2 A 1/2 Ω

1/4 Ω

1/3 Ω 1 A

1 V

1/2 Ω

1/5 Ω

+

V3   

−

1 2 3

+

V2

−

+

V1   

−
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Summing the currents leaving node 1 gives

−2 + 2V1 + 5 (V1 − V3) + 4 (V1 − V2) = 0

Simplifying gives

11V1 − 4V2 − 5V3 = 2

Nodes 2 and 3 are connected by an independent voltage source, so we form a supernode 2 + 3.

Summing the currents leaving the supernode 2 + 3 gives

4 (V2 − V1) + 3V2 − 1 + 2V3 + 5 (V3 − V1) = 0

Simplifying yields

−9V1 + 7V2 + 7V3 = 1

The second supernode equation is KVL through the node voltages and the independent source,

giving

−V2 + 1 + V3 = 0

or

−V2 + V3 = −1

The two node and KVL equations are written in matrix format as⎡⎢⎣ 11 −4 −5

−9 7 7

0 −1 1

⎤⎥⎦
⎡⎢⎣ V1

V2

V3

⎤⎥⎦ =

⎡⎢⎣ 2

1

−1

⎤⎥⎦
Solving with MATLAB gives

� A = [11 −4 −5; −9 7 7; 0 −1 1];

� F = [2; 1; −1];

� V = A\F

V =
0.4110

0.8356

−0.1644

Thus V3 = −0.1644.
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5.2 MESH-CURRENT METHOD
Another method for analyzing planar circuits is called the mesh-current method. A mesh is a

closed path without any other closed paths within it and a planar circuit is a circuit without any

overlapping branches. All of our problems in this book involve planar circuits. The mesh-current

method provides a systematic process for solving circuit analysis problems with the application

of KVL around each mesh. The mesh-current method involves the following two steps:

1. Define the mesh currents in the circuit. By convention, we draw the mesh currents with

a circle, arc or a surface on the inside perimeter of the mesh. Moreover, we define the

mesh-current direction for all meshes to be clockwise.

2. Write a set of mesh equations using KVL. In general, we write one equation for each

mesh. Under special circumstances, the number of mesh equations may be fewer than

the total number of meshes.

In writing the mesh equation, we move through the mesh in a clockwise direction by

writing the voltage drops in terms of mesh currents. Whenever a circuit element is shared by

two meshes, as in Fig. 5.3, the voltage drop across the resistor is

V = RI = R (I1 − I2)

when writing the equation for mesh 1. When writing the mesh equation for mesh 2, the

clockwise direction gives a voltage drop according to convention as R (I2 − I1), just the opposite

as in mesh 1. Moreover, according to KCL

I = I1 − I2

Mesh currents, as in Fig. 5.3, are not measurable with an ammeter in that they do

not equal a branch current. The current through the branch is composed of the difference

between the two mesh currents, here I = I1 − I2. Even though the mesh current is not real,

it is a powerful technique that simplifies analysis of circuit problems as shown in the next

example.

R

I

+
V
−

I1 I2

FIGURE 5.3: Mesh currents.
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Example 5.4. Find I in the following circuit.

10 V 5 V

I

2 Ω

4 Ω

3 Ω

Solution. There are two meshes in this circuit. Mesh currents are always defined in a clockwise

direction, one for each mesh, as illustrated in the redrawn circuit that follows.

10 V 5 V

I

2 Ω

4 Ω

3 Ω

I1 I2

Summing the voltage drops around mesh 1 gives

−10 + 2I1 + 4 (I1 − I2) = 0

which simplifies to

6I1 − 4I2 = 10

Summing the voltage drops around mesh 2 gives

4 (I2 − I1) + 3I2 + 5 = 0
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which simplifies to

−4I1 + 7I2 = −5

The two mesh equations are written in matrix form as[
6 −4

−4 7

] [
I1

I2

]
=

[
10

−5

]
Comments made in Section 5.1 on the structure and symmetry of the system matrix with

the node-voltage method also apply for the mesh-current method. We solve this problem with

MATLAB, giving

� A = [6 −4; −4 7];

� F = [10; −5];

� I = A\F

I =
1.9231

0.3846

The current I is found from I = I1 − I2 = 1.9231 − 0.3846 = 1.5385 A.

When one of the branches has an independent or dependent current source in the circuit, a

modification must be made to the mesh-current method. Depending on whether the current

source is on the outer perimeter or inside the circuit, as shown in Fig. 5.4, we handle both cases

as follows:

1. The current source is located on the perimeter, as in the circuit on the left in Fig. 5.4,

where the mesh current equals the branch current. In this case, we do not write a mesh

equation because the current is known. The mesh current I1 equals the source current,

5 V

I

2 Ω

4 Ω

3 Ω

3 A

I1 I2

5 V

I

2 Ω 3 Ω

I1 I2

3 A10 V

FIGURE 5.4: (Left) A current source on the perimeter of a circuit. (Right) A current source in a branch

between two meshes.
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I1 = 3 A. The equation for mesh 2 is found by applying KVL, giving

4 (I2 − I1) + 3I2 + 5 = 4 (I2 − 3) + 3I2 + 5 = 0,

which gives I2 = 1 A.

2. The current source is located within the circuit where the mesh current does not equal the

branch current as shown in Fig. 5.4 (right). Since we cannot easily write the voltage drop

across the current source, we form a supermesh. A supermesh is formed by combing two

meshes together, with one equation describing both meshes. In this case, the equation

starts wit the first mesh and continues on to the second mesh, circumventing the voltage

drop across the current source. Here the supermesh equation is

−10 + 2I1 + 3I2 + 5 = 0

Because there are two unknown currents, we need two independent equations. The second

equation is written using KCL for the current source and the two mesh currents. Here the KCL

equation is I2 − I1 = 3.

Example 5.5. Find V0 as shown in the following circuit.

3 V

2 Ω

3 Ω

4 Ω

IS = 2 V0 5 Ω

2 A

+

V0

−

Solution. This circuit has four meshes, as shown in the circuit diagram that follows. Mesh

4 has a current source on the perimeter, so we do not write a mesh equation for it, but write

simply I4 = 2 A.
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3 V

2 Ω

3 ΩI1

4 Ω

IS = 2 V0

I2 I3

5 Ω

2 A

I4

+

V0

−

Summing the voltages around mesh 1 gives

−3 + 2 (I1 − 2) + 3(I1 − I2) = 0

Simplifying gives

5I1 − 3I2 = 7

Since there is a dependent current source inside the circuit, we form a supermesh for meshes 2

and 3. Summing the voltages around supermesh 2 + 3 yields

3 (I2 − I1) + 4I2 + 5I3 = 0

which reduces to

−3I1 + 7I2 + 5I3 = 0

Applying KCL for the dependent current source gives

2V0 = 2 × 3 (I1 − I2) = I3 − I2

yielding

6I1 − 5I2 − I3 = 0
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The three independent equations are written in matrix format as⎡⎢⎣ 5 −3 0

−3 7 5

6 −5 −1

⎤⎥⎦
⎡⎢⎣I1

I2

I3

⎤⎥⎦ =

⎡⎢⎣7

0

0

⎤⎥⎦
Solution using MATLAB gives

� A = [5 − 3 0; −3 7 5; 6 − 5 − 1];

� F = [7; 0; 0];

� I = A\F

I =
14.0000

21.0000

−21.0000

Thus,

V0 = 3(I1 − I2) = 3(14 − 21) = 21 V

5.3 LINEARITY, SUPERPOSITION AND SOURCE
TRANSFORMATIONS

5.3.1 Linearity and Superposition

If a linear system is excited by two or more independent sources, then the total response is

the sum of the separate individual responses to each input. This property is called the prin-

ciple of superposition. Specifically for circuits, the response to several independent sources is

the sum of responses to each independent source with the other independent sources dead,

where

• A dead voltage source is a short circuit

• A dead current source is an open circuit

In linear circuits with multiple independent sources, the total response is the sum of each

independent source taken one at a time. This analysis is carried out by removing all of the sources

except one, and assuming the other sources are dead. After the circuit is analyzed with the first

source, it is set equal to a dead source and the next source is applied with the remaining sources

dead. When each of the sources have been analyzed, the total response is obtained by summing

the individual responses. Note carefully that this principle holds true solely for independent

sources. Dependent sources must remain in the circuit when applying this technique, and they
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must be analyzed based on the current or voltage for which it is defined. It should be apparent

that voltages and currents in one circuit differ among circuits, and that we cannot mix and

match voltages and currents from one circuit with another.

Generally, superposition provides a simpler solution than is obtained by evaluating the

total response with all of the applied sources. This property is especially valuable when dealing

with an input consisting of a pulse or delays. These are considered in future sections.

Example 5.6. Using superposition, find V0 as shown in the following figure.

2 Ω 3 Ω

2 A 3 A5 Ω10 V

+

V0  

−

Solution. We start by analyzing the circuit with just the 10 V source active and the two current

sources dead, as shown in the following figure.

2 Ω 3 Ω

5 Ω10 V

+

V0

−

10

The voltage divider rule easily gives the response, V010
, due to the 10 V source

V010
= 10

(
8

2 + 8

)
= 8 V
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Next consider the 2 A source active, and the other two sources dead, as shown in the following

circuit.

2 Ω 3 Ω

2 A 5 Ω

+

V0  

−

2

Combining the resistors in an equivalent resistance, REQ = 2 ‖ (3 + 5) = 2×8
2+8

= 1.6 �,

and then applying Ohm’s law gives V02
= 2 × 1.6 = 3.2 V.

Finally, consider the response, V03
, to the 3 A source as shown in the following figure.

2 Ω 3 Ω

3 A5 Ω

+

V0  

−

3

To find V03
, note that the 3 A current splits into 1.5 A through each branch (2 + 3 � and

5 �), and V03
= −1.5 × 2 = −3 V.

The total response is given by the sum of the individual responses as

V0 = V010
+ V02

+ V03
= 8 + 3.2 − 3 = 8.2 V

This is the same result we would have found if we analyzed the original circuit directly using

the node-voltage or mesh-current method.
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Example 5.7. Find the voltage across the 5 A current source, V5, in the following figure using

superposition.

3 Ω

5 Ω

2 Ω10 V

+

V0  

−

5 A

+

V5  

−

3V0

Solution. First consider finding the response, V010
, due to the 10 V source only with the 5 A

source dead as shown in the following figure. As required during the analysis, the dependent

current source is kept in the modified circuit and should not be set dead.

3 Ω

5 Ω

2 Ω10 V

+

V0  

−

+

V5  

−

3V0

I = 0 A

1010

3 V010

10

A

Notice that no current flows through the open circuit created by the dead current source,

and that the current flowing through the 5 � resistor is 3V0. Therefore, applying KCL
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at node A gives

V010
− 10

3
+ V010

2
+ 3V010

− 3V010
= 0

which gives V010
= 4 V. KVL gives −V010

− 5 × 3V010
+ V510

= 0, and therefore V510
= 64 V.

Next consider finding the response, V05
, due to the 5 A source, with the 10 V source dead.

3 Ω

5 Ω

2 Ω

+

V0  

−

5 A

+

V5  

−

3V0

B

5

55

I5

First combine the two resistors in parallel (3 � ‖ 2 �), giving 1.2 �. V05
is easily calculated

by Ohm’s law as V05
= 5 × 1.2 = 6 V. KCL is then applied at node B to find I5, giving

−3V05
+ I5 − 5 = 0

With V05
= 6 V, I5 = 3 × 6 + 5 = 23 A. Finally, apply KVL around the closed path

−V05
− 5I5 + V55

= 0

or V55
= V05

+ 5I5 = 6 + 5 × 23 = 121 V. The total response is given by the sum of the indi-

vidual responses as

V5 = V510
+ V55

= 64 + 121 = 185 V

5.3.2 Equivalent Sources

We call two sources equivalent if they each produce the same voltage and current regardless of

the resistance. Consider the two circuits in Fig. 5.5. If Is = Vs

Rs
as shown in the figure on the

right, then the same current and voltage are seen in resistor Rl in either circuit as easily shown
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VS

RS

R1

Il

+
Vl

−
R1

Il

+
Vl

−
RS

S
S

S

V
I

R
=

FIGURE 5.5: Two equivalent circuits.

using voltage and current divider rules. For the circuit on the left, the current and voltage for

Rl are

Vl = Vs

(
Rl

Rl + Rs

)
and Il = Vs

Rl + Rs

R1

Rs Il

+
Vl

−
VSR1

Rs

RxVS

Il

+
Vl

−

Rs

Rx Il

+
Vl

−
R1 Rs

Il

+
Vl

−
R1

s
s

s

VI
R

= s
s

s

V
I

R
=

FIGURE 5.6: Equivalent circuits. In both circuits on the left, the resistor Rx has no effect on the circuit

and can be removed.
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For the circuit on the right with Is = Vs

Rs
, the current and voltage for Rl are

Il = Is

(
Rs

Rl + Rs

)
= Vs

Rl + Rs

and Vl = Il Rl = Vs

(
Rl

Rl + Rs

)
Therefore, we can replace the voltage source and Rs in the box in Fig. 5.5 (left) with the current

source and Rs in the box in Fig. 5.5 (right). We shall see that exchanging source plus resistor

according to Fig. 5.5 simplifies the analysis of circuits.

Consider Fig. 5.6. In the two circuits on the left, the resistor Rx has no impact on the

voltage and current on Rl , and as indicated, these circuits can be replaced by the two circuits

on the right by completely removing Rx .

Example 5.8. Use source transformations to find V0 in the following figure.

4 Ω

2 Ω

2 Ω

4 Ω

4 V

4 V

3 A

+

V0  

−

Solution. Our strategy in this solution involves combining resistors in series and parallel,

current sources in parallel and voltage sources in series. We first remove the 4 � resistor since it

is in series with the 3 A source and has no effect on the circuit, and transform the 2 � resistor

and 4 V source into a 4
2

= 2 A source in parallel with a 2 � resistor as shown in the following

figure. Notice that the current direction in the transformed source is in agreement with the

polarity of the 4 V source.

2 Ω 4 Ω

4 V

3 A

+

V0  

−

2 A2 Ω
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As shown in the next figure, combining the two parallel current sources results in a 1 A source,

and combining the two parallel resistors results in a 1 � resistance.

4 Ω

4 V
+

V0 

−

1 Ω1 A

Another source transformation is carried out on the current source and resistor in parallel as

shown in the next figure.

4 V

4 Ω

+

V0 

−

1 Ω

1 V

The two voltage sources are combined, resulting in a 5 V source. Using the voltage divider gives

V0 = 5

(
4

4 + 1

)
= 4 V
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Thévenin’s and Norton’s Theorems

Any combination of resistances, controlled sources, and independent sources with two external

terminals (A and B, denoted A,B) can be replaced by a single resistance and an independent

source, as shown in Fig. 6.1. A Thévenin equivalent circuit reduces the original circuit into

a voltage source in series with a resistor (upper right of Fig. 6.1). A Norton equivalent cir-

cuit reduces the original circuit into a current source in parallel with a resistor (lower right

of Fig. 6.1). These two theorems help reduce complex circuits into simpler circuits. We re-

fer to the circuit elements connected across the terminals A,B (that are not shown) as the

load. The Thévenin equivalent circuit and Norton equivalent circuits are equivalent to the

original circuit in that the same voltage and current are observed across any load. Usually,

the load is not included in the simplification because it is important for other analysis, such

as maximum power expended by the load. Although we focus here on sources and resistors,

these two theorems can be extended to any circuit composed of linear elements with two

terminals.

6.1 THÉVENIN’S THEOREM
Thévenin’s Theorem states that an equivalent circuit consisting of an ideal voltage source, VOC ,

in series with an equivalent resistance, REQ, can be used to replace any circuit that consists

of independent and dependent voltage and current sources and resistors. VOC is equal to the

open circuit voltage across terminals A,B as shown in Fig. 6.2, and calculated using standard

techniques such as the node-voltage or mesh-current methods.

The resistor REQ is the resistance seen across the terminals A,B when all sources are

dead. Recall that a dead voltage source is a short circuit and a dead current source is an open

circuit.
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VOC

REQ

B

A

REQISC

B

A

Replaced by
Independent and

dependent
sources, and
resistances

A

B

FIGURE 6.1: A general circuit consisting of independent and dependent sources can be replaced by a

voltage source (VOC ) in series with a resistor (REQ) or a current source (ISC ) in parallel with a resistor

(REQ).

Independent and
dependent

sources, and
resistances 

A

B

+

VOC

−

FIGURE 6.2: The open circuit voltage, VOC , is calculated across the terminals A,B using standard

techniques such as node-voltage or mesh-current methods.
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Example 6.1. Find the Thévenin equivalent circuit with respect to terminals A,B for the

following circuit.

10 V 4 A

2 Ω

2 Ω

B

A

Solution. The solution to finding the Thévenin equivalent circuit is done in two parts, first

finding VOC and then solving for REQ. The open circuit voltage, VOC , is easily found using the

node-voltage method as shown in the following circuit.

10 V 4 A

2 Ω

2 Ω

B

A
+

VOC

−

The sum of currents leaving the node is

VOC − 10

2
+ VOC

2
− 4 = 0

and VOC = 9 V.

Next, REQ is found by first setting all sources dead (the current source is an open circuit

and the voltage source is a short circuit), and then finding the resistance seen from the terminals

A,B as shown in the following figure.
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2 Ω

2 Ω

B

A

REQ

From the previous circuit, it is clear that REQ is equal to 1 � (that is, 2 � ‖ 2 �). Thus, the

Thévenin equivalent circuit is

9 V

1 Ω

B

A

 

It is important to note that the circuit used in finding VOC is not to be used in finding REQ

as not all voltages and currents are relevant in the other circuit and one cannot simply mix and

match.

6.2 NORTON’S THEOREM
Norton’s Theorem states that an equivalent circuit consisting of an ideal current source, ISC ,

in parallel with an equivalent resistance, REQ, can be used to replace any circuit that consists

of independent and dependent voltage and current sources and resistors. ISC is equal to the

current flowing through a short between terminals A,B as shown in Fig. 6.3, and calculated

using standard techniques such as the node-voltage or mesh-current methods. The Thévenin
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Independent and
dependent

sources, and
resistances 

A

B

ISC

FIGURE 6.3: The short circuit current, ISC , is calculated by placing a short across the terminals A,B,

and finding the current through the short using standard techniques such as node-voltage or mesh-current

methods.

and Norton equivalent circuits are related to each other according to

REQ = VOC

ISC

(6.1)

This is easily seen by shorting the terminals A,B in Fig. 6.2. The current flowing through the

short is VOC

ISC
in agreement with Eq. (6.1). It should be clear that Figs. 6.2 and 6.3 are source

transformations of each other.

Example 6.2. Find the Norton equivalent circuit with respect to terminals A,B for the following

circuit.

10 V 4 A

2 Ω

2 Ω

B

A
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Solution. This circuit is the same as Ex. 6.1, so REQ = 1 �. To find ISC we place a short

between the terminals A,B as shown in the following figure.

10 V 4 A

2 Ω

2 Ω

B

A

ISC

Note that the 2 � resistor is in parallel with the short across terminals A,B, therefore it is

removed since no current flows through it, as shown in the next figure.

10 V 4 A

2 Ω

B

A

ISC

I2 + 10 V −

Note also that current I2 equals 5 A since the 10 V source is applied directly across the 2 �

resistor. Applying KCL at the node denoted A, gives

0 = −I2 − 4 + ISC = −5 − 4 + ISC

and ISC = 9 A. We could have found the current ISC directly from the solution of Ex. 6.1 since

ISC = VOC

REQ

= 9

1
= 9 A
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The Norton equivalent circuit is shown in the following figure.

B

A

9 A 1 Ω

 

6.3 DEPENDENT SOURCES AND THÉVENIN AND NORTON
EQUIVALENT CIRCUITS

If a circuit connected to terminals A,B contains dependent sources, the process for finding REQ

for either the Thévenin or Norton equivalent circuit must be modified, because the dependent

source has resistance, and this resistance cannot be calculated when setting all sources dead.

In this case we find VOC and ISC , and then calculate REQ = VOC

ISC
.

Example 6.3 Find the Thévenin equivalent circuit with respect to terminals A,B for the fol-

lowing circuit.

10 V

3 Ω

2 Ω

5 Ω

B

A

5 A

+

V1

−

3V1
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Solution. Since this circuit has a dependent source, REQ is found by REQ = VOC

ISC
. Let’s first

find VOC using the mesh-current method as labeled in the next figure.

10 V

3 Ω

2 ΩI1

5 Ω

I2

B

A
+

VOC

−

5 A

I3

+

V1

−

3V1

Note that since there are two current sources on the perimeter of the circuit, I2 = −5 A

and I3 = 3V1 = 3 × 2 (I1 − I2) = 6I1 + 30.

Summing the voltage drops around mesh 1 gives

−10 + 3I1 + 2 (I1 − I2) = 0

Simplifying with I2 = −5 A gives I1 = 0 A. Applying KVL around mesh 2 to find VOC

gives

2 (I2 − I1) + 5 (I2 − I3) + VOC = 0

With I1 = 0 A, I2 = −5 A and I3 = 30 A, gives VOC = 185 V.

Next, we find ISC using the node-voltage method as labeled in the next figure.

Summing the currents leaving node � gives

V1 − 10

3
+ V1

2
+ V1

5
+ 3V1 = 0

and V1 = 100
121

V.
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Applying KCL at terminal A gives

10 V

3 Ω

2 Ω

5 Ω

B

A

5 A

+

V1

−

3V1

Δ

ISC

−3V1 − 5 − V1

5
+ ISC = 0

With V1 = 100
121

, gives ISC = 7.65 A. Therefore REQ = VOC

ISC
= 185

7.65
= 24.18 �. The Thévenin

equivalent circuit is

B

A
24.18 Ω

185 V

 



P1: KDD

MOBK036-06 MOBK036-Enderle.cls November 1, 2006 16:4

62



P1: KDD

MOBK036-07 MOBK036-Enderle.cls November 1, 2006 16:5

63

C H A P T E R 7

Inductors

In the previous sections, we considered circuits involving sources and resistors that are de-

scribed with algebraic equations. Any changes in the source are instantaneously observed in

the response. In this section, we examine the inductor, a passive element that relates the

voltage–current relationship with a differential equation. Circuits that contain inductors are

written in terms of derivatives and integrals. Any changes in the source with circuits that

contain inductors, i.e., a step input, have a response that is not instantaneous, but has nat-

ural response that changes exponentially and a forced response that is the same form as the

source.

An inductor is a passive element that is able to store energy in a magnetic field, and is

made by winding a coil of wire around a core that is an insulator or a ferromagnetic material. A

magnetic field is established when current flows through the coil. We use the symbol

to represent the inductor in a circuit; the unit of measure for inductance is the henry or henries

(H), where 1 H = 1 V s/A. The relationship between voltage and current for an inductor is

given by

v = L
di

dt
(7.1)

The convention for writing the voltage drop across an inductor is similar to that of a resistor, as

shown in Fig. 7.1.

Physically, current cannot change instantaneously through an inductor since an infinite

voltage is required according to Eq. (7.1) (i.e., the derivative of current at the time of the

instantaneous change is infinity). Mathematically, a step change in current through an inductor

is possible by applying a voltage that is a Dirac delta function. For convenience, when a circuit

has just DC currents (or voltages), the inductors can be replaced by short circuits since the

voltage drop across the inductors are zero.
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L

+     v     −i

FIGURE 7.1: An inductor.

Example 7.1. Find v in the following circuit.

+
v
−

5 A 2 H

Solution. Accordingly,

v = L
di

dt
= 2 × d (5)

dt
= 0

This example shows that an inductor acts like a short circuit to DC current.

Example 7.2. Find I in the following circuit, given that the source has been applied for a very

long time.

6 Ω

5 H

3 H4 Ω

4 Ω

1 H

2 Ω

3 H5 V

I
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Solution. Since the source has been applied for a very long time, only DC current flows in the

circuit and the inductors can be replaced by short circuits as shown in the following figure.

2 Ω

4 Ω 2 Ω

4 Ω

6 Ω

6 V

I

To find I , we find the total resistance seen by the source and use Ohm’s law as follows:

REQ = 6 ‖ ((4 ‖ 4) + (2 ‖ 2)) = 2 �

therefore,

I = 6

2
= 3 �

Example 7.3. Find v in the following circuit.

0 1 2 3 t (s)

1

i (A)

+
v

−
2 Hi

Solution. The solution to this problem is best approached by breaking it up into time intervals

consistent with the changes in input current. Clearly for t < 0 and t > 2, the current is zero

and therefore v = 0. We use Eq. (7.1) to determine the voltage in the other two intervals as

follows.



P1: KDD

MOBK036-07 MOBK036-Enderle.cls November 1, 2006 16:5

66 BIOINSTRUMENTATION

For 0 < t < 1

In this interval, the input is i = t, and

v = L
di

dt
= 2

d (t)

dt
= 2 V

For 1 ≤ t ≤ 2

In this interval, the input is i = −(t − 2) , and

v = L
di

dt
= 2

d (− (t − 2))

dt
= −2 V

Equation (7.1) defines the voltage across an inductor for a given current. Suppose one is given a

voltage across an inductor and asked to find the current. We start from Eq. (7.1) by multiplying

both sides by dt, giving

v (t) dt = Ldi

Integrating both sides yields

t∫
t0

v (λ) dλ = L

i(t)∫
i(t0)

dα

or

i(t) = 1

L

t∫
t0

v (λ) dλ + i(t0) (7.2)

For t0 = 0, as is often the case in solving circuit problems, Eq. (7.2) reduces to

i(t) = 1

L

t∫
0

v (λ) dλ + i(0) (7.3)

and for t0 = −∞, the initial current is by definition equal to zero, and therefore Eq. (7.2)

reduces to

i(t) = 1

L

t∫
−∞

v (λ) dλ (7.4)

The initial current in Eq. (7.2), i(t0), is usually defined in the same direction as i , which means

i(t0) is a positive quantity. If the direction of i(t0) is in the opposite direction of i (as will happen

when we write node equations), then i(t0) is negative.
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Example 7.4. Find i for t ≥ 0 if i(0 ) = 2 A and v(t) = 4e−3tu(t) in the following circuit.

2 H

i

v

Solution. From Eq. (7.2), we have

i(t) = 1

L

t∫
t0

vdλ + i(t0) = 1

2

t∫
0

4e−3λdλ + i(0) = 1

2

t∫
0

4e−3λdλ + 2

= 2
e−3λ

−3

∣∣∣∣t

λ=0

+ 2

= 2

3

(
4 − e−3t

)
u(t)V

7.1 POWER AND ENERGY
Since the inductor is a passive element, it absorbs power according to the relationship

p = vi = Li
di

dt
(7.5)

Within the inductor, power is not consumed as heat, as happens in a resistor, but stored

as energy in the magnetic field around the coil during any period of time [t0, t] as

w(t) − w (t0) =
t∫

t0

p dt = L

t∫
t0

i
di

dt
dt (7.6)

= L

i(t)∫
i(t0)

i di = 1

2
L
(
[i(t)]

2 − [i(t0)]2
)

where the unit of energy is joules ( J). At time equal to negative infinity, we assume that the

initial current is zero and thus the total energy is given by

w(t) = 1

2
Li2 (7.7)



P1: KDD

MOBK036-07 MOBK036-Enderle.cls November 1, 2006 16:5

68 BIOINSTRUMENTATION

Any energy stored in the magnetic field is recoverable. If power is negative in Eq. (7.5),

energy is being extracted from the inductor. If power is positive, energy is being stored in the

inductor.

Example 7.5. Find the inductor power in the following circuit for t > 0 when i(0) = 0 A.

−2

+2

v (V)

0 1 2 t (s)
v 2 H

i

Solution. We first solve for current so that Eq. (7.5) can be applied to find the power. As

before, the solution is best approached by breaking it up into time intervals consistent with the

changes in input voltage.

For 0 < t < 1

In this interval, the input is v = 2t, and

i(t) = 1

L

t∫
0

v (λ) dλ + i(0) = 1

2

t∫
0

2λ dλ = t 2

2
A

Power for this interval is

p = vi = 2t × t 2

2
= t 3 W

The current at t = 1 needed for the initial condition in the next part is

i(1) = t 2

2

∣∣∣∣
t=1

= 1

2
A

For 1 ≤ t ≤ 2

In this interval, the input is v = 2 (t − 2), and

i(t) = 1

L

t∫
1

v (λ)dλ + i(1) = 1

2

t∫
1

2 (λ − 2)dλ + 1

2

= t 2

2
− 2t + 2 A
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Accordingly, power is

p = vi = 2 (t − 2) ×
(

t 2

2
− 2t + 2

)
= t 3 − 6t 2 + 12t − 8 W

For t > 2

Power is zero in this interval since the voltage is zero.
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Capacitors

A capacitor is a device that stores energy in an electric field by charge separation when appropri-

ately polarized by a voltage. Simple capacitors consist of parallel plates of conducting material

that are separated by a gap filled with a dielectric material. Dielectric materials, that is, air, mica,

or Teflon, contain a large number of electric dipoles that become polarized in the presence of an

electric field. The charge separation caused by the polarization of the dielectric is proportional

to the external voltage and given by

q (t) = C v (t) (8.1)

where C represents the capacitance of the element. The unit of measure for capacitance is

the farad or farads (F), where 1 F = 1 C/V. We use the symbol C to denote a capacitor;

most capacitors are measured in terms of microfarads (1 μF = 10−6 F) or picofarads (1 pF =
10−12 F). Figure 8.1 illustrates a capacitor in a circuit.

Using the relationship between current and charge, Eq. (8.1) is written in a more useful

form for circuit analysis problems as

i = dq

dt
= C

dv

dt
(8.2)

The capacitance of a capacitor is determined by the permittivity of the dielectric (ε =
8.854 × 10−12 F/M for air) that fills the gap between the parallel plates, the size of the gap

between the plates, d , and the cross-sectional area of the plates, A, as

C = εA

d
(8.3)

As described, the capacitor physically consists of two conducting surfaces that stores

charge, separated by a thin insulating material that has a very large resistance. In actuality,

current does not flow through the capacitor plates. Rather, as James Clerk Maxwell hypothesized

when he described the unified electromagnetic theory, a displacement current flows internally

between capacitor plates and this current equals the current flowing into the capacitor and out

of the capacitor. Thus KCL is maintained. It should be clear from Eq. (8.2) that dielectric
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v C

i

FIGURE 8.1: Circuit with a capacitor.

materials do not conduct DC currents; capacitors act as open circuits when DC currents are

present.

Example 8.1. Suppose v = 5 V and C = 2 F for the circuit shown in Fig. 8.1 Find i .

Solution.

i = C
dv

dt
= 2 × d

dt
(5) = 0

A capacitor is an open circuit to DC voltage.

Example 8.2. Find I in the following circuit given that the current source has been applied

for a very long time.

4 A 2 Ω 1 F

3 Ω

2 F

2 Ω

I

4 H

2 H

2 H

2 F
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Solution. Since the source has been applied for a very long time, only DC current flows in

the circuit. Furthermore the inductors can be replaced by short circuits and capacitors can be

replaced by open circuits, as shown in the following figure.

4 A 2 Ω

I

2 Ω

To find I , we use the current divider law as

I = 4 ×
1
2

1
2

+ 1
2

= 2 A

Example 8.3. Find i for the following circuit.

0 1 2

1

v (V)

2 Fv

i

t (s)

Solution. For t < 0 and t > 2, v = 0 V, and therefore i = 0 in this interval. For nonzero val-

ues, the voltage waveform is described with two different functions, v = t V for 0 ≤ t ≤ 1, and

v = −(t − 2) V for 1 < t ≤ 2. Equation (8.2) is used to determine the current for each interval

as follows.

For 0 < t < 1

i = C
dv

dt
= 2 × d

dt
(t) = 2 A
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For 1 ≤ t ≤ 2

i = C
dv

dt
= 2 × d

dt
(− (t − 2)) = −2 A

Voltage cannot change instantaneously across a capacitor. To have a step change in voltage

across a capacitor requires that an infinite current flow through the capacitor, which is not

physically possible. Of course, this is mathematically possible using a Dirac delta function.

Equation (8.2) defines the current through a capacitor for a given voltage. Suppose one is

given a current through a capacitor and asked to find the voltage. To find the voltage, we start

from Eq. (8.2) by multiplying both sides by dt, giving

i(t) dt = C dv

Integrating both sides yields

t∫
t0

i(λ) dλ = C

v(t)∫
v(t0)

dv

or

v(t) = 1

C

t∫
t0

id t + v(t0) (8.4)

For t0 = 0, Eq. (8.4) reduces to

v(t) = 1

C

t∫
0

id t + v(0) (8.5)

and for t0 = −∞, Eq. (8.4) reduces to

v(t) = 1

C

t∫
−∞

i (λ) dλ (8.6)

The initial voltage in Eq. (8.4), v(t0), is usually defined with the same polarity as v, which

means v(t0) is a positive quantity. If the polarity of v(t0) is in the opposite direction of v (as will

happen when we write mesh equations), then v(t0)is negative.
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Example 8.4. Find v for the circuit that follows.

   2 F

0 2

2

is
(A)

t (s)

is

+

v

−

Solution. The current waveform is described with three different functions: for the interval

t ≤ 0, for the interval 0 < t ≤ 2, and for t > 2. To find the voltage, we apply Eq. (8.6) for each

interval as follows.

For t < 0

v(t) = 1

C

t∫
−∞

i d t = 1

2

0∫
−∞

0 dt = 0 V

For 0 ≤ t ≤ 2

v(t) = 1

C

t∫
0

i d t + v(0)

and with v(0) = 0,we have

v(t) = 1

2

t∫
0

λ dλ = 1

2

(
λ2

2

)∣∣∣∣t

0

= t 2

4
V

The voltage at t = 2 needed for the initial condition in the next part is

v(2) = t2

4

∣∣∣∣
t=2

= 1 V

For t > 2

v(t) = 1

C

t∫
2

i d t + v(2) = 1

2

t∫
2

0 dt + v(2) = 1 V
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8.1 POWER AND ENERGY
The capacitor is a passive element that absorbs power according to the relationship

p = vi = C v
dv

dt
(8.7)

Energy is stored in the electric field during any period of time [t0, t] as

w(t) − w (t0) =
t∫

t0

p dt = C

t∫
t0

v
dv

dt
dt

= C

v(t)∫
v(t0)

v dv = 1

2
C([v(t)]

2 − [v (t0)]2) (8.8)

where the unit of energy is joules ( J). At time equal to negative infinity, we assume that the

initial voltage is zero and thus the total energy is given by

w(t) = 1

2
C v2 (8.9)

Any energy stored in the electric field is recoverable. If power is negative in Eq. (8.7), energy is

being extracted from the capacitor. If power is positive, energy is being stored in the capacitor.

Example 8.5. Find the power and energy for the following circuit.

vs (t) =

⎧⎪⎨⎪⎩
0 V t < 0

t2 V 0 ≤ t ≤ 1

e−(t−1) V t > 1

2 Fvs

i

Solution. To find the power, we first need to find the current calculated from Eq. (8.2).

i(t) = C
dv

dt
=

⎧⎪⎨⎪⎩
0 A t < 0

4 t A 0 ≤ t ≤ 1

−2e−(t−1) A t > 1
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Equation (8.7) is used to find the power as follows.

p(t) = v · i =

⎧⎪⎨⎪⎩
0 t < 0

t2 · 4t = 4t3 W 0 ≤ t ≤ 1

e−(t−1) · (−2e−(t−1)) = −2e−2(t−1) W t > 1

The energy in each interval is calculated using Eq. (8.9) as follows.

w(t) = 1

2
C v2 =

⎧⎪⎨⎪⎩
0 t < 0

1
2

× 2[t 2]2 = t 4 J 0 ≤ t ≤ 1

1
2

× 2[e−(t−1)]2 = e−2(t−1) J t > 1

Note that energy is being stored in the interval 0 ≤ t ≤ 1 since power is positive, and energy is

being extracted from the electric field by the source for t > 1 since power is negative.

From Eq. (8.8), we calculate the energy stored in the electric field during time interval

[0, 1] as

w(1) − w(0) = 1

2
× 2(v(1)2 − v(0)2) = 1 J

and the energy delivered from the electric field in the interval [1, ∞] as

w (∞) − w (1) = 1

2
× 2(v (∞)2 − v (1)2) = −1 J
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C H A P T E R 9

Inductance and Capacitance

Combinations

As with resistors, it is possible to reduce complex inductor and capacitor circuits into simpler,

equivalent circuits by combining series and parallel collections of like elements. Consider the

following circuit consisting of N inductors in series. Since the same current flows through each

inductor, the voltage drop across each inductor is vi = Li
di
dt

. Applying KVL on this circuit gives

vs = v1 + v2 + · · · + vN

= L1

di

dt
+ L2

di

dt
+ · · · + LN

di

dt

= (L1 + L2 + · · · + LN)
di

dt

= LEQ
di

dt

Thus, inductors connected in a series can be replaced by an equivalent inductance, whereby

LEQ = L1 + L2 + · · · + LN (9.1)

Next, consider N inductors connected in parallel as shown in Fig. 9.1. Since the same

voltage is across each inductor, the current through each inductor is ii = 1
Li

t∫
t0

v0 dt + ii (t0).

Applying KCL on the upper node of this circuit gives

is =
N∑

i=1

⎡⎣ 1

Li

t∫
t0

v0 dt + ii (t0)

⎤⎦
=

[
1

L1

+ 1

L2

+ · · · + 1

LN

] t∫
t0

v0 dt +
N∑

i=1

ii (t0)

= 1

LEQ

t∫
t0

v0 dt + is (t0)
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+   v1 −

L1 L2

i
+   v2 −

vs

+

vN

−

LN vs LEQ

i

FIGURE 9.1: (Left) N inductors in series. (Right) An equivalent circuit for inductors in series.

Thus, inductors connected in parallel can be replaced by an equivalent inductance, where-

by

LEQ = 1
1

L1
+ 1

L2
+ · · · + 1

LN

(9.2)

For the case of two inductors in parallel, Eq. (9.2) reduces to

LEQ = L1 L2

L1 + L2

(9.3)

Equations (9.1) and (9.2) are similar to the results we found for resistors in series and parallel,

and the process used for simplifying resistor circuits is the same used for inductors in series and

parallel.

L1is

+

v0  

−

L2 LN

+

v0  

−

is

iNi2i1

FIGURE 9.2: (Left) N inductors in parallel. (Right) An equivalent circuit for inductors in parallel.
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Example 9.1. Find LEQ for the following circuit.

1 H 4 H 2 H

2 H4 H6 H6 H

LEQ

Solution. The equivalent inductance is found by forming series and parallel combinations

from right to left until it reduces to a single inductance as shown in the following figure.

1 H 4 H 2 H

2 H4 H6 H6 H

LEQ
2 +2= 4 H

4   4 = 2 H

4 +2= 6 H

6   6   6 = 2 H

1 + 2 = 3 H

If follows that

LEQ = 1 + (6 ‖ 6 ‖ (4 + (4 ‖ (2 + 2))))

= 1 +
(

6 ‖ 6‖
(

4 +
(

1
1
4

+ 1
4

)))

= 1 +
(

1
1
6

+ 1
6

+ 1
6

)
= 1 + 2 = 3 H
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C1is

+

v0  

−

C2 CN CN

+

v0

−

FIGURE 9.3: (Left) N capacitors in parallel. (Right) An equivalent circuit for capacitors in parallel.

Next, consider N capacitors connected in parallel, as shown in Fig. 9.3. Since the same voltage

is across each capacitor, the current through each inductor is ii = Ci
dv0

dt
. Applying KCL on the

upper node of this circuit gives

is = C1

dv0

dt
+ C2

dv0

dt
+ · · · + CN

dv0

dt

= CEQ
dv0

dt

Thus, capacitors connected in series can be replaced by an equivalent capacitance, whereby

CEQ = C1 + C2 + · · · + CN (9.4)

Next, consider N capacitors connected in series as shown in Fig. 9.4. Since the same

current flows through each capacitor, the voltage across each inductor is vi = 1
Ci

t∫
t0

i d t + vi (t0).

Applying KVL around this circuit gives

+   v1 −

C1 C2

i

+   v2 −

vs

+

vN

−
vs

i

CN

+

vN

−
CEQ

FIGURE 9.4: (Left) N capacitors in series. (Right) An equivalent circuit for capacitors in series.
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vs =
N∑

i=1

⎡⎣ 1

Ci

t∫
t0

i d t + vi (t0)

⎤⎦
=

[
1

C1

+ 1

C2

+ · · · + 1

CN

] t∫
t0

i d t +
N∑

i=1

vi (t0)

= 1

CEQ

t∫
t0

i d t + vs (t0)

Thus, capacitors connected in series can be replaced by an equivalent capacitance, whereby

CEQ = 1
1

C1
+ 1

C2
+ · · · + 1

CN

(9.5)

For the case of two capacitors in series, Eq. (9.5) reduces to

CEQ = C1 C2

C1 + C2

(9.6)

Equations (9.5) and (9.6) are similar to the results we found for resistors in parallel and

series, respectively. That is, we treat capacitors in parallel using the techniques for resistors in

series, and capacitors in series as resistors in parallel.

Example 9.2. Reduce the following circuit to a single capacitor and inductor.

6 F

6 F

0.5 H 3 F

3 F
3 H

2 H

2 H 2 H

Solution. The equivalent inductance is found by forming series and parallel combinations,

from right to left, of inductors and capacitors until the analysis reduces the circuit to a single

inductance and capacitance. Consider the inductors first as shown in the following figure on

the right, which results in 1.5 H. Also note that the two parallel capacitors equal 6 F.
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6 F

6 F

0.5 H 3 F

3 F
3 H

2 H

2 H 2 H

2   2 = 1 H

2 + 1 = 3 H

3  3 = 1.5 H3 + 3 = 6 F

Next we slide the 1.5 H equivalent inductance to the left past the capacitors as shown

in the following figure. The two series inductors equal 2 H, and the three capacitors in series

(treated like resistors in parallel) equal 1
1
6
+ 1

6
+ 1

6

= 2 F.

6 F 6 F 6 F
1.5 H0.5 H

6   6   6 = 2 F0.5 + 1.5 = 2 H

The final reduced circuit is shown in the following figure.

2 F

2 H
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The next example illustrates how to simplify a circuit and then apply the mesh-current

method to solve for unknown currents.

Example 9.3. (a) Find i(t), i1(t), i2(t) and v(t) for the following circuit for t ≥ 0 given

i1(0−) = 5 A and i2(0−) = 15 A. (b) Find the initial energy stored in the inductors. (c) Find

the energy dissipated in the resistors between t = 0 and t = ∞. (d) Find the energy trapped in

the inductors at t = ∞.

3 H 6 H300 Ω 600 Ω200 Ω

400 Ω

i

i1 i2+

v

−

Solution

(a) For ease in solution, first simplify the circuit by combining the three resistors as

REQ = 400 + 1
1

200
+ 1

300
+ 1

600

= 500 �

and two inductors as LEQ = 3×6
3+6

= 2 H as shown in the following circuit.

2 H

i

+

v

−

500 Ω

i

We use the mesh-current method to find v(t) as follows. Recall that the voltage drop

across an inductor is vL = L di
dt

, so we have

500i + 2
di

dt
= 0
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or

di

dt
+ 250i = 0

The previous differential equation has the characteristic equation

s + 250 = 0

with root s = −250 and solution

i(t) = K1e−250t A

Note that the forced response is zero since there is no input. Because the energy stored in an

inductor cannot change instantaneously,

i1(0−) = i1(0+) = 5 A, i2(0−) = i2(0+) = 15 A and

i(0−) = i(0+) = i1(0+) + i2(0+) = 20 A

To determine K1 we use i(0) = 20 = K1. Thus, our solution is i(t) = 20e−250t u(t) A. To find

i1(t) and i2(t) we find v(t) = LEQ
di
dt

and then use ii (t) = 1
Li

t∫
0

v dt + ii (0). For t ≥ 0

v (t) = 2
di

dt
= −10000e−250t u(t) V

and

i1(t) = 1

3

t∫
0

(−10000e−250λ) dλ + 5 = 40

3
e−250λ

∣∣∣∣t

λ=0

+ 5 = 40

3
e−250t − 40

3
+ 5

= 40

3
e−250t − 25

3
A

i2(t) = 1

6

t∫
0

(−10000e−250λ) dλ + 15 = 40

6
e−250λ

∣∣∣∣t

λ=0

+ 15 = 20

3
e−250t − 20

3
+ 45

3

= 20

3
e−250t + 25

3
A

Naturally i(t) = i1(t) + i2(t) = 20e−250t u(t) A.

(b) From Eq. 7.7, the total initial energy stored in the inductors equals

wL(0) = 1

2
L1i2

1 + 1

2
L2i2

2 = 1

2
× 3 × 52 + 1

2
× 6 × 152 = 712.5 J
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(c) The energy dissipated in the resistors equals

wREQ
=

∞∫
0

REQi2(t) dt =
∞∫

0

500 × (20e−250t)2 dt

=
∞∫

0

500 × 400e−500t d t = − 400e−500t
∣∣∣∞
0

= 400 J

(d) The energy trapped in the inductors at t = ∞ equals

w1(∞) = 1

2
L1i2

1 (∞) = 1

2
× 3 ×

(
−25

3

)2

= 104.1667 J

w2(∞) = 1

2
L2i2

2 (∞) = 1

2
× 6 ×

(
25

3

)2

= 208.333 J

Notice that energy trapped in the two inductors equals the total initial stored energy minus the

energy dissipated in the resistors. Also note that while energy is trapped in the two inductors at

t = ∞, the energy stored in the equivalent inductor, LEQ, is zero. Note that the initial energy

stored in the equivalent inductor is 1
2

× 2 × (20)2 = 400 J, and that the energy dissipated in the

resistors equals the energy stored in the equivalent inductor at t = 0.



P1: KDD

MOBK036-09 MOBK036-Enderle.cls November 1, 2006 16:7

88



P1: KDD

MOBK036-10 MOBK036-Enderle.cls November 1, 2006 16:9

89

C H A P T E R 1 0

A General Approach to Solving

Circuits Involving Resistors,

Capacitors and Inductors

Sometimes a circuit consisting of resistors, inductors and capacitors cannot be simplified by

bringing together like elements in series and parallel combinations. Consider the circuit shown

in Fig. 10.1. In this case, the absence of parallel or series combinations of resistors, inductors

or capacitors prevents us from simplifying the circuit for ease in solution, as in Ex. 10.1. In

this section, we apply the node-voltage and mesh-current methods to write equations involving

integrals and differentials using element relationships for resistors, inductors and capacitors.

From these equations, we can solve for unknown currents and voltages of interest.

Example 10.1. Write the node equations for the following circuit for t ≥ 0 if the initial

conditions are zero.

vs(t)

C1

C2

R2

R1

L1

Solution. With the reference node at the bottom of the circuit, we have two essential nodes,

as shown in the following redrawn circuit. Recall that the node involving the voltage source is a

known voltage and that we do not write a node equation for it. When writing the node-voltage

equations, the current through a capacitor is ic = C �v̇, where �v̇ is the derivative of the
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1 F

3 F 4 F

5 H

2 H

3 Ω

2 Ω

FIGURE 10.1: A circuit that cannot be simplified.

voltage across the capacitor, and the current through an inductor is iL = 1
L

t∫
0

�vdλ + iL(0),

where �v is the voltage across the inductor. Since the initial conditions are zero, the term

iL(0) = 0.

vs(t)

C1

C2

R2

R1

L1

+

v1  

− −

+

v2

21

Summing the currents leaving node 1 gives

C1(v̇1 − v̇s ) + v1

R1

+ v1 − v2

R2

= 0

which simplifies to

C1v̇1 +
(

1

R1

+ 1

R2

)
v1 − 1

R2

v2 = C1v̇s

Summing the currents leaving node 2 gives

v2 − v1

R2

+ C2v̇2 + 1

L1

t∫
0

(v2 − vs ) dλ = 0
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Typically, we eliminate integrals in the node equations by differentiating. When applied to the

previous expression, this gives

1

R2

v̇2 − 1

R2

v̇1 + C2v̈2 + 1

L1

v2 − 1

L1

vs = 0

and after rearranging yields

v̈2 + 1

C2 R2

v̇2 + 1

C2L1

v2 − 1

C2 R2

v̇1 = 1

C2L1

vs

When applying the node-voltage method, we generate one equation for each essential

node. To write a single differential equation involving just one node voltage and the inputs, we

use the other node equations and substitute into the node equation of the desired node voltage.

Sometimes this involves differentiation as well as substitution. The easiest case involves a node

equation containing an undesired node voltage without its derivatives. Another method for

creating a single differential equation is to use the D operator.

Consider the node equations for Ex. 10.1, and assume that we are interested in obtaining

a single differential equation involving node voltage v1 and its derivatives, and the input. For

ease in analysis, let us assume that the values for the circuit elements are R1 = R2 = 1 �, C1 =
C2 = 1 F, and L1 = 1 H, giving us

v̇1 + 2v1 − v2 = v̇s

and

v̈2 + v̇2 + v2 − v̇1 = vs

Using the first equation, we solve for v2, calculate v̇2 and v̈2, and then substitute into the second

equation as follows.

v2 = v̇1 + 2v1 − v̇s

v̇2 = v̈1 + 2v̇1 − v̈s

v̈2 = ...
v 1 + 2v̈1 − ...

v s

After substituting into the second node equation, we have

...
v 1 + 2v̈1 − ...

v s + v̈1 + 2v̇1 − v̈s + v̇1 + 2v1 − v̇s − v̇1 = vs

and after simplifying

...
v 1 + 3v̈1 + 2v̇1 + 2v1 = ...

v s + v̈s + v̇s − vs
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The D operator also provides us the means to write the two differential equations as a single dif-

ferential equation involving only v1 and vs . In terms of the D operator, the two node equations

are written as

(D + 2)v1 − v2 = Dvs

(D 2 + D + 1)v2 − Dv1 = vs

Solving the first equation for v2 gives v2 = (D + 2) − Dvs , and after substituting v2 into the

second equation yields

(D 2 + D + 1)(D + 2)v1 − D(D 2 + D + 1)vs − Dv1 = vs

Upon simplification

(D 3 + 3D 2 + 2D + 2)v1 = (D 3 + D 2 + D + 1)vs

Returning to the differential notation, the result is

...
v 1 + 3v̈1 + 2v̇1 + 2v1 = ...

v s + v̈s + v̇s − vs

which is the same expression we calculated before.

In general, the order of the differential equation relating a single output variable and

the inputs is equal to the number of energy storing elements in the circuit (capacitors and

inductors). In some circuits, the order of the differential equation is less than the number of

capacitors and inductors in the circuit. This occurs when capacitor voltages and inductor currents

are not independent, that is, there is an algebraic relationship between the capacitor, specifically

voltages and the inputs, or the inductor currents and the inputs. This occurs when capacitors

are connected directly to a voltage source or when inductors are connected directly to a current

source as shown in Fig. 10.2A and B. In Fig. 10.2A, two capacitors are connected directly to a

voltage source. KVL applied around the outer loop gives

−v(t) + v1(t) + v2(t) = 0

or

v(t) = v1(t) + v2(t)

where v1(t) and v2(t) are the voltages across the two capacitors. It should be clear that in the

previous equation, v1(t) and v2(t) are not independent, that is, there is an algebraic relationship
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C1

C2

v(t)

+
v1(t)

−

+
v2(t)

−

R1

R2

i(t)

R1 R2

L1 L2

i2(t)i1(t)

C1

C2

v(t)

+
v1(t)

−

+
v2(t)

−

R1

R2

RS

i(t)

R1 R2

L1 L2

i2(t)i1(t)is(t)

Rs

A B

C D

FIGURE 10.2: (A), (B) Circuits described by first-order differential equations and having algebraic

relationships between the voltages and currents. (C), (D) Circuits described by second-order differential

equations, with no algebraic relationships between voltages and currents.

between the two; if v1(t) is known, then v2(t) = v(t) − v1(t). The same situation occurs with

two inductors connected directly to a current source as in Fig. 10.2B. KCL applied at the upper

node gives

i(t) = i1(t) + i2(t)

As before, currents i1(t) and i2(t) are not independent: there exists an algebraic relationship

between the currents. Circuits with the characteristics of Fig. 10.2A and B are rare in realistic

situations. For example, the two circuits in Fig. 10.2A and B are better described by those

in Fig. 10.2C and D since the voltage and current sources are more appropriately modeled

with a resistance within the ideal source, Rs (called an internal resistance—a small resistance

for voltage source and a large resistance for a current source). By including an internal resis-

tance Rs in the circuit, we no longer have any algebraic relationships among the voltages and

currents.

Notice that the circuit given in Ex. 10.1 has three energy storing elements (two capacitors

and one inductor), and the resulting differential equation is of third-order, as expected.
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Example 10.2. Write the mesh-current equations for the circuit in Ex. 10.1 for t ≥ 0 if the

initial conditions are zero.

Solution. There are three meshes in this circuit, as shown in the following figure. To write the

mesh-current equations, recall that the voltage across a capacitor is vC = 1
C

t∫
0

�i dλ + vC (0+),

where �i is the resultant current (sum of mesh currents) through the capacitor, and the voltage

across a inductor vL = L d�i
dt

where d�i
d t

is the derivative of the resultant current through the

inductor. Since the initial conditions are zero, vC (0+) = 0.

vs(t)

C1

C2

R2

R1

L1

i1 i2

i3

Summing the voltage drops around mesh 1 gives

−vs + 1

C1

t∫
0

(i1 − i3)dλ + R1(i1 − i2) = 0

Differentiating and rearranging the previous equation gives

R1

di1

dt
+ 1

C1

i1 − R1

di2

dt
+ 1

C1

i3 = dvs

dt

Summing the voltage drops around mesh 2 gives

R1(i2 − i1) + R2(i2 − i3) + 1

C2

t∫
0

i2dλ = 0

Differentiating and rearranging the previous equation gives

(R1 + R2)
di2

dt
+ 1

C2

i2 − R1

di1

dt
− R2

di3

dt
= 0
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Finally, summing the voltage drops around mesh 3 gives

L1

di3

dt
+ R2(i3 − i2) + 1

C1

t∫
0

(i3 − i1)dλ = 0

Differentiating and rearranging the previous equation gives

L1

d 2i3

dt2
+ R2

di3

dt
+ 1

C1

i3 − R2

di2

dt
− 1

C1

i1 = 0

The previous two examples involved a circuit with zero initial conditions. When circuits

involve nonzero initial conditions, our approach remains the same as before except that the

initial inductor currents are included when writing the node-voltage and the initial capacitor

voltages are included when writing the mesh-current equations.

Example 10.3. Write the node equations for the following circuit for t ≥ 0 assuming the initial

conditions are iL1
(0) = 8 A and iL2

(0) = −4 A.

vs

10 Ω 1 H 2 H

1 F 2 F 3 F

1Li 2Li

Solution. With the reference node at the bottom of the circuit, we have three essential nodes

as shown in the redrawn circuit that follows.

vs

10 Ω 1 H 2 H

1 F 2 F 3 F

1Li
2Li

+

v1  

−

+

v 2  

−

+

v3  

−

1 2 3
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Summing the currents leaving node 1 gives

(v1 − vs )

10
+ v̇1 +

t∫
0

(v1 − v2) dλ + 8 = 0

where iL1
(0) = 8 A.

Summing the currents leaving node 2 gives

t∫
0

(v2 − v1)dλ − 8 + 2v̇2 + 1

2

t∫
0

(v2 − v3)dλ − 4 = 0

where iL2
(0) = −4 A. Notice that the sign for the initial inductor current is negative because the

direction is from right to left and the current is defined on the circuit diagram in the opposite

direction for the node 2 equation.

Summing the currents leaving node 3 gives

1

2

t∫
0

(v3 − v2)dλ + 4 + 3v̇3 = 0

In this example, we have not simplified the node equations by differentiating to remove

the integral, which would have eliminated the initial inductor currents from the node-equations.

If we were to write a single differential equation involving just one node voltage and the input,

a fifth-order differential equation would result because there are five energy storing elements in

the circuit. To solve the differential equation, we would need five initial conditions, the initial

node voltage for the variable selected, as well as the first through fourth derivatives at time

zero.

10.1 DISCONTINUITIES AND INITIAL
CONDITIONS IN A CIRCUIT

Discontinuities in voltage and current occur when an input such as a unit step is applied or a

switch is thrown in a circuit. As we have seen, when solving an nth order differential equation

one must know n initial conditions, typically the output variable and its (n − 1) derivatives at

the time the input is applied or switch thrown. As we will see, if the inputs to a circuit are known

for all time, we can solve for initial conditions directly based on energy considerations and not

depend on being provided with them in the problem statement. Almost all of our problems

involve the input applied at time zero, so our discussion here is focused on time zero, but may

be easily extended to any time an input is applied.
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Energy cannot change instantaneously for elements that store energy. Thus, there are

no discontinuities allowed in current through an inductor or voltage across a capacitor at

any time—specifically, the value of the variable remains the same at t = 0− and t = 0+. In

the previous problem when we were given initial conditions for the inductors and capaci-

tors, this implied, iL1
(0−) = iL1

(0+) and iL2
(0−) = iL2

(0+), and v1(0−) = v1(0+), v2(0−) =
v2(0+) and v3(0−) = v3(0+). With the exception of variables associated with current through

an inductor and voltage across a capacitor, other variables can have discontinuities, especially

at a time when a unit step is applied or when a switch is thrown; however, these variables must

obey KVL and KCL.

While it may not seem obvious at first, a discontinuity is allowed for the derivative of the

current through an inductor and voltage across a capacitor at t = 0− and t = 0+ since

diL(0+)

dt
= vL(0+)

L
and

dvC (0+)

dt
= iC (0+)

L

as discontinuities are allowed in vL(0+) and iC (0+). Keep in mind that the derivatives in the

previous expression are evaluated at zero after differentiation, that is

diL(0+)

dt
= diL(t)

dt

∣∣∣∣
t=0+

and
dvC (0+)

dt
= dvC (t)

dt

∣∣∣∣
t=0+

In calculations to determine the derivatives of variables not associated with current

through an inductor and voltage across a capacitor, the derivative of a unit step input may

be needed. Here, we assume the derivative of a unit step input is zero at t = 0+.

The initial conditions for variables not associated with current through an inductor and

voltage across a capacitor at times of a discontinuity are determined only from the initial

conditions from variables associated with current through an inductor and voltage across a

capacitor, and any applicable sources. The analysis is done in two steps involving KCL and

KVL or using the node-voltage or mesh-current methods.

1. First, we analyze the circuit at t = 0−. Recall that when a circuit is at steady state, an

inductor acts as a short circuit and a capacitor acts as an open circuit. Thus at steady

state at t = 0−, we replace all inductors by short circuits and capacitors by open circuits

in the circuit. We then solve for the appropriate currents and voltages in the circuit

to find the currents through the inductors (actually the shorts connecting the sources

and resistors) and voltages across the capacitors (actually the open circuits among the

sources and resistors).

2. Second, we analyze the circuit at t = 0+. Since the inductor current cannot change in

going from t = 0− to t = 0+, we replace the inductors with current sources whose val-

ues are the currents at t = 0−. Moreover, since the capacitor voltage cannot change in
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going from t = 0− to t = 0+, we replace the capacitors with voltage sources whose val-

ues are the voltages at t = 0−. From this circuit we solve for all desired initial conditions

necessary to solve the differential equation.

Example 10.4. Find vC (0−), vL(0−), iL(0−), iR1
(0−), iR2

(0−), iR3
(0−), vC (0+), vL(0+),

iL(0+), iR1
(0+), iR2

(0+), iR3
(0+), and the derivative of each passive element’s current and

voltage at t = 0+ for the following circuit.

400 Ω 100 Ω

10 mH 500 Ω
10 V

5u(t) V 

1Ri 3Ri2Ri

5 Fμ

+

vC

−

+

vL

−

iLiC

−

Solution. For t = 0−, the capacitor is replaced by an open circuit and the inductor by a short

circuit as shown in the following circuit.

400 Ω 100 Ω

+

vC(0  )

−
−

10 V

iL(0  )

1Ri 2Ri 3Ri

iC +

vL

−

Notice vL(0−) = 0 V because the inductor is a short circuit. Also note that the 500 � resistor

is not shown in the circuit since it is shorted out by the inductor, and so iR3
(0−) = 0 A. Using

the voltage divider rule, we have

vC (0−) = 10 × 100

400 + 100
= 2 V

and by Ohm’s law

iL(0−) = 10

100 + 400
= 0.02 A
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It follows that iR1
(0−) = iR2

(0−) = iL(0−) = 0.02 A. Because voltage across a capacitor and

current through an inductor are not allowed to change from t = 0− to t = 0+ we have vC (0+) =
vC (0−) = 2 V and iL(0−) = iL(0+) = 0.02 A.

The circuit for t = 0+ is drawn by replacing the inductors in the original circuit with

current sources whose values equal the inductor currents at t = 0− and the capacitors with

voltage sources whose values equal the capacitor voltages at t = 0− as shown in the following

figure with nodes C and L and reference. Note also that the input is now 10 + 5u(t) = 15 V.

400 Ω 100 Ω

0.02 A 500 Ω

+

vL

−

15 V

C L

iC iL

2V

2Ri1Ri

+

vC

−

3Ri

To find vL(0+), we sum the currents leaving node L, yielding

vL − 2

100
+ 0.02 + vL

500
= 0

which gives vL(0+) = 0 V. Now iR3
(0+) = vL(0+)

500
= 0 A, iR2

(0+) = 0.02 + iR3
(0+) =

0.02 A, andiR1
(0+) = 15−2

400
= 0.0325 A.

To find iC (0+), we write KCL at node C, giving

−iR1
(0+) + iC (0+) + iR2

(0+) = 0

or

iC (0+) = iR1
(0+) − iR2

(0+) = 0.0325 − 0.02 = 0.125 A

To find v̇C (0+), note that iC (0+) = Cv̇C (0+) or

v̇C (0+) = iC (0+)

C
= 0.0125

5 × 10−6
= 2.5 × 103 V/s.

Similarly,

diL(0+)

dt
= vL(0+)

L
= 0 A/s
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Next we have iR1
= 15−vC

400
, and

diR1
(0+)

dt
= − 1

400

dvC (0+)

dt
= −2.5 × 103

400
= −6.25 A/s

To find
diR3

dt
we start with KCL iR3

= iR2
− iL = iR1

− iC − iL, and

diR3

dt
= diR1

dt
− diC

dt
− diL

dt
.

For the dic

dt
term we have

iC = iR1
− iR2

and
diC

dt
= diR1

dt
− diR2

dt

Using Ohm’s law, the
diR2

dt
term is given by as

iR2
= vC − vL

100
and

diR2

dt
= 1

100

dvC

dt
− 1

100

dvL

dt

With vL = 500iR3
and dvL

dt
= 500

diR3

dt
, we have

diR2

dt
= 1

100

dvC

dt
− 500

100

diR3

dt

Substituting
diR2

dt
into the dic

dt
equation gives

diC

dt
= diR1

dt
− diR2

dt
= diR1

dt
− 1

100

dvC

dt
+ 500

100

diR3

dt

Returning to the
diR3

dt
equation we have

diR3

dt
= diR1

dt
− diC

dt
− diL

dt
= diR1

dt
− diR1

dt
+ 1

100

dvC

dt
− 500

100

diR3

dt
− diL

dt

Collecting the
diR3

dt
terms and canceling the

diR1

dt
terms, the previous equation reduces to

diR3

dt
= 1

6

(
1

100

dvC

dt
− diL

dt

)
At t = 0+, we have

diR3
(0+)

dt
= 1

6

(
1

100

dvC (0+)

dt
− diL(0+)

dt

)
= 1

6

(
2.5 × 103

100
− 0

)
= 4.167 A/s

From before, we have for
diR2

dt

diR2
(0+)

dt
= 1

100

dvC (0+)

dt
− 500

100

diR3
(0+)

dt
= 2.5 × 103

100
− 5 × 4.167 = 4.167 A/s
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and for dic

dt

d iC (0+)

dt
= diR1

(0+)

dt
− diR2

(0+)

dt
= −6.25 − 4.1665 = −10.417 A/s

Finally, the derivatives of the voltages across the resistors are

dvR1

dt
= 400

diR1

dt
= 400 × (−6.25) = −2500 V/s

dvR2

dt
= 100

diR2

dt
= 100 × 4.167 = 416.7 V/s

and

dvR3

dt
= 500

diR3

dt
= 500 × 4.167 = 2083.5 V/s

Example 10.5. Find vC for the circuit in Ex. 10.4 for t ≥ 0.

Solution. We use the node voltage method to solve this problem since vC is one of the variables

used in the solution. Using the node-voltage method also results in two equations rather than

three equations with the mesh-current method. The initial conditions necessary to solve the

differential equation for this circuit were calculated in Ex. 10.4. Keep in mind that in Ex. 10.4,

we calculated many more initial conditions than are required in this example; here, we only need

vC (0+) and v̇C (0+).

For t ≥ 0, the circuit is redrawn for analysis in the following figure.

400 Ω 100 Ω

10 mH 500 Ω5μF

+

vC

−

+

vL

−

15 V

C L

iC iL

Summing the currents leaving node C gives

vC − 15

400
+ 5 × 10−6v̇C + vC − vL

100
= 0

which simplifies to

v̇C + 2500vC − 2000vL = 7500
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Summing the currents leaving node L gives

vL − vC

100
+ 1

10 × 10−3

t∫
0

vL dλ + iL(0+) + vL

500
= 0

which, after multiplying by 500 and differentiating, simplifies to

6v̇L + 50 × 103vL − 5v̇C = 0

Using the D operator method, our two differential equations are written as

DvC + 2500vC − 2000vL = 7500 or (D + 2500)vC − 2000vL = 7500

6DvL + 50 × 103vL − 5DvC = 0 or (6D + 50 × 103)vL − 5DvC = 0

We then solve for vL from the first equation,

vL = (0.5 × 10−3 D + 1.25)vC − 3.75

and then substitute vL into the second equation, giving

(6D + 50 × 103)vL − 5DvC = (6D + 50 × 103)((0.5 × 10−3 D + 1.25)vC − 3.750) − 5DvC

= 0

Reducing this expression yields

D2vC + 10.417 × 103 DvC + 20.83 × 106vC = 62.5 × 106

Returning to the time domain gives

v̈C + 10.417 × 103v̇C + 20.83 × 106vC = 62.5 × 106

The characteristic equation for the previous differential equation is

s 2 + 10.417 × 103s + 20.833 × 106 = 0

with roots −7.718 × 103 and − 2.7 × 103 and the natural solution

vCn
(t) = K1e−7.718×103t + K2e−2.7×103t V

Next, we solve for the forced response, assuming that vC f
(t) = K3. After substituting into the

differential equation, this gives

20.833 × 106 K3 = 62.5 × 106
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or K3 = 3. Thus, our solution is now

vC (t) = vCn
(t) + vC f

(t) = K1e−7.718×103t + K2e−2.7×103t + 3 V

We use the initial conditions to solve for K1 and K2. First

vC (0) = 2 = K1 + K2 + 3

Next

v̇C (t) = −7.718 × 103 K1e−7.718×103t − 2.7 × 103 K2e−2.7×103t

and at t = 0,

v̇C (0) = 2.5 × 103 = −7.718 × 103 K1 − 2.7 × 103 K2

Solving gives K1 = 0.04 and K2 = −1.04. Substituting these values into the solution gives

vC (t) = 0.04e−7.718×103t − 1.04e−2.7×103t + 3 V

for t ≥ 0.

Our approach remains the same for circuits with controlled sources. We analyze the circuit

for t = 0− and t = 0+ to establish the initial conditions with the controlled source operational.

If the voltage or current used in the controlled source is zero, we replace it with an open circuit

if it is a current source and a short circuit if it is a voltage source. If a circuit has an independent

voltage or current source that is introduced at zero via a unit step function, for t = 0− we replace

the independent source by a short circuit if it is a voltage source and an open circuit if it is a

current source.

Example 10.6. Find iL1
for the following circuit for t ≥ 0 using the mesh-current method.

10 Ω 10 Ω

1 H
10 V

5u(t) V  

xi

20 Ω

3ix

3 H

2 mF

1Li

−
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Solution. To solve this problem, we will use the mesh-current method with currents defined

in the following circuit. The steps involve:

1. Eliminate all currents except i4, which is iL1
, which gives a third-order differential

equation

2. Solve for the initial conditions

3. Solve the differential equation.

It should be clear that a third-order differential equation should describe this system, since there

are three energy storing elements.

Mesh Equations

To write the mesh-current equations, recall that the voltage across a capacitor is

vC = 1
C

∫ t

0
�i dλ + vC (0+), where �i is the resultant current (sum of mesh currents) through

the inductor, and the voltage across a inductor vL = L d�i
dt

where d�i
dt

is the derivative of the

resultant current through the inductor. Since there is a controlled current source in the circuit,

we form a supermesh for meshes 1 and 2. Notice that mesh current i4 = iL1
.

Summing the voltages around supermesh 1 + 2 yields

−15 + 10(i1 − i4) + 10(i2 − i4) + d (i2 − i3)

dt
= 0

10 Ω 10 Ω

1 H15 V

xi

20 Ω

3ix

3 H

2 mF

i2

i4

i1 i3

Rearranging the previous equation gives

10i1 + di2

dt
+ 10i2 − di3

dt
− 20i4 = 15
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Summing the voltage drops around mesh 3 yields

d (i2 − i3)

dt
+ 20(i3 − i4) + 1

2 × 10−3

t∫
0

i3 dλ + vC (0+) = 0

Differentiating and rearranging the previous equation reduces to

−d 2i2

dt2
+ d 2i3

dt2
+ 20

di3

dt
+ 500i3 − 20

di4

dt
= 0

Summing the voltage drops around mesh 4 gives

3
di4

dt
+ 20(i4 − i3) + 10(i4 − i2) + 10(i4 − i1) = 0

and after rearranging, we find

−10i1 − 10i2 − 20i3 + 3
di4

dt
+ 40i4 = 0

Applying KCL for the dependent current source gives

3ix = i2 − i1

Since ix = 3(i1 − i4), we have

4i1 − i2 − 3i4 = 0

At this time, we have four equations and four unknowns. The dependent current source equa-

tion, an algebraic equation, is used to eliminate i1 from the three mesh equations, since i1 =
1
4
(i2 + 3i4). Substituting i1 into the supermesh 1 + 2 equation and collecting like terms gives

di2

dt
+ 50

4
i2 − di3

dt
− 50

4
i4 = 15

The mesh 3 equation did not have an i1, but is written here for convenience.

−d 2i2

dt2
+ d 2i3

dt2
+ 20

di3

dt
+ 500i3 − 20

di4

dt
= 0

After substituting i1 and collecting like terms in the mesh 4 equation, we have

−50

4
i2 − 20i3 + 3

di4

dt
+ 130

4
i4 = 0
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The mesh 4 equation is used to eliminate i3 from the other two equations. Solving for i3 and

taking its derivatives yields

i3 = 1

20

(
−50

4
i2 + 3

di4

dt
+ 130

4
i4

)
di3

dt
= 1

20

(
−50

4

di2

dt
+ 3

d 2i4

dt2
+ 130

4

di4

dt

)
d 2i3

dt2
= 1

20

(
−50

4

d 2i2

dt2
+ 3

d 3i4

dt3
+ 130

4

d 2i4

dt2

)

Substituting the di3

dt
term into the supermesh 1 + 2 equation and simplifying gives

13

8

di2

dt
+ 50

4
i2 − 3

20

d 2i4

dt2
− 13

8

di4

dt
− 50

4
i4 = 15

Substituting i3, di3

dt
and d 2i3

dt2 into the mesh 3 equation after collecting like terms gives

−13

8

d 2i2

dt2
− 50

4

di2

dt
− 312.5i2 + 3

20

d 3i4

dt3
+ 37

8

d 2i4

dt2
+ 350

4

di4

dt
+ 812.5i4 = 0

To eliminate i2, we use the D operator method on our two differential equations giving(
13

8
D + 50

4

)
i2 +

(
− 3

20
D 2 − 13

8
D − 50

4

)
i4 = 15

(
−13

8
D 2 − 50

4
D − 312.5

)
i2 +

(
3

20
D 3 + 37

8
D 2 + 350

4
D + 812.5

)
i4 = 0

To solve for i4, we pre-multiply the first equation by (− 13
8

D 2 − 50
4

D − 312.5), pre-multiply the

second equation by ( 13
8

D + 50
4

), and then subtract the first equation from the second equation.

This yields

(4.875D 3 + 112.5D 2 + 1750D + 6250)i4 = −(−13

8
D 2 − 50

4
D − 312.5) × 15

Returning to the time domain gives

4.875
d 3i4

dt3
+ 112.5

d 2i4

dt2
+ 1750

di4

dt
+ 6250i4 = 4687.5
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Note that the derivative terms on the right-hand side of the D operator equation are zero since

the derivative of a constant is zero. Dividing the previous differential equation by 4.875 to put

it in a more convenient form results in

d 3i4

dt3
+ 23.1

d 2i4

dt2
+ 359

di4

dt
+ 6250i4 = 1282.1

Initial Conditions

The next step in the solution involves finding the initial conditions for the circuit necessary to

solve the differential equation, iL1
(0+),

diL1
(0+)

dt
and

d 2iL1
(0+)

dt2 . As before, this involves:

1. Analyzing the circuit at t = 0− with the inductors replaced as short circuits and the

capacitor as an open circuit

2. Analyzing the circuit at t = 0+ with inductors replaced as current sources whose values

equal the inductor currents at t = 0− and the capacitor as a voltage source whose value

equal the capacitor voltage at t = 0−.

For t = 0−, for a node-voltage solution the circuit is redrawn as shown in the following diagram.

10 Ω 10 Ω

10 V

20 Ω

3ix

1Li

vC

−

+

2Li

xi 4 xi

+

v1  

−

−

+

1

Summing the currents leaving node 1 gives

v1 − 10

10
− 3

(
10 − v1

10

)
+ v1

10
= 0

where ix = 10−v1

10
. Solving this equation yields v1(0−) = 8 V. Ohm’s law gives iL1

(0−) =
10
20

= 0.5 A and ix(0−) = 10−v1(0−)
10

= 10−8
10

= 0.2 A. Since the capacitor is connected across the

battery, vC (0−) = 10 V. KCL gives the current through the other inductor as iL2
(0−) =

4ix(0−) + iL1
(0−) = 0.8 + 0.5 = 1.3 A.
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For t = 0+, for a node-voltage solution the circuit is redrawn as shown in the following

diagram.

10 Ω 10 Ω

15 V

20 Ω

3ix

1
0 0 5( ) .Li A+ =

2
0

1 3 A

( )

.
Li

+

=

xi

+

v1  

−

1 2

+

v2  

−

0
10 V
( )Cv +

=

1Lv+ −

iC

To find the initial conditions for the circuit at t = 0+, we first solve for the node-voltages

v1(0+) and v2(0+) and then solve for
diL1

(0+)

dt
and

d 2iL1
(0+)

dt2 . Summing the currents leaving node

1 yields

v1 − 15

10
− 3

(
15 − v1

10

)
+ v1 − v2

10
= 0

Simplifying the equation, yields

5v1 − v2 = 60

Summing the currents leaving node 2 yields

v2 − v1

10
+ 1.3 + v2 − 10

20
= 0

Simplifying the equation, we have

−2v1 + 3v2 = −16

Solving the two simultaneous node equations gives

v1(0+) = 12.6154 and v20+) = 3.0769.

Recall that vC (0+) = vC (0−) = 10 V, iL1
(0+) = iL1

(0−) = 0.5 A, and iL2
(0+) = iL2

(0−) =
1.3 A from the analysis at t = 0−.
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Our next tasks involve finding
diL1

(0+)

dt
and

d 2iL1
(0+)

dt2 using the relationships vL = L1
diL1

dt

and iC = C dvC

dt
. Thus

diL1
(0+)

dt
= 1

3
vL1

(0+)

and using KVL to find vL1
(0+) gives

−15 + vL1
(0+) + vC (0+) = 0

or

vL1
(0+) = 15 − vC (0+) = 15 − 10 = 5 V

and

diL1
(0+)

dt
= 1

3
vL1

(0+) = 5

3

A

s

We also have
d 2iL1

(0+)

dt2 = 1
3

dvL1
(0+)

dt
, and from KVL before vL1

= 15 − vC and after differentiat-

ing
dvL1

dt
= 0 − dvC

dt
= − dvC

dt
. Thus

d 2iL1
(0+)

dt2 = 1
3

dvL1
(0+)

dt
= − 1

3
dvC (0+)

dt
. Now

iC (0+) = v2(0+) − 10

20
+ iL1

(0+) = 3.0796 − 10

20
+ 0.5 = 0.154 A

and

dvC (0+)

dt
= 1

C
iC (0+) = 1000

2
× 0.154 = 77 V/s

Therefore

d 2iL1
(0+)

dt2
= −1

3

dvC (0+)

dt
= −25.6667 A2

/s.

Solving the Differential Equation

The differential equation describing the circuit is

d 3i4

dt3
+ 23.1

d 2i4

dt2
+ 359

di4

dt
+ 6250i4 = 1282.1

As before, the natural solution is determined first by finding the roots of characteristic equation,

s 3 + 23.1s 2 + 359s + 6250

as s1 = −20.4749, s2,3 = −1.3125 ± j17.4221. The roots give rise to the natural response

i4n
(t) = K1e−20.4749t + e−1.3125t(K2 cos(17.4221t) + K3 sin(17.4221t))
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Next we solve for the forced response to the input by assuming

i4 f
(t) = K4

which, when substituted into the original differential equation, yields

6250K4 = 1281.1

giving K4 = 0.2050. The total solution equals the natural and forced response, written as

i4(t) = i4n
(t) + i4 f

(t)

= K1e−20.4749t + e−1.3125t(K2 cos(17.4221t) + K3 sin(17.4221t)) + 0.2050

The initial conditions are used to determine the constants K1, K2 and K3. From the solution

for i4(t), we have

i4(0) = 1

2
= K1 + K2 + 0.2050

To use the next initial condition, we find the derivative of the solution, giving

di4

dt
= −20.4749K1e−20.4749t − 1.3125e−1.3125t(K2 cos(17.4221t) + K3 sin(17.4221t))

+ e−1.3125t(−17.4221K2 sin(17.4221t) + 17.4221K3 cos(17.4221t))

We evaluate this expression at t = 0, giving

di4(0)

dt
= 5

3
= −20.4749K1 − 1.3125K2 + 17.4221K3

Finally, we take the second derivative of the solution giving

d 2i4

dt2
= 419.2215K1e−20.4749t + 1.7227e−1.3125t(K2 cos(17.4221t) + K3 sin(17.4221t))

− 1.3125e−1.3125t(−17.4221K2 sin(17.4221t) + 17.4221K3 cos(17.4221t))

− 1.3125e−1.3125t(−17.4221K2 sin(17.4221t) + 17.4221K3 cos(17.4221t))

+ e−1.3125t(−303.5296K2 cos(17.4221t) − 303.5296K3 sin(17.4221t))

We evaluate this expression at t = 0, giving

d 2i4(0)

dt2
= −25.6667 = 419.2215K1 + 1.7227K2 − 2.6250 × 17.4221K3 − 303.5296K2

= 419.2215K1 − 301.807K2 − 45.733K3
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The three initial condition equations are put into matrix form for a straightforward solution as

AK = F or ⎡⎢⎢⎣
1 1 0

−20.4749 −1.3125 17.4221

419.2215 −301.807 −45.733

⎤⎥⎥⎦
⎡⎢⎢⎣

K1

K2

K3

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
0.295

5

3
−25.6667

⎤⎥⎥⎥⎦
Using MATLAB, we have

� A = [1 1 0; −20.4749 −1.3125 17.4221; 419.2215 −301.807 − 45.733];

� F = [0.295; 5/3; −25.6667];

� K = A\F

K =
0.1025

0.1925

0.2306

The complete solution is

iL1
(t) = i4(t) = 0.1025e−20.4749t + e−1.3125t(0.1925 cos(17.4221t)

+ 0.2306 sin(17.4221t)) + 0.2050

for t ≥ 0.

10.2 CIRCUITS WITH SWITCHES
To finish this section, we consider circuits with multiple switches. In effect, each time a switch

is thrown, we solve the circuit using the techniques of this section. That is, at each switch time,

ti , we determine the necessary voltages and currents at t−
i and t+

i and solve the circuit problem,

move to the next switch time, determine the necessary voltages and currents at t−
i+1 and t+

i+1

and solve the circuit problem, and so on. For ease in solving the circuit after the first switch

time at t = 0, we replace the variable t with t − t1 where t1 is the switch time and use the unit

step function, and repeat this substitution at each switch time. Each time interval is separately

analyzed, with the only carry-over from one time interval to the next being the voltages across

the capacitor and currents through the inductors at the switch time. The next example illustrates

this approach.



P1: KDD

MOBK036-10 MOBK036-Enderle.cls November 1, 2006 16:9

112 BIOINSTRUMENTATION

Example 10.7. Find vC for the following circuit for t ≥ 0.

10 Ω

0.03 F50 Ω2 A 40 Ω H1
3

+

vc  

−

t = 1 s

t = 0

t = 4 s

Solution. There are two switches operating in this circuit, with switching times at t = 0, t =
1 and t = 4 s . We therefore break up the solution into three time intervals, 0 ≤ t < 1, 1 ≤ t <

4 and t ≥ 4 s, while realizing that we need to know the initial conditions just before and after

each switch time, and that we also need to solve for the steady-state solution for t < 0.

For t < 0

At steady state, the capacitor is replaced by an open circuit as shown in the following figure.

10 Ω

50 Ω2 A 40 Ω

+

vc  

−

Using the current divider rule and Ohm’s law, we have vC (0−) = 40 V. Note that voltage cannot

instantaneously change across a capacitor, so vC (0+) = 40 V.

For 0 ≤ t < 1

During this interval, the switch on the left opens, leaving us with the following circuit to analyze.

40 Ω

+

vc  

−

0.03 F
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Notice the 10 � resistor is eliminated since no current flows through it because it is an open

circuit. Using KCL we have

0.03v̇C + vC

40
= 0

The differential equation has a root equal to − 1
1.2

and a solution in this time interval of

vC = vC (0+)e− t
1.2 u(t) = 40e− t

1.2 u(t) V

For 1 ≤ t < 4

When t = 1, the switch on the right closes, introducing an inductor as shown in the following

figure.

40 Ω

+

vc  

−

0.03 F H1
3

iLiRiC

Applying KCL yields

0.03
dvC

dt
+ vC

40
+ 5

t∫
1

vC dλ + iL(1+) = 0

Dividing the previous equation by 0.03 and differentiating gives

v̈C + 1

1.2
v̇C + 5

0.03
vC = 0

with complex roots determined from MATLAB as −0.42 ± 12.9 j . The solution consists of

the natural solution only, since the forced response is zero, and is given by

vC = e−0.42(t−1)(K1 cos(12.9(t − 1)) + K2 sin(12.9(t − 1))) (u(t − 1) − u(t − 4))

This solution requires two initial conditions. Recall that at t = 1, vC (1+) = vC (1−) and

iL(1+) = iL(1−). Moreover, all other voltages and currents and their derivatives change from

t = 1− to t = 1+ s. Now using the solution for vC from the previous interval, we have

vC (1+) = vC (1−) = 40e− 1
1.2 = 17.4 V
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From our solution in this interval, we have

vC (1+) = K1 = 17.4 V

Since no current was flowing through the inductor during the interval 0 ≤ t < 1, iL(1+) =
iL(1−) = 0 A. Now iR(1+) = vC (1+)

40
= 17.4

40
= 0.44 A, and accordingly

iC (1+) = −(iL(1+) + iR(1+)) = −(0 + 0.44) = −0.44 A

v̇C (1+) = 1

C
iC (1+) = −14.5 V

Now

v̇C =
⎛⎝−0.42e−0.42(t−1)(K1 cos(12.9(t − 1)) + K2 sin(12.9(t − 1)))

+ e−0.42(t−1)(−12.9K1 sin(12.9(t − 1)) + 12.9K2 cos(12.9(t − 1)))

⎞⎠
× (u (t − 1) − u (t − 4))

and

v̇C (1+) = −14.5 = −0.42K1 + 12.9K2 = −0.42 × 17.4 + 12.9K2

which gives K2 = −0.557. Our complete solution is

vC = e−0.42(t−1)(17.4 cos(12.9(t − 1)) − 0.557 sin(12.9(t − 1)))(u(t − 1) − u(t − 4)) V

For t > 4.

For the last interval, the switch on the left closes, giving us the following figure to analyze.

10 Ω

0.03 F50 Ω2 A 40 Ω

+

vc  

−

iL

H1
5

To ease the solution, the 2 A current source with 50 � resistor is transformed into a 100 V

voltage source in series with a 50 � resistor. The 50 and 10 � resistors are summed together,

and the 100 V voltage source and 60 � resistor are transformed into a 10
6

A current source in

parallel with a 60 � resistor. The 60 and 40 � resistors are combined to give a 24 � resistor.

The reduced circuit is shown in the following circuit.
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0.03 F25 Ω

+

vc  

−

A10
6 H1

5

iL

Applying KCL gives

−10

6
+ vC

24
+ 0.03v̇C + 5

t∫
1

vC dλ + iL(4+) = 0

Differentiating the previous equation and dividing by 0.03 yields

v̈C + 1.4v̇C + 166.7vC = 55.6

with roots determined from MatLab as −0.7 ± 12.9 j . The roots are complex, which gives rise

to the natural response

vC = e−0.7(t−4)(K1 cos(12.9(t − 4)) + K2 sin(12.9(t − 4))) u(t − 4)

Next, we solve for the forced response to the input by assuming y f (t) = K3. When substituted

into the differential equation describing this interval, this yields

166.7K3 = 55.6

giving 11.1. The total solution in this interval equals the natural and forced response, written

as

vC = 11.1 + e−0.7(t−4)(K1 cos(12.9(t − 4)) + K2 sin(12.9(t − 4))) u(t − 4)

Two initial conditions (vC (4+) and v̇C (4+)) are needed to determine the constants K1 and K2.

As before, at t = 4, vC (4+) = vC (4−) and iL(4+) = iL(4−), and all other voltages and currents

and their derivatives change from t = 4− to t = 4+ s. Using the solution for vC from the previous

interval, we have

vC (4+) = vC (4−) = e−0.42(t−1)(17.4 cos(12.9(t − 1)) − 0.557 sin(12.9(t − 1)))

× (u(t − 1) − u(t − 4))|t=4−

= e−0.42(4−1) (17.4 cos (12.9 (4 − 1)) − 0.557 sin (12.9 (4 − 1)))

= 2.5 V
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From our solution in this interval, we have

vC (4+) = 11.1 + K1 = 2.53 V

and K1 = −8.6 V. The next initial condition, v̇C (4+) = 1
0.03

iC (4+), is determined from KCL

−10

6
+ vC (4+)

24
+ iC (4+) + iL(4+) = 0

where iL(4+) = iL(4−). To find iL(4−) we use the solution for vC in the previous interval and

compute

iL(4+) = iL(4−) = 5

4∫
1

vC dt + iL(1+) = 5

4∫
1

vC dt + 0

= 5

4∫
1

(e−0.42(t−1)(17.4 cos(12.9(t − 1)) − 0.557 sin(12.9(t − 1)))) dt

= e−0.42(t−1)(−0.0037 cos(12.9(t − 1)) + 6.74 sin(12.9(t − 1)))
∣∣∣4

1= 1.614 A

Now iR(1+) = vC (4+)
24

= 2.53
24

= 0.105 A, and

iC (4+) = 10

6
− vC (4+)

24
− iL(4+) = 10

6
− 2.53

24
− 1.614 = −0.05 A

v̇C (4+) = 1

C
iC (4+) = −1.75 V

Now

v̇C =
(

−0.7e−0.7(t−4) (K1 cos(12.9(t − 4)) + K2 sin(12.9(t − 4)))

+ e−0.7(t−4) (−12.9K1 sin(12.9 (t − 4)) + 12.9K2 cos (12.9 (t − 4)))

)
u (t − 4)

and

v̇C (4+) = −1.75 = −0.7K1 + 12.9K2

with K1 = −8.6, we have K2 = −0.6. Our solution for this interval is

vC = 11.1 + e−0.7(t−4)(−8.6 cos(12.9(t − 4)) − 0.6 sin(12.9(t − 4))) u(t − 4) V
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Summarizing, our complete solution is

vC =

⎧⎪⎨⎪⎩
40e− t

1.2 V 0 ≤ t < 1

e−0.42(t−1) (17.4 cos(12.9 (t − 1)) − 0.557 sin(12.9 (t − 1))) V 1 ≤ t < 4

11.1 + e−0.7(t−4)(−8.6 cos(12.9(t − 4)) − 0.6 sin(12.9(t − 4))) V t ≥ 4



P1: KDD

MOBK036-10 MOBK036-Enderle.cls November 1, 2006 16:9

118



P1: KDD

MOBK036-11 MOBK036-Enderle.cls November 1, 2006 16:10

119

C H A P T E R 1 1

Operational Amplifiers

In Section 3, we considered controlled voltage and current sources that are dependent on a

voltage or current elsewhere in a circuit. These devices were modeled as a two terminal device.

Here we consider the operational amplifier, also known as an op amp, a multi-terminal device.

An operational amplifier is an electronic device that consists of large numbers of transistors,

resistors and capacitors—to fully understand its operation requires knowledge of diodes and

transistors, topics not covered in this book. However, to appreciate how an operational amplifier

operates in a circuit involves a topic already covered, the controlled voltage source.

As the name implies, the operation amplifier is an amplifier, but when combined with

other circuit element, it integrates, differentiates, sums and subtracts. One of the first opera-

tional amplifiers approved as an eight-lead dual-in-line package (DIP) is shown in Fig. 11.1.

Differing from previous circuit elements, this device has two inputs and one output terminals.

Rather than draw the operational amplifier using Fig 11.1, the operational amplifier is drawn

with the symbols in Fig. 11.2. The input terminals are labeled the noninverting input (+)

and the inverting input (−). The power supply terminals are labeled V+ and V−, which are

frequently omitted since they do not affect the circuit behavior except in saturation condi-

tions as will be described. Most people shorten the name of the operational amplifier to the

“op amp”.

Illustrated in Fig. 11.3 is a model of the op amp focusing on the internal behavior of the

input and output terminals. The input–output relationship is

vo = A (vp − vn) (11.1)

Since the internal resistance is very large, we will replace it with an open circuit to simplify

analysis leaving us with the op amp model show in Fig. 11.4.

With the replacement of the internal resistance with an open circuit, the currents in =
i p = 0 A. In addition, current iA, the current flowing out of the op amp, is not zero. Because iA

is unknown, we seldom apply KCL at the output junction. In solving op amp problems, KCL

is applied at input terminals.
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NC

V+

Output

Offset null

Offset null

Inverting
input

Noninverting
input

V−

Eight
terminal 

operational
amplifier

FIGURE 11.1: An eight-terminal operational amplifier. The terminal NC is not connected, and the two

terminal offset nulls are used to correct imperfections (typically not connected). V+ and V− are terminal

power to provide to the circuit. Keep in mind that a ground exists for both V+ and V−, a ground that is

shared by other elements in the circuit. Modern operational amplifiers have ten or more terminals.

V+

Inverting
input

Noninverting
input

V−

Output

FIGURE 11.2: Circuit element symbol for the operational amplifier.

R

ip

in

iA

vn

vp

vo

A (vp − vn)

FIGURE 11.3: An internal model of the op amp. The internal resistance between the input terminals,

R, is very large exceeding 1 M�. The gain of the amplifier, A, is also large exceeding 104. Power supply

terminals are omitted for simplicity.
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ip

in

iA

vn

vp

vo= A (vp − vn)

FIGURE 11.4: Idealized model of the op amp with the internal resistance, R, replaced by an open

circuit.

Example 11.1. Find v0 for the following circuit.

R1

R2

i2

VS

i1

v0
vn

vp

−−−

Solution. Using the op amp model of Fig. 11.4, we apply KCL at the inverting terminal

giving

−i1 − i2 = 0

since no current flows into the op amp’s input terminals. Replacing the current using Ohm’s

law gives

vs − v1

R1

+ vo − v1

R2

= 0

Multiplying by R1 R2 and collecting like terms, we have

R2vs = (R1 + R2) v1 − R1vo

Now vo = A
(
vp − vn

)
and since the noninverting terminal is connected to ground, vp = 0 so

vo = −Avn
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or

vn = −vo

A

Substituting vn into the KCL inverting input equation gives,

Rs vs = (R1 + R2)
(
−vo

A

)
− R1vo

=
(

R1 + R2

A
+ R1

)
vo

or

vo = −R2vs(
R1 + R1 + R2

A

)
As A goes to infinity, the previous equation goes to

vo = − R2

R1

vs

Interestingly, with A going to infinity, v0 remains finite due to the resistor R2. This happens

because a negative feedback path exists between the output and the inverting input terminal

through R2. This circuit is called an inverting amplifier with an overall gain of − R2

R1
.

An operational amplifier with a gain of infinity is known as an ideal op amp. Because of

the infinite gain, there must be a feedback path between the output and input and we cannot

connect a voltage source directly between the inverting and noninverting input terminals. When

analyzing an ideal op amp circuit, we simplify the analysis by letting

vn = vp

Consider the previous example. With vp = 0 means vn = 0. Applying KCL at the inverting

input gives

− vs

R1

+ −vo

R2

= 0

or

vo = − R2

R1

vs

Notice how simple the analysis becomes when we assume vn = vp . Keep in mind that this

approximation is valid as long as A is very large (infinity) and a feedback is included.
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Example 11.2. Find the overall gain for the following circuit.

R1

R2

i1

i2

VS

vp

v0

vn

−−−

Solution. Assuming the op amp is ideal, we start with vn = vp . Then since the op amp’s

noninverting terminal is connected to the source, vn = vp = vs . Because no current flows into

the op amp, by KCL we have

i1 + i2 = 0

and

vs

R1

+ vs − vo

R2

= 0

or

vo =
(

R1 + R2

R1

)
vs

The overall gain is

vo

vs

= R1 + R2

R1

This circuit is a noninverting op amp circuit used to amplify the source input. Amplifiers are

used in most all clinical instrumentation from ECK, EEG, EOG, etc.
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The next example describes a summing op amp circuit.

Example 11.3. Find the overall gain for the following circuit.

Ra R2

Rb

Va Vb vn

vp

v0

−−−

Solution. As before we start the solution with vn = vp and note that the noninverting input is

connected to ground, yielding vn = vp = 0 V. Applying KCL at the inverting input node gives

− Va

Ra

− Vb

Rb

− vo

R2

= 0

or

vo = −
(

R2

Ra

Va + R2

Rb

Vb

)
We can add additional source resistor inputs, so that in general

vo = −
(

R2

Ra

Va + R2

Rb

Vb + · · · + R2

Rm

Vm

)

Our next op amp circuit provides an output proportional to the difference of two input

voltages. This op amp is often referred to as a differential amplifier.

Example 11.4. Find the overall gain for the following circuit.

Solution. Assuming an ideal op amp, we note no current flows into the input terminals and

that vn = vp . Apply KCL at the inverting input terminal gives

vn − Va

R1

+ vn − vo

R2

= 0
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R2

R1

R1

i2

R2
ia

ib

Vb

Va

vp

vn

v0

and

(R1 + R2)vn − R2Va = R1vo

The previous equation involves two unknowns, thus we need another equation easily found by

applying voltage divider at the noninverting input.

vp = R2

R1 + R2

vb = vn

Substituting this result for vn into the KCL equation at the inverting terminal gives

R2Vb − R2Va = R1vo

or

vo = R2

R1

(Vb − Va )

As shown, this op amp circuit, also known as the differential amplifier, subtracts the weighted

input signals. This amplifier is used for bipolar measurements involving ECG and EEG as the

typical recording is obtained between two bipolar input terminals. Ideally, the measurement

contains only the signal of interest uncontaminated by noise from the environment. The noise

is typically called common-mode signal. Common-mode signal comes from lighting, 60-Hz

power line signals, inadequate grounding and power supply leakage. A differential amplifier

with appropriate filtering can reduce the impact of the common-mode signal.
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The response of a differential amplifier can be decomposed into differential-mode and

common-mode components,

vdm = vb − va

and

vc m = (va + vb)

2

As described, the common-mode signal is the average of the input voltages. Using the two

previous equations, one can solve va and vb in terms of vdm and vc m as

va = vc m − vdm

2

and

vb = vc m + vdm

2

When substituted into the response in Exercise 44 gives

v0 =
(

R1 R2 − R1 R2

R1(R1 + R2)

)
vc m +

(
R2(R1 + R2) + R2(R1 + R2)

2R1(R1 + R2)

)
vdm = Ac mvc m + Admvdm

Notice the term multiplying, vc m , Ac m , is zero, characteristic of the ideal op amp that amplifies

only the differential-mode of the signal. Since real amplifiers are not ideal and resistors are not

truly exact, the common-mode gain is not zero. So when one designs a differential amplifier,

the goal is to keep Ac m as small as possible and Adm as large as possible.

The rejection of the common-mode signal is called common-mode rejection, and the mea-

sure of how ideal the differential amplifier is called the common-mode rejection ratio, given as

C MRR = 20 log10

∣∣∣∣ Adm

Ac m

∣∣∣∣
where the larger the value of CMRR the better. Values of CMRR for a differential amplifier for

EEG, ECG, and EMG is 100–120 db.

The general approach to solving op amp circuits is to first assume that the op amp is

ideal and vp = vn. Next, we apply KCL or KVL at the two input terminals. In more complex

circuits, we continue to apply our circuit analysis tools to solve the problem as the next example

illustrates.
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Example 11.5. Find v0 for the following circuit.

R2

R2

R2

R1

1 v0

v1

VS

vp

vn

Solution. With vn = vp , we apply KCL at the inverting input

vn − v1

R2

+ vn − vo

R2

= 0

and

2vn − v1 − vo = 0

Next, we apply KVL from ground to node 1 to the noninverting input and back to ground

giving

−v1 − Vs + vp = 0

and with vn = vp we have vn − v1 = Vs .

Now, we apply KCL at node 1, noting no current flows into the noninverting input

terminal

v1

R1

+ v1 − vo

R2

+ v1 − vn

R2

= 0

Combining like terms in the previous equation gives

−R1vn + (2R1 + R2)v1 − R1vo = 0
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With three equations and three unknowns, we first eliminate v1 by subtracting the inverting

input KCL equation by the KVL equation giving

v1 = vo − 2Vs

Next, we eliminate vn by substituting v1 into the inverting input KCL equation as follows

vn = 1

2
(v1 + vo )

= 1

2
(vo − 2Vs + vo )

= vo − Vs

Finally, we substitute the solutions for v1 and vn into the node 1 KCL equation giving

−R1vn + (2R1 + R2)v1 − R1vo = 0

−R1(vo − Vs ) + (2R1 + R2)(vo − 2Vs ) − R1vo = 0

After simplification, we have

vo = (3R1 + 2R2)

R2

Vs

The next two examples illustrate an op amp circuit that differentiates and integrates by using a

capacitor.

Example 11.6. Find v0 for the following circuit.

VS

C

R

iR

+ vC −
iC

v0vp

vn
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Solution. With the noninverting input connected to ground, we have vp = 0 = vn. From

KVL

vC = Vs

and it follows that

iC = C
dvC

dt
= C

d Vs

dt

Since no current flows into the op amp, iC = iR. With

iR = vn − vo

R
= −vo

R

and

iC = C
d Vs

dt
= iR = −vo

R

we have

vo = −RC
d Vs

dt

If R = 1
C

, the circuit in this example differentiates the input, vo = − d Vs

dt
.

Example 11.7. Find v0 for the following circuit.

VS

C
iR

+ vC −
iC

v0vp

vn

R

Solution. It follows that

vn = vp = 0
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and

iC = iR = Vs

R

Therefore

vC = 1

C

t∫
−∞

iC dλ = 1

C

t∫
−∞

Vs

R
dλ

From KVL, we have

vC + vo = 0

and

vo = − 1

RC

t∫
−∞

Vs dλ

With R = 1
C

, the circuit operates as an integrator

vo = −
t∫

−∞
Vs dλ

11.1 VOLTAGE CHARACTERISTICS OF THE OP AMP
In the past examples involving the op amp, we have neglected to consider the supply voltage

(shown in Fig. 11.2) and that the output voltage of an ideal op amp is constrained to operate

between the supply voltages V + and V −. If analysis determines v0 is greater than V +, v0

saturates at V +. If analysis determines v0 is less than V −, v0 saturates at V −. The output

voltage characteristics are shown in Fig. 11.5.

V+

V+

V−

V−

v0

A(vp − vn)

FIGURE 11.5: Voltage characteristics of an op amp.
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Example 11.8. For the circuit shown in Ex. 11.5, let V + = +10 V and V − = −10 V. Graph

the output voltage characteristics of the circuit.

Solution. The solution for Ex. 11.5 is

vo =
(

3R1 + 2R2

R2

)
Vs

which saturates whenever v0 is less than V − and greater than V + as shown in the following

graph.

V+

V−

v0

VS

2

3R1 +  2R2slope is
R
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Time-Varying Signals

An alternating current (AC) or sinusoidal source of 50 or 60 Hz is common throughout the

world as a power source supplying energy for most equipment and other devices. While most

of this chapter has focused on the transient response; when dealing with sinusoidal sources,

attention is now focused on the steady-state or forced response. In bioinstrumentation, analysis

in the steady state simplifies the design by focusing only on the steady-state response, which is

where the device actually operates. A sinusoidal voltage source is a time-varying signal given by

vs = Vm cos(ωt + φ) (12.1)

where the voltage is defined by angular frequency (ω in radians/s), phase angle (φ in radians

or degrees), and peak magnitude (Vm). The period of the sinusoid T is related to frequency

f (Hz or cycles/s) and angular frequency by

ω = 2� f = 2�

T
(12.2)

An important metric of a sinusoid is its rms value (square root of the mean value of the squared

function), given by

Vr ms =

√√√√√ 1

T

T∫
0

V 2
m cos2(ωt + φ)dt (12.3)

which reduces to Vr ms = Vm√
2
.

To appreciate the response to a time-varying input, vs = Vm cos(ωt + φ), consider the

circuit shown in Fig. 12.1 in which the switch is closed at t = 0 and there is no initial energy

stored in the inductor.

Applying KVL to the circuit gives

L
di

dt
+ iR = Vm cos(ωt + φ)
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t = 0

vs

R

L

i

FIGURE 12.1: A RL circuit with sinusoidal input.

and after some work, the solution is

i = in + i f

= −Vm√
R2 + ω2L2

cos

(
φ − ωL

R

)
e− R

L
t + Vm√

R2 + ω2L2
cos

(
ωt + φ − ωL

R

)
The first term is the natural response that goes to zero as t goes to infinity. The second term is

the forced response that has the same form as the input (i.e., a sinusoid with the same frequency

ω, but a different phase angle and maximum amplitude). If all you are interested in is the

steady-state response as in most bioinstrumentation applications, then the only unknowns are

the response amplitude and phase angle. The remainder of this section deals with techniques

involving the phasor to efficiently find these unknowns.

12.1 PHASORS
The phasor is a complex number that contains amplitude and phase angle information of a

sinusoid, and for the signal in Eq. (12.1) is expressed as

V = Vme jφ = Vm φ (12.4)

In Eq. (12.1), by practice, the angle in the exponential is written in radians, and in the
∣∣φ

notation, in degrees. Work in the phasor domain involves the use of complex algebra in moving

between the time and phasor domain, therefore, the rectangular form of the phasor is also used,

given as

V = Vm(cos φ + j sin φ) (12.5)
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12.2 PASSIVE CIRCUIT ELEMENTS IN THE PHASOR DOMAIN
To use phasors with passive circuit elements for steady-state solutions, the relationship between

voltage and current is needed for the resistor, inductor and capacitor. Assume that

i = Im cos(ωt + θ )

I = Im|θ = Ime jθ

For a resistor,

v = I R = RIm cos(ωt + θ )

and the phasor of v is

V = RIm|θ = R I (12.6)

Note that there is no phase shift for the relationship between the phasor current and voltage

for a resistor.

For an inductor,

v = L
di

dt
= −ωLIm sin(ωt + θ ) = −ωLIm cos(ωt + θ − 90◦)

and the phasor of v is

V = −ωLIm|θ − 90◦ = −ωLIme j (θ−90◦)

= −ωLIme jθe−j90◦ = −ωLIme jθ (− j )

= jωLIme jθ (12.7)

= jωL I

Note that inductor current and voltage are out of phase by 90◦, that is current lags behind

voltage by 90◦.

For a capacitor, define v = Vm cos(ωt + θ ) and V = Vm|θ . Now

i = C
dv

dt
= C

d

dt
(Vm cos(ωt + θ ))

= −C Vmω sin(ωt + θ ) = −C Vmω cos(ωt + θ − 90◦)

And the phasor for i is

I = −ωC Vm|θ − 90◦ = −ωC Vme jθe− j90◦

= −ωC Vme jθ (cos(90◦) − j sin(90◦))

= jωC Vme jθ

= jωC V
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200 mH

i

100 sin 500 t mVsv =

0.5 μF 1000 Ω

FIGURE 12.2: A circuit diagram.

or

V = 1

jωC
I = − j

ωC
I (12.8)

Note that capacitor current and voltage are out of phase by 90◦, that is voltage lags behind

current by 90◦.

Equations (12.6)–(12.8) all have the form of V = Z I, where Z represents the impedance

of the circuit element and is, in general, a complex number, with units of Ohms. The impedance

for the resistor is R, the inductor, jωL, and the capacitor, − j
ωC

. The impedance is a complex

number and not a phasor even though it may look like one. The imaginary part of the impendence

is called reactance.

The final part to working in the phasor domain is to transform a circuit diagram from

the time to phasor domain. For example, the circuit shown in Fig. 12.2 is transformed into

the phasor domain, shown in Fig. 12.3, by replacing each circuit element with their impedance

equivalent and sources by their phasor. For the voltage source, we have

vs = 100 sin 500t = 100 cos(500t − 90◦) mV ↔ 500 |−90◦ mV

For the capacitor, we have

0.5μF ↔ − j

ωC
= − j4000 �

I
1000 Ω 

500 90  mV−

4000 j−

100 j Ω

Ω

°

FIGURE 12.3: Phasor and impedance equivalent circuit for Fig. 12.2.
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For the resistor, we have

1000 � ↔ 1000 �

For the inductor, we have

200 mH ↔ jωL = j100 �

Each of the elements are replaced by their phasor and impedance equivalents as shown in

Fig. 12.3.

12.3 KIRCHHOFF’S LAWS AND OTHER TECHNIQUES
IN THE PHASOR DOMAIN

It is fortunate that all of the material presented before in this chapter involving Kirchhoff ’s

current and voltage laws, and all the other techniques apply to phasors. That is, for KVL, the

sum of phasor voltages around any closed path is zero∑
Vi = 0 (12.9)

and for KCL, the sum of phasor currents leaving any node is zero∑
I = 0 (12.10)

Impedances in series are given by

Z = Z1 + · · · + Zn (12.11)

Impedances in parallel are given by

Z = 1
1

Z1
+ · · · + 1

Zn

(12.12)

The node-voltage method, as well as superposition, Thévenin equivalent circuits is applicable

in the phasor domain. The following two examples illustrate the process, with the most difficult

aspect involving complex algebra.

Example Problem 12.1. For the circuit shown in Fig. 12.3, find the steady-state response i.

Solution. The impedance for the circuit is

Z = − j4000 + 1000 + j100 = 1000 − j3900 �

Using Ohm’s law,

I = V

Z
= 0.5 |−90◦

1000 − j3900
= 0.5 |−90◦

4026|−76◦ = 124|−14◦μA
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Returning to the time domain, the steady-state current is

i = 124 cos (500t − 14◦) μA

Example Problem 12.2.. Find the steady-state response v using the node-voltage method for

the following circuit.

50sin 10  Vsv ω= ( )20 cos 10 20° Asi ωt= +1
 F

10
1

 H
5

1 Ω

1
 

2
Ω

+

v

−

t

Solution. The first step is to transform the circuit elements into their impedances, which for

the capacitor and inductor are

1

10
F ↔ − j

ωC
= − j �

1

5
H ↔ jωL = j2 �

The phasors for the two sources are:

vs = 50 sin ωt V ↔ Vs = 50|−90◦V
is = 20 cos (ωt + 20◦) A ↔ Is = 20|20◦

Since the two resistors retain their values, the phasor drawing of the circuit is shown in the

following figure with the ground at the lower node.

1 Ω

1
 

2
Ω

+

V

−

=50 90° V−sV =20 20°sIj− Ω 2 j Ω

1
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Writing the node-voltage equation for node 1 gives

V − 50|−90◦ + V

− j
+ V

j2
+ 2V − 20|20◦ = 0

Collecting like terms, converting to rectangular form and converting to polar form gives

V

(
3 + j

2

)
= 50|−90◦ + 20|20◦

V

(
3 + j

2

)
= −50 j + 18.8 + j6.8 = 18.8 − j43.2

V × 3.04|9.5◦ = 47.1|−66.5◦

V = 47.1|−66.5◦

3.04|9.5◦ = 15.5|−76◦

The steady-state solution is

v = 15.6 cos (10t − 76◦) V
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Active Analog Filters

This section presents several active analog filters involving the op amp. Passive analog filters

use passive circuit elements: resistors, capacitors and inductors. To improve performance in a

passive analog filter, the resistive load at the output of the filter is usually increased. By using the

op amp, fine control of the performance is achieved without increasing the load at the output of

the filter. Filters are used to modify the measured signal by removing noise. A filter is designed

in the frequency domain so that the measured signal to be retained is passed through and noise

is rejected.

Shown in Fig. 13.1 are the frequency characteristics of four filters: low-pass, high-pass,

band-pass and notch filters. The signal that is passed through the filter is indicated by the

frequency interval called the passband. The signal that is removed by the filter is indicated

by the frequency interval called the stopband. The magnitude of the filter, |H ( jω)|, is one

in the passband and zero in the stopband. The low-pass filter allows slowly changing signals

with frequency less than ω1 pass through the filter, and eliminates any signal or noise above

ω1. The high-pass filter allows quickly changing signals with frequency greater than ω2 to pass

through the filter, and eliminates any signal or noise with frequency less than ω2. The band-pass

filter allows signals in the frequency band greater than ω1 and less than ω2 to pass through the

filter, and eliminates any signal or noise outside this interval. The notch filter allows signals in

the frequency band less than ω1 and greater than ω2 to pass through the filter, and eliminates

any signal or noise outside this interval. The frequencies ω1 and ω2 are typically called cutoff

frequencies for the low-pass and high-pass filters.

In reality, any real filter cannot possibly have these ideal characteristics, but instead has

a smooth transition from the passband to the stopband, as shown, for example in Fig. 13.2;

the reason for this behavior is described in a later chapter. Further, it is sometimes conve-

nient to include both amplification and filtering in the same circuit, so the maximum of the

magnitude does not need to be one, but can be a value of M specified by the needs of the

application.
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FIGURE 13.1: Ideal magnitude–frequency response for four filters, from top to bottom: low-pass,

high-pass, band-pass and notch.

Stopband2
M

M

Passband Stopband

(jω)H

FIGURE 13.2: A realistic magnitude–frequency response for a band-pass filter. Note that the magnitude

M does not necessarily need to be one. The passband is defined as the frequency interval when the

magnitude is greater than M√
2
.
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To determine the filter’s performance, the filter is driven by a sinusoidal input. One varies

the input over the entire spectrum of interest (at discrete frequencies) and records the output

magnitude. The critical frequencies are when |H ( jω)| = M√
2
.

Example 13.1. Using the low-pass filter in the following circuit, design the filter to have a gain

of 5 and a cutoff frequency of 500 rad/s.

Ra

Rb

C

+

v0

−

VS

Solution. By treating the op amp as ideal, note that the noninverting input is connected to

ground, and therefore, the inverting input is also connected to ground. The operation of this filter

is readily apparent for at low frequencies, the capacitor acts like an open circuit, reducing the cir-

cuit to an inverting amplifier that passes low frequency signals. At high frequencies, the capacitor

acts like a short circuit, which connects the output terminal to the inverting input and ground.

The phasor method will be used to solve this problem by first transforming the circuit

into the phasor domain as shown in the following figure.

Ra

Rb

+

V0

−

VS

1

j Cω
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Summing the currents leaving the inverting input gives

− Vs

Ra

− V0

1
jωC

− V0

Rb

= 0

Collecting like terms and rearranging yields

−V0

(
1
1

jωC

+ 1

Rb

)
= Vs

Ra

After further manipulation,

V0

Vs
= − 1

Ra

⎛⎝ 1
1
1

jωC

+ 1
Rb

⎞⎠ = − 1

Ra

(
1

jωC + 1
Rb

)

V0

Vs
= − 1

Ra C

(
1

jω + 1
Rb C

)
Similar to the reasoning for the characteristic equation for a differential equation, the cutoff

frequency is defined as ωc = 1
Rb C

(i.e., the denominator term, jω + 1
Rb C

set equal to zero).

Thus, with the cutoff frequency set at ωc = 500 rad/s, then 1
Rb C

= 500. The cutoff frequency

is also defined as when |H ( jω)| = M√
2
, where M = 5. The magnitude of V0

Vs
is given by∣∣∣∣V0

Vs

∣∣∣∣ =
1

Ra C√
ω2 +

(
1

Rb C

)2

and at the cutoff frequency, ωc = 500 rad/s,

5√
2

=
1

Ra C√
ω2

c +
(

1
Rb C

)2

With 1
Rb C

= 500, the magnitude is

5√
2

=
1

Ra C√
ω2

c +
(

1
Rb C

)2
=

1
Ra C√

5002 + 5002
=

1
Ra C

500
√

2

which gives

Ra C = 1

2500
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Since we have three unknowns and two equations (Ra C = 1
2500

and 1
Rb C

= 500), there are an

infinite number of solutions. Therefore, one can select a convenient value for one of the elements,

say Ra = 20 k�, and the other two elements are determined as

C = 1

2500 × Ra

= 1

2500 × 20000
= 20 nF

and

Rb = 1

500 × C
= 1

500 × 20 × 10−9
= 100 k�

A plot of the magnitude versus frequency is shown in the following figure. As can be seen, the

cutoff frequency gives a value of magnitude equal to 3.53 at 100 Hz, which is the design goal.

0 200 400 600 800 1000 1200 1400
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u
d
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Example 13.2. Using the high-pass filter in the following circuit, design the filter to have a

gain of 5 and a cutoff frequency of 100 rad/s.

Ra

Rb

C +

v0

−

VS
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Solution. Since the op amp is assumed ideal, and the noninverting input is connected to

ground, therefore the inverting input is also connected to ground. The operation of this filter

is readily apparent for at low frequencies, the capacitor acts like an open circuit and so no input

voltage is seen at the noninverting input. Since there is no input, then the output is zero. At

high frequencies, the capacitor acts like a short circuit, which reduces the circuit to an inverting

amplifier that passes through high frequency signals.

As before, the phasor method will be used to solve this problem by first transforming the

circuit into the phasor domain as shown in the following figure.

Ra

Rb

+

V0

−

VS

1

jωC

Summing the currents leaving the inverting input gives

− Vs

Ra + 1
jωC

− V0

Rb

= 0

Rearranging yields

V0

Vs

= − Rb

Ra + 1
jωC

= − Rb

Ra

jω

jω + 1
Ra C

At cutoff frequency ωc = 100 rad/s = 1
Ra C

. The magnitude of V0

Vs
is given by∣∣∣∣V0

Vs

∣∣∣∣ = Rb

Ra

ω√
ω2 +

(
1

Ra C

)2

and at the cutoff frequency,

5√
2

= Rb

Ra

ωc√
ω2

c +
(

1
Ra C

)2
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With 1
Ra C

= 100 and ωc = 100 rad/s, gives

5√
2

= Rb

Ra

ωc√
ω2

c +
(

1
Ra C

)2
= Rb

Ra

1
Ra C√

1002 + 1002
= Rb

Ra

100

100
= Rb√

2Ra

Thus Rb

Ra
= 5. Since we have three unknowns and two equations, one can select a convenient

value for one of the elements, say Rb = 20 k�, and the other two elements are determined as

Ra = Rb

5
= 20000

5
= 4 k�

and

C = 1

100Ra

= 1

100 × 4000
= 2.5 μF

A plot of the magnitude versus frequency is shown in the following figure. As can be seen, the

cutoff frequency gives a value of magnitude equal to 3.53 at 500 Hz, which is the design goal.
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The next example demonstrates the technique to create a band-pass filters (which require

two cutoff frequencies).

Example 13.3. Using the band-pass filter in the following circuit, design the filter to have a

gain of 5 and pass through frequencies from 100 to 500 rad/s.
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CH +

v0

−

CL

+

vL

−

VS

LaR

LbR

HbR

HaR

 

Solution. As usual, the design of the filter is done in the phasor domain, and makes use of

work done in the previous two examples. Note the elements around the op amp on the left are

the low-pass filter circuit elements, and those on the right, the high-pass filter. In fact, when

working with op amps, filters can be cascaded together to form other filters; thus a low-pass

and high-pass filter cascaded together form a band-pass. The phasor domain circuit is given in

the next figure.

+

V0

−

+

VL

−

VS

LaR

LbR

HbR

HaR

1

Lj Cω

1

Hj Cω

As before, the noninverting input to the op amps are connected to ground, which means

that the inverting input is also connected to ground. Summing the currents leaving the inverting

input for each op amp gives

− Vs

RaL

− VL

1
jωCL

− VL

RbL

= 0

− VL

Ra H
+ 1

jωCH

− V0

Rb H

= 0



P1: KDD

MOBK036-13 MOBK036-Enderle.cls November 1, 2006 16:11

ACTIVE ANALOG FILTERS 149

Solving the first equation for VL gives

VL = − 1

RaL
CL

(
1

jω + 1
RbL

CL

)
Vs

Solving the second equation for V0 gives

V0 = − Rb H

Ra H

jω

jω + 1
Ra H

CH

VL

Substituting VL into the previous equation yields

V0 = Rb H

Ra H

jω

jω + 1
Ra H

CH

× 1

RaL
CL

(
1

jω + 1
RbL

CL

)
Vs

The form of the solution is simply the product of each filter. The magnitude of the filter is

∣∣∣∣V0

Vs

∣∣∣∣ = Rb H

Ra H

ω√
ω2 +

(
1

Ra H
CH

)2

1
RaL

CL√
ω2 +

(
1

RbL
CL

)2

Since there are two cutoff frequencies, two equations evolve,

ωc H
= 1

Ra H
CH

= 100 rad/s

and

ωc L
= 1

RbL
CL

= 500 rad/s

At the either cutoff frequency, the magnitude is 5√
2
, such that at ωc H

= 100 rad/s

5√
2

= Rb H

Ra H

ωc H√
ω2

c H
+

(
1

Ra H
CH

)2

1
RaL

CL√
ω2

CH
+

(
1

RbL
CL

)2

= Rb H

Ra H

100√
1002 + 1002

1
RaL

CL√
1002 + 5002
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Therefore,

500
√

26 = Rb H

Ra H
RaL

CL

The other cutoff frequency gives the same result as the previous equation. There are now

three equations ( 1
Ra H

CH
= 100, 1

RbL
CL

= 500 and 500
√

26 = Rb H

Ra H
RaL

CL
), and six unknowns.

For convenience, set RbL
= 100 k� and Ra H

= 100 k�, which gives CL = 1
500RbL

= 20nF and

CH = 1
100Ra H

= 0.1 μF. Now from 500
√

26 = Rb H

Ra H

1
RaL

CL
,

Rb H

RaL

= 500
√

26CL Ra H
= 5.099

Once again, one can specify one of the resistors, say RaL
= 10 k�, giving Rb H

= 50.099 k�.

A plot of the magnitude versus frequency is shown in the following figure. As can be seen,

the cutoff frequency gives a value of magnitude equal to 3.53 at 500 Hz, which is the design

goal.
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None of the filters in Examples 13.1–13.3 have the ideal characteristics of Fig. 13.1. To improve

the performance from the passband to stopband in a low-pass filter with a sharper transition,

one can cascade identical filters together, i.e., connect the output of the first filter to the input of

the next filter and so on. The more cascaded filters, the better the performance. The magnitude

of the overall filter is the product of the individual filter magnitudes.



P1: KDD

MOBK036-13 MOBK036-Enderle.cls November 1, 2006 16:11

ACTIVE ANALOG FILTERS 151

v0
VS

R2

C2

R1

C1

VS

R2

R1

C2

C1

v0
C3

R3

FIGURE 13.3: (Top) Second-order Butterworth low-pass filter. (Bottom) Third-order Butterworth

low-pass filter.

While this approach is appealing for improving the performance of the filter, the overall

magnitude of the filter does not remain a constant in the passband. Better filters are available

with superior performance such as a Butterworth filter. Two Butterworth filters are shown in

Fig. 13.3. Analysis of these filters is carried out in Exercises 183 and 184.
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C H A P T E R 1 4

Bioinstrumentation Design

Figure 14.1 described the various elements needed in a biomedical instrumentation system. The

purpose of this type of instrument is to monitor the output of a sensor or sensors and to extract

information from the signals that are produced by the sensors.

Acquiring a discrete-time signal and storing this signal in computer memory from a

continuous-time signal is accomplished with an analog-to-digital (A/D) converter. The A/D

converter uniformly samples the continuous-time waveform and transforms it into a sequence

of numbers, one every tk seconds. The A/D converter also transforms the continuous-time wave

form into a digital signal (i.e., the amplitude takes one of 2n discrete values) which are converted

into computer words and stored in computer memory. To adequately capture the continuous-

time signal, the sampling instants tk must be selected carefully so that information is not lost.

The minimum sampling rate is twice the highest frequency content of the signal (based on the

sampling theorem from communication theory). Realistically, we often sample at five to ten

times the highest frequency content of the signal so as to achieve better accuracy by reducing

aliasing error.

14.1 NOISE
Measurement signals are always corrupted by noise in a biomedical instrumentation system.

Interference noise occurs when unwanted signals are introduced into the system by outside

sources, e.g. power lines and transmitted radio and television electromagnetic waves. This

kind of noise is effectively reduced by careful attention to the circuit’s wiring configuration to

minimize coupling effects.

Interference noise is introduced by power lines (50 or 60 Hz), fluorescent lights, AM/FM

radio broadcasts, computer clock oscillators, laboratory equipment, cellular phones, etc. Elec-

tromagnetic energy radiating from noise sources is injected into the amplifier circuit or into

the patient by capacitive and/or inductive coupling. Even the action potentials from nerve

conduction in the patient generate noise at the sensor/amplifier interface. Filters are used to

reduce the noise and to maximize the signal-to-noise (S/N) ratio at the input of the A/D

converter.
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Sensor Calibration

A/D

Analog 
processing

Signal 
processing

Data 
storage

Control &
feedback

Output 
display

Data 
transmission

 

FIGURE 14.1: Basic instrumentation systems using sensors to measure a signal with data acquisition,

storage and display capabilities, along with control and feedback.

Low frequency noise (amplifier DC offsets, sensor drift, temperature fluctuations, etc.)

is eliminated by a high-pass filter with the cutoff frequency set above the noise frequencies

and below the biological signal frequencies. High frequency noise (nerve conduction, radio

broadcasts, computers, cellular phones, etc.) is reduced by a low-pass filter with the cutoff set

below the noise frequencies and above the frequencies of the biological signal that is being

monitored. Power-line noise is a very difficult problem in biological monitoring since the

50 or 60 Hz frequency is usually within the frequency range of the biological signal that is

being measured. Band-stop filters are commonly used to reduce power-line noise. The notch

frequency in these band-stop filters is set to the power-line frequency of 50 or 60 Hz with the

cutoff frequencies located a few Hertz to either side.

The second type of corrupting signal is called inherent noise. Inherent noise arises from

random processes that are fundamental to the operation of the circuit’s elements and, hence, is

reduced by good circuit design practice. While inherent noise can be reduced, it can never be

eliminated. Low-pass filters can be used to reduce high frequency components. However, noise

signals within the frequency range of the biosignal being amplified cannot be eliminated by this

filtering approach.

14.2 COMPUTERS
Computers consist of three basic units: the central processing unit (CPU), the arithmetic and

logic unit (ALU), and memory. The CPU directs the functioning of all other units and controls
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the flow of information among the units during processing procedures. It is controlled by

program instructions. The ALU performs all arithmetic calculations (add, subtract, multiply,

and divide) as well as logical operations (AND, OR, NOT) that compare one set of information

to another.

Computer memory consists of read only memory (ROM) and random access memory

(RAM). ROM is permanently programmed into the integrated circuit that forms the basis of

the CPU and cannot be changed by the user. RAM stores information temporarily and can be

changed by the user. RAM is where user-generated programs, input data, and processed data

are stored.

Computers are binary devices that use the presence of an electrical signal to represent 1

and the absence of an electrical pulse to represent 0. The signals are combined in groups of

8 bits , a byte, to code information. A word is made up of 2 bytes. Most desktop computers

that are available today are 32-bit systems, which means that they can address 4.29 × 109

locations in memory. The first microcomputers were 8-bit devices that could interact with only

256 memory locations.

Programming languages relate instructions and data to a fixed array of binary bits so that

the specific arrangement has only one meaning. Letters of the alphabet and other symbols, e.g.

punctuation marks, are represented by special codes. ASCII stands for the American Standard

Code for Information Exchange. ASCII provides a common standard that allows different

types of computers to exchange information. When word processing files are saved as text files,

they are saved in ASCII format. Ordinarily, word processing files are saved in special program-

specific binary formats, but almost all data analysis programs can import and export data in

ASCII files.

The lowest level of computer languages is machine language and consists of the 0s and

1s that the computer interprets. Machine language represents the natural language of a partic-

ular computer. At the next level, assembly languages use English-like abbreviations for binary

equivalents. Programs written in assembly language can manipulate memory locations directly.

These programs run very quickly and are often used in data acquisition systems that must rapidly

acquire a large number of samples, perhaps from an array of sensors, at a very high sampling rate.

Higher level languages, e.g. FORTRAN, PERL, and C++, contain statements that

accomplish tasks that require many machine or assembly language statements. Instructions in

these languages often resemble English and contain commonly used mathematical notations.

Higher level languages are easier to learn than machine and assembly languages. Program

instructions are designed to tell computers when and how to use various hardware components

to solve specific problems. These instructions must be delivered to the CPU of a computer in

the correct sequence in order to give the desired result.

When computers are used to acquire physiological data, programming instructions tell

the computer when data acquisition should begin, how often samples should be taken from how
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many sensors, how long data acquisition should continue, and where the digitized data should

be stored. The rate at which a system can acquire samples is dependent upon the speed of the

computer’s clock, e.g. 233 MHz, and the number of computer instructions that must completed

in order to take a sample. Some computers can also control the gain on the input amplifiers

so that signals can be adjusted during data acquisition. In other systems, the gain of the input

amplifiers must be manually adjusted.
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Exercises

1. Suppose the current flowing through the circuit element in Fig. 3.5 is

i(t) =
{

0 t < 0

5e−2t A t ≥ 0

Find q (t).

2. The charge entering the upper terminal in the circuit element in Fig. 3.5 is

3 sin(2000t) μC. (a) How much charge enters the terminal from t = 0 to t = 0.5 ms?

(b) Find i(t).

3. Let i(t) shown in the following diagram flow through the circuit element in Fig. 3.5.

With i(t) = 0 for t < 0, find the total charge at: (a) 1 s, (b) 2 s, (c) 3 s and (d) 4 s.

i(t)
(A)

2

1

−1

1 2 3 4
t

(s)

4. Let the charge entering the upper terminal in the circuit element in Fig. 3.5 be q (t) =
e−1000t sin(2000π t) C for t ≥ 0. Determine the current for t ≥ 0.

5. Find the power absorbed for the circuit element in Fig. 3.5 if (a) v = 10 V

and i = −2 A, (b) v = −10 V and i = −2 A, (c) v = −5 V and i = 2 A, (d) v = 10 V

and i = 3 A.

6. Find the power absorbed for the circuit element in Fig. 3.5 if (a) v = 5 V and i = −2 A,

(b) v = 5 V and i = 12 A, (c) v = −5 V and i = −5 A, (d) v = −5 V and i = 2 A.
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7. Find the power absorbed for the circuit element in Fig. 3.5 if

a. 
t

20
t

20

i

(A)

v

(V)

1

2

1

11 (s) (s)

b.

v

(V)

i

(A)
2

1

1 2 3
t

1

1 2 3
t

0 0(s) (s)

c.

v

(V)

1

1 2 3
t

i

(A)
2

1

1 2
t

0 0
(s) (s)
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d.

i

(A)

t

v

(V)

20
t

20(s) (s)

1 1

e. 
t

2

1

1 2

i

(A)

0

v

(V)

1

1 2
t

0 (s) (s)

8. Find the total energy delivered to the circuit element in Fig. 3.5 if

v = 3e−1000tu(t) V

i = 5e−1000tu(t) A

9. The voltage and current at the terminals in Fig. 3.5 are

v = e−500tu(t) V

i = 2te−500tu(t) A

(a) Find the time when the power is at its maximum.

(b) Find the energy delivered to the circuit element at t = 0.004 s.

(c) Find the total energy delivered to the circuit element.

10. The voltage and current at the terminals in Fig. 3.5 are

v = te−10,000tu(t) V

i = (t + 10)e−10,000tu(t) A

(a) Find the time when the power is at its maximum.

(b) Find the maximum power.
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(c) Find the energy delivered to the circuit at t = 1 × 10−4 s.

(d) Find the total energy delivered to the circuit element.

11. The voltage at the terminals in Fig. 3.5 is

v =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0V

t V

2 − t V

0 V

t < 0

0 ≤ t ≤ 1

1 < t ≤ 2

t > 2

If

p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 W t < 0

t2 W 0 ≤ t ≤ 1

t2 − 4t + 4 W 1 < t ≤ 2

0 W t > 2

how much charge enters the terminal between t = 0 and t = 2 s?

12. For the following circuit, find: (a) I1, V2 and V3, (b) the power absorbed and delivered.

3 V

4 V

2 A

V2

2 V

2V
+

−

+ V3 −

I1

3 A

13. For the following circuit find (a) V1, (b) I2, (c) the power absorbed and delivered.

2V1 5A 2 V

4V 4V

+
V1

−

I2
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14. For the following circuit find (a) V1, (b) the power absorbed and delivered.

3 V

3 A

2 A

2 V1

2 V

+ V1 −
I15 V

+

−

6 V

15. For the following circuit, find the power in each circuit element.

2 A 4 A

3 A

5 V 3 V

4 V

10 V

16. For the following circuit, find (a) I1 and I2, (b) power dissipated in each resistor, (c)

show that the power dissipated equals the power generated.

2 Ω 2 Ω

6 Ω 2 Ω

2 Ω 2 Ω

I2

I1

14 V
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17. (a) Find the power dissipated in each resistor. (b) Show that the power dissipated equals

the power generated.

5 V

2 V

5 V

1 Ω

4 Ω

3 Ω

18. Find VR in the following circuit.

10 V

2 VR

2 Ω

5 Ω

3 Ω

3 V

+

VR  

−

19. Find I in the following circuit.

12 V

8 V
4 Ω

5 Ω

2 Ω

3I 

I
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20. Find IR in the following circuit.

4 A 2 A 3 IR2 Ω 1 Ω

IR

21. Find I2 in the following circuit.

3 A 3 I1

I1

I2

1
3

Ω 1
8

Ω 1
4

Ω

22. Find ib for the following circuit.

5 A 2Va

ib

3 Ω 6 Ω 8 Ω 2 Ω

+

Va

−

23. Find the equivalent resistance Rab for the following circuit.

4 Ω

4 Ω

2 Ω

3 Ω 4 Ω

a

b
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24. Find the equivalent resistance Rab for the following circuit.

a

b

7 Ω

4 Ω 2 Ω
8 Ω

4 Ω

3 Ω
3 Ω

1 Ω

2 Ω

3 Ω

25. Find the equivalent resistance Rab for the following circuit.

8 Ω

8 Ω

a

b

2 Ω

6 Ω 4 Ω
6 Ω

3 Ω

2 Ω

26. Find the equivalent resistance Rab for the following circuit.

9 Ω

a b

2 Ω 4 Ω

4 Ω2 Ω

6 Ω

6 Ω
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27. Find the equivalent resistance Rab for the following circuit.

1 Ω

3 Ω 6 Ω
4 Ω

12 Ω

12 Ω

5 Ω

4 Ω1 Ω

a

b

28. Find the equivalent resistance Rab for the following circuit.

17 Ω

20 Ω

7 Ω

8 Ω

15 Ω

5 Ω

20 Ω
10 Ω

ba

29. Find I1 for the following circuit.

2 Ω

3 Ω

4 Ω

2 Ω5 A

I1

30. Find I1 and V1 for the following circuit.

2 Ω

16 Ω 80 Ω

5 Ω

3 Ω

12 Ω

20 A
+
V1

−

I1
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31. Find I1 and V1 for the following circuit.

5 Ω

15 Ω

20 Ω

60 Ω

10 A

I1

+ V1 −

32. Find I1, V1 and V2 for the following circuit.

18 V

3 Ω

6 Ω 9 Ω

6 Ω

4.5 Ω 9 Ω
+

V1

−

+

V2

−

I1

33. Use the node-voltage method to determine v1 and v2.

5 Ω 2 Ω

3 Ω 3 Ω35 V 50 V

10 Ω+

v2

−

+

v1

−

34. Use the node-voltage method to determine v1 and v2.

2 A 5 A16 Ω 10 Ω

2 Ω +

v2

−

+

v1

−
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35. Use the node-voltage method to determine v1 and v2.

15 V 5 A

2 Ω 3 Ω

4 Ω 5 Ω

1 Ω

+

v1

− − v2 +

36. Use the node-voltage method to determine v1 and v2.

2 A 2 i116 Ω 10 Ω

2 Ω +

v2

−

+

v1

−

i1

37. Use the node-voltage method to determine v1 and v2.

3 Ω

2 Ω 5 Ω 1 Ω3 A

2 A

2Va

+

v1

−

+

v2

−

+        Va −
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38. Use the node-voltage method to determine v1 and v2.

+

v1

−

+

v2

−

+        Vb −

3 Ω 2 Ω

10 Ω

10 V

2 Vb

2 A

5 Ω

3 Ω

6 Ω 5 Ω 3 ia

ia

39. Use the node-voltage method to determine v1 and v2.

10 Ω 4 A

4 V

6 Ω3 Ω

8 Ω

8 Ω

5 Ω

4 Ω

5 V

+

v2

−

+

v1

−

40. Use the node-voltage method to determine v1 and v2.

5 V

2 Ω

4 Ω

5 Ω

3 Ω

10 V

+

v2

−

+

v1

−

3v1 4 V

2 Ω
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41. Use the node-voltage method to determine v1 and v2.

3 Ω 5 Ω

3 ia

5 A 2 Ω 2 A 20 Ω

40 Ω

10 V

+

v1

−

+

v2

−

ia

42. Use the node-voltage method to determine v1 and v2.

3 V

3 Ω +

v1

−

+

v2

−

6 Ω

2v1

5 Ω

5 Ω

4 Ω

4ia

5 Ω

8 Ω 2 A

ia

43. Use the node-voltage method to determine v1 and v2.

15 V 5 A

3ia

3 Ω

5 Ω

2 Ω 5 Ω

2 Ω 1 Ω

+

v1

−

+

v2

−

ia
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44. Use the mesh-current method to determine i1 and i2.

10 Ω

15 Ω

10 Ω 5 Ω

5 V 2 V

20 Ω

i2i1

45. Use the mesh-current method to determine i1 and i2.

5 Ω 4 Ω

20 Ω 10 Ω

3 Ω
10 V

i2 i1

46. Use the mesh-current method to determine i1 and i2.

5 V 3i2

10 Ω 5 Ω

2 Ω

3 Ω5 Ω

i1 i2

47. Use the mesh-current method to determine i1 and i2.

2 Ω

2 V

5 Ω 3 Ω 6 Ω

4 Ω20 Ω

3 V 2 i25 V

i1

i2
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48. Use the mesh-current method to determine i1 and i2.

5 Ω

3 Ω 5 Ω

2 Ω

3i1 20 V

10 Ω

10 V

4 Ω 15 Ω

i2i1

49. Use the mesh-current method to determine i1 and i2.

10Ω

4 Ω

20 V

10 V 2va

10 Ω

6 Ω

2 Ω 5 Ω 3 Ω

4 Ω

+

va

−

i1

i2

50. Use the mesh-current method to determine i1 and i2.

2 V

3 A

4 V

8 Ω 4 Ω

3 Ω

2 Ω 5 Ω

i1

i2
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51. Use the mesh-current method to determine i1 and i2.

+ va −

5 Ω 3 Ω

5 V 5 A

3 Ω

3va

3 Ω 2 Ω

2 Ω

i1 i2

52. Use the mesh-current method to determine i1 and i2.

6 V

2 A

10 V

4 Ω

2 Ω

3 Ω 2 Ω

3 Ω 4 Ω

5 Ω 3i1 6 Ω

5 Ω

i1

i2

53. Use the mesh-current method to determine i1 and i2.

2i1 2 A

5 V

5 Ω 6 Ω

10 Ω

3 Ω 4 Ω

5 Ω1 Ω

4 Ω
2 V

2 Ω

2va

+

va

−

i2

i1
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54. Use the mesh-current method to determine i1 and i2.

2 Ω 3 Ω 5 Ω

5 Ω

3 Ω

6 Ω

5 Ω

2 Ω

6 Ω 4 Ω

8 Ω

2 V

3 va

5 V

5 V

10 V3 A

−

va

+

i1 i2

55. Use a series of source transformations and resistor combinations to find vo .

+

vo

−

2 A 5 Ω 4 A

3 Ω

3 Ω 5 Ω

6 Ω
2 V

56. Use a series of source transformations and resistor combinations to find vo .

15 Ω

5 Ω

10 Ω10 Ω5 A2 Ω

2 Ω 4 Ω

4 Ω

10 V

+

vo

−
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57. Use a series of source transformations and resistor combinations to find vo .

+

vo

−

5 Ω

3 A

10 Ω

3 Ω

2 V

10 Ω2 Ω 2 A 6 Ω

4 Ω 2 Ω
5 V

58. Use the superposition method to find vo .

5 V

4 Ω 3 Ω

2 Ω 2 Ω

+

v0

−

10 V

59. Use the superposition method to find vo .

3 Ω

3 Ω4 V

0.5 Ω
2 V

3 Ω 10 A 2 Ω

+

vo

−

60. Use the superposition method to find vo .

3 A 2 Ω

3 Ω

5 Ω

4 V

0.5 Ω

2ia 3 V

2 Ω

4 Ω

+

vo

−

ia

3 Ω
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61. Use the superposition method to find vo .

5 V

2 Ω

5 Ω 3 Ω

3 Ω

5 A

2 Ω

3va

+va −

+
vo

−

62. Find the Thévenin equivalent with respect to terminals a and b.

5 A

a

b

5 Ω2 Ω

3 Ω

63. Find the Thévenin equivalent with respect to terminals a and b.

5 Ω 2 Ω 10 Ω

3 Ω35 V

a

b

50 V

64. Find the Thévenin equivalent with respect to terminals a and b.

2 Ω 3 Ω

4 Ω15 V

a b

5 A

1 Ω

5 Ω
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65. Find the Thévenin equivalent with respect to terminals a and b.

2 A 16 Ω

2 Ω

10 Ω 2 i1

a

b

i1

66. Find the Thévenin equivalent with respect to terminals a and b.

a

b

3 A 2 Ω

5 A

3 Ω

5 Ω 2va

+va −

67. Find the Thévenin equivalent with respect to terminals a and b.

a

b

3ia

3 Ω 5 Ω 40 Ω

10 V2 A2 Ω5 A

ia

68. Find the Norton equivalent with respect to terminals a and b.

5 V 8 Ω 10 Ω

a

b

8 Ω 6 Ω
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69. Find the Norton equivalent with respect to terminals a and b.

8 Ω 2 Ω

2 Ω

a

b

3 Ω 5 A5 A

70. Find the Norton equivalent with respect to terminals a and b.

a b

3 Ω 8 Ω

6 Ω

2 Ω 4 Ω

2 V2 A

71. Find the Norton equivalent with respect to terminals a and b.

5 V

3ia

3 Ω

a

b

2 Ω2 Ω

6 Ω

ia

72. Find the Norton equivalent with respect to terminals a and b.

2 V
5 Ω

5ia

3 Ω

a

b

3 Ω

5 Ω

6 Ω 4 Ω

8 Ω

2va

+ va − ia
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73. Find the Norton equivalent with respect to terminals a and b.

10 V 6 Ω

a

b

3 Ω 5 Ω

3 V

2 Ω

5i1

i1

74. A current pulse given by i(t) = (2 + 10e−2t)u(t) is applied through a 10 mH inductor.

(a) Find the voltage across the inductor. (b) Sketch the current and voltage. (c) Find

the power as a function of time.

75. A current pulse given by i(t) = (5 + 3 sin(2t))u(t) is applied through a 2 mH inductor.

Determine the voltage across the inductor.

76. The current pulse shown in the following figure is applied through a 5 mH inductor.

Find the voltage, power and energy.

i(t)
(A) 1

1 2 3
t

0

−1

4 (s)

77. The voltage across an L = 2.5 mH inductor is v(t) = 10 cos(1000t) mV, with i(0) =
1 mA. (a) Find i(t) for t ≥ 0. (b) Find the power and energy.
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78. The voltage across an inductor is given by the following figure. If L = 30 mH and

i(0) = 0 A, find i(t) for t ≥ 0.

v
(mv)

4

1 2 3
t

0 (s)

79. The voltage across an inductor is given by the following figure. If L = 50 mH and

i(0) = 0 A, find i(t) for t ≥ 0.

v
(mv)

1

t
(s)1 20

80. The voltage across a 4 μF capacitor is v(t) = (200,000t − 50,000)e−2000tu(t) V. Find

(a) current through the capacitor, (b) power as a function of time, (c) energy.

81. The voltage across a 0.5 μF capacitor is v(t) = (3 + 5e−2t)u(t) V. Find the current and

power.

82. The voltage across a 1 μF capacitor is v(t) = (5t + 3 sin(2t))e−3tu(t) V. Find the current

and power.

83. The current through a 5 μF capacitor is

i(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 mA t < 0 ms

5t2 mA 0 ≤ t < 1 ms

5
(
2 − t2

)
mA 1 <t ≤ √

2 ms

0 mA t >
√

2 ms

Find the voltage across the capacitor.



P1: KDD

MOBK036-exe MOBK036-Enderle.cls November 1, 2006 16:12

180 BIOINSTRUMENTATION

84. The current through a 10 μF capacitor is given by the following figure. If v(1) = 0 V,

find v(t) for t > 1 s.

i
(mA)

1

1 20
t

(ms)3

85. The current through a 100 μF capacitor is given by the following figure. If v(0) is 0 V,

find v(t) for t ≥ 0 s.

2

t
(ms)1 20

i(t)
(mA)

86. Find equivalent inductance between terminals a and b for the circuit in the following

figure.

a

b

3 H

3 H

2 H

4 H 2 H
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87. Find equivalent inductance between terminals a and b for the circuit in the following

figure.

a

b

4 H
8 H

7 H 4 H 1 H

3 H
2 H 3 H 2 H

3 H

88. Find equivalent inductance between terminals a and b for the circuit in the following

figure.

a

b

8 H

8 H

2 H 2 H

6 H
6 H

4 H

89. Find the equivalent capacitance between terminals a and b for the following circuit.

4 F 6 F

6 F

3 F4 F

1
2

F

a

b
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90. Find the equivalent capacitance between terminals a and b for the following circuit.

a b

3 F
8 F

6 F 4 F

5 F

6 F

4 F 4 F

91. Find the equivalent capacitance between terminals a and b for the following circuit.

a b

7 F

9 F

8 F

5 F

5 F 4 F

16 F

92. Reduce the following circuit to a single capacitor and inductor.

a

b

6 H

3 H

6 H
1 H

4 H

4 H

8 F

2 F

10 F

1
2

H



P1: KDD

MOBK036-exe MOBK036-Enderle.cls November 1, 2006 16:12

EXERCISES 183

93. Reduce the following circuit to a single capacitor and inductor.

a

b

6 F

4 F

5 F

18 F

6 H

3 H

1 H

4 H
1 H

94. For the following circuit, IS = 2(1 − e−5t)u(t) A and i(0) = 2 A. (a) Find v(t) for t ≥ 0.

(b) Find i(t) for t ≥ 0.

20 H 5 H

i

+
v

−
( )52 1 ( ) Ate u t−−

95. For the following circuit, IS = 5 sin 2t A and i(0) = 1
2

A. (a) Find v(t) for t ≥ 0. (b)

Find i(t) for t ≥ 0.

20 H 5 H
+
v

−
4 H

i

IS
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96. For the following circuit, IS = 5(1 − e−3t) u(t) A, i1(0) = 1 A, and i2(0) = 2 A. Find

the following for t ≥ 0: (a)vo (t), (b)v1(t), (c) io (t), (d) i1(t), (e) i2(t).

1 H

20 H 5 H
+
v1

−

i2

+ v0 −

i1

i0

IS

97. For the following circuit, VS = 3(1 − e−5t) u(t) V and v(0) = 2 V. Find the following

fort ≥ 0: (a)i(t), (b) v(t).

+
v
−

6 F

3 F

i

VS

98. For the following circuit, VS = 5 cos 3t V and v(0) = 1 V. Find the following for t ≥ 0:

(a) i(t), (b) v(t).

+
v
−

20 F

5 F

i

VS
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99. For the following circuit, VS = 2(1 − e−3t) u(t) V, v1(0) = 3 V and v2(0) = 2 V. Find

the following for t ≥ 0: (a) i1(t), (b) v1(t), (c) v2(t), (d) i2(t).

5 F

18 F 2 F
+
v2

−

+v1−
i1

i2

VS

100. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL and v1 for t > 0.

+
v1

−

iL

2 H

b

a

t = 0

10 Ω

3 Ω

6 V

101. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL and v1 for t > 0.

b

a

t = 0

5 Ω

4 Ω 6 Ω

10 Ω

8 A
+
v1

−
4 H

iL
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102. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL and v1 for t > 0.

b

a

t = 0

5 V

2 Ω

12 Ω 4 Ω

6 Ω

5 H

+

v1

−

iL

103. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL and v1 for t > 0.

3 Ω

6 Ω

5 H

iL

b

a

t = 08 Ω

6 Ω10 V

+

v1

−

104. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL and v1 for t > 0.

2 H

b

a

t = 02 Ω

4  5 A

iL

5 Ω 20 Ω2 Ω
+
v1

−
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105. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL and v1 for t > 0.

10 V

2 Ω

3 Ω

b

a

t = 0

4 Ω 4 H

iL

16 Ω
+
v1

−

106. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL and v1 for t > 0.

b

a

t = 0

10 V

8 Ω

8 Ω

12 Ω

5 Ω 2 H

iL

+
v1
−

107. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL and v1 for t > 0.

b

a

t = 0

20 H 5 H 16 Ω

2 Ω

3 Ω20 V

iL

+
v1

−
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108. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL, i1 and v1 for t > 0.

b

a

t = 0

3 H

2 Ω

10 V 4 Ω 5i1 12 Ω
+
v1

−

i1iL

109. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL, i1 and v1 for t > 0.

b

a

t = 0

6 H6 A

2i1

5 Ω

20 Ω

4 Ω 40 Ω 10 Ω
+
v1

−

iLi1

110. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find vc and i1 for t > 0.

b

a

t = 0

2 F10 V

5 Ω

10 Ω
+
vC

−

i1
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111. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find vc and i1 for t > 0.

b

a

t = 0

10 F

2 Ω 10 Ω

10 Ω 40 Ω10 V 8 A
+
vC

−

i1

112. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find vc and i1 for t > 0.

b

a

t = 0

3 F

4 Ω

3 Ω 6 Ω

8 Ω

+
vC

−

5 V

i1

113. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find vc and i1 for t > 0.

b

a

t = 0

10 F
+
vC

−

40 Ω 40 Ω

12 Ω

10 Ω8 A

i1
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114. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find vc and i1 for t > 0.

b

a

t = 0

5 F

2 Ω

12 Ω 12 Ω 4 Ω10 V

i1

+
vC

−

115. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find vc and i1 for t > 0.

b

a

t = 0

4 F5 Ω

i1

+
vC

−

153

8
Ω 8 Ω

12 Ω

5 A

116. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find vc and i1 for t > 0.

b

a

t = 0

4 F

8 Ω

40 Ω20 V

i1

+
vC

−
4 F 10 Ω

117. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find vc and i1 for t > 0.

b

a

t = 05 Ω

20 V 4 Ω 2i1 12 Ω
+
vC

−
3 F

i1
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118. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find vc and i1 for t > 0.

b

a

t = 0

5i1

5 Ω

20 Ω

8 Ω12 Ω
+
vC

−
3 Ω 3 F

6 Ω

15 V

i1

119. The switch has been in position a for a very long time. At t = 0, the switch moves to

position b. Find iL and v1 for t > 0.

b

a

t = 0

10 V 3 A 3 H

5 Ω 20 Ω

+ v1 −

iL

120. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL and v1 for t > 0.

3 H

iL

+
v1

−

b

a

t = 012 Ω

5 V

10 V

4 Ω

8 Ω



P1: KDD

MOBK036-exe MOBK036-Enderle.cls November 1, 2006 16:12

192 BIOINSTRUMENTATION

121. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL and v1 for t > 0.

b

a

t = 0

10 H5 V 10 A 5 A 40 Ω

10 Ω2 Ω

+
v1

−

iL

122. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL and v1 for t > 0.

b

a

t = 0

10 V 

+

v1

−

12 Ω

2 Ω

5 V

6 Ω

5 H

4 Ω

Li

123. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find i1 and v1 for t > 0.

b

a

t = 0

10 V

5 V

4 Ω

2 Ω

+
v1

−
12 Ω3 H3i1

i1
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124. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find iL, i1 and v1 for t > 0.

b

a

t = 0

6 A

4 V

4 Ω

20 Ω

5 Ω 40 Ω 10 Ω3 H

2i1

+
v1

−

iLi1

125. The switch has been position a for a very long time. At t = 0, the switch closes. Find

vC and i1 for t > 0.

t = 0

5 V 3 A 2 F

5 Ω 20 Ω

5 Ω
+
vC

−

i1

126. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find vc and i1 for t > 0.

b

a

t = 0

10 V

6 Ω
+
vC

−
3 Ω 3 F

2 Ω

20 Ω3 A

i1
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127. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find vc and i1 for t > 0.

b

a

t = 0

+
vC

−

120 V 5 A

40 Ω

10 Ω

10 F

12 Ω

i1

128. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find vc and i1 for t > 0.

ba

t = 0

2 F 8 F

10 V 5 V

5 Ω 10 Ω

+
vC

−

i1

129. The switch has been in position a for a long time. At t = 0, the switch instantaneously

moves to position b. Find vc and i1 for t > 0.

ba

t = 0

3 F

10 V
+
vC

−

6 Ω

4 Ω

6 F
5 Ω

6 V
i1
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130. The switches have been in positions a and c for a long time. At t = 0, switch ab

instantaneously moves to position b. At t = 0.06, switch cd instantaneously moves to

position d . Find i1 and vc for t > 0.

5 A 2 Ω

b

a

t = 0

5 F
+
vC

−
3 A 5 Ω

dc

t = 0.06s

5 V

4 Ω
20 F

2 Ω

i1

131. The switches have been in positions a and c for a long time. At t = 0, switch ab

instantaneously moves to position b. At t = 0.15, switch cd instantaneously moves to

position d . Find i1 and vc for t > 0.

c

d

t = 0.15

b

a

t = 0

3 A

6 Ω

4 Ω

3 F
+
vC

−

10 Ω

4 V 6 V

i1

132. Find iL and vc for t > 0 for the following circuit if: (a) is = 3u(t) A; (b) is =
1 + 3u(t) A.

4 H 3 Fis 5 Ω
+
vC

−

iL
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133. Find iL and vc for t > 0 for the following circuit if: (a) vs = 5u(t) V; (b) vs =
2 + 5u(t) V.

3 H 6 Fvs

+
vC

−

iL5 Ω

20 Ω

134. Find iL and vc for t > 0 for the following circuit if: (a) is = 10u(t) A; (b) is =
−1 + 10u(t) A.

2 H 15 Fis 10 Ω
+
vC

−

iL

135. Find iL and vc for t > 0 for the following circuit if: (a) vs = 20u(t) V; (b) vs =
4 + 20u(t) V.

16 H 1 Fvs 4 Ω
+
vC

−

iL4 Ω

136. Find iL and vc for t > 0 for the following circuit if: (a) is = 3u(t) A; (b) is =
−1 + 3u(t) A.

200 H 2 Fis 5 Ω
+
vC

−

iL
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137. Find iL and vc for t > 0 for the following circuit if: (a) vs = 5u(t) V; (b) vs =
12 + 5u(t) V.

360 H 10 Fvs 6 Ω
+
vC

−

iL6 Ω

138. Find iL and vc for t > 0 for the following circuit if: (a) is = 5u(t) A; (b) is =
5 + 5u(t) A.

350 H 3 Fis 5 Ω
+
vC

−

iL

139. Find iL and vc for t > 0 for the following circuit if: (a) vs = 3u(t) V; (b) vs =
2 + 3u(t) V.

20 H 1 Fvs 4 Ω
+
vC

−

iL4 Ω

140. Find iL and vc for t > 0 for the following circuit if: (a) is = 10u(t) A; (b) is = −1 +
10u(t) A.

25 H 5 Fis 1 Ω
+
vC

−

iL
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141. Find iL and vc for t > 0 for the following circuit if: (a) vs = 5u(t) V; (b) vs =
5u(t) + 3 V.

4 H

1.5 F
2 Ω iL

+vC −

vs

142. Find iL and vc for t > 0 for the following circuit if: (a) is = 3u(t) A; (b) is = 3u(t) − 1 A.

10 H

1 F

4 Ω

iL

+ vC −

is

143. Find iL and vc for t > 0 for the following circuit if: (a) is = 10u(t) A; (b) is = 10u(t) +
5 A.

20 H

4 F
1 Ω iL

+vC −

2 Ωis

144. Find iL, i1 and vc for t > 0 for the following circuit if: (a) vs = 5u(t) V; (b) vs =
5u(t) + 2 V.

12 H

12 F
iL

+ vC −

8

12

4 Ω 5i1vs

i1
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145. Find iL and vc for t > 0 for the following circuit if: (a) is = 6u(t) A; (b) is =
3u(t) + 1 A.

64 H

16 F

4 Ω

iL

+ vC −

is

146. Find iL and vc for t > 0 for the following circuit if: (a) vs = 4u(t) V; (b) vs =
4u(t) − 2 V.

25 H

4 F
5 Ω iL

+ vC −

vs

147. Find iL and vc for t > 0 for the following circuit if: (a) vs = 2u(t) V; (b) vc =
2u(t) + 2 V.

5 H

3 F
6 Ω iL

+ vC −

vs



P1: KDD

MOBK036-exe MOBK036-Enderle.cls November 1, 2006 16:12

200 BIOINSTRUMENTATION

148. Find iL and vc for t > 0 for the following circuit if: (a) is = 2u(t) A; (b) is =
2u(t) − 1 A.

20 H

2 F

9 Ω

iL

+ vC −

is

149. Find iL and vc for t > 0 for the following circuit if: (a) vs = 5u(t) V; (b) vs =
5u(t) − 2 V.

2 H

10 F
1 Ω iL

+ vC −

vs

150. For the following circuit we are given that iL1
(0) = 2 A, iL2

(0) = 5 A, vc 1
(0) = 2 V,

vc 2
(0) = −3 V and is = 2e−2tu(t) A. (a) Write the node-voltage equations necessary to

solve this circuit. (b) Write the mesh-current equations necessary to solve this circuit.

(c) Use the node-voltage method to find vb for t > 0. (d) Use the mesh-current method

to find vb for t > 0.

+ vC1 −

is

2 F

2 F

3 Ω

1 Ω

1Li

3 H

1 Ω

2 H

+

−
2Cv

2Li+

−

bv
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151. Find vc 1
for t > 0 for the following circuit: (a) using the node-voltage method if vs =

2e−3tu(t) V; (b) using the mesh-current method if vs = 2e−3tu(t) V; (c) using the node-

voltage method if vs = 3 cos(2t) u(t) V; (d) using the mesh-current method if vs =
3 cos(2t) u(t) V; (e) using the node-voltage method if vs = 3u(t) − 1 V; (f ) using the

mesh-current method if vs = 3u(t) − 1 V.

vs

4 F

3 F

3 H

6 Ω 3 Ω

2 Ω

+

−
1Cv

152. Find iL1
for t > 0 for the following circuit: (a) using the node-voltage method if is =

2e−3tu(t) A; (b) using the mesh-current method if is = 2e−3tu(t) A; (c) using the node-

voltage method if is = 3 cos(2t) u(t) A; (d) using the mesh-current method if is =
3 cos(2t) u(t) A; (e) using the node-voltage method if is = 2u(t) + 2 A; (f ) using the

mesh-current method if is = 2u(t) + 2 A.

is

2 Ω 4 Ω

2 H

1

2
H 3 F

1Li

153. Find vc for t > 0 for the following circuit: (a) using the node-voltage method if

vs = 3e−5tu(t) V; (b) using the mesh-current method if vs = 3e−5tu(t) V; (c) using

the node-voltage method if vs = 3 sin(5t) u(t) V; (d) using the mesh-current method if
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vs = 3 sin(5t) u(t) V; (e) using the node-voltage method if vs = 5u(t) − 2 V; (f ) using

the mesh-current method if vs = 5u(t) − 2 V.

+

−
1Cv

3 H 2 H

4 F 2 F

5 Ω

1

2
Fvs

154. Find iL for t > 0 for the following circuit: (a) using the node-voltage method if is =
5e−3tu(t) A; (b) using the mesh-current method if is = 5e−3tu(t) A; (c) using the node-

voltage method if is = 2 sin(3t) u(t) A; (d) using the mesh-current method if is =
2 sin(3t) u(t) A; (e) using the node-voltage method if is = 2u(t) + 3 A; (f ) using the

mesh-current method if is = 2u(t) + 3 A.

is 5 Ω

3 H 5 H

2 F 4 F 2 Ω

iL

155. The switch has been in position a for a long time. At t = 0, the switch moves to position

b, then at t = 4, the switch moves back to position a . Find vc for t > 0.

b

a

t = 4 s

12 Ω 10 Ω

10 V

5 V
4 Ω

2 F

3 H

3Ω 
+
vC
−

t = 0 s
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156. The switches operate as indicated in the following circuit. Find vc for t > 0.

t = 0

3 Ω

10 V 3 A

4 Ω

5 Ω

3 F

+vC −
2 H

t = 1 s

10 Ω

157. The switch has been in position a for a long time. At t = 0, the switch moves to position

b, and then back to position a at t = 2 s. Find vc for t > 0.

b

a

t = 2 s

2 Ω

5 V

10 V
4 Ω

t = 0 s

3 H5i1 12 Ω

2 Ω

3 F
+
vC

−

i1

158. The switches operate as indicated in the following circuit. Find iL for t > 0.

t = 2 s

3 H

iL

5 F

b

a

t = 0

6 A

20 Ω

5 Ω
4 Ω

4 V

40 Ω

2i1

i1
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159. The operational amplifier shown in the following figure is ideal. Find vo and io .

20 kΩ v0

100 kΩ

+12 V

−12 V

i0

25 kΩ

5 kΩ

2 V
3 V

−

+

160. The operational amplifier shown in the following figure is ideal. Find vo and io .

5 kΩ v0

120 kΩ

+10 V

−

−

+

10 V

i0

30 kΩ

2 V

161. The operational amplifier shown in the following figure is ideal. Find vo and io .

25 kΩ v0

200 kΩ

+12 V

−

−

+

12 V

i0

50 kΩ

5 V
6 V
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162. The operational amplifier shown in the following figure is ideal. Find vo .

20 kΩ

5 kΩ

20 kΩ10 V
5 V

100 kΩ

+12 V

−

−

+

12 V

v0

80 kΩ

90 kΩ

 

163. Find the overall gain for the following circuit if the operational amplifier is ideal. Draw

a graph of vo versus Vs if Vs varies between 0 and 10 V.

v0

+12 V

−12 V

10 kΩ

20 kΩ

5 kΩ

VS

−

+

164. Find vo in the following circuit if the operational amplifier is ideal.

6 kΩ

3 kΩ
4 V

9 V v0

2 kΩ

+9 V

−9 V
5 V

5 kΩ

10

3
Ωk +

−
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165. Find vo in the following circuit if the operational amplifier is ideal.

v0

3 kΩ

+12 V

−12 V

3 V

10 V

1 kΩ

5 V

6 kΩ +

−

166. Find io in the following circuit if the operational amplifiers are ideal.

i0

10 kΩ

+12 V

− −12 V

3 kΩ

4 kΩ

5 V
3 V

20 kΩ

+12 V

12 V
5 kΩ

4 V

2 kΩ

5 V

167. Find vo in the following circuit if the operational amplifiers are ideal.

v0

20 kΩ

+12 V

−12 V

5 kΩ

3 kΩ

8 V
5 V 1 V

3 kΩ +12 V

−12 V

1 kΩ

3 kΩ

+

−
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168. Suppose the input Vs is given as a triangular waveform as shown in the following figure.

If there is no stored energy in the following circuit with an ideal operational amplifier,

find vo .

VS

2 F

1

2
Ω

+12 V

−12 V

v0

Vs

(V) 1

1 2 3
t

0

−1

4 (s)

+

−

169. Suppose the input Vs is given in the following figure. If there is no stored energy in the

following circuit with an ideal operational amplifier, find vo .

 

10

1 2 3
t

0

−10

4 (s)

Vs

(V)
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VS

0 6μ. F
+12 V

−12 V

v0

1 MΩ

+

−

170. Suppose the input Vs is given in the following figure. If there is no stored energy in the

following circuit with an ideal operational amplifier, find vo .

2
Vs

(V)

2

t

(s)1 20

VS

1μF

+12 V

−12 V

v0

250 kΩ

+

−
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171. Suppose the input Vs is given in the following figure. If there is no stored energy in the

following circuit with an ideal operational amplifier, find vo .

Vs

(V)

0.2

t

(s)

−0.2

0.25

0.5

0.75

1

VS

0 25μ. F

+12 V

−12 V

v0

50 kΩ

+

−

172. The following circuit is operating in the sinusoidal steady state. Find the steady-state

expression for iL if is = 30 cos 20t A.

4 H 3 Fis 5 Ω
+
vC

−

iL
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173. The following circuit is operating in the sinusoidal steady state. Find the steady-state

expression for vc if vs = 10 sin 1000t V.

3 H 6 Fvs

+
vC

−

iL5Ω

20 Ω

174. The following circuit is operating in the sinusoidal steady state. Find the steady-state

expression for iL if is = 5 cos 500t A.

2 H 15 Fis 10 Ω
+
vC

−

iL

175. The following circuit is operating in the sinusoidal steady state. Find the steady-state

expression for vc if is = 25 cos 4000t V.

16 H 1 Fvs 4 Ω
+
vC

−

iL4 Ω

176. Design a low-pass filter with a magnitude of 10 and a cutoff frequency of 250 rad/s.

177. Design a high-pass filter with a magnitude of 20 and a cutoff frequency of 300 rad/s.
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178. Design a band-pass filter a gain of 15 and pass through frequencies from 50 to 200

rad/s.

179. Design a low-pass filter with a magnitude of 5 and a cutoff frequency of 200 rad/s.

180. Design a high-pass filter with a magnitude of 10 and a cutoff frequency of 500 rad/s.

181. Design a band-pass filter a gain of 10 and pass through frequencies from 20 to 100

rad/s.

182. Suppose the operational amplifier in the following circuit is ideal. (The circuit is a low-

pass first-order Butterworth filter.) Find the magnitude of the output vo as a function

of frequency.

v0
VS

R

C

−

+

183. With an ideal operational amplifier, the following circuit is a second-order Butterworth

low-pass filter. Find the magnitude of the output vo as a function of frequency.

v0
VS

R2

C2

R1

C1

+

−
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184. A third-order Butterworth low-pass filter is shown in the following circuit with an ideal

operational amplifier. Find the magnitude of the output vo as a function of frequency.

VS

R2

R1

C2

C1

v0
C3

R3

+

−


