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Preface

One of the main features of modern cities is the permanent growth of
population in a relatively small area. The consequence of this fact is the
increase in the number of cars and also the necessity of movement and
transport of people and goods in urban city networks.

The increase of the capacity of the street network can’t, as a rule, follow
the increase of the necessities for transport. It has unwanted consequences,
such as the increase in time losses of traffic participants, the increase of
environmental pollution and noise, and also the increase in the number of
traffic accidents.

Different measures are applied for elimination of these unwanted
consequences of intensive development of modern cities. Some of them are,
for instance, the land use planning, the improvement of traffic control, etc.
Significant attention is paid just to the improvement of the automatic traffic
control systems. The reason for that is the fact that this measure doesn’t imply
significant changes of infrastructure.

Traffic control in modern cities, however, is one of the most complex
control problems in the sense of the theoretical problem statement as well as in
the sense of practical realization of traffic control systems. The transportation
system in the modern city has all features of so-called complex systems: the
great number of state and control variables, the presence of uncertainty and
indeterminism, the complex interactions between subsystems, the necessity
to optimize several optimization criteria, active behavior of the controlled
process, etc.

The control systems of such degree of complexity couldn’t be realized
without significant progress achieved in the development of information
technologies, especially computer and telecommunication techniques, during
recent decades.

Xi
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xii OPTIMAL TRAFFIC CONTROL: Urban Intersections

The necessary condition, however, for realization of such complex control
systems is also the development of solution methods of control problems,
especially the optimization methods.

A signalized intersection can be isolated, with negligible influence of
other signalized intersections to its own performance. On the other hand, it
may be close to other signalized intersections so that the interactions between
them can be very significant. Because of that, the optimal control problems
have to be formulated separately: for isolated intersections, for a sequence
of signalized intersections along an artery (green wave), and for a street
network with greater number of signalized intersections with strong mutual
interactions.

This monograph is concerned with the traffic control problem on a
single, isolated signalized intersection. This problem is still of current
interest because the existing algorithms don’t enable to take advantage of all
capabilities of modern, microprocessor-based traffic signal controllers. The
fact that a great number of intersections (in many countries over 50% of all
signalized intersections) are isolated points out the importance of the traffic
control problem on isolated intersections.

The approach to the optimal traffic control presented in this book and
also the optimization methods based on the graph theory and combinatorial
optimization are results of a long-term work of authors in the field of traffic
control, in “Automation & Control Systems” department, within Mihajlo
Pupin Institute in Belgrade.

The authors are very grateful to all colleagues who contributed to the
realization of this book. We are especially grateful to Mgr. Miomir Segovi¢
for his participation regarding the influence of the choice of the complete
set of signal groups to the intersection performance and also regarding the
solution of the optimization problems presented as the problems of nonlinear
programming.

The authors owe gratitude also to Dr. Snezana Mitrovi¢-Mini¢ for her
participation in the statement and solution of some optimization problems
regarding the choice of the complete set of signal groups.

The authors express distinct gratitude to Professor Radivoj Petrovi¢ for
his continuous support and encouragement during the work that resulted in
appearance of this book.
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Introduction

The most common means of traffic control in modern cities is traffic
control by traffic signals. Traffic signals made it possible to “solve” conflicts
between traffic flows at intersections. This goal, however, can be achieved
in different ways, and application of particular methods has different
consequences regarding the intersection capacity, delay, or environmental
pollution. The main problem of traffic engineering is choosing the way of
conflict prevention that has the lowest unwanted consequences, such as
minimal delay or minimal pollution, etc.

A significant development of traffic control systems using traffic lights
has been achieved since the first traffic controller was installed in London
in 1868. Starting from an isolated signalized intersection, the area covered
by a traffic control system extended to a series of signalized intersections
along an artery (“green wave”) out to street networks with several hundred
signalized intersections (“‘area traffic control systems”). The first green wave
was realized in Salt Lake City in 1918 [85], and the first area traffic control
was introduced in Toronto in 1960.

Traffic control equipment has followed technology development. At the
very beginning, traffic control had been performed by electromechanical
devices. Then, semiconductor-based controllers were introduced, and
nowadays microprocessor-based controllers are used in traffic control
systems.

The development of area traffic control systems, especially since 1960,
has led to introduction of other equipment in traffic control systems, such as
computers, telecommunication devices, vehicle detectors, etc.

© 2008 by Taylor & Francis Group, LLC



OPTIMAL TRAFFIC CONTROL: Urban Intersections

Traffic control strategies have also improved since the installation of the
first traffic controller. The strategies can be classified in respect to different
features. The most important features are as follows:

The influence of real-time traffic data to traffic control

Regarding this feature, there exist two main types of strategies:

Fixed-time (FT) strategies. The control (signal plan) is calculated in
advance, using statistical data.

Real-time (RT) strategies. The real-time data about traffic processes
are used to determine control or its modification.

The performance indices

The most frequently used performance indices are:

For traffic control on an isolated intersection:

The total rate of delay (the sum of the rate of delays on all intersection
approaches during a determined time interval, usually one cycle
time); the number of stops; the weighted sum of the rate of delay and
number of stops; the sum of all green times during a cycle; the total
flow through a congested intersection during a cycle; the number of
accidents; the cycle time, etc.

For arterial traffic control:

The bandwidth, i.e., the interval in which it is possible to enter the
“green wave” and pass through the sequence of intersections without
stopping.

For traffic control in a network of signalized intersections:

The total rate of delay on all intersections in the network; the total
number of stops in the network; the weighted sum of the rate of
delay and number of stops on all links in the network; the total fuel
consumption of all vehicles in the network; the air pollution level,
the noise level, the number of accidents, etc.

The state of the traffic process

According to this feature, traffic control strategies can be classified as:

Strategies for weak traffic
Strategies for normal traffic
Strategies for congestion in the network

Strategies for special purposes (e.g., giving priority to mass transit
vehicles, setting of fire brigade routes, etc.)

© 2008 by Taylor & Francis Group, LLC



Introduction 3

e Distribution of functions between subsystems of one traffic control

system

In respect to this feature, there exist two types of traffic control

strategies:

= Strategies used in centralized traffic control systems where all control
functions are performed by the control center computer

= Strategies based on control problem decomposition—one part of a
control problem is solved in microprocessor-based controllers on
intersections, and the other part by the control center computer [76],
[80]

o The influence of traffic control to traffic assignment in the network
On the basis of this feature, two types of strategies can be noted:
= Strategies which assume that traffic assignment is independent of
traffic control by traffic lights
= Strategies assuming that both signal settings parameters and link
flows are not fixed, i.e., the strategies that optimize the chosen
performance index and influence to the traffic assignment

The development of traffic control strategies and information technologies
enabled the realization of complex traffic control systems in modern cities,
including hundreds of signalized intersections. These systems enable
coordination between intersection control subsystems, which is necessary in
dense street networks.

However, there are many intersections that are isolated, i.e., not included
in complex traffic systems, like “green waves” or area traffic control systems.
For example, more than 60% of the total number of signalized intersections
in Sweden are isolated [53]. Because of that it is very important to develop
good algorithms for optimal traffic control on isolated intersections. This is
significant especially when bearing in mind that modern microprocessor-
based traffic light controllers are capable of applying very complex control
strategies. Moreover, the control on a signalized intersection has to be
determined even in the case the intersection belongs to a complex control
system.

Optimal traffic control on an isolated intersection is a very complex
problem, especially because of the combinatorial nature of the problem.
In this book, the problem is treated from the very beginning as a complex
combinatorial problem and is formulated as the problem of finding the best
closed path on a certain graph.

The traffic control on a signalized intersection is performed by means
of traffic lights of different colors (green, amber, and red) that are repeating

© 2008 by Taylor & Francis Group, LLC



4 OPTIMAL TRAFFIC CONTROL: Urban Intersections

periodically. Conflicts between traffic participants are prevented by dividing
the cycle time in intervals allocated to traffic flows so that the conflicting
flows don’t get the right-of-way in the same interval. The control in one
interval is defined by one control vector (so-called phase) whose components
are control variables that control traffic by means of traffic lights. Several
traffic flows that are not mutually conflicting can get the right-of-way during
the same interval.

In classical controllers the composition of phases and their sequence
are fixed. In modern, microprocessor-based controllers, these restrictions
are eliminated. However, due to the elimination of mentioned restrictions
control problems became much more complex. The traffic control problem
not only includes the problem of of splitting cycle time into particular phases,
but the composition and sequence of the phases. Because of that, the traffic
control problem is transformed to a complex problem of combinatorial
optimization.

The necessity of phase sequence change is illustrated by the following
example. The traffic flow through the intersection presented in Fig. 1 is much
greater in the West-East than in the East-West direction during the morning
peak hour. During the evening peak hour the greatest traffic flow is in the
East-West direction. The number of left-turning vehicles is also significantly
different in these two intervals. (This example is similar to the Hank Van
Zylen example in [92].)

&S— 5
e 4
1 —
2 —
7
—
3r
Figure 1

The phase sequences suitable for traffic control in these 2 peak hours
are presented in Fig. 2. The number of phases giving the right-of-way to left
turners fits the demand. This right, in case (a), is given to vehicles coming
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from the West, by control vectors 3, 4, and 5. In case (b) the right of left
turning is given to vehicles coming from the East, by control vectors 4, 5,
and 6. Arrows in Fig. 2 mark the traffic flows getting the right-of-way, and

dashed lines and transversal dashes instead of arrows mark traffic flows not
having the right-of-way.
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6 OPTIMAL TRAFFIC CONTROL: Urban Intersections

This example illustrates the combinatorial nature of the problem. It is
obvious that the number of possible sequences of control vectors is very large.
The determination of the relation between these sequences and the values of
a chosen performance index and finding the sequence corresponding to the
optimal value of the performance index is a complex problem of combinatorial
optimization.

The development of the methods of combinatorial optimization, besides
the progress in equipment development, was also an unavoidable condition
for the solution of such problems. A method of combinatorial optimization,
of the branch-and-bound type, is used in this book for solving the optimal
traffic control problem. This method was developed at the beginning of the
1960’s [54], [56].

The combinatorial approach to the optimal traffic control problem on
isolated intersection was founded by Stoffers, K. [77] by introduction of
the compatibility graph of traffic streams. Stoffers also noted that the traffic
stream sets with maximal number of nonconflict traffic streams, which can
get the right-of-way simultaneously, can be determined by extracting cliques
from the compatibility graph. The compatibility graph for the intersection
given in Fig. 1, together with the set of complete graphs whose sets of nodes
are cliques of the compatibility graph, are presented in Fig. 3.

8 QL @2 @3 @4
6 Q@5 @6 @7

LLLLLLL =7

Cliques of the compatibility graph are used for determining the set of
feasible control vectors. However, the information about feasible control
vectors is not sufficient for determination of their sequence. Control vector
sequences have to satisfy certain conditions. The most important conditions
are that each traffic stream has to get the right-of-way during one cycle, and
the right-of-way can be given only once to any traffic stream. Because of
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that, the control vectors giving the right-of-way to some traffic stream have
to follow one after the other. To stream 1 (in case [a], in Fig. 2) the right-of-
way is given by control vectors 3, 4, and 5, and to streams 2 and 7 by control
vectors 1, 2, and 3.

Therelations of green indication successions and control vector transitions
are introduced for the sake of the exact control problem statement. There are
also certain constraints related only to the control vector composition and to
their sequence. Because of that the concept of “structure” is introduced. The
structure is the sequence of control vectors. A feasible structure of control
vectors can be presented as a closed path on the control vectors transition
graph.

The optimal control problem is transformed to the problem of optimal
closed path on the graph of control vectors transition. The method of the
branch-and-bound type is developed for solving this problem. The computer
program is developed also, enabling determination of the optimal structure
and optimal cycle time split to control vectors.

Introduction of the control vectors transition graph and development of
the combinatorial optimization method enabled a solution to several optimal
traffic control problems. These problems have different performance indices
or different constraints defining the set of feasible controls.

The book is organized in the following way:

Part I gives the description of the dynamical process on isolated signalized
intersection. The elements of the mathematical model are: the space of inputs,
the space of outputs, the state space, the state transition function, and the
output function. Mathematical models of uncontrolled inputs—arrival flows,
which are stochastic processes, are presented in this part.

The definition of the state, as the vector whose components are vehicle
queues on particular approaches, is presented and also the function of
state transition. The relations in the input set, such as the conflictness and
compatibility relations, are defined. These relations are very significant for
the statement and solution of the optimal traffic control problem on isolated,
signalized intersections. The problem of assignment of control variables to
subsets of traffic flows—signal groups is formulated in this part. The concept
of signal plan structure is also defined—the signal plan structure is a sequence
of control vectors.

In Part II the problem of control (signal plan) determination is formulated
as an optimization problem. The set of constraints and different optimization
criteria are defined. Mathematical expressions are given for the constraints:

© 2008 by Taylor & Francis Group, LLC



8 OPTIMAL TRAFFIC CONTROL: Urban Intersections

= Control vectors sequence constraints

* The constraints of minimal effective green times for signal groups

* The constraints of maximal effective red times for signal groups

= The flow balance constraints

= The constraints of minimal effective intergreen times

» The constraints of single interval of green indication for a signal
group during one cycle

= The constraints of control vectors composition

= The constraints on the sum of control vectors duration

In Part I1I the mathematical expressions for different optimization criteria
are presented. The criteria of capacity type are: the capacity of a traffic
stream, signal group, or the whole intersection, the capacity factor, the sum of
the squares of differences of saturation degrees of particular traffic streams.
The mathematical expression of the total vehicles delay on all intersection
approaches is given also. The limiting values of the signal plan elements can
be determined by the solution of certain optimization problems. In that case,
the optimization criteria are: green time of a signal group, the cycle time, the
total number of control vectors.

Part I1I is devoted to the solution methods of the problems formulated in
Part II. In this part it is shown that the optimization problems formulated in
Part II can be presented as the problems of finding the best path in a graph
of control vectors transitions. The method, based on the branch-and-bound
algorithm, is developed for solving these problems. The branching function,
dividing the solution set, is defined in the same way, regardless of the chosen
optimization criterion. The bounding function definition depends on the type
of the chosen optimization criterion.

In Part IV the developed algorithm is applied to find solutions to several
problems formulated in Part II. These problems differ in regard to the
optimization criteria or the set of constraints that define the feasible set of
solutions.

In Part V the influence of the choice of the complete set of signal groups
on intersection performances is analyzed. It is concluded that this influence is
very significant, and one heuristic is proposed for the choice of the complete
set of signal groups.
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Part |

MATHEMATICAL MODEL OF TRAFFIC PROCESS
ON A SIGNALIZED INTERSECTION

The process that takes place on a signalized intersection consists of
transformation of input flows into output ones, with queuing and queue
discharging; thus, it represents a dynamic process.

According to the general systems theory [58], [23], the following objects
can be associated with any dynamic process:

= Aninput space .#Z(i.e., the set of all inputs)

= Anoutput space %/(i.e., the set of all outputs)

= Astate space Zi.e., the set of all states)

The input space, .%, and the output space, %/ are two sets of time
functions. Their elements X(-) and y(-) are vector functions of time, defined
in the time domain .~ < R, where .7~ =(—o0,0) or [0,) in the case of
continuous time functions, and .7~ ={nAt|ne N} or .7 ={nAt|ne N, }
in the discrete case.

A state of the process is a vector that depends on time t and whose
components are real numbers.

The fundamental property of a dynamic system is that given any “initial”
time t, .77, any “initial” state W, € 77", and any input X(-) € %", both
w(t) (the resulting state at some later time t) and y(t) (the resulting output at
some later time t) are uniquely specified. Also, w(t) and y(t) depend only on
W, =W(t,) and the values of the input x(-) in interval [t,,t].

Therefore, in order to fully describe a dynamic process, the functions
have to be defined by which w(t) and y(t) are determined.
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1. GENERAL MATHEMATICAL DESCRIPTION OF THE DYNAMIC
PROCESS ON A SIGNALIZED INTERSECTION

The dynamic process on a signalized intersection is fully defined by the
quintuple (2, 7, 24, ¢*, ¢*).

An element of set.2 comprises uncontrolled inputs in the system—traffic
flows and inputs that influence the process—control inputs. Traffic flows are
influenced by traffic signals, controlled by control variables. Thus the input
can be described by the set of ordered pairs, i.e.:

X =P <Y . (1.1)

Set 24' is the set of controls, i.e., vectors
ul(') = (ul'(-),u’2(~),...,u’p(-),.. .,U; ).

A control u'(-)={u’(t)|te.7} is a periodic time function by which
the process of traffic signal changes is described (green, amber, red, red and
amber is the standard control sequence in many countries). The smallest part
of this process, the repeating of which makes up the whole process, is called
the control cycle, or, most often the cycle, and its duration, c, is called the
cycle duration or cycle time.

Since control components u, () are periodic functions of time, there
holds:

() =uht+ke), (k=0+£L%2,... p=12,..P). (1.2)

A control variable can assume either 0 or 1 value. Value 0 corresponds to
red (effective red) and 1 to green (effective green) signal indication, i.e.,

u () ={uy®te 7}, (p=12....P), (1.3)

where
u,he#, (tes),and .2 e{0L}.

The green, amber, red, red-amber sequence is here transformed to the
effective green, effective red sequence (see Section 4.1 and Appendix V).

11
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12 OPTIMAL TRAFFIC CONTROL: Urban Intersections

¥ - the set of vectors ¢ =(o,,0,,...,0;,...,6,) IS made up of elements
that are arrival flows or traffic streams (see Section 2.1). Traffic streams are
defined, as well as traffic flows in general, by their volume, speed, density,
headway or spacing interval, composition, the percentage of straight-through
or left-turning and right-turning volume, and the paths they use to traverse
the intersection. The quantitative traffic stream characteristic most frequently
used in algorithms for optimum signal plan determination is the traffic flow
volume, i.e., the number of vehicles that pass a given point in a unit of time;
in this case it is the number of vehicles that arrive on an intersection approach
during a time unit.

There exist arrival flow models [7], [31], in which it is assumed that
flows are deterministic, but these models are not realistic enough, except in
very specific cases. However, in expressions used for delay calculation, the
delay resulting from deterministic, average flow volume values represents a
part of more complex expressions that take into account the stochastic nature
of traffic flows.

Trajectories traversed by different traffic streams through the intersection
have to be known in order to determine whether a pair of traffic streams
can simultaneously gain the right-of-way, i.e., whether the streams are
compatible.

To each set X there corresponds a set 7 —the set of flow volume vectors
a)=(2,9,),---,(),..-,0,(-)) , whose elements are volumes of traffic
streams c,,G,,.... The set of indices

7 ={L2,..,0,....1',..,1} (1.4)

is such that vehicle flows are assigned indices from 1 to |, and pedestrian

and other flows from 1I'+1 to I. Thus, the set of indices corresponding to
vehicle flows is:

7' ={12,...,1F.

/s the set of system states. The state at time t is described by the
vector

w(t) = (W (1), W, ()., W, (D)., W, (1),

whose components represent queue lengths formed by arrival traffic flows,
i.e., traffic streams.
The set of outputs, 7/ is the set of vectors of output flows, i.e., outputs

OEICAORZIO NI N ORNR MO
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1 General mathematical description of the dynamic process 13

Output flows are characterized, in the same way as input flows, by
volume, speed, etc., and by the surface used for leaving the intersection. To
each set of outputs, 2/ there corresponds set ¢7°—the set of vector functions
A’ =@ ,90),---»0r (),-.-.,a; () , whose elements are volumes of output
elements y;(-), Y, (),... . Vector q°(-) represents the function defined by the
following expression:

°O={a°M®|te.7}, (1.5)

where

g () ={ar®Ite.7} (h=12,.. H).

These volumes represent the volumes of traffic streams that are transformed
by traffic signals or streams comprising several transformed traffic streams.

The state transformation (transition) function ¢' can now be described
by the following expression:

(Pl : Wto X(@[to,t]x%no,t])_)%- (1.6)
In this expression,

Urty.t) € %y 1) (1.7)

represents the restriction of function u’() to interval [t,,t].7 , and
Ui, 11 € Gy, 1y FEPTEsents the restriction of function q(-) to the same interval.

Expression (1.6) shows the fact that for determining the state in time t it
is necessary to know the state at a previous time t;, and the input, which is
an element of set (&, ;x4 17, 1.€., the vector of traffic stream volumes and
control in every instant of interval [t ,t].

The reaction (readout or output) function, @, can be represented as:
0 W x(O,x2)— OF , (1.8)
where:

#; — the set of states at time t

¢, — the set of vectors of traffic stream volumes at time t

¢ — the set of output volume vectors at time t
24, — the set of controls at time t
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14

Figure 1.1 represents an intersection and a part of the process on the

intersection.
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1 General mathematical description of the dynamic process 15

The process is described using the following variables:

(a) Volumes Q;(-) and gs(-), corresponding to flows o, and o,. These
volumes represent “uncontrolled” input variables.

(b) Control variables u;(-) and u:(-), i.e., “controlled” input variables.
These variables can assume either 0 or 1 value. Value 0 denotes red
signal indication (effective red), and 1 denotes green indication (effective
green).

(c) Queue lengths w;(t) and w(t), representing process state components,
with t €[0,c].
(d) Volumes q;(-) m gs(-) that resulted from transformation of variables

g;(-) and gs(-) under influence of control variables u;(-) and uz(-).

(€) The volume g5 (-), which corresponds to output flow y, (-) and represents
the sum of g3 () and qg:(-) volumes.

All these variables are shown in the [0,c] interval, where C is the basic

period of functions u,(-) and us(-), which are periodic time functions.
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2. UNCONTROLLED SYSTEM INPUTS

The system input, as already described, are vectors whose components
are traffic flows on intersection approaches, and sequences of different signal
indications by which the right-of-way is given or taken away, i.e., by which
traffic control is performed. This chapter describes the way to define and
represent arrival flows.

Several models have been used for describing arrival flows on an
intersection [7], [31]. The simplest is the “uniform arrivals” model. This model
is a rather rough approximation of the real process, which is stochastic by its
nature, and all other models account for this fact. Arrival flow parameters,
such as volume, speed, density, spacing, etc., represent stochastic processes.
Namely, these quantities are random numbers at a given time, i.e., defined
by the set of values they can assume and the probabilities of taking these
values.

Characteristics of these parameters, such as mathematical expectation,
dispersion, et al. are not constant—they change during a day. However, it can
be assumed that these processes are stationary in limited time intervals, e.g.,
morning or evening peaks or between peaks. Therefore, in further discussion,
when stating control problems and developing methods for their solution, it
will be assumed that we consider only intervals in which these processes are
stationary.

2.1. Input components—traffic streams

Vehicles approaching an intersection prepare themselves to perform a
certain “maneuver,” i.e., to drive straight through, turn left, or turn right at the
intersection. The vehicles that perform the same maneuver and form the same
queue on an approach, in one or several lanes, represent a flow component
that can be considered separately from other flow components, which perform
other maneuvers [4], [5]. Such an arrival flow component is termed a traffic
stream. In fact, this is the smallest flow component that can be controlled by
a separate traffic signal, i.e., by a sequence of signal indications different than
the sequences on other signals.

17
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18 OPTIMAL TRAFFIC CONTROL: Urban Intersections

Traffic streams on an intersection can represent passenger vehicle flows,
pedestrian flows, flows of public transport vehicles, etc. Traffic streams o;
are components of vector ¢ = (o,,0,,...,6j,...,0¢) .

The queue formed by a vehicle traffic stream, during the red signal
indication, occupies one or more lanes. Horizontal signalization is the same
in all lanes used by one traffic stream. Vehicles joining the queue can choose
any lane on the approach, expecting to leave the queue in the same order as
when joining it [5].

An approach is a part of the street, comprising one or more lanes, along
which vehicles arrive to the intersection and on which the queue of a particular
traffic stream forms. Traffic stream o; uses approach T, (ie 7).

Volume unit (pcu)—Traffic stream volume is equal to the number of
vehicles that pass a given point in a unit time. Since traffic streams are
composed of various vehicles, the volume is expressed as the number of
average passenger cars per time unit (pcu/s). For each vehicle type there can
be determined an equivalent number of passenger cars [88], [45]. This number
is determined on the basis of the fact that various vehicles need different time
to pass through the intersection. Heavier vehicles need more time than light
ones. Vehicles of the same type need more time when turning left or right
than when going straight. The equivalent number is equal to the number of
passenger cars that would pass through an intersection in the same time as the
given vehicle type. Table 2.1 presents an example of equivalent passenger car
units for some vehicles [15] when going straight or turning.

Table 2.1
. Straight Turning
Vehicle Type (pculs) (pculs)
Passenger car 1 1
Bus 1.7 2
Heavy truck 1.7 2

2.2. Mathematical models of arrival flows
—traffic streams

Several models have been used to describe traffic streams, as already
mentioned. The simplest model is the uniform flow model.

A traffic stream is uniform [7] (with uniform arrivals) if its approach
volume is constant, q [pcu/s]. The spacing interval is then also constant,
equal to 1/q [s/pcu].
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2 Uncontrolled system inputs 19

This model is a rough approximation of the real flow. However, for
certain purposes, such as determination of vehicle delay in realistic, stochastic
models, the uniform flow model can be used for determination of the delay
component that results from average arrival volume values.

All other models used for arrival flow modeling, i.e., traffic stream
modeling, are based on the theory of stochastic systems. In this case, ¢, is
the set of traffic streams volume vectors at time t, and its element represents
the vector whose components are random variables.

Most frequently it is assumed that vehicles belonging to traffic streams
arrive according to the Poisson process [1], [89]. The real process is more
complex so that other models have been used in which some limitations
inherent to the Poisson process were eliminated [7], [31].

2.2.1. Modeling arrival flow with the Poisson process

Several authors pointed out that the stochastic Poisson process could
be used for modeling arrivals of vehicles at an intersection. Webster used
this model in his expression for calculation of the delay of vehicles at an
intersection [89]. The expression was verified in practice and is still used.

With Poisson flow, the probability of arrival of m; vehicles of traffic
stream o; to an intersection, during interval t, is expressed by the following
formula:

Pm, () = p[m; vehiclesarrivein interval 1] = e A (2.1

(g™
m;!

where 0; is constant.

The mathematical expectation of the number of vehicle arrivals, M;, in
interval t is, according to [86]:

= < ~ (qi’t)mi —Q;T
Mm =M= > m =3m 2L o
=m=Emp, 9= Em

2.2)

—(q.7)e 4" N M:

The average volume (flow intensity, or flow rate) of traffic stream o; is
thus equal to
Mm _m _Gt

=—1= =0; (pcu/s). (2.3)
T T T
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20 OPTIMAL TRAFFIC CONTROL: Urban Intersections

The spacing interval, ®,, between two consecutive vehicles belonging
to stream o; is a random variable [86]. If a segment t’ is considered,
the beginning of which coincides with the beginning of interval ®,, the
probability that in 1’ at least one vehicle will arrive is:

F () = pi[©; <t]=1-p,, 2.4)

where p, is the probability that m; =0, i.e., that during t" no vehicle of

stream o; will arrive. This probability is obtained by setting m; =0 in
formula (2.1). Then we have:

071 _ (ql T’)O it _ A0 T
pi (7)) = Te =€
and
p[O,<T]=1-e%". (2.5)

This is, in fact, the probability distribution function of the random
quantity ;. The probability distribution density #;(t") of ©®, is obtained
as the derivative of the distribution function over 7', i.e.,

h(t)=qe %, (¢>0). (2.6)

The mathematical expectation of the spacing interval is:

MO, =0, = J‘ﬂ:’qiefq‘ﬂdr’ = qijt'efq”’dr’ L . (2.7)
0 0 i

Thus, if the probability distribution of the number of vehicles that arrive
during time segment t' to an approach is Poisson distribution, then the
spacing interval distribution is negative exponential.

The probability that during a short interval 8t one vehicle arrives,
p: (8t) , is approximately given by:

pi (8t) ~1- p(3Y)
where p?(3t) is the probability that in interval St no vehicle arrives. This

probability is determined as

0
Py (t) =—(qi3t) g W =g W (2.8)

Therefore,

pl(St) x1—e %%
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2 Uncontrolled system inputs 21

Evolving e %% into a series, and neglecting higher order terms, results
in
pr (3t) ~1- (1-g;3t) = g3t , (2.9)
i.e., the probability of one vehicle arrival to the intersection in a short interval
dt is approximately equal to ;5t .

The Poisson model is good for describing the real arrival process on
an intersection approach in the case when the ratio between volume and
approach capacity is not high.

2.2.2. Modeling arrival flows with more complex stochastic processes

For traffic streams with larger volumes, when interactions between
vehicles cannot be neglected, other models are used, which give better results
than the simple Poisson process. Some of them actually represent certain
generalizations of the simple Poisson process.

The simplest generalization of the simple Poisson process is the
Compound Poisson process [40], [57]. According to this process, vehicles
of one traffic stream arrive on an approach in groups. Group arrivals are
Poisson arrivals with intensity A, and the number of vehicles in a group, z, iS
an integer random variable with seed function ®(z).If N(T) is the number
of arrivals in interval of duration T, then

M[zN =g TE2@ (2.10)
The average volume is
q=1r0'(Q). (2.11)
The mathematical expectation of the number of vehicle arrivals is
MIN(t)]=AT, (2.12)
and the dispersion is
DIN{t)]=1AT, (2.13)
where 1 is the dispersion index, defined by expression
q)rr(l)
| =1+—— 2.14
o) (2.14)
where
iy 9P(2 vy 420(2
CD(1)=J e @"(1) = g)
z=1 d Z z=1
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22 OPTIMAL TRAFFIC CONTROL: Urban Intersections

The Poisson model does not impose an upper bound on the number of
vehicles that can arrive during a given time interval. In reality this limit
always exists. If the upper bound on the number of vehicles that can arrive
during interval T equals p, then the probability of n vehicle arrivals in interval
T is given by the following expression:

N
p(n)z(n]p”vN”, (2.15)

where v=1-p.

This expression, in fact, defines binomial distribution of vehicle arrivals
on an approach.

Many other models ([67], [21], [60], [46]) have been used for describing
the arrival process of vehicles on an approach. All of them were developed
in order to provide a better model of real process than the Poisson model.
However, most of them are much more complex, and the Poisson model is
still used for most practical purposes.

2.2.3. Traffic stream parameters

The path used by a traffic stream to traverse an intersection is called
the trajectory. A trajectory connects an approach on which vehicles enter
the intersection to the intersection leg on which these vehicles leave the
intersection. Fig. 2.1 shows trajectories of all traffic streams that pass through
a four-leg intersection.

Vehicles belonging to some streams may use more than one trajectory
when traversing the intersection (e.g., streams o, and o, in Fig. 2.1), and
accordingly, several exit approaches. Therefore, these streams can be regarded
as multicomponent streams, where the distinction between components lies
in the fact that they use different trajectories when traversing the intersection.
Traffic streams representing these components are called partial traffic
streams [77].

Vehicles belonging to different partial traffic streams use the same
lane when arriving to the intersection and different paths for leaving it. For
example, in Fig. 2.1, stream o, comprises two partial traffic streams: oy and

2
63 .
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Figure 2.1

For every traffic stream o; on an intersection, it is necessary to have the

following information:

a)

b)

The approach T; used by vehicles belonging to stream o;, with defined
lanes assigned to the stream, and traffic signs that regulate direction of
movement through the intersection.

The mathematical model of the random process, which describes vehicle
arrivals. The most important characteristic of the model is the volume,
expressed in pcu per time unit. The Poisson process is most often used.

The average arrival volume of the traffic stream, and if it is a
multicomponent stream, then also the average volumes of partial streams,
expressed as percentages of the arrival volume.

The fype of the traffic stream. Traffic streams represent different flows:
vehicles, pedestrians, trams, etc.

The trajectory of the traffic stream through the intersection. If the stream
comprises partial traffic streams, their trajectories have to be known
also.

Traffic streams on an intersection, as mentioned in Section 2.1, can

be represented as components of a vector (the vector of arrival flows or
uncontrolled input):

6 =(6,,05,..,0i,...,07) .
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24 OPTIMAL TRAFFIC CONTROL: Urban Intersections

The uncontrolled input, o, is transformed, by control, into the output, i.e.,
the output flows in interval [t,,t]. Vector o is an element of set X, ,;, whose
elements are all uncontrolled inputs in interval [ty,t], i.e.,

GEZ[tOVt].

2.3. Basic relations in the set of traffic streams

For solving the problem of introducing traffic signals on an isolated
intersection, as well as for solving the control problem, it is necessary to know
relations between traffic streams on the intersection. A thorough analysis of
these relations is very significant if their combinatorial effects are to be taken
into account.

Since the main objective of traffic control by traffic lights is to give the
right-of-way to some traffic streams, and to stop others, it is necessary to
find, in the set of traffic streams of an intersection, the traffic streams that can
simultaneously get the right-of-way. Therefore, a traffic stream compatibility
relation is introduced, defined by a set of traffic stream pairs, such that
elements of the pair can simultaneously get the right-of-way.

The traffic stream compatibility relation plays an important role in solving
traffic control problems related to:
= Deciding whether traffic control by traffic lights should be introduced
at an intersection
= Assigning control variables to traffic streams, or to subsets of traffic
streams
= The traffic control process on an intersection

The factors that have to be considered when defining the compatibility
relation are:
= The intersection geometry
= Factors related to traffic process safety, for which expert estimations
of traffic engineers are needed

The analysis of intersection geometry considers mutual relations of
trajectories of traffic streams. Obviously, when trajectories of two traffic
streams do not cross, these streams can simultaneously get the right-of-
way, i.e., they are compatible. On the other hand, when trajectories of two
traffic streams do cross, the streams are in a conflict, and their simultaneous
movement through the intersection should not be permitted.
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2 Uncontrolled system inputs 25

If volumes are not high, a “filtering” of one stream through another can
be permitted in some cases. However, when determining the compatibility
relation, some special requirements should be taken into account, e.g., some
streams are required to pass through the intersection without any disturbance,
although filtering could be permitted if only their volumes were considered.
These requirements are usually achieved by so-called directional signals.

When only geometrical factors are considered, the relation of conflictness
and the relation of nonconflictness can be defined.

Traffic streams on an intersection are elements of the set of traffic streams,
S, 1.e.,

7 ={0,,06,,...,0{,...,01}, (2.16)
where i € 7, and Zis the set of traffic stream indices (1.4):

Z={L2,..,i,...}={2,...,i..1,..0}.
Indices i=12,...,I' are assigned to vehicle traffic streams, and indices
i=1'"+1,...,1 to pedestrian and other traffic streams.

Elements of set . are also components of vector ¢ =(c,,0,,...,6,),
which describes the uncontrollable system input.

For exact statement and solution of traffic control problems, it is necessary
to study the relations of conflictness, nonconflictness, and compatibility.

2.3.1. Conflictness relation of traffic streams

The conflictness relation is illustrated by the intersection presented in
Fig. 2.1, with the set of traffic streams

7 ={0,,0,,...,05p}.

Some pairs of traffic stream use, along a part of their trajectories, the
same space on the intersection, i.e., the conflict area. These are the streams
whose trajectories cross or merge. A conflict exists between such streams.

The set of all pairs of traffic streams that creates a conflict between
elements of the pair represents the conflictness relation. Thus, the conflictness
relation, C,, can be defined in the following way:

C,c %y, (2.17)
1e.,
C, ={(o;,0;) | the trajectories of o; and ; cross or merge,

50, €T (2.18)
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26 OPTIMAL TRAFFIC CONTROL: Urban Intersections

The graph of conflictness, G, , is defined by set . and relation C,:
G, =(~.,C). (2.19)

The incidence matrix, B', of graph G, for the intersection given in Fig. 2.1
is:

0010011101
0011101110
1100111101
01 00O0O0OOO0OTI1IO
0110001010
B'=[b’ = . 2.20
['J]1°*1°1010001110 (220
1110110101
1110011000
0101110000
111000100 0f
Elements of this matrix, bi’j , are defined as follows:
1 (c;,0,)eC
by = (010,06, 2.21)
0,(ci,0;)2C,

All conflict points of traffic streams are indicated in Fig. 2.1. It can be
noted that the conflictness between two traffic streams means that they can

have one or more than one conflict point. For instance, streams ¢, and o,
have two conflict points.

Since the conflict exists between any two streams whose trajectories
cross or merge, it is obvious that the conflictness relation is symmetrical:

c;Ci0; = o,Cio;, ((ci,cj) eC)). (2.22)

This fact can also be noted observing expression (2.20).
Relation C, is not reflexive (a stream cannot be in conflict by itself).
Therefore, (c;,0;,)¢C,, (ie Z).

2.3.2. Nonconflictness relation of traffic streams
The nonconflictness relation of traffic streams represents a set of ordered

traffic stream pairs, such that the trajectories of the pair elements do not cross
nor merge. Thus, this relation is the set of all pairs of traffic streams that are
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not mutually in conflict:

C)=C, =(x)\C,. (2.23)

The graph of nonconflictness is defined by set.””and relation C,, as
v =(7.C3).

2.3.3. Compatibility relation of traffic streams

As already mentioned, when determining the compatibility relation
of traffic streams, besides data on geometrical features of traffic stream
trajectories, it is necessary to consider some other factors, i.e., it is necessary
to determine:

= The pairs of conflicting traffic streams that can simultaneously get
the right-of-way

= The traffic streams required to pass through the intersection without
any disturbance (the streams to which the right-of-way is given by
directional signals)

Some pairs of conflicting traffic streams can at the same time be pairs
of compatible streams, although the streams are conflicting. Therefore, it is
necessary to divide the conflicts into allowed and forbidden [26]. Forbidden
conflicts can be regulated only by traffic lights, while allowed conflicts are
solved by traffic participants themselves, respecting priority rules prescribed
by traffic regulations. Without traffic lights, conflicts are solved by “filtering”
one stream through another. Obviously, the possibility of filtering depends
on vehicle spacing interval, which depends on volume of traffic streams. The
volumes change during a day. There are intervals with very high volume
like morning peak, afternoon peak, and intervals with significantly lower
volume like off-peak and night periods. Hence, situations may arise that
two conflicting traffic streams may simultaneously have the right-of-way in
one period and not in another. Thus, it might be necessary to change the
compatibility relation during a day.

The set of traffic stream pairs, which comprise conditionally compatible
streams, i.e., conflicting streams allowed to simultaneously pass through an
intersection, can be, thus, defined as follows:

C;={(ci,0;)|(c,0;) € C, ,streams 5; and o ; can simultaneously
get the right-of -way }. (2.24)

The problem of introducing traffic signals for traffic control on an
intersection is actually a problem of the same kind. Namely, it is necessary
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28 OPTIMAL TRAFFIC CONTROL: Urban Intersections

to determine when traffic lights have to be introduced in order to remove
conflicts, i.e., which are the values of traffic stream volumes when filtering is
not possible anymore. Before traffic signals are introduced, traffic participants
themselves, using filtering and respecting priority rules, solve all conflicts.

When volumes of conflicting traffic streams reach some level that filtering
becomes impossible, the introduction of traffic lights becomes unavoidable
because traffic participants themselves cannot solve the conflicts. The values
of traffic stream volumes that justify signalization of an intersection are given
in tables in various traffic-engineering handbooks. Avoiding introducing
traffic lights when these levels are reached can lead to many negative effects,
such as enormous delay and number of stops, increase in the number of traffic
accidents, etc. Therefore, conflicts at all conflict points on an unsignalized
intersection are prevented by traffic participants respecting priority rules,
while at a signalized intersection traffic lights are used in order to avoid
conflicts at most of the conflict points, with a possibility of some conflict
points still left for “self-regulation” by traffic participants.

The compatibility relation of traffic stream pairs whose elements can
simultaneously get the right-of-way is:

C,=C,UCy. (2.25)

In some cases it may be necessary to control the traffic in such a way that
certain streams can pass through an intersection without conditional conflicts.
Then they cannot gain the right-of-way simultaneously with any conflicting
streams, although that would be justified if only volumes were considered.
For controlling these streams, directional signals are used.

If the set of streams that passes through the intersection without any

conflict is denoted by ., where . < .%”, then the set of pairs of traffic
streams that can simultaneously get the right-of-way is defined by the
following expression:

C;=C,\{(ci,0;)I(0;,0;)eC;, (c;0rc;e.s")}. (2.26)
Assuming that each traffic stream is compatible with itself, in order to

define the set of pairs that define the compatibility relation, the set of pairs
C, should be extended by the diagonal Ag inset ..

Therefore, the compatibility relation can be defined as:
C=C,UAq, (2.27)
where
As ={(oj,0i)|c; €7}, (i€ 7). (2.28)

Relation C is symmetric and reflexive.
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The compatibility graph of traffic streams is defined by the set of traffic
streams, ., and compatibility relation C:
G, =(~,C). (2.29)

Since set . is finite, and relation C symmetric and reflexive, graph G,
is a finite, nonoriented graph, with a loop at each node. The incidence matrix
of this graph is B=[b;;],;, where I=card.”. Elements of the incidence

matrix are defined as
1, (oj,05)eC
"o, (ci,0;)eC

A compatibility graph does not have to be a connected graph. In Example
2.1.y, the compatibility graph has two connected components. In some cases
a connected component can consist of only one node.

b (i,je 7). (2.30)

Example 2.1
a) For the intersection presented in Fig. 2.1 determine the compatibility relation and

compatibility graph if the set of permitted conflicts is defined by the following relation:
Cél :{(Gl! 06)1 (le 610)! (02 1 64)1 (05167)1 (07 1 G8)} [l

and the set of traffic streams that shall have no disturbance in passing through the intersection

(controlled by directional signals) is:
7" ={o,}.
All conflict points (the point at which trajectories of traffic streams cross or merge) are

shown in Fig. 2.1.
The conflict points for stream G are points A, B, C, D, E, and F (Fig. 2.2). The allowed

conflicts are marked by B and C (circled points), i.e., (0;,0;5) €C,, (6,,04) €C,.
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Figure 2.2
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30 OPTIMAL TRAFFIC CONTROL: Urban Intersections

Traffic stream & could be compatible with G, and G4 . However, stream G is controlled
by a directional signal, and the vehicles belonging to this stream shall not meet any obstacle.
Therefore, stream G, cannot be compatible with streams G and Gy, .

The compatibility graph incidence matrix is:

11011300 1@
110@®O010001
0011000010
1@1111&)101
100111 101
B=Dbylowo={@1 01 110000]
00010 1O®10
000110@OI11
10100001111
@10110011 1]

The circled 1s in matrix B correspond to pairs of signal groups that can simultaneously have
the right-of-way in spite of their conflictness. The circled and crossed 1s represent the conflicts
of stream o, that would be allowed if stream G, were not controlled by the directional signal.
Since o, € .%”', the stream pairs (G;,0,) and (G;,5;,) cannot belong to compatibility
relation C, and therefore by ¢ =0 and b, ;5 =0 (also, by, =0y, =0).

The compatibility graph ( Gé ) of traffic streams for the intersection in Fig. 2.1 is presented
in Fig. 2.3 for the case when stream G is controlled by an ordinary, nondirectional signal, and
Fig. 2.4 presents compatibility graph Gc for the same intersection if stream G is controlled
by the directional signal.

The edges of graph G_ between nodes G, and G, as well as between nodes G,
and Gy, do not exist in graph G . because an edge between two nodes representing traffic

streams indicates that these streams are in the compatibility relation.
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Figure 2.3 Figure 2.4

B) An intersection with six traffic streams is presented in Fig. 2.5. Determine the relation
and graph of compatibility if no conflicts are allowed.

Figure 2.5

The compatibility graph is given in Fig. 2.5, and the compatibility relation is represented
by matrix B, i.e., the incidence matrix of graph G ¢

OrRr ORr KK
PR OOR K
OO Or OoOr
oOr LR OoOOoOo
R PR O R
PR, OORrROo
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32 OPTIMAL TRAFFIC CONTROL: Urban Intersections

y)  For the intersection presented in Fig. 2.6 determine the relation and graph of compatibility
if no conflicts are allowed.

Figure 2.6

The compatibility graph is given in Fig. 2.6, and the compatibility relation is represented
by matrix B, i.e., the incidence matrix of graph G ¢

o

Il
P OOR OR R
P ORFROORRE
oOroor oo
COoORrRrEFPROOR
RPORERPLRORFRO
oOrOoOOr OO
P ORrROOR K
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3. SIGNAL GROUP

Introduction of a traffic control system on an intersection consists
of installation of signals that will control traffic streams by different light
indications. The basic intention of traffic signals introduction is, of course,
prevention of simultaneous movement of incompatible traffic streams.

Traffic control at an intersection consists of giving and canceling the
right-of-way to particular traffic streams. Giving/canceling the right-of-
way is performed by different signal indications. Meaning of indications is
assigned by a convention. A green indication for vehicles means allowed
passage, while red means forbidden passage. An amber indication, appearing
after a green indication, as well as a red—amber after a red indication, informs
drivers that the right-of-way will be changed. The duration of amber and
red—amber intervals in some countries is determined by traffic regulations,
and it is most frequently specified as 3s for amber and 2s for red—amber
indication.

Signals that control pedestrian streams usually have only two indications:
red (“stop”) and green (“walk”™).

The most frequently used sequence of signal indications for vehicles and
for pedestrians is presented in Fig. 3.1. However, in some countries other
sequences exist, such as flashing amber before a steady amber indication, or
direct switching from red to green, etc.

a) Signal sequence for vehicles

|

b) Signal sequence for pedestrians

—
@D
«Q
@D
>
o

red indication

green indication
amber indication
red—amber indication

mAL

Figure 3.1
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34 OPTIMAL TRAFFIC CONTROL: Urban Intersections

The control of traffic lights, i.e., forming and implementing specified
signal sequences, is performed by an electronic device—a traffic controller.
A controller changes signal indications using sequence of pulses.

Changes of signal indications are described by a mathematical variable,
so-called control variable. Control variables can be assigned to every traffic
stream. However, the fact that compatible traffic streams can simultaneously
gain/lose the right-of-way makes it possible that a subset of traffic streams,
comprising several compatible streams, can be controlled by a single control
variable [34].

Therefore, one of the first problems to be solved when introducing traffic
lights control at an intersection is to establish the correspondence between
traffic streams and traffic signal sequences, i.c., the control variables that
control these traffic streams.

The simplest assignment of control variables to traffic streams is to
assign one control variable to each traffic stream. However, there exist some
practical reasons that make this assignment not generally applicable.

Technical and economic considerations in earlier years of traffic control
systems development had caused a tendency to minimize the number of
control variables. Namely, in this case the traffic controller could be simpler,
with a smaller number of modules that form control variables, and thus it
would give a cheaper solution. This reasoning is nowadays not as important
as it was before. Modern, microprocessor-based traffic controllers can control
almost any number of signal groups, and the price of their components
(modules) is not so high any more.

Modern traffic controllers can implement more complex control
algorithms than was possible before their introduction. However, increasing
the number of control variables significantly emphasizes the combinatorial
nature of traffic control problems.

3.1. Signal group definition

Various intersection performance indices depend on the choice of traffic
control systems for an intersection. Among these performance indices are:
total delay or total number of vehicle stops in a defined interval, total flow
through the intersection (for saturated intersections), capacity factor, linear
combination of delay and number of stops, etc. Values of these performance
indices also depend on the assignment of control variables to traffic streams.
The best results are, obviously, obtained if each traffic stream is controlled
by one control variable.
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3 Signal group 35

When the number of control variables is less than the number of traffic
streams, certain constraints have to be introduced that will express the
requirement that several traffic streams simultaneously get/lose the right-of-
way. The consequence of these constraints is “corruption” of optimum values
of performance indices compared to the case when each traffic stream is at
the same time a signal group.

The reduction in the number of control variables results in simplification
of traffic control problems and also in possibility to use cheaper and simpler
traffic controllers.

In real-time traffic control systems, in which data on current values of
traffic stream parameters are used for determining values of control variables,
a particular attention has to be devoted to choosing appropriate set of control
variables and their assignment to traffic streams.

Determination of the set of control variables is very complex due to all
the mentioned reasons. This problem, in fact, is the problem of partitioning
the set of traffic streams, .7, in subsets of traffic streams, such that a single
control variable can be used to control a subset.

A subset of traffic streams that simultaneously gains/loses the right-of-
way, i.e., that is controlled by a single control variable, is called a signal
group.

Another way to define a signal group is as follows: A signal group is the
set of traffic streams that are controlled by identical traffic signal indications.
Some authors define a signal group as the set of signals on various traffic lights
that always show a same indication [69]. For traffic equipment manufacturers,
a signal group is a controller module, which always produces one sequence
of traffic signal indications.

It is obvious that traffic streams belonging to one signal group have to
be mutually compatible. However, it is not enough. Namely, signals used for
control of traffic streams of various types—vehicles, pedestrians, trams, etc.,
cannot always have the same indications, which is necessary if they were to
belong to a same signal group. Vehicle streams are, for example, controlled
by signal sequences with four indications, while for pedestrian streams only
two indications are used. Therefore, signal groups are formed to contain only
same types of traffic streams and the set of traffic streams . has to be
partitioned in several subsets: the subset of vehicle traffic streams, the subset
of pedestrian traffic streams, etc.

According to the signal group definition, for the intersection presented
in Fig. 2.5, together with its compatibility graph, the signal groups are the
following subsets: D, ={c,,5,,05}, D, ={0,,63}, D; ={c}, etc.

© 2008 by Taylor & Francis Group, LLC



36 OPTIMAL TRAFFIC CONTROL: Urban Intersections

Assignal group D, represents a subset of the set of traffic streams .” and
can be represented as follows:

D, ={0,1,02>-++s0 pes++ >0 ey} » (3.1)

where o, €., ee &, and &, is the set of traffic stream indices in signal
group D, ie.,

& ={1,2,....e,.. .E(p)}.

3.2. The relation of identical signal indications
(Identity relation)

In order to form signal groups, it is necessary to determine for each pair of
compatible traffic streams whether they can be controlled by traffic lights that
always have identical indications. The set of such signal group pairs represents
a relation in the set of traffic streams .. Since this relation determines
whether identical traffic light indications can be used for controlling signal
group pairs, it is called the relation of identical signal indications, or the
identity relation.

The identity relation C, is defined as:

C, ={(o;,0;)|traffic streams 5; and o can be controlled

by a single control variable, (3.2)
G;,0; € S}

Relation C, can be represented as:
C,=C\C,,
where
C,={(0i,0))[((0;,5;)€C) A

/\(Gieyf,cjey',f,legz,fil), (3.3)
c;,0;€7 )}

The subsets .7",.72,.. .,.Vf vy I8 represent subsets of signal groups
that are of the same type (vehicle, pedestrian, tram, etc.). Traffic streams of
one type are controlled by signals that have same sequences of indications.
For vehicle traffic streams, for example, this sequence is: green, amber, red,
red—amber.

© 2008 by Taylor & Francis Group, LLC



3 Signal group 37

The set .7 1is the index set of signal group types, i.e., signal types:

7 ={1,2,...,f,...F}. (3.4)
The collection

=, 7. 7Ly (3.5)

represents a partition of set .77 .

Hence, we have:

F
Us'=s (3.6)
f=1
s'NA' =@, (fer, lerz, f=zl). (3.7)

The relation of identical traffic signal indications C is:
a) Reflexive, i.c.,
(0;,0,)€C,, (0;€.7) (3.8)
b) Symmetric, i.e.,

(ci,06))€C, = (5;,0)eC,, ((c;,0;)€C,) (3.9

To an identity relation there corresponds the identity graph:
G, =(~,C)=(7.I,), (3.10)
where I, is
[, >%Y).

Besides the definition G, =(.7,C_) in further discussion the definition
G, =(7.I,) is also used (Appendix I).

The identity graph given in Fig. 3.2 refers to the intersection with ten
traffic streams, presented in Fig. 2.1, with its compatibility graph of traffic
streams given in Fig. 2.3. This identity graph corresponds to the identity
relation in the case when no directional signals are used.

If traffic stream o, is controlled by a directional signal, the identity graph
will have the form presented in Fig. 3.3 and the corresponding compatibility
graph is given in Fig. 2.4.
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Figure 3.3

The identity graph given in Fig. 3.4 refers to the intersection with six
traffic streams presented in Fig. 2.5, together with its compatibility graph.

If traffic streams of various types pass through an intersection (F>1),
the identity graph G, is a nonconnected graph. The number of connected
components is equal to or greater than the number of stream types F. Graph
G, is a nonoriented graph with a loop in each node.

Since graphs G, = (.¥7,C) and G, = (.¥7,C,) have the same set of nodes,
and C, c C, then the identity graph G, is a subgraph of the compatibility
graph G, .
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Figure 3.4

3.3. The complete set of signal groups

The identity relation C, defines the set of signal group pairs that can be
controlled by identical signal indications, and the identity graph G, enables
determination of all set .%” subsets that represent signal groups.

A set of nodes of any subgraph of identity graph G, such that the
subgraph is a complete graph, represents, in fact, a signal group. Since the set
of nodes of a complete subgraph of a graph is a clique (Appendix 1), a signal
group can be also defined in the following way:

A signal group is a clique (in Berge’s sense [9]) of the graph of identical
signal indications G, .

For traffic control at an intersection, therefore, it is necessary to determine
a set of signal groups such that each element of set . belongs to one and
only one signal group, i.e., clique of graph G, . Such set of signal groups is
called a complete set of signal groups and it represents a partitioning of set
S

For one graph of identical signal indications there can exist several
complete sets of signal groups. This means that one intersection can be
controlled in several ways, based on the choice of the complete set of signal
groups. Introducing an appropriate measure for comparison of complete sets
of signal groups, the choice of the complete set can be formulated as an
optimization problem, which could be stated as follows: Find the complete
set of signal groups such that the value of the chosen performance index is
optimized. The set of feasible solutions for this problem is the collection of
all complete sets of signal groups.

3.3.1. Collection of all complete sets of signal groups

A complete set of signal groups represents one partitioning of set .7 .
Therefore, a complete set of signal groups represents an equivalence relation
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C! inset .7 [47], which is defined as:

C." ={(ci.o)1(((ci,0))eC, A ((c,0¢) €C,))
:((Giﬁck)eca) Iajakey)}

The signal groups that are elements of the complete set of signal groups

(3.11)

are equivalence classes of this relation, and the complete set of signal
groups is the quotient set .#”/C." of set . by equivalence relation C
(Appendix II). In this definition, m e .7 ={1,2,...,M}, and M is the total
number of equivalence relations defined in set .7, such that their equivalence
classes are cliques of the graph of identical signal indications G, .

Therefore, the problem of determining all complete sets of signal groups
for a given graph of identical signal indications G, =(.*’,I;) can be
formulated as follows: Find quotient sets by all equivalence relations defined
in set .77 such that the equivalence classes of these relations are cliques of
graph G_, i.e., in another words, find all partitionings of set .¥” such that the
subsets into which .7 is partitioned are cliques of graph G, .

The procedure for determining all complete sets of signal groups for a
given graph G, consists of the following steps:

e Determining the set of all cliques of graph G,

e Forming the collection of quotient sets of all equivalence relations defined
in set ., with the equivalence classes of these relations being cliques of
graph G, i.e., elements of the set determined in step 1

These steps are determined by functions d’ and d”, which are defined
below, in the scope of the steps explanation.

a) Determination of the set of all cliques of graph G, =(.*",I',)

Graph G, cliques, which are in fact signal groups, represent subsets of
set 7, such that for any clique D, of graph G, there holds D, €2(¥).
The set of all cliques D of graph G, is a collection of subsets of set.””, i.e.,
DePQP(¥) ,where P(¥) is a partitive set of set S .

Function d'(G,), by which set D is determined, is defined as follows:
d'(G,)=D={Dy|(c; €D, )r(c; €D, )=(c; el,0)),l. € £ }
={b,.b,.....D....D }, (3.12)

where
Z. ={1.2,...,1;,...,L.},
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because each clique is the set of nodes of a complete graph.

Relation C, is reflexive (a loop exists in each node of graph I, ), so that
the sets containing just a single node are also cliques of this graph, i.e., they
are signal groups also. This can be expressed as o; €I, 6;, (0; € 7).

The set of all cliques, 9, of a graph is obtained using a CLIQ program,
the pseudocode of which is given in Appendix III. Other algorithms used for
finding graph cliques are listed in Appendix VI.

b) Forming the collection of quotient sets by all equivalence relations defined
inset ., with the equivalence classes of these relations being cliques of
graph G, =(~,T)

Collection 9 contains all cliques of graph G, . Thus, it is obvious that
one quotient set, 9., i.e., a complete set of signal groups, is a subset of

a
collection 9, namely:
Q' =7/C" €9D),or D <D,(me ) (3.13)
2y =/C={D/".Dy....Dy...Dp }, (me.2) (3.14)

and the collection of all complete sets of signal groups 9, is a subset of set
?(9D),i.e.,

D, €P(P(D)) . (3.15)
Collection 9y, is the collection of quotient sets by all equivalence relations
C/,ie.,
Dy, ={D0. D2, DY DY, (3.16)
where:
7% — the index set of all equivalence relations C.", i.e.,
A6 ={1,2,...,m,...,M}, (3.17)
&, — the index set of all classes of equivalence C", i.e.,
7, ={,2,...,p,....,P,}. (3.18)

Since each equivalence relation and its quotient set, D,', determine one
partitioning of set ., function d”" can be defined as follows:
d"(D) =2, ={D;"| ((Dy €D;")(D;" €D;") ((Dy ND;" =),
peX,re’, p#r, (3.19)

P

UDZ’zY),me%}.

p=I
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Collection 9, of all complete sets of signal groups for a given graph G,

is determined by composition of functions d’ and d”:
D, =d(G,)=d"od". (3.20)

The following example illustrates determination of all complete sets of
signal groups for an intersection with six signal groups.

Example 3.1

Determine the collection of all complete sets of signal groups for the graph of identical
signal indications given in Fig. 3.4.

The graph of identical signal indications, Ga =(,T a) is defined as follows:
7 ={0,,0,,03,04,05,06}
I',0,={0,,0,,0;5,05} I,0,={0,,0.,05} I,o3={0;.0}
[,04 ={04,05} I',o5 ={05,0,,05,0,} T,00={c}
1) Determining the set of all cliques

The set of all cliques, D of graph Ga , i.e., the set of all signal groups, determined by
CLIQ program, is:

2=d'(G,) ={{o,}{o,}{o:}-{o.}-{os}-{os}.{o,. 0.},
{c,,03}{0,0;5}.{0,,05}{0,,05}{c,,0,,05}}
={D,,D,,....,D,,}.

The signal groups are:

D, ={c1}, D, ={0,}, D; ={o3}, D, ={o,}, D5 ={os}, Dg ={o}.
D, ={o,,0,}, Dy ={0,,05}, Dy, ={o,,05}, D,, ={0,,05},

D, ={o,,05},

D), ={c,,0,,05}.

2) Forming the collection Dy of the complete sets of signal groups

The elements CD;" of collection 9D, are the following partitionings of set TS

D, =.7/C, ={{o, }{o,}{o}{o }{os}. {os} }
={D,,D;,....D{}={D,,D,,D,,D,,D;,D,}
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@j :,?/ng :{{03},{64},{05},{06},{01,62}}
={D},D;...,D:}={D,,D,,D;,D,,D,}

@: = *?/Cgs ={{o.}.{o}-{o;s}{cs}.{o.05}}
:{D139 D;a-": D?}:{D29 D43 D57 D67 D8}

@: = y/ci :{{62}5{63},{04}3{66}a{61305}}
={D/,D;,....D{}={D,,D,,D,,D,,D,}

@2 = y / C: = {{61}1{03}’{64}’{66} ’{62 s 0-5}}
:{D15= Dzs""ﬂ DSS}Z{DI: D37 D4’ D6’ Dlo}

CDa6 = y/cg :{{Gl}a{c2}:{03},{66}5{64 565}}
:{D16’ D26:“'5 D56}:{D15 D23 D37 Dea D]l}

@; :y/CZ :{{03},{04},{06},{01,02,05}}
Z{D17 > D27’---= DZ}Z{Dsa Dy, Ds, Dlz}

CD;; :y/csg :{{03}5{06}’{61562}’{G4a05}}
={D},D;,..,D}}={D,,D,,D,,D, }

@2 :y/ng :{{04}’{06}:{61703}>{02305}}
:{Dlg’ D29""’ D2}={D4, D6’ DS’ Dlo}

CD;O = y/céo :{{02}9{66}9{61903}9{64165}}
:{Dllo’ D;O"“’ Dzllo} :{Dza D(y’ D8’ D]l}

The collection of complete sets of signal groups, 9Dy, , is thus

D, =d"(D) ={Ds, D2 5., D}
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3.3.2.  Number of signal groups in a complete set of signal groups

The number of signal groups in a complete set of signal groups is in fact
the number of control variables used to control traffic on the intersection. The
complexity and price of the device that controls traffic, i.e., the controller,
as well as complexity of the control algorithm, significantly depend on the
number of signal groups. Because of these reasons, practitioners often tend
to choose the minimal number of signal groups, although it is obvious that
such a choice deteriorates performance indices of the traffic control system
compared to the case when each traffic stream makes one signal group.

Complete sets of signal groups, as it can be seen in Example 3.1 in
the preceding subsection, contain various numbers of elements, i.e., signal
groups. The number of signal groups in complete sets of signal groups in this
example is as follows:

card D) =6
card D} =card 9. =...=card D¢ =5
card 9, =card 9} =...=card D, =4.

Thus, among 10 complete sets of signal groups, 1 set contains 6 signal
groups, 5 of them contain 5 signal groups, and 4 contain 4 signal groups.

The number of complete sets of signal groups grows very fast with the
number of signal groups. Table 3.1 [34] presents data on the number of signal
groups and the number of complete sets of signal groups for intersections
having five to eleven traffic streams. These data are obtained for randomly
chosen intersections in Belgrade.

Table 3.1

Number of traffic streams
- I=card .

Number of signal groups
- card9

5 6 7 8 9 11

10| 12| 14| 13| 30 48

Number of complete sets of signal

10| 10| 20| 16| 235 2490
groups - card D,

In choosing the complete set of signal groups, i.e., the control variables
that will be used for controlling an intersection, it is interesting to determine
the complete sets with the minimal and the maximal number of signal
groups.
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a) Complete sets of signal groups with maximal number of signal groups

Obviously, the maximal number of signal groups is equal to the number
of traffic streams in set .7 . In this case, each signal group controls exactly
one traffic stream. This means that a control variable is assigned to each
traffic stream. The maximal number of signal groups in a complete set of
signal groups is, thus:

P =m3me =max{card D, |D, € D, }=card .S =1, (3.21)
where I is the number of traffic streams in set .% .

b) Complete sets of signal groups with minimal number of signal groups

The complete set of signal groups containing the minimal number of
elements can be determined by solving the problem of optimal partitioning of

the set of traffic streams, .. The problem can be stated as follows:
If

Py = mnjn P, =min{card D' | D} €D, }, (3.22)

find the set 9, defined as:
D, ={2) | card D' =P; , D' €D,}. (3.23)
The problem can be formulated as the problem of optimal partitioning

of set .7 [37]. To each complete set of signal groups 9", i.e., to each
partitioning of set .¥”, a “selection vector” X can be assigned, defined as

B

X=X, X000 Xy 5o Xp 1T
where X, €.%, (I, € £;), and
_{Likae@ﬁ

. 5 (Ic € gc) .
0, otherwise

c

The following notations can be introduced:
E=[& i,
l,ifo;eD, D_e9
Bi :{0, otherwise
L,=card 9, l=card.””
g 1" =[LL.. L0

8 =[8g,8c5 58 e

be =[0e.000,-. .00y 17 =[LL..., L. 1T
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Then, the problem of determining the collection of sets of complete signal
groups 9, with the minimal number of elements Py can be stated as
follows:

Find all vectors X so as to minimize the function

LC
P, =2 X=X (3.24)
l.=1

subject to the following constraints:
Ex=Db, (3.25)
x, {01}, (,eZy).

If there exists only one solution to the stated problem, X", it is obvious
that

LC
Py =minP, =a, X =) x . (3.26)

lo=1
Several algorithms can be used for solving problems of such type [74].
Appendix II contains the pseudocode of MINA program, which is based
on Garfinkel and Nemhauser algorithm [28].
Example 3.2
Determine complete sets of signal groups with the minimal number of elements for the
intersection whose graph of identical signal indications is given in Fig. 3.4.

The set of all traffic streams is:

< ={0,,0,,05,6,,05,04}.

The set of all cliques D of graph Ga , 1.e., the set of signal groups is:

D= {{Gl}7{62}9{63}9{64}7{05}7{66}7{61 ’ 02}7{61 H G3}
{o1.05}{0,,05}{04.05}{0,,0,.0:}}
={D,,D,,...,D;,}

100000111001
010000100101
£_/001000010000
000100000010
000010001111
100000100000 0]
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a, =[8y,80,-..,8.,]" =[LL...,1]7

b, =[bg,0ess.. 01T =[LL...,1]".

The problem can be, thus, stated as follows:
Find all vectors X*n for which the function
Py =@ X=X +X, +...+ X,
obtains minimal value, subject to constraints
Ex=b,,

which can be written as:

X +X; +Xg +Xg +X, =1
X2 + X7 + XIO + X12 :1
X + X =
3 8
X4 + X” =
Xs +Xo +Xo +X; +X, =1
X =1

x {0}, (. e%).

The minimal value Pg =4 is obtained, using MINA program for the following vectors

X"
x'=[0,0,1,0,0,1,1,0,0,0,1,0]",
x?=[0,0,0,1,0,1,0,1,0,1,0,0]",
x*®=[0,1,0,0,0,1,0,1,0,0,1,0]",
x*=[0,0,1,1,0,1,0,0,0,0,0,1] .
Therefore,

CD; = {{Dss D(,, D7: Dn}a{Dm Des D8a Dlo}a
{D2= Ds> Dy, Du}a{Dsa D, D, Dlz}}
= {@;»@ga@:a@éo}-

The pseudocode of MINA program is given in Appendix III. The program
can be used only for determination of complete sets of signal groups with
minimal number of elements.
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3.3.3. Compatibility relation of signal groups

When determining the control (signal plan) for an intersection, essential
information relates to the feasibility of simultaneous giving right-of-way to
different signal groups, and to determination of signal group pairs, belonging
to a complete set of signal groups, such that the components of the pair are not
allowed to move simultaneously through the intersection. This information
is contained in the compatibility relation of signal groups, as mentioned in
Section 2.3. The compatibility relation is defined as follows: Two signal
groups are compatible if each traffic stream belonging to one signal group is
compatible with each traffic stream belonging to the other signal group.

The compatibility relation Cj' = ;" x D;" can be defined by the following
expression:

Cy ={(D;.Dy)|(c; eDy)A(c; €Dy')=(0;,6;)€C}
(me 7).
The compatibility relation is reflexive, i.e.,
Dy Cy Dy (Dy €9)),

and symmetric, i.e.,

(3.27)

Dy Cy Dy = Dy Cy Dy, (Dy,Dy €Dy).
The graph

Gy =(2,,Cy) (3.28)
is the graph of signal group compatibility of a complete set of signal groups
D, . Graph G’ is a nonoriented graph, with a loop at each node.
Example 3.3

An intersection with seven traffic streams is presented in Fig. 3.5, together with the graph
of compatibility of traffic streams, GC , and the graph of signal groups compatibility, Gé ,

when the set of signal groups is:

@zla :{Dlla D;’ Dé’ Dzlb DSI}:
= {{02}5{03}9{66},{61 ] 64},{05 s (57}}.
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Figure 3.5

Example 3.4

Define and draw compatibility graphs for all complete sets of signal groups defined for
the intersection presented in Fig. 3.4 in Example 3.1. The compatibility graph of traffic streams
for this intersection is given in Fig. 2.5.

The intersection presented in Fig. 3.4 has six traffic streams, and the identity graph Ga .
The set of all cliques, D, of this graph is (Example 3.1):

D= d ’(G(x) = {{Gl}a{62}’{63}a{64}:{05}3{66}5{61 ’ GZ}a
{c,,03}{c},05}.{0,,0:}.{c,4,0:}1.{c),0,,05}}
={D,,D,,...,D;,}.

The collection of all complete sets of signal groups, 9D, is

Dy ={D5,D2,..., DL} .

The complete sets of signal groups are listed in Example 3.1. All relations Cgl ,
(m e _#6) are symmetric, and in defining these relations an element (DJm, D/") is not

included if element (D;",D7") exists.

The compatibility graphs that correspond to complete sets of signal groups are presented
below, in Figures 3.6-3.15.
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a) Gy =(2,,Cy)

2} ={D},D},04,D},D., D} | |
={D,,D,,D;,D,, D5, D¢} D, D,
= {{Gl}9{62}’{03}5{64}?{65}7{66}}

D, D
Cy ={(D{,D)),(D{,D;),(Dj, Dy),(Dj, D),
1
(D},D;).(D},Dy),(D},Dg),(D3, D}), D.
(D;.D,).(D;.Dy),(Di, D}),(Dy, D), ,
_ Figure 3.6
(Dg. D))}
b) G?=(:.C)) 0 D}

@: :{D12,D22,D§,D2,D52}
= {D3> Dy, D5> Dﬁa D7}
={{o:}{o.}{os}-{os}{o\.0. 1}

>
D

Cg ={(D/.D) (D;,Dy).(D;,D;),(D5,D3), D,

(D3,D;).(D3,D;),(D;, ;). (D3, D3}
Figure 3.7

¢ GI=(@.CH

0; ={D/".D;.D;.D;. D}
= {D2> D,,Ds, Dy, Dg}
= oMo Mo} o Moo ®
D

2 ={(D},D}),(D?,D3),(D?, DY), 0
(D3,D3),(D3,D3),(D5,D3),
(D3,D}),(D;,D)),(D:,D3)} Figure 3.8

© 2008 by Taylor & Francis Group, LLC



3 Signal group

d) G)=(;.C))

0; ={D/",D;,D;,D;, D5}

:{DansaDwDean}
={{02}9{03}9{64}3{66} {01905}} @
D; D;
5 3
C; ={(D{",D}),(D!",D;),(D!,Ds),(D3,D3), D¢
4
(D3,D5),(D;,D;), (D5, D)}
Figure 3.9
©) Gy =(2:.C)) 5
D] D}
9, ={D;,D;,D;,D;,D:}
:{DlsDaaD4>D6sD1o}
= {{61}9{63}9{04}9{66}9{629GS}} 7 Q
DS D3
C, ={(D/,D)),(D},D;),(D,D3),(D3,D3), D’
(D3,D;).(D;,D;),(D;,D3),(D3, D)}
Figure 3.10
f) Gy =(;,Cy)
D D

2, ={D/.D;.D;5.D;, D}
= {Du D,,D;, Dy, Dn}
= {{Gl }5{62}9{03}9{66}7{64 s 05}} G)

U'VUG:
)

Cg ={(D63D16),(D16:D§),(D16,D:f)a(Dzé,D;), Di

(D3,D;). (D5, D). (D;. D;).(D5, D)}
Figure 3.11
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g G]=@].c))
2, ={D/,D,,D;,D;}
={D,,D,,D,,D,,}
={{o3}{o}{oc}-{o1,0,,05}}
Cy ={(D/,D/).(D;,D;),(D;,D;).(D;,D;)}

h) G =(2},C;)
2} ={D;,D},D;,D;}
= {Dss D()a D7> Du}
= {{63}3{66}a{61 ) 62}9{049 65}}
C; ={(D{,Dy),(D;,D}),(D3,D5),(D;, D)}

) Gg=(2:.Cy)
0, ={D/.D;.D;.D;}
={D;, D, D5, Dy}
= {{04}9{06}9{01903}7{02765}}
C, ={(D/,D/),(D;,D;),(D;,D;),
(D5, D;),(D;,D)}

hoer-@.cl)
@;0 — {Dll()’ D;O, D?I’O, D}‘O}
= {Dza Ds. D, Dn}
= {{62}7{66}7{61 ] 63},{04 s 05}}
Cy ={(D/".D/"),(D/,D,"),(D,’,D;"),
(D", D3"),(D,", D;")}

Figure 3.13

DjQ D;

Figure 3.14

D?Q—@ D,

oid

Figure 3.15

DlO
‘g

The collection of complete sets of signal groups has ten elements, i.e.,

Dy :{@;’@j’@2’@:’@59@:9@;’@2’@:a@;0}'
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3.3.4. Relation of partial ordering in collection 9,

The assignment of control variables to signal groups, i.e., the choice of
the complete set of signal groups that will be used for traffic control, by all
means affects performance indices of the intersection control process.

In order to make the best choice of the set of signal groups, it is necessary
to introduce a measure of effectiveness that defines the quality of traffic
control as a function of a complete set of signal groups, i.e., it is necessary to
introduce the function

Js: D, >R, (3.29)

where R is the set of real numbers.
Function Jg can represent the maximal capacity of an approach or the
whole intersection, the minimal delay and number of stops, the maximal

capacity factor, or any other function that can be used to access the quality of
traffic control process.

Function Jg can represent even more complex performance index
that includes some economic parameters, such as, for example, the cost of
introducing traffic signals on the intersection, etc.

This function, in fact, introduces a linear ordering relation, R, in
collection 9, , such that:

Jo (D)< I (D) =27 R D, (3.30)

i.e., the complete set of signal groups 9D,' is better or equal to the complete
set D7 in respect to criterion Jg. In such a way, any two complete sets of
signal groups can be compared, and the best complete set can be selected.

However, even without introducing relation R,, there already exists the
relation of partial ordering in collection 9, which holds for all performance
indices that are functions of traffic parameters.

A complete set of signal groups 9," represents one partitioning of set.”,
and collection 9, represents collection of all complete sets of signal groups

D, ={D,D2,..., DY ..., DYV}
In collection 9, there exists a relation of partial ordering, or so-called
refinement relation [51], R, defined as follows:
R, ={(2:,2)(D; € D;,D, € D7) = (D, = D) v (D = D)),

3.31
D @, DI D, 0f DY, (3-31)
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Taking into account the definition of relation Rp , 1.e., the fact that
Dr Rp@g if and only if each signal group in complete set of signal groups D,
is a subset of a signal group that belongs to complete set D7, there can be

concluded that 9D, is a refinement of Dj .
In this case, the pair

A=(D,,R,) (3.32)

represents a partially ordered set, and can be represented by a special graph
that is called Hasse diagram (Appendix IV) [19], [25], [51]. A Hasse diagram

is constructed in the following way. To each element of collection 9D, there is
assigned a node in Hasse diagram. Nodes D} and 9, are joined by an edge if
D,R, D, andno P, exists such that D;R, D, and D;R, D, . Hasse diagram is
represented by a nonoriented graph, with the convention that when 9, RpCD;j ,
the node representing 9, is drawn below the node representing Dy .

The number of complete sets of signal groups rapidly grows with the
number of signal groups and thus, very often, the choice of the complete set
of signal groups becomes a very complex problem. Using the refinement
relation R, can lead to simplification of this problem (see Part V).

Example 3.5

Define the relation of partial ordering (refinement) in collection 9y, determined in
Example 3.1, and represent it by a Hasse diagram.

The collection Dy, (Example 3.1) has ten elements that represent complete sets of signal
groups:

D, ={D5,D7,..., D2}

These elements represent the following collections:
9 ={D,,D,,D,,D,,D5,D.}, 9 ={D,,D,,D;,D,,D,},
@: :{D21D4!D5’D6’D8}9 @: ={D21D3’D4'D6’D9},
@2 ={D,,D5,0,4.D4,D,0}, @g ={D,,D,,0;3,D¢,D,,},
@l ={D;,0,.D¢.D,,}, @g ={D;.D¢.D;.Dy,},
@2 ={D,.D¢,Ds.D,0}. @;0 ={D,,D,,D;.,D,, }.

The collection of all signal groups, D , is

9 ={D,,D,,...,.D,}.
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The signal groups are defined as follows:

D, ={c,}, D, ={c,}, Dy ={o3}, D, ={o,}, D; ={os}, D; ={c},
D, ={o,,0,}, Dy ={o},0;}, Dy ={c,,65}, D), ={0,,05},
D, ={c,.05},

D), ={c,,0,,0,}.

Relation R P is expressed by the following set of pairs:
1 2 1 3 1 4 1 S 1 6 1 7
Rp :{(@aﬂ@a )7(@a’@a)’ (@a7@a )’ (@a7@a )7(C”Da7@a )’(@a,@a ),
1 8 1 9 1 10 2 7 2 8 3 9
(@a b @a ), (@a ,@a ), (@a ’@a ), (@a b @a )7 (C”Da 2 @a )’ (@a 7@a )7
3 10 4 7 5 a7 5 9 6 8 6 10
(@a ’@a ), (@a b @a )7 (@a b @a )7 (@a b @a )7 (@a 7@a )7 (@a 7@a )} *
There can be noted that the complete set of signal groups @; is “better” than any other
complete set (this holds for any performance index). Also, there can be noted, for example,

that CD; is “better” than CD; and CDZ , and that it is “worse” than CD; . However, nothing can

be said about the relation of @2 to other complete sets of signal groups.

The Hasse diagram of the partially ordered set ), is given in Fig. 3.16.

Figure 3.16
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Traffic process on a signalized intersection, as explained in Chapter
2, can be described by two functions: state transition function @' and the
reaction function, i.e., output function ¢®. In order to determine a “new”
state and output, the uncontrolled inputs, i.e., arrival traffic flows (traffic
streams) have to be known, as well as the controlled inputs, i.e., the control.
The control is defined as a vector whose components are functions of time.
These components control traffic streams by different signal indications. To
different signal indications certain control variable values are assigned by a
convention, as mentioned in Chapter 3.

A control variable is assigned to each signal group in the chosen complete
set of signal groups.

In order to determine the control during an interval, values of control
variables should be known at any instant of the interval. Therefore, the traffic
control problem is the problem of determining time functions which, in fact,
represent control variables in given interval.

In contemporary traffic control systems, control variables are periodic
time functions. This means that it is necessary to determine values of these
control variables only in the interval equal to the base period of these
functions. Duration of this base period is called cycle duration or cycle time. It
remains constant in time periods during which the stochastic variables, which
represent arrival flows, can be regarded as stationary stochastic processes.

Real-time traffic control systems have the feature that data on current
values of traffic flow parameters are included when determining values of
control variables. The data are obtained using vehicle detectors, realized with
various sensors (inductive, pneumatic, laser, etc.). These data are mostly used
for modification of already determined values of control variables. Control
variables in this case are also periodic function of time, determined on the
basis of average values of traffic flow parameters, observed in longer time
periods.

57
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4.1. Control variables

A control variable is assigned to each signal group. Different control
variable values correspond to different indications of traffic lights that
control the signal group. Therefore, the set from which a control variable can
“assume” its value must have the number of elements equal to the number of
different light indications used to control the associated signal group.The set
of values that can be assumed by variables assigned to vehicle signal groups
will have four elements. Similarly, the set of values that can be assumed by
variables assigned to pedestrian signal groups will have two elements, etc.

However, in all exact methods and programs for traffic control problem
solving, the sequence of signal indications used to control vehicle signal
groups, shown in Fig. 3.1, is substituted by the sequence, which contains only
two indications: green and red. In this way, the number of elements of the set
of available values of control variables assigned to vehicle signal groups is
reduced to two.

This transformation is performed by substituting the real function that
describes the queue discharging from a saturated intersection approach (the
queue remains after the end of green indication) with a rectangular function,
as shown in Fig. 4.1 [88], [89]. The area between the time axis and the volume
function, which represents the number of vehicles that leave the approach
during green indication, is the same in both cases. The edge of the rectangle
lying on the ordinate axis represents the saturation flow volume, and the edge
lying on the abscise axis is called the effective green time. The difference
between the cycle time and effective green time is called the effective red
time.

g4
—> effective green time [P
s Lo___ , . Legend:
I I =—— red indication
— green indication
=] amber indication
' . ¢ E=J] red-amber indication
=0 —r—

Figure 4.1

Therefore, the cycle time consists of the effective green time, during
which the queue discharges with saturation flow volume, and the effective
red time, during which the flow volume is equal to zero.
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Relations between cycle time, displayed green, red, and amber times and
effective green and red times are given in Appendix V.

For control of pedestrian and tram streams only two different traffic light
indications are used, so that there is no need to transform them into effective
values, as was the case with vehicle traffic streams.

Control variables are assigned to signal groups after the complete set of
signal group is chosen, i.e., when one element is chosen from the collection
of all complete sets of signal groups,

D, ={DL,D2,...,D",...,. DV}
Let the chosen element be:
2, ={D/".D;,....D;,...,Dp }. 4.1)

Since further discussion assumes the set D' is defined, index m can be
neglected. Thus, the chosen complete set of signal groups can be represented
as:

9, ={Dy,D3,...,Dj},...,Dp }. (4.2)

The set of signal group indices in the chosen complete set of signal
groups is:

7 ={12,...,p,....P}. (4.3)

Notation Dy is introduced to distinguish Dy €D, from D, €D, when

l.=p.
The number of signal groups in the chosen complete set of signal groups
is less than or equal to the number of traffic streams on the intersection, i.e.,

P<I.
Assignment of control variables to signal groups can be represented by a
function, f,, in the following way:

f,: D, >,
where

20" ={uy(),U5(), U5 ()s. s Up ()} > and

(D)) =Uy(), (pe). (4.4)
uy () is a periodic time function, with the property:

up(t)=u,(tmodc), (peZ’).
Thus, function f, assigns control variable Uj () to signal group Dj

(pe??). Set & is, therefore, the index set for both signal groups and
control variables.
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To different signal indications certain control variable values are assigned
by a convention, as mentioned in Chapter 3. Because after transformation into
effective values only two different light indications exist, it can be assumed
that control variable Uj () can take either value 0 or 1. These values have the
following meaning:

1, if signal group Dj, has the right-of -way at time t

(effective green indication of signals controlling D},)

if signal group D}, does not have the right-of -way at time t
(effectivered indication of signals controlling D)) (4.5)

w0 =1,

During one control variable cycle, the right-of-way is once given and
once taken from each signal group. Therefore, on the basis of data on effective
green times (start time and end time), the cycle time, and the time the cycle
starts, the value of control variable can be determined for any t, regardless
whether it is greater or less than the cycle time, or t <0 or t >0.

The relation between start and end time of effective green for signal group
D}, and the time when cycle begins is illustrated by Fig. 4.2. Notations in this
figure have the following meaning:

¢ — the cycle time,

t, — the time the effective green of signal groups Dj, starts, in regard to
the beginning of the cycle,

t; — the time the effective green of signal groups Dy, ends, in regard to
the beginning of the cycle.

The value of control variable u},(-) for any t can be determined using the
following expression:

U (t) = h((t, —t(modc))(t) —t(modc)) (t, —t1)). (4.6)

It can be noticed that values of control variable are determined using Heaviside
function, which is defined as:

>0
h(x) = {]5 ’: . 4.7)

Therefore, the control at time t can be described by the following
vector:

u'(t) =[uy (1), uy(1),...,up (1), LU, (4.8)

where each variable U{ (") can get either the 0 or 1 value.
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u (1)
1 l_l
0 t >
0 t; t ¢ t
u'p (t) A
0 t >
0 t t, c t
ulp (t) A
1
o] [ .
vt ¢t
u, (1)
1 I—
° t e ot
Figure 4.2

Interval [ty,t], for which the control u;; ;; has to be determined, is chosen
so that the assumption on stationarity of the stochastic process represented
by components of vector O ;) € Gy 4 is justified. The interval [ty,t] < .7~
and set .7~ is defined in Section 2.1. This assumption is valid as long as
stochastic process ( is stationary. Interval [t,,t] can be considered as longer
than 10 to 15 minutes [83].

Component Uy ;, of control vector uy ; represents restriction of
control U}, (-) € 24 to interval [to,t] (.7 . Function Uy, 1 18 @ periodic vector
function, with cycle duration c, and t—t, >>cC.

In many countries, the maximal cycle time is limited to 2 minutes.
Therefore, in order to determine Uy ,;, which is a periodic function of time,
it is enough to determine the control during the cycle time, i.e., the restriction
of function Uy, 4 to interval [0,c]([ty,t].

The control vector, or control U(-) in further text, represents the restriction
of function Uy ,; to interval [0,c]N[ty,t], and the following notations are
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used:
u'()e@¢', where U'()={ut)|te.7}, (.7 =(-x,x))
Uy, 1 € P41, 1 » Where Uy 4 1s restriction of u’() to interval [ty,t].7"

u()e?4, where u(-) is restriction of Uy 4 to interval [0, clN[ty,t],
and

u(t) is element of u(-) at time t.

The controls that satisfy certain conditions (Section 2.1) are elements of
the set of feasible controls, %4; .

4.2. The control—signal plan

Traffic control on a signalized intersection during a cycle is defined by
the vector time function:

UC) = [U () Uy (s Up (s Up ()] (4.9)

Components of this function are functions of time, in interval [0,c]. A
common name for vector time function u(:) is signal plan.

As an example, the signal plan, i.e., functions u(-) presented in Fig. 4.3
are used for traffic control on the intersection presented in the same figure.
The same figure contains, also, the graphic representation of the signal plan,
which is common in traffic engineering practice. This representation contains
the intervals of amber and red—amber indications, as well. The signal plan
presented in Fig. 4.3 is:

UC) = [U (), U (U (.U, O

Values of variables Uu;(-),U,(:),u;(-),u,(-), for any t in interval [0,c], can
be determined using expression (4.6), with values of ti and tj known in
interval [0,cC].

4.2.1. Control vectors—phases

In any signal plan there exist some intervals (see Fig. 4.3) in which no
component changes its value. Therefore, a signal plan can be represented
still in another way. Namely, a signal plan can be described by a sequence of
control vectors, together with their durations. Each control vector represents
the control in the interval in which no component changes its value. Thus, a
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(4.10)

<«—o0,

uC) =[P, LT T T,

signal plan can be described as:
where K is the number of control vectors in the signal plan.

4 Traffic control

Figure 4.3
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Control vectors ul,uz,...,uk,...,uK are often called phases. Both terms,
control vector and phase, will be used in further discussions.

Signal plan determination now can be represented as the problem of
finding the control vectors, their sequence, duration, and number.

The term phase is not uniquely defined in the literature. In accordance
with the definition given above, here is the Stoffer’s definition [77]: ... “traffic
signal phase’ (or, shortly, ‘phase’) is the complete specification of signal
indications which can appear simultaneously.” Similar to this is the Akcelik's
definition [2]. In British literature, Webster [89], Allsop [4], and other authors
use the following definition: a phase is the sequence of signal indications
used to control a signal group during the cycle. This definition represents the
sequence of values of one control variable during the cycle. The definition
used in this text is similar to notion of “stage” in British literature.

The signal plan from Fig. 4.3 now can be presented in the following
way:

u() =[ (™", WA, W) ]
=[((0.L0.D),™)",((0.L0,0)",7*),((0,0,0,0)",7%)".((0,0L0)", )",
((L0.L0)",7°)",((0,0,L0)",7°)",((0,0,0,0),t")",((0,0,0.1)",<°)",
((010D)",7°) 1.
The set of indices of intervals with constant values of control variables
1S

T ={2,...K,...,K}. (4.11)

4.2.2. Signal plan structure

Variables U and t* are of a different nature. Variables u® are vectors,
whose components assume discrete values belonging to set {0,1}, while phase

durations t* are continuous variables, by their very nature.

Bearing in mind that there exist constraints related only to variables u*
and their sequences, ul,u"z,...,uk,...,uK , it is necessary to give particular
attention to selection of these vectors and their sequences. Therefore the
notion of signal plan structure is introduced, which relates to these variables
only [37]. The signal plan structure is defined as the sequence:

u=[utu?,...,uf,...,uf]. (4.12)
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Thus, changes in the number of phases, their sequence, or components of
a phase, represent changes of the signal plan structure.

Related to signal plan structure is the classification of traffic controllers
into so-called phase-based controllers and signal-group-based controllers.
With phase-based controllers, the signal plan structure is generally fixed
and cannot be changed by, say, some signal sent from a control center.
Modification of signal plan structure can be done only by interventions in the
controller. An example of such a controller is the electromechanical controller
with a drum that rotates and periodically gives contacts for green and red
indications of signal groups. Contemporary electronic traffic controllers,
signal—group-based, do not have constraints related to signal plan structure.
With them, the signal plan structure can be remotely changed, from a control
center or automatically, on the base of data obtained from detectors located
at intersection approaches.

The structure of the signal plan presented in Fig. 4.3 is:

u=[utu’,....u’]
=[(0,,0,1)",(0,1,0,0)",(0,0,0,0)",(0,0.L0)",(1,0.1,0)",
(0,0,1,0)",(0,0,0,0)",(0,0,0,1)",(0,,0,)" ]
ol[o][o][o][1][o][0][0][O

1)|1
0 b 0 b b b b b b b
1((0

o O O
o P o
o F o
o F o
o O O

01
00
1)1

or, in matrix form, when brackets are not used for individual vectors uX ,
(keF%):
ut v udututut u’u o’
u, 000010000

,_|Uz| (110000001
“lu; | |[000111000

u, 100000011

If the vector of phase durations is introduced,
r=[t,7%,...,15,.., 1], (4.13)

whose components are the durations of phases, 4, 7°%,...,t%, then the signal
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plan can be represented as the following pair:

(ut,u?,...,uk,...uf)
wO=| =@ =" : (4.14)

k K
(T, 0, T ey T )
where
k ko k k KT
U™ = (Up,Up,eesUpsees,Up) (4.15)

Control variable U (-), for signal group Dy, is then defined as:

up() = [(up’ prelps ’up)] {up] (4.16)
(r ,T ,...,rk,...,r ) T

u _(u p, LU p, . p) 4.17)

so that the signal plan structure can be expressed as:

where

U=[Uy,Up,... .Uy, Up ] (4.18)

Therefore, U, represents the sequence of values of control variable u,(-) in
the control vectors sequence.

Effective green time of signal group Dj is determined by the following
expression:

K
=Y uit=u,t, (pe), (4.19)
k=1
and effective red time is:
K
r,=c—g,=c-Y usjt*, (pe?). (4.20)
k=1

The set of signal groups to which control variables are assigned is:

D, ={D},D},...,D,,...,Dp}. (4.21)

The first P’ variables, where P'<P, are assigned to vehicle signal
groups. Thus, the subset containing vehicle signal groups is:

@; :{DizDéa aDIpn aD],J’}. (422)

The number of components, I', of the state vector is equal to the number
of vehicle traffic streams. The number of vehicle signal groups is P'<T'. A
vehicle signal group represents subsets of the set of vehicle traffic streams,
7", and can be represented as:
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D, Z{Gpl,sz,...,Gpe,...,GpE(p)}, (peo), (4.23)
where

7' ={12,..,P}, (4.24)

o, €7, pe7’, ee{l2..E(p)}

E(p)=card Dj.

There also holds:

P’
UDIP = yl :{61762,...70“.-.,6[’}. (425)

p=1
The set of indices of vehicle traffic streams is:

7' ={2,...,i,....T}.
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5. QUEUES—STATE OF THE TRAFFIC PROCESS
ON ISOLATED SIGNALIZED INTERSECTIONS

5.1. Definition of the state

In systems theory, [58], [90], [23], the state is defined as the minimal
quantity of information about process history that is necessary to determine
future output and state.

A component of the state of dynamic traffic process on an intersection is
the length of vehicle queue on an approach to the intersection, as mentioned
in Section 1.1. Thus, the state of the process is defined by a vector whose
components are lengths of vehicle queues on all approaches. The choice of
this variable for the state of the process is in accordance with the definition
given above. This can be seen observing Fig. 1.1. For determination of
volumes g3 (t) and g (t) at some time t, besides the values of input variables
gs(t), gs(t), ug(t), and ug(t), it is necessary to know the values of queue
lengths w,(t) and wg(t), i.e., the process state components. If there is no
information on queue lengths, values of volumes q3(t) or gg(t) (output)
cannot be determined, although values d,(t), g5(t), uj(t), and ug(t) are
known. Namely, if queues exist, volumes g;(t) or gs(t) will be equal to
saturation flow volumes when streams o, or o, have the right-of-way
(uz(t) =1 or ug(t) =1). If there are no queues, output volumes gs(t) and
Qs (t) will be equal to input volumes ¢,(t) and g (t) .

To determine the state at some time t, it is necessary to know the state at
some previous time t;, and functions ¢y, ,; and uy ; in interval [ty,t].

The state at time t is represented by the following vector (Section 2.1):

W(E) = Wy (£), Wy (), W (8o W, ()] (5.1)

The set of traffic streams, ., as pointed out in Section 3.2, has to be
partitioned into subsets (3.5) in such a way that one subset contains only
traffic streams of a particular type. These subsets form the following collection
(3.5):

I ={t72. T Ty

69
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Obviously,

F
ny =.7, and
f=1

SN =0 (72,97 eT).

The traffic streams having indices 1 to I" are vehicle streams (Section
2.3). If the subset of vehicle traffic streams is denoted by .7*, then (4.25):

"' ={o,,0,,...,6;,...,6, },

where I' <1 (I is the total number of traffic streams, and 1" is the number of
vehicle traffic streams). The number of state vector components is equal to
the number of vehicle traffic streams.

In the introductory part of Chapter 1, it was stated that any dynamic
process, and hence the traffic process on an intersection as well, can be
mathematically described by two functions: the function of state transitions
and the output function (reaction).

The state transition function can be represented in the following way
(1.6):

1.
ORI (Q[to,t] X @é[to,t]) >,
where @' is the function that determines state vector W(t) € 77, at time t
for known state W(ty) € 77 at time t; and known input volume functions
O, € G,y @nd control Uy 1 €24, 4 at any time in interval [t,,t]. The

number of vector w(t) components is equal to the number of vehicle traffic
streams.

Change of state in interval [t,,t]—"“evolution” of state over time—is
represented by the following function:

3.

0 W X (@[t0 % %[to,t]) >0 (5.2)

where
¢ ={0" |ty,t €. 7 Nty t], t >t} (5.3)
An element of set 7}, y; is the function of time, w; ,, in interval

[tOlt] .
There exist both deterministic and stochastic models of arrival flows
(traffic streams), as pointed out in Section 2.2. In accordance with this,

the queue dynamics can be treated either as deterministic or stochastic
processes.
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5.2. State transformation

According to expression (1.6), the state at time t is a function of the
state at time t, and input in interval [ty,t]. This is a general expression,
which does not specify whether the elements of set ¢, ,; are deterministic or
stochastic processes. Volumes of arrival flows are, by their nature, stochastic
processes, so that lengths of queues that form on intersection approaches are
also stochastic processes. Therefore, the queuing process analysis should be
performed by treating this process as a stochastic one.

The queuing process, however, can be regarded as a deterministic process
—an approximation of the stochastic process. This approximation is often
performed when stochastic processes are analyzed. In this case, it is assumed
that the arrival flow volume is equal to an average value, which is particularly
justifiable for higher volume values. Traffic flows can then be regarded as
regular flows, similar to fluids [67].

One of the most important intersection performance indices is the delay,
which is defined as the integral of queue length over time. The value of this
integral can be determined as the sum of the delay resulting from average
queue lengths, and the delay component that is the consequence of the
stochastic nature of the process. Therefore, it is necessary to consider both
stochastic and deterministic models of state transformation.

5.2.1. Deterministic model of state transformations
(regular vehicle arrivals)

The discrete deterministic model of state transformation enables
determination of state w'*™* at time (I +1)At on the basis of state w' at time
IAt, input volume q' and control vector u', under the assumption that u' and
g' do not change in interval At.

A component W™ of vector w'*' depends on Wi, g/, and u/ (with
c; € D;) ), i.e.,

w = oM (w,qf,ul)

= (W} +(qf — sup)At)h(w; +(g] —sup)AL) (5.4)
= max{0,[w +(qf —suy)At, (e 2

where h(x) is the Heaviside function:

0, x<0
h(x)=< " :
) {1, x>0
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If function h(x) is defined as:

— 0, x<0
h(x)=< " ,
) {x, x=0

then expression (5.4) can be written as:

w Tt =h(w + (g —sup)At), (ie 2. (5.5)

The notations used in (5.4) and (5.5) have the following meanings:

W — the length of queue formed by stream o; ininterval I,

g - the volume of stream o, in interval |,

S.

. — saturation flow volume of stream o;,

Up

. ! . . ’
the control of signal group Dp in interval |, where c; € D}, .

1+1

Expression (5.5) enables determination of W;"~ even in the case the

volumes @ have different values in different intervals.

In the case of regular vehicle arrivals, which is a rough approximation
of the real process, it is assumed that the volume qiI of traffic stream o; in
interval | is deterministic, and same for any |, i.e., qi' =(Q, =const during a
certain period.

If the queue length at the beginning of red indication is zero, and the
beginning of red is at the same time the beginning of a cycle, i.e.,

Wy; (0) =wg; =0 with u =0,

then
Wi = gAt-h(gAt) = h(gAt) =gAt (e Z)
w2 = h (g + QAL = G At + At =2gAt (e )
wy =1-gAt (e 2).
W; is the queue that is formed under the constant volume g; of stream o;

ic 7).
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If the effective red time of signal group D}, is
M= IpAt ,

then, at the end of red indication, i.e., at the beginning of green indication, the
length of the queue formed by stream o; € D} is:

| H ’ r
Wi =l g At=r,q (ie Z',ped”). (5.6)
The effective green time is determined as:

g,=cCc-T,, ie.,

g,+r,=c,
where ¢ is the cycle time, and g, and r, are effective green and effective red
times of signal group D}, (c; € D}).

When the following condition is satisfied
0iC<9;,5S;,

. . . . . l,+1
the queue will start decreasing as soon as green indication begins (uy "~ =1),

and it will discharge before the end of the cycle (Fig. 5.1). After the end of
effective red, the queue changes in the following way:

1,+1

Wi = (0 + (G — S;)At) h(r,g; + (g —s;)At)
=r,0; + (g — 5;)At
= (r, + At)q; — s;At

we = (w4 (g5 — s At h(wg ™+ (g — 5;)At)

= (r, +2At)q; — 2s;At

W[';;+Y =(r, +YAt)Q, —yS,At. (5.7)

Expression (5.7) defines queue lengths for y =1,2,..., as long as W[I;? s

I
positive. If yip is the number of At intervals from the end of effective red time

of signal group Dy, until the queue formed by stream o; € Dj; is discharged,
then the following equality holds (Fig. 5.1):

(r, +Y,AD) g —v,Ats; =0
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and
. I.g. .
y'pAt ol —_'p_
Si— 0
W A
pi
B
I e i
|
|
— |
Wyppr—-=—2"~--—-—-~ T~ —————';
C: A [ R
0 ooty c t
Figure 5.1
. . cq .
When flow intensity p; -S4 is less than 1, (o; € Dy ), the value of

|
average queue length can be dgtermined as follows. The area of triangle
OAB in Fig. 5.1 (queue length integral) represents time losses, i.e., the total
delay of vehicles on approach T; used by stream o;. The same total delay is
obtained as the product of average queue length W; and cycle time C.

Thus, the average queue length Wy; can be expressed as:

— 1 —i rpqi rpqi
Wy, =—(r, +7,)r,0 = r -+
Bi 2C( p Yp) pql 20 (p Si_qu

W = rp2 G Si _ rp2 Gi
P 2e s —q _2c(1—q‘J
Si (5.8)
_ qu(l_}"p)2 . ' ’
_—2(1—6i) , (ie Z'\pes)

where

«

x:T",eFi

. ' _ '
with ;€ D}, and 6; =0, €Dj.
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If p;=1 (ie Z'),ie, ?p =g, , then the average queue length has the
value:

— g :qi(c_gp):qic(l_}\‘p)

W,. =
P2 2 2
Since g;c=4,s;, then
gpsi
i:?:kpsi’

and the average queue length becomes:
. c5,
Wﬁi 277\.p(1—7\.p). (59)

The maximal queue length is attained at the end of effective red time,
and it is (5.6):

wg =l,gAt=rq (icZ pe?).

5.2.2. Stochastic queuing models

The queuing model, which describes the real process more precisely

than the deterministic model, assumes that elements of set |, |, are vectors
whose elements are stochastic processes. In this case, elements of set 77} are
vectors whose components are random variables.

Transformation of state on approach T; can be described by the following
expression:

W = Gl + & (0w ), (10

(ie 7, |=1,2,...,|p, c; € D;)),

where f, is the conditional average value W™, with given w!, and &, the
random variable with average value equal to zero.

g
Also, |, =—.
At

Considering the state definition, expression (5.10) can be used to describe

state transformation if the conditional probability distribution of variable

W with w! given, does not depend on w; , where s<1 .

The process described by expression (5.10) is in this case Marcovian.
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The states at the beginning and at the end of green signal indications
are particularly important when constraints and optimization criterion are
considered in traffic control problems statements. Since queuing is a stochastic
process, determination of average queue length is also very significant.

Queues are formed at the stop line of an approach due to the following
reasons [83]:

e Alteration of green and red signal indications, which results in queue
formation even when vehicle arrivals are regular and the volume less
than capacity.

e Stochastic nature of arrival flows.

Congestion that arises when the queue is not discharged until the end of
green signal indication. This is also a consequence of the stochastic nature
of arrival flows. Congestion can appear, in come cycles, even when the
average arrival flow volume is less than capacity, i.e., regardless of the
average volume value.

Each of the queue components resulting from these three reasons can be
considered by itself.

There exist many stochastic models of arrival flows, the main difference
between them being the adopted probability distribution of the number of
vehicles arriving on an intersection approach during a unit of time. Some of
these models are described in Section 2.2. Also, there exist several stochastic
models of queuing process.

In signal plan determination, average queue lengths are used most often,
and in some traffic control problems it is necessary to find the average
maximal queue length as well. These average values are determined using
various expressions, depending on the probability distribution &; used in
defining the stochastic queuing process. These expressions can be used for
determination of signal plan that will be applied in time periods for which it
can be assumed that the process is stationary, i.e., that the average volumes
are constant. Such periods last approximately 10 to 15 minutes or longer
[17], [49].

Mathematical expectation of queue length w; formed by traffic stream
o; is, thus, equal to the sum of mathematical expectations of the components
listed above, i.e.,

Mw; = Mw; + Mw, ;
= Mw; + MW{1i + |V|W1'1'i (ie 7"
where:

Wg; — the regular queue component, resulting from average volume (;,
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W . — the component resulting from the stochastic nature of arrival
streams, which exists even when the queue is discharged until the
end of green indication,

"

w;; — the average queue length at the end of effective green time.

The expressions for mathematical expectation of queue length presented
here are the expressions proposed by Newell [46] and Webster [89]. The
expression proposed by Newell is significant because it is of a general nature,
derived in a pure theoretical manner, without specification of the probability
distribution of the number of vehicles arriving to an intersection approach
during a unit of time. It is also significant because it can be used to calculate
the length of each of three components of the queue mentioned above.
Webster's expression is derived in a more empirical manner, but it is very
often used due to its simplicity. However, similar results are obtained when
using both methods [46].

a) Mathematical expectation of queue length according to Newell

Results obtained with Newell expression are a good match of real
processes when s,g, >>1 and @; ¢ >>1. Satisfactory results are obtained if
59, >10 [46].

According to Newell [46], mathematical expectation of queue length
formed by stream o, is given by the following expression:

_ qu(l_kp)2 N qilid-2p) N a;liH (W)

, (5.15)
21-6,)  2s5(1-6,)° 2s/(1-6,)

where:

¢ — the cycle time

g; — the average volume of stream o;

Ay = 9 _ the ratio between the effective green time of signal group D;
¢ and cycle time (o; € D},)

0= (ie7)
i

s; — the saturation flow volume of stream o;, (i€ Z7")

li=lp+1p, (ie2")
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=0
A= L(t_'o) — variation coefficient of random variable A (£°) = g; &
MA (L")
_DB({ 1) - . .
DI = MB, (fio ~ rp) — variation coefficient of random variable

Bi(E - r,)=s("-r,)

MA (t) = g;t — mathematical expectation of the number of vehicles of
stream o; arriving on approach T, during interval [0, ]

MA (&) = ot

MB; (t° —r,) =5 (t° —r,) — mathematical expectation of the number of
vehicles of stream o; leaving intersection in
interval [r,,t°]

DA (t°) — dispersion of random variable A (£°)
DB, (£° - r,) — dispersion of random variable B; (t° - M)
go- e
Si— i
_ M[A(c)-Bi(g,)] ac—-s9,

a \/Iisigp B \/Iisigp

2p-2n12 tg2a

Hu)=— 7 dou
() =1 j s
e2cosa

b) Mathematical expectation of queue length according to Webster

Webster’s expression is not entirely theoretic, and it is based, partially,
on Pollaczek—Khintchin formula [48], [86]. Webster's expression can be used
to calculate the average queue length for Poisson arrival flow, when service
distribution is known, and flow intensity p; is less than 1.

According to Webster [89], mathematical expectation of queue length
formed by stream o;, in time periods during which it can be assumed that
the arrival volume is a stationary random process, is given by the following
expression:
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_ gic(l—2,)? p? 2+55)

1/3 (
=m0y T 2a-py e e (5.12)

Notations in expression (5.12) have the same meanings as in (5.11).

The first term in expression (5.12) represents the queue component,
which results from uniform vehicle arrivals, with volume equal to the average
volume ¢;.

The second term represents, in fact, Pollaczek—Khintchin formula for
the case the service time is deterministic, i.e., vehicles leave the queue in
constant intervals.

The third term represents an empiric correction, and it is obtained by
computer simulations.

The fact that the value of the third correction term lies in the range 5%
to 15% of Mw; value gives the possibility to use a simplified form of the
expression for mathematical expectation of queue:

qi(':(:L_7\‘p)2 + p,z
2(1-6;) 2(1-p;)

Mw; ~ 0.9( J, (ie 7). (5.13)

This simplified form is used in many practical applications and gives
very good results for any volume value.

¢) Mathematical expectation of the number of vehicles in a queue
at the end of green signal indication

Mathematical expectation of the number of vehicles in a queue at the
end of green signal indication varies with volume changes. Good results can
be obtained if the period in which volume changes is divided into intervals
having duration 10 to 15 minutes, so that it can be assumed for each interval
that volumes are approximately constant during that interval [5], [83]. Several
mathematical models have been defined [49], [17] for determination of the
number of vehicles in a queue at time t €[ty,t,], with constant volume value
in interval [ty,t;].

Mathematical expectation W;i of the number of vehicles in queue

formed by vehicles of stream o;, at the end of effective green time t =kc
(k=1,2,...), can be determined using expression [83]:

W, =(B?+4AC —B)/2A ,(ic 7') (5.14)

where:
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B, =(1—p) (A psit)” +1.2gt + wg; (1.2— & s;t)
C; =0.6(2w; +qt)°

pi=-1", (5, D})
gpsi

Wg i — the number of vehicles in the queue formed by stream o; at time
t =0 (the start of red time).
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6. THE OUTPUT FUNCTION

As pointed out in Section 2.1, among variables that characterize output
flows, i.e., components of vector Yy(-)e€ %/, the variables representing
flow volumes, which are components of vector y(-) € 2/, will be used in
mathematical model of traffic process. The output function (reaction) in this
case, as already stated in Section 2.1, can be described in the following way
(1.8):

O WX (GxU) > G

The output of traffic process on an intersection is represented by vehicle
flows departing from the intersection. When determining these flows, the
following should be considered:

= Arrival flows are transformed by traffic signals.
= Departure flows are formed from one or more transformed arrival
flows.

As an example, Fig. 1.1 shows, as functions of time, the arrival volumes
of streams o, and o5, their volumes g (t) and g (t) after control is applied,
and volume q;(t) of the output flow Y, (t) , which is composed from volumes
05(t) and gg(t) . Function ¢ represents a composition of two functions, @3,
and ¢, , i.e.,

¢’ =% o0p, (6.1)

where @2, defines transformation of arrival flows by control at time t, and
function (pﬁt represents formation of output flows from transformed input
flows.

The transformation of input flows to output ones, as already mentioned,
will be considered through transformation of their volumes. Evidently,
dimensions of input and output vectors are not the same. If the vector of
input volumes is

q() = [ql(')qu(')!""qi (')W'!ql'(')]T )

81
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and the vector of volumes transformed by control is
') =[0G () GO O
then function @, , in discrete form, can be expressed as follows:

¢ =gl Tefl2el}= 2,

where |, =—.
At
For each component g;' of vector q"' there holds:
' =up(gi + (s —a)hw)), (ie 7' 1e%,) (6.2)
(o, €Dy).

If traffic stream volumes are constant in the period under observation,
then:

¢ =W uba),  (1e%).

In this case, components Q] ! are determined according to the following
expression:

o' =uplg + (s -a)hw)], (e 7' 1e%,). (6.3)
Transformed volumes in each interval | represent components of vector
" =[0Gy e O 0T, (1€25,). (6.4)

Forming of the vector of output volumes in interval |,

qeI =[qf',q§' ,...,qﬁ' ,m’qal]T ,

can now be represented as follows [55]:
a“ =) =Aq", (%), (6.5)

where A is the output matrix, containing information on participation of
traffic streams in output flows. Function (pg remains the same for every .

An element a,; of matrix A=[a,;],,, represents the fraction of volume
/' of traffic stream o, , which takes part in forming volume g of output
flow y,, . The value of any element is a,; €[0,1], (ie Z',h e .F%), where
I ={12,...,h,...H},
and H is the number of vehicle output flows (the number of output vector

components) from the intersection.
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Values of matrix 4 elements are determined in the following way:

1 ,if whole traffic stream o; takes part in forming
output flow y,

a; , if a partial stream of traffic stream o, takes part
in forming output flow y, '

0 , if traffic stream o; does not take part in forming

output flow y,

Here, a;; <1 represents the fraction of volume g; that takes part in forming
volume gy .

On the basis of expressions (6.2) and (6.3) it can be seen that the volume
leaving a stop line is equal to the arrival volume (if no queue exists) or to the
saturation flow volume, s; (if queue exists) (Fig. 1.1). The saturation flow
volume is the queue discharge rate (Fig. AV.1 in Appendix V). The saturation
flow volume has an approximately constant value that is attained after the
acceleration of vehicles leaving the stop line is performed at the beginning
of green time, i.e., when vehicles crossing the stop line do not accelerate any
more. The value of saturation flow volume is influenced by many factors
[88], [14], such as approach width, number of lanes, grade, flow composition,
turnings, pavement condition, etc. The value of saturation flow may be
different in peak and off-peak periods. The way traffic is controlled on an
intersection can also influence saturation flow values. Namely, if conflicting
traffic streams are allowed to move simultaneously through an intersection
(e.g., when a vehicle stream intersects a pedestrian stream or other vehicle
stream), then the saturation flow of the priority stream does not change, but
the saturation flow of the other stream decreases.

Expressions giving the relation between approach width and saturation
flow value were experimentally determined by Branston [15] and Kimber
and Semmens [50]. A typical saturation flow volume value is 1800 PCU/h
per lane.

Saturation flow volumes can also be determined by measurements. One
of frequently used methods is the method designed by TRRL [TRRL, Road
Note No. 34].
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Example 6.1

Determine output flow volumes for the intersection given in Fig. 6.1, together with its
output matrix A, using expression (6.5).

Y1 «— <« O
— < o,

SIS e
— Y

62 Y

l 0006 081
A=[a,]ss=|1 0 04 0 O
Y 01 0 020

Figure 6.1

g
000608 1][d| |06q+080q;+qs| g
q"'=Aq"=/1 004 0 Of|q |=|q +0.4q; =| g5’
010 020])q| | +0.20] o

G |

Therefore:

rl

o' =0.6q5 +0.8q; +qf

o; ¢ +0.405
0 =0 +0.20]

Output variables are not important in solving traffic control problems
for isolated intersections. However, in solving traffic control problems for
networks of signalized intersections, output variables from intersections
represent so-called “platoons,” and their transformation when traveling
between intersections is the most significant component of models used in
solving these problems [72].
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Part Il

CONTROL PROBLEM STATEMENT

Solutions of traffic control problems are today based on application
of modern mathematical optimization methods and digital computers. For
efficient application of the mentioned means, it is necessary to give exact
formulations of traffic control problems and develop algorithms for their
solution. According to the general systems theory [58], a control problem
can be formulated as a satisfaction problem or as an optimization problem.

In this book the traffic control problem will be formulated and solved as
an optimal control problem.
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7. GENERAL STATEMENT OF TRAFFIC CONTROL PROBLEM
(SIGNAL PLAN CHOICE)

The optimal control problem is the problem of choosing control u(:)
from the set of feasible controls %4; < %4 , which gives the optimal value of
the chosen optimization criterion J,. Therefore, it is necessary to:

a) Define the set whose elements are the controls that can be chosen, i.e.,
define the set of feasible controls 24; — %¢ .

b) Define the measure that can be used for comparing effects of any two
controls, and for the choice of the best control because set 24; is
unordered. In the optimal control problems, this measure is termed the
optimality criterion, the goal function, the performance index, or the
objective function.

The performance index is defined by the following mapping:
Jé,:*%}to,t]x%to,t] —>R’, (7.1)

i.e., the performance index is the function of mapping an ordered pair
(Xt 17> Wit 1)) to an element of the linearly ordered set R". Most frequently
R' is the set of real numbers, i.e., R"=R. The optimal value of the
performance index is determined using values of input and state in interval
[ty,t]. Therefore, this value represents some “integral” measure of control
quality on the intersection in [ty,t] interval, rather than a measure related to
a specific time.

For isolated signalized intersections %y, =Ty, 1y X %y, 1y » SO that the

performance index J; can be presented by the expression:
I8 Op, ) *y, * Py ~ R (7.2)
Bearing in mind that 77, ;, is defined by (5.2):
(P?to 0 W * Qg * P1,0) = Wiy 1

and that the initial state W(t,) is known, as well as elements of @[to,t] , Whose
components are traffic streams volumes in interval [t,,t], the performance
index can be presented by the following mapping:
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Je:2 > R. (7.3)
The assumption is that traffic streams’ volumes are either constants or can be
described as stationary stochastic processes in [ty,t] interval.

Elements of 24 ,, are periodical, vector time functions, and because of
that, it is sufficient to determine their values, u(:), at each instant of the basic
period, [0,C]. Using these values, it is possible to determine values of each
component of vector U ,; at any instant t' € [ty,t] (4.6). Function u() isa
restriction of Uy, to [0,c]N[to,t].

If the set of feasible controls is 2¢; , and

u)e;,

then the control quality can be determined using the restriction u(-) of control
Uy, to interval [0,c] N[ty,t]. Thus, the performance index can be described
as the mapping:

J,:2, >R. (7.4)

Since the set of real numbers, R, is linearly ordered by < relation,
introduction of the J, function makes it possible to introduce the linear
order relation in the set 24; , as well. The order relation, R_, is introduced in
?¢, by the convention that u'(-) is better, or at least as good as u*(-), i.e.,

u'()R,u*() ifand only if J (u'())<J. (U*()),i.e.,
J W) I WO = U ORU(). (7.5)

The problem of the choice of optimal control can now be stated as follows:
The set of feasible controls, 24; , is given, and the performance index is:

J.:2%; >R.
Let
inf J_(u() =J,. (7.6)

u(-)e?ss
Determine the set of optimal controls:
2 ={u*()|u*() e 2y, I U*() =3} (7.7)

Here it is considered that the best control is the control mapped to the minimal
performance index value.

There may be some cases, of course, with 26*=(J, i.e., no feasible
solution can be found (26*=J = 24, =9).
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7 General statement of traffic control problem 89

Solving optimal control problem always implies solving some
minimization or maximization problem. A maximization problem can always
be transformed into a minimization problem, and vice versa. This is possible
because:

max Jo(u()) == min (- Jc(u()).

The fact stated by (7.7) can also be expressed as follows:

J*() =inf{ I U()[(u() e?¢ }= inf J.(u()). (7.8)

u(-)e?ss

Obviously, the problem of the choice of the optimal control can be defined
by the pair (%4;,J.) and the statement whether the performance index shall
be minimized or maximized.
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8. THE SET OF FEASIBLE CONTROLS (SIGNAL PLANS)

The formulation of the optimal control problem (24;,J,) implies
defining the feasible control set 24, , whose element u(-) € 24; is defined by
an ordered pair as follows:

u() =(:J — W),

u=[utu?,... uk,...uf]

where

is the control structure (signal plan structure) (4.12). A control structure
component

u =[us,ug,....uf,...usl"  (ke.%%)
is a vector (4.15), whose components assume values from set {0,1}, i.e.,
k
u,e{0} (ke J%,pe’),

where Z”is the set of signal group indices in the complete set of signal
groups. The complete set of signal groups has to be chosen before start of the
problem solving.
The second element of the pair (4.14), T, represents the cycle time split,
1e.,
T =[Tl,rz,...,rk,...,rK] .
The terms control and signal plan are used as synonyms. Component u*
is termed the control vector or phase.
Control is also described as the vector time function:
UE) = [Uy () Uy (reeosUp (Do Up T
where one vector component, u,, (), represents the control variable assigned

to signal group Dj . Values of this variable during a cycle time are defined
by the sequence:

u, =[up,u’,....u5,...,uk] uf €01}, (pe o),
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i.e., by the values of variables qu, for k=1,2,...,K. The duration of each
component u'; of that sequence is determined by the value of component t*
of vector T with the same index, k. Hence, the control variable u,(-) can be
defined by the pair (4.16):

U ()=, )", (pe?).

The problems of optimal signal plan choice, (%4;,J,) , can be formulated
as mathematical optimization problems. The set of feasible controls, Z4; , is
determined by the constraints that have to be satisfied by chosen controls.
In some problems, constraints on state variables of the process are also
present.

The set of feasible controls, 2¢;, depends also on the problem being
solved, and it is not completely the same in all problems of the choice of the
optimal control. Namely, there exist constraints on control that have to be
satisfied regardless of the problem considered, and there exist constraints that
are present in some problems and not in others. For instance, in the problem
of choosing the signal plan that minimizes the capacity, the sum of phase
durations has to be equal to a given cycle time, whereas in the problem of
cycle time maximization this constraint doesn’t exist.

8.1. The constraints that define the set of feasible controls

Bearing in mind the elements of the control (signal plan) included in
the constraints, one can note that there are groups of constraints related to
particular components of control variables, i.e., the constraints related to
control components assigned to signal groups, constraints related to phases
(their sequence and structure), and constraints related to phase durations
(cycle time allocation to phases).

In order to formulate the constraints related to phases, their sequence,
and structure, it is necessary to determine the relations that exist in the set of
control variables. On the basis of these relations, it is possible to determine
the control variables that can simultaneously assume value 1, which is
necessary for determination of the set of feasible phases. For finding feasible
phase sequences, it is necessary to know whether a signal group can gain the
right-of-way as soon as another group has lost it, or a time delay is needed for
intersection clearance, i.e., the intergreen time has to be greater than zero.

The control variables have to satisfy the following conditions:
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8 The set of feasible controls (signal plans) 93

= Each control variable (the component assigned to one signal group)
has to satisfy the condition that the signal group can gain the right-
of-way only once in the cycle.

=  The duration of green indication (green time) for each signal group
has to be longer than the predefined minimum green time.

= The duration of green time for each vehicle signal group has to
satisfy the capacity constraint, i.e., its value has to be large enough
to accommodate all vehicles that arrive during a cycle to leave the
intersection during the same cycle. This constraint, of course, makes
sense only in the case when no approach is oversaturated.

The definition of the set of feasible phases, i.e., the set of control
vectors giving the right-of-way to more than one signal group, is based on
the information on the pairs of signal groups that can simultaneously gain
the right-of-way. This information can be obtained from the signal group
compatibility relation or compatibility graph (Subsection 3.3.3). All feasible
phases can be determined using this relation.

The signal plan structure, i.e., the phase sequence, has to be determined
bearing inmind that when a signal group loses its right-of-way, an incompatible
signal group usually cannot immediately gain the right-of-way. Some time
has to pass (intergreen time) before the incompatible signal group gains the
right-of-way. Thus, in the signal plan structure, a phase can be followed only
by particular feasible phases.

Time constraints refer to phase durations and the cycle duration. The sum
of phase durations has to be less than or equal to the determined cycle time.
The cycle time has to be less than or equal to a predefined maximal value
(usually set to 120 s, and only exceptionally longer).

Constraints related to traffic process states, i.e., vehicle queue lengths
on some approaches, appear in some control problems. Such constraints are
usually transformed to constraints on duration of the red signal indication —
red time constraints. Namely, it is possible, for a given average flow volume,
to determine the maximal red time so that the queue length doesn’t exceed
some prescribed value.

The feasible set of signal plans can be, thus, defined by the following
constraints:

a) Control variable constraints

1. The constraints of one green interval in the cycle for each signal
group — Each signal group must get the right-of-way once and only
once during the cycle.
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b)

d)

OPTIMAL TRAFFIC CONTROL: Urban Intersections

Minimal green times constraints — The duration of green indication
of traffic lights—green time allocated to a signal group has to

be longer, or at least equal to a given minimum green time value
defined for each signal group.

Maximal red time constraints — The duration of red indication of
traffic lights—red time allocated to a signal group has to be shorter
than a given maximal red time value defined for some or each
signal group.

Capacity constraints (flow balance constraints) — The green time
allocated to a vehicle signal group has to be long enough to enable
all vehicles arriving during a cycle to intersection approaches
belonging to that signal group to leave the intersection during the
green time.

Constraints on the composition of control vectors—phases

In some intervals during the cycle, the right-of-way can be

simultaneously given only to compatible signal groups (Subsection
3.3.3).

Constraints on control vector sequence and on signal plan structure

1.

Minimal intergreen constraints — The duration of phases positioned
between the phase that takes off the right-of-way to some

signal groups, and the phase that gives the right-of-way to some
incompatible signal groups, has to be longer than the specified
minimal intergreen times.

Phase sequence constraints — For each feasible phase, a subset of
the set of feasible phases is defined, containing the phases that can
be chosen as next in the signal plan structure. This means that each
phase in the signal plan structure has to belong to the subset of
possible followers defined for the preceding phase in the structure.

Time constraints

1.

The sum of phase durations has to be equal to the cycle time.

2. The sum of phase durations has to be equal or less than a given

maximal cycle time value.

These constraints are present in most problems of optimal signal plan
choice. Some of the constraints exist in almost all problems, whereas some
constraints appear in some problems and not in others. Constraints a.1, a.2, b,
and ¢ have to be satisfied by any signal plan.
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8.2. Constraints on control variables

As mentioned in the previous section, there exists a set of constraints that
have to be satisfied by control variables, i.e., the variables that control signal
groups. The assignment of control variables to signal groups can be done
only after the choice of the complete set of signal groups. Because of that, all
constraints presented in this section are related to one, chosen, complete set
of signal groups.

This section presents mathematical expressions for control variable
constraints. Control variable is defined by expression (4.16):

0O = Uy )' :[up}:{(ut,uﬁ,...,ug,...,ug)} (pe).

T (< %,...,7%,..., %)

Thus, control variable constraints are functions of vectors u 0 and t.

8.2.1. The constraint of one interval of green indication
during the cycle

This constraint, mentioned as a.l, has to be satisfied by each control
variable. If this condition is satisfied, the time interval between two subsequent
starts of green interval for a signal group is equal to the cycle time. Thus, the
phases giving the right-of-way to one signal group have to be consecutive.

This constraint is common in existing types of traffic control by fixed
signal plans, and drivers and pedestrians have gotten accustomed to it. Also,
time losses generally increase if the number of intervals of green indication
for a signal group is greater than one. Omitting this constraint leads to an
extension of the set of feasible signal plans, and because of that, in some cases
the optimal signal plan can have more than one interval of green indication
for a signal group.

The analytical expression of this constraint has to be valid for any position
of green interval in the cycle relative to the beginning of the cycle. Figure
4.2 presents all possible positions of green interval (more precisely, effective
green interval). In formulating the analytical expression, the fact is used that
in this case the number of changes of control variable values (from 0 to 1,
and from 1 to 0) for each signal group during one cycle has to be equal to 2
(see Fig. 4.2).

The analytical expression of this constraint for control variable
u,()=(u,, )", where u,=[ui,u?...uf,....ukl, uf {0}, (pez)
can be formulated as follows:
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K
> (up +up™ 9 (mod2) =2, (pe ), @.1)
k=1

where &2 ={1,2,...,P} is the set of signal group indices.

Example 8.1

Check whether the signal plan presented in Fig. 8.1 satisfies constraints (8.1).

u,(t)
e
z(t) }
| l

(@]
~Y

(@]
~Y

3(t)

Figure 8.1
The signal plan structure, U , is:
10000
u=[ut,u?,u’*,u*,u’l1=(0 0 0 1 1]|.
00110

The constraints of one green interval in a cycle are:
5
For p=1: Y (uf +uf ™) (mod 2) =(1+0)(mod 2) + (0 +0)(mod 2) +

(0+0)(mod2) + (0 +0)(mod 2) + (0 +1)(mod 2) = 2

5
For p=2: Y (us +us™9™)(mod 2) =(0+0)(mod2) + (0+0)(mod 2) +

(0+21)(mod2)+ (1+1)(mod2) + (1 +0)(mod2) =2

© 2008 by Taylor & Francis Group, LLC



8 The set of feasible controls (signal plans) 97

For p=3: ZS“(uSk +uXmed9 ) (mod 2) =(0 + 0)(mod2) + (0 +1)(mod2) +
- @+ (mod2)+ (L+0)(mod2) + (0+ 0)(mod2) =2

Obviously, the constraints of one green interval in a cycle for each signal group are
satisfied by the signal plan in this example.

8.2.2. Constraints of minimal duration of green indication intervals

Sometimes it happens that the calculated durations of green indications
(displayed green time) are very short, just a couple of seconds. Usually, such
short green times are not permitted, and because of that, for each control
variable, the minimal displayed green time is defined.

There are many reasons for introducing minimal displayed green times.
Some of the reasons are psychological—drivers, not accustomed to very short
displayed green time, could assume a traffic light mistake and stop respecting
it; also, noting that the green time is short, drivers could accelerate in order
to pass through the intersection so that the safety would be significantly
reduced, etc. Technical reasons are also present, particularly with vehicle-
actuated signals, where the data obtained from vehicle detectors are used for
generation of control. In some of these systems, the green indication is given
to a signal group only if particular detectors are “actuated.” The possibility
exists that some vehicle, because of a very short displayed green time, stays
trapped between the detector loop and stop line, and won’t get the right-of-
way unless another vehicle arrives behind it. To prevent such situations, a
minimal displayed green time is periodically assigned to each control variable
(in each cycle) regardless of detector actuation.

Minimal values of minimal displayed green times are recommended by
technical standards in many countries. In Germany, for instance, the following
values are fixed as lower limits for minimal displayed green times [69]:

e Vehicle signal group control variables: (5-10) s
e Pedestrian signal groups control variables: 5 s

e Tram signal groups control variables: 5 s

Feasible signal plans have to satisfy the constraints of minimal displayed
green times. These times are component of the vector

Gm :(Gml’GmZ""’Gmp""9GmP) . (8.2)

Minimal displayed green time, G for control variable controlling

mp 2

signal group D}, (pe{L2,...,P}), is determined using the minimal displayed
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green times for each traffic stream, o;, that belongs to signal group D'p.
If minimal displayed green time for o; (i€ Z)is G, then the minimal
displayed green time, G, ,, for control variable that controls signal group
D, is given by the following expression:

G,p,=max{G"|c; €D, }=Gj;, (pe?), (8.3)
1.e.,

Gp2G", (o;€Dyp).

Likewise, the minimal effective green times for signal groups, g,,,
(p € 2”) are given by the expression:

9., =max{g" |c;eD;}, (pe{l2,...P}). (8.4)

In the computing process of signal plan choice the effective values of
green and red time are used.

Minimal effective green times for vehicle signal groups are calculated
in the same way as other effective green times for vehicle signal groups
(Appendix V), i.e.,

9,0 =G,p+a,—-(,+17)=G,, +a,-1,, (pe?) (8.5)

where a, and |p are usually the standard values, 3 s and 2 s, respectively.

The minimal effective green times for pedestrian and tram traffic streams
are usually of the same duration as green signal indications, i.e., displayed
green times.

Minimal effective green times are components of vector @, , i.e.,

gm:(gml’ng""'gmp""’ng)‘ (86)

The effective green time for a signal group has to be longer than the
minimal effective green time for that group. This means that the interval in
which the respective control variable assumes value 1 has to be longer than
the minimal effective green time, i.c.,

K
Ut =) Uty >0, (pe?). (8.7)
k=1
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8.2.3. The constraints of maximal red times

In some traffic control problems there exist constraints related to states,
i.e., to queues. These constraints, expressed as maximal feasible values of
queue lengths, can be transformed into constraints of maximal displayed red
times. Since a queue forms during red signal indication, it is obvious that
longer red time leads to longer queues. Thus, the maximal duration of red
signal indication, i.e., the maximal displayed red time, corresponds to the
maximal feasible queue length.

In one signal group there can be several traffic streams with maximal
displayed red time constraints. Therefore, it is necessary to determine values
of maximal red times for each signal group that contains traffic streams with
constrained queues. These values are determined as follows (Appendix V):

e =min{r" |c,eD,}, (ge™), (8.8)
where:
Ny, — the maximal effective red time for signal group D/,

rj“" — the maximal effective red time,

PM 7' — the index set of vehicle signal groups with maximal
effective red time constraints. In each element of &?" there is one
or more traffic streams with such type of constraints.

Analytical expressions of the maximal effective red constraints are given
by the following inequalities:

ia-@yﬁsww (ge ™). (8.9)

k=1

8.2.4. The flow balance (capacity) constraints

These constraints are formulated for two cases:
= Saturation flow is constant during the cycle.

= Saturation flow can have two values during the cycle, which is
the case when “filtering” one traffic stream “through” another is
allowed.
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a) The capacity constraint when saturation flow is constant during the cycle

All vehicles of an arrival traffic stream, o;, with the average flow
volume, ¢;, coming to the intersection during one cycle, can leave the
intersection in time not longer than the cycle time if the effective green time,
g, (o; €Dy), satisfies the following inequality:

4iC<g,s, (ie 7).

1e.,
g <21, (ie 2. (8.10)

The condition (8.10) can be presented in the form:

4C <1, (e T pe). 8.11)
gpsi

S.
The arrival flow volume equal to et is termed the theoretical capacity
C

of traffic stream ;. However, when the arrival volume has this value, queue
lengths formed during red signal indication will be extremely long. Because

of that, the practical capacity, which is equal to p; 9% , Is used in practice.
c

The condition (8.11) can now be expressed as:

9 _4C g e pes 8.12
Pi Sigp Sigp - (eﬂ,pe ) ( )
C

The ratio defined by p; is called the saturation degree of traffic stream
o; (or the traffic intensity, in the queuing theory terminology). The value of
the maximal acceptable saturation degree, p;, is less than 1, meaning that for
each traffic stream the condition p; <p, has to be satisfied. This degree, p;,
usually represents an estimation of traffic engineers and can be different for
different intersection approaches. Most commonly the value of 0.9 is used, as
suggested by Webster and Cobbe [88]. If it is necessary to prevent formation
of longer queues on an approach, the value of p; has to be lower than 0.9;
if longer queues can be tolerated, then the value can be slightly greater than
0.9.

To each traffic stream enough effective green time has to be allocated
to ensure that the practical capacity is greater than the average arrival flow
volume. The necessary green times for traffic streams belonging to one signal
group need not be the same. The effective green time of a signal group has
to be greater than the effective green time necessary for any traffic stream
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belonging to this signal group. Analytic expression of this constraint is:

K
uprT ZZUETK 2y, , (pe?), (8.13)
k=1
where:
— qu ’ '
yp—max{?ksier}, (pea), (8.14)

p; — the maximal acceptable saturation degree for traffic stream o;,

" — the index set of vehicle signal groups set.
b) The capacity constraints when filtering is allowed

When a pair of traffic streams, (c,,0,), is at the same time element
of both, the conflictness relation, C,;, and the compatibility relation, C,
ie., (0,,0,)eC, and (0,,5,) € C, then a feasible signal plan can contain
phases by which simultaneous right-of-way is given to both traffic streams.

The phases (control vectors) with u¥ =uf =1 belong to the set of feasible
phases. One traffic stream, in this case, “filters” through the other traffic
stream, under priority rules. When left-turning vehicles, i.e., the opposed
turning traffic, filter (by the right hand rule) through the traffic stream that
passes straight through the intersection, i.e., the opposing traffic, the opposing
traffic stream has the priority. The vehicles in the opposed traffic stream, in
this case, have so-called conditional right-of-way. Vehicle traffic streams can
be filtered through pedestrian traffic streams, as well (e.g., the right-turning
vehicles that have right-of-way at the same time as the pedestrian stream
through which they filter).

Filtering is possible if gaps between vehicles in the opposing stream
have acceptable duration, and if there is enough space on the intersection to
accommodate turning vehicles waiting for acceptable gaps.

In formulating capacity constraints, a.4, saturation flow volumes,
s;, (ie Z') are constant during the cycle.

In the case when filtering is permitted, the saturation flow volume of
the opposed traffic stream has one value in the case when both opposed and
opposing traffic streams get the right-of-way simultaneously, and another,
different value when its movement is “protected,” i.e., its right-of-way is not
completely simultaneous with the right-of-way of the opposing traffic stream
(e.g., late start or early stop). This means that the value of saturation flow
volume of the opposed stream, s/, in some interval k, depends on the control
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vector in that interval, u¥, i.e.:
sk =sf(u"). (8.15)

For instance, if traffic streams o, and oy in Fig. 8.2 are compatible,
namely (c,,05) € C, and if one control variable is assigned to each traffic
stream, then the saturation flow volume in interval k, s, when control vector
(0,01,1,1,0)" is applied, giving the right-of-way to both streams, is not the
same as the saturation flow value in interval r, s,, when control vector
(0,01,1,0,0)" is applied, giving the right-of-way only to stream o and not
to stream o,. This can be described by the following inequality:

sk <si"),ie.,
$£((0,0111,0)") <s5((0,0,1,1,0,0)") .

By permitting filtering, it is possible to improve some intersection
performance indices.

G()
2P
am—
J Y\
N
<+— o,
Gl
G,
Figure 8.2

Figure 8.3, a, b, ¢, and d, presents several cases of permitted filtering. The
conflictness and the compatibility graphs are given in the same figure.

Trafficstream o, filtersthrough o inFig. 8.3a. Inthiscase, (5,,05) € C,
and also (c,,05) € C. Therefore, edge (c,,05) exists in the compatibility
graph G, as well as in the conflictness graph, G, .

In Fig. 8.3b the left-turning partial stream of o, filters through vehicle
stream o5, and in Fig. 8.3c a partial stream of o, filters through vehicle
stream o,. Fig. 8.3d illustrates filtering of partial stream of o, through
pedestrian traffic stream o,.
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During filtering of one traffic stream through another, the saturation flow
value of the priority traffic stream (the opposing traffic stream) does not
change, and the saturation flow value of the opposed traffic stream changes
as a function of the opposing traffic stream volume [45], [42].

The opposing traffic stream can be a vehicle or pedestrian stream, and
various types of filtering are possible. For example, the opposed traffic stream
may be not partial and have an exclusive lane; or, only a partial traffic stream
could be filtered, etc. [6].

The saturation flow, s,, of the opposed traffic stream, o,, depends on
the type of the opposing traffic stream, o, (a pedestrian or vehicle stream),
and on the opposing traffic stream volume in case it is a vehicle stream. These
two cases are discussed below.

b.1) The saturation flow, S, , when stream o, , using an exclusive left-turning
lane, filters through vehicle stream o,
The saturation flow, s, ,is given by the following expression [2], [84]:
qae_u’qa

T (8.16)

Sp =5,(qa) =
where:
q, — the average volume of the opposing traffic stream o,

o' — the critical gap (the number of accepted gaps less than o’
is equal to the number of rejected gaps greater than o),
o' =(4.55)s

B, — the minimal gap of the opposed traffic stream, realized when the
opposing traffic stream does not have the right-of-way, i.e., when

1
s, =5,(0),and B, =——.
b b ( ) Bb Sb (0)
The saturation flow, s, (0), can be calculated as the limit value s, (g,)
when ¢, >0, 1ie.,
—a'qy 1

. g,e
s, (0) = lim 22— =—. 8.17
b( ) l]aﬁol—e_ﬁbqa Bb ( )

The s, (g,) function is presented in Fig. 8.4.
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S, 4

1/B, 1

Figure 8.4

In any case, when filtering is permitted, there exists an interval when two
conflicting and compatible vehicle traffic streams get the right-of-way. They
have a part of the interval with simultaneous right-of-way, but the opposing
traffic stream can get the right-of-way before the opposed one, or the opposed
stream can get the right-of-way before the opposing stream. If the opposed
traffic stream is the first to get the right-of-way, its saturation flow will fall
down to zero when the opposing traffic stream gets the simultaneous right-
of-way. This happens because no vehicle from the opposed stream can filter
through the opposing stream when its volume is equal to the saturation flow
volume. The conditions necessary for filtering establish when the volume
of the opposing stream becomes less than saturation flow volume. From
that point onward, the value of the opposed stream saturation flow becomes
different than zero. This means that when the opposed stream has the right-
of-way two intervals can be noted in which the opposed flow volume is
greater than zero, separated by an interval in which this volume equals zero.
Some authors [2], therefore, recommend two right-of-way intervals in a cycle
for the opposed traffic stream, i.e., the intervals in which the volume of the
stream can be different than zero.

In the case when first the opposing stream gets the right-of-way, and only
after its queue discharges the simultaneous right-of-way with an opposed
traffic stream begins, then the opposed traffic stream volume will be equal to
its saturation flow, which depends on the flow of the opposing stream. If, after
the simultaneous right-of-way, the opposing stream is stopped, the saturation
flow volume of the opposed traffic stream will be equal to the saturation flow
volume of the “protected” stream if a queue exists.

The volumes of the opposing stream, &, , and the opposed stream, o,,
are presented in Fig. 8.5 and Fig. 8.6 for these two cases. In the case presented

in Fig. 8.6, the volume of the opposed stream, o, , during its green indication
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(UZ =1) is constantly greater than zero, while in the other case (Fig. 8.5)
there exists an interval when its volume, g, (t), is equal to zero.

1 ‘l l 1
N N D

u(®t |
: 1 L
R c ot

u(t |
1 —1___ L
0 . T 1

a.(1) o |

Sa ! ! 1
0 — N
a4 1o et

Sh(o; ! ! ! \
(0. 1 R
c t

u (s T |

S — N
| . ¢

ub(t)¥ 1 1 1 1

1 1 | 1 :
0— I —t

a4 L |

sa' 1 1 1

qa_l—i B
| ¢ 1

q. (1) | S C

sb(O; 1 1

sb(qa EI :
) ‘ Tt

Figure 8.6

The control presented in Fig. 8.6 has more advantages than the control
presented in Fig. 8.5. Therefore, here are presented constraints for this case.
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The constraint for the opposing stream, G, :

I.  The flow balance constraint for o, :
K
D (Sala (1-Up) +qu3u;) T 2 cq,, (abe 7) (8.18)
k=1

II. The condition of discharging the queue of stream o, before giving the
simultaneous right-of-way to o, and c,:

K K
ZQa(l_u:) Tk _(Sa _qa)zu: (1_UII:) Tk
o . kﬂ (8.19)
= Z((l_ule;u}lj)qa —U; (1_u[i;<)sa)’[k 20

k=1

The constraints related to the opposed traffic stream, c,,:

K
> (ufugs, (g,) +us (L—uk)s, (0) T > g,C |
k=1

and when expression (8.16) for s,(g,) is included, the constraint gets the
following form:

K q e—ot'qa
> ugu}fa—M+u,‘j(l—u§)sb(O) *>q,c. (8.20)

It should be noted that opposed and opposing traffic streams can have one
interval of the simultaneous right-of-way, but if they don’t have simultaneous
right-of-way, i.e., when they separately get the right-of-way, then the interval
between the end of the right-of-way for one traffic stream and start of another
stream’s right-of-way should be longer then a predefined intergreen time.

b.2) The saturation flow, S,, in the case when opposed traffic stream, o, ,
filters through a pedestrian traffic stream, c,

When a turning traffic stream, o, , filters through a pedestrian (opposing)
traffic stream, o, , then the dependence of saturation flow, S,(g,), on the
pedestrian traffic volume, g, , according to the results of Hoppa and Krystek
[42], is given by the expression:

$,(qa) = $,(200) (K; —K,q,) , (8.21)
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where:

S, (200) — saturation flow of stream o, if the volume of the pedestrian
traffic stream o, is 200 ped/h,

k, =1.03.
k, = 0.00015 h/ped.

The expression (8.21) is valid if the pedestrian volume, g, , belongs to
interval (200-1.500) ped/h. If g, is less than 200 ped/h, its influence to o,
is not significant, and in that case s, >0.785s,(0). If s, >1.500 ped/h, this
influence becomes significant and s, =0.215,(0) .

8.3. The set of feasible control vectors

The information contained in the signal group compatibility relation,
Cy, and compatib.ility_ graph of signal groups, Gy, (Subsection 3.3.3), can
be used for determination of the set of feasible control vectors (phases).

Relation C; contains information on pairs of signal groups that can
simultaneously get the right-of-way.
The control vector — phase in interval K is:
u=[uf,ug,.. U5, ul L usl (ke ),
where:

uy {0}, (ke pe?).

Introducing the notation B ={0,1}, the expression can be written as:
u“eB®, (ke),

where:
B = BxBx...xB , (8.22)

%r_/
P groups

i.e., u* is a vector whose components are equal to 0 or 1.
Two components, u'; and u; , of this vector can have value 1 only if their

respective signal groups, Dj, and D, are compatible, i.e.,

k k ’ ’
(u,-u, =)= (D,,D;)eCy. (8.23)
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However, one phase can give the right-of-way to more than two signal
groups, or only to one or no signal group. It is necessary, of course, that
the signal groups getting the simultaneous right-of-way are mutually
compatible.

For determining all feasible phases, it is necessary to form all subsets
of the chosen complete set of signal groups, 9D,, with the property that
each pair of signal groups from one subset belongs to the compatibility
relation C,. The subsets having this property are in fact cliques of graph
Gy =(D,,Cq) =(D,, 1) -

In order to determine the set of feasible phases, it is necessary to find
all the cliques of graph G, and assign to each clique the phase that gives
the right-of-way to signal groups that are members of the clique. In the
set of feasible phases one more element shall be added: the phase whose
components all have value 0 (all signal indications are red).

Subset 5; of the complete set of signal groups, 9, , 5; c 9, isaclique
of graph G, if the following relation holds:

(D, e?,, D, eD,) = D,el,D,, (p.ge?). (8.24)
The procedure of clique determination is described in Subsection 3.3.1, where
the determination of signal group set is presented. The set of all cliques of
graph G, =(D,,C,) = (D,,I) , where T is the mapping:

[y iD, > 9(D,),
which is determined by function d'(Gy) . 9(2,) is partitive set of set D, .

Mapping d'(G,) is defined by the expression (Subsection 3.3.1):
d'(Gy) =D, ={2, |((D, €D,) A (D, €2,))
= (D, el D) (p.g € )} (8.25)
where R is the number of graph G, cliques, and .72 is the index set of the
cliques, i.e., Z={12,...,r,...,R}.
Mapping d’ determines the unique set of all cliques 9, of nonoriented
graph G, . CLIQ program [34] is developed for realization of this function.

The pseudocode of CLIQ program is given in Appendix III.
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To each clique 9, €D,, (re.22), there corresponds one feasible
phase u(r), whose components, U, (r), are determined by the following
expression:

1, if Dy e,
u(N=4y - _ . (peZrexn) (8.26)
0, if D, D,

It means that the number of feasible phases is R +1, i.e., R phases that
correspond to graph G, cliques, and one phase whose components are all
equal to 0 (“all-red” phase).

All feasible phases, u(l),u(2),...,u(r),...,u(R), are elements of set
U;.ie,

U, ={u@),u(2),...,u(r),...,u(R)}U{(0,,...,0)}.
Each phase uk = [ulk, ug,..., u;,..., qu,]T in interval k belongs to the set of
feasible phases:
ukeU,, (ke). (8.27)
If the sequence
u=[utu?,... uf,... u¥]

represents the structure of a feasible signal plan, then elements of the
sequence (i.e., phases) in each interval k € .7, have to be chosen from the
set of feasible phases U .

Example 8.2

For the intersection presented in Fig. 3.4, determine the set of feasible control vectors
(phases) for two complete sets of signal groups:

a) D, ={D;,D;,D;,Dj, D, D¢}, where

Dll ={o,}, D; ={o,}, D31 ={o;}, D; ={o.}, D3 ={os}, Dé ={o},

and

b) D, ={D;,D;,D;,D;,D:}, where

I:)13 ={o,}, D; ={o.}. D33 ={os}, Di ={os}, Ds3 ={o,,03}.
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a) Fig. 8.7 presents the intersection, the signal group compatibility graph, Gé ,and subgraphs
of Gé that are complete graphs. Node sets of these subgraphs are cliques of the compatibility
graph. The cliques are elements of set CD; , and were obtained using CLIQ program.

¥

D, D, D, D,

Figure 8.7

The complete set of signal groups, Dy, in this case is:
ot ={D!,D},D} D}, D, D}.
The set of cliques is:
ijal 2{6;'@2’“"5;5}'
where:
3 ={D}}, 37 ={D}}, 3, ={D}}, 3; ~{D}}, 3; ={D}},
2, ={Di}, 2, ={D},D3}, 9, ={D}, D3}, 2, ={D}, D3},
2,° ={D;,Di}, . ={D;, D3}, 9,% ={D;, D3}, 2,° ={D3, D3},

D, ={Dy,D;, D5}, D," ={D;, D5, D¢}
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The feasible phases, which correspond to cliques, are vectors with six components because the

complete set of signal groups @; has six elements, i.e.,
T
u(r) =[u, (r),u,(r),...uy(r),...us (N1, (P=6,re.z).

The phases that correspond to the cliques are:

u(1) = (1,0,0,0,0,0)
u(2) =(0,,0,0,0,0)
u(3) =(0,0,1,0,0,0)"
u(4) = (0,0,0,1,0,0)"
u(5) =(0,0,0,01,0)"
u(6) = (0,0,0,0,0)"
u(7) = (1,1,0,0,0,0)
u(8) = (1,0,1,0,0,0)
u(9) = (1,0,0,0,1,0)"
u(10) = (0,1,0,0,1,0)"
u(11) =(0,1,0,0,0,1)"
u(12) =(0,0,0,1,1,0)"
u(13) =(0,0,0,0,1,1)"
u(14) = (1,1,0,01,0)"
u(15) =(0,1,0,011)"

The number of all cliques is K:]j, and thus the number of all feasible phases is

card U; =16.

The set of feasible phases is:

U, ={(0,0,0,0,0,0)",(1,0,0,0,0,0)",(0,1,0,0,0,0)",(0,0,1,0,0,0)",
(0,0,01,00",(0,0,0,01,0)",(0,0,0,001",(11,0,0,0,0)",
(1,0,1,0,0,0)",(1,0,0,0,1,0)",(0,1,0,0,1,0)",(0,1,0,0,01)",
(0,0,011,0)",(0,0,0,011)",(11,0,010)",(0,1,0,011)}.
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b) The complete set of signal groups in this case is
3 313 N3 P3P
9} ={D;},D},D},D},D}}.

Fig. 8.8 presents the signal group compatibility graph, Gé = (@: ,ch ) , and subgraphs of
Gé that are complete graphs. Node sets of these subgraphs are cliques of the compatibility
graph. The cliques were obtained using CLIQ program.
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Figure 8.8

The set of all cliques, 913 , is defined by the following expression:

Das =H{D H{D;}{D;1{D;}1{D:}{D;, D},
{D/, D;}{D;, D;}{D5, D;}.{D;’, D5, D;}}.

The phases that correspond to these cliques are:

u(1) = (1,0,0,0,0)"
u(2) =(0,1,0,0,0)"
u(3) =(0,0,1,0,0)"
u(4) = (0,0,0,1,0)"
u(5) = (0,0,0,0)"
u(6) = (1,0,,0,0)"
u(7) = (1,0,0,1,0)"
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u(8) = (0,1,1,0,0)"
u(9) = (0,01,1,0)"
u(10) = (1,0,1,1,0)" .
The set of feasible phases is:
U, ={(0,0,0,0,0)",(1,0,0,0,0)",(0,1,0,0,0)",(0,0,1,0,0)",
(0,0,01,0",(0,0,0,01)",(1,01,0,0)",(1,0,010)",
(0,1,1,0,0)",(0,011,0)7,(1,01,1,0)"}.

The number of feasible phases is card U; =R +1=10+1=11.

8.4. The intergreen time constraints

In the process of signal plan design, it is necessary to respect the
constraints that have to be satisfied by feasible sequences of control vectors.
These constraints are the minimal intergreen times constraints, and constraints
on phase sequences, i.e., the constraints related to signal plan structure.

The set of feasible phases is determined on the basis of signal groups
compatibility relation, Cy, which contains information on pairs of signal
groups that can simultaneously get the right-of-way. The pairs of incompatible
traffic streams in the complete set of signal groups, Dy, i.e., the elements of
relation:

Cy = (D, x D)\ C, (8.28)

comprise signal groups that must not simultaneously get the right-of-way.
Moreover, if

(D)D) eC,,

these two signal groups not only cannot have a simultaneous right-of-way,
but some time has to elapse from the end of the right-of-way for signal group
D, until the start of the right-of-way for signal group D; . This time shall be
greater than so-called minimal intergreen time in order to avoid conflicts of
traffic participants whose movement is controlled by control variables u, (")
and u HOR
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The stated requirement can be expressed in the following way: In the
phase sequence, representing a feasible signal plan structure between phase
u* with uf =1 and u§™ =0, and phase u*"" with uf*" =1 and u*"* =0
(where r —1 is the number of phases between the last phase giving the right-
of-way to signal group D and the first phase giving the right-of-way to
signal group D; ) there have to exist phases such that their entire duration is
greater than the minimal intergreen time defined for the pair ( Dy, D; ).

For determination of these phase duration constraints, it is necessary
to determine minimal intergreen times for all pairs of incompatible signal
groups, based on minimal intergreen times for all pairs of incompatible traffic
streams, which have to be calculated in advance.

With regard to the fact that the real sequence of signal indications (in
the majority of cases: green — amber — red — red—amber) is transformed to
effective green and effective red indications, it is necessary to determine
minimal intergreen time between the end of effective green time of the signal
group losing the right-of-way and the beginning of effective green time of the
signal group gaining the right-of-way, i.e., the minimal effective intergreen
time (m.e.i.t.) (Appendix V).

During the minimal effective intergreen time the volume of both traffic
streams, the traffic stream losing the right-of-way, and the stream gaining the
right-of-way is equal to zero if m.e.i.t. has a positive value.

8.4.1. Minimal intergreen times for pairs of traffic streams

a) Minimal intergreen times for pairs of incompatible traffic streams

To each pair of incompatible traffic streams, (o;,0;), which is a member
of relation
C=(I*xI)\C,
one number, Z;; — the minimal intergreen time, is assigned by mapping:
Z:C >R, (8.29)
where R is the set of real numbers.
For calculation of minimal effective intergreen times, it is necessary
first to determine minimal intergreen times for real sequences of signal
indications.

In the case when o; and o; are vehicle streams, the minimal intergreen
time is calculated by the following expression (Fig. 8.9):

Zij:ti'j —tf’j +tP 49, ((ci,07)€C), (8.30)
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where:

ti'j — the time necessary for the last vehicle of o; (the stream losing the

right-of-way) to pass the distance between the stop line and the end
of the conflict area with o i

t° — the time necessary for the first vehicle of o j (the stream gaining
the right-of-way) to arrive at the beginning of the conflict area with
GI ]

t? — vehicle travel time through the conflict area,

t® — the part of the amber time used by vehicles of stream o,

Z;; — the minimal intergreen time.

o, gains the right of way
o, loses the right of way

tij’ U; |}
>
O e F------- -
> L:f? U, g ==
v 9 t et
e

T o Zij tl‘ ij >

G;

Figure 8.9

The formula for minimal green time calculation (8.30) is based on the
assumption that vehicles leaving the conflict area travel with the lowest
speed, while the vehicles approaching the area travel with the highest speed,
under existing conditions. It is usually assumed that the speed of the vehicles
leaving the conflict area is in the range of (25-30) km/h and the speed of
vehicles arriving to the conflict area is in the range of (40—50) km/h [69]. The
pedestrian speed is usually 1.2 m/s to 1.5 m/s.

The minimal effective green time, in this case, can be obtained by the
expression (Fig. AV.3 in Appendix V):

Zj=7;—a+l, (8.31)
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where:
a — the duration of amber indication,

I =1"+1" — the lost time.

Expression (8.31) holds when a pair of incompatible vehicle streams is
considered. Expressions for determination of minimal effective intergreen
times for other cases are given in Appendix V.

As already mentioned, minimal effective intergreen times for pairs of
incompatible traffic streams are determined by the mapping:

Z':Z >R. (8.32)
Determination of Z' elements, zj; =Z'(Z;;), depends on the type of

traffic streams in (o;,5;) pair (both vehicle streams, or one vehicle and the

other pedestrian, etc.).

The values of minimal effective intergreen times between incompatible
signal groups belong to the set of real numbers and usually are expressed
as integer number of seconds. These values can be positive, negative, or
zero. For example, by observing expression (8.31) it is obvious that if the
intersection geometry is such that

t >t +tP +t —a+l,

then zj; <0.
In some countries there exist recommendations that minimal intergreen
times should not be shorter than a prescribed value, Z;, (in some countries

4s). Minimal intergreen times are then determined by the following
expression:

zi; =Z'(max{Z,,Z;}), (i, je 7). (8.33)

In this case, minimal intergreen times can have positive values only.

b) Intergreen times for pairs of compatible traffic streams

For effective intergreen times related to pairs of compatible traffic streams
there are no constraints on their minimal values. In this case, the intergreen
times have to satisfy the following constraint:

z; €[0,c], ((c;,0;)eC), (8.34)

i.e., the minimal effective intergreen time for a pair of compatible traffic
streams can assume any value in [0,c] interval.
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¢) The matrix of minimal effective intergreen times

The minimal effective intergreen times for all pairs of incompatible
traffic streams are defined by the function:

"% >R, (8.35)
ie, Z'={zj|(0;,0;) e ¥ x.7}.
It means that the values of the function Z' are arranged in a matrix:
Z'=[z{; ]\,
whose elements are calculated as follows:
, Z'(z;), ("5i1c’j)€6
Zj; =

0 (oroyeC (,jc2). (8.36)

Fig. 8.10 presents an intersection and the related matrix of minimal
intergreen times, Z', and Fig. 8.11 presents another intersection with matrix
Z' containing elements with negative values (z;, and z},).

Lg (00 0 40 4]
p— A~ % 003500
; ;_|03036 2
Gs 1212002
3R 001000
5o, 180480 0]
Figure 8.10
0 0 -2
0 90
-20 6
010

Figure 8.11
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8.4.2. Minimal effective intergreen times for signal group pairs

The matrix of effective intergreen times for all traffic stream pairs is
determined using expression (8.36) and the formulas given in Appendix V.
Since control variables are assigned to signal groups, the matrix of effective
intergreen times related to signal group pairs has to be determined. These
intergreen times are defined by the function:

Z:9,xD, >R, (8.37)
where 9, is the chosen complete set of signal groups, i.e.,
9, ={Dy;,D;,...,D;,...,Dp }.

Function Z is defined as follows:

Zz{zpq|(D,ID(;)ECDaXCDa}:[qu]PXPI (838)
where
max{z;|c;, € D},,5; € D},(D},, D}) € (D, xD,)\C, }
Z =
M 10, (D}),D))eC,. (8.39)
Example 8.3

Determine the matrix of minimal effective intergreen times for signal group pairs for the
intersection presented in Fig. 8.10. The chosen complete set of signal groups is:

D, ={D1,D;,D5,D; },
where
1 ={o,}, D; ={oc}, D;={o1,05}, D, ={c;,0:}.
The compatibility relation is given by the following expression:

Cy ={(D1, D). (D3, B7),(D3, D3), (D, B;), (D3, By), ... (D, D;) } .

The compatibility graph, Gg = (@a,Cg) , is shown in Fig. 3.14.

Minimal effective intergreen times, Zi’j , for each pair of traffic streams are elements of Z'
matrix presented in Fig. 8.10. Applying expression (8.39), the following values of minimal
effective intergreen times for pairs of signal groups are obtained:

2, =max{zj; |o; e{o0,},0; e{os}=max{zys} =245 =2
23 =max{zj; | o; e{o,},0; e{o;,05}}=max{2,2} =2

2, =max{zj; | o; e{o,},0; €{o,,05}}=max{1,0} =1
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2, =max{zj; |o; e{oc},0; €{o,}}=max{8} =8

2,3 =max{zj; | o; e{cs},0; e{o;,0;}}=max{8,4}=8

2,,=0, (D3,Dy) eC,

2y =max{z; |c; €{o;,03},0; e{c,}}=max{4,4} =4

23, =max{z; | o; €{0;,03},0; e{os}}=max{4,2}=4

23, = max{z; | 5; €{c;,03},0; €{c,,05}}=max{0,0,3,6} =6

2, =max{zj; | o; e{o,,05},6; €{o,}}=max{5,0}=5

2,=0, (D3,Dy) eC,

2,3 =max{zj; | o; €{o,,05},6; €{o;,6,}}=max{0,3,01} =3
Hence, the matrix of minimal effective intergreen times for pairs of signal groups is:

2 1
8 0
- 6]
3 _

N

Z= [qu]4><4 =

Ul w oo |
o N~ |

8.4.3. The extension of the set of feasible phases

The fact that minimal effective intergreen times can assume negative
values leads to the necessity of extending the set of feasible phases.

The definition of feasible phases and the procedure for determining the
set of feasible phases are presented in Section 8.3. The relation of signal
group compatibility is used in determining the set of feasible phases because
this relation contains all signal group pairs with the property that the right-
of-way can simultaneously be given to both members of the pair. This means
that control variables u, () and u,() can simultaneously have the value 1 if
(D, Dy) €Cy.

However, if z, <0, an interval exists in which variables u,(}) and
U, () can simultaneously have value 1 although (D},Dg) ¢ C, (Fig. AV.6).
The duration of this interval shall be less than or equal to the absolute value
of the minimal effective intergreen time. The constraint that prevents this
interval from being longer than |z, | can be formulated as follows:

K
D Up-ug)T <zl (p.ge?). (8.40)
k=1
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Besides this time constraint, there exists a structural constraint that results
from the fact that interval k with uf -us =1 can exist only if in the previous
interval us™ =1 and uf™ =0, and in the subsequent interval u;™ =0 and

ug™ =1. If the sequence is reversed, the interval k such that uf-ug =1

cannot exist.

The set of pairs (D;,D;) with the property z, <0 represents the
relation

Cy ={(D},Dy) |z, <0, Dy, Dy €9D,}. (8.41)
In this case, the set of feasible phases, U, has to be extended by set U’ ,

which contains the phases with u,(s) =u,(s) =1 and z,, <0 (s here denotes
the index of a phase in the set of feasible phases, U’ ).

Set U’ can be defined as follows:
Ut ={u(s)|u,(s) =uy(s) =1; z,,<0,5e{R+2,....R+N}}, (842
because
cardU; =R +1,

where
u(s) =[u,(s),u,(s),...,u,(s),...,u (s),...,up(s)]T,
and N -1 is the number of phases with u,(s) = u,(s) =1.

The extended set of feasible phases, U’ , is the union of sets U and
uU:, e,

U =U, UU,. (8.43)
Set D, and relation C; define the graph

G, =(2,.Cy). (8.44)
Graph Gy is obtained from graphs G, and Gy :

Gy =(D,,C4 UCy) =(D,,Cq) = (D,, 1) . (8.45)

Relations Cy» Cé, and Cg are reflexive and symmetric, so that graphs
Gg , G'g , and Gg are nonoriented graphs with a loop in each node.

All feasible phases are defined by cliques of graph G, in the same way
as when no negative minimal effective intergreen times exist (Section 8.3).
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Example 8.4

Determine relations Cg, Cé ,and Cg , graphs Gg , Gé and Gg ,and the set of feasible
phases, U’} , for the intersection presented in Fig. 8.11.

The set of signal groups is
9, ={D;,D;,D;,D,},
where

D; ={c:}, D; ={c,}, D; ={o3}, D, ={c,} .

The matrix of minimal effective intergreen times is

- 0 0 -2
0 - 9 0
Z= 0 -2 - 6
10 0 1 -

The matrix, Ay, of the compatibility relation, C , is:

- 110
1 -01
AC_10—0
010 -

Graph G, = (9,,C,) is shown in Fig. 8.12.

Elements 8, and a3, in matrix A, have 0 value, representing that pairs (Dj, D;) and
(D3, D;) are not pairs of compatible signal groups. The minimal effective intergreen times
corresponding to these pairs are negative, so that the control variables U, (-) and u,(-), as
well as Us () and u, (+) , can simultaneously provide green indications of 2 seconds duration
(214 =25, =-2).

Relation Cé is defined by the following set of ordered signal group pairs:

Cy ={(D1, D7), (D3, D)}

Relation Cj is presented in Fig. 8.12 by A matrix and graphs G, Gy, and Gy . In order
to determine all elements of set U'} , i.e., all feasible phases, the cliques of graph G; have

to be determined. The cliques of this graph are the sets of nodes of all complete subgraphs of
graph Gé’ , as presented in Fig. 8.13.

The set of all cliques, D, , is:

D, ={{D}{D;}{D:}{D;}.{D;], D;}{D;, D;},{D], D;},
{D;, D3} {D;, Di}ADy, Dy, D3} Dy, Dy, D}
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Set @ is obtained using CLI1Q program.

1 1
- 1
- 0
0 —
G;:
D',
D; 7D
D; oD; D, LD; LD, A D; 4D,

Figure 8.13

Thus, the complete set of signal groups is
D, ={{o,}{0,}{03}{0,}} ={D;, D;,D3,D; }.

and the set of feasible phases is:

123

" ={(1,0,0,0)",(0,1,0,0)",(0,0,1,0)",(0,0,0)",(11,0,0)",(1,0,1,0)",
(1,0,0D)",(0,11,0)",(0,011)",(111,0)",(1,011)",(0,0,0,0)"}.
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8.5. The relation of green indications succession

When determining the sequence of phases that make a feasible signal
plan structure, it is necessary to know which phases can immediately succeed
a particular phase.

The information about m.e.i.t. is essential for determination of the set
of phases that can immediately succeed a given phase. The data on m.e.i.t.
define whether the effective green time of a phase can start immediately after
the end of the effective green time of another phase.

Thus, in the set of control variables there exists relation R,, which
contains the pairs of phases with the mentioned property. The set of control
variables is:

26, ={uy (), Uy () Up (s Up (3 (8.46)

The elements of this set are components of vector function u(-).
A signal plan structure, u, of the signal plan

ul | (uhu?,..,uk,...uo)
1= L} - Lrl,rz,...,rk,...,rK) :l

can include the sequence ...u*,u*,..., with uf=1Auf"=0, and
k _ k+1 _ :
U, —1/\up =1, i.e.,
Mok k] -
u1 u1 ulk ulk+l
k k+1
us | |us ug u12<+1
k k+1
Up | [Up” B 1 0
k k+1 0 1
Uq Uq
k k+1
S LUp ] [Up ]

only if the control variables u () and u,(-) are inrelation R, , i.e.,
u,u,(NeRr,, (p=0q, p,qe?).
Anordered pair (u,(-),u,(-)) isanelementofrelation R, inthe following

cases:
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o) Signal groups D;, and D, are compatible, i.e.,
(D;,Dg)eCqy, (P.ge2).

B) Signal groups D and D, are incompatible, and m.e.i.t. is zero, i.e.,
((Dp.Dg) C ) A (25 =0) . (P.qe¥).

) _Signal groups D, and D, are incompatible, and m.e.i.t. is negative,
ie.,

((Dy,Dg) 2C ) A(2pg<0) , (p,qe2).
Therefore, relation R, is defined by the following expression:
Ry ={(u, (). ug () [(((Dy, D) € Cy) v ((Dy,, Dg) £ Cy)
A2,q20), p.gez’, p=q}.

By this relation the graph of green indications succession, G, , is defined:
G, =(%,R,). (8.48)

(8.47)

In the case when no pairs exist that satisfy conditions 3 and vy, the graph
of green indications succession can be obtained from the graph of signal
groups compatibility, Gg. In this case the following expression is valid:

((D}.Dg) €Cy) = (((Up (U ()) € R A ((Ug (DU, (D) €Ry)) . (8.49)

The nodes of graph G, represent signal groups, while the nodes of graph
G, represent control variables assigned to these signal groups. Graph G,
can be obtained by substituting each nonoriented edge of graph G, with two
oppositely oriented edges, i.e., by presenting graph G, as a digraph. Each
node that in G, represents a signal group, D, € D, , in G,, will represent the
control variable, u ,(-), assigned to that group.

Example 8.5

o) Determine the relation of green indication succession, R, , and graph G, =(%4,,R,)
for the intersection presented in Fig. 8.10. The complete set of signal groups is:

9, ={D;,D;,D;,D;, D},
and the signal groups represent the following subsets of traffic streams set .7 :
D ={c,}. D; ={o,}, D3 ={os}, D; ={o¢}, Ds ={o;. 05} -

The matrix of m.e.i.t. has no negative elements in this example.
The signal group compatibility graph, Gg =(D,,I,), and the graph of green indication
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succession, G, =(%4,,R,) . are presented in Fig. 8.14.
Relation R, is:
s (CIOATIO)ACHOAMIOMACONT M)A CHOATAO)E
(Uy (), U3()), (U3(), U ()), (Us (), s (), (Ug (), U3 (D}

G, G,
Uy(") Uy(")
U)o Uy(*)
U4(')
Figure 8.14

B) Determine the relation of green indication succession, R, , and graph Gn = (%n , Rn)
for the intersection presented in Fig. 8.15. The matrix of m.e.i.t., Z, and graphs G, and G,
are given in the same figure.

0 -2
9 0
0 6
1 0
11
01
-0
0 -
G,
uz(')
us(')

Figure 8.15
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In the matrix of m.e.i.t., Z, there exist two negative elements.

Relation Rn is determined by the following set of ordered pairs:

Ry ={(u; (), Uz ()), (U2 (), uy ()), (Uy (), U3()), (U (), Uy (),
(U2 (),us ()), (Ug (), U2 (), (U (), Ua (), (U (), U ()}

The graph of green indications succession, G, = (24,,R,) , is given in Fig. 8.14. Digraph
G,, does not present a nonoriented graph, as was the case in the previous example, because
relation Rn is not symmetric.

8.6. The relation and graph of phase transitions

The signal group compatibility relation, the m.e.i.t. function, and the
relation of green indications succession supply all information necessary for
determination of the relation and graph of phase transitions.

8.6.1. The phase transitions relation

In the procedure of a feasible signal plan determination, phases are chosen
from the set U, and these phases are ordered in a sequence that makes a
signal plan structure. The fact that a phase can be followed only by certain
phases from U, has to be taken into account when making this sequence.

I to a signal group Dy, the right-of-way is given by phase u®, then the
succeeding phase in a feasible signal plan structure, u***, cannot be a phase
by which the right-of-way begins for a signal group that is controlled by the
control variable that is not in the relation of interval succession with control
variables giving the right-of-way to some signal groups in the preceding
phase. Namely, the right-of-way to D cannot be stopped in phase u (it
means, u; =1, u,k)+1 =0) and given to some other signal group, D, in
phase u*** (itmeans us =0, us™ =1)if (u,(),u,()) R, . Therefore, for
each phase there exists a subset of set U, comprising the phases that can
immediately follow the given phase.

It is necessary to determine the conditions that have to be satisfied by
a phase u(b) € U; so that this phase can immediately follow a given phase
u(a) e U; (aand b are here the index numbers of elements in Uy ).
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If u(a) and u(b) are included in a feasible signal plan structure, in the
form [...,u(a),u(b),..]=[...,u*,u**,.. ], it is necessary to determine the
conditions that u(b) has to satisfy so that it can be included in the signal plan

structure as u***.

For determination of these conditions, it is suitable to consider two
cases:

u,(@ u,()=0, (p,gez’; u(a),u(b)eU;), and
u,(@u,(0)=1, (p,gez’; u(@),ub)eUy).

Case I: u, (@) u,(b)=0

This case arises when u,,(a) = U, (b) or u,(a) =u,(b) =0. Obviously, if
u,(a) =0 (red indication of the signals controlling signal group D} €9,),
the control variables of the next phase, u(b), can assume any value (0 or 1),
i.e, u,(b)=0or u,(b)=1 (ge ).

If u,(a) =1, then in the next phase, u(b), any control variable can have
the value 0, i.e., uy(b)=0 (qe o).

The value u,(a)=0 can extend to the next phase, u(b). It is always
possible to have u,(a) =u,(b) =0.

Hence, in determining whether phase u(b) can immediately follow phase
u(a), the condition of succession is always satisfied for pairs (u,(a),u, (b))
if u,(a)u,(b)=0. Therefore, it is necessary to analyze only the following
case:

Case ll: u,(b)u,(a)=1, (p.qe2)
In this case, phase u(b) can immediately follow u(a) if at least one of

the following conditions is satisfied:

1 (u,d)us(@=DA(p=a),(p.qez)
It is obvious that the green indication controlling one signal group
can always extend to the next phase, u(b).

.2 (u,(b)ug(@) =) A(u,()us()eRy), (p=a, p.ae)
This condition states the fact that control variable u,(b) in phase
u(b) can have value 1 if the pair (u,(-),u,()) is the element of the
relation of green intervals succession, R, .
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1.3 (u,(d)ug@) =D A(ug@u,(0)=1)A(z,,<0), (p,gqe’)
When negative m.e.i.t. exist, during this interval the control can
be composed of two or more successive phases. This possibility is not
included in previous cases.

Therefore, a phase u(b) can follow phase u(a) in a feasible signal plan
structure, u =[u*,u?,...,u*,u*"?

[...,u,u .. ]=[..,u(@),u(b),..]
if the pairs of successive phases, (u(a), u(b) ) satisfy the listed conditions.

,...,u], i.e., a part of the structure can be:

The phase transition relation, R, thus, represents the set of phase pairs
defined by the following expression:

Rs ={(u(a),u(b))|(u,(a)-uy(b) =0) v (u,(a) -us(b) =1) =
= (U, () ug () eRy v(p=0a)) v ((ug(a)-u,(b) =1) A(z; <0)),
u(@),ud)eU;, p,gez}. (8.50)

Example 8.6

o) Determine whether, in Example 8.2, the ordered pair of phases

o
o

(u(10),u(13)) = =((0,1,0,01,0)",(0,0,0,011)")

OrRrOoOOoOR
PR, OOO

belongs to Ry relation.

The answer to this question is obtained by analyzing all cases with U (20)- Uy (23)=1,
(p,q € &) . The following products satisfy this condition:
u,(10)-u;(13) =1
u,(10)-us(13) =1
Us(10)-ug(13) =1
Us(10)-ug(13) =1

Ordered pairs of control variables: (U2 (-),U5(-)), (uz(-),u6(-)), and (U5(~),U6('))
belong to R, relation (because pairs (D5, Dg), (D5, Dg), and (Ds, Dg) belong to the
signal group compatibility relation, C ). Therefore, (U(10),u(13)) € R;.
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B) For the intersection presented in Fig. 8.15 determine whether phase U(b) can follow
immediately after phase U(@), as shown in Fig. 8.16.

The possibility of transition from U (a) to U (b) can be determined by analyzing all products
u, (a)u q (b) = 1. In this case, these are the following products:

a) uy(a)-u,(b) =1
b) u,(a) -us(b) =1
€) Uy(a) - uy(b) =1
d) uy(a)-u,(b) =1
€) Us(a)-u,(b) =1
f) us(a)-us(b) =1

232:—25
>
w() 11 l .
u() ITIT—— : ‘ B
u() 717 3 j "
w) T r : : T
" u@ ' u(b)
Figure 8.16

Pairs (U, (-),u, (), (u;(-),u3()), and (usz(-),u,(-)) (products a, b, €) belong to R,
relation. Hence, condition I1.2 is satisfied. Pairs (U, (-),U,(:)) and (Uz(-),uz()) are the

pairs where P =, and the condition II.1 is satisfied.

The fact that (U3(),U,(-)) € R, and (u,(-),u3(-)) € R, can be observed on graph
G, =(%4,,R,)), presented in Fig. 8.15. However, since Z5, <0, condition 11.3 (products

c and e) is satisfied, i.e.,
(U3(2) Uy (b) =1) A (uy(a) -us (b) =1) A (25, <0).

Therefore, phase U(D) can follow immediately after u(a) , i.e., (u(a),u(b)) € R, because
all necessary conditions are satisfied.
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8.6.2. The phase transition graph

The phase transition graph is defined by the set of feasible phases, U,
and relation, R, i.e.,
G, =(U¢,R,). (8.51)
By introducing the mapping, I, [9], [12]:
I:U; >9(Uy),

such that

Fu(@) ={u®)|(u(@),u®d)) eR}, (u(a),ulb)eUy), (8.52)
the phase transition graph can be presented in the form:

G, =(Uy.Ty). (8.53)

Nodes of this graph represent feasible phases, and an edge between two
nodes exists if the pair of phases represented by these nodes belongs to R
relation.

Graph G, in general case, is neither oriented nor nonoriented (Appendix
).

Relations R, and R, are symmetric in the case when there isn’t any
negative or zero-valued m.e.i.t. In this case:

u(@)R,u(b) = u(b)Rsu(a) . (u(a),u(b)eUy),

and G is a nonoriented graph.
In order to construct graph G, it is necessary to determine, for each
feasible phase, u(a)e Uy, the subset of U, that contains the phases that

can immediately follow u(a), i.e.,

ru(a), (u(@eUy).

For this construction, the definition of mapping I is sufficient.

Graph G, can also be constructed using the procedure described in
Appendix VI.
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Example 8.7

o) Determine the phase transition graph, G, for the intersection presented in Fig. 8.7,
together with the compatibility graph of signal groups. The set of signal groups is:

9, ={D;, Dz, D3, D;, D5, D5}
={{o,}{c,}{c:}{c.}{o:} . {oe}}-

Relation Rs in this case is symmetric because there is no negative or zero m.e.i.t. Hence,
graph GS is nonoriented. The set of feasible phases (Example 8.2) is determined using the
procedure presented in Section 8.4.

U, ={(0,0,0,0,0,0)",(1,0,0,0,0,0)",(0,1,0,0,0,0)",(0,0,1,0,0,0)",
(0,0,01,0,0)",(0,0,0,01,0)",(0,0,0,0,01),(1,1,0,0,0,0)",
(1,0,1,0,0,0)",(1,0,0,0,1,0)",(0,1,0,0,1,0)",(0,1,0,0,01)",
(0,0,011,0)",(0,0,0011)",(110,01,0)",(01,0,011)"}.

According to expression 8.52, mapping Iy of each feasible phase is determined:

I,(11,0,010)" ={(1,1,0,0,0,0)",(10,0,0,1,0)",(0,1,0,0,1,0)",(1,0,0,0,0,0)7,

(0,1,0,0,0,0)",(0,0,0,0,1,0)",(0,0,0,0,0,0)"}

I,(11,0,0,0,0)" ={(11,0,0.10)",(10,0,0.10)",(0,1,0,0.10)",(10,0,0,0,0)",
(0,1,0,0,0,0)",(0,0,0,01,0)",(0,0,0,0,0,0)"}

I,(0,0,0,0,0,0)" =U, \{(0,0,0,0,0,0)"}

I,(1,0,0,0,0,00" ={(1,1,0,0,,0)",(11,0,0,0,0)",(1,0,0,0,1,0)",
(0,1,0,01,0)",(0,0,0,0,,0)",(0,1,0,0,0,0)",
(1,01,0,0,0)",(0,01,0,0,0)",(0,0,0,0,0,0)"}

I,(0,1,0,0,0,0" ={(11,0,01,0)",(110,0,0,0)",(1,0,0,01,0)",(0,1,0,010)",

(0,0,0,01,0)",(1,0,0,0,0,0)",(0,0,0,01,1)",(0,0,0,0,0,1)",
(0,1,0,001",(01,0,011",(0,0,0,0,0,0)"}

I,(0,01,0,0,0)" ={(1,01,0,0,0)",(1,0,0,0,0,0)",(0,0,0,0,0,0)" }
I,(0,0,0,1,0,0)" ={(0,0,011,0)",(0,0,0,0,1,0)",(0,0,0,0,0,0)" }
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I,(0,0,0,01,0)" ={(11,0,01,0)",(1,1,0,0,0,0)",(1,0,0,01,0)",(0,1,0,0,1,0)",
(1,0,0,0,0,0)",(0,1,0,0,0,0)",(0,0,0,11,0)",(0,0,0,1,0,0)",
(0,1,0,011)",(0,1,0,0,01",(0,0,0,011)",(0,0,0,0,0,0)"}

I,(0,0,0,0,00)" ={(0,,0,011)",(0,1,0,0,0)",(0,0,0,01L1)",(0,0,0,0,1,0) ",
(0,,0,01,0)",(0,1,0,0,0,0)",(0,0,0,0,0,0)" }

I,(1,0,1,0,0,0)" ={(0,0,1,0,0,0)",(1,0,0,0,0,0)",(0,0,0,0,0,0)"}

I,(1,0,0,010)" ={(1,1,0,01,0)",(1,1,0,0,0,0)",(0,1,0,0,1,0)",(1,0,0,0,0,0)",
(0,1,0,0,0,0)",(0,0,0,0,1,0)",(0,0,0,0,0,0)" }

I,(010,010)" ={(11,0,010)",(110,0,0,0)",(10,0,0,1,0)",(0,1,0,0,0,0)7,
(0,1,0,0,0,0)",(0,0,0,0,1,0)",(0,1,0,01,1)",(0,1,0,0,0)",
(0,0,0,011)",(0,0,0,0,01)",(0,0,0,0,0,0)" }

I,(0,1,0,0,01)" ={(0,1,0,011)",(0,1,0,010)",(0,0,0,011)",(0,1,0,0,0,0)",
(0,0,0,0,01)",(0,0,0,010)",(0,0,0,0,0,0)"}

I,(0,0,0,1,0)" ={(0,0,0,1,0,0)",(0,0,0,0,1,0)",(0,0,0,0,0,0)"}

I,(0,0,0,011)" ={(0,1,0,011)",(0,1,0,0,01)",(0,,0,0,1,0)",(0,1,0,0,0,0)",
(0,0,0,01,0)",(0,0,0,0,01)",(0,0,0,0,0,0)" }

I,(0,1,0,011)" ={(0,1,0,010)",(0,1,0,0,01)",(0,0,0,011)",(0,1,0,0,0,0)7,
(0,0,0,0,1,0)",(0,0,0,0,01)",(0,0,0,0,0,0)"}

The graph of phase transitions, G, = (U {,T%), is given in Fig. 8.17.
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G; (1,1,00,0,0)T
(1,1,0,0,1,0) " (1,0,0,0,1,0)
7 7
</
(0,1,0,0,1,0)" ce=—— ,0,0,0,0,0)' 3 (0,1,0,0,0,0)
11 \ EB” // 11
: / (0,0,0,1,1,0)T
ARG 3
(1,0,0,0,0.0) oo ds N T (000,007
9 3
(11011’0‘0|0)T ' (0|0|0101011)
3 7
(0101170101 )
3 (0,0,0,0,1,1)
7
(0,1,0,0,0,1)T
7
Figure 8.17
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B) Determine the phase transition graph for the same intersection (as in Example 8.7a.), but
for the following set of signal groups:

9? ={D},D?,D;,DZ,DZ}
={{os}{o.}{o:}{cs}{c1, 0,1}

The graph of signal group compatibility and the phase transition graph are presented in Fig.
8.18. The phase transition graph, in this case, is a subgraph of Gs presented in Example
8.7a.

p:(3 D}

11

=0 (0,0,0,1,1,0

3
(0,0,0,1,0,0)
3
T
(1,0,1,0,0,0 (0’0‘07’0‘0’1)
3
(0,0,1,0,0,0) N
3 \ =9 (0,0,0,0,1,1)
7 Ned
(0,1,0,0,0,1)
7
Figure 8.18

© 2008 by Taylor & Francis Group, LLC



136 OPTIMAL TRAFFIC CONTROL: Urban Intersections

Omitted are the nodes that represent phases giving the right-of-way to Dll only, or D%
only, and the edges incident to these nodes. The nodes representing the phases that give the
simultaneous right-of-way to Dj and Dj remained because pair (Dy, D3) in this example
represents one signal group, D52 . Thus, from the feasible set of phases, U ; , determined
in Example 8.7a, the following phases are omitted: (0,1,0,0,1,0)T, (1,0,0,0,1,0)T,
(0,1,0,0,00)", (0,1,0,0,01)", (010,011 ", (1,0,1,0,0,0)" , (1,0,0,0,0,0)" .

This graph is also nonoriented because relation R is symmetric.

y) Determine the phase transition graph for the intersection presented in Fig. 8.19. The
same figure presents the graph of signal group compatibility and the m.e.i.t. matrix. The set of
feasible signal groups is:

9, ={D;, Dz, D3, D;, D5}
={{o.}{o,}{os}{c,}{c:}}

C,—»

G, —
0304
0050
0038
Z=/5300
0100
4030

Figure 8.19
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The set of feasible phases is defined by the following expression:

U, ={(11,0,0,0)",(1,0,0,0,0)",(0,10,0,0)",(1,0,010)",
(0,0,01,0)",(0,1,0,01)",(0,0,001)",(0,0,011)",
(0,0,1,1,0)",(0,01,0,0)",(0,0,0,0,0)'}.

Graph G, =(U;,R,) = (U ,I5) is presented in Fig. 8.19. The phase transition graph is
nonoriented in this case, also.

8.6.3. Some features of the phase transition graph

a)

b)

Graph G, is a connected graph, i.e., any two nodes can be connected by
a path (or by a chain, if G, contains oriented edges as well).

Graph G, contains an articulation node if the graph of signal group
compatibility, Gy, is disconnected. The articulation node always
represents phase (0,0,...,0)" . If an isolated node is a connected component
of graph G, (Fig. 8.20, Fig. 8.21), then graph G, contains the articulation
node and a pending edge.

If the compatibility graph has n connected components, phase (0,0,...,0)"
(“all red”) will appear at least n times (n>1) in the signal plan.

The nodes of graph G, (nonoriented) can be classified according to the
node degree as either internal or connection nodes.

| — Internal nodes
“Internal nodes” are the nodes that have the node degree equal to the
cardinal number of set U ;. to whom they belong. The node

u(s)eU,,
is internal if the following condition is satisfied:

d(u(s))=card U_. (8.54)
d(u(s)) is the degree of node u(s).

Appendix VI presents the procedure for determining all phases that
are generated from a maximal phase, which corresponds to the maximal
clique of graph G, i.e., the way of obtaining the set U, =P, (uz).

The phase represented by an internal node can be followed only by a
phase that belongs to the same set U, .
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c,—> I
G, A
Gy
+“—>
GJ O,

Figure 8.20

Set U, is the set of phases “generated” by a maximal clique, 9,5,
of the signal group compatibility graph, G, i.e.,

U =P (Ul), (mell). (8.55)

Internal nodes exist if the maximal clique 9., whose elements
they are, contains at least one signal group that is not present in other
maximal cliques. Namely there exist maximal cliques whose all nodes

are elements of other maximal cliques.
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e

(0,0,00,1,0,1)" &

(0,1,0,8,1,0,0)T o‘«&{\‘sg"(' W

N\ |
S\
NEESY
(0,1,0,0,1,0,1)° ©) (0,1,0,0,0,0,0)"
11
(0,0,0,0,0,0,1)"
Figure 8.21
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Il — Connection nodes

“Connection nodes” in the phase transition graph, G, are the nodes
that are connected to the nodes which correspond to phases that are
elements of two or more phase subsets generated from different maximal

cliques of graph G, . If the phase u(v) belongs to both sets, P, (u3) and
P, (u%), then the degree of the node representing this phase is:

d(U(V)) = card (Pam (Ug) U IDam (Ug)) -1. (856)

If phase u(v) belongs to sets P, (uf),...,P,,(u?), the node degree
of this phase is:

d(u(v) =card (P,,(u)U...UP,,(u?))-1. (8.57)

In a signal plan structure, the phases represented by connection nodes
separate the phases that are not in the phase transition relation.

In the phase transition graph, presented in Fig. 8.21, the connection
nodes are marked by circles around the points representing these nodes.

The degrees of internal nodes of graph G,, in Fig. 8.21, are:

d((1,1,0,0,0,0)") =d((1,1,0,0,0,0,0)") = d((1,0,0,0,0,01)") =
d((0,1,0,0,1,01)")=d((0,1,0,01,0,0)") =d((0,0,0,01,01)") =7

d((0,0,1,0,0,1,0)") =d((0,0,1,0,0,0,0)") = d((0,0,0,0,01,0)") =
d((1,0,0,,0,0,0") =d((0,0,01,1,0,0)") =3

The degrees of connection nodes are:
d((0,1,0,0,0,0,)") =d((0,1,0,0,0,0,0)") =d((0,0,0,0,0,01)") =1
d((1,0,0,0,0,0,0)") =d((0,0,0,01,0,0)") =9
d((0,0,0,1,0,0,0)") =5

[11 — Node (0,0....,0)" representing the “all red” phase

The degree of this node, which is connected to all other nodes if G,
1s nonoriented, is:

d((0,0,...,0)") =card U, —1. (8.58)

The procedure for determining the number of elements in set U, is
given in Appendix VI.
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Node (O,O,...,O)T is a connection node, as well.
The degree of node (0,0....,0)" in Fig. 8.21 is:
d((0,0,...,0)") =card U, -1=15.

d) The diameter of graph G,

The diameter of a graph is the length of the shortest path between the
most distant nodes (Appendix I). The length between adjacent nodes is
1.

The node that represents phase (0,0,...,0)T —all red, in a nonoriented
graph, is connected to all other nodes. The diameter of this graph is,
therefore, equal to 2.

8.6.4. Structural constraints on phase transition

The signal plan structure is defined (Subsection 4.2.2) as a sequence of
control vectors, i.e.,

u=[ut,u?,...,uf,..uf.

A signal plan structure has to satisfy certain constraints. Some of these
constraints refer to any signal plan structure, while others reflect special
requirements that exist only in some problems of signal plan choice.

a) Phase transition constraints that have to be satisfied
by any feasible signal plan

Phase transition constraints that have to be satisfied by any two adjacent
phases represent the constraints on the structure of a feasible signal plan. A
feasible structure is represented on the phase transition graph, G, by the
path

p=[utu?), % ud),..., <t u9,

k+1

where the ordered pair (u*,u**") represents the edge between nodes u* and

u*". Hence, this path has the following feature:
ut e T Uk,

This also holds if k =K (K denotes the index of the last phase in the
signal plan, i.e., this is the number of phases in the signal plan). Since the
control is a periodic function of time, it is necessary that after phase u®,
phase u' begins, i.e.,
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uteru®. (8.59)
The path
p' =[(utu?), % ud),..., <t u), e, uh,

therefore, represents a closed path in graph G, [20]. This path, in a general
case, is not an elementary path, i.e., one phase can appear several times in a
signal plan.

The constraints that have to be satisfied by signal plan structure u, resulting
from the phase transition relation, are given by the following expression:

ukmd O ety (ke ). (8.60)
Thus, any feasible signal plan structure can be represented by a closed
path in graph G .
Constraints (8.60) are related only to the variables contained in the signal
plan structure, not to the time variables t*. Therefore, these constraints are
structural constraints.

b) Special structural constraints

In some problems of signal plan choice it is necessary to include special
structural constraints. Such cases are, for example, the problems with
permitted “filtering” of one traffic stream through another. In these problems,
as mentioned in Subsection 2.2.4, it is better to give the right-of-way first to
the opposing stream, and after its queue is discharged, to both streams, and,
finally, only to the opposed stream.

If the opposing stream belongs to signal group D; , controlled by control
variable u, (), and the opposed stream to signal group Dy, controlled by
U, (-) , then, for the mentioned sequence, it is necessary that phases with u'; =1
and uf =0, precede phases with u¥* =1 and uf™* =1, followed by phases
with u§*2 =0 and ufj*z =1. Therefore, on the graph of phase transitions, it
is necessary to prevent transition from phases with u¥** =1 and uf** =1, to
phases with uf** =1 and u{*2 =0, and also from phases with uf =0 and
ug =1, to phases with u¥** =1 and uf™ =1. This is achieved by introducing
oriented edges in graph G, such that the mentioned “banned” transitions are
impossible.
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Example 8.8

An intersection with five traffic streams is presented in Fig. 8.22, together with the
compatibility graph Gg . Each signal group controls a single traffic stream. Edge (Gl,G 4)
exists if streams ©; and G, are allowed to have the right-of-way simultaneously. The
opposing stream is &y, and the opposed stream is G, . Determine the phase transition graph,

G,.
The set of feasible phases, U § s

U, ={(,0,0,01",(1,0,0,0,0)",(0,0,0,01)",(01011)",(01,010)",

(01,0,01)",(0,0,011)",(0,1,0,0,0)",(0,0,01,0)",(0,0,1,0,0)",

(0,0,0,0,00"}U{(1,0,011)",(1,0,01,0)"}.

The phase transition graph, G, is presented in Fig. 8.22. Certain edges in this graph are
oriented to prevent undesirable phase sequences and provide for desirable phase sequences.

This figure also presents, by bold lines in graph GS , one structure that satisfies the structural
constraints.

In Example 12.6 and in Fig. 12.10 another case with special structure
constraints is presented.

Besides the described structural constraints, there exists another type of
structural constraints—the constraints of one period of green indication in a
cycle (Subsection 8.2.1).
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C,—»>
G3
G,
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Figure 8.22
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8.7. Minimal intergreen time constraints for phases

The constraints of minimal intergreen times for pairs of signal groups
were analyzed in Subsection 8.4.2. The method of their determination was
discussed, and the matrix of minimal effective green times was used for their
representation:

Z =[qu]P><P.

Asignal plan has to satisfy constraints that are the consequence of m.e.i.t.
existence. Namely, if a part of the structure is considered, e.g., u*™*,u®,u*?,
the duration, t*, of phase u® has to satisfy these constraints if pair (u*™,u*™)
is not an element of the phase transition relation. This also holds if between
the phases, which are not elements of the phase transition relation, several
other phases exist. If the pair (u*2,u*?) in structure u*?,u*? u* u*?,
does not belong to the phase transition relation, then the sum t** +t* hasto

satisfy the m.e.i.t. constraints.

The duration of phases situated in the structure between two phases that
are not in the phase transition relation has to be greater than the maximal
value of m.e.i.t. between incompatible signal groups contained in these two
phases.

The following fact has to be taken into consideration: If u,f‘ cuts the

. . . . k-1 _ k _ k+1 i
right-of-way in this phase, i.e., u,~ =1, u; =0, and u,™ starts giving
the right-of-way, i.e., uf=0, ui™=1, then z,, has to be included in
determination of m.e.i.t. constraints.

The analytical expression of these constraints is:

1

I=a
ZTK—(K+I—k)(mod K) > max{z
1=0

qu

K—(K+a—k)(modK) | k(mod K)+l  i-K—~(K+o-k-1)(modK) —ky _
(up Ug u, uy) =1,

K (mod K)+1 T, (U(K+a—k)(mod K))’ p,qe X} (8.61)

(ke.Z%) and (o€ &' (uk,ukmearity)
The symbols not used before have the following meanings:
u; =1-u,

o — the number of phases whose durations have to be taken into account
when formulating the m.e.i.t. constraints
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A (UE UKy 112, ok (U RO 1 the set of values

assigned to o

These constraints have to be formulated for each a e J@'(u" u
The total number of m.e.i.t. constraints for one k is af, (u*,u*™@*y The
constraint formulated for o =1 contains one time variable (t* ). The constraint
formulated for oo =2 contains the sum of two time variables. Finally, the

constraint formulated for o= aX, (u*,u ™%} contains the maximal
number of time variables.

The maximal number of phases, oc';,, , that have to be taken into account
when formulating m.e.i.t. for one value of k, depends on signal groups that
gain the right-of-way in phase u*™)*% ‘i e, the groups for which:

k (mod K)+1)

us M =1 and ug =0.

The number of intergreen time constraints, oc';,, , for one k is equal to

k(mod K)+1

the maximal number of phases preceding phase u , whose durations

have to be considered in formulating m.e.i.t. constraints.

The following facts have to be taken into account when determining
ok,

a) The shortest phase duration is 1s. Therefore, the maximal number of
phases, preceding phase u*™? ! whose durations have to be included
in intergreen constraints, is equal to the maximal value of m.e.i.t.
between any signal group and the group that receives the right-of-way
by phase u*M)*! This number is, thus, equal or less than the maximal
value z,, in the columns of Z matrix corresponding to the g for which

us M =1 uf =0, i.e., this number is equal to:

max{z | (us ™" =) A (ug =0), p,qeF%}. (8.62)

b) The maximal number of phases included in the m.e.i.t. constraints cannot
be greater than K —2 . If the following phase sequence is considered

ut,u?,. o uf ut ukr? o u et u? L u R uf LKL

K-2
it can be observed that the inclusion of phase u**? duration in this
constraint means that intergreen time would be calculated between

phase u*"* and the same phase in the next cycle, which does not make
any sense.
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Therefore, oc';,l can be determined using the following expression:

ok, = ap(u,u

= min{max{z, | (™" " =) A (us =0), p,ge 7} K-2}. (8.63)

k (mod K)+1)

When using expression (8.61), it is necessary to determine the values of
Z,, that will be used in cases when they are not defined. These cases arise
when (Dj,D;) €C, and when p=q. The value z, =0 will be used for
these cases, i.e.,

((Dy,Dg)eCy)v(p=0a) =(z2,=0). (8.64)

k. of phase u® that lies between

If z,, <0, then the duration,
the phase u*?, in which signal group D, lost the right-of-way

k-1 k kel s . . , .
(u,”=1,u; =0), and phase u™, in which signal group D, gained the

right-of-way (u§ =0,ul™ =1), has to satisfy the constraint:

K
>
T _qu<0.

Since expression (8.63) relates to phase duration, t*, which satisfies the
constraint:

>0, (kew),
then, in the case when 2, <0, the m.e.i.t. will be assumed Z,,=0 in this
expression.

The constraints for duration of phases that give the right-of-way to both
signal groups, D} and D}, (u$ =ug =1), valid in the case z,,, <0, are given
by expression (8.40).

Therefore, when expression (8.61) is used, it is necessary to take into
consideration that:

((D,, D) eCy)v(p=0q)v(z,q <0)=(z,,=0). (8.65)

Intergreen times for all pairs of feasible phases can be calculated in
advance. They will be elements of the matrix of minimal effective intergreen
times between phases, Z " .
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8.8. The constraint on the sum of phase durations

The control is, as mentioned in Part |, a periodic time function. Because
of this fact, the sum of all control vector (phase) durations has to be equal
to the cycle time. The cycle time, c, is given in some problems of signal
plan choice. In some other problems, the cycle time results from problem
solution, as the sum of duration of all phases that constitute the signal plan.
Anyway, the cycle time has to be less than a maximal value, c,, , which is
usually prescribed by standards in any country. This value is 120s in most
countries.

The constraint on phase durations is defined by the following

expression:
K
D t=c,or (8.66)
k=1
K
D < (8.67)
k=1

8.9. Mathematical expressions of signal plan constraints

Mathematical expressions for constraints, discussed in this part, relate
to control vectors assigned to particular signal groups. These expressions
are valid for a complete set of signal groups. However, when starting with
problem solution, the available data are related to traffic streams and relations
between them. Therefore, it is necessary to show how the data related to
traffic streams can be transformed into constraints on control variables for
signal groups.

In formulating the constraints by which the set of feasible controls (signal
plans) is defined, the following data are needed:

a) The system data

= The set of traffic streams:
7 ={0,,0,,...,0,}.

= The vector of saturation flow volumes of vehicle traffic streams:
S=0(S,Sp,-+++Sjs--+Sy) -

= The compatibility relation of traffic streams, C.

= The chosen, complete set of signal groups:
9, ={Dj,D;,...,D;,...,Dp},

which are controlled by control variables:

TRORTNONUNTING NI O
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=  The set of vehicle signal groups:

9, ={D;,D,...,D},...,Dp}.

= The set of feasible phases, U; .
= The phase transition relation, R .
= The vector of minimal effective green times of signal groups:
On = (gmll Omas-- gmp""' ng)'
= The vector of maximal effective red times of certain vehicle signal
groups:
M =M Tz preeos e, )
peM ={12,...,p,...P:}.

*= The matrix of minimal effective intergreen times for all pairs of
signal groups:
Z = [qu]PxP '

= The cycle duration, ¢, or the maximum cycle time, C,, .

= Input-output matrix 4, containing data about participation of arrival
traffic stream volumes in output traffic flows.
b) The data about volumes of vehicle traffic streams
= The average values of vehicle traffic stream volumes, ¢;, (i€ Z").

* The maximum acceptable saturation degrees, p;, for all vehicle
traffic streams (ie Z").

Based on these data, the constraints that define the set of feasible controls
(signal plans) are formulated as follows:

o. The constraints related to control variables

o..1 The constraint of one interval of green indication in a cycle:
K

Dy +up™ ) mod2)=2, (pe).

k=1
o..2 The constraints of minimal effective green times for signal groups:

K
Zu";ck 20m,, (Pe9).
k=1
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o..3 The constraints of maximal effective red times for signal groups:

K
ky .k
k=1

o..4 The flow balance (capacity) constraints
o.4.1  The flow balance constraint when filtering is not permitted:

Zu ™ 2y,, (peZ”),when cis given,

Zukrk>21 max{ |o; €D, } , (peo),
p; S
When cis not given.

o.4.2  The flow balance constraint when filtering is permitted:

I The flow balance constraint for the opposing stream o,
(the streams o, and o, are at the same time signal groups;

D; ={c.}, Dy ={ou}):

K

Z(Sauz(l—Ug)ﬂanU ub)T >an
k,

Il The condition of queue discharge of stream o, , before
giving the simultaneous right-of-way to both signal groups,

D, and Dy :

K

> ((L-ugug)g, —us (L-uy)s,) T 20,
k,

III The flow balance constraint for the opposed stream, o,
that filters through stream o :

ok 08 o k k k
uua—+u 1-u,)sy [T 20q,C
kZ:l b _ g P b (L1 —Ug) Sy Oy
B. The constraint on control vectors composition
Components u,(r) of any feasible phase u(r) e U; have to satisfy the
constraints given by the following expression:

1, if D, ed,
up(r): . , —r ' (pe'@)’
0, if Dpeé@a

where 9, is a clique of graph G, =(2,,Cy).

© 2008 by Taylor & Francis Group, LLC



8 The set of feasible controls (signal plans) 151

v. The constraints related to phase sequences
1.1 Phase sequence constraints:

ukmedKt o gk o (ke ).

v.2 Minimal effective intergreen time constraints:

l=a-1
TK—(K+I—k)m0dK > Zf (UK—(K+a—k)(m0dK)’uk(m0d K)+l) , (k c %-)

1=1
oe L/@'(U K—(K+a—k)(modK)'uk(modK)+l) )

8. The constraint on the duration of interval in which the simultaneous
right-of-way is given to signal groups having negative minimal effective
intergreen times between them

K

D (ugug) <

k=1
€. The constraint on the sum of phase durations

, (2 <0),(Vv,me &),

va

The listed constraints relate to control variables, which control signal
groups, and to control vectors (phases) in particular intervals during a cycle.
Primary data used in formulating these constraints relate to traffic streams.

The way of obtaining constraints related to control variables, which
control signal groups, was explained when the constraints were formulated.
The summary of these expressions is given below.

e The minimal effective green time constraints for signal groups, a.2, are
obtained from minimal effective green times of signal groups using (8.4)
(Subsection 8.2.2):

gmp = max{gim |Gi € D;)}v (p E'@) !
where:
g" — the minimal effective green time for traffic stream 7,

Omp — the minimal effective green time of signal group D'p.
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e Maximal effective red time constraints for certain signal groups, o..3, are
obtained from maximal effective red times of traffic streams controlled
by these signal groups using expression (8.8) (Subsection 8.2.3):

g =min{r" |6, eD;}, (qe™),
where:
Mg — the maximal effective red time of signal group D!,

I’J-NI — the maximal effective red time for traffic stream 7,

M _ the index set of the set of signal groups for which it
is necessary to introduce the maximal effective red time
constraints.
e Inflow balance constraints, a..4.1, the right side of the constraints, v, is
determined from traffic streams data using expression (8.14) (Subsection
8.2.4):

Yo —max{ Y| (6, eD’ )} (pe ).

e The set of feasible control vectors (phases) is obtained starting from the
compatibility relation, C , in the following way:

a) In the case when no negative intergreen times exist
(Section 8.3):

U’ ={u@),u(2),...,u(r),...,u(R)}U{(0,0,...,0)},

where:

u(r) =[uy(r),u,(r),...,u, (r),...,up(nN]", and
1,if D, €D,
u,(r)= _ ., (pe=«’,re),
0, if D, & D,
D, €D,,
D, ={2. 1(D} €3,) A (D} €3,) = D, e[, D;; p.ge 7},
The signal group compatibility graph
Gg :(@alrg) :(CDa'Cg)
is obtained using compatibility relation C in the set of traffic streams.
Relation C, can be determined by the following expression:
C, ={(D;,Dq)|(c; e Dy) A(c; € D) = (5;,6;)€C}.
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b) In the case when there exist negative intergreen times
(Subsection 8.4.3):

153

=  The extended set of feasible phases:

Ut =U,UU%,

where:

U ={u(s)|u(s) =[u,(s),u,(s),...,u,(S),...,Uuy (S),...,up ()",
u,(s)=u,(s) =1z, <0,
s=R+2,...,R+N,(D;,Dy)eC;},

Cy ={(D},Dq) |2, <0, D,,D;eD,},

Gy =(Da.Cy)

Gy =G, UGy =(2,,C)U(2,,Cy) =

=(2,U9,,C,UC,)=(D,,Cq) =(D,,Tg).

When using expression (8.61) for determination of

21 (UK (Krack)modK) | (modkyidy.
it is assumed that z,, =0 if
((D}.D;) €Cy) v (p=0) v (24, <0)..

The values z,, in expressions (8.61) and (8.63) are minimal
effective intergreen times, defined for each pair of control
variables, (u,(),u,()), controlling signal groups D, and
Dy - These values are obtained from z{;, defined for each pair of
traffic streams, (o;,5;), using the following expression:
max{z; |o; € D;,5; € Dy, (D}, Dg) € (D, xD,)\C}
Mo, (D,,Dj)eC,.

Formulation of m.e.i.t. constraints starts with determination of
the matrix

Z'=[z{; ]\,

whose elements are the minimal effective intergreen times
between traffic streams. The matrix of m.e.i.t. between signal
groups,

YA :[qu]PXP!
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is obtained using data from Z'. Finally, the elements from Z are
used for determining m.e.i.t. between phases, i.e., for determining
function 2",

Z": U,xU; >R,

e The constraints of minimal effective intergreen times, v.2, are defined by
the expression:

K—(K+l-k)(mod K)
T >max{z, |
=0

|
K—(K+a—-k)(modK) ; k(mod K)+1 —K—(K+a-k-1)(modK) —ky _
(up Ug -, Uy) =1,

uk(mOd K)+1 P rs (U(Kﬂx—k)(mod K)), p, q c !@}

(ke 7%) and (o€ .4/ (uk,ukmdoty)
where o is the number of phases participating in the formulation
of constraints v.2. One constraint is formulated for each
a e #'u*,ukm ) where:

AU UMY 02 a0, (UF,uK™9Y Y and

oy (Uk , uk(mod K)+l) _ min{max{zqr | (U:((mOd K)+1 :1) A (u:( _ 0)
q,re }, K-2}

In expression (8.61), z " (uX-(Kro-k)modk) jkimodK)dy > g

Example 8.9

Formulate all constraints related to phase durations for the intersection presented in Fig.
8.10. The phase transition graph is given in Fig. 8.17. The signal plan structure is given, and
every traffic stream makes one signal group.

The signal plan structure is:
142 113 174115 116 (47 1487,9,,10

uu uuuuuuuu

‘u,] [10000000 1 1]

u,| 0000001110

y|Us|o[1 200000000
u,| (0001100000}

Uus| (0000111110

U] (000000100 O]

This structure is marked by a bold line on graph GS , presented in Fig. 8.23. The structure
satisfies constraints o..1 and o..2. Feasible phases are represented by nodes of graph G .

© 2008 by Taylor & Francis Group, LLC



8 The set of feasible controls (signal plans) 155

The values of saturation flow volumes, average volumes of vehicle traffic streams,
minimal effective green times, and maximal effective red times are given in Table 8.1.

Table 8.1
i=p 1 2 3 4 5 6
s[PCU/Mh] | 1850 | 1650 | 1620 | 1650 | 1600 /
Impl] 20 15 15 15 15 16
Mvpls] / / / 60 75 /
g[PCUM] | 185 165 324 165 160 /

The matrix of minimal effective intergreen times is:

o O N O O O
O O B W O O
A P D O wWw O
0 O O w o1 b~
o O O U1 O O
O O NN O M~

The cycle timeis C=90s.

The acceptable saturation degree is the same for all vehicle signal groups, p; =0.9
(i=1...5).

The time constraints for this structure are:
I — The constraints of minimal effective green times, a.2:

1) 4+ +1°>20

2) v+t +1°215

3) t+1%>15

4) t*+1°>15

5) v+t +1t +18 417215

6) t' >16
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G (1,1,0,0,0,0)"
(1,1,0,0,1,0) (1,0,0,0,1,0)
(0,1,0,0,1,0)" (0,0,0,0,0,0" (0,1,0,0,0,0)"
(0,0,0,1,1,0
.
(1)01070)010) (0,0 0,0 1,O)T (0’0’011’0’0)7
.
(1,0,1,0,0,0) (000001
N !
(0,0,1,0,0,0)"
S (0,0,0,0,1,1)
(0,1,0,0,1,1)
(0,1,0,0,0,1)
Figure 8.23

IT — The constraints of maximal effective red times, o.3:
7 T+ttt P+ 410 <60
8) v+ti+i+1t+1%<75

III — The flow balance constraints, o.4:

9) T+’ 470 Z—E.ql =10
P51

10) ' +1°+1°>10

11) ' +1%>20

12) t* +1° 210

13) P+ +1 +P+1° 210

IV — The constraints of minimal effective intergreen times, v.2:
These constraints exist only if the conditions given in expression (8.61) are fulfilled.
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8 The set of feasible controls (signal plans) 157

Using this expression, the constraints are formulated for each value of K (k =1,2,...,10)
as follows:

k=1
u32 =1, but ué =1, meaning that in phase u? no signal group starts with its right-of-
way.
k=2
3_,3_ _.,3_ . . 3 . -
U =Uu;, =...=Ug = 0, meaning that in phase U no signal group starts with its
right-of-way.
k=3
u; =1; u; =0
oy =8
a=1 u'elu’ ui=1,ui=0
>3
a=2 u'elu';u=1u =0
P+ >4
a=3 u*elu®, butu®=1,u =1
a=4 u'elU’;u)=ul=1,u =u’=0
R L
4 8. ,8 8 9 9
a=5 UuelU;u =uU=1butu =u; =1
a=6 u*elu’;ul=1,ul=0
e+t ++ +10 28
a=7 u’erlu®
a=8 u‘eryu’
k=4
us=1; uy =0
Oy =5

a=1 u el
5 2. ,2 3
a=2 welu’;u;=1,u;=0

2 +14>5
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a=3 uelu;u=1u=0
P+t >0
a=4 uwelu?; u’=1 u-=1
a=5 el u=u=1u"=u’=0
T+t +t 41020
k=5
ug =1, but ug =1
k=6
uj=u =1; uS=ud =0
oy =4
a=1 u’elu’; u;=1,ul=0
©°>2
a=2 u'elTu’;u; =1,butu; =1
a=3 u' e’
a=4 u'elu®;ui=1,u=0
Pt e’ +1° 23
k=7
uw=uf=1and u/ =ud =1
k=8
u =1; uf =0
oy =8
a=1 uelu’;ul=1ul=0
©>8
a=2 u’elu®
a=3 Welu;u;=1,ul=0
Pt 42
a=4 uelu*;u; =1 u;=1

a=5 u el
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a=6
a=7
=8

k=9

uwelu?; ui=1,ud=0
Pttt r 41820
uelu'; ui=1. u?=0

u® eFSulo

ul10 =1, but ul9 # 0 (the phase u'® doesn’t begin to give the right-of-way to any

signal group).

uteu; u)=uf =1, u =uz’ =0
>3
uteu®; ud=uf=1,butul =u =1

meaning that phase u® doesn’t stop giving the right-of-way to any signal
group

utelTu’;ul=1,ui=0

B+ +10>4

k=10
uz=1; uz’=0
oy =4
a=1
o=2
a=3
a=4

utelu®; ud=1.u/ =1

Therefore, all constraints of minimal effective intergreen times, obtained using (8.61), are:

14) ©°>3

15) ?+1°>4

16) T+ + T +10 >5

17) + 2+ +P+ 7+ >8
18) ©*+1*>5
19) P?+3+1* >0

20) T+ + T+t 11020

21) t°>2

22) P+t +1° +1°>5

23) 1 >8
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24) 41" 418 >2
25) P+t + 1+ +17 +18 20
26) 10 >3

27) P +10 410 >4

V — The constraint on the sum of phase durations:

10
28) > .t =90
k=1
By observing constraints I, 11, 111, 1V, and V, the following facts can be found:

. The constraints 19, 20, and 25 are needless because ‘Ek >0, (k e 9 ) ;
. The constraints 2, 5, and 24 are needless because the constraint 6 exists;

= The constraints 16 and 17 are needless because the constraint 3 exists;

= The constraint 27 is needless because the constraint 23 exists;

. The constraint 22 is needless because the constraint 4 exists;

. The constraint 9 is needless because the constraint 1 exists;

. The constraint 10 is needless because the constraint 2 exists;

= The constraint 3 is needless because the constraint 11 exists;

. The constraint 12 is needless because the constraint 4 exists;

= The constraint 13 is needless because the constraint 5 exists.

Accordingly, phase durations have to satisfy the following constraints:

I T T T L L A A I e 1]
L T SN I + 1 <75
dr Py +8 47+ 2+ + <60
&+ + 10+ 1% > 20
o+ 12 > 20
2 4+ 1 > 4

3 > 3
2+t > 5

™+ 1 > 15

75 > 2

! > 16

78 > 8

0> 3

>0, (ke)
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9. OPTIMIZATION CRITERIA

The goal of traffic control on a signalized intersection is to enable safe
passage of vehicles and pedestrians through the intersection. To achieve this
goal, it is necessary to prevent the situation that two vehicles (or a vehicle
and a pedestrian) belonging to mutually conflicting traffic streams meet at the
same conflict point.

This goal can be realized in various ways, i.e., by more than one control
(signal plan). The signal plans enabling achievement of this goal are all
feasible signal plans, i.e., elements of set 24 .

9.1. The general form and features of optimization criteria

For an exact formulation of the signal plan choice problem, it is necessary
to define the pair (%4;,J.), i.e., besides precise determination of the set of
feasible controls, %4, , it is necessary to choose the performance index, J,
i.e., the optimality criterion.

Optimization criteria that can be used for comparing quality of various
signal plans have to satisfy several requirements. The most important
requirements are that:

= By choosing the control that optimizes the selected criterion, traffic

conditions on the intersection improve, e.g., the delay and number of
stops reduce, or the capacity increases, etc.

= The criteria are explicit functions of control and state of the traffic

process.

= The criteria are measurable.

= The criteria are related to the intersection as a whole, in a given time

interval.

There are many factors significant for assessment of the traffic process
quality on a signalized intersection. The most important factors are: the total
delay, or the waiting time of vehicles, the number of vehicle stops, the total
exploitation costs, the fuel consumption, the environmental influence, e.g.,
the level of pollutant emissions and noise. The number of vehicles that can
pass through the intersection per time unit, i.e., the capacity for one approach
and the whole intersection, becomes a very important performance index,

161
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162 OPTIMAL TRAFFIC CONTROL: Urban Intersections

especially nowadays, with constant increase in number of cars in cities.
The maximal or average queue on certain approaches, or on all of them,
can also be the performance index of traffic control process on a signalized
intersection.
Obviously, there are many optimization criteria suitable for mutual
comparison of signal plans, and some of these criteria are very significant.
On the basis of the mentioned criteria features and expression (7.2):

‘]g : @[tmt] X %t[)vt] X %tmt] - R !

it can be concluded that for determining optimization criterion values it is
necessary to know the vector of arrival flow volumes, the signal plan, and
queues during a cycle. Since in one interval the arrival flow volumes are
stationary processes, the queues on particular approaches, i.e., the components
of vector Wy ;, can be determined according to the expression:

Pl 74, X Gy % 24,0) = Py »

on the basis of the initial state, W(ty), the vector of arrival flow volumes,
O, - and the signal plan, u(-). Therefore, the value of the optimization
criterion depends only on the choice of the control, i.e.,

J. 1% >R,
as defined by expression (7.4).

Different information on arrival flows, contained in vector ¢ ., is
necessary for determination of values of different optimization criteria. For
example, for some criteria only the arrival flow volumes are necessary, while
for others it is necessary to have information on components of vector Gy,
such as the dispersion, the dispersion index, etc.

9.2. Types of optimization criteria

Optimization criteria can be classified in several ways. The Canadian
Capacity Guide for Signalized Intersections [82], for example, lists 17 basic
criteria classified in three groups:

= Criteria related to capacity

= Criteria related to queuing (average overall delay, the number of

stops, queue lengths, etc.)

=  Operational and environmental criteria (fuel consumption, emission

of pollutants, such as CO, CO,, NO_, RCH, etc.)

By optimizing some of these criteria, negative consequences of the traffic
process will be decreased (delay, number of stops, fuel consumption, etc.),
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or some characteristics will increase (e.g., capacity). It would be desirable
to choose the control that optimizes all of the mentioned criteria, but this is
not possible. Because of that, various signal plan choice methods are used,
including more than one criterion. The following methods are most frequently
used:

a)

b)

c)

The statement of the signal plan choice problem as a multicriteria
optimization problem.

Application of different criteria for signal plan choice for different traffic
process conditions [66]. Thus, in the case of low volumes, the total
number of stops is used as the optimization criterion, for medium and
large volumes—the total delay, and for very large volumes—the capacity
of an approach or the whole intersection. In the case of congestion,
besides delay, the duration of congestion or queue lengths is used as the
optimization criteria [55], [68].

Various synthetic criteria, composed of several criteria.

c.1) The most frequently used criterion of this type is the weighted sum
of the total delay and the number of stops at an intersection:

J, =k +k1H=k0(V +%H]:kO(V+k’H):kOJ’, 9.1

0
where V is the total delay, H is the total number of stops in a given
interval (usually equal to the cycle time), and k, and k; are the
weighting coefficients. By reducing both elements of the sum in
(9.1), some other undesirable effects are decreased, such as the total
emission of pollutants, noise, fuel consumption, the total costs related
to the traffic process, etc.

The pollutant emission is closely related to the delay. The amount
of pollutant when vehicles wait is greater than during motion (e.g.,
the amount of carbon monoxide (CO) is three to four times greater).

The amount of pollutants increases with the increase in number
of stops. Each vehicle stop is followed by start of the movement and
acceleration, which lead to increased fuel consumption, and thus an
increased emission of pollutants. The noise level also depends on the
number of stops, i.e., the deceleration/acceleration connected with
each stop.

The fuel consumption is related to both elements of criterion J,
(9.1). Vehicles waiting on intersection approaches, during red signal
indication, cause an in-vain fuel consumption. Each stop leads to an
“additional” fuel consumption due to vehicle acceleration.
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The total costs of the traffic process at a signalized intersection
comprise the costs related to vehicles and the costs related to “lost”
time of passengers. Vehicle operational costs include the fuel and
lubricants, tires and brakes wear and tear, and amortization costs.
Passenger costs depend on the lost time value. For estimation of
the lost time value it is necessary to take into consideration vehicle
occupancy rates, the percentage of passengers traveling during
working and nonworking time, national gross product per capita in
the city, etc. [78].

The minimization of criterion J, is achieved by minimizing
criterion J' because K, is a constant. The value of k' (stop penalty)
depends on the optimization problem. Thus, in the problem of fuel
consumption minimization, the typical values of k' are in the range
30-60. If the total cost is the optimization criterion, the typical values
of stop penalty lie in the range 10-30 [2].

c.2) Another optimization criterion [59] consists of a weighted sum of
the total delay and queue lengths, i.e.,

p
Jo=kV + D kwi, 9.2)
i=1

where:

k; —the weighting coefficients, k; >0 (i=1,...,1"),

I” — the number of selected or all vehicle stream approaches,

V' — the total delay of vehicles on the intersection,

W, — the length of average or maximal vehicle queues.

The control strategy can be changed by choosing appropriate
weighting coefficient values. Thus, only delay can be minimized by
choosing k, =1 and k; =0 (i=1,...,1"), or only the sum of vehicle
queues if k, =0 and k; =1 (i=1,...,1").

In some cases, it is suitable to make the queue weighting
coefficients conversely proportional to the area on which the queues
can form. The consideration of queues is important when flow
volumes are high. The reduction of queues is very important in
congested conditions.

c.3) Optimization criteria composed of vehicles delay, V, , and
pedestrian time losses, Vp , can be expressed as follows:

J. = lep —k,V, |. 9.3)
This criterion leads to a “fair” use of the intersection, by both vehicles

and pedestrians.
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Although the minimization of synthetic criteria leads to an improvement
of traffic control quality in respect to several criteria, this approach is not
frequently used in practice. Determination of signal plans is still, most often,
set and solved as a single-criterion optimization problem. However, even in
this case, the optimization of certain criteria has multiple effects. One of such
criteria is the total delay at an intersection, i.e., the sum of queue integrals
on all vehicle stream approaches. Minimization of this criterion certainly
reduces the delay but also reduces the amount of pollutant emissions, total
fuel consumption, the vehicle costs, etc. [70].

In some cases it is necessary to determine the limit values of some
signal plan elements, such as the cycle time, green time for a certain signal
group, the number of signal plan phases, etc. These problems can be set as
optimization problems in which the optimization criteria are the mentioned
signal plan elements.

The most frequently used criteria of this type are:

a) Cycle time [64], [65], [85], [45]

The cycle time is often one of the constraints in the problems of
optimal signal plan choice. If the cycle time is adopted as the optimization
criterion, then the problems of its minimization and maximization can
be solved. The obtained minimal and maximal cycle time values can be
used as constraints in other problems.

When solving problems of network optimal control, it is necessary
that cycle times on all intersections in the network have the same value.
The first step in determining this value is determination of minimal cycle
times for all intersections. After that, the common cycle time is selected
as the maximal value of minimal cycle times.

A maximal cycle time value exists in cases when the optimization
problem includes maximal red time constraints. The common cycle time
for all intersections in the network cannot be greater than the minimal
value of maximal cycle times for individual intersections.

Therefore, the optimization problems in which the cycle time is
used as the optimization criterion have sense as minimization as well as
maximization problems.

b) The sum of green times of all signal groups [22], [18], [75]

Optimization of this criterion indirectly influences intersection
performance. The maximization of available green time, by all means,
improves traffic conditions on the intersection, but in solving this problem
no difference is made between traffic streams with low and high volumes.
The minimization of this criterion is merely of a historical significance
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because it is one of the first traffic control problems set and solved as a
problem of mathematical programming [22].

¢) The green time of a signal group

The green time of a certain signal group can be used as the
optimization criterion instead of the sum of green times for all signal
groups. This criterion makes sense when one intersection approach is
critical, i.e., having remarkably higher arrival flow volume (and longer
queues) than other approaches.

d) The number of control vectors (phases) in a signal plan

Traffic control specialists, using “phase-oriented” controllers, had
the intention to minimize the number of phases in a signal plan, believing
that the lost time would reduce if the number of phases decreased [2].
This is true only in the case when the right-of-way to particular signal
groups is given only by one phase, as is the case with phase-oriented
controllers. Generally, this is not valid in traffic control systems with
modern “signal-group-oriented controllers.”

Optimization criteria can be also classified according to the type of
mathematical programming problem that can represent the signal plan choice
problem. Some optimization criteria, for a given signal plan structure, become
linear functions of variables , (k=1,...,K), while other criteria become
nonlinear functions of these variables. The corresponding optimization
problems, therefore, result in linear or nonlinear mathematical programming
problems.

The number of optimization criteria is considerable, but only a few of
them are used in practice. Most frequently used are the criteria related to
capacity, total vehicle delay, and cycle time [45]. The exact expressions for
these criteria are presented in further exposition.

9.3. Optimization criteria related to capacity

The condition that all vehicles of a traffic stream, arriving at an intersection
approach, can leave the intersection during the same cycle is satisfied if:

q-SSigp

ie,qc<sg,, (ieZ',0,eD,,pes), (9.4)
where:
g; —the average volume of traffic stream o;,

S.

. — the saturation flow volume of traffic stream o,
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g, — the effective green time of signal group Dj, to which o; belongs,
¢ —the cycle time.

9.3.1. Theoretical capacity

The maximal volume of a traffic stream that can pass through the
intersection is given by the following expression:

(Ds:Sigp

, (ieZ',0,eD,,ped).

Volume o] is the capacity of traffic stream o; .
According to expression (4.19),

K
:ZUETK , (0,eDy,pes),
k=1
so that

K
Jo=0 =23 Uk, (ie 7, 6,eD], pe ). (9.5)
Cia
Since all traffic streams belonging to one signal group are controlled by
the same signal indications, the signal group capacity can be defined by the
following expression:

. E“”Spe g, _ E(p) g ,
(DP:Z Zpe , (peo),
e=1
where:
E(p)
Sp=D Sk, (PeF).
e=1

Using expression (4.19) the expression for signal group capacity
becomes:

ZK:u;rk, (ped). (9.6)

c

The intersection capacity can be defined as the sum of the signal group
capacities:

i . Z_ng P
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or, using expression (4.19),

Z(ngukrk) 9.7)
p 1 =1

In the case when each vehicle traffic stream makes a signal group, the
intersection capacity will be:

I
QS:ZCO?_ZS gl = ZS g,,
i=1 i=1

because in this case .J'=".
The following expression also holds:

Z(s Zukrk) 9.8)
i=1 =1

9.3.2. Practical capacity

The expressions for o, m%, Q°, QY are theoretical expressions, whilst
somewhat lower values are used in practice. Namely, if arrival volumes
assumed the theoretical capacity values, very long queues would form, and
because of that, the practical capacity is defined [88] as follows:

e For traffic stream o;:

s_pisigp

J. = , (ieZ',0,eD,,pe?), 9.9
C

C

where p; <1,(ie.7")
e For signal group Dy:

E(MH E(p) s 9
- Ppe Spe 9 g _ 9,8 ,
chw%:z pe °pe 9p _ Jp PreSpe = PP (pe?),(9.10)
Py c () c
where
. Em)
Spgzzppespe! (pe&)
e=1
e For intersection
- P’ - 1 P’ E(P)_ 1 p’ ~
Jo=Q =3 00 ="210, D PrSpe =— 29,5, (9.11)
p=1 c p=1 e=1 c p=1
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If .7'=2"", the practical intersection capacity, Q°, can be defined as
follows:
- o1 d
I =Q =) &j == Pisi;. 9.12)
i-1 Cia
In these expressions, p; is the maximally acceptable saturation degree of
traffic stream o;. The value of p; is usually estimated by traffic engineers,
and can have different values for different traffic streams. Value 0.9 is used
most often (as suggested by Webster and Cobbe, [88]). If longer queues can
be tolerated for some approach, then the value of p; can be greater than 0.9,

whereas if the queues should be avoided, the value of p; should be less than
0.9.

9.3.3. Capacity per cycle

The capacity per cycle [2] is often used in traffic engineering practice. It
is the maximal number of vehicles of one traffic stream or one signal group
that can pass through an intersection during its effective green time, g, in
one cycle. For an intersection, the capacity per cycle is the maximal number
of vehicles that can pass through the intersection during all effective green
times, g,, (p€Z”), in one cycle.

Capacity per cycle is defined by the following expressions:

e Traffic stream capacity per cycle:

Jo=o =co;=50,, (ie 7' ,0,eD,,per) (9.13)
e Signal group capacity per cycle:
Jo=0F =cwy=s)g,, (peF) (9.14)

e Intersection capacity per cycle:

.
=0 =cQ*=) 50, (9.15)
i=1
— P,
J3i=0%=cQ’=>slg, (9.16)
p=1

Practical capacity per cycle can be obtained using expressions (9.13),
(9.14), (9.15), and (9.16) in which the saturation flow of each stream has first
to be multiplied by the value of maximally acceptable saturation degree.
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The expressions for capacities as functions of variables u and t are

K
obtained by substituting g, = ZUErk in expressions (9.13)—(9.16).
k=1

9.3.4. Saturation degree of a traffic stream

The saturation degree, p;, of a vehicle traffic stream, o;, is the ratio of
the average arrival flow volume, ¢, to the capacity, i.e.,
0 Qi giC . ' ' '
e . N (K= ,0.€Dl ,ped). 9.17
Pi (Dis Si g ) Si g . y i p ( )
C

When p; =1, i.e., when the arrival flow volume, ¢;, is equal to the

capacity, ®;, very long queues can be formed, as already mentioned.
Therefore, instead of the requirement

pi<l, (ie 7)),

as the flow balance constraint, the following constraint should be
introduced:

pis<pi, (ie7), (9.18)
where p; is the maximally acceptable saturation degree.

The tendency to equalize saturation degrees of vehicle traffic streams
is present from the first attempts of formulating exact statements of traffic
control problems on a signalized intersection [89], [30]. This can be achieved
by optimizing several optimization criteria. Some of them are given here.

a) The mean square of differences between saturation degrees of traffic
streams [35]

2
gc_9;¢

=2 (pi—p)’ =D | "=————1|,
; J g‘sigp Si9
(c;eDy,0;,€Dy,i,je T, p,ge )

By substituting

K K

k_k k_k

9, = E u,t and g, = E Uy T
k=1 k=1

in the expression for J, it becomes:
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2

A2 Qi q;
Jo=c) | ————
i<j k,_k k_k
SO Ut 5D UgT
k=1 k=1
A similar effect to the saturation degrees equalization can be obtained by
minimizing the following optimization criterion:

2
11 o
1.=%|=-=1, G,jeg). 9.20
;{pi p,} (,jed (9.20)

(9.19)

b) The maximal saturation degree value

Minimization of the maximal saturation degree value leads to saturation
degrees equalization, in a certain sense. The optimization criterion in this
case can be defined as:

J, = max{p; |ieg}=max{£‘ci eD!,ied’, peg’}. (9.21)
iJp

9.3.5. Capacity factor

The capacity factor is one of the criteria related to intersection capacity.
Flow balance constraints ensure that each traffic stream (signal group)
receives enough green time, i.e., that the practical capacity is greater than the
average flow volumes for each vehicle traffic stream (signal group). However,
a signal plan has to be chosen so that this condition is satisfied even in the
event of flow volume changes. The changes can be various—some traffic
stream volumes can be reduced, some can be increased, while some of them
may retain their values.

For practical purposes, it is assumed that the change of volumes is
relatively simple, i.e., that all average volumes either increase or reduce in the
same proportion [4], [5]. In this case, the criterion for signal plan choice can
be a number, i, such that the flow balance constraints, (c..4), remain satisfied
when all average traffic stream volumes are multiplied by this number. Thus,
the optimization criterion is:

J.=p. (9.22)

If the maximal capacity factor, p*, is greater than 1, there exists a reserve
of intersection capacity. The quantity of this reserve can be assessed by the
difference p*—1 or (u"—1)-100 (expressed as a percentage).
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In the case u* <1, the intersection capacity is not sufficient, i.e., no
signal plan exists such that the capacity constraints, (a..4), are satisfied. In
this case, the measure of intersection saturation can be the difference 1—pu*
or (1—u")-100 (expressed as a percentage).

The capacity factor is a generally accepted criterion for optimal traffic
control. Using this criterion for optimal signal choice gives especially good
results when saturation degrees are high and volume changes are significant.
[45].

9.4. The delay at an intersection

The total vehicle delay at all intersection approaches is the most often
used criterion for signal plan choice [3], [89], [13], [44]. By its minimization
multiple positive effects can be achieved—economic, ecological, etc. The
financial equivalent of the delay unit can be determined in a relatively simple
way [78]. The delay at an intersection is defined as the sum of delays for
vehicle traffic streams on all intersection approaches.

The analytical relation between the delay and control (signal plan) has
been formulated in various methods used for signal plan choice. For a given
function of traffic stream volume, ;(t), on approach T;, the queue that
forms from the beginning of effective red time (t =0) until an instant t, has
the value:

w(t)=[g@d, (e

Thus, the delay accumulated in interval [0,T], on approach T, can be
expressed as:

.
v, :jwi(t)dt, ie 7).
0

The total delay for the whole intersection is defined by the following
expression:

V= j wedt=YV,, (9.23)

where:
T
W= (W, Wy,..., W),

e=(e,e,,....6)) =(LL....D)".
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This criterion is the most frequently used criterion in signal plan
optimization problems.

Some authors, instead of criterion (9.23), suggest the “quadratic”
criterion:

T T
V=[], dt = fw’ Awdt. (9.24)
0 0

where A=[a;;],,, (&; 20, i,j €.7") is aproperly sized matrix of weighting
factors. This criterion is slightly more “democratic” than the previous one,
since the solution, obtained by its optimization, leads to an approximate
equalization of queue lengths on intersection approaches [68].

The total delay of pedestrians and vehicle passengers can be also adopted
as the optimization criterion. In this case, the calculated delays are multiplied
by different occupancy coefficients, depending on the type of the traffic
stream (e.g., 1.3 for passenger vehicles, 30 for buses, 1 for pedestrians, etc.)
[2], and the sum of these products is calculated for each approach and for the
whole intersection.

The delay on a signalized intersection, as mentioned in Subsection 5.2.2,
is caused by the following factors:
o) The alternation of red and green traffic light indications causes delay even
in the case when the arriving traffic is regular (deterministic, uniform
arrivals), with flow volume less than the capacity.

) The stochastic nature of arrival flows causes increase in delay because of
two reasons:
[.1) The stochastic nature of queuing,
B.2) Queues, in some cycles, are not fully discharged until the end
of green indication, thus making the initial queues in subsequent
cycles greater than zero.

When the stochastic nature of traffic process is taken into consideration,
the expressions determining the delay consist of two terms. One term, the
uniform delay, exists even in the case when arrival flow volumes are constant
and equal to average volumes of real flows. The second term, the random
delay, represents the consequence of the stochastic nature of traffic flows.

The increase in delay, due to the stochastic nature of traffic flows, even in
the case when the queue fully discharges before the end of green time, can be
explained using Fig. 9.1 [46]. This figure illustrates the evolution of queues
in three cycles. The volume of stream o; is Q; in the first cycle, g; + Ag; in
the second, and ¢; — Aqj; in the third.
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t

Figure 9.1

The delay is given by the following expressions:

t0
V= IW{(t)dt , forg,
0

ty+At,

/= [w'ddt, forg;+Aq,
0

to—At,

V"= _[wi’”(t)dt , forg; —Ag; .
0

In Fig. 9.1, V| is represented by the area of triangle OBF, V;" is equal
to the area of triangle OAE, and V," to the area of triangle OCG. Observing
these three triangles, it can be noted that the sum of their areas is greater
than the threefold area of triangle OBF, which corresponds to the delay
when the arrival flow volume is equal to ;. The surplus, 9;, is equal to
the area of parallelogram FEJI. This means that the fluctuation of volume
around the average, for the same amount, AQ;, does not result in the increase
and decrease of delay for the same extent—the increase is greater than the
decrease. Therefore, the consequence of the stochastic nature of traffic flows is
the increase of delay compared to the case when flow volumes are uniform.

The expressions for average queue lengths, for periods when traffic
process is stationary, are given in Subsection 5.2.2. Mathematical expectation
of the delay accumulated during one cycle is equal to the product of average
queue length and cycle time. Thus, mathematical expectation of the total
delay on approach T, during one cycle is:

MV, =M{cMw}=cMw,, (ie 2.
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Mathematical expectation of the total delay on the intersection is given
by the following expression:

I’ I’ I
MV ="MV, => cMw, =c> Mw, . (9.25)
i=1 i=1 i=1

Mathematical expectation of the total delay on approach T, can be
calculated using Newell’s expression (5.11), as:

MV; =c(Mw;; + Mw,;) = c(Mw; + Mw;; + Mw,) . (9.26)

In this expression, term Mwj; is the queue component resulting from
influence of factors listed under a (alternation of red and green indications),
term MW{1i is the consequence of factors B.1, i.e., the stochastic nature of
arrival flows. Term Mwy; represents the consequence of factors listed under
B.2, i.e., the fact that in some cycles (even when p; <1) the queue does not
discharge and the initial queue is not equal to zero at the beginning of red
indication. In this case,

where Mw,; (0) is the queue length at the beginning of red indication, which
is, also, the beginning of the cycle.

Therefore, mathematical expectation of the total delay on approach T;
during one cycle can be determined using the following expression:

MV :C[cqi(l—xp)z . qi|i(1—xp2) Lal H(ui)}
21-96;) 2s;(1-96,) 2s,(1-6,)

The meaning of symbols used in the expression is given in Subsection 5.2.2.

In Webster’s formula (5.12), the first term, representing the uniform
delay, is the same as the first term in Newell’s expression. The second term,
as Webster states [89], ... makes some allowance for the random nature of
the arrivals. It is an expression for the delay experienced by vehicles arriving
randomly in time at a ‘bottleneck,” queuing up, and leaving at constant
intervals.” This term includes the consequences of both factors listed under
.1 and .2, while the third term represents an empirical correction. Webster's
formula can be represented by expression (5.13), having only two terms,
as explained in Subsection 5.2.2. Using expression (5.13), mathematical

expectation of the total delay on approach T, can be determined as follows:
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MV, = cMw, =
cq(L—2,)> 2
:C.o'g[ Gi ( p) i Pi J:

20-6))  2(1-py)

:o.g(CZQi(l_}‘P)er cp! ]: (9.27)
21-6;)  2(1-py)

=o.9( %5 L_cpi J
21-90;) 2(1-p;)

(ie7' 0,eD,, pea).

The results obtained using this expression and by Newell’s formula
(5.11) are very similar, and close to real values of delay for almost all values
of volume.

By introduction of signal plan variables, u(t) = (u,t)" ,i.e., by substituting
r, and g, by:

K
g, = ustt, (pe),
k=1

L
h=>A-u)t", (pe),
k=1
in Webster’s formula, the following expressions for mathematical expectation
of delay are obtained.

9.4.1. Mathematical expectation of delay when cycle time is known

a) Mathematical expectation of total delay of one signal group

Mathematical expectation of the total delay of vehicles belonging to traffic
streams that are elements of signal group D'p €9, ={D;,D,,..., D'p voey Dp ks

where D}, ={G 4,6 5,...,C pe»---,O pg(p)}» €an be obtained by the following

p

expression:
e=E(p) K 2 a2
MV, =09 > a;e[Za—u;)ckJ +— T ,
SRS (zu;rkJ Yk
k=1 k=1
(pea), (9.28)
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where:

a})e:—qpespe , aﬁe_
2(Spe —Upe) 2s

b) Mathematical expectation of the total delay on an intersection

Mathematical expectation of the total delay on an intersection can be
determined as the sum of average delays for all signal groups. Since one
signal group, D}, = {0 4,5 5,---,G pe»--1O pg(p) } » is controlled by one control
variable, U, ("), pe 7'={2,...,p,...,P}, mathematical expectation of the
total delay on an intersection is given by the following expression:

(ped). (9.29)

9.4.2. Mathematical expectation of delay when cycle time is not given

a) Mathematical expectation of total delay of one signal group

The mathematical expectation of total delay of vehicles belonging to traffic
§treams that are elements of signal group Dy =1651:0p2s-+:C pese++ O pr(py
is determined by the following expression:

EP)| (& .y 2 pe
MV, =09 > ap{Z(l—up)r ] +(

e=1 k=1 K K _k ? =3 K k _k = k
Zupf J _ap{Z:upT J(ZT ]
k=1 k=L k=L
(pea), (9.30)
where:
1o_ Qe Spe =2 =£ 73 zq;"e
P28 —0) %25k T s,
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b) Mathematical expectation of the total delay on an intersection

The mathematical expectation of the total delay on an intersection can be
determined as the sum of average delays for all signal groups, i.e.,

(pea”). (9.31)
9.5. The number of vehicle stops

The total number of stops of vehicles belonging to traffic stream o,
during one cycle is equal to the number of vehicles in queue at the beginning
of the green interval, increased by the number of vehicles arriving while the
queue exists during the green interval.

The mathematical expectation, V_vge, of the queue at the beginning of
green interval is given by the following expression [89], [2]:

;
Wy, = Mw, =max{qpe£?p+vpej,qperpe}, (pe),

where v, is the average delay per vehicle of traffic stream o, ie.,

vpeszpe.

pe)

The mathematical expectation of number of stops is determined by the
following expressions:
o) If the average number of vehicles in the queue at the beginning of green

indication, Wge, can discharge during the green time, i.e., if

WY
W

Spe ~Upe
then the mathematical expectation of number of stops/starts is obtained
as:

<gp1

Ta Ta
qpe Wpe _ Wpespe
Spe ~Upe  Spe ~Upe ’

(peo”,ec&(p)).

v = — w9
Ve =Mv,, =W +

(9.32)
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9

B) If the queue at the beginning of green indication, W,

during the green time, i.e., if

cannot discharge

Wg
pe
ﬁ >0p
pe ~ Hpe
then the mathematical expectation of number of stops/starts is obtained
as:
Ve =MV, =WJ +0,0,, (peZ,ee&(p)). (9.33)

Besides the absolute number of stops/starts, another interesting
performance index is the ratio of the number of stopped vehicles to the total
number of vehicles that arrive to an approach during a cycle. If the queue is
discharged during green time, then all vehicles arriving in interval ry +o g,
leave the intersection in interval o, , where a,, is the queue discharge time,
ie.,

Qpe(rp +0lpe) =Spe OLpe s
qperp

A, = .
Sm_qm

pe

The ratio of number of stopped vehicles and the number of vehicles that
arrive during a cycle is:

_ Ve _qpe(rp+°‘pe):1[rp+ Qpe o J

pe

CQm Cqm c %e_qm 9.34
1 Swl 1-2, , , ©-34)
= = ’ (GpeED!pe‘@!eeg(p))‘
C(Spe—Up) 1-0,
If the queue is not discharged during green time, this ratio is:
v, W
bl = ad =—pe+kp. (9.35)
Cqm Cqm

The expressions for the number of stops, (9.32) and (9.33), and the
expressions for the ratio of number of stopped vehicles and the number of
vehicles that arrive during a cycle, (9.34) and (9.35), usually give values that
are slightly higher than the real ones. The reason lies in the fact that not all
arriving vehicles stop—some of them only slow down. This phenomenon
was analyzed by Australian researchers [2], and it was concluded that fairly
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good values, close to real ones, could be obtained if the values calculated
using expressions (9.32)—(9.35) are multiplied by 0.9.

9.6. Signal plan parameters

9.6.1. The cycle time

The cycle time, C, is one of constraints in many problems of signal
plan choice. However, due to the presence of other constraints, such as the
constraints of minimal green times and minimal intergreen times, there exist
boundary values of cycle time—its minimal and maximal value.

The cycle time cannot be shorter than a minimal cycle time, whose value
is determined by solving the optimization problem with the cycle time as the
optimization criterion, i.e.,

K
Jo=c=>1". (9.36)
k=1

A maximal value of cycle time exists if the constraints of maximal red
are present in the problem. The maximal cycle time value can be determined
by maximization of the same criterion, (9.36).

9.6.2. Green time of a signal group

The effective green time of a signal group or the sum of effective green
times of several signal groups can be also adopted as optimization criteria.

The effective green time of signal group Dy, , as the optimization criterion,
is given by the expression:
K
Jo=> ustr. (9.37)

k=1

Sometimes it is necessary to maximize the total green time of several
signal groups, e.g., in cases when priority is given to certain traffic streams.
Thus, if the green time for signal groups Dj, and Dy has to be maximized,
the optimization criterion will have the following form:

K K
Jo= 2 ust+ > gtk (9.38)
k=1 k=1
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In the case when the total green time of all signal groups (vehicle,
pedestrian, etc.) should be maximized, the optimization criterion would take
the following form:

P K
Jo=Y dustt. (9.39)

9.6.3. The total number of control vectors (phases)

The total number of control vectors in a signal plan structure is an
interesting criterion if older, phase-oriented traffic controllers are used for
traffic control. The number of control vectors in a signal plan structure is K,
so that the optimization criterion, which should be minimized, becomes:

J, =K. (9.40)
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PART Il

THE METHOD OF OPTIMAL
TRAFFIC CONTROL DETERMINATION

The problem of optimal signal plan determination can now be formulated
exactly, using the expressions for constraints and performance indices given
in Part Il. Various optimization problems can be formulated. The main
difference between them is related to the type of optimization, which can
be single or multiple criteria optimization. In this text only single criterion
problems will be considered.

The determination of the optimal signal plan is formulated, in Part 1, as
the problem of finding the optimal closed path on graph Gg .

183
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10. THE STATEMENT OF THE PROBLEM OF FINDING THE
OPTIMAL CLOSED PATH ON GRAPH Gq

Asignal plan u(-) is defined by its structure u, and cycle time split 7, i.e.,
u() = (u,t)" . The optimal signal plan structure u* and the optimal cycle
time split ©* correspond to the optimal signal plan u* () = (u* t*".

In Part 11 itis noted that a feasible signal plan structure can be represented
by a closed path on the control vector transition graph G, . The determination
of such a path implies determination of all components qu) of control vector
u* (ke ). Then, the constraints including variables t* and also the
optimality criterion become functions of t* (k € 9%') variables only. The
problem of determining these variables is a mathematical programming
problem. Many of these problems can be stated as linear programming
problems. However, the optimization criterion in delay minimization
problems is a nonlinear function, the flow balance constraints in the problems
with permitted conditional turnings are nonlinear as well, so that there exist
control problems that are stated as problems of nonlinear mathematical
programming.

The problem of optimal signal plan determination is, hence, the problem
of finding the closed path on graph G (structure) and the values of variables
7 (cycle time split) assigned to each node on the path so that the chosen
optimization criterion achieves the optimal value.

The set of feasible controls ?; is defined by the constraints listed in Part
I1. If the chosen optimization criterion is given by the expression

J. 1% >R,

where R is the set of real numbers, and the optimum value J_ of this criterion
is defined as:

Jo= opt J (u()), (10.1)

u(-)e?s;

then the problem of the optimal signal plan determination can be stated as
follows: Determine the set of optimal controls

2x={u*()|u*() e 2, 3,(u*()) = 3c}, (10.2)

185
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where
u*()=(ur %"

The optimal structure u* can be represented by the closed path on graph G,
and t* is the optimal cycle time split vector.
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11. THE METHOD OF FINDING THE OPTIMAL CLOSED PATH
ON GRAPH G

The algorithms for solving problem (10.2) have been developed, based
on the general method of combinatorial optimization—branch-and-bound
method. In developing these algorithms the axiomatic system was used,
defining the basic, general elements [62], [8], [71]. The method of signal plan
determination using this approach is presented in papers [37], [38], [39].

According to the axiomatic approach, when using the branch-and-bound
method the following elements are defined:

a) The relaxation
containing the steps:
a.1 Introduction of the superset of the set of feasible solutions
a.2 Introduction of functions that perform mapping of the superset
elements into the set of real numbers

b) The elimination criterion

¢) The branching rule

d) The bounding rule
d.1 The lower bound rule
d.2 The upper bound rule

e) The branch-and-bound recursive operation

The branch-and-bound method actually represents a recursive operation
of branching and bounding. This procedure leads, step by step, to the optimal
solution.

Elements of the superset are mapped, by a suitable function, to the set of
real numbers. This mapping enables calculation of lower and upper bounds
for subsets of the superset. These bounds are used in the branch-and-bound
recursive operation.

187
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11.1. Elements of the method

The optimal solution u*(-) of problem (10.2) is in some problems
the minimal and in others the maximal value of the optimization criterion.
Namely, the optimal criterion (10.1) value

3= opt I.(u())

u(-)e?s;

is defined in some problems as:

Jo= sup J.(u()),

u(-)e?s;

and in some other problems as:

D= inf J,u().

u(-)e?s;

Certain elements of branch-and-bound method are common to all methods
of optimal signal plan determination. These common elements will be first
defined here to the level of details suitable for application to any problem of
determining the optimal signal plan. Afterwards, this method will be applied
for solving the specific problem of maximizing the intersection capacity, and
all elements of the method will be precisely defined. In Part IV the method
will be applied for solving some other, typical traffic control problems on a
signalized intersection.

11.1.1. The relaxation and extension of J (u(:)) function

The relaxation is composed of:

a) The introduction of superset 24°, whose subset is the set of feasible signal
plans 24; , i.e.,

U, c°. (11.1)

In the method there are also used:

= The partitive set & of the set 24°
E=9(2°). (11.2)
» Elements 24, of the set £ that are subsets of the set 24°, i.e.,

%, €k, U, U (11.3)

© 2008 by Taylor & Francis Group, LLC



11 The method of finding the optimal closed path on graph G, 189

»  The partitive set 24 of set &
U =9(8). (11.4)

»  Elements z of set 24 , which are subsets of set &, i.e.,

7€, 7Ck . (11.5)
= The union 24(z) of all subsets of collection =, i.e.,

%u(z)= |J,. (11.6)
M=

= The collection of optimal solutions.

The set of optimal solutions, @4 *, is in fact one collection z*. Any
element of Zz* is asingleton set, i.e.,
7 ={{u*()}Hu*()e2*}. (11.7)

It means that the aim of the branch-and-bound procedure is to find
collection z*, which is the same as determining the set 24* of optimal
solutions.

Superset 24°, besides feasible solutions u(-) € 24, , contains solutions
whose length, «, is shorter than K—the length of a feasible signal plan
structure. The length of the structure is the number of control vectors in the
signal plan.

Since the structure of a feasible signal plan satisfies constraints o.1, it
means that the number of changes of each control variable value during a
cycle is 2. Thus, the total number of changes of values of control variables
during a cycle is 2P (because the number of variables is P). Therefore, the
structure with the number of changes of control variables less than 2P is the
structure of an infeasible signal plan with the length x < K.

The constraints that have to be satisfied by elements of set 24° are given
by the following expressions:

ol Uy +us™ 9 (mod2) =0,, (pe?),

k=1
and

(k<K)=(3pe2),6,<2),
(k=K)=(©0,=2,pe).

© 2008 by Taylor & Francis Group, LLC



190 OPTIMAL TRAFFIC CONTROL: Urban Intersections

A

0, if D (uy+u™)(mod2)<2 or

p
k=1
K K
o'.2 ZUETk >
(k

(uf +ufmO Y (mod2) = 2] A(k#=K)

k=1

Al

Omp. I

(uf +us™ ) (mod2) = 2} A(k=K)

Il
4N

(pe2).

K

3 >A-uHt <, (qeM o).

k=1
0, if > (us+us™)(mod2) < 2or
k=1
a4l D ukthz (Z(u; +u ™9 ) (mod2) = 2J A (k # K)
k=1 k=1
Y, if (Z(u'; +usM ) (mod2) = ZJ A (k=K)
k=1
(pea).
42 1 > (s,uf (- uf) + quiuf) T >
k=1

0, if (i(ug +U§+1)(m0d2)SZJ/\(K¢ K)
> k=1

k=1

cq,, if (Z(u;‘ +ufMdO Ty (mod2) = 2} A(k=K)

(abe 7).

I > Uy @-ug)s, - (1-uzug)g,) 0.
k=1
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S( ko Gl k k
a
1 > Uals T —pom, +Uf(L-ud)s, |>

k=1

0, if [Z(UE +us M) (mod 2) = 2J A (k%K)
k=1

cq,, if [i(ul‘; +Uk';(m°dK)+1)(m0d2)=2J/\(K=K),

k=1

(a,be ).

Y1 ukmedt ek (ke ).

-1
p) LR (eHl-k)modK) max{z " (U ;—(Kﬂo—k)(mod K) ‘u(l;(mod K)+1 -1

e

Il
o

A (ufTlsrok medk) - yk — 0); p,q e 7}

(k e%r' pEQ’(Uk,Uk(mOdK)Jrl)).

K
5 D U™ <720 |, (2 <0; T Me )
k=1

K
' k
g2 Er < Crax -

where:
5" ={12,....K,....x}, (ke )

Ql(uk,uk(mOdK)+1) :{1,2,'~«,0~),«.-,(D,M (uk,uk(mOdK)+l)}
— the set containing o.

(D'M (uk , uk(mod K)+l)

= min{max{z,, | (uf ™" =1) A (uf =0); p,q e 7},

(K+(k-K-=1sign(K -«)),(K-2)}
— the number of intergreen constraints for a given value of k.
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If ¢ is not given, constraints €'.1 do not exist, and ¢ in constraints o'.4 is

substituted by >t~
k=1

When using formula y'.2 to determine the intergreen time constraints, the
constraints for t (k <« <K cannot include duration t* of control vector
u' nor duration of vectors u™, u*™*, etc. that precede u*. This is because u*,
uX?, etc. are not known until the feasible solution is obtained. For example,
let the formed part of the structure be u’ =[u*,u?,...,u®]. It means that k =5
(k< K). The constraints for k =4 obtained by formula y'.2 are related to the
following intervals: ©* — between control vectors u® and u® (0=1), ©* +t*
— between control vectors u? and u® (®=2), and %+t +1* — between
control vectors u* and u® (=K +(4—K —1) sign(K —5) ). The constraints
for intervals '+ 12+ 3+ 14, PN+t +1%2 + 3 +1*, etc. will not be formed
using y'.2. These constraints, as well as all other constraints that have to be
satisfied by an optimal signal plan, will be formed when k becomes K.

For x =K constraints o' to &', defining superset 24° , become constraints
o to g, by which the set of feasible solutions 2¢; is defined. Accordingly, the
constraints o' to €' hold for all elements of set 24°.

One solution, u(-), with the feature

() e22°) A(u() & %)

is presented in Fig. 11.1. Graph G, used in this example is given in Fig.
8.17.

Example 11.1

Structure U’ of one solution (which is not feasible) is presented on graph G, from
Example 8.9. The structure of solution U’ , presented in Fig. 11.1, is determined by the
following expression:

utuzudutudubu

(uu1 [1 11100 0]

u, 1 000O0O0TO

u 0001100
u'=[utu?,...u'l=| ®|= (11.8)

u,| (0000001

U 1100000

u;| (000000 0]
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The initial control vector is U = (1,1,0,0,1,0)T ,and k=7 .

Determine constraints '.2, v'.2, and ¢'.1.

G (1,1,0,0,0,0)"

\A{/“.‘\'\(/ (1,0,0,0,1,0)"
RS A
A’A‘i o,o

— 2\ S (0,1,0,0,0,0)"
N/ N
W5 ‘/5’“"\'0{//1

7, X
Y S g%ll

(1,1,00,1,0)' Q

(0,1,0,0,1,0)" 4

[ ™~0(0,0,0,1,1,0)"

N

D (0,0,0,1,0,0)"

(0,0,0,0,0,2)

(0,1,0,0,0,2)

Figure 11.1

Itis obvious (Fig. 11.1) that the structural constraints o.'.1 and y'.1 are satisfied. Constraints
a'.2,v'.2,and €'.1 are:

o2 ¢y 7 > 15
y'.2 o+ T > 3
3
T > 1
11.9
© o+ 1 > 4 ( )
75 > 3
g2 d o+ 2+ 2+t Py = 00

Constraints &' do not exist because none of minimal intergreen times is negative in this
example.

The solutions U(-) = (U, )", with the structure U’ presented in Fig. 11.1, satisfy the
structural constraints o'.1 and y'.1. However, in order to have U(+) € 24°, it is necessary that

2

the components of T, i.e., rl, T ,...,17 , satisfy constraints a'.2, y'.2, and ¢'.1. For example,
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= (10,10,10,10,10,10, 30) (11.10)
constraints a'.2, y'.2, and ¢'.1 are satisfied.

Thus, the solution U(+) with the structure given by expression (11.8) and the cycle time
split given by (11.10), belongs to set 24°.

This example shows that one structure determines one subset of set 24°
containing elements with different vectors t, but the components of these
vectors satisfy constraints a'.2, y'.2, and €'.1.

b) The extension of J,(U(-)) function

The bounded extension of function J_(u(-))

32° SR, (11.12)
has the feature
u() €2, = 3u) = . (). (11.12)

For each performance criterion that has to be optimized it is necessary to
define a suitable function J (u(-)).

11.1.2. The elimination criterion

The elimination criterion is used to identify unfeasible solutions and
nonoptimal feasible solutions.

If u(-) is unfeasible, then:

U e2’)Au()g24),ie.,

u(-)e2s°\ %, .
If collection 7z, € 2¢ is introduced, such that
W(zy) < 26°\ 2™, (11.13)
where:
2(7)= U7, . (11.14)

K=
then the unfeasible u(-) has the feature
u()e26°\ 24, = {{u()}}ex. (11.15)

The subsets containing feasible but nonoptimal solutions belong, also, to
the collection =, [71].
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11.1.3. Branching rules

The branching rule is the function
B:2 — 2 (11.16)
with the following properties:

(B.1) 2(B(z) =24(=) (11.17)
(B.2) If 24, € B(=)\ =, then there exist 24,, € z \B(z) with

2, =%,
(B.3) If there exist 24, € z with |24, |>1, then

B(z)\z+# D
The branching rule is applied to collection z" € 2¢ . Collection z" is

obtained by applying the recursive branch-and-bound operation n—1 times,
starting from collection z* ={24°}.

In order to define mapping f3, it is necessary to:

e Determine the way to choose the subset 24, e =" that will be further
divided into subsets

e Determine the way of dividing the chosen subset 2, into subsets

e Recognize, if possible, the subsets of 24, containing unfeasible solutions;
such subsets shall be eliminated from further procedure and the upper
bounds will not be calculated for them

e Specify the way of determining B(z") for a given collection z"

a) Choosing the subset 22, € z" that will be divided in subsets

The upper bound B(%4,) isdetermined for each element 24, of collection
z" (as described in Subsection 11.1.4). In general description of the method
the maximization will be assumed as the optimization problem.

The subset 24, having the maximal upper bound is chosen for further
division, i.e., the subset 22, with the property

B(%,)>B(2,) (2%,<"). (11.18)
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For n=1

B(%,)2B(%,) (2,ca ={2}),

B(#,) =B(2°). (11.19)
This means that 24, = 2¢6° for n=1.

b) Dividing the chosen subset 22, in subsets

After choosing the subset ¢, that will be branched, i.e., divided in
subsets, it is necessary to determine the method of dividing 2, .

Subset 22, will be divided in such away thatall elements belonging to one
subset have the same initial part of the structure. Thus, after the first division
of 2, , the subsets are obtained such that all elements of a subset have the
same sequence of first two control vectors: u', u?. By further divisions new
subsets are obtained having the same sequence of first three control vectors,
and so on. The initial sequence, same for all elements of a subset, is the initial
part of the structure of all elements belonging to that subset. This sequence
can be represented by one path on graph G, (Fig. 11.1).

Let 24, be the subset chosen for branching according to rule (11.18). All
elements of this subset have the same initial part of the structure. If u() € %,
and u()) = (u,7)", the structure u can be represented as:

u=[u,u7, (11.20)

where U’ is the initial part of the structure of each element that belongs to
24, -
Y

u' =[ut,u?,...,u"]. (11.21)

The fact that u’ and u” are parts of the structure of 22, elements can be
expressed as follows:

u(?,) =[u'(2,),u"(2,)].

The part u” of the structure is different for different elements of 24, .
This part of the structure can be expressed in the following way:

U = [uRmedkL (11.22)

Kk (modK)+1 k(modK)+1

where u is the control vector following u®, i.e., u
m

and u” is the remaining part of the structure.

el,u*,
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One of the subsets of 24, can be the subset 24, whose elements have the
structure with the property u' e [,u* and the constraint o..1 satisfied.

Two cases can arise in further procedure, depending on the initial part of
the structure u’ =[u*,u?,...,u*]:

b.1) The first case: u' e [,u* and

Z(u I;(modK)+l 4 ut)(mod 2)=2, (pe?). (11.23)
k=1

In this case two possibilities can be distinguished:
o) There exists only one value of p € &7 with the property:

3 (Ul ub)(mod2) =1, (11.24)
k=1

and for all other values of p e &’ the sum in expression (11.24) equals 2.
This means that in the transition from u* to u® only one component of
vector u* changes its value. In this case u’ satisfies the constraints o..1 and
v.1. If other constraints are also satisfied, then the structure U’ is the structure
of a feasible solution, i.e.,

u=u, k=K, U0)=u1"u()e?).

Al elements of subset 4] have the same structure u=u’ in this case,
and they differ by control vectors durations. Further branching of this subset
will give a singleton set, whose element is the feasible solution.

B) D (uyt+us)(mod2) <2
k=1
for more values of p, rather than only one.

In this case, by branching subset 24 , several subsets will be obtained.

When subset %y' is chosen for further branching, that means that the
lower bound B(%¢4;) is better than the lower bound of any other element of
the collection to which 2¢; belongs. Since the structures of the elements of
?¢, satisfy constraints a..1 and y.1, which have to be satisfied by any feasible
solution, and there exists the bound B(%)) , this means that a feasible solution
u°(-) exists, with the property

B(24)) = max{J{ (u()) [u() € 24} = 3. (u"()) .
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where u®(-) = (u®,t)" . In this case:
B'(24]) ={{u()"IU{Z, 3. (11.25)
Subset @Zy’ contains nonoptimal solutions (with cycle time splits t° that
are not optimal).
If there does not exist a feasible cycle time split t° for structure u®, then
L (r=9.
b H ' . .
In the case 22, ={u”()}, mapping B'(%,) is defined as follows:
BN ={L’ OHU O e’ (D= O=1" ")) A

/\(Ul GFSUK)/\(Z(U; +U|;(m°dK)+l)(mOd2)=2),
k=1

(pe?) }={{u" OB (11.26)

b.2) The second case: k<K

Since the structure length is k<K, u’ cannot be the structure of a
feasible solution. All elements with structure u’ are infeasible.

Afunction 8 will define the rules of branching subset 24, whose elements
have a structure that can be represented in the form:

u=[u,uT=[u",u?,.. ut U = u U,

where u*?t eT.u®.

S

Branching of subset 2¢,, which contains elements with the structure
length 5(u) greater than x, and of subset 2¢;, with elements structure of
length «, is performed in different ways.

Function ', defining the branching of a chosen subset into subsets, is
given by the mapping

pg—>2% (11.27)

and defined by the following expression:
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B'(22,) ={2¢,, () € 26,,) = (u() = ([U(#%,) ,u™",u"(2,)]1,1)" ) A

AU eTUS) A Q] (uy +us™)(mod2) < 2)
k=1

A((Age )= ZK:(ug +ug™)(mod2) < 2),
k=1

(pe)YU{2}. (11.28)

Thus, B'(%¢,) is the collection with elements whose initial part of the
structure is [u’,u
?¢,

e

The number of subsets 22, is card([,u®)+1.

K+l

]. The part U’ is the same for all elements of the subsets

¢) Identification of subsets containing infeasible solutions

Among the subsets that are elements of collection '(24,) there are some
subsets that can be identified, even before determining their lower bounds, as
the subsets having no feasible solutions. Such subsets can be eliminated from
further procedure.

Collection B"(24,) = B'(?2¢,), which can be excluded from further
procedure, is formed by the following mapping:

B":26 — 2 . (11.29)

Collection B"(z) is a subset of collection z,, whose elements are all

subsets containing infeasible or nonoptimal solutions. It means that the
subsets which are elements of 3" belong also to collection z, .

The subsets belonging to collection B can be recognized in the next
cases:

o) Somesubsets 24, satisfy constraintsa'.1 andy'.1, but the structure having

the initial part u’, which is the same for all elements of subset 24, does
not satisfy constraints a..1 and y.1. Such subsets can be eliminated from
further procedure.

Constraint o..1, which has to be satisfied by any feasible solution,
states that the sum of changes of each control variable (from 0 to 1 and

vice versa) has to be 2. If the values of a control variable u,(-), until the
control vector u**, change as shown in Fig. 11.2, it can be concluded
that the value of u,(-) in all subsequent control vectors, from u** until
the end of the cycle, has to be 1. Otherwise, if u(-) changed once more,
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from 1to 0, the sum of changes of u, () values would be 3 and constraint
o..1 would not be satisfied.

A
up(')
L : | :
1 R ——
0 E k' K'+1 E (l ;
| Up ! Up |
Figure 11.2

If asignal group Dj is incompatible with D, and if the value of the
variable u,(-) from t=0 until the beginning of control vector u*is0
(the group did not get the right-of-way), then this group cannot get the
right-of-way at all because u,(-) must have value 1 until the end of the

cycle, and u, () cannot have value 1 simultaneously with u ().
In this case, collection " is defined as follows:

1(@)=B"(B'(22,))
={2,, ePB'(2,)|([u',0%,....u" U U ) €2, =
=>(@Epe)A@lez”)A(D},D))£Cy) A

A (i (uf +us™)(mod2) =2) A(uy =0) A
k=1

AUST=D) A (iu,k =0))}. (11.30)
k=1

B) Asubset 24, , whose elements have the structure u’=u that cannot be
extended because constraint .1 is already satisfied, can be eliminated
from further procedure if constraint y.1 is not satisfied. In this case the
upper bound won't be calculated for the subset. However, if constraint y.1
is satisfied, the subset remains in the procedure, and the upper bound will
be calculated for the subset.

Subset 2¢, that can be eliminated from further procedure is defined
by the following expression:
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26 ={([u*,u?,...,u"],0)" | (u* T u")

/\(ZK:(U',‘) +us™)(mod2) =2) A(pe )} (11.31)
k=1

= %y,h =p5(#).
Subset 24, remains in the procedure if constraints o.1 and y.1 are
satisfied. In this case this subset can be defined as:
26, ={([u*,u?,...,.u"], )" |(U" eT,U*) A

£ (11.32)
AU +ub)(mod2) <2), (pe )} =2 .
k=1

The elements of @éy' in this case have the same structure but different
cycle time split t.

If subset 24;, is not an empty set, then
B; = y,h .
v) Subset @28’ is defined by the expression:

2, =2 \{u"}=P4(7) (11.33)
where u® is the optimal solution.

The elements of this subset are the solutions that are either nonoptimal
or infeasible.

Collection B" containing the subsets that are elements of collection
#, can be defined by the expression:

B"(#) =Bi(#) UB2(#) UB3(%) . (11.34)
Obviously, B"(7) c z,.

d) Obtaining B(z") collection

Starting with collection z", a new collection B(z") is obtained by
applying the branching function (11.16).

The new collection, B(z"), is formed by excluding from collection z"
the subset 24, that was divided to subsets using the branching rule. After
that, the union of collections (z"\{22,}) and B,(=") =p'(?2,) \B"(=") is
formed. It means that to collection z", from which subset 24, is excluded,
another collection B,(z") is added. Collection f,(z") is obtained when
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collection B"(z"), containing the subsets whose elements cannot be optimal
solutions, is excluded from collection B'(%24,) obtained by branching subset
2, .
Therefore,

B(=") = (=" \{22,HUB(="), (11.35)

where
Bi(z") =P'(2,)\B"(z") .

Mapping B is illustrated in Fig. 11.3.

Figure 11.3

Indices of new sets 24, , obtained by branching of subsets 24, , will
be changed after constructing collection z"*. The new subsets will be also
marked by indices, whereas the values of these indices will be the numbers

following the number of the greatest index in z".

Example 11.2

For the intersection whose graph GS is presented in Fig. 8.17, determine collection
B(=") if collection z" is known, and its subset %y is chosen for branching. Subset %y
contains elements of the form

(UD)" = (WU €7,
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where
ut u? uPut u® Ut ou ot
1 1. 1 1 0 0 0 0]
1 0 0 00 0 O O

u'(24,)=[u",u?,...,u*]=[u"u*...u'1={0 0 0 1 1 0 0 O
0 00 0O0O0O1TO
11 00 0 0 01
|0 0000 OO0 0|

Part U'(2¢,) of the structure is present in all elements of subset 2, . This part of the
structure is marked by the bold line on graph Gs in Fig. 11.4.

When determining collection [3(:7”) , according to expression (11.35), it is necessary to

determine f3; (2") , and to determine that collection, first ﬁ'(%y) and B"(="), have to be
determined.

a) Collection '(24,) determination
According to expression (11.28):

B'(24,) ={2¢, | (u() € 26,) = (([u’,u°,u"],7)" A (U° eTU°) A

A ((Zgl (uf +uf™)(mod2) < 2)
k=1

A ((@ge2)= D (ug +ug™)(mod2) <2,
k=1

(Pe?={L2,...6)}U{2 .

It is necessary to determine the set of control vectors, represented by nodes of graph G s
such that they are adjacent to the node that represents control vector ud = (0,0,0,0,1,0)T
and structure [U_’(%y), Ug] satisfies constraint o' 1.

The set of nodes adjacent to the node representing ud is (Fig. 11.4):

I, (u®) =1,(0,0,0,010)" ={(0,0,0,0,0,0)",(1,0,0,0,1,0)",(0,0,0,1,0,0)",
(0,0,0,0,01)",(0,0,0,01,1)",(0,1,0,0,0,0)",(0,0,011,0)",
(0,,0,001",(01,0,011)",(1,0,0,0,0,0)",(0,1,0,01,0)",
(11,0,0,1,0)",(1,1,0,0,0,0)"}.
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G (1,1,0,0,0,0)"
1,1,0,0,1,0'Q N (1,0,0,0,1,0)
Do 9
/‘%
(0,1,0,0,1,0)'OE 0,0,0,0,0,0)" > (0,1,0,0,0,0)"

v’\%
//M\,\‘ N
»’ ‘0"}% m‘}é I
LS Sav)
'v' ,,,,, (0,0,0,1,0,0)"
\

(1,0,0,0,0,0)" ."
(1,0,1,0,0,0)" 4'

| —~0 (0,0,0,1,1,0)

f——
2

Y,

D (0,0,0,0,0,1)"

(0,1,0,0,0,2)"

Figure 11.4

The constraint
8
D (uf+ugt)(mod2) <2, (peP?)
k=1

is satisfied only if
u® €{(0,0,0,011)",(0,1,0,011)",(0,1,0,01,0)",
(1,0,0,01,0)",(1,1,0,01,0) }=U;.
Hence,

B(22,)={20,,2,,....2 5,20}

The structures of the elements belonging to these subsets (except to subset %J ) are:
u(?,) = [u'(%,).u’(2,)]
= [u'(2,),u°,u"(2,.)]

where U'(2¢4,) =[u*,u?,...,u®] and U® € U] with re{1,2,...,5}.
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The structure of the elements of subset %y' is
' 1,2 8
u(z¢;) =[u",u’,...,u’],
i.e., this structure does not have the “extension” U"(%)) .

For this structure it is satisfied that U € FSUS ; however, the constraint
8
k k d8)+1
D U +us™®y(mod2) =2, (pe{l2,...6})
k=1

is not satisfied. Therefore, @éy' contains infeasible solutions.
In Fig. 11.4 the initial parts [u_’(%y),ug] of the structures of elements belonging to

subsets %yr , obtained by branching are marked. Bold continuous line represents the structure

u_'(%y) Node U® is connected to the “extensions” U® € Ug by dotted lines.

B) Collection B"(z") =By UBS UBj determination

This collection contains elements of collection B’(@éy) having the initial part of their
structures M(%y), u9] such that their “extension” further in the procedure cannot lead to

subsets that contain feasible solutions.

Collection B"(z") is determined using expression (11.34). When applying this formula,

it can be noted that the initial part of the structure of collection B'(%y) elements, i.e., the
’ 9 . X
structure u(%y), U] has the following property:

8
D ug=0.
k=1

It means that control variable Ug(-), which controls signal group Dy, will obtain value
1 only in subsequent control vectors.

There can also be noted that

8
D (uf +us™)(mod2) =2
k=1
in the following cases:
—for p=1if u® €{(1,0,0,0,,0)",(11,0,01,0)"},
—for p=2 if u® €{(0,1,0,011)",(0,1,0,01,0)",(11,0,0,1,0)"},
—for p=3, p=4, p=5ifu’ eUg.

If u® were the element of set {(1,0,0,0,1,0)T,(1,1,0,0,1,0)T} , then ulk should be 1
until the end of the cycle in order to satisfy constraint a..1. In this case signal group Dé could
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not gain the right-of-way because (Dj, Dg) & Cy. In all elements of set Uy the value of
u§ and uff is zero, and has to remain zero until the end of the cycle so that constraint a..1 is
satisfied.

The initial part of the structure of 24, elements, i.e., u' = [ul, u?,... u8] , is not the
structure of a feasible element because U™ cannot be the next control vector in the sequence
since signal group Dé has not gained the right-of-way.

Therefore,

B ={2,,.%,5, 2]},
Here we also have
u(24,,) =[u'(2¢,),(1,0,0,0L0)",u"(2,,)],

(%) = [U'(2,),(L10,010)7,u"(%,)],
u'(24,) =u'(?,),

and U"(%¢,) does not exist as an “extension” of structure U'(24)) .

v) Collection f3;(z") determination

The elements excluded from further procedure are the elements of collection B", so that
the elements taking part in further procedure are elements of collection

Bu(z")=P'(2,)\B"(@")
= %yl’% %Ysy%l}\{ v4r yS’%V’}

{ vl VZ'%VS}'

The initial parts of the structure of elements that belong to subsets %yl,
?¢, 4, can be represented in the form

u'(#,) =[u'(2,),u’]

where r €{1,2,3}, and

?4,,, and

u® €{(0,0,0,011)",(0,1,0,0,1,0)",(0,1,0,0,11)"}.

Control vectors U° are marked in Fig. 11.4 by circles around the nodes representing
them in graph GS , and these nodes are connected to the node representing u® by bold dashed
lines.
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8) Collection B(z") determination

The new collection B(z") is obtained by excluding from collection z" the subset %Y

for which the function Bl(zzn) is determined, and including collection f3; in the remaining

part of z " This mapping can be expressed as follows:

B(=") = (=" {26, HUB,(=")
= (@" {2, HU{2,1.2,,, 7,3}

11.1.4. Bounding rules

Branch-and-bounding procedures employ two types of bounds—a lower
bound on J., and upper bounds on value of J. over subsets of 22°.
a) The upper bound

The upper bounding rule is defined by the function

B:£ >R, (11.36)

where & =22(2¢°).

The properties of this function are:

JeU()<B(?4,), U()e?,, 2, cp(2,)), (11.37)

BHu()}) =Ju(). (11.38)
Function J/ is an extension of the criterion function, with the property
u() e 2 = Jc(u()) =J. ().

Thus, in each particular case, for a chosen criterion function J. its
extension J/ has to be determined.
b) The lower bound

The lower bounding rule is the function

b:2¢ >R, (11.39)
with the following properties for any collection z :

a) b(z)<J;, (11.40)

B) () e?;)A{u()}ez))=b(z)=J.(u()). (11.41)
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If during the procedure a collection z is obtained, which contains several
singleton feasible subsets, the lower bound will be equal to the best criterion
function value, i.e.,

b(7) = max{Jc (U() [{u()} e @) A (U() e 2 )}
= max{J. (u()) [{u()} e 2)}.

If b(z) is the lower bound for collection z , then it can be claimed that

(11.42)

the subset 24; € z does not contain the optimal solution if
B(?) <b(z) . (11.43)

From the lower bound definition, it can be noted that the lower bound
cannot be determined for every collection z . Namely, the lower bound can
be determined only for collections containing a singleton subset 24, ={u(-)},
with the property u(-) € 24; .

The lower bound can be used to eliminate from further procedure the
subsets whose upper bound is less than the lower bound of the collection to
which the subset belongs.

11.1.5. Branch-and-bound recursive operation

Branch-and-bound recursive operation B uses the results of the previous
steps to obtain a new collection B(z) from collection 7z .

After applying branching and bounding rules and determining lower and
upper bounds for the subsets obtained by branching, it can be noted that there
exist subsets that contain infeasible or nonoptimal solutions. These subsets
form the collection

7z Cu (11.44)

that should be excluded from further procedure.
Branch-and-bound recursive operation is a function:

B:2 — %, (11.45)
where

B(#) =B(#) \B(=)_, (11.46)
and B(z)_ is defined by (11.50).

a) Determination of collection z_

Collection z_ is a subset of collection z, containing all subsets with

infeasible and nonoptimal solutions, i.e.,
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Z_C iy, and (112.47)

U(zg) 2\ U™ (11.48)

Therefore, for each collection =, collection Z can be defined as
follows:

7 = (@ na) U2, | (2, € 2) A (B(22,) <D(@)}. (11.49)

By branch-and-bound recursive operation, collection z_ is excluded
from further procedure.
According to expression (11.49), we have:

B(@)- = B(@) Nz) U{2, | (24, €B(#) ~(B(24,) <b(B(=))}

=B" (@) U{%, | (2, €B(z) ~(B(2,)<b(B(#))}.

It was possible to identify some elements of collection z_ during branch-
ing operation, i.e., even before determining bounds for each subset obtained
by branching. However, when determining bounds, it could be noted that for
some subsets bounds cannot be determined. Namely, bounds are obtained by
solving optimization problems, so that if no feasible solution exists, it means
that some initial parts of structures cannot satisfy all constraints, which become
functions of time variables after the initial part of the structure is determined.

Subsets 2z, , with property B(%?4,) <b(z), containing nonoptimal
solutions and thus belonging to collection =z , can be determined after the
calculation of bounds.

Therefore, a collection is excluded from further procedure in the following
cases:

(11.50)

a.1. The collection contains subsets with infeasible solutions.

a.2. The collection contains subsets with no optimal solution.

a.3. The collection contains subsets whose elements are members of
other subsets also.

al) Identification of collection z° containing infeasible solutions

During the procedure, when an initial part of signal plan structure is
formed, it is possible to conclude that the given cycle time won’t be long
enough for the signal plan. Therefore, the subsets of solutions having that
initial part of the structure can be eliminated from further procedure.

For example, one of possible control vector sequences in Example
11.1, which can be the initial part u’ of one subset of solutions satisfying
constraints o'.1 and y'.1, can be:
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i
N
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uu uuuuuu
1000000 0]
00000010
r el 2 8_00000000
u=[uut. =1 5 00100 0
0000000O0O
0010000 0]

The minimal cycle time necessary for any signal plan with u’ as the
initial part of its structure must be greater than

2 3 7

C = Tpin + Trmin T++-+ Tmin =4+16+8+15+1+15=59 ,

where terms in the sum are the minimal durations of control vectors
u?,u®,...,u”. Durations of u* and u® cannot be determined because for
that it is necessary to know duration of control vectors that precede u* and
follow u®, and these vectors are not known yet.

Since U’ is not a complete structure (8 < K), the cycle time c of any
signal plan containing u’ in its structure cannot be shorter than ¢, i.e.,
feasible signal plans with u’ as the initial part of their structure have the
property:

c>c'=59s.

Therefore, if the given cycle time is less than 59 s, the signal plans having
u’ as the initial part of their structure will not be feasible solutions. This fact

is established when no solution can be found when determining the upper
bound.

If the value of cycle time is not given, the minimal cycle time can be
determined and no feasible signal plan can have its cycle time less than this
value. It is obvious that a minimal cycle time has to exist because a feasible
signal plan has to satisfy the constraints of minimal effective green time for
each signal group and the minimal effective intergreen time constraints.

The minimum cycle time can be determined by solving the optimization
problem whose statement and solution are presented in Section 14.2.

Collection Zz2 that contains subsets with infeasible solutions, i.e., the

solutions that need longer cycle time than the available c, can be defined as
follows:
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78 ={2; 1 ((u() € 2;) A
AUE) = (UL u] 9" = ([, i) g") =

k-1
= min Y t“>c}. (11.51)
T ,..,T k:l

a2) Determination of collection 70 containing nonoptimal solutions

In Subsection 11.1.4. it is stated that the subset 24, — z, with the
property
B(7¢,) <b(z)

does not contain optimal solutions. Thus, collection z_, containing such
type of subsets, can be defined as:

7" ={24, (26, € ) A (B(24,) <b(2))}. (11.52)

From expression (11.41), by which the lower bound is defined, it is clear
that this bound cannot be determined at the beginning of the procedure. It can
be determined only when singleton feasible subsets are obtained by branching
operations. Thus, at the beginning of the procedure, until a feasible solution
u(-) € 2¢; is obtained, we will have

>=0.

It means that this property cannot be used for elimination of some subsets
from further procedure in the beginning of the procedure.

a3) Determination of collection z° containing subsets whose elements are
members of other subsets also

Sometimes, when solving the optimization problem of determining
the upper bound B(%2¢,) for a subset %4, — z, the solution may contain a
control vector u®, the duration of which is zero. If it can be estimated that the
duration of this control vector will remain zero in solutions of upper bound
problems for subsets created by branching of 24, , and further branching
of these subsets until the optimal solution is obtained (if it exists), then the
subset 24, can be eliminated from further procedure.

If elements u(-) of subset 24, can be presented in the form:

u() =([u,u"l)" €2,
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where u’=[u*,u?,...,.u* u*, u*? ... ,u*], then in the case =0, U

becomes

u' =[uhu?, U et ).

The fact that the duration of control vector u® can be zero leads to the
conclusion that the sequence (u*?,u*?) has the property:

ukterut?, (11.53)

i.e., constraint y'.1 is satisfied for this sequence. It means that control vectors
u® and u*? belong to set T,u*™*. When it becomes certain that t =0,
which is possible only when determining B(%4,) for values x>k, then
branching of such a subset can be terminated.

When determining bounds B(24,), the value 0 can be obtained for t*,
but later, when determining bounds B for subsets created by branching of
2¢,,, it may happen that the value of t*, as an element of the optimal solution,
becomes different than zero. Thus, if we consider 22, as a candidate for
elimination from further procedure, there has to be certified that ™ value

will remain O until the optimal solution is obtained, if it exists.

On the basis of stated properties of collection z°, this collection can be
defined by the following expression:
wt={2,| () e?,) A
AU = (U, U ()" =
= ([[u*,u?,...,u*]u"1.((x' 7%, T5), 1)

AMEUE = (U, 1)7)) = (* =0) A (K < K)} (11.54)

Upper bounds are determined as solutions of optimization problems, the
type of which depends on the adopted optimality criterion and constraints.
The criterion and constraints can be linear, or criterion or constraints, or both,
can be nonlinear. Hence, the problems of upper bound determination can be
stated as problems of linear or nonlinear mathematical programming.

a4)  Obtaining collection .

As already mentioned, collection z_ contains subsets that should
be eliminated from further branch-and-bound procedure. This collection

consists of collection z?2, which contains infeasible solutions, collection
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20, containing nonoptimal solutions, and collection z°, containing subsets

whose elements are members of other subsets also. Therefore,

7 =7t U s, (11.55)

Since ;aczo and ;bczo, expression (11.55) can be written as

follows: ) )
7 =(ZNzy) Uzt

b) Obtaining the sequence of collections by branch-and-bound recursive
operation and determination of conditions for its termination

b1) Obtaining the sequence of collections

By applying the operation B(z) (11.45) to an initial collection z*,
collection z* is obtained. Further applications of B(z) yield the sequence
[7z',7z%,...,z",...,z"]. The elements of the sequence are related according
to the following expression:

2" =B(=")=p(=")\B(=")_, (11.56)
where 7' ={2¢°}ye % .
b2) Conditions for termination of branch-and-bound procedure

Branch-and-bound procedure terminates when one of the following
conditions is met:

a. Collection z" is the empty set:

7' =B(z" Y =p"H\p=""1_=0. (11.57)
It follows, further:
B =p="") . =7". (11.58)

Obviously, if the branching operation yields a collection p(z*™),
which contains only infeasible solutions, the procedure should terminate
and the problem has no solution.

B. Collection z" contains only singleton subsets

If collection z" contains only singleton subsets, then this collection
contains subsets whose elements are optimal solutions:

7 ={u*()}Hu*()e?*}. (11.59)
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This statement is true because of the following reasons:

v

I Collection =z contains subsets with feasible solutions
because the elements of this collection are singleton subsets,
whereas infeasible elements are members of subsets included
in collection z® that was excluded from the procedure.

Il The upper bound B({u(-)} € z") is equal to the lower bound b(z"),
and for all elements of collection z" these bounds are the same. If
some bound B{u(-)}) were lessthan b(z"), such a subset would be
a member of collection z' that was excluded from the procedure.

Therefore, all elements of collection z" are subsets that contain
optimal solutions. The values of all upper bounds are the same, equal to
the value of the lower bound of the collection, and equal to the optimal
value of the criterion.

Hence,

7' ={uOHu() e %}= (=" =z%). (11.60)
This collection has the property:

B(z")=P@E)\B(")_ =a"\@=7""=7"=7*. (11.61)

The termination condition can be stated in the following way: When
B(z")=z""=2", the procedure should terminate because collection
z" contains subsets whose elements are optimal solutions. The values
of upper and lower bounds are then the same and equal to the optimal
criterion value:

B{u™*()) =b(z*) =3, (u*()) = J;
{u'*(rez™).
The computer program STECSOT (STructurE and Cycle Split

Optimization Technique) is developed for application of the algorithm,
described in this part. The program is described in Appendix VII.

(11.62)
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Part IV

DETERMINATION OF OPTIMAL CONTROL
(SIGNAL PLAN)

In this part, the method for optimal signal plan determination, presented
in Part 111, is applied for solving several different problems of optimal traffic
control.

All elements of the method are fully described in the procedure for
determination of the optimal signal plan by which intersection capacity is
maximized.

The method is then applied to several other problems, indirectly related
to the intersection capacity. These are the problems of determining the signal
plan that equalizes saturation degrees of vehicle traffic streams, and the signal
plan that is optimal in the sense of capacity factor.

Another problem solved in this part is determination of the signal plan by
which time losses, i.e., the total delay of vehicles on intersection approaches
is minimized.

Problems of determining extreme values of some signal plan parameters
are also solved here, using the method described in Part III. These parameters
are: the cycle time—its minimal and maximal value, the number of control
vectors in the signal plan—minimal and maximal number, etc.

215
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12. CAPACITY OPTIMIZATION

The criterion function used for signal plan determination, as mentioned
in Section 9.3, can be theoretical or practical capacity of one traffic stream,
one signal group, or the whole intersection. Of course, instead of the capacity,
the criterion function can be the capacity per cycle, i.e., the maximal number
of vehicles of one traffic stream, signal group, or the whole intersection that
can pass through the intersection during a cycle.

It means that there exist several capacity maximization problems. The
optimization criteria in problem statements have to be expressed by variables
u and T, i.e., expression (4.19) should be used for green times of signal
groups:

K
9 =Zu';rk =up-rT , (pe&?).
k=1

This is the expression for green time allocated to traffic stream o; , where
c,eD,,.(ieZ,pe?).

It has, also, to be taken into consideration that saturation flows of traffic
streams depend on the decision of giving or not giving the simultaneous right-
of-way to opposing and opposed traffic streams, i.e., whether the “filtering”
is permitted or not. If filtering is permitted, then the saturation flow s, of the
opposed traffic stream, in interval K, depends on the control vector u® and
on the volume of the opposing traffic stream o, i.e.,

Slk; Zsb(ukvqa)-

All expressions for capacity, given in Section 9.3, become functions of u
and t when substituting g, (p € 2”') in them with expression (4.19). Since
all constraints are expressed as functions of u and t, the capacity maximization
problems become the problems of mathematical programming, in which the
structure U and the cycle time split t have to be determined so as to maximize
the optimality criterion, i.e., the capacity.

When solving the problem of capacity maximization, for traffic stream,
signal group, or whole intersection, the flow balance constraints o.4 are
omitted from the problem statement. This means that in capacity maximization
problems there do not exist the constraints ensuring that all vehicles coming
to the intersection during a cycle can leave it in the same cycle.

217
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12.1. The capacity per cycle

The expressions for capacity per cycle given here are explicit functions
of u and t variables.

e The capacity per cycle of a signal group D;) (9.14):

K
Jo U, =) =sI> uft =si(u,-t"), (peF, (12.1)
k=1
where
E(p)
Spes (PeP).
e=1

If each traffic stream makes a signal group, i.e., if Z' =", then the
capacity per cycle of a signal group is in fact the capacity per cycle of the
associated traffic stream (9.13). In this case:

3. =0 =5, iuﬁrk -
k=1
=s(u,t), (p=iie 7, 7'=7"). (12.2)

e The capacity per cycle of an opposed traffic stream o, filtering through
the opposing traffic stream o, :

K
Jc(ub(-)):Z(u -uf 1qae oy +ufd-u )sbj . (12.3)
k=
e The intersection capacity per cycle (9.16):
P K K
Ja =00 =2 st > up e =Yyt =wyT (12.4)
p=1 k=1 k=1

where

1 2 K
Vea=[Ve, Ve, Wal,
k d k k
vl = 3 sul = s,

p=1

s? =[s?,87,....,8p,....59].
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If each traffic stream makes a signal group, the intersection capacity
per cycle is (9.15):

I’ I' K K
Joo =0 =3 50,=D 8 D Ui =Dy, T =y,T,  (123)
i=1 i= k=1 k=1

where:

\chz[\lliz,\l’gzv-w\l/cl(z] '

v
Voo :Zsiuik =su*, (kew),
i1

S=[S;,S5,..Sj .-, Sy ]

The optimal signal plan, maximizing the capacity per cycle, is obtained
by solving the optimization problem with the criterion defined by one of
expressions (12.1) to (12.5), subject to the constraints formulated in Section
8.9.

The problem of maximizing the capacity per cycle of one traffic stream,
Jo(U, (), can be formulated in another way. The maximal number of
vehicles of stream o; ( 7' =2”",i= p)that can pass through the intersection
during a cycle can be determined under the assumption that the flow balance
constraints a.4 are satisfied for all other vehicle traffic streams.

Intersection traffic control by the optimal signal plan determined by
solving the stated problem of maximizing the capacity J,(u;(-)) of traffic
stream o; makes sense only if the average volume of the stream is greater or
equal to the capacity, i.e.,

G > Jgp (Ui (),
where:

Jea(Ui () = max Jop (U ().

If the average volume g; of traffic stream o; is greater than JZZ U,
then stream o; is saturated.

It is possible, also, that this problem does not have any solution because
constraints o..4 might not be satisfied for some other traffic streams. It means
that queues on the approaches used by these streams will not discharge until
the end of their green time. These streams are saturated, also.

The intersection is saturated if no queue can discharge until the end
of its associated green interval. In this case, the maximal capacity value
can be obtained by solving the optimization problem without flow balance
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constraints a.4. The effective green times in this case have only to satisfy
minimal effective green time constraints, a.2, maximal effective red time
constraints, o..3, and the constraints on the sum of control vector durations,
elore?2.

The maximal capacity per cycle of a signal group, similarly to the
maximal capacity of a traffic stream, can be determined as the solution of the
optimization problem with constraints o..4 included or omitted.

12.2. Maximization of the intersection capacity per cycle

Application of the signal plan obtained by solving the capacity per cycle
maximization problem makes sense only in the case when the intersection is
saturated.

The number of vehicles that pass through an intersection during a
cycle can be maximized only if some approach or the whole intersection
is saturated. Therefore, the plan obtained as a solution of the capacity per
cycle maximization problem should not be implemented in the cases when
the average number of vehicles arriving to the intersection during one cycle
can leave it during the same cycle.

The intersection capacity maximization problem, in the case when each
traffic stream makes a signal group, can be formulated as follows:

Determine the signal plan

ue)=(u,»)’

that maximizes the function (12.5)

I I K K
Joo =D 80 =2 8 2 U T =2 w5 T
i=1 i= k=1 k=1

subject to constraints a..1, a.2, .3, v.1,y.2, €.2. (This means that this problem
considers a saturated intersection, with no filtering permitted and no negative
minimal effective intergreen times, so that constraints o.4.2 and & are not
included.)

In order to apply the described algorithm for solving this problem, it is
necessary to determine the precise form of the algorithm elements introduced
in Part III. These elements are defined as follows:

a) Relaxation

al) The superset of the set of feasible solutions

Superset 24° > 24, is defined by constraints o'.1, a'.2, a'.3, v'1, v'.2,
€'.2 (Subsection 11.1.1).

© 2008 by Taylor & Francis Group, LLC



12 Capacity optimization 221

a2) The bounded extension of function J,

The bounded extension of function J., as defined in Subsection 11.1.1,
is defined by the mapping (11.11):

J.126° >R,
with the property
u()e?s; = JU() =Jc(u()).

In the problem of intersection capacity maximization,

JoUE) = I (U()),
and the bounded extension of the criterion function J_,(u(:)) is:

K

| K

ILUE)=D8 DU T =Dy, T =yt (12.6)
i=1 k=1 k=1

where; I

k<K,

Vo=V v vl
2

!

v =[t,1%,...,7], and

v

Ve =) suf =su’, (keZ®),
i=1

where

S=[S,,5,.--,Sj .- Sy1,
KT k |k k
u" =(u;,Uy,...,Up).

The component % of vector ., represents the number of vehicles
per second that would pass through the intersection if control vector u®
were applied. The volumes of all traffic streams gaining the right-of-way by
control vector u® are equal to saturation flow volumes.

b) The branching rule
Branching rule f3, i.e., the function
B:2¢ — 2,
is defined in Subsection 11.1.3, and it is the same in all problems of optimal
signal plan determination, and hence for capacity optimization problem

as well. After the branching of subset 24 , i.e., after determining B(?%4,),
bounds have to be calculated.
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¢) The bounding function

Two types of bounds are used in the branch-and-bound procedure
(Subsection 11.1.4), upper and lower bound.

cl) Upper bound
The upper bound is defined as the function:

B:£—>R

with properties:
JU(M)<B(?24,), U()e?,, ?%,<p(?,)), (12.7)
BHU(} = (u()). (12.8)

J,(u(-)) is the volume per cycle, i.e., the number of vehicles that pass
through the intersection when traffic is controlled by signal plan u(:).

On the basis of property (12.7), B(%4,) can be defined as:
B(?,) =max{J;,(U() |u() € 2, }, (12.9)
which means that B(%4,) is the maximal volume attainable if signal plan

u(-) belongs to subset 22, .

At the beginning of the procedure 24, =%4°, and expression (12.9)
becomes:

B(2¢°) =max{J,(u())|u(-) e 2¢°}. (12.10)
The signal plans that satisfy given constraints belong to set 24° . Structures
of these signal plans have various lengths. The structures can be denoted as:
u=[u’,u7,
where
u' =[ut,u?,...,u"]

is the part of the structure that is the same for all signal plans belonging to
one subset.

At the beginning of the procedure « =1 and an initial control vector u'
has to be chosen. In such a way the subset of signal plans is defined such that
their structures have u' as the initial part of the structure. A member of this
subset is also the signal plan whose structure is

u=u'=[u'].
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It is suitable to choose as U' the control vector U, which ensures the
maximal flow volume through the intersection.
Therefore, applying the (infeasible) signal plan

u'() =, =([T'0) (12.11)

would provide passage of the maximal number of vehicles through the
intersection during a cycle. Forming the control vector sequence by adding
other control vectors after u* will have as the consequence reduction of flow
rate through the intersection.

The shaded area in Fig. 12.1 represents the number of vehicles that pass
through the intersection if the structure of the signal plan used to control
the traffic is [ul,uz,...,u“]. The maximal number of vehicles, when u'
is applied for control during the entire cycle time ¢ (i.e., the upper bound
B(24°)) is represented by the area of the rectangle whose edges are of length

cand yi,.

k 1 2
Ve2 WVe2 = VWe2

y

1 K
We2 = We2

1
Ve f w5,

Figure 12.1

Obviously, the flow volume through the intersection per cycle is greater
if the cycle duration is divided to k control vectors than when divided to K
control vectors, since K >k (K is the number of control vectors in a feasible
signal plan).

The maximal number of vehicles that pass through the intersection during
a cycle, C-\Vi2 , is reduced by adding control vector u? to the sequence.
Further extension of the control vectors sequence reduces the maximal flow
rate value even more. Therefore, the maximal flow rate can be determined by
optimal allocation of the cycle time ¢ to control vectors u',u?,...,u®
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The upper bound is determined according to expression (12.10) as
follows:

B(2¢°)

max{J.,(u() |u() e 2%}
max{yl,(u)-c|ut e U }

= ¢-max{y, (UM |u" e U 3=y, -C, (12.12)

where:
max e, (u) | U" € U 3=,
The upper bound of subset 24° is
B(24°) =y, c=c-max{s-u'[u' e U, }=c(s-U").

According to expression (12.9), u(-)e?4, and %24, is defined by
constraints o'.1, a'.2, a'.3, v'.1, ¥'.2, €'.2, meaning that element u(-) has to
satisfy these constraints. In order to satisfy these constraints, it is necessary to
know which control vector follows u* . There are several control vectors u**
and they all are elements of set ,(%4,) . The choice of particular elements
of set B,(%24,) enables formulation of different optimization problems that
have to be solved when determining the upper bound B(%4,). The criterion
function is the same in all of these problems, but the set of constraints is
different. Solutions of these problems are different, as well. The upper bound
B(%¢4,) is equal to the maximal value of these solutions.

Accordingly, the upper bound B(%4,) can be determined in the following
way:
B(?,) = max{Jc, (U(-)|u() € 24,}

= max{max{> vt} (12.13)
UK+1 Tl,..,,‘l.'K =)
subject to given constraints. Besides this, there holds

UK(mOd K)+1 c FSUK .

With regard to constraint €'.2,

K
D =c,
k=1

' can be eliminated from expression (12.13) by substituting

N k
doc- Yt
k=1
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Expression (12.13) for B(%¢,) then becomes

B(2,) = max{ max{ye; ¢~ > (Ver ~We2)T' 3 (12.14)
T yeoaT k=2
When «k =1, expression (12.13) is used rather than expression (12.14).
The maximal value of expression (12.14) is achieved, as shown in Fig.
12.1, when the nonshaded area in rectangle OCBA is minimal.
Therefore, in determining the upper bound B(%?2,), the linear
programming problem has to be solved several times (for different u*™).

c2) The lower bound

The lower bound, b(z), for a collection z can be determined if the
collection contains feasible solutions. In this case,

b(z) = max{J,(U() | ({u()}e»)}. (12.15)
The method of maximal capacity determination is illustrated by the
following examples.

Example 12.1

o) Determine the optimal signal plan maximizing the capacity of the intersection presented
in Fig. 2.5, together with its compatibility graph GS .

The cycle duration is C =90 S . Saturation flow volumes and minimal effective green
times for all traffic streams on this intersection are given in Table 12.1.

Table 12.1
i 1 2 3 4 5 6
Si (veh/h) | 1836 | 1650 | 1620 | 1650 | 1600 0
O (8) 20 15 15 15 15 16

The matrix of minimal effective intergreen times (in seconds) is

000404

o O N O O
P N O W
O O w Ol
o O o1 O
O NN O

0
3
1
0
0

4800

The problem has to be solved under the assumption that each traffic stream is a signal group.
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The problem statement

Determine the signal plan to maximize criterion function

5 K

k_k T

chzzsiZUiT =W T,
k=1

subject to constraints o.1, a..2, y.1, 7.2, €.2, and

Ve, =[su! su? ... su], @W*euU,),
s=[s;,S,,...,S5] =[1850,1650,1620,1650,1600] .

The set of feasible control vectors, U ¢ » for this example is determined in Example 8.2
using CLIQ program:

U; ={u@,u(2),...,u(r),...,ud6)}
={(0,0,0,0,0,0)",(1,0,0,0,0,0)",(0,1,0,0,0,0)",(0,0.1,0,0,0)",
(0,0,0,1,0,0)",(0,0,0,01,0)",(0,0,0,0,0)",(1,1,0,0,0,0)",
(1,01,0,00",(1,0,0,01,0)",(0,1,0,01,0)",(0,1,0,0,0,1)",
(0,0,011,0)",(0,0,0,011)7,(11,0,0,1,0)",(0,1,0,0,11)"}.

The components of vector /., can be calculated for all feasible control vectors, i.e.,
elements of set U ; . These components belong to the set

V., ={su(), su(2),...,su(r),...,su(R)}

={su(d), su(2),...,su(r),...,su6)}

={0, 0.510, 0.458, 0.450, 0.458, 0.444, 0, 0.968,

0.960, 0.902, 0.902, 0.458, 0.902, 0.444, 1.426, 0.902},
where:

\Iflc(2€Wc2: (keF#),
7 ={123,456}, 7'=_7\{6},
Om =[9m1: Om2r---» Ime] =120, 15,15, 15,15, 16] .

The control vector transition graph, G, = (U ,T5), for this example is determined in
Example 8.7c and shown in Fig. 8.17. The same graph is presented in Fig. 12.2 with value
SuU(r), corresponding to control vector U(I') , written next to each node representing the
control vector.

The elements of matrix Z ' , representing minimal effective intergreen times, are
determined for each pair of control vectors using expression (8.61):
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The solution

The stated problem is solved applying the method described in Part III.

Relaxation: Superset 26° > 26 is defined by the following constraints:

ol U +uf ™Y mod2) =0, , (i€ 2)
k=1
where

(k<K)=(Gie 2),0, <2)
(k=K)=(0,=2,ic ?)

0, if > (U +uf ™" ") (mod2) < 2

@2 Sukdz = e
k=1 O I D (U +U ™) (mod 2) = 2
k=1
’Y'-l- uk(modK)+l ersuk , (k <K)

-1
’\/"2‘ ] TK*(K#»]*k)(mOdK) > maX{Z f (qu(K+m7k)(m0dK) uk(modK))
1=0
(k <K Loe Q/(uk , uk(modK)+l)}

K
g'.2. Z ™ =c
k=1

Bounding rules

The upper bound
The upper bound B(%4,,) is determined by expression (12.14), i.e.,

B(%,) = max{ max{yc; ¢~ 3 (Voo ~Weo) v B

k=2

For Kk =1 the following expression is used:
~1
B(24°) =, C.

In this example ¢ =90's, g, =1.412 veh/s, and U" = (1,1,0,0,1,0)" , so that the
value of the upper bound is

B(2¢°)=90-1.426 =128.34 veh .
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The upper bound, B(%4,,) , s the solution of the optimization problem, which is obtained
by solving several linear programming problems. As an example, the upper bound B(%a)
is determined for subset %4, , the elements of which have the property that the initial part of
their structure is the same and equal to

u'(24,)=[u',u?,...,u°] =

o O B O O O
O B O O O O

O b O O - -
O b O O O -
o O O o o -
o O O b O -
o O O +» O O
o O O O O o

The initial part of the structure U'(%24,) of subset 24, elements is marked by the bold

line on the control vector transition graph Gs in Fig. 11.4.

The value of coefficients \Vlc(z , (l.lk el ¢ ) is assigned to each node of graph GS in
Fig. 12.2.

The expression for the upper bound B(%4,) in this case is:

8
B(2,) = max{max{y, ¢ = > (Wer ~Wer) T 1
T ,.aT k:2
= max{max{127.08 — (0.4581° +0.9027" +0.4527* +
u T 40T
0.9627° +1.4127° +0.954t" +0.9687%)}}.

The set to which control vector U’ belongs is determined in Example 11.2:

u’ €{(0,0,0,011)",(01,0,011)",(01,0,010)"}.

The elements of this set are marked in Fig. 11.4 by circles around the nodes representing them
in graph G, .

The optimization problems can now be formulated in the following way:

. . 2 3 8 - .
Find the values of variables T°,T",..., T SO0 as to maximize expression

{127.08—(0.4587% +0.9027° +0.4527" +
0.9627° +1.4127° +0.9541" +0.9687°)}.

The constraints the variables T2 , o yeens 8 have to satisfy depend on U’ . The constraints

are defined and the optimization problems solved for particular control vectors u’:
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u’ =(0,0,0,011)"

The constraints:

At + TP+ T+t 4+ 48 =90
b) 2+ 7 > 3
c) 7 > 1
d) 4+ 1 > 15
e) ° 4+ 1° > 4
f) 6 >3
9) ! > 15
) © > 2
The solution:

=525, 1> =2s, ©* =1s, t* =145,
°=1s,1t°=3s, t' =15s,t® =25,

and according to expression (12.13),

8
Trinaxg{z yE,13=97.49 veh .
]

u’ =(0,10,011)"

Constraints a) to g) are the same as for u’ = (0,0,0,0,1,1)T : hence, the solution is the
same.

u’ =(0,1,0,010)"

The constraints a) to g) in this case are the same like in the previous two cases and the

constraint h) is © >1.
The solution is:

=535, t2=2s, * =15, t* =145,

°=1s,1°=3s, 1" =155, t® =1s.
8
Trlnaxa{z y¥,13=99.096 veh .
oo T k=1

Thus,
B(2¢,) = max{98.114; 98.114; 99.096} = 99.096 veh .

Optimal solution of this problem, U* = (UF¥ T *)T , is obtained using the program STECSOT
(Appendix VII), which successively performs operations of branching, determining upper
and lower bounds, and branch-and-bound recursive operation. The optimal structure and the
optimal cycle time split are given by the following expressions:
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[111100000000]
100000000111
000110000000

|l000000110000].

110000011111

00000000001 0]

™=[28211413 2131 116 8]

The structure U™ of this solution is marked by the bold line on control vector transition
graph G, in Fig. 12.3.

The optimal criterion value is:

I =3, (U*()) = J,(u* ) =91.48 veh.

_ 0.968
Gq (1,1,0,0,0,0)"
()
1412 954
(11,0010 Q (1,0,0,0,1,0
7 7

0.902 0.458
(0,1,0,0,1,0)" d S (0,1,0,0,0,0)"
11 11
C/ 0.902
AN >0 0001107
-1 3
—\
a 05,00 oy \/] (N\J 0458
0000 S (0,00,1,0,0)
N 3
0
0.960 ) :
(1,0,1,0,0,0)" 000000
3 0450 \ '
(0,0,1,0,0,0) 0.444
3 0.902 © 5 (0,0,0,0,1,1)"
(0,1,0,0,1,2) 7
7
(0,1,0,0,0,1)°
7
Figure 12.3
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B) Determine the signal plan maximizing the capacity of the intersection presented in Fig.
12.4.

The intersection has four traffic streams which are, at the same time, the signal groups. Its
compatibility graph Gg , control vector transition graph G s » and minimal effective intergreen
matrix are given in the same figure.

The cycle duration is 90 s.

The minimal effective green times and saturation flows are given in Table 12.2.

Table 12.2
i 1 2 3 4
s, (veh/h) 0| 1800 0| 1600
Ui (5) 10 15 10 10

One step of the solution procedure is graphically presented in Fig. 12.5.

D:={c.}
I I<—Gz G. Df =to.d
= D;={c.}
' le—>|o, D, ={c,}
G, : X
(1,0,1,0 0,0,0,0)
0808
,_[4000 T T
000 4 0,0,1,0) ¢ (0,1,0,1)
2010
0,1,1,070 0,00,1)7

Figure 12.4
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The procedure can be represented by a graph having the tree structure. The nodes of the
graph represent subsets of set 24° . The root of the tree is the subset with the property that
all its members have the control vector ensuring maximal flow rate, Ut = (0,].,0,1)T , as the
initial part of their structure. Every node is connected to the root by a single path. Each subset
2¢,, , represented by a node, has the property that all its members have the same initial part
of the structure, [Ul, u2 Yooy UK] ,( U1 = Ul ). This sequence of control vectors is defined by
the path from the root of the tree to the node that represents subset 24, . Next to each node,

the mark of the last control vector in the sequence, U™, is written.

The edges of this graph connected the nodes representing subsets 24, Wwith the nodes that
are obtained by applying operation f to these subsets. This means that the node representing
subset @éa is connected to the node that “precedes” it, which represents the subset by
whose branching subset %a evolved, and also to the nodes that “succeed” it, i.e., the nodes
representing subsets obtained by subset 24, branching. Thus, each node is connected to one
“predecessor” node and one or more “successor” nodes. The exceptions, when considering

collection z" , are the following nodes:

a) The root of the tree, for which no predecessor exists.
b) “Leaves” of the tree, having no successor nodes. These leaves represent:

bl) The subsets that belong to collections EE , EE sy " that were excluded during
the procedure because their elements were not candidates for branching in the next
step of the procedure.

b2) The subsets that are candidates for further branching, i.e., elements of collection

n

22

b3) The singleton subsets, which are elements of collection z * .

In the node, i.e., the ellipse representing subset %a in the graph (Fig. 12.5), the value
of its upper bound B(%a) is written. This value was calculated in the step when this subset
was a leaf of the tree.

The nodes marked by “A” represent the subsets for which no further branching will be
performed because their upper bound is less than or equal to the lower bound of the collection

z % . The value of the lower bound of the collection z 25 is

b(z*) = 65.08 veh.

The node that represents the subset containing one feasible solution, and for which
the upper bound is equal to the value of optimality criterion chosen as the lower bound of

collection z2° , is marked by bold line.

The nodes marked by “@” represent the subsets for which no further branching will be
performed because the duration of some control vector in the part of the structure that is the
same for all members of the subset represented by this node is equal to zero.
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0101
85.00

Figure 12.5
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The optimal criterion value is
Iy =JU*())=J(u*t*)" =65.08veh.

The optimal structure and cycle split in this solution is:

00010
e |1 0000
00010/
11000
=[68 2 2 10 8]

The structure of the optimal solution is shown on graph GS (Fig. 12.4).

12.3. Equalizing saturation degrees of vehicle traffic streams

According to a standard heuristic rule, often used by traffic engineers,
green time should be allocated to each vehicle traffic stream to ensure
approximately the same saturation degrees for all vehicle traffic streams on the
intersection. Webster [89] points out, and it is also suggested in some manuals
[24], that such a way of green times determination leads, approximately, to
the minimal delay of vehicles on the intersection.

The values of effective green times ensuring approximately the same
saturation degrees of vehicle traffic streams, and satisfying all necessary
constraints, can be determined by solving certain suitably stated optimization
problems.

These optimization problems differ by the criterion that should be
optimized. The suitable optimization criteria are: the mean square of
differences between saturation degrees of traffic streams (9.19), the mean
square of differences between reciprocal values of saturation degrees of
traffic streams (9.20), the maximal saturation degree value (9.21). All these
criteria should be minimized [35].

The capacity factor maximization (9.22) also contributes to the saturation
degrees equalization. This problem, however, can be deduced to the problem
of minimizing the maximal saturation degree.

In next subsections the optimization problems with the mentioned criteria
are stated, together with examples of optimal signal plan determination.

© 2008 by Taylor & Francis Group, LLC



236 OPTIMAL TRAFFIC CONTROL: Urban Intersections

12.3.1. Minimization of the sum of square differences between
saturation degrees of traffic streams

The expression for this criterion (9.19) is given in Subsection 9.3.4. The
problem of optimization of this criterion can be stated as follows: Determine
the signal plan u(-) = (u,t)" , so as to minimize the function:

2

-1 I 1 I
g J
a) ‘]C:ZZ(pi_pj)ZZCZZZ ilkk_ ZK:]kk '
i-1 joitl | e T
a’ =i

subject to constraints a.1, a.2, a.3, a4, 7.1, v.2, € (e.1 or €.2).
In problems of practical capacity optimization these constraints are
extended by constraints (9.18):

pi<p, (ie ),

where p; is the maximal acceptable saturation degree of traffic stream o; .
Equalization of saturation degrees can be achieved, also, by minimizing
the criterion function (9.20):

i 2 1 Iz

b) J.= —| ==

) 2_1:1%1[1% ij c’ i=1
subject to the given constraints.

The constraints o'.1, o'.2, a'.3, a'.4, ¥'.1, v'.2, €'.1, or €'.2, by which the
superset 2¢° is defined, have to be used when calculating upper bounds (in
this problem, the optimization means minimization).

The lower bound is obtained by minimizing function J; , which represents
extension of criterion function J . This extension is obtained by substituting
K in the criterion function by « <K, and the sum of square differences in
this case contains only the elements with the property:

SE

The squares of differences of saturation degrees p; and p; are included
in the expression for criterion function if i < j . The number of such elements

(1)

The following example illustrates determination of optimal signal plans
by minimizing these two criteria.

$[ague-sgue]

j=ia G k=L q; =

© 2008 by Taylor & Francis Group, LLC



12 Capacity optimization 237

Example 12.2.

o) Determine the signal plan for intersection presented in Fig. 2.5 ,with its transition graph
given in Fig 8.18, so as to minimize the optimality criterion defined by expression (9.19). The
signal plan structure is given, shown in Fig. 12.6, and defined by the following expression:

(000111000 0]
0
0
ol
1
0]

O OO
= OO
O OO
O OO
O OO oo
ol eNel e
[oNeNel e
OO Ooo
OO PFrr OO

Signal groups comprise single traffic streams ( P =i, &*' = z .

Saturation flows, minimal effective green times, and traffic streams volumes are given in
Table 12.3.

The values of minimal effective intergreen times are elements of matrix Z.

Cycle time is 90 s.

: 1,1,0,0,0,0)
G ( ). )
(1,1,0,0,1,0)T ® (1’0’0’0‘1’0)T
(0,1,0,0,1,0) ) (0.1,0,0,0,0)
[~~0 (0,0,0,1,1,0
(1,0,0,0,0’01)T ‘ 0.001.0.0)
(1,0,1,0,0,0) ) [ (0,0,0,0,0,1)
T
(0.0.1.0.0.0) (0,0,0,0,1,1)
(0,1,0,0,0,1)
Figure 12.6
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Table 12.3

i 1 2 3 4 5 6
s; (veh/h) | 1850 | 1650 | 1620 | 1650 | 1600 0
q; (veh/h) | 925| 825| 81| 825| 80 0
i () 25| 15| 15| 15| 15| 16
i (8) 70 75 75 70 85 -

[0 0 0 40 4]

003500

030352

2=lEha=l2 1 2 0 0 2

001000

6 08 6 0 0]

The optimal cycle time split
™=[1,17,9,0,4,23,4,4,27,1]
is obtained by applying the described method.

The optimal value of the criterion function is

J. =1.417234.10*.

B) Determine the signal plan for the same intersection and data as in o, but with the optimality
criterion defined by expression (9.21).

The optimal cycle time split

t™=[1,16,8,2,3,22,5,5,27,1]
is obtained in the same way as in a.

The optimal value of the criterion function is

J, =1417235.10".
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12.3.2. Minimization of the maximal saturation degree

As already pointed out in Subsection 9.3.4, minimization of the maximal
saturation degree value leads to equalization of saturation degrees.
If g, in expression (9.20), defining the optimization criterion, is
substituted by:
K

g, =D ust", (pe?),

k=1

the criterion function becomes:

Jo=maxfp;lie 7}

K

—max{—3C |5 eDlie 7 pet. (12.16)
k

When signal groups are singleton sets, then i=p (ie Z', pe&”’,
7'=7").

The problem of minimizing the maximal saturation degree can be stated
as follows: Determine the signal plan so as to minimize criterion (12.16),
subject to constraints a.1, a.2, a.3, a4, 7.1, v.2, € (e.1 or €.2).

This problem can be stated in another way by introducing variable p,
defined as:

p=max{p;|ie Z}. (12.17)
In this case the following inequalities hold:
p—p; 20, (ie 7" (12.18)
or
K q C
pZuikrk -——20, (ie 7)),
k=1 Si
1e.,
K wx lagc .
duft —===20, (ie 7). (12.19)
k=1 p S

In the case of undersaturated intersection p<1 or p; <p;, (i€ Z").
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The problem of minimizing the maximal saturation degree can now be
stated as follows: Determine the signal plan so as to minimize optimality
criterion

J.=p,

subject to constraints

iu.r 20, (e,

and a..1, a.2, .3, v.1,v.2, and € (¢.1 or €.2).

If the notation

1
Z=n (12.20)
p
is introduced, the optimality criterion, which has to be minimized, becomes
1
J.o=—.
n

Instead of (12.20), another criterion can be introduced:
J.=n, (12.21)

which has to be maximized.
Substituting (12.20) in (12.19), the following expression is obtained:

Zu ™ -y, 20, (ie 2. (12.22)

The problem of optimizing criterion (12.21), subject to constraints (12.22)
and other given constraints, represents actually the problem of maximizing
the capacity factor p, which is considered in the next paragraph.

Expression (12.20) points out the fact that the capacity factor is equal to
the reciprocal value of maximal saturation degree.

12.3.3. Capacity factor maximization

The capacity factor is one of generally accepted criteria, particularly
suitable for determination of “long-term” signal plans for isolated intersections
(Subsection 9.3.5), i.e., signal plans that will not be frequently changed. It
means that the signal plan obtained by optimizing this criterion can be used
in the conditions when flow volumes change [45].
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There exist several variants of the capacity factor maximization problem.
In some problems, the cycle time is given, and in others not. Also, problem
formulations are different if “filtering” of some traffic stream through others
is permitted or not.

Insome cases, the problem of capacity maximization includes the maximal
effective red constraints. These constraints are usually introduced with the
intention to limit the length of certain queues that form during red signal
indications. One consequence of maximal effective red constraints is that
there exists a maximal value of cycle time duration. When these constraints
are present, the maximal capacity value does not monotonously change with
cycle changes from minimal to maximal cycle time [45]. Rather than that,
the maximal capacity value increases with cycle time until a certain, optimal
cycle time value is attained, and after that, until the maximal cycle time value,
it decreases.

The problem statements and solved examples in the following text refer
to two cases:

= Determination of the optimal signal plan when filtering of one traffic
stream through others is not permitted.

= Determination of the optimal signal plan when filtering is permitted.
a) The capacity factor maximization if the filtering is not permitted

The problem of capacity factor maximization in the case when filtering is
not permitted, for a given signal plan structure, becomes a linear programming
problem. This problem, as already mentioned, can be solved with the cycle
time given in advance, or the value of the cycle time is obtained as the solution
of the problem. Both cases are formulated and illustrative examples are given
below.

al) The capacity factor maximization when the cycle time is not given

The optimal signal plan obtained as the solution of this problem will
contain, also, the information on the optimal cycle time value.

This problem can be stated as follows: Find the signal plan u(-) = (u,t)"
so0 as to minimize the capacity factor

‘]c =K,
subject to constraints a.1, a..2, .3, a..4.1 (modified), B, y.1, y.2, .2, and the
constraints defined by expression (9.18).
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Constraints o..4, defined as:
K
Dukt =y, (e,
k=1
where, according to expression (8.14):

qu ’ ’
Y, = Max _—|G-€D}=C’Y =
P {pisi I P P

= cmax{%lci € D;,} (pe), (12.23)
Pi Si

are modified by multiplying each vy, by u ( p € &°"). Hence, the flow balance
constraints in this case are defined by the following expression:

K
Zuﬁrk -y, 20, (pe&).
k=1

This inequality is obviously identical to inequality (12.22) in the case
when each traffic stream makes a signal group.
After substituting

K
C = ZTK ]
k=1
this constraint becomes:
K K
Dukt =y >t >0, (pea). (12.24)
k=1 k=1

The constraints formed by expression (12.24) are, obviously, nonlinear,
and in this case the problem of optimal signal plan determination and
determination of upper bounds are problems of nonlinear mathematical
programming.

For solving this problem, the method described in Part III is used.

e Superset 24° of the set of feasible signal plans 24 is defined by
constraints (Part III): o'.1, a'.2, &3, a'.4 (mod.), B, v'.1, ¥'.2, €'.2, and
constraint (9.18).

o The extension of criterion function J is defined in the same way as the
optimality criterion, i.e.,

J=u.

e The branching rule is determined as described in Subsection 11.1.3.
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o The upper bound is determined by solving the following optimization
problem: Maximize function

J'=p,

subject to constraints a'.1, a'.2, a'.3, a'.4 (mod.), B, ¥'.1, ¥'.2, €'.1, and
constraint (9.18).

e The choice of initial control vector u’

When solving this problem, the initial control vector should be the
vector that will surely be present in the optimal solution. However, in the
majority of real problems, usually there does not exist a control vector,
which must be a part of each feasible signal plan structure.

The fact that each signal group has to gain its right-of-way once
during the cycle (constraint a..1) can be used to determine the rule for
choosing the initial vector u'.

In the set of feasible control vectors, U, there may exist several
control vectors with the value of control variable u,(-) equal to 1. One
of these control vectors has to be an element of any feasible signal plan
structure.

The problem, thus, has to be solved several times, each time taking
as the initial control vector u' one of the control vectors having some
control variable U,(-) with value 1. In order to apply this method the
minimal number of times possible, it is rational to choose the variable
U,(-) which has value 1 in the minimal number of control vectors,
compared to other signal groups.

If set Uy, is defined as:
Uy ={u(r)|u,(r)=1}, (12.25)

then the initial control vectors u* will be chosen from set U which
has the following property:

f2 >

=1

I
cardU ., = inf{cardU q U, cU;, ,[UU”JU{(O,O,...,O)T}z uf}.

For the intersection with four signal groups, presented in Fig. 12.4 in
Example 12.2, the cardinal numbers of sets U, for particular values of /
are given in Table IV.4.
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Table 12.4

[ 1 2 3 4

card Uy, 2 3 3 2

Hence [* e{1,4}. Any of these two values can be chosen for /?. In the
case [* =4, the initial phase u® takes first the value of the first, and then

of the second control vector from set

U, ={(0,101",(0,0,01"}.

Example 12.3

Determine signal plan for the intersection presented in Fig. 2.5 to maximize its capacity
factor.

The graph of control vectors transition, Gs , for this intersection is given in Fig. 8.17.
Each signal group comprises a single traffic stream (& = 7).

The data on saturation flow volumes, minimal effective green times, maximal effective
red times, and flow volumes of vehicle traffic streams are given in Table 12.5.

Minimal effective intergreen times are given as elements of matrix Z.

Table 12.5

i 1 2 3 4 5 | 6
s, (veh/h) | 1850 | 1650 | 1620 | 1650 | 1600 | 0
g (veh/h) | 185| 330 | 162| 165| 160| O

g, (5) 5| 15| 15| 15| 15| 16
fy () 60| 65| 65| 60| 75| -
N12 3456
1/0 0 0 4 0 4]
210 03 50 0
3003035 2
Z=[z2mlee =452 1 2 0 0 2
5001000
68 0480 0
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The maximal acceptable saturation degrees are:
£,=09, (ie 2 =2).

Applying the described method the following optimal solution is obtained:

u1 u2 u3 U4 u5 u6 u7 u8 u9 u10
1 0 0 0 0 0 0 0 0 O]
0000O0T111 00
|l L 00000001
“loo0o1 00000 O
0000O0111 00
00000010 0 O
™=[25 6 3 18 1 1 16 0.5 3.5 4]

245

The value of index /2 belongs to the set {3,4}. For both values of [? the same optimal

solution was obtained.

The graph of control vectors transition and the optimal signal plan structure are shown in

Fig. 12.7.

The optimal criterion value and cycle time are:

u*=2.019 and c*=78s.

(1,1,0,0,0,0
()

(1,1,0,0,1,0y R (1,0,0,0,1,0)

b (0,1,0,0,0,0)
[—~0(0,0,0,1,1,0)

(0,0,0,1,0,0y

 (0,0,0,0,0,1)

(0,1,0,0,1,) /

(0,1,0,0,0,1)

Figure 12.7
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a2) The capacity factor maximization when the cycle time is given

The difference between the previous problem and this one is in the
constraints. Instead of £.2, constraint €.1 is added to constraints a..1, a..2, a.3,
o.4 (mod.), B, v.1, v.2.

The constraints defining superset 24° have to be extended by constraint
e.l.

The method applied to solve this problem is the same as in the previous
case. The problems of determining the optimal signal plan and upper bounds
in this problem are problems of linear programming.

Example 12.4

Find the optimal capacity factor values for the same intersection and data as in Example
min =708, to
the maximal C,,, = 86 S value. The minimal and maximal cycle times were obtained as

12.3, with the cycle time assuming different values, from the minimal, C

solutions of optimization problems formulated in Chapter 14.

The problem is solved for the sequence of cycle time values indicated in Fig. 12.8. This
figure shows how the capacity factor changes as the function of cycle duration. This function,
pn*(c), has the maximal value

W =2.019,
for cycle time
c*=78s.

These values are the same as obtained in Example 12.3 when cycle time was not given in
advance. The optimal signal plan for C* =78 S is, of course, equal to the optimal signal plan
obtained in Example 12.3.

2.01923

1.8
1.7
1.6 \

»C (S
Lo 70 74 78 80 82 84 86 90 )

Figure 12.8
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b) The capacity factor maximization in the case filtering is permitted

The problem of signal plan determination to maximize the capacity factor
when filtering is permitted, for a known signal plan structure represents the
problem of nonlinear mathematical programming [79].

This problem can be stated as follows: Find signal plan u(-)=(u,t)" to
maximize the capacity factor

Je=u,
subject to constraints a.l, a.2, a.3, a.4.1 (mod.), a.4.2.1 (mod.), a.4.2.11
(mod.), a..4.2.1II (mod.), B, y.1 (mod.), y.2, €.1 (or €.2).

Constraints a..4.1 (mod.) have to be satisfied by traffic streams that are
neither opposed nor opposing. Constraints o..4.2.1 (mod.) relate to opposing
traffic streams, while constraints a.4.2.11 (mod.) and o.4.2.111 (mod.) refer
to opposed traffic streams. Constraints y.1 (mod.) point out that the control
vectors transition graph, G, has to be modified in accordance with specific
requirements posed in this problem, using the method described in Section
8.0.

The modification of constraints o.4.2.1, o.4.2.11, o.4.2.111, and a.4.1,
means that all given average flow volumes, (; , in the expressions that define
these constraints have to be multiplied by the capacity factor, .

In Subsection 8.2.4 it was suggested that when filtering is permitted, the
sequence of control vectors should be such that the opposing stream first
gets its right-of-way. After its queue is discharged, the right-of-way should
be given to both the opposing and the opposed traffic stream. Finally, the
opposed traffic stream should keep its right-of-way alone. According to these
requirements, the graph of control vectors transition, G, , has to be extended
including new nodes and new oriented edges.

Example 12.5

Determine the maximal capacity factor values for the intersection presented in Fig. 12.9,
together with its compatibility graph and control vectors transition graph. The problem should

be solved for two cases: when filtering of traffic stream G, through traffic stream G5 is
permitted, and when not. Two signal plan structures are given: U(U"(+)) and u(u®()).

The cycle timeis C =100 S .

The values of saturation flow volumes, average values of traffic flow volumes, minimal
effective green times, and maximal effective red times are given in Table 12.6.

© 2008 by Taylor & Francis Group, LLC



248 OPTIMAL TRAFFIC CONTROL: Urban Intersections

Table 12.6
i 1 2 3 4 5 6
s; (veh/h) | 1850 | 1650 | 1620 | 1650 | 1600 0
g; (veh/h) 185 165 162 165 160 0
Oy (8) 25 15 15 15 15| 16
i (5) 70 75 75 70 85 -

(0,0,0,1,1,07

(0,0,0,1,0,0

5(0,0,0,0,0,1)

(0,1,0,0,1,1)

(0,1,0,0,0,1)

Figure 12.9

© 2008 by Taylor & Francis Group, LLC



12 Capacity optimization

The minimal effective intergreen times are given as elements of matrix Z:

p

z Z[qu]PxP =

—

N0 B~ WDN B

q

ANANONOOO -

2 3 4
0 0 4
0 3 5
3 03
1 20
010
0 8 6

o

OO NNNO K

o O o o1 o

The chosen signal plan structures, U(U"(-)) and U(U®(")) are:

10

u(u' () =

OO OoOr o
NNl e

The problem will be solved for the sequence of average flow volumes Q; of traffic

stream G5, which is given in Table 12.7 for the case when filtering is not permitted, and in

O OO oo

cocoookRr
A ==

OFrr OOO0O

OO PFr OOOo

O OO oo

uu*()) =

Table 12.8 for the case when filtering is permitted.

1000
0011
1110
0000O0
0000
0000O

PP OORFrOoO

Ok OO OO
OO PP, OO0OOo

249

O OO OoOo

Table 12.7 Table 12.8
gy (vehh) | p* g, (vehh) |t | £@)

302 1.6400 162 2.7000 0
402 1.2330 252 2.1407 0
482 1.0284 262 2.0789 1
492 1.0070 272 2.0237 2
495 1.0015 302 1.8607 4

472 1.1905 4

562 0.9999 4

Since the structure and cycle time are given, the problem of capacity maximization
becomes the problem of linear programming when filtering is not permitted, or the problem of

nonlinear programming when filtering is permitted.
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250 OPTIMAL TRAFFIC CONTROL: Urban Intersections

The problem is to determine the values of variables 171, 12 yeens 178 and p. All constraints
are linear except constraints ..4.2.1 (mod), o..4.2.1I (mod), and ¢..4.2.11I (mod). The expressions

defining these constraints are as follows:

8
D (s3U5 (1-Uz) +pg;us up)T > cud,
k=1

8
> (@-u3uz)ug; —uy(d-uz)s;)t* 20
k=1

8 1q e—a'HCIs
D usuy B uf (1-uy)s,(0) [T > cpd, .
l-e Bona;

The coefficients " and Bz , explained in Subsection 8.2.4, in this case have the following
values:

1 1

'~ 45s, B——t -1 _
* P2=3 0) " 1650

The solution

When no filtering is permitted, the set of feasible control vectors is the same as in Example
8.7a.. This set is presented on graph GS , in Fig. 12.9, by the set of nodes that are not circled.

When filtering is permitted, the set of feasible control vectors has to be extended. In the
case the filtering of traffic stream G, through G5 is permitted, the set of feasible control
vectors, U ¢, should be extended by the set:

U’ ={@1110,0,00",(0,11,0,0,0)"}.

The elements of this set are represented by the circled nodes on graph Gs in Fig. IV.9.

The structural constraints are such that traffic stream G5 first gets its right-of-way, after
that, both 6, and o5 simultaneously, and at last G5 alone. Therefore, new edges of graph

G

s are defined as follows:

I(0,0,1,0,0,0)" =T,(0,0,1,0,0,0" U{(0,11,0,0,0)",(1,1,1,0,0,0)'},
7(1,0,1,0,0,0)" =TI,(1,01,0,0,0)" U{(0,11,0,0,0)",(1,11,0,0,0)'},
I7(0,11,0,0,0)" ={(0,1,0,0,0,0)",(1,1,0,0,0,0)",(1,1,1,0,0,0)" },
’(1,110,0,00" ={(0,1,0,0,0,0)",(1,1,0,0,0,0)",(0,11,0,0,0)},

where G, = (U;,I) is the control vectors transition graph in the case the filtering is not
permitted.
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Gg is defined as:
G; = ((Uf U U'f )vrs”),
where

() =T ur) UL un).

Program LINGO was used in solving this problem.

For the case when no filtering is permitted, the maximal capacity factor values, determined
for various values of (], are given in Table 12.7. The values obtained in the case the filtering
is permitted are given in Table 12.8. Comparing the results in Tables 12.7 and 12.8, it can be

concluded that higher maximal capacity values can be achieved if filtering is permitted.

The structure U(U® () is presented in Fig. 12.9.
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13. DELAY MINIMIZATION

The total vehicle delay on intersection approaches is one of the most
important criteria for signal plan determination, as noted in Section 9.4. The
method described in Part 111, based on the branch-and-bound principle, is
used for minimization of this criterion.

For calculation of delay Webster’s formula is used. Formula (9.29) is
used when the cycle time is given, and formula (9.31) if not. The problem
statement and illustrative examples, for both cases, are given below.

13.1. Delay minimization in the case the cycle time is known

The problem of optimal signal plan determination when the cycle time
is given, in the case when filtering is not permitted, can be stated as follows:
Find the signal plan u(-) = (u,7)" to minimize the mathematical expectation
of vehicle delay on the intersection (9.29):

) 1 & ky _k ’ alzJe
J,=09> > ap{Z(l—up)rj +— > - ,
p=1 e=1 k=1 Kk Kk
Sute] -aa{Ste)
k=1 k=1

1 2

subject to constraints .1, a.2, a..3, a..4.1, B, v.1, v.2, €.1. Constants Ape s Ape s
3

ap, are defined in Section 9.4.

The criterion function in this problem is nonlinear, and the constraints,

for a known structure, are linear functions of variables t*,72,...,t".

The solution of the stated nonlinear programming problem will be the
global minimum if all constraints and criterion function are convex with
respecttovariables t',t?,...,7" . Since the constraints are linear, it is necessary
to check only the convexity of the criterion function (9.29). Appendix VIII
presents the proof of convexity of this function.

The method described in Part 11l is applied for solving this problem.
Superset 2¢° of the set of feasible solutions 24, is defined by constraints
al,0.2, 0.3 041 3, vy.1,v.2 1.

253
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254 OPTIMAL TRAFFIC CONTROL: Urban Intersections

The extension of criterion function J, is defined as follows:

a2

P K 2
J; =09 alpe(Z(l—uE)rkJ + — . (13.1)
p=L el k=1 (quTkJ —a;(iu;irk]
k=1

k=1

e=E(p)

The branching rule used in this case is the same as defined in Subsection
11.1.3.

The bounding rules
The lower bound
The lower bound B(%4,) is defined as follows:
Jeu())=B(%,), (u()e?s, 2%, p(?,)),
BAu()} =Jcu()).
According to property (11.37), the lower bound is defined as:
B(?4,)=min{J;(u())|u()e?4,},

i.e., the lower bound is determined as the solution of the following optimization

problem: Find u(:) € 24, so as to minimize J(u(-)), subject to constraints
ol 02,03 a4l p,7.1,7.2 ¢l

The problem of lower bound determination, in this case, is the problem
of nonlinear programming with nonlinear criterion function and linear
constraints.

The upper bound

The upper bound b(z) of collection z can be determined if the collection
7z contains feasible solutions. In this case:

b(7) = min{J; (U()) | {uOrez) A (U() € 2%)}
=min{J.(u()) | {u()}e=)}.

Example 13.1

Find the signal plan that minimizes delay on the intersection shown in Fig. 13.1, together

with its compatibility graph G, control vectors transition graph G, and signal plan
structure.

Each signal group contains only one traffic stream. The saturation flows, arrival flow
volumes, and minimal effective green times are given in Table 13.1.
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13 Delay minimization 255

The cycle time ranges from 70 s to 120 s.

Table 13.1

i 1 2 3 4 5 | 6

s, (veh/h) | 1850 | 1650 | 1620 | 1650 | 1600
q; (veh/h) | 370 | 330| 324 | 330| 320
9 (5) 25| 15| 15| 15| 15| 16

<_ Gl G
x— O,
G;—»
c56
G, 05
G. (1,1,0,0,0,0)
(1,1,0,0,1,0) (1,0,0,0,1,0)
(0,1,0,0,1,0) 0,0,0,0,0,0)' (0,1,0,0,0,0)
(0,0,0,1,1,0)
(1,0,0,0,0,0 (0,0,0,0,1,0) (0,0,0,1,0,0)
(1,0,1,0,0,0) \ (000000
(0,0,1,0,0,0)
(0,0,0,0,1,1)
(0,1,00,1,1)
(0,1,0,0,0,1)
Figure 13.1
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Minimal effective intergreen times are presented as elements of matrix Z.

123456

000404

o Ol WN P
o O NO O
OOk, wo
O, NOW
o O O wu
o O o o1 o
oo NN O

The signal plan structure shown in Fig. 13.1 is:

100000

O O O+~ O
O O O o o
o O O O
O B O O O
= B O O -
O O O o o

The results, obtained by applying the described algorithm, are presented in Table 13.2
and Fig. 13.2.

Table 13.2
c (s) J. T T T T T T
(Veh S/C) 1 2 3 4 5 6
70 | 155146 | 25 4 15 2 16 8
75| 130592 | 25 4 |18 | 2 | 18 | 8
80 | 1330.80 | 25 4 |20 2 |21 | 8
85| 142780 | 25 4 | 22| 2 |24 | 8
90 | 155257 | 27 4 | 23| 2 | 26| 8
95| 1683.58 | 29 4 |25 | 2 |27 | 8
100 | 182146 | 31 4 | 26| 2 |29 | 8
105 | 1966.31| 32 4 | 28| 2 |31 8
110 | 212143 | 34 4 129 | 2 |33 ]| 8
115 | 2276.54 | 36 4 130 2 |3 ]| 8
120 | 244151 | 38 4 |1 32| 2 |36 | 8
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J [veh s/c]

A

2400 /

/
2000 . ,/
1600 ,//

"

1200 > C[s]
60 70 80 90 100 110 120

Figure 13.2

13.2. Delay minimization when cycle time is not given

The problem of optimal signal plan determination when cycle time is not
given, in the case when filtering is not permitted, can be stated as follows: Find
the signal plan u(-) = (u,t)" so as to minimize the mathematical expectation
of vehicle delay on the intersection (9.31):

K 3
P’ e=E(p) K 2 §§E(ZrkJ
), =083 ate(Z(l—u';)rkj NSNS = D U
S| a3 S

p=1l e=1l
k=1

subject to constraints o..1, .2, .3, a.4.1, B, v.1, v.2.

The solution of the stated nonlinear programming problem will be the
global minimum if all constraints and criterion function are convex with
respect to variables t*,7%,..., 7. Since the constraints are linear, for a known
structure, it is necessary to check only the convexity of the criterion function
(9.31). Appendix V111 presents the proof of convexity of this function.

Like in the previous case, the method described in Part 111 is applied for
solving this problem. The differences, in respect to the previous case, are as
follows:
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*  When defining the superset 24° of the self of feasible signal plans,
?¢; , constraint .1 is not used.

= Instead of expression (13.11), as the extension of criterion function
J. the following expression is used:

s
St (&[S

K
k=1

P' e=E(p) K 2
n—0s3 a;{z(l_u;)rkJ +[

(13.2)
The proof of the convexity of this function is the same as for function
J.(u) (9.31), which is given in Appendix VIII.

Example 13.2

For the same intersection as in Example 13.1, determine the optimal signal plan for the
given signal plan structure, in the case the cycle time is not given. Other data are the same as
in Example 13.1.

The stated problem is the problem of nonlinear programming, and its solution is:
=255, t°=4s,t=18s, t* =25, 1° =185, 1° =85,
c*=75s.

The optimal criterion function value is 1305.92 veh s/c .

It is evident that the solution of this problem is the same as in the preceding example. The
curve in Fig. 13.2 does have the minimum value for C =755
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14. EXTREME VALUES OF SIGNAL PLAN PARAMETERS

The majority of optimization criteria used in traffic control problems for
isolated intersections are the criteria that are significant in traffic, economical,
or ecological sense, such as the capacity, the delay, etc. Optimization of
signal plan parameters would not make any sense by itself; however, for
more precise analysis of traffic control problems on isolated intersections, it
is often suitable to determine extreme values of some signal plan parameters.
Such signal plan parameters are: effective green times of some or all signal
groups, the cycle time, the number of control vectors in the signal plan (the
length of the structure), etc.

14.1. Maximization of effective green times

The sum of green times is chosen as the optimization criterion in one of
the first papers stating the problem of traffic control on an isolated intersection
as the problem of linear programming [22]. The criterion is to be maximized
by the optimal signal plan. Another similar problem statement can be found
in the paper by R. Camus et al., presented on the II IJAESTED Symposium
[18]. Their paper is concerned with traffic control on complex intersections,
and they state the problem as the mathematical programming problem in
which the criterion function is the sum of green times of all signal groups or
only of those that contain arrival traffic streams.

These criterion functions can be expressed as follows:

e Effective green time allocated to signal group D’p :
K
;=Y ust", (pe?). (14.1)
k=1

e The sum of effective green times allocated to subset & of signal groups
set &

= Yust, (7). (14.2)

259
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260 OPTIMAL TRAFFIC CONTROL: Urban Intersections

e The total green time, i.e., the sum of effective green times allocated to all
signal groups:

K P
=3 > ugtt. (14.3)

k=1 p=1
The listed optimization criteria, together with appropriate constraints,
define the combinatorial optimization problems, i.e., the problems of finding
the optimal closed path on control vectors transition graph, and the optimal
cycle time split. For a given signal plan structure, the problems of signal plan

optimization reduce to determination of the optimal cycle time split.

14.2. Cycle time minimization

The information about minimal cycle duration is very important when
the intersection is to be included in a centralized traffic control system. In
this case a single cycle time value has to be chosen for all intersections in
the network. This value has to be greater or equal to the maximal value of
minimal cycle times of all intersections.

The presence of minimal effective green constraints and minimal
effective intergreen constraints points to the conclusion that, for a given
signal plan structure U, there has to exist a cycle time value such that these
constraints cannot be satisfied for shorter cycle time values. The cycle time
of any feasible signal plan has to be equal or greater than this minimal value.
The determination of the signal plan with minimum cycle time is also a
combinatorial optimization problem defined on the graph of control vector
transitions G .

The minimal cycle time values are different for different signal plan
structures. The minimal among them, C;, is called critical cycle time value.
There exists no feasible signal plan with the cycle time value less than the
critical one. The critical cycle time value may correspond to more than one
signal plan structure, i.e., there can exist one or more closed paths on graph
G, , which all have to be determined when finding the signal plan having the
minimal cycle time.

The statement of the optimization problem, in this case, is: Determine the
signal plan u(-)=(u,7)" so as to minimize the function:

K
Jo=>1", (14.4)
k=1

subject to constraints a.l, .2, .3, a.4, B, v.1, y.2. Constraint €.1 is not
included because it states that the sum of all control vector durations is equal
to the cycle time, which is the optimization criterion in this case.
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14 Extreme values of signal plan parameters 261

Besides the problem of minimal cycle time duration, solved by searching
in the set 24, of all feasible signal plans, it is sometimes interesting to find
the minimal cycle time for a given signal plan structure. In this case, this
problem is transformed to the problem in which control vectors ut,u?,...,uf
are known, the structural constraints, a.l and 7.1, are satisfied, and there
remain only the constraints with time variables (constraints o.2, a.3, o.4, B,
and y.2). The optimization criterion, which has to be minimized is, again:

J. = Zrk .
k=1
The method described in Part III is used for minimizing function (14.4).
Superset 24° of the set of feasible signal plans, %, , is defined by
constraints o'.1, a'.2, o".3, o4, B, y'.1, v'.2.
The extension of criterion function J, is defined by the expression

K

=1, (x<K). (14.5)

k=1

The branching rule is defined according to the procedure described in
Subsection 11.1.3.

The lower bound is determined as the solution of the following
optimization problem: Minimize function (14.5) subject to constraints o'.1,
a2,a.3,a4,B,v.1,y.2.

The initial control vector u' is chosen as described in Subsection
12.3.3.
Example 14.1

Determine all signal plans with the minimal cycle time for the intersection and data from
Example 12.1p.

The solution:

Applying the method described in Part III, with the set of initial control vectors:
ul eU f4 :{(091’0’1)1— s (050>051)T} H

the set of problem solutions is obtained. In the case the initial vector is ut = (0,1,0,].)T ,26
optimal solutions are obtained, and for U1 = (0,0,0,1)T the number of optimal solutions is
11. In both sets 5 optimal solutions are the same; thus the total number of optimal solutions
is 32.

The minimal cycle time is 37 s.
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One of the optimal solutions is:

0001000
L, 0000011
u”s=

0011100,

1000001
™=[21 1108 7 8]

This solution is marked by a bold line on control vectors transition graph Gs in Fig.
14.1.

Figure 14.1

14.3. Cycle time maximization

The maximal cycle time in many countries is fixed by traffic regulations,
usually with the value of 120 s. However, in some traffic control problems,
it might be necessary to introduce the maximal red time constraints, in order
to prevent forming of long queues on some intersection approaches. Due to
these constraints, there can exist the maximal cycle time that is less than the
one defined by regulations.

The cycle time maximization problem can be stated as follows:
Determine the signal plan u(-)=(u,t)" so as to minimize the function given
by expression (14.4):

K
J. = rk ,
k=1

subject to constraints a.1, a.2, a.3, o4, B, v.1, v.2.
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This problem can be solved in the same way as the cycle minimization
problem if the criterion function, which now has to be minimized, is expressed
as

Ji=-J..

The minimal cycle time value, C_,, =70 s, and the maximal cycle time

min
value, C . =86s, are determined in Example 12.4 using the procedure
described in Section 14.2.

14.4. Extreme values of the length of signal plan structure

The number of control vectors (the length of signal plan structure) is
different for different signal plans that belong to the set of feasible signal
plans. Solutions of optimization problems on the graph of control vectors
transition that have been considered here contain the optimal number of
control vectors, as well, in the sense of the adopted optimization criterion.
Therefore, solutions of different optimization problems will contain different
optimal number of control vectors.

An interesting question is whether, for given constraints, there exist a
minimal and a maximal number of control vectors, such that the structure
length of any feasible signal plan lies between these two “extreme” values.

This question was once interesting because there existed two traffic
control approaches [2] regarding implementation of control vector sequences
in traffic signal controllers. These approaches resulted in construction of two
types of traffic controllers: phase-oriented, and signal-group-oriented. The
main features of these approaches are as follows:

e Phase (control vector) based control. In applying this approach, the
constraints (minimal effective green times, minimal effective intergreen
times, etc.) have to be defined for each control vector (phase), and they
refer to all the components of the vector. The intention, when using this
approach, was to minimize the number of phases. This reasoning was
based on the commonly accepted assumption that the lost time on an
intersection would be reduced by decreasing the number of phases used
to control the intersection.

e Signal-group control. In applying this approach, control variables are
associated to traffic streams, i.e., signal groups. The constraints (minimal
effective green times, minimal effective intergreen times, etc.) are here
defined for each signal group. The intention, when using this approach, is
to “maximize overlaps” because this will reduce the total time necessary
to fulfill the capacity constraints.
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This question is not so significant nowadays. Having modern, flexible,
microprocessor-based traffic controllers makes any control approach rather
easy to implement.

Observing the control problem statement, it can be noted that among
the constraints that define signal plan feasibility (Section 8.9), there exist
constraints related to control vectors (phases) and their sequences, as
well as constraints related to signal groups. Therefore, a correct problem
statement includes elements of both control approaches. As the solution of
any optimization problem the optimal signal plan will be obtained with the
optimal structure length K and other signal plan parameters optimal in the
sense of the chosen optimization criterion.

14.4.1. Determining the maximal length of signal plan structure

Determination of the maximal number of control vectors in the signal
plan structure (the structure length) can be stated as the problem of finding
the best closed path on the graph of control vectors transition.

The set of feasible signal plans is defined by constraints listed in Section
8.9.

Taking into consideration that the number of control vectors in a signal
plan is the feature of the signal plan structure, it is also interesting to solve
this problem respecting only the structural constraints, a..1 and y.1.

Two variants of the problem of maximizing the length of signal plan
structure will be considered here: (a) with constraints a.1 and y.1 only,
(b) with all constraints listed in Section 8.9.

a) Maximizing the length of signal plan structure with only structural
constraints included in the problem statement

The maximal number of control vectors in a signal plan structure is
determined in the doctoral thesis of Isabel Tully [85]. There, it is shown
that the maximal number of control vectors in a signal plan equals twice the
number of signal groups. This result is valid in the case when only structural
constraints o.1 and y.1 are included in the problem statement. Other
constraints, including constraints on control vector durations (rl,rz,. T,
are not part of the problem statement.

This problem can be formulated as the optimization problem on the graph
of control vectors transition: Find the signal plan to maximize function

J.:%; >R
given by expression

J, =K (14.6)
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subject to constraints o..1 and y.1, i.e.,

a.l) ukmOt eyt (kew)

K
v.1) D Ul +uf™ O N mod2)=2, (peP).
k=1

The total number of changes of signal indications (from effective red to
effective green, and vice versa) for one control variable (assigned to a signal
group) is 2, and, obviously, the total number of changes in a signal plan is:

P K
D2 (U +ufm™ ) (mod2) = 2P . (14.7)
p=1k=1
Since the total number of changes of signal indications in a signal plan
equals 2P, it is obvious that the signal plan will contain the maximal number
of control vectors if the sum of changes of particular components in adjacent
control vectors is 1, i.e.,

P
D (U M) mod2) =1, (ke ). (14.8)
p=1
In this case,

K (P
DD U +urK ety (mod2) | =K, =2P. (14.9)
k=1\ p=1
It means that
J =) =K__ =2P. 14.10
C C max

When determining K
considered.

only structural constraints o.1 u y.1 were

max ?

It would be interesting to know whether it is possible that adjacent
control vectors in a signal plan differ by the value of one component only.
The existence of such a signal plan is easy to prove when the graph of control
vectors transition, G, does not have oriented edges. In this case, the signal
plan can be constructed in such a way that each control vector gives the
right-of-way to a single signal group, i.e., with only one component having
the value of 1, and these control vectors are separated from one another by
the “all red” control vector. Namely, one of the properties of graph G, is that
the node representing control vector (0,0,...,0)" is connected to all other
nodes.
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For the intersection presented in Fig. 12.4, containing four signal groups,
the structure of such a signal plan is:

10000000
100000
001000
00000O010O0
This structure has the property (14.8), so that K, =2P=2-4=8.

4|00
“loo

The structure with maximal length (K, =2-6=12) is presented in
Fig. 12.3 (Example 12.1). It is the structure of the optimal signal plan that
maximizes the total traffic volume in that example.

b) Maximizing the length of signal plan structure with all constraints
included in the problem statement

The maximal length of signal plan structure can be less than 2P in the
case its maximization is performed subject to all constraints, rather than the
structural constraints only. Also, for some given cycle time values, it might
be impossible to find a signal plan with the structure length equal to 2P.

In order to determine the maximal number of control vectors, the
optimization problem has to be solved with all constraints included. The
problem can be stated as follows: Determine the signal plan to maximize
(14.6):

J, =K,

subject to constraints o.1, a.2, a.3, a.4.1, B, 7.1, v.2, €.1.
This problem can be solved, also, by the branch-and-bound method
described in Part III.

Superset 24° of the set of feasible signal plans 24, is defined by
constraints (Part III) a'.1, a'.2, a'.3, a4, B, €'.1.

The extension of criterion function J, is defined by expression
J=x, (14.11)
for «k=23,....K.

The branching rule is determined in the same way as in solving other
problems, as described in Subsection 11.1.3.

The upper bound in this case is defined as:

K RRE, k(modK)+1
B(24,)=x-1+ ik 2P— > > (uy+uy )(mod2) |, (14.12)
k=1 p=1
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14 Extreme values of signal plan parameters 267

for «k=2,3,....K.
If 2¢,=%2¢°, then
B(24°)=2P. (14.13)

The initial control vector should be chosen in the same way as in
Subsection 12.3.3.

The choice of the subset for branching. Subset 24, with the property
B(?2¢4,) =maxB(%4,), (?6,c%)

should be chosen for branching, where = is the collection whose elements
are candidates for branching.

14.4.2. Determining the minimal length of signal plan structure

Similar to the problem of determining the maximal number of control
vectors, the problem of determining the minimal number of control vectors
in signal plan structure can be stated. The optimization criterion is the same
as in the previous problem, but instead of maximization, this is the problem
of minimization.

This problem can be stated as follows: Determine the signal plan by
which function

J.=K
is minimized, subject to constraints a..1, a.2, .3, a.4, v.1, 7.2, €.1.

This is also a problem of finding the optimal closed path on graph Gq.
The solution method is the same as in solving the previous problem.

In branching operation, the subset with the least lower bound is chosen
for further branching. Lower bounds are calculated using expression (14.12).
The value of the first lower bound, which is calculated for set 24°, is equal to
the number of independent cliques of graph G, —the graph of signal groups
compatibility.
Example 14.2

Determine the signal plans having the minimal and the maximal number of control vectors
for the intersection presented in Fig. 12.4, together with its graphs Gc and GS . In this case
Gc = Gg . Other data, on saturation flow volumes and minimal effective green times, are the

same as in Example 12.10.

The minimal effective intergreen times are elements of matrix Z:
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The cycle time is 38 s (the minimal cycle time obtained as the solution of the problem of
cycle time minimization).

The signal plan with the maximal structure length (K =8)is:

u*()=(u*t*)’

00001000
u*_11100001

00111100

100000©O00O0

™=[10114108 2 2]

The signal plan with the minimal structure length ( K ;; =5) for the same cycle time

u*()=(uxtH’

00010
a1 1000
00110
10000
™=[105 4 10 9]

The signal plan with the minimal structure length, for cycle time 40 s, is:

U =X’

1000
L+ |00 10
1000
0010
™=[109 15 6]

It is interesting to note that for signal plans with the minimal structure length
Kmin =4 , alonger cycle time is “necessary” (C = 40 S) than for the signal plan with the

minimal structure length K . =5 (€ =38 S). It is an example of the surprises brought to

min
us by Combinatorics.
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Part V

EFFECTS OF THE CHOICE
OF THE COMPLETE SET OF SIGNAL GROUPS
ON INTERSECTION PERFORMANCE

The quality of the choice of a complete set of signal groups can be
assessed by the value of function (3.29):
Js 1D, >R,
where

Jo(D3) =opt{J (UM u() e %'}, (D7 €Dy). (V.1)

and 24{" represents the set of feasible controls (signal plans) if the complete
set of signal groups D' is chosen.

Expression (V.1) can be used for defining a relation of total ordering
in collection 9, . For that, it is necessary to determine the value of Jg for
each complete set of signal groups 9. € D, . However, in the collection
of complete sets of signal groups, 9,, there exists the relation of partial
ordering R, (3.31), which can be used to reduce the number of J value
calculations.
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15. THE RELATION OF PARTIAL ORDERING (REFINEMENT)
AND THE SET OF FEASIBLE CONTROLS

A better quality of traffic process control will be achieved, under
assumption 9,R D, if the complete set of signal groups 9, is chosen rather
thanset 97 . Thisclaim is based on the following considerations. The problems
of optimal traffic control on an intersection, in these two cases, are defined
by pairs (J.,%¢4{) and (J.,2¢{), where J. is the optimization criterion, and
2¢4; and 2¢; are the sets of feasible controls if the corresponding complete
sets of signal groups 9, and 9. are chosen. Taking into consideration the
definition of relation R, (3.31), the following can be claimed:

If D,R, Dy, then

n, !

d
@b ed) DI=JD; . (D;.D; .....D; €D}) (15.1)
=1

with d > 2. This means that some signal groups, elements of complete set
of signal groups D7, represent unions of some signal groups that belong to
another complete set of signal groups, 9; . Since a single control variable
is assigned to each signal group, then, if complete set of signal groups ;]
is chosen, this means that one control variable is used to control all signal

groups Dy ,Dp ,...,Dy, €D, the union of which constitutes signal group
Dy . Therefore, the following equalities hold:

uy =uy , (keJ®)

up =uy ., (ke®) (15.2)

up =uy . (ke.gz).

If in a complete set of signal groups 9 there exist several signal groups
that are unions of some signal groups that belong to a complete set of signal
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272 OPTIMAL TRAFFIC CONTROL: Urban Intersections

groups 9, , then for each such signal group the set of equalities can be
formulated, similar to (15.2).

The set of constraints defining the set of feasible controls, 24 ? , therefore,
besides the constraints defining set 2¢4{, contains additional constraints
similar to (15.2). Hence, the following expression is valid:

(248 c267) = min{J (u() |u() € 243 <min{J (u() u() e 2}
= (g (@) <Ig (DY) = Df <Y, (15.3)

Here it is assumed that the optimal value of criterion J. is its minimal value.
The relation < indicates that 9, is “better” than 9y, in the sense of criterion
J . Complete set of signal groups 9, is better than 97 in the sense of any

criterion related to intersection performances.
The consequence of the presence of constraints (15.2) is that the graph of
control vector transitions

GJ = (U§,TY) = (UF,R)
will be a subgraph of graph
G, =(U}Iy)=(U%,R)),

where U} and U are the sets of feasible control vectors corresponding to
complete sets of signal groups D7 or 9, , respectively. Relations Ry and R{
are the control vectors transition relations in sets 97 and 9, , respectively.
Namely, it is obvious that set U} contains only the control vectors whose
components us and uy , aswell as uy and uy , etc., have the same values
for any k, while U' contains also the vectors with different values of these
components. Since G_ is a subgraph of G , the following is evident:

Ut c U}, (15.4)
RI=R;N(UY xUY). (15.5)
The combinatorial nature of the problem of choosing the complete set

of signal groups is reflected in fast growth of the number of complete signal
groups with the number of traffic streams, as presented in Table 3.1.
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16. THE HEURISTICS FOR THE CHOICE OF THE
COMPLETE SET OF SIGNAL GROUPS

The process of choosing the complete set of signal groups that will be
used for traffic control on an intersection can be simplified by using properties
of the “refinement” relation, R, in the collection of complete sets of signal
groups, 9.

The heuristics selects a subset 9, of set 9, and performs searching for a
suitable complete set of signal groups only in subset 9y , which has a smaller
number of elements than 9, . The procedure for selecting 9y, consists of the
following steps. First, optimal values of the chosen criterion are determined
for subsets of 9, that have a minimal number of elements. Among them
there exists a subset, @; , with the best criterion value. Then, from the graph
by which Hasse diagram is represented, the subgraph

Gy =(24.R}) (16.1)
is extracted.

Set D) = D, is defined by the expression:
D ={D; [ (D2.2,) €R,, 07,9, €D, UL}, (16.2)
where R is the refinement relation.
Hence, relation R} is:
Ry =R, N(D; xD). (16.3)

The search for the complete set of signal groups that will be chosen for
control is then performed over elements of set 9y, .

The effects of the choice of a complete set of signal groups on intersection
capacity are discussed in papers [33], [34], [36]. In the example given in [34]
it is shown that the change in intersection capacity value, as the function of the
choice of the complete set of signal groups, can be even 42% (the difference
between the greatest and the smallest value of the criterion, expressed in
percentages).

The effect of the choice of the complete set of signal groups on the
optimal capacity factor value is analyzed in the following example.
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274 OPTIMAL TRAFFIC CONTROL: Urban Intersections

Example 16.1

Determine the effects of the choice of the complete set of signal groups on the optimal
capacity factor value for the intersection given in Fig. 13.1. Form the Hasse diagram and show
the rationality of the choice achieved by the proposed heuristics.

Minimal effective intergreen times, in the case each signal group controls a single traffic
stream, are given by matrix Z.

The values of saturation flow volumes, minimal effective green times, maximal effective
red times, and average flow volumes, are given in Table 16.1.

The cycle time is ¢ = 90 s.

0O NO OO
OO FL,r WwoOo
AP DNOWO
O o wao b

O OO uto o
OO NNO D

Table 16.1
i 1 2 3 4 5 6
s; (veh/h) | 1850 | 1650 | 1620 | 1650 | 1600 0
q; (veh/h) 185| 330| 162 | 165| 160 0
9, (5) 25| 15| 15| 15| 15| 16
N (S) 70| 75| 75| 70| 85| -

The results obtained by applying the method described in Subsection 12.3.3 are presented
in Table 16.2 and in Figs. 16.1 to 16.10.

Besides the maximal capacity values for each complete set of signal groups, Table 16.2
contains the percentage of differences between these values and the maximal one in collection

D, of all complete sets of signal groups. 9y, i.e.,

vl = “:nax _urrnax (16.4)
Mmax
where:
Mimax = Max{pipa, [ D3 €Dy} (16.5)
Wmax =Max{ u' |u() e 24, ref{l,2,...,card 9, }}. (16.6)

Parameters v B , given in Table 16.2, are defined as follows:

c_r
V[f} — “max p‘max (167)

r* >
M max
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16 The heuristics for the choice of the complete set of signal groups 275

where:
“rrnax = max{u;jnax |CD; € @tf}a

g ={D, |card D) =card D} }.

(16.8)

(16.9)

Members @; of collection CD; have the same cardinality as element ‘Dar , ie., the

element corresponding to v[r3 .

Table 16.2
r | The complete set of signal groups 9, Hmax | V' [%] | vg [%]
1 CD; = {Dl’ Dza Dss D4, D5, De} 2075 0 0
= {{Gl},{G2},{63}’{04}’{05},{06}}
@ZZ{DB’D4’D5’D6’D7}
2 2 1.30| 37.35| 37.35
= {{63}3{04}’{65},{06}’{01,GZ}}
@3:{D2’D4’D5’D6’D8}
3 2 1.85| 10.84| 10.84
= {{02}3{04}5{65}7{06},{61: 03}}
@4:{D25D3’D4’D67D9}
4 2 1.60 | 22.89| 22.89
= {{02}7{03}7{04}7{06}7{61765}}
9° ={D,,D,,D,,D,,D
5 a {l 3 4 6 10} 2075 0 0
= {{01}5{03},{04},{06}9{62’ 65}}
9¢ ={D,,D,,D,,D,,D
6 a =11, Dz, D5 D, Du} 2025 | 241 2.41
= {{Gl},{02}9{03}5{06}9{64’65}}
9! ={D,,D,,D,,D
7 a ={D.D0:.05. Do} 1.30 | 37.35| 29.73
= {{03}5{04}’{66}’{01, G2305}}
98 ={D,,D,,D,,D
8 a = 1D, D5, D7, D} 1.25| 39.76 | 32.43
= {{03},{06}’{01, 02},{04,05}}
9° ={D,,D,,D,,D
9 a ={D4, D5, Dy, Do} 1.85 | 10.84 0
= {{64}7{66}a{61a63}a{62a 05}}
P ={D,,D,,D,,D
10| ® {D2.D5. Dy, D} 1.80 | 13.25 2.70
= {{02}5{66}9{Gla63}7{047 65}}
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Figs. 16.1 to 16.10 present, for each complete set of signal groups @ar € D, , the control
vector transitions graph, G-SIr , the compatibility graph, G; , the matrix of minimal effective
intergreen times, and the optimal solution.

The optimal signal plan is represented by the bold line on the graph of control vector
transitions. The optimal structure, U™, cycle time split, T* , and the maximal capacity factor
value, W* = W ., are also given in the figures.

The edges of graphs GSr , which do not belong to graphs qu , are marked by dashed
lines so as to indicate the fact that G¢' = (U9,I'?) is a subgraph of G; = (U ,I'y) if

(@; ,@g) S Rp . The edges that belong to both graphs or only graph Gg are marked by
continuous lines.

The Hasse diagram, (@a ,R p) , of the partially ordered set 9}, , by relation Rp [19],is
presented in Fig. 16.11. The nodes of the diagram represent the complete sets of signal groups.
The maximal capacity factor, which can be obtained if the corresponding complete set of
signal groups is chosen, is written next to each node.

From the Hasse diagram, it can be concluded that the highest value of the maximal
capacity factor is obtained if the complete set with four signal groups is chosen. This maximal
value is 1.85.

According to the proposed heuristics, it is necessary to extract graph GH = (@{) 5 R'p)
from the Hasse diagram (see Appendix IV). From Fig. 16.11 it can be noted that:

D ={D5,92,D;, D5},
and R'p c Rp is defined by the set of ordered pairs:
Ry ={(D3,93).(D2.92), (D3, D3), (D3, D3), (D2,923)}-

The edges corresponding to elements of relation R;) are marked by bold lines in the Hasse
diagram. The complete set of signal groups, according to the proposed heuristics, should be
chosen from set 9, . In this case, set D, , besides the best complete set of signal groups, @2 ,

with four signal groups, contains also the best complete set with five signal groups, ‘Dg .
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G (1,1,0,0,0,0)
s (1,1,0,0,1,0 (1,0,0,0,1,07
D,
D! L (0.1,0010)¢8 = 0 (0,1,0,0,0,0
D! D; =5 (0,0,0,1,1,0)
D (1,0,0,0,0,0) 0 (0,0,0,1,0,0)
(1,0,1,0,0,0y P (000001
(0,0,1, (0,0,0,0,1,1)
(0,1,0,0,1,1)
@
@; :{DlxDévD;}!Di’Dé'Dé} (0’1’0’0'0'1)T

= {D1a Dzv Dsl D41 D5, De}
={{o}{o,}{o:}{c.} {os}.{os}}

000404
003500
030352
2=[Zmlos =15 1 2 0 0 2
001000
804800]
The optimal solution:
0 0 0 1 1 1 0 0 0 0]
1111 0 0 0 0 0 O
yx-|0 0 0 0 0 1 1 0 0 0
10 00O OO 0O 0 0 1 0
1111 0 0 0 0 0 1
0 1. 0 0 0 0 0 0 0 O
?*=[1 16 8 165 3 551525320751 ]
Whoy = 2.075
Figure 16.1
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2 2 N2 N2 N2 P2 (1,0,0,0,07 (}
9, ={D;,D,,D;,D,,D:} )

= {D3:D4:D5'D6,D7}
={{os} {o.}{os} {0} {o1.0,}}

0 3523
2 00 2 2
Z=[2,ss=|1 0 0 0 0
48008
35040
The optimal solution:
1 00 0 0 0 0 O
0 01 00 O0O0 O
u*=/0 0 0 0 1 1 1 0
000 0 O0O0 10
000 0 1 0 0 O
©?*=fl5 3 20 2 26 4 16 4]
Hmax = 1.30
Figure 16.2
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9, ={D;,D;,D;,D;,Ds}
={D,,D,,D;,D¢,Dg}
={{o,}{c,}{os}.{c6}.{o1,0:}}

0500 3
100 2 2
Z=[2,4]65=|0 0 0 0 2
08008
34540

The optimal solution is:

0 00 0 1 1 1 0

0 01 00 0 0 O
w*={0 0 0 0 1 1 0 O

0 0000 1 0 O

1 0 0 000 0 O
©*=[25 4 20 1 16 5 3 4]
H?nax:1'85

Figure 16.3
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Ge:
R
G (1,0,0,0,1) qgeemeii i 2 220 (0,0,0,0,1)
D! & ! -/
o
D: ?‘ |
5 3
D} o

2, ={D",D;,D;, D, Dy}
= {Dz’D31D4’ st Dg}
={{o,}{o:}.{o.}{oc}.{01,05}}

Z= [Z pq ]5><5

Il
OO, WN
N OW
» OO WO
~rONMDNMNO
o N U1 O

The optimal solution is:

001 11 100 0 0

000 0 O0O0O0TUO0T1I 0
u*<{1 0 0 0 0 0 0 0 0 O

000 0O0 11 10 00

00 01 000 UO0O0 O
=20 1 1 25 4 2 14 4 16 3]
Hmax =160

Figure 16.4
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G,
Dy D;
(0,0,0,0,1)(
s =P
Ds D;

0; ={D;,D;,D;,D;,D:}
:{Dll Dai D41 De: DlO}
={{o.}{os}{c.}{o6}{o,,05}}

Z :[qu]5><5 =

OO MNO O
whDNOO
U1 01O W b
SO NN D>
O OPFr 01O

The optimal solution is:

o 0 0 0 0 1 1 1 0 O

o 0 0 0 0 0 0 1 1 0
W*=1 0 0 0O 0O O 0O 0O 0 O

o 0 0 1 0 0 0 0 0 O

o 0o 1 1 1 1 0 0 0 O
©*=[2075 11525 16 8 225 3 1975 1 3]
. =2075

Figure 16.5
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6,

G,:
D} D5
@ )

D}

2, ={D;,D;.D;, Dy, D}
:{DllDZ’D?:’DG’Dll}
={{o} {o.}{os}{os} {o4,0:}}

Z :[qu]5><5 =

N OO OO
O woOo
N B~ O WO
NONO D
O 0o o1 01

The optimal solution is:

o 0 0 0 0 1 1 1 O

o 0 1 1 1 1 0 0 O
u*<j0 0 0 0 0 0 0 1 O

o 0 0 1 0 0 0 0 O

1 0 0 0 O 0O 0O 0 O
©"*=[20251 1 16 2175175 3 20.25 5]
ué. =2025

Figure 16.6
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G,:
D! (3 & D,
D}G @D;

: (0,1,0,0)

(0,0,1,0)

9, ={D/,D;,D;,D;}
= {Dav D4’ st D12}
={{os}{o,}{os}{01,0,,0:}}

Z= [qu]4><4 =

wr~NO
U100 O W
O DNDN
O 0N ol

The optimal solution is:

000 O0O0TO0T10
y*_|1 00 000 00
"0 00 01 0 0 O
001 00000
v*=[20 2 26 4 16 4 14 3]
uZnax_1'3O
Figure 16.7
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G (0,0,1,0)'

2; ={D;,D;,D;, D}
= {D3’ D7’ D7’ Dll}
={{os}{cc}{01,0,}{c,,05}}

Z :[qu]4><4 =

N WPk~ O
NP ODN
N O 00w
O o1 00 Ol

The optimal solution is:

000 O0O0O0T10

6 |0 0 0 0 1 0 0 O
u=>==

100 000 0O

001 00000

©®*=[25 5 20 2 16 4 15 3]
H?nax_l'zs

Figure 16.8
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G,:
p! @ & D}
D’ D}
4(9 @ 3

5 (1,0,0,0)"

(0,0,1,0) 7 5 (0,1,0,0)

‘. N
O - - -+ - -

(01,015
2, ={D,,D;,D;,D;}
={D4,D,Dg,Dyp}
= {{04}1{64}a{61103}1{02v65}}

N

Il

—

N

B

e

S

X

i

Il
o1~ 0 O
oOhr~rODN
w o N
o o1 O B

The optimal solution is:

1 00 000 O0O
% |0 001 0 0 0 O
u ==
000 O0O0TO0T10
001 1 1000
*=[20 1 16 16 5 3 25 4]
Hmax = 1.85
Figure 16.9
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10

(1,1,0,0
21 = {0}, D DY, DL}
={D,,D¢,Dg, Dy }
={{c,}{ce}{o1,0:} {04, 0:}}
0 0 35
0 0 8 8
Z:[qu]4x4= 34 0 5
12 20
The optimal solution is:
0 01 1.1 0 0O
u10*_00010010
0 0 0 0O0OO 0 O
10 0 0 0O O O O
Y+_[20 1 15 16 5 3 25 5]
Hmax = 1.80
Figure 16.10
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Figure 16.11

The obtained results can be summarized as follows:

e  The difference between the maximal capacity factor value achieved when the complete
signal group set @; is chosen and the values obtained for all other elements of D, range

up to 40% of this maximal value.

e Inthe subsets of <, containing a same number of signal groups, the maximal capacity
factors differ:

= 37.35% in subset CDbz with elements comprising 5 signal groups,

= 29.73 % in subset @bs with elements comprising 4 signal groups.

e  The greatest maximal capacity values are:

= 2.075 for the complete set whose elements contain 6 signal groups,
= 2.075 for the complete set whose elements contain 5 signal groups,

. 1.85 for the complete set whose elements contain 4 signal groups.

The greatest maximal capacity factor value in subset CDS with elements CD; R CDS R @2 R CD;O

containing 4 signal groups each is less than or equal to the greatest value of the maximal
capacity factor for elements in subset @bz containing complete sets @; , @: R @: R @g R @36 ,
each with 5 signal groups.

e  From the capacity factor values in Table 16.2, and the Hasse diagram, it can be seen that

there exist some complete sets of signal groups, CD; , with greater maximal capacity
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factor value than the value obtained for other complete sets, @: , having greater number
of elements than 933 ,ie.,

card D¢ > card D ,

but in this case (D5, Dy ) ¢ R,,.

The results obtained in the presented example (16.1), as well as in papers
[33], [34], [36], which analyze the influence of the choice of the complete set
of' signal groups to intersection capacity, point out that this choice significantly
affects optimal values of the optimality criterion. Also, here is shown that the
problem of the choice of the complete set of signal groups can be simplified
by the proposed heuristics.

It is also evident that the intentions of practitioners to choose the
complete set with the least number of signal groups might lead to significant
deterioration of intersection performance indices compared to choosing the
set with a greater number of signal groups.
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Appendix |

GRAPHS, CLIQUES

Cartesian product of sets X and Y

Cartesian product of sets X and Y is the set of ordered pairs defined by
the following relation:

XxY ={(x,y)|xe X,yeY}.

If Y =X ,theset X x X is denoted by X?2.

Binary relation p in set X

Binary relation p in set X is any subset of set X2, i.e., pc X 2.

Graph

Two graph definitions are used in this book:
Definition I: Graph is the ordered pair G = (X, p), where X is a nonempty
set, and p is a binary relation in X, i.e., p < X 2.
Definition II: Graph is the ordered pair G = (X,I’), where X is a nonempty
set, and I" is @ mapping of set X in the partitive set ?(X) of set X [9], i.e.,
I':X->2(X).

Elements of set X can be represented by dots in a plane, named the nodes
or vertices of the graph.

289

© 2008 by Taylor & Francis Group, LLC



290 OPTIMAL TRAFFIC CONTROL: Urban Intersections

The set of ordered pairs, p, which represents a relation, sometimes is
denoted by U. Elements of this set are edges of the graph. Thus, a graph can
be described as:

G=(X,U)=(X,I).

An element of set U, i.e., the ordered pair (x,y)eU, is represented
by the line connecting nodes X and y, oriented from x to y. If (x,y)eU
and (y,x) €U , nodes x and y are connected by two edges having opposite
orientation. These two edges are usually represented by a single nonoriented

edge. If for some element x there holds x e I'x, this is indicated by a loop at
node x. The loop is usually not oriented.

If relation p is symmetric, the graph is nonoriented.
If relation p is antisymmetric, the graph is oriented.

If relation p is neither symmetric nor antisymmetric, graph G = (X, p) is
neither oriented nor nonoriented.

Adjacency matrix of a graph

The adjacency matrix of graph G = (X, p) is square matrix
B =[b,

The degree of matrix B is n, where

ij]nxn '

n=card X .

Matrix elements are defined as follows:

bij:{l, (Xi,Xj)ep'
0, (X, xj) Zp
The adjacency matrix of graph G presented in Fig. Al.1 is
11 0 1 0]
1 0110
B=|0 0 0 1 1].
10100
0 01 0 0]

If the graph is nonoriented, its adjacency matrix is symmetric, i.e.,
B=B".
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If the graph is oriented, then:
b” =1:>bl|=0, (i,je{l,z,...,n}, i;éj).

Partitive set ?(X) of set X

Partitive set ?(X) of set X is the set of all subsets of set X. For example,
if X ={a,b,c}, then

2(X) ={{a}{b}{c}{a,b}.{a,c}{b,c}{ab,c},T}.
Subgraph
Subgraph E = (Y,V) of graph G = (X,U) isthe graph with the following
properties:

Yc X,and V=UN( xY).

A subgraph contains, thus, only the elements of set U that are generated
by elements of set Y.

Partial graph

A partial graph of graph G =(X,U) is any graph H =(X,T) with
TcU.

For example, in Fig. A1, graph G, is a subgraph of graph G, and G, is
a partial graph of graph G.

G G, G,
X4 Xs Xs X4 X4 X3 X5
0O lo) (o] O 0
X X, X, X, X X
Figure Al.1
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Clique (in the sense of Berge [9])

A clique of nonoriented graph G =(X,p)=(X,I') is set C < X with
the property:

(xeC,yeC)= yeIx.

The graph with the set of nodes C has an edge between any two nodes.
Such a graph is called a complete graph.

The following assertions are in accordance with Berge’s definition of a
clique:
a) The set whose elements are the nodes at the ends of one edge (x,y) of a

nonoriented graph represents a clique, i.e.,

C={x,y}.

This is obvious because if (X,y) is an edge of a nonoriented graph,
then:

yeI'x and xeTly.

b) A singleton subset containing an element X of set X, with the property
x e I'x, represents a clique, i.e.,

C={x}.
Maximal clique of graph G =(X,T")

Subset Cr'; c X is the maximal clique if Crl; is not a subset of any other
clique. This means that no element can be added to subset CX such that the
new, extended subset forms a clique.

Remarks

In literature, the terms clique and maximal clique are often used for terms
different than here.

Under the term clique, there is often assumed a complete subgraph, rather
than the set of nodes defining that subgraph. Also, a clique is often defined
as a complete subgraph, the nodes of which represent the maximal clique in
Berge’s sense.

The maximal clique is often defined as a complete subgraph with the
maximal number of nodes, i.e., a subgraph of graph G =(X,I"), with the

property
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where

card C,,,, = max{card Ck}.

Path, path length, distance

A graph containing only oriented edges is called a digraph. If an edge u
of a digraph connects nodes X; and x;, and is oriented from Xx; to x;, then
it is said that edge u starts at node x; and ends at node x; .

The path of length k in a digraph is any sequence of edges Uy, U,,...,U,,
with the following properties:

o) Edge u, starts at an arbitrary edge of the digraph.
B) Edge u; (i=2,...,k) starts at the node at which edge u,_; ends.

A path connects node x; with node X; if the first edge of the path starts
at x; and the last edge of the path ends at x;.

The distance between nodes X; and x; is equal to the length of the
shortest path connecting these two nodes.

The path length of a path containing a single edge is equal to 1.

The maximal distance between any two nodes of a graph is called the
diameter of the graph.
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Appendix Il

EQUIVALENCE RELATION

Equivalence relation

The equivalence relation [20] in set X is a binary relation C,, which is
reflexive, symmetric, and transitive. The relation C, is:
e Reflexive if XC.x, (xe X)
e Symmetric if XC,y = yC.X, (X,y e X))
e Transitive if (XC,y) A(yC,z) = xC,z,(X,y,z€ X)
Diagonal A,, i.e., set
C.=A, ={(x,x)| xe X}

is a trivial example of equivalence relation.
The complete relation, i.e.,

Co=X*={(xy)IxyeX}
is also an equivalence relation.

Equivalence classes

The equivalence class, X, of element X in regard to equivalence relation
C, is the set defined as follows:

X={y|xCyy,ye X}, (xeX).

Two equivalent classes X and Z (x,ze X)) are either equivalent or
disjointed (their intersection is the empty set).
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Therefore, equivalence classes X (X e X ) define a partition of set X.
Every partition n(X) ={X,, X,,..., X} of set
X=XUX,U...X,;UX,

defines an equivalence relation in set X. Equivalence classes are subsets X; .
The partitions and equivalence relation in set X uniquely define each
other and represent different expressions of a same fact [87].

Quotient set

The set of equivalent classes of all elements of set X is called the quotient
of Xby C, and it is denoted by X /C,.
An equivalence class of relation C, in set X, where X is the set of nodes

of graph G =(X,C,), represents a clique of graph G (in the Berge’s sense)
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Appendix I

PSEUDOCODES OF PROGRAMS
CLIQ AND MINA

1. PSEUDOCODE OF PROGRAM CLIQ [34]

begin
class := 1
{determination of all complete subgraphs with two
nodes
by making all combinations of two elements from the
number of nodes, and establishing whether
(m_inc[i,j]=1) AND (m_inc[j,i]=1)}
{determination of all other complete subgraphs }

while (n_comb[class+1]<> 0) do

class = class + 1
for i = 1 to n_comb[class] - class do
for j := 1 + 1 to n_comb[class] - class +1 do

p = card(comb[class][j] n comb[class][i])
if (p = class - 1) then

k =0
for 1 := j + 1 to n_comb[class] do
p = card((comb[class][i] v comb[class][j])
ncomb[class][I])
if (p = class) then k := k + 1

if (k = class - 1) then
n_comb[class + 1] := n_comb[class + 1] + 1
comb[class + 1][n_comb[class + 1]] :=

comb[class][i] v comb[class][]j]
end if
end for
end If
end for
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end for
end while
end

2. PSEUDOCODE OF PROGRAM MINA

begin
read (no_sg, no_ts, a);
ini (no_ts, no_sg, a, q, w, t, v, zopt, ztek,
no_posl, I, s, pregl_u_I, exists _res);
if (not exists_res) then
end (exists_res, no_sg, no_ts,
zopt, no_opt_r, s, wopt);
indl = true;
while (true) do
begin
while ((t <> q) or (not indl)) do
begin
if (indl) then choose_list (no_ts, q, t, v,
tek 1, pregl_u_I)
else indi := true;
parc_res (no_sg, zopt, ztek, tek I, t, I, s,
tek _podsk, no_posl, posl, pregl u_lI,
exists _pr);
if (not exists _pr) then goto 1;
pre_testa (tek podsk, s, ztek, w, t);
end (while);
if (ztek < zopt) then

begin
no_opt r = 1;
zopt := ztek;
end
else iIf (ztek = zopt) then
no _opt r = no_opt r + 1;

wopt[no_opt_r] := w;

1 iTf (w=1[1]) then
end (exists_res, no_sg, no_ts,
zopt, no_opt_r, s, wopt);
backtr (no_sg, posl, s, I, ztek, no_posl,
tek 1, w, t);
indl := false;
end(while);

end
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Appendix IV

REFINEMENT RELATION,
HASSE DIAGRAMS

Partitioning of set X

The family
n(X)={X;|ieJ, X; c X},
where X, =& (i€ J), is a partition of set X if

Uxi=x,

ied

where J is the index set of subsets of set X.
Refinement relation

The refinement relation [51], [25], R, in the set of all partitions T1(X)
of set X is the relation of partial order. Therefore, this relation is reflexive,
antisymmetric and transitive.

7, (X) is refinement of m,(X), i.e., m (X)R,m,(X) if
(X em (X)) A (X; ey (X)) = X, = X,

Partially ordered sets can be represented by Hasse diagrams. A Hasse
diagram takes the form of a nonoriented graph. According to the convention,
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node x is positioned below node y if xR,y . Two nodes x and y are joined by
an edge if xR,y and there exists no node z such that xR,z and zRy.

Example: Let X ={X,y,z}. The Hasse diagram of set ?(X), partially
ordered by the inclusion relation, is presented in Fig. AIV.1 [19].

oy

Figure AIV.1

© 2008 by Taylor & Francis Group, LLC



Appendix V

EFFECTIVE VALUES OF GREEN, RED, AND
INTERGREEN TIMES

1. EFFECTIVE GREEN AND RED TIMES

The real flow volume when discharging the queue of traffic stream o;
is shown by bold line in Fig. AV.1. This function is usually transformed to
the rectangular shape (ABCD), shown by dashed lines, used for defining

effective green and effective red times.

9i

Figure AV.1
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The area of rectangle ABCD is equal to the area bounded by curve g;(t)
and time axis. This means that the number of vehicles that leave an intersection
approach, T;, controlled by the real sequence of signal indications, is equal to
the number of vehicles that would leave the same approach if this sequence
were replaced by the effective green and red time, and the volume curve
transformed into the rectangle.

In this appendix it is assumed that each signal group contains a single
traffic stream (p=i, = 7).

The following relations exist between the elements of the real sequence
of signal indications and effective green and red times (Fig. AV.1):

=R +I (AV.4)

where:

G, - duration of green indication,

a  — duration of amber indication,

H;, — total duration of green and amber indication,

0; — duration of effective green indication—effective green time,

| —  “lost time,”

Ri - duration of red indication,

f — duration of effective red indication—effective red time,

c — cycle time.

The typical values of lost times, I" and 1", most frequently used [1] are
I'=1"=1s.

The saturation flow volume S; is the queue discharge rate during effective
green time. The saturation flow volume has an approximately constant value
that is attained after the acceleration of vehicles leaving the stop line is
performed at the beginning of green time, i.e., when vehicles crossing the
stop line do not accelerate any more.
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2. EFFECTIVE VALUES OF INTERGREEN TIMES

Intergreen time is the minimal time that has to elapse between the end of
displayed green for traffic stream o; until the beginning of green indication
for another, incompatible traffic stream o ; . The intergreen time is introduced

due to safety reasons, and it is calculated according to the following expression
(Fig. AV.2):

Z; =t —t5 +t° +t°. (AV.5)

o, loses the right-of-way
o, gains the right-of-way

" U, =<
ij |
Ci—> |-~ | u, I
P q T D
|
<t;|< b b t,
e
t Z, b
- >

! Z. =t —t5 +tP +1t°

Figure AV.2

The notations in expression (AV.5) have the following meanings:

ti'j — the time needed for the last vehicle of traffic stream o; (losing the
right-of-way) to reach the conflict area with stream o,

tfj — the time needed for the first vehicle of stream o (gaining the
right-of-way) to reach the conflict area with stream o;,

t? — the passing time of vehicles through the conflict area,

t® — the part of amber indication during which vehicles of stream o,
still pass through the intersection,

Zij — the minimal intergreen time between streams o; and o; .
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Expressions (AV.5) are used when conflicting traffic streams are vehicle
streams. When conflicts exist between pedestrians and vehicles, the minimal
intergreen times are calculated using the following expressions:

if vehicles (traffic stream o; ) lose and pedestrians (traffic stream ;) gain
the right-of-way, and

Z; =t —t; (AV.7)

if pedestrians (traffic stream ;) lose and vehicles (traffic stream o) gain
the right-of-way.

In calculating minimal intergreen times, according to expressions (AV.5)
to (AV.7), it is assumed that the speed of vehicles leaving the conflict area
is the lowest, and of ones approaching the area the highest possible under
given conditions. Usually, the speed of vehicles leaving the intersection is in
the range (25-30) km/h, and the speed of approaching vehicles in the range
(40-50) km/h [69]. Common values for speed of pedestrians are 1.2 to 1.5
m/s.

By transforming the real traffic signal sequence into effective green and
effective red time, the assumption is introduced that the departure volume
during effective green is equal to the saturation flow volume while queue
exists. During effective red time, the volume is equal to zero.

The time between the end of effective green time of one signal group
and beginning of effective green time of another signal group is called the
effective intergreen time. Its minimal value is the minimal effective intergreen
time.

The minimal effective intergreen time between two incompatible vehicle
traffic streams, o; and o, is given by the following expression (Fig.
AV.3):

In the case when pedestrians leave the conflict area, and vehicles
approach, the minimal effective intergreen time is given by the following
expression (Fig. AV.4):

2, =7, +I'. (AV.9)
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In the case when vehicles leave the conflict area, and pedestrians
approach, the minimal effective intergreen time is given by the following
expression (Fig. AV.5):

_a
u;
u;
< Z; R
N Zi/"
<
|
[ "
\ Z;=7; —a+l
I
J_:I >t
Figure AV.5

When intergreen time between two vehicle streams Z;; <0, then the
minimal effective intergreen time is calculated using the following expression
(Fig. AV.6):

z{jzfij+a—l. (AV.11)

By substituting standard values for a=3s and I'=1"=1s, ie.,
I =2s, in expressions (AV.8) — (AV.11), the following expressions for z;
are obtained:

a) In the case of conflict between two vehicle traffic streams:

zi; =7; -1. (AV.12)

b) In the case of conflict between pedestrians and vehicles
(pedestrians lose the right-of-way):

2. =7 +1. (AV.13)
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c) In the case of conflict between pedestrians and vehicles
(pedestrians get the right-of-way):

d) In the case of conflict between two vehicle traffic streams when z{; <0:

2 =7 +1. (AV.15)

ij = “ij

A

A

v
—

’'y

i

Figure AV.6

v
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Appendix VI

DETERMINATION OF THE CONTROL VECTORS
TRANSITION GRAPH

1. DETERMINATION OF THE SET OF
FEASIBLE CONTROL VECTORS

The graph of control vectors transition, G, in the case relation R, is
symmetric, can be determined by finding all maximal cliques of compatibility
graph G, , and the control vectors transition graphs corresponding to these
cliques. Graph Gq is determined as the union of these graphs. This procedure
is very convenient because there exist many algorithms for finding cliques
of a graph, so that the existing procedures can be easily implemented in this
case.

In the case graph G, is nonoriented, the set of feasible control vectors
can be determined by finding the control vectors giving the right-of-way to
a maximal number of signal groups. These vectors are used for generating
all other feasible control vectors. The control vectors that give the right-of-
way to the maximal number of signal groups correspond to the maximal
(dominant) cliques of compatibility graph G .

The procedure for determination of all feasible control vectors comprises
two steps:

* Extracting maximal cliques from graph G, and obtaining
corresponding control vectors,

= Generating all other feasible vectors using the vectors obtained in the
previous step.
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1.1. Determining maximal cliques of graph G,
and the set of maximal control vectors

A clique of a graph (Appendix I) is the set of nodes of any complete
subgraph of the graph. If the clique is not contained in any other clique, it is
called a maximal or dominant clique.

If the graph of signal groups compatibility,

G, = (2,,Cy) =(D,.T,), (AVL1)

is considered, where Ty is one-to-one mapping of set 9D, to its partitive set
?(2,),1.e.,

[ :D, > 9(D,), (AVI1.2)
then 9.7 is a maximal clique of the compatibility graph if
((vD, € D) (VD, €D,,)) D, e D, (p.qe ) (AVL3)

and if this clique is not contained (strictly) in any other clique.

A graph can have several maximal cliques. For solution of traffic problems
it is necessary to find control vectors corresponding to all maximal cliques.
Hence, it is necessary to find all maximal cliques, i.e., members of the set:

Dam =D Do Do D (AVLA)

where I is the number of maximal cliques of graph G, . The set of indices of
maximal cliques in set 9.5, i.e., the index setis IT={1.2,...,m,...,IT}.

The complete subgraph whose set of nodes is maximal clique 9,

denoted by GJ, = (D, T,)-

T
am

is
There are many algorithms for finding maximal cliques. These algorithms
can be classified, mainly, in two groups. The first group consists of algorithms
based on properties of Boolean algebra equations. One of these, Magu’s
algorithm, is described in a book by A. Caufmann (1975) [52]. Algorithms of
the second group are based on “backtracking” procedures. Among these, the
Bron and Kerbosh algorithm, developed in 1973 [16], is often used. Some
other algorithms of this type are described in references [11], [12], and [63].

The problem of finding the set of maximal cliques was studied by Stoffers
[77], who was the first to point out that control vectors giving the right-of-
way to maximal numbers of compatible signal groups can be determined by
extracting maximal cliques of the compatibility graph. His algorithm is of the
“backtrack” type, and it is similar to Bron and Kerbosh algorithm.
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Authors who studied the problem of determining optimal control vector
sequences, after Stoffers, like Isabel Tully (1976) [85], paid great attention
to finding cliques of compatibility graphs. However, the problem of finding
cliques of compatibility graphs is not so difficult to deserve special algorithms
developed just for this purpose. Compatibility graphs usually have less than
20 nodes, and thus they belong to simpler graphs regarding the problem of
finding all maximal cliques. The existing algorithms are quite satisfactory,
particularly Bron and Kerbosh algorithm, the FORTRAN IV version of which
is given in a doctoral thesis of Isabel Tully (1976) [85].

J.D. Murchland (1979) developed the program for finding cliques, as
a subroutine in the program for generating the sequence of control vectors
[64].

Three intersections are presented in Figures AVI.1, AVIL.2, and AVI.3,
together with their graphs of signal groups compatibility, and all complete
graphs with the set of nodes being maximal cliques of the compatibility
graphs. Signal groups for intersections in Figures AVI.2 and AVI.3 contain a
single traffic stream each.

Figure AVI.1

© 2008 by Taylor & Francis Group, LLC



312 OPTIMAL TRAFFIC CONTROL: Urban Intersections

Figure AVI.3

As already mentioned, in order to determine all control vectors with
maximal number of signal groups that can simultaneously have the right-
of-way, first all maximal cliques have to be extracted from the compatibility
graph.
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Components of control vector u7, which gives the right-of-way to the

maximal number of signal groups and corresponds to maximal clique 9
can be obtained as follows:

_ |1 if DyeDy,
Uap = H ' T
0, if D, Dy,

am’

, (nell, pe). (AVLYS)

Such control vectors are called maximal control vectors.

The sets of signal groups that make maximal cliques for the example in
Fig. AVI.2 are:

Dan ={D{, D;, D},
Dam ={D3,Ds, Dg},
Dam ={D1, D3},
34 ={D},Di}.
Therefore, the maximal control vectors are:
ul =(110,010)", u? =(010,01)",
ud =(1,010,0,0)", u} =(0,0,0110)".

1.2. Determining the set of all feasible control vectors

Each signal plan also includes control vectors giving the right-of-way to
a number of signal groups, which is less than the maximal. Because of that,
it is necessary to determine, also, other feasible control vectors (not only the
maximal ones). These other feasible control vectors are obtained by starting
with maximal vectors and reducing the number of signal groups having the
right-of-way.

The set of all feasible vectors, Uy, is obtained as a union of maximal
control vectors and all subsets of control vectors obtained from maximal
control vectors.
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1.2.1. Finding all control vectors that correspond to a maximal
control vector

Feasible control vectors are obtained from one maximal control vector
as arrangements with repetitions of the number of elements having value 1 in
maximal control vector U} (7 e IT) out of two elements [61].

The procedure of obtaining all feasible control vectors from control
vector u7, which corresponds to maximal clique 53;,; , 1.e., function

P, U, —>2U,), (AVL6)

is described in the example below. $(U;) in expression (AVI.6) denotes a
partitive set of the set of feasible control vectors.

Set U,, is the set of all maximal control vectors, i.e.,
U,, ={ui,uz,...,us,...,ull). (AVL7)
Each element of this set corresponds to a maximal clique.
Mapping P, applied to u} = (11,0,0,1,0)" gives:
P,,((11,0,01,0)") ={(1,1,0,0,1,0)",(11,0,0,0,0)",(1,0,0,0,,0)",
(0,1,0,01,0)",(1,0,0,0,0,0)",(0,1,0,0,0,0)",
(0,0,0,0,1,0)",(0,0,0,0,0,0)"}.
Subset U, < U, is obtained by applying P,,, to u7,i.e.,
P (U)=U,,. (AVL8)

1.2.2. The number of control vectors generated from
one maximal control vector

The number of all feasible control vectors corresponding to one maximal
clique, @’,‘n , 1.e., to maximal control vector uy, is equal to the number of
arrangements with repetitions of the number of elements in set 9., out of
two elements. The number of all control vectors generated from maximal
control vector u; is, in fact, the cardinal number of set P, (u3). Since each
component of uj with value 1 can assume value 0, the number of feasible
control vectors corresponding to u; can be determined in the following
way:

card P, (ul)=V,> =2, (nell), (AVL9)
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where

P
h,=card Dy => uz,, (nel). (AVI.10)

p=1

For example, the number of control vectors corresponding to maximal
cliques, for the intersection given in Fig. AVI.2, is:

V't =V, =card P, (ul) =card P,, ((11,0,01,0)") =2° =8,
V,* =V,? =card P, (u2) = card P,,,((01,0,01)") =2° =8,
V) =V,> = card P,, (u¥) = card P, ((1,0,1,0,0,0)") =2 =4,
V" =V? =card P, (u¥) =card P, ((0,0,011,0)") =2% = 4.

1.2.3. Forming the set of all feasible control vectors

All feasible control vectors appear as elements of sets

IDam (Ug), IDam (Ug),..., IDam (UZ),..., Pam (ul;[) :

Some control vectors, however, may belong to several sets. Therefore, the
set of all feasible control vectors is determined as the union of sets P, (u;) ,
2 my -
Pn(uy), ..., Ppy(u3), ... ,Pn(uy),ie.,

U = JPm(u3)- (AVL11)

neﬁ

For example, the set of all feasible control vectors, for the intersection
presented in Fig. AVI.2, is defined by the following expression:

u f = Pam (U;) U Pam(ui) U I:)am (Ug) U Pam (U:)
=P,,((11,0,01,0)")UP,,((0,1,0,011)")
UP,,((,0.10,0,0")UP,,((0,0,011,0)").

where:

P, (u%)={(110,010)",(110,0,0,0)",(10,0,0410)",(1,0,0,0,0,0)",
(0,4,0,01,0)",(0,1,0,0,0,0)",(0,0,0,0,1,0)",(0,0,0,0,0,0)"}

P, (u2)={(010,011)",(0,10,0.10)",(0,10,0,01",(0,1,0,0,0,0)",
(0,0,0,011)",(0,0,0,01,0)",(0,0,0,0,01)",(0,0,0,0,0,0)"}
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P, (u%)={(10.10,0,0)",(10,00,0,0),(0,010,0,0)",(0,0,0,0,0,0)"}

P, (u)={(0,0,0,110)",(0,0,0,10,0)",(0,0,0,0,1,0)",(0,0,0,0,0,0)" }.

Therefore,

U, ={(1,1,0,01,0)7,(110,0,0,0)",(10,0,0,,0)",(1,0,0,0,0,0)",
(0,,0,01,0),(0,1,0,0,0,0)",(0,0,0,0,1,0)", (1,0,1,0,0,0)",
(0,0,1,0,0,0)",(01,0,011)",(01,0,0,01)",(0,0,0011)",
(0,0,0,0,01)",(0,0,0,1,0,0)",(0,0,0,11,0)",(0,0,0,0,0,0)" }.

The underlined control vectors appear in several sets P, (us), (neIl).

1.2.4. The number of feasible control vectors

Sinceset U isthe union ofsets P, (U%), (7 e IT ), the number of feasible
control vectors, i.e., the cardinal number of set U; is determined using the
inclusion—exclusion principle, according to the following expression [61]:

I1
cardU; = (-D)*'S,[P,, (U3, uz,...,ui)l, (AVI.12)
=1

where terms S, [P, (ui,ui,...,ul)] represent the sum of cardinal numbers
of all intersections & of different subsets that are elements of set { P, (u3),

P (U2),..., Py (ul) ).

Thus, expressions for S, , for different values of &, have the following
form:

I
Sy [Pam (U;Ui:---’ul;)] = anrd Pam(u:) )
n=1

S, [Py (U3, U2,...,ul)]= card (P,, (UL) NPy, (u2))
+card (P, (u})NP,, (ud))
+...+card (P, (ul™NP,, U5,

(AVL13)

11
SulP,, (Uk,u,...,ul)]=card [ﬂ Pam(ug)J .
=1
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Cardinal numbers of sets P,,(u;) can be calculated using expression
(AVL9).

Cardinal numbers of intersections of sets, in expression (AVI.13),
can be calculated as the number of arrangements with repetitions of h out
of two elements. Symbol h represents the number of elements that are
simultaneously equal to 1 in maximal control vectors corresponding to sets
P, (U3), P, (Uy),..., Py, (uy), which make the intersection whose cardinal
number is to be found.

For example, when inspecting control vectors

ul =(11,0,010)", and

uZ = (01,001 ,
it can be observed that ul, =u2, =1 and ul =uX =1, i.e., control vector
(0,1,0,01,0)" belongs to sets P, (u%) and P, (u?).

Arrangements of 2 (2 components are simultaneously equal to 1) out of
2 elements (each component can take two values, either 1 or 0) correspond
to control vectors:

(0,,0,01,0)", (0,1,0,0,0,0)", (0,0,0,010)", (0,0,0,0,0,0)" .

This means that both sets, P, (uy) and P, (u?), will contain these control
vectors. Their number is V,” =2% = 4.
The cardinal number of the intersection of sets P, (u3), P, (U:),...,

P, (u3) can be calculated by expression:
hS.V....,W

Card (Pam (u;) m Pam (u\;)ﬂ, cee ,ﬂpam (u:’)) :\TZhS'V""‘W = 2 ,
where

=]
hey, . =Card (D, N Dy N...NDyr) = D U U, - Upy . (AVL14)
p=l
The expressions for functions S, can now be written as follows:

11
8, [Py (U1 U2, U =Y 2%
=1

S,[P, (ut,u2,...,uly]=2"2 4 oM 4 4 M (AVI.15)
Sy[Py (Uk, U2, ul) = 2 e
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The set of feasible control vectors, U, is determined for the intersection
presented in Fig. AVIL.2. The maximal control vectors are:

ul =(110,010)", uz =(010,011",
$-(1,010,00)", u! =(0,00110)".

First, exponents of base 2 have to be found:

6 6 6 p
hlzzu;p::;,hzzzuipzs,h322u2p221h4zzu:p:2,
p=l p=1 p=1 p=1
6

6 6
12_Zuelip ap_z' hls_zuzlip ap =1, h14 Zuzlip ap — 4

S 2 5 2 o 3
o= L Uaplap =0 Moy =2, Uagliay =1, Ry =D, Uyl =0,

p=1 p=1 p=1

6
123_zu611p ap ap_o h124 Zuap ap ap 1’

p=1

134 zuap ap ap ' 234 zuap ap ap !

12 34— Zuapuapuapuap O .

Functions S, assume the following values:

4
S, =>2M=2%42%+27 427 =24,

=l
S, =2M 420 4 oM oM g oM 4 ol
=22 42042t 42042020212
Sy =2M2s 4 2Mas g phas g oMas 290491 1904 20 5,
S, =2 =20 =1

The application of formula AVI.11 gives:

4
cardU =) (-1)*'S, =24-12+5-1=16.
e=l
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The relations in the set of signal groups and the obtained set of feasible
control vectors, U;, enable formulation of mathematical definitions for
relations and constraints that have to be satisfied by any feasible signal plan.

2. FORMING THE GRAPH OF CONTROL VECTORS
TRANSITION, G,

Sets of control vectors U, (n e IT) generated from control vectors that
correspond to maximal cliques, i.e., from maximal control vectors, can be
used to form the graph of control vectors transition, G, .

As already mentioned, each maximal control U is mapped by function
P, toset U, cU;,ie,

P (U2) = U .-

Each control vector that is an element of set U gives the right-of-way
to a smaller number of signal groups than the maximal control vector uj.
Each pair of control vectors that is an element of set U, belongs to relation
R, . Therefore, the graph of control vectors transition, having U, _ as the set
of nodes,

Gi =y, T), (nell), (AVL16)
is a complete graph, with the property
I,:U; —>92U,), (rell),
where
(vu'eU, )Aa(Vu"eU, )=u' el u".
The graph of control vectors transition can now be defined as:

Gy = (U, I5)=(Ur,Rs)

n n
:UG:m ZU(Ufn’ src) U(Ufm Sn
n=1 n=1

(AVI.17)
where
11 I1
Ui ={JUy, and R = JR,, .

n=1 n=1
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The set of edges of graph G, is Ry, and R, is the set of edges of graph
Ga -

The compatibility graph subgraphs having maximal cliques as the set
of nodes, and corresponding graphs G, are presented in Fig. AVIL.4 for the
intersection given in Fig. AVL.2. The union of graphs G, (1 =1,2,3,4) gives
the control vectors transition graph, G, , shown in Fig. I1.17.

(1,1,0,0,1,0)
D,
D (0,0,0,0,0,0)
2
G Gl
Ds (0,1,0,0,0,0)'
(0,0,0,0,1,0) (1,0,0,0,0,0)
(0,1,0,0,1,1) (0,1,0,0,1,0)
D, D, (0,0,0,0,0,0)! (0,1,0,0,0,1)
(0,0,0,0,0,1) (0,0,0,0,1,1)

(0,0,0,0,1,0)° (0,1,0,0,0,0)"

D, (1,0,1,0,0,0)° (1,0,0,0,0,0f
D;
(0,0,0,0,0,0)
(000110)& (0,0,0,1,0,0
D,

(0,0,1,0,0,0

4 .
Gy

G :
(0,0,0,0,0,0) (0,0,0,0,1,0

Figure AVIL.4
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Appendix VII

Description of STECSOT Program
(STructurE and Cycle Split Optimization

1. THE STRUCTURE OF THE PROGRAM

Technique)

STECSOT program consists of the main program and nine subprograms
of SUBROUTINE type. The structure of the program is presented in Fig.

AVII.1

START

STECSOT |—

CYCLE

]

VECTOR

I

BRANCH LINPRO

SIMPLE

© 2008 by Taylor & Francis Group, LLC

CONSTR

PIKFO

CONDIT

Figure AVII.1.
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322 OPTIMAL TRAFFIC CONTROL: Urban Intersections

2. PROGRAM DESCRIPTION

2.1. Main Program

Input data are read at the beginning of the main program, and after that
subroutines START and BRANCH are called. The flowchart of the main
program is given in Fig. AVII.2.

Subroutine START arranges input data and prepares them for use in the
BRANCH subroutine. Subroutine BRANCH realizes branch-and-bound
procedure. The result of BRANCH subroutine is collection z*, the elements
of which are singleton subsets containing single elements, i.e., optimal signal
plans. These results are returned to the main program in which results are

printed.

Read input data

.

cycle time = initial value + increment

s

arrangement of input data
CALL POLAZ

.

Realization of the branch-and-bound procedure
CALL BRANCH

\ 4

Printing of the
optimal signal plan

»

v
( STOP

Figure AVII.2.
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2.2. START Subroutine

START subroutine is called from the main program. This subroutine
calculates flow volumes for each control vector, finds the control vector with
maximal volume, calculates the initial bound, and determines coefficients of
the criterion function. Calculated data are returned to the main program.

The flow chart of START subroutine is given in Fig. AVIL.3.

( START subroutine )

.

Calculation of flow volumes for each
control vector

v

Determination of the maximal volume
and the initial branching node

v

Calculation of the initial bound

v

Calculation of criterion function
coefficients

RETURN

Figure AVI1.3.

2.3. BRANCH Subroutine

BRANCH subroutine is called from the main program, and it realizes the
branch-and-bound procedure by calling subprograms CYCLE, VECTOR,
CONSTR, LINPRO, and CONDIT. The results of BRANCH subroutine, i.e.,
data about optimal signal plans, are returned to the main program.

The flow chart of BRANCH subroutine is given in Fig. AVIL.4.
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CBRANCH subroutine)
v

| Setting initial conditions |

Forming the signal plan structure that
will be branched (CALL CYCLE) \ 4

v (RETURN)

Finding the set of vectors that can be joined to
the structure (CALL VECTOR)

A\ 4

:I i = 1, the number of joined vectors |

Determining the set of vectors that can follow
the extended structure
(CALL VECTOR)

| Calculation of the upper bound |

yes Upper bound =0 n|0

A
Add the structure to the
sequence for further
branching

Add the solution to the set

Set new lower bound value - -
of feasible solutions

A" A7

»i

Figure AVIL4.
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2.4. VECTOR Subroutine

VECTOR subroutine is called from BRANCH subroutine to determine
elements of vector ISLED(I), which represents 3, (z") . The elements of vector
ISLED(I) can join the signal plan structure given by matrix MPOMOC(I,J) if
the following constraint is satisfied:

K
D (Ul +us™ Oy mod2) <2, (pe={L2,...,NBRSG}),
k=1
where NBRSG is the number of signal groups. VECTOR subroutine provides,
also, the information about the number of elements in this set, K100. Variables
ISLED(I) and K100 are returned to the BRANCH subroutine.
The flowchart of VECTOR subroutine is given in Fig. AVIL.S. Variable
NBRUV contains the number of control vectors, and matrix MGRAF(1,J)
represents the graph of control vectors transition.

( VECTOR subroutine >

v

Initialization
K100 =1, ISLED(l)=0

v

J=1, NBRUV }:

v

MGRAF(ITOG,J) = 1 yes

v
The constraint of the number of es
times the signal group gains the Y
right-of-way satisfied ?

no

A 4
Is there any signal group that
has not yet gained the right-of-way and
yes which is incompatible with signal no
groups having 2 as the value of the
constraint and gaining the right-of-way
by control vector J

K100 = K100 -1

ISLED(K100) = J, K100 = K100 + 1
I

RETURN

Figure AVIL5.
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2.5. CYCLE Subroutine

CYCLE subroutine is called from BRANCH subroutine to form the
structure, ISVI(I), of signal plan MPOMOC(I,J), which has to be branched.
These variables, and the number of control vectors included in the sequence,
KLL, are returned to BRANCH subroutine.

The flow chart of CYCLE subroutine is given in Fig. AVIL6.

< CYCLE subroutine >

v

Forming vector ISVI(I)

v

Forming the structure of signal plan,
which is ready for branching
MPOMOC(1,J)

v

Calculating KLL

RETURN

Figure AVI1.6.

2.6. CONDIT Subroutine

CONDIT subroutine is called from BRANCH and CONSTR subroutines
to determine whether the obtained solution is feasible. The result is returned
to calling subprograms.

2.7. CONSTR Subroutine

CONSTR subroutine is called from BRANCH subroutine to create
the minimal effective green time constraints and intergreen constraints.
Redundant constraints are eliminated in CONSTR subroutine, and coefficients

of criterion function are calculated, as well.
The flow chart of CONSTR subroutine is given in Fig. AVIL7.
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( CONSTR subroutine )

.

Forming the constraints of minimal
intergreen times

Forming the constraints of minimal
green times

.

Reduction of constraints and
determination of the final set of
constraints

Calculation of coefficients of
function f(x) = c

RETURN

Figure AVIL.7.

2.8. LINPRO Subroutine

LINPRO subroutine is called from BRANCH subroutine to solve linear
programming problems. It introduces slack variables, forms the constraint
that the sum of control vector durations has to be equal to the cycle time, and
creates the model:

F(X) = C(X)

AX =B, X>0,
and calls SIMPLE subroutine to solve the linear programming problem.
The results obtained from SIMPLE subroutine are then rearranged, and the
criterion value is calculated. The decision to stop further branching of some
structure is also made by LINPRO when PICFO subroutine, called from
LINPRO, established that duration of some control vector, determined as
zero in LINPRO, will not be changed by introducing subsequent control
vectors in the structure.

The flow chart of LINPRO subroutine is given in Fig. AVILS.
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< LINPRO subroutine )

Forming the constraints of control
vector durations

v

| Introducing slack variables |

Solving the linear programming
problem
(CALL SIMPLE)

v

Rearrangement of the solution |

no Is the duration of some control yes
vector equal to 0
v

< CALL PIKFO )

v

no No further branching yes
KRAJ =17 l

A
Calculation of the bound | |The bound is equal to O|

| » & |
<

Figure AVILS.

2.9. PIKFO Subroutine
PIKFO subroutine is called from LINPRO if the duration of some control
vector in the structure created so far is equal to 0. PIKFO subroutine checks

the values this vector could assume after further branching. If it remains 0,
the indicator KRAJ assumes value 0, otherwise 1.

2.10. SIMPLE Subroutine

SIMPLE subroutine is a standard program for solving linear programming
problems.
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Appendix VIII

THE PROOF OF DELAY FUNCTION CONVEXITY

1. THE PROOF OF DELAY FUNCTION CONVEXITY IN CASE
THE CYCLE TIME IS NOT GIVEN

A function is convex if and only if its Hesse matrix is positively
semidefinite for any value of variables in the feasible domain [91].

A symmetric matrix is positive semidefinite if all of its principal minors
are nonnegative. A minor is principal if its row indices and column indices
are the same.

The function whose convexity has to be tested is the mathematical
expectation of the total delay on an intersection, defined by the following
expression (9.31):

K 3
J.=09> > ape[kz_;(l—up)T J+ v » e
(;upr ) —ape[kz{r j(;upr J

Convex functions have the properties that their sum is a convex function,
and a convex function multiplied by a constant also gives a convex function.
Hence, function J. is convex if all terms in expression (9.30) are convex.
Each term consists of two terms, so that convexity of the whole expression
can be established by investigating the convexity of each of them.

329
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1.1. Investigation of convexity of the second term in delay
function

If the second term in expression (9.31) is written as:

K 3

=2 k

ap{er j

' =1
O = ” > ” - , (AVIIL.1)
Kk =3 k k_k
(Zupf J —ap| DT ](Zupt ]
k=1 k=1 k=1

and the following notations are introduced

then 6'pe becomes:

(91’
pe _
gp _age(gp +rp)gp
There are four possible positions of effective green and effective red
time in the cycle. These cases are shown in Fig. 4.2. The convexity of &',
will be investigated for all four cases. A general case will be considered,
i.e., any signal group D}, and traffic stream o, thus making indices p and

p(e) unnecessary. Therefore, it is necessary to investigate convexity of the
expression

’ a =2
5, = a2 —; —a23,,. (AVIIL2)

3 3
S C L0 S (Rl (AVITL3)
g(g-o(g+r) (I-o)g°-owrg
where

K

Dt =g+r, (AVIIL4)
k=1

K

Dustt =g, (AVIIL5)
k=1

q_
1-0. (AVIIL6)
S
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The Hesse matrix, whose positive semidefiniteness is to be investigated,
is defined as:

6% 028 828
(o) ot oo
0%8 0% 0%8
V= oo (Y T or o (AVIILT)
0% ol 0%
oot ofo® T (01) |

Function & depends on g and r, and they depend on variables t* . It should
be noted that g and r do not depend on same time variables. If r depends on
some t* variables, then g does not depend on them, and vice versa.

Values of variables u'p and u; (for any signal group D) can be the same,
ie., u'p =uy =1 or u'p =uy =0, or they can be different, i.c., u'p #Uy . The
set of indices of time intervals during which signal group Dy, is controlled
by green signal indication is defined as:

T ={k|us =1, ke F}. (AVIIL8)

The set of indices of time intervals during which signal group Dy, is
controlled by red signal indication is defined as:

" ={k |uf =0, ke T} (AVIIL9)

The first derivatives of function 8 are determined according to the
following expressions:
a) le '
0 05 og 05 or 08

T o AT T A AT T A
ot 09 ot or ot 0og

since 8—g|=1,a—r|=0.
ot ot
b) se#”

® o g @ oo
o' o9 ot or o or
og or

since —=0,—;
ot ot

=1.
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The second derivatives of function § are determined according to the
following expressions:

a) le', se g’

a.l)s=1I
ﬁ_i(@j_i o) o9 0fas) o &%
(o) o ot ogleg ) o arlog ) o' 6g?
2r’(g+r) 2 2
= 3((1- —ogr)+ +r
(et oo (3-8 =090+ (0@ +1))
(AVIIL10)
a.2)s =l

(D)D), o)

otort o\or' ) oglag) o orleg) or°  6g?
2

The value of the second derivative, in this case is the same

asina.l).

ot o’

b) e, se%"
08 a(@j 0(0o8)_ 0% o9, 0% or _ 0%
o) olog) og? ot ager ot ogor

ot'ot® B o
—-2gr(g+r)

(o) —agry @97 —0gn+(e(g+n))

AVIIL11
0°8 0°8 ( )

Since =7 the value of this derivative is the same as
ot Ot ot’ Ot

obtained for | € 7" and se.%".
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¢c) legm", se %"
c.l)s=I

06 0 (0o5) o (o5

W_ E(@rsj_ ot® (EJ
2D) &, o) 7 T
g ot orlar) ot°  or?

_2g%(g+n)
(1-0)g* - ogr)®

B((1- )9 —ogr) + (o(g +r))*)

(AVIIL12)
c.2)s =l

0% _i(ﬁJ_i(@J
oot o \or®) od\lor

ST AN BTN
“oglor) ot orlor) odt ar?
2

The value of the second derivative, in this case is the same

I b
asinc.l). v

T 0T

From above expressions it is obvious that there exist only three different
values of the second derivatives of function &. These three values can be
distributed in Hesse matrix in four different ways. Therefore, for all four
cases the positive semidefiniteness of Hesse matrix has to be proven.

If the function

2(g + r)(3(g —wg(g+r))+(o(g + I')) ) (AVIIL.13)
9°(g - (g + 1)’

is introduced, then the expressions for second derivatives become:

o=0(9,r) =

a) e %', seH'
0% 0% ,

e AVIIL 14
(or')? otort ® ( )
b) le#', se %"
0% 0%
= =—gre (AVIIL15)

ot ot ator
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) leH", seFw"
%8 0% _ g%
(or%)® ot or

Function o(g,r) is positive because the expression

gs—qc
s

g-o(g+r=

(AVIIL16)

is positive in the region where constraint is valid. This constraint is the flow
balance constraint, and if satisfied, the intersection is not saturated.

For the first case of effective green and effective red position in the cycle

shown in Fig. 4.2, Hesse matrix has the following form:

—gre —gro . —gr(p‘ rle rig ... r'g }—gr(P gro .

9% g% ... gzw I—gro —gre ... —grol g% g% ...
e g0 ... g0 1-0re —grp ... ~grei g% GTo ..

: : P L : :
90 g(P---g(P\gr(P gre . —gﬂP\g(P g’e ...

o

-1

[0

|
V25 = —grcp—grcp...—gr(p; r<p r’e ... r<p ;—gr(p—grcp...
. . . . . |
f,gffp,iqrfﬂ,,jgf(?‘lf’l,,[zfﬂ,:;,f,ﬁp,1‘,9[‘?,,,9!‘? ,,,,,,,,
9’0 g% ... g0 i-gro —gro ... —groi g’ g’e ...
g% g% ... g% I-gro - gre ... ~gro} g <p g <p
: : : : i : : }
| |
| 9% g%¢ ... g’p 1—gro —gro ... —gro! g% g ...
[0 « ai—-1 -1 -lla o o]
| |
a o ...ol-1-1...-1la «a o
: A
,@,,OL,,,,Q,Lil,tl,~;,,iLLg,,g ,,,,, a
T Y L S T
M ’
| |
-1-1...-1l— — ... =I-1-1... -1
Vie=grel RS |7 ore -l
N [ N M .
| |
T Y R | a
,,,,,,,,,,, oo ol
a o a}—l -1 .. —ll(x a o
o a ail-1-1..-1a o
| |
o o al-1-1..-1'a o a |
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where

o=—.
r

Matrix V28 is symmetric. This matrix is positive semidefinite if all of
its principal minors are nonnegative [99]. Principal minors are determinants
of submatrices with the same indices of rows and columns. Therefore, it is
necessary to determine signs of all principal minors.

e  Principal minors of first order — diagonal elements

All diagonal elements have value

a=ds0or Ty
r a Jg
and all are positive.

e  Principal minors of second order

Principal minors of second order, having different column and row
indices, are:

1
a -1 — -1
M, = =0, M, = a =0,
-1 — -1 o
o
-1 « -1 l
M, = 1 =0, M, = =0
— -1 a —1
o

Their value is 0, as well as the value of other principal minors of second
order having the same column and row indices.

e Principal minors of order higher than 2

All principal minors of orders higher than 2 have at least two identical
columns and rows, and because of that their value is 0.

For the other three cases of effective green and effective red position in

the cycle it is easily established, in the same way as for the first case, that the
corresponding Hesse matrix is positive semidefinite.
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1.2. Investigation of convexity of the first term in
delay function

If the first term in formula (9.31) is expressed as:

K
Bl =2, (O (1-uf)t")?, (AVIIL19)
k=1

and the following notation is introduced

: Ky k _ 2
> (-upth=rZ,
k=1
then expression (AVIII.19) becomes:

1
Ble = apely - (AVIIL.20)

According to the property of convex functions that the product of a
convex function and a constant is also a convex function, it is enough to

investigate convexity of function
p=r?
to conclude whether function B, is convex. The result of investigation holds
forany p e &', so that index p will be neglected in further text.
Since the convex function of a linear function is convex, and r is linear

function of variables ’El,‘tz,. LTt s necessary to investigate convexity of
function B =p(r). Hesse matrix in this case becomes:

2
VZB{ZTE} =[2].

It is obvious that this function is convex.

Since the sum of convex function is a convex function, and the product
of the convex function and a constant is also a convex function, it can be
concluded that criterion function J is a convex function.
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2. THE PROOF OF DELAY FUNCTION CONVEXITY
IN CASE THE CYCLE TIME IS GIVEN

The function whose convexity has to be tested (9.29) is the sum of terms
(9.28):

ey < k. k i age
Mv, =0.9 ) ap{;(l—up)r J *— - - :
e=1 =1
S| -an(Suse
k=1 k=1

It is enough to investigate convexity of only one term, i.e., of Mv.

Introducing symbols r and g for linear functions of t*, i.c.,
K

Z(l—u';)rk =r,and

e=E(p) a2
Mv, =09 > (a},er?-’ +%}. (AVIIL.21)
9 —ang

Since convex function of a linear function is also convex, then function
Mv is convex regarding variables ', 12,...,7 if it is convex in regard to
variables g and r.

Convexity of the first term in expression (AVIII1.21) is proven in AVIIIL.1.
The second term is convex if the following expression is convex:

1

3
e -

Since y is a function of variable g only, Hesse matrix in this case
becomes:

52
a9

© 2008 by Taylor & Francis Group, LLC

(AVIIL22)

where e =a
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2
and it is necessary only to check % >0 for feasible values of g.
g

The second derivative of function y is given by expression:

o% _2(39(g —&)+¢°)
o9’ (9(g-¢)°®

This expression is positive if g —¢>0,1i.e.,if g>¢.

(IIVIIL.23)

Since this expression is valid for any p e &’ and
ee&(p)={L2,...,e,....E(p)}, ie.,

CQ ,
9, >——, (pe,ec&(p),
pe
function y will be convex if effective green times of all signal groups satisfy
the condition that saturation degrees on all approaches to the intersection are
less than 1.

It is shown that both terms of function MVp are convex, which means
that the function given by expression (9.29) is also convex.
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