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Preface

One of the main features of modern cities is the permanent growth of 
population in a relatively small area. The consequence of this fact is the 
increase in the number of cars and also the necessity of movement and 
transport of people and goods in urban city networks.

The increase of the capacity of the street network can’t, as a rule, follow 
the increase of the necessities for transport. It has unwanted consequences, 
such as the increase in time losses of traffic participants, the increase of 
environmental pollution and noise, and also the increase in the number of 
traffic accidents.

Different measures are applied for elimination of these unwanted 
consequences of intensive development of modern cities. Some of them are, 
for instance, the land use planning, the improvement of traffic control, etc. 
Significant attention is paid just to the improvement of the automatic traffic 
control systems. The reason for that is the fact that this measure doesn’t imply 
significant changes of infrastructure.

Traffic control in modern cities, however, is one of the most complex 
control problems in the sense of the theoretical problem statement as well as in 
the sense of practical realization of traffic control systems. The transportation 
system in the modern city has all features of so-called complex systems: the 
great number of state and control variables, the presence of uncertainty and 
indeterminism, the complex interactions between subsystems, the necessity 
to optimize several optimization criteria, active behavior of the controlled 
process, etc.

The control systems of such degree of complexity couldn’t be realized 
without significant progress achieved in the development of information 
technologies, especially computer and telecommunication techniques, during 
recent decades.
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xii OPTIMAL TRAFFIC CONTROL: Urban Intersections

The necessary condition, however, for realization of such complex control 
systems is also the development of solution methods of control problems, 
especially the optimization methods.

A signalized intersection can be isolated, with negligible influence of 
other signalized intersections to its own performance. On the other hand, it 
may be close to other signalized intersections so that the interactions between 
them can be very significant. Because of that, the optimal control problems 
have to be formulated separately: for isolated intersections, for a sequence 
of signalized intersections along an artery (green wave), and for a street 
network with greater number of signalized intersections with strong mutual 
interactions.

This monograph is concerned with the traffic control problem on a 
single, isolated signalized intersection. This problem is still of current 
interest because the existing algorithms don’t enable to take advantage of all 
capabilities of modern, microprocessor-based traffic signal controllers. The 
fact that a great number of intersections (in many countries over 50% of all 
signalized intersections) are isolated points out the importance of the traffic 
control problem on isolated intersections.

The approach to the optimal traffic control presented in this book and 
also the optimization methods based on the graph theory and combinatorial 
optimization are results of a long-term work of authors in the field of traffic 
control, in “Automation & Control Systems” department, within Mihajlo 
Pupin Institute in Belgrade.

The authors are very grateful to all colleagues who contributed to the 
realization of this book. We are especially grateful to Mgr. Miomir Šegović 
for his participation regarding the influence of the choice of the complete 
set of signal groups to the intersection performance and also regarding the 
solution of the optimization problems presented as the problems of nonlinear 
programming.

The authors owe gratitude also to Dr. Snežana Mitrović-Minić for her 
participation in the statement and solution of some optimization problems 
regarding the choice of the complete set of signal groups.

The authors express distinct gratitude to Professor Radivoj Petrović for 
his continuous support and encouragement during the work that resulted in 
appearance of this book.
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Introduction

The most common means of traffic control in modern cities is traffic 
control by traffic signals. Traffic signals made it possible to “solve” conflicts 
between traffic flows at intersections. This goal, however, can be achieved 
in different ways, and application of particular methods has different 
consequences regarding the intersection capacity, delay, or environmental 
pollution. The main problem of traffic engineering is choosing the way of 
conflict prevention that has the lowest unwanted consequences, such as 
minimal delay or minimal pollution, etc.

A significant development of traffic control systems using traffic lights 
has been achieved since the first traffic controller was installed in London 
in 1868. Starting from an isolated signalized intersection, the area covered 
by a traffic control system extended to a series of signalized intersections 
along an artery (“green wave”) out to street networks with several hundred 
signalized intersections (“area traffic control systems”). The first green wave 
was realized in Salt Lake City in 1918 [85], and the first area traffic control 
was introduced in Toronto in 1960.

Traffic control equipment has followed technology development. At the 
very beginning, traffic control had been performed by electromechanical 
devices. Then, semiconductor-based controllers were introduced, and 
nowadays microprocessor-based controllers are used in traffic control 
systems.

The development of area traffic control systems, especially since 1960, 
has led to introduction of other equipment in traffic control systems, such as 
computers, telecommunication devices, vehicle detectors, etc.
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� OPTIMAL TRAFFIC CONTROL: Urban Intersections

Traffic control strategies have also improved since the installation of the 
first traffic controller. The strategies can be classified in respect to different 
features. The most important features are as follows:
•	 The influence of real-time traffic data to traffic control

Regarding this feature, there exist two main types of strategies:
	Fixed-time (FT) strategies. The control (signal plan) is calculated in 

advance, using statistical data.
	Real-time (RT) strategies. The real-time data about traffic processes 

are used to determine control or its modification.
•	 The performance indices

The most frequently used performance indices are:
	For traffic control on an isolated intersection:

The total rate of delay (the sum of the rate of delays on all intersection 
approaches during a determined time interval, usually one cycle 
time); the number of stops; the weighted sum of the rate of delay and 
number of stops; the sum of all green times during a cycle; the total 
flow through a congested intersection during a cycle; the number of 
accidents; the cycle time, etc.

	For arterial traffic control:
The bandwidth, i.e., the interval in which it is possible to enter the 
“green wave” and pass through the sequence of intersections without 
stopping.

	For traffic control in a network of signalized intersections:
The total rate of delay on all intersections in the network; the total 
number of stops in the network; the weighted sum of the rate of 
delay and number of stops on all links in the network; the total fuel 
consumption of all vehicles in the network; the air pollution level, 
the noise level, the number of accidents, etc.

•	 The state of the traffic process
According to this feature, traffic control strategies can be classified as:
	Strategies for weak traffic
	Strategies for normal traffic
	Strategies for congestion in the network
	Strategies for special purposes (e.g., giving priority to mass transit 

vehicles, setting of fire brigade routes, etc.)
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•	 Distribution of functions between subsystems of one traffic control 
system
In respect to this feature, there exist two types of traffic control 
strategies:
	Strategies used in centralized traffic control systems where all control 

functions are performed by the control center computer
	Strategies based on control problem decomposition—one part of a 

control problem is solved in microprocessor-based controllers on 
intersections, and the other part by the control center computer [76], 
[80]

•	 The influence of traffic control to traffic assignment in the network
On the basis of this feature, two types of strategies can be noted:
	Strategies which assume that traffic assignment is independent of 

traffic control by traffic lights
	Strategies assuming that both signal settings parameters and link 

flows are not fixed, i.e., the strategies that optimize the chosen 
performance index and influence to the traffic assignment

The development of traffic control strategies and information technologies 
enabled the realization of complex traffic control systems in modern cities, 
including hundreds of signalized intersections. These systems enable 
coordination between intersection control subsystems, which is necessary in 
dense street networks.

However, there are many intersections that are isolated, i.e., not included 
in complex traffic systems, like “green waves” or area traffic control systems. 
For example, more than 60% of the total number of signalized intersections 
in Sweden are isolated [5�]. Because of that it is very important to develop 
good algorithms for optimal traffic control on isolated intersections. This is 
significant especially when bearing in mind that modern microprocessor-
based traffic light controllers are capable of applying very complex control 
strategies. Moreover, the control on a signalized intersection has to be 
determined even in the case the intersection belongs to a complex control 
system.

Optimal traffic control on an isolated intersection is a very complex 
problem, especially because of the combinatorial nature of the problem. 
In this book, the problem is treated from the very beginning as a complex 
combinatorial problem and is formulated as the problem of finding the best 
closed path on a certain graph.

The traffic control on a signalized intersection is performed by means 
of traffic lights of different colors (green, amber, and red) that are repeating 
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� OPTIMAL TRAFFIC CONTROL: Urban Intersections

periodically. Conflicts between traffic participants are prevented by dividing 
the cycle time in intervals allocated to traffic flows so that the conflicting 
flows don’t get the right-of-way in the same interval. The control in one 
interval is defined by one control vector (so-called phase) whose components 
are control variables that control traffic by means of traffic lights. Several 
traffic flows that are not mutually conflicting can get the right-of-way during 
the same interval.

In classical controllers the composition of phases and their sequence 
are fixed. In modern, microprocessor-based controllers, these restrictions 
are eliminated. However, due to the elimination of mentioned restrictions 
control problems became much more complex. The traffic control problem 
not only includes the problem of of splitting cycle time into particular phases, 
but the composition and sequence of the phases. Because of that, the traffic 
control problem is transformed to a complex problem of combinatorial 
optimization.

The necessity of phase sequence change is illustrated by the following 
example. The traffic flow through the intersection presented in Fig. 1 is much 
greater in the West-East than in the East-West direction during the morning 
peak hour. During the evening peak hour the greatest traffic flow is in the 
East-West direction. The number of left-turning vehicles is also significantly 
different in these two intervals. (This example is similar to the Hank Van 
Zylen example in [9�].)

1
2

3

4
5

6

7

Figure 1

The phase sequences suitable for traffic control in these � peak hours 
are presented in Fig. �. The number of phases giving the right-of-way to left 
turners fits the demand. This right, in case (a), is given to vehicles coming 
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from the West, by control vectors �, �, and 5. In case (b) the right of left 
turning is given to vehicles coming from the East, by control vectors �, 5, 
and 6. Arrows in Fig. � mark the traffic flows getting the right-of-way, and 
dashed lines and transversal dashes instead of arrows mark traffic flows not 
having the right-of-way.
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6 OPTIMAL TRAFFIC CONTROL: Urban Intersections

This example illustrates the combinatorial nature of the problem. It is 
obvious that the number of possible sequences of control vectors is very large. 
The determination of the relation between these sequences and the values of 
a chosen performance index and finding the sequence corresponding to the 
optimal value of the performance index is a complex problem of combinatorial 
optimization.

The development of the methods of combinatorial optimization, besides 
the progress in equipment development, was also an unavoidable condition 
for the solution of such problems. A method of combinatorial optimization, 
of the branch-and-bound type, is used in this book for solving the optimal 
traffic control problem. This method was developed at the beginning of the 
1960’s [5�], [56].

The combinatorial approach to the optimal traffic control problem on 
isolated intersection was founded by Stoffers, K. [77] by introduction of 
the compatibility graph of traffic streams. Stoffers also noted that the traffic 
stream sets with maximal number of nonconflict traffic streams, which can 
get the right-of-way simultaneously, can be determined by extracting cliques 
from the compatibility graph. The compatibility graph for the intersection 
given in Fig. 1, together with the set of complete graphs whose sets of nodes 
are cliques of the compatibility graph, are presented in Fig. �.
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Cliques of the compatibility graph are used for determining the set of 
feasible control vectors. However, the information about feasible control 
vectors is not sufficient for determination of their sequence. Control vector 
sequences have to satisfy certain conditions. The most important conditions 
are that each traffic stream has to get the right-of-way during one cycle, and 
the right-of-way can be given only once to any traffic stream. Because of 

© 2008 by Taylor & Francis Group, LLC



Introduction 7

that, the control vectors giving the right-of-way to some traffic stream have 
to follow one after the other. To stream 1 (in case [a], in Fig. �) the right-of-
way is given by control vectors �, �, and 5, and to streams � and 7 by control 
vectors 1, �, and �.

The relations of green indication successions and control vector transitions 
are introduced for the sake of the exact control problem statement. There are 
also certain constraints related only to the control vector composition and to 
their sequence. Because of that the concept of “structure” is introduced. The 
structure is the sequence of control vectors. A feasible structure of control 
vectors can be presented as a closed path on the control vectors transition 
graph. 

The optimal control problem is transformed to the problem of optimal 
closed path on the graph of control vectors transition. The method of the 
branch-and-bound type is developed for solving this problem. The computer 
program is developed also, enabling determination of the optimal structure 
and optimal cycle time split to control vectors.

Introduction of the control vectors transition graph and development of 
the combinatorial optimization method enabled a solution to several optimal 
traffic control problems. These problems have different performance indices 
or different constraints defining the set of feasible controls.

The book is organized in the following way:

Part I gives the description of the dynamical process on isolated signalized 
intersection. The elements of the mathematical model are: the space of inputs, 
the space of outputs, the state space, the state transition function, and the 
output function. Mathematical models of uncontrolled inputs—arrival flows, 
which are stochastic processes, are presented in this part.

The definition of the state, as the vector whose components are vehicle 
queues on particular approaches, is presented and also the function of 
state transition. The relations in the input set, such as the conflictness and 
compatibility relations, are defined. These relations are very significant for 
the statement and solution of the optimal traffic control problem on isolated, 
signalized intersections. The problem of assignment of control variables to 
subsets of traffic flows—signal groups is formulated in this part. The concept 
of signal plan structure is also defined—the signal plan structure is a sequence 
of control vectors.

In Part II the problem of control (signal plan) determination is formulated 
as an optimization problem. The set of constraints and different optimization 
criteria are defined. Mathematical expressions are given for the constraints:
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8 OPTIMAL TRAFFIC CONTROL: Urban Intersections

	Control vectors sequence constraints
	The constraints of minimal effective green times for signal groups
	The constraints of maximal effective red times for signal groups
	The flow balance constraints
	The constraints of minimal effective intergreen times
	The constraints of single interval of green indication for a signal 

group during one cycle
	The constraints of control vectors composition
	The constraints on the sum of control vectors duration

In Part III the mathematical expressions for different optimization criteria 
are presented. The criteria of capacity type are: the capacity of a traffic 
stream, signal group, or the whole intersection, the capacity factor, the sum of 
the squares of differences of saturation degrees of particular traffic streams. 
The mathematical expression of the total vehicles delay on all intersection 
approaches is given also. The limiting values of the signal plan elements can 
be determined by the solution of certain optimization problems. In that case, 
the optimization criteria are: green time of a signal group, the cycle time, the 
total number of control vectors.

Part III is devoted to the solution methods of the problems formulated in 
Part II. In this part it is shown that the optimization problems formulated in 
Part II can be presented as the problems of finding the best path in a graph 
of control vectors transitions. The method, based on the branch-and-bound 
algorithm, is developed for solving these problems. The branching function, 
dividing the solution set, is defined in the same way, regardless of the chosen 
optimization criterion. The bounding function definition depends on the type 
of the chosen optimization criterion.

In Part IV the developed algorithm is applied to find solutions to several 
problems formulated in Part II. These problems differ in regard to the 
optimization criteria or the set of constraints that define the feasible set of 
solutions.

In Part V the influence of the choice of the complete set of signal groups 
on intersection performances is analyzed. It is concluded that this influence is 
very significant, and one heuristic is proposed for the choice of the complete 
set of signal groups.
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Part I

MATHEMATICAL MODEL OF TRAFFIC PROCESS 

ON A SIGNALIZED INTERSECTION

The process that takes place on a signalized intersection consists of 
transformation of input flows into output ones, with queuing and queue 
discharging; thus, it represents a dynamic process.

According to the general systems theory [58], [23], the following objects 
can be associated with any dynamic process:

An input space X (i.e., the set of all inputs)
An output space Y (i.e., the set of all outputs)
A state space W (i.e., the set of all states)

The input space, X, and the output space, Y, are two sets of time 
functions. Their elements )(⋅x  and )(⋅y  are vector functions of time, defined 
in the time domain R⊆T , where ),( ∞∞−=T  or ),0[ ∞  in the case of 
continuous time functions, and }N|{ ∈∆= ntnT  or }N|{ +∈∆= ntnT  in the discrete case.

A state of the process is a vector that depends on time t and whose 
components are real numbers.

The fundamental property of a dynamic system is that given any “initial” 
time T∈0t , any “initial” state W∈0w , and any input X∈⋅)(x , both 
w(t) (the resulting state at some later time t) and y(t) (the resulting output at 
some later time t) are uniquely specified. Also, w(t) and y(t) depend only on 

)( 00 tww =  and the values of the input )(⋅x  in interval ],[ 0 tt .
Therefore, in order to fully describe a dynamic process, the functions 

have to be defined by which w(t) and y(t) are determined.

▪
▪
▪
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1. GENERAL MATHEMATICAL DESCRIPTION OF THE DYNAMIC 
PROCESS ON A SIGNALIZED INTERSECTION

The dynamic process on a signalized intersection is fully defined by the 
quintuple (X, W, Y, ϕ1, ϕ2).

An element of set X comprises uncontrolled inputs in the system—traffic 
flows and inputs that influence the process—control inputs. Traffic flows are 
influenced by traffic signals, controlled by control variables. Thus the input 
can be described by the set of ordered pairs, i.e.:

Σ×′= UX . (1.1)

Set U ′  is the set of controls, i.e., vectors

 ))(,,)(,,)(,)(()( P21 ⋅′⋅′⋅′⋅′=⋅′ uuuuu p  .

A control }|)({)( T∈′=⋅′ ttuu  is a periodic time function by which 
the process of traffic signal changes is described (green, amber, red, red and 
amber is the standard control sequence in many countries). The smallest part 
of this process, the repeating of which makes up the whole process, is called 
the control cycle, or, most often the cycle, and its duration, c, is called the 
cycle duration or cycle time.

Since control components )(⋅′pu  are periodic functions of time, there 
holds:

),2,1,2,1,0(,)()( Ppkcktutu pp  =±±=+′=′ . (1.2)

A control variable can assume either 0 or 1 value. Value 0 corresponds to 
red (effective red) and 1 to green (effective green) signal indication, i.e.,

),2,1(}|)({)( Ppttuu pp =∈′=⋅′ ,T , (1.3)

where

}1,0{ and ,)(,)( ∈∈∈′ BTB ttu p .

The green, amber, red, red-amber sequence is here transformed to the 
effective green, effective red sequence (see Section 4.1 and Appendix V).
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12 OPTIMAL TRAFFIC CONTROL: Urban Intersections

Σ – the set of vectors ),,,,,( 21 Iσσσσ=σ  i  is made up of elements 
that are arrival flows or traffic streams (see Section 2.1). Traffic streams are 
defined, as well as traffic flows in general, by their volume, speed, density, 
headway or spacing interval, composition, the percentage of straight-through 
or left-turning and right-turning volume, and the paths they use to traverse 
the intersection. The quantitative traffic stream characteristic most frequently 
used in algorithms for optimum signal plan determination is the traffic flow 
volume, i.e., the number of vehicles that pass a given point in a unit of time; 
in this case it is the number of vehicles that arrive on an intersection approach 
during a time unit.

There exist arrival flow models [7], [31], in which it is assumed that 
flows are deterministic, but these models are not realistic enough, except in 
very specific cases. However, in expressions used for delay calculation, the 
delay resulting from deterministic, average flow volume values represents a 
part of more complex expressions that take into account the stochastic nature 
of traffic flows.

Trajectories traversed by different traffic streams through the intersection 
have to be known in order to determine whether a pair of traffic streams 
can simultaneously gain the right-of-way, i.e., whether the streams are 
compatible. 

To each set Σ there corresponds a set Q —the set of flow volume vectors 
))(,,)(,,)(,)(()( I21 ⋅⋅⋅⋅=⋅ ′qqqqq i  , whose elements are volumes of traffic 

streams ,, 21 σσ . The set of indices

}I,,'I,,,,2,1{  i=J  (1.4)

is such that vehicle flows are assigned indices from 1 to I′ , and pedestrian 
and other flows from 1I +′  to I. Thus, the set of indices corresponding to 
vehicle flows is:

}I,,2,1{ ′=′
J .

W is the set of system states. The state at time t is described by the 
vector 

))(,,)(,,)(,)(()( I21 twtwtwtwtw i ′=  ,

whose components represent queue lengths formed by arrival traffic flows, 
i.e., traffic streams.

The set of outputs, Y, is the set of vectors of output flows, i.e., outputs

 ))(,,)(,,)(,)(()( H21 ⋅⋅⋅⋅=⋅ yyyyy h  .
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1 General mathematical description of the dynamic process 13

Output flows are characterized, in the same way as input flows, by 
volume, speed, etc., and by the surface used for leaving the intersection. To 
each set of outputs, Y, there corresponds set eQ —the set of vector functions 

))(,,)(,,)(,)(()( H21 ⋅⋅⋅⋅=⋅ ee
h

eee qqqqq  , whose elements are volumes of output 
elements ,)(,)( 21 ⋅⋅ yy  . Vector )(⋅eq  represents the function defined by the 
following expression:

}|)({)( T∈=⋅ ttqq ee , (1.5)
where

.)H,,2,1(,}|)({)( =∈=⋅ httqq e
h

e
h T

These volumes represent the volumes of traffic streams that are transformed 
by traffic signals or streams comprising several transformed traffic streams. 

The state transformation (transition) function 1ϕ  can now be described 
by the following expression:

tttttt WUQW →××ϕ )(: ],[],[
1

000
. (1.6)

In this expression, 

],[],[ 00 ttttu U∈  (1.7)

represents the restriction of function )(⋅′u  to interval T],[ 0 tt , and 

],[],[ 00 ttttq Q∈  represents the restriction of function )(⋅q  to the same interval.

Expression (1.6) shows the fact that for determining the state in time t it 
is necessary to know the state at a previous time 0t  and the input, which is 
an element of set 

0 0[ , ] [ , ]( )t t t t×Q U , i.e., the vector of traffic stream volumes and 
control in every instant of interval ],[ tto .

The reaction (readout or output) function, 2ϕ , can be represented as:
e
tttt QUQW →′××ϕ )(:2  , (1.8)

where:

tW  – the set of states at time t

tQ  – the set of vectors of traffic stream volumes at time t
e

tQ  – the set of output volume vectors at time t

tU ′  – the set of controls at time t
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14 OPTIMAL TRAFFIC CONTROL: Urban Intersections

Figure 1.1 represents an intersection and a part of the process on the 
intersection.
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1 General mathematical description of the dynamic process 15

The process is described using the following variables:

(a) Volumes )(3 ⋅q  and )(5 ⋅q , corresponding to flows σ3 and σ5. These 
volumes represent “uncontrolled” input variables.

(b) Control variables )(3 ⋅′u  and )(5 ⋅′u , i.e., “controlled” input variables. 
These variables can assume either 0 or 1 value. Value 0 denotes red 
signal indication (effective red), and 1 denotes green indication (effective 
green).

(c) Queue lengths )(3 tw  and )(5 tw , representing process state components, 
with ],0[ ct ∈ .

(d) Volumes )(3 ⋅′q  и )(5 ⋅′q  that resulted from transformation of variables 

)(3 ⋅q  and )(5 ⋅q  under influence of control variables )(3 ⋅′u  and )(5 ⋅′u .

(e) The volume )(2 ⋅eq , which corresponds to output flow )(2 ⋅y  and represents 

the sum of )(3 ⋅′q  and )(5 ⋅′q  volumes.

All these variables are shown in the  ],0[ c  interval, where c is the basic 

period of functions )(3 ⋅u  and )(5 ⋅u , which are periodic time functions.
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2. UNCONTROLLED SYSTEM INPUTS

The system input, as already described, are vectors whose components 
are traffic flows on intersection approaches, and sequences of different signal 
indications by which the right-of-way is given or taken away, i.e., by which 
traffic control is performed. This chapter describes the way to define and 
represent arrival flows.

Several models have been used for describing arrival flows on an 
intersection [7], [31]. The simplest is the “uniform arrivals” model. This model 
is a rather rough approximation of the real process, which is stochastic by its 
nature, and all other models account for this fact. Arrival flow parameters, 
such as volume, speed, density, spacing, etc., represent stochastic processes. 
Namely, these quantities are random numbers at a given time, i.e., defined 
by the set of values they can assume and the probabilities of taking these 
values.

Characteristics of these parameters, such as mathematical expectation, 
dispersion, et al. are not constant—they change during a day. However, it can 
be assumed that these processes are stationary in limited time intervals, e.g., 
morning or evening peaks or between peaks. Therefore, in further discussion, 
when stating control problems and developing methods for their solution, it 
will be assumed that we consider only intervals in which these processes are 
stationary.

2.1.	 Input	components—traffic	streams

Vehicles approaching an intersection prepare themselves to perform a 
certain “maneuver,” i.e., to drive straight through, turn left, or turn right at the 
intersection. The vehicles that perform the same maneuver and form the same 
queue on an approach, in one or several lanes, represent a flow component 
that can be considered separately from other flow components, which perform 
other maneuvers [4], [5]. Such an arrival flow component is termed a traffic 
stream. In fact, this is the smallest flow component that can be controlled by 
a separate traffic signal, i.e., by a sequence of signal indications different than 
the sequences on other signals.
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18 OPTIMAL TRAFFIC CONTROL: Urban Intersections

Traffic streams on an intersection can represent passenger vehicle flows, 
pedestrian flows, flows of public transport vehicles, etc. Traffic streams iσ  
are components of vector ),,,,,( I21 σσσσ=σ  i .

The queue formed by a vehicle traffic stream, during the red signal 
indication, occupies one or more lanes. Horizontal signalization is the same 
in all lanes used by one traffic stream. Vehicles joining the queue can choose 
any lane on the approach, expecting to leave the queue in the same order as 
when joining it [5].

An approach is a part of the street, comprising one or more lanes, along 
which vehicles arrive to the intersection and on which the queue of a particular 
traffic stream forms. Traffic stream iσ  uses approach Ti, )( J ′∈i .

Volume unit (pcu)—Traffic stream volume is equal to the number of 
vehicles that pass a given point in a unit time. Since traffic streams are 
composed of various vehicles, the volume is expressed as the number of 
average passenger cars per time unit (pcu/s). For each vehicle type there can 
be determined an equivalent number of passenger cars [88], [45]. This number 
is determined on the basis of the fact that various vehicles need different time 
to pass through the intersection. Heavier vehicles need more time than light 
ones. Vehicles of the same type need more time when turning left or right 
than when going straight. The equivalent number is equal to the number of 
passenger cars that would pass through an intersection in the same time as the 
given vehicle type. Table 2.1 presents an example of equivalent passenger car 
units for some vehicles [15] when going straight or turning.

Table 2.1

Vehicle Type Straight 
(pcu/s)

Turning 
(pcu/s)

Passenger car 1 1
Bus 1.7 2
Heavy truck 1.7 2

2.2.	 Mathematical	models	of	arrival	flows 
—traffic	streams

Several models have been used to describe traffic streams, as already 
mentioned. The simplest model is the uniform flow model.

A traffic stream is uniform [7] (with uniform arrivals) if its approach 
volume is constant, q [pcu/s]. The spacing interval is then also constant, 
equal to q/1  [s/pcu].
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2 Uncontrolled system inputs 19

This model is a rough approximation of the real flow. However, for 
certain purposes, such as determination of vehicle delay in realistic, stochastic 
models, the uniform flow model can be used for determination of the delay 
component that results from average arrival volume values.

All other models used for arrival flow modeling, i.e., traffic stream 
modeling, are based on the theory of stochastic systems. In this case, tQ  is 
the set of traffic streams volume vectors at time t, and its element represents 
the vector whose components are random variables.

Most frequently it is assumed that vehicles belonging to traffic streams 
arrive according to the Poisson process [1], [89]. The real process is more 
complex so that other models have been used in which some limitations 
inherent to the Poisson process were eliminated [7], [31].

2.2.1.	 Modeling	arrival	flow	with	the	Poisson	process

Several authors pointed out that the stochastic Poisson process could 
be used for modeling arrivals of vehicles at an intersection. Webster used 
this model in his expression for calculation of the delay of vehicles at an 
intersection [89]. The expression was verified in practice and is still used.

With Poisson flow, the probability of arrival of im  vehicles of traffic 
stream iσ  to an intersection, during interval τ, is expressed by the following 
formula:

τ−τ
=τ=τ i

i
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im e
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qmpp
!
)(] intervaln i arrive vehicles[)( , (2.1)

where iq  is constant.

The mathematical expectation of the number of vehicle arrivals, im , in 
interval τ is, according to [86]:
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The average volume (flow intensity, or flow rate) of traffic stream iσ  is 
thus equal to

(pcu/s)M
i

iii qqmm
=

τ
τ

=
τ

=
τ

. (2.3)
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20 OPTIMAL TRAFFIC CONTROL: Urban Intersections

The spacing interval, iΘ , between two consecutive vehicles belonging 
to stream iσ  is a random variable [86]. If a segment τ′  is considered, 
the beginning of which coincides with the beginning of interval iΘ , the 
probability that in τ′  at least one vehicle will arrive is:

01][)( ppF iii −=τ′<Θ=τ′ , (2.4)

where 0p  is the probability that 0=im , i.e., that during τ′  no vehicle of 
stream iσ  will arrive. This probability is obtained by setting 0=im  in 
formula (2.1). Then we have:

τ′−τ′− =
τ′

=τ′ ii qqi
i eeqp

!0
)()(

0
0

and
τ′−−=τ′<Θ iq

i ep 1][1 . (2.5)

This is, in fact, the probability distribution function of the random 
quantity iΘ . The probability distribution density )(τ′ih  of iΘ  is obtained 
as the derivative of the distribution function over τ′ , i.e.,

)0(,)( >τ′=τ′ τ′− iq
ii eqh . (2.6)

The mathematical expectation of the spacing interval is:

i

q
i

q
iii q

deqdeq ii
1M

00

=τ′τ′=τ′τ′=Θ=Θ ∫∫
∞

τ′−
∞

τ′− . (2.7)

Thus, if the probability distribution of the number of vehicles that arrive 
during time segment τ′  to an approach is Poisson distribution, then the 
spacing interval distribution is negative exponential.

The probability that during a short interval δt one vehicle arrives, 
)(1 tpi δ , is approximately given by:

)(1)( 01 tptp ii δ−≈δ ,

where )(0 tpi δ  is the probability that in interval δt no vehicle arrives. This 
probability is determined as

tqtqi
i

ii eetqtp δ−δ− =
δ

=δ
!0

)()(
0

0 . (2.8)

Therefore,
tq

i
ietp δ−−≈δ 1)(1 .

© 2008 by Taylor & Francis Group, LLC



2 Uncontrolled system inputs 21

Evolving tqie δ−  into a series, and neglecting higher order terms, results 
in 

tqtqtp iii δ=δ−−≈δ )1(1)(1 , (2.9)

i.e., the probability of one vehicle arrival to the intersection in a short interval 
δt is approximately equal to tqiδ .

The Poisson model is good for describing the real arrival process on 
an intersection approach in the case when the ratio between volume and 
approach capacity is not high.

2.2.2.	 Modeling	arrival	flows	with	more	complex	stochastic	processes

For traffic streams with larger volumes, when interactions between 
vehicles cannot be neglected, other models are used, which give better results 
than the simple Poisson process. Some of them actually represent certain 
generalizations of the simple Poisson process.

The simplest generalization of the simple Poisson process is the 
Compound Poisson process [40], [57]. According to this process, vehicles 
of one traffic stream arrive on an approach in groups. Group arrivals are 
Poisson arrivals with intensity λ, and the number of vehicles in a group, z, is 
an integer random variable with seed function )(zΦ . If )(TN  is the number 
of arrivals in interval of duration T, then

))(1()( ][M zTTN ez Φ−λ−= . (2.10)

The average volume is

)1(Φ′λ=q . (2.11)

The mathematical expectation of the number of vehicle arrivals is

TtN λ=])([M , (2.12)

and the dispersion is

TItND λ=])([ , (2.13)

where I is the dispersion index, defined by expression

)1(
)1(1

Φ′
Φ ′′

+=I , (2.14)
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22 OPTIMAL TRAFFIC CONTROL: Urban Intersections

The Poisson model does not impose an upper bound on the number of 
vehicles that can arrive during a given time interval. In reality this limit 
always exists. If the upper bound on the number of vehicles that can arrive 
during interval τ equals p, then the probability of n vehicle arrivals in interval 
τ is given by the following expression:

nNn vp
n
N

np −








=)( , (2.15)

where pv −=1 .
This expression, in fact, defines binomial distribution of vehicle arrivals 

on an approach.

Many other models ([67], [21], [60], [46]) have been used for describing 
the arrival process of vehicles on an approach. All of them were developed 
in order to provide a better model of real process than the Poisson model. 
However, most of them are much more complex, and the Poisson model is 
still used for most practical purposes.

2.2.3.	 Traffic	stream	parameters

The path used by a traffic stream to traverse an intersection is called 
the trajectory. A trajectory connects an approach on which vehicles enter 
the intersection to the intersection leg on which these vehicles leave the 
intersection. Fig. 2.1 shows trajectories of all traffic streams that pass through 
a four-leg intersection.

Vehicles belonging to some streams may use more than one trajectory 
when traversing the intersection (e.g., streams σ3 and σ7 in Fig. 2.1), and 
accordingly, several exit approaches. Therefore, these streams can be regarded 
as multicomponent streams, where the distinction between components lies 
in the fact that they use different trajectories when traversing the intersection. 
Traffic streams representing these components are called partial traffic 
streams [77].

Vehicles belonging to different partial traffic streams use the same 
lane when arriving to the intersection and different paths for leaving it. For 
example, in Fig. 2.1, stream σ3 comprises two partial traffic streams: 1

3σ  and 
2
3σ .
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For every traffic stream iσ  on an intersection, it is necessary to have the 
following information:

a) The approach iT  used by vehicles belonging to stream iσ , with defined 
lanes assigned to the stream, and traffic signs that regulate direction of 
movement through the intersection.

b) The mathematical model of the random process, which describes vehicle 
arrivals. The most important characteristic of the model is the volume, 
expressed in pcu per time unit. The Poisson process is most often used.

c) The average arrival volume of the traffic stream, and if it is a 
multicomponent stream, then also the average volumes of partial streams, 
expressed as percentages of the arrival volume.

d) The type of the traffic stream. Traffic streams represent different flows: 
vehicles, pedestrians, trams, etc.

e) The trajectory of the traffic stream through the intersection. If the stream 
comprises partial traffic streams, their trajectories have to be known 
also.

Traffic streams on an intersection, as mentioned in Section 2.1, can 
be represented as components of a vector (the vector of arrival flows or 
uncontrolled input):

),,,,,( I21 σσσσ=σ  i .
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The uncontrolled input, σ, is transformed, by control, into the output, i.e., 
the output flows in interval ],[ 0 tt . Vector σ is an element of set ],[ 0 ttΣ , whose 
elements are all uncontrolled inputs in interval ],[ 0 tt , i.e.,

],[ 0 ttΣ∈σ .

2.3.	 Basic	relations	in	the	set	of	traffic	streams

For solving the problem of introducing traffic signals on an isolated 
intersection, as well as for solving the control problem, it is necessary to know 
relations between traffic streams on the intersection. A thorough analysis of 
these relations is very significant if their combinatorial effects are to be taken 
into account. 

Since the main objective of traffic control by traffic lights is to give the 
right-of-way to some traffic streams, and to stop others, it is necessary to 
find, in the set of traffic streams of an intersection, the traffic streams that can 
simultaneously get the right-of-way. Therefore, a traffic stream compatibility 
relation is introduced, defined by a set of traffic stream pairs, such that 
elements of the pair can simultaneously get the right-of-way. 

The traffic stream compatibility relation plays an important role in solving 
traffic control problems related to:

Deciding whether traffic control by traffic lights should be introduced 
at an intersection
Assigning control variables to traffic streams, or to subsets of traffic 
streams
The traffic control process on an intersection

The factors that have to be considered when defining the compatibility 
relation are:

The intersection geometry
Factors related to traffic process safety, for which expert estimations 
of traffic engineers are needed

The analysis of intersection geometry considers mutual relations of 
trajectories of traffic streams. Obviously, when trajectories of two traffic 
streams do not cross, these streams can simultaneously get the right-of-
way, i.e., they are compatible. On the other hand, when trajectories of two 
traffic streams do cross, the streams are in a conflict, and their simultaneous 
movement through the intersection should not be permitted. 

▪

▪

▪

▪
▪
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If volumes are not high, a “filtering” of one stream through another can 
be permitted in some cases. However, when determining the compatibility 
relation, some special requirements should be taken into account, e.g., some 
streams are required to pass through the intersection without any disturbance, 
although filtering could be permitted if only their volumes were considered. 
These requirements are usually achieved by so-called directional signals.

When only geometrical factors are considered, the relation of conflictness 
and the relation of nonconflictness can be defined.

Traffic streams on an intersection are elements of the set of traffic streams, 
S , i.e.,

},,,,,{ I21 σσσσ=  iS , (2.16)

where J∈i , and J is the set of traffic stream indices (1.4):

}I,,I,,,,2,1{}I,,,,2,1{ 
′== iiJ .

Indices I,,2,1 ′= i  are assigned to vehicle traffic streams, and indices 
I,,1I +′=i  to pedestrian and other traffic streams.

Elements of set S  are also components of vector ),,,( I21 σσσ=σ 
, 

which describes the uncontrollable system input.
For exact statement and solution of traffic control problems, it is necessary 

to study the relations of conflictness, nonconflictness, and compatibility.

2.3.1.	 Conflictness	relation	of	traffic	streams

The conflictness relation is illustrated by the intersection presented in 
Fig. 2.1, with the set of traffic streams

},,,{ 0121 σσσ= S .

Some pairs of traffic stream use, along a part of their trajectories, the 
same space on the intersection, i.e., the conflict area. These are the streams 
whose trajectories cross or merge. A conflict exists between such streams.

The set of all pairs of traffic streams that creates a conflict between 
elements of the pair represents the conflictness relation. Thus, the conflictness 
relation, 1C , can be defined in the following way:

SS ×⊂1C , (2.17)

i.e.,

.}, 

 merge,or  cross  and  fo ies trajectorthe |),({1

S∈σσ

σσσσ=

ji

jijiC
 (2.18)
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The graph of conflictness, kG , is defined by set S  and relation 1C :

),( 1CGk S= . (2.19)

The incidence matrix, B′ , of graph kG  for the intersection given in Fig. 2.1 
is:







































=′=′ ×

0001000111
0000111010
0001100111
1010110111
0111000101
0101000110
0100000010
1011110011
0111011100
1011100100

][ 0101jibB . (2.20)

Elements of this matrix, jib′ , are defined as follows:







∉σσ

∈σσ
=

1

1

),(,0

),(,1

C
C

b
ji

ji
ji . (2.21)

All conflict points of traffic streams are indicated in Fig. 2.1. It can be 
noted that the conflictness between two traffic streams means that they can 
have one or more than one conflict point. For instance, streams 2σ  and 3σ  
have two conflict points.

Since the conflict exists between any two streams whose trajectories 
cross or merge, it is obvious that the conflictness relation is symmetrical:

)),((, 111 CCC jiijji ∈σσσσ⇒σσ . (2.22)

This fact can also be noted observing expression (2.20).
Relation 1C  is not reflexive (a stream cannot be in conflict by itself). 

Therefore, 1),( Cii ∉σσ , ( J∈i ).

2.3.2.	 Nonconflictness	relation	of	traffic	streams

The nonconflictness relation of traffic streams represents a set of ordered 
traffic stream pairs, such that the trajectories of the pair elements do not cross 
nor merge. Thus, this relation is the set of all pairs of traffic streams that are 
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not mutually in conflict:

112 \)( CCC SS ×==′ . (2.23)

The graph of nonconflictness is defined by set S  and relation 2C ′ , as

 ),( 2CGk ′=′ S .

2.3.3.	 Compatibility	relation	of	traffic	streams

As already mentioned, when determining the compatibility relation 
of traffic streams, besides data on geometrical features of traffic stream 
trajectories, it is necessary to consider some other factors, i.e., it is necessary 
to determine:

The pairs of conflicting traffic streams that can simultaneously get 
the right-of-way
The traffic streams required to pass through the intersection without 
any disturbance (the streams to which the right-of-way is given by 
directional signals)

Some pairs of conflicting traffic streams can at the same time be pairs 
of compatible streams, although the streams are conflicting. Therefore, it is 
necessary to divide the conflicts into allowed and forbidden [26]. Forbidden 
conflicts can be regulated only by traffic lights, while allowed conflicts are 
solved by traffic participants themselves, respecting priority rules prescribed 
by traffic regulations. Without traffic lights, conflicts are solved by “filtering” 
one stream through another. Obviously, the possibility of filtering depends 
on vehicle spacing interval, which depends on volume of traffic streams. The 
volumes change during a day. There are intervals with very high volume 
like morning peak, afternoon peak, and intervals with significantly lower 
volume like off-peak and night periods. Hence, situations may arise that 
two conflicting traffic streams may simultaneously have the right-of-way in 
one period and not in another. Thus, it might be necessary to change the 
compatibility relation during a day.

The set of traffic stream pairs, which comprise conditionally compatible 
streams, i.e., conflicting streams allowed to simultaneously pass through an 
intersection, can be, thus, defined as follows:

  
.}way -fo-right get the 

uslysimultaneocan   and  streams ,),(|),({ 12 jijiji CC σσ∈σσσσ=′′
 (2.24)

The problem of introducing traffic signals for traffic control on an 
intersection is actually a problem of the same kind. Namely, it is necessary 

▪

▪
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to determine when traffic lights have to be introduced in order to remove 
conflicts, i.e., which are the values of traffic stream volumes when filtering is 
not possible anymore. Before traffic signals are introduced, traffic participants 
themselves, using filtering and respecting priority rules, solve all conflicts.

When volumes of conflicting traffic streams reach some level that filtering 
becomes impossible, the introduction of traffic lights becomes unavoidable 
because traffic participants themselves cannot solve the conflicts. The values 
of traffic stream volumes that justify signalization of an intersection are given 
in tables in various traffic-engineering handbooks. Avoiding introducing 
traffic lights when these levels are reached can lead to many negative effects, 
such as enormous delay and number of stops, increase in the number of traffic 
accidents, etc. Therefore, conflicts at all conflict points on an unsignalized 
intersection are prevented by traffic participants respecting priority rules, 
while at a signalized intersection traffic lights are used in order to avoid 
conflicts at most of the conflict points, with a possibility of some conflict 
points still left for “self-regulation” by traffic participants.

The compatibility relation of traffic stream pairs whose elements can 
simultaneously get the right-of-way is:

222 CCC ′′′=  . (2.25)

In some cases it may be necessary to control the traffic in such a way that 
certain streams can pass through an intersection without conditional conflicts. 
Then they cannot gain the right-of-way simultaneously with any conflicting 
streams, although that would be justified if only volumes were considered. 
For controlling these streams, directional signals are used.

If the set of streams that passes through the intersection without any 
conflict is denoted by S ′ , where SS ⊂′ , then the set of pairs of traffic 
streams that can simultaneously get the right-of-way is defined by the 
following expression:

})or  (,),(|),({\ 223 S ′∈σσ′′∈σσσσ= jijiji CCC . (2.26)

Assuming that each traffic stream is compatible with itself, in order to 
define the set of pairs that define the compatibility relation, the set of pairs 

3C  should be extended by the diagonal S∆  in set S .
Therefore, the compatibility relation can be defined as:

SCC ∆= 3 , (2.27)
where

)(,}|),({ JS ∈∈σσσ=∆ iiiiS . (2.28)

Relation C is symmetric and reflexive.

© 2008 by Taylor & Francis Group, LLC



2 Uncontrolled system inputs 29

The compatibility graph of traffic streams is defined by the set of traffic 
streams, S , and compatibility relation C:

),( CGc S= . (2.29)

Since set S  is finite, and relation C symmetric and reflexive, graph cG  
is a finite, nonoriented graph, with a loop at each node. The incidence matrix 
of this graph is II][ ×= jibB , where .I Scard=  Elements of the incidence 
matrix are defined as

),(   
),(,0

),(,1
J∈







∉σσ

∈σσ
= ji

C
C

b
ji

ji
ji . (2.30)

A compatibility graph does not have to be a connected graph. In Example 
2.1.γ, the compatibility graph has two connected components. In some cases 
a connected component can consist of only one node.
Example	2.1

α) For the intersection presented in Fig. 2.1 determine the compatibility relation and 
compatibility graph if the set of permitted conflicts is defined by the following relation: 

}),(,),(,),(,),(,),({ 877542011612 σσσσσσσσσσ=′′C ,
and the set of traffic streams that shall have no disturbance in passing through the intersection 
(controlled by directional signals) is:

}{ 1σ=′S .
 All conflict points (the point at which trajectories of traffic streams cross or merge) are 
shown in Fig. 2.1. 
 The conflict points for stream 1σ  are points A, B, C, D, E, and F (Fig. 2.2). The allowed 
conflicts are marked by B and C (circled points), i.e., 2011 ),( C∈σσ , 261 ),( C∈σσ .

D E
A

B

C

F

σ1

σ2

σ4

σ5

σ6

σ7

σ8

σ3

σ10

σ9

Figure 2.2

© 2008 by Taylor & Francis Group, LLC



30 OPTIMAL TRAFFIC CONTROL: Urban Intersections

Traffic stream 1σ  could be compatible with 6σ  and 01σ . However, stream 1σ  is controlled 
by a directional signal, and the vehicles belonging to this stream shall not meet any obstacle. 
Therefore, stream 1σ  cannot be compatible with streams 6σ  and 01σ .

 The compatibility graph incidence matrix is:

== x

1110011011
1111000101
1111011000
0111011000
0000111011
1011111001
1011111111
0100001100
1000101011
1100111011

][ 1010ijbB .

The circled 1s in matrix B correspond to pairs of signal groups that can simultaneously have 
the right-of-way in spite of their conflictness. The circled and crossed 1s represent the conflicts 
of stream 1σ  that would be allowed if stream 1σ  were not controlled by the directional signal. 
Since S ′∈σ1 , the stream pairs ),( 61 σσ  and ),( 011 σσ  cannot belong to compatibility 
relation C, and therefore 06,1 =b  and 001,1 =b  (also, 01,011,6 == bb ).

 The compatibility graph ( cG′ ) of traffic streams for the intersection in Fig. 2.1 is presented 
in Fig. 2.3 for the case when stream 1σ  is controlled by an ordinary, nondirectional signal, and 
Fig. 2.4 presents compatibility graph cG  for the same intersection if stream 1σ  is controlled 
by the directional signal.

 The edges of graph cG′  between nodes 1σ  and 6σ , as well as between nodes 1σ  
and 01σ , do not exist in graph cG  because an edge between two nodes representing traffic 
streams indicates that these streams are in the compatibility relation.
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σ1

σ2

σ4

σ5

σ6

σ7

σ8

σ3

σ10

σ9

G 'c :

Figure 2.3

σ1

σ2

σ4

σ5

σ6

σ7

σ8

σ3

σ10

σ9

G 'c :

Figure 2.4

β) An intersection with six traffic streams is presented in Fig. 2.5. Determine the relation 
and graph of compatibility if no conflicts are allowed. 

G c: σ1

σ2

σ4

σ5

σ6

σ3

σ1

σ2

σ4 σ5

σ6

σ3

Figure 2.5

 The compatibility graph is given in Fig. 2.5, and the compatibility relation is represented 
by matrix B, i.e., the incidence matrix of graph cG .























=

110010
111011
011000
000101
110011
010111

B .
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γ) For the intersection presented in Fig. 2.6 determine the relation and graph of compatibility 
if no conflicts are allowed.

G c:

σ1

σ3

σ7

σ2

σ4

σ5

σ6

σ1

σ3 σ7 σ2

σ4σ5σ6

Figure 2.6

 The compatibility graph is given in Fig. 2.6, and the compatibility relation is represented 
by matrix B, i.e., the incidence matrix of graph cG .

























=

1010011
0100100
1011010
0011001
0100100
1010011
1001011

B .
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3. SIGNAL GROUP

Introduction of a traffic control system on an intersection consists 
of installation of signals that will control traffic streams by different light 
indications. The basic intention of traffic signals introduction is, of course, 
prevention of simultaneous movement of incompatible traffic streams.

Traffic control at an intersection consists of giving and canceling the 
right-of-way to particular traffic streams. Giving/canceling the right-of-
way is performed by different signal indications. Meaning of indications is 
assigned by a convention. A green indication for vehicles means allowed 
passage, while red means forbidden passage. An amber indication, appearing 
after a green indication, as well as a red–amber after a red indication, informs 
drivers that the right-of-way will be changed. The duration of amber and 
red–amber intervals in some countries is determined by traffic regulations, 
and it is most frequently specified as 3 s for amber and 2 s for red–amber 
indication.

Signals that control pedestrian streams usually have only two indications: 
red (“stop”) and green (“walk”).

The most frequently used sequence of signal indications for vehicles and 
for pedestrians is presented in Fig. 3.1. However, in some countries other 
sequences exist, such as flashing amber before a steady amber indication, or 
direct switching from red to green, etc.

a) Signal sequence for vehicles

b) Signal sequence for pedestrians

Legend:
red indication
green indication
amber indication
red−amber indication

Figure 3.1
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The control of traffic lights, i.e., forming and implementing specified 
signal sequences, is performed by an electronic device—a traffic controller. 
A controller changes signal indications using sequence of pulses.

Changes of signal indications are described by a mathematical variable, 
so-called control variable. Control variables can be assigned to every traffic 
stream. However, the fact that compatible traffic streams can simultaneously 
gain/lose the right-of-way makes it possible that a subset of traffic streams, 
comprising several compatible streams, can be controlled by a single control 
variable [34].

Therefore, one of the first problems to be solved when introducing traffic 
lights control at an intersection is to establish the correspondence between 
traffic streams and traffic signal sequences, i.e., the control variables that 
control these traffic streams.

The simplest assignment of control variables to traffic streams is to 
assign one control variable to each traffic stream. However, there exist some 
practical reasons that make this assignment not generally applicable.

Technical and economic considerations in earlier years of traffic control 
systems development had caused a tendency to minimize the number of 
control variables. Namely, in this case the traffic controller could be simpler, 
with a smaller number of modules that form control variables, and thus it 
would give a cheaper solution. This reasoning is nowadays not as important 
as it was before. Modern, microprocessor-based traffic controllers can control 
almost any number of signal groups, and the price of their components 
(modules) is not so high any more.

Modern traffic controllers can implement more complex control 
algorithms than was possible before their introduction. However, increasing 
the number of control variables significantly emphasizes the combinatorial 
nature of traffic control problems.

3.1.	 Signal	group	definition

Various intersection performance indices depend on the choice of traffic 
control systems for an intersection. Among these performance indices are: 
total delay or total number of vehicle stops in a defined interval, total flow 
through the intersection (for saturated intersections), capacity factor, linear 
combination of delay and number of stops, etc. Values of these performance 
indices also depend on the assignment of control variables to traffic streams. 
The best results are, obviously, obtained if each traffic stream is controlled 
by one control variable.
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When the number of control variables is less than the number of traffic 
streams, certain constraints have to be introduced that will express the 
requirement that several traffic streams simultaneously get/lose the right-of-
way. The consequence of these constraints is “corruption” of optimum values 
of performance indices compared to the case when each traffic stream is at 
the same time a signal group.

The reduction in the number of control variables results in simplification 
of traffic control problems and also in possibility to use cheaper and simpler 
traffic controllers.

In real-time traffic control systems, in which data on current values of 
traffic stream parameters are used for determining values of control variables, 
a particular attention has to be devoted to choosing appropriate set of control 
variables and their assignment to traffic streams.

Determination of the set of control variables is very complex due to all 
the mentioned reasons. This problem, in fact, is the problem of partitioning 
the set of traffic streams, S , in subsets of traffic streams, such that a single 
control variable can be used to control a subset.

A subset of traffic streams that simultaneously gains/loses the right-of-
way, i.e., that is controlled by a single control variable, is called a signal 
group.

Another way to define a signal group is as follows: A signal group is the 
set of traffic streams that are controlled by identical traffic signal indications. 
Some authors define a signal group as the set of signals on various traffic lights 
that always show a same indication [69]. For traffic equipment manufacturers, 
a signal group is a controller module, which always produces one sequence 
of traffic signal indications.

It is obvious that traffic streams belonging to one signal group have to 
be mutually compatible. However, it is not enough. Namely, signals used for 
control of traffic streams of various types—vehicles, pedestrians, trams, etc., 
cannot always have the same indications, which is necessary if they were to 
belong to a same signal group. Vehicle streams are, for example, controlled 
by signal sequences with four indications, while for pedestrian streams only 
two indications are used. Therefore, signal groups are formed to contain only 
same types of traffic streams and the set of traffic streams S  has to be 
partitioned in several subsets: the subset of vehicle traffic streams, the subset 
of pedestrian traffic streams, etc.

According to the signal group definition, for the intersection presented 
in Fig. 2.5, together with its compatibility graph, the signal groups are the 
following subsets: },,{ 5211 σσσ=D , },{ 312 σσ=D , }{ 63 σ=D , etc.
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A signal group pD  represents a subset of the set of traffic streams S  and 
can be represented as follows:

},,,,,{ )(E21 ppeppppD σσσσ=  , (3.1)

where S∈σ ep , pe E∈  and pE  is the set of traffic stream indices in signal 

group pD , i.e.,

})(E,,,,2,1{ pep =E .

3.2.	 The	relation	of	identical	signal	indications	 
(Identity	relation)

In order to form signal groups, it is necessary to determine for each pair of 
compatible traffic streams whether they can be controlled by traffic lights that 
always have identical indications. The set of such signal group pairs represents 
a relation in the set of traffic streams S . Since this relation determines 
whether identical traffic light indications can be used for controlling signal 
group pairs, it is called the relation of identical signal indications, or the 
identity relation.

The identity relation αC  is defined as:

 
.}, 

 variable,control single aby 
 controlled ebcan    and  streams traffic|),({

S∈σσ

σσσσ=α

ji

jijiC
 (3.2)

Relation αC  can be represented as:

4\ CCC =α ,

where

.}), 
,),,,,(

)),((|),({4

S
FSS

∈σσ
≠∈∈σ∈σ∧

∧∈σσσσ=

ji

l
j

f
i

jiji

lflf
CC

  (3.3)

The subsets F21 ,,,,, SSSS 

f
 represent subsets of signal groups 

that are of the same type (vehicle, pedestrian, tram, etc.). Traffic streams of 
one type are controlled by signals that have same sequences of indications. 
For vehicle traffic streams, for example, this sequence is: green, amber, red, 
red–amber.
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The set F  is the index set of signal group types, i.e., signal types:

}F,,,2,1{  f=F . (3.4)

The collection

},,,,,{ F21 SSSSS 

f=  (3.5)

represents a partition of set S .
Hence, we have:

SS =
=


F

1f

f  (3.6)

),,(, lflflf ≠∈∈∅= FFSS  . (3.7)

The relation of identical traffic signal indications αC  is:
а) Reflexive, i.e.,

)(,),( S∈σ∈σσ α iii C  (3.8)

b) Symmetric, i.e.,

)),((,),(),( ααα ∈σσ∈σσ⇒∈σσ CCC jiijji  (3.9)

To an identity relation there corresponds the identity graph:

),(),( ααα Γ== SS CG , (3.10)

where αΓ  is

)(: SS P→Γα .

Besides the definition ),( αα = CG S  in further discussion the definition 
),( αα Γ= SG  is also used (Appendix I).

The identity graph given in Fig. 3.2 refers to the intersection with ten 
traffic streams, presented in Fig. 2.1, with its compatibility graph of traffic 
streams given in Fig. 2.3. This identity graph corresponds to the identity 
relation in the case when no directional signals are used.

If traffic stream 1σ  is controlled by a directional signal, the identity graph 
will have the form presented in Fig. 3.3 and the corresponding compatibility 
graph is given in Fig. 2.4.
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G α : σ
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Figure 3.2
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1

σ
2

σ
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σ
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σ
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σ
8

σ
9

σ10

Figure 3.3

The identity graph given in Fig. 3.4 refers to the intersection with six 
traffic streams presented in Fig. 2.5, together with its compatibility graph.

If traffic streams of various types pass through an intersection ( 1F > ), 
the identity graph αG  is a nonconnected graph. The number of connected 
components is equal to or greater than the number of stream types F. Graph 

αG  is a nonoriented graph with a loop in each node.

Since graphs ),( CGc S=  and ),( αα = CG S  have the same set of nodes, 
and CC ⊆α , then the identity graph αG  is a subgraph of the compatibility 
graph cG .

© 2008 by Taylor & Francis Group, LLC



3 Signal group 39

Gα: σ1

σ2

σ4

σ5

σ6

σ3

σ1

σ2

σ4 σ5

σ6

σ3

Figure 3.4

3.3.	 The	complete	set	of	signal	groups

The identity relation αC  defines the set of signal group pairs that can be 
controlled by identical signal indications, and the identity graph αG  enables 
determination of all set S  subsets that represent signal groups.

A set of nodes of any subgraph of identity graph αG , such that the 
subgraph is a complete graph, represents, in fact, a signal group. Since the set 
of nodes of a complete subgraph of a graph is a clique (Appendix I), a signal 
group can be also defined in the following way:

A signal group is a clique (in Berge’s sense [9]) of the graph of identical 
signal indications αG .

For traffic control at an intersection, therefore, it is necessary to determine 
a set of signal groups such that each element of set S  belongs to one and 
only one signal group, i.e., clique of graph αG . Such set of signal groups is 
called a complete set of signal groups and it represents a partitioning of set
S .

For one graph of identical signal indications there can exist several 
complete sets of signal groups. This means that one intersection can be 
controlled in several ways, based on the choice of the complete set of signal 
groups. Introducing an appropriate measure for comparison of complete sets 
of signal groups, the choice of the complete set can be formulated as an 
optimization problem, which could be stated as follows: Find the complete 
set of signal groups such that the value of the chosen performance index is 
optimized. The set of feasible solutions for this problem is the collection of 
all complete sets of signal groups.

3.3.1.	 Collection	of	all	complete	sets	of	signal	groups

A complete set of signal groups represents one partitioning of set S . 
Therefore, a complete set of signal groups represents an equivalence relation 
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mCε  in set S  [47], which is defined as:

.}),,  ),),((

))),((),(((|),({

J∈∈σσ⇒

∈σσ∧∈σσσσ=

α

ααε

kjiC
CCC

ki

kjjiji
m

 (3.11)

The signal groups that are elements of the complete set of signal groups 
are equivalence classes of this relation, and the complete set of signal 
groups is the quotient set mCε/S  of set S  by equivalence relation mCε  
(Appendix II). In this definition, }M,,2,1{ =∈ Mm , and M is the total 
number of equivalence relations defined in set S , such that their equivalence 
classes are cliques of the graph of identical signal indications αG .

Therefore, the problem of determining all complete sets of signal groups 
for a given graph of identical signal indications ),( αα Γ= SG  can be 
formulated as follows: Find quotient sets by all equivalence relations defined 
in set S  such that the equivalence classes of these relations are cliques of 
graph αG , i.e., in another words, find all partitionings of set S  such that the 
subsets into which S  is partitioned are cliques of graph αG .

The procedure for determining all complete sets of signal groups for a 
given graph αG  consists of the following steps:

•	 Determining the set of all cliques of graph αG
•	 Forming the collection of quotient sets of all equivalence relations defined 

in set S , with the equivalence classes of these relations being cliques of 
graph αG , i.e., elements of the set determined in step 1

These steps are determined by functions d ′  and d ′′ , which are defined 
below, in the scope of the steps explanation.

а)	 Determination	of	the	set	of	all	cliques	of	graph	 ),( αα Γ= SG

Graph αG  cliques, which are in fact signal groups, represent subsets of 
set S , such that for any clique 

clD  of graph αG  there holds )(SP∈
clD . 

The set of all cliques D of graph αG  is a collection of subsets of set S , i.e., 
))(( SPPD∈ , where )(SP  is a partitive set of set S .

Function )( α′ Gd , by which set D is determined, is defined as follows:

,},{

},)()()( {)(

L21 cc

ccc

D,D,,D,D

lDD|DGd

l

ccijljlil

=

∈σΓ∈σ⇒∈σ∧∈σ==′ αα LD

 (3.12)

where
}L,...,,...,2,1{ ccc l=L ,
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because each clique is the set of nodes of a complete graph.
Relation αC  is reflexive (a loop exists in each node of graph αΓ ), so that 

the sets containing just a single node are also cliques of this graph, i.e., they 
are signal groups also. This can be expressed as ii σΓ∈σ α , ( S∈σi ).

The set of all cliques, D, of a graph is obtained using a CLIQ program, 
the pseudocode of which is given in Appendix III. Other algorithms used for 
finding graph cliques are listed in Appendix VI.
b)	 Forming	the	collection	of	quotient	sets	by	all	equivalence	relations	defined	

in	set	 S ,	with	the	equivalence	classes	of	these	relations	being	cliques	of	
graph	 ),( αα Γ= SG

Collection D contains all cliques of graph αG . Thus, it is obvious that 
one quotient set, m

aD , i.e., a complete set of signal groups, is a subset of 
collection D, namely:

)(/ DPD ∈= ε
mm

a CS , or DD ⊂m
a , ( M∈m ) (3.13)

)(    ,}{/ P21 MS ∈== ε mD,,D,,D,DC mm
p

mmmm
a m

D  (3.14)

and the collection of all complete sets of signal groups bD  is a subset of set 
)(DP , i.e.,

))(( DPPD ∈b . (3.15)

Collection bD  is the collection of quotient sets by all equivalence relations 
mCε , i.e.,

},,,,,{ M21
a

m
aaab DDDDD = , (3.16)

where:

M  − the index set of all equivalence relations mCε , i.e.,

}M,,,,2,1{  m=M , (3.17)

mP  − the index set of all classes of equivalence mCε , i.e.,
}P,,,,2,1{ mm p =P . (3.18)

Since each equivalence relation and its quotient set, m
aD , determine one 

partitioning of set S , function d ′′  can be defined as follows:

 

.},)

,,,

,)(()()((|{)(

P

1

MS

PP

∈=

≠∈∈

∅=∈∈==′′

=

mD

rprp
DDDDd

m

p

m
p

mm

m
r

m
p

m
a

m
r

m
a

m
p

m
ab



DDDDD

 (3.19)
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Collection bD  of all complete sets of signal groups for a given graph αG  
is determined by composition of functions d ′  and d ′′ :

ddGdb ′′′== α )(D . (3.20)

The following example illustrates determination of all complete sets of 
signal groups for an intersection with six signal groups.
Example	3.1

 Determine the collection of all complete sets of signal groups for the graph of identical 
signal indications given in Fig. 3.4.

 The graph of identical signal indications, ),( αα Γ= SG  is defined as follows:

},,,,,{ 654321 σσσσσσ=S

},,,{ 53211 σσσσ=σΓα },,{ 5122 σσσ=σΓα },{ 133 σσ=σΓα

},{ 544 σσ=σΓα },,,{ 42155 σσσσ=σΓα }{ 66 σ=σΓα

1) Determining the set of all cliques

 The set of all cliques, D  of graph αG , i.e., the set of all signal groups, determined by 
CLIQ program, is:

.},,,{
}},,{,},{,},{,},{,},{      

,},{,}{,}{,}{,}{,}{,}{{)(

2121

52154525131

21654321

DDD

Gd

=
σσσσσσσσσσσ

σσσσσσσσ=′= αD

 The signal groups are:

}{ 11 σ=D , }{ 22 σ=D , }{ 33 σ=D , }{ 44 σ=D , }{ 55 σ=D , }{ 66 σ=D ,

},{ 217 σσ=D , },{ 318 σσ=D , },{ 519 σσ=D , },{ 5201 σσ=D , 

},{ 5411 σσ=D ,

},,{ 52121 σσσ=D .

2) Forming the collection bD  of the complete sets of signal groups

 The elements m
aD  of collection bD  are the following partitionings of set S :

},,,,,{},...,,{

}}{,}{,}{,}{,}{,}{{/

654321
1
6

1
2

1
1

654321
11

DDDDDDDDD

Ca

==

σσσσσσ== εSD
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},,,,{},...,,{

}},{,}{,}{,}{,}{{/

76543
2
5

2
2

2
1

216543
22

DDDDDDDD

Ca

==

σσσσσσ== εSD

},,,,{},...,,{

}},{,}{,}{,}{,}{{/

86542
3
5

3
2

3
1

316541
33

DDDDDDDD

Ca

==

σσσσσσ== εSD

},,,,{},...,,{

}},{,}{,}{,}{,}{{/

96432
4
5

4
2

4
1

516432
44

DDDDDDDD

Ca

==

σσσσσσ== αSD

},,,,{},...,,{

}},{,}{,}{,}{,}{{/

016431
5
5

5
2

5
1

526431
55

DDDDDDDD

Ca

==

σσσσσσ== εSD

},,,,{},...,,{

}},{,}{,}{,}{,}{{/

116321
6
5

6
2

6
1

546321
66

DDDDDDDD

Ca

==

σσσσσσ== εSD

},,,{},...,,{

}},,{,}{,}{,}{{/

21643
7
4

7
2

7
1

521643
77

DDDDDDD

Ca

==

σσσσσσ== εSD

},,,{},...,,{

}},{,},{,}{,}{{/

11763
8
4

8
2

8
1

542163
88

DDDDDDD

Ca

==

σσσσσσ== εSD

},,,{},...,,{

}},{,},{,}{,}{{/

01864
9
4

9
2

9
1

523164
99

DDDDDDD

Ca

==

σσσσσσ== εSD

},,,{},...,,{

}},{,},{,}{,}{{/

11862
01

4
01

2
01

1

543162
0101

DDDDDDD

Ca

==

σσσσσσ== εSD

 The collection of complete sets of signal groups, bD , is thus

},,,{)( 0121
aaab d DDDDD =′′= .
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3.3.2.	 Number	of	signal	groups	in	a	complete	set	of	signal	groups

The number of signal groups in a complete set of signal groups is in fact 
the number of control variables used to control traffic on the intersection. The 
complexity and price of the device that controls traffic, i.e., the controller, 
as well as complexity of the control algorithm, significantly depend on the 
number of signal groups. Because of these reasons, practitioners often tend 
to choose the minimal number of signal groups, although it is obvious that 
such a choice deteriorates performance indices of the traffic control system 
compared to the case when each traffic stream makes one signal group.

Complete sets of signal groups, as it can be seen in Example 3.1 in 
the preceding subsection, contain various numbers of elements, i.e., signal 
groups. The number of signal groups in complete sets of signal groups in this 
example is as follows:

61 =acard D 

5632 ==== aaa cardcardcard DDD    

4   0187 ==== aaa cardcardcard DDD  .

Thus, among 10 complete sets of signal groups, 1 set contains 6 signal 
groups, 5 of them contain 5 signal groups, and 4 contain 4 signal groups.

The number of complete sets of signal groups grows very fast with the 
number of signal groups. Table 3.1 [34] presents data on the number of signal 
groups and the number of complete sets of signal groups for intersections 
having five to eleven traffic streams. These data are obtained for randomly 
chosen intersections in Belgrade. 

Table 3.1

Number of traffic streams  
- Scard=I 5 6 7 8 9 11

Number of signal groups  
- Dcard 10 12 14 13 30 48

Number of complete sets of signal
groups - bcard D

10 10 20 16 235 2490

In choosing the complete set of signal groups, i.e., the control variables 
that will be used for controlling an intersection, it is interesting to determine 
the complete sets with the minimal and the maximal number of signal 
groups.
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a)	 Complete	sets	of	signal	groups	with	maximal	number	of	signal	groups

Obviously, the maximal number of signal groups is equal to the number 
of traffic streams in set S . In this case, each signal group controls exactly 
one traffic stream. This means that a control variable is assigned to each 
traffic stream. The maximal number of signal groups in a complete set of 
signal groups is, thus:

I }| max{PmaxP ==∈==′ Scardcard b
m
a

m
ammg DDD , (3.21)

where I is the number of traffic streams in set S .
b)	 Complete	sets	of	signal	groups	with	minimal	number	of	signal	groups

The complete set of signal groups containing the minimal number of 
elements can be determined by solving the problem of optimal partitioning of 
the set of traffic streams, S . The problem can be stated as follows:

If
}|min{PminP b

m
a

m
ammg card DDD ∈==′′ , (3.22)

find the set *
aD  defined as:

} ,  P   |{*
b

m
ag

m
a

m
aa card DDDDD ∈′′== . (3.23)

The problem can be formulated as the problem of optimal partitioning 
of set S  [37]. To each complete set of signal groups m

aD , i.e., to each 
partitioning of set S , a “selection vector” x can be assigned, defined as

T
l cc

xxxxx ],,,,,[ L21 = ,

where B∈
clx , ( ccl L∈ ), and

)(    ,
otherwise  ,0

 fi  ,1
cc

m
al

l l
D

x c
c

L∈




 ∈

=
D

.

The following notations can be introduced:

cclieE LI][ ×=



 ∈∈σ

=
otherwise  ,0

, fi  ,1 D
cc

c

lli
li

DD
e

S  I   ,  L cardcardc == D
TT

clcccc cc
aaaaa ]1,,1,,1,1[],,,,,[ L21  ==

TT
cicccc bbbbb ]1,,1,,1,1[],,,,,[ I21  ==
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Then, the problem of determining the collection of sets of complete signal 
groups *

aD  with the minimal number of elements gP ′′  can be stated as 
follows:

Find all vectors x so as to minimize the function

∑
=

==
c

c

c
l

l
T
cm xxa

L

1
P  (3.24)

subject to the following constraints:

cbxE =  (3.25)

)(,}1,0{ ccl lx
c

L∈∈ .

If there exists only one solution to the stated problem, x*, it is obvious 
that

∑
=

===′′
c

c

c
l

lcmg xxa
L

1

**PminP . (3.26)

Several algorithms can be used for solving problems of such type [74].
Appendix II contains the pseudocode of MINA program, which is based 

on Garfinkel and Nemhauser algorithm [28].

Example	3.2

 Determine complete sets of signal groups with the minimal number of elements for the 
intersection whose graph of identical signal indications is given in Fig. 3.4.

 The set of all traffic streams is:

},,,,,{ 654321 σσσσσσ=S .

 The set of all cliques D  of graph αG , i.e., the set of signal groups is:

},,,{
}},,{,},{,},{,},{      

},{,},{,}{,}{,}{,}{,}{,}{{

2121

521545251

3121654321

DDD =
σσσσσσσσσ

σσσσσσσσσσ=D























=

000000100000
111100010000
010000001000
000010000100
101001000010
100111000001

E
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TT
cccc aaaa ]1,,1,1[],,,[ 2121  ==

TT
cccc bbbb ]1,,1,1[],,,[ 621  == .

 
The problem can be, thus, stated as follows:

 Find all vectors nx*  for which the function

2121P xxxxacg +++== 

obtains minimal value, subject to constraints

cbxE = ,
which can be written as:

1
1
1
1
1
1

6

21110195

114

83

210172

219871

=
=++++
=+
=+
=+++
=++++

x
xxxxx

xx
xx

xxxx
xxxxx

)(,}1,0{ ccl lx
c

L∈∈ .

 The minimal value 4P =′′g  is obtained, using MINA program for the following vectors 
nx* :

Tx ]0,1,0,0,0,1,1,0,0,1,0,0[1* = ,
Tx ]0,0,1,0,1,0,1,0,1,0,0,0[2* = ,
Tx ]0,1,0,0,1,0,1,0,0,0,1,0[3* = ,
Tx ]1,0,0,0,0,0,1,0,1,1,0,0[4* = .

Therefore,

 .},,,{

}},,,{,},,,{   

,},,,{,},,,{{

01987

2164311862

0186411763
*

aaaa

a

DDDDDDDD

DDDDDDDD

DDDD

D

=

=

The pseudocode of MINA program is given in Appendix III. The program 
can be used only for determination of complete sets of signal groups with 
minimal number of elements.
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3.3.3.	 Compatibility	relation	of	signal	groups

When determining the control (signal plan) for an intersection, essential 
information relates to the feasibility of simultaneous giving right-of-way to 
different signal groups, and to determination of signal group pairs, belonging 
to a complete set of signal groups, such that the components of the pair are not 
allowed to move simultaneously through the intersection. This information 
is contained in the compatibility relation of signal groups, as mentioned in 
Section 2.3. The compatibility relation is defined as follows: Two signal 
groups are compatible if each traffic stream belonging to one signal group is 
compatible with each traffic stream belonging to the other signal group.

The compatibility relation m
a

m
a

m
gC DD ×⊂  can be defined by the following 

expression:

 
.)(

}),()()(|)({

M∈

∈σσ⇒∈σ∧∈σ=

m
CDDD,DC ji

m
qj

m
pi

m
q

m
p

m
g  (3.27)

The compatibility relation is reflexive, i.e.,

)( m
a

m
p

m
p

m
g

m
p D DCD D∈    ,

and symmetric, i.e.,

)(   ,  m
a

m
q

m
p

m
p

m
g

m
q

m
q

m
g

m
p D,DDCDDCD D∈⇒ .

The graph

),( m
g

m
a

m
g CG D=  (3.28)

is the graph of signal group compatibility of a complete set of signal groups 
m
aD . Graph m

gG  is a nonoriented graph, with a loop at each node.

Example	3.3

 An intersection with seven traffic streams is presented in Fig. 3.5, together with the graph 
of compatibility of traffic streams, cG , and the graph of signal groups compatibility, 1

gG , 
when the set of signal groups is: 

 .}},{,},{,}{,}{,}{{
},,,,{

7541632

1
5

1
4

1
3

1
2

1
1

1

σσσσσσσ=
== DDDDDaD
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σ7

σ1

σ2

σ4

σ5

σ6

σ3

σ1

σ2

σ4σ5

σ6 σ3

σ7Gc:

D1
3

D1
2D1

1

G1
g:

D1
5

D1
4

Figure 3.5

Example	3.4

 Define and draw compatibility graphs for all complete sets of signal groups defined for 
the intersection presented in Fig. 3.4 in Example 3.1. The compatibility graph of traffic streams 
for this intersection is given in Fig. 2.5.

 The intersection presented in Fig. 3.4 has six traffic streams, and the identity graph αG . 
The set of all cliques, D , of this graph is (Example 3.1):

 .},,,{
}},,{,},{,},{,},{,},{      

,},{,}{,}{,}{,}{,}{,}{{)(

2121

52154525131

21654321

DDD

Gd

=
σσσσσσσσσσσ

σσσσσσσσ=′= αD

 The collection of all complete sets of signal groups, bD , is

},...,,{ 0121
aaab DDDD = .

 The complete sets of signal groups are listed in Example 3.1. All relations m
gC , 

)( M∈m  are symmetric, and in defining these relations an element ),( m
i

m
j DD  is not 

included if element ),( m
j

m
i DD  exists.

 The compatibility graphs that correspond to complete sets of signal groups are presented 
below, in Figures 3.6–3.15.
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а) ),( 111
gag CG D=

}}{,}{,}{,}{,}{,}{{
},,,,,{
},,,,,{

654321

654321

1
6

1
5

1
4

1
3

1
2

1
1

1

σσσσσσ=
=
=

DDDDDD
DDDDDDaD

}),(

,),(,),(,),(,),(

,),(,),(,),(,),(

,),(,),(,),(,),({

1
6

1
6

1
6

1
5

1
5

1
5

1
5

1
4

1
4

1
4

1
3

1
3

1
6

1
2

1
5

1
2

1
2

1
2

1
5

1
1

1
3

1
1

1
2

1
1

1
1

1
1

1

DD

DDDDDDDD

DDDDDDDD

DDDDDDDDCg =

D 1
1

D 2
1

D 3
1

D 4
1

D 5
1

D 6
1

Figure 3.6

b) ),( 222
gag CG D=

}},{,}{,}{,}{,}{{
},,,,{

},,,,{

216543

76543
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5

2
4

2
3

2
2

2
1

2

σσσσσσ=
=
=

DDDDD
DDDDDaD

}),(,),(,),(,),(

,),(,),(,),(),,({
2
5

2
5

2
4

2
4

2
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2
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2
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2
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2
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2
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2
1

2

DDDDDDDD
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D 1
2 D 2
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Figure 3.7

c) ),( 333
gag CG D=

}},{,}{,}{,}{,}{{
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DDDDD
DDDDDaD
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5
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Figure 3.8
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d) ),( 444
gag CG D=

}},{},{,}{,}{,}{{
},,,,{
},,,,{

516432

96432
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σσσσσσ=
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DDDDD
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Figure 3.9

e) ),( 555
gag CG D=

}},{,}{,}{,}{,}{{

},,,,{
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=

DDDDD
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Figure 3.10
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Figure 3.11
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g) ),( 777
gag CG D=

}},,{,}{,}{,}{{

},,,{
},,,{

521643

21643

7
4

7
3

7
2

7
1

7

σσσσσσ=

=
=

DDDD
DDDDaD

}),(,),(,),(,),({ 7
4

7
4

7
3

7
3

7
2

7
2

7
1

7
1

7 DDDDDDDDCg =

D 1
7 D 2

7

D 3
7D 4

7

Figure 3.12
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Figure 3.13
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Figure 3.14
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Figure 3.15

 The collection of complete sets of signal groups has ten elements, i.e.,

},,,,,,,,,{ 01987654321
aaaaaaaaaab DDDDDDDDDDD = .
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3.3.4.	 Relation	of	partial	ordering	in	collection	 bD

The assignment of control variables to signal groups, i.e., the choice of 
the complete set of signal groups that will be used for traffic control, by all 
means affects performance indices of the intersection control process.

In order to make the best choice of the set of signal groups, it is necessary 
to introduce a measure of effectiveness that defines the quality of traffic 
control as a function of a complete set of signal groups, i.e., it is necessary to 
introduce the function

R: →bGJ D , (3.29)

where R is the set of real numbers.

Function GJ  can represent the maximal capacity of an approach or the 
whole intersection, the minimal delay and number of stops, the maximal 
capacity factor, or any other function that can be used to access the quality of 
traffic control process.

Function GJ  can represent even more complex performance index 
that includes some economic parameters, such as, for example, the cost of 
introducing traffic signals on the intersection, etc.

This function, in fact, introduces a linear ordering relation, lR  in 
collection bD , such that:

q
al

m
a

q
aG

m
aG RJJ DDDD ⇒≤ )()( , (3.30)

i.e., the complete set of signal groups m
aD  is better or equal to the complete 

set q
aD  in respect to criterion GJ . In such a way, any two complete sets of 

signal groups can be compared, and the best complete set can be selected.
However, even without introducing relation lR , there already exists the 

relation of partial ordering in collection bD , which holds for all performance 
indices that are functions of traffic parameters.

A complete set of signal groups m
aD  represents one partitioning of set S , 

and collection bD  represents collection of all complete sets of signal groups

},...,,...,,{ M21
a

m
aaab DDDDD = .

In collection bD  there exists a relation of partial ordering, or so-called 
refinement relation [51], pR , defined as follows:

 .},,

,))()((),(|),({
q
a

r
ab

q
ab

r
a

tsts
q
at

r
as

q
a

r
ap DDDDDDR

DDDDDD

DDDD

≠∈∈

⊂∨=⇒∈∈=
 (3.31)
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Taking into account the definition of relation pR , i.e., the fact that 
q
ap

r
a R DD  if and only if each signal group in complete set of signal groups r

aD  
is a subset of a signal group that belongs to complete set q

aD , there can be 
concluded that r

aD  is a refinement of q
aD .

In this case, the pair

),( pb RDX =  (3.32)

represents a partially ordered set, and can be represented by a special graph 
that is called Hasse diagram (Appendix IV) [19], [25], [51]. A Hasse diagram 
is constructed in the following way. To each element of collection aD  there is 
assigned a node in Hasse diagram. Nodes r

aD  and q
aD  are joined by an edge if 

q
ap

r
a R DD  and no v

aD  exists such that v
ap

r
a R DD  and q

ap
v
a R DD . Hasse diagram is 

represented by a nonoriented graph, with the convention that when q
ap

r
a R DD , 

the node representing r
aD  is drawn below the node representing q

aD .
The number of complete sets of signal groups rapidly grows with the 

number of signal groups and thus, very often, the choice of the complete set 
of signal groups becomes a very complex problem. Using the refinement 
relation pR  can lead to simplification of this problem (see Part V).

Example	3.5

 Define the relation of partial ordering (refinement) in collection bD  determined in 
Example 3.1, and represent it by a Hasse diagram.

 The collection bD  (Example 3.1) has ten elements that represent complete sets of signal 
groups:

},,,{ 0121
aaab DDDD = .

These elements represent the following collections:

}{ 654321
1 D,D,D,D,D,Da =D , }{ 76543

2 D,D,D,D,Da =D ,

}{ 86542
3 D,D,D,D,Da =D , }{ 96432

4 D,D,D,D,Da =D ,

}{ 016431
5 D,D,D,D,Da =D , }{ 116321

6 D,D,D,D,Da =D ,

}{ 21643
7 D,D,D,Da =D , }{ 11763

8 D,D,D,Da =D , 

}{ 01864
9 D,D,D,Da =D , }{ 11862

01 D,D,D,Da =D .

 The collection of all signal groups, D , is

},,,{ 2121 DDD =D .
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 The signal groups are defined as follows:

}{ 11 σ=D , }{ 22 σ=D , }{ 33 σ=D , }{ 44 σ=D , }{ 55 σ=D , }{ 66 σ=D ,

},{ 217 σσ=D , },{ 318 σσ=D , },{ 519 σσ=D , },{ 5201 σσ=D , 

},{ 5411 σσ=D ,

},,{ 52121 σσσ=D .

 Relation pR  is expressed by the following set of pairs:

}),(,),(,),(,),(,),(,),(

,),(,),(,),(,),(,),(,),(

,),(,),(,),(,),(,),(,),({

01686957574013

9382720119181

716151413121

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaapR

DDDDDDDDDDDD

DDDDDDDDDDDD

DDDDDDDDDDDD=

.

 There can be noted that the complete set of signal groups 1
aD  is “better” than any other 

complete set (this holds for any performance index). Also, there can be noted, for example, 
that 5

aD  is “better” than 7
aD  and 9

aD , and that it is “worse” than 1
aD . However, nothing can 

be said about the relation of 5
aD  to other complete sets of signal groups.

 The Hasse diagram of the partially ordered set bD  is given in Fig. 3.16.
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4. TRAFFIC CONTROL

Traffic process on a signalized intersection, as explained in Chapter 
2, can be described by two functions: state transition function 1ϕ  and the 
reaction function, i.e., output function 2ϕ . In order to determine a “new” 
state and output, the uncontrolled inputs, i.e., arrival traffic flows (traffic 
streams) have to be known, as well as the controlled inputs, i.e., the control. 
The control is defined as a vector whose components are functions of time. 
These components control traffic streams by different signal indications. To 
different signal indications certain control variable values are assigned by a 
convention, as mentioned in Chapter 3.

A control variable is assigned to each signal group in the chosen complete 
set of signal groups.

In order to determine the control during an interval, values of control 
variables should be known at any instant of the interval. Therefore, the traffic 
control problem is the problem of determining time functions which, in fact, 
represent control variables in given interval.

In contemporary traffic control systems, control variables are periodic 
time functions. This means that it is necessary to determine values of these 
control variables only in the interval equal to the base period of these 
functions. Duration of this base period is called cycle duration or cycle time. It 
remains constant in time periods during which the stochastic variables, which 
represent arrival flows, can be regarded as stationary stochastic processes.

Real-time traffic control systems have the feature that data on current 
values of traffic flow parameters are included when determining values of 
control variables. The data are obtained using vehicle detectors, realized with 
various sensors (inductive, pneumatic, laser, etc.). These data are mostly used 
for modification of already determined values of control variables. Control 
variables in this case are also periodic function of time, determined on the 
basis of average values of traffic flow parameters, observed in longer time 
periods. 
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4.1. Control variables

A control variable is assigned to each signal group. Different control 
variable values correspond to different indications of traffic lights that 
control the signal group. Therefore, the set from which a control variable can 
“assume” its value must have the number of elements equal to the number of 
different light indications used to control the associated signal group.The set 
of values that can be assumed by variables assigned to vehicle signal groups 
will have four elements. Similarly, the set of values that can be assumed by 
variables assigned to pedestrian signal groups will have two elements, etc.

However, in all exact methods and programs for traffic control problem 
solving, the sequence of signal indications used to control vehicle signal 
groups, shown in Fig. 3.1, is substituted by the sequence, which contains only 
two indications: green and red. In this way, the number of elements of the set 
of available values of control variables assigned to vehicle signal groups is 
reduced to two.

This transformation is performed by substituting the real function that 
describes the queue discharging from a saturated intersection approach (the 
queue remains after the end of green indication) with a rectangular function, 
as shown in Fig. 4.1 [88], [89]. The area between the time axis and the volume 
function, which represents the number of vehicles that leave the approach 
during green indication, is the same in both cases. The edge of the rectangle 
lying on the ordinate axis represents the saturation flow volume, and the edge 
lying on the abscise axis is called the effective green time. The difference 
between the cycle time and effective green time is called the effective red 
time.

s

q

t

effective green time
Legend:

green indication

amber indication

red−amber indication

red indication

Figure 4.1

Therefore, the cycle time consists of the effective green time, during 
which the queue discharges with saturation flow volume, and the effective 
red time, during which the flow volume is equal to zero.
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Relations between cycle time, displayed green, red, and amber times and 
effective green and red times are given in Appendix V. 

For control of pedestrian and tram streams only two different traffic light 
indications are used, so that there is no need to transform them into effective 
values, as was the case with vehicle traffic streams.

Control variables are assigned to signal groups after the complete set of 
signal group is chosen, i.e., when one element is chosen from the collection 
of all complete sets of signal groups,

},,,,,{ M21
a

m
aaab DDDDD = .

Let the chosen element be:

},,,,,{ P21
mm

p
mmm

a m
DDDD =D . (4.1)

Since further discussion assumes the set m
aD  is defined, index m can be 

neglected. Thus, the chosen complete set of signal groups can be represented 
as:

},,,,,{ P21 DDDD pa ′′′′= D . (4.2)

The set of signal group indices in the chosen complete set of signal 
groups is:

}P,,,,2,1{  p=P . (4.3)

Notation pD′  is introduced to distinguish apD D∈′  from D∈
clD , when 

plc = .
The number of signal groups in the chosen complete set of signal groups 

is less than or equal to the number of traffic streams on the intersection, i.e., 
IP ≤ .
Assignment of control variables to signal groups can be represented by a 

function, af , in the following way:

U ′→aaf D: ,
where

})(,,)(,,)(,)({ P21 ⋅′⋅′⋅′⋅′=′ uuuu p U , and

)(,)()( P∈⋅′=′ puDf ppa . (4.4)

)(⋅′pu  is a periodic time function, with the property:

)(,)mod()( P∈′=′ pctutu pp .

Thus, function af  assigns control variable )(⋅′pu  to signal group pD′  
)( P∈p . Set P  is, therefore, the index set for both signal groups and 

control variables.
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To different signal indications certain control variable values are assigned 
by a convention, as mentioned in Chapter 3. Because after transformation into 
effective values only two different light indications exist, it can be assumed 
that control variable )(⋅′pu  can take either value 0 or 1. These values have the 
following meaning:










′
′

′
′

=′

) gcontrollin signals fo indication red (effective
 at timeway -fo-right  thehavenot  does  group signal fi0,

) gcontrollin signals fo indicationgreen  (effective
 at timeway -fo-right  thehas  group signal fi,1

)(

p

p

p

p

p

D
tD

D
tD

tu

 (4.5)

During one control variable cycle, the right-of-way is once given and 
once taken from each signal group. Therefore, on the basis of data on effective 
green times (start time and end time), the cycle time, and the time the cycle 
starts, the value of control variable can be determined for any t, regardless 
whether it is greater or less than the cycle time, or 0<t  or 0>t .

The relation between start and end time of effective green for signal group 
pD′  and the time when cycle begins is illustrated by Fig. 4.2. Notations in this 

figure have the following meaning:
c – the cycle time,

pt′ – the time the effective green of signal groups pD′  starts, in regard to 
the beginning of the cycle,

pt ′′ – the time the effective green of signal groups pD′  ends, in regard to 
the beginning of the cycle.

The value of control variable )(⋅′pu  for any t can be determined using the 
following expression:

))())(mod())(mod(()( ppppp ttcttctthtu ′′−′−′′−′=′ . (4.6)

It can be noticed that values of control variable are determined using Heaviside 
function, which is defined as:





<
≥

=
0,0
0,1

)(
x
x

xh . (4.7)

Therefore, the control at time t can be described by the following 
vector:

T
p tututututu ])(,,)(,,)(,)([)( P21 ′′′′=′

 , (4.8)

where each variable )(⋅′pu  can get either the 0 or 1 value.
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Figure 4.2

Interval ],[ 0 tt , for which the control ],[ 0 ttu  has to be determined, is chosen 
so that the assumption on stationarity of the stochastic process represented 
by components of vector ],[],[ 00 ttttq Q∈  is justified. The interval T⊂],[ 0 tt  
and set T  is defined in Section 2.1. This assumption is valid as long as 
stochastic process q is stationary. Interval ],[ 0 tt  can be considered as longer 
than 10 to 15 minutes [83].

Component pttu ],[ 0
 of control vector ],[ 0 ttu  represents restriction of 

control U∈⋅′ )(pu  to interval T],[ 0 tt . Function ],[ 0 ttu  is a periodic vector 

function, with cycle duration c, and ctt >>− 0 .
In many countries, the maximal cycle time is limited to 2 minutes. 

Therefore, in order to determine ],[ 0 ttu , which is a periodic function of time, 
it is enough to determine the control during the cycle time, i.e., the restriction 
of function ],[ 0 ttu  to interval ],[],0[ 0 ttc  .

The control vector, or control )(⋅u  in further text, represents the restriction 
of function ],[ 0 ttu  to interval ],[],0[ 0 ttc  , and the following notations are 
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used:

U ′∈⋅′ )(u , where }|)({)( T∈=⋅′ ttuu , ( ),( ∝∝−=T )

],[],[ 00 ttttu U∈ , where ],[ 0 ttu  is restriction of )(⋅′u  to interval T],[ 0 tt

U∈⋅)(u , where )(⋅u  is restriction of ],[ 0 ttu  to interval ],[],0[ 0 ttc  , 
and

)(tu  is element of )(⋅u  at time t.

The controls that satisfy certain conditions (Section 2.1) are elements of 
the set of feasible controls, fU .

4.2. The control—signal plan

Traffic control on a signalized intersection during a cycle is defined by 
the vector time function:

T
p uuuuu ])(,,)(,,)(,)([)( P21 ⋅⋅⋅⋅=⋅  . (4.9)

Components of this function are functions of time, in interval ],0[ c . A 
common name for vector time function )(⋅u  is signal plan. 

As an example, the signal plan, i.e., functions )(⋅pu  presented in Fig. 4.3 
are used for traffic control on the intersection presented in the same figure. 
The same figure contains, also, the graphic representation of the signal plan, 
which is common in traffic engineering practice. This representation contains 
the intervals of amber and red–amber indications, as well. The signal plan 
presented in Fig. 4.3 is:

Tuuuuu ])(,)(,)(,)([)( 4321 ⋅⋅⋅⋅=⋅ .

Values of variables )(,)(,)(,)( 4321 ⋅⋅⋅⋅ uuuu , for any t in interval ],0[ c , can 
be determined using expression (4.6), with values of pt′  and pt ′′  known in 
interval ],0[ c .

4.2.1.	 Control	vectors—phases

In any signal plan there exist some intervals (see Fig. 4.3) in which no 
component changes its value. Therefore, a signal plan can be represented 
still in another way. Namely, a signal plan can be described by a sequence of 
control vectors, together with their durations. Each control vector represents 
the control in the interval in which no component changes its value. Thus, a 
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signal plan can be described as:

]),(,,),(,,),(,),([)( KK2211 TTkkTTu ττττ=⋅ uuuu  , (4.10)

where K is the number of control vectors in the signal plan. 
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Figure 4.3 
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Control vectors K21 ,,,,, uuuu 

k  are often called phases. Both terms, 
control vector and phase, will be used in further discussions.

Signal plan determination now can be represented as the problem of 
finding the control vectors, their sequence, duration, and number. 

The term phase is not uniquely defined in the literature. In accordance 
with the definition given above, here is the Stoffer’s definition [77]: “... ‘traffic 
signal phase’ (or, shortly, ‘phase’) is the complete specification of signal 
indications which can appear simultaneously.” Similar to this is the Akcelik's 
definition [2]. In British literature, Webster [89], Allsop [4], and other authors 
use the following definition: a phase is the sequence of signal indications 
used to control a signal group during the cycle. This definition represents the 
sequence of values of one control variable during the cycle. The definition 
used in this text is similar to notion of “stage” in British literature.

The signal plan from Fig. 4.3 now can be presented in the following 
way:

.]),)0101((     

,),)1,0,0,0((,),)0,0,0,0((,),)0,1,0,0((,),)0,1,0,1((     

,),)0,1,0,0((,),)0,0,0,0((,),)0,0,1,0((,),)1,0,1,0(([

]),(,,),(,),([)(

9

8765

4321

992211

TT

TTTTTTTT

TTTTTTTT

TTTu

τ

ττττ

ττττ=

τττ=⋅ uuu 

 

The set of indices of intervals with constant values of control variables 
is

}K,,,,2,1{  k=K . (4.11)

4.2.2.	 Signal	plan	structure

Variables ku  and kτ  are of a different nature. Variables ku  are vectors, 
whose components assume discrete values belonging to set }1,0{ , while phase 
durations kτ  are continuous variables, by their very nature.

Bearing in mind that there exist constraints related only to variables ku  
and their sequences, K21 ,,,,, uuuu 

k , it is necessary to give particular 
attention to selection of these vectors and their sequences. Therefore the 
notion of signal plan structure is introduced, which relates to these variables 
only [37]. The signal plan structure is defined as the sequence:

],,,,,[ K21 uuuuu 

k= . (4.12)
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Thus, changes in the number of phases, their sequence, or components of 
a phase, represent changes of the signal plan structure. 

Related to signal plan structure is the classification of traffic controllers 
into so-called phase-based controllers and signal–group-based controllers. 
With phase-based controllers, the signal plan structure is generally fixed 
and cannot be changed by, say, some signal sent from a control center. 
Modification of signal plan structure can be done only by interventions in the 
controller. An example of such a controller is the electromechanical controller 
with a drum that rotates and periodically gives contacts for green and red 
indications of signal groups. Contemporary electronic traffic controllers, 
signal–group-based, do not have constraints related to signal plan structure. 
With them, the signal plan structure can be remotely changed, from a control 
center or automatically, on the base of data obtained from detectors located 
at intersection approaches.

The structure of the signal plan presented in Fig. 4.3 is:
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or, in matrix form, when brackets are not used for individual vectors ku , 
)( K∈k :
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.

If the vector of phase durations is introduced, 

],,,,,[ Kk21 ττττ=τ  , (4.13)

whose components are the durations of phases, K21 ,,, τττ  , then the signal 
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plan can be represented as the following pair:













ττττ
=τ=








τ

=⋅
),...,,...,,(

),...,,...,,(
),()(

Kk21

K21 uuuu
u

u k
Tu , (4.14)

where
Tkk

p
kkk uuuu ),...,,...,,( P21=u . (4.15)

Control variable )(⋅pu , for signal group pD′ , is then defined as:










τ
=













ττττ
=⋅ pp

k
ppp

p

uuuu
u

u

),...,,...,,(

),...,,...,,(
)(

Kk21

K21

, (4.16)

where

),...,,...,,( K21
p

k
pppp uuuu=u , (4.17)

so that the signal plan structure can be expressed as:
T

p ],,,,,[ P21 uuuuu = . (4.18)

Therefore, pu  represents the sequence of values of control variable )(⋅pu  in 
the control vectors sequence.

Effective green time of signal group pD′  is determined by the following 
expression:

)(,
K

1
P∈τ=τ=∑

=

pug T
p

k

kk
pp u , (4.19)

and effective red time is:

)(,
K

1
P∈τ−=−= ∑

=

pucgcr
k

kk
ppp . (4.20)

The set of signal groups to which control variables are assigned is:

},...,,...,,{ P21 DDDD pa ′′′′=D . (4.21)

The first P′  variables, where PP ≤′ , are assigned to vehicle signal 
groups. Thus, the subset containing vehicle signal groups is:

},...,,...,,{ P21 ′′′′′= DDDD p
v
aD . (4.22)

The number of components, I′ , of the state vector is equal to the number 
of vehicle traffic streams. The number of vehicle signal groups is IP ′≤′ . A 
vehicle signal group represents subsets of the set of vehicle traffic streams, 

1S , and can be represented as:
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)(,},...,,...,v,{
)(E21

P ′∈σσσ=′ pD
pe ppppp , (4.23)

where
}P,...,2,1{ ′=′P , (4.24)

. )(E

})(E,...,2,1{,,1

p

p

Dcardp

pep
e

′=

∈′∈∈σ PS

There also holds:



P

1
I21

1 },...,,...,,{
′

=
′σσσσ==′

p
ipD S . (4.25)

The set of indices of vehicle traffic streams is:

}I,,,,2,1{ ′=′  iJ .
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5. QUEUES—StatE of thE traffic procESS  
on iSolatEd SignalizEd intErSEctionS

5.1.	 Definition	of	the	state

In systems theory, [58], [90], [23], the state is defined as the minimal 
quantity of information about process history that is necessary to determine 
future output and state.

A component of the state of dynamic traffic process on an intersection is 
the length of vehicle queue on an approach to the intersection, as mentioned 
in Section 1.1. Thus, the state of the process is defined by a vector whose 
components are lengths of vehicle queues on all approaches. The choice of 
this variable for the state of the process is in accordance with the definition 
given above. This can be seen observing Fig. 1.1. For determination of 
volumes )(3 tq′  and )(5 tq′  at some time t, besides the values of input variables 

)(3 tq , )(5 tq , )(3 tu′ , and )(5 tu′ , it is necessary to know the values of queue 
lengths )(3 tw  and )(5 tw , i.e., the process state components. If there is no 
information on queue lengths, values of volumes )(3 tq′  or )(5 tq′  (output) 
cannot be determined, although values )(3 tq , )(5 tq , )(3 tu′ , and )(5 tu′  are 
known. Namely, if queues exist, volumes )(3 tq′  or )(5 tq′  will be equal to 
saturation flow volumes when streams σ3 or σ5 have the right-of-way 
( 1)(3 =′ tu  or 1)(5 =′ tu ). If there are no queues, output volumes )(3 tq′  and 

)(5 tq′  will be equal to input volumes )(3 tq  and )(5 tq .
To determine the state at some time t, it is necessary to know the state at 

some previous time t0, and functions ],[ 0 ttq  and ],[ 0 ttu  in interval ],[ 0 tt .
The state at time t is represented by the following vector (Section 2.1):

T
i twtwtwtwtw ])(,...,)(,...,)(,)([)( I21 ′= . (5.1)

The set of traffic streams, S , as pointed out in Section 3.2, has to be 
partitioned into subsets (3.5) in such a way that one subset contains only 
traffic streams of a particular type. These subsets form the following collection 
(3.5):

},,,,,{ F21 SSSSS 

f= .
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Obviously,

SS =
=


F

1f

f , and

),( SSSSS ∈∅= baba
 .

The traffic streams having indices 1 to I′  are vehicle streams (Section 
2.3). If the subset of vehicle traffic streams is denoted by 1S , then (4.25):

},,,,,{ I21
1

′σσσσ=  iS ,

where II ≤′  (I is the total number of traffic streams, and I′  is the number of 
vehicle traffic streams). The number of state vector components is equal to 
the number of vehicle traffic streams.

In the introductory part of Chapter 1, it was stated that any dynamic 
process, and hence the traffic process on an intersection as well, can be 
mathematically described by two functions: the function of state transitions 
and the output function (reaction).

The state transition function can be represented in the following way 
(1.6):

  )(: ],[],[
1

000 tttttt WUQW →××ϕ ,

where 1ϕ  is the function that determines state vector ttw W∈)(  at time t 
for known state 

0
)( 0 ttw W∈  at time t0 and known input volume functions 

],[],[ 00 ttttq Q∈  and control ],[],[ 00 ttttu U∈  at any time in interval ],[ 0 tt . The 
number of vector )(tw  components is equal to the number of vehicle traffic 
streams.

Change of state in interval ],[ 0 tt —“evolution” of state over time—is 
represented by the following function:

],[],[],[
3

0000
)(: ttttttt WUQW →××ϕ , (5.2)

where

},],[,|{ 000
13 tttttt >∈ϕ=ϕ T . (5.3)

An element of set ],[ 0 ttW  is the function of time, ],[ 0 ttw , in interval 
],[ 0 tt .
There exist both deterministic and stochastic models of arrival flows 

(traffic streams), as pointed out in Section 2.2. In accordance with this, 
the queue dynamics can be treated either as deterministic or stochastic 
processes.
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5.2.	 State	transformation

According to expression (1.6), the state at time t is a function of the 
state at time 0t  and input in interval ],[ 0 tt . This is a general expression, 
which does not specify whether the elements of set ],[ 0 ttQ  are deterministic or 
stochastic processes. Volumes of arrival flows are, by their nature, stochastic 
processes, so that lengths of queues that form on intersection approaches are 
also stochastic processes. Therefore, the queuing process analysis should be 
performed by treating this process as a stochastic one.

The queuing process, however, can be regarded as a deterministic process 
—an approximation of the stochastic process. This approximation is often 
performed when stochastic processes are analyzed. In this case, it is assumed 
that the arrival flow volume is equal to an average value, which is particularly 
justifiable for higher volume values. Traffic flows can then be regarded as 
regular flows, similar to fluids [67].

One of the most important intersection performance indices is the delay, 
which is defined as the integral of queue length over time. The value of this 
integral can be determined as the sum of the delay resulting from average 
queue lengths, and the delay component that is the consequence of the 
stochastic nature of the process. Therefore, it is necessary to consider both 
stochastic and deterministic models of state transformation.

5.2.1.	 Deterministic	model	of	state	transformations		
(regular	vehicle	arrivals)

The discrete deterministic model of state transformation enables 
determination of state 1+lw  at time tl ∆+ )1(  on the basis of state lw  at time 
l∆t, input volume lq  and control vector lu , under the assumption that lu  and 

lq  do not change in interval ∆t.
A component 1+l

iw  of vector 1+lw  depends on l
iw , l

iq , and l
iu  (with 

pi D′∈σ ), i.e.,

)'(,}])([,0max{

))(())((

),,(11

J∈∆−+=

∆−+∆−+=

ϕ=+

itusqw

tusqwhtusqw

uqww

l
pi

l
i

l
i

l
pi

l
i

l
i

l
pi

l
i

l
i

l
p

l
i

l
i

l
i

 (5.4)

where h(x) is the Heaviside function:





≥
<

=
0,1
0,0

)(
x
x

xh .
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If function )(xh  is defined as:





≥
<

=
0,
0,0

)(
xx
x

xh ,

then expression (5.4) can be written as:

)(,))((1 J ′∈∆−+=+ itusqwhw l
pi

l
i

l
i

l
i . (5.5)

The notations used in (5.4) and (5.5) have the following meanings:
l
iw  − the length of queue formed by stream iσ  in interval l,
l
iq  − the volume of stream iσ  in interval l,

is  − saturation flow volume of stream iσ ,

l
pu  − the control of signal group pD′  in interval l, where pi D′∈σ .

Expression (5.5) enables determination of 1+l
iw  even in the case the 

volumes l
iq  have different values in different intervals.

In the case of regular vehicle arrivals, which is a rough approximation 
of the real process, it is assumed that the volume l

iq  of traffic stream iσ  in 
interval l is deterministic, and same for any l, i.e., const== i

l
i qq  during a 

certain period.

If the queue length at the beginning of red indication is zero, and the 
beginning of red is at the same time the beginning of a cycle, i.e., 

0)0( 0 == ββ ii ww  with 00 =pu ,

then

)()()(1 J ′∈∆=∆=∆⋅∆=β itqtqhtqhtqw iiiii

)(2)( 12 J ′∈∆=∆+∆=∆+= ββ itqtqtqtqwhw iiiiii

...

)(     J ′∈∆⋅=β itqlw i
l
i .

iwβ  is the queue that is formed under the constant volume iq  of stream iσ  

)( J ′∈i .
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If the effective red time of signal group pD′  is

tlr pp ∆= ,

then, at the end of red indication, i.e., at the beginning of green indication, the 
length of the queue formed by stream pi D′∈σ  is:

),( PJ ′∈′∈=∆=β piqrtqlw ipip
l
i
p . (5.6)

The effective green time is determined as:

pp rcg −= , i.e.,

crg pp =+ ,

where c is the cycle time, and pg  and pr  are effective green and effective red 
times of signal group pD′  )( pi D′∈σ .

When the following condition is satisfied

ipi sgcq < ,

the queue will start decreasing as soon as green indication begins ( 11 =+pl
pu ), 

and it will discharge before the end of the cycle (Fig. 5.1). After the end of 
effective red, the queue changes in the following way:

tsqtr
tsqqr

tsqqrhtsqqrw

iip

iiip

iiipiiip
l
i
p

∆−∆+=

∆−+=

∆−+∆−+=+
β

)(

)(

))(())((1

tsqtr

tsqwhtsqww

iip

ii
l
iii

l
i

l
i

ppp

∆−∆+=

∆−+∆−+= +
β

+
β

+
β

2)2(

))(()(( 112

...

tsqtrw iip
l
i
p ∆γ−∆γ+=γ+
β )( . (5.7)

Expression (5.7) defines queue lengths for ,2,1=γ , as long as γ+
β

pl
iw  is 

positive. If i
pγ  is the number of ∆t intervals from the end of effective red time 

of signal group pD′  until the queue formed by stream pi D′∈σ  is discharged, 
then the following equality holds (Fig. 5.1):

0)( =∆γ−∆γ+ i
i
pi

i
pp stqtr
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and
i
p

ii

ipi
p qs

qr
t γ=

−
=∆γ .

O
AC

Br qp i

rp c t

wβi

wβi

γ i
prp+

Figure 5.1

When flow intensity 
ip

i
i sg

qc
=ρ  is less than 1, ( pi D′∈σ ), the value of

average queue length can be determined as follows. The area of triangle 
OAB in Fig. 5.1 (queue length integral) represents time losses, i.e., the total 
delay of vehicles on approach iT  used by stream iσ . The same total delay is 
obtained as the product of average queue length iwβ  and cycle time c.

Thus, the average queue length iwβ  can be expressed as:









−

+=γ+=β
ii

ip
p

ip
ip

i
ppi qs

qr
r

c
qr

qrr
c

w
2

)(
2
1

),(,
)1(2
)1(

12
2

2

22

PJ ′∈′∈
θ−

λ−
=









−

=







−

=β

pi
qc

s
qc

qr
qs

s
c
qr

w

i

pi

i

i

ip

ii

iip
i

 (5.8)

where

i

i
i

p
p s

q
c

g
=θ=λ   ,  ,

with pi D′∈σ  and ppi D
e

′∈σ=σ .
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If )(,1 J ′∈=ρ ii , i.e., p
i
p g=γ , then the average queue length has the 

value:

2
)1(

2
)(

2
pipipi

i
cqgcqrq

w
λ−

=
−

==β .

Since ipi sgcq = , then

ip
ip

i s
c

sg
q λ== ,

and the average queue length becomes:

)1(
2 pp

i
i

scw λ−λ=β . (5.9)

The maximal queue length is attained at the end of effective red time, 
and it is (5.6):

),( PJ ′∈′∈=∆=β piqrtqlw ipip
l
i
p .

5.2.2.	 Stochastic	queuing	models

The queuing model, which describes the real process more precisely 
than the deterministic model, assumes that elements of set ],[ 0 ttQ  are vectors 
whose elements are stochastic processes. In this case, elements of set tW  are 
vectors whose components are random variables.

Transformation of state on approach iT  can be described by the following 
expression:

),,(),,(1 l
i

l
i

l
ii

l
i

l
i

l
iv

l
i uwquwqfw ξ+=+ , (5.10)

)  ,,...,2,1 ,( pip Dlli ′∈σ=′∈J ,

where vf  is the conditional average value 1+l
iw , with given l

iw , and iξ  the 
random variable with average value equal to zero. 

Also, 
t

r
l p

p ∆
= .

Considering the state definition, expression (5.10) can be used to describe 
state transformation if the conditional probability distribution of variable 

1+l
iw , with l

iw  given, does not depend on s
iw , where ls < . 

The process described by expression (5.10) is in this case Marcovian.
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The states at the beginning and at the end of green signal indications 
are particularly important when constraints and optimization criterion are 
considered in traffic control problems statements. Since queuing is a stochastic 
process, determination of average queue length is also very significant.

Queues are formed at the stop line of an approach due to the following 
reasons [83]:
•	 Alteration of green and red signal indications, which results in queue 

formation even when vehicle arrivals are regular and the volume less 
than capacity.

•	 Stochastic nature of arrival flows.
•	 Congestion that arises when the queue is not discharged until the end of 

green signal indication. This is also a consequence of the stochastic nature 
of arrival flows. Congestion can appear, in come cycles, even when the 
average arrival flow volume is less than capacity, i.e., regardless of the 
average volume value.
Each of the queue components resulting from these three reasons can be 

considered by itself.
There exist many stochastic models of arrival flows, the main difference 

between them being the adopted probability distribution of the number of 
vehicles arriving on an intersection approach during a unit of time. Some of 
these models are described in Section 2.2. Also, there exist several stochastic 
models of queuing process.

In signal plan determination, average queue lengths are used most often, 
and in some traffic control problems it is necessary to find the average 
maximal queue length as well. These average values are determined using 
various expressions, depending on the probability distribution iξ  used in 
defining the stochastic queuing process. These expressions can be used for 
determination of signal plan that will be applied in time periods for which it 
can be assumed that the process is stationary, i.e., that the average volumes 
are constant. Such periods last approximately 10 to 15 minutes or longer 
[17], [49].

Mathematical expectation of queue length iw  formed by traffic stream 
iσ  is, thus, equal to the sum of mathematical expectations of the components 

listed above, i.e.,

)(MMM

MMM

J ′∈′′+′+=

+=

ηηβ

ηβ

iwww

www

iii

iii

where:
iwβ  −	 the regular queue component, resulting from average volume iq ,
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iwη′  −	 the component resulting from the stochastic nature of arrival 
 streams, which exists even when the queue is discharged until the 
 end of green indication,

iwη′′  −	 the average queue length at the end of effective green time.

The expressions for mathematical expectation of queue length presented 
here are the expressions proposed by Newell [46] and Webster [89]. The 
expression proposed by Newell is significant because it is of a general nature, 
derived in a pure theoretical manner, without specification of the probability 
distribution of the number of vehicles arriving to an intersection approach 
during a unit of time. It is also significant because it can be used to calculate 
the length of each of three components of the queue mentioned above. 
Webster's expression is derived in a more empirical manner, but it is very 
often used due to its simplicity. However, similar results are obtained when 
using both methods [46].

а)	 Mathematical	expectation	of	queue	length	according	to	Newell

Results obtained with Newell expression are a good match of real 
processes when 1>>pigs  and 1>>cqi . Satisfactory results are obtained if 

01>pigs  [46].
According to Newell [46], mathematical expectation of queue length 

formed by stream iσ  is given by the following expression:

)1(2
)(

)1(2
)1(

)1(2
)1(

MMMM

2

2

ii

iii

ii

pii

i

pi

iiii

s
HIq

s
Iqqc
wwww

θ−
µ

+
θ−

λ−
+

θ−

λ−
=

′′+′+= ηηβ

, (5.15)

where:

c −	the cycle time 

iq  −	the average volume of stream iσ  

c
g p

p =λ
 
−	the ratio between the effective green time of signal group pD′  

and cycle time ( pi D′∈σ ) 

i

i
i s

q
=θ , ( J ′∈i )

is  −	the saturation flow volume of stream iσ , ( J ′∈i )

iDiAi III += , ( J ′∈i )
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)(M
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b)	 Mathematical	expectation	of	queue	length	according	to	Webster

Webster’s expression is not entirely theoretic, and it is based, partially, 
on Pollaczek–Khintchin formula [48], [86]. Webster's expression can be used 
to calculate the average queue length for Poisson arrival flow, when service 
distribution is known, and flow intensity iρ  is less than 1. 

According to Webster [89], mathematical expectation of queue length 
formed by stream iσ , in time periods during which it can be assumed that 
the arrival volume is a stationary random process, is given by the following 
expression:
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)52(3/1
22

)(56.0
)1(2)1(2

)1(
M p

ii
i

i

i

pi
i cq

cq
w λ+ρ−

ρ−
ρ

+
θ−

λ−
= . (5.12)

Notations in expression (5.12) have the same meanings as in (5.11).
The first term in expression (5.12) represents the queue component, 

which results from uniform vehicle arrivals, with volume equal to the average 
volume iq .

The second term represents, in fact, Pollaczek–Khintchin formula for 
the case the service time is deterministic, i.e., vehicles leave the queue in 
constant intervals.

The third term represents an empiric correction, and it is obtained by 
computer simulations.

The fact that the value of the third correction term lies in the range 5% 
to 15% of iwM  value gives the possibility to use a simplified form of the 
expression for mathematical expectation of queue:

)(     , 
)1(2)1(2

)1(
9.0M

22

J ′∈










ρ−
ρ

+
θ−

λ−
≈ i

cq
w

i

i

i

pi
i . (5.13)

This simplified form is used in many practical applications and gives 
very good results for any volume value.

c)	 Mathematical	expectation	of	the	number	of	vehicles	in	a	queue	
at	the	end	of	green	signal	indication

Mathematical expectation of the number of vehicles in a queue at the 
end of green signal indication varies with volume changes. Good results can 
be obtained if the period in which volume changes is divided into intervals 
having duration 10 to 15 minutes, so that it can be assumed for each interval 
that volumes are approximately constant during that interval [5], [83]. Several 
mathematical models have been defined [49], [17] for determination of the 
number of vehicles in a queue at time ],[ 10 ttt∈ , with constant volume value 
in interval ],[ 10 tt .

Mathematical expectation t
igw  of the number of vehicles in queue 

formed by vehicles of stream iσ , at the end of effective green time ct k=  
( ,2,1k = ), can be determined using expression [83]:

)(,2/)4( 2 J ′∈−+= iABCABw iiii
t
ig  (5.14)

where:
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tsA ipi λ=

)2.1(2.1)()1( 02 tswtqtsB ipigiipii λ−++λρ−=

20 )2(6.0 tqwC iigi +=

ip

i
i sg

cq
=ρ , ( pi D′∈σ )

0
igw  – the number of vehicles in the queue formed by stream iσ  at time 

0=t  (the start of red time).
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6. THE OUTPUT FUNCTION

As pointed out in Section 2.1, among variables that characterize output 
flows, i.e., components of vector Y∈⋅)(y , the variables representing 
flow volumes, which are components of vector Y∈⋅)(y , will be used in 
mathematical model of traffic process. The output function (reaction) in this 
case, as already stated in Section 2.1, can be described in the following way 
(1.8):

e
tttt QUQW →′××ϕ )(:2 .

The output of traffic process on an intersection is represented by vehicle 
flows departing from the intersection. When determining these flows, the 
following should be considered:
	Arrival flows are transformed by traffic signals.
	Departure flows are formed from one or more transformed arrival 

flows.

As an example, Fig. 1.1 shows, as functions of time, the arrival volumes 
of streams 3σ  and 5σ , their volumes )(3 tq′  and )(5 tq′  after control is applied, 
and volume )(2 tqe  of the output flow )(2 ty , which is composed from volumes 

)(3 tq′  and )(5 tq′ . Function 2ϕ  represents a composition of two functions, 2
taϕ  

and 2
tbϕ , i.e.,

222
tbta ϕϕ=ϕ  , (6.1)

where 2
taϕ  defines transformation of arrival flows by control at time t, and 

function 2
tbϕ  represents formation of output flows from transformed input 

flows.

The transformation of input flows to output ones, as already mentioned, 
will be considered through transformation of their volumes. Evidently, 
dimensions of input and output vectors are not the same. If the vector of 
input volumes is

T
i qqqqq ])(,...,)(,...,)(,)([)( I21 ⋅⋅⋅⋅=⋅ ′ ,
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and the vector of volumes transformed by control is
T

i qqqqq ])(,...,)(,...,)(,)([)( I21 ⋅′⋅′⋅′⋅′=⋅′ ′ ,

then function 2
taϕ , in discrete form, can be expressed as follows:

ee
ll

p
l

a
l llquwq L=∈ϕ=′ },...,2,1{       ,),,(2 ,

where 
t

cle ∆
= .

For each component l
iq′  of vector lq′  there holds:

),(     ,))()(( e
l
i

l
ii

l
i

l
p

l
i liwhqsquq LJ ∈′∈−+=′  (6.2)

)( pi D′∈σ .

If traffic stream volumes are constant in the period under observation, 
then:

)(       ,),,(2
e

l
p

l
a

l lquwq L∈ϕ=′ .

In this case, components l
iq′  are determined according to the following 

expression:

),(       ,])()([ e
l
iiii

l
p

l
i liwhqsquq LJ ∈′∈−+=′ . (6.3)

Transformed volumes in each interval l represent components of vector

)(     ,],...,,...,,[ I21 e
Tll

i
lll lqqqqq L∈′′′′=′ ′ . (6.4)

Forming of the vector of output volumes in interval l,
Tlele

h
lelele qqqqq ],...,,...,,[ H21= ,

can now be represented as follows [55]:

)(,)(2
e

ll
b

le lqAqq L∈′=′ϕ= , (6.5)

where А is the output matrix, containing information on participation of 
traffic streams in output flows. Function 2

bϕ  remains the same for every l.
An element iha  of matrix IH][ ′×= ihaA  represents the fraction of volume 

l
iq′  of traffic stream iσ , which takes part in forming volume le

hq  of output 
flow hy . The value of any element is ),(,]1,0[ HJ ∈′∈∈ hia ih , where

}H,...,,...,2,1{ h=H ,

and H is the number of vehicle output flows (the number of output vector 
components) from the intersection.
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Values of matrix А elements are determined in the following way:
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  flowoutput  formingn i  
part  takes stream  trafficfo stream partial a fi ,

flowoutput   
formingn ipart   takes stream  traffic wholefi ,  1

.

Here, 1<′ iha  represents the fraction of volume iq  that takes part in forming 
volume e

hq .

On the basis of expressions (6.2) and (6.3) it can be seen that the volume 
leaving a stop line is equal to the arrival volume (if no queue exists) or to the 
saturation flow volume, is  (if queue exists) (Fig. 1.1). The saturation flow 
volume is the queue discharge rate (Fig. AV.1 in Appendix V). The saturation 
flow volume has an approximately constant value that is attained after the 
acceleration of vehicles leaving the stop line is performed at the beginning 
of green time, i.e., when vehicles crossing the stop line do not accelerate any 
more. The value of saturation flow volume is influenced by many factors 
[88], [14], such as approach width, number of lanes, grade, flow composition, 
turnings, pavement condition, etc. The value of saturation flow may be 
different in peak and off-peak periods. The way traffic is controlled on an 
intersection can also influence saturation flow values. Namely, if conflicting 
traffic streams are allowed to move simultaneously through an intersection 
(e.g., when a vehicle stream intersects a pedestrian stream or other vehicle 
stream), then the saturation flow of the priority stream does not change, but 
the saturation flow of the other stream decreases.

Expressions giving the relation between approach width and saturation 
flow value were experimentally determined by Brаnston [15] and Kimber 
and Semmens [50]. A typical saturation flow volume value is 1800 PCU/h 
per lane.

Saturation flow volumes can also be determined by measurements. One 
of frequently used methods is the method designed by TRRL [TRRL, Road 
Note No. 34].
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Example 6.1

 Determine output flow volumes for the intersection given in Fig. 6.1, together with its 
output matrix A, using expression (6.5).
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Output variables are not important in solving traffic control problems 
for isolated intersections. However, in solving traffic control problems for 
networks of signalized intersections, output variables from intersections 
represent so-called “platoons,” and their transformation when traveling 
between intersections is the most significant component of models used in 
solving these problems [72].
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Part II

CONTROL PROBLEM STATEMENT

Solutions of traffic control problems are today based on application 
of modern mathematical optimization methods and digital computers. For 
efficient application of the mentioned means, it is necessary to give exact 
formulations of traffic control problems and develop algorithms for their 
solution. According to the general systems theory [58], a control problem 
can be formulated as a satisfaction problem or as an optimization problem.

In this book the traffic control problem will be formulated and solved as 
an optimal control problem.
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7. gENERAL STATEMENT Of TRAffiC CONTROL PROBLEM 
(SigNAL PLAN ChOiCE)

The optimal control problem is the problem of choosing control )(⋅u  
from the set of feasible controls UU ⊂f , which gives the optimal value of 
the chosen optimization criterion cJ . Therefore, it is necessary to:
а) Define the set whose elements are the controls that can be chosen, i.e., 

define the set of feasible controls UU ⊂f .
b) Define the measure that can be used for comparing effects of any two 

controls, and for the choice of the best control because set fU  is 
unordered. In the optimal control problems, this measure is termed the 
optimality criterion, the goal function, the performance index, or the 
objective function.

The performance index is defined by the following mapping:

R: ],[],[ 00
′→×′′ ttttcJ WX , (7.1)

i.e., the performance index is the function of mapping an ordered pair 
),( ],[],[ 00 tttt wx  to an element of the linearly ordered set R′ . Most frequently 

R′  is the set of real numbers, i.e., RR =′ . The optimal value of the 
performance index is determined using values of input and state in interval 

],[ 0 tt . Therefore, this value represents some “integral” measure of control 
quality on the intersection in ],[ 0 tt  interval, rather than a measure related to 
a specific time.

For isolated signalized intersections ],[],[],[ 000 tttttt UQX ×= , so that the 
performance index cJ ′′  can be presented by the expression:

R: ],[],[],[ 000
→××′′ ttttttcJ WUQ . (7.2)

Bearing in mind that ],[ 0 ttW  is defined by (5.2):

],[],[],[
3

],[ 00000
)(: ttttttttt WUQW →××ϕ

and that the initial state )( 0tw  is known, as well as elements of ],[ 0 ttQ , whose 
components are traffic streams volumes in interval ],[ 0 tt , the performance 
index can be presented by the following mapping:
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R: ],[ 0
→′ ttcJ U . (7.3)

The assumption is that traffic streams’ volumes are either constants or can be 
described as stationary stochastic processes in ],[ 0 tt  interval.

Elements of ],[ 0 ttU  are periodical, vector time functions, and because of 
that, it is sufficient to determine their values, )(⋅u , at each instant of the basic 
period, ],0[ c . Using these values, it is possible to determine values of each 
component of vector ],[ 0 ttu  at any instant ],[ 0 ttt ∈′  (4.6). Function )(⋅u  is a 
restriction of ],[ 0 ttu  to ],[],0[ 0 ttc  .

If the set of feasible controls is fU , and

fu U∈⋅)( ,

then the control quality can be determined using the restriction )(⋅u  of control 
],[ 0 ttu  to interval ],[],0[ 0 ttc  . Thus, the performance index can be described 

as the mapping:

R: →fcJ U . (7.4)

Since the set of real numbers, R, is linearly ordered by ≤ relation, 
introduction of the cJ  function makes it possible to introduce the linear 
order relation in the set fU , as well. The order relation, πR , is introduced in 

fU  by the convention that )(1 ⋅u  is better, or at least as good as )(2 ⋅u , i.e., 
)()( 21 ⋅⋅ πuRu  if and only if ))(())(( 21 ⋅≤⋅ uJuJ cc , i.e.,

)()())(())(( 2121 ⋅⋅⇒⋅≤⋅ πuRuuJuJ cc . (7.5)

The problem of the choice of optimal control can now be stated as follows: 
The set of feasible controls, fU , is given, and the performance index is:

R: →fcJ U .

Let
*

)(
))((inf ccu

JuJ
f

=⋅
∈⋅ U

. (7.6)

Determine the set of optimal controls:

}))(*(,)(*|)(*{* *
ccf JuJuu =⋅∈⋅⋅= UU . (7.7)

Here it is considered that the best control is the control mapped to the minimal 
performance index value.

There may be some cases, of course, with ∅=*U , i.e., no feasible 
solution can be found ( ∅=⇒∅= fUU * ).
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Solving optimal control problem always implies solving some 
minimization or maximization problem. A maximization problem can always 
be transformed into a minimization problem, and vice versa. This is possible 
because:

( )))((min))((max
)()(

⋅−−=⋅
∈⋅∈⋅

uJuJ cucu ff UU
.

The fact stated by (7.7) can also be expressed as follows:

))((inf}))((|))((inf{))(*(
)(

⋅=∈⋅⋅=⋅
∈⋅

uJuuJuJ cufcc
fU

U . (7.8)

Obviously, the problem of the choice of the optimal control can be defined 
by the pair ),( cf JU  and the statement whether the performance index shall 
be minimized or maximized.
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8. The seT of feasible conTrols (signal plans)

The formulation of the optimal control problem ),( cf JU  implies 
defining the feasible control set fU , whose element fu U∈⋅)(  is defined by 
an ordered pair as follows:

Tu ),()( τ=







τ

=⋅ u
u

,

where

],,,,,[ K21 uuuuu 

k=

is the control structure (signal plan structure) (4.12). A control structure 
component

)(],,,,,[ P21 K∈= kuuuu Tkk
p

kkk
u

is a vector (4.15), whose components assume values from set }1,0{ , i.e.,

),(}1,0{ PK ∈∈∈ pkuk
p ,

where P is the set of signal group indices in the complete set of signal 
groups. The complete set of signal groups has to be chosen before start of the 
problem solving.

The second element of the pair (4.14), τ, represents the cycle time split, 
i.e.,

],,,,,[ K21 ττττ=τ 

k .

The terms control and signal plan are used as synonyms. Component ku  
is termed the control vector or phase.

Control is also described as the vector time function:
T

p uuuuu ])(,...,)(,...,)(,)([)( P21 ⋅⋅⋅⋅=⋅ ,
where one vector component, )(⋅pu , represents the control variable assigned 
to signal group pD′ . Values of this variable during a cycle time are defined 
by the sequence:

,)(,}1,0{,],,,,,[ K21 P∈∈= puuuuu k
pp

k
pppp u
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i.e., by the values of variables k
pu  for K,,2,1 =k . The duration of each 

component k
pu  of that sequence is determined by the value of component kτ  

of vector τ with the same index, k. Hence, the control variable )(⋅pu  can be 
defined by the pair (4.16):

)(,),()( P∈τ=⋅ pu T
pp u .

The problems of optimal signal plan choice, ),( cf JU , can be formulated 
as mathematical optimization problems. The set of feasible controls, fU , is 
determined by the constraints that have to be satisfied by chosen controls. 
In some problems, constraints on state variables of the process are also 
present. 

The set of feasible controls, fU , depends also on the problem being 
solved, and it is not completely the same in all problems of the choice of the 
optimal control. Namely, there exist constraints on control that have to be 
satisfied regardless of the problem considered, and there exist constraints that 
are present in some problems and not in others. For instance, in the problem 
of choosing the signal plan that minimizes the capacity, the sum of phase 
durations has to be equal to a given cycle time, whereas in the problem of 
cycle time maximization this constraint doesn’t exist.

8.1.	 The	constraints	that	define	the	set	of	feasible	controls

Bearing in mind the elements of the control (signal plan) included in 
the constraints, one can note that there are groups of constraints related to 
particular components of control variables, i.e., the constraints related to 
control components assigned to signal groups, constraints related to phases 
(their sequence and structure), and constraints related to phase durations 
(cycle time allocation to phases).

In order to formulate the constraints related to phases, their sequence, 
and structure, it is necessary to determine the relations that exist in the set of 
control variables. On the basis of these relations, it is possible to determine 
the control variables that can simultaneously assume value 1, which is 
necessary for determination of the set of feasible phases. For finding feasible 
phase sequences, it is necessary to know whether a signal group can gain the 
right-of-way as soon as another group has lost it, or a time delay is needed for 
intersection clearance, i.e., the intergreen time has to be greater than zero.

The control variables have to satisfy the following conditions:
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▪ Each control variable (the component assigned to one signal group) 
has to satisfy the condition that the signal group can gain the right-
of-way only once in the cycle.

▪ The duration of green indication (green time) for each signal group 
has to be longer than the predefined minimum green time.

▪ The duration of green time for each vehicle signal group has to 
satisfy the capacity constraint, i.e., its value has to be large enough 
to accommodate all vehicles that arrive during a cycle to leave the 
intersection during the same cycle. This constraint, of course, makes 
sense only in the case when no approach is oversaturated.

The definition of the set of feasible phases, i.e., the set of control 
vectors giving the right-of-way to more than one signal group, is based on 
the information on the pairs of signal groups that can simultaneously gain 
the right-of-way. This information can be obtained from the signal group 
compatibility relation or compatibility graph (Subsection 3.3.3). All feasible 
phases can be determined using this relation.

The signal plan structure, i.e., the phase sequence, has to be determined 
bearing in mind that when a signal group loses its right-of-way, an incompatible 
signal group usually cannot immediately gain the right-of-way. Some time 
has to pass (intergreen time) before the incompatible signal group gains the 
right-of-way. Thus, in the signal plan structure, a phase can be followed only 
by particular feasible phases.

Time constraints refer to phase durations and the cycle duration. The sum 
of phase durations has to be less than or equal to the determined cycle time. 
The cycle time has to be less than or equal to a predefined maximal value 
(usually set to 120 s, and only exceptionally longer).

Constraints related to traffic process states, i.e., vehicle queue lengths 
on some approaches, appear in some control problems. Such constraints are 
usually transformed to constraints on duration of the red signal indication – 
red time constraints. Namely, it is possible, for a given average flow volume, 
to determine the maximal red time so that the queue length doesn’t exceed 
some prescribed value.

The feasible set of signal plans can be, thus, defined by the following 
constraints:

а)	 Control	variable	constraints

1. The constraints of one green interval in the cycle for each signal 
group – Each signal group must get the right-of-way once and only 
once during the cycle.
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2. Minimal green times constraints – The duration of green indication 
of traffic lights—green time allocated to a signal group has to 
be longer, or at least equal to a given minimum green time value 
defined for each signal group.

3. Maximal red time constraints – The duration of red indication of 
traffic lights—red time allocated to a signal group has to be shorter 
than a given maximal red time value defined for some or each 
signal group.

4. Capacity constraints (flow balance constraints) – The green time 
allocated to a vehicle signal group has to be long enough to enable 
all vehicles arriving during a cycle to intersection approaches 
belonging to that signal group to leave the intersection during the 
green time.

b)	 Constraints	on	the	composition	of	control	vectors—phases

 In some intervals during the cycle, the right-of-way can be 
simultaneously given only to compatible signal groups (Subsection 
3.3.3).

c)	 Constraints	on	control	vector	sequence	and	on	signal	plan	structure

1. Minimal intergreen constraints – The duration of phases positioned 
between the phase that takes off the right-of-way to some 
signal groups, and the phase that gives the right-of-way to some 
incompatible signal groups, has to be longer than the specified 
minimal intergreen times.

2. Phase sequence constraints – For each feasible phase, a subset of 
the set of feasible phases is defined, containing the phases that can 
be chosen as next in the signal plan structure. This means that each 
phase in the signal plan structure has to belong to the subset of 
possible followers defined for the preceding phase in the structure.

d)	 Time	constraints

1. The sum of phase durations has to be equal to the cycle time.
2. The sum of phase durations has to be equal or less than a given 

maximal cycle time value.

These constraints are present in most problems of optimal signal plan 
choice. Some of the constraints exist in almost all problems, whereas some 
constraints appear in some problems and not in others. Constraints а.1, а.2, b, 
and c have to be satisfied by any signal plan.
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8.2.	 Constraints	on	control	variables

As mentioned in the previous section, there exists a set of constraints that 
have to be satisfied by control variables, i.e., the variables that control signal 
groups. The assignment of control variables to signal groups can be done 
only after the choice of the complete set of signal groups. Because of that, all 
constraints presented in this section are related to one, chosen, complete set 
of signal groups.

This section presents mathematical expressions for control variable 
constraints. Control variable is defined by expression (4.16):

.)(,
),...,,...,,(
),...,,...,,(),()( K21

K21

P∈








ττττ
=








τ

=τ=⋅ puuuuu k
p

k
ppppT

pp
u

u

Thus, control variable constraints are functions of vectors pu  and τ.

8.2.1.	 The	constraint	of	one	interval	of	green	indication		
during	the	cycle

This constraint, mentioned as а.1, has to be satisfied by each control 
variable. If this condition is satisfied, the time interval between two subsequent 
starts of green interval for a signal group is equal to the cycle time. Thus, the 
phases giving the right-of-way to one signal group have to be consecutive.

This constraint is common in existing types of traffic control by fixed 
signal plans, and drivers and pedestrians have gotten accustomed to it. Also, 
time losses generally increase if the number of intervals of green indication 
for a signal group is greater than one. Omitting this constraint leads to an 
extension of the set of feasible signal plans, and because of that, in some cases 
the optimal signal plan can have more than one interval of green indication 
for a signal group.

The analytical expression of this constraint has to be valid for any position 
of green interval in the cycle relative to the beginning of the cycle. Figure 
4.2 presents all possible positions of green interval (more precisely, effective 
green interval). In formulating the analytical expression, the fact is used that 
in this case the number of changes of control variable values (from 0 to 1, 
and from 1 to 0) for each signal group during one cycle has to be equal to 2 
(see Fig. 4.2).

The analytical expression of this constraint for control variable 
T

ppu ),()( τ=⋅ u , where ],,,,,[ K21
p

k
pppp uuuu =u , }1,0{∈k

pu , ( P∈p ) 
can be formulated as follows:
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)(,2)2(mod)(
K

1

1)K(mod P∈=+∑
=

+ puu
k

k
p

k
p , (8.1)

where }P,,2,1{ =P  is the set of signal group indices.

Example	8.1

 Check whether the signal plan presented in Fig. 8.1 satisfies constraints (8.1).
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The constraints of one green interval in a cycle are:
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For 3=p : 

2)2(mod)00()2(mod)01()2(mod)11(                 

)2(mod)10()2(mod)00()2(mod)(
5

1

1)5(mod
33

=+++++

++++=+∑
=

+

k

kk uu

 Obviously, the constraints of one green interval in a cycle for each signal group are 
satisfied by the signal plan in this example.

8.2.2.	 Constraints	of	minimal	duration	of	green	indication	intervals

Sometimes it happens that the calculated durations of green indications 
(displayed green time) are very short, just a couple of seconds. Usually, such 
short green times are not permitted, and because of that, for each control 
variable, the minimal	displayed	green	time is defined.

There are many reasons for introducing minimal	displayed	green	times. 
Some of the reasons are psychological—drivers, not accustomed to very short 
displayed green time, could assume a traffic light mistake and stop respecting 
it; also, noting that the green time is short, drivers could accelerate in order 
to pass through the intersection so that the safety would be significantly 
reduced, etc. Technical reasons are also present, particularly with vehicle- 
actuated signals, where the data obtained from vehicle detectors are used for 
generation of control. In some of these systems, the green indication is given 
to a signal group only if particular detectors are “actuated.” The possibility 
exists that some vehicle, because of a very short displayed green time, stays 
trapped between the detector loop and stop line, and won’t get the right-of-
way unless another vehicle arrives behind it. To prevent such situations, a 
minimal displayed green time is periodically assigned to each control variable 
(in each cycle) regardless of detector actuation.

Minimal values of minimal displayed green times are recommended by 
technical standards in many countries. In Germany, for instance, the following 
values are fixed as lower limits for minimal displayed green times [69]:
•	 Vehicle signal group control variables: (5–10) s
•	 Pedestrian signal groups control variables: 5 s
•	 Tram signal groups control variables: 5 s

Feasible signal plans have to satisfy the constraints of minimal displayed 
green times. These times are component of the vector

),...,,...,,( P21 mpmmmm GGGGG = . (8.2)

Minimal displayed green time, pmG , for control variable controlling 
signal group pD′  ( }P,,2,1{ ∈p ), is determined using the minimal displayed 
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green times for each traffic stream, iσ , that belongs to signal group pD′ . 
If minimal displayed green time for iσ  ( J∈i ) is m

iG , then the minimal 
displayed green time, pmG , for control variable that controls signal group 

pD′  is given by the following expression:

)(,}|{max 0 P∈=′∈σ= pGDGG m
ipi

m
ipm , (8.3)

i.e.,
.)(,0 pi

m
i

m
i DGG ′∈σ≥

Likewise, the minimal effective green times for signal groups, pmg , 
( P∈p ) are given by the expression:

)}P,2,1{(,}|{max ∈′∈σ= pDgg pi
m
ipm . (8.4)

In the computing process of signal plan choice the effective values of 
green and red time are used.

Minimal effective green times for vehicle signal groups are calculated 
in the same way as other effective green times for vehicle signal groups 
(Appendix V), i.e.,

)(,)( P∈−+=′′+′−+= plaGllaGg pppmppppmpm  (8.5)

where pa  and pl  are usually the standard values, 3 s and 2 s, respectively.
The minimal effective green times for pedestrian and tram traffic streams 

are usually of the same duration as green signal indications, i.e., displayed 
green times.

Minimal effective green times are components of vector mg , i.e.,

),,,,,( P21 mpmmmm ggggg = . (8.6)

The effective green time for a signal group has to be longer than the 
minimal effective green time for that group. This means that the interval in 
which the respective control variable assumes value 1 has to be longer than 
the minimal effective green time, i.e.,

)(,
K

1
P∈≥τ=τ ∑

=

pgu
k

pm
k
p

k
p

T
pu . (8.7)
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8.2.3.	 The	constraints	of	maximal	red	times

In some traffic control problems there exist constraints related to states, 
i.e., to queues. These constraints, expressed as maximal feasible values of 
queue lengths, can be transformed into constraints of maximal displayed red 
times. Since a queue forms during red signal indication, it is obvious that 
longer red time leads to longer queues. Thus, the maximal duration of red 
signal indication, i.e., the maximal	 displayed	 red	 time, corresponds to the 
maximal feasible queue length.

In one signal group there can be several traffic streams with maximal 
displayed red time constraints. Therefore, it is necessary to determine values 
of maximal red times for each signal group that contains traffic streams with 
constrained queues. These values are determined as follows (Appendix V):

)(,}|min{ M
qj

M
jqM qDrr P∈′∈σ= , (8.8)

where:

qMr  − the maximal effective red time for signal group qD′ , 

M
jr  − the maximal effective red time,

PP ′⊆M  − the index set of vehicle signal groups with maximal 
effective red time constraints. In each element of MP  there is one 
or more traffic streams with such type of constraints.

Analytical expressions of the maximal effective red constraints are given 
by the following inequalities:

)(,)1(
K

1

M
qM

k

k

k
q qru P∈≤τ⋅−∑

=

. (8.9)

8.2.4.	 The	flow	balance	(capacity)	constraints

These constraints are formulated for two cases:
▪ Saturation flow is constant during the cycle.
▪ Saturation flow can have two values during the cycle, which is 

the case when “filtering” one traffic stream “through” another is 
allowed.
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a)	 The	capacity	constraint	when	saturation	flow	is	constant	during	the	cycle

All vehicles of an arrival traffic stream, iσ , with the average flow 
volume, iq , coming to the intersection during one cycle, can leave the 
intersection in time not longer than the cycle time if the effective green time, 

pg , ,)( pi D′∈σ  satisfies the following inequality:

)(, J ′∈≤ isgcq ipi ,
i.e.,

.)(, J ′∈≤ i
c
sg

q ip
i  (8.10)

The condition (8.10) can be presented in the form:

.),(,1 PJ ′∈′∈≤ pi
sg
cq

ip

i  (8.11)

The arrival flow volume equal to 
c
sg ip  is termed the theoretical	capacity 

of traffic stream iσ . However, when the arrival volume has this value, queue 
lengths formed during red signal indication will be extremely long. Because 
of that, the practical	capacity, which is equal to 

c
sg ip

iρ , is used in practice. 

The condition (8.11) can now be expressed as:

.),(,1 PJ ′∈′∈≤==ρ pi
gs
cq

c
gs
q

pi

i

pi

i
i  (8.12)

The ratio defined by iρ  is called the saturation	degree of traffic stream 
iσ  (or the traffic intensity, in the queuing theory terminology). The value of 

the maximal acceptable saturation degree, iρ , is less than 1, meaning that for 
each traffic stream the condition ii ρ≤ρ  has to be satisfied. This degree, iρ , 
usually represents an estimation of traffic engineers and can be different for 
different intersection approaches. Most commonly the value of 0.9 is used, as 
suggested by Webster and Cobbe [88]. If it is necessary to prevent formation 
of longer queues on an approach, the value of iρ  has to be lower than 0.9; 
if longer queues can be tolerated, then the value can be slightly greater than 
0.9.

To each traffic stream enough effective green time has to be allocated 
to ensure that the practical capacity is greater than the average arrival flow 
volume. The necessary green times for traffic streams belonging to one signal 
group need not be the same. The effective green time of a signal group has 
to be greater than the effective green time necessary for any traffic stream 
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belonging to this signal group. Analytic expression of this constraint is:

)(, 
K

1
P ′∈γ≥τ=τ ∑

=

pu p
k

k

k
p

T
pu , (8.13)

where:

,)(,|max P ′∈








′∈σ
ρ

=γ pD
s
qc

pi
ii

i
ip  (8.14)

iρ  − the maximal acceptable saturation degree for traffic stream iσ ,

P ′  − the index set of vehicle signal groups set.

b)	 The	capacity	constraints	when	filtering	is	allowed

When a pair of traffic streams, ),( ba σσ , is at the same time element 
of both, the conflictness relation, 1C , and the compatibility relation, C , 
i.e., 1),( Cba ∈σσ  and Cba ∈σσ ),( , then a feasible signal plan can contain 
phases by which simultaneous right-of-way is given to both traffic streams.

The phases (control vectors) with 1== k
b

k
a uu  belong to the set of feasible 

phases. One traffic stream, in this case, “filters” through the other traffic 
stream, under priority rules. When left-turning vehicles, i.e., the opposed	
turning	traffic, filter (by the right hand rule) through the traffic stream that 
passes straight through the intersection, i.e., the opposing	traffic, the opposing 
traffic stream has the priority. The vehicles in the opposed traffic stream, in 
this case, have so-called conditional right-of-way. Vehicle traffic streams can 
be filtered through pedestrian traffic streams, as well (e.g., the right-turning 
vehicles that have right-of-way at the same time as the pedestrian stream 
through which they filter).

Filtering is possible if gaps between vehicles in the opposing stream 
have acceptable duration, and if there is enough space on the intersection to 
accommodate turning vehicles waiting for acceptable gaps.

In formulating capacity constraints, а.4, saturation flow volumes, 
)( J ′∈isi ,  are constant during the cycle.

In the case when filtering is permitted, the saturation flow volume of 
the opposed traffic stream has one value in the case when both opposed and 
opposing traffic streams get the right-of-way simultaneously, and another, 
different value when its movement is “protected,” i.e., its right-of-way is not 
completely simultaneous with the right-of-way of the opposing traffic stream 
(e.g., late start or early stop). This means that the value of saturation flow 
volume of the opposed stream, k

bs , in some interval k, depends on the control 
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vector in that interval, ku , i.e.:

)( kk
b

k
b ss u= . (8.15)

For instance, if traffic streams 4σ  and 5σ  in Fig. 8.2 are compatible, 
namely C∈σσ ),( 54 , and if one control variable is assigned to each traffic 
stream, then the saturation flow volume in interval k, ks4 , when control vector 

T)0,1,1,1,0,0(  is applied, giving the right-of-way to both streams, is not the 
same as the saturation flow value in interval r, rs4 , when control vector 

T)0,0,1,1,0,0(  is applied, giving the right-of-way only to stream 5σ  and not 
to stream 4σ . This can be described by the following inequality:

)()( 44
rrkk ss uu < , i.e.,

))0,0,1,1,0,0(( ))0,1,1,1,0,0(( 44
TrTk ss < .

By permitting filtering, it is possible to improve some intersection 
performance indices.

σ1

σ2

σ4

σ5

σ6

σ3

Figure 8.2

Figure 8.3, а, b, c, and d, presents several cases of permitted filtering. The 
conflictness and the compatibility graphs are given in the same figure. 

Traffic stream 2σ  filters through 5σ  in Fig. 8.3a. In this case, 152 ),( C∈σσ , 
and also C∈σσ ),( 52 . Therefore, edge ),( 52 σσ  exists in the compatibility 
graph cG , as well as in the conflictness graph, kG .

In Fig. 8.3b the left-turning partial stream of 2σ  filters through vehicle 
stream 5σ , and in Fig. 8.3c a partial stream of 2σ  filters through vehicle 
stream 4σ . Fig. 8.3d illustrates filtering of partial stream of 1σ  through 
pedestrian traffic stream 2σ .
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a)

σ1

σ2σ3

σ4

σ5

b)

c)
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d)
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σ5

σ6
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Figure 8.3
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During filtering of one traffic stream through another, the saturation flow 
value of the priority traffic stream (the opposing traffic stream) does not 
change, and the saturation flow value of the opposed traffic stream changes 
as a function of the opposing traffic stream volume [45], [42].

The opposing traffic stream can be a vehicle or pedestrian stream, and 
various types of filtering are possible. For example, the opposed traffic stream 
may be not partial and have an exclusive lane; or, only a partial traffic stream 
could be filtered, etc. [6].

The saturation flow, bs , of the opposed traffic stream, bσ , depends on 
the type of the opposing traffic stream, aσ  (a pedestrian or vehicle stream), 
and on the opposing traffic stream volume in case it is a vehicle stream. These 
two cases are discussed below.

b.1) The saturation flow, bs , when stream bσ , using an exclusive left-turning 
lane, filters through vehicle stream aσ

The saturation flow, bs ,is given by the following expression [2], [84]:

ab

a

q

q
a

abb
e
eqqss

β−

α′−

−
==

1
)( , (8.16)

where:

aq  − the average volume of the opposing traffic stream aσ ,

α′  − the critical gap (the number of accepted gaps less than α′  
is equal to the number of rejected gaps greater than α′ ), 

s)55.4( −=α′

bβ  − the minimal gap of the opposed traffic stream, realized when the 
opposing traffic stream does not have the right-of-way, i.e., when 

)0(bb ss = , and 
)0(

1

b
b s
=β .

The saturation flow, )0(bs , can be calculated as the limit value )( ab qs  

when 0→aq , i.e.,

b
q

q
a

qb ab

a

a e
eqs

β
=

−
= β−

α′−

→

1
1

lim)0(
0

. (8.17)

The )( ab qs  function is presented in Fig. 8.4.
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sb

qa
0

1/βb

Figure 8.4

In any case, when filtering is permitted, there exists an interval when two 
conflicting and compatible vehicle traffic streams get the right-of-way. They 
have a part of the interval with simultaneous right-of-way, but the opposing 
traffic stream can get the right-of-way before the opposed one, or the opposed 
stream can get the right-of-way before the opposing stream. If the opposed 
traffic stream is the first to get the right-of-way, its saturation flow will fall 
down to zero when the opposing traffic stream gets the simultaneous right-
of-way. This happens because no vehicle from the opposed stream can filter 
through the opposing stream when its volume is equal to the saturation flow 
volume. The conditions necessary for filtering establish when the volume 
of the opposing stream becomes less than saturation flow volume. From 
that point onward, the value of the opposed stream saturation flow becomes 
different than zero. This means that when the opposed stream has the right-
of-way two intervals can be noted in which the opposed flow volume is 
greater than zero, separated by an interval in which this volume equals zero. 
Some authors [2], therefore, recommend two right-of-way intervals in a cycle 
for the opposed traffic stream, i.e., the intervals in which the volume of the 
stream can be different than zero.

In the case when first the opposing stream gets the right-of-way, and only 
after its queue discharges the simultaneous right-of-way with an opposed 
traffic stream begins, then the opposed traffic stream volume will be equal to 
its saturation flow, which depends on the flow of the opposing stream. If, after 
the simultaneous right-of-way, the opposing stream is stopped, the saturation 
flow volume of the opposed traffic stream will be equal to the saturation flow 
volume of the “protected” stream if a queue exists.

The volumes of the opposing stream, aσ , and the opposed stream, bσ , 
are presented in Fig. 8.5 and Fig. 8.6 for these two cases. In the case presented 
in Fig. 8.6, the volume of the opposed stream, bσ , during its green indication 
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( 1=k
bu ) is constantly greater than zero, while in the other case (Fig. 8.5) 

there exists an interval when its volume, )(tqb , is equal to zero.

tc

tc

tc

tc

1
0

u ta ( )

q ta ( )

q tb ( )

u tb ( )
1
0

sa

sb (0)
s qb a( )

qa

Figure 8.5

σa

σb

σa σa σa

σb σbσb

t
1
0

c

u ta ( )

q ta ( )

q tb ( )

u tb ( )

t
1
0

c

tc

tc

sa

sb (0)
s qb a( )

qa

Figure 8.6

The control presented in Fig. 8.6 has more advantages than the control 
presented in Fig. 8.5. Therefore, here are presented constraints for this case.
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The constraint for the opposing stream, aσ :

I. The flow balance constraint for aσ :

)',(   , ))1((
K

1
J∈≥τ+−∑

=

baqcuuquus a
k

k

k
b

k
aa

k
b

k
aa  (8.18)

II. The condition of discharging the queue of stream aσ  before giving the 
simultaneous right-of-way to aσ  and bσ :

∑

∑ ∑
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 (8.19)

The constraints related to the opposed traffic stream, bσ :

cqsuuqsuu b
k

k
b

k
a

k
bab

k
b

k
a ≥τ−+∑

=

 ))0()1()((
K

1
,

and when expression (8.16) for )( ab qs  is included, the constraint gets the 
following form:

cqsuu
e
equu b
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1
 )0()1(

1
. (8.20)

It should be noted that opposed and opposing traffic streams can have one 
interval of the simultaneous right-of-way, but if they don’t have simultaneous 
right-of-way, i.e., when they separately get the right-of-way, then the interval 
between the end of the right-of-way for one traffic stream and start of another 
stream’s right-of-way should be longer then a predefined intergreen time.

b.2)  The saturation flow, bs , in the case when opposed traffic stream, bσ , 
filters through a pedestrian traffic stream, aσ

When a turning traffic stream, bσ , filters through a pedestrian (opposing) 
traffic stream, aσ , then the dependence of saturation flow, )( ab qs , on the 
pedestrian traffic volume, aq , according to the results of Hoppa and Krystek 
[42], is given by the expression:

)()200()( 21 abab qkksqs −= , (8.21)
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where:

)200(bs  – saturation flow of stream bσ  if the volume of the pedestrian 
traffic stream aσ  is 200 ped/h,

30.11 =k .

h/ped51000.02 =k .

The expression (8.21) is valid if the pedestrian volume, aq , belongs to 
interval ped/h)500.1200( − . If aq  is less than 200 ped/h, its influence to bσ  
is not significant, and in that case )0(87.0 bb ss ≥ . If 005.1>as  ped/h, this 
influence becomes significant and )0(12.0 bb ss = .

8.3.	 The	set	of	feasible	control	vectors

The information contained in the signal group compatibility relation, 
gC , and compatibility graph of signal groups, gG , (Subsection 3.3.3), can 

be used for determination of the set of feasible control vectors (phases). 

Relation gC  contains information on pairs of signal groups that can 
simultaneously get the right-of-way.

The control vector – phase in interval k is:

)(,],,,,,,,[ P21 K∈= kuuuuu Tkk
q

k
p

kkk
u ,

where:

),(,}1,0{ PK ∈∈∈ pkuk
p .

Introducing the notation }1,0{=B , the expression can be written as:

)(,P K∈∈ kBku ,

where:

  



groups P

P BBBB ×××=  , (8.22)

i.e., ku  is a vector whose components are equal to 0 or 1.

Two components, k
pu  and k

qu , of this vector can have value 1 only if their 

respective signal groups, pD′  and qD′ , are compatible, i.e.,

gqp
k
q

k
p CDDuu ∈′′⇒=⋅ ),()1( . (8.23)
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However, one phase can give the right-of-way to more than two signal 
groups, or only to one or no signal group. It is necessary, of course, that 
the signal groups getting the simultaneous right-of-way are mutually 
compatible.

For determining all feasible phases, it is necessary to form all subsets 
of the chosen complete set of signal groups, aD , with the property that 
each pair of signal groups from one subset belongs to the compatibility 
relation gC . The subsets having this property are in fact cliques of graph 

),(),( gagag CG Γ== DD .

In order to determine the set of feasible phases, it is necessary to find 
all the cliques of graph gG , and assign to each clique the phase that gives 
the right-of-way to signal groups that are members of the clique. In the 
set of feasible phases one more element shall be added: the phase whose 
components all have value 0 (all signal indications are red).

Subset r
aD  of the complete set of signal groups, aD , a

r
a DD ⊂  is a clique 

of graph gG  if the following relation holds:

),(,) ,( P∈′Γ∈′⇒∈′∈′ qpDDDD pgq
r

aq
r

ap DD . (8.24)

The procedure of clique determination is described in Subsection 3.3.1, where 
the determination of signal group set is presented. The set of all cliques of 
graph ),(),( gagag CG Γ== DD , where gΓ  is the mapping:

)(: aag DPD →Γ ,

which is determined by function )( gGd ′ . )( aDP  is partitive set of set aD .

Mapping )( gGd ′  is defined by the expression (Subsection 3.3.1):

},,,,,{

}),( ),(

))()((|{)(

R21
a

r
aaa

pgq

r
aq

r
ap

r
aag

qpDD
DDGd

DDDD

DDDD

=

∈′Γ∈′⇒

∈′∧∈′==′

P  (8.25)

where R  is the number of graph gG  cliques, and R is the index set of the 

cliques, i.e., }R,,,,2,1{  r=R .

Mapping d ′  determines the unique set of all cliques aD  of nonoriented 
graph gG . CLIQ program [34] is developed for realization of this function. 
The pseudocode of CLIQ program is given in Appendix III.
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To each clique a
r

a DD ∈ , ( R∈r ), there corresponds one feasible 
phase u(r), whose components, )(rup , are determined by the following 
expression:

.),(,
 fi ,0

 fi ,1
)( RP ∈∈







∉′

∈′
= rp

D

D
ru

r
ap

r
ap

p
D

D
 (8.26)

It means that the number of feasible phases is 1R + , i.e., R  phases that 
correspond to graph gG  cliques, and one phase whose components are all 
equal to 0 (“all-red” phase).

All feasible phases, )R(,,)(,,)2(,)1( uuuu  r , are elements of set
fU , i.e.,

})0,,0,0({})R(,,)(,,)2(,)1({  uuuuU rf = .

Each phase Tkk
p

kkk uuuu ],,,,,[ P21 =u  in interval k belongs to the set of 
feasible phases:

)(, K∈∈ kf
k Uu . (8.27)

If the sequence 

],,,,,[ K21 uuuuu 

k=

represents the structure of a feasible signal plan, then elements of the 
sequence (i.e., phases) in each interval K∈k , have to be chosen from the 
set of feasible phases fU .

Example	8.2

 For the intersection presented in Fig. 3.4, determine the set of feasible control vectors 
(phases) for two complete sets of signal groups:

а) },,,,,{ 1
6

1
5

1
4

1
3

1
2

1
1

1 DDDDDDa =D , where 

}{ 1
1
1 σ=D , }{ 2

1
2 σ=D , }{ 3

1
3 σ=D , }{ 4

1
4 σ=D , }{ 5

1
5 σ=D , }{ 6

1
6 σ=D ,

and

b) }{ 3
5

3
4

3
3

3
2

3
1

3 D,D,D,D,Da =D , where

}{ 2
3
1 σ=D , }{ 4

3
2 σ=D , }{ 5

3
3 σ=D , }{ 6

3
4 σ=D , },{ 31

3
5 σσ=D .
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a) Fig. 8.7 presents the intersection, the signal group compatibility graph, 1
gG , and subgraphs 

of 1
gG  that are complete graphs. Node sets of these subgraphs are cliques of the compatibility 

graph. The cliques are elements of set 1
aD , and were obtained using CLIQ program.
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1 D1
1D1

3 D1
5D1

1 D1
2 D1

2 D1
4D2
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σ2

σ4 σ5

σ6

σ3

Figure 8.7

The complete set of signal groups, 1
aD , in this case is:

},,,,,{ 1
6

1
5

1
4

1
3

1
2

1
1

1 DDDDDDa =D .

The set of cliques is:

},,,{ 5121
1 aaaa DDDD = ,

where:

}{ 1
1

1 Da =D , }{ 1
2

2 Da =D , }{ 1
3

3 Da =D , }{ 1
4

4 Da =D , }{ 1
5

5 Da =D , 

}{ 1
6

6 Da =D , },{ 1
2

1
1

7 DDa =D , },{ 1
3

1
1

8 DDa =D , },{ 1
5

1
1

9 DDa =D ,

},{ 1
5

1
2

01 DDa =D , },{ 1
6

1
2

11 DDa =D , },{ 1
5

1
4

21 DDa =D , },{ 1
6

1
5

31 DDa =D ,

},,{ 1
5

1
2

1
1

41 DDDa =D , },,{ 1
6

1
5

1
2

51 DDDa =D .
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The feasible phases, which correspond to cliques, are vectors with six components because the 
complete set of signal groups 1

aD  has six elements, i.e.,

),6P(,])()()()([)( P21 R∈== rru,,ru,,ru,rur T
p u .

The phases that correspond to the cliques are:

T)0,0,0,0,0,1()1( =u
T)0,0,0,0,1,0()2( =u
T)0,0,0,1,0,0()3( =u
T)0,0,1,0,0,0()4( =u
T)0,1,0,0,0,0()5( =u
T)1,0,0,0,0,0()6( =u
T)0,0,0,0,1,1()7( =u
T)0,0,0,1,0,1()8( =u
T)0,1,0,0,0,1()9( =u
T)0,1,0,0,1,0()01( =u
T)1,0,0,0,1,0()11( =u
T)0,1,1,0,0,0()21( =u
T)1,1,0,0,0,0()31( =u
T)0,1,0,0,1,1()41( =u
T)1,1,0,0,1,0()51( =u

The number of all cliques is 51R = , and thus the number of all feasible phases is 
61=fcard U . 

The set of feasible phases is:

.})1,1,0,0,1,0(,)0,1,0,0,1,1(,)1,1,0,0,0,0(,)0,1,1,0,0,0(

,)1,0,0,0,1,0(,)0,1,0,0,1,0(,)0,1,0,0,0,1(,)0,0,0,1,0,1(

,)0,0,0,0,1,1(,)1,0,0,0,0,0(,)0,1,0,0,0,0(,)0,0,1,0,0,0(

,)0,0,0,1,0,0(,)0,0,0,0,1,0(,)0,0,0,0,0,1(,)0,0,0,0,0,0({

TTTT

TTTT

TTTT

TTTT
f =U

 

© 2008 by Taylor & Francis Group, LLC



8 The set of feasible controls (signal plans) 113

b) The complete set of signal groups in this case is

 },,,,{ 3
5

3
4

3
3

3
2

3
1

3 DDDDDa =D .

Fig. 8.8 presents the signal group compatibility graph, ),( 333
cagG Γ= D , and subgraphs of 

3
gG  that are complete graphs. Node sets of these subgraphs are cliques of the compatibility 

graph. The cliques were obtained using CLIQ program.
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Figure 8.8

The set of all cliques, 3aD , is defined by the following expression:

}},,{,},{,},{,},{

,},{,}{,}{,}{,}{,}{{
3
4

3
3

3
1

3
4

3
3

3
3

3
2

3
4

3
1

3
3

3
1

3
5

3
4

3
3

3
2

3
13

DDDDDDDDD

DDDDDDDa =D

.

The phases that correspond to these cliques are:

T)0,0,0,0,1()1( =u
T)0,0,0,1,0()2( =u
T)0,0,1,0,0()3( =u
T)0,1,0,0,0()4( =u
T)1,0,0,0,0()5( =u
T)0,0,1,0,1()6( =u
T)0,1,0,0,1()7( =u

© 2008 by Taylor & Francis Group, LLC



114 OPTIMAL TRAFFIC CONTROL: Urban Intersections

T)0,0,1,1,0()8( =u
T)0,1,1,0,0()9( =u
T)0,1,1,0,1()01( =u .

The set of feasible phases is:

.})0,1,1,0,1(,)0,1,1,0,0(,)0,0,1,1,0(

,)0,1,0,0,1(,)0,0,1,0,1(,)1,0,0,0,0(,)0,1,0,0,0(

,)0,0,1,0,0(,)0,0,0,1,0(,)0,0,0,0,1(,)0,0,0,0,0({

TTT

TTTT

TTTT
f =U

The number of feasible phases is 111011R =+=+=fcard U .

8.4. The intergreen time constraints

In the process of signal plan design, it is necessary to respect the 
constraints that have to be satisfied by feasible sequences of control vectors. 
These constraints are the minimal intergreen times constraints, and constraints 
on phase sequences, i.e., the constraints related to signal plan structure.

The set of feasible phases is determined on the basis of signal groups 
compatibility relation, gC , which contains information on pairs of signal 
groups that can simultaneously get the right-of-way. The pairs of incompatible 
traffic streams in the complete set of signal groups, aD , i.e., the elements of 
relation:

gaag CC \)( DD ×=  (8.28)

comprise signal groups that must not simultaneously get the right-of-way. 
Moreover, if

gqp CDD ∈′′ ),( ,

these two signal groups not only cannot have a simultaneous right-of-way, 
but some time has to elapse from the end of the right-of-way for signal group 

pD′  until the start of the right-of-way for signal group qD′ . This time shall be 
greater than so-called minimal intergreen time in order to avoid conflicts of 
traffic participants whose movement is controlled by control variables ( )pu ⋅
and ( )qu ⋅ .
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The stated requirement can be expressed in the following way: In the 
phase sequence, representing a feasible signal plan structure between phase 

ku  with 1=k
pu  and 01 =+k

pu , and phase rk+u  with 1=+rk
qu  and 01 =−+rk

qu  
(where 1−r  is the number of phases between the last phase giving the right-
of-way to signal group pD′  and the first phase giving the right-of-way to 
signal group qD′ ) there have to exist phases such that their entire duration is 
greater than the minimal intergreen time defined for the pair ( qp DD ′′ , ).

For determination of these phase duration constraints, it is necessary 
to determine minimal intergreen times for all pairs of incompatible signal 
groups, based on minimal intergreen times for all pairs of incompatible traffic 
streams, which have to be calculated in advance.

With regard to the fact that the real sequence of signal indications (in 
the majority of cases: green – amber – red – red–amber) is transformed to 
effective green and effective red indications, it is necessary to determine 
minimal intergreen time between the end of effective green time of the signal 
group losing the right-of-way and the beginning of effective green time of the 
signal group gaining the right-of-way, i.e., the minimal	effective	intergreen	
time (m.e.i.t.) (Appendix V).

During the minimal effective intergreen time the volume of both traffic 
streams, the traffic stream losing the right-of-way, and the stream gaining the 
right-of-way is equal to zero if m.e.i.t. has a positive value.

8.4.1.	 Minimal	intergreen	times	for	pairs	of	traffic	streams

а)		 Minimal	intergreen	times	for	pairs	of	incompatible	traffic	streams

To each pair of incompatible traffic streams, ),( ji σσ , which is a member 
of relation

CC \)( SS ×= ,

one number, jiz  − the minimal intergreen time, is assigned by mapping:

RCZ →: , (8.29)
where R is the set of real numbers.

For calculation of minimal effective intergreen times, it is necessary 
first to determine minimal intergreen times for real sequences of signal 
indications. 

In the case when iσ  and jσ  are vehicle streams, the minimal intergreen 
time is calculated by the following expression (Fig. 8.9):

)),((, Cttttz ji
gpe

ji
r
jiji ∈σσ++−= , (8.30)
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where:
r
jit  – the time necessary for the last vehicle of iσ  (the stream losing the 

right-of-way) to pass the distance between the stop line and the end 
of the conflict area with jσ ,

e
jit  – the time necessary for the first vehicle of jσ  (the stream gaining 

the right-of-way) to arrive at the beginning of the conflict area with 
iσ ,

pt  – vehicle travel time through the conflict area,
gt  – the part of the amber time used by vehicles of stream iσ ,

jiz  – the minimal intergreen time.

tij
r

σi

σj

t ije

σi

σj

tij
r t pt g

ui

uj

tij
ezij

gains the right of way
loses the right of way

Figure 8.9

The formula for minimal green time calculation (8.30) is based on the 
assumption that vehicles leaving the conflict area travel with the lowest 
speed, while the vehicles approaching the area travel with the highest speed, 
under existing conditions. It is usually assumed that the speed of the vehicles 
leaving the conflict area is in the range of (25–30) km/h and the speed of 
vehicles arriving to the conflict area is in the range of (40–50) km/h [69]. The 
pedestrian speed is usually 1.2 m/s to 1.5 m/s.

The minimal effective green time, in this case, can be obtained by the 
expression (Fig. AV.3 in Appendix V):

lazz jiji +−=′ , (8.31)
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where:
а	− the duration of amber indication,

lll ′′+′=  − the lost time.
Expression (8.31) holds when a pair of incompatible vehicle streams is 

considered. Expressions for determination of minimal effective intergreen 
times for other cases are given in Appendix V.

As already mentioned, minimal effective intergreen times for pairs of 
incompatible traffic streams are determined by the mapping:

RZZ →′ : . (8.32)

Determination of Z ′  elements, )( jiji zZz ′=′ , depends on the type of 
traffic streams in ),( ji σσ  pair (both vehicle streams, or one vehicle and the 
other pedestrian, etc.).

The values of minimal effective intergreen times between incompatible 
signal groups belong to the set of real numbers and usually are expressed 
as integer number of seconds. These values can be positive, negative, or 
zero. For example, by observing expression (8.31) it is obvious that if the 
intersection geometry is such that

latttt gpr
ji

e
ji +−++≥ , 

then 0≤′jiz .
In some countries there exist recommendations that minimal intergreen 

times should not be shorter than a prescribed value, minz  (in some countries 
4 s). Minimal intergreen times are then determined by the following 
expression:

),(,)},{max( min J∈′=′ jizzZz jiji . (8.33)

In this case, minimal intergreen times can have positive values only.

b)	 Intergreen	times	for	pairs	of	compatible	traffic	streams

For effective intergreen times related to pairs of compatible traffic streams 
there are no constraints on their minimal values. In this case, the intergreen 
times have to satisfy the following constraint:

,)),((,],0[ Ccz jiji ∈σσ∈′  (8.34)

i.e., the minimal effective intergreen time for a pair of compatible traffic 
streams can assume any value in ],0[ c  interval.
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c)	 The	matrix	of	minimal	effective	intergreen	times

The minimal effective intergreen times for all pairs of incompatible 
traffic streams are defined by the function:

RZ →×′ SS: , (8.35)

i.e., }),(|{ SS ×∈σσ′=′ jijizZ .
It means that the values of the function Z ′  are arranged in a matrix:

II][ ×′=′ jizZ ,

whose elements are calculated as follows:

),(,
),(,   0

),(,)(
J∈







∈σσ

∈σσ′
=′ ji

C

CzZ
z

ji

jiji
ji . (8.36)

Fig. 8.10 presents an intersection and the related matrix of minimal 
intergreen times, Z ′ , and Fig. 8.11 presents another intersection with matrix 
Z ′  containing elements with negative values ( 41z′  and 23z′ ).

σ1

σ2

σ4 σ5

σ6

σ3























=

008408
000100
200212
263030
005300
404000

'Z

Figure 8.10
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



−

−

=

01010
6020
0900
2000

'Z

Figure 8.11
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8.4.2.	 Minimal	effective	intergreen	times	for	signal	group	pairs

The matrix of effective intergreen times for all traffic stream pairs is 
determined using expression (8.36) and the formulas given in Appendix V. 
Since control variables are assigned to signal groups, the matrix of effective 
intergreen times related to signal group pairs has to be determined. These 
intergreen times are defined by the function:

RZ aa →×DD: , (8.37)

where aD  is the chosen complete set of signal groups, i.e., 

},,,,,{ P21 DDDD pa ′′′′= D .

Function Z  is defined as follows:

PP][}),(|{ ×=×∈′′= qpaaqpqp zDDzZ DD , (8.38)

where







∈′′

×∈′′′∈σ′∈σ′
=

.),(    ,0

}\)(),(,,|max{

gqp

gaaqpqjpiji
qp CDD

CDDDDz
z

DD

 (8.39)

Example	8.3

 Determine the matrix of minimal effective intergreen times for signal group pairs for the 
intersection presented in Fig. 8.10. The chosen complete set of signal groups is:

},,,{ 4321 DDDDa ′′′′=D ,
where

}{ 41 σ=′D , }{ 62 σ=′D , },{ 313 σσ=′D , },{ 524 σσ=′D .

The compatibility relation is given by the following expression:

}),(,,),(,),(,),(,),(,),({ 244244332211 DDDDDDDDDDDDCg ′′′′′′′′′′′′=  .

The compatibility graph, ),( gag CG D= , is shown in Fig. 3.14.

Minimal effective intergreen times, jiz′ , for each pair of traffic streams are elements of Z ′  
matrix presented in Fig. 8.10. Applying expression (8.39), the following values of minimal 
effective intergreen times for pairs of signal groups are obtained:

2}max{}}{,}{|max{ 64646421 =′=′=σ∈σσ∈σ′= zzzz jiji

2}2,2max{}},{,}{|max{ 31431 ==σσ∈σσ∈σ′= jijizz

1}0,1max{}},{,}{|max{ 52441 ==σσ∈σσ∈σ′= jijizz
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8}8max{}}{,}{|max{ 4612 ==σ∈σσ∈σ′= jijizz

8}4,8max{}},{,}{|max{ 31632 ==σσ∈σσ∈σ′= jijizz

gCDDz ∈′′= ),(   ,0 4242

4}4,4max{}}{,},{|max{ 43113 ==σ∈σσσ∈σ′= jijizz

4}2,4max{}}{,},{|max{ 63123 ==σ∈σσσ∈σ′= jijizz

6}6,3,0,0max{}},{,},{|max{ 523143 ==σσ∈σσσ∈σ′= jijizz

5}0,5max{}}{,},{|max{ 45214 ==σ∈σσσ∈σ′= jijizz

gCDDz ∈′′= ),(   ,0 4224

3}1,0,3,0max{}},{,},{|max{ 315234 ==σσ∈σσσ∈σ′= jijizz

Hence, the matrix of minimal effective intergreen times for pairs of signal groups is:

















−
−

−
−

== ×

305
643
088
122

][ 44qpzZ .

8.4.3.	 The	extension	of	the	set	of	feasible	phases

The fact that minimal effective intergreen times can assume negative 
values leads to the necessity of extending the set of feasible phases.

The definition of feasible phases and the procedure for determining the 
set of feasible phases are presented in Section 8.3. The relation of signal 
group compatibility is used in determining the set of feasible phases because 
this relation contains all signal group pairs with the property that the right-
of-way can simultaneously be given to both members of the pair. This means 
that control variables )(⋅pu  and )(⋅qu  can simultaneously have the value 1 if 

gqp CDD ∈′′ ),( .
However, if 0≤qpz , an interval exists in which variables )(⋅pu  and 
)(⋅qu  can simultaneously have value 1 although gqp CDD ∉′′ ),(  (Fig. AV.6). 

The duration of this interval shall be less than or equal to the absolute value 
of the minimal effective intergreen time. The constraint that prevents this 
interval from being longer than || qpz  can be formulated as follows:

),(,||)(
K

1
P∈≤τ⋅∑

=

qpzuu
k

qp
kk

q
k
p . (8.40)

© 2008 by Taylor & Francis Group, LLC



8 The set of feasible controls (signal plans) 121

Besides this time constraint, there exists a structural constraint that results 
from the fact that interval k with 1=⋅ k

q
k
p uu  can exist only if in the previous 

interval 11 =−k
pu  and 01 =−k

qu , and in the subsequent interval 01 =+k
pu  and 

11 =+k
qu . If the sequence is reversed, the interval k such that 1=⋅ k

q
k
p uu  

cannot exist.

The set of pairs ),( qp DD ′′  with the property 0<qpz  represents the 
relation

},  ,0|),({ aqpqpqpg DDzDDC D∈′′<′′=′ . (8.41)

In this case, the set of feasible phases, fU , has to be extended by set fU′ , 
which contains the phases with 1)()( == susu qp  and 0<qpz  (s here denotes 
the index of a phase in the set of feasible phases, fU′ ).

Set fU′  can be defined as follows:

}}NR,,2R{,0 ;1)()(|)({ ++∈<===′
szsusus qpqpf uU , (8.42)

because

1R +=fcard U ,

where 
T

qp sususususus ])(,...,)(,...,)(,...,)(,)([)( P21=u ,

and 1N −  is the number of phases with 1)()( == susu qp .

The extended set of feasible phases, fU ′′ , is the union of sets fU  and 
fU′ , i.e.,

fff UUU ′=′′  . (8.43)

Set aD  and relation gC′  define the graph

),( gag CG ′=′ D . (8.44)

Graph gG ′′  is obtained from graphs gG  and gG′ :

),(),(),( gagaggag CCCG Γ′′=′′=′=′′ DDD  . (8.45)

Relations gC , gC′ , and gC ′′  are reflexive and symmetric, so that graphs 
gG , gG′ , and gG ′′  are nonoriented graphs with a loop in each node.

All feasible phases are defined by cliques of graph gG ′′ , in the same way 
as when no negative minimal effective intergreen times exist (Section 8.3).
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Example	8.4

 Determine relations gC , gC′ , and gC ′′ , graphs gG , gG′  and gG ′′ , and the set of feasible 
phases, fU ′′ , for the intersection presented in Fig. 8.11.

 The set of signal groups is

},,,{ 4321 DDDDa ′′′′=D ,
where 

}{,}{,}{,}{ 44332211 σ=′σ=′σ=′σ=′ DDDD .

The matrix of minimal effective intergreen times is

















−
−−

−
−−

=

1001
620
090
200

Z .

The matrix, cA , of the compatibility relation, gC , is:

















−
−

−
−

=

010
001
101
011

cA .

Graph ),( gag CG D=  is shown in Fig. 8.12.

Elements 41ca  and 23ca  in matrix cA  have 0 value, representing that pairs ),( 41 DD ′′  and 
),( 23 DD ′′  are not pairs of compatible signal groups. The minimal effective intergreen times 

corresponding to these pairs are negative, so that the control variables )(1 ⋅u  and )(4 ⋅u , as 
well as )(3 ⋅u  and )(2 ⋅u , can simultaneously provide green indications of 2 seconds duration 

)2( 2341 −== zz .

Relation gC′  is defined by the following set of ordered signal group pairs:

}),(,),({ 2341 DDDDCg ′′′′=′ .

Relation gC ′′  is presented in Fig. 8.12 by cA ′′  matrix and graphs gG , gG′ , and gG ′′ . In order 
to determine all elements of set fU ′′ , i.e., all feasible phases, the cliques of graph gG ′′  have 
to be determined. The cliques of this graph are the sets of nodes of all complete subgraphs of 
graph gG ′′ , as presented in Fig. 8.13.

The set of all cliques, aD , is:

.}},,{,},,{,},{,},{
,},{,},{,},{,}{,}{,}{,}{{

4213214232

4131214321

DDDDDDDDDD
DDDDDDDDDDa

′′′′′′′′′′
′′′′′′′′′′=D
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Set aD  is obtained using CLIQ program.

D'1 D'2

D'4 D'3

D'1 D'2

D'4 D'3

D'1 D'2

D'4 D'3

G'g :G"g :Gg:

4

3

2

σ4

σ3

σ2σ1



















−
−

−
−

=′′

011
011
111
111

cA

D'1 D'2

D'4 D'3

D'1 D'2

D'4 D'3

D'1 D'2

D'4 D'3

G'g :G"g :Gg:

Figure 8.12

D'4D'3

D'1 D'2

D'2 D'3 D'4 D'4D'3

D'1 D'1 D'1 D'2 D'2

D'1

D'3 D'2 D'4

D'1

D'2

Figure 8.13

Thus, the complete set of signal groups is

},,,{}}{,}{,}{,}{{ 43214321 DDDDa ′′′′=σσσσ=D ,

and the set of feasible phases is:

.})0,0,0,0(,)1,1,0,1(,)0,1,1,1(,)1,1,0,0(,)0,1,1,0(,)1,0,0,1(

,)0,1,0,1(,)0,0,1,1(,)1,0,0,0(,)0,1,0,0(,)0,0,1,0(,)0,0,0,1({
TTTTTT

TTTTTT
f =′′U
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8.5.	 The	relation	of	green	indications	succession

When determining the sequence of phases that make a feasible signal 
plan structure, it is necessary to know which phases can immediately succeed 
a particular phase. 

The information about m.e.i.t. is essential for determination of the set 
of phases that can immediately succeed a given phase. The data on m.e.i.t. 
define whether the effective green time of a phase can start immediately after 
the end of the effective green time of another phase.

Thus, in the set of control variables there exists relation nR , which 
contains the pairs of phases with the mentioned property. The set of control 
variables is:

})(,...,)(,...,)(,)({ P21 ⋅⋅⋅⋅= uuuu pnU . (8.46)

The elements of this set are components of vector function )(⋅u .
A signal plan structure, u, of the signal plan 













ττττ
=








τ

=⋅
),...,,...,,(

),...,,...,,(
)(

K21

K21

k

k

u
uuuuu

can include the sequence  ,, 1+kk uu , with 01 1 =∧= +k
p

k
p uu , and 

11 1 =∧= +k
p

k
p uu , i.e.,





























 ,

1

0,

0

1,,,,

1
P

1
2

1
1

P

2

1

1
P

1

1

1
2

1
1

P

2

1

































































=




































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
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
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






















+

+

+

+

+

+

+

+

k

k

k

k

k

k

k

k
q

k
p

k

k

k

k
q

k
p

k

k

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

only if the control variables )(⋅pu  and )(⋅qu  are in relation nR , i.e.,

),,( ,))(,)(( P∈≠∈⋅⋅ qpqpRuu nqp .

An ordered pair ))(,)(( ⋅⋅ qp uu  is an element of relation nR  in the following 
cases:
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α) Signal groups pD′  and qD′  are compatible, i.e.,

),(     , ),( P∈∈′′ qpCDD gqp .

β) Signal groups pD′  and qD′  are incompatible, and m.e.i.t. is zero, i.e.,

),(     ,   )0( )),(( P∈=∧∉′′ qpzCDD qpgqp .

γ) Signal groups pD′  and qD′  are incompatible, and m.e.i.t. is negative, 
i.e.,

),(     ,   )0( )),(( P∈<∧∉′′ qpzCDD qpgqp .

Therefore, relation nR  is defined by the following expression:

.}   ,, ,))0(

)),(()),(((|))(,)(({

qpqpz
CDDCDDuuR

qp

gqpgqpqpn

≠∈≤∧

∉′′∨∈′′⋅⋅=

P
 (8.47)

By this relation the graph of green indications succession, nG , is defined:

),( nnn RG U= . (8.48)

In the case when no pairs exist that satisfy conditions β and γ, the graph 
of green indications succession can be obtained from the graph of signal 
groups compatibility, Gg. In this case the following expression is valid:

))))(,)((()))(,)(((()),(( npqnqpgqp RuuRuuCDD ∈⋅⋅∧∈⋅⋅⇒∈′′ . (8.49)

The nodes of graph gG  represent signal groups, while the nodes of graph 
nG  represent control variables assigned to these signal groups. Graph nG  

can be obtained by substituting each nonoriented edge of graph gG  with two 
oppositely oriented edges, i.e., by presenting graph gG  as a digraph. Each 
node that in gG  represents a signal group, apD D∈′ , in nG  will represent the 
control variable, )(⋅pu , assigned to that group.

Example	8.5

α) Determine the relation of green indication succession, nR , and graph ),( nnn RG U=  
for the intersection presented in Fig. 8.10. The complete set of signal groups is:

},,,,{ 54321 DDDDDa ′′′′′=D ,

and the signal groups represent the following subsets of traffic streams set S :

},{,}{,}{,}{,}{ 31564534221 σσ=′σ=′σ=′σ=′σ=′ DDDDD .
The matrix of m.e.i.t. has no negative elements in this example.
The signal group compatibility graph, ),( gagG Γ= D , and the graph of green indication 
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succession, ),( nnn RG U= , are presented in Fig. 8.14.

Relation nR  is:

.}))(,)((,))(,)((,))(,)((,))(,)((
,))(,)((,))(,)((,))(,)((,))(,)(({

34432332

14411331

⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅=

uuuuuuuu
uuuuuuuuRn

5

D'1 D'2

D'3

D'4

D'5

Gg:

u1( ). u2( ).

u3( ).u5( ).

u4( ).

Gn:

Figure 8.14

β) Determine the relation of green indication succession, nR , and graph ),( nnn RG U=  
for the intersection presented in Fig. 8.15. The matrix of m.e.i.t., Z, and graphs kG′  and cG  
are given in the same figure.

4

3

2
















−
−

−
−

=

010
011
101
111

nA

















−

−

=

01010
6020
0900
2000

Z

G'k : Gc: Gn :

D '1 D '2

D '4 D '3

D '1 D '2

D '4 D '3

u1 ( ).

u3 ( ).u4 ( ).

u2 ( ).

σ4

σ3

σ2σ1

Figure 8.15
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In the matrix of m.e.i.t., Z, there exist two negative elements.

Relation nR  is determined by the following set of ordered pairs:

.}))(,)((,))(,)((,))(,)((,))(,)((
,))(,)((,))(,)((,))(,)((,))(,)(({

23412442

13311221

⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅=

uuuuuuuu
uuuuuuuuRn

The graph of green indications succession, ),( nnn RG U= , is given in Fig. 8.14. Digraph 

nG  does not present a nonoriented graph, as was the case in the previous example, because 
relation nR  is not symmetric.

8.6.	 The	relation	and	graph	of	phase	transitions

The signal group compatibility relation, the m.e.i.t. function, and the 
relation of green indications succession supply all information necessary for 
determination of the relation and graph of phase transitions.

8.6.1.	 The	phase	transitions	relation

In the procedure of a feasible signal plan determination, phases are chosen 
from the set fU , and these phases are ordered in a sequence that makes a 
signal plan structure. The fact that a phase can be followed only by certain 
phases from fU  has to be taken into account when making this sequence.

If to a signal group pD′  the right-of-way is given by phase ku , then the 
succeeding phase in a feasible signal plan structure, 1+ku , cannot be a phase 
by which the right-of-way begins for a signal group that is controlled by the 
control variable that is not in the relation of interval succession with control 
variables giving the right-of-way to some signal groups in the preceding 
phase. Namely, the right-of-way to pD′  cannot be stopped in phase ku  (it 
means, 1=k

pu , 01 =+k
pu ) and given to some other signal group, qD′ , in 

phase 1+ku  (it means 0=k
qu , 11 =+k

qu ) if nqp Ruu ∉⋅⋅ ))(,)(( . Therefore, for 
each phase there exists a subset of set fU , comprising the phases that can 
immediately follow the given phase.

It is necessary to determine the conditions that have to be satisfied by 
a phase fb Uu ∈)(  so that this phase can immediately follow a given phase 

fa Uu ∈)(  (a and b are here the index numbers of elements in fU ). 
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If )(au  and )(bu  are included in a feasible signal plan structure, in the 
form ],,,[],)(,)(,[ 1



+= kkba uuuu , it is necessary to determine the 
conditions that )(bu  has to satisfy so that it can be included in the signal plan 
structure as 1+ku .

For determination of these conditions, it is suitable to consider two 
cases:

))(,)(  ; ,(     ,   0)()( fqp baqpbuau Uuu ∈∈= P , and

))(,)(  ; ,(     ,   1)()( fqp baqpbuau Uuu ∈∈= P .

Case	I: 0)()( =buau qp

This case arises when )()( buau qp ≠  or 0)()( == buau qp . Obviously, if 
0)( =aup  (red indication of the signals controlling signal group apD D∈′ ), 

the control variables of the next phase, )(bu , can assume any value (0 or 1), 
i.e., 0)( =buq  or 1)( =buq  )( P∈q .

If 1)( =aup , then in the next phase, )(bu , any control variable can have 
the value 0, i.e., 0)( =buq  )( P∈q .

The value 0)( =aup  can extend to the next phase, )(bu . It is always 
possible to have 0)()( == buau qp .

Hence, in determining whether phase )(bu  can immediately follow phase 
)(au , the condition of succession is always satisfied for pairs ))(,)(( buau qp  

if 0)()( =buau qp . Therefore, it is necessary to analyze only the following 
case:

Case	II: ),(,1)()( P∈= qpaubu qp

In this case, phase )(bu  can immediately follow )(au  if at least one of 
the following conditions is satisfied:

II.1  )()1)()(( qpaubu qp =∧= , ( P∈qp, )
 It is obvious that the green indication controlling one signal group 
can always extend to the next phase, )(bu .

II.2  ),,(,)))(,)((()1)()(( P∈≠∈⋅⋅∧= qpqpRuuaubu nqpqp

 This condition states the fact that control variable )(bup  in phase 
)(bu  can have value 1 if the pair ))(,)(( ⋅⋅ qp uu  is the element of the 

relation of green intervals succession, nR .
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II.3 ),(,)0()1)()(()1)()(( P∈<∧=∧= qpzbuauaubu qppqqp

 When negative m.e.i.t. exist, during this interval the control can 
be composed of two or more successive phases. This possibility is not 
included in previous cases.

Therefore, a phase )(bu  can follow phase )(au  in a feasible signal plan 
structure, ],,,,,,[ K121 uuuuuu 

+= kk , i.e., a part of the structure can be:

],)(,)(,[],,,[ 1
 bakk uuuu =+

if the pairs of successive phases, ( )(au , )(bu ) satisfy the listed conditions.

The phase transition relation, sR , thus, represents the set of phase pairs 
defined by the following expression:

.}  , )(,)(

,))0()1)()((())())(,)(((

)1)()(()0)()((|))(,)(({

P∈∈

<∧=⋅∨=∨∈⋅⋅⇒

⇒=⋅∨=⋅=

p,qba

zbuauqpRuu
buaubuaubaR

f

jipqnqp

qpqps

Uuu

uu

 (8.50)

Example	8.6

α) Determine whether, in Example 8.2, the ordered pair of phases 

))1,1,0,0,0,0(,)0,1,0,0,1,0((

1
1
0
0
0
0

,

0
1
0
0
1
0

))31(,)01(( TT=





























































=uu

belongs to sR  relation.

 The answer to this question is obtained by analyzing all cases with 1)31()01( =⋅ qp uu , 

),( P∈qp . The following products satisfy this condition:

1)31()01(
1)31()01(
1)31()01(
1)31()01(

65

55

62

52

=⋅
=⋅
=⋅
=⋅

uu
uu
uu
uu

Ordered pairs of control variables: ))(,)(( 52 ⋅⋅ uu , ))(,)(( 62 ⋅⋅ uu , and ))(,)(( 65 ⋅⋅ uu  

belong to nR  relation (because pairs ),( 52 DD ′′ , ),( 62 DD ′′ , and ),( 65 DD ′′  belong to the 

signal group compatibility relation, gC ). Therefore, sR∈))31(,)01(( uu .
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β) For the intersection presented in Fig. 8.15 determine whether phase )(bu  can follow 
immediately after phase )(au , as shown in Fig. 8.16.

The possibility of transition from )(au  to )(bu  can be determined by analyzing all products 
1)()( =buau qp . In this case, these are the following products:

a) 1)()( 21 =⋅ buau
b) 1)()( 31 =⋅ buau
c) 1)()( 32 =⋅ buau
d) 1)()( 22 =⋅ buau
e) 1)()( 23 =⋅ buau
f) 1)()( 33 =⋅ buau

u1( ).

u( )a u( )b

u2( ).

u3( ).

u4( ).

u1( ).

u( )a u( )b

u2( ).

u3( ).

u4( ).

z32 = −2 s

Figure 8.16

Pairs ))(,)(( 21 ⋅⋅ uu , ))(,)(( 31 ⋅⋅ uu , and ))(,)(( 23 ⋅⋅ uu  (products a, b, e) belong to nR  

relation. Hence, condition II.2 is satisfied. Pairs ))(,)(( 22 ⋅⋅ uu  and ))(,)(( 33 ⋅⋅ uu  are the 

pairs where qp = , and the condition II.1 is satisfied.

The fact that nRuu ∈⋅⋅ ))(,)(( 23  and nRuu ∉⋅⋅ ))(,)(( 32  can be observed on graph 

),( nnn RG U= , presented in Fig. 8.15. However, since 023 <z , condition II.3 (products 

c and e) is satisfied, i.e.,

)0()1)()(()1)()(( 233223 <∧=⋅∧=⋅ zbuaubuau .

Therefore, phase )(bu  can follow immediately after )(au , i.e., sRba ∈))(,)(( uu  because 
all necessary conditions are satisfied.
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8.6.2.	 The	phase	transition	graph

The phase transition graph is defined by the set of feasible phases, fU , 
and relation, sR , i.e.,

),( sfs RG U= . (8.51)

By introducing the mapping, sΓ , [9], [12]:

)( ffs UU P→Γ : ,

such that

))(,)((    ,  }))(,)((|)({)( fss baRbaba Uuuuuuu ∈∈=Γ , (8.52)

the phase transition graph can be presented in the form:

),( sfsG Γ= U . (8.53)

Nodes of this graph represent feasible phases, and an edge between two 
nodes exists if the pair of phases represented by these nodes belongs to sR  
relation. 

Graph sG , in general case, is neither oriented nor nonoriented (Appendix 
I).

Relations nR  and sR  are symmetric in the case when there isn’t any 
negative or zero-valued m.e.i.t. In this case:

))(,)((     ,  )()()()( fss baaRbbRa Uuuuuuu ∈⇒ ,

and sG  is a nonoriented graph.
In order to construct graph sG  it is necessary to determine, for each 

feasible phase, fa Uu ∈)( , the subset of fU  that contains the phases that 
can immediately follow )(au , i.e.,

))((,)( fs aa Uuu ∈Γ    .

For this construction, the definition of mapping sΓ  is sufficient.

Graph sG  can also be constructed using the procedure described in 
Appendix VI.
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Example	8.7

α) Determine the phase transition graph, sG , for the intersection presented in Fig. 8.7, 
together with the compatibility graph of signal groups. The set of signal groups is:

 .}}{,}{,}{,}{,}{,}{{
},,,,,{

654321

1
6

1
5

1
4

1
3

1
2

1
1

1

σσσσσσ=
= DDDDDDaD

Relation sR  in this case is symmetric because there is no negative or zero m.e.i.t. Hence, 
graph sG  is nonoriented. The set of feasible phases (Example 8.2) is determined using the 
procedure presented in Section 8.4.

 .})1,1,0,0,1,0(,)0,1,0,0,1,1(,)1,1,0,0,0,0(,)0,1,1,0,0,0(

,)1,0,0,0,1,0(,)0,1,0,0,1,0(,)0,1,0,0,0,1(,)0,0,0,1,0,1(

,)0,0,0,0,1,1(,)1,0,0,0,0,0(,)0,1,0,0,0,0(,)0,0,1,0,0,0(

,)0,0,0,1,0,0(,)0,0,0,0,1,0(,)0,0,0,0,0,1(,)0,0,0,0,0,0({

TTTT

TTTT

TTTT

TTTT
f =U

According to expression 8.52, mapping sΓ  of each feasible phase is determined:

})0,0,0,0,0,0(,)0,1,0,0,0,0(,)0,0,0,0,1,0(

,)0,0,0,0,0,1(,)0,1,0,0,1,0(,)0,1,0,0,0,1(,)0,0,0,0,1,1({)0,1,0,0,1,1(
TTT

TTTTT
s =Γ

})0,0,0,0,0,0(,)0,1,0,0,0,0(,)0,0,0,0,1,0(

,)0,0,0,0,0,1(,)0,1,0,0,1,0(,)0,1,0,0,0,1(,)0,1,0,0,1,1({)0,0,0,0,1,1(
TTT

TTTTT
s =Γ

})0,0,0,0,0,0({\)0,0,0,0,0,0( T
f

T
s U=Γ

})0,0,0,0,0,0(,)0,0,0,1,0,0(,)0,0,0,1,0,1(

,)0,0,0,0,1,0(,)0,1,0,0,0,0(,)0,1,0,0,1,0(

,)0,1,0,0,0,1(,)0,0,0,0,1,1(,)0,1,0,0,1,1({)0,0,0,0,0,1(

TTT

TTT

TTTT
s =Γ

})0,0,0,0,0,0(,)1,1,0,0,1,0(,)1,0,0,0,1,0(

,)1,0,0,0,0,0(,)1,1,0,0,0,0(,)0,0,0,0,0,1(,)0,1,0,0,0,0(

,)0,1,0,0,1,0(,)0,1,0,0,0,1(,)0,0,0,0,1,1(,)0,1,0,0,1,1({)0,0,0,0,1,0(

TTT

TTTT

TTTTT
s =Γ

})0,0,0,0,0,0(,)0,0,0,0,0,1(,)0,0,0,1,0,1({)0,0,0,1,0,0( TTTT
s =Γ

})0,0,0,0,0,0(,)0,1,0,0,0,0(,)0,1,1,0,0,0({)0,0,1,0,0,0( TTTT
s =Γ
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})0,0,0,0,0,0(,)1,1,0,0,0,0(,)1,0,0,0,1,0(,)1,1,0,0,1,0(

,)0,0,1,0,0,0(,)0,1,1,0,0,0(,)0,0,0,0,1,0(,)0,0,0,0,0,1(

,)0,1,0,0,1,0(,)0,1,0,0,0,1(,)0,0,0,0,1,1(,)0,1,0,0,1,1({)0,1,0,0,0,0(

TTTT

TTTT

TTTTT
s =Γ

})0,0,0,0,0,0(,)0,0,0,0,1,0(,)0,1,0,0,1,0(

,)0,1,0,0,0,0(,)1,1,0,0,0,0(,)1,0,0,0,1,0(,)1,1,0,0,1,0({)1,0,0,0,0,0(
TTT

TTTTT
s =Γ

})0,0,0,0,0,0(,)0,0,0,0,0,1(,)0,0,0,1,0,0({)0,0,0,1,0,1( TTTT
s =Γ

})0,0,0,0,0,0(,)0,1,0,0,0,0(,)0,0,0,0,1,0(

,)0,0,0,0,0,1(,)0,1,0,0,1,0(,)0,0,0,0,1,1(,)0,1,0,0,1,1({)0,1,0,0,0,1(
TTT

TTTTT
s =Γ

})0,0,0,0,0,0(,)1,0,0,0,0,0(,)1,1,0,0,0,0(

,)1,0,0,0,1,0(,)1,1,0,0,1,0(,)0,1,0,0,0,0(,)0,0,0,0,1,0(

,)0,0,0,0,1,0(,)0,1,0,0,0,1(,)0,0,0,0,1,1(,)0,1,0,0,1,1({)0,1,0,0,1,0(

TTT

TTTT

TTTTT
s =Γ

})0,0,0,0,0,0(,)0,1,0,0,0,0(,)1,0,0,0,0,0(

,)0,0,0,0,1,0(,)1,1,0,0,0,0(,)0,1,0,0,1,0(,)1,1,0,0,1,0({)1,0,0,0,1,0(
TTT

TTTTT
s =Γ

})0,0,0,0,0,0(,)0,1,0,0,0,0(,)0,0,1,0,0,0({)0,1,1,0,0,0( TTTT
s =Γ

})0,0,0,0,0,0(,)1,0,0,0,0,0(,)0,1,0,0,0,0(

,)0,0,0,0,1,0(,)0,1,0,0,1,0(,)1,0,0,0,1,0(,)1,1,0,0,1,0({)1,1,0,0,0,0(
TTT

TTTTT
s =Γ

})0,0,0,0,0,0(,)1,0,0,0,0,0(,)0,1,0,0,0,0(

,)0,0,0,0,1,0(,)1,1,0,0,0,0(,)1,0,0,0,1,0(,)0,1,0,0,1,0({)1,1,0,0,1,0(
TTT

TTTTT
s =Γ

.

The graph of phase transitions, ),( sfsG Γ= U , is given in Fig. 8.17.
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G s:

Figure 8.17
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β) Determine the phase transition graph for the same intersection (as in Example 8.7α), but 
for the following set of signal groups: 

 .}},{,}{,}{,}{,}{{
},,,,{

216543

2
5

2
4

2
3

2
2

2
1

2

σσσσσσ=
= DDDDDaD

The graph of signal group compatibility and the phase transition graph are presented in Fig. 
8.18. The phase transition graph, in this case, is a subgraph of sG  presented in Example 
8.7α. 
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(0,1,0,0,1,1)T

(0,0,0,0,1,0)T

(0,0,0,0,0,0)T

(1,1,0,0,0,0)T

(1,0,0,0,1,0)T
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(1,1,0,0,1,0)T

(1,0,0,0,0,0)T

(1,0,1,0,0,0)T

(0,0,1,0,0,0)T

(0,0,0,0,1,1)T

(0,1,0,0,0,1)T

(0,0,0,1,1,0)T
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(0,0,0,0,0,1)T
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G s:

Gg :

D 2
1 D 2

2

D 2
3

D 2
4

D 2
5

Figure 8.18
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Omitted are the nodes that represent phases giving the right-of-way to 1
1D  only, or 1

2D  

only, and the edges incident to these nodes. The nodes representing the phases that give the 

simultaneous right-of-way to 1
1D  and 1

2D  remained because pair ),( 1
2

1
1 DD  in this example 

represents one signal group, 2
5D . Thus, from the feasible set of phases, fU , determined 

in Example 8.7α, the following phases are omitted: T)0,1,0,0,1,0( , T)0,1,0,0,0,1( , 
T)0,0,0,0,1,0( , T)1,0,0,0,1,0( , T)1,1,0,0,1,0( , T)0,0,0,1,0,1( , T)0,0,0,0,0,1( .

This graph is also nonoriented because relation sR  is symmetric.

γ) Determine the phase transition graph for the intersection presented in Fig. 8.19. The 
same figure presents the graph of signal group compatibility and the m.e.i.t. matrix. The set of 
feasible signal groups is:

 .}}{,}{,}{,}{,}{{
},,,,{

54321

1
5

1
4

1
3

1
2

1
1

1

σσσσσ=
= DDDDDaD

σ 1
σ 2

σ3 σ4

σ5





















=

00304
00010
30035
08300
70500

Z

G c:
D 1

1 D 1
2

D 1
3

D 1
4

D 1
5

(1,0,0,0,0)
T

(0,1,0,0,0)
T

(1,0,0,1,0)
T

(0,0,0,1,0)
T

(0,1,0,0,1)
T

(0,0,0,0,1)
T

(0,0,0,1,1)
T

(0,0,1,1,0)
T

(0,0,1,0,0)
T

(1,1,0,0,0)
T

T

G s:

(0,0,0,0,0)

Figure 8.19
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The set of feasible phases is defined by the following expression:

 .})0,0,0,0,0(,)0,0,1,0,0(,)0,1,1,0,0(

,)1,1,0,0,0(,)1,0,0,0,0(,)1,0,0,1,0(,)0,1,0,0,0(

,)0,1,0,0,1(,)0,0,0,1,0(,)0,0,0,0,1(,)0,0,0,1,1({

TTT

TTTT

TTTT
f =U

Graph ),(),( sfsfs RG Γ== UU  is presented in Fig. 8.19. The phase transition graph is 
nonoriented in this case, also.

8.6.3.	 Some	features	of	the	phase	transition	graph

a) Graph sG  is a connected graph, i.e., any two nodes can be connected by 
a path (or by a chain, if sG  contains oriented edges as well). 

b) Graph sG  contains an articulation node if the graph of signal group 
compatibility, gG , is disconnected. The articulation node always 
represents phase T)0,...,0,0( . If an isolated node is a connected component 
of graph gG  (Fig. 8.20, Fig. 8.21), then graph sG  contains the articulation 
node and a pending edge.

If the compatibility graph has n connected components, phase T)0,...,0,0(  
(“all red”) will appear at least n times ( 1>n ) in the signal plan.

c) The nodes of graph sG  (nonoriented) can be classified according to the 
node degree as either internal or connection nodes.
I − Internal nodes
 “Internal nodes” are the nodes that have the node degree equal to the 
cardinal number of set πfU  to whom they belong. The node

π∈ fs Uu )(

is internal if the following condition is satisfied:

π= fcardsd Uu ))(( . (8.54)

))(( sd u  is the degree of node )(su .

 Appendix VI presents the procedure for determining all phases that 
are generated from a maximal phase, which corresponds to the maximal 
clique of graph gG , i.e., the way of obtaining the set )( π

π = aamf P uU .
The phase represented by an internal node can be followed only by a 
phase that belongs to the same set πfU .
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Figure 8.20

 Set πfU  is the set of phases “generated” by a maximal clique, π
maD , 

of the signal group compatibility graph, gG , i.e.,

)(,)( ð Π∈π=π amaf P uU . (8.55)

 Internal nodes exist if the maximal clique π
maD , whose elements 

they are, contains at least one signal group that is not present in other 
maximal cliques. Namely there exist maximal cliques whose all nodes 
are elements of other maximal cliques.
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II − Connection nodes
 “Connection nodes” in the phase transition graph, sG , are the nodes 
that are connected to the nodes which correspond to phases that are 
elements of two or more phase subsets generated from different maximal 
cliques of graph gG . If the phase )(vu  belongs to both sets, )( ρ

amaP u  and 
)( λ

amaP u , then the degree of the node representing this phase is:

1))( )(())(( −= λρ
amaama PPcardvd uuu  . (8.56)

 If phase )(vu  belongs to sets )(,,)( ϕρ
amaama PP uu  , the node degree 

of this phase is:

1))( )(())(( −= ϕρ
amaama PPcardvd uuu  . (8.57)

 In a signal plan structure, the phases represented by connection nodes 
separate the phases that are not in the phase transition relation.

 In the phase transition graph, presented in Fig. 8.21, the connection 
nodes are marked by circles around the points representing these nodes.

 The degrees of internal nodes of graph sG , in Fig. 8.21, are:

7))1,0,1,0,0,0,0(())0,0,1,0,0,1,0(())1,0,1,0,0,1,0((          

))1,0,0,0,0,0,1(())0,0,0,0,0,1,1(())1,0,0,0,0,1,1((

===

===
TTT

TTT

ddd

ddd

3))0,0,1,1,0,0,0(())0,0,0,1,0,0,1((          

))0,1,0,0,0,0,0(())0,0,0,0,1,0,0(())0,1,0,0,1,0,0((

==

===
TT

TTT

dd

ddd

 The degrees of connection nodes are:

11))1,0,0,0,0,0,0(())0,0,0,0,0,1,0(())1,0,0,0,0,1,0(( === TTT ddd

9))0,0,1,0,0,0,0(())0,0,0,0,0,0,1(( == TT dd

5))0,0,0,1,0,0,0(( =Td

III − Node T)0,...,0,0(  representing the “all red” phase
 The degree of this node, which is connected to all other nodes if sG  
is nonoriented, is:

1))0,...,0,0(( −= f
T cardd U . (8.58)

 The procedure for determining the number of elements in set fU  is 
given in Appendix VI.
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 Node T)0,...,0,0(  is a connection node, as well.

 The degree of node T)0,...,0,0(  in Fig. 8.21 is:

511))0,...,0,0(( =−= f
T cardd U .

d) The diameter of graph cG
 The diameter of a graph is the length of the shortest path between the 
most distant nodes (Appendix I). The length between adjacent nodes is 
1.
 The node that represents phase T)0,...,0,0(  − all red, in a nonoriented 
graph, is connected to all other nodes. The diameter of this graph is, 
therefore, equal to 2.

8.6.4.	 Structural	constraints	on	phase	transition

The signal plan structure is defined (Subsection 4.2.2) as a sequence of 
control vectors, i.e.,

],,,,[ K21 uuuuu 

k= .

A signal plan structure has to satisfy certain constraints. Some of these 
constraints refer to any signal plan structure, while others reflect special 
requirements that exist only in some problems of signal plan choice.
а)	 Phase	transition	constraints	that	have	to	be	satisfied		

by	any	feasible	signal	plan

Phase transition constraints that have to be satisfied by any two adjacent 
phases represent the constraints on the structure of a feasible signal plan. A 
feasible structure is represented on the phase transition graph, sG , by the 
path

]),(,,),(,),([ K1K3221 uuuuuu −=µ 

,

where the ordered pair ),( 1+kk uu  represents the edge between nodes ku  and 
1+ku . Hence, this path has the following feature:

k
s

k uu Γ∈+1 .

This also holds if K=k  (K denotes the index of the last phase in the 
signal plan, i.e., this is the number of phases in the signal plan). Since the 
control is a periodic function of time, it is necessary that after phase Ku , 
phase 1u  begins, i.e.,
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K1 uu sΓ∈ . (8.59)

The path

]),(,),(,,),(,),([ 1KK1K3221 uuuuuuuu −=µ′  ,

therefore, represents a closed path in graph sG  [20]. This path, in a general 
case, is not an elementary path, i.e., one phase can appear several times in a 
signal plan.

The constraints that have to be satisfied by signal plan structure u, resulting 
from the phase transition relation, are given by the following expression:

)(    , 1)K(mod K∈Γ∈+ kk
s

k uu . (8.60)

Thus, any feasible signal plan structure can be represented by a closed 
path in graph sG .

Constraints (8.60) are related only to the variables contained in the signal 
plan structure, not to the time variables kτ . Therefore, these constraints are 
structural constraints.
b)	 Special	structural	constraints

In some problems of signal plan choice it is necessary to include special 
structural constraints. Such cases are, for example, the problems with 
permitted “filtering” of one traffic stream through another. In these problems, 
as mentioned in Subsection 2.2.4, it is better to give the right-of-way first to 
the opposing stream, and after its queue is discharged, to both streams, and, 
finally, only to the opposed stream.

If the opposing stream belongs to signal group aD′ , controlled by control 
variable )(⋅au , and the opposed stream to signal group bD′ , controlled by 

)(⋅bu , then, for the mentioned sequence, it is necessary that phases with 1=k
au  

and 0=k
bu , precede phases with 11 =+k

au  and 11 =+k
bu , followed by phases 

with 02 =+k
au  and 12 =+k

bu . Therefore, on the graph of phase transitions, it 
is necessary to prevent transition from phases with 11 =+k

au  and 11 =+k
bu , to 

phases with 12 =+k
au  and 02 =+k

bu , and also from phases with 0=k
au  and 

1=k
bu , to phases with 11 =+k

au  and 11 =+k
bu . This is achieved by introducing 

oriented edges in graph sG , such that the mentioned “banned” transitions are 
impossible.
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Example	8.8

 An intersection with five traffic streams is presented in Fig. 8.22, together with the 
compatibility graph gG . Each signal group controls a single traffic stream. Edge ),( 41 σσ  
exists if streams 1σ  and 4σ  are allowed to have the right-of-way simultaneously. The 
opposing stream is 1σ , and the opposed stream is 4σ . Determine the phase transition graph, 

sG .

 The set of feasible phases, fU , is:

 .})0,1,0,0,1(,)1,1,0,0,1({})0,0,0,0,0(

,)0,0,1,0,0(,)0,1,0,0,0(,)0,0,0,1,0(,)1,1,0,0,0(,)1,0,0,1,0(

,)0,1,0,1,0(,)1,1,0,1,0(,)1,0,0,0,0(,)0,0,0,0,1(,)1,0,0,0,1({

TTT

TTTTT

TTTTT
f



=U

 The phase transition graph, sG , is presented in Fig. 8.22. Certain edges in this graph are 
oriented to prevent undesirable phase sequences and provide for desirable phase sequences. 
This figure also presents, by bold lines in graph sG , one structure that satisfies the structural 
constraints.

In Example 12.6 and in Fig. 12.10 another case with special structure 
constraints is presented.

Besides the described structural constraints, there exists another type of 
structural constraints—the constraints of one period of green indication in a 
cycle (Subsection 8.2.1).
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8.7.	 Minimal	intergreen	time	constraints	for	phases

The constraints of minimal intergreen times for pairs of signal groups 
were analyzed in Subsection 8.4.2. The method of their determination was 
discussed, and the matrix of minimal effective green times was used for their 
representation:

PP][ ×= qpzZ .

A signal plan has to satisfy constraints that are the consequence of m.e.i.t. 
existence. Namely, if a part of the structure is considered, e.g., 11 ,, +− kkk uuu , 
the duration, kτ , of phase ku  has to satisfy these constraints if pair ), 11 +− kk uu(  
is not an element of the phase transition relation. This also holds if between 
the phases, which are not elements of the phase transition relation, several 
other phases exist. If the pair ),( 12 +− kk uu  in structure 112 ,,, +−− kkkk uuuu , 
does not belong to the phase transition relation, then the sum kk τ+τ −1  has to 
satisfy the m.e.i.t. constraints.

The duration of phases situated in the structure between two phases that 
are not in the phase transition relation has to be greater than the maximal 
value of m.e.i.t. between incompatible signal groups contained in these two 
phases.

The following fact has to be taken into consideration: If 1−k
pu  cuts the 

right-of-way in this phase, i.e., 11 =−k
pu , 0=k

pu , and 1+k
qu  starts giving 

the right-of-way, i.e., 0=k
qu , 11 =+k

qu , then qpz  has to be included in 
determination of m.e.i.t. constraints.

The analytical expression of these constraints is:

},,)(           

,1)(          

|{max

)K(mod)K(1)K(mod

)K(mod)1K(K1)K(mod)K(mod)K(K
0

)K(mod)K(K

P∈Γ∉

=⋅⋅

≥τ

−α++

−−α+−+−α+−

α=

=

−+−∑

qp

uuuu

z

k
s

k

k
q

k
p

k
q

k
p

qp

l

l

kl

uu  (8.61)

)( K∈k  and )),(( 1)K(mod +′∈α kk uuA .

The symbols not used before have the following meanings:
s
q

s
q uu −=1

α − the number of phases whose durations have to be taken into account 
when formulating the m.e.i.t. constraints
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}),(,,,,2,1{),(' 1)K(mod
M

1)K(mod ++ αα= kkkkk uuuu A − the set of values 
assigned to α
These constraints have to be formulated for each ),( 1)K(mod +′∈α kk uuA . 

The total number of m.e.i.t. constraints for one k is ),( 1)K(mod
M

+α kkk uu . The 
constraint formulated for 1=α  contains one time variable ( kτ ). The constraint 
formulated for 2=α  contains the sum of two time variables. Finally, the 
constraint formulated for ),( 1)K(mod

M
+α=α kkk uu  contains the maximal 

number of time variables.
The maximal number of phases, k

Mα , that have to be taken into account 
when formulating m.e.i.t. for one value of k, depends on signal groups that 
gain the right-of-way in phase 1)K(mod +ku , i.e., the groups for which:

11)K(mod =+k
qu  and 0=k

qu .

The number of intergreen time constraints, k
Mα , for one k is equal to 

the maximal number of phases preceding phase 1)K(mod +ku , whose durations 
have to be considered in formulating m.e.i.t. constraints.

The following facts have to be taken into account when determining 
k
Mα :

a) The shortest phase duration is 1 s. Therefore, the maximal number of 
phases, preceding phase 1)K(mod +ku , whose durations have to be included 
in intergreen constraints, is equal to the maximal value of m.e.i.t. 
between any signal group and the group that receives the right-of-way 
by phase 1)K(mod +ku . This number is, thus, equal or less than the maximal 
value qpz  in the columns of Z matrix corresponding to the q for which 

11)K(mod =+k
qu , 0=k

qu , i.e., this number is equal to:

},   , )0()1(|max{ 1)K(mod P∈=∧=+ qpuuz k
q

k
qqp . (8.62)

b) The maximal number of phases included in the m.e.i.t. constraints cannot 
be greater than 2K − . If the following phase sequence is considered

 

  

 ,,,,
2K

,,,,,,,,,,,, K1121K2121 uuuuuuuuuuuu +−++

−

kkkkkk ,

it can be observed that the inclusion of phase 2+ku  duration in this 
constraint means that intergreen time would be calculated between 
phase 1+ku  and the same phase in the next cycle, which does not make 
any sense.
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Therefore, k
Mα  can be determined using the following expression:

}2K ,},  , )0()1(|max{min{

),(
1)K(mod

1)K(mod
PM

−∈=∧==

α=α
+

+

Pqpuuz k
q

k
qqp

kkk uu

. (8.63)

When using expression (8.61), it is necessary to determine the values of 
qpz  that will be used in cases when they are not defined. These cases arise 

when gqp CDD ∈′′ ),(  and when qp = . The value 0=qpz  will be used for 
these cases, i.e.,

)0()()),(( =⇒=∨∈′′ qpgqp zqpCDD . (8.64)

If 0<qpz , then the duration, kτ , of phase ku  that lies between 
the phase 1−ku , in which signal group pD′  lost the right-of-way 

)0,1( 1 ==− k
p

k
p uu , and phase 1+ku , in which signal group qD′  gained the 

right-of-way )1,0( 1 == +k
q

k
q uu , has to satisfy the constraint:

0<≥τ qp
k z .

Since expression (8.63) relates to phase duration, kτ , which satisfies the 
constraint:

)(, 0 K∈≥τ kk ,

then, in the case when 0<qpz , the m.e.i.t. will be assumed 0=qpz  in this 
expression.

The constraints for duration of phases that give the right-of-way to both 
signal groups, pD′  and qD′ , ( 1== k

q
k
p uu ), valid in the case 0<qpz , are given 

by expression (8.40).
Therefore, when expression (8.61) is used, it is necessary to take into 

consideration that:

)0()0()()),(( =⇒<∨=∨∈′′ qpqpgqp zzqpCDD . (8.65)

Intergreen times for all pairs of feasible phases can be calculated in 
advance. They will be elements of the matrix of minimal effective intergreen 
times between phases, fZ .
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8.8.	 The	constraint	on	the	sum	of	phase	durations

The control is, as mentioned in Part I, a periodic time function. Because 
of this fact, the sum of all control vector (phase) durations has to be equal 
to the cycle time. The cycle time, c, is given in some problems of signal 
plan choice. In some other problems, the cycle time results from problem 
solution, as the sum of duration of all phases that constitute the signal plan. 
Anyway, the cycle time has to be less than a maximal value, maxc , which is 
usually prescribed by standards in any country. This value is 120 s in most 
countries.

The constraint on phase durations is defined by the following 
expression:

c
k

k =τ∑
=

K

1
, or (8.66)

max

K

1
c

k

k ≤τ∑
=

. (8.67)

8.9.	 Mathematical	expressions	of	signal	plan	constraints

Mathematical expressions for constraints, discussed in this part, relate 
to control vectors assigned to particular signal groups. These expressions 
are valid for a complete set of signal groups. However, when starting with 
problem solution, the available data are related to traffic streams and relations 
between them. Therefore, it is necessary to show how the data related to 
traffic streams can be transformed into constraints on control variables for 
signal groups.

In formulating the constraints by which the set of feasible controls (signal 
plans) is defined, the following data are needed:
a)	 The	system	data

▪ The set of traffic streams:
},,,{ I21 σσσ= S .

▪ The vector of saturation flow volumes of vehicle traffic streams:
),,,,,( I21 ′= sssss i  .

▪ The compatibility relation of traffic streams, С.
▪ The chosen, complete set of signal groups:

},,,,,{ P21 DDDD pa ′′′′= D ,
which are controlled by control variables:

)(,,)(,,)(,)( P21 ⋅⋅⋅⋅ uuuu p  .
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▪ The set of vehicle signal groups:

},,,,,{ P21 ′′′′′=′ DDDD pa D .

▪ The set of feasible phases, fU .

▪ The phase transition relation, sR .

▪ The vector of minimal effective green times of signal groups:

),,,,,( P21 mpmmmm ggggg = .

▪ The vector of maximal effective red times of certain vehicle signal 
groups:

),,,,,(
RP21 MpMMMM rrrrr = ,

}P,,,2,1{ R pp M =∈P .

▪ The matrix of minimal effective intergreen times for all pairs of 
signal groups:

PP][ ×= qpzZ .

▪ The cycle duration, c, or the maximum cycle time, maxc .

▪ Input–output matrix А, containing data about participation of arrival 
traffic stream volumes in output traffic flows.

b)	 The	data	about	volumes	of	vehicle	traffic	streams
▪ The average values of vehicle traffic stream volumes, iq , ( J ′∈i ).

▪ The maximum acceptable saturation degrees, iρ , for all vehicle 
traffic streams ( J ′∈i ).

Based on these data, the constraints that define the set of feasible controls 
(signal plans) are formulated as follows:
α. The	constraints	related	to	control	variables

α.1 The constraint of one interval of green indication in a cycle:

)(,2)2(mod)(
K

1

1)K(mod P∈=+∑
=

+ puu
k

k
p

k
p .

α.2 The constraints of minimal effective green times for signal groups:

)(,
K

1
P∈≥σ∑

=

pgu
k

pm
kk

p .
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α.3 The constraints of maximal effective red times for signal groups:

∑
=

≤τ−
K

1
)1(

k
qM

kk
q ru .

α.4 The flow balance (capacity) constraints
α.4.1 The flow balance constraint when filtering is not permitted:

)(,
K

1
P ′∈γ≥τ∑

=

pu
k

p
kk

p , when с is given,

)(,|max
K

1

K

1
P ′∈









′∈σ
ρ

τ≥τ ∑∑
==

pD
s

qu
k

pi
ii

ik

k

kk
p , 

when с is not given.

α.4.2 The flow balance constraint when filtering is permitted:

I The flow balance constraint for the opposing stream aσ  
(the streams aσ  and bσ  are at the same time signal groups; 

}{ aaD σ=′ , }{ bbD σ=′ ):

 a
k

kk
b

k
aa

k
b

k
aa qcuuquus ≥τ+−∑

=

K

1
))1(( .

II The condition of queue discharge of stream aσ , before 
giving the simultaneous right-of-way to both signal groups, 

aD′  and bD′ :

 0))1()1((
K

1
≥τ−−−∑

=k

k
a

k
b

k
aa

k
b

k
a suuquu .

III The flow balance constraint for the opposed stream, bσ , 
that filters through stream aσ :

 cqsuu
e
equu b

k

k
fb

k
a

k
bq

q
ak

b
k
a ab

a

≥τ







−+

−∑
=

β−

α′−K

1
)1(

1
.

β. The	constraint	on	control	vectors	composition
Components )(rup  of any feasible phase fr Uu ∈)(  have to satisfy the 
constraints given by the following expression:

)(,
  fi  ,0

  fi  ,1
)( P∈







∉′

∈′
= p

D

D
ru

r
ap

r
ap

p
D

D
,

where r
aD  is a clique of graph ),( gag CG D= .
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γ. The	constraints	related	to	phase	sequences
γ.1 Phase sequence constraints:

)(,1)K(mod K∈Γ∈+ kk
s

k uu .

γ.2 Minimal effective intergreen time constraints:

)(,),( 1)K(mod)K)(modK(K
1

1

Kmod)K(K K∈≥τ +−α+−
−α=

=

−+−∑ kz kkf
l

l

kl uu

),( 1)K(mod)K(mod)K(K +−α+−′∈α kk uuA .

δ. The	 constraint	 on	 the	 duration	 of	 interval	 in	 which	 the	 simultaneous	
right-of-way	is	given	to	signal	groups	having	negative	minimal	effective	
intergreen	times	between	them

),(,)0(  , )(
K

1
P∈<≤τ∑

=

mvzzuu mvmv
k

kk
m

k
v .

ε. The	constraint	on	the	sum	of	phase	durations

ε.1 c
k

k =τ∑
=

K

1

.

ε.2 max

K

1
c

k

k ≤τ∑
=

.

The listed constraints relate to control variables, which control signal 
groups, and to control vectors (phases) in particular intervals during a cycle. 
Primary data used in formulating these constraints relate to traffic streams.

The way of obtaining constraints related to control variables, which 
control signal groups, was explained when the constraints were formulated. 
The summary of these expressions is given below.
•	 The minimal effective green time constraints for signal groups, α.2, are 

obtained from minimal effective green times of signal groups using (8.4) 
(Subsection 8.2.2):

)(    , }|max{ P∈′∈σ= pDgg pi
m
ipm ,

where:
m
ig  – the minimal effective green time for traffic stream iτ ,

pmg  – the minimal effective green time of signal group pD′ .
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•	 Maximal effective red time constraints for certain signal groups, α.3, are 
obtained from maximal effective red times of traffic streams controlled 
by these signal groups using expression (8.8) (Subsection 8.2.3):

)(    , }|min{ M
qj

M
jqM qDrr P∈′∈σ= ,

where:
qMr  – the maximal effective red time of signal group qD′ ,

M
jr  – the maximal effective red time for traffic stream jτ ,

MP – the index set of the set of signal groups for which it 
is necessary to introduce the maximal effective red time 
constraints.

•	 In flow balance constraints, α.4.1, the right side of the constraints, pγ , is 
determined from traffic streams data using expression (8.14) (Subsection 
8.2.4):

)(    , )(|max P ′∈








′∈σ
ρ

=γ pD
s
qc

pi
ii

i
p .

•	 The set of feasible control vectors (phases) is obtained starting from the 
compatibility relation, gC , in the following way:
а) In the case when no negative intergreen times exist  

(Section 8.3):

})0,,0,0({})R(,,)(,,)2(,)1({  uuuuU rf =′ ,

where:
T

p rurururur ])(,,)(,,)(,)([)( P21 =u , and

),(,
 fi  ,0

 fi  ,1
)( RP ∈∈







∉′

∈′
= rp

D

D
ru

r
ap

r
ap

p
D

D
,

a
r

a DD ∈ ,

},  ; )()(|{ P∈′Γ∈′⇒∈′∧∈′= qpDDDD pgq
r

aq
r

ap
r

aa DDDD .

The signal group compatibility graph

),(),( gagag CG DD =Γ=

is obtained using compatibility relation C in the set of traffic streams. 

Relation gC  can be determined by the following expression:

}),()()(|),({ CDDDDC jiqjpiqpg ∈σσ⇒′∈σ∧′∈σ′′= .
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b) In the case when there exist negative intergreen times  
(Subsection 8.4.3):
▪ The extended set of feasible phases:

fff UUU ′=′′  ,

where:

,}),(,N,,2

,0,1)()(

,])(,,)(,,)(,,)(,)([)(|)({ P21

gqp

qpqp

T
qpf

CDDRRs

zsusu
susususususs

′∈′′++=

<==

==′



uuU

},,0|),({ aqpqpqpg DDzDDC D∈′′<′′=′ ,

),( gag CDG ′′=′ ,

),(),(),(

),(),(

gagaggaa

gagaggg

CCC
CCGGG

Γ ′′=′′=′=

=′=′=′′

DDDD

DD





.

▪ When using expression (8.61) for determination of

),( 1)K(mod)K(mod)K(K +−α+− kkfz uu ,

it is assumed that 0=qpz  if

)0()()),(( <∨=∨∈′′ qpgqp zqpCDD .

The values qpz  in expressions (8.61) and (8.63) are minimal 
effective intergreen times, defined for each pair of control 
variables, ))(,)(( ⋅⋅ qp uu , controlling signal groups pD′  and 

qD′ . These values are obtained from jiz′ , defined for each pair of 
traffic streams, ),( ji σσ , using the following expression:







∈′′

×∈′′′∈σ′∈σ′
=

.),(,0

}\)(),(,,|max{

gqp

gaaqpqjpiji
qp CDD

CDDDDz
z

DD

Formulation of m.e.i.t. constraints starts with determination of 
the matrix

II][ ×′=′ jizZ ,

whose elements are the minimal effective intergreen times 
between traffic streams. The matrix of m.e.i.t. between signal 
groups,

PP][ ×= qpzZ ,
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is obtained using data from Z ′ . Finally, the elements from Z are 
used for determining m.e.i.t. between phases, i.e., for determining 
function fZ ,

R: →× ff
fZ UU .

•	 The constraints of minimal effective intergreen times, γ.2, are defined by 
the expression:

},,)(           

,1)(          

|{max

)K(mod)K(1)K(mod

)K(mod)1K(K1)K(mod)K(mod)K(K
0
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l

l

kl

uu

)( K∈k  and )),(( 1)K(mod +′∈α kk uuA ,
where α is the number of phases participating in the formulation 
of constraints γ.2. One constraint is formulated for each 

),( 1)K(mod +′∈α kk uuA , where:

}),(,,,,2,1{),( 1)K(mod
M

1)K(mod ++ αα=′ kkkk uuuu A , and

.}2K,},

)0()1(|max{min{),( 1)K(mod1)K(mod
M

−∈

=∧==α ++

Prq

uuz k
r

k
rrq

kk uu

In expression (8.61), 0),( 1)K(mod)K(mod)K(K ≥+−α+− kkfz uu .

Example 8.9

 Formulate all constraints related to phase durations for the intersection presented in Fig. 
8.10. The phase transition graph is given in Fig. 8.17. The signal plan structure is given, and 
every traffic stream makes one signal group.
 The signal plan structure is:























=























=

0001000000
0111110000
0000011000
0000000011
0111000000
1100000001

                    

6

5

4

3

2

1

01987654321

u
u
u
u
u
u

u

uuuuuuuuuu

.

 This structure is marked by a bold line on graph sG , presented in Fig. 8.23. The structure 
satisfies constraints 1.α  and .2.α  Feasible phases are represented by nodes of graph sG .
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 The values of saturation flow volumes, average volumes of vehicle traffic streams, 
minimal effective green times, and maximal effective red times are given in Table 8.1.

Table 8.1

pi = 1 2 3 4 5 6

]PCU/h[is 1850 1650 1620 1650 1600 /

]s[pmg 20 15 15 15 15 16

]s[pMr / / / 60 75 /

]PCU/h[iq 185 165 324 165 160 /

 The matrix of minimal effective intergreen times is:



























=

008408
000100
200212
253030
005300
404000

Z .

 The cycle time is 09=c s.

 The acceptable saturation degree is the same for all vehicle signal groups, 9.0=ρi  

)5,,1( =i .

 The time constraints for this structure are:

I – The constraints of minimal effective green times, α.2:

1) 020191 ≥τ+τ+τ

2) 51987 ≥τ+τ+τ

3) 5121 ≥τ+τ

4) 5154 ≥τ+τ

5) 5198765 ≥τ+τ+τ+τ+τ

6) 617 ≥τ
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(0,1,0,0,1,1)T

(0,0,0,0,1,0)T

(0,0,0,0,0,0)T

(1,1,0,0,0,0)T

(1,0,0,0,1,0)T

(0,1,0,0,0,0)T

(1,1,0,0,1,0)T

(1,0,0,0,0,0)T

(1,0,1,0,0,0)T

(0,0,1,0,0,0)T

(0,0,0,0,1,1)T

(0,1,0,0,0,1)T

(0,0,0,1,1,0)T

(0,0,0,1,0,0)T

(0,0,0,0,0,1)T

(0,1,0,0,1,0)T

Gs:

Figure 8.23

II – The constraints of maximal effective red times, α.3:

7) 06019876321 ≤τ+τ+τ+τ+τ+τ+τ+τ

8) 57014321 ≤τ+τ+τ+τ+τ

III – The flow balance constraints, α.4:

9) 01
11

10191 =
⋅ρ
⋅

≥τ+τ+τ
s
qc

10) 01987 ≥τ+τ+τ

11) 0221 ≥τ+τ

12) 0154 ≥τ+τ

13) 0198765 ≥τ+τ+τ+τ+τ

IV – The constraints of minimal effective intergreen times, γ.2:
 These constraints exist only if the conditions given in expression (8.61) are fulfilled. 
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Using this expression, the constraints are formulated for each value of k )01,,2,1( =k  
as follows:

1=k

12
3 =u , but 11

3 =u , meaning that in phase 2u  no signal group starts with its right-of-
way.

2=k

03
6

3
2

3
1 ==== uuu  , meaning that in phase 3u  no signal group starts with its 

right-of-way.

3=k

14
4 =u ; 03

4 =u
8M =α

1=α  24 uu sΓ∉ ; 12
3 =u , 03

3 =u
 33 ≥τ

2=α  14 uu sΓ∉ ; 11
1 =u , 02

1 =u
432 ≥τ+τ

3=α  014 uu sΓ∉ , but 101
1 =u , 11

1 =u

4=α  94 uu sΓ∉ ; 19
5

9
2 == uu , 001

5
01

2 == uu
501321 ≥τ+τ+τ+τ

5=α  84 uu sΓ∉ ; 18
5

8
1 == uu , but 19

5
9
1 == uu

6=α  74 uu sΓ∉ ; 17
6 =u , 08

6 =u
80198321 ≥τ+τ+τ+τ+τ+τ

7=α  64 uu sΓ∈

8=α  54 uu sΓ∈
4=k

15
5 =u ; 04

5 =u
5M =α

1=α  35 uu sΓ∈

2=α  25 uu sΓ∉ ; 12
3 =u , 03

3 =u
543 ≥τ+τ
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3=α  15 uu sΓ∉ ; 11
1 =u , 02

1 =u
0432 ≥τ+τ+τ

4=α  015 uu sΓ∉ ; 101
1 =u , 11

1 =u

5=α  95 uu sΓ∉ ; 19
5

9
2 == uu , 001

5
01

2 == uu
0014321 ≥τ+τ+τ+τ+τ

5=k

16
5 =u , but 15

5 =u
6=k

17
6

7
2 == uu ; 06

6
6
2 == uu

4M =α

1=α  57 uu sΓ∉ ; 15
4 =u , 06

4 =u
26 ≥τ

2=α  47 uu sΓ∉ ; 14
4 =u , but 15

4 =u

3=α  37 uu sΓ∈

4=α  27 uu sΓ∉ ; 12
3 =u , 03

3 =u
36543 ≥τ+τ+τ+τ

7=k

18
5

8
1 == uu  and 17

5
7
1 == uu

8=k

19
1 =u ; 08

1 =u
8M =α

1=α  79 uu sΓ∉ ; 17
6 =u , 08

6 =u
88 ≥τ

2=α  69 uu sΓ∈

3=α  59 uu sΓ∉ ; 15
4 =u , 06

4 =u
2876 ≥τ+τ+τ

4=α  49 uu sΓ∉ ; 14
4 =u , 15

4 =u

5=α  39 uu sΓ∈
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6=α  29 uu sΓ∉ ; 12
3 =u , 03

3 =u
0876543 ≥τ+τ+τ+τ+τ+τ

7=α  19 uu sΓ∉ ; 11
1 =u . 02

1 =u

8=α  019 uu sΓ∈
9=k

101
1 =u , but 09

1 ≠u  (the phase 01u  doesn’t begin to give the right-of-way to any 
signal group).

01=k

11
3 =u ; 001

3 =u
4M =α

1=α  91 uu sΓ∉ ; 19
5

9
2 == uu , 001

5
01

2 == uu
301 ≥τ

2=α  81 uu sΓ∉ ; 18
5

8
2 == uu , but 19

5
9
2 == uu

meaning that phase 8u  doesn’t stop giving the right-of-way to any signal 
group

3=α  71 uu sΓ∉ ; 17
6 =u , 08

6 =u
40198 ≥τ+τ+τ

4=α  61 uu sΓ∉ ; 16
5 =u . 17

5 =u

Therefore, all constraints of minimal effective intergreen times, obtained using (8.61), are:

14) 33 ≥τ

15) 432 ≥τ+τ

16) 501321 ≥τ+τ+τ+τ

17) 80198321 ≥τ+τ+τ+τ+τ+τ

18) 543 ≥τ+τ

19) 0432 ≥τ+τ+τ

20) 0014321 ≥τ+τ+τ+τ+τ

21) 26 ≥τ

22) 56543 ≥τ+τ+τ+τ

23) 88 ≥τ
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24) 2876 ≥τ+τ+τ

25) 0876543 ≥τ+τ+τ+τ+τ+τ

26) 301 ≥τ

27) 40198 ≥τ+τ+τ

V – The constraint on the sum of phase durations:

28)  ∑
=

=τ
01

1

09
k

k

By observing constraints I, II, III, IV, and V, the following facts can be found:

▪ The constraints 19, 20, and 25 are needless because )(,0 K∈>τ kk ;
▪ The constraints 2, 5, and 24 are needless because the constraint 6 exists;
▪ The constraints 16 and 17 are needless because the constraint 3 exists;
▪ The constraint 27 is needless because the constraint 23 exists;
▪ The constraint 22 is needless because the constraint 4 exists;
▪ The constraint 9 is needless because the constraint 1 exists;
▪ The constraint 10 is needless because the constraint 2 exists;
▪ The constraint 3 is needless because the constraint 11 exists;
▪ The constraint 12 is needless because the constraint 4 exists;
▪ The constraint 13 is needless because the constraint 5 exists.

Accordingly, phase durations have to satisfy the following constraints:

)(     ,0

3
8
61
2
51
5
3
4
02
02
06
57
09

01

8

7

6

54

43

3

32

21

0191

019876321

014321

01987654321

K∈≥τ

≥τ
≥τ
≥τ
≥τ
≥τ+τ
≥τ+τ
≥τ
≥τ+τ
≥τ+τ
≥τ+τ++τ
≤τ+τ+τ+τ+τ++τ+τ+τ
≤τ++τ+τ+τ+τ
=τ+τ+τ+τ+τ+τ+τ+τ+τ+τ

kk
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9. oPtimization criteria

The goal of traffic control on a signalized intersection is to enable safe 
passage of vehicles and pedestrians through the intersection. To achieve this 
goal, it is necessary to prevent the situation that two vehicles (or a vehicle 
and a pedestrian) belonging to mutually conflicting traffic streams meet at the 
same conflict point. 

This goal can be realized in various ways, i.e., by more than one control 
(signal plan). The signal plans enabling achievement of this goal are all 
feasible signal plans, i.e., elements of set fU .

9.1. the general form and features of optimization criteria

For an exact formulation of the signal plan choice problem, it is necessary 
to define the pair ),( cf JU , i.e., besides precise determination of the set of 
feasible controls, fU , it is necessary to choose the performance index, cJ , 
i.e., the optimality criterion.

Optimization criteria that can be used for comparing quality of various 
signal plans have to satisfy several requirements. The most important 
requirements are that:

▪ By choosing the control that optimizes the selected criterion, traffic 
conditions on the intersection improve, e.g., the delay and number of 
stops reduce, or the capacity increases, etc.

▪ The criteria are explicit functions of control and state of the traffic 
process.

▪ The criteria are measurable.
▪ The criteria are related to the intersection as a whole, in a given time 

interval.
There are many factors significant for assessment of the traffic process 

quality on a signalized intersection. The most important factors are: the total 
delay, or the waiting time of vehicles, the number of vehicle stops, the total 
exploitation costs, the fuel consumption, the environmental influence, e.g., 
the level of pollutant emissions and noise. The number of vehicles that can 
pass through the intersection per time unit, i.e., the capacity for one approach 
and the whole intersection, becomes a very important performance index, 
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especially nowadays, with constant increase in number of cars in cities. 
The maximal or average queue on certain approaches, or on all of them, 
can also be the performance index of traffic control process on a signalized 
intersection.

Obviously, there are many optimization criteria suitable for mutual 
comparison of signal plans, and some of these criteria are very significant.

On the basis of the mentioned criteria features and expression (7.2):

RJ ttttttc →××′′ ],[],[],[ 000
: WUQ ,

it can be concluded that for determining optimization criterion values it is 
necessary to know the vector of arrival flow volumes, the signal plan, and 
queues during a cycle. Since in one interval the arrival flow volumes are 
stationary processes, the queues on particular approaches, i.e., the components 
of vector ],[ 0 ttw , can be determined according to the expression:

[ ] ],[],[],[
3

, 00000
)(: ttttttttt WUQW →××ϕ ,

on the basis of the initial state, )( 0tw , the vector of arrival flow volumes, 
],[ 0 ttq , and the signal plan, )(⋅u . Therefore, the value of the optimization 

criterion depends only on the choice of the control, i.e.,

R: →fcJ U ,

as defined by expression (7.4).
Different information on arrival flows, contained in vector ],[ 0 ttq , is 

necessary for determination of values of different optimization criteria. For 
example, for some criteria only the arrival flow volumes are necessary, while 
for others it is necessary to have information on components of vector ],[ 0 ttq , 
such as the dispersion, the dispersion index, etc.

9.2. types of optimization criteria

Optimization criteria can be classified in several ways. The Canadian 
Capacity Guide for Signalized Intersections [82], for example, lists 17 basic 
criteria classified in three groups:

▪ Criteria related to capacity
▪ Criteria related to queuing (average overall delay, the number of 

stops, queue lengths, etc.)
▪ Operational and environmental criteria (fuel consumption, emission 

of pollutants, such as CO, CO2, NOx, RCH, etc.)
By optimizing some of these criteria, negative consequences of the traffic 

process will be decreased (delay, number of stops, fuel consumption, etc.), 
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or some characteristics will increase (e.g., capacity). It would be desirable 
to choose the control that optimizes all of the mentioned criteria, but this is 
not possible. Because of that, various signal plan choice methods are used, 
including more than one criterion. The following methods are most frequently 
used:
а) The statement of the signal plan choice problem as a multicriteria 

optimization problem.
b) Application of different criteria for signal plan choice for different traffic 

process conditions [66]. Thus, in the case of low volumes, the total 
number of stops is used as the optimization criterion, for medium and 
large volumes—the total delay, and for very large volumes—the capacity 
of an approach or the whole intersection. In the case of congestion, 
besides delay, the duration of congestion or queue lengths is used as the 
optimization criteria [55], [68].

c) Various synthetic criteria, composed of several criteria.
c.1) The most frequently used criterion of this type is the weighted sum 

of the total delay and the number of stops at an intersection:

JkHkVkH
k
kVkHkVkJc ′=′+=








+=+= 00

0

1
010 )( , (9.1)

where V is the total delay, H is the total number of stops in a given 
interval (usually equal to the cycle time), and 0k  and 1k  are the 
weighting coefficients. By reducing both elements of the sum in 
(9.1), some other undesirable effects are decreased, such as the total 
emission of pollutants, noise, fuel consumption, the total costs related 
to the traffic process, etc.
 The pollutant emission is closely related to the delay. The amount 
of pollutant when vehicles wait is greater than during motion (e.g., 
the amount of carbon monoxide (CO) is three to four times greater).
 The amount of pollutants increases with the increase in number 
of stops. Each vehicle stop is followed by start of the movement and 
acceleration, which lead to increased fuel consumption, and thus an 
increased emission of pollutants. The noise level also depends on the 
number of stops, i.e., the deceleration/acceleration connected with 
each stop.
 The fuel consumption is related to both elements of criterion cJ  
(9.1). Vehicles waiting on intersection approaches, during red signal 
indication, cause an in-vain fuel consumption. Each stop leads to an 
“additional” fuel consumption due to vehicle acceleration.

© 2008 by Taylor & Francis Group, LLC



164 OPTIMAL TRAFFIC CONTROL: Urban Intersections

 The total costs of the traffic process at a signalized intersection 
comprise the costs related to vehicles and the costs related to “lost” 
time of passengers. Vehicle operational costs include the fuel and 
lubricants, tires and brakes wear and tear, and amortization costs. 
Passenger costs depend on the lost time value. For estimation of 
the lost time value it is necessary to take into consideration vehicle 
occupancy rates, the percentage of passengers traveling during 
working and nonworking time, national gross product per capita in 
the city, etc. [78].
 The minimization of criterion cJ  is achieved by minimizing 
criterion J ′  because 0k  is a constant. The value of k′  (stop penalty) 
depends on the optimization problem. Thus, in the problem of fuel 
consumption minimization, the typical values of k′  are in the range 
30–60. If the total cost is the optimization criterion, the typical values 
of stop penalty lie in the range 10–30 [2].

c.2) Another optimization criterion [59] consists of a weighted sum of 
the total delay and queue lengths, i.e.,

 ∑
′′

=

+=
I

1
0

i
iic wkVkJ , (9.2)

where:

ik  – the weighting coefficients, 0≥ik  )I,,1( ′′= i ,
I ′′  – the number of selected or all vehicle stream approaches,
V – the total delay of vehicles on the intersection,

iw  – the length of average or maximal vehicle queues.
 The control strategy can be changed by choosing appropriate 
weighting coefficient values. Thus, only delay can be minimized by 
choosing 10 =k  and 0=ik  ( I,,1 ′′= i ), or only the sum of vehicle 
queues if 00 =k  and 1=ik  ( I,,1 ′′= i ).
 In some cases, it is suitable to make the queue weighting 
coefficients conversely proportional to the area on which the queues 
can form. The consideration of queues is important when flow 
volumes are high. The reduction of queues is very important in 
congested conditions.

c.3) Optimization criteria composed of vehicles delay, vV , and 
pedestrian time losses, pV , can be expressed as follows:

 ||  21 vpc VkVkJ −= . (9.3)

This criterion leads to a “fair” use of the intersection, by both vehicles 
and pedestrians.
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Although the minimization of synthetic criteria leads to an improvement 
of traffic control quality in respect to several criteria, this approach is not 
frequently used in practice. Determination of signal plans is still, most often, 
set and solved as a single-criterion optimization problem. However, even in 
this case, the optimization of certain criteria has multiple effects. One of such 
criteria is the total delay at an intersection, i.e., the sum of queue integrals 
on all vehicle stream approaches. Minimization of this criterion certainly 
reduces the delay but also reduces the amount of pollutant emissions, total 
fuel consumption, the vehicle costs, etc. [70].

In some cases it is necessary to determine the limit values of some 
signal plan elements, such as the cycle time, green time for a certain signal 
group, the number of signal plan phases, etc. These problems can be set as 
optimization problems in which the optimization criteria are the mentioned 
signal plan elements.

The most frequently used criteria of this type are:

а) Cycle time [64], [65], [85], [45]
 The cycle time is often one of the constraints in the problems of 
optimal signal plan choice. If the cycle time is adopted as the optimization 
criterion, then the problems of its minimization and maximization can 
be solved. The obtained minimal and maximal cycle time values can be 
used as constraints in other problems.
 When solving problems of network optimal control, it is necessary 
that cycle times on all intersections in the network have the same value. 
The first step in determining this value is determination of minimal cycle 
times for all intersections. After that, the common cycle time is selected 
as the maximal value of minimal cycle times.
 A maximal cycle time value exists in cases when the optimization 
problem includes maximal red time constraints. The common cycle time 
for all intersections in the network cannot be greater than the minimal 
value of maximal cycle times for individual intersections.
 Therefore, the optimization problems in which the cycle time is 
used as the optimization criterion have sense as minimization as well as 
maximization problems.

b) The sum of green times of all signal groups [22], [18], [75]
 Optimization of this criterion indirectly influences intersection 
performance. The maximization of available green time, by all means, 
improves traffic conditions on the intersection, but in solving this problem 
no difference is made between traffic streams with low and high volumes. 
The minimization of this criterion is merely of a historical significance 

© 2008 by Taylor & Francis Group, LLC



166 OPTIMAL TRAFFIC CONTROL: Urban Intersections

because it is one of the first traffic control problems set and solved as a 
problem of mathematical programming [22].

c) The green time of a signal group
 The green time of a certain signal group can be used as the 
optimization criterion instead of the sum of green times for all signal 
groups. This criterion makes sense when one intersection approach is 
critical, i.e., having remarkably higher arrival flow volume (and longer 
queues) than other approaches.

d) The number of control vectors (phases) in a signal plan
 Traffic control specialists, using “phase-oriented” controllers, had 
the intention to minimize the number of phases in a signal plan, believing 
that the lost time would reduce if the number of phases decreased [2]. 
This is true only in the case when the right-of-way to particular signal 
groups is given only by one phase, as is the case with phase-oriented 
controllers. Generally, this is not valid in traffic control systems with 
modern “signal–group-oriented controllers.”

Optimization criteria can be also classified according to the type of 
mathematical programming problem that can represent the signal plan choice 
problem. Some optimization criteria, for a given signal plan structure, become 
linear functions of variables kτ , ( K,,1=k ), while other criteria become 
nonlinear functions of these variables. The corresponding optimization 
problems, therefore, result in linear or nonlinear mathematical programming 
problems.

The number of optimization criteria is considerable, but only a few of 
them are used in practice. Most frequently used are the criteria related to 
capacity, total vehicle delay, and cycle time [45]. The exact expressions for 
these criteria are presented in further exposition.

9.3. optimization criteria related to capacity

The condition that all vehicles of a traffic stream, arriving at an intersection 
approach, can leave the intersection during the same cycle is satisfied if: 

),,(,i.e., , PJ ′∈′∈σ′∈≤≤ pDigscq
c
gs

q pipii
pi

i , (9.4)

where:

iq  – the average volume of traffic stream iσ ,

is  – the saturation flow volume of traffic stream iσ ,
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pg  – the effective green time of signal group pD′  to which iσ  belongs,
c  – the cycle time.

9.3.1.	 Theoretical	capacity

The maximal volume of a traffic stream that can pass through the 
intersection is given by the following expression:

),,(, PJ ′∈′∈σ′∈=ω pDi
c
gs

pi
pis

i .

Volume s
iω  is the capacity of traffic stream iσ .

According to expression (4.19),
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Since all traffic streams belonging to one signal group are controlled by 
the same signal indications, the signal group capacity can be defined by the 
following expression:
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where:
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Using expression (4.19) the expression for signal group capacity 
becomes:
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The intersection capacity can be defined as the sum of the signal group 
capacities:
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or, using expression (4.19),
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In the case when each vehicle traffic stream makes a signal group, the 
intersection capacity will be:
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because in this case PI ′=′ .
The following expression also holds:
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9.3.2.	 Practical	capacity

The expressions for s
iω , g

pω , sΩ , gΩ  are theoretical expressions, whilst 
somewhat lower values are used in practice. Namely, if arrival volumes 
assumed the theoretical capacity values, very long queues would form, and 
because of that, the practical capacity is defined [88] as follows:

•	 For traffic stream iσ :
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c

gs
J pi

piis
ic , (9.9)

where 1<ρi , ( I ′∈i )

•	 For signal group pD′ :
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where
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•	 For intersection:
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If PI ′=′ , the practical intersection capacity, sΩ , can be defined as 
follows:

∑∑
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In these expressions, iρ  is the maximally acceptable saturation degree of 
traffic stream iσ . The value of iρ  is usually estimated by traffic engineers, 
and can have different values for different traffic streams. Value 0.9 is used 
most often (as suggested by Webster and Cobbe, [88]). If longer queues can 
be tolerated for some approach, then the value of iρ  can be greater than 0.9, 
whereas if the queues should be avoided, the value of iρ  should be less than 
0.9.

9.3.3.	 Capacity	per	cycle

The capacity per cycle [2] is often used in traffic engineering practice. It 
is the maximal number of vehicles of one traffic stream or one signal group 
that can pass through an intersection during its effective green time, pg , in 
one cycle. For an intersection, the capacity per cycle is the maximal number 
of vehicles that can pass through the intersection during all effective green 
times, pg , ( P ′∈p ), in one cycle.

Capacity per cycle is defined by the following expressions:
•	 Traffic stream capacity per cycle:

),,(, PJ ′∈′∈σ′∈=ω=ω= pDigscJ pipi
s
i

s
ic   (9.13)

•	 Signal group capacity per cycle:

)(, P ′∈=ω=ω= pgscJ p
g
p

g
p

g
pc   (9.14)

•	 Intersection capacity per cycle:

∑
′

=

=Ω=Ω=
I

1i
ii

ss
c gscJ   (9.15)

∑
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=Ω=Ω=′
P

1p
p

g
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gg
c gscJ   (9.16)

Practical capacity per cycle can be obtained using expressions (9.13), 
(9.14), (9.15), and (9.16) in which the saturation flow of each stream has first 
to be multiplied by the value of maximally acceptable saturation degree.
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The expressions for capacities as functions of variables u and τ are 

obtained by substituting ∑
=

τ=
K

1k

kk
pp ug  in expressions (9.13)–(9.16).

9.3.4.	 Saturation	degree	of	a	traffic	stream

The saturation degree, iρ , of a vehicle traffic stream, iσ , is the ratio of 
the average arrival flow volume, iq , to the capacity, i.e.,
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When 1=ρi , i.e., when the arrival flow volume, iq , is equal to the 
capacity, s

iω , very long queues can be formed, as already mentioned. 
Therefore, instead of the requirement

)(,1 J ′∈≤ρ ii ,

as the flow balance constraint, the following constraint should be 
introduced:

)(, J ′∈ρ≤ρ iii , (9.18)

where iρ  is the maximally acceptable saturation degree.

The tendency to equalize saturation degrees of vehicle traffic streams 
is present from the first attempts of formulating exact statements of traffic 
control problems on a signalized intersection [89], [30]. This can be achieved 
by optimizing several optimization criteria. Some of them are given here.

а)	 The	mean	square	of	differences	between	saturation	degrees	of	traffic	
streams	[35]
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in the expression for cJ , it becomes:
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A similar effect to the saturation degrees equalization can be obtained by 
minimizing the following optimization criterion:
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b)	 The	maximal	saturation	degree	value

Minimization of the maximal saturation degree value leads to saturation 
degrees equalization, in a certain sense. The optimization criterion in this 
case can be defined as:
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9.3.5.	 Capacity	factor

The capacity factor is one of the criteria related to intersection capacity. 
Flow balance constraints ensure that each traffic stream (signal group) 
receives enough green time, i.e., that the practical capacity is greater than the 
average flow volumes for each vehicle traffic stream (signal group). However, 
a signal plan has to be chosen so that this condition is satisfied even in the 
event of flow volume changes. The changes can be various—some traffic 
stream volumes can be reduced, some can be increased, while some of them 
may retain their values. 

For practical purposes, it is assumed that the change of volumes is 
relatively simple, i.e., that all average volumes either increase or reduce in the 
same proportion [4], [5]. In this case, the criterion for signal plan choice can 
be a number, µ, such that the flow balance constraints, (α.4), remain satisfied 
when all average traffic stream volumes are multiplied by this number. Thus, 
the optimization criterion is:

µ=cJ . (9.22)

If the maximal capacity factor, ∗µ , is greater than 1, there exists a reserve 
of intersection capacity. The quantity of this reserve can be assessed by the 
difference 1−µ∗  or 100)1( ⋅−µ∗  (expressed as a percentage).
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In the case 1<µ∗ , the intersection capacity is not sufficient, i.e., no 
signal plan exists such that the capacity constraints, (α.4), are satisfied. In 
this case, the measure of intersection saturation can be the difference ∗µ−1  
or 100)1( ⋅µ− ∗  (expressed as a percentage).

The capacity factor is a generally accepted criterion for optimal traffic 
control. Using this criterion for optimal signal choice gives especially good 
results when saturation degrees are high and volume changes are significant. 
[45].

9.4. the delay at an intersection

The total vehicle delay at all intersection approaches is the most often 
used criterion for signal plan choice [3], [89], [13], [44]. By its minimization 
multiple positive effects can be achieved—economic, ecological, etc. The 
financial equivalent of the delay unit can be determined in a relatively simple 
way [78]. The delay at an intersection is defined as the sum of delays for 
vehicle traffic streams on all intersection approaches. 

The analytical relation between the delay and control (signal plan) has 
been formulated in various methods used for signal plan choice. For a given 
function of traffic stream volume, )(tqi , on approach iT , the queue that 
forms from the beginning of effective red time ( 0=t ) until an instant t, has 
the value:

)(,)()(
0

J ′∈ττ= ∫ idqtw
t

ii .

Thus, the delay accumulated in interval [0,T], on approach iT , can be 
expressed as:

)(,)(
T

0

J ′∈= ∫ itdtwV ii .

The total delay for the whole intersection is defined by the following 
expression:

∑∫
′

=

==
I

1

T

0 i
i

T VtdewV , (9.23)

where:
Twwww ),,,( I21 ′=  ,

TTeeee )1,,1,1(),,,( I21  == ′ .

© 2008 by Taylor & Francis Group, LLC



9 Optimization criteria 173

This criterion is the most frequently used criterion in signal plan 
optimization problems.

Some authors, instead of criterion (9.23), suggest the “quadratic” 
criterion:

tdwAwtdwV T
A ∫∫ ==

T

0

T

0

2' . (9.24)

where II][ ′×′= jiaA , )  ,0( I ′∈≥ i,ja ji  is a properly sized matrix of weighting 
factors. This criterion is slightly more “democratic” than the previous one, 
since the solution, obtained by its optimization, leads to an approximate 
equalization of queue lengths on intersection approaches [68].

The total delay of pedestrians and vehicle passengers can be also adopted 
as the optimization criterion. In this case, the calculated delays are multiplied 
by different occupancy coefficients, depending on the type of the traffic 
stream (e.g., 1.3 for passenger vehicles, 30 for buses, 1 for pedestrians, etc.) 
[2], and the sum of these products is calculated for each approach and for the 
whole intersection.

The delay on a signalized intersection, as mentioned in Subsection 5.2.2, 
is caused by the following factors:
α) The alternation of red and green traffic light indications causes delay even 

in the case when the arriving traffic is regular (deterministic, uniform 
arrivals), with flow volume less than the capacity. 

β) The stochastic nature of arrival flows causes increase in delay because of 
two reasons:
β.1)  The stochastic nature of queuing, 
β.2)  Queues, in some cycles, are not fully discharged until the end 

of green indication, thus making the initial queues in subsequent 
cycles greater than zero.

When the stochastic nature of traffic process is taken into consideration, 
the expressions determining the delay consist of two terms. One term, the 
uniform delay, exists even in the case when arrival flow volumes are constant 
and equal to average volumes of real flows. The second term, the random 
delay, represents the consequence of the stochastic nature of traffic flows.

The increase in delay, due to the stochastic nature of traffic flows, even in 
the case when the queue fully discharges before the end of green time, can be 
explained using Fig. 9.1 [46]. This figure illustrates the evolution of queues 
in three cycles. The volume of stream iσ  is iq  in the first cycle, ii qq ∆+  in 
the second, and ii qq ∆−  in the third.
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The delay is given by the following expressions:
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In Fig. 9.1, iV ′  is represented by the area of triangle OBF, iV ′′  is equal 
to the area of triangle OAE, and iV ′′′  to the area of triangle OCG. Observing 
these three triangles, it can be noted that the sum of their areas is greater 
than the threefold area of triangle OBF, which corresponds to the delay 
when the arrival flow volume is equal to iq . The surplus, iδ , is equal to 
the area of parallelogram FEJI. This means that the fluctuation of volume 
around the average, for the same amount, iq∆ , does not result in the increase 
and decrease of delay for the same extent—the increase is greater than the 
decrease. Therefore, the consequence of the stochastic nature of traffic flows is 
the increase of delay compared to the case when flow volumes are uniform.

The expressions for average queue lengths, for periods when traffic 
process is stationary, are given in Subsection 5.2.2. Mathematical expectation 
of the delay accumulated during one cycle is equal to the product of average 
queue length and cycle time. Thus, mathematical expectation of the total 
delay on approach iT  during one cycle is:

)(,M}M{MM J ′∈== iwcwcV iii .
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Mathematical expectation of the total delay on the intersection is given 
by the following expression:
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Mathematical expectation of the total delay on approach iT  can be 
calculated using Newell’s expression (5.11), as:

)MMM()MM(M iiiiii wwwcwwcV ηηβηβ ′′+′+=+= . (9.26)

In this expression, term iwβM  is the queue component resulting from 
influence of factors listed under α (alternation of red and green indications), 
term iwη′M  is the consequence of factors β.1, i.e., the stochastic nature of 
arrival flows. Term iwη′′M  represents the consequence of factors listed under 
β.2, i.e., the fact that in some cycles (even when 1<ρi ) the queue does not 
discharge and the initial queue is not equal to zero at the beginning of red 
indication. In this case,

)0(MM ii ww ηη =′′ ,

where )0(M iwη  is the queue length at the beginning of red indication, which 
is, also, the beginning of the cycle.

Therefore, mathematical expectation of the total delay on approach iT  
during one cycle can be determined using the following expression:
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The meaning of symbols used in the expression is given in Subsection 5.2.2.

In Webster’s formula (5.12), the first term, representing the uniform 
delay, is the same as the first term in Newell’s expression. The second term, 
as Webster states [89], “… makes some allowance for the random nature of 
the arrivals. It is an expression for the delay experienced by vehicles arriving 
randomly in time at a ‘bottleneck,’ queuing up, and leaving at constant 
intervals.” This term includes the consequences of both factors listed under 
β.1 and β.2, while the third term represents an empirical correction. Webster's 
formula can be represented by expression (5.13), having only two terms, 
as explained in Subsection 5.2.2. Using expression (5.13), mathematical 
expectation of the total delay on approach iT  can be determined as follows:
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 (9.27)

),,( PI ′∈′∈σ′∈ pDi pi .

The results obtained using this expression and by Newell’s formula 
(5.11) are very similar, and close to real values of delay for almost all values 
of volume.

By introduction of signal plan variables, Ttu ),()( τ= u , i.e., by substituting 
pr  and pg  by:
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in Webster’s formula, the following expressions for mathematical expectation 
of delay are obtained.

9.4.1.	 Mathematical	expectation	of	delay	when	cycle	time	is	known

а)	 Mathematical	expectation	of	total	delay	of	one	signal	group

Mathematical expectation of the total delay of vehicles belonging to traffic 
streams that are elements of signal group },,,,,{ P21 ′′′′′=∈′ DDDDD pap D , 
where },,,,,{ )(E21 ppeppppD σσσσ=′  , can be obtained by the following 
expression:
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where:
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b)	 Mathematical	expectation	of	the	total	delay	on	an	intersection

Mathematical expectation of the total delay on an intersection can be 
determined as the sum of average delays for all signal groups. Since one 
signal group, },,,,,{ )(E21 ppeppppD σσσσ=′  , is controlled by one control 
variable, )(⋅pu , }P,,,,2,1{ ′=′∈  pp P , mathematical expectation of the 
total delay on an intersection is given by the following expression:
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9.4.2.	 Mathematical	expectation	of	delay	when	cycle	time	is	not	given

а)	 Mathematical	expectation	of	total	delay	of	one	signal	group

The mathematical expectation of total delay of vehicles belonging to traffic 
streams that are elements of signal group },,,,,{ )(E21 ppeppppD σσσσ=′   
is determined by the following expression:
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b)	 Mathematical	expectation	of	the	total	delay	on	an	intersection

The mathematical expectation of the total delay on an intersection can be 
determined as the sum of average delays for all signal groups, i.e.,
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9.5. the number of vehicle stops

The total number of stops of vehicles belonging to traffic stream epσ
during one cycle is equal to the number of vehicles in queue at the beginning 
of the green interval, increased by the number of vehicles arriving while the 
queue exists during the green interval.

The mathematical expectation, g
epw , of the queue at the beginning of 

green interval is given by the following expression [89], [2]:
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where epv  is the average delay per vehicle of traffic stream epσ , i.e., 
epep vv M= .

The mathematical expectation of number of stops is determined by the 
following expressions:
α) If the average number of vehicles in the queue at the beginning of green 

indication, g
epw , can discharge during the green time, i.e., if 

p
epep

g
ep g
qs

w
<

−
,

then the mathematical expectation of number of stops/starts is obtained 
as:
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( P ′∈p , )( pe E∈ ).
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β) If the queue at the beginning of green indication, g
epw , cannot discharge 

during the green time, i.e., if

p
epep

g
ep g
qs

w
>

−
,

then the mathematical expectation of number of stops/starts is obtained 
as:

))(,(,M pepgqwvv pep
g
epepep EP ∈′∈+== . (9.33)

Besides the absolute number of stops/starts, another interesting 
performance index is the ratio of the number of stopped vehicles to the total 
number of vehicles that arrive to an approach during a cycle. If the queue is 
discharged during green time, then all vehicles arriving in interval eppr α+  
leave the intersection in interval epα , where epα  is the queue discharge time, 
i.e., 

epepeppep srq α=α+ )( ,
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ep qs
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=α .

The ratio of number of stopped vehicles and the number of vehicles that 
arrive during a cycle is:
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If the queue is not discharged during green time, this ratio is:

p
ep
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ep qc
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v
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=′ . (9.35)

The expressions for the number of stops, (9.32) and (9.33), and the 
expressions for the ratio of number of stopped vehicles and the number of 
vehicles that arrive during a cycle, (9.34) and (9.35), usually give values that 
are slightly higher than the real ones. The reason lies in the fact that not all 
arriving vehicles stop—some of them only slow down. This phenomenon 
was analyzed by Australian researchers [2], and it was concluded that fairly 
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good values, close to real ones, could be obtained if the values calculated 
using expressions (9.32)–(9.35) are multiplied by 0.9.

9.6. Signal plan parameters

9.6.1.	 The	cycle	time

The cycle time, c, is one of constraints in many problems of signal 
plan choice. However, due to the presence of other constraints, such as the 
constraints of minimal green times and minimal intergreen times, there exist 
boundary values of cycle time—its minimal and maximal value.

The cycle time cannot be shorter than a minimal cycle time, whose value 
is determined by solving the optimization problem with the cycle time as the 
optimization criterion, i.e.,

∑
=

τ==
K

1k

k
c cJ . (9.36)

A maximal value of cycle time exists if the constraints of maximal red 
are present in the problem. The maximal cycle time value can be determined 
by maximization of the same criterion, (9.36).

9.6.2.	 Green	time	of	a	signal	group

The effective green time of a signal group or the sum of effective green 
times of several signal groups can be also adopted as optimization criteria.

The effective green time of signal group pD′ , as the optimization criterion, 
is given by the expression:

∑
=

τ=
K

1k

kk
pc uJ . (9.37)

Sometimes it is necessary to maximize the total green time of several 
signal groups, e.g., in cases when priority is given to certain traffic streams. 
Thus, if the green time for signal groups pD′  and qD′  has to be maximized, 
the optimization criterion will have the following form:
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In the case when the total green time of all signal groups (vehicle, 
pedestrian, etc.) should be maximized, the optimization criterion would take 
the following form:

∑∑
= =

τ=
P

1

K

1p k

kk
pc uJ . (9.39)

9.6.3.	 The	total	number	of	control	vectors	(phases)

The total number of control vectors in a signal plan structure is an 
interesting criterion if older, phase-oriented traffic controllers are used for 
traffic control. The number of control vectors in a signal plan structure is K, 
so that the optimization criterion, which should be minimized, becomes:

K=cJ . (9.40)
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PART III

THE METHOD OF OPTIMAL 
TRAFFIC CONTROL DETERMINATION

The problem of optimal signal plan determination can now be formulated 
exactly, using the expressions for constraints and performance indices given 
in Part II. Various optimization problems can be formulated. The main 
difference between them is related to the type of optimization, which can 
be single or multiple criteria optimization. In this text only single criterion 
problems will be considered.

The determination of the optimal signal plan is formulated, in Part II, as 
the problem of finding the optimal closed path on graph sG .
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10. THE sTATEMENT OF THE PRObLEM OF FINDING THE 

OPTIMAL CLOsED PATH ON GRAPH sG

A signal plan )(⋅u  is defined by its structure u, and cycle time split τ, i.e., 
Tu ),()( τ=⋅ u . The optimal signal plan structure *u  and the optimal cycle 

time split *τ  correspond to the optimal signal plan Tu )**,()(* τ=⋅ u .
In Part II it is noted that a feasible signal plan structure can be represented 

by a closed path on the control vector transition graph sG . The determination 
of such a path implies determination of all components k

pu  of control vector 
ku  ( K∈k ). Then, the constraints including variables kτ  and also the 

optimality criterion become functions of kτ  ( K∈k ) variables only. The 
problem of determining these variables is a mathematical programming 
problem. Many of these problems can be stated as linear programming 
problems. However, the optimization criterion in delay minimization 
problems is a nonlinear function, the flow balance constraints in the problems 
with permitted conditional turnings are nonlinear as well, so that there exist 
control problems that are stated as problems of nonlinear mathematical 
programming.

The problem of optimal signal plan determination is, hence, the problem 
of finding the closed path on graph sG  (structure) and the values of variables 

kτ  (cycle time split) assigned to each node on the path so that the chosen 
optimization criterion achieves the optimal value.

The set of feasible controls fU  is defined by the constraints listed in Part 
II. If the chosen optimization criterion is given by the expression 

R: →fcJ U ,

where R is the set of real numbers, and the optimum value *
cJ  of this criterion 

is defined as:

))((opt
)(

* ⋅=
∈⋅

uJJ c
u

c
fU

, (10.1)

then the problem of the optimal signal plan determination can be stated as 
follows: Determine the set of optimal controls 

}))(*(,)(*|)(*{* *
ccf JuJuu =⋅∈⋅⋅= UU , (10.2)
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where
Tu )**,()(* τ=⋅ u .

The optimal structure *u  can be represented by the closed path on graph sG , 
and *τ  is the optimal cycle time split vector.
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11. THE METHOD OF FINDING THE OPTIMAL CLOSED PATH 

ON GRAPH sG

The algorithms for solving problem (10.2) have been developed, based 
on the general method of combinatorial optimization—branch-and-bound 
method. In developing these algorithms the axiomatic system was used, 
defining the basic, general elements [62], [8], [71]. The method of signal plan 
determination using this approach is presented in papers [37], [38], [39].

According to the axiomatic approach, when using the branch-and-bound 
method the following elements are defined:

а) The relaxation 
containing the steps:
а.1 Introduction of the superset of the set of feasible solutions
а.2 Introduction of functions that perform mapping of the superset 

elements into the set of real numbers

b) The elimination criterion

c) The branching rule

d) The bounding rule
d.1 The lower bound rule
d.2 The upper bound rule

e) The branch-and-bound recursive operation

The branch-and-bound method actually represents a recursive operation 
of branching and bounding. This procedure leads, step by step, to the optimal 
solution. 

Elements of the superset are mapped, by a suitable function, to the set of 
real numbers. This mapping enables calculation of lower and upper bounds 
for subsets of the superset. These bounds are used in the branch-and-bound 
recursive operation.
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11.1. Elements of the method

The optimal solution )(* ⋅u  of problem (10.2) is in some problems 
the minimal and in others the maximal value of the optimization criterion. 
Namely, the optimal criterion (10.1) value

))((opt
)(

* ⋅=
∈⋅

uJJ c
u

c
fU

is defined in some problems as:

))((sup
)(

* ⋅=
∈⋅

uJJ c
u

c
fU

,

and in some other problems as:

))((inf
)(

* ⋅=
∈⋅

uJJ cuc
fU

.

Certain elements of branch-and-bound method are common to all methods 
of optimal signal plan determination. These common elements will be first 
defined here to the level of details suitable for application to any problem of 
determining the optimal signal plan. Afterwards, this method will be applied 
for solving the specific problem of maximizing the intersection capacity, and 
all elements of the method will be precisely defined. In Part IV the method 
will be applied for solving some other, typical traffic control problems on a 
signalized intersection.

11.1.1.	 The	relaxation	and	extension	of	 ))(( ⋅uJc 	function

The relaxation is composed of:

а)	 The	introduction	of	superset	 sU ,	whose	subset	is	the	set	of	feasible	signal	
plans	 fU ,	i.e.,

s
f UU ⊂ . (11.1)

In the method there are also used:

▪ The partitive set ξ of the set sU

)( sUP=ξ . (11.2)

▪ Elements αU  of the set ξ that are subsets of the set sU , i.e.,
sUUU ⊂ξ∈ αα , . (11.3)
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▪ The partitive set U  of set ξ

)(ξ= PU . (11.4)

▪ Elements u  of set U , which are subsets of set ξ, i.e.,

    , ξ⊂∈ uUu . (11.5)

▪ The union )(uU  of all subsets of collection u , i.e.,



uU

UuU
∈

α
α

=)( . (11.6)

▪ The collection of optimal solutions.
The set of optimal solutions, *U , is in fact one collection *u . Any 
element of *u  is a singleton set, i.e.,

}*)(*|})(*{{ Uu ∈⋅⋅= uu* . (11.7)

It means that the aim of the branch-and-bound procedure is to find 
collection *u , which is the same as determining the set *U  of optimal 
solutions.

Superset sU , besides feasible solutions fu U∈⋅)( , contains solutions 
whose length, κ , is shorter than K—the length of a feasible signal plan 
structure. The length of the structure is the number of control vectors in the 
signal plan.

Since the structure of a feasible signal plan satisfies constraints α.1, it 
means that the number of changes of each control variable value during a 
cycle is 2. Thus, the total number of changes of values of control variables 
during a cycle is 2P (because the number of variables is P). Therefore, the 
structure with the number of changes of control variables less than 2P is the 
structure of an infeasible signal plan with the length K<κ .

The constraints that have to be satisfied by elements of set sU  are given 
by the following expressions:

α'.1  )(,)2)(mod(
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and

)2,)(()K( <θ∈∃⇒<κ pp P ,

),2()K( P∈=θ⇒=κ pp .
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 − the number of intergreen constraints for a given value of k.
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If с is not given, constraints ε'.1 do not exist, and с in constraints α'.4 is 

substituted by ∑
κ

=

τ
1k

k .

When using formula γ'.2 to determine the intergreen time constraints, the 
constraints for kτ  ( K≤κ≤k ) cannot include duration 1τ  of control vector 

1u  nor duration of vectors Ku , 1K−u , etc. that precede 1u . This is because Ku , 
1K−u , etc. are not known until the feasible solution is obtained. For example, 

let the formed part of the structure be ],,,[ 521 uuuu =′ . It means that 5=κ  
( K<κ ). The constraints for 4=k  obtained by formula γ'.2 are related to the 
following intervals: 4τ  − between control vectors 3u  and 5u  ( 1=ω ), 43 τ+τ  
− between control vectors 2u  and 5u  ( 2=ω ), and 432 τ+τ+τ  − between 
control vectors 1u  and 5u  ( )5K()1K4(K −−−+=ω sign ). The constraints 
for intervals 4321 τ+τ+τ+τ , 4321K τ+τ+τ+τ+τ , etc. will not be formed 
using γ'.2. These constraints, as well as all other constraints that have to be 
satisfied by an optimal signal plan, will be formed when κ becomes K.

For K=κ  constraints α' to ε', defining superset sU , become constraints 
α to ε, by which the set of feasible solutions fU  is defined. Accordingly, the 
constraints α' to ε' hold for all elements of set sU .

One solution, )(⋅u , with the feature

))(())(( f
s uu UU ∉⋅∧∈⋅

is presented in Fig. 11.1. Graph sG  used in this example is given in Fig. 
8.17.
Example	11.1

 Structure u′  of one solution (which is not feasible) is presented on graph sG  from 
Example 8.9. The structure of solution u′  , presented in Fig. 11.1, is determined by the 
following expression:
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1


. (11.8)
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 The initial control vector is T)0,1,0,0,1,1(1 =u , and 7=κ .

 Determine constraints α'.2, γ'.2, and ε'.1. 

(0,1,0,0,1,1)T

(0,0,0,0,1,0)T

(0,0,0,0,0,0)T

(1,1,0,0,0,0)T

(1,0,0,0,1,0)T

(0,1,0,0,0,0)T

(1,1,0,0,1,0)T

(1,0,0,0,0,0)T

(1,0,1,0,0,0)T

(0,0,1,0,0,0)T

(0,0,0,0,1,1)T

(0,1,0,0,0,1)T

(0,0,0,1,1,0)T

(0,0,0,1,0,0)T

(0,0,0,0,0,1)T

(0,1,0,0,1,0)T

Gs:

Figure 11.1

 It is obvious (Fig. 11.1) that the structural constraints α'.1 and γ'.1 are satisfied. Constraints 
α'.2, γ'.2, and ε'.1 are:

092.
3
4
1
32.
512.

7654321

6

65

3

32

54

=τ+τ+τ+τ+τ+τ+τε′
≥τ
≥τ+τ
≥τ
≥τ+τγ′
≥τ+τα′

 (11.9)

 Constraints δ' do not exist because none of minimal intergreen times is negative in this 
example.

 The solutions Tu ),()( τ=⋅ u , with the structure u′  presented in Fig. 11.1, satisfy the 

structural constraints α'.1 and γ'.1. However, in order to have su U∈⋅)( , it is necessary that 

the components of τ, i.e., 721 ,,, τττ  , satisfy constraints α'.2, γ'.2, and ε'.1. For example, 
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if
)03 10, 10, 10, 10, 10, 10,(=τ , (11.10)

constraints α'.2, γ'.2, and ε'.1 are satisfied.

 Thus, the solution )(⋅u  with the structure given by expression (11.8) and the cycle time 
split given by (11.10), belongs to set sU .

This example shows that one structure determines one subset of set sU  
containing elements with different vectors τ, but the components of these 
vectors satisfy constraints α'.2, γ'.2, and ε'.1.

b)	 The	extension	of	 ))(( ⋅uJc 	function

The bounded extension of function ))(( ⋅uJc

R: →′ s
cJ U , (11.11)

has the feature

))(())(()( ⋅=⋅′⇒∈⋅ uJuJu ccfU . (11.12)

For each performance criterion that has to be optimized it is necessary to 
define a suitable function ))(( ⋅′ uJc .

11.1.2.	 The	elimination	criterion

The elimination criterion is used to identify unfeasible solutions and 
nonoptimal feasible solutions.

If )(⋅u  is unfeasible, then:

))(())(( f
s uu UU ∉⋅∧∈⋅ , i.e.,

f
su UU \)( ∈⋅ .

If collection Uu ∈0  is introduced, such that

*)( 0 U\UuU s⊂ , (11.13)

where:



0

)( 0
uU

UuU
∈

α
α

= , (11.14)

then the unfeasible )(⋅u  has the feature

0)}}({\)( uUU ∈⋅⇒∈⋅ uu f
s  {     . (11.15)

The subsets containing feasible but nonoptimal solutions belong, also, to 
the collection 0u  [71].
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11.1.3.	 Branching	rules

The branching rule is the function

UU →β :  (11.16)

with the following properties:

(B.1)  )())(( uUuU =β   (11.17)

(B.2)  If uuU \)(β∈α , then there exist )(\ uuU β∈α′  with

α′α ⊂UU  

(B.3)  If there exist uU ∈α  with 1|>α  U| , then

∅≠β uu \)(  

The branching rule is applied to collection Uu ∈n . Collection nu  is 
obtained by applying the recursive branch-and-bound operation n −1 times, 
starting from collection }{1 sUu = .

In order to define mapping β, it is necessary to:

•	 Determine the way to choose the subset nuU ∈γ  that will be further 
divided into subsets

•	 Determine the way of dividing the chosen subset γU  into subsets

•	 Recognize, if possible, the subsets of γU  containing unfeasible solutions; 
such subsets shall be eliminated from further procedure and the upper 
bounds will not be calculated for them

•	 Specify the way of determining )( nuβ  for a given collection nu  

а)	 Choosing	the	subset	 nuU ∈γ 	that	will	be	divided	in	subsets

The upper bound )( αUB  is determined for each element αU  of collection 
nu  (as described in Subsection 11.1.4). In general description of the method 

the maximization will be assumed as the optimization problem.
The subset γU  having the maximal upper bound is chosen for further 

division, i.e., the subset γU  with the property

)()()( nBB uUUU ∈≥ ααγ       . (11.18)
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For 1=n

)}{(      )()( 1 sBB UuUUU =∈≥ ααγ ,
i.e.,

)()( sBB UU =γ . (11.19)

This means that sUU =γ  for 1=n .

b)	 Dividing	the	chosen	subset	 γU 	in	subsets

After choosing the subset γU  that will be branched, i.e., divided in 
subsets, it is necessary to determine the method of dividing γU .

Subset γU  will be divided in such a way that all elements belonging to one 
subset have the same initial part of the structure. Thus, after the first division 
of γU , the subsets are obtained such that all elements of a subset have the 
same sequence of first two control vectors: 1u , 2u . By further divisions new 
subsets are obtained having the same sequence of first three control vectors, 
and so on. The initial sequence, same for all elements of a subset, is the initial 
part of the structure of all elements belonging to that subset. This sequence 
can be represented by one path on graph sG  (Fig. 11.1).

Let γU  be the subset chosen for branching according to rule (11.18). All 
elements of this subset have the same initial part of the structure. If γ∈⋅ U)(u  
and Tu ),()( τ=⋅ u , the structure u can be represented as:

],[ uuu ′′′= , (11.20)

where u′  is the initial part of the structure of each element that belongs to 
γU :

],,,[ 21 κ=′ uuuu  . (11.21)

The fact that u′  and u ′′  are parts of the structure of γU  elements can be 
expressed as follows:

])(,)([)( γγγ ′′′= UUU uuu .

The part u ′′  of the structure is different for different elements of γU . 
This part of the structure can be expressed in the following way:

],[ 1)Kmod( uuu ′′′=′′ +κ , (11.22)

where 1)modK( +κu  is the control vector following κu , i.e., κ+κ Γ∈ uu s
1)modK( , 

and u ′′′  is the remaining part of the structure.
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One of the subsets of γU  can be the subset γ′U  whose elements have the 
structure with the property κΓ∈ uu s

1  and the constraint α.1 satisfied.
Two cases can arise in further procedure, depending on the initial part of 

the structure ],,,[ 21 κ=′ uuuu  :

b.1)	The	first	case: κΓ∈ uu s
1  and

)(,2)2)(mod(
1

11)(mod P∈=+∑
κ

=

+κ puu
k

p
k
p . (11.23)

In this case two possibilities can be distinguished: 
α) There exists only one value of P∈p  with the property:

∑
κ

=

− =+
1

1 1)2)(mod(
k

k
p

k
p uu , (11.24)

and for all other values of P∈p  the sum in expression (11.24) equals 2. 
This means that in the transition from κu  to 1u  only one component of 
vector κu  changes its value. In this case u′  satisfies the constraints α.1 and 
γ.1. If other constraints are also satisfied, then the structure u′  is the structure 
of a feasible solution, i.e.,

))(,),()((,K, f
T uu U∈⋅τ=⋅=κ=′ uuu .

All elements of subset γ′U  have the same structure uu ′=  in this case, 
and they differ by control vectors durations. Further branching of this subset 
will give a singleton set, whose element is the feasible solution.

β) ∑
κ

=

− <+
1

1 2)2)(mod(
k

k
p

k
p uu

for more values of p, rather than only one.

In this case, by branching subset γ′U , several subsets will be obtained.
When subset γ′U  is chosen for further branching, that means that the 

lower bound )( γ′UB  is better than the lower bound of any other element of 
the collection to which γ′U  belongs. Since the structures of the elements of 

γ′U  satisfy constraints α.1 and γ.1, which have to be satisfied by any feasible 
solution, and there exists the bound )( γ′UB , this means that a feasible solution 

)(⋅bu  exists, with the property

))((})(|))((max{)( ⋅′=′∈⋅⋅′=′ γγ
b

cc uJuuJB UU ,
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where Tbbbu ),()( τ=⋅ u . In this case:

}~{}})({{)( γγ ′⋅=′β′ UU 

bu . (11.25)

Subset γ′U
~  contains nonoptimal solutions (with cycle time splits bτ  that 

are not optimal).

If there does not exist a feasible cycle time split bτ  for structure bu , then 
∅=⋅ })({ bu .

In the case })({ ⋅=γ
buU , mapping )( γβ′ U  is defined as follows:

.}})({{})(

,)2)2)(mod(()(

)),()(()})({)((|})({{)})({(

1

1)K(mod1

⋅=∈

=+∧Γ∈∧

∧τ=⋅⇒⋅∈⋅⋅=⋅β′

∑
κ

=

+κ

b
k

k
p

k
ps

Tbbbbbbb

up

uu

uuuuu

P

uu

u

 (11.26)

b.2)	The	second	case: K<κ

Since the structure length is K<κ , u′  cannot be the structure of a 
feasible solution. All elements with structure u′  are infeasible.

A function β will define the rules of branching subset γU  whose elements 
have a structure that can be represented in the form:

],,[],,,,[],[ 121 uuuuuuuuuu ′′′′=′′=′′′= +κκ
 ,

where κ+κ Γ∈ uu s
1 .

Branching of subset γU , which contains elements with the structure 
length )(uδ  greater than κ, and of subset γ′U , with elements structure of 
length κ, is performed in different ways.

Function β', defining the branching of a chosen subset into subsets, is 
given by the mapping

U→ξβ′ :  (11.27)

and defined by the following expression:
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∧τ′′′′=⋅⇒∈⋅=β′ γ
+κ

γγγγ )),])(,,)([()(())((|{)( 1 T
rr uu UUUUU uuu

.}{})(

,)2)2)(mod()((

)2)2)(mod(()(

1

1

1

11

γ

κ

=

+

κ

=

+κ+κ

′∈

<+⇒∈∃∧
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∑

∑

UP

P

p

uuq

uu

k

k
q

k
q

k

k
p

k
psuu

 (11.28)

Thus, )( γβ′ U  is the collection with elements whose initial part of the 
structure is ],[ 1+κ′ uu . The part u′  is the same for all elements of the subsets 

rγU .

The number of subsets rγU  is 1)( +Γ κuscard .

c)	Identification	of	subsets	containing	infeasible	solutions

Among the subsets that are elements of collection )( γβ′ U  there are some 
subsets that can be identified, even before determining their lower bounds, as 
the subsets having no feasible solutions. Such subsets can be eliminated from 
further procedure.

Collection )()( γγ β′⊂β′′ UU , which can be excluded from further 
procedure, is formed by the following mapping:

UU →β′′ : . (11.29)

Collection )(uβ′′  is a subset of collection 0u , whose elements are all 
subsets containing infeasible or nonoptimal solutions. It means that the 
subsets which are elements of β" belong also to collection 0u .

The subsets belonging to collection β" can be recognized in the next 
cases:
α) Some subsets rγU  satisfy constraints α'.1 and γ'.1, but the structure having 

the initial part u′ , which is the same for all elements of subset γU , does 
not satisfy constraints α.1 and γ.1. Such subsets can be eliminated from 
further procedure.
 Constraint α.1, which has to be satisfied by any feasible solution, 
states that the sum of changes of each control variable (from 0 to 1 and 
vice versa) has to be 2. If the values of a control variable )(⋅pu , until the 
control vector 1+κ′u , change as shown in Fig. 11.2, it can be concluded 
that the value of )(⋅pu  in all subsequent control vectors, from 1+κ′u  until 
the end of the cycle, has to be 1. Otherwise, if )(⋅pu  changed once more, 
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from 1 to 0, the sum of changes of )(⋅pu  values would be 3 and constraint 
α.1 would not be satisfied.

tc
0

1

)(⋅pu

κ′
pu 1+κ′

pu

Figure 11.2

 If a signal group lD′  is incompatible with pD′ , and if the value of the 
variable )(⋅lu  from 0=t  until the beginning of control vector 1+κ′u  is 0 
(the group did not get the right-of-way), then this group cannot get the 
right-of-way at all because )(⋅pu  must have value 1 until the end of the 
cycle, and )(⋅lu  cannot have value 1 simultaneously with )(⋅pu .
In this case, collection β" is defined as follows:

.}))0()1(        

)0()2)2)(mod((        

)),(()()((   

),],,,,,[(|)({

))(()(
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1
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k
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p
k
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glp

q
T

q

uu

uuu

CDDlp PP

UUU

Uu

uuuuu 

 (11.30)

β) A subset γ′U , whose elements have the structure uu =′  that cannot be 
extended because constraint α.1 is already satisfied, can be eliminated 
from further procedure if constraint γ.1 is not satisfied. In this case the 
upper bound won't be calculated for the subset. However, if constraint γ.1 
is satisfied, the subset remains in the procedure, and the upper bound will 
be calculated for the subset.

 Subset γ′U  that can be eliminated from further procedure is defined 
by the following expression:
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.)(

})()2)2)(mod((      
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uuuuu 

 (11.31)

 Subset γ′U  remains in the procedure if constraints α.1 and γ.1 are 
satisfied. In this case this subset can be defined as:

.}))(,)2)2)(mod(((

)(|),],,,[({

1

1

121

f
k

p
k
p

s
T

puu γ

κ

=

κκ
γ

′=∈≤+∧

∧Γ∈τ=′

∑ UP

U uuuuu 

 (11.32)

The elements of γ′U  in this case have the same structure but different 
cycle time split τ. 

 If subset hγU ′  is not an empty set, then

hγ′=β′′ U2 .

γ) Subset ε′U
~  is defined by the expression:

)(}{\~
3 uUU β′′=′=′ εε

bu , (11.33)

where bu  is the optimal solution.
 The elements of this subset are the solutions that are either nonoptimal 
or infeasible.
 Collection β" containing the subsets that are elements of collection 

0u  can be defined by the expression:

)()()()( 321 uuuu β′′β′′β′′=β′′  . (11.34)

Obviously, 0)( uu ⊂β′′ .

d)	 Obtaining	 )( nuβ 	collection

Starting with collection nu , a new collection )( nuβ  is obtained by 
applying the branching function (11.16).

The new collection, )( nuβ , is formed by excluding from collection nu  
the subset γU  that was divided to subsets using the branching rule. After 
that, the union of collections ( }{\ γUu n ) and )(\)()(1

nn uUu β′′β′=β ã  is 
formed. It means that to collection nu , from which subset γU  is excluded, 
another collection )(1

nuβ  is added. Collection )(1
nuβ  is obtained when 
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collection )( nuβ ′′ , containing the subsets whose elements cannot be optimal 
solutions, is excluded from collection )( γβ′ U  obtained by branching subset 

γU .
Therefore,

)()}{\()( 1
nnn uUuu β=β γ  , (11.35)

where

)(\)()(1
nn uUu β′′β′=β ã .

Mapping β is illustrated in Fig. 11.3.

Uγ

)(1
nuβ

)( nuβ

nu

)( γβ′U
)( nuβ′′

Figure 11.3

Indices of new sets rγU , obtained by branching of subsets γU , will 
be changed after constructing collection 1+nu . The new subsets will be also 
marked by indices, whereas the values of these indices will be the numbers 
following the number of the greatest index in nu .

Example	11.2

 For the intersection whose graph sG  is presented in Fig. 8.17, determine collection 
)( nuβ  if collection nu  is known, and its subset γU  is chosen for branching. Subset γU  

contains elements of the form

γ∈τ′′′=τ UTT ),],[(),( uuu ,
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where



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82121

uuuuuuuu

uuuuuuu U .

 Part )( γ′ Uu  of the structure is present in all elements of subset γU . This part of the 
structure is marked by the bold line on graph sG  in Fig. 11.4.

 When determining collection )( nuβ , according to expression (11.35), it is necessary to 
determine )(1

nuβ , and to determine that collection, first )( γβ′ U  and )( nuβ ′′ , have to be 
determined.

α) Collection )( γβ′ U  determination

 According to expression (11.28):
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 It is necessary to determine the set of control vectors, represented by nodes of graph sG , 

such that they are adjacent to the node that represents control vector T)0,1,0,0,0,0(8 =u  

and structure ],)([ 9uu γ′ U  satisfies constraint α'.1.

The set of nodes adjacent to the node representing 8u  is (Fig. 11.4):

.})0,0,0,0,1,1(,)0,1,0,0,1,1(

,)0,1,0,0,1,0(,)0,0,0,0,0,1(,)1,1,0,0,1,0(,)1,0,0,0,1,0(

,)0,1,1,0,0,0(,)0,0,0,0,1,0(,)1,1,0,0,0,0(,)1,0,0,0,0,0(

,)0,0,1,0,0,0(,)0,1,0,0,0,1(,)0,0,0,0,0,0({)0,1,0,0,0,0()( 8

TT

TTTT

TTTT

TTTT
ss =Γ=Γ u
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(0,1,0,0,1,1)T

(0,0,0,0,1,0)T

(0,0,0,0,0,0)T

(1,1,0,0,0,0)T

(1,0,0,0,1,0)T

(0,1,0,0,0,0)T

(1,1,0,0,1,0)T

(1,0,0,0,0,0)T

(1,0,1,0,0,0)T

(0,0,1,0,0,0)T

(0,0,0,0,1,1)T

(0,1,0,0,0,1)T

(0,0,0,1,1,0)T

(0,0,0,1,0,0)T

(0,0,0,0,0,1)T

(0,1,0,0,1,0)T

Gs:

Figure 11.4

 The constraint

∑
=

+ ∈≤+
8

1

1 )(    ,2)2)(mod(
k

k
p

k
p puu P

is satisfied only if 

.})0,1,0,0,1,1(,)0,1,0,0,0,1(   

,)0,1,0,0,1,0(,)1,1,0,0,1,0(,)1,1,0,0,0,0({
9

9

b
TT

TTT

U

u

=

∈

Hence, 

},,,,{)( 521 γγγγγ ′=β′ UUUUU  .

 The structures of the elements belonging to these subsets (except to subset γ′U ) are:

])(,,)([

])(,)([)(
9

rr

rrr

γγ

γγγ

′′′′=

′′′=

UU

UUU

uuu

uuu

where ],,,[)( 821 uuuu =′ γU , and 99
bUu ∈ , with }5,,2,1{ ∈r .
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 The structure of the elements of subset γ′U  is

],,,[)( 821 uuuu =′γU ,

i.e., this structure does not have the “extension” )( γ′′′ Uu .

 For this structure it is satisfied that 81 uu sΓ∈ ; however, the constraint 

∑
=

+ ∈=+
8

1

1)8(mod )}6,,2,1{(    ,2)2)(mod(
k

k
p

k
p puu 

is not satisfied. Therefore, γ′U  contains infeasible solutions.

 In Fig. 11.4 the initial parts ],)([ 9uu γ′ U  of the structures of elements belonging to 

subsets rγU , obtained by branching are marked. Bold continuous line represents the structure 

)( γ′ Uu . Node 8u  is connected to the “extensions” 99
bUu ∈  by dotted lines.

β) Collection 321)( β′′β′′β′′=β′′ 

nu  determination

 This collection contains elements of collection )( γβ′ U  having the initial part of their 

structures ],)([ 9uu γ′ U  such that their “extension” further in the procedure cannot lead to 

subsets that contain feasible solutions.

 Collection )( nuβ ′′  is determined using expression (11.34). When applying this formula, 

it can be noted that the initial part of the structure of collection )( γβ′ U  elements, i.e., the 

structure ],)([ 9uu γ′ U  has the following property:

∑
=

=
8

1
6 0

k

ku .

 It means that control variable )(6 ⋅u , which controls signal group 6D′ , will obtain value 
1 only in subsequent control vectors.

 There can also be noted that 

∑
=

+ =+
8

1

1 2)2)(mod(
k

k
p

k
p uu

in the following cases:

− for 1=p  if })0,1,0,0,1,1(,)0,1,0,0,0,1({9 TT∈u ,

− for 2=p  if })0,1,0,0,1,1(,)0,1,0,0,1,0(,)1,1,0,0,1,0({9 TTT∈u ,

− for 3=p , 4=p , 5=p  if 99
bUu ∈ .

 If 9u  were the element of set })0,1,0,0,1,1(,)0,1,0,0,0,1({ TT , then ku1  should be 1 

until the end of the cycle in order to satisfy constraint α.1. In this case signal group 6D′  could 
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not gain the right-of-way because gCDD ∉′′ ),( 61 . In all elements of set 9
bU  the value of 

9
3u  and 9

4u  is zero, and has to remain zero until the end of the cycle so that constraint α.1 is 

satisfied.

 The initial part of the structure of γU  elements, i.e., ],,,[ 821 uuuu =′ , is not the 

structure of a feasible element because 1u  cannot be the next control vector in the sequence 

since signal group 6D′  has not gained the right-of-way.

Therefore, 

},,{ 54 γγγ ′=β ′′ UUU .

Here we also have

])(,)0,1,0,0,0,1(,)([)( 44 γγγ ′′′= UUU uuu T ,

])(,)0,1,0,0,1,1(,)([)( 55 γγγ ′′′= UUU uuu T ,

)()( γγ ′=′′ UU uu ,

and )( γ′′ Uu  does not exist as an “extension” of structure )( γ′′ Uu .

γ) Collection )(1
nuβ  determination

 The elements excluded from further procedure are the elements of collection β", so that 
the elements taking part in further procedure are elements of collection 

.},,{

},,{\},,,,{

)(\)()(

321

54521

1

γγγ

γγγγγγγ

γ

=

′′=

β ′′β′=β

UUU

UUUUUUU

uUu



nn

 The initial parts of the structure of elements that belong to subsets 1γU , 2γU , and 

3γU , can be represented in the form

],)([)( 9uuu γγ ′=′ UU r

where }3,2,1{∈r , and

})1,1,0,0,1,0(,)0,1,0,0,1,0(,)1,1,0,0,0,0({9 TTT∈u .

 Control vectors 9u  are marked in Fig. 11.4 by circles around the nodes representing 

them in graph sG , and these nodes are connected to the node representing 8u  by bold dashed 

lines.
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δ) Collection )( nuβ  determination

 The new collection )( nuβ  is obtained by excluding from collection nu  the subset γU  

for which the function )(1
nuβ  is determined, and including collection 1β  in the remaining 

part of nu . This mapping can be expressed as follows:

.},,{)}{\(

)()}{\()(

321

1

γγγγ

γ

=

β=β

UUUUu

uUuu





n

nnn

11.1.4.	 Bounding	rules

Branch-and-bounding procedures employ two types of bounds—a lower 
bound on cJ , and upper bounds on value of cJ ′  over subsets of sU .
а)	 The	upper	bound

The upper bounding rule is defined by the function

R: →ξB , (11.36)

where )( sUP=ξ .
The properties of this function are:

))(  ,)((,)())(( γααα β′∈∈⋅≤⋅′ UUUU uBuJc , (11.37)

))(()})({( ⋅′=⋅ uJuB c . (11.38)

Function cJ ′  is an extension of the criterion function, with the property

))(())(()( ⋅=⋅′⇒∈⋅ uJuJu ccfU .

Thus, in each particular case, for a chosen criterion function cJ  its 
extension cJ ′  has to be determined.
b)	 The	lower	bound

The lower bounding rule is the function

R: →Ub , (11.39)

with the following properties for any collection u :

α) *)( cJb ≤u , (11.40)

β) ))(()())})({())((( ⋅≥⇒∈⋅∧∈⋅ uJbuu cf uuU . (11.41)
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If during the procedure a collection u  is obtained, which contains several 
singleton feasible subsets, the lower bound will be equal to the best criterion 
function value, i.e.,

.})})({(|))((max{

}))(()})({(|))((max{)(

u

Uuu

∈⋅⋅=

∈⋅∧∈⋅⋅′=

uuJ
uuuJb

c

fc  (11.42)

If )(ub  is the lower bound for collection u , then it can be claimed that 

the subset uU ∈δ  does not contain the optimal solution if

)()( uU bB <δ . (11.43)

From the lower bound definition, it can be noted that the lower bound 
cannot be determined for every collection u . Namely, the lower bound can 
be determined only for collections containing a singleton subset })({ ⋅=η uU , 
with the property fu U∈⋅)( . 

The lower bound can be used to eliminate from further procedure the 
subsets whose upper bound is less than the lower bound of the collection to 
which the subset belongs.

11.1.5.	 Branch-and-bound	recursive	operation

Branch-and-bound recursive operation B  uses the results of the previous 
steps to obtain a new collection )(uB  from collection u .

After applying branching and bounding rules and determining lower and 
upper bounds for the subsets obtained by branching, it can be noted that there 
exist subsets that contain infeasible or nonoptimal solutions. These subsets 
form the collection

uu ⊂−  (11.44)

that should be excluded from further procedure.
Branch-and-bound recursive operation is a function:

UU →:B , (11.45)
where

−ββ= )(\)()( uuuB , (11.46)

and −β )(u  is defined by (11.50).

а)	Determination	of	collection	 −u

Collection −u  is a subset of collection 0u  containing all subsets with 
infeasible and nonoptimal solutions, i.e., 
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0uu ⊂− , and (11.47)

*)( 0 U\UuU s⊂ . (11.48)

Therefore, for each collection u , collection −u  can be defined as 
follows:

))}()(()(|{)( 0 uUuUUuuu bB <∧∈∩= ααα−  . (11.49)

By branch-and-bound recursive operation, collection −u  is excluded 
from further procedure. 

According to expression (11.49), we have:

.))}(()(())((|{)(
))}(()(())((|{))(()( 0

uUuUUu

uUuUUuuu

β<∧β∈β′′=
β<∧β∈β=β

ααα

ααα−

bB
bB





 (11.50)

It was possible to identify some elements of collection −u  during branch-
ing operation, i.e., even before determining bounds for each subset obtained 
by branching. However, when determining bounds, it could be noted that for 
some subsets bounds cannot be determined. Namely, bounds are obtained by 
solving optimization problems, so that if no feasible solution exists, it means 
that some initial parts of structures cannot satisfy all constraints, which become 
functions of time variables after the initial part of the structure is determined. 

Subsets αU , with property )()( uU bB <α , containing nonoptimal 
solutions and thus belonging to collection −u , can be determined after the 
calculation of bounds.

Therefore, a collection is excluded from further procedure in the following 
cases:

а.1. The collection contains subsets with infeasible solutions.
а.2. The collection contains subsets with no optimal solution.
а.3. The collection contains subsets whose elements are members of 

other subsets also.

а1) Identification of collection a
−u  containing infeasible solutions

During the procedure, when an initial part of signal plan structure is 
formed, it is possible to conclude that the given cycle time won’t be long 
enough for the signal plan. Therefore, the subsets of solutions having that 
initial part of the structure can be eliminated from further procedure.

For example, one of possible control vector sequences in Example 
11.1, which can be the initial part u′  of one subset of solutions satisfying 
constraints α'.1 and γ'.1, can be:
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





















==′

00000100
00000000
00010000
00000000
01000000
00000001

],,,[

  

821

87654321

uuuu

uuuuuuuu

 .

The minimal cycle time necessary for any signal plan with u′  as the 
initial part of its structure must be greater than

955115186147
min

3
min

2
min =+++++=τ++τ+τ=′ c ,

where terms in the sum are the minimal durations of control vectors 
732 ,,, uuu  . Durations of 1u  and 8u  cannot be determined because for 

that it is necessary to know duration of control vectors that precede 1u  and 
follow 8u , and these vectors are not known yet.

Since u′  is not a complete structure ( K8 < ), the cycle time c of any 
signal plan containing u′  in its structure cannot be shorter than c′ , i.e., 
feasible signal plans with u′  as the initial part of their structure have the 
property:

s 95=′> cc .

Therefore, if the given cycle time is less than 59 ѕ, the signal plans having 
u′  as the initial part of their structure will not be feasible solutions. This fact 
is established when no solution can be found when determining the upper 
bound.

If the value of cycle time is not given, the minimal cycle time can be 
determined and no feasible signal plan can have its cycle time less than this 
value. It is obvious that a minimal cycle time has to exist because a feasible 
signal plan has to satisfy the constraints of minimal effective green time for 
each signal group and the minimal effective intergreen time constraints.

The minimum cycle time can be determined by solving the optimization 
problem whose statement and solution are presented in Section 14.2.

Collection a
−u  that contains subsets with infeasible solutions, i.e., the 

solutions that need longer cycle time than the available c, can be defined as 
follows:
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.}min    

)),],),,,([(),],[()((   

))(((|{

1

1,,

21

12
c

u

u

k

k

TT

a

>τ⇒

⇒τ′′=τ′′′=⋅∧

∧∈⋅=

∑
−κ

=ττ

κ

δδ−

−κ


 uuuuuu

UUu

 (11.51)

а2) Determination of collection b
−u  containing nonoptimal solutions

In Subsection 11.1.4. it is stated that the subset uU ⊂α , with the 
property

)()( uU bB <α

does not contain optimal solutions. Thus, collection b
−u , containing such 

type of subsets, can be defined as:

))}()(()(|{ uUuUUu bBb <∧∈= ααα− . (11.52)

From expression (11.41), by which the lower bound is defined, it is clear 
that this bound cannot be determined at the beginning of the procedure. It can 
be determined only when singleton feasible subsets are obtained by branching 
operations. Thus, at the beginning of the procedure, until a feasible solution 

fu U∈⋅)(  is obtained, we will have

∅=−
bu .

It means that this property cannot be used for elimination of some subsets 
from further procedure in the beginning of the procedure.

а3) Determination of collection c
−u  containing subsets whose elements are 

members of other subsets also

Sometimes, when solving the optimization problem of determining 
the upper bound )( αUB  for a subset uU ⊂α , the solution may contain a 
control vector ku , the duration of which is zero. If it can be estimated that the 
duration of this control vector will remain zero in solutions of upper bound 
problems for subsets created by branching of αU , and further branching 
of these subsets until the optimal solution is obtained (if it exists), then the 
subset αU  can be eliminated from further procedure.

If elements )(⋅u  of subset αU  can be presented in the form:

α∈τ′′′=⋅ UTu ),],[()( uu ,
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where ],,,,,,,[ 1121 κ+−=′ uuuuuuu 

kkk , then in the case 0=τk , u′  
becomes

],,,,,,[ 1121 κ+−=′ uuuuuu 

kk .

The fact that the duration of control vector ku  can be zero leads to the 
conclusion that the sequence ),( 11 +− kk uu  has the property:

11 −+ Γ∈ k
s

k uu , (11.53)

i.e., constraint γ'.1 is satisfied for this sequence. It means that control vectors 
ku  and 1+ku  belong to set 1−Γ k

su . When it becomes certain that 0=τk , 
which is possible only when determining )( αUB  for values k>κ , then 
branching of such a subset can be terminated.

When determining bounds )( αUB , the value 0 can be obtained for kτ , 
but later, when determining bounds В for subsets created by branching of 

αU , it may happen that the value of kτ , as an element of the optimal solution, 
becomes different than zero. Thus, if we consider αU  as a candidate for 
elimination from further procedure, there has to be certified that kτ  value 
will remain 0 until the optimal solution is obtained, if it exists.

On the basis of stated properties of collection c
−u , this collection can be 

defined by the following expression:

.}))()0())),()((((

))),),,,((,],],,,[[(       

)),(,],[()((

))((|{

2121

κ<∧=τ⇒τ=⋅∃∧

τ ′′τττ′′=

=τ ′′τ′′′′=⋅∧

∧∈⋅=

κκ

αα−

ku

u

u

kT

T

c

u

uuuu

uu



UUu

 (11.54)

Upper bounds are determined as solutions of optimization problems, the 
type of which depends on the adopted optimality criterion and constraints. 
The criterion and constraints can be linear, or criterion or constraints, or both, 
can be nonlinear. Hence, the problems of upper bound determination can be 
stated as problems of linear or nonlinear mathematical programming.

а4) Obtaining collection −u

As already mentioned, collection −u  contains subsets that should 
be eliminated from further branch-and-bound procedure. This collection 
consists of collection a

−u , which contains infeasible solutions, collection 
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b
−u , containing nonoptimal solutions, and collection c

−u , containing subsets 
whose elements are members of other subsets also. Therefore, 

cba
−−−− ∪∪= uuuu . (11.55)

Since 0uu ⊂−
a  and 0uu ⊂−

b , expression (11.55) can be written as 
follows:

c
−− ∪∩= uuuu )( 0 .

b)	 Obtaining	the	sequence	of	collections	by	branch-and-bound	recursive	
operation	and	determination	of	conditions	for	its	termination

b1) Obtaining the sequence of collections

By applying the operation )(uB  (11.45) to an initial collection 1u , 
collection 2u  is obtained. Further applications of )(uB  yield the sequence 

],,,,,[ 21 νuuuu 

n . The elements of the sequence are related according 
to the following expression:

−
+ ββ== )(\)()(1 nnnn B uuuu , (11.56)

where UUu ∈= }{1 s .

b2) Conditions for termination of branch-and-bound procedure

Branch-and-bound procedure terminates when one of the following 
conditions is met:

α. Collection νu  is the empty set:

∅=ββ== −
−ν−ν−νν )(\)()( 111 uuuu B . (11.57)

It follows, further:
ν
−−

−ν−ν =β=β uuu )()( 11 . (11.58)

 Obviously, if the branching operation yields a collection )( 1−νβ u , 
which contains only infeasible solutions, the procedure should terminate 
and the problem has no solution.

β. Collection νu  contains only singleton subsets
 If collection νu  contains only singleton subsets, then this collection 
contains subsets whose elements are optimal solutions:

}*)(*|})(*{{* Uu ∈⋅⋅= uu . (11.59)
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This statement is true because of the following reasons:
I Collection νu  contains subsets with feasible solutions 

because the elements of this collection are singleton subsets, 
whereas infeasible elements are members of subsets included 
in collection ν

−u  that was excluded from the procedure.

II The upper bound )})({( ν
−∈⋅ uuB  is equal to the lower bound )( νub , 

and for all elements of collection νu  these bounds are the same. If 
some bound )})({( ⋅uB  were less than )( νub , such a subset would be 
a member of collection ν

−u  that was excluded from the procedure.

 Therefore, all elements of collection νu  are subsets that contain 
optimal solutions. The values of all upper bounds are the same, equal to 
the value of the lower bound of the collection, and equal to the optimal 
value of the criterion.
 Hence, 

)*(})(|})({{ uuUu =⇒∈⋅⋅= νν
fuu . (11.60)

This collection has the property:

*\)(\)()( 1 uuuuuuu ===∅=ββ= ν+νν
−

νννB . (11.61)

The termination condition can be stated in the following way: When 
nnnB uuu == +1)( , the procedure should terminate because collection 

nu  contains subsets whose elements are optimal solutions. The values 
of upper and lower bounds are then the same and equal to the optimal 
criterion value:

.)*})(*{( 

))(*()*()}})(*{{( *

u

u

∈⋅

=⋅′==⋅
j

c
j

c
j

u

JuJbuB
 (11.62)

The computer program STECSOT (STructurE and Cycle Split 
Optimization Technique) is developed for application of the algorithm, 
described in this part. The program is described in Appendix VII.
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Part IV

DETERMINATION OF OPTIMAL CONTROL 
(SIGNAL PLAN)

In this part, the method for optimal signal plan determination, presented 
in Part III, is applied for solving several different problems of optimal traffic 
control.

All elements of the method are fully described in the procedure for 
determination of the optimal signal plan by which intersection capacity is 
maximized.

The method is then applied to several other problems, indirectly related 
to the intersection capacity. These are the problems of determining the signal 
plan that equalizes saturation degrees of vehicle traffic streams, and the signal 
plan that is optimal in the sense of capacity factor.

Another problem solved in this part is determination of the signal plan by 
which time losses, i.e., the total delay of vehicles on intersection approaches 
is minimized.

Problems of determining extreme values of some signal plan parameters 
are also solved here, using the method described in Part III. These parameters 
are: the cycle time—its minimal and maximal value, the number of control 
vectors in the signal plan—minimal and maximal number, etc.
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12. CAPACITY OPTIMIZATION

The criterion function used for signal plan determination, as mentioned 
in Section 9.3, can be theoretical or practical capacity of one traffic stream, 
one signal group, or the whole intersection. Of course, instead of the capacity, 
the criterion function can be the capacity per cycle, i.e., the maximal number 
of vehicles of one traffic stream, signal group, or the whole intersection that 
can pass through the intersection during a cycle.

It means that there exist several capacity maximization problems. The 
optimization criteria in problem statements have to be expressed by variables 
u and τ, i.e., expression (4.19) should be used for green times of signal 
groups:

)(,
K

1
P∈τ⋅=τ=∑

=

pug T
p

k

kk
pp u .

This is the expression for green time allocated to traffic stream iσ , where 
pi D′∈σ , ( J∈i , P∈p ).

It has, also, to be taken into consideration that saturation flows of traffic 
streams depend on the decision of giving or not giving the simultaneous right-
of-way to opposing and opposed traffic streams, i.e., whether the “filtering” 
is permitted or not. If filtering is permitted, then the saturation flow bs  of the 
opposed traffic stream, in interval k, depends on the control vector ku  and 
on the volume of the opposing traffic stream aσ , i.e.,

),( a
k

b
k
b qss u= .

All expressions for capacity, given in Section 9.3, become functions of u 
and τ when substituting pg  ( P ′∈p ) in them with expression (4.19). Since 
all constraints are expressed as functions of u and τ, the capacity maximization 
problems become the problems of mathematical programming, in which the 
structure u and the cycle time split τ have to be determined so as to maximize 
the optimality criterion, i.e., the capacity.

When solving the problem of capacity maximization, for traffic stream, 
signal group, or whole intersection, the flow balance constraints α.4 are 
omitted from the problem statement. This means that in capacity maximization 
problems there do not exist the constraints ensuring that all vehicles coming 
to the intersection during a cycle can leave it in the same cycle.

© 2008 by Taylor & Francis Group, LLC



218 OPTIMAL TRAFFIC CONTROL: Urban Intersections

12.1. The capacity per cycle

The expressions for capacity per cycle given here are explicit functions 
of u and τ variables. 

The capacity per cycle of a signal group pD′  (9.14):

)(,)())((
K

1
P ′∈τ⋅=τ=ω=⋅ ∑

=

psusuJ T
p

g
p

k

kk
p

g
p

g
ppc u , (12.1)

where

)(,
)(E

1
Ppss

p

e
ep

g
p ′∈= ∑

=

.

 If each traffic stream makes a signal group, i.e., if PJ ′=′ , then the 
capacity per cycle of a signal group is in fact the capacity per cycle of the 
associated traffic stream (9.13). In this case:

),,(    ,  )(

))((
K

1

PJJ ′=′′∈=τ=

=τ=ω=⋅ ∑
=

iips

usuJ

T
pi

k

kk
pi

s
iic

u . (12.2)

The capacity per cycle of an opposed traffic stream bσ  filtering through 
the opposing traffic stream aσ :
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The intersection capacity per cycle (9.16):
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where
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 If each traffic stream makes a signal group, the intersection capacity 
per cycle is (9.15):
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where:
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],,,,,[ I21 ′= sssss i  .

The optimal signal plan, maximizing the capacity per cycle, is obtained 
by solving the optimization problem with the criterion defined by one of 
expressions (12.1) to (12.5), subject to the constraints formulated in Section 
8.9.

The problem of maximizing the capacity per cycle of one traffic stream, 
))(( ⋅pc uJ , can be formulated in another way. The maximal number of 

vehicles of stream iσ  ( PJ ′=′ , pi = ) that can pass through the intersection 
during a cycle can be determined under the assumption that the flow balance 
constraints α.4 are satisfied for all other vehicle traffic streams.

Intersection traffic control by the optimal signal plan determined by 
solving the stated problem of maximizing the capacity ))(( ⋅ic uJ  of traffic 
stream iσ  makes sense only if the average volume of the stream is greater or 
equal to the capacity, i.e., 

))((*
2 ⋅≥ ici uJq ,

where:

))((max))(( 2)(

*
2 ⋅=⋅

∈⋅
icuic uJuJ

fU
.

If the average volume iq  of traffic stream iσ  is greater than ))((*
2 ⋅ic uJ , 

then stream iσ  is saturated.
It is possible, also, that this problem does not have any solution because 

constraints α.4 might not be satisfied for some other traffic streams. It means 
that queues on the approaches used by these streams will not discharge until 
the end of their green time. These streams are saturated, also.

The intersection is saturated if no queue can discharge until the end 
of its associated green interval. In this case, the maximal capacity value 
can be obtained by solving the optimization problem without flow balance 
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constraints α.4. The effective green times in this case have only to satisfy 
minimal effective green time constraints, α.2, maximal effective red time 
constraints, α.3, and the constraints on the sum of control vector durations, 
ε.1 or ε.2.

The maximal capacity per cycle of a signal group, similarly to the 
maximal capacity of a traffic stream, can be determined as the solution of the 
optimization problem with constraints α.4 included or omitted.

12.2. Maximization of the intersection capacity per cycle

Application of the signal plan obtained by solving the capacity per cycle 
maximization problem makes sense only in the case when the intersection is 
saturated.

The number of vehicles that pass through an intersection during a 
cycle can be maximized only if some approach or the whole intersection 
is saturated. Therefore, the plan obtained as a solution of the capacity per 
cycle maximization problem should not be implemented in the cases when 
the average number of vehicles arriving to the intersection during one cycle 
can leave it during the same cycle.

The intersection capacity maximization problem, in the case when each 
traffic stream makes a signal group, can be formulated as follows:

Determine the signal plan
Tu ),()( τ=⋅ u  

that maximizes the function (12.5)

T

k

k
c

k

k

k
i

i
i

i
iic usgsJ τψ=τ== ∑∑∑∑

==

′

=

′

=

K

1
2

K

1

I

1

I

1
2 ,

subject to constraints α.1, α.2, α.3, γ.1, γ.2, ε.2. (This means that this problem 
considers a saturated intersection, with no filtering permitted and no negative 
minimal effective intergreen times, so that constraints α.4.2 and δ are not 
included.)

In order to apply the described algorithm for solving this problem, it is 
necessary to determine the precise form of the algorithm elements introduced 
in Part III. These elements are defined as follows:
а)	 Relaxation

а1)	The	superset	of	the	set	of	feasible	solutions

Superset f
s UU ⊃  is defined by constraints α'.1, α'.2, α'.3, γ'.1, γ'.2, 

ε'.2 (Subsection 11.1.1).
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а2)	The	bounded	extension	of	function	 2cJ

The bounded extension of function cJ , as defined in Subsection 11.1.1, 
is defined by the mapping (11.11):

R: →′ s
cJ U ,

with the property

))(())(()( ⋅=⋅′⇒∈⋅ uJuJu ccfU .

In the problem of intersection capacity maximization, 

))(())(( 2 ⋅=⋅ uJuJ cc ,

and the bounded extension of the criterion function ))((2 ⋅uJc  is:

T
c

k

k

k
c

k

k

k
i

i
ic usuJ τ′ψ′=τψ=τ=⋅′ ∑∑∑

κ

=

κ

=

′

=
2

1
2

1

I

1
2 ))(( , (12.6)

where:
K≤κ ,

],,,[ 2
2

2
1

22
κψψψ=ψ′ cccc  , 

],,,[ 21 κτττ=τ′  , and

)(,
I

1
2 K∈==ψ ∑

′

=

ksus k

i

k
ii

k
c u ,

where

],,,,,[ I21 ′= sssss i  ,

),,,( I21
kkkTk uuu ′= u .

The component k
c2ψ′  of vector 2cψ′  represents the number of vehicles 

per second that would pass through the intersection if control vector ku  
were applied. The volumes of all traffic streams gaining the right-of-way by 
control vector ku  are equal to saturation flow volumes.
b)	 The	branching	rule

Branching rule β, i.e., the function

UU →β : ,

is defined in Subsection 11.1.3, and it is the same in all problems of optimal 
signal plan determination, and hence for capacity optimization problem 
as well. After the branching of subset γU , i.e., after determining )( γβ U , 
bounds have to be calculated.
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c)	 The	bounding	function

Two types of bounds are used in the branch-and-bound procedure 
(Subsection 11.1.4), upper and lower bound.

c1)	Upper	bound

The upper bound is defined as the function:

R: →ξB

with properties:

))(  ,)((,)())((2 γααα β∈∈⋅≤⋅′ UUUU uBuJc , (12.7)

))(()})({( 2 ⋅′=⋅ uJuB c . (12.8)

))((2 ⋅′ uJc  is the volume per cycle, i.e., the number of vehicles that pass 
through the intersection when traffic is controlled by signal plan )(⋅u .

On the basis of property (12.7), )( αUB  can be defined as:

})(|))((max{)( 2 αα ∈⋅⋅′= UU uuJB c , (12.9)

which means that )( αUB  is the maximal volume attainable if signal plan 
)(⋅u  belongs to subset αU .
At the beginning of the procedure sUU =α , and expression (12.9) 

becomes:

})(|))((max{)( 2
s

c
s uuJB UU ∈⋅⋅′= . (12.10)

The signal plans that satisfy given constraints belong to set sU . Structures 
of these signal plans have various lengths. The structures can be denoted as:

],[ uuu ′′′= ,

where

],,,[ 21 κ=′ uuuu 

is the part of the structure that is the same for all signal plans belonging to 
one subset.

At the beginning of the procedure 1=κ  and an initial control vector 1u  
has to be chosen. In such a way the subset of signal plans is defined such that 
their structures have 1u  as the initial part of the structure. A member of this 
subset is also the signal plan whose structure is

][ 1uuu =′= .
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It is suitable to choose as 1u  the control vector 1~u , which ensures the 
maximal flow volume through the intersection.

Therefore, applying the (infeasible) signal plan
TT cu ),]~[(),()( 111 uu =τ′=⋅  (12.11)

would provide passage of the maximal number of vehicles through the 
intersection during a cycle. Forming the control vector sequence by adding 
other control vectors after 1u  will have as the consequence reduction of flow 
rate through the intersection.

The shaded area in Fig. 12.1 represents the number of vehicles that pass 
through the intersection if the structure of the signal plan used to control 
the traffic is ],,,[ 21 κuuu  . The maximal number of vehicles, when 1u  
is applied for control during the entire cycle time c (i.e., the upper bound 

)( sB U ) is represented by the area of the rectangle whose edges are of length 
c and 1

2cψ .

A B

c t0 τ1 τ2 τ3 τκ

1
2cψ

k
c2ψ 2

2
1

2 cc ψ−ψ

κψ−ψ 2
1

2 cc

κψ 2c

Figure 12.1

Obviously, the flow volume through the intersection per cycle is greater 
if the cycle duration is divided to κ control vectors than when divided to K 
control vectors, since κ≥K  (K is the number of control vectors in a feasible 
signal plan).

The maximal number of vehicles that pass through the intersection during 
a cycle, 1

2cc ψ⋅ , is reduced by adding control vector 2u  to the sequence. 
Further extension of the control vectors sequence reduces the maximal flow 
rate value even more. Therefore, the maximal flow rate can be determined by 
optimal allocation of the cycle time c to control vectors κuuu ,,, 21

 .
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The upper bound is determined according to expression (12.10) as 
follows:

,~}|)(max{

}|)(max{

})(|))((max{)(

1
2

111
2

111
2

2

cc

c

uuJB

cfc

fc

s
c

s

⋅ψ=∈ψ⋅=

∈⋅ψ=

∈⋅⋅′=

Uuu

Uuu

UU

 (12.12)

where:
1

2
111

2
~}|)(max{ cfc ψ=∈ψ Uuu .

The upper bound of subset sU  is

)~(}|max{~)( 1111
2 uUuu ⋅=∈⋅⋅=⋅ψ= scsccB fc

sU .

According to expression (12.9), α∈⋅ U)(u  and αU  is defined by 
constraints α'.1, α'.2, α'.3, γ'.1, γ'.2, ε'.2, meaning that element )(⋅u  has to 
satisfy these constraints. In order to satisfy these constraints, it is necessary to 
know which control vector follows κu . There are several control vectors 1+κu  
and they all are elements of set )(1 αβ U . The choice of particular elements 
of set )(1 αβ U  enables formulation of different optimization problems that 
have to be solved when determining the upper bound )( αUB . The criterion 
function is the same in all of these problems, but the set of constraints is 
different. Solutions of these problems are different, as well. The upper bound 

)( αUB  is equal to the maximal value of these solutions.

Accordingly, the upper bound )( αUB  can be determined in the following 
way:

}}{max{max

})(|))((max{)(

1
2

,,

2

11 ∑
κ

=ττ

αα

τψ=

∈⋅⋅′=

κ+κ
k

kk
c

c uuJB

u

UU

 (12.13)

subject to given constraints. Besides this, there holds
κ+κ Γ∈ uu s

1)Kmod( .

With regard to constraint ε'.2,

∑
κ

=

=τ
1k

k c ,

1τ  can be eliminated from expression (12.13) by substituting

∑
κ

=

τ−=τ
1

1

k

kc .
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Expression (12.13) for )( αUB  then becomes

}})({max{max)(
2

2
1

2
1

2
,,21 ∑

κ

=ττ
α τψ−ψ−⋅ψ=

κ+κ
k

kk
ccc cB

u
U . (12.14)

When 1=κ , expression (12.13) is used rather than expression (12.14).
The maximal value of expression (12.14) is achieved, as shown in Fig. 

12.1, when the nonshaded area in rectangle 0cBA is minimal.
Therefore, in determining the upper bound )( αUB , the linear 

programming problem has to be solved several times (for different 1+κu ).

c2)	The	lower	bound

The lower bound, )(ub , for a collection u  can be determined if the 
collection contains feasible solutions. In this case,

})})({(|))((max{)( 2 uu ∈⋅⋅= uuJb c . (12.15)

The method of maximal capacity determination is illustrated by the 
following examples.

Example	12.1

α) Determine the optimal signal plan maximizing the capacity of the intersection presented 
in Fig. 2.5, together with its compatibility graph sG .

 The cycle duration is s09=c . Saturation flow volumes and minimal effective green 
times for all traffic streams on this intersection are given in Table 12.1.

Table 12.1

i 1 2 3 4 5 6

is  (veh/h) 1836 1650 1620 1650 1600 0

img  (s) 20 15 15 15 15 16

The matrix of minimal effective intergreen times (in seconds) is 

























=

008408
000100
200212
253030
005300
404000

Z .

The problem has to be solved under the assumption that each traffic stream is a signal group.
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The	problem	statement

 Determine the signal plan to maximize criterion function

T
c

i k

kk
iic usJ τ⋅ψ=τ=∑ ∑

= =
2

5

1

K

1
2 ,

subject to constraints α.1, α.2, γ.1, γ.2, ε.2, and

)(,]      [ K21
2 f

k
c sss Uuuuu ∈=ψ 

,

]1600,1650,1620,1650,1850[],,,[ 521 == ssss 
.

 The set of feasible control vectors, fU , for this example is determined in Example 8.2 
using CLIQ program:

.})1,1,0,0,1,0(,)0,1,0,0,1,1(,)1,1,0,0,0,0(,)0,1,1,0,0,0(   

,)1,0,0,0,1,0(,)0,1,0,0,1,0(,)0,1,0,0,0,1(,)0,0,0,1,0,1(   

,)0,0,0,0,1,1(,)1,0,0,0,0,0(,)0,1,0,0,0,0(,)0,0,1,0,0,0(   

,)0,0,0,1,0,0(,)0,0,0,0,1,0(,)0,0,0,0,0,1(,)0,0,0,0,0,0({

})61(,,)(,,)2(,)1({

TTTT

TTTT

TTTT

TTTT

f r

=

= uuuuU 

 The components of vector 2cψ  can be calculated for all feasible control vectors, i.e., 
elements of set fU . These components belong to the set

}0.902  1.426,  0.444,  0.902,  0.458,  0.902,  0.902,  0.960,  
0.968,  ,0  0.444,  0.458,  0.450,  0.458,  0.510,  ,0{

})61(,,)( ,  ,)2( ,)1({
})(,,)( ,  ,)2( ,)1({2

=
=
=ψ

uuuu
uuuu

srsss
Rsrsssc





,
where:

)(,22 K∈ψ∈ψ kc
k
c ,

}6,5,4,3,2,1{=J ,  }6{\JJ =′ ,

]61,51,51,51,51,02[],,,[ 621 == mmmm gggg  .

 The control vector transition graph, ),( sfsG Γ= U , for this example is determined in 
Example 8.7α and shown in Fig. 8.17. The same graph is presented in Fig. 12.2 with value 

)(rsu , corresponding to control vector )(ru , written next to each node representing the 
control vector.

 The elements of matrix fZ , representing minimal effective intergreen times, are 
determined for each pair of control vectors using expression (8.61):
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0.968

0.954

0.458

1.412

0.510

0.960

0.450

3

3

9

11

7

7

7

11

3

3

7
7

7

7

0.444

0.458

0.902

0.458

0

0.902

15

13

Gs
1 :

0.902

0,444

(0,1,0,0,1,1)T

0

(1,1,0,0,0,0)T

(1,0,0,0,1,0)T

(0,1,0,0,0,0)T

(1,1,0,0,1,0)T

(1,0,0,0,0,0)T

(1,0,1,0,0,0)T

(0,0,1,0,0,0)T

(0,0,0,0,1,1)T

(0,1,0,0,0,1)T

(0,0,0,1,1,0)T

(0,0,0,1,0,0)T

(0,0,0,0,0,1)T

(0,1,0,0,1,0)T

(0,0,0,0,1,0)T

(0,0,0,0,0,0)T

Figure 12.2

(0,0,0,0,0,0)T

(1,0,0,0,0,0)T

(0,1,0,0,0,0)T

(0,0,1,0,0,0)T

(0,0,0,1,0,0)T

(0,0,0,0,1,0)T

(0,0,0,0,0,1)T

(1,1,0,0,0,0)T

(1,0,1,0,0,0)T

(1,0,0,0,1,0)T

(0,1,0,0,1,0)T

(0,1,0,0,0,1)T

(0,0,0,1,1,0)T

(0,0,0,0,1,1)T

(1,1,0,0,1,0)T

(0,1,0,0,1,1)T

(0
,0

,0
,0

,0
,0

)T TT
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,0
,1

,0
,0

,0
)T

(0
,0

,0
,1

,0
,0

)T

(0
,0

,0
,0

,1
,0

)T

(0
,0

,0
,0

,0
,1

)T

(1
,1

,0
,0

,0
,0

)T

(1
,0

,1
,0

,0
,0

)T

(1
,0

,0
,0

,1
,0

)T

(0
,1

,0
,0

,1
,0

)T

(0
,1

,0
,0

,0
,1

)T

(0
,0

,0
,1

,1
,0

)T

(0
,0

,0
,0

,1
,1

)T

(1
,1

,0
,0

,1
,0

)T

(0
,1

,0
,0

,1
,1

)T

(0
,1

,0
,0

,0
,0

)T

(1
,0

,0
,0

,0
,0

)T

Z f

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 4 0 0 0 0 4 4 4 40
0 0 0 3 5 0 0 0 3 0 0 0 5 0 0 0
0 0 3 0 3 5 2 3 0 5 35 5 5 5 5
0 2 1 2 0 0 2 2 2 2 1 2 0 2 2 2
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 8 0 4 8 0 0 8 8 8 0 0 8 0 8 0
0 0 0 3 5 0 4 0 3 0 0 4 5 4 0 4
0 0 3 0 4 5 4 3 0 5 5 4 5 5 5 5
0 0 0 1 4 0 4 0 1 0 4 40 4 0 4

0 8 0 4 8 0 0 8 8 8 0 0 8 0 8 0
0 2 1 2 0 0 2 2 2 2 1 2 0 2 2 2
0 8 0 4 8 0 0 8 8 8 0 0 8 0 8 0
0 0 0 3 5 0 4 0 3 0 0 4 5 4 0 4
0 8 0 4 8 0 0 8 8 8 0 0 8 0 8 0

0 0 0 3 5 0 0 0 3 0 0 0 5 0 0 0
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The	solution

 The stated problem is solved applying the method described in Part III. 

Relaxation: Superset f
s UU ⊃  is defined by the following constraints:

α'.1. )(,)2)(mod(
1

1)K(mod J∈θ=+∑
κ

=

+ iuu
k

p
k
i

k
i

 where

 )2,)(()K( <θ∈∃⇒<κ ii J

 ),2()K( J∈=θ⇒=κ ii

α'.2. ∑
∑

∑κ

=
κ

=

+

κ

=

+










=+

<+
≥τ

1

1

1)K(mod

1

1)K(mod

 
2)2)(mod( fi   ,

2)2)(mod( fi   ,0

k

k

k
i

k
iim

k

k
i

k
i

kk
i

uug

uu
u

 

 
,  )( J∈i

γ'.1.  )(,1)K(mod κ<Γ∈+ kk
s

k uu

γ'.2.  

}),(,(

),(max{

1)K(mod

)K(mod)K)(mod(
1

0

)K)(mod(

+

−ω+κ−κ
−ω

=

−+κ−κ

Ω′∈ωκ≤

≥τ∑
kk

kkf

l

kl

k

z

uu

uu

ε'.2.  c
k

k =τ∑
κ

=1

Bounding	rules

The upper bound

 The upper bound )( αUB  is determined by expression (12.14), i.e.,

}})({max{max)(
2

2
1

2
1

2
,,21 ∑

κ

=ττ
α τψ−ψ−⋅ψ=

κ+κ
k

kk
ccc cB

u
U .

 For 1=κ  the following expression is used:

cB c
s ⋅ψ= 1

2
~)(U .

 In this example s09=c ,  veh/s1.412~1
2 =ψc , and T)0,1,0,0,1,1(~1 =u , so that the 

value of the upper bound is

 veh43.128426.109)( =⋅=sB U .
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 The upper bound, )( αUB , is the solution of the optimization problem, which is obtained 
by solving several linear programming problems. As an example, the upper bound )( αUB  
is determined for subset αU , the elements of which have the property that the initial part of 
their structure is the same and equal to



























==′

00000000
10000011
01000000
00011000
00000001
00001111

],,,[)( 821 uuuu αU .

 The initial part of the structure )( α′ Uu  of subset αU  elements is marked by the bold 
line on the control vector transition graph sG  in Fig. 11.4.

 The value of coefficients k
c2ψ , ( f

k Uu ∈ ) is assigned to each node of graph sG  in 
Fig. 12.2.

 The expression for the upper bound )( αUB  in this case is:

}})968.0954.0412.1962.0                     

452.0902.0458.080.127{max{max

}})({max{max)(

8765

432

,,

8

2
2

1
2

1
2

,,

(
829

829

τ+τ+τ+τ

+τ+τ+τ=

τψ−ψ−⋅ψ=

−
ττ

=ττ
α ∑





u

u k

kk
ccc cB U

.

 The set to which control vector 9u  belongs is determined in Example 11.2:

})0,1,0,0,1,0(,)1,1,0,0,1,0(,)1,1,0,0,0,0({9 TTT∈u .
The elements of this set are marked in Fig. 11.4 by circles around the nodes representing them 
in graph sG .

 The optimization problems can now be formulated in the following way:
 Find the values of variables 832 ,,, τττ   so as to maximize expression

.})968.0954.0412.1962.0                     

452.0902.0458.080.127{
8765

432(
τ+τ+τ+τ

+τ+τ+τ−

The constraints the variables 832 ,,, τττ   have to satisfy depend on 9u . The constraints 
are defined and the optimization problems solved for particular control vectors 9u :
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T)1,1,0,0,0,0(9 =u
The constraints:

2)
51)
3)
4)
51)
1)
3)
09)

8

7

6

65

54

3

32

87654321

≥τ
≥τ
≥τ
≥τ+τ
≥τ+τ
≥τ
≥τ+τ
=τ+τ+τ+τ+τ+τ+τ+τ

h
g
f
e
d
c
b
a

The solution:

 s251 =τ , s22 =τ , s13 =τ , s414 =τ ,

 s15 =τ , s36 =τ , s517 =τ , s28 =τ ,

and according to expression (12.13),

 veh94.79}{max
8

1
2

,, 81
=τψ∑

=ττ k

kk
c



.

T)1,1,0,0,1,0(9 =u

Constraints а) to g) are the same as for T)1,1,0,0,0,0(9 =u ; hence, the solution is the 
same.

T)0,1,0,0,1,0(9 =u
The constraints a) to g) in this case are the same like in the previous two cases and the 
constraint h) is 1  8 ≥τ .

The solution is:

 s351 =τ , s22 =τ , s13 =τ , s414 =τ ,

 s15 =τ , s36 =τ , s517 =τ , s18 =τ .

  veh690.99}{max
8

1
2

,, 81
=τψ∑

=ττ k

kk
c



.

Thus,

  veh690.99}690.99;411.89;411.89max{)( ==αUB .

Optimal solution of this problem, Tu )**,(* τ= u , is obtained using the program STECSOT 
(Appendix VII), which successively performs operations of branching, determining upper 
and lower bounds, and branch-and-bound recursive operation. The optimal structure and the 
optimal cycle time split are given by the following expressions:
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[ ]8611 1312 31411282*
010000000000
111110000011
000011000000
000000011000
111000000001
000000001111

*

=τ

























=u .

 The structure *u  of this solution is marked by the bold line on control vector transition 
graph sG  in Fig. 12.3.

 The optimal criterion value is:

 veh84.19)*,*())(*( 22
*
2 =τ=⋅= T

ccc JuJJ u .
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Figure 12.3
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β) Determine the signal plan maximizing the capacity of the intersection presented in Fig. 
12.4. 
 The intersection has four traffic streams which are, at the same time, the signal groups. Its 
compatibility graph gG , control vector transition graph sG , and minimal effective intergreen 
matrix are given in the same figure. 

The cycle duration is 90 s. 
The minimal effective green times and saturation flows are given in Table 12.2.

Table 12.2

i 1 2 3 4

is  (veh/h) 0 1800 0 1600

img  (s) 10 15 10 10

One step of the solution procedure is graphically presented in Fig. 12.5.
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Figure 12.4
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 The procedure can be represented by a graph having the tree structure. The nodes of the 
graph represent subsets of set sU . The root of the tree is the subset with the property that 
all its members have the control vector ensuring maximal flow rate, T)1,0,1,0(~1 =u , as the 
initial part of their structure. Every node is connected to the root by a single path. Each subset 

αU , represented by a node, has the property that all its members have the same initial part 
of the structure, ],,,[ 21 κuuu  , ( 11 ~uu = ). This sequence of control vectors is defined by 
the path from the root of the tree to the node that represents subset αU . Next to each node, 
the mark of the last control vector in the sequence, κu , is written.

 The edges of this graph connected the nodes representing subsets αU  with the nodes that 
are obtained by applying operation β to these subsets. This means that the node representing 
subset αU  is connected to the node that “precedes” it, which represents the subset by 
whose branching subset αU  evolved, and also to the nodes that “succeed” it, i.e., the nodes 
representing subsets obtained by subset αU  branching. Thus, each node is connected to one 
“predecessor” node and one or more “successor” nodes. The exceptions, when considering 
collection nu , are the following nodes:

а) The root of the tree, for which no predecessor exists.
b) “Leaves” of the tree, having no successor nodes. These leaves represent:

b1) The subsets that belong to collections 1
−u , 2

−u ,..., n
−u  that were excluded during 

the procedure because their elements were not candidates for branching in the next 
step of the procedure.

b2) The subsets that are candidates for further branching, i.e., elements of collection 
nu .

b3) The singleton subsets, which are elements of collection *u .

 In the node, i.e., the ellipse representing subset αU  in the graph (Fig. 12.5), the value 
of its upper bound )( αUB  is written. This value was calculated in the step when this subset 
was a leaf of the tree.

 The nodes marked by “ ” represent the subsets for which no further branching will be 
performed because their upper bound is less than or equal to the lower bound of the collection 

52u . The value of the lower bound of the collection 52u  is

 veh80.56)( 52 =ub .
 The node that represents the subset containing one feasible solution, and for which 
the upper bound is equal to the value of optimality criterion chosen as the lower bound of 
collection 52u , is marked by bold line.

 The nodes marked by “ ” represent the subsets for which no further branching will be 
performed because the duration of some control vector in the part of the structure that is the 
same for all members of the subset represented by this node is equal to zero.
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 The optimal criterion value is 

 veh80.56)*,*())(*( 22
*
2 =τ=⋅= T

ccc JuJJ u .

 The optimal structure and cycle split in this solution is:

[ ]8012286*
00011
01000
00001
01000

*

=τ


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






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






=u .

The structure of the optimal solution is shown on graph sG  (Fig. 12.4).

12.3.	Equalizing	saturation	degrees	of	vehicle	traffic	streams

According to a standard heuristic rule, often used by traffic engineers, 
green time should be allocated to each vehicle traffic stream to ensure 
approximately the same saturation degrees for all vehicle traffic streams on the 
intersection. Webster [89] points out, and it is also suggested in some manuals 
[24], that such a way of green times determination leads, approximately, to 
the minimal delay of vehicles on the intersection.

The values of effective green times ensuring approximately the same 
saturation degrees of vehicle traffic streams, and satisfying all necessary 
constraints, can be determined by solving certain suitably stated optimization 
problems.

These optimization problems differ by the criterion that should be 
optimized. The suitable optimization criteria are: the mean square of 
differences between saturation degrees of traffic streams (9.19), the mean 
square of differences between reciprocal values of saturation degrees of 
traffic streams (9.20), the maximal saturation degree value (9.21). All these 
criteria should be minimized [35].

The capacity factor maximization (9.22) also contributes to the saturation 
degrees equalization. This problem, however, can be deduced to the problem 
of minimizing the maximal saturation degree.

In next subsections the optimization problems with the mentioned criteria 
are stated, together with examples of optimal signal plan determination.
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12.3.1.	 Minimization	of	the	sum	of	square	differences	between		
saturation	degrees	of	traffic	streams

The expression for this criterion (9.19) is given in Subsection 9.3.4. The 
problem of optimization of this criterion can be stated as follows: Determine 
the signal plan Tu ),()( τ=⋅ u , so as to minimize the function:

а) ∑ ∑
∑∑

∑ ∑
′

=

′

+=

==
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=

′
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subject to constraints α.1, α.2, α.3, α.4, γ.1, γ.2, ε (ε.1 or ε.2).
In problems of practical capacity optimization these constraints are 

extended by constraints (9.18):

)(, J ′∈ρ≤ρ iii ,

where iρ  is the maximal acceptable saturation degree of traffic stream iσ .
Equalization of saturation degrees can be achieved, also, by minimizing 

the criterion function (9.20):
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subject to the given constraints.
The constraints α'.1, α'.2, α'.3, α'.4, γ'.1, γ'.2, ε'.1, or ε'.2, by which the 

superset sU  is defined, have to be used when calculating upper bounds (in 
this problem, the optimization means minimization).

The lower bound is obtained by minimizing function cJ ′ , which represents 
extension of criterion function cJ . This extension is obtained by substituting 
K in the criterion function by K≤κ , and the sum of square differences in 
this case contains only the elements with the property:

1
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The squares of differences of saturation degrees iρ  and jρ  are included 
in the expression for criterion function if ji < . The number of such elements 

is 





 ′

2
I .

The following example illustrates determination of optimal signal plans 
by minimizing these two criteria.
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Example	12.2.

α) Determine the signal plan for intersection presented in Fig. 2.5 ,with its transition graph 
given in Fig 8.18, so as to minimize the optimality criterion defined by expression (9.19). The 
signal plan structure is given, shown in Fig. 12.6, and defined by the following expression:
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u .

 Signal groups comprise single traffic streams ( JP ′=′=   ,ip ). 

 Saturation flows, minimal effective green times, and traffic streams volumes are given in 
Table 12.3. 

 The values of minimal effective intergreen times are elements of matrix Z. 

 Cycle time is 90 s.

(0,1,0,0,1,1)T

(0,0,0,0,1,0)T

(0,0,0,0,0,0)T

(1,1,0,0,0,0)T

(1,0,0,0,1,0)T

(0,1,0,0,0,0)T

(1,1,0,0,1,0)T

(1,0,0,0,0,0)T

(1,0,1,0,0,0)T

(0,0,1,0,0,0)T

(0,0,0,0,1,1)T

(0,1,0,0,0,1)T

(0,0,0,1,1,0)T

(0,0,0,1,0,0)T

(0,0,0,0,0,1)T

(0,1,0,0,1,0)T

Gs :

Figure 12.6
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Table 12.3

i 1 2 3 4 5 6

is  (veh/h) 1850 1650 1620 1650 1600 0

iq  (veh/h) 92.5 82.5 81 82.5 80 0

img  (s) 25 15 15 15 15 16

iMr  (s) 70 75 75 70 85 −
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
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



== ×
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000100
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253030
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][ IIjizZ

 The optimal cycle time split

] 1 ,72 ,4 ,4 ,32 ,4 ,0 ,9 ,71 ,1 [* =τ
is obtained by applying the described method. 

 The optimal value of the criterion function is

4* 01432714.1 −⋅=cJ .

β)   Determine the signal plan for the same intersection and data as in α, but with the optimality 
criterion defined by expression (9.21).

 The optimal cycle time split

] 1 ,72 ,5 ,5 ,22 ,3 ,2 ,8 ,61 ,1 [* =τ
is obtained in the same way as in α. 

 The optimal value of the criterion function is

4* 01532714.1 −⋅=cJ .
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12.3.2.	 Minimization	of	the	maximal	saturation	degree

As already pointed out in Subsection 9.3.4, minimization of the maximal 
saturation degree value leads to equalization of saturation degrees.

If pg  in expression (9.20), defining the optimization criterion, is 
substituted by:

)(,
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the criterion function becomes:
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When signal groups are singleton sets, then pi =  ( J ′∈i , P ′∈p , 
PJ ′=′ ).

The problem of minimizing the maximal saturation degree can be stated 
as follows: Determine the signal plan so as to minimize criterion (12.16), 
subject to constraints α.1, α.2, α.3, α.4, γ.1, γ.2, ε (ε.1 or ε.2).

This problem can be stated in another way by introducing variable ρ, 
defined as:

}|max{ J ′∈ρ=ρ ii . (12.17)

In this case the following inequalities hold:

)(,0 J ′∈≥ρ−ρ ii  (12.18)

or
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i.e.,
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ρ
−τ∑
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i
s

cqu
i

i

k

kk
i . (12.19)

In the case of undersaturated intersection 1<ρ  or ii ρ≤ρ , ( J ′∈i ).

© 2008 by Taylor & Francis Group, LLC



240 OPTIMAL TRAFFIC CONTROL: Urban Intersections

The problem of minimizing the maximal saturation degree can now be 
stated as follows: Determine the signal plan so as to minimize optimality 
criterion

ρ=cJ ,

subject to constraints

)(,01K

1
J ′∈≥γ

ρ
−τ∑

=

iu i
k

kk
i ,

and α.1, α.2, α.3, γ.1, γ.2, and ε (ε.1 or ε.2).

If the notation

µ=
ρ
1  (12.20)

is introduced, the optimality criterion, which has to be minimized, becomes:

µ
=

1
cJ .

Instead of (12.20), another criterion can be introduced:

µ=cJ~ , (12.21)

which has to be maximized.
Substituting (12.20) in (12.19), the following expression is obtained:

)(,0
K

1
J ′∈≥γµ−τ∑

=

iu i
k

kk
i . (12.22)

The problem of optimizing criterion (12.21), subject to constraints (12.22) 
and other given constraints, represents actually the problem of maximizing 
the capacity factor µ, which is considered in the next paragraph.

Expression (12.20) points out the fact that the	capacity	factor	is	equal	to	
the	reciprocal	value	of	maximal	saturation	degree.

12.3.3.	 Capacity	factor	maximization

The capacity factor is one of generally accepted criteria, particularly 
suitable for determination of “long-term” signal plans for isolated intersections 
(Subsection 9.3.5), i.e., signal plans that will not be frequently changed. It 
means that the signal plan obtained by optimizing this criterion can be used 
in the conditions when flow volumes change [45].
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There exist several variants of the capacity factor maximization problem. 
In some problems, the cycle time is given, and in others not. Also, problem 
formulations are different if “filtering” of some traffic stream through others 
is permitted or not.

In some cases, the problem of capacity maximization includes the maximal 
effective red constraints. These constraints are usually introduced with the 
intention to limit the length of certain queues that form during red signal 
indications. One consequence of maximal effective red constraints is that 
there exists a maximal value of cycle time duration. When these constraints 
are present, the maximal capacity value does not monotonously change with 
cycle changes from minimal to maximal cycle time [45]. Rather than that, 
the maximal capacity value increases with cycle time until a certain, optimal 
cycle time value is attained, and after that, until the maximal cycle time value, 
it decreases.

The problem statements and solved examples in the following text refer 
to two cases:

▪ Determination of the optimal signal plan when filtering of one traffic 
stream through others is not permitted.

▪ Determination of the optimal signal plan when filtering is permitted.

а)	 The	capacity	factor	maximization	if	the	filtering	is	not	permitted

The problem of capacity factor maximization in the case when filtering is 
not permitted, for a given signal plan structure, becomes a linear programming 
problem. This problem, as already mentioned, can be solved with the cycle 
time given in advance, or the value of the cycle time is obtained as the solution 
of the problem. Both cases are formulated and illustrative examples are given 
below.

а1)	The	capacity	factor	maximization	when	the	cycle	time	is	not	given

The optimal signal plan obtained as the solution of this problem will 
contain, also, the information on the optimal cycle time value.

This problem can be stated as follows: Find the signal plan Tu ),()( τ=⋅ u  
so as to minimize the capacity factor

µ=cJ ,

subject to constraints α.1, α.2, α.3, α.4.1 (modified), β, γ.1, γ.2, ε.2, and the 
constraints defined by expression (9.18).
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Constraints α.4, defined as:

)(,
K

1
P ′∈γ≥τ∑

=

iu p
k

kk
p ,

where, according to expression (8.14):
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are modified by multiplying each pγ  by µ ( P ′∈p ). Hence, the flow balance 
constraints in this case are defined by the following expression:
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This inequality is obviously identical to inequality (12.22) in the case 
when each traffic stream makes a signal group.

After substituting

∑
=

τ=
K

1k

kc ,

this constraint becomes:
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The constraints formed by expression (12.24) are, obviously, nonlinear, 
and in this case the problem of optimal signal plan determination and 
determination of upper bounds are problems of nonlinear mathematical 
programming.

For solving this problem, the method described in Part III is used.

Superset sU  of the set of feasible signal plans fU  is defined by 
constraints (Part III): α'.1, α'.2, α'.3, α'.4 (mod.), β, γ'.1, γ'.2, ε'.2, and 
constraint (9.18).
The	extension	of	criterion	function J is defined in the same way as the 
optimality criterion, i.e.,

µ=′J .

The	branching	rule is determined as described in Subsection 11.1.3.

•

•

•
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The	upper	bound is determined by solving the following optimization 
problem: Maximize function

µ=′J ,

subject to constraints α'.1, α'.2, α'.3, α'.4 (mod.), β, γ'.1, γ'.2, ε'.1, and 
constraint (9.18).

The choice of initial control vector 1u
 When solving this problem, the initial control vector should be the 
vector that will surely be present in the optimal solution. However, in the 
majority of real problems, usually there does not exist a control vector, 
which must be a part of each feasible signal plan structure.
 The fact that each signal group has to gain its right-of-way once 
during the cycle (constraint α.1) can be used to determine the rule for 
choosing the initial vector 1u .
 In the set of feasible control vectors, fU , there may exist several 
control vectors with the value of control variable )(⋅lu  equal to 1. One 
of these control vectors has to be an element of any feasible signal plan 
structure. 
 The problem, thus, has to be solved several times, each time taking 
as the initial control vector 1u  one of the control vectors having some 
control variable )(⋅lu  with value 1. In order to apply this method the 
minimal number of times possible, it is rational to choose the variable 

)(⋅lu  which has value 1 in the minimal number of control vectors, 
compared to other signal groups.

 If set lfU  is defined as:

}1)(|)({ == rur llf uU , (12.25)

then the initial control vectors 1u  will be chosen from set alfU , which 
has the following property:
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 For the intersection with four signal groups, presented in Fig. 12.4 in 
Example 12.2, the cardinal numbers of sets lfU  for particular values of l 
are given in Table IV.4.

•

•
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Table 12.4

l 1 2 3 4

card lfU 2 3 3 2

Hence }4,1{∈al . Any of these two values can be chosen for al . In the 

case 4=al , the initial phase 1u  takes first the value of the first, and then 
of the second control vector from set

 })1,0,0,0(,)1,0,1,0({4
TT

f =U .

Example	12.3

 Determine signal plan for the intersection presented in Fig. 2.5 to maximize its capacity 
factor. 

 The graph of control vectors transition, sG , for this intersection is given in Fig. 8.17. 

 Each signal group comprises a single traffic stream ( JP = ). 

 The data on saturation flow volumes, minimal effective green times, maximal effective 
red times, and flow volumes of vehicle traffic streams are given in Table 12.5. 

 Minimal effective intergreen times are given as elements of matrix Z.

Table 12.5

i 1 2 3 4 5 6

is  (veh/h) 1850 1650 1620 1650 1600 0

iq  (veh/h) 185 330 162 165 160 0

img  (s) 25 15 15 15 15 16

iMr  (s) 60 65 65 60 75 −
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 The maximal acceptable saturation degrees are:

)(,9.0 PJ ′=′∈=ρ ii .

 Applying the described method the following optimal solution is obtained:
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 The value of index al  belongs to the set {3,4}. For both values of al  the same optimal 
solution was obtained.

 The graph of control vectors transition and the optimal signal plan structure are shown in 
Fig. 12.7.

 The optimal criterion value and cycle time are:

910.2* =µ  and s 87*=c .

(0,1,0,0,1,1)T

(0,0,0,0,1,0)T

(0,0,0,0,0,0)T

(1,1,0,0,0,0)T

(1,0,0,0,1,0)T

(0,1,0,0,0,0)T

(1,1,0,0,1,0)T

(1,0,0,0,0,0)T

(1,0,1,0,0,0)T

(0,0,1,0,0,0)T

(0,0,0,0,1,1)T

(0,1,0,0,0,1)T

(0,0,0,1,1,0)T

(0,0,0,1,0,0)T

(0,0,0,0,0,1)T

(0,1,0,0,1,0)T

Figure 12.7
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а2)	The	capacity	factor	maximization	when	the	cycle	time	is	given

The difference between the previous problem and this one is in the 
constraints. Instead of ε.2, constraint ε.1 is added to constraints α.1, α.2, α.3, 
α.4 (mod.), β, γ.1, γ.2.

The constraints defining superset sU  have to be extended by constraint 
ε.1.

The method applied to solve this problem is the same as in the previous 
case. The problems of determining the optimal signal plan and upper bounds 
in this problem are problems of linear programming.
Example	12.4

 Find the optimal capacity factor values for the same intersection and data as in Example 
12.3, with the cycle time assuming different values, from the minimal, s 07min =c , to 
the maximal s 68max =c  value. The minimal and maximal cycle times were obtained as 
solutions of optimization problems formulated in Chapter 14.

 The problem is solved for the sequence of cycle time values indicated in Fig. 12.8. This 
figure shows how the capacity factor changes as the function of cycle duration. This function, 

)(* cµ , has the maximal value

019.2*
max =µ ,

for cycle time

s 87* =c .

 These values are the same as obtained in Example 12.3 when cycle time was not given in 
advance. The optimal signal plan for s 87* =c  is, of course, equal to the optimal signal plan 
obtained in Example 12.3.

1 .5

1 .6

1 .7

1 .8

1 .9
2 .0

70 74 78 80 82 84 86 90
c (s)

2 .01923

µ

Figure 12.8
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b)	 The	capacity	factor	maximization	in	the	case	filtering	is	permitted

The problem of signal plan determination to maximize the capacity factor 
when filtering is permitted, for a known signal plan structure represents the 
problem of nonlinear mathematical programming [79].

This problem can be stated as follows: Find signal plan Tu ),()( τ=⋅ u  to 
maximize the capacity factor 

µ=cJ ,

subject to constraints α.1, α.2, α.3, α.4.1 (mod.), α.4.2.I (mod.), α.4.2.II 
(mod.), α.4.2.III (mod.), β, γ.1 (mod.), γ.2, ε.1 (or ε.2). 

Constraints α.4.1 (mod.) have to be satisfied by traffic streams that are 
neither opposed nor opposing. Constraints α.4.2.I (mod.) relate to opposing 
traffic streams, while constraints α.4.2.II (mod.) and α.4.2.III (mod.) refer 
to opposed traffic streams. Constraints γ.1 (mod.) point out that the control 
vectors transition graph, sG , has to be modified in accordance with specific 
requirements posed in this problem, using the method described in Section 
8.6.

The modification of constraints α.4.2.I, α.4.2.II, α.4.2.III, and α.4.1, 
means that all given average flow volumes, iq , in the expressions that define 
these constraints have to be multiplied by the capacity factor, µ.

In Subsection 8.2.4 it was suggested that when filtering is permitted, the 
sequence of control vectors should be such that the opposing stream first 
gets its right-of-way. After its queue is discharged, the right-of-way should 
be given to both the opposing and the opposed traffic stream. Finally, the 
opposed traffic stream should keep its right-of-way alone. According to these 
requirements, the graph of control vectors transition, sG , has to be extended 
including new nodes and new oriented edges.

Example	12.5

 Determine the maximal capacity factor values for the intersection presented in Fig. 12.9, 
together with its compatibility graph and control vectors transition graph. The problem should 
be solved for two cases: when filtering of traffic stream 2σ  through traffic stream 3σ  is 
permitted, and when not. Two signal plan structures are given: ))(( ⋅ruu  and ))(( ⋅suu .

 The cycle time is s 001=c .

 The values of saturation flow volumes, average values of traffic flow volumes, minimal 
effective green times, and maximal effective red times are given in Table 12.6. 
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Table 12.6

i 1 2 3 4 5 6

is  (veh/h) 1850 1650 1620 1650 1600 0

iq  (veh/h) 185 165 162 165 160 0

img  (s) 25 15 15 15 15 16

iMr  (s) 70 75 75 70 85 −

Gc: σ1

σ2

σ4

σ6

σ3

σ1

σ2

σ4 σ5

σ6

σ3 σ5

(0,0,0,0,1,0)
T

(0,0,0,0,0,0)
T

(1,1,0,0,1,0)T

(1,1,1,0,0,0)T

(1,0,0,0,0,0)T

(1,0,1,0,0,0)T

(0,1,0,0,1,0)T

(0,1,1,0,0,0)T

(0,0,1,0,0,0)T

(0,1,0,0,1,1)T
(0,0,0,0,1,1)T

(0,1,0,0,0,1)T

(0,0,0,1,1,0)T

(0,0,0,1,0,0)T

(0,0,0,0,0,1)T

(0,1,0,0,0,0)T

(1,0,0,0,1,0)T

(1,1,0,0,0,0)T

Gs :

Figure 12.9
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 The minimal effective intergreen times are given as elements of matrix Z:
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 The chosen signal plan structures, ))(( ⋅ruu  and ))(( ⋅suu  are:
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 The problem will be solved for the sequence of average flow volumes 3q  of traffic 

stream 3σ , which is given in Table 12.7 for the case when filtering is not permitted, and in 
Table 12.8 for the case when filtering is permitted.

Table 12.7 Table 12.8

3q  (veh/h) µ*

302 1.6400
402 1.2330
482 1.0284
492 1.0070
495 1.0015

3q  (veh/h) µ* t3 (s)

162 2.7000 0
252 2.1407 0
262 2.0789 1
272 2.0237 2
302 1.8607 4
472 1.1905 4
562 0.9999 4

 Since the structure and cycle time are given, the problem of capacity maximization 
becomes the problem of linear programming when filtering is not permitted, or the problem of 
nonlinear programming when filtering is permitted. 
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 The problem is to determine the values of variables 821 ,,, τττ   and µ. All constraints 
are linear except constraints α.4.2.I (mod), α.4.2.II (mod), and α.4.2.III (mod). The expressions 
defining these constraints are as follows:

3

8

1
233233 ))1(( qcuuquus

k

kkkkk µ≥τµ+−∑
=

0))1()1((
8

1
323323 ≥τ−−µ−∑

=k

kkkkk suuquu

2

8

1
232

3
23 )0()1(

1 32
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qcsuu
e
equu k

k
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q

q
kk µ≥τ








−+

−
µ
⋅∑

=
µβ−

µα′−

.

 The coefficients α′  and 2β , explained in Subsection 8.2.4, in this case have the following 
values:

s 2.2
0561

1
)0(

1,s 5.4
2

2 ===β=α′
s

.

The	solution

 When no filtering is permitted, the set of feasible control vectors is the same as in Example 
8.7α. This set is presented on graph sG , in Fig. 12.9, by the set of nodes that are not circled.

 When filtering is permitted, the set of feasible control vectors has to be extended. In the 
case the filtering of traffic stream 2σ  through 3σ  is permitted, the set of feasible control 
vectors, fU , should be extended by the set:

})0,0,0,1,1,0(,)0,0,0,1,1,1({ TT
f =′U .

The elements of this set are represented by the circled nodes on graph sG  in Fig. IV.9.

 The structural constraints are such that traffic stream 3σ  first gets its right-of-way, after 
that, both 2σ  and 3σ  simultaneously, and at last 3σ  alone. Therefore, new edges of graph 

sG  are defined as follows:

})0,0,0,1,1,1(,)0,0,0,1,1,0({)0,0,0,1,0,0()0,0,0,1,0,0( TTT
s

T
s Γ=Γ′ ,

})0,0,0,1,1,1(,)0,0,0,1,1,0({)0,0,0,1,0,1()0,0,0,1,0,1( TTT
s

T
s Γ=Γ′ ,

})0,0,0,1,1,1(,)0,0,0,0,1,1(,)0,0,0,0,1,0({)0,0,0,1,1,0( TTTT
s =Γ′ ,

})0,0,0,1,1,0(,)0,0,0,0,1,1(,)0,0,0,0,1,0({)0,0,0,1,1,1( TTT
s =Γ′ ,

where ),( sfsG Γ= U  is the control vectors transition graph in the case the filtering is not 
permitted.
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 sG′  is defined as:

),)(( sffsG Γ ′′′=′ UU  ,
where

))(())(())(( rrr sss uuu Γ′Γ=Γ ′′  .

 Program LINGO was used in solving this problem.

 For the case when no filtering is permitted, the maximal capacity factor values, determined 
for various values of 3q , are given in Table 12.7. The values obtained in the case the filtering 
is permitted are given in Table 12.8. Comparing the results in Tables 12.7 and 12.8, it can be 
concluded that higher maximal capacity values can be achieved if filtering is permitted.

 The structure ))(( ⋅suu  is presented in Fig. 12.9.
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13. Delay MiniMization

The total vehicle delay on intersection approaches is one of the most 
important criteria for signal plan determination, as noted in Section 9.4. The 
method described in Part III, based on the branch-and-bound principle, is 
used for minimization of this criterion. 

For calculation of delay Webster’s formula is used. Formula (9.29) is 
used when the cycle time is given, and formula (9.31) if not. The problem 
statement and illustrative examples, for both cases, are given below.

13.1. Delay minimization in the case the cycle time is known

The problem of optimal signal plan determination when the cycle time 
is given, in the case when filtering is not permitted, can be stated as follows: 
Find the signal plan Tu ),()( τ=⋅ u  to minimize the mathematical expectation 
of vehicle delay on the intersection (9.29):
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subject to constraints α.1, α.2, α.3, α.4.1, β, γ.1, γ.2, ε.1. Constants 1
epa , 2

epa , 
3

epa  are defined in Section 9.4.
The criterion function in this problem is nonlinear, and the constraints, 

for a known structure, are linear functions of variables K21 ,,, τττ  .
The solution of the stated nonlinear programming problem will be the 

global minimum if all constraints and criterion function are convex with 
respect to variables K21 ,,, τττ  . Since the constraints are linear, it is necessary 
to check only the convexity of the criterion function (9.29). Appendix VIII 
presents the proof of convexity of this function.

The method described in Part III is applied for solving this problem. 
Superset sU  of the set of feasible solutions fU  is defined by constraints 
α'.1, α'.2, α'.3, α'.4.1, β', γ'.1, γ'.2, ε.1.
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The extension of criterion function cJ  is defined as follows:
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The branching rule used in this case is the same as defined in Subsection 
11.1.3.

The bounding rules

The lower bound 

The lower bound )( αUB  is defined as follows:

))(,)((,)())(( γααα β∈∈⋅≥⋅′ UUUU uBuJc ,

))(()})({( ⋅′=⋅ uJuB c .

According to property (11.37), the lower bound is defined as:

})(|))((min{)( αα ∈⋅⋅′= UU uuJB c ,

i.e., the lower bound is determined as the solution of the following optimization 
problem: Find α∈⋅ U)(u  so as to minimize ))(( ⋅′ uJc , subject to constraints 
α'.1, α'.2, α'.3, α'.4.1, β', γ'.1, γ'.2, ε.1.

The problem of lower bound determination, in this case, is the problem 
of nonlinear programming with nonlinear criterion function and linear 
constraints.

The upper bound 

The upper bound )(ub  of collection u  can be determined if the collection 
u  contains feasible solutions. In this case:

.})})({(|))((min{

}))(()})({(|))((min{)(

u

Uuu

∈⋅⋅=

∈⋅∧∈⋅⋅′=

uuJ
uuuJb

c

fc

Example 13.1

 Find the signal plan that minimizes delay on the intersection shown in Fig. 13.1, together 
with its compatibility graph cG , control vectors transition graph sG , and signal plan 
structure. 
 Each signal group contains only one traffic stream. The saturation flows, arrival flow 
volumes, and minimal effective green times are given in Table 13.1. 
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 The cycle time ranges from 70 s to 120 s.

Table 13.1

i 1 2 3 4 5 6

is  (veh/h) 1850 1650 1620 1650 1600 0

iq  (veh/h) 370 330 324 330 320 0

img  (s) 25 15 15 15 15 16

Gc: σ1

σ2

σ4

σ5

σ6

σ3

σ1

σ2

σ4 σ5

σ6

σ3

(0,1,0,0,1,1)T

(0,0,0,0,1,0)T

(0,0,0,0,0,0)T

(1,1,0,0,0,0)T

(1,0,0,0,1,0)T

(0,1,0,0,0,0)T

(1,1,0,0,1,0)T

(1,0,0,0,0,0)T

(1,0,1,0,0,0)T

(0,0,1,0,0,0)T

(0,0,0,0,1,1)T

(0,1,0,0,0,1)T

(0,0,0,1,1,0)T

(0,0,0,1,0,0)T

(0,0,0,0,0,1)T

(0,1,0,0,1,0)T

Gs:

Figure 13.1
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 Minimal effective intergreen times are presented as elements of matrix Z.
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 The signal plan structure shown in Fig. 13.1 is:

























=

010000
011000
000100
000001
010000
000001

u .

 The results, obtained by applying the described algorithm, are presented in Table 13.2 
and Fig. 13.2.

Table 13.2

c (s) Jc
(veh s/c) τ1 τ2 τ3 τ4 τ5 τ6

70 1551.46 25 4 15 2 16 8
75 1305.92 25 4 18 2 18 8
80 1330.80 25 4 20 2 21 8
85 1427.80 25 4 22 2 24 8
90 1552.57 27 4 23 2 26 8
95 1683.58 29 4 25 2 27 8

100 1821.46 31 4 26 2 29 8
105 1966.31 32 4 28 2 31 8
110 2121.43 34 4 29 2 33 8
115 2276.54 36 4 30 2 35 8
120 2441.51 38 4 32 2 36 8
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Figure 13.2

13.2. Delay minimization when cycle time is not given

The problem of optimal signal plan determination when cycle time is not 
given, in the case when filtering is not permitted, can be stated as follows: Find 
the signal plan Tu ),()( τ=⋅ u  so as to minimize the mathematical expectation 
of vehicle delay on the intersection (9.31):

∑ ∑
∑∑∑

∑
∑

′

=

=

=

===

=

=





























τ








τ−








τ









τ

+







τ−=

P

1

E

1 K

1

K

1

3
2K

1

3K

1

2
2K

1

1 )1(9.0
p

(p)e

e

k

kk
p

k

k
ep

k

kk
p

k

k
ep

k

kk
pepc

uau

a
uaJ ,

subject to constraints α.1, α.2, α.3, α.4.1, β, γ.1, γ.2.

The solution of the stated nonlinear programming problem will be the 
global minimum if all constraints and criterion function are convex with 
respect to variables K21 ,,, τττ  . Since the constraints are linear, for a known 
structure, it is necessary to check only the convexity of the criterion function 
(9.31). Appendix VIII presents the proof of convexity of this function.

Like in the previous case, the method described in Part III is applied for 
solving this problem. The differences, in respect to the previous case, are as 
follows:
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▪ When defining the superset sU  of the self of feasible signal plans, 
fU , constraint ε.1 is not used.

▪ Instead of expression (13.11), as the extension of criterion function 
cJ  the following expression is used:

∑ ∑
∑∑∑

∑
∑

′

=

=

= κ

=

κ

=

κ

=

κ

=
κ

=




























τ








τ−








τ









τ

+







τ−=′

P

1

E

1

11

3
2

1

3

1

2
2

1

1 )1(9.0
p

(p)e

e

k

kk
p

k

k
ep

k

kk
p

k

k
ep

k

kk
pepc

uau

a
uaJ .

(13.2)

The proof of the convexity of this function is the same as for function 

)(uJc  (9.31), which is given in Appendix VIII.

Example 13.2

 For the same intersection as in Example 13.1, determine the optimal signal plan for the 
given signal plan structure, in the case the cycle time is not given. Other data are the same as 
in Example 13.1.

 The stated problem is the problem of nonlinear programming, and its solution is:

s 521 =τ , s 42 =τ , s 813 =τ , s 24 =τ , s 815 =τ , s 86 =τ ,
s 57* =c .

 The optimal criterion function value is s/c veh 29.5031 .

 It is evident that the solution of this problem is the same as in the preceding example. The 
curve in Fig. 13.2 does have the minimum value for s 57=c .
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14. ExtrEmE valuEs of signal plan paramEtErs

The majority of optimization criteria used in traffic control problems for 
isolated intersections are the criteria that are significant in traffic, economical, 
or ecological sense, such as the capacity, the delay, etc. Optimization of 
signal plan parameters would not make any sense by itself; however, for 
more precise analysis of traffic control problems on isolated intersections, it 
is often suitable to determine extreme values of some signal plan parameters. 
Such signal plan parameters are: effective green times of some or all signal 
groups, the cycle time, the number of control vectors in the signal plan (the 
length of the structure), etc.

14.1. maximization of effective green times

The sum of green times is chosen as the optimization criterion in one of 
the first papers stating the problem of traffic control on an isolated intersection 
as the problem of linear programming [22]. The criterion is to be maximized 
by the optimal signal plan. Another similar problem statement can be found 
in the paper by R. Camus et al., presented on the II IAESTED Symposium 
[18]. Their paper is concerned with traffic control on complex intersections, 
and they state the problem as the mathematical programming problem in 
which the criterion function is the sum of green times of all signal groups or 
only of those that contain arrival traffic streams.

These criterion functions can be expressed as follows:

•	 Effective green time allocated to signal group pD′ :

)(,
K

1

1 P∈τ=∑
=

puJ
k

kk
pp . (14.1)

•	 The sum of effective green times allocated to subset cP  of signal groups 
set P :

)(,
K

1

2 PP
P

⊂τ=∑ ∑
= ∈

c
k p

kk
p

c

uJ . (14.2)
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•	 The total green time, i.e., the sum of effective green times allocated to all 
signal groups:

∑∑
=

′

=

τ=
K

1

P

1

3

k p

kk
puJ . (14.3)

The listed optimization criteria, together with appropriate constraints, 
define the combinatorial optimization problems, i.e., the problems of finding 
the optimal closed path on control vectors transition graph, and the optimal 
cycle time split. For a given signal plan structure, the problems of signal plan 
optimization reduce to determination of the optimal cycle time split.

14.2. Cycle time minimization

The information about minimal cycle duration is very important when 
the intersection is to be included in a centralized traffic control system. In 
this case a single cycle time value has to be chosen for all intersections in 
the network. This value has to be greater or equal to the maximal value of 
minimal cycle times of all intersections.

The presence of minimal effective green constraints and minimal 
effective intergreen constraints points to the conclusion that, for a given 
signal plan structure u, there has to exist a cycle time value such that these 
constraints cannot be satisfied for shorter cycle time values. The cycle time 
of any feasible signal plan has to be equal or greater than this minimal value. 
The determination of the signal plan with minimum cycle time is also a 
combinatorial optimization problem defined on the graph of control vector 
transitions sG .

The minimal cycle time values are different for different signal plan 
structures. The minimal among them, minc , is called critical cycle time value. 
There exists no feasible signal plan with the cycle time value less than the 
critical one. The critical cycle time value may correspond to more than one 
signal plan structure, i.e., there can exist one or more closed paths on graph 

sG , which all have to be determined when finding the signal plan having the 
minimal cycle time.

The statement of the optimization problem, in this case, is: Determine the 
signal plan Tu ),()( τ=⋅ u  so as to minimize the function:

∑
=

τ=
K

1k

k
cJ , (14.4)

subject to constraints α.1, α.2, α.3, α.4, β, γ.1, γ.2. Constraint ε.1 is not 
included because it states that the sum of all control vector durations is equal 
to the cycle time, which is the optimization criterion in this case.
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Besides the problem of minimal cycle time duration, solved by searching 
in the set fU  of all feasible signal plans, it is sometimes interesting to find 
the minimal cycle time for a given signal plan structure. In this case, this 
problem is transformed to the problem in which control vectors K21 ,,, uuu   
are known, the structural constraints, α.1 and γ.1, are satisfied, and there 
remain only the constraints with time variables (constraints α.2, α.3, α.4, β, 
and γ.2). The optimization criterion, which has to be minimized is, again:

∑
=

τ=
K

1k

k
cJ .

The method described in Part III is used for minimizing function (14.4).

Superset sU  of the set of feasible signal plans, fU , is defined by 
constraints α'.1, α'.2, α'.3, α'.4, β, γ'.1, γ'.2.

The extension of criterion function cJ  is defined by the expression

)K(,
1

≤κτ=′ ∑
κ

=k

k
cJ . (14.5)

The branching rule is defined according to the procedure described in 
Subsection 11.1.3.

The lower bound is determined as the solution of the following 
optimization problem: Minimize function (14.5) subject to constraints α'.1, 
α'.2, α'.3, α'.4, β, γ'.1, γ'.2.

The initial control vector 1u  is chosen as described in Subsection 
12.3.3.

Example 14.1

 Determine all signal plans with the minimal cycle time for the intersection and data from 
Example 12.1β.

The solution:

 Applying the method described in Part III, with the set of initial control vectors:

})1,0,0,0(,)1,0,1,0({4
1 TT

f =∈Uu ,

the set of problem solutions is obtained. In the case the initial vector is T)1,0,1,0(1 =u , 26 
optimal solutions are obtained, and for T)1,0,0,0(1 =u  the number of optimal solutions is 
11. In both sets 5 optimal solutions are the same; thus the total number of optimal solutions 
is 32.

 The minimal cycle time is 37 ѕ.
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 One of the optimal solutions is:

 

[ ] 8   7   8   01   1    1   2 *
1000001
0011100
1100000
0001000

*

=τ



















=u
.

 This solution is marked by a bold line on control vectors transition graph sG  in Fig. 
14.1.

Gs : (1 ,0 ,0 ,0 )T

(0 ,0 ,0 ,0 )T

(0 ,1 ,0 ,1 )T

(0 ,0 ,0 ,1 )T

(0 ,1 ,0 ,0 )T

(0 ,1 ,1 ,0 )T

(0 ,0 ,1 ,0 )T

(1 ,0 ,1 ,0 )T

Figure 14.1

14.3. Cycle time maximization

The maximal cycle time in many countries is fixed by traffic regulations, 
usually with the value of 120 ѕ. However, in some traffic control problems, 
it might be necessary to introduce the maximal red time constraints, in order 
to prevent forming of long queues on some intersection approaches. Due to 
these constraints, there can exist the maximal cycle time that is less than the 
one defined by regulations.

The cycle time maximization problem can be stated as follows: 
Determine the signal plan Tu ),()( τ=⋅ u  so as to minimize the function given 
by expression (14.4):

∑
=

τ=
K

1k

k
cJ ,

subject to constraints α.1, α.2, α.3, α.4, β, γ.1, γ.2.
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This problem can be solved in the same way as the cycle minimization 
problem if the criterion function, which now has to be minimized, is expressed 
as

cc JJ −=1 .

The minimal cycle time value, s 07min =c , and the maximal cycle time 
value, s 68max =c , are determined in Example 12.4 using the procedure 
described in Section 14.2.

14.4. Extreme values of the length of signal plan structure

The number of control vectors (the length of signal plan structure) is 
different for different signal plans that belong to the set of feasible signal 
plans. Solutions of optimization problems on the graph of control vectors 
transition that have been considered here contain the optimal number of 
control vectors, as well, in the sense of the adopted optimization criterion. 
Therefore, solutions of different optimization problems will contain different 
optimal number of control vectors.

An interesting question is whether, for given constraints, there exist a 
minimal and a maximal number of control vectors, such that the structure 
length of any feasible signal plan lies between these two “extreme” values.

This question was once interesting because there existed two traffic 
control approaches [2] regarding implementation of control vector sequences 
in traffic signal controllers. These approaches resulted in construction of two 
types of traffic controllers: phase-oriented, and signal–group-oriented. The 
main features of these approaches are as follows:
•	 Phase (control vector) based control. In applying this approach, the 

constraints (minimal effective green times, minimal effective intergreen 
times, etc.) have to be defined for each control vector (phase), and they 
refer to all the components of the vector. The intention, when using this 
approach, was to minimize the number of phases. This reasoning was 
based on the commonly accepted assumption that the lost time on an 
intersection would be reduced by decreasing the number of phases used 
to control the intersection.

•	 Signal–group control. In applying this approach, control variables are 
associated to traffic streams, i.e., signal groups. The constraints (minimal 
effective green times, minimal effective intergreen times, etc.) are here 
defined for each signal group. The intention, when using this approach, is 
to “maximize overlaps” because this will reduce the total time necessary 
to fulfill the capacity constraints.
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This question is not so significant nowadays. Having modern, flexible, 
microprocessor-based traffic controllers makes any control approach rather 
easy to implement.

Observing the control problem statement, it can be noted that among 
the constraints that define signal plan feasibility (Section 8.9), there exist 
constraints related to control vectors (phases) and their sequences, as 
well as constraints related to signal groups. Therefore, a correct problem 
statement includes elements of both control approaches. As the solution of 
any optimization problem the optimal signal plan will be obtained with the 
optimal structure length K and other signal plan parameters optimal in the 
sense of the chosen optimization criterion.

14.4.1. Determining the maximal length of signal plan structure

Determination of the maximal number of control vectors in the signal 
plan structure (the structure length) can be stated as the problem of finding 
the best closed path on the graph of control vectors transition.

The set of feasible signal plans is defined by constraints listed in Section 
8.9.

Taking into consideration that the number of control vectors in a signal 
plan is the feature of the signal plan structure, it is also interesting to solve 
this problem respecting only the structural constraints, α.1 and γ.1.

Two variants of the problem of maximizing the length of signal plan 
structure will be considered here: (a) with constraints α.1 and γ.1 only, 
(b) with all constraints listed in Section 8.9.
а)	 Maximizing	the	length	of	signal	plan	structure	with	only	structural	

constraints included in the problem statement

The maximal number of control vectors in a signal plan structure is 
determined in the doctoral thesis of Isabel Tully [85]. There, it is shown 
that the maximal number of control vectors in a signal plan equals twice the 
number of signal groups. This result is valid in the case when only structural 
constraints α.1 and γ.1 are included in the problem statement. Other 
constraints, including constraints on control vector durations ( K21 ,,, τττ  ), 
are not part of the problem statement.

This problem can be formulated as the optimization problem on the graph 
of control vectors transition: Find the signal plan to maximize function

R: →fcJ U

given by expression

K=cJ  (14.6)
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subject to constraints α.1 and γ.1, i.e.,

α.1)   )(,1)K(mod K∈Γ∈+ kk
s

k uu

γ.1)   )(,2)2(mod)(
K

1

1)K(mod P∈=+∑
=

+ puu
k

k
p

k
p .

The total number of changes of signal indications (from effective red to 
effective green, and vice versa) for one control variable (assigned to a signal 
group) is 2, and, obviously, the total number of changes in a signal plan is:

P2)2(mod)(
P

1

K

1

1)K(mod =+∑∑
= =

+

p k

k
p

k
p uu . (14.7)

Since the total number of changes of signal indications in a signal plan 
equals 2Р, it is obvious that the signal plan will contain the maximal number 
of control vectors if the sum of changes of particular components in adjacent 
control vectors is 1, i.e., 

)(,1)2)(mod**(
P

1

1)K(mod K∈=+∑
=

+ kuu
p

k
p

k
p . (14.8)

In this case,

P2K)2(mod)**( max

K

1

P

1

1)K(mod ==









+∑ ∑

= =

+

k p

k
p

k
p uu . (14.9)

It means that

P2Kmax
* === cc JJ . (14.10)

When determining maxK , only structural constraints α.1 и γ.1 were 
considered. 

It would be interesting to know whether it is possible that adjacent 
control vectors in a signal plan differ by the value of one component only. 
The existence of such a signal plan is easy to prove when the graph of control 
vectors transition, sG , does not have oriented edges. In this case, the signal 
plan can be constructed in such a way that each control vector gives the 
right-of-way to a single signal group, i.e., with only one component having 
the value of 1, and these control vectors are separated from one another by 
the “all red” control vector. Namely, one of the properties of graph sG  is that 
the node representing control vector T)0,,0,0(   is connected to all other 
nodes.
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For the intersection presented in Fig. 12.4, containing four signal groups, 
the structure of such a signal plan is:

















=

01000000
00010000
00000100
00000001

u .

This structure has the property (14.8), so that 842P2Kmax =⋅== .

The structure with maximal length ( 2162Kmax =⋅= ) is presented in 
Fig. 12.3 (Example 12.1). It is the structure of the optimal signal plan that 
maximizes the total traffic volume in that example.
b)	 Maximizing	the	length	of	signal	plan	structure	with	all	constraints	

included in the problem statement

The maximal length of signal plan structure can be less than 2P in the 
case its maximization is performed subject to all constraints, rather than the 
structural constraints only. Also, for some given cycle time values, it might 
be impossible to find a signal plan with the structure length equal to 2P.

In order to determine the maximal number of control vectors, the 
optimization problem has to be solved with all constraints included. The 
problem can be stated as follows: Determine the signal plan to maximize 
(14.6):

K=cJ ,

subject to constraints α.1, α.2, α.3, α.4.1, β, γ.1, γ.2, ε.1.
This problem can be solved, also, by the branch-and-bound method 

described in Part III.

Superset sU  of the set of feasible signal plans fU  is defined by 
constraints (Part III) α'.1, α'.2, α'.3, α'.4, β, ε'.1.

The extension of criterion function cJ  is defined by expression

κ=′cJ , (14.11)

for K,,3,2 =κ .

The branching rule is determined in the same way as in solving other 
problems, as described in Subsection 11.1.3.

The upper bound in this case is defined as:











+−+



 κ+−κ= ∑ ∑

κ+−κ

= =

+
α

/K][1

1

P

1

1)K(mod )2(mod)(P2
K

1)(
k p

k
p

k
p uuB U , (14.12)
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for K,,3,2 =κ .

If sUU =α , then

P2)( =sB U . (14.13)

The initial control vector should be chosen in the same way as in 
Subsection 12.3.3.

The choice of the subset for branching. Subset γU  with the property
)(,)(max)( uUUU ∈= ααγ BB

should be chosen for branching, where u  is the collection whose elements 
are candidates for branching.

14.4.2. Determining the minimal length of signal plan structure

Similar to the problem of determining the maximal number of control 
vectors, the problem of determining the minimal number of control vectors 
in signal plan structure can be stated. The optimization criterion is the same 
as in the previous problem, but instead of maximization, this is the problem 
of minimization.

This problem can be stated as follows: Determine the signal plan by 
which function

K=cJ
is minimized, subject to constraints α.1, α.2, α.3, α.4, γ.1, γ.2, ε.1.

This is also a problem of finding the optimal closed path on graph sG . 
The solution method is the same as in solving the previous problem.

In branching operation, the subset with the least lower bound is chosen 
for further branching. Lower bounds are calculated using expression (14.12). 
The value of the first lower bound, which is calculated for set sU , is equal to 
the number of independent cliques of graph gG —the graph of signal groups 
compatibility.

Example 14.2

 Determine the signal plans having the minimal and the maximal number of control vectors 
for the intersection presented in Fig. 12.4, together with its graphs cG  and sG . In this case 

gc GG = . Other data, on saturation flow volumes and minimal effective green times, are the 
same as in Example 12.1β. 
 The minimal effective intergreen times are elements of matrix Z:
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















=

0106
4000
0004
5090

Z .

 The cycle time is 38 ѕ (the minimal cycle time obtained as the solution of the problem of 
cycle time minimization).

 The signal plan with the maximal structure length ( 8Kmax = ) is:

Tu )*,*()(* τ=⋅ u

] 2   2   8   01   4   1   1   01[*
00000001
00111100
10000111
00010000

*

=τ



















=u .

 The signal plan with the minimal structure length ( 5Kmin = ) for the same cycle time 
is:

Tu )*,*()(* τ=⋅ u

] 9   01   4   5  01[*
00001
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01000

*

=τ


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






=u .

 The signal plan with the minimal structure length, for cycle time 40 ѕ, is:

Tu )*,*()(* τ=⋅ u

] 6   51   9  01[*
0100
0001
0100
0001

*

=τ



















=u .

 It is interesting to note that for signal plans with the minimal structure length 

4Kmin = , a longer cycle time is “necessary” ( s 04=c ) than for the signal plan with the 

minimal structure length 5Kmin =  ( s 83=c ). It is an example of the surprises brought to 
us by Combinatorics.
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Part V

EFFECTS OF THE CHOICE 
OF THE COMPLETE SET OF SIGNAL GROUPS 

ON INTERSECTION PERFORMANCE

The quality of the choice of a complete set of signal groups can be 
assessed by the value of function (3.29):

RJ bG →D: ,

where

)(,})(|))(({opt)( b
m
a

m
fc

m
aG uuJJ DDD ∈∈⋅⋅= U , (V.1)

and m
fU  represents the set of feasible controls (signal plans) if the complete 

set of signal groups m
aD  is chosen.

Expression (V.1) can be used for defining a relation of total ordering 
in collection bD . For that, it is necessary to determine the value of GJ  for 
each complete set of signal groups b

m
a DD ∈ . However, in the collection 

of complete sets of signal groups, bD , there exists the relation of partial 
ordering pR  (3.31), which can be used to reduce the number of GJ  value 
calculations.
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15. THE RELATION OF PARTIAL ORdERING (REFINEMENT)  
ANd THE SET OF FEASIbLE CONTROLS

A better quality of traffic process control will be achieved, under 
assumption q

ap
r
a R DD , if the complete set of signal groups r

aD  is chosen rather 
than set q

aD . This claim is based on the following considerations. The problems 
of optimal traffic control on an intersection, in these two cases, are defined 
by pairs ),( r

fcJ U  and ),( q
fcJ U , where cJ  is the optimization criterion, and 

r
fU  and q

fU  are the sets of feasible controls if the corresponding complete 
sets of signal groups r

aD  and q
aD  are chosen. Taking into consideration the 

definition of relation pR  (3.31), the following can be claimed:

If q
ap

r
a R DD , then

),,,(,   )(
21

1

r
a

r
n

r
n

r
n

d
r
n

q
h

q
a

q
h d

DDDDDD DD ∈=∈∃
=α

α




 (15.1)

with 2≥d . This means that some signal groups, elements of complete set 
of signal groups q

aD , represent unions of some signal groups that belong to 
another complete set of signal groups, r

aD . Since a single control variable 
is assigned to each signal group, then, if complete set of signal groups q

aD  
is chosen, this means that one control variable is used to control all signal 
groups r

a
r
n

r
n

r
n d

DDD D∈,,,
21
 , the union of which constitutes signal group 

q
hD . Therefore, the following equalities hold:

)(,
21

K∈= kuu k
n

k
n

)(,
31

K∈= kuu k
n

k
n  (15.2)

...

)(,
1

K∈= kuu k
n

k
n d

.

If in a complete set of signal groups q
aD  there exist several signal groups 

that are unions of some signal groups that belong to a complete set of signal 
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groups r
aD , then for each such signal group the set of equalities can be 

formulated, similar to (15.2).

The set of constraints defining the set of feasible controls, q
fU , therefore, 

besides the constraints defining set r
fU , contains additional constraints 

similar to (15.2). Hence, the following expression is valid:

.))()((

})(|))((min{})(|))((min{)(
q
a

r
a

q
aG

r
aG

q
fc

r
fc

r
f

q
f

JJ

uuJuuJ

DDDD ⇒≤⇒

∈⋅⋅≤∈⋅⋅⇒⊂ UUUU

 (15.3)

Here it is assumed that the optimal value of criterion cJ  is its minimal value. 
The relation   indicates that r

aD  is “better” than q
aD , in the sense of criterion 

GJ . Complete set of signal groups r
aD  is better than q

aD  in the sense of any 
criterion related to intersection performances.

The consequence of the presence of constraints (15.2) is that the graph of 
control vector transitions

),(),( q
s

q
f

q
s

q
f

q
s RG UU =Γ=

will be a subgraph of graph

),(),( r
s

r
f

r
s

r
f

r
s RG UU =Γ= ,

where q
fU  and r

fU  are the sets of feasible control vectors corresponding to 
complete sets of signal groups q

aD  or r
aD , respectively. Relations q

sR  and r
sR  

are the control vectors transition relations in sets q
aD  and r

aD , respectively. 
Namely, it is obvious that set q

fU  contains only the control vectors whose 
components k

nu
1

 and k
nu

2
, as well as k

nu
1

 and k
nu

3
, etc., have the same values 

for any k, while r
fU  contains also the vectors with different values of these 

components. Since q
sG  is a subgraph of r

sG , the following is evident:
r
f

q
f UU ⊂ , (15.4)

)( q
f

q
f

r
s

q
s RR UU ×= 

. (15.5)

The combinatorial nature of the problem of choosing the complete set 
of signal groups is reflected in fast growth of the number of complete signal 
groups with the number of traffic streams, as presented in Table 3.1.
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16. The heurisTics for The choice of The  
compleTe seT of signal groups

The process of choosing the complete set of signal groups that will be 
used for traffic control on an intersection can be simplified by using properties 
of the “refinement” relation, pR , in the collection of complete sets of signal 
groups, bD .

The heuristics selects a subset bD′  of set bD  and performs searching for a 
suitable complete set of signal groups only in subset bD′ , which has a smaller 
number of elements than bD . The procedure for selecting bD′  consists of the 
following steps. First, optimal values of the chosen criterion are determined 
for subsets of bD  that have a minimal number of elements. Among them 
there exists a subset, t

aD , with the best criterion value. Then, from the graph 
by which Hasse diagram is represented, the subgraph

),( pbH RG ′′= D  (16.1)
is extracted.

Set bb DD ⊂′  is defined by the expression:

}{},   ,),(|{ t
ab

t
aap

t
aaab R DDDDDDDD ∈∈=′ δδδ , (16.2)

where pR  is the refinement relation.

Hence, relation pR′  is:

)( δδ ×=′ aapp RR DD . (16.3)

The search for the complete set of signal groups that will be chosen for 
control is then performed over elements of set bD′ .

The effects of the choice of a complete set of signal groups on intersection 
capacity are discussed in papers [33], [34], [36]. In the example given in [34] 
it is shown that the change in intersection capacity value, as the function of the 
choice of the complete set of signal groups, can be even 42% (the difference 
between the greatest and the smallest value of the criterion, expressed in 
percentages).

The effect of the choice of the complete set of signal groups on the 
optimal capacity factor value is analyzed in the following example.
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Example 16.1

 Determine the effects of the choice of the complete set of signal groups on the optimal 
capacity factor value for the intersection given in Fig. 13.1. Form the Hasse diagram and show 
the rationality of the choice achieved by the proposed heuristics.
 Minimal effective intergreen times, in the case each signal group controls a single traffic 
stream, are given by matrix Z.
 The values of saturation flow volumes, minimal effective green times, maximal effective 
red times, and average flow volumes, are given in Table 16.1.
 The cycle time is c = 90 s.























=

008408
000100
200212
253030
005300
404000

Z

Table 16.1

i 1 2 3 4 5 6

is  (veh/h) 1850 1650 1620 1650 1600 0

iq  (veh/h) 185 330 162 165 160 0

img  (s) 25 15 15 15 15 16

iMr  (s) 70 75 75 70 85 −

 The results obtained by applying the method described in Subsection 12.3.3 are presented 
in Table 16.2 and in Figs. 16.1 to 16.10.
 Besides the maximal capacity values for each complete set of signal groups, Table 16.2 
contains the percentage of differences between these values and the maximal one in collection 

bD  of all complete sets of signal groups. bD , i.e.,

*
max

max
*
max

µ
µ−µ

=ν
r

r , (16.4)

where:

}{ |max max
*
max b

r
a

r DD ∈µ=µ , (16.5)

}},,2,1{  ,)(|max{max b
r
f

rr cardru D∈∈⋅µ=µ U . (16.6)

 Parameters r
βν , given in Table 16.2, are defined as follows:

*
max

max
*

max
r

rr
r

µ
µ−µ

=νβ , (16.7)
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where:

}|max{ max
*

max
s
ba

r DD ∈µ=µ νν , (16.8)

}|{ *r
aaa

s
b cardcard DDDD == νν . (16.9)

 Members ν
aD  of collection s

bD  have the same cardinality as element r
aD , i.e., the 

element corresponding to r
βν .

Table 16.2

r The complete set of signal groups r
aD r

maxµ rν  [%] r
βν  [%]

1
}}{,}{,}{,}{,}{,}{{

},,,,,{

654321

654321
1

σσσσσσ=
= DDDDDDaD

2.075 0 0

2
}},{,}{,}{,}{,}{{

},,,,{

216543

76543
2

σσσσσσ=
= DDDDDaD

1.30 37.35 37.35

3
}},{,}{,}{,}{,}{{

},,,,{

316542

86542
3

σσσσσσ=
= DDDDDaD

1.85 10.84 10.84

4
}},{,}{,}{,}{,}{{

},,,,{

516432

96432
4

σσσσσσ=
= DDDDDaD

1.60 22.89 22.89

5
}},{,}{,}{,}{,}{{

},,,,{

526431

016431
5

σσσσσσ=

= DDDDDaD
2.075 0 0

6
}},{,}{,}{,}{,}{{

},,,,{

546321

116321
6

σσσσσσ=

= DDDDDaD
2.025 2.41 2.41

7
}},,{,}{,}{,}{{

},,,{

521643

21643
7

σσσσσσ=

= DDDDaD
1.30 37.35 29.73

8
}},{,},{,}{,}{{

},,,{

542163

11763
8

σσσσσσ=

= DDDDaD
1.25 39.76 32.43

9
}},{,},{,}{,}{{

},,,{

523164

01864
9

σσσσσσ=

= DDDDaD
1.85 10.84 0

10
}},{,},{,}{,}{{

},,,{

543162

11862
01

σσσσσσ=

= DDDDaD
1.80 13.25 2.70
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 Figs. 16.1 to 16.10 present, for each complete set of signal groups b
r
a DD ∈ , the control 

vector transitions graph, r
sG , the compatibility graph, r

gG , the matrix of minimal effective 
intergreen times, and the optimal solution.
 The optimal signal plan is represented by the bold line on the graph of control vector 
transitions. The optimal structure, *u , cycle time split, *τ , and the maximal capacity factor 
value, max* µ=µ , are also given in the figures.
 The edges of graphs r

sG , which do not belong to graphs q
sG , are marked by dashed 

lines so as to indicate the fact that ),( q
s

q
f

q
sG Γ= U  is a subgraph of ),( r

s
r
f

r
sG Γ= U  if 

p
q
a

r
a R∈),( DD . The edges that belong to both graphs or only graph q

sG  are marked by 
continuous lines.
 The Hasse diagram, ),( pa RD , of the partially ordered set bD , by relation pR  [19], is 
presented in Fig. 16.11. The nodes of the diagram represent the complete sets of signal groups. 
The maximal capacity factor, which can be obtained if the corresponding complete set of 
signal groups is chosen, is written next to each node.
 From the Hasse diagram, it can be concluded that the highest value of the maximal 
capacity factor is obtained if the complete set with four signal groups is chosen. This maximal 
value is 1.85. 
 According to the proposed heuristics, it is necessary to extract graph ),( pbH RG ′′= D  
from the Hasse diagram (see Appendix IV). From Fig. 16.11 it can be noted that:

},,,{ 9531
aaaab DDDDD =′ ,

and pp RR ⊂′  is defined by the set of ordered pairs:

}),(,),(,),(,),(,),({ 1513195939
aaaaaaaaaapR DDDDDDDDDD=′ .

 The edges corresponding to elements of relation pR′  are marked by bold lines in the Hasse 
diagram. The complete set of signal groups, according to the proposed heuristics, should be 
chosen from set bD′ . In this case, set bD′ , besides the best complete set of signal groups, 9

aD , 
with four signal groups, contains also the best complete set with five signal groups, 5

aD .
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(1,1,0,0,0,0)T

(0,0,0,0,0,0)T

(1,0,0,0,1,0)T

(0,1,0,0,0,0)T

(1,1,0,0,1,0)T

(0,1,0,0,1,0)T

(0,0,0,1,1,0)T

(0,0,0,0,0,1)T

(0,0,0,0,1,0)T

(0,1,0,0,1,1)T

(1,0,0,0,0,0)T

(1,0,1,0,0,0)T

(0,0,1,0,0,0)T
(0,0,0,0,1,1)T

(0,1,0,0,0,1)T

(0,0,0,1,0,0)T

}}{},{},{},{},{} ,{{
},,,,,{
},,,,,{

654321

654321

1
6

1
5

1
4

1
3

1
2

1
1

1

σσσσσσ=
=

=
DDDDDD
DDDDDDaD

Gs
1 :

D 1
1

D 2
1

D 3
1

D4
1

D 5
1

D 6
1

Gg
1 :























== ×

008408
000100
200212
253030
005300
404000

][ 66qpzZ

The optimal solution:

[ ]
570.2

1  50.72  3  55.21  5.5    3   6.51   8    61     1*

0000000010
1000001111
0100000000
0001100000
0000001111
0000111000

*

1
max

1

1

  
=µ

=τ























=u

Figure 16.1
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(0,0,0,0,1)T

(0,1,1,0,0)T

(0,0,1,0,0)T

(0,0,0,0,0)T

(0,0,1,0,1)T

(1,0,0,0,0)T (0,0,1,1,0)T

(0,1,0,0,0)T

(0,0,0,1,0)T

}},{} ,{},{},{},{{
},,,,{
},,,,{

216543

76543

2
5

2
4

2
3

2
2

2
1

2

σσσσσσ=
=

=
DDDDD
DDDDDaD

D 2
2

D3
2

D 4
2

D 5
2

Gg
2 : Gs

2:

D 1
2





















== ×

04053
80084
00001
22002
32530

][ 55qpzZ

The optimal solution:

[ ]
03.1

4    61    4    62    2     02    3    51*

00010000
01000000
01110000
00000100
00000001

*

2
max

2

2

 
=µ

=τ





















=u

Figure 16.2
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(1,0,1,0,0)T

(0,0,0,0,1)T
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4
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3
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=
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DDDDDaD
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3 D 2
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D 3
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D 4
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






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







== ×

04543
80080
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22001
30050

][ 55qpzZ

The optimal solution is:

[ ]
58.1

4     3     5    61     1    02    4    52*

00000001
00100000
00110000
00000100
01110000

*

3
max

3

3

 
=µ

=τ





















=u

Figure 16.3
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},,,,{
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3
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4
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=

DDDDD
DDDDDaD
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4 D 2
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D 3
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








== ×

04410
80840
22021
52303
00532

][ 55qpzZ

The optimal solution is:

[ ]
06.1

3    61     4    41     2     4    52     1      1    02*

0000001000
0001100000
0000000001
0100000000
0000111100

*

4
max

4

4

 
=µ
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













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Figure 16.4
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(1,0,0,0,0)T

(0,0,0,0,1)T

(1,1,0,0,0)T

(0,0,0,1,1)T

(0,0,1,0,0)T

(0,0,0,1,0)T

(0,1,0,0,0)T

(1,0,0,0,1)T

(0,0,0,0,0)T

Gs
5:Gg

5:

D1
5 D2

5

D3
5

D4
5

D5
5

}},{},{},{},{},{{
},,,,{
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Figure 16.5
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Figure 16.6
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Figure 16.7
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D a
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D a
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6

D a
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1 .30 1.25 1.85 1.80

1.30 1.85 1.60 2.075 2.025

2.075

Figure 16.11

The obtained results can be summarized as follows:

•	 The difference between the maximal capacity factor value achieved when the complete 
signal group set 1

aD  is chosen and the values obtained for all other elements of bD  range 
up to 40% of this maximal value.

•	 In the subsets of bD  containing a same number of signal groups, the maximal capacity 
factors differ:
▪ 37.35 % in subset 2

bD  with elements comprising 5 signal groups,

▪ 29.73 % in subset 3
bD  with elements comprising 4 signal groups.

•	 The greatest maximal capacity values are:

▪ 2.075 for the complete set whose elements contain 6 signal groups,
▪ 2.075 for the complete set whose elements contain 5 signal groups,
▪ 1.85 for the complete set whose elements contain 4 signal groups.

The greatest maximal capacity factor value in subset 3
bD  with elements 01987 ,,, aaaa DDDD  

containing 4 signal groups each is less than or equal to the greatest value of the maximal 
capacity factor for elements in subset 2

bD  containing complete sets 65432 ,,,, aaaaa DDDDD , 
each with 5 signal groups.

•	 From the capacity factor values in Table 16.2, and the Hasse diagram, it can be seen that 
there exist some complete sets of signal groups, d

aD , with greater maximal capacity 
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factor value than the value obtained for other complete sets, e
aD , having greater number 

of elements than d
aD , i.e.,

d
a

e
a cardcard DD   > ,

but in this case p
d
a

e
a R∉),(  DD .

The results obtained in the presented example (16.1), as well as in papers 
[33], [34], [36], which analyze the influence of the choice of the complete set 
of signal groups to intersection capacity, point out that this choice significantly 
affects optimal values of the optimality criterion. Also, here is shown that the 
problem of the choice of the complete set of signal groups can be simplified 
by the proposed heuristics.

It is also evident that the intentions of practitioners to choose the 
complete set with the least number of signal groups might lead to significant 
deterioration of intersection performance indices compared to choosing the 
set with a greater number of signal groups.

© 2008 by Taylor & Francis Group, LLC



289

Appendix I

GRAPHS, CLIQUES

Cartesian product of sets X and Y

Cartesian product of sets X and Y is the set of ordered pairs defined by 
the following relation:

},|),({ YyXxyxYX ∈∈=× .

If XY = , the set XX ×  is denoted by 2X .

Binary relation ρ in set X

Binary relation ρ in set X is any subset of set 2X , i.e., 2X⊂ρ .

Graph

Two graph definitions are used in this book:

Definition I: Graph is the ordered pair ),( ρ= XG , where X is a nonempty 

set, and ρ is a binary relation in X, i.e., 2X⊂ρ .

Definition II: Graph is the ordered pair ),( Γ= XG , where X is a nonempty 
set, and Γ is a mapping of set X in the partitive set )(XP  of set X [9], i.e., 

)(: XX P→Γ .

Elements of set X can be represented by dots in a plane, named the nodes 
or vertices of the graph.
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The set of ordered pairs, ρ, which represents a relation, sometimes is 
denoted by U. Elements of this set are edges of the graph. Thus, a graph can 
be described as:

),(),( Γ== XUXG .

An element of set U, i.e., the ordered pair Uyx ∈),( , is represented 
by the line connecting nodes x and y, oriented from x to y. If Uyx ∈),(  
and Uxy ∈),( , nodes x and y are connected by two edges having opposite 
orientation. These two edges are usually represented by a single nonoriented 
edge. If for some element x there holds xx Γ∈ , this is indicated by a loop at 
node x. The loop is usually not oriented.

If relation ρ is symmetric, the graph is nonoriented.
If relation ρ is antisymmetric, the graph is oriented.
If relation ρ is neither symmetric nor antisymmetric, graph ),( ρ= XG  is 

neither oriented nor nonoriented.

Adjacency matrix of a graph

The adjacency matrix of graph ),( ρ= XG  is square matrix

nnjibB ×= ][ .

The degree of matrix В is n, where

Xcardn = .

Matrix elements are defined as follows:







ρ∉

ρ∈
=

),(,0

),(,1

ji

ji
ji xx

xx
b .

The adjacency matrix of graph G presented in Fig. AI.1 is























=

00100
00101
11000
01101
01011

B .

If the graph is nonoriented, its adjacency matrix is symmetric, i.e., 
TBB = .
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If the graph is oriented, then:

),},,2,1{,(,01 jinjibb ijji ≠∈=⇒=  .

Partitive set )(XP  of set X

Partitive set )(XP  of set X is the set of all subsets of set X. For example, 
if },,{ cbaX = , then

},},,{,},{,},{,},{,}{,}{,}{{)( ∅= cbacbcabacbaXP .

Subgraph

Subgraph ),( VYE =  of graph ),( UXG =  is the graph with the following 
properties:

)(  and  , YYUVXY ×=⊂  .

A subgraph contains, thus, only the elements of set U that are generated 
by elements of set Y.

Partial graph

A partial graph of graph ),( UXG =  is any graph ),( TXH =  with 
UT ⊂ .

For example, in Fig. AI.1, graph 1G  is a subgraph of graph G, and 2G  is 
a partial graph of graph G.

G: G1: G2:

x1 x2

x4 x5x3

x1 x2

x4

x1 x2

x4 x5x3

Figure AI.1
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Clique (in the sense of Berge [9])

A clique of nonoriented graph ),(),( Γ=ρ= XXG  is set XC ⊂  with 
the property:

xyCyCx Γ∈⇒∈∈ ),( .

The graph with the set of nodes C has an edge between any two nodes. 
Such a graph is called a complete graph.

The following assertions are in accordance with Berge’s definition of a 
clique:
а) The set whose elements are the nodes at the ends of one edge ),( yx  of a 

nonoriented graph represents a clique, i.e., 

},{ yxC = .

This is obvious because if ),( yx  is an edge of a nonoriented graph, 
then:

yxxy Γ∈Γ∈   and  .

b) A singleton subset containing an element x of set X, with the property 
xx Γ∈ , represents a clique, i.e.,

}{xC = .

Maximal clique of graph ),( Γ= XG

Subset XCk
m ⊂  is the maximal clique if k

mC  is not a subset of any other 
clique. This means that no element can be added to subset k

mC  such that the 
new, extended subset forms a clique.

Remarks
In literature, the terms clique and maximal clique are often used for terms 

different than here. 
Under the term clique, there is often assumed a complete subgraph, rather 

than the set of nodes defining that subgraph. Also, a clique is often defined 
as a complete subgraph, the nodes of which represent the maximal clique in 
Berge’s sense.

The maximal clique is often defined as a complete subgraph with the 
maximal number of nodes, i.e., a subgraph of graph ),( Γ= XG , with the 
property

),( maxmax Γ= CG ,
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where

}{maxmax
k
mk

CcardCcard = .

Path, path length, distance

A graph containing only oriented edges is called a digraph. If an edge u 
of a digraph connects nodes ix  and jx , and is oriented from ix  to jx , then 
it is said that edge u starts at node ix  and ends at node jx .

The path of length k in a digraph is any sequence of edges kuuu ,,, 21  , 
with the following properties:

α) Edge 1u  starts at an arbitrary edge of the digraph.

β) Edge iu  ( ki ,,2 = ) starts at the node at which edge 1−iu  ends.

A path connects node ix  with node jx  if the first edge of the path starts 
at ix  and the last edge of the path ends at jx .

The distance between nodes ix  and jx  is equal to the length of the 
shortest path connecting these two nodes.

The path length of a path containing a single edge is equal to 1.

The maximal distance between any two nodes of a graph is called the 
diameter of the graph.
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Appendix II

EQUIVALENCE RELATION

Equivalence relation

The equivalence relation [20] in set X is a binary relation eC , which is 

reflexive, symmetric, and transitive. The relation eC  is:

•	 Reflexive if xCx e , ( Xx∈ )

•	 Symmetric if xCyyCx ee ⇒ , ( Xyx ∈, )

•	 Transitive if zCxzCyyCx eee ⇒∧ )()( , ( Xzyx ∈,, )

Diagonal x∆ , i.e., set

}|),({ XxxxC xe ∈=∆=

is a trivial example of equivalence relation.
The complete relation, i.e.,

},|),({2 XyxyxXCe ∈==

is also an equivalence relation.

Equivalence classes

The equivalence class, x , of element x in regard to equivalence relation 
eC  is the set defined as follows:

)(,},|{ XxXyyCxyx e ∈∈= .

Two equivalent classes x  and z  ( Xzx ∈, ) are either equivalent or 
disjointed (their intersection is the empty set).
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Therefore, equivalence classes x  ( Xx∈ ) define a partition of set X.

Every partition },,,{)( 21 nXXXX =π  of set

nn XXXXX  121 −=

defines an equivalence relation in set X. Equivalence classes are subsets iX .
The partitions and equivalence relation in set X uniquely define each 

other and represent different expressions of a same fact [87].

Quotient set

The set of equivalent classes of all elements of set X is called the quotient 
of X by eC  and it is denoted by eCX / .

An equivalence class of relation eC  in set X, where X is the set of nodes 

of graph ),( eCXG = , represents a clique of graph G (in the Berge’s sense)
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Appendix III

PSEUDOCODES OF PROGRAMS 
CLIQ AND MINA

1. PSEUDOCODE OF PROGRAM CLIQ [34] 
begin
class := 1
 {determination of all complete subgraphs with two 
nodes
  by making all combinations of two elements from the 
  number of nodes, and establishing whether 
  (m_inc[i,j]=1) AND (m_inc[j,i]=1)}
 {determination of all other complete subgraphs }

 while (n_comb[class+1]<> 0) do
  class := class + 1
  for i := 1 to n_comb[class] - class do
   for j := i + 1 to n_comb[class] - class +1 do
    p = card(comb[class][j] ∩ comb[class][i])
    if (p = class - 1) then
     k :=0
     for l := j + 1 to n_comb[class] do
      p = card((comb[class][i] ∪ comb[class][j])
                         ∩comb[class][l])
      if (p = class) then k := k + 1
      if (k = class - 1) then
       n_comb[class + 1] := n_comb[class + 1] + 1
       comb[class + 1][n_comb[class + 1]] :=
        comb[class][i] ∪ comb[class][j]
      end if
     end for
    end if
   end for
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  end for
 end while
end

2. PSEUDOCODE OF PROGRAM MINA

begin
 read (no_sg, no_ts, a);
 ini (no_ts, no_sg, a, q, w, t, v, zopt, ztek,
          no_posl, l, s, pregl_u_l, exists_res);
 if (not exists_res) then
  end (exists_res, no_sg, no_ts,
     zopt, no_opt_r, s, wopt);
 indl := true;
 while (true) do
 begin
  while ((t <> q) or (not indl)) do
  begin
   if (indl) then choose_list (no_ts, q, t, v,
                tek_l, pregl_u_l)
   else indi := true;
   parc_res (no_sg, zopt, ztek, tek_l, t, l, s,
        tek_podsk, no_posl, posl, pregl_u_l,
        exists_pr);
   if (not exists_pr) then goto 1;
   pre_testa (tek_podsk, s, ztek, w, t);
  end (while);
  if (ztek < zopt) then
   begin
    no_opt_r := 1;
    zopt := ztek;
   end
  else if (ztek = zopt) then
   no_opt_r := no_opt_r + 1;
  wopt[no_opt_r] := w;

1  if (w = [ ]) then
   end (exists_res, no_sg, no_ts,
      zopt, no_opt_r, s, wopt);
  backtr (no_sg, posl, s, l, ztek, no_posl,
      tek_l, w, t);
  indl := false;
 end(while);
end
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Appendix IV

REFINEMENT RELATION, 
HASSE DIAGRAMS

Partitioning of set X

The family

},|{)( XXJiXX ii ⊆∈=π ,

where ∅≠iX  ( Ji∈ ), is a partition of set X if

∅=ji XX  , ( Jji ∈, , ji ≠ ) and



Ji
i XX

∈

= ,

where J is the index set of subsets of set X.

Refinement relation

The refinement relation [51], [25], pR , in the set of all partitions )(XΠ
of set X is the relation of partial order. Therefore, this relation is reflexive, 
antisymmetric and transitive.

)(1 Xπ  is refinement of )(2 Xπ , i.e., )()( 21 XRX pππ  if

212211 ))(())(( XXXXXX ⊆⇒π∈∧π∈ .

Partially ordered sets can be represented by Hasse diagrams. A Hasse 
diagram takes the form of a nonoriented graph. According to the convention, 
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node x is positioned below node y if yRx p . Two nodes x and y are joined by 
an edge if yRx p  and there exists no node z such that zRx p  and yRz p .

Example: Let },,{ zyxX = . The Hаsse diagram of set )(XP , partially 
ordered by the inclusion relation, is presented in Fig. AIV.1 [19].

{{{{x,z}

{x,y,z}

{x,y} {y,z}

{x} {y} {z}

Figure AIV.1
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Appendix V

EFFECTIVE VALUES OF GREEN, RED, AND 
INTERGREEN TIMES

1. EFFECTIVE GREEN AND RED TIMES

The real flow volume when discharging the queue of traffic stream iσ  
is shown by bold line in Fig. AV.1. This function is usually transformed to 
the rectangular shape (ABCD), shown by dashed lines, used for defining 
effective green and effective red times.

si

qi

A B

CD

gi

Gi a
Hi

t
l' l"

Figure AV.1
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The area of rectangle ABCD is equal to the area bounded by curve )(tqi  
and time axis. This means that the number of vehicles that leave an intersection 
approach, iT , controlled by the real sequence of signal indications, is equal to 
the number of vehicles that would leave the same approach if this sequence 
were replaced by the effective green and red time, and the volume curve 
transformed into the rectangle.

In this appendix it is assumed that each signal group contains a single 
traffic stream ( ip = , JP = ).

The following relations exist between the elements of the real sequence 
of signal indications and effective green and red times (Fig. AV.1):

llglgaGH iiii ′′+′+=+=+=  (AV.1)

cRHrgRaG iiiiii =+=+=++  (AV.2)

lHg ii −=  (AV.3)

lRr ii +=  (AV.4)

where:

iG − duration of green indication,
a − duration of amber indication,

iH − total duration of green and amber indication, 
ig − duration of effective green indication—effective green time,

l − “lost time,”
iR − duration of red indication,

ir − duration of effective red indication—effective red time,
c − cycle time.

The typical values of lost times, l′  and l ′′ , most frequently used [1] are 

s 1=′′=′ ll .

The saturation flow volume is  is the queue discharge rate during effective 
green time. The saturation flow volume has an approximately constant value 
that is attained after the acceleration of vehicles leaving the stop line is 
performed at the beginning of green time, i.e., when vehicles crossing the 
stop line do not accelerate any more.
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2. EFFECTIVE VALUES OF INTERGREEN TIMES

Intergreen time is the minimal time that has to elapse between the end of 
displayed green for traffic stream iσ  until the beginning of green indication 
for another, incompatible traffic stream jσ . The intergreen time is introduced 
due to safety reasons, and it is calculated according to the following expression 
(Fig. AV.2):

gpe
ji

r
jiji ttttz ++−= . (AV.5)

t ij
r t pt g

u i

u j
σ i

σ j

σ i loses the righ t-o f-way
σ j gains the righ t-o f-way

tij
ez ij

gpe
ij

r
ijij ttttz ++−=

t ije

t ij
r

Figure AV.2

The notations in expression (AV.5) have the following meanings:
r
jit − the time needed for the last vehicle of traffic stream iσ  (losing the 

right-of-way) to reach the conflict area with stream jσ ,
e
jit − the time needed for the first vehicle of stream jσ  (gaining the 

right-of-way) to reach the conflict area with stream iσ ,
pt − the passing time of vehicles through the conflict area,
gt − the part of amber indication during which vehicles of stream iσ  

still pass through the intersection,

jiz − the minimal intergreen time between streams iσ  and jσ .
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Expressions (AV.5) are used when conflicting traffic streams are vehicle 
streams. When conflicts exist between pedestrians and vehicles, the minimal 
intergreen times are calculated using the following expressions:

gr
jiji ttz +=  (AV.6)

if vehicles (traffic stream iσ ) lose and pedestrians (traffic stream jσ ) gain 
the right-of-way, and

e
ji

r
jiji ttz −=  (AV.7)

if pedestrians (traffic stream iσ ) lose and vehicles (traffic stream jσ ) gain 
the right-of-way.

In calculating minimal intergreen times, according to expressions (AV.5) 
to (AV.7), it is assumed that the speed of vehicles leaving the conflict area 
is the lowest, and of ones approaching the area the highest possible under 
given conditions. Usually, the speed of vehicles leaving the intersection is in 
the range (25–30) km/h, and the speed of approaching vehicles in the range 
(40–50) km/h [69]. Common values for speed of pedestrians are 1.2 to 1.5 
m/s.

By transforming the real traffic signal sequence into effective green and 
effective red time, the assumption is introduced that the departure volume 
during effective green is equal to the saturation flow volume while queue 
exists. During effective red time, the volume is equal to zero.

The time between the end of effective green time of one signal group 
and beginning of effective green time of another signal group is called the 
effective intergreen time. Its minimal value is the minimal effective intergreen 
time.

The minimal effective intergreen time between two incompatible vehicle 
traffic streams, iσ  and jσ , is given by the following expression (Fig. 
AV.3):

lazz jiji +−=′ . (AV.8)

In the case when pedestrians leave the conflict area, and vehicles 
approach, the minimal effective intergreen time is given by the following 
expression (Fig. AV.4):

lzz jiji ′+=′ . (AV.9)
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ui

uj

t

t
l'

l"

zij

z'ij

a

lazz ijij +−=′

Figure AV.3

ij

z'ij

lzz ijij ′+=′

u i

uj

l '

z ' z

t

Figure AV.4
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In the case when vehicles leave the conflict area, and pedestrians 
approach, the minimal effective intergreen time is given by the following 
expression (Fig. AV.5):

lazz jiji ′′+−=′ . (AV.10)

i

j

ij

lazz ijij ′′+−=′

u

u

z

a

z

l
t

Figure AV.5

When intergreen time between two vehicle streams 0≤jiz , then the 
minimal effective intergreen time is calculated using the following expression 
(Fig. AV.6):

lazz jiji −+=′ . (AV.11)

By substituting standard values for s 3=a  and s 1=′′=′ ll , i.e., 
s 2=l , in expressions (AV.8) − (AV.11), the following expressions for jiz′  

are obtained:

а) In the case of conflict between two vehicle traffic streams:

1−=′ jiji zz . (AV.12)

b) In the case of conflict between pedestrians and vehicles 
 (pedestrians lose the right-of-way):

1+=′ jiji zz . (AV.13)
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c) In the case of conflict between pedestrians and vehicles 
 (pedestrians get the right-of-way):

2−=′ jiji zz . (AV.14)

d) In the case of conflict between two vehicle traffic streams when 0≤′jiz :

1+=′ jiji zz . (AV.15)

a

lazz ijij −+=′

l"
z'i j

t

t
l '

ui

uj

zij

Figure AV.6
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Appendix VI

DETERMINATION OF THE CONTROL VECTORS 
TRANSITION GRAPH

1. DETERMINATION OF THE SET OF  
FEASIBLE CONTROL VECTORS

The graph of control vectors transition, sG , in the case relation sR  is 
symmetric, can be determined by finding all maximal cliques of compatibility 
graph gG , and the control vectors transition graphs corresponding to these 
cliques. Graph sG  is determined as the union of these graphs. This procedure 
is very convenient because there exist many algorithms for finding cliques 
of a graph, so that the existing procedures can be easily implemented in this 
case.

In the case graph sG  is nonoriented, the set of feasible control vectors 
can be determined by finding the control vectors giving the right-of-way to 
a maximal number of signal groups. These vectors are used for generating 
all other feasible control vectors. The control vectors that give the right-of-
way to the maximal number of signal groups correspond to the maximal 
(dominant) cliques of compatibility graph gG .

The procedure for determination of all feasible control vectors comprises 
two steps:

▪ Extracting maximal cliques from graph gG  and obtaining 
corresponding control vectors,

▪ Generating all other feasible vectors using the vectors obtained in the 
previous step.
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1.1. Determining maximal cliques of graph gG  
and the set of maximal control vectors

A clique of a graph (Appendix I) is the set of nodes of any complete 
subgraph of the graph. If the clique is not contained in any other clique, it is 
called a maximal or dominant clique. 

If the graph of signal groups compatibility,

),(),( gagag CG Γ== DD , (AVI.1)

is considered, where gΓ  is one-to-one mapping of set aD  to its partitive set 
)( aDP , i.e.,

)(: aag DPD →Γ , (AVI.2)

then π
maD  is a maximal clique of the compatibility graph if

),(,))()(( P∈Γ∈∈∀∈∀ ππ qpDDDD pgqmaqmap DD  (AVI.3)

and if this clique is not contained (strictly) in any other clique.
A graph can have several maximal cliques. For solution of traffic problems 

it is necessary to find control vectors corresponding to all maximal cliques. 
Hence, it is necessary to find all maximal cliques, i.e., members of the set:

},,,,,{ 21 Ππ= mamamamama DDDDD  , (AVI.4)

where Π is the number of maximal cliques of graph gG . The set of indices of 
maximal cliques in set π

maD , i.e., the index set is },,,,2,1{ Ππ=Π  .
The complete subgraph whose set of nodes is maximal clique π

maD  is 
denoted by ),( gmamgG Γ= ππ D .

There are many algorithms for finding maximal cliques. These algorithms 
can be classified, mainly, in two groups. The first group consists of algorithms 
based on properties of Boolean algebra equations. One of these, Magu’s 
algorithm, is described in a book by A. Caufmann (1975) [52]. Algorithms of 
the second group are based on “backtracking” procedures. Among these, the 
Bron and Kerbosh algorithm, developed in 1973 [16], is often used. Some 
other algorithms of this type are described in references [11], [12], and [63].

The problem of finding the set of maximal cliques was studied by Stoffers 
[77], who was the first to point out that control vectors giving the right-of-
way to maximal numbers of compatible signal groups can be determined by 
extracting maximal cliques of the compatibility graph. His algorithm is of the 
“backtrack” type, and it is similar to Bron and Kerbosh algorithm.
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Authors who studied the problem of determining optimal control vector 
sequences, after Stoffers, like Isabel Tully (1976) [85], paid great attention 
to finding cliques of compatibility graphs. However, the problem of finding 
cliques of compatibility graphs is not so difficult to deserve special algorithms 
developed just for this purpose. Compatibility graphs usually have less than 
20 nodes, and thus they belong to simpler graphs regarding the problem of 
finding all maximal cliques. The existing algorithms are quite satisfactory, 
particularly Bron and Kerbosh algorithm, the FORTRAN IV version of which 
is given in a doctoral thesis of Isabel Tully (1976) [85].

J.D. Murchland (1979) developed the program for finding cliques, as 
a subroutine in the program for generating the sequence of control vectors 
[64].

Three intersections are presented in Figures AVI.1, AVI.2, and AVI.3, 
together with their graphs of signal groups compatibility, and all complete 
graphs with the set of nodes being maximal cliques of the compatibility 
graphs. Signal groups for intersections in Figures AVI.2 and AVI.3 contain a 
single traffic stream each.

D'1
D'2D'6

Ggm
1 :

D'2

D'3
D'4

Ggm
2 :

D'4
D'5

D'6

Ggm
3 :

D'2

D'4

D'6

Ggm
4 :

D'7

Ggm
5 :

σ1

σ7

σ8σ9

σ2

σ4

σ5

σ6

σ3
,,{ 9877 σσσ=′D

G g:

D '1

D '2
D '7

D '3

D '4

D '5

D '6

}

Figure AVI.1

© 2008 by Taylor & Francis Group, LLC



312 OPTIMAL TRAFFIC CONTROL: Urban Intersections

Ggm

4 :Ggm

3 :Ggm

2 :Ggm
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σ2
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D '1 D '1
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D '2

D '2 D '2

D '3

D '3

D '4

D '4
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D '5 D '5 D '5

D '6
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Figure AVI.2
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D'3
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σ4

σ3

σ2σ1

Figure AVI.3

As already mentioned, in order to determine all control vectors with 
maximal number of signal groups that can simultaneously have the right-
of-way, first all maximal cliques have to be extracted from the compatibility 
graph.
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Components of control vector π
au , which gives the right-of-way to the 

maximal number of signal groups and corresponds to maximal clique π
maD , 

can be obtained as follows:

),(,
 fi  ,0

 fi  ,1
P∈Π∈π







∉′

∈′
=

π

π
π p

D

D
u

map

map
pa

D

D

 

 
. (AVI.5)

Such control vectors are called maximal control vectors.

The sets of signal groups that make maximal cliques for the example in 
Fig. AVI.2 are:

},,{ 521
1 DDDma ′′′=D ,

},,{ 652
2 DDDma ′′′=D ,

},{ 31
3 DDma ′′=D ,

},{ 54
4 DDma ′′=D .

Therefore, the maximal control vectors are:
T

a )0,1,0,0,1,1(1 =u , T
a )1,1,0,0,1,0(2 =u ,  

T
a )0,0,0,1,0,1(3 =u , T

a )0,1,1,0,0,0(4 =u .

1.2. Determining the set of all feasible control vectors

Each signal plan also includes control vectors giving the right-of-way to 
a number of signal groups, which is less than the maximal. Because of that, 
it is necessary to determine, also, other feasible control vectors (not only the 
maximal ones). These other feasible control vectors are obtained by starting 
with maximal vectors and reducing the number of signal groups having the 
right-of-way.

The set of all feasible vectors, fU , is obtained as a union of maximal 
control vectors and all subsets of control vectors obtained from maximal 
control vectors.
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1.2.1.	 Finding	all	control	vectors	that	correspond	to	a	maximal	
control	vector

Feasible control vectors are obtained from one maximal control vector 
as arrangements with repetitions of the number of elements having value 1 in 
maximal control vector π

au  ( Π∈π ) out of two elements [61].
The procedure of obtaining all feasible control vectors from control 

vector π
au , which corresponds to maximal clique π

maD , i.e., function

)(: fmamaP UU P→ , (AVI.6)

is described in the example below. )( fUP  in expression (AVI.6) denotes a 
partitive set of the set of feasible control vectors.

Set maU  is the set of all maximal control vectors, i.e.,

),,,,,{ 21 Ππ= aaaama uuuuU  . (AVI.7)

Each element of this set corresponds to a maximal clique.

Mapping maP  applied to T
a )0,1,0,0,1,1(1 =u  gives:

.})0,0,0,0,0,0(,)0,1,0,0,0,0(

,)0,0,0,0,1,0(,)0,0,0,0,0,1(,)0,1,0,0,1,0(

,)0,1,0,0,0,1(,)0,0,0,0,1,1(,)0,1,0,0,1,1({))0,1,0,0,1,1((

TT

TTT

TTTT
maP =

Subset ff UU ⊂π  is obtained by applying maP  to π
au , i.e.,

π
π = famaP Uu )( . (AVI.8)

1.2.2.	 The	number	of	control	vectors	generated	from	
one	maximal	control	vector

The number of all feasible control vectors corresponding to one maximal 
clique, π

maD , i.e., to maximal control vector π
au , is equal to the number of 

arrangements with repetitions of the number of elements in set π
maD  out of 

two elements. The number of all control vectors generated from maximal 
control vector π

au  is, in fact, the cardinal number of set )( π
amaP u . Since each 

component of π
au  with value 1 can assume value 0, the number of feasible 

control vectors corresponding to π
au  can be determined in the following 

way:

)(,2)( 2 Π∈π== πππ hh
ama VPcard u , (AVI.9)
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where

)(,
P

1
Π∈π== ∑

=

ππ
π

p
pama ucardh D . (AVI.10)

For example, the number of control vectors corresponding to maximal 
cliques, for the intersection given in Fig. AVI.2, is:

82))0,1,0,0,1,1(()( 313
22

1 ===== T
maama

h PcardPcardVV u ,

82))1,1,0,0,1,0(()( 323
22

2 ===== T
maama

h PcardPcardVV u ,

42))0,0,0,1,0,1(()( 232
22

3 ===== T
maama

h PcardPcardVV u ,

42))0,1,1,0,0,0(()( 242
22

4 ===== T
maama

h PcardPcardVV u .

1.2.3.	 Forming	the	set	of	all	feasible	control	vectors

All feasible control vectors appear as elements of sets

)(,,)(,,)(,)( 21 Ππ
amaamaamaama PPPP uuuu  .

Some control vectors, however, may belong to several sets. Therefore, the 
set of all feasible control vectors is determined as the union of sets )( 1

amaP u , 
)( 2

amaP u , … , )( π
amaP u , … , )( Π

amaP u , i.e.,



Π∈π

π= )( amaf P uU . (AVI.11)

For example, the set of all feasible control vectors, for the intersection 
presented in Fig. AVI.2, is defined by the following expression:

.))0,1,1,0,0,0(())0,0,0,1,0,1((     

))1,1,0,0,1,0(())0,1,0,0,1,1((

)()()()( 4321

T
ma

T
ma

T
ma

T
ma

amaamaamaamaf

PP

PP

PPPP







=

= uuuuU

where:

})0,0,0,0,0,0(,)0,1,0,0,0,0(,)0,0,0,0,1,0(,)0,1,0,0,1,0(

,)0,0,0,0,0,1(,)0,1,0,0,0,1(,)0,0,0,0,1,1(,)0,1,0,0,1,1({)( 1

TTTT

TTTT
amaP =u

})0,0,0,0,0,0(,)1,0,0,0,0,0(,)0,1,0,0,0,0(,)1,1,0,0,0,0(

,)0,0,0,0,1,0(,)1,0,0,0,1,0(,)0,1,0,0,1,0(,)1,1,0,0,1,0({)( 2

TTTT

TTTT
amaP =u
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})0,0,0,0,0,0(,)0,0,0,1,0,0(,)0,0,0,0,0,1(,)0,0,0,1,0,1({)( 3 TTTT
amaP =u

})0,0,0,0,0,0(,)0,1,0,0,0,0(,)0,0,1,0,0,0(,)0,1,1,0,0,0({)( 4 TTTT
amaP =u .

Therefore,

.})0,0,0,0,0,0(,)0,1,1,0,0,0(,)0,0,1,0,0,0(,)1,0,0,0,0,0(

,)1,1,0,0,0,0(,)1,0,0,0,1,0(,)1,1,0,0,1,0(,)0,0,0,1,0,0(

,)0,0,0,1,0,1(,)0,1,0,0,0,0(,)0,0,0,0,1,0(,)0,1,0,0,1,0(

,)0,0,0,0,0,1(,)0,1,0,0,0,1(,)0,0,0,0,1,1(,)0,1,0,0,1,1({

TTTT

TTTT

TTTT

TTTT
f =U

The underlined control vectors appear in several sets )( π
amaP u , ( Π∈π ).

1.2.4.	 The	number	of	feasible	control	vectors

Since set fU  is the union of sets )( π
amaP u , ( Π∈π ), the number of feasible 

control vectors, i.e., the cardinal number of set fU  is determined using the 
inclusion–exclusion principle, according to the following expression [61]:

∑
Π

=ξ

Π
ξ

−ξ−=
1

211 ]),,,([)1( aaamaf PScard uuuU  , (AVI.12)

where terms ]),,,([ 21 Π
ξ aaamaPS uuu   represent the sum of cardinal numbers 

of all intersections ξ of different subsets that are elements of set { )( 1
amaP u , 

)( 2
amaP u ,…, )( Π

amaP u }.

Thus, expressions for ξS , for different values of ξ, have the following 
form:

∑
Π

=π

πΠ =
1

21
1 )(]),,,([ amaaaama PcardPS uuuu  ,

,))()((

))()((

))()((]),,,([

1

31

2121
2

Π−Π

Π

++

+

=

amaama

amaama

amaamaaaama

PPcard

PPcard

PPcardPS

uu

uu

uuuuu







 (AVI.13)
…









=

Π

=π

πΠ
Π 



1

21 )(]),,,([ amaaaama PcardPS uuuu .
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Cardinal numbers of sets )( π
amaP u  can be calculated using expression 

(AVI.9).
Cardinal numbers of intersections of sets, in expression (AVI.13), 

can be calculated as the number of arrangements with repetitions of h out 
of two elements. Symbol h represents the number of elements that are 
simultaneously equal to 1 in maximal control vectors corresponding to sets 

)( s
amaP u , )( v

amaP u ,..., )( w
amaP u , which make the intersection whose cardinal 

number is to be found.
For example, when inspecting control vectors 

T
a )0,1,0,0,1,1(1 =u , and

T
a )1,1,0,0,1,0(2 =u ,

it can be observed that 12
2

1
2 == aa uu  and 12

5
1
5 == aa uu , i.e., control vector 

T)0,1,0,0,1,0(  belongs to sets )( 1
amaP u  and )( 2

amaP u .

Arrangements of 2 (2 components are simultaneously equal to 1) out of 
2 elements (each component can take two values, either 1 or 0) correspond 
to control vectors:

T)0,1,0,0,1,0( , T)0,0,0,0,1,0( , T)0,1,0,0,0,0( , T)0,0,0,0,0,0( .

This means that both sets, )( 1
amaP u  and )( 2

amaP u , will contain these control 
vectors. Their number is 4222

2 ==V .
The cardinal number of the intersection of sets )( s

amaP u , )( v
amaP u ,..., 

)( w
amaP u  can be calculated by expression:

wvswvs hhw
ama

v
ama

s
ama VPPPcard ,,,,,, 2))(,,)()(( 2



 ==uuu ,
where

∑
=

==
P

1
,,, )(

p

w
pa

v
pa

s
pa

w
ma

v
ma

s
mawvs uuucardh 



DDD . (AVI.14)

The expressions for functions ξS  can now be written as follows:

∑
Π

=π

Π π=
1

21
1 2]),,,([ h

aaamaPS uuu  ,

Π−Π+++=Π ,13,12,1 222]),,,([ 21
2

hhh
aaamaPS  uuu , (AVI.15)

…
Π−Π=Π

Π
,1,,2,12]),,,([ 21





h
aaamaPS uuu .
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The set of feasible control vectors, fU , is determined for the intersection 
presented in Fig. AVI.2. The maximal control vectors are:

T
a )0,1,0,0,1,1(1 =u , T

a )1,1,0,0,1,0(2 =u ,  
T

a )0,0,0,1,0,1(3 =u , T
a )0,1,1,0,0,0(4 =u .

First, exponents of base 2 have to be found:

3
6

1

1
1 ==∑

=p
pauh , 3

6

1

2
2 ==∑

=p
pauh , 2

6

1

3
3 ==∑

=p
pauh , 2

6

1

4
4 ==∑

=p
pauh ,

2
6

1

21
2,1 ==∑

=p
papa uuh , 1

6

1

31
3,1 ==∑

=p
papa uuh , 1

6

1

41
4,1 ==∑

=p
papa uuh ,

0
6

1

32
3,2 ==∑

=p
papa uuh , 1

6

1

42
4,2 ==∑

=p
papa uuh , 0

6

1

43
4,3 ==∑

=p
papa uuh ,

0
6

1

321
3,2,1 ==∑

=p
papapa uuuh , 1

6

1

421
4,2,1 ==∑

=p
papapa uuuh ,

0
6

1

431
4,3,1 ==∑

=p
papapa uuuh , 0

6

1

432
4,3,2 ==∑

=p
papapa uuuh ,

0
6

1

4321
4,3,2,1 ==∑

=p
papapapa uuuuh .

Functions ξS  assume the following values:

4222222 2233
4

1
1 =+++==∑

=π

πhS ,

21222222 

222222
010112

2
4,34,23,24,13,12,1

=+++++=

+++++= hhhhhhS
,

522222222 0010
3

4,3,24,3,14,2,13,2,1 =+++=+++= hhhhS ,

122 0
4

4,3,2,1 === hS .

The application of formula AVI.11 gives:

61152142)1(
4

1

1 =−+−=−=∑
=ξ

ξ
−ξ Scard fU .
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The relations in the set of signal groups and the obtained set of feasible 
control vectors, fU , enable formulation of mathematical definitions for  
relations and constraints that have to be satisfied by any feasible signal plan.

2. FORMING THE GRAPH OF CONTROL VECTORS 

TRANSITION, sG

Sets of control vectors πfU  ( Π∈π ) generated from control vectors that 
correspond to maximal cliques, i.e., from maximal control vectors, can be 
used to form the graph of control vectors transition, sG .

As already mentioned, each maximal control π
au  is mapped by function 

maP  to set ff UU ⊂π , i.e.,

π
π = famaP Uu )( .

Each control vector that is an element of set πfU  gives the right-of-way 
to a smaller number of signal groups than the maximal control vector π

au . 
Each pair of control vectors that is an element of set πfU  belongs to relation 

sR . Therefore, the graph of control vectors transition, having πfU  as the set 
of nodes, 

)(,),( Π∈πΓ= ππ
π

sfmsG U , (AVI.16)

is a complete graph, with the property

)(,)(: Π∈π→Γ πππ ffs UU P ,

where
n

s
l

f
n

f
l uuUuUu πππ Γ∈⇒∈∀∧∈∀ )()( .

The graph of control vectors transition can now be defined as:



Π

=π
ππ

Π

=π
ππ

Π

=π

π =Γ==

=Γ=

111

),(),(

),(),(

sfsfms

sfsfs

RG

RG

UU

UU
, (AVI.17)

where



Π

=π
π=

1
ff UU  and 



Π

=π
π=

1
ss RR .
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The set of edges of graph sG  is sR , and πsR  is the set of edges of graph 
π
msG .

The compatibility graph subgraphs having maximal cliques as the set 
of nodes, and corresponding graphs π

msG  are presented in Fig. AVI.4 for the 
intersection given in Fig. AVI.2. The union of graphs π

msG , ( 4,3,2,1=π ) gives 
the control vectors transition graph, sG , shown in Fig. II.17.

T
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(0,1,0,0,0,1)T

(0,0,0,0,1,1)T

(0,1,0,0,0,0)T

(1,0,1,0,0,0)T (1,0,0,0,0,0)T

(0,0,1,0,0,0)T(0,0,0,0,0,0)T

(0,0,0,1,1,0)T (0,0,0,1,0,0)T

(0,0,0,0,1,0)T(0,0,0,0,0,0)T

(1,1,0,0,0,0)T

(1,1,0,0,1,0)T

(0,1,0,0,1,0)T

(1,0,0,0,0,0)T

(0,1,0,0,1,1)T

(0,0,0,0,0,1)T

(0,0,0,0,1,0)T

(0,0,0,0,0,0)T

(1,1,0,0,1,0)T

(0,1,0,0,0,0)T

(0,0,0,0,1,0)T

(0,0,0,0,0,0)T

G sm
2 :

G sm
3 :

G sm
4 :

G sm
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Ggm
4 :
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3 :
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2 :
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1 :

D '4
D '5

D '1

D '3
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Figure AVI.4
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Appendix VII

Description of STECSOT Program 
(STructurE and Cycle Split Optimization 

Technique)

1. ThE STruCTurE Of ThE PrOgram

STECSOT program consists of the main program and nine subprograms 
of SUBROUTINE type. The structure of the program is presented in Fig. 
AVII.1

STECSOT

START

BRANCH

CYCLE

VECTOR

LINPRO

CONSTR

CONDIT

SIMPLE

PIKFO

Figure AVII.1.
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2. PrOgram DESCrIPTION

2.1. main Program

Input data are read at the beginning of the main program, and after that 
subroutines START and BRANCH are called. The flowchart of the main 
program is given in Fig. AVII.2.

Subroutine START arranges input data and prepares them for use in the 
BRANCH subroutine. Subroutine BRANCH realizes branch-and-bound 
procedure. The result of BRANCH subroutine is collection *u , the elements 
of which are singleton subsets containing single elements, i.e., optimal signal 
plans. These results are returned to the main program in which results are 
printed.

Main program

Realization of the branch-and-bound procedure

CALL POLAZ
arrangement of input data

cycle time = initial value + increment

Read input data

CALL BRANCH

Printing of the 
optimal signal plan

STOP

Figure AVII.2.
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2.2. STarT Subroutine

START subroutine is called from the main program. This subroutine 
calculates flow volumes for each control vector, finds the control vector with 
maximal volume, calculates the initial bound, and determines coefficients of 
the criterion function. Calculated data are returned to the main program.

The flow chart of START subroutine is given in Fig. AVII.3.

START subroutine

Calculation of flow volumes for each
control vector

Determination of the maximal volume
and the initial branching node

Calculation of the initial bound

Calculation of criterion function
coefficients

RETURN

Figure AVII.3.

2.3. BraNCh Subroutine

BRANCH subroutine is called from the main program, and it realizes the 
branch-and-bound procedure by calling subprograms CYCLE, VECTOR, 
CONSTR, LINPRO, and CONDIT. The results of BRANCH subroutine, i.e., 
data about optimal signal plans, are returned to the main program.

The flow chart of BRANCH subroutine is given in Fig. AVII.4.
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BRANCH subroutine

Setting initial conditions

upper bound
lower bound

Forming the signal plan structure that
(CALL CYCLE)will be branched

Finding the set of vectors that can be joined to
the structure (CALL VECTOR)

i = 1, the number of joined vectors

Determining the set of vectors that can follow
the extended structure

(CALL VECTOR)

Calculation of the upper bound

Upper bound = 0 

Upper bound < lower bound

Duration of some
control vector = 0

The feasible solution
obtained (CALL USLOV)

Upper bound < lower

Add the structure to the
sequence for further

branching

Add the solution to the set
of feasible solutionsSet new lower bound value

no

yes

yes

no

yes

yes

yes

no

no

yes

no

no

RETURN

<=

Figure AVII.4.
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2.4. VECTOr Subroutine

VECTOR subroutine is called from BRANCH subroutine to determine 
elements of vector ISLED(I), which represents )(1

nuβ . The elements of vector 
ISLED(I) can join the signal plan structure given by matrix MPOMOC(I,J) if 
the following constraint is satisfied:

)}NBRSG,,2,1{(,2)2(mod)(
K

1

1)K(mod
=∈≤+∑

=

+ Ppuu
k

k
p

k
p ,

where NBRSG is the number of signal groups. VECTOR subroutine provides, 
also, the information about the number of elements in this set, К100. Variables 
ISLED(I) and К100 are returned to the BRANCH subroutine.

The flowchart of VECTOR subroutine is given in Fig. AVII.5. Variable 
NBRUV contains the number of control vectors, and matrix MGRAF(I,J) 
represents the graph of control vectors transition.

VECTOR subroutine

Initialization
K100 = 1, ISLED(I) = 0

J = 1, NBRUV

MGRAF(ITOG,J) = 1

The constraint of the number of
times the signal group gains the

right-of-way satisfied ?

Is there any signal group that
has not yet gained the right-of-way and

which is incompatible with signal

constraint and gaining the right-of-way
by control vector J

groups having 2 as the value of the

no

no

yes

yes

yes

no

K100 = K100 − 1

RETURN

ISLED(K100) = J, K100 = K100 + 1

Figure AVII.5.
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2.5. CYCLE Subroutine

CYCLE subroutine is called from BRANCH subroutine to form the 
structure, ISVI(I), of signal plan MPOMOC(I,J), which has to be branched. 
These variables, and the number of control vectors included in the sequence, 
KLL, are returned to BRANCH subroutine.

The flow chart of CYCLE subroutine is given in Fig. AVII.6.

CYCLE subroutine

RETURN

Forming vector ISVI(I)

Forming the structure of signal plan,
which is ready for branching

MPOMOC(I,J)

Calculating KLL

Figure AVII.6.

2.6. CONDIT Subroutine

CONDIT subroutine is called from BRANCH and CONSTR subroutines 
to determine whether the obtained solution is feasible. The result is returned 
to calling subprograms.

2.7. CONSTr Subroutine

CONSTR subroutine is called from BRANCH subroutine to create 
the minimal effective green time constraints and intergreen constraints. 
Redundant constraints are eliminated in CONSTR subroutine, and coefficients 
of criterion function are calculated, as well.

The flow chart of CONSTR subroutine is given in Fig. AVII.7.
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CONSTR subroutine

RETURN

Forming the constraints of minimal
intergreen times

Forming the constraints of minimal
green times

Reduction of constraints and
determination of the final set of

constraints

Calculation of coefficients of
function f(x) = c

Figure AVII.7.

2.8. LINPrO Subroutine

LINPRO subroutine is called from BRANCH subroutine to solve linear 
programming problems. It introduces slack variables, forms the constraint 
that the sum of control vector durations has to be equal to the cycle time, and 
creates the model:

F(X) = C(X)
AX = B,  X ≥ 0,

and calls SIMPLE subroutine to solve the linear programming problem. 
The results obtained from SIMPLE subroutine are then rearranged, and the 
criterion value is calculated. The decision to stop further branching of some 
structure is also made by LINPRO when PICFO subroutine, called from 
LINPRO, established that duration of some control vector, determined as 
zero in LINPRO, will not be changed by introducing subsequent control 
vectors in the structure.

The flow chart of LINPRO subroutine is given in Fig. AVII.8.
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LINPRO subroutine

Forming the constraints of control
vector durations

Introducing slack variables

Solving the linear programming
problem

(CALL SIMPLE)

Rearrangement of the solution

Is the duration of some control
vector equal to 0

CALL PIKFO

No further branching
KRAJ = 1 ?

Calculation of the bound The bound is equal to 0

RETURN

no

no

yes

yes

Figure AVII.8.

2.9. PIKfO Subroutine

PIKFO subroutine is called from LINPRO if the duration of some control 
vector in the structure created so far is equal to 0. PIKFO subroutine checks 
the values this vector could assume after further branching. If it remains 0, 
the indicator KRAJ assumes value 0, otherwise 1.

2.10. SImPLE Subroutine

SIMPLE subroutine is a standard program for solving linear programming 
problems.
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Appendix VIII

THE PROOF OF DELAY FUNCTION CONVEXITY

1. THE PROOF OF DELAY FUNCTION CONVEXITY IN CASE 
THE CYCLE TIME IS NOT GIVEN

A function is convex if and only if its Hesse matrix is positively 
semidefinite for any value of variables in the feasible domain [91].

A symmetric matrix is positive semidefinite if all of its principal minors 
are nonnegative. A minor is principal if its row indices and column indices 
are the same.

The function whose convexity has to be tested is the mathematical 
expectation of the total delay on an intersection, defined by the following 
expression (9.31):
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Convex functions have the properties that their sum is a convex function, 
and a convex function multiplied by a constant also gives a convex function. 
Hence, function cJ  is convex if all terms in expression (9.30) are convex. 
Each term consists of two terms, so that convexity of the whole expression 
can be established by investigating the convexity of each of them.
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1.1. Investigation of convexity of the second term in delay 
function

If the second term in expression (9.31) is written as:
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and the following notations are introduced

p
k
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p gu =τ∑
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1
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,

then epδ′  becomes:
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. (AVIII.2)

There are four possible positions of effective green and effective red 
time in the cycle. These cases are shown in Fig. 4.2. The convexity of epδ′  
will be investigated for all four cases. A general case will be considered, 
i.e., any signal group pD′  and traffic stream epσ , thus making indices p and 

)(ep  unnecessary. Therefore, it is necessary to investigate convexity of the 
expression

grg
rg

rggg
rg

ω−ω−
+

=
+ω−

+
=δ 2

33

)1(
)(
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, (AVIII.3)

where
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k
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=

K

1
, (AVIII.4)
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p =τ∑
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1
, (AVIII.5)

ω=
s
q . (AVIII.6)
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The Hesse matrix, whose positive semidefiniteness is to be investigated, 
is defined as:
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. (A VIII.7)

Function δ depends on g and r, and they depend on variables kτ . It should 
be noted that g and r do not depend on same time variables. If r depends on 
some kτ  variables, then g does not depend on them, and vice versa.

Values of variables l
pu  and s

pu  (for any signal group pD′ ) can be the same, 
i.e., 1== s

p
l
p uu  or 0== s

p
l
p uu , or they can be different, i.e., s

p
l
p uu ≠ . The 

set of indices of time intervals during which signal group pD′  is controlled 
by green signal indication is defined as:

}  ,1|{ KK ∈==′ kuk k
p . (AVIII.8)

The set of indices of time intervals during which signal group pD′  is 
controlled by red signal indication is defined as:

}  ,0|{ KK ∈==′′ kuk k
p . (AVIII.9)

The first derivatives of function δ are determined according to the 
following expressions:
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g
r

r
g

g lll ∂
δ∂

=
τ∂
∂

⋅
∂
δ∂

+
τ∂
∂

⋅
∂
δ∂

=
τ∂
δ∂ ,

since 0,1 =
τ∂
∂

=
τ∂
∂

ll
rg

.

b) K ′′∈s

r
r

r
g

g sss ∂
δ∂

=
τ∂
∂

⋅
∂
δ∂

+
τ∂
∂

⋅
∂
δ∂

=
τ∂
δ∂ ,

since 1,0 =
τ∂
∂

=
τ∂
∂

ss
rg .

© 2008 by Taylor & Francis Group, LLC



332 OPTIMAL TRAFFIC CONTROL: Urban Intersections

The second derivatives of function δ are determined according to the 
following expressions:

а) K ′∈l , K ′∈s
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а.2) ls ≠
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The value of the second derivative, sl τ∂τ∂
δ∂2

, in this case is the same 
as in а.1).
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Since lssl τ∂τ∂

δ∂
=

τ∂τ∂
δ∂ 22

, the value of this derivative is the same as 

obtained for K ′′∈l  and K ′∈s .

© 2008 by Taylor & Francis Group, LLC



A VIII - The proof of delay function convexity 333

c) K ′′∈l , K ′′∈s
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c.2) ls ≠
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The value of the second derivative, sl τ∂τ∂
δ∂2

, in this case is the same 
as in c.1).

From above expressions it is obvious that there exist only three different 
values of the second derivatives of function δ. These three values can be 
distributed in Hesse matrix in four different ways. Therefore, for all four 
cases the positive semidefiniteness of Hesse matrix has to be proven.

If the function
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is introduced, then the expressions for second derivatives become:

а) K ′∈l , K ′∈s
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b) K ′∈l , K ′′∈s
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c) K ′′∈l , K ′′∈s
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glss  (AVIII.16)

Function ),( rgϕ  is positive because the expression

s
cqsgrgg −

=+ω− )(

is positive in the region where constraint is valid. This constraint is the flow 
balance constraint, and if satisfied, the intersection is not saturated.

For the first case of effective green and effective red position in the cycle 
shown in Fig. 4.2, Hesse matrix has the following form:
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where

r
g

=α .

Matrix δ∇2  is symmetric. This matrix is positive semidefinite if all of 
its principal minors are nonnegative [99]. Principal minors are determinants 
of submatrices with the same indices of rows and columns. Therefore, it is 
necessary to determine signs of all principal minors.

•	 Principal minors of first order – diagonal elements
All diagonal elements have value

0>=α
r
g  or 01

>=
α g

r

and all are positive.

•	 Principal minors of second order
Principal minors of second order, having different column and row 
indices, are:

011

1
1 =

α
−

−α
=M , 0

1

11

2 =
α−

−
α=M ,

0
11

1
3 =

−
α

α−
=M , 0

1

11
4 =

−α

α
−

=M .

Their value is 0, as well as the value of other principal minors of second 
order having the same column and row indices.

•	 Principal minors of order higher than 2
All principal minors of orders higher than 2 have at least two identical 
columns and rows, and because of that their value is 0.

For the other three cases of effective green and effective red position in 
the cycle it is easily established, in the same way as for the first case, that the 
corresponding Hesse matrix is positive semidefinite.
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1.2.	 Investigation	of	convexity	of	the	first	term	in	 
delay function

If the first term in formula (9.31) is expressed as:

2
K

1

1 ))1((∑
=

τ−=β′
k

kk
pepep ua , (AVIII.19)

and the following notation is introduced

2
K

1
)1( p

k

kk
p ru =τ−∑

=

,

then expression (AVIII.19) becomes:

pepep ra1=β′ . (AVIII.20)

According to the property of convex functions that the product of a 
convex function and a constant is also a convex function, it is enough to 
investigate convexity of function 

2r=β

to conclude whether function epβ′  is convex. The result of investigation holds 
for any P ′∈p , so that index p will be neglected in further text.

Since the convex function of a linear function is convex, and r is linear 
function of variables K21 ,,, τττ  , it is necessary to investigate convexity of 
function )(rβ=β . Hesse matrix in this case becomes:

]2[2

2
2 =








∂
β∂

=β∇
r

.

It is obvious that this function is convex.
Since the sum of convex function is a convex function, and the product 

of the convex function and a constant is also a convex function, it can be 
concluded that criterion function cJ  is a convex function.
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2. THE PROOF OF DELAY FUNCTION CONVEXITY 
IN CASE THE CYCLE TIME IS GIVEN

The function whose convexity has to be tested (9.29) is the sum of terms 
(9.28):
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It is enough to investigate convexity of only one term, i.e., of pvM .

Introducing symbols r and g for linear functions of kτ , i.e.,

ru
k

kk
p =τ−∑

=
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1
)1( , and 

gu
k

kk
p =τ∑

=

K

1
,

expression (9.28) becomes:
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Since convex function of a linear function is also convex, then function 
pvM  is convex regarding variables K21 ,,, τττ   if it is convex in regard to 

variables g and r.
Convexity of the first term in expression (AVIII.21) is proven in AVIII.1. 

The second term is convex if the following expression is convex:

gg ε−
=γ 2

1 , (AVIII.22)

where 3
epa=ε .

Since γ is a function of variable g only, Hesse matrix in this case 
becomes:
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2
2

g
,

© 2008 by Taylor & Francis Group, LLC



338 OPTIMAL TRAFFIC CONTROL: Urban Intersections

and it is necessary only to check 02

2

≥
∂
γ∂

g
 for feasible values of g.

The second derivative of function γ is given by expression:

3

2

2

2

))((
))(3(2

ε−
ε+ε−

=
∂
γ∂

gg
gg

g
. (ПVIII.23)

This expression is positive if 0>ε−g , i.e., if ε>g .

Since this expression is valid for any P ′∈p  and 
})(E,,,,2,1{)( pepe =∈E , i.e.,

))(,(, pep
s
qc

g
ep

ep
p EP ∈′∈> ,

function γ will be convex if effective green times of all signal groups satisfy 
the condition that saturation degrees on all approaches to the intersection are 
less than 1.

It is shown that both terms of function pvM  are convex, which means 
that the function given by expression (9.29) is also convex.
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