
http://www.cambridge.org/9780521898010


This page intentionally left blank



Economic Growth

How can society improve its living standards? What are the conditions necessary

for prosperity? These are the questions that define the essence of growth theory. In

this user-friendly book, Olivier de La Grandville provides a fascinating introduc-

tion to the theory of economic growth and shows how many results from this field

are of paramount importance for society. The classical mechanics of the growth

process are carefully explained, with two chapters devoted to the fundamental

issue of the substitution of labour for capital in the growth process (co-written

with Robert M. Solow, winner of the Nobel Prize in Economics). The book also

addresses the fundamental question of the optimal investment rate of an economy.

In addition, La Grandville shows us that by unifying the descriptive and normative

aspects of growth theory we can generate many fresh insights, including a proof

of Adam Smith’s “Invisible Hand” conjecture.
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INTRODUCTION

Why should you read a book on economic growth? Because the subject is impor-

tant: it is about the well-being of our societies today and in the future; and because

it is beautiful. It carries wonderful ideas, some exposed more than 2000 years ago,

spanning all civilizations. You will certainly marvel at Ibn Khaldun’s prescience,

at Mo Tzu’s wisdom, at Solow’s depiction of transition phases, at Dorfman’s

incredible intuition in solving variational problems.

This book is not quite the same as other books. Economic growth has attracted,

particularly in the last hundred years, countless, excellent writers who have devel-

oped the field into an immense array of topics, from theoretical to empirical. Rather

than trying to cover all developments – of which you can have an idea through the

bibliography – I have wanted to tell you what I found fascinating in the subject.

But my hope is also that you will find here a useful introduction to this wide area

of research, because a lot of the book is not only on ideas but on methodology as

well.

A further reason for me to write this text was to submit personal views and

present new results. For too many years I have expounded growth theory by divid-

ing the subject, as many did, into two main strands of thought: positive, or descrip-

tive theory on the one hand, normative on the other. I am now convinced that those

two strands should be unified – hence the title of the book. For clarity’s sake, I

think however that both approaches to the theory should be first presented sepa-

rately (parts I and II), and then unified (part III). Such unification proceeds not

from any personal whim, but from logical reasons: the results of both strands of

thought mutually imply each other, as will be shown.

Let me now underline the new results you will find in this book:

� A proof of one of the most important, daring conjectures ever made in economics

or social sciences. We owe this conjecture, known as “the invisible hand”, to Adam

Smith who wrote, in his Inquiry into the Nature and the Causes of the Wealth of
Nations (1776):

Every individual is continually exerting himself to find out the most advan-

tageous employment for whatever capital he can command. It is his own

advantage, indeed, and not that of the society, which he has in view. But

x
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the study of his own advantage naturally, or rather necessarily, leads him to

prefer that employment which is most advantageous to the society . . .

He generally, indeed, neither intends to promote the public interest, nor

knows how much he is promoting it. . . . He intends only his own gain, and

he is in this, as in many other cases, led by an invisible hand to promote an

end which was no part of his intention.1

Note how far reaching Adam Smith’s conjecture is. Not only does the author

hold that the search by individuals for the most advantageous employment of their

capital stock is advantageous to society; he takes one step further by stating that

this advantage is maximized.

What is then the exact benefit that Smith could have referred to in his conjecture?

How is it to be measured? The answer is quite surprising. It will be shown that it is

not only one, but two magnitudes that are simultaneously maximized for society:

(1) the sum of the discounted consumption flows society can acquire from now
to infinity

(2) the benefits of society’s activity at any point of time t – including today;
those benefits are the sum of the consumption flows received at time t and the rate
of increase in the value of the capital stock at that time.

The proof of this theorem, which you will find in the last chapter, uses the

methodology and results expounded throughout this text, and draws both on posi-

tive and normative theory. If only for this very proof, there would be ample reason

to justify the unified approach I am advocating.

� A thorough analysis of the importance of the elasticity of substitution in the

growth process. Too often do we see growth models carrying the convenient,

beloved hypothesis of an elasticity of substitution equal to 1, equivalent to the

Cobb–Douglas function. We now have evidence, however, that in any economy

we might consider the elasticity of substitution is significantly different from 1,

with a tendency of growing – which is good news, as the reader will discover. A

surprise is in store: an increase in the elasticity of substitution will be shown to

have far more importance for society’s future welfare than a similar increase in

the rate of technical progress.

� A detailed examination of the consequences of using utility functions in optimal

growth theory. Traditional treatment of the theory usually leads to a system of

differential equations which does not possess analytical solutions. In my opinion,

this issue, involving solving numerically such a system, has been taken too lightly,

and short shrift has been given to results taking the form of exceedingly high

“optimal” savings rates. It can even be read in the literature that some family of

1 A. Smith, op. cit., Dent and Sons, London, 1975, pp. 398–400.
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utility functions can be used, although it turns out that no equilibrium point exists.

Great care will be taken in analysing the optimal time-paths of the economy, both

in terms of their associated initial values and their ultimate evolution.

� A formula for the optimal savings rate of an economy. Until now optimal savings

rates could be calculated numerically only – no closed form was available and, as

mentioned, those values often made little sense. The formula I submit is expressed

in terms of the fundamental characteristics of the economy and society’s rate of

preference for the present, and yields reasonable, very reachable values.

� Applications and extensions of Dorfman’s modified Hamiltonian. With remark-

able insight, Robert Dorfman had introduced a new Hamiltonian to tackle

the variational problems encountered in optimal growth theory. To honour

Professor Dorfman’s memory, I propose to call his concept a Dorfmanian. It will

play a fundamental role in the proof of Smith’s conjecture. The reader will also

find here extensions of the Dorfmanian which can yield all high-order equations

of the calculus of variations – including the Euler–Poisson and the Ostrogradski

equations.

� The final reason why you should read this book is that Robert Solow and myself

need your help: you will be invited to exercise your sagacity and try to prove a

conjecture we are offering at the end of chapter 4. The conjecture, of a mathematical

nature, is as formidable a challenge to prove as it is easy to express: the general

mean of two numbers, considered as a function of its order, has one and only

one inflection point. Why is it important? Because as a result, income per person

behaves exactly like a function of production whose dependent variable is the

elasticity of substitution, with a first phase of increasing returns, followed by

decreasing returns, and our economies seem to be in the very neighbourhood of

this point of inflection.

It is my pleasure to thank a number of persons whose role has been essential in

the realization of this book. First and foremost, I would like to express my deepest

gratitude to Robert Solow, who not only co-authored a large chapter (chapter 5)

and the appendix of chapter 4, but also gave me invaluable advice on many other

important parts of the book. Needless to say, I alone remain responsible for any

remaining shortcomings, and the personal views expressed here are not necessarily

condoned by him.

My colleague Ernst Hairer, of the Department of Mathematics at the University

of Geneva, has used his program DOPRI for solving numerically the differen-

tial equations of chapters 9 and 10; the stunning phase diagrams – in particular

the one on the cover of this book – are his work. Ernst Hairer’s generosity led

him also to write the program yielding the initial values leading to equilibrium



Introduction xiii

for any system of parameters characterizing the economy. I am in great debt to

him.

Claudio Sfreddo let us use for our regressions in chapter 6 the data he had

developed on a common basis for 16 OECD countries in his PhD thesis; we are

very grateful to him.

My thanks go finally to those persons who read parts of the manuscript and

offered corrections or very useful remarks. I would like to thank in particular

Kenneth Arrow, Eunyi Chung, Jean-Marie Grether, Bjarne Sloth Jensen, Mingyun

Joo, Rainer Klump, Patrick de Laubier, Hing-Man Leung, Edmond Malinvaud,

Amin Nikoozadeh, Mario Piacentini, Mathias Thoenig, Brigitte Van Baalen, Juerg

Weber, and Milad Zarin-Nejadan. Jon Bilam for Cambridge University Press did a

marvellous job in revising the whole text, and I am extremely grateful to him. Dave

Tyler prepared the index in a masterly way; my warmest thanks to him. I would

also like to express my deep appreciation to Daniel Dunlavey, senior production

editor at Cambridge University Press, who supervised the whole project with

great expertise. Last but not least, I want to thank heartily Huong Nguyen for her

beautiful, dedicated work at typing my manuscript. It was a joy working with her.





P A R T I

Positive growth theory

Economics was born when some people asked the questions: How can society

improve its living standards? What are the conditions of prosperity? Those ques-

tions define the essence of growth theory. It is no wonder that in the Western world

they were raised – rather timidly – at the end of the Renaissance only, by Botero

(1589, 1598), and then by Sully (1639) and Child (1668). Why not earlier? Because

economics, as any science, is founded on observation; no sign of growth had ever

appeared in the Middle Ages – and how could it have after the endless wars and

plagues that ravaged Europe, particularly in the fourteenth century? Those times

carried no hope, and it would have taken a bold thinker to entreat the question of

development. As the French historian Pierre Gaxotte very well put it, “the man of

the Middle Ages does not know of time and numbers”.

It is not surprising therefore that we owe to Arab civilization the first com-

prehensive description of the fundamental causes of growth. In his Muqaddimah
(Introduction to History (1377)), the Arab historian Ibn Khaldun went even further

and set himself to explain the causes of the rise and decline of civilizations. This

is a good place to recall what Arnold Toynbee had to say about Ibn Khaldun’s

magnum opus:

He appears to have been inspired by no predecessors, and to have found no

kindred souls among his contemporaries, and to have kindled no answer-

ing spark of inspiration in any successors; and yet, in the Prolegomena

(Muqaddimah) to his Universal History he has conceived and formulated

a philosophy of history which is undoubtedly the greatest work of its kind

that has ever yet been created by any mind in any time or place.1

Ibn Khaldun’s contribution encompasses not only the description of the growth

process, but also what needs to be done to set it in motion. His essay therefore is not

only positive or descriptive; it is normative as well, and it shares that characteristic

1 Arnold Toynbee, A Study of History, Royal Institute of International Affairs and Oxford University

Press, Vol. III, 1934, p. 321.
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2 Positive growth theory

with Adam Smith’s “Inquiry into the Nature and the Causes of the Wealth of
Nations” that came four centuries later. In consequence, it is only fitting that these

works will be presented in the final part of this book where the positive and the

normative approaches are brought together.

In this first part, we will be content to describe the growth process; our first aim

will be to analyse the mechanisms which make income per person grow from one

period to another. In particular, we will want to answer the following question:

from what we know about the growth process, is income per person bound by an

upper limit?

To answer this question, we will build a simple, dynamic model of the economy.

The motion of income per person – the central variable of growth theory – will be

shown to be governed by a differential equation whose solution depends essentially

on three sets of hypotheses. The first one summarizes the way capital, labour and

technical progress define a precise production process. The second translates an

important facet of society’s behaviour towards its future, i.e. the amount it is willing

to save and invest in order to enhance its capital stock. A final set of hypotheses

will be made regarding the evolution of population and its labour force.

At the end of part I, we will deal with properties of random growth rates. In

particular, we will want to determine the expected long-term growth rate of an

economy as a function of the first two moments of the annual growth rate.



CHAPTER 1

The welfare of society and
economic growth

When I have pluck’d the rose,
I cannot give it vital growth again.

Othello

In the history of mankind, attempts to improve living conditions have only very

recently superseded the struggle for survival. In all civilizations, progress has been

exceedingly slow, with abrupt, unexpected downfalls. These were concomitant to

natural disasters, epidemics and wars. Today, we can estimate that only one fifth of

the world population enjoys a standard of life that can be considered acceptable.

The yardstick commonly used to measure standards of living is “income

per person”. We first show how income reflects the result of economic activity

(section 1).1 We then discuss whether income per person constitutes a proper

gauge for the measurement of society’s welfare (sections 2 and 3).

1 Income as a measure of economic activity

Fundamentally, nations can benefit, in the long run, only from what they have

been able to produce. In turn, the amount produced within a given time span (for

instance one year) can be measured from at least three perspectives.

First, we can consider the types of produced goods and services; these can

broadly be distributed between consumption goods or services on the one hand, and

investment goods on the other. Consumption goods and services are produced for

the direct use of consumers. Investment goods (machines, factories, transportation

infrastructure, etc.) are produced in order to provide ultimately, at some later date,

consumption goods or services. Adding consumption to investment would measure

a nation’s total activity if the nation had no relations with the outside world. If

1 This first section is intended for the reader who has had no introduction to national accounts.

3



4 The welfare of society and economic growth

this is not so, two major corrections should be introduced: first, one must add to

consumption and investment all exports of goods and services; second, all imports

should be deducted: indeed, consumption, investment and even exports include

imports of goods and services, and imports are no part of a nation’s activity.

From a second perspective, we may consider the output generated by the

nation’s various sectors of activity. We then want to determine how much agricul-

ture or industry, or services have contributed to the nation’s global activity. This

can be measured by the net production of each sector. Net production is the sector’s

total production net of all purchases from other sectors. Indeed we want to avoid

counting twice, or a multiple number of times, the same output. Consider two

sectors: the automobile and the aluminium industries. The automobile industry

uses, among many other things, aluminium. Simply adding up the production of

each sector would amount to counting twice the value of the aluminium. The net

production or net output is appropriately called the value added of the sector.

A third and final approach is to consider the income generated and distributed

throughout the economy. Clearly, this income can be generated only by the value

added of each sector of the economy. Three broad categories can be distinguished:

labour income, capital income, and profits. Labour income is self-explanatory.

Capital income is the remuneration of the (physical) capital stock that has been

used in the production process, plus rentals by private individuals. Suppose that, in

a given firm, this capital has been rented: the rentals are the capital remuneration.

If a firm owns its capital stock, two possibilities arise: first, the firm may have

borrowed in order to buy the capital it owns. The remuneration of capital is then

the interest payments it pays. If the firm has financed the capital with its own

resources, the remuneration of capital is the interest payments it has foregone by

acquiring the capital stock instead of lending out its resources.

We will now summarize in an example each of these three approaches to the

measure of economic activity within the boundaries of a given country. The global

result is called the gross domestic product. The adjective “domestic” refers to the

fact that the activity is measured within the boundaries of the country considered.

The adjective “gross” reflects the fact that investment expenditures include amor-

tization – or depreciation – of capital. We will explain in section 2 how to obtain

other aggregates also commonly referred to, such as the gross national product

and national income. Before that we will illustrate with a numerical example the

three approaches to measuring the gross domestic product.

1.1 Three approaches to measuring economic activity:

a simple example

1.1.1 The expenditure approach

This is the most natural and arguably the most useful approach from an informative

point of view because we are interested in the nature of goods and services that
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will be available to society. It breaks down the gross domestic product into its

constitutive parts: consumption, investment, plus exports minus imports. One point

of detail: during a given year, inventories may have accumulated in the producers’

hands; by definition, these have not yet been sold. They are then considered part

of investment.

Consumption is usually separated into private consumption and public con-

sumption; private consumption refers to the consumption of individuals; public

consumption is that of the state (at the national or at the local level). The same

distinction applies to investment. We thus have, for example:

• private consumption: 70

• public consumption: 10

• private investment: 8

• public investment: 7

• exports: 40

• minus imports: −35

Total: gross domestic product: 100

1.1.2 The output (value added) approach

The economy can be divided into a few – or many – sectors. If we consider the

traditional three sectors (agriculture, industry, services), we may have:

• value added of agriculture: 4

• value added of industry: 30

• value added of services: 66

Total: gross domestic product: 100

1.1.3 The income approach

Retaining the classification referred to in the beginning of this section could give:

• labour income: 68

• capital income: 26

• profit: 6

Total: gross domestic product: 100

1.2 A global view of the three approaches: the input–output table

It is possible and highly useful to present in one table those three approaches.

Indeed, it is by no means obvious that the three approaches amount to the same



6 The welfare of society and economic growth

number. In fact, statisticians establishing those national accounts have to introduce

sometimes large corrections to obtain the desired result.

This synthetic, global view was first proposed by Wassily Leontief2 in a so-

called “input–output” table. The table can be considered as made of three parts.

In the first part (the upper-left part of table 1.1), only intermediate transactions are

recorded. Those are the sales of products or services from one sector to another

(for instance the aluminium sold to the automobile sector, the wheat sold by

agriculture to the food industry, or the insurance premiums sold to the farmers).

The table presents in its upper-left 9 squares all possible sales between the three

sectors we have considered (there are 6 possible inter-sector sales and 3 possible

intra-sector sales: for instance the energy sales to the aluminium industry are sales

within the industry sector). The first 3 figures of column 4 (2, 9, 20) sum the sales

of each sector to other sectors as well as to itself. The first 3 figures of line 4 (5,

20, 6) are the purchases of each sector from other sectors and from itself. The total

of intermediate sales and purchases (31) is the 4th figure of line 4 and column 4.

The second part of the table (columns 5 to 10) breaks down the expenditure side

of the gross domestic product into its components (column 5 indicates consumption

goods aggregated as the sum of private and public consumption, for a total of 80;

column 6 gives private and public investment, etc.). X and M designate exports

and imports respectively. The total C + I + X − M = 80 + 15 + 40 − 35 = 100

corresponds to the gross domestic product from the expenditure approach and to

the example we have given in section 1.1.

It is now possible to determine the total output generated by each sector by

adding the total of intermediate goods and services (col. 4) to the column of final

demand (col. 9). We thus get column 10. This will be useful to determine the value

added of each sector. Indeed, just translate the numbers of column 10 into the

horizontal line 9 at the bottom of the table. Just by taking the difference between

the total output (line 9) and the total purchases of each sector (line 4) gives the

value added by each sector (line 8). This line is the gross domestic product broken

down according to value added by each sector (4 + 30 + 66 = 100). In turn, each

of these net contributions from each sector can be split into their components

(labour income, capital income and profits). These are indicated in lines 5, 6 and

7 respectively. Their total in column 4 gives the gross domestic product from the

income point of view (68 + 26 + 6 = 100).

Thus the three approaches to the gross domestic product can be viewed in a sin-

gle table. Two conclusions emerge. The first is that if we had to choose from those

three approaches that which best reflects the welfare of society, we would probably

2 Wassily Leontief (1906–99) was born in St Petersburg and received his PhD from Humbolt Uni-

versity in Berlin. He taught at Harvard and New York University. One of his first input–output

tables divided the US economy into 500 sectors. He received the Nobel Prize in Economics in

1974 for his pioneering work on input–output economics.
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choose the first, i.e. the expenditure approach, because we are most interested to

know what kind of consumption or investment goods will be available to society.

We do not care about whatever nominal income is generated if it corresponds to

huge investments which will be of little use to society.

The second lesson we draw is the one-to-one correspondence between net out-

put and income. Income will increase in an economy if and only if net production –

or value added – increases.

1.3 From gross domestic product to national income

The gross domestic product (GDP) measures the activity taking place inside the

borders of a given nation. However, it may be desirable to have a measurement

leading to the revenue accrued to people actually residing in a country. This implies,

in particular, adding to GDP the income received from abroad by residents and

subtracting the income paid out to non residents who are working within the bound-

aries of the country. These corrections concern both labour and capital income.

Thus we have:

Gross domestic product (GDP) + labour and capital income generated

abroad and received by residents

− labour and capital income generated

domestically paid out to non-residents

= gross national product ≡ GNP

Observe that the adjective “national” is most unfortunate since it does not refer to

the activity of national economic agents; it only refers to the activity of residents.

Furthermore, within one year investments may have taken place, but some

depreciation of the existing stock of capital has occurred. It is important (especially

in the context of economic growth) to know by exactly what amount the capital

stock in existence in the economy may have increased. This is why depreciation

of capital will be subtracted from (gross) investment to obtain net investment, and

consequently net national product:

Gross national product (GNP) – depreciation = Net national product (NNP).

Finally, it may be interesting to know exactly what amount of income will be dis-

tributed to residents before income taxes. For that purpose, two corrections need to

be introduced. First, we must deduce from the net national product indirect taxes –

this is the sales tax paid by consumers to producers, which the latter transfer to the

state. These taxes form no part of the value added that is the basis of income distri-

bution by firms, and therefore must be deducted from net national product. On the

other hand, firms may receive subsidies from the state. Together with value added

these may be used to remunerate production factors such as labour or capital. Thus
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we have:

Net national product (NPP) − indirect taxes + subsidies = National income.

The following summarizes the various steps transforming gross domestic prod-

uct (GDP) into net national income.

Gross domestic product (GDP)

+ labour and capital income received from abroad by residents

− labour and capital income transferred abroad to non-residents

= Gross national product (GNP)

− capital depreciation

= Net national product
− indirect taxes

+ subsidies

= National income

1.4 National income at current prices and at constant prices

Suppose that from one year to another we observe an increase in the gross domestic

product, or an increase in national income. Can we conclude from this observa-

tion that the standards of living have increased? Clearly such a conclusion is not

warranted since that increase might be due to the sole increase of prices. It is then

important to be able to define in a precise way what part of a change in national

income is attributable to a change in prices, and what part reflects an increase in

output available to society. For that purpose, price indexes are constructed. We

will succinctly describe here the consumers’ price index.

We will use the following definitions and notations:

� pt
i = price of good i at time t (measurement units: $/unit of the good considered)

�

pt
i − pt−1

i

pt−1
i

= relative rate of increase in the price of good i

�

pt
i

pt−1
i

≡ Xi ≡ growth factor of the price of good i ≡ partial price index of good i

We can note that this growth factor reflects also the growth factor of the expenditure

necessary to buy one unit, or any fixed quantity, of good i .

Suppose now that between time 0 and time 1 the prices of two goods have

undergone different relative increases (perhaps 10% and 30% respectively). Is

there a way to define a meaningful “average” of those increases? It is obvious that

considering the simple average of those rates (20%) would be of little significance

if, for instance, consumers used to spend a large part of their income on one of
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those items. Therefore, it is natural to try to measure the consequences of such

increases for a given consumer in the following way.

Consider the growth factor of the expenditure necessary for this consumer to

be able to buy again the same basket of both goods which he or she had initially

purchased at time 0, before the price increases.

Suppose that this basket is (q0
1 , q0

2). Then his (or her) expenditure necessary to

buy this basket at time 0, denoted D0, is:

D0 = p0
1q0

1 + p0
2q0

2 . (1)

When prices move to p1
1, p1

2, the necessary expenditure to buy the same basket

becomes

D1 = p1
1q0

1 + p1
2q0

2 (2)

and the growth factor of the expenditure is

D1

D0
= p1

1q0
1 + p1

2q0
2

p0
1q0

1 + p0
2q0

2

. (3)

It can be shown immediately that this growth factor is equal to the average

of the partial price indexes of both goods (p1
1/p0

1 and p1
2/p0

2), the weights

being the shares of each good in the individual’s initial expenditure, p0
1q0

1/D0

and p0
2q0

2/D0. Indeed, in the numerator of (3), we can make the following

transformation:

D1

D0
= p1

1q0
1 + p1

2q0
2

D0
=

p1
1

p0
1

p0
1q0

1 + p1
2

p0
2

p0
2q0

2

D0
. (4)

Denoting p0
1q0

1/D0 = α1 and p0
2q0

2/D0 = α2 the individual consumer’s

expenditure shares on goods 1 and 2, this growth factor is

D1

D0
= α1 X1 + α2 X2, with α1 + α2 = 1, (5)

the weighted average of X1 and X2.

This generalizes of course to the case of n goods. The expenditure growth factor

is

D1

D0
=

∑n
i=1 p1

i q0
i

∑n
i=1 p0

i q0
i

=

n∑

i=1

(
p1

i /p0
i
)

p0
i q0

i

D0
=

n∑

i=1

p1
i

p0
i

p0
i q0

i
D0

=
n∑

i=1

αi Xi ,
n∑

i=1

αi = 1. (6)
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We have just determined the expenditure growth factor for an individual who

would have expenditure shares αi , i = 1, . . . , n. Now the same principle can be

extended to a society as a whole: we just need to replace the αi ’s of the individual

by the average shares of society’s consumption of each good in total consumption.

Call βi , i = 1, . . . , n those shares. The consumer price index is then defined as

X =
n∑

i=1

βi Xi , with
n∑

i=1

βi = 1. (7)

Needless to say, difficulties arise in practice when it comes to define “a good” –

only categories of goods can be defined. But we can already surmise at this intro-

ductory stage that an individual’s compensation for a rising cost of living on the

basis of the index X may lead to biases. Even assuming the goods an individual

buys to be exactly of the same nature as those used in the construction of the index,

an individual may be under-compensated or over-compensated if her shares αi are

such that her expenditure growth factor turns out to be higher or lower than the

index X . Suppose that the state, or a firm, compensates an individual for the rising

cost of living by multiplying his income by the index
∑n

i=1 βi Xi . All values of

αi and βi such that

n∑

i=1

αi Xi =
n∑

i=1

βi Xi (8)

will lead to a fair compensation of the individual if the consumer price index is

used. However the inequality

n∑

i=1

αi Xi >

n∑

i=1

βi Xi (9)

will lead to under-compensation of the individual, and

n∑

i=1

αi Xi <

n∑

i=1

βi Xi (10)

will lead to over-compensation.

Let us now see, as an example, how to obtain a measurement of total consump-

tion which would be independent from price changes over one year. We can think

of dividing the observed consumption aggregate by the price index observed over

one year and thus obtained consumption in a given year “at last year’s prices”. For

instance, suppose that the price index over one year is 1.1 (in practice this is multi-

plied by 100 and quoted as 110 with a 100 basis), and that consumption has risen,

in nominal terms from 1000 to 1210 monetary units, i.e. by 21%. This implies

that consumption in real terms has risen only to 1210/1.1 = 1100. In other words

consumption has increased “in volume” by 10%. This example can immediately

be extended to a time span longer than one year.
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Such indices are constructed for the various components of gross domestic

product. Lots of refinements are introduced for each of those components, and an

aggregate GDP “at constant prices”, or in “real terms” can thus be calculated by

aggregation. Dividing GDP in nominal terms by GDP at constant prices yields

the implicit price index for GDP, the so-called “implicit GDP deflator”. National

income at constant prices is also calculated by using such an implicit deflator.

When it comes to making inter-country comparisons, national accounts must

be expressed in terms of one currency. Care must than be exerted to use exchange

rates which truly reflect the purchasing power of each currency. The difficulty

here lies in the fact that a currency may be over- or under-valued, and the task of

the statistician is to try to evaluate the true purchasing power of any currency.

Suppose that statistical methods enable us to do just this. We now have to ask a

fundamental question: does income per person truly reflect the standard of living

of a given society? We will address this issue in the next section.

2 Is income per person a fair gauge
of society’s welfare?

We have already called the reader’s attention to the fact that society’s income

reflects the amount of goods and services that society has been able to acquire. It

is only natural to examine closely, first, the nature of those goods and services. If,

for instance, the production of some goods has been forced upon society, obviously

these should not enter GDP if this number is to be used as a yardstick to measure

society’s welfare.

A significative number of corrections must be made for GDP to be used in

the measure of welfare. First, some important expenditures should be excluded

from GDP because they do not provide any well-being. Secondly, the simple

calculation of GDP neglects a whole series of elements which may increase or

decrease welfare. Those elements are either difficult to measure, or are simply not

measurable. We will consider all these in turn.

2.1 Expenditures that should be excluded from GDP

We will classify such expenditures into two categories: first, we will consider

expenditures decided without individuals’ consent; second we will turn to expen-

ditures chosen by individuals on their own free will, but that should be excluded

from GDP because they do not enhance in any way the individuals’ welfare.

2.1.1 Expenditures decided without individuals’ consent

In a majority of countries, state or public expenditure is still decided without

any effective parliamentary control. Those amounts which would not have been
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approved through a democratic process are not to be included in GDP if this statistic

is to reflect welfare. In poor countries, it is almost certain that if individuals had

their say, they would choose to replace unwanted public expenses by expenditure

on services that they do want, namely health and education.

2.1.2 Expenses decided with individuals’ consent

Individuals may very well decide upon expenses on their own free will, although

they know these will never contribute to their welfare. Collective or personal secu-

rity expenses are prominent examples. Suppose that, for many possible reasons,

insecurity increases. This will have two major consequences, admitting that the

population’s work effort remains the same: first, society will have to replace goods

and services which yielded some well-being by security expenses. This will be

a first source of welfare decrease. It will add to the loss in welfare generated by

the enhanced feel of insecurity. The same is true for the expenses generated by an

epidemic, by the threat of war, or by war itself.

Other obvious expenses should be taken away from GDP because they do not

reflect welfare. The cost of illnesses or accidents, or home-work commuting are

obvious examples.

2.2 Fundamental factors neglected in the calculation of GDP

Working conditions are fundamental determinants of a society’s welfare, but are

not taken into consideration in GDP calculation. No account, furthermore, is taken

of forced labour, particularly of the labour forced upon women and children.

On the other hand economic activity itself may damage the environment. We

mentioned previously that depreciation of capital was accounted for when deter-

mining national income; no provision however is made for the deterioration of the

environment which, contrary to the obsolescence of capital, may be an irreversible

phenomenon. This factor is so important that it will prompt a major caveat in

section 3 of this chapter.

Other fundamental aspects of welfare, equity and equal opportunity, are entirely

omitted from national accounting. By “equity” we mean the ability for a society to

reward each individual according to his own qualities and effort, and at the same

time to protect those hurt by fate.

2.3 Should we, finally, rely on income per person?

It might be thought that the long list of important provisos that we mentioned,

which are fundamental to the definition of our well-being, would lead us to give a

negative answer. It may then come as a surprise that, despite all those reservations,

income per person in our opinion is a useful measure of a society’s welfare. We

will now show why.
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Table 1.2 Hypothetical rankings

(1) (2) (3) (4)
Ranking Ranking Coefficient of Adjusted income
according to according to adequation of income per person
democracy income per person per person to welfare (2) × (3)

1. . . . 1. . . . . . . . . .

2. . . . 2. . . . . . . . . .

3. . . . 3. . . . . . . . . .

Suppose that we established a ranking of countries according to their income

per person, and compare it to a list according to welfare, built on the basis of close

observations and common sense, in a way somewhat reminiscent of what travellers

of the eighteenth century did when they described the “conditions of prosperity”.

Our view is that both lists would be very close to one another, for the following

reasons.

We should first recognize that the degree of democracy has a very direct,

profound bearing on society’s standard of living: income per person can reach a

high level only if all individuals have a freedom of choice guaranteed by the rule

of law, and if public decisions truly reflect their consensus. If one could establish

a list of countries according to the degree of democracy, we believe that such a list

(column 1 in table 1.2) would closely match the ranking of countries according to

their income per person (column 2).

Let us now turn to all amendments that must be carried out in order for income

per person to reflect society’s welfare. Define an adequation coefficient, between 0

and 1, as the ratio welfare/income per person. If, for instance, very few corrections

have to be made, this coefficient may be, say, 0.95. On the other hand, should mas-

sive corrections be introduced, the coefficient would be much lower. Now draw

up a list of those coefficients corresponding to the countries and their associated

income per person listed in column 2. We can safely assume that those coefficients

are proportional to the degree of democracy. Indeed, those fundamental deter-

minants of welfare, such as working conditions, the protection of individuals, in

particular women and children, the protection of the environment, the control of

public policies are both the aim and the distinctive marks of democracy.

Consider now the final result of corrected income per person, obtained by

multiplying column 2 by column 3. If the ranking of column 1 is the same as the

ranking of column 2, it is obvious that the ranking of column 2 will be preserved

in column 4. But this is only a sufficient condition; it is not a necessary one as

the reader could assert by constructing an example where the rankings of 1 and 2

differ, but where the ranking in 2 is still preserved in 4 (see exercise 5).
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We conclude that while income per person is definitely not an absolute measure

of welfare, it can remain a valid tool for international comparisons of standards

of living. This is the reason why we consider income per person as a variable of

central importance, keeping in mind the adjustments that have to be made if it is

to reflect the society’s true standard of living.

3 A major caveat

In this chapter we have underlined that we must take into account two major

corrections of GDP in order to have a sound measure of welfare: first, depreciation

of capital has to be deducted from GDP for a net measure of economic activity.

Second, we know current economic activity may be dangerous for ourselves and for

future generations whenever the biosphere is harmed. The biosphere is of course

part of our capital, and any depredation of it should be taken into account. Now

comes a crucial problem: it is extremely difficult to gauge, from a scientific point

of view, how much changes on the biosphere are due to human activity or to natural

causes. In any event, it is undisputed that in the last two centuries humanity has

started a process of transforming the biosphere on a new scale – unknown before –

for two main, concomitant reasons: an extraordinary rise in population growth,

and the industrialization of the world. Demographers estimate that between 8000

BC and AD 1900, i.e. over a period of 9900 years, the world population grew

from about 5 million to 1.6 billion. This corresponds to an extremely low growth

rate: less than 6 hundredths of one per cent per year, or 5.8 per ten-thousand per

year. This exceedingly slow growth of the population was due to unending wars,

epidemics and high natural mortality rates.

Suddenly, at the time scale of our history, this picture changed completely.

Between 1900 and 2005 the world population increased 4-fold, from 1.6 to 6.4

billion, i.e. at a rate of 1.3% per year. Thus the long-term population growth rate

was multiplied by a factor 1.3/0.058 ≈ 22. The world population now grows at

a rate of 1.5% per year, i.e. at a rate 25 times higher than the long-term rate it

experienced over the past 10,000 years. There is of course no reason why this rate

should decrease; and if it is maintained, we will be 13.5 billion in 50 years, and

87 billion in 300 years.

The evidence is two-fold: on the one hand, world population has increased

and will increase at a rate which was never witnessed in its past; on the other

hand, the huge surge in population together with the industrialization process are

having an unprecedented, negative, impact on the biosphere. The consequence is of

course that humanity has to react, exactly as it has successfully reacted to the first,

dreadful, consequences of industrialization. This will have its costs, which must

be deducted from net national product for the measure of activity to be a measure

of welfare. A new level of complexity is now reached. Our task is to understand
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a highly intricate set of physical, chemical and biological processes and measure

what part of any deterioration of the biosphere is due to natural causes and what

part is due to human activity. We then need to discover methods of counteracting

the negative consequences we are responsible for; and finally we have to design

institutions capable of implementing them.

In this text we are concerned with the theory of economic growth. We hold

that progress means that solutions to the problems we just mentioned do exist,

and that steps will be taken to implement them. In the next chapters, whenever we

mention that a production function links output to factors such as capital, labour,

and technical progress, we will always refer to net output – or net income, in the

sense that we suppose that the cost of capital and biosphere depreciation has been

deducted from the gross measure of output.

Appendix: A brief review of some useful concepts in economics

We start with the concepts of consumers’ demand, producers’ supply, the “law

of supply and demand”, and finally the measurement of the benefits society can

derive from a given situation on a single market. This brief review is intended

solely for those readers who have not had an introduction to economics.

1 The law of supply and demand, and the equilibrium price

For any given good or service, demand is the relationship between the quantity

qD that consumers are willing to buy and the price p they are facing. It is denoted

qD(p). Practically always this relationship is decreasing. The reason why the slope

of the demand curve is negative is two-fold: when the price decreases, each con-

sumer may have a tendency to buy more of that good; on the other hand, consumers

who were not buying the good at a higher price may now be willing to do so, thus

entering the market. Such a decreasing curve qD(p) is depicted in figure 1.1;

for historical reasons the quantity is set on the abscissa, while the explanatory

variable, the price, is on the ordinate. Notice that since the demand function

qD(p) is decreasing, it can be inverted; p(qD) is then the price consumers are

prepared to pay if they are to buy an amount qD . This property will be applied

soon.

Symmetrically, supply is the amount qS producers are willing to put on the

market if the price they receive is p. qS(p) is usually an increasing function of p.

The positive slope of the supply curve is justified in a symmetrical way to what

we have just seen for the demand curve: when the price increases, firms already

in the market have a tendency to produce more; on the other hand, new firms may

become profitable and enter the market. Being an increasing function of price,

the supply function qS(p) can be inverted: p(qS) is the price producers want to

receive if they are to put an amount qS on the market.
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qD(p)

q
qe

pe

p

E

qs(p)

Figure 1.1 Demand function qD(p) and supply function qS(p). The equilibrium point
E: (pe, qe) will be reached if prices are free to move.

When the supply and demand curves are drawn together on the same diagram

as in the example shown on figure 1.1, it is obvious that for all possible prices

there is always disagreement between producers’ and consumers’ intents, except

for one price, denoted pe. Before coming to that price and its properties, consider

first the consequences of a very low price, say p0. For such a price demand q0(p0)

is considerable higher than supply qS(p0). We observe an excess demand, equal

to the positive difference qD(p0) − qS(p0). What are the consequences of such

a situation? Remember that the supply and demand functions reflect only the

intentions of producers and consumers, respectively. The producers do know that

at such a low price p0 demand exceeds supply. They realize that if they increase

their price by a small amount, there will still be an excess demand. If nothing

prevents them to do so, they will increase their price as long as such an excess

demand still exists. At the same time, consumers may be competing for relatively

scarce quantities; some consumers will be weeded out of the market; others will
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reduce their purchases. Producers will not increase the price beyond pe, because

that would entail an excess supply.

Choose now an initial situation where the price is way above pe, for example

at level p1. The ensuing excess supply qS(p1) − qD(p1) will induce a decrease

in price, driving its value towards pe.

Such a level pe is called an equilibrium price because it has no reason to move

if nothing else changes in the economy. We know of course that many other things

may be disturbed, either on the consumers’ or on the producers’ side. For instance,

information, tastes, income, or modifications in other prices may shift the demand

curve. Production conditions, technology, prices of inputs, rates of interest may

change and displace the supply curve. But fundamentally, the mechanism described

above will apply again. Such adjustments in price obey the so-called “law of supply

and demand”, which can simply be defined as follows: a price will have a tendency

to increase (to decrease) in case of excess demand (excess supply).

2 The case of fixed prices

The law of supply and demand will apply only if prices are free to move. Suppose

that this is not the case. For instance, suppose that there are no laws forbidding

cartels between firms, and that producers connive to fix a high price (above pe).

What will be the quantity produced and exchanged in those circumstances? Very

clearly, if the fixed price is above pe, the quantity produced will be determined

by what consumers are prepared to buy at that price. For instance, if the price is

fixed at pM (pM > pe) (denoting a monopoly price), the quantity produced and

exchanged is given by qD(pM ).

On the other hand, suppose that the state imposes a maximum ceiling p̄ (below

pe) on the price producers can charge. The quantity produced will then be deter-

mined by qS( p̄). A first conclusion emerges: if prices are fixed, the quantity pro-

duced and exchanged is always the minimum between supply and demand. We

have:

quantity at society’s disposal when price is fixed at p = min[qS(p), qD(p)].

This curve read on the abscissa in figure 1.2, has an inverted V-shape. Its

fundamental property is that it goes through a maximum at the equilibrium point

(pe, qe).

3 Fundamental properties of the equilibrium point

We have already one important result: a free (competitive) market will result in a

maximum quantity available for society.

Suppose now that employment is an increasing function of production. We

can picture, below the q abscissa, another horizontal axis where we indicate the

corresponding employment. The relationship between production and employment
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qD(p)

q
qe

pe

p

E

qs(p)
min[qs(p), qD(p)] 

Figure 1.2 Quantity produced if prices are fixed: min[qS(p), qD(p)].

is not necessarily linear – in this text we will only suppose it is increasing and

concave. It is clear nevertheless that at the equilibrium point (pe, qe) employment

on that market will be maximized compared to any other point on the V-curve.

4 Consumers’ and producers’ surplus

The consequences for society can be analysed further. It is obvious that consumers

that are prepared to pay some high price p1(p1 > pe) are better off if they pay

pe only. If they buy one unit, they are left with p1 − pe at their disposal, which

they can use to buy other goods or services, or save. This amount, called the

consumers’ surplus, is equal to the hatched area in figure 1.3, between the demand

curve and the horizontal at height pe. It is equal to the integral

∫ qe

0
[pD(q) − pe]dq =

∫ qe

0
pD(q)dq − peqe. (A1)
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qD(p)

pD(q)

producers  surplus:

qe

pe

p

q

E

ps(q)

qs(p)

peqe – ⌡
⌠

qe
ps(q)dq

0

⌡

consumers  surplus:

⌠
qepD(q)dq – peqe
0

Figure 1.3 Consumers’ surplus and producers’ surplus when the market is in equilibrium
at point E : (pe, qe).

The integral on the right-hand side of (A1) is the valuation of qe by the con-

sumers: it is the total value that could be extracted from the consumers if the

quantity qe were sold to them by very small increments dq. On the other hand,

peqe is the amount consumers actually pay.

Similarly, producers that were willing to sell one unit at p̄ and will ultimately

sell it at pe gain a profit equal to pe − p̄. The producers’ surplus is equal to the

hatched area between the horizontal line pe and the supply curve, and is equal to

∫ qe

0
[pe − pS(q)]dq = peqe −

∫ qe

0
pS(q)dq. (A2)

It is not difficult to prove rigorously (see exercise 1.6) that the hatched area

referred to above is exactly equal to the sum of profits made by all firms in the

market.
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This prompts us to consider the advantage received by society, or “society’s

surplus”, as the sum of the consumers’ surplus and the producers’ profits. It is

equal to the sum of the shaded areas in figure 1.3; we have:

society’s surplus = consumers’ surplus + producers’ surplus

=
∫ qe

0
[pD(q) − pS(q)]dq. (A3)

It is obvious that the equilibrium point E = (pe, qe) not only maximizes output

and employment but society’s surplus as well.

We will make use of these concepts and properties when we tackle some of the

consequences entailed by planning or by non-competitive markets (chapter 14).

Exercises

1.1 Gross domestic product is usually measured according to three approaches,

as we have seen: expenditure, value added and income distributed. Can you

figure out a fourth way of measuring GDP? (Hint: consider the input–output

table of an economy).

1.2 Suppose the input–output table for a given country includes the following

elements:

Sector I Sector II C I X M Total output

Sector I 10 100 200 10 a 60 b
Sector II c 50 100 75 125 60 300

labour income d e

capital income and profit 100 f

Total output b 300

You know also that the trade balance of that country is +20 and that the

labour income of sector II is two thirds of its value added. What are the values

of a, b, c, d, e and f ? (Hint: first construct the full input–output table, with

lines and columns for total intermediate input and output, value added and

final demand, as in table 1).

1.3 A European country started to build, over a period of twenty-five years, a

nuclear super-generator. The new technology that was used turned out to be

too risky for the reactor to be put in use, and it was decided to dismantle it,

a process whose duration is estimated at more than two decades. Some argue

that both the building of the reactor and its dismantling constitute a pure waste,

or loss, for the economy. Others say that the building of the reactor and its

dismantling over some 40 years generated and will generate billions of euros
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in income which benefit not only those directly concerned, but thousands of

other sectors of activity as well. What is your opinion?

1.4 After the United States entered World War II, the highest growth rates of

real national income were recorded: between 1941 and 1945 their order of

magnitude was 15 to 16% per year. How do you perceive these exceptional

numbers?

1.5 Think of a (theoretical) example of three countries (labelled A, B and C) ranked

in order of the level of democracy. Suppose that their ranking according to

income per person, however, differs: it is A, C and B. Show that their ranking

according to their adjusted income may very well remain A, C and B. Give

a necessary and sufficient condition for the ranking according to income per

person to be preserved.

1.6 In this exercise, which can be considered as a project, you are asked to prove

that the producers’ surplus as defined in this chapter is the sum of their profits.

We suggest that you proceed along the following steps.

1. Consider the supply curve on a market, q(p), as the aggregate of n individual

firms’ supply curves,
∑n

i=1 qi (p). First, determine the supply curve of

firm i as qi (p) that maximizes its profit π i = pqi − C(qi ), where C(qi )

is the total cost of the firm. Assume that the firm will supply some positive

amount only if price is equal to, or above, the minimum of its cost per

unit c̄ = C(q)/q. Notice that the supply curve will be discontinuous: it

will be zero for 0 < p < c̄, and equal to the reciprocal of C ′(qi ) = p for

p � c̄ (to fix ideas, it is useful to picture C(q) as a suitable second- or

third-degree polynomial and to draw in another diagram, below the first

one, the corresponding unit cost curve C(q)/q and the marginal cost curve

C ′(q)).

2. The first-order condition will lead you to p = C ′(qi ); thus supply qi
is the reciprocal of the marginal cost function C ′(qi ), when p ≥ c̄ =
min(C/qi )/qi , and zero for 0 < p < min C(qi )/qi . Now you have to deter-

mine, for any given price p0 > c̄, the integral
∫ p0

c̄ qi (p)dp. To do so,

proceed as follows. Consider profit π i as a function of price p, com-

pounded through the supply function qi : π i = pqi (p) − C[qi (p)], and

determine dπ i/dp. Using the first-order maximizing condition, you will

end up with the result dπ i/dp = qi , known as Hotelling’s lemma, which

you can use to determine immediately the value of the above-mentioned

integral.

1.7 Suppose that the market depicted in figure 1.1 of this chapter corresponds to

a market in autarchy – in particular, imports are simply barred from entry.
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Suppose that the country opens up to external competition, allowing imports

to flow in, and that foreign producers are willing to sell, at the world price

pw, smaller than pe, the excess demand qD(pw) − qS(pw). What will be the

consequences of this opening up of the economy for consumers? for producers?

for society as a whole?

1.8 Following the producers’ complaints, the state decides to levy a tax t (in

$ per unit) on imports. This implies that the price foreign producers will

charge becomes pw + t . Determine the consequences of this protectionist

policy on consumers, on producers, and on the state (in the form of the cus-

tom duties levied). What is the net outcome of this policy on society as a

whole?

1.9 Suppose that instead of levying a tax t on imports, the state decides to impose

a quota in the sense that a maximum amount m can be imported. Suppose that

this amount m corresponds to the amount of imports determined previously

(in question 1.8) when the tax rate was t . Determine all consequences of this

policy. Which of those two protectionist policies (levying an import duty or

imposing a quota) is less harmful to society?

Answers

1.1 A fourth approach would be to consider the contribution of each sector (in our

case agriculture, industry and services) to the final demand. In the example of

this chapter, those contributions would be 7, 41 and 52 respectively.

1.2 a = 15; b = 275; c = 10; d = 155; e = 100; f = 50.

1.3 The building as well as the dismantling of this super-generator are indeed net

losses for the economy. Remember that society manages by its work to put a

number of goods or services at its disposal. For 50 years the country which

decided to build and then to scrap a dangerous super-generator received a

reactor which was never used, and then the service (not yet in full) of removing

a device considered as dangerous. This is what society acquired, and not more.

Society did not receive the reactor, its partial removal, plus the corresponding

income. The latter was purely inflationary. It did not correspond to any welfare

for society.

1.4 This is a good example of the fact that economic welfare is to be measured

from the expenditure side only. Armaments in those years were a neces-

sity; their huge volumes replaced civilian goods and services which would

have been produced otherwise. Apart from the immense suffering due to
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the war itself, American society experienced a loss in its welfare, not an

increase.

1.5 Suppose that income per person of countries A, C and B are 120, 110 and 100

respectively, and that the corresponding coefficients of adequation of income

are 1, 0.9 and 0.95. The ranking according to income per person is preserved

after adjustment.

(1) (2) (3) (4)
Ranking Ranking according Coefficient of adequation Adjusted
according to to income per of income per person income per
democracy person to welfare person

A A : 120 A : 1 A : 120
B C : 110 C : 0.9 C : 99
C B : 100 B : 0.95 B : 95

A necessary and sufficient condition for the ranking according to income

per person to be maintained is the following. Let y be B’s income per person

and �y the (positive) difference between C’s income per person and B’s.

C’s income is then y + �y. Let x be B’s coefficient of adequation and �x
the (negative) difference between C’s coefficient of adequation and B’s. A

necessary and sufficient condition for C to retain its ranking against B is that

(y + �y)(x + �x) > xy, i.e.

�y

y
> −�x

x
− �x�y

xy
.

This condition is met in our example.

1.6 Maximizing π (qi ) = pqi − C(qi ) leads to the first-order condition π ′(qi ) =
p − C ′(qi ) = 0 and to the second-order condition π ′′

i (qi ) = −C ′′(qi ) < 0,

or C ′′(qi ) > 0. The first-order condition leads to C ′(qi ) = p. So the supply

curve qi (p) is given by:
� zero if p < c̄i = min C(qi )/qi
� the reciprocal of C ′(qi ) = p if p ≥ c̄i .

The derivative of π i = pqi (p) − C[qi (p)] with respect to p is:

dπ i
dp

= qi + p
dqi
dp

− C ′(qi )
dqi
dp

= qi + dqi
dp

[p − C ′(qi )].
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qs(p)

qD(p)

pw

pe

p

qd qe

q

E

E'
cba

qe'
Figure 1.4 The consequences of opening up an economy to foreign competition. The equi-
librium moves from E to E′; consumers gain a + b + c; producers’ reduction of profits
is a; society’s net gain is b + c.

The first-order condition p − C ′(qi ) = 0 entails π ′
i (p) = qi (Hotelling’s

lemma). This can be used to determine our definite integral:
∫ p0

c̄i

qi (p)dp = π i (p0) − π i (c̄i ) = π i (p0).

For any price p, we aggregate (we sum) all supply functions qi (p) and

obtain the supply function on the market q(p) (denoted in this chapter qS(p))

q(p) =
n∑

i=1

qi (p).

Similarly the definite integral of this aggregate curve q(p) between the min-

imum of the c̄i ’s and any value p0, which defines the producers’ surplus, is
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qd qd qe qe'' ''

d

Figure 1.5 The consequences of introducing an import duty t . Consumers’ loss is a + b +
c + d; producers gain a; the state gains d in import duties. Society’s net loss is a + b +
c + d − a − d = b + c.

the sum of the definite integrals for each firm:

∫ p0

min c̄i

q(p)dp =
n∑

i=1

∫ p0

c̄i

qi (p)dp =
n∑

i=1

π i (p0)

and is therefore the sum of the profits of all firms.

Notice that if some firms have different cost curves, it may very well hap-

pen that the minimum of their unit cost c̄i = min C(qi )/qi , and therefore the

starting point of their supply curves, will indeed differ. When aggregating (hor-

izontally) those curves, the resulting supply curve will have discontinuities.

However, the result shown above will stand.

1.7 Since foreign competitors are willing to supply the excess demand observed

at price pw, the equilibrium point moves from E to E ′ (see figure 1.4). This

benefits the consumers who gain a + b + c; a + b is the amount they save on

the initial quantity qe they bought earlier at the higher price pe; c is the surplus
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Figure 1.6 The consequences of introducing an import quota m. Consumers lose a +
b + c + d; producers gain a; d is transferred to foreign producers. Society’s net loss is
b + c + d.

they realize on the additional amount q ′
e − qe they can now buy. Producers

lose (in profits) a. Altogether, society has a net gain a + b + c − a = b + c.

The amount b corresponds to a savings of costs on quantity qe − qd ; c is the

net gain of consumers.

1.8 After the introduction of an import duty t , the price that foreign competitors

have to charge is the world price plus tax, pw + t (see figure 1.5). This enables

domestic firms to sell, at that higher price, a quantity q ′
d . Demand will shrink

from q ′
e to q ′′

e . Imports are reduced to q ′′
e − q ′

d . The equilibrium point moves

from E ′′ to E ′. Consumers lose a + b + c + d; producers gain a; the state

earns the customs duties d . In all society suffers a net loss a + b + c + d −
a − d = b + c.

1.9 When a quota m is introduced, the supply curve is displaced to the right by an

amount m when the world price level pw is reached (this is the quantity foreign

producers are allowed to sell on the domestic market: see figure 1.6). At the
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world price pw an excess demand equal to q ′
e − (qd + m̄) appears. This leads

domestic producers to increase their price to p′
w (the supply curve becomes

qS(p) + m̄, and the new equilibrium is E ′′). The amount d is now received by

foreign producers. Consumers lose a + b + c + d; domestic producers gain

a. Society’s net loss is b + c + d, higher than in the case of an import duty.

When introducing a quota, the state transfers taxes it could collect (d) to

foreign firms.



CHAPTER 2

The growth process

Economic growth is simply defined as an increase of income per person. Our aim

in this chapter is to explain, first without any formalization, the process by which

such an increase may be achieved in a given country. The necessity for a more

formal approach will emerge in a natural way.

This will lead to a precise model, from which unambiguous inferences can be

made. In particular, we will be able to answer the following questions: what are

the necessary conditions for an economy to grow? And if those conditions are met,

will income per person always increase, or will it tend toward a limit?

1 The growth process: an intuitive approach

In a given country, at the beginning of a given year t , society has two fundamental

factors of production at its disposal. First, it has inherited from the past a stock of

capital, that we may call Kt . This is the value of all equipment that has been accu-

mulated by society and preserved until that instant: it includes the value of land,

factories, machinery, transport infrastructure, and so forth. The second production

factor is labour, which we will always consider as a given proportion of population;

we will thus assume that a measure of this labour force is the population itself,

denoted Lt . It is endowed at time t with a given technological knowledge, also

inherited from the past.

Together with the capital at its disposal, this work force will produce within a

given time span (a year for instance) an output which we call the gross domestic

product. Part of this product is used to replace that part of the capital stock that

has decayed within the time span considered; that part is usually referred to as the

depreciation of capital. The remainder is called the net domestic product, to which

corresponds an equal income accruing to society. It is denoted Yt , and called total

income. Note that capital Kt and labour Lt are stocks, that is amounts observed at

one point of time, in our case at the beginning of the first day of year t . On the other

hand, Yt is a flow that accrues to society within a time span, for instance in one year.

Yt is the flow of $ generated during year t . There is a definite relationship between

29
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Lt Lt

Ct

Yt = F(Kt, Lt)

Kt

Lt+1

Ct+1

Yt+1 = F(Kt+1, Lt+1)

Kt+1

ΔLt

ΔYt

It = ΔKt

Kt

year t year t+1

ΔKt

{

It+1 = ΔKt+1

Figure 2.1 An illustration of the growth process. In year t , two factors of production
(a capital stock of size Kt and a labour force Lt ) are required to produce a net amount
of output Yt – net of depreciation of the capital stock. Part of this output is consumption
Ct ; part is net investment It = ΔKt which adds itself to the existing stock Kt . A capital
stock Kt+1 = Kt + ΔKt is thus available in year t + 1, jointly with a labour force which
may have increased by ΔLt . Together, those factors can be combined to yield a product
Yt+1, higher than Yt by ΔYt , and the process might be repeated.

the amounts Kt and Lt , on the one hand, and the production Yt , on the other. That

relationship is given by a two-variable function called a production function, and

denoted F(Kt , Lt ). More will be said later about the precise characteristics of that

function. For the time being, we will just suppose that it depends positively upon

each variable Kt and Lt , so that ∂ F/∂Kt > 0 and ∂ F/∂Lt > 0.

During that year t , the net domestic product Yt is divided essentially into two

parts: the first part is made of consumption goods and services (Ct ). By far it

constitutes the larger part (often 85%) of Yt . This is not surprising, since the main

purpose of economic activity is to produce goods and services that are of immediate

use to society. The remainder of the product, Yt − Ct , is made of investments It ,

by which we mean new capital goods that are added to the capital stock in existence

at the beginning of year t (see figure 2.1).
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By the end of year t (equivalently, at the beginning of year t + 1) two major

events related to the factors of production have happened in this economy. First,

the amount of capital at society’s disposal has increased by an amount equal to

the investment just mentioned, It ; on the other hand, the labour force may have

increased within that same year. So at the beginning of year t + 1, Kt+1 and Lt+1
are larger than Kt and Lt , respectively. In consequence, Yt+1 = F(Kt+1, Lt+1)

will be larger than Yt .

Previously, we had defined growth as an increase of income per person. Now

the following questions arise: will Yt+1/Lt+1 be larger that Yt/Lt ? In other

words, do we have a growth process? Under which conditions will that be the

case? And will income per person increase forever, or will it tend toward a limit?

The reader at this point senses that in order to answer these all-important questions,

we need to be much more precise with our hypotheses; namely, we should know

the characteristics of the production function F(K , L), and the way K and L
evolve through time.

2 A more precise approach: a simple model
of economic growth

2.1 Hypotheses

We will now rely on four simple hypotheses. All of them are important in their

own right.

2.1.1 Hypothesis regarding the production function

We suppose here that the production function Y = F(K , L) is homogeneous of

degree one. It implies that if both K and L are multiplied by a positive number λ,

Y is then multiplied by λ. So we have:

λY = F(λK , λL).

For instance, if K and L are multiplied by λ = 1.3 (K and L both increase

by a growth rate λ − 1 = 30%), then Y is multiplied by λ = 1.3 (it increases in

the same proportion). This simple hypothesis is justified by countless empirical

observations.

2.1.1.1 Geometric construction of production functions
homogeneous of degree one
Multiplying K and L by λ means that in a horizontal plane (K , L) we are moving

from any given point (K0, L0) along a ray joining the origin to (K0, L0), either

away from the origin (if λ > 1), or toward the origin (if λ < 1). If the factors

increase by 30%, for instance, we move from A to B (see figure 2.2a). If, on
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L
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Figure 2.2a From A we move to B with t = 1.3 (K and L both increase by 30%); we move
from A to C with t = 0.8 (K and L decrease by 20%).

the other hand, λ = 0.8, K and L decrease by 20% and we move from A to C .

Now in the 3-dimensional space (Y, K , L) where we can represent the production

function, homogeneity of degree one means that we will also move in the same

proportions along a ray joining the origin to point (Y0, K0, L0).

This property can be used to construct geometrically a production function

that is homogeneous of degree one. Consider any curve γ in space (Y, K , L)

that would belong to some (unknown) surface Y = F(K , L). Such a curve is

represented by the undulating curve in figure 2.2b. Now join the origin to that

curve by a series of rays. We will be generating an undulating surface which

will be homogeneous of degree one. We can see, indeed, that any point of the

surface constructed in this way has the aforesaid properties: moving away from

any point (K0, L0) by a factor λ will change Y by the same factor. We chose



A simple model of economic growth 33

K

Y

K0

L0

L

B

A

C

c

a

b

K

Y

K0

L0

L

C

A

c

a
τ

Figure 2.2b If the production function is homogeneous of degree one, Y moves also along
a ray from the origin: if K and L are multiplied by t , Y is also multiplied by t .

this example to stress the fact that a homogeneous of degree one function may

very well be concave and convex on various intervals in the direction of one of

the axis, although both in theory and in practice it is usual to consider concave

production functions, exhibiting diminishing marginal productivities, i.e. negative

second partial derivatives: ∂2Y/∂K 2 < 0 and ∂2Y/∂L2 < 0.1

A particular case is of interest: had our waving curve γ been a straight line,

we would have generated a plane through the origin and our production function

would have been a linear function. We can thus see immediately that a linear

function is a homogenous of degree one function, but that the converse is not

necessarily true. In other words, linearity is just a particular case of homogeneity

of degree one.

2.1.1.2 Properties of homogeneous functions
A fundamental property of homogeneous functions is summarized in Euler’s the-

orem, which applies to the general class of functions homogeneous of degree m.

Those functions are such that if K and L are multiplied by λ (λ > 0) then Y is

multiplied by λm . In other words, a function Y = F(K , L) is homogeneous of

degree m if and only if

λmY = F(λ K , λ L).

1 An important point to note: ∂2Y/∂K 2 � 0 and ∂2Y/∂L2 � 0, although necessary conditions

for concavity of Y = F(K , L), are not sufficient; a necessary and sufficient condition for such

concavity is that, in addition, (∂2Y/∂K 2)(∂2Y/∂L2) − [∂2Y/(∂K∂L)]2 � 0 (see Appendix 3 of

chapter 7).
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Homogeneity of degree m = 1 is just the particular case we have just seen, and

λY = F(λ K , λ L). In the general case, Euler’s theorem states that

mY = ∂ F

∂K
(K , L)K + ∂ F

∂L
(K , L)L (1)

(the proof is offered as exercise 2.1 at the end of this chapter).

In the case of homogeneity of degree one, Euler’s theorem implies the identity

Y = ∂ F

∂K
(K , L)K + ∂ F

∂L
(K , L)L . (2)

This identity is of great importance; we will use it often. In particular it entails

1 = ∂ F

∂K
(K , L)

K

Y
+ ∂ F

∂L
(K , L)

L

Y
(3)

or

1 = eY,K + eY,L (4)

where eY,x designates the partial elasticity2 of Y with respect to x ; eY,x ≡ ∂Y
∂x

x
Y =

∂ log Y
∂ log x . Equivalently, it implies that if the remuneration rate of each factor is equal

to the factor’s marginal productivity, the shares of each factor in the total product

add up to one, as they should. Now why should the remuneration rate of each

factor be equal to the factor’s marginal productivity? The reason comes from

profit maximization on the producers’ part, as can be easily shown. If producers

are profit maximizing, they want to choose K and L such that

Max
K ,L

π (K , L) = pF(K , L) − q K + wL

where q is the nomimal rental rate of capital, and w is the nominal wage rate. A

first-order condition is

∂π

∂K
= pF ′

K − q = 0

∂π

∂L
= pF ′

L − w = 0

A second-order condition is that π is concave in K , L . This is indeed the case

since π (K , L) is an affine transformation of the concave function F(K , L).

From pF ′
K − q = 0 we can write F ′

K (K , L) = q/p; this is a fundamental

equality: the marginal productivity of capital should be equal to the real rental rate

of capital (q/p).

An important point is to be noticed: homogeneity of degree one of

F(K , L), or Euler’s theorem (equation (2)) and the above equalities imply that

2 For a definition and properties of the concept of elasticity, see appendix 1.
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pY = q K + wL , i.e. that the total product is exhausted by the remuneration of the

factors of production – equivalently that the firm’s profits are maximized although

they are equal to zero. This is the outcome of perfect competition. Indeed, with

such a hypothesis – that we will carry throughout – any profit on a given market

is supposed to induce new firms to enter that market, driving down the price to an

equilibrium level corresponding to zero profit.

Average and marginal productivities as well as elasticities of homogeneous of

degree one production functions have some very useful properties which can be

briefly reviewed here.

If the number of variables of the function is n, these quantities are just functions

of n − 1 variables (see exercise 2.2). If n = 2 (our case), they depend just on one

variable. For instance, the all-important income per person variable, y = Y/L , is

a function of the sole variable r = K/L , and so are the marginal productivities

with respect to K and L , and the partial elasticities.

Indeed, if Y = F(K , L) is homogeneous of degree one, we have tY =
F(t K , t L) and we can replace t by 1/L . Then

Y

L
≡ y = F

(
K

L
, 1

)

= f (r ). (5)

From a picture of the surface representing the function F(K , L), we can imme-

diately deduce the curve representing income per person y. Indeed, if L = 1,

F(K , 1) = F(K/L , 1) = y. So y is just the section of the surface by a plane

perpendicular to the L axis, at point L = 1. For instance, if Y = KαL1−α (this

power function is called the Cobb–Douglas function), y = Y/L = KαL−α =
(K/L)α = rα , which also can be obtained by setting L = 1 and replacing K and

Y by r and y respectively. Figure 2.2c give such a production function and its

vertical section at point L = 1.

Also,

Y = L f (r );

this shows that any production function homogeneous of degree one can be

obtained by simply multiplying any one-variable function f (r ) by L . But a caveat

will soon be in order.

Let us now consider the marginal productivities. We have:

∂Y

∂L
= f (r ) + L f ′(r ) ·

(

− K

L2

)

= f (r ) − r f ′(r ) = y − r y′, (6)

using the short-hand notation f (r ) = y, f ′(r ) = y′, which will become very

useful.
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K

Y

1
L

Y = F(K, 1)

Figure 2.2c A Cobb–Douglas function Y = KαL1−α and its vertical section Y = F(K , 1)
giving y = f (r ) = rα.

Similarly

∂Y

∂K
= L f ′(r ) · 1

L
= f ′(r ) = y′. (7)

The partial elasticities are

eY,L = ∂Y

∂L
· L

Y
= y − r y′

y
= 1 − r y′/y (8)

and

eY,K = ∂Y

∂K

K

Y
= y′ · r/y (9)

(Note that these elasticities do add up to one, as they should because of Euler’s

theorem).

It can be very useful to represent geometrically all these concepts. In

figure 2.2d, we have drawn a curve y = f (r ) with positive and decreasing marginal

productivity of capital (the second derivative is, from ∂Y/∂K = f ′(r ), equal to

∂2Y/∂K 2 = f ′′(r )/L . Hence for ∂2Y/∂K 2 to be negative it is necessary and

sufficient that f ′′(r ) be negative). Notice that we have also chosen f (0) > 0,

which does not preclude homogeneity of degree one of F(K , L) (any function
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Figure 2.2d A geometrical construction of the marginal productivities and partial elas-
ticities if F(K , L) is homogeneous of degree one. At point (r, y), ∂Y/∂K is just the
slope of the curve y = f (r ), i.e. y′; ∂Y/∂L is the length y − r y′. Normalizing y to one
on the vertical axis to the left of the diagram yields the elasticities eY,K = r y′/y and

eY,L = ∂F
∂L · L

Y = ∂F
∂L �y = (y − r y′)/y = 1 − r y′/y.

y = f (r ) corresponds to such a function; indeed, Y = Ly = L f (r ) is homoge-

neous of degree one).

We know that the marginal productivity of capital, ∂Y/∂K , is just y′ = f ′(r ),

i.e. the slope of the curve at any point (r, y). Consider the point of intersection

between the tangent to the curve and the ordinate. On the vertical axis, the distance

between the height f (r ) = y and this point is the differential f ′(r )r = r y′. So the

marginal productivity of labour, ∂Y/∂L = y − r y′, is the ordinate of that point.

The partial elasticities eY,K and eY,L are represented on the vertical axis on the left

of the diagram, where y has been normalized to 1. The elasticity eY,K = y′ · r/y
just becomes r y′, and eY,L is 1 − r y′.

A caveat is now in order. As we have seen, any curve y = f (r ) in (r, y) space

corresponds to a production function Y = F(K , L) homogeneous of degree one.

Care must be exercised, however, when drawing such a function. Drawing an

increasing concave curve f (r ), for instance, will not guarantee that the marginal

productivity of labour will be positive (see exercises 2.2 and 2.3). Not only have we

to be careful to have ∂Y/∂L > 0, but the partial elasticities eY,K and eY,L should

have magnitudes observed in reality – those are about 1/3 and 2/3, respectively.

We will understand the importance of this caveat when we analyse in section 2.2.3

the stability properties of the equation of motion.
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2.1.2 Hypothesis regarding the investment behaviour of society

We will suppose that society invests – and therefore saves – each year a constant

proportion s of its income Y . Investment, denoted I, is the rate of increase of the

capital stock. So we have

I ≡ d K

dt
= sY. (10)

Later we will ask the question: how much should a nation save? We will want

to determine an optimal savings rate, according to an optimality criterion. This

will be at the core of the theory of optimal growth. For the time being, we just take

the savings rate as exogenous.

2.1.3 Growth of population

Population will be supposed to be increasing at the constant rate n. So

1

L

d L

dt
= n, (11)

or, equivalently (solving the above differential equation with the initial condition

L(0) = L0),

L(t) = L0ent . (12)

2.1.4 Technical progress

At this introductory stage, we will suppose that the know-how of the population

is constant through time: technological progress will be introduced in the model

only at a later stage. Let us mention here that it will have the effect of adding a

third variable, time, to the arguments K and L of the production function.

2.2 The equation of motion of the economy

We are now in a position to obtain the time path of the economy, as expressed

by its central variable, income per person, which will be denoted y ≡ Y/L . The

analysis is very simple because the evolution of y depends upon one variable only,

the capital–labour ratio r = K/L , as we have seen earlier.

2.2.1 A fundamental property

We can now immediately show that income per person y will increase (decrease,

remain constant) if and only if the capital–labour ratio r increases (decreases,

remains constant). This is also due to the very fact that the production function

is homogeneous of degree one and that the marginal productivity of capital is
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positive. Remember that from equation (7) we have

∂ F

∂K
= L f ′(r ) · 1

L
= f ′(r ). (7)

This relationship is fundamental. It tells us that the marginal productivity of

capital is equal to the derivative of income per person with respect to the capital–

labour ratio. Since we will always consider production functions such that their

partial derivatives (and in particular ∂Y/∂K > 0) are strictly positive, it implies

that y′ = f ′(r ) > 0. So the sign of variation of y will always be that of r , and in

order to know whether y increases or decreases, it suffices to focus on the possible

variations of r . Formally, we have y = f [r (t)] and ẏ = f ′(r )ṙ ; since f ′(r ) > 0,

y will increase (decrease, stay constant) if and only if r increases (decreases, stays

constant).

2.2.2 Deriving the equation of motion of the economy

We are thus led in a natural way to consider the rate of change of r through time,

ṙ = dr/dt :

ṙ = d

dt

[
K (t)

L(t)

]

= K̇ L − K L̇

L2
= K̇

L
− nr (13)

(since (1/L)d L/dt = n). We know that K̇ = sY and that sY/L = sy = s f (r ). So

r (t) is governed by the differential equation

ṙ = s f (r ) − nr. (14)

This is our first important equation. It can be called the fundamental equation

of positive, or descriptive growth theory, because it is the equation that governs the

movement of r (t), which in turn determines the time path of income per person,

equal to y(t) = f [r (t)].
Notice that the right-hand side of (14) does not depend explicitly upon time t ;

this allows for a geometrical representation of ṙ as a function of r . Once we know

f (r ), s, and n, we can immediately draw ṙ as the difference between s f (r ) and nr .

Suppose for instance that the production function is Cobb–Douglas, of the type

Y = AKαL1−α

(we have set K0 = L0 = 1, and have considered a multiplicative constant A to

allow later for the introduction of technical progress).

Then y = Arα , and the equation of motion is

ṙ = s Arα − nr. (15)

This is a Bernoulli differential equation which can easily be solved. What is

notable here is that we can see immediately, by constructing geometrically the
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right-hand side of (15), under which conditions r – and therefore y – will increase

or decrease, and whether they will ultimately tend toward fixed values. We do this

in figure 2.3; we represent first y = f (r ) = Arα , (where we set A = 1), a power

function such that its slope tends to +∞ when r → 0, and to 0 when r → ∞.

Then we take s f (r ), with s = 0.1 for instance. Finally, we build the ray nr with

n = 0.015.

A number of conclusions immediately emerge, whatever the (positive) values

of the parameters A, s and n we have chosen for our geometrical construction.

First, sy (= s f (r )) will remain a power function with the same characteristics as

those of f (r ): the slope s f ′(r ) tends to infinity when r → 0, and tends to zero when

r → ∞. Hence the ray nr defined for strictly positive values of r will intersect

once and only once the curve s f (r ), at a point r∗ (defined by s f (r∗) = nr∗).

For values of r smaller than r∗, ṙ > 0 and r increases toward r∗; the contrary

is true if r > r∗; then ṙ < 0 and r decreases towards r∗. Whatever the initial

value of r (0) (we have chosen in the diagram two such values, denoted r0 and

r ′
0), we can see that r will converge toward a unique value r∗. We then say that

there exists a globally stable equilibrium value of r (denoted r∗). This implies

that income per person will ultimately tend toward y∗ = f (r∗); investment per

person will tend toward s f (r∗) and consumption per person will go to the limit

c∗ = y∗ − sy∗ = (1 − s)y∗.

The simple geometric representation of the differential equation carries a wealth

of information that we will now exploit to the fullest. From the properties of power

functions, we can see immediately that, if the initial value r0 is sufficiently small

(as depicted on the diagram 2.3a) the slope of ṙ (t) is increasing, going through a

maximum3 (at point r̄ ) and finally decreasing toward zero. This implies that the

time path r (t) is convex until r̄ , goes through an inflection point at r̄ , and ultimately

becomes concave. On the other hand, we can see that if the initial value of r (t) is

above r∗, r (t) decreases at a speed which is itself decreasing in absolute value,

implying a convex time path r (t) throughout.

There is however one question that the phase diagram cannot answer. Will

the equilibrium value r∗ ever be reached? Just looking at the diagram, we might

be tempted to say that, with r < r∗ for example, as long as r∗ is not reached,

the positive speed of r will force it to reach r∗. On the other hand, we might

argue that when r approaches r∗ its speed becomes so very small that its advance

toward r∗ is hampered in such a way that r∗ will never be reached. This is

where the phase diagram fails to give us an answer, and why we must solve

equation (15).

3 This maximum is reached for dṙ/dr = s f ′(r ) − n = 0; in the case of figure 2.3a, it is r =
(sα/n)1/(1−α) ≈ 2.7. Because of scaling on figure 2.3b, the corresponding inflection point of

the lower trajectory, close to the origin, is difficult to pinpoint.
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Figure 2.3a The phase diagram in the case of the Cobb–Douglas function Y = K 0.3L0.7;
s = 0.1; n = 0.015. The equilibrium capital–labour ratio is r∗ = (s/n)1/(1−α) ≈ 15.02.

This equation, of the Bernoulli type, can be solved in a number of ways; we

will indicate that which seems to be the easiest.4 We first transform (15) into a

linear differential equation through the change of variable x = r1−α .

Divide both sides of (15) by rα;

r−α ṙ = s A − nr1−α. (16)

4 The equation bears Bernoulli’s name because we owe its solution to Johann Bernoulli who found in

fact two ways to solve it (1697). The first one is described above. The second consists in look-

ing for a solution in the form of a product y(t) = u(t)v(t), following the same idea he had for

solving the first-order linear equation (see appendix 2). On this, see Ernst Hairer and Gerard

Wanner, L’analyse au fil de l’histoire, Springer Verlag, Berlin, Heidelberg, New York, 2000,

p. 140.
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Figure 2.3b The actual time paths r (t; r0) for initial values r0 ranging from 1 to 29 by
steps of 4.

Observe that the derivative of x with respect to time is

ẋ = (1 − α)r−α ṙ ; (17)

using the change of variable x = r1−α and (17) yields

1

1 − α
ẋ = s A − nx (18)

or

ẋ + n(1 − α)x = s A(1 − α) (19)

the solution of which is immediate (see appendix 2):

x(t) = Ce−n(1−α)t + s A

n
(20)
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where C is a constant of integration which can be identified as follows: when

t = 0, r (0) = r0 and x(r (0)) = x0 = r1−α
0 . So we have

x0 = C + s A

n
, (21)

and

C = r1−α
0 − s A

n
. (22)

Replacing this value of C into (20) and x(t) by [r (t)]1−α , we finally get:

r (t) =
[(

r1−α
0 − s A

n

)

e−n(1−α)t + s A

n

] 1
1−α

. (23)

The equilibrium value of r (t) can be determined by setting ṙ = 0 in (15). This

yields

r∗ =
(

s A

n

) 1
1−α

. (24)

We can see from (23) that this value will never by reached. Only at infinity does

r (t) have r∗ as a limiting value. We have limt→∞ r (t) =
(

s A
n

) 1
1−α . In turn we can

derive immediately the limiting value of y = f (r ). It is y∗ = limt→∞ f [r (t)] =
A

(
s A
n

) α
1−α . Notice how this equilibrium value of income per person is modified

when any of the parameters A, α, s or n undergoes a change. y∗ is an increasing

function of A, s and α, and a decreasing function of n, which of course makes

good economic sense since A and α are efficiency parameters, and increasing the

savings rate implies more income in the future.

2.3 An economic interpretation of the equation of motion

The phase diagram is highly useful in understanding how the economy will move,

given any initial conditions. However, we have not yet given the economic signif-

icance of each of its constituent parts, i.e. of each part of the right-hand side of the

equation of motion (14). Once we do this, we will understand why an economy

behaves as it does.

We start with the easiest part of the right-hand side of (14), sy or s f (r ). We know

that sy = sY/L . Since sY is investment, sY/L = s f (r ) is simply investment per

person, which is itself an increasing function of r . The second part of the right-hand

side, nr , is a wee more tricky to read.

Suppose we want to increase K such that r (= K/L) remains constant. If the

growth rate of L is n, then the rate of increase of K should be nK ; this is the
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investment required for K/L to stay constant; so nr = nK/L is the investment

per person necessary to maintain r constant.

With more formality, we could say: if r = K (t)/L(t) is to remain constant, we

must have

ṙ

r
= K̇

K
− L̇

L
= K̇

K
− n = 0 (25)

or

K̇ = nK (26)

and hence the investment per person necessary and sufficient to achieve that goal

is: K̇/L = nK/L = nr .5

So the ray from the origin nr is the investment per person which is both nec-

essary and sufficient to maintain r constant. It is then clear that r will increase

(decrease) if and only if the actual investment per person s f (r ) is higher (lower)

than the investment per person nr needed to keep r at its current level.

2.4 The speed of convergence toward equilibrium

While it is clear from the phase diagram and its economic interpretation that the

capital–labour ratio and the corresponding income per person will tend toward

equilibrium, we have no clue as to the speed at which this will come about. In

particular we have no idea of the magnitude of the growth rate of those vari-

ables. We only know that both growth rates are linearly dependent and that they

are decreasing : since y = rα , ẏ/y = αṙ/r = α(srα−1 − n). In order to know

more about the speed of convergence, we must put some numbers on the analytic

solution (23).

The surprise is how slow the convergence is. Suppose that we normalize A to

1, and that s = 0.1; n = 0.015; α = 0.3. The resulting equilibrium value is r∗ =
(s A/n)1/(1−α) ≈ 15.03. Figure 2.3b gives the actual time paths corresponding to

values of r0 ranging from 1 to 27, by steps of 4. Consider for instance an initial

value r0 = 9. It would take about 174 years for the capital labour ratio to grow

to r = 14. Such slow growth of r , implying even slower growth rates of income

per person (see figure 2.3c) does not square with facts: in these last 210 years, the

American economy has grown at a real yearly average rate of 2.1% with a standard

deviation of 5.3% – see chapter 6.6 Therefore growth is definitely driven by other

forces than the mere increase of a homogeneous stock of capital per person; one

5 We can verify this result by considering equation (14) itself. In the right-hand side, sy and nr are

measured in the same units; and sy = nr if and only if ṙ = 0; so nr is investment per person if

and only if the capital–labour ratio is constant.
6 We will be careful to make the distinction between the average of 215 yearly growth rates, and

the long-run, compounded rate that transforms a given value into a new one 215 years later. Both

rates are random variables, and we will have a close look at their links in chapter 6.
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Figure 2.3c The growth rates of income per person corresponding to the time paths of
r (t; r0). The upper curve corresponds to r0 = 1 and y0 = 1.

of those forces is technical progress, to be introduced in section 3 of this chapter.

Before doing this, however, we should discuss other shapes of production functions

and their impact upon the dynamics of the economy.

2.5 Alternate production functions and stability analysis

From the phase diagram just depicted in figure 2.3a, we can immediately see

the all-important dependency of the evolution of the economy on the shape of

the production function. For instance, we might think that multiple equilibrium

points (r∗, f (r∗)) are possible, some being stable and others unstable. Figure 2.4a

presents some of those possibilities.
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Figure 2.4a The production function Y = F(K , L) can be homogeneous of degree one
and be concave and convex on various intervals, entailing both concavity and convexity for
f (r ). This may result in a number of equilibrium points, some stable (as r∗

1 ), some unstable
(as r∗

2 ). However, an unstable point implies a negative marginal productivity of labour and
an income share of capital larger than one; such configurations are therefore dismissed
(see text and figure 2.4b).

We will show however that such locally unstable points are not admissible

because they imply a negative marginal productivity of labour at those points

(throughout our analysis we suppose as before that s and n are constants).

Theorem 1 An unstable equilibrium point (r∗, f (r∗)) such that s f (r∗) =
nr∗ and s f ′(r∗) > n implies that the marginal productivity of labour is negative
at that point.

Proof If s f ′(r∗) > n, there is a neighborhood around r∗ such that to the

left of r∗ we have s f (r ) < nr , while to the right of r∗, s f (r ) > nr , entailing
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Figure 2.4b An unstable equilibrium point implies a negative marginal productivity of
labour. At that point r∗

2 the partial elasticity of production with respect to capital is eY,K =
r∗
2 /α > 1; because of Euler’s theorem, eY,L must therefore be negative, implying F′

L < 0.

disequilibrium. Furthermore, if s f ′(r∗) > n and s f (r∗) = nr∗, then n =
s f (r∗)/r∗ and s f ′(r∗) > s f (r∗)/r∗, implying f (r∗) − r∗ f ′(r∗) = ∂ F

∂L (r∗) < 0.

Therefore such a point should be dismissed. We are then led to the following

important theorem.

Theorem 2 If a neoclassical economy has an equilibrium point (r∗, f (r∗)),

this equilibrium is stable and unique.

Proof
∂ F
∂L (r ) > 0 for any r implies ∂

∂L (L f (r )) = f (r ) − r f ′(r ) > 0 and

r f ′(r ) − f (r ) < 0. If an equilibrium point (r∗, f (r∗)) exists, its abscissa r∗ is
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given by the solution of

ṙ

r
= s f (r )

r
− n = 0

or s f (r )/r = n. The slope of s f (r )/r is

d

dr
[s f (r )/r )] = s

r2
[r f ′(r ) − f (r )].

Since r f ′(r ) − f (r ) < 0, the slope of s f (r )/r is negative everywhere, including

at r∗. If point (r∗, f (r∗)) exists, it is therefore unique, and it is a stable equilibrium

point.

We therefore conclude that with the hypotheses an economy cannot have an

unstable equilibrium point, and that if an equilibrium point exists, it is stable and

unique.

It is a good point to emphasize that Robert Solow, in his fundamental “Con-

tribution to the Theory of Economic Growth” had very precisely described the

evolution of income per person in three major cases:

(a) the so-called Harrod–Domar, or Walras–Leontief case: Y = F(K , L) = min(
K
a , L

b

)

(b) the Cobb–Douglas case: Y = AKαL1−α

(c) a third case: Y = (aK 1/2 + L1/2)2.

We have already covered the second case as an illustration of the growth model.

We will now take up cases (a) and (c). Their outcomes are fundamentally different.

While case (a) nearly always ends up in disaster for the economy, case (c) holds

the promise of a possible ever-lasting growth of income per person.

2.5.1 The Walras–Leontief, or Harrod–Domar case

Suppose that the production function corresponds to the corner of a pyramid: it

will be given, analytically, by the minimum of two planes, each of those planes

passing through the axes L and K . Let 1
a K be the plane going through axis L; it has

slope 1
a in the direction of K and slope 0 in the direction of L . Let 1

b L be the plane

going through axis K ; its slope in the direction of L is 1
b ; its slope in the direction of

K is zero. Both planes intersect along an edge whose projection on the horizontal

plane (K , L) is given by the set of points (K , L) such that K
a = L

b , i.e. it is the

ray K = a
b L (see figure 2.5a). Also, the analytic expression of the corner of the

pyramid is

Y = min

(
K

a
,

L

b

)

. (27)
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Figure 2.5a The Walras–Leontief Production Function

Y = min
(

K
a
,

L
b

)

and its section Y = min( K
a , 1

b ) giving y = min(r/a, 1/b).

The function is homogeneous of degree one; multiplying K and L by λ will

result in Y being multiplied by λ. From a geometrical point of view, the corner

of a pyramid may be considered as generated by a ray from the origin, touching

everywhere any of the curves on the surface – such as, for instance, any horizontal

section.

Let us now consider our central variable, income per person y = Y/L . If we

divide each variable K , L by L , we obtain

Y

L
= y = min

(
K/L

a
,

1

b

)

= min

(
r

a
,

1

b

)

, (28)

In (r, y) space this is the minimum between a ray from the origin with slope 1/a
and a horizontal line at height 1/b. This result could have been obtained imme-

diately from a geometrical point of view by applying a result mentioned earlier:

for any production function homogeneous of degree one, income per person is the

vertical section of the surface F(K , L) at point L = 1 of the L-axis. Considering

figure 2.5b, we get indeed the kinked line y = min(r/a, 1/b).
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Figure 2.5b Income per person y = min
(
r/a, 1/b

)
in the case of the Walras–Leontief

production function Y = min
(

K
a
,

L
b

)

.

The equation of motion of the economy thus becomes

ṙ = sy − nr = s min

(
r

a
,

1

b

)

− nr

= min
( s

a
r,

s

b

)
− nr. (29)

Since the equation is autonomous (independent of time), the qualitative

behaviour of the solutions is easy to derive from the phase diagram. Three

cases must be distinguished, corresponding to various values of the population

growth rate: n1 > s/a; n2 = s/a; n3 < s/a. In figure 2.5c, the upper diagrams

are the phase diagrams corresponding to each of those situations. The lower dia-

grams are the time paths r (t, r0) corresponding to various initial values of the

capital–labour ratio r0.

Consider for instance case n1 > s/a. This implies ṙ = min
(

s
a r, s

b

)
− n1r <

0; the growth rate of the population n1 is so high that, for any capital–labour ratio

r , the investment per person necessary to maintain r constant (n1r ), is always
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Figure 2.5c The phase diagrams and the corresponding time paths r (t, r0) in the Walras–
Leontief case

y = min
(

r
a
,

1
b

)

; ṙ = sy − nr = min
( sr

a
,

s
b

)
− nr.

higher than the actual investment per person sy = min
(

s
a r, s

b

)
. Therefore r will

be diminishing forever. We will now describe the motion of r (t) through time.

If r0 > a/b, r (t) will first be governed by the differential equation

ṙ = s

b
− n1r (30)

whose solution is, with initial condition r (0) = r0:

r (t) =
(

r0 − s

n1b

)

e−n1t + s

n1b
. (31)

At a time t1, r (t) reaches a/b; t1 is the solution of r (t) = a/b; it is equal to

t1 = − 1

n1
log

( a
b − s

n1b

r0 − s
n1b

)

(32)
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(we are sure that t1 > 0 because r0 > a/b and therefore the parenthesis is smaller

than one).

From t1 onward, r (t) is governed by the second differential equation

ṙ (t) =
( s

a
− n1

)
r (t) (33)

whose solution is, using the initial condition r (t1) = a/b,

r (t) = a

b
e
( s

a −n1

)
(t−t1)

. (34)

Hence r (t) will decrease toward 0 at a (negative) growth rate equal to s/a − n1.

All other cases can be analysed in a similar way (see exercises). Only if n ≤ s/a
can we expect r to converge toward a positive value (a/b if n2 = s/a, or s

n3b if

n3 < s/a), as can be seen from the diagram.

2.5.2 The “third” case

In 1956, Robert Solow had chosen to analyse a production function which consti-

tuted a “third example”; it was

Y = (aK 1/2 + L1/2)2. (35)

Income per person is now given by Y/L = y = (ar1/2 + 1)2 (this is obtained

by factoring L1/2 in the parenthesis of (35)), and the marginal productivity of

capital is:

f ′(r ) = a(a + r−1/2).

Hence limr→∞ f ′(r ) = a2. Contrary to what we noted in the first two produc-

tion functions we examined (Cobb–Douglas and Walras–Leontief) the marginal

productivity of capital does not tend to zero when r → ∞. It tends toward the

constant a2. On the other hand, limr→0 f ′(r ) = +∞.

The slope of f (r ) starts at +∞ and always decreases towards a2 when r
increases; thus the slope of s f (r ) decreases toward sa2. If it happens that sa2

is equal to or larger than n, s f (r ) will never reach the level of nr : investment

per person (s f (r )) will always be larger than investment per person required to

maintain r constant (nr ). We will always have:

ṙ = s f (r ) − nr > 0.

On the other hand, if s < n/a2, there will be an equilibrium point. Therefore,

two cases must be distinguished when drawing the phase diagram: s < n/a2 and

s ≥ n/a2 (figures 2.6a and 2.6b). Consider first the case s < n/a2; then there

exists an equilibrium value r∗, which is the solution of

ṙ = s(ar1/2 + 1)2 − nr = 0 (36)
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Figure 2.6a For s0 such that s0 < n/a2, a stable equilibrium point r∗ exists: r∗ =
[

1

(n/s)1/2 − a

]2

.

equal to

r∗ =
[

1

(n/s)1/2 − a

]2

, (37)

and, whatever the initial conditions, income per person will converge toward

y∗ = (a
√

r∗ + 1)2. (38)

On the other hand, if the investment ratio s is sufficiently high (if s ≥ n/a2), the

economy will grow forever. We will always have

ṙ = s f (r ) − nr > 0. (39)

Note that the differential equation

ṙ = s(ar1/2 + 1)2 − nr (40)

does not allow a solution in closed form; however, numerical methods are available

today in softwares such as MAPLE 9. We will have recourse to those in chapters 9

and 10.
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Figure 2.6b For s1 such that s1 ≥ n/a2, no equilibrium point exists, r increases
indefinitely.

For the time being, observe that we have here a possibility of permanent growth

without introducing technical progress in the model. Our task is to understand

why the perspectives of the economy systematically improve when we go from

the Walras–Leontief case to the Cobb–Douglas, and finally to the “third case”.

To that effect, we now introduce the function which generalizes these three

cases. We owe it to Ken Arrow, Hollis Chenery and Bagicha Minhas and Robert

Solow (1961); it is the “constant elasticity of substitution (or CES) production

function”. We must first define the concept of the elasticity of substitution, indicate

its fundamental properties, and then show how the CES function was derived. This

will be done in chapter 3.

3 Introducing technical progress

Until now we have considered mainly two possible outcomes for the economy.

Either the capital–labour ratio r and income per person y = f (r ) tend toward

equilibrium values r∗ and y∗ = f (r∗), or they tend to increase for ever. (Here we
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dismiss the case of the Walras–Leontief production function). Consider, indeed, the

Cobb–Douglas case: we have seen that in the limit, whatever the initial conditions

of the economy, limt→∞ r (t) = r∗ = (s A/n)1/(1−α). In that case, it means that

in the limit K (t) grows at the same rate as L(t), i.e. its ultimate growth rate is n.

In turn, since Y/L is constant at y∗ = f (r∗), Y grows also at rate n. (There would

be another way of showing this: if K and L grow at the same rate n, Y grows at

the same rate because Y = F(K , L) is homogeneous of degree 1).

On the other hand, we have seen in the special “third example” that, when

Y = (aK 1/2 + 1)2, there were possibilities for r and y either to tend toward

limits (given by equations (37) and (38), respectively; case s < n/a2) or to grow

indefinitely (case s ≥ n/a2). In this last case, it means that total income will always

increase more rapidly than population. But of course, such a favourable outcome

is much more commonly due to another factor, now to be introduced, which is

technical progress.

Suppose that, for some reason, capital and labour are fixed. Capital is fixed if

gross investment is just equal to depreciation. In our text we have always con-

sidered net investment, net of depreciation; so in our terms the capital stock will

be constant if (net) investment is zero. Labour is constant if n = 1
L

d L
at = 0. In

those circumstances, it is quite possible that income will still grow, due to the

fact that both factors of production are, over the years, used in a more efficient

way.

It is logical to imagine that in fact both K and L may be used in an increas-

ingly efficient way. One possible formulation of the effect of technical progress

is that each factor is multiplied by functions of time that may increase through

time at some growth rate gK and gL , respectively; gK and gL could be con-

stants, or be themselves functions of time. We say in such cases that technical

progress is “capital-augmenting” and “labour-augmenting”. Supposing that the

growth rates gK and gL are constants, the formulation of the production function

would be

Y = F
[

K egK t , LegLt
]
. (41)

As an example, consider that F is of the Cobb–Douglas type. We would have

Y = A(K egK t )α
(

LegL t
)1−α

(42)

Let us suppose that A = 1 and gK = 0, and just keep gL at some positive value

(perhaps 1.5% per year). Since Lt = L0ent , we have:

Y = Kα
(

L0e(n+gL )t
)1−α

. (43)

If, as before, we suppose that It = K̇ t = sYt , we will be led to a Bernoulli

differential equation in Kt . If we are interested in the long-run behaviour of the
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economy we would like to be able to infer this behaviour from a phase diagram,

and thus avoid any unnecessary calculations. That will not be possible if we

remain in (ṙ , r ) space, because the differential equation governing the motion of

r , determined by calculating ṙ = d
dt [K (t)/L(t)], depends explicitly on time.7

The trick will be to make a change in variables such as the structure of the basic

differential equation is preserved. In particular it should be autonomous, i.e.

independent of time.

We thus make the change in variables

L̂ = Lt egL t = L0e(n+gL )t (44)

Labour is now expressed in so-called “intensive” units. So Y can be written as

Y = Kα L̂1−α (45)

which has the same structure as the traditional Cobb–Douglas function. In partic-

ular, it is homogeneous of degree one in K , L̂ . Finally, set Y/L̂ = ŷ and K/L̂ = r̂ .

Consider now the derivative of r̂ . Denoting L̂ ′ as the time derivative of L̂ , we

have

dr̂

dt
= K̇ L̂ − K L̂ ′

L̂2
= K̇

L̂
− K

L̂

L̂ ′
L̂

= sY

L̂
− (n + gL )r̂ = s ŷ − (n + gL )r̂ . (46)

Replacing ŷ by r̂α , our basic differential equation is

dr̂

dt
= sr̂α − (n + gL )r̂ . (47)

We observe that our two goals are accomplished. First the differential equation

is autonomous: we will be able to deduce immediately the existence of an equilib-

rium point in the phase diagram (this is just the same diagram as before). Secondly

it has the same structure as our former equation (15). The only difference comes

from the magnitude of its coefficients: s A is replaced here by s (because we have

normalized A to one) and n is replaced by n + gL ; in other words, n is augmented

by the rate of technical progress gL .

We can immediately conclude, applying formula (24), that r̂ will converge

toward

r̂∗ =
(

s

n + gL

) 1
1−α

. (48)

Now let us not forget that r̂ is not the capital–labour ratio; it is the capital–labour

ratio r divided by egL t . Indeed, we have

r̂ = K

L̂
= K

L0e(n+gL )t
= K

L0ent · egL t = r (t)e−gLt , (49)

7 It is ṙ = srαe(1−α)gL t − nr . See exercise 2.7.
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so that in the limit, when t → ∞, we have

lim
t→∞ r̂∗ =

(
s

n + gL

) 1
1−α = lim

t→∞ r (t)e−gLt (50)

and consequently

lim
t→∞ r (t) =

(
s

n + gL

) 1
1−α

egL t . (51)

This means that the asymptotic behaviour of r (t), when t → ∞, is an exponen-

tial with a growth rate equal to the labour-augmenting rate of technical progress gL .

From this we can infer the ultimate evolution of capital, income and total

income per person. Since r̂ tends to a constant, the growth rate of K tends toward

the growth rate of L̂ which is n + gL . Y being homogeneous of degree one in K
and L̂ , Ŷ will ultimately grow at the same rate n + gL , and the growth rate of

income per person will tend to gL .

It is useful to verify those results by determining the actual time paths of r (t)
and y(t) corresponding to the chosen parameters of our growth process. There are

two ways to proceed. One is to take advantage of the fact that the same structure

of the Bernouilli differential equation (15) has returned in the form of (47). The

other one is to solve the differential equation in (r, ṙ , t) space by setting, as before,

x = r1−α (see exercise 2.7). Using the first method, we can directly apply (23),

where r0, rt , s A and n are replaced by r̂ , r̂0, s and n + gL respectively.

We thus obtain:

r̂ (t) =
[(

r̂1−α
0 − s

n + gL

)

e−(n+gL )(1−α)t + s

n + gL

] 1
1−α

. (52)

Since r (t) = r̂ (t)egL t , we have, with r̂0 = r0

rt = egL t
[(

r1−α
0 − s

n + gL

)

e−(n+gL )(1−α)t + s

n + gL

] 1
1−α

; (53)

and, factoring on e−gL (1−α)t from the bracketed term,

rt =
[(

r1−α
0 − s

n + gL

)

e−n(1−α)t + s

n + gL
egL (1−α)t

] 1
1−α

. (54)

From (43), Y = KαL1−α
t egL (1−α)t , so that Y/L = y = rαegL (1−α)t . Using

(54):

y(t) =
[(

r1−α
0 − s

n + gL

)

e−n(1−α)t + s

n + gL
egL (1−α)t

] α
1−α

egL (1−α)t .

(55)
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We can verify from (54) that limt→∞ ṙ/r = gL , and from (55) that

limt→∞ ẏ/y = α
1−α

gL (1 − α) + (1 − α)gL = gL .

A final remark is in order. The reader may have noticed that the easiest way to

solve a time-dependent differential equation is not necessarily to transform it into

an automonous equation as is usually done (see also exercise 2.7). In the above case,

it is simpler to work with the original equation. However, when we have systems

of equations it can be very useful to make those systems autonomous because it

is then possible to illustrate solutions (each depending on initial conditions) in a

phase diagram and, in particular, to understand their fundamental instability, for

instance. This will be done in chapters 9 and 10.

Appendix 1: The concept of elasticity, its use in economics,

and its applications to growth rates

One of the great inventions of mathematics at the end of the seventeenth century

was the concept of derivative. While the rate of increase of a function, denoted

�y/�x , is easy to conceive, it has its drawbacks: indeed, it is usually dependent

upon the size of the increase given to the variable x . Therefore, at any given point

of a function y = f (x) there may be an infinite number of values corresponding to

the rate of increase �y/�x of a function; some of those may be positive, zero or

negative; worse, some may even not be defined. Therefore, in order to characterize

by one and only one number the tendency of a function to increase or decrease at

any of its points, mathematicians decided to consider the limit of �y/�x when

�x → 0, if such a limit exists. The name “derivative” (rather unfortunate, because

little revealing its meaning) was then attached to

lim
�x→0

�y

�x
= dy

dx
= d f

dx
= f ′(x) = y′,

and the concept was immediately extended to functions of several variables. The

partial derivative of y = f (x1, . . . , xi , . . . , xn) with respect to xi was defined as

lim
�xi→0

�y

�xi
= ∂y

∂xi
= ∂ f

∂xi
= f ′

xi
= fxi = fi .

The derivative itself, however, has some drawbacks. Consider two functions

u = f (x) and v = f (y), and suppose that u, v, x and y are measured in different

units. We will not be able to compare the derivatives of u and v, precisely because

they are expressed in different units. However, we might still be quite interested

in knowing whether u is more sensitive to a change in x than v is to a change in y.

The same applies for the partial derivatives of a given function, if the variables

are expressed in different units. Fundamentally, we want to be able to gauge the

sensitivity of any function to a change in its dependent variable(s).
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The natural answer to these questions is to consider relative changes, both

for the independent variable and the function. Thus the elasticity (another poorly

chosen name) of a function y = f (x), denoted ey,x , is defined by the following

limit:

ey,x = lim
�x→0

�y
y

�x
x

= x

y
lim

�x→0

�y

�x
= x

y

dy

dx
= x

y
f ′(x) = x

y
y′

assuming that x �= 0 and y �= 0. One very useful notation of the elasticity of y
with respect to x is

ey,x = dy/y

dx/x

because it reveals directly the geometric interpretation of the concept. At any

point (x, y), the elasticity of y with respect to x is the relative increase of the

tangent to the curve y = f (x), divided by a given relative increase in x . An exam-

ple will be helpful. Consider the power function y = axb (a > 0). Its deriva-

tive is abxb−1 and its elasticity is ey,x = f ′(x) · x/y = abxb−1 · x/axb = b.

Notice that ey,x , as a concept independent of measurement units, does not depend

upon a – contrary to the derivative abxb−1. Notice also that the elasticity of the

power function is independent of x – also contrary to its derivative. The fact that

the elasticity of a power function is equal to its power (b in this case) means that

if x , at any point, increases by 1% then the function increases in linear approx-

imation by b%. For instance, a parabola ax2 is such that if x is increased by

1% at any point (except at x = 0), the tangent to the parabola increases exactly

by 2%.

Observe also that since dy/y = d log y and dx/x = d log x , the elasticity can

be defined and calculated as the derivative of log y with respect to log x :

ey,x = dy/y

dx/x
= d log y

d log x
.

For instance, we could have written, from y = axb, log y = log a + b log x and

obtained directly its elasticity as ey,x = d log y/d log x = b.

We have shown that the elasticity of a power function is a constant (it is its

power). We can easily show that the converse is true: the only function with

constant elasticity is the power function. Indeed, suppose we have

ey,x = dy/y

dx/x
= b (a constant).
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Table 2A.1 Elasticity of a few common functions

function derivative elasticity
y = f (x) f ′(x) ey,x = f ′(x) · x

y

ax + b a
ax

ax + b

axb abxb−1 b

log x
1

x

1

log x
ex ex x
u(x) + v(x) u′(x) + v′(x) eu,x

u
u+v + ev,x

v
u+v

u(x)v(x) u′(x)v(x) + u(x)v′(x) eu,x + ev,x

g[ f (x)] g′[ f (x)] · f ′(x) eg, f · e f,x

If x > 0 and y > 0, we can integrate both sides and write

∫
dy

y
= b

∫
dx

x
log y = b log x + log a

where a is a constant, or

y = axb

which is the power function.

Table 2A.1 indicates the elasticity of a few common functions; it also gives the

elasticity of a sum and a product of functions, as well as the elasticity of composite

functions. Those results, which can be easily verified, will be very useful in this

text.

Notice that the elasticity of a sum of functions is the weighted sum of the

elasticities, the weights being the shares of each function in the sum. The elasticity

of a product of functions is simply the sum of the elasticities; and the elasticity of

a composite function is the product of the elasticities.

Reading the elasticity of a function from its graph

A nice property of the elasticity is that we can evaluate its order of magnitude

just looking at the graph of f (x), without knowing the measurement units on the

axes – contrary to the derivative, which is unit-dependent. Figure 2A.1 shows that

drawing the tangent at any point of the curve immediately yields the value of the

elasticity of the function at that point. Let α be the distance between x and the
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y = ƒ(x)

ƒ(x)

y

0 xa
x

Figure 2A.1 A geometrical construction of the elasticity of y = f (x) at point (x, y). The

elasticity is equal to ey,x =
dy/y
dx/x

=
dy
dx

· x
y

=
y
α

· x
y

=
x
α

.

intersection of the tangent with the abscissa. Assuming f ′(x) > 0, we get

ey,x = dy

dx
· x

y
= y

α
· x

y
= x

α

(if f ′(x) < 0, we would have ey,x = −x/α).

On figure 2A.1, the elasticity at the chosen point, x/α, is about 1.7. It implies

that if x increases by 1%, y will increase in linear approximation by 1.7%

(this is the relative increase measured on the tangent to the curve at the chosen

point).
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Growth rates and elasticities

Suppose now that y is a composite function of time t through a variable x :

y = f [x(t)].

Thus y is a function of time. Let us consider its growth rate ẏ/y:

ẏ

y
= 1

y

dy

dt
= 1

y

d f

dx

dx

dt
= x

y

d f

dx

1

x

dx

dt
= ey,x

1

x

dx

dt
.

Thus the growth rate of y is just the growth rate of x multiplied by the elasticity

of y with respect to x .

These concepts extend immediately to functions of several variables. Let the

function y = f (x1, . . . , xi , . . . , xn) be differentiable at least once. We define the

partial elasticity of y with respect to x as

ey,xi = lim
�xi→0

�y

�xi
· xi

y
= xi

y

∂y

∂xi
= xi

y
f ′
xi

.

The total differential of f is:

dy =
n∑

i=1

∂ f

∂xi
dxi

and the relative increase of the function in linear approximation is given by

dy

y
=

n∑

i=1

∂ f

∂xi

1

y
dxi .

Multiplying and dividing each term by xi , we have

dy

y
=

n∑

i=1

∂ f

∂xi

xi
y

dxi
xi

=
n∑

i=1

ey,xi · dxi
xi

.

The relative increase of the function in linear approximation is thus equal to

the sum of the individual relative increases of the xi ’s, weighted by the partial

elasticities of y with respect to the xi ’s.

As an application, let us determine the growth rate of a function of several

variables. Suppose that each xi is a function of time xi (t). We have

y = f [x1(t), . . . , xi (t), . . . , xn(t)].

The total derivative of y with respect to t is

dy

dt
=

n∑

t=1

∂ f

∂xi

dxi
dt

.
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The growth rate of y is

1

y

dy

dt
=

n∑

i=1

1

y

∂ f

∂xi

dxi
dt

.

Multiplying and dividing the right-hand side by xi , we have

ẏ

y
= 1

y

dy

dt
=

n∑

i=1

xi
y

∂ f

∂xi

1

xi

dxi
dt

=
n∑

i=1

ey,xi · ẋi
xi

.

Thus the growth rate of the function is the sum of the growth rates of each

variable, weighted by the partial elasticities of the function with respect to each of

the variables xi . All these relationships will prove very useful in this text.

As an example, consider the function

Y = AKα
t Lβ

t egt

where K and L are functions of time. Applying the last formula as well as one of

the properties we have just seen (the elasticity of a power function is its power)

we get immediately

Ẏ

Y
= α

K̇

K
+ β

L̇

L
+ g

(the easiest way to verify this result is to take log Y and determine d log Y/dt =
Ẏ/Y ).

Appendix 2: Solution of the first-order differential equation

a(x)y′ + b(x)y = g(x). (A1)

2.1 Solution in indefinite form

Let us first solve the differential equation

a(x)y′ + b(x)y = 0. (A2)

Denoting a(x) ≡ a and b(x) ≡ b for simplicity, this differential equation can be

written

y′ = −b

a
y.

The variables are separable. We can write

dy

y
= −b

a
dx ,
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whose integration is immediate:
∫

dy

y
= −

∫
b

a
dx

Supposing y > 0,

ln y = −
∫

b

a
dx + ln C1

where ln C1 is an arbitrary constant, or

y = C1e− ∫ b
a dx . (A3)

Let us now consider one particular solution of (A2); we can choose such a solution

by setting C1 = 1 in (A3). Let us call this solution v(x). Thus

v(x) = e− ∫ b
a dx . (A4)

Our final step is to look for the solution of (A1) in the form of the product

u(x)v(x), where u(x) is a yet unknown function of x . Thus, if our solution is

y = u(x)v(x), u(x) must be such that

a(uv)′ + buv = g (A5)

or

au′v + auv′ + buv = g (A6)

which can also be written as

au′v + u(av′ + bv) = g. (A7)

But we know that v(x) is a solution of (A2), and therefore av′ + bv = 0. So u(x)

is just the solution of equation

au′v = g (A8)

or

u′ = g

av
. (A9)

The solution of (A9) turns out to be

u =
∫

g

av
dx + C . (A10)

Therefore the general solution of (A1) is

y = Cv + v

∫
g

av
dx (A11)

where C is an arbitrary constant, and v = e− ∫(b/a)dx .
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2.2 Solution in definite form

The solution (A11) is said to be in indefinite form because it carries the arbitrary

constant C . It is often useful to have a solution in definite form, where the constant

of integration C is identified by the knowledge of one point of the trajectory,

[x0, f (x0)] = (x0, y0); such a condition imposed upon the solution is often called

an “initial condition”.

Notice that when we chose a particular solution of (A2), we set C1 = 1 and

wrote that solution as v(x) = exp[− ∫
[b(x)/a(x)]dx] (eq. A4). But we could

equivalently have written that particular solution as

v(x) = e
− ∫ x

x0

b(z)
a(z) dz

. (A12)

In the same vein, the most general solution of (A10) can be written

u(x) =
∫ x

x0

g(ξ )

a(ξ )v(ξ )
dξ + C (A13)

where v(ξ ) is now e
− ∫ ξ

x0

b(z)
a(z) dz

.

Our general solution now reads:

y(x) = u(x)v(x) = e
− ∫ x

x0

b(z)
a(z) dz

(

C +
∫ x

x0

g(ξ )

a(ξ )
e

∫ ξ
x0

b(z)
a(z) dz

dξ

)

. (A14)

We can finally identify the constant of integration C in (A14); we know that if

x = x0, y = y0. Replacing in (A14) x by x0 and y by y0 yields C = y0. Therefore,

the solution of (1) in definite form is

y(x) = e
− ∫ x

x0

b(z)
a(z) dz

(

y0 +
∫ x

x0

g(ξ )

a(ξ )
e

∫ ξ
x0

b(z)
a(z) dz

dξ

)

. (A15)

Both forms of solutions will be used in this text.

Exercises

2.1 One of the most important properties of homogeneous functions of degree m
is given by Euler’s theorem which states that if

λm f (x1, . . . , xn) = f (λx1, . . . , λxn) (56)

then

m f (x1, . . . , xn) =
n∑

i=1

∂ f

∂xi
(x1, . . . , xn)xi .

Demonstrate Euler’s theorem. (Hint: denote λxi = ui , i = 1, . . . , n, take the

derivative of the definitional equation (56) with respect to λ, and finally con-

sider the limit of this derivative when λ tends to one).
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2.2 Demonstrate another important property of homogeneous functions of order

m: the partial derivatives of such functions are homogeneous of degree m − 1.

What is the generalization of this property?

2.3 In this text we will make extensive use of production functions which are

homogeneous of degree one. Show that in such case if there are n factors the

average productivity of one factor (production divided by that factor) depends

upon n − 1 variables only.

2.4 The following exercise will show you that you have to be very careful when

drawing a production function y = f (r ) in (r, y) space, because the function

may be increasing and concave, and yet imply a negative marginal productivity

of labour. Can you depict a function y = f (r ) such that f (r ) is increasing

and concave throughout but such that its marginal productivity of labour is

negative on an interval of r? (Even) more challenging: can you construct

an increasing and not necessarily concave function y = f (r ) such that its

marginal productivity is negative over a given interval (rA, rB )?

2.5 The following two exercises are designed to show how the Cobb–Douglas

function can be derived from any of its sections. In this exercise, you are given

the vertical section Y = Y0(L/L0)1−α of a homogeneous of degree one func-

tion that goes through point (Y0, K0, L0) and you are asked to determine the

function Y = F(K , L). Hint: it is extremely useful to draw in 3-D space this

section as a power function that goes through points (Y, K , L) = (0, K0, 0)

and (Y, K , L) = (Y0, K0, L0), In the horizontal plane, choose any point

(K , L). Draw the ray from the origin to point (K , L), and its intersection

with the horizontal line K0; this intersection has an abscissa L1. You can

then determine the production level corresponding to (K0, L1); finally, you

know that being at (K , L) instead of at (K0, L1) scales the level of produc-

tion by K/K0. Finally, express L1 in terms of K0, K and L; you will get

Y = Y0

(
K
K0

)α (
L
L0

)1−α
.

2.6 Suppose that you are given the isoquant of a Cobb–Douglas function as a power

function K = aLb(a > 0; b < 0) such that it goes through point (K0, L0).

At such a point, the production level is Y0. Derive the Cobb–Douglas from

this information. (Hint: proceed in a similar way; this time draw in 3-D space

the level curve corresponding to the isoquant; choose any point (K , L) in the

horizontal plane; determine the intersection point with the isoquant.)

2.7 Make sure that you can derive the asymptotic properties of the neo-

classical model by solving the equation of motion for r (t) = K (t)/L(t)
when the production function is Cobb–Douglas with labour augmenting

technological progress (you can take gL as a constant, and denote for
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simplicity (1 − α)gL = g; also set A = 1). Hint: you will get a non-

autonomous Bernoulli-type differential equation which can be solved easily

by making the change in variable x = r1−α , as we have done in section 2.2.2.,

when we dealt with an autonomous equation.

Answers

2.1 In the identity

λm f (x1, . . . , xi , . . . , xn) = f (λx1, . . . , λxi , . . . , λxn)

replace λxi by ui , and differentiate each side with respect to λ. We get

mλm−1 f (x1, . . . , xi , . . . , xn) =
n∑

i=1

∂ f

∂ui
(λx1, . . . , λxi , . . . , λxn)xi

Set λ = 1; the above equality becomes Euler’s identity

m f (x1, . . . , xn) =
n∑

i=1

∂ f

∂ui
(x1, . . . , xn)xi .

2.2 Differentiate both sides of equation

λm f (x1, . . . , xi , . . . , xn) = f (λx1, . . . , λxi , . . . , λxn)

with respect to xi ; we get

λm ∂ f

∂xi
= ∂ f

∂ui
(λx1, . . . , λxi , . . . , λxn)λ

and

λm−1 ∂ f

∂xi
= ∂ f

∂ui
(λx1, . . . , λxi , . . . , λxn)

which shows that the partial derivative is homogeneous of degree m − 1. Any

second derivative is homogeneous of degree m − 2; any nth-order derivative

is homogeneous of degree m − n.

In the case of a homogeneous of degree one production function, the

marginal productivities (the partial derivatives of the function) are homo-

geneous of degree zero. From a geometric point of view, it means that the

marginal productivities are constant along a ray from the origin.

2.3 Suppose y = f (x1, . . . , xi , . . . , xn) is homogeneous of degree one. Multiply-

ing every variable x1, . . . , xi , . . . , xn by 1/xi multiplies the function by the

same amount 1/xi . We get the average productivity

y

xi
= f

(
x1

xi
, . . . , 1, . . . ,

xn

xi

)
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which depends upon the n − 1 variables x1/xi , . . . , xn/xi only.

As an example, consider

Y = F(K , L)

homogeneous of degree one. Then

Y

L
= F

(
K

L
, 1

)

= g(r ); r = K/L

and

Y

K
= F

(

1,
L

K

)

= h(v); v = L/K .

We can verify that the marginal productivities are homogeneous of degree

zero by writing

y = xi f

(
x1

xi
, . . . , 1, . . . ,

xn

xi

)

.

Denote x j/xi = r j ( j = 1, . . . , n; j �= i); the derivative of y with respect

to xi is

∂y

∂xi
= f

(
x1

x2
, . . . , 1, . . . ,

xn

xi

)

+ xi

n∑

j=1

∂ f

∂r j

(

− x j

x2
i

)

= f

(
x1

x2
, . . . , 1, . . . ,

xn

xi

)

−
n∑

j=1

∂ f

∂r j
· x j

xi
.

This derivative is indeed homogeneous of degree zero and depends upon

n − 1 variables only. As an example, consider Y = F(K , L) homogeneous of

degree one. From Y/L = F(K/L , 1) write

Y = L F(K/L , 1) = Lg(r ), r = K/L .

The marginal productivities are

∂Y

∂L
= g(r ) + Lg′(r ) ·

(

− K

L2

)

= g(r ) − rg′(r )

and
∂Y

∂K
= Lg′(r ) · 1

L
= g′(r ).

They are homogeneous of degree zero and depend solely on one variable, the

capital-labour ratio r .

2.4 For the first part of this exercise, draw in (r, y) space a concave line with

positive slope crossing the r axis (figure 2A.2). Draw also the ray from the

origin tangent to f (r ). Draw also the tangent to f (r ) at a point whose abscissa
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y

∂F (rA)
∂L

yB

yA

r
0

r
A

r
B

r

A

B y = f (r)

0

Figure 2A.2 At point (rB, yB) the marginal productivity of labour is zero; it is negative
in the interval [r0, rB).

rA is lower than rB . At point (rB, yB) the marginal productivity of labour is

zero, and in the interval [r0, rB) ∂ F/∂L is negative. Any curve of the type

y = Arα − β, A > 0, 0 < α < 1, β > 0 will have those properties.

Consider now a given interval (r1, r2), r1 < r2 (figure 2A.3). You can

always construct a function y = f (r ), not necessarily concave, such that

∂ F/∂L is negative over a given interval. From the origin draw the rays to

points T1(r1, y1) and T2(r1, y2), supposing that their slopes are such that

y2/r2 > y1/r1.
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y

y
2

y
1

r
10 r

2

r

T

y = f (r)

2

T
1

Figure 2A.3 The marginal productivity of labour is zero at r1 and r2, and negative in
between.

Between points T1 and T2 draw a curve such that it is tangent to the rays

at those points, such as the one indicated on figure 2A.3. At points T1 and T2
the marginal productivity of labour is zero; in between, it is negative.

2.5 Let (K , L) be any point in the horizontal plane (see figure 2A.4). The ray

from the origin to that point meets the horizontal line K0 at a point denoted

(K0, L1), which corresponds to a production level Y0(L1/L0)1−α. Being at

(K , L) instead of at (K0, L1) scales the level of production by a factor K/K0.

So the production level at (K , L) is K
K0

Y0(L1/L0)1−α . But we know also

that L1/L = K0/K . So we have finally

Y = K

K0
Y0

(

L
K0

K

1

L0

)1−α

= Y0

(
K

K0

)α (
L

L0

)1−α

.
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Y

L L1 L0

αg
2

 : Y = Y0
K
K0

K0

K

Y

Y

0

( (

1–αg
1

 : Y = Y0
L
L0

( (

Figure 2A.4 A geometric construction of the Cobb–Douglas Function Y =

Y0

(
K
K0

)α (
L

L0

)1−α
from one of its vertical sections (γ1).

2.6 Let us first determine the function K (L) representing the isoquant (see figure

2A.5). Since it goes through point (K0, L0), a must be such that K0 = aLb
0;

so a = K0L−b
0 and K = K0(L/L0)b. Now choose any point (K , L) in the

horizontal plane. The ray from the origin to (K , L) intersects the isoquant

at point (K1, L1), to which corresponds a production level Y0. The value

K1 can be determined as a function of L1, using the isoquant function. We

have K1 = K0(L1/L0)b. Let Y designate F(K , L) (our unknown). We have

Y/Y0 = L/L1, and K/K1 = L/L1. Thus we have the system

K1 = K0

(
L1

L0

)b

Y

Y0
= K

K1
K

K1
= L

L1

a system of 3 equations in 5 unknowns (Y, K , L , K1, L1) from which we can

get one equation in three unknowns (Y, K , L). We can write, using the first

two equations

Y

Y0
= K

K1
= K

K0

(
L1

L0

)−b
.



72 The growth process

Y

Y

Y0

L0L L1

Y0

K0 K = K0 (L/L0)b

K1
K

Figure 2A.5 Determination of the Cobb–Douglas production function from one of its
isoquants.

L1 can be determined from Y/Y0 = L/L1 as L1 = Y0L/Y . Replacing in the

above expression gives

Y

Y0
= K

K0

(
Y0L

Y L0

)−b

from which Y can be determined:

Y = Y0

(
K

K0

) 1
1−b

(
L

L0

)− b
1−b

.

Observe that since b is negative, the power of L/L0 is positive, and that the

powers of K/K0 and L/L0 add up to one, which corresponds to homogeneity

of degree one, as it should.

2.7 The production function will be:

Y = F(K , L , t) = Kα(LegLt )1−α

= Kα
(

L0ent
)1−α

egL (1−α)t .

As before, the rate of increase of r is

ṙ (t) = K̇ L − K L̇

L2
= K̇

L
− nr = sY

L
− nr.
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Now the ratio Y/L = Y/(L0ent ) is

Y

L
= KαL−αegL (1−α)t .

To simplify notation, set gL (1 − α) ≡ g. The equation of motion of r (t) is

then

ṙ = srαegt − nr

or, dividing through by rα:

r−α ṙ = segt − nr1−α.

Using the change in variable x = r1−α , we have ẋ = (1 − α)r−α ṙ and

thus the Bernoulli differential equation becomes linear in x :

ẋ

1 − α
+ nx = segt .

Its solution is

xt =
(

x0 − s
g

1−α
+ n

)

e−n(1−α)t + s
g

1−α
+ n

egt

and, coming back to r (t) = [x(t)]1/(1−α), we have finally

r (t) =
[(

r1−α
0 − s

gL + n

)

e−n(1−α)t + s

gL + n
e(1−α)gLt

] 1
1−α

since x0 = r1−α
0 .

The asymptotic behaviour of r (t) when t → ∞ is

lim
t→∞ r (t) = s

gL + n
egLt

from which the limiting growth rates of r (t), K (t), Y (t) and y(t) can be imme-

diately inferred. The limiting growth rate of r is the coefficient of labour aug-

menting technical progress gL . The growth rate of K (t) will tend toward that

of r (t)L(t), i.e. gL + n; that of Y will be limt→∞(eY,K K̇/K + eY,L L̇/L +
(1/y)∂Y/∂t), i.e. α(gL + n) + (1 − α)n + (1 − α)gL = n + gL . Note that

this result could have been reached equivalently by observing that, Y =
F(K , LegLt ) being homogeneous of degree one in the variables K , LegLt ,

and K (t) growing asymptotically at rate n + gL , the growth rate of LegLt ,

then Y will grow at the same rate. Finally, income per person will grow at

rate gL .



CHAPTER 3

A production function of
central importance

In 1961, Kenneth Arrow, Hollis Chenery, Bagicha Minhas and Robert Solow made

a major discovery. Not only did it modify forever the way economists looked at

production functions, but it also had a considerable influence on another field of

research, namely utility theory. We will explain here how the so-called constant

elasticity of substitution (CES) production function was found. We will start with

the concept of the elasticity of substitution, and then turn to the derivation of the

CES function itself and its main properties.

1 Motivation

Throughout history, the rental price of capital has decreased while the wage rate

has increased. At the same time the capital–labour ratio has increased. For any

given, fixed level of production there is also a positive relationship between the

wage–rental ratio and the capital–labour ratio. The elasticity of substitution is the

elasticity of the latter relationship.

We then need to recall first the concept of factor demand because the capital–

labour ratio is precisely the ratio of the demand functions of capital and labour.

Suppose that to the use of capital during a given time span corresponds a price that

we will call the rental rate, denoted q; the measurement units of this rental rate is

$ per unit of capital, per unit of time. So in units we have:

q = “dollars”

“unit of capital” . “unit of time”
·

The use of labour costs the wage rate w, expressed in $ per unit of labour, per unit

of time. Also in units we have:

w = “dollars”

“unit of labour” . “unit of time”
·

74
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The cost of using both factors in quantities K and L is thus

C = q K + wL .

Suppose now that the firm, or society, wants to use those rare resources in the

most efficient way. An efficient way may have different meanings. For instance,

it could be minimizing the cost of production subject to a given production level;

or it could mean the “dual problem” of maximizing output subject to a cost con-

straint. Let us see what the implications of the first of these cases are. Minimizing

the cost of production with respect to a production level Y0 leads to writing a

Lagrangian

L = q K + wL + λ[Y0 − F(K , L)]

where F(K , L) is a concave function in (K , L). Setting to zero the gradient of L,

we have:

∂L
∂K

= q − λ
∂ F

∂K
(K , L) = 0 (1)

∂L
∂L

= w − λ
∂ F

∂L
(K , L) = 0 (2)

Y0 = F(K , L) (3)

The above system of three equations in the three unknowns K , L and λ can

generally be solved in K , L and λ to yield the factor demand functions K and L ,

which depend on the parameters Y0, w and q.1 So we can derive the functions

K = K (Y0; w, q)

L = L(Y0; w, q).

An example may be helpful. Suppose that Y = KαL1−α . With ∂ F/∂K =
αKα−1L1−α and ∂ F/∂L = (1 − α)KαL−α , equations (1), (2) and (3) are:

q − λαKα−1L1−α = 0 (4)

w − λ(1 − α)KαL−α = 0 (5)

Y0 = KαL1−α (6)

Eliminating λ between (4) and (5), and using (6), we get the demand functions

K = Y0

(
α

1 − α

w

q

)1−α

≡ K (Y0; w, q) (7)

1 Note that the set of equations (1)–(3) plus the convexity of the Lagrangian ensures that we have

a global minimum. On this see for example K. Sydsaeter and P. J. Hammond, Mathematics for
Economic Analysis, Prentice Hall, Englewood Cliffs, N.J., 1995, p. 667.
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and

L = Y0

(
α

1 − α

w

q

)−α

≡ L(Y0; w, q). (8)

We note that both K and L are linear (positive) functions of Y0 – therefore

their ratio will be independent from Y0. Also, the demand for K is a decreasing

function of the rental price q and an increasing function of the wage rate w. The

converse is true for L .

As to the capital–labour ratio, it is given by

K

L
= α

1 − α

w

q
, (9)

a linear function of w/q.

1.1 Definition of the elasticity of substitution

The elasticity of substitution is the elasticity of the capital/labour ratio r with

respect to the wage/capital rental ratio m.

The elasticity of substitution is denoted σ . It is then equal to:

σ = dr/r

dm/m
= d log r

d log m
(10)

where r ≡ K/L and m ≡ w/q.

Example: in the Cobb–Douglas case seen above, the relationship between r
and m is linear (equation (9)). Hence σ = 1. Note that the Cobb–Douglas function

has a unit elasticity of substitution even if it is not homogeneous of degree one:

indeed, for the production function Y = AKαLβ where α + β �= 1, the ratio of

the factor demands would be

K

L
= α

β

w

q
, (11)

also a linear function of w/q = m; as a consequence, the elasticity of substitution

would also be equal to one in this more general case.

1.2 Geometrical representation

The elasticity of substitution has been defined as the following limit:

σ = lim
�m→0

(�r/r )/(�m/m).



Motivation 77

Y = F(K, L)

K2

K1

L2

b2
a2 a1b1

L1

T2

T1

K

L

Figure 3.1 A geometrical interpretation of the elasticity of substitution. With
|d K/d L|Y=Y0

= (∂F/∂L)/(∂F/∂K ) = w/q = m =| tg a | and K/L = r = tg b, the
elasticity of substitution σ is given by the limit:

σ = lim
Δm→0

Δr/r
Δm/m

= lim
Δtg a→0

Δ tg b/tg b
Δtg a/tg a

.

If the production function is Cobb–Douglas (σ = 1), then not only dr/r = dm/m, but
Δr/r = Δm/m in exact value.

From a geometrical point of view, we may consider the ratio m = w/q as minus

the slope2 of the isoquant Y = F(K , L) (figure 3.1). We have:

d K

d L

∣
∣
∣
∣
Y=F(K ,L)

= −
∂ F
∂L (K , L)

∂ F
∂K (K , L)

(12)

2 This slope in absolute value is often called the “marginal rate of substitution” between K and L .
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and

−d K

d L

∣
∣
∣
∣
Y=F(K ,L)

=
∂ F
∂L (K , L)

∂ F
∂K (K , L)

= w

q
≡ m (13)

(by the minimization of cost process described earlier: from equations (1) and (2),

eliminating λ). Geometrically, m = tg a in figure 3.1. Also, r = tg b. Therefore,

the ratio (�r/r )/(�m/m) is the relative change of tgb divided by the relative

change in tga, and the elasticity of substitution σ is the limit of this ratio when

�m → 0. Notice that if the production function is Cobb–Douglas, the linear

relationship between r and m as given by (9) or (11) implies that �r/�m is

independent of the size of �m. Therefore, in that case σ is always exactly equal to

(�r/r )/(�m/m) = 1, and �r/r = �m/m. This means that in the Cobb–Douglas

case the relative increase of tg b is exactly equal to the relative increase in tg a,

whatever the size of �m.

It is important not to confuse the elasticity of substitution with the curvature

of an isoquant. Both concepts are fundamentally different. Curvature of a curve

in a plane is measured as follows: consider two points, A and B of the curve

h(x). The slope of the tangent line at A, θ , becomes θ + �θ at B, and the

length of arc AB is �s. The average curvature of arc AB is defined as the ratio

�θ/�s, and the curvature at point A is the limit of this ratio, it if exists, when

�s → 0. So the curvature at A is k = lim�s→0 �θ/�s = dθ/ds, which can be

determined as the ratio of the differentials dθ and ds, considering both θ and s
as functions of x . We have θ = arctan h′(x); thus dθ = [h′′/(1 + h′2)]dx ; and

ds = (1 + h′2)1/2dx . So k = dθ/ds = h′′/(1 + h′2)3/2. On the other hand,

σ = eh/x,h′ = d(h/x)
dh′ · h′

h/x = h′x−h
h′′x2 · h′

h/x = h′(xh′ − h)/xhh′′, a completely

different formula. It is not possible to compare one concept to the other because

curvature is measured in radians per length unit, while σ is unitless. Two examples

may illustrate how remote the two concepts are from each other: first, in the

Cobb-Douglas case, the elasticity of substitution is constant at any point of any

isoquant; but curvature tends to zero on any of those isoquants when K → ∞
or L → ∞. Secondly, an arc of circle exhibits constant curvature at all its points,

whilst its elasticity of substitution is variable everywhere.3

1.3 Properties

We will now demonstrate three fundamental properties of the elasticity of substi-

tution in the case where the production function is homogeneous of degree one:

3 Sometimes curvature is defined not in the classical sense, but simply as the second derivative of

the function, h′′(x). But this last concept, measured in h units/(x units)2, cannot be compared to

σ either, for the same reasons explained above. On this subject see La Grandville, “Curvature and

the Elasticity of Substitution: Straightening it Out”, Journal of Economics, Vol. 66, no. 1 (1997),

pp. 23–34.
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� the elasticity of substitution σ is positive if and only if the marginal product of

capital is a decreasing function of capital;
� σ depends only on the capital-labour ratio r ;
� σ is identically equal to the elasticity of income per person with respect to the

wage rate; it is also equal to the elasticity of the average productivity of capital

with respect to the rental price of capital.

1.3.1 If the production function is homogeneous of degree 1, the elasticity

of substitution is positive if and only if the marginal product of capital is a

decreasing function of capital

This property is so important that we will prove it in two different ways.

First proof From Figure 1 note that σ > 0 if and only if the isoquant

is strictly convex, implying d2K/d L2 > 0. Let us then determine this second

derivative in the case of homogeneous of degree one production functions.

If Y = F(K , L) is homogeneous of degree 1, we have

tY = F(t K , t L) (14)

and we can replace t by 1/L , yielding

Y

L
≡ y = F

(
K

L
, 1

)

= f (r ) (15)

and

Y = L f (r ). (16)

From (16) we determine the marginal productivities as functions of the sole

variable r :

∂Y

∂L
= f (r ) − r f ′(r ) = y − r y′ (17)

∂Y

∂K
= f ′(r ) = y′ (18)

So the slope of the isoquant is

d K

d L
= − y − r y′

y′ = r − y

y′ = r − f (r )

f ′(r )
(19)

and the second derivative is, after simplifications:

d2K

d L2
= − K

L2

{
f (r ) f ′′(r )

[ f ′(r )]2

}

(20)
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which is positive if and only if f ′′(r ) is negative. Now consider the second deriva-

tive ∂2Y/∂K 2; from (18) we have:

∂2Y

∂K 2
= f ′′(r )

(
1

L

)

. (21)

f ′′(r ) will be negative if and only if ∂2Y/∂K 2 < 0, hence our result: σ is positive

if and only if d2K/d L2 is positive, implying ∂2Y/∂K 2 < 0.

For homogeneous of degree one production functions, decreasing returns to

capital thus constitute a necessary and sufficient condition to ensure that an increase

in the wage-rental ratio will lead to an increase in the capital-labour ratio, or,

equivalently, that there exists a function

r = r (m) (22)

such that its derivative is positive.

Second proof An alternative approach would be to say that there is an

increasing function between m and r if and only if the derivative m′(r ) is strictly

positive. We have, from (13), (17) and (18):

m = f (r ) − r f ′(r )

f ′(r )
= y − r y′

y′ (23)

and

m′(r ) = − f (r ) f ′′(r )

[ f ′(r )]2
= − yy′′

(y′)2
(24)

which is positive if and only if f ′′(r ) < 0, and ∂2Y/∂K 2 < 0 as before.

1.3.2 If the production function is homogeneous of degree one, the elasticity

of substitution depends solely upon the capital–labour ratio

Proof The value of the elasticity of substitution can be determined as the

following function of the sole variable r . From (24), if y′′ < 0, m is a (positive)

monotonic function of r ; it can therefore be inverted, and the derivative r ′(m) is

just the inverse of m′(r ). We then have, using (24):

σ = dr/r

dm/m
= dr

dm
· m

r
= − (y′)2

yy′′ · y − r y′
r y′ = − y′(y − r y′)

r yy′′ . (25)

Note that property 1.3.2 is even more general, because it applies to any homoge-

neous function, irrespective of its degree of homogeneity (indeed, m is the ratio

of marginal productivities; if the function is homogeneous of degree m, this ratio

is homogeneous of degree zero; it depends solely on r ).
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1.3.3 If the production function is homogeneous of degree one, the elasticity

of substitution is equal to the elasticity of income per person with respect to

the wage rate

This property is known as “Allen’s theorem”, from R. G. D. Allen, a British

mathematician and economist who discovered it in the thirties.

Proof We have:

ey,w ≡ dy

dw
· w

y
= y′dr

d(y − r y′) · y − r y′
y

. (26)

The differential in the denominator is

d(y − r y′) = [y′ − (y′ + r y′′)]dr = −r y′′dr (27)

and therefore

ey,w = − y′(y − r y′)
r yy′′ = σ (28)

(by (25)) and the theorem is proved.

Observe also that a corollary is intuitively motivated by the symmetrical roles

played by L and w, on the one hand, and K and q on the other.

Corollary If the production function is homogeneous of degree one, the
elasticity of substitution is equal to the elasticity of income per unit of capital with
respect to the rental rate.

Proof We have, by definition:

eY/K , q =
d(Y/K )

Y/K
dq

q

. (29)

Y/K can be written as

Y

K
= Y

L

L

K
= f (r )

r
= y

r
;

so, with q = ∂ F/∂K = y′,

eY/K , q =
d(y/r )

y/r
dy′
y′

=
(

y′r − y

r2

)

dr · r

y

y′
y′′dr

= − (y − r y′)y′
r yy′′ = σ (30)



82 A production function of central importance

as before. Note that an alternative proof of this corollary would have been the fol-

lowing. Both variables K and L play symmetrical roles in the production function.

Therefore what is true for the elasticity of the average product of one variable with

respect to its marginal product must be true for the average product of the other

variable with respect to its marginal product.

This corollary of Allen’s theorem will turn out to be as important as the theorem

itself, although it will play a very different role. It implies that if the elasticity of

substitution is constant (by which we mean that it is constant at any point (K , L)),

then there must be a power relationship between the average product of capital

Y/K and the rental rate q of the form Y/K = hqσ where h is a constant. We

will identify this constant in chapter 4 and apply this property in optimal growth

theory, in chapter 13.

2 The links between the elasticity of substitution
and income distribution

Suppose that we are interested in comparing the evolution of the capital’s share in

total income to that of labour. Consider the ratio

share of capital

share of labour
= capital’s income

labour’s income
= q K

wL
= K/L

w/q
= r

m
, (31)

which just turns out to be the capital/labour ratio divided by the marginal rate of sub-

stitution. We can see that the share of capital increases (relatively to that of labour) if

and only if dr/r > dm/m, or equivalently if and only if σ = (dr/r )/(dm/m) > 1.

It decreases if and only if σ < 1, and it remains constant if and only if σ = 1. We

can note here that, historically, the prime motive of introducing the concept of elas-

ticity of substitution was precisely the direct relationship between that concept and

the evolution of income distribution.

There are two other ways of proving this fundamental property. They rest upon

Allen’s theorem and its corollary. Let us first use Allen’s theorem. Call θ the share

of labour’s income in total income:

θ = wL

Y
= w

Y/L
= w

y
.

Suppose that w increases. The share of labour’s income in total income

will increase if and only if dw/w > dy/y, or, equivalently, if and only if

(dy/y)/(dw/w) = σ < 1. It is also clear that it will stay constant, or decrease, if

and only if σ = 1, or σ > 1, respectively. The same reasoning applies using the

corollary to Allen’s theorem (see exercise 2.2).

We had observed earlier that the Cobb–Douglas function implied constant

shares for each factor, each equal to (∂Y/∂K )K/Y = α and (∂Y/∂L)(L/Y ) =
1 − α respectively. This is of course confirmed by the observation that σ = 1 for
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the Cobb–Douglas. Now the following question arises: is this true in reality? Do

we observe that the labour share is constant? If that were the case, we should have

wL

Y
= w

y
= 1 − α = 1

a
(32)

where a is a constant, or equivalently a linear relationship between y and w

y = aw. (33)

In 1961, K. Arrow, H. Chenery, B. Minhas and R. Solow asked this very ques-

tion. They observed that such a linear relationship between w and y was rejected

empirically. Instead of scattering around a straight line through the origin in (y, w)

space, observations tended to delineate a concave function. The authors tested a

logarithmic relationship, and a power function. The power function

y = awb, (34)

with a > 0 and 0 < b < 1 turned out to give the best regression results and was

therefore retained. The coefficient b equal to (dy/y)/(dw/w), and therefore to the

elasticity of substitution, was observed to be positive and smaller than one.

This empirical observation was of considerable importance. It implied that

there was a contradiction between production theory and the data on income

distribution. One could not postulate the existence of a Cobb–Douglas production

function – entailing constant factor shares in income – while observing an increase

in labour’s share. To reconcile production theory and empirical observation, one

had to ask: what is the production function corresponding to the observed power

relationship (34)? The answer is in our next section.

3 Determining the constant elasticity of substitution
production function

The question that now arises is to determine the production function which is

implied by the concave power function (34) between the wage rate and income

per person. This is tantamount to asking what is the production function whose

elasticity of substitution (the elasticity of income per person with respect to the

wage rate) is constant and equal to b, with b < 1.

We owe to Arrow, Chenery, Minhas and Solow (1961) the remarkable idea

of replacing in (34) the wage rate by the marginal productivity of a production

function homogeneous of degree one, equal as we know to y − r y′. The authors

thus transformed (34) into the differential equation

y = a(y − r y′)b (35)
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which, if integrated, yields the production function with constant elasticity of

substitution b.4 To integrate (35), first write

a− 1
b y

1
b = y − r y′; (36)

then

r
dy

dr
= y(1 − a− 1

b y
1
b −1). (37)

Before separating the variables, let us make a simplification in the notation. We

will denote

a− 1
b ≡ α (38)

and

1

b
− 1 ≡ ρ. (39)

It is important to remark that both α and ρ are functions of b, the elasticity of

substitution.

Equation (37) now reads:

r
dy

dr
= y(1 − αyρ ). (40)

Separating the variables, we have

dr

r
= dy

y(1 − αyρ )
. (41)

The right-hand side of (41) has the form of a fraction that can be expanded in the

following way; denoting dy ≡ A, y ≡ B and 1 − αyρ ≡ C , we have:

dy

y(1 − αyρ )
≡ A

BC
= A

B
+ A(1 − C)

BC
= dy

y
+ αyρ

y(1 − αyρ )
dy

= dy

y
+ αyρ−1

1 − αyρ
dy. (42)

4 Note that an alternative method to find the constant elasticity of substitution production function

would have been to integrate the differential equation

σ = − y′(y − r y′)
r yy′′ = b.

This method, however, is more cumbersome because it implies solving a non-linear second-order

differential equation. Each method, it may be noted, involves the identification of two integration

constants, as we will see.



Determining the CES production function 85

We can now integrate (41) as follows:
∫

dr

r
=

∫
dy

y
+

∫
αyρ−1

1 − αyρ
dy (43)

which yields

ln r = ln y − 1

ρ
ln(1 − αyρ ) + 1

ρ
ln β (44)

where we have chosen 1
ρ ln β as our integration constant, for convenience – it will

indeed simplify the final leg of the demonstration. Exponentiating (44) gives

r = y(1 − αyρ )
− 1

ρ β
1
ρ (45)

or

βr−ρ = y−ρ (1 − αyρ ) = y−ρ − α. (46)

Finally we obtain income (or output) per person as a function of r :

y = (βr−ρ + α)
− 1

ρ (47)

from which the production function can be derived. Equation (47) corresponds to

Y

L
=

[

β

(
K

L

)−ρ

+ α

]− 1
ρ

, (48)

and this leads to

Y =
[
βK−ρ + αL−ρ

]− 1
ρ (49)

which is the celebrated “constant elasticity of substitution” – or CES – production

function.

Before going further, it is important to identify the constants α and β in (49).

3.1 Identifying constant α

First, recall that α has been set equal to a−1/b (equation (38)). We know what

b is (it is the elasticity of substitution σ ). But what is a? It is a constant in the

regression equation y = awb, which in turn is the most general solution of the

differential equation

dy

y

/
dw

w
= b. (50)

So a is in fact an integration constant that may be identified as follows.

Suppose that at a given point of time (denoted t = 0 for instance), we can

measure the capital stock K0, the quantity of labour L0, the level of output or
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income Y0, and the factor rental prices of capital and labour, q0 and w0 respectively.

Then we have, using (34):

y0 = awb
0 (51)

and

a = y0w−b
0 . (52)

Equation (34) now becomes

y = y0

(
w

w0

)b
. (53)

We are now in a position to identify α. We have, from (38) and (52):

α = a−1/σ = (y0w−σ
0 )−1/σ = y

−1/σ
0 w0

=
(

Y0

L0

)−ρ−1

w0 =
(

Y0

L0

)−ρ w0L0

Y0
. (54)

where we used the fact that ρ = 1/σ − 1.

3.2 Identifying constant β

There only remains to identify the constant of integrationβ. With Y0 = F(K0, L0),

we have:

Y0 =
[
βK−ρ

0 + αL−ρ
0

]−1/ρ =
[

βK−ρ
0 + Y −ρ

0

w0L0

Y0

]−1/ρ

.

Raising both sides to the power −ρ and simplifying yields

β =
(

Y0

K0

)−ρ (

1 − w0L0

Y0

)

=
(

Y0

K0

)−ρ

π0 (55)

where π0 denotes the capital share in total income at time 0. Plugging (54) and

(55) into (49) yields

Y = Y0

[

π0

(
K

K0

)−ρ

+ (1 − π0)

(
L

L0

)−ρ
]−1/ρ

. (56)

which is the constant elasticity of substitution (CES) production function. We will

turn to the properties of this important function in our next chapter.

Exercises

3.1 Suppose that you observe a linear relationship between the wage rate and

income per person. What would be the corresponding production function?
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(Hint: in the linear relationship y = aw, replace the wage rate by the marginal

productivity of labour w = y − r y′, and integrate the corresponding differen-

tial equation; also, identify the constant of integration by setting y(r0) = y0.)

3.2 Can you find another way of demonstrating the corollary of Allen’s theorem?

(Hint: you know that w = y − r y′ = f (r ) − r f ′(r ). If f ′′(r ) < 0, w is an

increasing function of r and you can determine its reciprocal r = r (w) in the

CES case. Replace this value into y = f (r ) to determine y(w), and take the

elasticity of y with respect to w.

3.3 Can you find another way of proving Allen’s theorem?

3.4 Using Allen’s corollary, show that capital’s share increases (decreases, stays

constant) with r if and only if the elasticity of substitution is larger than one

(smaller than one, equal to one respectively).

Answers

3.1 First, observe from y = aw that a = y/w > 1; note also that 1/a = w/y =
wL/Y is the labour’s share in total income). Then integrate the differential

equation

y = a(y − r y′)

by separating the variables:

y(1 − a) = −ar
dy

y
.

This leads to
∫

dy

y
= a − 1

a

∫
dr

r
,

which gives

ln y = a − 1

a
ln r + ln C

(where C is a constant of integration) and therefore

y = Cr
a−1

a .

Identifying the constant of integration, we may write y(r0) = y0; then

y0 = Cr
a−1

a
0
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or

C = y0r
1−a

a
0 .

Hence

y = y0

(
r

r0

)1− 1
a

.

Replacing y, r and r0 by Y/L , K/L and K0/L0 respectively, we finally find

the Cobb–Douglas function

Y = Y0

(
K

K0

)1− 1
a

(
L

L0

) 1
a

,

which is consistent with what we have seen in chapter 1; it is homogeneous

of degree 1 (the powers of K and L add up to one), and each of those powers

are the shares of the factors in total income (1/a for L , 1 − 1/a for K ).

3.2 Using the CES function, there is another way of proving that the elasticity of

substitution is equal to the elasticity of income per unit of capital, with respect

to the rental rate of capital. Consider output (or income) per person

y = f (r ) = [δr p + (1 − δ)]1/p. (1)

We know that the marginal productivity of capital, ∂ F/∂K , is equal to y′(r )

and that q = y′(r ) is a decreasing function of r ; so we can determine its

reciprocal function r = r (q), insert it into the above expression, divide it by

r to obtain y/r = Y/K , and determine the elasticity of Y/K (or y/r ) with

respect to q.

We have

y′(r ) = [δr p + (1 − δ)]
1
p −1

δr p−1

= [δr p + (1 − δ)]
1−p

p δr
1−p

p ·(−p)

= [δ + (1 − δ)r−p]
1−p

p δ = q, (2)

from which we determine r as a function of q:

r =

⎡

⎢
⎢
⎣

1 − δ
(

q
δ

) p
1−p − δ

⎤

⎥
⎥
⎦

1/p

. (3)
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Replacing the value of r as a function of q into y = f (r ) gives

y =

⎧
⎪⎪⎨

⎪⎪⎩
δ

⎡

⎢
⎢
⎣

1 − δ
(

q
δ

) p
1−p − δ

⎤

⎥
⎥
⎦ + 1 − δ

⎫
⎪⎪⎬

⎪⎪⎭

1/p

. (4)

Dividing by r leads, after simplifications, to:

Y

K
= Y/L

K/L
= y

r
=

(q

δ

) 1
1−p =

(q

δ

)σ
(5)

and we can see immediately from this expression that the elasticity of Y/K
with respect to q is σ .

3.3 A similar argument may have been carried out by determining r as a function

of σ from w = y − r y′. Symmetry shows that we would have obtained

Y

L
= y =

(
w

1 − δ

)σ

(6)

from which Allen’s theorem can be deduced. Note finally that those last two

equations (5) and (6), are consistent with the very definition of the elasticity

of substitution. Indeed, eliminating y between (5) and (6) yields

r
(q

δ

)σ =
(

w

1 − δ

)σ

, (7)

from which we deduce

r =
(

δ

1 − δ

)σ (
w

q

)σ

. (8)

This corresponds to equation (10); σ is indeed the elasticity of r with respect

to w/q .

3.4 The share of capital is

1 − θ = q K

Y
= ∂ F

∂K

K

Y
= y′ K/L

Y/L
= y′r

y
.

This share increases with r if and only if d(1 − θ )/∂r > 0; we have:

d(1 − θ )

dr
= r yy′′ + y′(y − r y′)

y2
, which is positive

if and only if y′(y − r y′) > −r yy′′; since y′′ < 0, this is equivalent to

σ = − y′(y − r y′)
r yy′′ > 1,

which was to be shown.



CHAPTER 4

The CES production function
as a general mean

The discoverers of the CES production function, K. Arrow, H. Chenery, B. Minhas

and R. Solow had observed that it was a linear transformation of a general mean

of order −ρ. It turns out that income per person, the central variable of economic

growth theory, is also a general mean. Its properties will prove to be of great

importance. In this chapter, we will first recall the definition of a general mean

and its main properties. We will then examine how they apply directly to the CES

function and the resulting income per person.

From chapter 3, we know that −ρ = 1 − 1/σ . To simplify notation, we will

denote −ρ = p. We thus have

p = 1 − 1

σ
(1)

where p, the order of the general mean, is an increasing function of σ . We thus

have between σ and p a positive correspondence to which we will often refer.

It is also very useful to visualize this relationship (see figure 4.1). Notice that in

the vicinity of σ = 1, the linear approximation of p is σ − 1 i.e. a straight line

with slope equal to +1. We will use this observation later. Table 4.1 gives the

correspondence between σ and p for some important values of σ .

Total income, expressed as the index number Y/Y0, is a general mean of order

p = 1 − 1/σ of the indices K/K0 and L/L0:

Y

Y0
=

[

π0

(
K

K0

)p
+ (1 − π0)

(
L

L0

)p] 1
p

. (2)

Consider now income per person expressed as the index y/y0; it is also a general

mean. Indeed, it is the mean of order p of the index r/r0 and 1:

Y/L

Y0/L0
= y

y0
=

[

π0

(
r

r0

)p
+ (1 − π0)

] 1
p

(3)

where r = K/L and r0 = K0/L0.

90
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Figure 4.1 The relationship between the order of the mean p and the elasticity of
substitution σ. In the neighbourhood of σ = 1, p behaves in linear approximation
like σ. At σ = 1, the order of the mean is zero; the mean of order zero is the geo-
metric mean and the production function becomes Cobb–Douglas. When σ → 0, p →
−∞; the mean tends toward min(K/K0, L/L0) – the Walras–Leontieff production
function. If σ → ∞, p → 1 and the mean becomes the arithmetic average of K/K0 and
L/L0; the production function becomes linear.
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Table 4.1 Relationship between the elasticity of

substitution σ and the order of the mean p = 1 − 1/σ

Elasticity of substitution Order of the mean
σ p

0 −∞
1 0
∞ 1

1 The concept of the general mean of order p, and its
fundamental properties

The familiar arithmetic, geometric and harmonic means are just particular cases

of the “general mean of order p”, defined as follows.

1.1 Definition

Let x1, . . . , xn be positive numbers; let f1, . . . , fn be positive numbers adding up

to 1. We call fi “weights”. The mean of order p of x1, . . . , xn is defined by

M(p) =
[

n∑

i=1
fi x

p
i

]1/p

. (4)

1.2 Important particular cases

It can be easily seen that the means of order 1 and −1 are the arithmetic and the

harmonic means, respectively. We have

M(1) =
n∑

i=1

fi xi , (5)

the arithmetic mean of the xi ’s, and

M(−1) =
[

n∑

i=1

fi x−1
i

]−1

, (6)

the harmonic mean of the xi ’s.

In order to show that the mean of order 0 is the geometric mean, first take the

logarithm of (4):

log M(p) = 1

p
log

(
n∑

i=1

fi x
p
i

)

. (7)
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When p → 0, the ratio (0/0) can be determined by applying L’Hospital’s rule. We

get:

lim
p→0

log M(p) = lim
p→0

n∑

i=1
fi x

p
i log xi

n∑

i=1
fi x

p
i

=
n∑

i=1

fi log xi (8)

so that

log M(0) =
n∑

i=1

fi log xi (9)

and thus

M(0) =
n∏

i=1

x
fi

i , (10)

the geometric mean of the xi ’s, with fi as weights.

Other limits are of interest. First, the mean of order −∞ is the minimum (the

smallest number) of (x1, . . . , xn). This can be seen as follows: let x1 be the smallest

of numbers x1, . . . , xn . We can write, factoring x
p
1 in (4):

M(p) = x1

[

f1 + f2

(
x2

x1

)p
+ · · · + fn

(
xn

x1

)p]1/p

= x1

[

f1 + f2

(
x1

x2

)−p
+ · · · + fn

(
x1

xn

)−p
]1/p

. (11)

When p tends to −∞, −p tends to +∞ and 1/p tends to zero. Each term

(x1/xi )−p tends to zero, and the bracketed term to the power 1/p tends to one.

Thus the mean of order −∞ is

M(−∞) = x1 = min(x1, . . . , xn). (12)

Using a similar method (factoring x
p
n if xn is the largest of the numbers

x1, . . . , xn) it can be shown that the mean of order +∞ is the maximum, or

the largest number among x1, . . . , xn .

Suppose that

xn = max(x1, . . . , xn).

Then, factoring x
p
n in (4):

M(p) = xn

[

f1

(
x1

xn

)p
+ · · · + fn

]1/p
.
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When p → +∞, the bracketed term to the power 1/p tends to one, so we have

M(+∞) = xn = max(x1, . . . , xn).

1.3 The fundamental property of general means

The reader may remember from his high-school days that the harmonic, geometric

and arithmetic means are in increasing order. In fact, this results from the following

fundamental property: the general mean is an increasing function of its order p.

The classical demonstration of this property is quite involved (see Hardy, Little,

and Polya (1952)); it builds upon successive discoveries that go back to Halley,

Newton and Cauchy. I owe to Robert Solow a simple, analytic proof; it can be

found in the appendix of this chapter.

The importance of this property for our subject is that in the CES production

function the order of the mean (p) is an increasing function of the elasticity of

substitution (p = 1 − 1/σ ). Therefore it can be immediately seen that, for any

K , L and any given value of the parameters of the production function, income as

well as income per person are increasing functions of the elasticity of substitution.

The importance of this property is compounded by the following observation:

the slope of the mean of order p when n = 2 goes through one and only one

maximum. In other words, the general mean of any two numbers, considered as a

function M(p), has one and only one point of inflection. We have not been able to

prove this property due to the extreme complexity of the second derivative of (4).

However, we have relied on numerical calculations to come to this conclusion.1

The importance of the fact that the M(p) curve has one and only one inflection

point is the following: the inflection point of M(p) is very close to the origin for

weights such as 0.3 and 0.7, values that are typical of a CES production function.

Now p = 0 corresponds to σ = 1 (because p = 1 − 1/σ ); this implies that a

change in σ (which may be in the vicinity of σ = 1) has a considerable impact

upon income and income per person.

Figure 4.2 illustrates the general mean of 1 and 4 with equal weights (the

harmonic, geometric and arithmetic means are 1.6; 2 and 2.5 respectively; these

correspond to points H, G and A in figure 4.2).

2 Applications to the CES production function

We can now derive easily the particular cases of the CES production function when

σ takes the values 0, 1 and +∞.

1 On this see O. de La Grandville and R. Solow, “A Conjecture on General Means”, Journal of
Inequalities in Pure and Applied Mathematics, Vol. 7, no. 1, 2006.
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Figure 4.2 The general mean of 1 and 4 with weights 1/2 and 1/2 as a function of
its order. Special cases are the following: the harmonic mean is the mean of order
−1; M(−1) = [0.5(1)−1 + 0.5(4)−1]−1 = 8/5 = 1.6 (point H); the geometric is M(0) =
11/2 · 41/2 = 2 (point G); the arithmetic is (1 + 4)/2 = 2.5 (point A). The mean of order
−∞ is min(1, 4) = 1; the mean of order +∞ is max(1, 4) = 4.

First, if σ = 0, p → −∞. From the properties of the general mean we just

saw, we know that Y/Y0 is then min
(
K/K0, L/L0

)
, which is represented by the

corner of a pyramid made by the minimum of the two planes K/K0 and L/L0
(figure 4.3). The planes intersect along an edge whose projection on the horizontal

plane is given by

K

K0
= L

L0
(13)

or the ray through the origin

K = K0

L0
L . (14)

If σ = 1, p = 0. Then Y/Y0 becomes the geometric mean, and we get

Y

Y0
=

(
K

K0

)δ (
L

L0

)1−δ

, (15)

the Cobb–Douglas function, where δ denotes π0 = 1 − w0L0/Y0, i.e. the capital

share at time 0.
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Figure 4.3 The Walras–Leontief production function

Y = Y0 min
(

K
K0

,
L
L0

)

.

If σ → +∞, p → 1 and the production function becomes the arithmetic mean,

or the linear function

Y

Y0
= δ

K

K0
+ (1 − δ)

L

L0
. (16)

The following table summarizes these special cases.

Table 4.2 The special cases of the CES production function

Y = Y0[δ(K/K0)p + (1 − δ)(L/L0)p]1/p

σ p = 1 − 1
σ

Production function Type

0 −∞ Y = Y0 min

(
K

K0
,

L

L0

)

Walras-Leontief

1 0 Y = Y0

(
K

K0

)δ (
L

L0

)1−δ

Cobb-Douglas

∞ 1 Y = Y0

[

δ
K

K0
+ (1 − δ)

L

L0

]

Linear function
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3 The qualitative behaviour of the CES
function as σ changes

We have seen in the preceding section that both the CES production function Y
and the corresponding income per person function y were general means of order

p = 1 − 1/σ , and therefore increasing functions of σ for any given (K , L). It is

now useful to see how the function behaves when σ changes. In order to show that

the whole surface opens up around a ray from the origin when σ increases from

0 to ∞, we first concentrate on the isoquants2

Y = Fσ (K , L) = [δK p + (1 − δ)L p]1/p.

3.1 The opening up of the surface Fσ (K , L)

when σ increases

Suppose we study the family of isoquants such that Y = 1. Their equation in

implicit form is

1 = [δK p + (1 − δ)L p]1/p; (17)

in explicit form, it is:

K =
[

1 − (1 − δ)L p

δ

]1/p
. (18)

All those isoquants pass through the fixed point (K , L) = (1, 1). At that point,

they have a common tangent. Indeed, the slope of any isoquant at point (K , L) is

given by

d K

d L
= −1 − δ

δ

(
K

L

)1−p
= −1 − δ

δ

(
K

L

) 1
σ

, (19)

(forσ > 0) and at point (K , L) = (1, 1) – or, more generally, along the ray K = L –

they have a common slope equal to −(1 − δ)/δ. In the example that follows,

we choose δ = 1/3, so the common slope is −2 (figure 4.4).

Let us first take up the three limiting cases σ = +∞, σ = 0 and σ = 1.

� if σ = +∞ (and p = 1), the CES function is the linear function

Y = δK + (1 − δ)L (20)

and with Y = 1 the isoquant is the affine function

K = 1

δ
[1 − (1 − δ)L] (21)

2 In what follows, Y, K and L always designate the indices Y/Y0, K/K0 and L/L0 respectively.

We will always take Y0 = 1, K0 = 1 and L0 = 1.
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Figure 4.4 Isoquants of the CES production function. For 0 < σ ≤ 1, the isoquants are
asymptotical to positive, finite values. For σ = 1, the asymptotes become the (K, L) axes.
For σ > 1, the isoquants cut the axes. For σ → +∞, the isoquants tend to the straight

line K =
(
δ−1
δ

)
L + 1

δ (K = −2L + 3 in this case).

which is represented in figure 4.3 as the straight line with slope −(1 − δ)/δ = −2

and an ordinate at the origin 1/δ = +3.
� if σ = 0, we know from the previous section that the production function is

Y = min(K , L),

represented in (Y, K , L) space by the corner of a pyramid. The isoquant corre-

sponding to Y = 1 is L-shaped: this is the projection on the (K , L) place of a

horizontal section of the corner of the pyramid at height Y = 1. It is therefore

the right-angled corner represented in figure 4.4.
� if σ = 1, the production function becomes the Cobb–Douglas Y = K δL1−δ .

The isoquant for Y = 1 is therefore

1 = K δL1−δ (22)
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or, in explicit form:

K = L
δ−1
δ . (23)

In our case (where δ = 1/3), the isoquant is the power function K = L−2 (see

figure 4.4).

Let us now show that all isoquants are strictly convex (for σ ∈ (0, ∞)) and

are located in decreasing order between the right-angled isoquant (σ = 0) and the

straight line (σ → +∞).

The strict convexity is immediate: from (19), the second derivative is3

d2K

d L2
= − 1

σ

(
1 − δ

δ

) (
K

L

) 1
σ −1

·
(

− K

L2

)

> 0.

The fact that all isoquants are located in reverse order between the straight line

and the right-angled isoquant rests on the fundamental property of general means,

according to which the mean is an increasing function of its order. Consider any

given value of L different from 1, for instance the value L1. To L1 is associated a

given K1 on an isoquant corresponding to an elasticity of substitution σ1. Consider

now another isoquant with a higher elasticity of substitution, σ2(σ2 > σ1), and let

us determine the amount K2 that would correspond to that isoquant. We know that

our mean has to remain equal to one. We know also that the order of the mean, p1,

has increased (because p = 1 − 1/σ is an increasing function of σ ); so the new

value of K , K2, must be lower than K1. Hence the isoquant corresponding to σ2
will be lower than the initial isoquant.

We can now easily picture how the whole surface Fσ (K , L) opens up around

the ray from the origin in space (Y, K , L) when σ increases from 0 to infinity.

3 An alternative proof would have been the following. We know from chapter 3 that the isoquants of a

homogeneous of degree one production function (our case) are convex if and only if ∂2 F/∂K 2 < 0

or, equivalently, if and only if f ′′(r ) < 0 (because ∂2 F/∂K 2 = (1/L) f ′′(r ) – see equation (21)

in chapter 3). Let us then determine f ′′(r ) in the case of the CES production function. We have

Y

L
= f (r ) = [δr p + (1 − δ)]1/p

and, after simplifications,

f ′(r ) = δ[δ + (1 − δ)r−p]
1
p −1

.

Therefore, the second derivative is

f ′′(r ) = δ(1 − δ)(p − 1)[δ + (1 − δ)r−p]
1
p −2

r−p−1.

The term p − 1 is equal to −1/σ and is always negative; therefore we have everywhere f ′′(r ) < 0

and d2K/d L2 < 0.



100 The CES production function as a general mean

It is interesting to show at this point a property which is far from obvious, and

which does not seem to be well known: for an elasticity of substitution between

0 and 1 the isoquant becomes asymptotical to a horizontal line K̄ = δ−1/p =
δσ/(1−σ ), and to a vertical of abscissa L̄ = (1 − δ)−1/p = (1 − δ)σ/(1−σ ).

Consider the equation of the isoquant (18). If 0 < σ < 1, then p < 0. Let us

evaluate the limit of K when L → ∞. It is equal to limL→∞ K ≡ K̄ = δ−1/p.

For instance, if σ = 1/2 (p = −1) and δ = 1/3, this limit is K̄ = δ = 1/3.

Since K and L play identical roles, we can also express the limit of L when

K → ∞ as L̄ , equal to limK→∞ L = L̄ = (1 − δ)−1/p. In the example just

considered, this limit is L̄ = 1 − δ = 2/3: figure 4.4 presents these asymptotes,

as well as the isoquant in this case.

More generally, let us consider all possible values of K̄ and L̄ for 0 < σ < 1

and the various values of δ (we will choose δ = 0.25; 0.3; 1/3 and 0.4). The results

are in diagrams 4.5a and 4.5b. Notice that as σ approaches 1, the K̄ asymptote

approaches 0 much quicker than L̄ does. For instance, for δ = 1/3 as before and

for σ = 0.8, K̄ = 0.012, but L̄ is still very much a positive value (0.2).

The isoquant is thus asymptotical to perpendicular axes intersecting at point

(K̄ , L̄) depending parametrically upon (σ , δ) through the system

K̄ = K̄ (σ , δ) = δσ/(1−σ )

L̄ = L̄(σ , δ) = (1 − δ)σ/(1−σ )

In space (K , L), for any given value δ, that point describes a curve ϕδ(L̄), which

can be expressed explicitly as

K̄ = ϕδ(L̄) = L̄ log δ/ log(1−δ),

a strictly convex curve if and only if δ < 1/2 (the usual case); it becomes the

straight line K̄ = L̄ if and only if δ = 1/2.

This curve has been drawn in figure 4.5c for δ = 1/3 and for values of σ ranging

from 1 (lower point of the curve) to 0 (higher point), by steps of 0.1; the curve is

K̄ = L̄ log 0.3/ log 0.7 ≈ L̄3.38. All curves of the family ϕδ(L̄) increase from the

origin (0, 0) (the Cobb–Douglas case, with σ = 1) to (1, 1) (the Walras–Leontief

case, σ = 0).

If the production function is written in the normalized form Y = Y0
[δ

(
K/K0

)p + (1 − δ)
(
L/L0

)p
]1/p, and if we consider the family of isoquants

leading to output Y0, the curve ϕδ(L̄) giving the minimum amounts of K and L
necessary to produce Y0 is expressed by the system

K̄ = K0δσ/(1−σ )

L̄ = L0(1 − δ)σ/(1−σ )
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Figure 4.5a The asymptote L̄ as a function of σ, for various values of δ.

and, explicitly, by

K̄ = K0

L0
L̄ log δ/ log(1−δ).

This curve K̄ = ϕδ(L̄) of all points (K̄ , L̄) is a linear rescaling of the former one,

with point (K0, L0) now replacing point (1, 1).

Notice the behaviour of the point (K̄ , L̄) as σ tends toward one: both minimal

amounts of capital and labour necessary to produce any given amount of out-

put decrease and tend toward zero. This confirms the efficiency character of the

elasticity of substitution. Observe also that the convexity of the curve ϕδ implies

the property we noted before: the component K̄ decreases toward zero much faster

than L̄ . It means that, as long as δ < 1/2 (the usual case) an economy governed

by a CES function with 0 < σ < 1 is definitely less demanding in the minimum

amount of capital (relative to what it would be if σ = 0) than it is in terms of the

minimum requirements of labour – which makes a lot of sense.
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Figure 4.5b The asymptote K̄ as a function of σ, for various values of δ.

One conclusion emerges: the fact that whenever σ is smaller than one the iso-

quants are asymptotic to positive numbers reveals that the elasticity of substitution

is an efficiency parameter: the lower its value, the higher the minimal values of K
and L requested to produce anything.

We conclude from this analysis of the isoquants that when σ increases from 0 to

+∞ (when p increases from −∞ to +1), the surface – denoted Fσ (K , L) – opens

up from the corner of the pyramid min(K , L) to the plane Y = δK + (1 − δ)L . It

does so around a ray from the origin whose projection on the horizontal plane is

K = L . For any point (K , L) not belonging to that ray, the height of the surface

increases. This is just the geometric interpretation of the fundamental property of

a general mean: the general mean of K and L increases with its order; and the

mean is not sensitive to its order if and only if the numbers are the same (if and

only if we are on the ray K = L).

The fact that the surface Fσ (K , L) opens up when σ increases gives an inkling

of a property that will turn out to be of central importance in growth theory: any

vertical section of the surface will also open up; from a kinked line it will become
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Figure 4.5c Origins of asymptote axes systems for values of sigma between 1 and 0, by
decreasing steps of 0.1 (delta = 0.3).

a concave curve, and finally a straight line. For instance, at L = 1, the vertical

section of the surface is given by F(K , 1); it goes from the kinked line min(K , 1)

to the straight line δK + 1 − δ. Why is this significant? Because we know from

chapter 2 that if F(K , L) is homogeneous of degree one, the section F(K , 1) is

nothing else than F(K/L , 1) = f (r ), income per person. We are then prompted

to have a close look at the section y = F(K , 1).

3.2 Income per person as a function of r

Income per person, denoted fσ (r ), is

y = fσ (r ) = [δr p + (1 − δ)]1/p = [δr1−1/σ + (1 − δ)]σ/(σ−1). (24)

We recognize here a general mean of r and 1, of order p. This formulation implies

that σ is different from 1 and 0. Consider first those particular cases:
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� If σ = 1 (if p = 0), we have the geometric mean between r and 1: y = rδ ,

which is the per capita Cobb–Douglas function.
� If σ = 0 (if p → −∞), we have the minimum between r and 1: y = min(r, 1)

(the per capita Walras–Leontief function).

If σ is different from 0 and 1 two general cases must be distinguished, as in the

preceding section: 0 < σ < 1 (−∞ < p < 0) and σ > 1 (p > 0).

3.2.1 The case 0 < σ < 1

When r → 0, limr→0 fσ (r ) = 0. What is important, however, is to realize that

when r → ∞ income per person is bound by an upper limit whenever σ is lower

than one (p < 0). Indeed, in such a case we have

lim
r→∞ y = (1 − δ)1/p = (1 − δ)

σ
σ−1 (25)

and this limit is surprisingly low for a value of σ such 0.8, for instance. If δ = 1/3,

we then have, with 1/p = σ/(σ − 1) = −4, limr→∞ y = 5.06. This means that

if the capital–labour ratio increases from 1 to 1000, income per person increases

from 1 to 5 only (figure 4.6a).

3.2.2 The case σ > 1

The behaviour of fσ (r ) is entirely different when σ > 1. First, at the origin its

value is not zero any more. It is equal to (1 − δ)1/p = (1 − δ)σ/(σ−1); if δ = 1/3

and σ = 1.5, this ordinate is ≈ 0.3; if σ = 2, it becomes 0.4̄. Secondly, fσ (r )

tends to infinity when r → ∞. Figure 4.6b shows how quickly income per person

tends toward an affine function of r (a straight line) with positive slope when σ

takes a value as low as 1.5.

Consider now the slope of fσ (r ) when r → 0. The derivative of (24) is

y′(r ) = [δr p + (1 − δ)]
1−p

p δr p−1

= δ[δr p + (1 − δ)]
1−p

p r
−p

(
1−p

p

)

= δ[δ + (1 − δ)r−p]
1−p

p = δ[δ + (1 − δ)r
1
σ −1]

1
σ−1 . (26)

When r → ∞, the slope of fσ (r ) tends to the limit

lim
r→∞ f

′
σ (r ) = δ

σ
σ−1 . (27)

Notice that the limit of this slope is an increasing function of σ . This limit

will play a central role in the determination of the threshold value of σ above

which we can have permanent growth of income per person, even in the absence

of technological progress. Indeed, since fσ (r ) behaves more and more like a
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Figure 4.6a Production and income per person when the elasticity of substitution σ is
between 0 (the Walras–Leontief case) and 1 (the Cobb–Douglas case).

y = f (r ) = [δr1−1/σ + 1 − δ]σ/(σ−1)

If σ < 1, income per person will always tend toward a finite limit, equal to (1 − δ)σ/(σ−1)

when r → ∞. This limit is surprisingly low; for instance, when σ = 0.8 and δ = 1/3,
limr→∞ y = 5.06 only.

straight line when r → ∞ with an increasing slope, we may well figure out that

for sufficiently high σ , s fσ (r ) will always remain above the ray nr . This implies

that ṙ = s fσ (r ) − nr will always be positive. Such a threshold value for σ exists,

indeed, and is given by the value of σ , denoted σ̂ , such that the slope of s fσ (r ) is

always higher than or equal to the slope of the ray nr . Since the minimum value

of f
′
σ (r ) is δσ/(σ−1), our condition becomes

sδσ/(σ−1) ≥ n (28)
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Figure 4.6b Production and income per person when the elasticity of substitution σ is
between 1 (the Cobb–Douglas case) and +∞ (the linear case).

y = f (r ) = [δr1−1/σ + 1 − δ]σ/(σ−1)

For σ ≥ 1, income per person tends to infinity when r → ∞. Notice how quickly y = f (r )
becomes an affine function of r when σ and r increase.

which leads to

σ ≥ σ̂ = 1

1 + (log δ)/(log s/n)
. (29)

We will deal with this threshold value of σ in more detail in chapter 5.

3.3 An economic interpretation of the coefficient δ

The expression of income per person as a function of r , expressed in (24) allows

an economic interpretation of the δ coefficient. The coefficient δ is usually known
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as a “distribution parameter”. We can be more precise, and show that δ is the

geometric mean between the capital share and the real rate of interest (times one

year), the weights being 1 − p and p, respectively.

We will show that

δ = π1−pi p (30)

where π denotes the capital share F ′(K )K/Y and i , the real interest, is equal in

competitive equilibrium to the marginal product of capital (this will be justified

later, in chapter 11).

Consider the system of two equations in two unknowns r and δ:

∂ F

∂K

K

Y
= f ′(r )

r

f (r )
= δr p

δr p + (1 − δ)
= π (31)

∂ F

∂K
= f ′(r ) = δ[δ + (1 − δ)r−p]

1
p −1 = i (32)

From (31) we can determine r as

r =
[
π (1 − δ)

δ(1 − π )

]1/p
(33)

(p 	= 0) and replace this value in (32) to obtain (30). Note that, in the particular

case where F is Cobb–Douglas, σ = 1, p = 0 and, from (31) we get δ = π as we

should. Also, δ = π is just the particular case where r = 1.

A corollary of this property is that the capital’s share π is the geometric average

between δ and i , the weights being σ and 1 − σ respectively. From (30),

π = δ
1

1−p i
− p

1−p . (34)

From p = 1 − 1/σ , 1/(1 − p) = σ and −p/(1 − p) = 1 − σ . Therefore

π = δσ i1−σ . (35)

We will make ample use of this result in chapter 13.

In chapter 3, we demonstrated the corollary of Allen’s theorem: the elasticity of

substitution is equal to the elasticity of the average product of capital (Y/K ) with

respect to the real rental rate. We mentioned that if the elasticity of substitution

is constant, then Y/K must be a power function of the real rental, of the type

Y/K = hqσ , where h is a constant to be identified. We can now proceed to do so.

Let us write the real rental rate as q = i = ∂ F/∂K = f ′(r ); from equation

(31), we have Y/K = i/π ; from (30), π = (δ/ i p)
1

1−p ; replacing this value in
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i/π yields

Y

K
=

(
i

δ

)σ

, (31a)

a result we will also use in chapter 13.

3.4 Income per person as a function of σ

We have analysed in the previous section the properties of income per person

y = f (r, σ ) as a function of the capital–labour ratio r , for various values of σ . We

will now take one step further, and consider σ not just as one parameter, but as a

full-fledged production factor.

We will thus discuss the evolution of income per person when σ becomes the

variable, considering r as a parameter. We have made the conjecture that mean y,

considered in space (y, p), has one and only one point of inflection. We will

now ask the question whether this holds true in (y, σ ) space. As we mentioned

previously, the conjecture in (y, p) space seems impossible to prove analytically

because of the extreme complexity of the second derivative f ′′(p). Now the second

derivative of f [p(σ )] with respect to σ is

f ′′(σ ) = f ′′(p)[p′(σ )]2 + f ′(p)p′′(σ ); (36)

since f ′′(p) is untractable, f ′′(σ ) is even less so. Therefore, we will have to pro-

ceed, as before, with calculations and care. We will be led to extend the conjecture

to (y, σ ) space. Why is it important? Because we will show that economies, at

present, may very well be located precisely in the range of the σ values where

there is an inflection point. It means that if σ increases, it imparts maximal effects

on income per person.

Figure 4.7a depicts the evolution of y as a function of σ for various values of r ,

ranging between r = 4 and r = 30 by steps of 4. What is striking is that, for any

given value of r , f (σ , r̄ ) behaves exactly as a production function of the variable σ ,

with a first phase of increasing returns, followed by decreasing returns.4 For each

of those curves y = f (σ , r̄ ), we observe one and only one inflection point. The

abscissa σ∗ of this point of inflection is itself an increasing, concave, function of

the capital–labour ratio r . We have plotted in figure 4.7b this relationship between

4 The very fact that f (σ , r̄ ) behaves like a production function where σ is the independent variable

prompted Hing-Man Leung to try to locate, in ( f, σ ) space, an optimal point maximizing the

difference between output and cost, as a function of σ (see H. M. Leung, 2006). Indeed, if benefits

are to be gained from an increasing elasticity of substitution, they may have their costs. This echoes

an observation made by Edmond Malinvaud (in a personal communication): it seems important to

be able to compare the costs of increasing the rate of technological progress to those corresponding

to an enhancement of the elasticity of substitution.
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Figure 4.7a Income per person y = f (r̄ , σ) as a function of σ for values of r̄ ranging
from 6 (lower curve) to 30 (upper curve) by steps of 4.

r and the inflection value of σ∗, denoted σ∗(r ). It is important to note here that

σ∗(r ) does not have an analytical form but a numerical form only, since we cannot

find the analytical solution of f ′′(σ ) = 0. Nevertheless, it is always possible to

compute σ∗(r ) and its reciprocal r (σ∗).

The question we now want to ask is the following; are OECD economies in a

range close to this inflection point? One way of answering the question is to con-

sider the relationship between the capital–output ratio v = K/Y and the point of

inflexion of the elasticity of substitution σ∗. Since we have a (numeric) increasing

relationship between σ∗ and r and an (analytical) increasing relationship between
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Figure 4.7b Relationship between a given capital–labour ratio r̄ and the elasticity of
substitution σ∗ corresponding to the inflection point (σ∗, y∗) of the curve y = f (r̄ , σ).

r and K/Y , given by

v = K

Y
= K/L

Y/L
= r

f (r )
= [δ + (1 − δ)r−p]−1/p,

we can determine numerically the relationship between σ∗ and the capital–output

ratio v corresponding to that σ∗. We just have to calculate

v∗ = [δ + (1 − δ)r∗−p∗
]−1/p∗

where p∗ denotes 1 − 1/σ∗. This relationship is given in figure 4.7c. On the other

hand, the capital–output ratio is equal, in competitive equilibrium, to

v = K

Y
= K

Y

∂ F/∂K

i
= π

i

(because ∂ F/∂K = i). We now can put numbers on π and i to obtain an estimate

of the capital–output ratio. Suppose that we set π = 0.30 and i = 4% (that could

include a risk premium – more will be said on this in chapters 9 and following).

We would then get a capital–output ratio whose order of magnitude is 7.5; reading

from figure 4.7c, the corresponding point of inflexion σ∗ is in the neighbourhood

of 0.8. Many estimates of the elasticity of substitution fall in this vicinity. From

this we conclude that OECD economies may very well be in a range close to

their inflection point in (y, σ∗) space, and that any increase in the elasticity of

substitution will have a strong impact on income per person.

The importance of this impact will be confirmed in chapter 13 when we measure

the effect of an increase in the elasticity of substitution on the maximum sum of
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Figure 4.7c Relationship between a given capital–output ratio and the elasticity of sub-
stitution σ∗ corresponding to the inflection point (σ∗, y∗) of the curve y = f (r̄ , σ).

future discounted consumption that society can acquire. We will show this effect

to be considerably more important than the result of a similar increase in the rate

of technical progress.

Appendix: On general means: an alternative proof of a famous

theorem and a conjecture

by

Olivier de La Grandville and Robert M. Solow

Let x1, . . . , xn be n positive numbers and M(p) =
(∑n

i=1 fi x
p
i

)1/p
the mean

of order p of the xi ’s; 0 < fi < 1 and
∑n

i=1 fi = 1. One of the most important

theorems about a general mean is that it is an increasing function of its order. A

proof can be found in G. Hardy, J. E. Littlewood and G. Polya (1952; theorem

16, pp. 26–7). The proof rests in part on Hölder’s inequality and on successive

contributions to the theory of inequalities that go back to Halley and Newton. In

this note, we first offer a direct, analytical proof.

Furthermore, we make a conjecture about the curve M(p) in (M, p) space. If

it is well known that M(p) is increasing with p, it seems that the exact properties

of the curve M(p) have not yet been uncovered. We offer here the conjecture that

for n = 2, it has one and only one inflection point, irrespective of the size of the

xi ’s and the fi ’s. Because of the extreme complexity of M ′′(p), a proof for the
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time being seems intractable, and we could only rely on calculations. In section 2

of this note we explain the importance of this property.

1 An alternative proof of a famous theorem

For simplicity, we consider n = 2; the extension to any number of variables is only

notational.

Let the mean of order p, M(p) =
(

f1x
p
1 + f2x

p
2

)1/p
be defined for p ∈

(−∞, 0) and p ∈ (0, +∞). For p = 0, we have M(0) ≡ G = x
f1

1 x
f2

2 , the geo-

metric mean (by L’Hospital’s rule).

Consider first the case where p 	= 0. Differentiating log M with respect to p:

∂ log M

∂p
= −1

p2
log

[
f1x

p
1 + f2x

p
2

] + 1

p

f1x
p
1 log x1 + f2x

p
2 log x2

[
f1x

p
1 + f2x

p
2

]

= −1

p2
log

[
f1x

p
1 + f2x

p
2

] + 1

p2

f1x
p
1 log x

p
1 + f2x

p
2 log x

p
2[

f1x
p
1 + f2x

p
2

]

= 1

p2
[

f1x
p
1 + f2x

p
2

]
{− [

f1x
p
1 + f2x

p
2

]
log

[
f1x

p
1 + f2x

p
2

]

+ f1x
p
1 log x

p
1 + f2x

p
2 log x

p
2

}
.

Denote for simplicity x
p
1 ≡ a1 and x

p
2 ≡ a2. Then

sgn
∂ log M

∂p
= sgn{−[ f1a1+ f2a2] log[ f1a1+ f2a2]

+ f1a1 log a1 + f2a2 log a2} (1)

Let H (z) = z log z. H (z) is convex since H ′′(z) = 1
z > 0. We have

sgn
∂ log M

∂p
= sgn{−H ( f1a1 + f2a2) + f1 H (a1) + f2 H (a2)}. (2)

The RHS is positive by convexity of H . This completes the proof for p 	= 0.

Consider now the special case corresponding to p = 0 (the geometric mean

G = x
f1

1 x
f2

2 ). We first want to show that for p > 0 the general mean M(p) is

larger than M(0) = G. We must show that

[
f1x

p
1 + f2x

p
2

]1/p � x
f1

1 x
1− f1
2 (3)

with the equality sign if and only if x1 = x2. Divide both sides by x2 and set

x1/x2 = r :

[ f1r p + f2]1/p � r f1. (4)
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Raising both sides to power p:

f1r p + f2 � r p f1 (5)

because a, b, p > 0 imply that a > b if and only if a p > b p. This inequality

says that the arithmetic mean of r p and 1 with weights f1, 1 − f1 exceeds the

geometric mean of r p and 1 with the same weights. Call D the difference between

the arithmetic mean and the geometric mean, and denote r p ≡ v:

D(v) = f1v + f2 − v f1 . (6)

At v = 1, D = 0. At that point D′(1) = 0; but the second derivative of D(v) is

D′′(v) = f 2
1 v f1−2 > 0 for any value of v; so the point (1, 0) is a global minimum

of D(v). Hence D(v) > 0 with v 	= 1.

The proof M(p) < M(0) = G for p < 0 is immediate: writing (3) and (4) with

the reverse sign, we want to show that

[ f1r p + f2]1/p � r f1. (7)

Raising both sides of (7) to power p implies, with p < 0, a reversal of the inequality

sign, which leads back to (4) and to the remaining part of the above demonstration.

2 A conjecture

On the basis of numerical calculations, we offer the following conjecture. In

(M, p) space the curve M(p) has one and only one inflection point for n = 2.

Between its limiting values (limp→−∞ M(p) = min(x1, x2) and limp→∞ M(p)

= max(x1, x2)), M(p) is in a first phase convex and then turns concave.

The importance of this property stems from the following reason. We know

that if the production function is a CES function, both income (Y = [δK p + (1 −
δ)L]1/p and income per person (y = [δr p + (1 − δ)]1/p) are general means of

order p, and that p is an increasing function of σ (p = 1 − 1/σ ). If the conjecture

about the relationship between the general means and its order is true – and we

have very strong reasons to believe it is – it may well extend to the relationship

between σ and y, i.e. y = f [p(σ )]; we have confirmed in section 3.4 of this

chapter that there exists indeed, for all usual values of σ , one and only one point

of inflection of the curve y = y(σ ), and that our economies may very well be in

the neighbourhood of this point. This is the reason why any change in σ imparts

a lot of change in income per person, and why σ will play such an important role

in optimal growth, as we will see in chapter 13.



CHAPTER 5

Capital–labour substitution and
economic growth

(in collaboration with Robert M. Solow)

Ever since its emergence in John Hicks’s Theory of Wages (1932), the elasticity of

substitution has figured primarily in the theory of distribution. The standard propo-

sition states that, with two factors, constant returns to scale and cost minimization,

the faster-growing factor increases or decreases its share in income accordingly as

this parameter is larger or smaller than one.

However, the elasticity of substitution is by definition a technological fact, a

characteristic of a production function which would turn out to play an impor-

tant role. Indeed, as shown in La Grandville (1989) and extended in this chap-

ter, a higher value of the elasticity of substitution ceteris paribus does more

than merely alter production possibilities, it expands them. Naturally, then, the

elasticity of substitution should have significance in all branches of economics

where technology matters. And it does. The purpose of this chapter is to explore

the role of the elasticity of substitution in the aggregative theory of economic

growth.

There are historical overtones to this technical theme. Broadly speaking, the

capital–labour ratio has probably been rising since the beginning of sedentary

agriculture made large-scale accumulation of capital possible. The ratio of the wage

to the rental rate of capital has presumably also increased through history, though

less regularly than the factor ratio. In the tradition of economics, accounting for

these characteristics of the long-term growth path involves an interplay between

technical progress and the evolution of capital–labour substitution possibilities

(along with possible non-market forces that are not our concern here). In practice,

growth theory has placed more emphasis on the analysis of technical change.

We propose to focus our attention on the significance of a changing elasticity of

substitution.

114
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It is understood that in any one-composite-good representation of a many-good

economy, substitution on the consumption side between goods of different capital

intensity will function much like direct input substitution. An early reference on

this is R. Jones (1965); see also the more recent work by Klump and Preissler

(2000) and E. Malinvaud ((2002) and (2003).

It has been known since the beginning of “neoclassical” growth theory that

permanently sustained growth is possible even without technological progress,

provided that diminishing returns to capital-intensity operates very weakly. We

underline the verb “is” only because this fact is sometimes casually denied in the

literature. In section 1 of this chapter we show precisely under what conditions this

kind of substitution-driven growth can occur. The key parameters are the saving-

investment rate, population increase, a measure of capital’s productivity, and σ

itself; we can calculate the asymptotic rate of growth when it does occur, in terms

of those parameters. (This is not steady-state growth in the usual sense, because

the capital–labour ratio is not constant, but increasing.)

We will have a lot to say about the many cases where σ does not reach that

threshold value. In particular, we will show how any change in σ impacts upon

an economy at any stage of its development, on its growth rate, on its equilibrium

income per person and on production costs. We discuss these relationships in

section 1 by relying on a central property of generalized means, and illustrate

them in section 2. In section 3 we extend those results to an economy exhibiting

both capital and labour-augmenting technical progress.

Section 4 reverts to the estimating equation used by Arrow et al. (1961), and

we use it in the same way to provide some new estimates of σ based on data from

16 countries for the interval 1966–97. These are econometrically unsophisticated

ordinary least square calculations. Our main intention here is to exhibit the usual

outcome that cross-section estimates tend to be smaller than time-series estimates,

and then to interpret this regularity in terms of theory developed earlier. In the

concluding section 5, we return to the broader significance of the macroeconomic

elasticity of substitution and discuss whether it offers any opening for deliberate

policy.

1 Further analytics of the CES function in a growth model

A first inkling of the property that the elasticity of substitution is an efficiency

indicator in any productive system among other things is the following. Consider

the picture of a family of isoquants with a common tangency point, corresponding

to a given wage/rental rate (figure 4.4, chapter 4); to each isoquant is attached

a given elasticity of substitution ranging from zero (the Walras–Leontief case,

entailing a right angle isoquant) to infinity (the isoquant becomes a straight line,

the tangent common to all isoquants). For all levels of the factor–price ratio except



116 Capital–labour substitution and economic growth

that corresponding to the common tangency point the cost of producing a given

level of output is a decreasing function of the elasticity of substitution. Equiv-

alently, the unfolding of the production surface (around a ray from the origin)

resulting from an increasing elasticity of substitution implies a higher level of

output everywhere except on the said ray. Therefore the elasticity of substitution

acts exactly like technical progress, displacing the production function in the right

way.

In the (1989) paper mentioned above, the following questions were asked:

suppose that at some point of time, an economy is characterized by its capital stock,

its labour force, the resulting total income, the rental rates of capital and labour,

and its elasticity of substitution. What would be the consequences of various levels

of the elasticity of substitution σ on later growth? In particular, does a threshold

value of σ exist for which there could be no steady equilibrium? In other words, is

there a minimal value of σ which would lead to a permanent increase of income

per person even in the absence of technological progress? And if that threshold

is not attained, is there a positive relationship between the growth rate of income

per person and the elasticity of substitution? To answer these questions, the author

relied on a geometrical argument based upon the unfolding of the surface Fσ (K , L)

implied by an increasing σ , coupled with the equation of motion of the economy.

The threshold was determined, albeit in implicit form. (In fact, this formulation

can be simplified, yielding the explicit form we will give in this paper.)

This led to the natural, converse question of determining a threshold value of

the savings rate s that would, for a given level of σ , lead to permanent growth even

without technological progress. That minimum value of savings was obtained and

checked with the particular case that had been considered by R. Solow (1956) with

σ = 2.

It was also shown that even if the economy did not attain those threshold values

for σ (or for s), the temporary growth rate of income per person at any time was an

increasing function of the elasticity of substitution and that the steady-state value

of income per person was also an increasing function of σ . This led the author

to conjecture that part of the explanation of miracle growth in Japan or South

Asian countries lay not only in a high savings rate but also in a high elasticity of

substitution between factors in their industrial sectors. That conjecture was tested

by Ky-Hyang Yuhn (1991) in the case of South Korea and, seemingly, was proved

right.

A decade later, Klump and La Grandville (2000) demonstrated algebraically

the two following theorems:

Theorem 1 If two economies are described by CES production functions
differing only by their elasticity of substitution, and share initially a common
capital/labour ratio, population growth rate and savings-investment rate, then at
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any stage of its development the economy with the higher elasticity of substitution
will have a higher level of per capita income.

Theorem 2 (With the same premises as in theorem 1). If the levels of the
elasticities of substitution guarantee the existence of steady states, then the econ-
omy with the higher elasticity of substitution will have a higher capital intensity
and a higher level of per capita income in the steady state.

The demonstrations of both theorems required quite lengthy calculations. We

will first show in this section how, using the fundamental property of general means

(as described in G. Hardy, J. E. Littlewood and G. Polya, Inequalities, chapter 2),

those theorems become extremely simple to prove; we will add another theorem,

pertaining to the cost of producing one unit of national output. The threshold value

of the elasticity of substitution will then be determined in explicit form, and not in

implicit form only. We will also give some numerical illustrations.

Recall that the CES was written in chapter 3 as

Y = [δK p + (1 − δ)L p]1/p, (1)

with p = 1 − 1/σ , where σ is the elasticity of substitution. Y, K and L are under-

stood to be indices, and the per capita function is

y = [δr p + (1 − δ)]1/p. (2)

Written explicitly, these index numbers appear in the following form:

Y = Y0

[

π0

(
K

K0

)p
+ (1 − π0)

(
L

L0

)p]1/p
(3)

where K0, L0, Y0 and π0, equal to (∂Y/∂K )(K/L) at (K0, L0), are benchmark

values. This form had been obtained in chapter 3 by identifying the integration

constants introduced in the derivation of the CES function. Today empiricists use

that formulation (see, for instance, Thomas Rutherford (2003)). The per capita

version of (3) is

Y/L

Y0/L0
= y

y0
=

[

π0

(
r

r0

)p
+ (1 − π0)

]1/p
(4)

1.1 Simple proofs of theorems 1 and 2, and additional results

We are now in a position to give simple proofs of theorems 1 and 2, applying

the theory of general means. We will then show how the relationship between

the production function and σ extends to its dual, and that the cost of producing

one unit of national output is a general mean of the input prices, its order being a

decreasing function of the elasticity of substitution.
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1.1.1 Proof of Theorem 1

Theorem 1 is a direct consequence of one of the fundamental properties of general

means: income per person, as given by equation (10), is a mean (of order p) of r
and 1, and therefore an increasing function of its order (r �= 1). Since p, the order

of the mean, is itself increasing with σ (p = 1 − 1/σ ), theorem 1 is proved.

1.1.2 Proof of Theorem 2

Using (2), the equation of motion of a CES economy with no technological progress

(and no depreciation) is

ṙ = s[δr p + (1 − δ)]1/p − nr (5)

Consider two values of the elasticity of substitution σ1, σ2 such that σ2 >

σ1. Suppose that for σ1 there exists an equilibrium capital/labour ratio, denoted

(r∗ �= 1). We know from Theorem 1 or from the general property of means that

fσ 2(r∗
1 ) > fσ 1(r∗

1 ). Since r∗
1 is such that s fσ 1(r∗

1 ) = nr∗
1 , s fσ 2(r∗

1 ) > nr∗
1 ; then,

if an equilibrium value r∗
2 corresponding to σ2 exists, it must be larger than

r∗
1 . Therefore r∗

2 > r∗
1 and fσ 2(r∗

2 ) > fσ 1(r∗
1 ). Theorem 2 is thus proved. Addi-

tional theorems now follow:

1.1.3 Theorem 3

At any stage of an economy’s development, the cost of producing one unit of
national product is a decreasing function of the elasticity of substitution.

Proof Consider minimizing the cost of production C = q K + wL subject

to (3). The unit cost index turns out to be

c =
[

δ

(
q

q0

)1−σ

+ (1 − δ)

(
w

w0

)1−σ
] 1

1−σ

(6)

(a derivation under general conditions is given in the appendix; this formulation

corresponds to Thomas Rutherford (2003)).

We recognize here a general mean of order 1 − σ of the price indices of capital

and labour. The theory of general means again applies: c/c0 is an increasing

function of 1 − σ , and therefore a decreasing function of σ .

1.2 Equilibrium and disequilibrium, and the cases of ever-increasing

or decreasing income per person

The very fact that the marginal productivity of capital, ∂ F/∂K , equal to f ′(r ),

has a positive, finite limit when r → ∞ and σ > 1 (lim f ′(r )r→∞ = δ1/p =
δσ/(σ−1)), spells excellent news. On the other hand the existence of the same

expression for limitr→0 f ′(r ) when σ < 1 (also equal to δ1/p = δσ/(σ−1)) may
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Figure 5.1a With σ = 2, s and n1 are such that income per person will grow forever.

have disastrous consequences. Indeed, in the first case it means that for sufficiently

high σ and s/n, income per person will increase forever. In the second case how-

ever, ifσ and s/n are extremely low, income per person is bound to decrease to zero.

Once more, the phase diagram will be most helpful to understand these issues. In

figure 5.1a and 5.1b we have sketched s fσ (r ) for σ = 2 and σ = 0.5, respectively.

We can now picture rays nr with values n1 and n2 such that n1 < s f ′
2 (∞) and

n2 > s f ′
0.5 (0). Clearly, in the first case, income per person will grow forever what-

ever the initial position of the economy because we will have ṙ = s f2 (r ) − nr > 0

for any r . On the other hand, in the second case disaster is looming since

ṙ < 0 for any r.
Our purpose now is to investigate each of these situations. We will define in

a precise way the values of the parameters δ, σ , s and n for which equilibrium is

warranted or not. Our first step will be to introduce a constant linking parameters σ

and δ of the CES function. We propose to call it the Pitchford constant for reasons

that will be explained shortly.

1.2.1 Introducing the Pitchford constant

This constant will play a central role for three reasons. First, it will be used to deter-

mine the threshold value of the elasticity of substitution above which permanent
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Figure 5.1b With σ = 0.5, s and n2 are such that income per person will decrease to zero.

growth of income per person is guaranteed even in the absence of technological

progress. Secondly, it will prove essential to determine another threshold of σ : that

under which income would start falling toward zero. Thirdly, the constant will turn

out to be proportional to the limiting growth rate of income when the economy is

either so efficient or so inefficient that it will not converge to a steady state,1 with

or without labour-augmenting technical progress.

Consider income per person as given by equation 24 of chapter 4, and its

derivative (equation 26). We have:

y = fσ (r ) = [δr p + (1 − δ)]1/p = [δr1−1/σ + (1 − δ)]σ/(σ−1), σ �= 1

and

∂ F

∂K
= y′(r ) = δ[δ + (1 − δ)r−p]

1−p
p = δ[δ + (1 − δ)r

1
σ −1]

1
σ−1 , σ �= 1

Careful examination of ∂ F/∂K = y′(r ) shows that the two following limits,

defined as limr→∞ f ′(r ), with σ > 1 (or 0 < p < 1) and limr→0 f ′(r ), with

1 A “steady state” is defined by an equilibrium situation where K , L and Y grow at the same rate.
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σ < 1 (or 0 < p < 1), are equal to the same constant, δ1/p = δ(σ/(σ−1)), which

we denote mδ(σ ). The reason for doing so is that mδ(σ ) is at the same time the

minimum value of f ′(r ) when σ > 1, and the maximum value of f ′(r ) when σ < 1.

We thus have

mδ(σ ) = δ1/p = δσ/(σ−1) = lim
r→∞ f ′(r ) = inf f ′(r ), σ > 1

= lim
r→0

f ′(r ) = sup f ′(r ), σ < 1.

This constant was introduced by John Pitchford in 1960,2 and we find most

appropriate that it bears the name of its discoverer. Pitchford was investigating

the possibility of permanent disequilibrium in a growth model based on a CES

function. He introduced this constant as the upper limit of Y/K when r → ∞
and σ > 1, and the lower limit of Y/K when σ < 1. Applying L’Hospital’s rule,

it is immediate that these limits are the same as those defined just above. In his

innovative essay, which has been overlooked for too many years, Pitchford had

clearly seen the two possibilities of disequilibria in the CES framework. Pitchford

was working in (ṙ/r, Y/K ) space because the fundamental differential equation

(14) of chapter 2 was written ṙ/r = sy/r − n); this space had been elected by

Trevor Swan in his path-breaking essay.3 We think however that it may be easier

to work in the usual phase diagram space, i.e. in (ṙ , r ) space, because possibilities

of equilibrium or disequilibrium can be easily inferred geometrically.4

This value of mδ(σ ) is represented in figure 5.2 as a function of σ , for values of δ

ranging from 0.2 to 0.35. Except at σ = 1 where it has a discontinuity, it is always

an increasing function of σ . For 0 ≤ σ < 1, the function starts at 1, is strictly

convex and tends to infinity when σ → 1; for σ > 1, the function starts at 0 and

is first strictly convex; it goes through an inflection point at σ = 1 − (1/2) log δ

(larger than 1 since 0 < δ < 1); it then becomes concave, tending asymptotically

toward δ.

All these properties of mδ(σ ) will play a particularly important role, with and

without technological progress. Indeed, we will show that m is proportional to

the ultimate growth rate of income when the economy does not converge toward

a steady state, the coefficient of proportionality being the net savings (or net

investment) rate s.

2 In his essay “Growth and the Elasticity of Substitution”, Economic Record, 36, 491–504, 1960.

We have taken the liberty of adapting Pitchford’s notation to ours.
3 Trevor Swan, “Economic Growth and Capital Accumulation”, Economic Record, 32, 340–61,

1956.
4 Another reason is that one of us had already used the limit of f ′(r ) when r → ∞ and σ > 1

(La Grandville, 1989).
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1.2.2 The threshold value of the elasticity of substitution generating

permanent growth

We will now determine the threshold value of the elasticity of substitution, denoted

σ̂ , that, together with a net investment rate s and population growth rate n, would

guarantee permanent growth of income per person. We will look for a value of σ

such that limr→∞ s f ′
σ (r ) ≥ n.

Observe first that parameters σ , s and n must be within some bounds for the

problem to have a solution. First, σ > 1 (or 0 < p < 1) since we know from

first principles that limr→∞ s f ′
σ (r ) = 0 if σ ≤ 1, entailing necessarily an equi-

librium value r∗
σ if n > 0. Second, we must have n ≤ sδ, or s/n ≥ 1/δ; indeed,

investment per person in the case of σ → ∞ is s[δr + (1 − δ)], a straight line

in the phase diagram, with slope sδ. A value of n larger than that slope would

lead to an equilibrium value r∗. So our parameters must necessarily meet the

conditions:

σ > 1; p = 1 − 1/σ > 0 (7)

and

n ≤ sδ. (8)

(this last condition implying s/n ≥ 1/δ). The condition for the threshold value of

σ is limr→∞ s f ′
σ (r ) ≥ n or

lim
r→∞ f ′

σ (r ) ≥ n

s
. (9)

We know from section 2.1.2 that limr→∞ f ′(r ) is equal to the Pitchford constant

mδ(σ ). So our condition (9) implies

lim
r→∞ f ′

σ (r ) = mδ(σ ) = δ
σ

σ−1 ≥ n

s
. (10)

Taking into account the above restrictions on σ , n, s and δ, this inequality translates

into

σ ≥ σ̂ = 1

1 + (log δ)/ log(s/n)
, σ > 1 and s/n > 1/δ. (11)

The expression of the threshold value σ̂ makes good economic sense: first, it is

a decreasing function of the partial elasticity of production with respect to capital

at the base year π0 = δ. Furthermore, keeping in mind that log δ < 0, we notice

that σ̂ is also a decreasing function of s, and an increasing function of n. In space

(s/n, σ ),we can delineate the area corresponding to permanent growth of income

per person as the hatched area in the right-hand side of figure 5.3a.
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Table 5.1 The threshold value σ̂ of the elasticity

of substitution leading to permanent growth

without any technical progress

(Population growth rate: n = 1%/year)

Calibrated capital’s share
in total income δ

savings-investment
rate s 0.25 0.3 0.33

0.08 3 2.38 2.12
0.09 2.71 2.21 2
0.1 2.51 2.1 1.91
0.11 2.37 2.01 1.85
0.12 2.26 1.94 1.79
0.13 2.18 1.88 1.75
0.14 2.11 1.84 1.71
0.15 2.05 1.80 1.68
0.16 2 1.77 1.66
0.17 1.96 1.74 1.63
0.18 1.92 1.71 1.61
0.19 1.89 1.69 1.60
0.2 1.86 1.67 1.58
0.21 1.84 1.65 1.56
0.22 1.81 1.64 1.55
0.23 1.79 1.62 1.54
0.24 1.77 1.61 1.53
0.25 1.76 1.60 1.52
0.26 1.74 1.59 1.51
0.27 1.73 1.58 1.50
0.28 1.71 1.57 1.49
0.29 1.70 1.56 1.48
0.30 1.69 1.55 1.48

Some illustrations Suppose that in a given economy, the growth rate of popula-

tion and employment is n = 1% per year; the savings/investment rate is s = 20%

and the initial share of capital in national income is δ = 1/3. Applying (11),

the threshold value of σ that will guarantee permanent growth is σ̂ = 1.58.

Table 5.1 gives the values of σ̂ for various levels of the savings/investment rate

and various levels of δ.

Corollary: the threshold value of the savings and the population growth
rates entailing permanent growth Consider now a converse problem: suppose

that the elasticity of substitution σ is given. Then there exists a threshold value

for the savings/investment rate s that will keep income per person growing; this
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Table 5.2 The threshold value ŝ of the savings-

investment rate leading to permanent growth

without any technical progress

(Population growth rate: n = 1%/year)

Calibrated capital’s share
in total income δ

elasticity of substitution
σ 0.25 0.3 0.33

1.5 0.64 0.37 0.27
1.6 0.403 0.247 0.187
1.7 0.290 0.186 0.144
1.8 0.226 0.150 0.118
1.9 0.187 0.127 0.102
2 0.16 0.111 0.09
2.1 0.141 0.10 0.081
2.2 0.127 0.091 0.075
2.3 0.116 0.084 0.07
2.4 0.108 0.079 0.066
2.5 0.101 0.074 0.062
2.6 0.095 0.071 0.06
2.7 0.09 0.068 0.057
2.8 0.086 0.065 0.055
2.9 0.083 0.063 0.053
3 0.08 0.061 0.052

value, determined by inverting (10), is equal to

ŝ = n

mδ(σ )
= n

δ
σ

σ−1

(12)

The threshold value of the savings/investment ratio is of course an increasing

function of n, and a decreasing function of δ and σ . As an example, consider for

instance the case studied by Solow (1956) with σ = 2. With the same values as

above, the threshold of s is ŝ = 9%.

Table 5.2 indicates the threshold value ŝ of the savings-investment rate leading

to permanent growth without any technical progress, for various values of σ and

δ, the population growth rate being n = 1%/year.

A similar threshold value for n can be obtained by inverting (10). We get the

maximum value of the population growth rate (denoted n̂) leading to permanent

growth of income per person:

n̂ = sδσ/(σ−1) = smδ(σ ) (13)
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For instance, if δ = 0.33, s = 0.2 and σ = 1.4, then n̂ = 0.43%. Note finally that

the maximum value n̂ is an increasing function of s, δ and σ – which makes good

economic sense.

Limiting values of the share of capital and the growth rate of income per
person Suppose now that in a given economy the level of σ is equal or higher

than its threshold value σ̂ . The fact that r and y increase indefinitely has some

surprising consequences.

First, the capital share π (r ) tends to 1: this is seen by letting r → ∞ in π (r ) =
K
Y

∂ F
∂K = r

fσ (r ) f ′
σ (r ) = δ[δ + (1 − δ)r−p]−1, and the growth rate of y,

ẏ

y
= πσ (r )

{
s[δr p + (1 − δ)]1/p/r − n

}
, (14)

tends by decreasing values toward

lim
r→∞ẏ/y = sδ1/p − n = smδ(σ ) − n. (15)

This limit itself tends toward zero if the elasticity of substitution tends through

diminishing values toward its threshold σ̂ (because, as we have seen, σ̂ is

determined by mδ(σ ) = n/s. In the example above (where σ = 2),

limr→∞ ẏ/y = 1.2̄%. Notice that, from (15), the limiting growth rate of Y is

lim
r→∞Ẏ/Y = smδ(σ ). (16)

Why should it be so? The reason is as follows. We have seen that

limr→∞ πσ (r ) = 1. This implies, in the limit, ∂ F
∂K

K
Y = 1 and K̇/K = Ẏ/Y ;

K̇ being sY , we get in the limit Ẏ/Y = K̇/K = sY/K = s f ′(r ) = smδ(σ ).

A number of properties of this limit growth rate should be noted:

� it is equal to or higher than n (since it corresponds to smδ(σ ) ≥ n)
� it depends positively on s, δ and σ (because of the properties of the Pitchford

constant mδ(σ ) mentioned before).

1.2.3 The case of disequilibrium with ever decreasing income per person

This case corresponds to σ < 1 and s f ′(0) ≤ n, or smδ(σ ) ≤ n, with s/n < 1.

Solving this inequality similarly to what we did before, we are led to the condition

σ ≤ σ̄ = 1

1 + (log δ)/ log(s/n)
, σ < 1 and s/n < 1.

This disequilibrium area is pictured in figures 5.3a and 5.3b (hatched area on

the left-hand side).
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Figure 5.3a Areas of (s/n, σ) space leading to equilibrium or disequilibrium (δ = 0.35).
For any value of σ, the curves σ̂ and σ̄ give the crucial value of s/n, equal to 1/mδ(σ).

In turn, we can find a threshold value for the savings rate, s̄, under which income

per person would decrease forever. From smδ(σ ) ≤ n, we get

s ≤ s̄ = n

mδ(σ )
= n

δ(σ/(σ−1))
, σ < 1.

This threshold value is just the population growth rate divided by the Pitchford

constant. Putting some numbers on this inequality, consider for instance the case

n = 2%, σ = 0.5 and δ = 0.3. The inverse of the Pitchford constant is then 0.3,

entailing a savings rate equal to or less than 0.6%. Such small savings rates might

be observed in very poor countries and hence cannot, unfortunately, be dismissed.

For exactly the same reasons as before, the limiting growth rate of Y will also

be smδ(σ ); indeed, limr→0 π (r ) = 1 when 0 < σ < 1 (when p < 0), and from
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Figure 5.3b Enlargement of area 0 ≤ s
n ≤ 1, 0 ≤ σ < 1; δ = 0.35.

(14) limr→0 ẏ/y = smδ(σ ) − n, which will be negative. In the above example,

if s = 0.5%, the limiting growth rate of y will be minus 0.3%.

2 The elasticity of substitution at work

We now have all the tools to examine the benefits an economy can derive

from a higher elasticity of substitution, putting some numbers on the preceding

theorems 1 and 2. These tests are necessary, because the theorems could be per-

fectly correct but of little import if changes in the elasticity of substitution entailed

only marginal changes in income per person at the various stages of development

of an economy.



130 Capital–labour substitution and economic growth

Table 5.3 The elasticity of income per person with

respect to the elasticity of substitution as a function of the

capital/labour ratio r and the elasticity of substitution σ

ey,σ = ∂y
∂σ

σ
y (σ, r ; δ) (Initial value of capital share: δ = 33%)

Value of the elasticity of substitution σ

Capital/labour
ratio r 0.8 0.9 1 1.1 1.2

1 0 0 0 0 0
2 0.06 0.055 0.050 0.047 0.043
3 0.15 0.136 0.127 0.118 0.111
4 0.23 0.215 0.202 0.189 0.178
5 0.30 0.287 0.272 0.256 0.242
6 0.37 0.354 0.337 0.319 0.301
7 0.43 0.415 0.398 0.378 0.357
8 0.48 0.472 0.454 0.432 0.410
9 0.53 0.524 0.507 0.484 0.459

10 0.58 0.574 0.557 0.533 0.506
20 0.92 0.948 0.942 0.914 0.873
30 1.14 1.204 1.214 1.187 1.137
40 1.30 1.401 1.429 1.404 1.346
50 1.43 1.562 1.607 1.585 1.520
60 1.54 1.700 1.760 1.741 1.671
70 1.63 1.819 1.895 1.880 1.805
80 1.71 1.925 2.016 2.004 1.924
90 1.78 2.021 2.126 2.117 2.033

100 1.84 2.108 2.227 2.221 2.132
1000 3.59 4.70 5.30 5.29 4.88

2.1 How σ can boost an economy at various stages of its development

Let us illustrate theorem 1 by determining the elasticity of income per person with

respect to the elasticity of substitution for any value of the capital–labor ratio.

From (2) we have

ey,σ (r, σ ; δ) = ∂y

∂σ
· σ

y
= ∂ log y

∂p

dp

dσ
σ

= 1

σ p

{

− 1

p
log

[
δr p + (1 − δ

]
}

+ δr p log r

δr p + (1 − δ)
(17)

Theorem 1 ensures that this elasticity is positive, and table 5.3 displays its

values for various values of σ at several stages of the economy’s development (i.e.

for various values of the capital–labor ratio r ).
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Figure 5.4 Elasticity of income per person with respect to the elasticity of substitution at
various stages of an economy’s development ey,σ(σ; r, δ̄) for δ̄ = 0.33 and r = 5, 10, 20,
30, 40, 100.

This elasticity increases significantly with r ; for instance, with δ = 1/3 and

σ = 0.8, a 1% increase in the elasticity of substitution will increase income per

person by 0.3% if r = 5 and by 0.92% if r = 20.

Notice that while ey,σ (r, σ ; δ) is an increasing function of r and δ, it is not a

monotonic function of σ , as can be seen in table 5.3 and on figure 5.2: when σ is

relatively small, ey,σ (r, σ ; δ) is an increasing function of σ for a given r ; it then

becomes a slowly decreasing function of σ .

The sensitivity of income per person to changes in the elasticity of substitution

goes through a maximum which is located, in (ey,σ , σ ) space, on a line which is

always increasing; this is the dashed line in figure 5.4. This means that for very

large values of r there is an extremely high sensitivity of income per person to a

change in σ if the production function is Cobb–Douglas or nearly Cobb–Douglas.

This is a direct consequence of the observation we made about the inflection point

of the general mean in chapter 4.

2.2 The consequences of an increasing elasticity of substitution on

equilibrium income per person

The force exerted by the elasticity of substitution on the growth process can also

be thrown in full light by measuring the sensitivity of the steady state income
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per person y∗ to a change in σ . We thus illustrate theorem 2 by determining the

elasticity of y∗ with respect to σ , denoted ey∗,σ .

Denote the steady state values of y and r as r∗ and y∗ respectively; they are

such that sy∗ = nr∗, or y∗ = (n/s)r∗. This linear relationship between r∗ and

y∗ implies that the elasticity of y∗ with respect to σ is equal to the elasticity of

r∗ with respect to σ . We will make use of this property to determine ey∗,σ as

follows:

ey∗,σ ≡ ∂y∗
∂σ

σ

y∗ = ∂r∗
∂σ

σ

r∗ = ∂r∗
∂p

dp

dσ

σ

r∗ = ∂ log r∗
∂p

dp

dσ
σ (18)

The solution of sy = s[δr p + 1 − δ]1/p = nr is

r∗ =
[

1 − δ

(n/s)p − δ

]1/p
.

Taking the log of r∗, and calculating (18), we get:

ey∗,σ = −1

pσ

{
1

p
log

[
1 − δ

(n/s)p − δ

]

+ (n/s)p log(n/s)

(n/s)p − δ

}

(19)

How do we know that the right-hand side of (19) is always positive? Through

theorem 2 or, equivalently, noting that (18) is equal to the derivative of a gen-

eral mean (y∗) with respect to its order (p), a positive number, multiplied by

(dp/dσ )(σ/y∗) = (σ y∗)−1, also a positive number.

Not only is the RHS of (19) positive, but it is a surprisingly fast increasing

function of σ . Indeed, it becomes asymptotical to a vertical at the threshold value

σ̂ , where it is not defined any more. In figure 5.5, ey∗,σ is represented for n = 0.01,

s = 0.2, and for four values of δ (0.2; 0.25; 0.3; 0.33). The striking feature is

the strong convexity of the elasticity of y∗ with respect to σ in the interval of

σ (∼ 0.7, ∼1.2) where we believe most economies are presently located.

We conclude this section by observing that illustrations of theorems 1 and 2

testify to the tremendous impact even a small change in the elasticity of sub-

stitution can have on an economy at any stage of its development. Precise as

these numbers may be, however, they are only static measures of the sensitivity

of the economy to changes in σ : they should be complemented by a complete,

dynamic analysis of any stepwise change of σ on the economy. We thus should

know how such a change would impact upon the sum of the infinite stream of

discounted benefits society could enjoy in the future. Furthermore, this should

be done in a model exhibiting a measure of technical progress, so that the total

benefits of a change in σ can be compared to those generated by a change in

technological progress. This however will have to wait until we have covered the

subject of optimal growth (Part II); we will address this important issue in Part III,

chapter 13.
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Figure 5.5 Elasticity of equilibrium income per person with respect to the elasticity
of substitution for various values of π0 = δ ey∗,σ(σ; δ, s̄, n̄) for s̄ = 0.2; n̄ = 0.01 and
δ = 0.2, 0.25, 0.3, 0.33.

3 Introducing technical progress

As mentioned earlier, the standard neoclassical model is capable of sustained

growth without technical progress, but only provided that there are very weakly

diminishing returns to capital. In equation (11) and table 5.1, we have made that

statement precise in terms of the minimal elasticity of substitution compatible

with sustained growth under unchanging technology, with given population growth

and saving-investment rate. In that case of substitution-based growth, the growth

rate rises to a limiting value of sδσ/(σ−1) = smδ(σ ). This theoretical possibility

evidently requires a larger value of σ than conventionally appears in calibrations of

growth models. The main source of modern growth is pretty clearly technological

progress. But it seems important to be able to measure how a change in the elasticity

compares to a change in technological progress in terms of its impact upon the

whole future of an economy.

This is a good place to emphasize a point made in section 1. In the language

of the one-sector growth model, the elasticity of substitution between labour and

capital appears as a parameter of the production function, a given technological

fact. But the model itself is intended to “represent” an economy with many goods

and many industries. In that context, substitution between labour and capital can

also take the form of induced substitution on the demand side between goods with

different characteristic capital-intensities. Thus a reduction in the rental rate on
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capital can induce direct substitution of capital for labour within each industry. In

a competitive environment, it will also reduce the price of capital-intensive goods

relative to labour-intensive goods. If the sales and output of capital-intensive goods

rise and those of labour-intensive goods fall, capital will be substituted for labor

indirectly as well. Both channels affect the measured “aggregative” elasticity of

substitution. Only long-run mobility of capital is required. We will return to this

mechanism in a little more detail in section 4.

So far we have made use of the CES production function without technological

progress, as represented in (1). The natural next step is to introduce technical

progress in order to analyze its interaction with the elasticity of substitution in the

generation of sustainable growth.

3.1 General specifications of technical progress and results

Consider capital-augmenting progress depicted by a function of time h(t) (with

h′(t) > 0) multiplying K and a labour-augmenting progress g(t) (g′(t) > 0) func-

tion multiplying L(t). If the production function is CES, equation (3) is now

replaced by

Y

Y0
=

{

δ

[

h(t)
K

K0

]p
+ (1 − δ)

[

g(t)
L

L0

]p}1/p
(20)

The main results of section 2 now can be extended in the form of the following

theorems:

3.1.1 Theorem 4

If an economy is driven by a CES production function exhibiting either capital- or
labour-augmenting technical progress, or both, then at any stage of its development
income per person is an increasing function of its elasticity of substitution.

Proof Factoring out
L

L0
in (20) yields the income per person index:

y = Y/Y0

L/L0
=

{

δ

[

h(t)
K

K0

]p
+ (1 − δ)g(t)p

}1/p
. (21)

The RHS of (21) is a general mean of h(t)K/K0 and g(t) of order p, and therefore

an increasing function of σ .

3.1.2 Theorem 5

If an economy is driven by a CES production function with either capital- or
labour-augmenting progress, or both, then at any stage of its development the cost
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of producing one unit of national product is a decreasing function of the elasticity
of substitution.

Proof Minimize the cost function q K + wL , or alternatively, for simpler

calculations, the cost index

C

C0
= δ

(
q

q0

) (
K

K0

)

+ (1 − δ)

(
w

w0

) (
L

L0

)

(22)

subject to the production constraint (20). The unit cost index, (C/C0)/(Y/Y0) ≡ c,

is then equal to

c =
{

δ

[
q

q0
h−1

t

]1−σ

+ (1 − δ)

[
w

w0
g−1

t

]1−σ
} 1

1−σ

(23)

(see appendix).

We recognize in (23) a general mean of (q/q0)h−1
t and (w/w0)g−1

t of order

1 − σ , and therefore a decreasing function of σ .

3.2 Asymptotic growth with labour-augmenting technical progress

For simplicity we will mainly consider the purely labour-augmenting case. More

general formulations would lead to qualitatively similar conclusions, but do not

lend themselves to compact descriptions. To simplify notation, we set the base

values Y0, K0 and L0 to unit. Y, K and L are then to be viewed as indexes. In this

section, we also specify g(t) as eλt. Normalizing Y0, K0 and L0 to 1, the production

function has the form

Y =
[
δK p + (1 − δ)(eλt L)p

]1/p
.

At this point it is extremely useful to make a change of variables in order to

transform the differential equation governing the economy into an autonomous

one. The reason is not that it necessarily simplifies its solution, because in any

case the equation does not allow an analytical solution – numerical methods will

have to be used. The reason is that in the new space of variables we will define,

a phase diagram will be available, which will be quite handy to understand the

issues related to the long-term evolution of the economy. If L = ent represents

the evolution of labour, we define efficient labour units as e(n+λ)t ; income per

unit of efficient labour, denoted yγ , will be equal to

yγ = Y

e(n+λ)t
.

With this notation, income per person, our variable of central importance,

becomes

y = Y

L
= Y

ent = yγ eλt ;
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the growth rate of income per person is then

ẏ

y
= ẏγ

yγ
+ λ;

(this will prove very useful later). We can now write

yγ = Y

e(n+λ)t
=

[
δK p + (1 − δ)e p(n+λ)t

]1/p
e
−(n+λ)t p

p

=
[
δK pe−p(n+λ)t + 1 − δ

]1/p
.

Denoting in a similar way capital per efficient labour unit as rγ , we have

rγ = K

Leλt
= K

e(n+λ)t
.

We can then write yγ as

yγ =
[
δr

p
γ + 1 − δ

]1/p
.

Let us now derive the differential equation governing rγ . The growth rate of rγ
is, from the definition of rγ

ṙγ
rγ

= K̇

K
− (n + λ).

As before, K̇ = sY ; therefore,

K̇

K
= sY

K
= s

yγ
rγ

and the equation of motion governing rγ is

ṙγ = syγ − (n + λ)rγ .

We have thus what we wanted: an autonomous equation which can be depicted

in (rγ , ṙγ ) space. It has all the same qualitative properties as those of the corre-

sponding equation in (r, ṙ ) space; the only difference is that ray nr is now replaced

by (n + λ)rγ .

In the preceding section, we had shown that, without any technological

progress, there was a threshold σ̂ above which income per person would grow per-

manently, and another threshold σ̄ under which income per person would decrease

toward zero. Let us now examine what can be the ultimate convergence of income

per person in the presence of labour-augmenting technological progress. We should

distinguish two principal cases : σ > 1 and σ > 1, each with important subcases.

Before we do this, note two properties that will prove essential: first, the

Pitchford constant will remain the same as before: mδ(σ ) = δ1/p will be equal
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to limrγ →∞y′
γ (rγ ) = limrγ →∞yγ /r with σ > 1 and to limrγ →0y′

γ (rγ ) =
limrγ →0yγ /r with σ < 1. Secondly, the elasticity of yγ with respect to

rγ , π (rγ ) = rγ y′
γ /yγ will tend toward 1 in the two following cases: first when

rγ → ∞ and σ > 1, and also when rγ → 0 and σ < 1.

3.2.1 Asymptotic growth when σ ≥ 1

The growth rate of income per efficient unit of labour is

ẏγ
yγ

= y′
γ

rγ
yγ

ṙγ
rγ

= π (rγ )
ṙγ
rγ

= π (rγ )

[

s
yγ
rγ

− (n + λ)

]

(24)

and the growth rate of income per person is

ẏ

y
= ẏγ

yγ
+ λ = π (rγ )

[

s
yγ
rγ

− (n + λ)

]

+ λ (25)

We are now able to discuss the various cases of equilibrium and disequilibrium.

The case σ ≥ 1 and n + λ > smδ(σ ).

In this case an equilibrium (denoted r∗
γ ) exists5 (see figure 5.6a; in this diagram

we have chosen n = 0.01; λ = 0.005; s = 0.1; δ = 0.35; σ = 1.1). This means

limrγ →r∗
γ

ṙ∗
γ /rγ = 0; since lim

rγ →r∗
γ

π (rγ ) is finite, limrγ →r∗
γ

ẏγ /yγ = 0; also,

limrγ →r∗
γ

yγ = y(r∗
γ ) = y∗

γ . We have then, for the ultimate evolution of y:

if n + λ > smδ (σ ) , lim
t→∞ y(t) = lim

t→∞ yγ eλt = y∗
γ eλt .

Therefore, equilibrium means that income per person will increase asymptotically

at rate λ; total income’s asymptotical growth rate will be n + λ.

The case σ ≥ 1 and n+λ ≤ smδ (σ ) .

This case corresponds to figure 5.6b (here σ = 2.25). Since the limit of π
(
rγ

)

when rγ→∞ is one, we can see from the last expression on the right-hand side of

(24) that

if n + λ ≤ smδ (σ ) , lim
rγ →∞

ẏγ
yγ

= smδ(σ ) − (n + λ);

yγ will therefore increase asymptotically at rate smδ(σ ) − (n + λ); y and Y will

do so at rates smδ(σ ) − n and smδ(σ ) respectively. Note that the ultimate growth

rate of y will be higher than λ if smδ (σ ) − n > λ. We will call σ∗∗ the threshold

value of σ corresponding to inequality n + λ ≤ smδ (σ ) . It will be of course given

5 It is given by syγ = nrγ , i.e. by r∗
γ =

[
1−δ

(n+λ)/s−δ

]1/p
.
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Figure 5.6a The case σ ≥ 1 and n + λ > smδ(σ); limt→∞ ẏ/y = λ.
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Figure 5.6b The case σ ≥ 1 and n + λ ≤ smδ(σ); limt →∞ ẏ/y = smδ(σ) − n ≥ λ.

0.015

0.01

0.005

0
0.4 0.6 0.8 10.2

(n + λ )rγ

nrγ

syγ
(σ = 0.7)

rg

rg

Figure 5.6c The case σ < 1 and n + λ < smδ(σ); limt →∞ ẏ/y = λ.
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Figure 5.6d The case σ < 1 and n < smδ(σ) < n + λ; 0 < lim ẏ/y < λ.
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Figure 5.6e The case σ < 1 and n = smδ(σ); limt →∞ ẏ/y = 0.

0.015

0.01

0.005

0
0.4 0.6 0.8 10.2

(n + λ )rγ

nrγ

syγ
(σ = 0.2)

rγ

rg

Figure 5.6f The case σ < 1 and n > smδ(σ); limt →∞ ẏ/y < 0.
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Figure 5.7a Areas of (s/n, σ) space leading to equilibrium or disequilibrium in the case
of labour-augmenting technical progress at rate λ(λ = 0.005); points a and b correspond
to figures 5.6a and 5.6b.

by equation (11) where n is replaced by n + λ, i.e. by

σ ≥ σ∗∗ = 1

1 + (log δ)/ log(s/(n + λ)
. (26)

The corresponding threshold value for s is

s∗∗ = n + λ

mδ(σ )
= (n + λ)δ−(1/p). (27)

Figure 5.7a depicts the equilibrium and disequilibrium areas in space (s/n, σ ).

The cases just discussed above correspond to points above the horizontal σ = 1,in

areas respectively below and above the curve σ∗∗(s/n). For instance, point a in the

diagram corresponds to s = 0.1, n = 0.01 (therefore s/n = 10) and σ = 2.25; it

lies just above the threshold σ∗∗(10) = 2.24. It will then lead to a limiting growth

rate of y, smδ (σ ) − n, higher than λ. Another diagram describes the ultimate

growth rate of total income as a function of σ (figure 5.8a), where mδ(σ ) has been

drawn for δ = 0.35 and various values of s. It fixes all the parameters except σ ,

and shows the asymptotic growth rate of Y as a function of σ . When σ is less than

the critical value σ∗∗, Y eventually grows at its “natural” rate λ + n; we are in

the standard neoclassical steady state. For values of the elasticity of substitution
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Figure 5.7b Enlargement of area (0 ≤ s/n) ≤ 2, 0 ≤ σ ≤ 1) of figure 5.7a. Points c, d, e
and f correspond to figures 5.6c, 5.6d, 5.6e and 5.6f.

larger than σ∗∗, the asymptotic growth rate of Y is smσ which is now larger than

λ + n, the difference being the contribution of substitution-driven growth. Points

a and b in figure 5.7a are also represented in figure 5.8a.

The diagram shows that a higher elasticity of substitution implies a higher

asymptotic growth rate, other things equal. It is now easy to see what happens if

other parameters change. A higher λ or n simply lifts the initial horizontal part of

the growth-rate curve, and extends it to the right until it intersects the rising curve

mδ(σ ). A higher value of δ or s does several things: it raises the upper limit of

the growth rate; it lifts the whole rising portion of the growth-rate curve, and it

moves σ∗∗ to the left, to the point where the higher growth-rate curve intersects

the (λ + n)-horizontal. Thus the critical value of σ is lower for higher δ or s, or

lower n and λ.

3.2.2 Asymptotic growth when σ < 1

The case n + λ < smδ (σ) ;σ∗ < σ < 1.

Let us call σ∗ the threshold value corresponding to equality n + λ = smδ(σ )

and to σ < 1. If an equilibrium is warranted for rγ (if n + λ ≤ smδ(σ ), or
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Figure 5.8a The asymptotic growth rate of total income γ as a function of σ; the case
σ > 1; δ = 0.35; limt→∞ ẏ/y = max (smδ(σ), n + λ); the asymptotic growth rate of y
is limt→∞ ẏ/y = max (smδ(σ) − n, λ).

equivalently if σ∗ < σ < 1) then as before rγ and yγ will tend toward finite

limits; the asymptotic growth rate of y and Y will be λ and λ + n respectively (see

figure 5.6c).

The case n + λ ≥ smδ (σ) ;σ ≤ σ∗.

Now suppose that n + λ > smδ(σ ). We consider here the case of a poor econ-

omy where the rate of net savings is extremely small (but as we have stressed

before, we cannot, unfortunately, dismiss that possibility). It can be seen from the

corresponding phase diagram (figure 5.1b, adapted to the new notation) that rγ will

decrease toward zero, whatever the initial value r0
γ may be. The ultimate (asymp-

totic) growth rate of yγ will be smδ(σ ) − (n + λ); that of y will be smδ(σ ) − n.

This is where we have to be careful: three cases must be considered. Define σ̄ such

that smδ(σ ) = n.



Introducing technical progress 143

smδ (σ), n, n + l

smδ (σ)

n + λ

σ0

0.003

0.006

0.009

0.012

0.018

0.40.2

0.43

σ∗
0.6 0.7 0.8 1

s = 0.015

s = 0.012

c

d

e

f

s = 0.009

s = 0.006

s = 0.003

n + λ = 0.015

n = 0.01

σ = 0.33

Figure 5.8b The asymptotic growth rate of total income Y as a function of σ; the case
σ ≤ 1.

lim
t→∞ Ẏ/Y = min (smδ(σ), n + λ).

The asymptotic growth rate of income per person, limt→∞ ẏ/y, is limt→∞ ẏ/y − n =
min (smδ(σ) − n, λ); it is indicated by the vertical arrows. In the case of point f, it is the
negative of the double arrow.
� Case σ ≥ σ∗: income per person ultimately grows at rate n + λ
� Case σ̄ < σ < σ∗ : limt→∞ ẏ/y = smδ(σ) − n < λ a constant
� Case σ = σ̄: income per person ultimately tends toward a constant
� Case σ < σ̄: income per person ultimately declines to zero. For σ = 0.2, the asymptotic

growth rate of income per person is minus 0.0022.

i) n < smδ(σ ) < n + λ; equivalently, σ̄ < σ < σ∗ (see figure 5.6d); income per

person will ultimately grow at the positive rate smδ(σ ) − n < λ (although yγ
is always decreasing).

ii) smδ(σ ) = n; σ = σ̄ (figure 5.6e); the growth rate of income per person will

converge toward zero; therefore y will converge toward a constant value.
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Figure 5.9 Time paths of income per person y(t) corresponding toσ = 0.2 (case c of figure
5.6b). All trajectories will tend toward zero, with an asymptotical growth rate of y equal
to minus 0.0022.

iii) smδ(σ ) < n; σ < σ̄ (figure 5.6f); the growth rate ẏ/y will converge toward a

negative value, smδ(σ )− n; it implies that income per person will eventually

decrease forever toward zero even though we are in a model with labour

augmenting progress. This of course is a first surprise. The second surprise is

that it is quite possible, according to the initial conditions and the parameters

s, δ, σ , λ and n, that income per person will increase in a first phase (although

yγ always decreases), before falling toward its doom. We have illustrated this

situation in the following case (s = 0.006; σ = 0.2), marked by the double

arrow on diagram 5.8b. The long-term growth rate of income per person,

limt→∞ ẏ/y, is equal to smδ(σ )− n = 0.006(0.35)−1/4 − 0.01 = −0.0022

in this case (on figure 5.8b, it is the negative of the distance marked with

the double arrow). Figure 5.9 depicts the trajectories that our colleague Ernst

Hairer has solved for us with his program Dopri 5 for seven initial values of r0
γ

(= r0) between 0.5 and 2, by steps of 0.25. The corresponding trajectories of y
have been calculated from those of rγ and yγ . Note that the quick accumulation

of the initial points y0 corresponding to the initial r0
γ values is due to the strong

concavity of yγ (rγ ) when σ is low (our case).

The increasing property of some trajectories y(t) can clearly be seen. The

indeterminacy of their slope in the general case can be explained as follows.

Recall that the growth rate ẏ/y is given by expression

ẏ

y
= ẏγ

yγ
+ λ = π (rγ )

ṙγ
rγ

+ λ = π (rγ )

[

s
yγ
rγ

− (n + λ)

]

+ λ. (28)
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The bracketed expression above is equal to ṙγ /rγ , and we know that it is

negative for any rγ . The sign of ẏ/y is determined by the relative sizes of

the parameters combined to those of the variables rγ and yγ . However, the

qualitative behaviour of y can be inferred analytically at least at the initial point

defined by t = 0 and rγ (0) = r (0) = 1; yγ [(rγ (0)] = y[(r (0)] = 1. Indeed,

at that point π (1) = y′(1) = δ; therefore, we have

ẏ(0)/y(0) = δ [s − (n + λ)] + λ = δs + (1 − δ)λ − δn. (29)

Whether the economy will experience a first phase of growth (an increase

in income per person) will depend solely on the respective sizes of parameters

σ , δ, s and n, according to a rule that makes a lot of economic sense. Indeed

a necessary and sufficient condition for an economy to go through such a first

phase of growth in the iii) scenario (when s/n < 1/mδ(σ )), is that the average

of s and λ is higher than δn.

We cannot emphasize too much the importance of the role played by the elas-

ticity of substitution. A high σ can bring excellent news: if it is high enough, there

is a possibility that the ultimate growth rate of income per person will exceed the

rate of technological progress. But it gives also a strenuous warning: if both σ and

the savings rate are very small, not only income per person may decrease toward

a constant value, but it can even collapse to zero.

3.3 How does a change in the elasticity of substitution compare to a

change in technological progress?

The natural question now is to compare impacts for society of changes in the

elasticity of substitution σ and in the technical progress rate λ. We cannot simply

rely on measures like elasticities of income per person at some point with respect

to each of those parameters; indeed, we need to consider the whole time picture

represented by the infinite stream of income per person generated by the possible

values of those parameters.

The answer to this important question will have to wait until we have introduced

optimal growth theory. Indeed, we will then show how to determine an optimality

criterion for society over a long period of time, and the resulting optimal savings

rate. It is with that optimality reference that we will carry out our comparative

analysis. This will be done in chapter 13.

4 Time-series and cross-section estimates

In this section we present some new estimates of the elasticity of substitution. They

are derived from time-series and cross-section analysis of data of OECD countries

(see tables 5.4 and 5.5), and we interpret them using the theory already developed.



Table 5.4 The increase of the elasticity of substitution from period

1966–81 to period 1982–97; σ is estimated from y = awσ

1966–81 1982–1997

Country σ st. dev. R2 σ st. dev. R2

Austria 0.951 0.007 0.997 1.031 0.016 0.997
Belgium 0.914 0.005 0.999 1.129 0.028 0.992
Denmark 0.984 0.009 0.999 1.173 0.022 0.995
Finland 1.010 0.012 0.998 1.025 0.038 0.980
France 0.948 0.007 0.999 1.243 0.016 0.998
Germany 0.932 0.007 0.999 1.138 0.020 0.996
Great Britain 0.997 0.007 0.999 0.984 0.018 0.995
Greece 0.965 0.014 0.997 1.058 0.012 0.998
Ireland 0.994 0.010 0.998 1.271 0.025 0.995
Italy 1.015 0.006 0.999 1.129 0.028 0.992
Luxembourg 0.801 0.057 0.983 1.006 0.022 0.993
Netherlands 0.947 0.008 0.999 1.097 0.049 0.972
Portugal 0.886 0.030 0.984 0.997 0.008 0.999
Spain 0.955 0.005 0.999 1.048 0.015 0.997
Sweden 0.969 0.011 0.998 0.985 0.02 0.991
United States 0.981 0.01 0.999 1.041 0.01 0.998

Source: OECD data

Table 5.5 Cross-section estimates of the elasticity of substitution σ.

Regression: y = awσ

year σ st.dev. R2 year σ st. dev. R2

1966 0.815 0.060 0.935 1982 0.938 0.043 0.974
1967 0.835 0.061 0.934 1983 0.972 0.044 0.973
1968 0.819 0.062 0.931 1984 0.984 0.043 0.976
1969 0.822 0.069 0.917 1985 0.986 0.040 0.979
1970 0.821 0.071 0.938 1986 0.962 0.045 0.973
1971 0.823 0.065 0.925 1987 0.946 0.047 0.969
1972 0.826 0.057 0.941 1988 0.934 0.047 0.968
1973 0.773 0.070 0.902 1989 0.952 0.048 0.968
1974 0.841 0.083 0.888 1990 0.950 0.052 0.962
1975 0.896 0.091 0.881 1991 0.917 0.062 0.944
1976 0.917 0.083 0.903 1992 0.922 0.060 0.947
1977 0.879 0.058 0.947 1993 0.898 0.052 0.958
1978 0.853 0.049 0.960 1994 0.917 0.051 0.961
1979 0.870 0.053 0.955 1995 0.927 0.049 0.964
1980 0.836 0.070 0.916 1996 0.934 0.058 0.952
1981 0.866 0.059 0.943 1997 0.953 0.066 0.941

Source: OECD data.



Time-series and cross-section estimates 147

Table 5.4 exhibits time-series estimates of σ for 16 OECD countries, derived

from equation y = awb without a time term.6 In each case there are separate

regressions for the intervals 1966–81 and 1982–97. Every correlation is very high,

but of course y and w have strong trends.

The interesting regularity is that nearly all of the estimated elasticities of sub-

stitution are slightly below one in the first period and slightly above one in the

second period (notice that the highest elasticity of substitution in the second period

is observed in Ireland, where it is as high as 1.27). In only one case (Great Britain)

does the earlier estimate exceed the later one. The empirical meaning is straight-

forward: w/y is just the labour share of output. In the first period, the labour share

is generally rising in these countries, so y is increasing proportionately less than

w. The implication is that σ < 1. In the second period, the wage share is generally

falling, so y is increasing more than proportionately with w, and the estimated σ

is above one.

Underlying these facts must be a mixture of short-run and long-run forces. If

capital-intensity continues to increase in these countries, and if the elasticity of

substitution indeed exceeds unity, then there could be a continuing tendency for

the wage share to fall. Alternatively there could be social and political pressure

for change in the institutions governing income distribution and the demand for

labour.

Table 5.5 reproduces estimates of σ from a series of annual cross-country

regressions parallel to the time-series equations. (For reasons of data availabil-

ity, only 15 countries can be included.) Here two more striking regularities

are visible, and require interpretation in terms of the theory. First of all, every

cross-section estimate is less than one. (The same was true of the international

cross-section estimates found by Arrow, Chenery, Minhas and Solow in 1961.)

Secondly, the later ones are systematically larger than the earlier ones. The drift

is not smooth, and may have business-cycle components. But the 1966 estimate

is 0.815 and the 1997 estimate is 0.953, so the average drift is half a per cent per

year.

In Arrow, Chenery, Minhas and Solow (1961) the elasticity of substitution was

estimated from equation y = awσ (= y0(w/w0)σ ), valid for any CES function,

applied to an international cross-section. That formulation omitted technologi-

cal progress. Our first step here is to reconstruct the analogous equation with

technological progress. An easy way makes use of equation (20). Setting h(t) = 1

6 We are grateful to Claudio Sfredo who provided us with the OECD data, which he had made

comparable in his PhD thesis “Trade, Technology, and Factor Prices: A GDP Function Approach

for the European Union”, Geneva 2001, and which we used in these regressions.



148 Capital–labour substitution and economic growth

and keeping in mind that g(0) = g0 = 1, we have:

Y = Y0

[

δ

(
K

K0

)p
+ (1 − δ)

(

gt
L

L0

)p]1/p
. (30)

The first step is to verify that 1 − δ remains the labour share at the base year t = 0,

i.e. 1 − δ = w0L0/Y0. The marginal productivity of labour, equal to the wage

rate w, is:

w = ∂Y

∂L
= Y0

[

δ

(
K

K0

)p
+ (1 − δ)

(

gt
L

L0

)p]1−p
p

· (1 − δ)

(

gt
L

L0

)p−1

gt
1

L0
. (31)

Setting t = 0, K = K0 and L = L0 in (31) gives w0 = Y0(1 − δ) 1
L0

and therefore

1 − δ = w0L0/Y0.

Observe now that the bracketed term in (31) is equal, from (30), to (Y/Y0)1−p.

Using this value as well as that of 1 − δ, we can write (31) as:

w = Y0

L0

w0L0

Y0

(
Y

Y0

)1−p
g

p
t

(
L

L0

)p−1

= w0

(
Y/L

Y0/L0

)1−p
g

p
t ≡ w0

(
y

y0

)1−p
g

p
t . (32)

Hence we have:

y

y0
= g

p
p−1

t

(
w

w0

) 1
1−p

(33)

or, using p = 1 − 1/σ ,

y = y0 g1−σ
t

(
w

w0

)σ

, (34)

which reduces to the standard form referred to above if we set g(t) = 1. Notice

also that income per person, as an index number (y/y0) is a geometric mean of the

wage rate index (w/w0) and the technical progress coefficient gt , the elasticity

of substitution acting as the weight; equivalently, the growth rate of income per

person is the arithmetic average of the growth rates of w and gt . We have

ẏ/y = (1 − σ )ġ/g + σẇ/w. (35)

(This squares well also with the particular case of the Cobb–Douglas, where σ = 1,

entailing ẏ/y = ẇ/w and y = aw).
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Suppose g(t) = eλt . Then a time-series-based estimate of σ is the coefficient

of ln(w/w0) in a regression of ln y on ln(w/w0) and t , and the coefficient of t is

an estimate of λ(1 − σ ). In practice, ln(w/w0) and t are likely to be collinear, and

the regression estimates will be imprecise for that reason.7 One possible recourse

is simply to omit the term in λt . Then the OLS regression coefficient of ln w will

be a biased estimate8 of σ . The bias may be substantial: suppose that the wage

index follows approximatively an exponential eωt , where ω = ẇ/w; equivalently,

it implies that ln(w/w0) behaves roughly like ωt , so t ≈ ω−1 ln(w/w0). We then

have:

ln y = constant + (1 − σ )λt + σ ln(w/w0)

= constant + (1 − σ )
1

ω
ln(w/w0) + σ ln(w/w0) (36)

= constant +
[(

1 − λ

ω

)

σ + λ

ω

]

ln(w/w0). (37)

The innocuous-looking equation (37) bears important, far-reaching implica-

tions regarding the values of the rate of technical progress λ and the wage growth

rate ω and their consequences on the estimate of σ . Before dealing with those

implications, notice first that there are three cases where there is no bias between

τ , the (bracketed) coefficient of ln(w/w0), and σ . The first case corresponds to

λ = 0, entailing τ = σ . The two other cases each imply σ = 1: the second case

corresponds to an estimate of τ equal to one: whatever λ and ω may be, it implies

σ = 1. The third no-bias case corresponds to λ = ω, and σ = 1 also.

Hence, for τ �= 1, λ �= 0 and λ �= ω, there will always be a bias which needs to

be carefully studied. Whether the estimate of τ will be above or below 1 will have

important consequences, because the implied estimate of σ will behave entirely

differently as a function of the ratio λ/ω. First, observe from (38) that the implied

valued of σ is

σ

(
λ

ω
, τ

)

=
λ
ω − τ

λ
ω − 1

(38)

with a derivative ∂σ/∂(λ/ω) = (τ − 1)/ [(λ/ω) − 1]2, which is positive or nega-

tive according to τ > 1 or τ < 1. Let us first consider the more usual case τ < 1.

7 A result confirmed by our own regressions.
8 This possibility of bias if technological change is ignored has been mentioned in the literature.

An excellent and detailed recent discussion in the case of the United States is in a paper by

Pol Antràs: “Is The U.S. Aggregate Production Function Cobb–Douglas? New Estimates of the

Elasticity of Substitution,” September 2003. This paper contains other references. It also considers

the symmetric analogue to y = awb based on capital productivity and the rental rate, as well as

estimates based upon the very definition of σ , and the inverses of all these relations; and it goes

deeply into matters of econometric technique that are not the focus of attention for us.
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Figure 5.10 The estimate of the elasticity of substitution σ as a function of λ/ω, assuming
an estimate of τ lower than one (in this case: τ = 0.9).

Figure 5.10 depicts σ as a function of λ/ω for τ = 0.9. The ordinate of the curve

at the origin is τ = 0.9; the bias τ − σ can be read off the diagram for any value of

λ/ω. (As examples, we have shown those biases for λ/ω = 0.5 and λ/ω = 1.5.)

Note that the estimate of σ will be lower than 1 (higher than 1) if and only if λ/ω

is lower (higher) than 1. Some surprising outcomes now emerge: it can be seen

that

(a) for the estimate of the elasticity of substitution to be higher than 0.5 if τ = 0.9,

λ/ω must be lower that 0.8; more generally, with τ < 1, for 0.5 < σ < τ we

must have λ/ω < 2τ − 1.

(b) for σ to remain positive we must have λ/ω < τ .

(c) whenever λ/ω > 1, the estimate of σ is larger than 1.

(d) whenever λ is very close to ω, our estimate of σ is likely to be either much too

low or much too high.

Consider now the case τ > 1. All conclusions are different. This time a value of

λ/ω lower than one implies σ > 1, and vice-versa. Figure 5.11 depicts the case

τ = 1.1.
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Figure 5.11 The estimate of the elasticity of substitution σ as a function of λ/ω, assuming
an estimate of τ above one (in this case: τ = 1.1).

(a) for the estimate to be between 1.1. and 1.2, λ/ω must be lower than 0.5.

(b) for σ to be positive, λ/ω must be larger than 1.1; more generally, for σ > 0,

λ/ω must be larger than 2τ − 1.

(c) whenever λ/ω < 1, the estimate of σ is lower than 1.

(d) values of λ/ω between 1 and τ leads to negative values of σ ; values of λ/ω a

little lower than 1 lead to unreliably high values of σ .

We conclude this analysis by observing that the direction of the bias τ − σ will

depend crucially on the size of τ : if τ < 1, the bias is positive for λ/ω < 1 and

negative for λ/ω > 1; if τ > 1, the contrary is true. Whatever the magnitude of τ ,

the absolute value of the bias gets huge whenever λ/ω gets close to one.

Let us now tentatively interpret table 5.4, using figures 5.10 and 5.11, as well

as the preceding observations. A safe bet is to assume that in the last 40 years

ω has remained larger than λ, but that the gap has been narrowing between the

period when the labour share was growing and the period when that share was

decreasing. So we could assume that λ/ω has been smaller than 1 throughout,

but that it has been increasing. Consider now the first period: it corresponds to

τ < 1, with λ/ω < 1 (figure 5.10). In the second period, τ > 1 with λ/ω < 1 but

somewhat larger (figure 5.11). We can safely infer from this that the elasticity of
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substitution, from numbers smaller than 1, may have significantly increased over

the τ estimate (itself above 1) in the second period, the more so since λ/ω has

probably increased from the first to the second period.

5 The broader significance of the elasticity of substitution
in the context of economic growth

We have shown that the elasticity of substitution is in part an efficiency parameter.

An increase in it has permanent effects on the economy which are akin to those

generated by a higher rate of technical progress. This is one reason why the size

of σ is socially important. We want to suggest others.

As we stated earlier, the elasticity of substitution is in principle a property

of a production function, and therefore a purely technological parameter. That is

how we have treated it so far, in a one-good economy. But the one-good economy

is intended as a prototype-model for an economy with many goods and many

industries.

In that context, “the” elasticity of substitution performs much the same function

that it does in the one-good economy. It provides an answer to the question: how

big a change in the capital–labour ratio is induced by a (small) percentage change

in the wage–rental ratio? But now the correct answer is a general-equilibrium

matter, involving in principle the whole economy. (We understand, for example,

though we do not dwell on it, that the correct answer will depend on how the

initiating change in the wage–rental ratio is brought about.)

John Hicks understood this from the very beginning in his 1932 Theory of
Wages. He asks what determines the magnitude of the elasticity of substitution, and

mentions three categories of factors: the degree of capital–labour substitutability

within the various industries, the extent to which the character of technological

innovations is influenced by relative factor prices, and finally the range of capital–

labour ratios to be found in the collection of industries and the degree to which

the goods that they produce are substitutable for one another in the purchases of

ultimate consumers.

We have already mentioned the mechanism by which general-equilibrium

effects could be expected to amplify the within-industry response of the aggregate

capital–labour ratio to differences in the wage–rental ratio: a higher wage–rental

ratio increases the cost (and eventually the price) of labour-intensive goods rela-

tive to capital-intensive goods, the overall capital–labour ratio would tend to rise

(even if there were very little technical substitution of capital for labour within

industries). This process was analysed with great clarity and force by Ronald

Jones (1965). Edmond Malinvaud (2003), using a slightly different model, uncov-

ers a complication: the end result depends also on income-elasticities of demand
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because the change in factor prices redistributes income. This could in princi-

ple upset the “natural” conclusion that substitution on the demand side augments

the elasticity of substitution; but Malinvaud thinks that this perverse outcome is

empirically unlikely.

Looked at from the other direction, a high value of σ means that the economy

can adapt to large changes in K/L while experiencing relatively small changes in

w/q . On the whole, this strikes us as a good thing. In principle, what matters for

social welfare is that w and q should be large and growing, or even more fundamen-

tally that y should be large and growing. That is more a matter of efficiency than

anything else. Nevertheless, efficiency aside, it is probably easier for an economy

to adapt to – possibly erratic – shifts in K/L if it can be done without large changes

in relative factor prices. We have already observed that the imputed share of capital

rises toward unity as K/L increases so long as σ > 1. This raises questions about

political and economic equity, and about the distribution of property ownership,

that are far beyond the scope of this chapter. It is probably a desirable outcome of

economic evolution that the contribution of capital to production should come to

dwarf that of labour, so long as the output is equitably distributed. We are a long

way from that possible nirvana.

It seems clear to us that growth theory and associated empirical analysis have

given less attention to the elasticity of substitution than it deserves as an important

parameter of the growth process. (One obvious reason for this is the unique conve-

nience of the Cobb–Douglas function in both theoretical and econometric work.)

We have shown that small differences in σ can have noticeable effects on the path

traced out by the standard model economy. Pure and applied growth theory have

become fixated almost exclusively on the growth rate of total factor productivity.

That is certainly important research. But we think it would be worthwhile to divert

some of that effort to attempts to understand the origin and effects of the differ-

ences in σ from country to country and from time to time that are illustrated in

tables 5.4 and 5.5 above.

Another possibility, not yet mentioned, is that some economies have strong

customary or regulatory barriers to large changes in capital–labour ratios, and

other economies do not. Aggregative observations will characterize the first group

as having a lower σ than the second group. Long run behaviour will bear out

this characterization, though it originates neither in supply-side nor demand-side

“substitution” as normally understood.

A further potential research path has to do with the direction of endogenous

technical change. The usual approach is to focus on the role of factor inten-

sity: will new technology tend to be labour-augmenting or capital-augmenting,

or otherwise biased? One might also wonder if there are forces leading new tech-

nology toward higher or lower σ . The analogy that comes to mind is George
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Stigler’s argument that uncertainty about expected output should lead a firm to

prefer a fairly flat unit cost curve to one with a lower but more sharply defined

minimum.

There may well be other interesting approaches to this question. From the

growth-theoretic angle, the key characteristic is the whole economy’s abil-

ity to absorb large increases in capital intensity (measured by K/L) without

sharply diminishing returns, that is to say without a sharp fall in the rental

rate for capital goods. Looking at the matter this way underlines the paral-

lel between a high elasticity of substitution and a substantial rate of techno-

logical progress: both forces keep the return on capital from falling rapidly

as capital intensity rises in the course of economic development. This parallel

helps to make the empirical disentangling of the two effects so difficult. (One

difference is that high σ makes the share of capital rise, even as the real wage

rises.)

One may be led by these considerations to wonder about the welfare significance

of a high elasticity of substitution in the extended sense, and whether this can be

an object of policy. Those are questions that go to the heart of the role played

by capital accumulation at any time or place, with its costs and rewards. They

underline the importance of the distribution of ownership of human and physical

capital. Answering them may help understand and shape our future.

Appendix: Derivation of the cost function with capital and

labour-augmenting progress

Minimize the cost index9
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(
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q0
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K
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) (
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)
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subject to the production constraint (22). The following Hicksian demand functions

result:
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9 This cost index arises from C
C0

= q K+wL
q0 K0+w0 L0

= (q0 K0)(q/q0)(K/K0)+(w0 L0)(w/w0)(L/L0)
C0

=
δ(q/q0)(K/K0) + (1 − δ)(w/w0)(L/L0), since q0K0/C0 = δ and w0L0/C0 = 1 − δ.
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from which the cost index can be determined, after simplifications, as

C

C0
= Y

Y0

{

δ

[
q

q0
h−1

t

] p
p−1 + (1 − δ)

[
w

w0
g−1

t

] p
p−1

} p−1
p

. (A4)

Expressed in terms of σ , the unit cost index becomes

c = C/C0

Y/Y0
=

{

δ

[
q

q0
h−1

t

]1−σ

+ (1 − δ)

[
w

w0
g−1

t

]1−σ
} 1

1−σ

. (A5)

a general mean of order 1 − σ of the price indices q/q0 and w/w0 (respectively

divided by h(t) and g(t)), and therefore a decreasing function of σ .



CHAPTER 6

The long-term growth rate as a random
variable, with an application to

the US economy

A growth process is far from linear. The economy is submitted to random shocks

and undergoes cycles, their length and amplitude hardly predictable. In this chapter,

we will ask the following specific question: suppose that we make an estimate

about the future yearly growth rates of an economy; each of these growth rates

is considered as a random variable, with given mean and variance. What can we

infer from those estimates about the n-year horizon expected growth rate and

its variance? The answer is far from intuitive. Indeed, we might be tempted to

say that the expected long-term growth rate is the expected yearly growth rate

over that horizon. That this is not so will be illustrated in the following example.

We should first realize that the long-term growth rate, in the case of any variable

annual growth rate, cannot be the average of the annual growth rates for the simple

reason that such an average would be devoid of any meaning. Consider for instance

the value of an asset growing from 100 to 300 in one year, falling then from 300

to zero in the second year. The first growth rate is R0,1 = (300 − 100)/100 =
+2 = +200%; the second one is R1,2 = (0 − 300)/300 = −100%. The average

of both growth rates is +50%, but no one would ever use that number to assess the

profitability of that asset, which has in fact lost all its value. The correct long-term

growth rate is the rate which transforms the initial value (S0 = 100) into the future

value (S2 = 0) after two years. It is therefore R0,2 such that S0(1 + R0,2)2 = S2,

or R0,2 = (S2/S1)1/2 − 1; in this case, we would have R0,2 = (0/100)1/2 − 1 =
−100%. More generally, for successive values S1, . . . St , . . . Sn spanning n years,

the n-year horizon growth rate R0,n is given by R0,n = (Sn/S0)1/n − 1. Let

us now determine how R0,n is related to the yearly growth rates: R0,n is such

that

S0(1 + R0,n)n = Sn .

156
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Table 6.1 Expected yearly growth rates and

their standard deviations

Sector A Sector B

Expected yearly growth rate 10% 9%
Standard deviation 20% 10%

Now Sn/S0 can be written

Sn

S0
=

(
S1

S0
· S2

S1
· · · St

St−1
· · · Sn

Sn−1

)1/n
− 1

and therefore

R0,n = [(1 + R0,1)(1 + R1,2) . . . (1 + Rt−1,t ) . . . (1 + Rn−1,n)]1/n − 1.

We can see the precise relation between the long-term growth rate and the annual

growth rates: if we call one plus the annual growth rate Rt−1,t the annual growth
factor of S (i.e. 1 + Rt−1,t = St/St−1), the long-term growth rate R0,n is the

(simple) geometric mean of the growth factors, minus one. From chapter 4, we

know that the geometric mean (the general mean of order zero) is smaller than the

arithmetic average (the mean of order one); therefore we should not be surprised

that the long-term growth rate will always be smaller than the average of the yearly

growth rates. How much smaller is what we are going to discover in this chapter.

We will find that this difference depends positively upon two factors: the variance

of the yearly growth rates, and the length of the horizon.

Let us now illustrate the importance of this issue. Consider two countries (or

two sectors of an economy, or two assets), A and B. In sector A, the expected

yearly growth rate is 10% per year, with a standard deviation of 20%. In sector

B the expected yearly growth rate is 9% with a standard deviation of 10%. We

suppose that in each sector the yearly growth rates are independent and identi-

cally distributed, although at this stage we do not make any particular hypothesis

about the probability distribution of each growth rate. Table 6.1 summarizes these

estimates for each sector.

What then is the 10-year expected yearly growth rate in each sector? The

surprise is that sector B fares better: its expected 10-year growth rate is 8.57% per

year, while sector A’s expected 10-year growth rate is 8.31% only.

The aim of this chapter is to explain how to determine such results. We will

also show how we can estimate the probability distribution of the long-term

growth rate even if we do not know the probability law governing the yearly growth

rates.
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We will first explain what can be deduced from hypotheses about daily growth

rates if we want to infer anything about yearly growth rates. We will then turn to

the estimate of the first moments of the long-term growth rate and its probability

distribution. Those results will finally be applied to the long-term evolution of the

US economy.

1 From daily to yearly growth rates

We will use the following notation; j always refers to a day; t refers to a year.

� S0 ≡ value at the beginning of a year
� S j ≡ value at the end of day j ( j = 1, . . . , 365).
� S j/S j−1 ≡ daily growth factor

�
S j−S j−1

S j−1
= R j−1, j ≡ daily growth rate (compounded once a day)

� log(S j/S j−1) = r j−1, j ≡ continuously compounded daily growth rate
� S365/S0 = Xt−1,t = yearly growth factor

�
St−St−1

St−1
= Xt−1,t − 1 = Rt−1,t ≡ yearly growth rate (compounded once a

year)
� log Xt−1,t = rt−1,t ≡ continuously compounded yearly growth rate

Let S0 be an observed value at the beginning of a year and S365 the value at

the end of the year. We can write:

S365 ≡ S0 · S1

S0
· · · S365

S364
≡ S0elog(S1/S0) . . . elog(S365/S364)

≡ S0er0,1 . . . er364,365 ≡ S0e
�365

j=1r j−1, j (1)

then

365∑

j=1

r j−1, j = log(S365/S0) = log Xt−1,t = rt−1,t . (2)

Each of the 365 continuously compounded daily growth rates r j−1, j is a ran-

dom variable. Suppose its mean and variance are estimated at m and s2 respectively.

We have thus E(r j−1, j ) = m and V AR(r j−1, j ) = s2. Suppose also that those

rates are independent and identically distributed. Then the central limit theorem

applies to the sum of those 365 variables, which is none other than rt−1,t , the

continuously compounded yearly growth rate.

The central limit theorem tells us that rt−1,t will converge in law toward a

normal distribution1 with mean μ = 365m and variance σ2 = 365s2. We can thus

1 For spectacular illustrations of the power of the central limit theorem, see the diagrams in J. Pitman,

Probability, Springer Verlag, New York, 1993.
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write:

rt−1,t →
law

N (365m, 365s2) ≡ N (μ, σ2) (3)

and, equivalently

log Xt−1,t = rt−1,t = μ + σ Z , Z ∼ N (0, 1) (4)

where Z is the unit normal distribution.

From the fact that rt−1,t is normally distributed, we conclude that the

yearly growth factor Xt−1,t is the exponential of a normal variable; indeed, if

log Xt−1,t = rt−1,t = μ + σ Z , Z ∼ N (0, 1) we can conclude that

Xt−1,t = eμ+σ Z , Z ∼ N (0, 1) (5)

i.e. Xt−1,t is a “lognormal variable” as it is always called. (Notice how unfortunate

this expression is: it would have been much more clear to call a variable such

as Xt−1,t , the exponential of a normal variable, an “exponormal variable”. A

“lognormal variable” is intended to mean a variable whose logarithm is normal,

leaving the reader with the exercise of figuring out that it is a variable such as

described in equation (5), i.e. the exponential transformation of a normal variable.)

A lognormal variable has extremely important properties. These have imme-

diate intuitive appeal if we have in mind the geometric interpretation of this

exponential transformation of a normal random variable – see the example in

figure 6.1. Furthermore, the moments of a lognormal variable are very easy to

determine because they turn out to be just linear transformations of the moment

generating function of a unit normal variable.2

Consider first the expected value of the yearly growth rate Rt−1,t . It is the

expected value of the growth factor Xt−1,t minus one:

E(Rt−1,t ) = E(Xt−1,t − 1) = E(Xt−1,t ) − 1. (6)

In turn, we have, from (5):

E(Xt−1,t ) = E(eμ+σ Z ) = eμE(eσ Z ), Z ∼ N (0, 1). (7)

Thus E(Xt−1,t ) is just a linear transformation of the moment generating func-

tion of Z ∼ N (0, 1), where σ plays the role of the parameter. Since E(eσ Z ) =
eσ 2/2 (see exercise 6.1), this yields

E(Xt−1,t ) = eμ+σ 2/2 (8)

2 The moment generating function of a continuous random variable W is ϕW (λ) = E(eλW ), where

λ is a parameter. For a reminder on moment generating functions, see appendix 1.
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Figure 6.1 A geometrical interpretation of three fundamental properties of the lognor-
mal distribution: (a) the expected value of Xt−1,t = eU = eμ+σZ(Z ∼ N(0, 1)), E(X) =

eμ+σ2/2 is above the median eμ; (b) the probability that Xt−1,t is below its expected value
is above 50%; and (c) the expected value of Xt−1,t is an increasing function of the variance

of U, σ2. In this example, E(log X) = E(U ) = 0.07905; σ(log X) = σU = 0.18033.

and the expected value of the yearly growth rate is

E(Rt−1,t ) = eμ+σ 2/2 − 1. (9)

From figure 6.1, it can be readily understood why the mean E(Xt−1,t ) is

somewhat above eμ = eE(log Xt−1,t ). The value eμ is just the median of the

lognormal variable Xt−1,t . Indeed, the mean of the normal log Xt−1,t , μ, is

also the median of the normal. Therefore, this median transformed through the

exponential becomes the median of Xt−1,t . Now observe that the exponential

transformation is strictly convex. This implies that transforming any couple of

equal mass probabilities, taken symmetrically on either side of μ, will translate

into asymmetric mass probabilities on either side of eμ. Because of the strict

convexity of elog Xt−1,t , the base of the upper mass probability will always be

wider than the base of the lower one, thus entailing a displacement of the centre

of gravity of these masses above eμ. It is not surprising therefore that the mean of

Xt−1,t is above its median.
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How much above it? As can be seen from equation (8), this depends positively
upon the sole parameter σ2, the variance of the continuously compounded yearly

growth rate. That the dependency is positive is clear from the geometric construc-

tion of the lognormal (figure 6.1). The higher the variance of log Xt−1,t , the more

asymmetry we obtain for the mass probabilities on the vertical axis and therefore

the more the centre of gravity is displaced, up and away from the median eμ. This

is why the mean of the lognormal is an increasing function of the parameter σ2.

Let us now turn to the variance of Rt−1,t . This is just the variance of Xt−1,t ,

and therefore we may write:

V AR(Rt−1,t ) = V AR(Xt−1,t ) = E(X2
t−1,t ) − E2(Xt−1,t ). (10)

The second moment of Xt−1,t is

E(X2
t−1,t ) = E

[(
eμ+σ Z

)2
]

= E(e2μ+2σ Z )

= e2μE(e2σ Z ) = e2μ+2σ 2
(11)

(the last step uses the fact that E(e2σ Z ) is just the moment generating function

of Z , the unit normal variable, where 2σ plays the role of the parameter; it is

therefore equal to e2σ 2
).

The variance of Rt−1,t is then

V AR(Rt−1,t ) = e2μ+2σ 2 − e2μ+σ 2 = e2μ+σ 2
(eσ 2 − 1). (12)

In summary, it implies that when the continuously compounded yearly growth

rate is normally distributed N (μ, σ2), the expected value of Xt−1,t = 1 + Rt−1,t
and the variance of Rt−1,t are given by the pair of formulas

EXt−1,t = eμ+σ 2/2 (13)

VXt−1,t = e2μ+σ 2
(eσ 2 − 1). (14)

Consider now the converse problem. Suppose that we are given estimates of

EXt−1,t and VXt−1,t , and that we want to know what are the implied values for the

mean μ and variance σ2 of the continuously compounded yearly growth rate. The

answer to this question, crucial in the problem of estimating the first moment of

the long-term growth rate, is simply obtained by determining μ and σ2 as functions

of EXt−1,t and VXt−1,t from system (13), (14).

Denoting Xt−1,t ≡ X for short, observe from (14) that VX can be written as

VX = E2
X (eσ 2 − 1) (15)
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from which σ2 can be deduced as

σ2 = log

(

1 + VX

E2
X

)

. (16)

The expression for μ can be determined by replacing (16) into (13). We obtain

finally

μ = log EX − 1

2
log

(

1 + VX

E2
X

)

. (17)

This is exactly the procedure we have followed to construct the curves in

figure 6.1. Consider a random variable with annual expected growth rate equal

to E(Rt−1,t ) = 10% and standard deviation s.d.(Rt−1,t ) = 20%.3 This implied

that E(Xt−1,t ) = E(1 + Rt−1,t ) = 1 + E(Rt−1,t ) = 1.1, and V AR(Rt−1,t ) =
[s.d.(Rt−1,t )]2 = 0.04. Our starting point thus is:

E(Xt−1,t ) ≡ EX = 1.1

V AR(Xt−1,t ) ≡ VX = 0.04

We can now apply equations (17) and (16) to determine the mean μ and variance

σ2 of log Xt−1,t , the continuously compounded yearly growth rate, which is

supposedly normally distributed, because of the central limit theorem. We thus

obtain:

μ = log EX − 1

2
log

(

1 + VX

E2
X

)

= 0.07905

σ2 = log

(

1 + VX

E2
X

)

= 0.03252

and

σ = 0.18034.

Such are the parameters μ, σ of the normal variable log Xt−1,t ∼ N (μ, σ2) which

is represented under the horizontal axis u = log x in figure 6.1.

Our last task is to represent the lognormal distribution X = eU = elog X , where

the realization variable x is on the vertical axis of figure 6.1. This also is easy to

3 Equivalently, this variable could be considered as a financial asset with expected annual return

equal to 10% and standard deviation equal to 20%.
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do: denote f (u) the probability density function of the normal U = log Xt−1,t
∼ N (μ, σ2). We have

f (u) = 1

σ
√

2π
e
− 1

2

(
u−μ

σ

)2

,

and let g(x) be the density of the lognormal X = eU we want to determine. We

just have to note that any differential element f (u)du under the normal curve must

be equal to a corresponding element g(x)dx under the lognormal g(x). So g(x)

must be such that4

g(x)dx = f (u)du

Since x = eu is an increasing function of u, it is invertible; with u = log x , we

may write:

g(x) = f (u)/(dx/du) = f [u(x)]/x,

which gives:

g(x) = 1

xσ
√

2π
e
−1

2

(
log x−μ

σ

)2

which is the lognormal density function of X with parameters μ and σ . This

density, determined with the parameters μ and σ indicated above, is represented

on the vertical axis of figure 6.1.

We are now ready to tackle the expected value and the variance of the long-term

yearly growth rate.

2 The first moments of the long-term yearly
growth rate

Let S1, . . . , St , . . . , Sn denote the values of S at the end of each year

1, . . . , t, . . . , n. The n-year yearly growth rate, denoted as R0,n , is such that it

transforms S0 into Sn after n years, each growth rate being compounded once a

4 Note that this procedure is valid because the transformation of the variable u, x = eu , is an

increasing function of u. If we had wanted to determine the density function of a decreas-
ing transformation of u, we would have had to make sure that the differential element

g(x)dx (the incremental area under the density curve) is positive. For that purpose, we would

have written g(x)| dx | = f (u)| du |; therefore the general formula for g(x) is g(x) = f [u(x)]�

| x ′[u] |.
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year. R0,n is then defined by

S0(1 + R0,n)n = Sn (18)

and is equal to

R0,n =
(

Sn

S0

)1/n
− 1. (19)

This n-year horizon yearly rate can be written using our variable Xt−1,t in the

following way. Denoting Y0,n = 1 + R0,n , we have

Y0,n = 1 + R0,n =
(

Sn

S0

)1/n
=

(
S1

S0
.
S2

S1
· · · Sn

Sn−1

)1/n

= (X0,1 . . . Xt−1,t . . . Xn−1,n)1/n

= (elog X0,1 . . . elog Xt−1,t . . . elog Xn−1,n )1/n

= e
1
n �n

t=1 log Xt−1,t . (20)

There are now two methods of obtaining the first moments of Y0,n . The first

one uses the results of section 1 and supposes that the variables log Xt−1,t are

normally distributed N (μ, σ2) and independent. The second method assumes that

the variables are independent and identically distributed with mean μ and variance

σ2 – without making any inference as to their probability distribution – and appeals

to the central limit theorem.

2.1 First method: supposing that the log Xt−1,t variables are normal

N (μ, σ2) and independent

With that hypothesis, the sum �n
t=1 log Xt−1,t is normally distributed

N (nμ, nσ2). Then

n∑

t=1

log Xt−1,t ∼ N (nμ, nσ2) = nμ + √
nσ Z , Z ∼ N (0, 1), (21)

and

1

n

n∑

t=1

log Xt−1,t = μ + σ√
n

Z (22)

entailing, from (20)

Y0,n = e
μ+ σ√

n
Z
. (23)
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Thus Y0,n = 1 + R0,n turns out to be a lognormal variable. Its first moments

are immediately determined as

E(1 + R0,n) = E(Y0,n) = eμE

(

e
σ√
n

Z
)

= eμ+σ2

2n (24)

(again we have met in
(
e

σ√
n

Z )
the moment generating function of Z , this time

with σ/
√

n playing the role of the parameter).

So finally

E(R0,n) = eμ+σ2

2n − 1. (25)

We can verify that (25) gives E(R0,1) = eμ+σ 2/2 when n = 1, as it should.

Notice a fundamental property of the expected value of the geometric mean

Y0,n : it diminishes when n increases, and in the limit, when n → ∞, tends toward

eμ = eE(log Xt−1,t ). We will come back to this property later.

The second moment of Y0,n is

E(Y 2
0,n) = E

(

e
2μ+ 2σ√

n
Z
)

= e2μ+ 2σ2

n (26)

and the variance of R0,n and Y0,n is, using (26) and simplifying,

V AR(R0,n) = e2μ+σ2

n (e
σ2

n − 1). (27)

Two observations are in order: we verify that the variance of R0,n is the variance

of R0,1 when n = 1 (as given by equation (14)); also, it is zero either if σ = 0 or

if n → ∞, as it should.

2.2 Second method: the variables log Xt−1,t are i.i.d. with mean μ and

variance σ2; no probability distribution is inferred about them

In such a case, we can apply the central limit theorem to the sum �n
t=1 log Xt−1,t .

It will converge in law toward a normal distribution N (nμ, nσ2). We have

n∑

t=1

log Xt−1,t law−→ N (nμ, nσ2) = nμ + n
√

σ Z , Z ∼ N (0, 1) (28)

and the rest of the demonstration of section 2.1 follows.

Notice that in each method we have used the central limit theorem, if only

at different stages. In the first method, we used it at the level of the sum of 365

continuously compounded daily returns, thus inferring a yearly continuously com-

pounded return log Xt−1,t as a normal variable N (μ, σ2). In the second method,
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we supposed that we did not know the probability distribution of log Xt−1,t , and

we applied the theorem when adding n of those i.i.d. variables. The reader may

wonder now what kind of difference in the results we obtain for the expected long-

term growth rate if, for some reason, the true probability distribution of log Xt−1,t
is far from normal, being for instance a uniform distribution. We have done this

test by supposing that log Xt−1,t had a uniform distribution instead of a normal

one.5 The surprise is how close the results are, even for very low n: for n = 2,

the first four digits of E(R0,2) are the same; for n = 4, the first six digits are the

same. This illustrates of course the strength of the central limit theorem.

2.3 The expected value and variance of the long-term growth rate in

terms of E(Xt−1,t ) and V AR(Xt−1,t )

Until now our results have been expressed in terms of μ = E(log Xt−1,t ) and

σ2 = V AR(log Xt−1,t ). This is definitely cumbersome, because for all practical

purposes it implies translating data usually available in terms of E(Rt−1,t ) (or

EXt−1,t ) into expressions depending on (μ, σ ), and then applying (25) and (27).

It would be much more expedient and clear to have formulas directly expressed in

terms of EXt−1,t and VXt−1,t . This is why we had made the conversion of (μ, σ2)

into (EX , VX ) earlier (equations (16) and (17)). Using those equations enables us

to write directly our final results:

E(R0,n) = EX
(

1 + VX
E2

X

) 1
2

(
1− 1

n

) − 1 (29)

V AR(R0,n) = E2
X ·

(

1 + VX

E2
X

)
(

1
n −1

) ⎡

⎢
⎣

(

1 + VX

E2
X

) 1
n

− 1

⎤

⎥
⎦ (30)

We can verify that if n = 1, equations (29) and (30) yield E(R0,1) = EXt−1,t −
1 and V AR(R0,1) as they should. When VX is zero, V AR(R0,n) is zero and

E(R0,n) = E(R0,1). If n → ∞, V AR(R0,n) → 0 and

lim
n→∞ E(R0,n) = EX

(

1 + VX
E2

X

)1/2
− 1, (31)

which corresponds to the limit expressed before as eμ − 1.

5 The interested reader is referred to our paper: “The Long-Term Expected Rate of Return: Setting

it Right”, The Financial Analysts Journal, 1998.
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2.4 Determining probabilities for intervals of the n-horizon growth rate

The fact that Y0,n = 1 + R0,n is given by

Y0,n = 1 + R0,n = e
μ+ σ√

n
Z
, Z ∼ N (0, 1)

(equation (23)) means that Y0,n is a lognormal variable with parameters μ, σ/
√

n.

In turn it implies that determining the probabilities for the long-term growth rate

to be within a given interval is easy to achieve. Suppose for instance, that we want

to know the probability for R0,n to be between two numbers a, b. We can write:

p(a < R0,n < b) = p(1 + a < 1 + R0,n < 1 + b)

= p(1 + a < e
μ+ σ√

n
Z

< 1 + b)

= p

[

log(1 + a) < μ + σ√
n

Z < log(1 + b)

]

. (32)

Finally, solving for Z , this probability is equal to:

p

(
log(1 + a) − μ

σ/
√

n
< Z <

log(1 + b) − μ

σ/
√

n

)

= �

(
log(1 + b) − μ

σ/
√

n

)

− �

(
log(1 + a) − μ

σ/
√

n

)

(33)

where �(z) is the cumulative probability distribution of the unit normal variable.

For instance, suppose we want to determine the probability that the long-run

growth rate will be below its expected value, eμ+σ 2/2n − 1. This is

p

(

R0,n < eμ+σ2

2n − 1

)

= p

(

1 + R0,n < eμ+σ2

2n

)

= p

(

e
μ+ σ√

n
Z

< eμ+σ2

2n

)

= p

(

Z <
σ

2
√

n

)

. (34)

In the next section, we will understand why this probability converges toward

p(Z < 0) = 1/2 when n → ∞.

2.5 The convergence toward the geometric mean

We have shown that the expected value of 1 + R0,n ≡ Y0,n was, in terms of

(μ, σ2), eμ+σ 2/2n . It is clearly a decreasing function of the horizon n. Further-

more, its limit when n → ∞ is

lim
n→∞(1 + R0,n) ≡ 1 + R0,∞ ≡ Y0,∞ = eμ = eE(log Xt−1,t ). (35)

We had observed before that eμ was the median of the lognormal distribution. But

there is something more to it that we will now discover.

Some means are quite familiar: the arithmetic mean of a discrete random vari-

able is �n
i=1 fi xi ; for a continuous variable it is

∫
D x f (x)dx where D is the
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domain of definition of the variable. The geometric mean of a discrete variable is

�n
i=1x

f i
i (all xi ’s are positive); but what is the geometric mean of a continuous

(positive) random variable? In order to define it, we have to think of the product

of an infinite number of values which converges toward a fixed number. The way

to do this is to consider a continuous product of the x values over the domain of

X , each of those values being taken to the power f (x)dx .6 So we could define

the geometric mean of a continuous random variable X over a domain D, with

probability density f (x), as the continuous product

G X = PDx f (x)dx . (36)

We can summarize those four means in table 6.2:

Table 6.2 Arithmetic and geometric means for discrete and continuous

random variables

Discrete random variable Continuous random variable

Arithmetic mean
n∑

i=1
fi xi ,

n∑

i=1
fi = 1

∫
D x f (x)dx ,

∫
D f (x)dx = 1

Geometric mean
n∏

i=1
x

fi
i , xi > 0,

n∑

i=1
fi = 1 PDx f (x)dx , x > 0,

∫
D f (x)dx = 1

Now we can write x = elog x , and the geometric mean of a continuous random

variable becomes

PDelog x f (x)dx = e
∫

D log x f (x)dx = eE(log X ). (37)

In our case, E(log Xt−1,t ) was denoted μ. Remember that

Y0,n = (X0,1.X1,2 . . . Xn−1,n)1/n, (38)

i.e. Y0,n is the geometric mean of the Xt−1,t
′s. We have just shown that when

n → ∞, Y0,n tends toward eμ = eE(log X ), and this is the geometric mean of the

variable X . Thus the law of large numbers, which applies to the arithmetic mean,

extends to the geometric mean as well.

It can now be seen why the probability of R0,n being smaller than E(R0,n)

converges to 1/2 when n → ∞ in the case where Xt−1,t is lognormal : this is

because the geometric mean of the lognormal is equal to its median.

6 Intuitively, we can think of each power f (x)dx , being infinitely small, as exactly what we need

in order for the continuous product not to converge toward one nor to tend toward infinity, but to

coverage toward some (positive) finite value.
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We conclude from this section that the expected long-term growth rate of a

sector or of an economy may be significantly lower than its expected yearly growth

rate. Also, what matters most is the first two moments of the yearly growth rate,

rather than its probability distribution.

3 Application to the long-term growth rates
of the US economy

Let us now consider the following problem. We want to know how much we can

rely on the first two moments of the annual growth rate to make a prediction on the

long-term growth rate. Suppose that in 1790 we try to predict, for the United States,

the long-term growth rates of real GDP per person from 1790 to 2005, i.e. over

215 years. To do that, we rely on two statistics: the expected annual growth rate

of GDP per person, denoted E(Rt−1,t ), and the estimated standard deviation of

this annual growth rate, sd(Rt−1,t ). We know that the 215-year horizon expected

growth rate is given by equation (29), where EX designates E(Xt−1,t ) and is equal

to E(1 + Rt−1,t ); VX stands for the estimated variance of Xt−1,t and Rt−1,t ,

and is therefore the square of sd(Rt−1,t ). The expected 215-year horizon growth

rate is then:

E(R0,215) = 1 + E(Rt−1,t )

[

1 +
(

sd(Rt−1,t )
E(Rt−1,t )

)2
] 1

2

(
1− 1

215

) − 1. (39)

Suppose that in 1790 our predictions about E(Rt−1,t ) and sd(Rt−1,t ) had

been right in the sense that they did correspond to the observed data, which we

owe to Louis D. Johnston and Samuel H. Williamson (2005).7 From their series

it is possible to determine the annual growth rates of GDP, Rt−1,t , as well as

the mean E(Rt−1,t ) and the standard deviation of the sampled Rt−1,t variables,

sd(Rt−1,t ). The results are the following: over the 215-year period,

E(Rt−1,t )
∣
∣
215 years = 1.8362% ≈ 1.84%

sd(Rt−1,t )
∣
∣
215 years = 4.4643% ≈ 4.46%.

The 215-year growth rate would have been estimated at, using equation (39):

E(R0,215) = 1.74%

7 Louis D. Johnston and Samuel H. Williamson, “The Annual Real and Nominal GDP
for the United States, 1790–Present”, Economic History Services, October 2005, URL:

www.eh.net/hmit/gdp/. This table not only gives the nominal and real GDP, but indicates also

yearly figures for the population, nominal GDP per person and real GDP per person.
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Now compare this estimate to the actual, observed 215-year growth rate, cal-

culated as (GDP2005/GDP1790)1/215 − 1; from the Johnston-Williamson table

this is equal to (37232/916)1/215 − 1 = 1.74% (!). The first four decimals of the

long-term rate are the same. Observe that we have made no inference about the

probability distribution of the Rt−1,t variables. The fact that the estimate is so

close to the actual outcome is of course a testimony of the strength of the central

limit theorem, to which we had already called the reader’s attention in section 2.

Suppose now that we want to do the same prediction of the long-term growth

rate of real GDP per person, but from a later date, namely 1900, i.e. for a 105-year

horizon. The estimates of E(Rt−1,t ) and sd(Rt−1,t ) would be the following: over

the 105-year period,

E(Rt−1,t )
∣
∣
105 years = 2.0752% ≈ 2.08%

sd(Rt−1,t )
∣
∣
105 years = 5.3413% ≈ 5.34%.

The estimate of the 105-year growth rate, from (39) is

E(R0,105) = 1.94%

and the actual, observed growth rate is (GDP2005/GDP1900)1/105 − 1 = (37232/

4943)1/105 − 1 = 1.94% as well; here also the first four digits of the estimate and

the actual result are the same.

We can conclude that whenever you are making estimates of the long-term

growth rate, you can safely rely on the estimates of the first two moments of the

yearly growth rate and apply formula (39). You do not need to worry about the

probability distribution of the yearly rate; just let the central limit theorem work

for you.

Appendix: A reminder on moment generating functions

Let X denote a continuous random variable. The moment generating function of

X is defined as the expected value of the random variable eλX . It will be denoted

ϕX (λ).8 We have by definition

ϕX (λ) = E(eλX ). (A1)

Thus the random variable X undergoes two transformations: first, a linear

transformation (λX ) and then an exponential one (eλX ).

Let D designate the domain of definition of X and x the outcome values of X ;

let f (x) denote the probability density of X . Then the moment generating function

8 The usual notation for the variable of the moment generating function is t . We use here instead λ,

in order to avoid any confusion with our variable t , designating years throughout this chapter.
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is determined by the integral

ϕX (λ) = E(eλX ) =
∫

D
eλx f (x)dx . (A2)

A fundamental property of ϕX (λ) is that its kth derivative at λ = 0 gives the kth

moment of the random variable X . This is easily seen as follows. The derivative

of ϕX (λ) with respect to λ is:

ϕ′
X (λ) =

∫

D
xeλx f (x)dx ; (A3)

at point λ = 0, this is just the first moment of X :

ϕ′
X (0) =

∫

D
x f (x)dx = E(X ). (A4)

The second derivative of ϕX (λ) at point λ = 0 can be shown to be equal to

ϕ′′
X (0) = ∫

D x2 f (x)dx = E(X2). More generally the kth derivative of ϕX (λ) is

ϕ
(k)
X (λ) =

∫

D
xkeλx f (x)dx (A5)

and at point λ = 0 this is the kth moment of X :

ϕ
(k)
X (0) =

∫

D
xk f (x)dx = E(Xk ).

It is very useful now to consider, as an example, the moment generating function

of a unit normal variable, Z ∼ N (0, 1). This is

ϕZ (λ) =
+∞∫

−∞
eλz f (z)dz, (A6)

where f (z) = (2π )−1/2e−z2/2. It is easy to show (see exercise 6.1) that ϕZ (λ) =
eλ2/2. We will often have recourse to this result in this chapter, as it will avoid

any further calculations.

Exercises

6.1 This exercise is for the reader who is not familiar with the central result (for

this chapter) that the moment generating function of the unit normal variable

Z ∼ N (0, 1) is ϕZ (λ) = eλ2/2. To show this result, determine E(eλZ ) =∫ +∞
−∞ eλz f (z)dz where f (z) is the density of the unit normal.

6.2 Prove the results corresponding to the example we gave at the beginning of

this chapter.
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6.3 Suppose that the continuously compounded rate of growth over one year is

normal N (μ, σ2). What is the probability that the yearly growth rate Rt−1,t
will be lower than its expected value E(Rt−1,t )?

6.4 With the same hypotheses as in exercise 6.3, determine the probability that

the n-year growth rate R0,n will be lower than its expected value E(R0,n).

What is the limit of this probability when n → ∞?

Answers

6.1 Since the density of the unit normal variable Z ∼ N (0, 1) is (2π )−1/2e−z2/2,

the moment generating function is

ϕZ (λ) = E(eλZ ) =
∫ +∞
−∞

eλz 1

(2π )1/2
e−z2/2dz.

In the right-hand side, the exponent of e is − z2

2 + λz, which can be written

−1
2(z2 − 2λz + λ2) + λ2

2 (by “completing the square”). We can now make

the change of variable w = z − λ, with dw = dz. The moment generating

function thus becomes

ϕZ (λ) =
∫ +∞
−∞

1

(2π )1/2
e− 1

2w2+λ2

2 dw

= eλ2/2
∫ +∞
−∞

1

(2π )1/2
e−1

2w2
dw = eλ2/2.

6.2 This is a straight application of the formulas in the text. You have to be careful

that EXt−1,t is equal to E(1 + Rt−1,t ) – it is one plus the expected value of

the yearly growth rate.

6.3 We should determine

Prob(Rt−1,t < E(Rt−1,t ))

which amounts to

Prob(1 + Rt−1,t < 1 + E(Rt−1,t ))

or

Prob(Xt−1,t < eμ+σ 2/2) = Prob(eμ+σ Z < eμ+σ 2/2)

(because Xt−1,t is the lognormal variable eμ+σ Z ).

So the probability is simply

Prob(μ + σ Z < μ + σ2/2) = Prob(Z < σ/2) = �(σ/2)

where �(.) is the cumulative normal distribution function.
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6.4 In a similar way, let us determine

Prob(R0,n < E(R0,n)).

The random variable R0,n is equal to Y0,n − 1, with

Y0,n = (X0,1 . . . Xn−1,n)1/n = (elog X1 . . . elog Xn )1/n

= e

1
n

n∑

t=1

log Xt−1,t
= e

1
n (nμ+√

nσ Z ) = e
μ+ σ√

n
Z
.

Here E(R0,n) = eμ+ σ
2n − 1. So we can write

Prob(R0,n < E(R0,n)) = Prob(1 + R0,n < 1 + E(R0,n))

= Prob(e
μ+ σ√

n
Z

) < eμ+σ2

2n )

which yields

Prob Z < σ/2n = �(σ/2n).

We can verify that we obtain from this result �(σ/2) if n = 1 (the answer to

question 6.3).





P A R T I I

Optimal growth theory

In Part I of this book we have shown how the motion of an economy is described by

a differential equation whose solution depends in an essential way on three kinds

of hypotheses: the structure of the production process, which includes some form

of technical progress, the saving and investment decisions made by society, and

the growth of the labour force. In particular, to any savings-investment hypothesis

corresponds a particular trajectory of income per person.

The natural question to ask now is the following: among all possible growth

paths that would result from society’s savings-investment decisions, is there one

that would be optimal? The answer to this question requires that we first define

an optimality criterion. Once this is done, we need to develop the tools necessary

to solve such problems. This is the object of the second part of this book. We will

provide an introduction to the calculus of variations and the Pontryagin maximum

principle. Care will be taken to give economic interpretations of each, i.e. intuitive

ways of obtaining their fundamental equations.
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CHAPTER 7

Optimal growth theory:
an introduction to the calculus

of variations

We know how an economy might behave under a number of hypotheses regarding

the way factors of production are linked to output, and the way each of those factors

are modified over time: labour through population growth; capital through invest-

ment. Also, technical progress can enter the picture in a number of different ways.

Finally, the structure of the production function itself may be modified through

time due to changes in the elasticity of substitution between capital and labour.

The question we now want to ask is the following: among all possible time paths

that we might want to choose by setting a given investment policy, is one of those

optimal in a sense to be defined? This question is at the heart of optimal growth

theory, and has given rise to a huge volume of literature, sometimes controversial.

We first have to determine the objective function, and for historical reasons which

go back to Ramsey (1928), the objective supposedly defined by society is to

maximize the sum, over a time span which may be finite or infinite, of discounted

utility flows pertaining to consumption, given a production function constraint.

We will first give an example of such an objective; the example is voluntarily

simplified in order for the reader to grasp easily the nature of the problem at stake.

Suppose that the production function is given by Yt = F(Kt , Lt , t), where, as

before, Y is the net domestic product (net of capital depreciation); so investment

is It = d Kt/dt ≡ K̇ t , and consumption is Ct = Yt − It = Yt − K̇ t . Let U (C)

be a strictly concave utility function; we thus have U ′(C) > 0 and U ′′(C) < 0.

The objective of society may be to choose the investment time path K̇ t or, equiv-

alently, taking account an initial condition K (0) = K0, the capital time path Kt
that maximizes the integral

∫ ∞
0

U [Ct ] e−itdt (1)
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where i is a discount rate, subject to the constraint

Ct = Yt − K̇ t = F(Kt , Lt , t) − K̇ t , (2)

assuming that the trajectory Lt is known. Replacing the constraint into the objective

function, our task is to determine the entire time path �K such that

max�K

∫ ∞
0

U [F(Kt , Lt , t) − K̇ t ] e−itdt. (3)

This integral defines a relationship between an entire time path ( �K ) and a num-

ber, the definite integral. Such a relationship is a functional. Traditional differential

calculus deals with optimization of functions, relationships between a number (or

several numbers) and a number. In this case we have a relationship between a

function and a number, which will require a new methodology.

In traditional calculus, the basic idea of finding a point that is a candidate

to maximize a function f (x) is to give an increase to the independent variable,

determine the limit of the resulting rate of increase of the function, and examine

whether there are any values of the variable where that limit is equal to zero.

Geometrically, this implies looking for points of the function where its tangent

line might be horizontal. Analytically, we look for possible roots of the equation

f ′(x) = 0. In the case of a functional, we cannot give an increase to the function

in the same way as we do to a variable in differential calculus. However, we will be

able to impart a variation to the function (which will amount to giving an increase

to a variable, yet to be defined) – hence the name “calculus of variations” given to

this extension of the differential calculus. This chapter is a short introduction to

this beautiful area of mathematics.

1 The Euler equation

In 1696, Johan Bernouilli asked, in the form of a competition, the following prob-

lem: determine the curve between A and B such that a bead, starting at A and

gliding without friction along the curve, would join B in minimum time. Suppose

that A is at the origin of axes, and B is point (3, -1), as in figure 7.1. Consider three

possible curves: the straight line (a), and curves (b) and (c). Intuitively, some peo-

ple might choose the shortest path (the straight line; many, however would rather

choose (b) as a better solution than either (a) or (c). In reality, with its increasing
segment, (c) is the correct answer (a demonstration is provided in Appendix 2 of

this Chapter).

This problem admirably exemplifies the nature of the calculus of variations, as

well as its difficulty. Bernouilli had to extend the deadline of his competition before

he received (correct) answers from the best mathematicians of his time: his brother

Jacob, Leibniz, the Marquis de L’Hospital, Newton and Tschirnhaus. Each of them



The Euler equation 179

0
A

B

1 2

a

b

c

3

–0.5

–1

–1.5
y

x

Figure 7.1 A fundamental problem of the calculus of variations (Bernouilli, 1696): if a
bead is released from A, which curve will lead it to B in minimum time?

used subtle geometrical arguments combined with physical considerations. None

of them, however, provided a general method of optimising functionals. It is only

nearly half a century later that the first major result of the calculus of variations

was found by Leonhard Euler. Euler discovered in 1744 the differential equation

defining the function y(x) that would be the solution of the problem

max
y(x)

∫ b

a
F [x, y(x), y′(x)] dx (4)

of which (3) is a particular case. To do this, he resorted to geometrical arguments

and to finite differences methods, very much akin to methods used today in numer-

ical analysis. Ten years later, in 1754, he received from a young Italian living in

Torino, Ludovico de La Grange Tournier1 (he was 19 years old) a letter containing

a purely analytic method leading to this differential equation2. This method, intro-

ducing the concept of the variation of a function, was enthusiastically embraced by

Euler, giving full credit to its author and calling this new branch of mathematics

“calculus of variations”. Lagrange’s beautiful argument will now be presented,

albeit with the simpler notation that came into use at the end of the eighteenth

century.

1 His name was changed to Lagrange during the french revolution.
2 See Hector J. Sussmann and Jan C. Willems, 300 Years of Optimal Control: From the Brachis-

tochrone to the Maximum Principle, IEEE Contol Systems, June 1997, pp. 33–44. See also Herman

Goldstine, A History of the Calculus of variations, Springer-verlag, New York, 1981.
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ba
x

Y(x) = y(x) + αη(x)

y(x)

αη(x)

Figure 7.2 Giving a variation to the solution y(x). αη(x) is a variation of y(x); η(x) is a
fixed function and α is a real number.

Suppose that y(x) is the solution to the problem defined by (4). Let us

examine what kind of condition y(x) must then meet. Consider a new function

defined by

Y (x) = y(x) + αη(x)

where η(x) is a fixed, differentiable function such that η(a) = η(b) = 0, and α is

any real number. We call αη(x) a variation of y(x) – see figure 7.2.

If Y (x) is inserted into the integral

I [y] =
∫ b

a
F [x, y(x), y′(x)] dx (5)
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0

I [y (x) + ah(x)] = I (a)

I

a

Figure 7.3 The functional I[y(x) + αη(x)] = I(α). If y(x) is the solution that maximizes
the functional I[y(x) + αη(x)] and if η(x) is a fixed function, then I becomes a function of
the sole variable α that has a maximum at α = 0. Hence I′(α)

∣
∣
α=0 = 0.

we get

I [y + αη] =
∫ b

a
F [x, Y (x), Y ′(x)] dx

=
∫ b

a
F[x, y(x) + αη(x), y′(x) + αη′(x)] dx . (6)

Since y(x) and η(x) are fixed, I becomes a function of the sole variable α, and

can thus be denoted I (α). If y(x) is the unique solution to the problem, it means

that I (α) must have a maximum when Y (x) is y(x), that is when α = 0 (figure 7.3).

This implies that I ′(α) |α=0= 0, or I ′(0) = 0. Let us then determine I ′(0).

We have:

I ′(α) =
∫ b

a

[
∂ F

∂Y
η(x) + ∂ F

∂Y ′η
′(x)

]

dx . (7)

When α = 0, Y = y; (7) then becomes

I ′(0) =
∫ b

a

[
∂ F

∂y
η(x) + ∂ F

∂y′η
′(x)

]

dx . (8)

Integrate the second part of the integral,
∫ b

a
∂ F
∂y′ η′(x)dx , by setting

u = ∂ F

∂y′ ; dv = η′(x) dx
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which implies

du = d

dx

[
∂ F

∂y′
]

dx ; v = η(x);

we then get:

∫ b

a

∂ F

∂y′η
′(x) dx = ∂ F

∂y′η(x)

∣
∣
∣
∣

b

a
−

∫ b

a
η(x)

d

dx

[
∂ F

∂y′
]

dx . (9)

In (9), the term ∂ F
∂y′ η(x)

∣
∣b
a vanishes because of the way η(x) has been defined:

η(a) = η(b) = 0. Inserting (9) into (8) and factoring η(x) then gives:

I ′(0) =
∫ b

a
η(x)

[
∂ F

∂y
− d

dx

∂ F

∂y′
]

dx . (10)

The bracketed term in the integrand of (10) can be written as a function of x ,

denoted g(x). So our maximizing condition I ′(0) = 0 is

I ′(0) =
∫ b

a
η(x)g(x)dx = 0. (11)

We now have to determine a condition on g(x) for I ′(0) = 0. We can do this by

resorting to the so-called fundamental lemma of the calculus of variations, which

states that if an integral such as (11), where g(x) is a continuous function, has to

be equal to zero, then g(x) must be identically equal to zero at each point of the

interval [a, b]. This is easily proved as follows.

Suppose that at any given point of [a, b], for example at c, g(c) > 0. By con-

tinuity of g(x), there exists an interval around c, [c1, c2], where g(x) > 0. Since

the function η(x) can be chosen in an entirely arbitrary manner, we can choose it

as depicted in figure 7.4. It is then obvious that
∫ b

a
η(x)g(x)dx =

∫ c2

c1

η(x)g(x)dx > 0,

thus entailing a contradiction.

We then have the following result: if y(x) is to maximize I , it must meet the

condition g(x) = 0, or, written in full:

∂ F

∂y
(x, y, y′) − d

dx

∂ F

∂y′ (x, y, y′) = 0 (12)

which is the celebrated Euler equation (1744).

The fact that a necessary condition for y(x) to maximize I is expressed in the

form of a differential equation is perfectly natural. If, as in the case of the calculus

of variations, we want to determine a whole function, it can be surmised that we

will not be led to solve an equation – as in the case of ordinary differential calculus

when we want to maximize f (x), for instance – but a differential equation.
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g(x)

a b
x

c1 c2c

g(x), h(x)

h(x)
Figure 7.4 The fundamental lemma of the calculus of variations. If g(x), a continuous
function, is non-zero for one value (c for example) of the interval [a, b], then it is non-
zero over an interval (c1, c2) around c. Since the variation η(x) can be chosen at will,
it can be chosen as on the diagram; the definite integral

∫ b
a η(x)g(x)dx will be equal to∫ c2

c1
η(x)g(x)dx, and therefore non-zero. Hence g(x) must be zero over the whole interval

[a, b] for
∫ b

a η(x)g(x)dx to be identically equal to zero.

2 Fundamental properties of the Euler equation

It is important to write in full equation (12) in order to understand the nature of

this second-order, non-linear differential equation. Taking the total derivative of
∂ F
∂y′ yields:

∂ F

∂y
(x, y, y′) − ∂2F

∂y′∂x
(x, y, y′) − ∂2F

∂y′∂y
(x, y, y′)y′ − ∂2F

∂y′2 (x, y, y′)y′′ = 0.

(13)

Generally, the first two terms of (13) are functions of x, y and y′; and so are,

in the next two terms, the coefficients of y′ and y′′. So this second-order equation

is such that its coefficients depend not only upon x , but upon y and y′ as well.
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The consequence is that very rarely does the equation have an analytic solution,

which forces us therefore to rely on numerical methods. The brachistochrone

problem mentioned in section 1 is one of the rare cases of practical problems which

leads to an analytical solution, as presented in appendix 1. In growth theory, we

will definitely need to resort to numerical analysis, which is fortunately readily

available in a number of softwares (for instance MAPLE 9).

3 An important particular case

Suppose that the integrand of the functional (4) has the particular form of an affine

function of y′(x). This means that F(x, y, y′) has the following form:

F(x, y, y′) = M(y, x) + N (y, x)y′ (14)

and therefore the variational problem is to determine y (x) such that

max
y(x)

∫ b

a

[
M(y, x) + N (y, x)y′] dx . (15)

The Euler-Lagrange equation in this case is

∂ F

∂y
− d

dx

∂ F

∂y′ = ∂ M

∂y
(y, x) + ∂ N

∂y
(y, x)y′ − d

dx
N (y, x)

= ∂ M

∂y
(y, x) + ∂ N

∂y
(y, x)y′ − ∂ N

∂y
(y, x)y′ − ∂ N

∂x
(y, x)

= ∂ M

∂y
(y, x) − ∂ N

∂x
(y, x) = 0 (16)

Equation (16) is not a differential equation any more but an ordinary equation

between y and x . This case will receive an important application in chapter 13.

4 A necessary and sufficient condition for y(x) to maximize

the functional
∫ b

a F(x, y, y′)dx

The calculus of variations was invented in the 18th century and further developed

in the next centuries mainly to solve problems of a geometrical or physical nature.

As we have seen, Euler had established a necessary condition for y(x) to optimize

the functional I [y(x)]. It turns out that sufficient conditions are difficult to define.

Some of the most renowned mathematicians of the 19th century have contributed

to define sets of conditions which, taken together with the Euler equation, con-

stitute sufficient conditions for I [y(x)] to be optimized. The names of Legendre,

Weierstrass or Jacobi are associated with some of those sets. The reason for this

difficulty comes from the fact that mathematicians had to deal with the general

problem where F(x, y, y′) could not be assessed to be concave or convex over
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all the domain of y and y′. Fortunately, in economics and particularly in eco-

nomic growth theory, we are blessed by the fact that our integrand F(x, y, y′) is

often concave in (y, y′). This led Akira Takayama (1964) to provide an extremely

useful theorem. It gives a necessary and sufficient condition for y(x) to yield a

maximum.

We will now indicate and demonstrate Takayama’s theorem (his original the-

orem considers functionals defined on vectors of functions (y1, . . . , yn), i.e.
∫ b

a F(x, y1, . . . , yn, y′
1, . . . , y′

n)dx ; here we just need functionals defined on the

single function y; also, we have adapted his notation to ours).

Theorem (Takayama, 1964). Let F(x, y(x), y′(x)) be differentiable with
respect to y(x) and y′(x), where y(x) is twice differentiable on the closed interval
[a, b], with y(a) = ya and y(b) = yb. Suppose that F is a concave function in y
and y′. Then a necessary and sufficient condition for y to maximize the integral
I [y] = ∫ b

a F(x, y, y′)dx is that it satisfies the Euler condition ∂ F
∂y − d

dx
∂ F
∂y′ = 0.

Proof As before, let Y (x) = y(x) + αη(x); y(x) is supposed to be the solu-

tion of the problem and αη(x) is the variation of y(x) such that η(a) = η(b) = 0.

y(x) maximizes the functional if and only if I [Y (x)] � I [y(x)]. Consider now the

difference

I [Y (x)] − I [y(x)] =
∫ b

a
[F(x, Y, Y ′) − F(x, y, y′)] dx . (17)

From the concavity of F with respect to y and y′, we know that for any value of

x the differential of F will be larger than or equal to the increase of F in exact

value. So we have the inequality

F(x, Y, Y ′) − F(x, y, y′) � ∂ F

∂y
(x, y, y′) · (Y − y) + ∂ F

∂y′ (x, y, y′)(Y ′ − y′)

= ∂ F

∂y
αη(x) + ∂ F

∂y′αη′(x), (18)

using our preceding notation Y − y = αη(x), Y ′ − y′ = αη′(x). Since this is true

for any value x , it is also true for the definite integral of each member of inequality

(18):

∫ b

a
[F(x, Y, Y ′) − F(x, y, y′)dx � α

∫ b

a

[
∂ F

∂y
· η(x) + ∂ F

∂y′ · η′(x)

]

dx . (19)

In section 2 of this chapter, we had integrated by parts the second term of the

integral on the right-hand side of (19), and had obtained

∫ b

a

∂ F

∂y′ · η′(x)dx = −
∫ b

a
η(x) · d

dx

∂ F

∂y′ dx . (20)
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Table 7.1 Set of sufficient conditions for y to yield a global maximum of
∫ b

a F(x, y, y′) dx.

1) y solves the Euler equation

∂ F

∂y
(x, y, y′) − d

dx

∂ F

∂y′ (x, y, y′) = 0

2) F is concave in y, y,′; this is true if and only if, for any x

a)
∂2 F

∂y2
� 0

b)
∂2 F

∂y′2 � 0

c)
∂2 F

∂y2
· ∂2 F

∂y′2 −
(

∂2 F

∂y∂y′

)2

� 0

Note: if F is concave in (y, y′),then 1) is both a necessary and sufficient condition for
∫ b

a F(x, y, y′)dx to be maximized; that is Takayama’s theorem. The second part of these
conditions (a, b and c) is proven in Appendix 3 of this chapter.

The right-hand side of (19) is then equal to
∫ b

a
η(x)

[
∂ F

∂y′ − d

dx

∂ F

∂y′
]

dx .

Since y solves the Euler equation, this expression is equal to zero, and the inequality

I [Y (t)] − I [y(t)] ≤ 0 holds; the theorem is thus proved.

Concavity of F with respect to y and y′ implies a global maximum of the

functional; strict concavity implies a unique global maximum. The reverse is true:

the convexity of F leads to a global minimum of the functional; strict convexity

will give a unique global minimum.

It will prove very useful to have necessary and sufficient conditions for the

integrand F(x, y, y′) to be concave in y, y′. These conditions are given in the

second part of table 7.1.

Suppose finally that the integrand of the functional has the special, following

form : it is an increasing, concave function of a function F(x, y, y′) which is itself

concave in y, y′. (That case will be repeatedly found in optimal growth theory.) So,

if B(·) is such that B′ > 0 and B′′ < 0, our functional is
∫ b

a B[F(x, y, y′)]dx , with

F(·) concave in y and y′.) Then, by theorem 17.6 in K. Sydsaeter and J. Hammond

(1995), B[F(x, y, y′) is concave in y and y′. The proof can be found in the above

reference, p. 628.

*

* *
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Before we take up applications of the calculus of variations to optimal growth

theory, it may be useful to get some familiarity with another major tool used in

optimal dynamic systems, the Pontryagin maximum principle, which generalizes

somewhat the calculus of variations. We will deal with this topic in our next

chapter.

Appendix 1: Differentiating an integral with respect to a

parameter – the Leibniz formula; a geometrical interpretation

Often in this book we will have recourse to definite integrals that depend upon

a parameter. We know that, generally, a definite integral is a functional which

depends upon three elements: the function to be integrated, the lower bound of

integration and its upper bound. It may often be the case, however, that some

of these elements – or all – depend upon a parameter. We have just encoun-

tered such an example in the calculus of variations when the function to be

integrated was given a variation, defined as the product of a fixed function

and a variable parameter. But many other examples arise: the value of capital

depends parametrically upon the times of reference used to measure the gener-

ated cashflows; and in the field of statistics, a moment generating function of a

continuous random variable is defined analytically as an integral depending upon a

parameter.

Let I (α) be such an integral. We can write it as

I (α) =
∫ b(α)

a(α)
f (x, α) dx . (A1)

The Leibniz formula states that its derivative with respect to α is

I ′(α) =
∫ b(α)

a(α)

∂ f

∂α
(x, α) dx + db

dα
(α) f [b(α), α] − da

dα
(α) f [a(α), α]. (A2)

A rigorous proof of the formula – especially the first part of it – requires some

advanced analysis and can be found in specialized texts. However the formula has

a straightforward geometrical interpretation. It is just an extension of the classic

interpretation of the derivative of an integral with respect to its upper bound, which

is the value of the function to be integrated at its upper bound (the derivative of∫ x
a f (u)du is just f (x)).

Consider in figure 7.5 the area under the curve f (x, α) for a given value of

α. Suppose that we give a small increment to α, denoted �α. Suppose that the

effects of this are the following: the bounds of integration move to the right, and

the function to be integrated receives a variation such as the one indicated on

figure 7.5. If �α is sufficiently small, we could feel justified to consider that a
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Figure 7.5 A geometrical interpretation of the Leibniz formula.

first order approximation of the net increase received by the area is the sum of the

hatched areas, [1] plus [2], minus area [3].3

Consider first area [1]. It is the integral sum, from a(α) to b(α), of infinitely

numerous vertical elements whose width is dx ; their height is, in linear approxi-

mation, the differential of the function f (x, α) at point (x, α) in the direction of α,

which is
∂ f
∂α

(x, α)�α. So the area of such an element is simply
∂ f
∂α

(x, α)�αdx ,

and as an approximation we then have

area [1] ≈
∫ b(α)

a(α)

∂ f

∂α
(x, α)�α dx = �α

∫ b(α)

a(α)

∂ f

∂α
(x, α) dx . (A3)

Area [2] is a rectangle whose width is, in linear approximation, the differential

of b(α) i.e. db
dα

(α)�α. Its height is f [b(α), α], so we have approximatively

area [2] ≈ db

dα
(α)�α f [b(α), α]. (A4)

3 Why should we feel justified to neglect the small, blank areas ABC, DEF, GHDF? The reason is the

following. These areas are of a higher order of smallness than areas [1], [2] and [3]. Indeed, when

�α goes to zero, each of those areas is reduced by the shrinking of 2 dimensions. For instance,

area GHDF is reduced by two combining effects: a decrease in the variation of the function and
a smaller increase in the upper bound of integration. As to areas [1], [2] and [3], only one factor

makes them become smaller. Each of these areas has one element which is not affected by a smaller

�α. For instance, in area [1] the curve AD is invariant to a change in �α.
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Similarly, area [3] is in linear approximation

area [3] ≈ da

dα
(α)�α f [a(α), α]. (A5)

As a result, an approximation of the increase �I is given by

�I ≈ �α

∫ b(α)

a(α)

∂ f

∂α
(x, α)dx + db

dα
(α)�α f [b(α), α)] − da

dα
(α)�α f [a(α), α)].

(A6)

Dividing through (A6) by �α leads to the Leibniz formula (A2). Notice how

the classic formula d
dx

∫ x
a f (u)du = f (x) is just a particular case of (A2): here x

plays the role of α, with x = α and b(α) = α; db
dα

(α) = 1. The integral depends

parametrically upon α only because the upper bound of integration does. So the

first and the third term of (A2) vanish, and the derivative of the integral is just the

value of the function at the upper bound, i.e. f (x).

Appendix 2: Solution of the brachistochrone problem

Each of the great mathematicians of the 18th century whom we mentioned in this

chapter (Johan and Jacob Bernouilli, Newton, the Marquis de L’Hospital, Tschirn-

haus) had come up with a solution to the problem posed by Johan Bernouilli,

discovering in his own way that the optimal curve joining point A to B was an

arc of cycloid, i.e. a curve generated by the point of a circle rolling along a given,

straight direction. We will give here one of the classical solutions to the problem.

This one follows L. Elsgolc.4 We will then apply it to the example given at the

beginning of this chapter.

Let (x0, y0)be the initial point A of the curve y(x) we are looking for, and

(x1, y1) its terminal point B. The initial time t0 is 0; the time when the bead

reaches B is t1.We need to determine y = f (x) such that t1 is minimized.

Let m designate the mass of the bead, v its speed and g the acceleration constant.

At any point (x, y) of the curve we are looking for, the potential energy of the

bead transforms itself into kinetic energy; the latter ((1/2)mv2) is equal to the

difference between the initial potential energy mgy0 and the potential energy at

point (x, y), equal to mgy. So we have:

1

2
mv2 = mgy0 − mgy = mg(y0 − y). (A7)

The problem is thus independent of the mass of the bead, whose speed is just

v = [2g(y0 − y)]1/2. (A8)

4 L. Elsgolc, Calculus of Variations, Pergamon Press, London, 1964. We will however keep the

ordinate axis pointing upward; this will lead to a sign change in y and y′.
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At point (x, y), the distance s travelled by the bead is such that

ds

dt
= v, (A9)

and, with obvious initial conditions, the time taken by the bead to reach (x, y) is

given by integrating

dt = 1

v
ds, (A10)

i.e. by
∫ t

0
dτ =

∫ s

0

1

v
dσ. (A11)

We can express the differential of the distance travelled, ds (denoted dσ in (A11)),

in terms of x and y. We have:

ds =
√

dx2 + dy2 =
√

1 + y
′2dx . (A12)

Taking into account (A8), the time t1 taken by the bead to reach x1 is given by

t1 = 1√
2g

∫ x1

x0

√
1 + y

′2

y0 − y
dx . (A13)

This duration t1 is thus seen as a functional of the type
∫ b

a f (x, y, y′)dx with

one – fortunate – proviso: in this case our integrand does not depend explicitly

upon the integration variable x . Therefore the term ∂2 F
∂x∂y′ in the Euler equation

vanishes; denoting F = F(y, y′), the Euler equation reduces to

Fy − Fyy′ y′ − Fy′y′ y′′ = 0, (A14)

which can be shown to reduce to a first-order differential equation, as follows.

Let us multiply each side of (A14) by y′; the left-hand side of (A14) then

becomes the derivative with respect to x of F − y′Fy , divided by y′. Indeed, we

have:

d

dx
(F − y′Fy′) = Fy y′ + Fy′ y′′ − y′′Fy′ − y′Fy′y y′ − y′Fy′y′ y′′

= y′(Fy − Fyy′ y′ − Fy′y′ y′′). (A15)

Thus, when F does not depend explicitly upon x , the Euler equation is equivalent

to

d

dx
(F − y′Fy′) = 0, (A16)

which turns into the first order equation

F(y, y′) − y′Fy′(y, y′) = C, (A17)
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the highly useful Beltrami equation,5 where C is a constant of integration.

We will now simplify the notation of (A13) by considering that the ordinate

points downwards, and that point A is at the origin of the axes; thus x0 = y0 = 0.

We then have to find y(x) such that

min
y(x)

t1 = 1√
2g

∫ x2

0

√
1 + y

′2

−y
dx, (A18)

membering that y is negative.

We can apply the Beltrami equation (A17) to (A18) to get:

(
1 + y

′2

−y

)1
2

− y
′2

[−y(1 + y
′2)]1/2

= C, (A19)

which reduces to

−y(1 + y
′2) = C1, (A20)

where C1 is a new constant. Equation (A20) is then the first order equation

whose solution will yield the optimal path we are looking for. Notice that it will

imply two integration constants, to be identified thanks to the location of points A

and B.

Equation (A20) can be solved in a number of ways; one of the simplest is to look

for the solution in parametric form by making the change of variable y′ = − cot β.

We then get:

y = −C1

1 + cot2 β
= −C1 sin2 β = C1

2
(cos 2β − 1). (A21)

We also have:

dx = dy

y′ = −C1 sin 2β dβ

− cot β
= 2 C1 sin β cos β dβ

cot β
= 2 C1 sin2 β

= C1(1 − cos 2β) dβ (A22)

which can be integrated to yield

x = C1

(

β − sin 2β

2

)

+ C2 = C1

2
(2β − sin 2β) + C2. (A23)

The optimal curve joining A to B is then given parametrically by the system:

y = C1

2
(cos 2β − 1) (A24)

x = C1

2
(2β − sin 2β) + C2. (A25)

5 This equation was discovered in 1868 by the Italian mathematician Eugenio Beltrami.
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Figure 7.6 The cyloid is generated by the point (O) of a circle rolling on a horizontal axis.
If the circle rolls by an angle α, the ray CO becomes C′O′. The coordinates of O′ are
x = r (α − sinα) and y = r (cosα − 1). In our example, r = l and α = 2.5.

We can make a further simplification by denoting C1/2 = r , a constant to be iden-

tified, and 2β = α, a parameter whose interpretation will soon be given. System

(A24), (A25) then becomes

y = r (cos α − 1) (A26)

x = r (α − sin α) + C2. (A27)

Let us first identify C2, using the fact that the point of departure of the curve

is x = 0, y = 0. Obviously, since r 	= 0, the first equation 0 = r (1 − cos α) leads

to cos α = 1 and α = 0; then, with x = 0 and α = 0, (A27) gives C2 = 0. Our

system becomes

y = r (cos α − 1) (A28)

x = r (α − sin α), (A29)

which is the equation of a cycloid, i.e. the curve generated by a point of a circle

with ray r , rolling along a horizontal axis, and having accomplished a rotational

angle α. We will now show why this is so.

Consider the origin of the axes as a point O on a circle of radius r
(figure 5.6). Let this circle roll to the right with a rotational angle α. The abscissa

of the new position of the center (C′) is rα. The position of the radius OC changes

to O′C′. The coordinates of the initial point O on the circle move from (0,0)
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to (x, y). Now the coordinate x is equal to the difference x = rα − (rα − x) =
rα − r sin α (since sin α = (rα − x)/r ); on the other hand y = −r − (−r − y);

since cos α = −(−r − y)/r , y = −r + r cos α = r (cos α − 1). The coordinates

of the cycloid thus are exactly given by system (A28, A29) above. Hence the con-

stant r (= C1/2) is nothing else than the radius of the rolling circle, and C1 is its

diameter; the variable β (= α/2) is half its rotation angle.

To determine the cycloid passing through point (x1, y1), it suffices to determine

the radius r1and the rotation angleα1of its generating circle. This is done by solving

the system

y1 = r (cos α − 1) (A30)

x1 = r (α − sin α). (A31)

This leads to the sole equation in α

cos α − 1

α − sin α
= y1

x1
(A32)

which can be solved numerically for α. Then r is given equivalently by

r1 = y1

cos α − 1
= x1

α − sin α
. (A33)

In the problem at the beginning of this chapter, the coordinates of the terminal

point B were x1 = 3; y1 = −1. So y1/x1 = −1/3. Solving (A32) for y1/x1 =
−1/3 yields α 
 4.05 (0 < α < 2π ), and (A33) gives r1 
 0.62. So the equation

of curve (c) in figure 1 is

y1 = 0.62(cos α − 1) (A34)

x1 = 0.62(α − sin α). (A35)

Coming back to system (A28, A29), important properties of the brachys-

tochrone (the cycloid) can be immediately noticed. From its first and second deriva-

tives y′ = − cot β = − cot(α/2) and y′′ = 1/
[
2 sin2 (α/2)

]
, the brachystochrone

appears to be convex everywhere; it becomes vertical at α = 0 and α = 2π , and

it goes through a minimum at α = π (i.e. at point x = πr , y = −2r ).

You may wonder under which circumstances the brachystochrone is increas-

ing on an interval, as in our example. From the minimum property shown above,

everything hinges upon the ratio y1/x1 only, corresponding to point B: it suf-

fices that y1/x1 > −2r/πr = −2/π 
 −0.64 for the brachystochrone to have an

increasing segment. In our example, y1/x1 = −1/3, so this condition is fulfilled.

The brachystochrone has another remarkable, nonintuitive property. Being a

cycloid, it is a tautochrone: whatever the initial position at which beads are released

along a cycloid, they will reach the minimum of the curve at the same time! This
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result was proved by Huygens in 1673 (the proof, a bit long, is omitted here; it can

be found in specialized treaties, and also on the web).

There exist two wonderful web sites displaying spectacular animations of the

brachystochrone. If you visit the site http://home.ural.ru/˜iagsoft/BrachJ2.html,

conceived and constructed by Alexei Ivanov, you can choose point
(
x1, y1

)

and compare the performance of the cycloid to that of the straight line and

other curves. You can even choose the initial speed of the bead. The second

site, http://www.sm.luth.se/˜johanb/applmath/chap.en/part7.htm is due to Johan

Byström, Lars-Erik Persson and Fredrik Strömberg. On this site you should go

to “chapter III. Introduction to the calculus of variations.” An animation of the

cycloid is accompanied by an impressive illustration of its tautochrone property.

Appendix 3: Necessary and sufficient conditions for the integrand

of the functional
∫ b

a F(x, y, y′)dx to be concave in y, y′

Takayama’s theorem, demonstrated in this chapter, states that if F(x, y, y′) is

concave in (y, y′), y yields a global maximum of the functional
∫ b

a F(x, y, y′)dx if

and only if y solves the Euler equation ∂ F
∂y − d

dx
∂ F
∂y′ = 0. We must now determine

necessary and sufficient conditions for F(x, y, y′) to be concave in y, y′. This last

condition rests upon the second differential of F being negative or zero. Using our

notation, the first differential of F(x, y, y′) is

d F = ∂ F

∂y
αη(x) + ∂ F

∂y′αη′(x) (A36)

where η(x) and η′(x) are arbitrary, fixed variations of y and y′, and α is any number

different from 0. The second differential of F is

d2F = ∂

∂y

[
∂ F

∂y
αη(x) + ∂ F

∂y′αη′(x)

]

αη(x)

+ ∂

∂y′
[
∂ F

∂y
αη(x) + ∂ F

∂y′αη′(x)

]

αη′(x)

= α2

{
∂2F

∂y2
η2(x) + 2

∂2F

∂y∂y′η(x)η′(x) + ∂2F

∂y′2 η′2(x)

}

(A37)

We thus have to discuss under which conditions the quadratic form in the

brackets is negative or zero. In order to simplify the notation, we set ∂2 F
∂y2 ≡ A,

∂2 F
∂y∂y′ ≡ B, ∂2 F

∂y′2 ≡ C ; on the other hand, the variables are denoted η(x) ≡ u and

η′(x) ≡ v, and the bracketed term is f (u, v). We now have to prove that f (u, v) =
Au2 + 2Buv + Cv2 � 0 if and only if A � 0, C � 0 and AC − B2 � 0.
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This is just a particular case of general negative semi-definite quadratic forms.

We will repeatedly need this necessary and sufficient condition, and we borrow a

demonstration from Kurt Sydsaeter and Peter J. Hammond’s excellent text (1995,

pp. 528–529).6

First suppose that f (u, v) is negative semi-definite ( f (u, v) = Au2 + 2Buv +
Cv2 � 0). Then f (1, 0) = A � 0 and f (0, 1) = C � 0. If A = 0, f (u, 1) =
2Bu + C , an affine function of u which is negative or zero for any value of u
only if B = 0. Thus AC − B2 = 0. Consider now the case where A < 0; then

f (−B, A) = AB2 − 2AB2 + C A2 = A(AC − B2) is � 0, so AC − B2 � 0.

Conversely, suppose that A � 0, C � 0 and AC − B2 � 0. If A = 0, AC −
B2 � 0 implies B = 0 and f (u, v) = Cv2 � 0. If A > 0, the quadratic form can

be written

f (u, v) = A

(

u + B

A
v

)2

+
(

C − B2

A

)

v2,

which is always positive or zero since AC − B2 � 0.

Exercises

7.1 Determine the Euler equation in the following cases:

a) the integrand F of the functional does not depend on y′; F = F(y, x)

b) F does not depend explicitly either on x or y; it depends solely on y′
c) F depends on x and y′ only

d) F depends on y and y′ only.

7.2 The cycloid, or brachistochrone, has surprisingly simple properties. One of

them was discovered by Gilles de Roberval in 1634: the area under an arch

of the cycloid is three times the area of its generating circle. Somewhat later,

in 1658, Christopher Wren proved that the length of that arch was four times

the diameter of the circle. Verify those properties; it is not difficult if you

keep the cycloid in the form of system x = f (α), y = g(α); it is simplest

also to consider the arch in the positive quadrant, writing x = r (α − sin α)

and y = r (1 − cos α). For the Roberval property, at some point, use cos2 α =
1/2 + (1/2) cos α; for the Wren property, use 1 − cos α = 2 sin2(α/2).

7.3 The calculus of variations as presented in this introduction can be extended

in several directions. For instance, we may want to find a functional whose

integrand depends upon x, y, and the first n derivatives of f (x), y′, . . . , y(n).

6 K. Sydsaeter and P. J. Hammond, Mathematics for Economic Analysis, Prentice Hall, Englewood

Cliffs, N.J., 1995, pp. 528–529.
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Other classical problems are to find a vector of m functions y1(x), . . . , ym(x)

that maximizes a functional whose integrand depends on x , the vector

y1, . . . , ym , as well as on the vectors of derivatives y′
1, . . . , y′

m ; y′′
1 , . . . , y′′

m ;

. . . ; y(n)
1 , . . . , y(n)

m . Also, we could look for a surface z = f (x, y) maximiz-

ing a double integral
∫ ∫

D F(x, y, z, ∂z
∂x , ∂z

∂y )dx , and so on.

In this exercise, you are asked to derive the so-called Euler–Poisson equation

corresponding to the maximization of

∫ b

a
F(x, y, y′, y′′)dx .

Hint: in order to do so, you need to define additional conditions on the

admissible curves y(x) + αη(x), and more precisely on the admissible varia-

tion. We already have set, in the original problem, η(a) = η(b) = 0 so that, for

any α, y(a) = ya and y(b) = yb. Now we add the conditions y′(a) = y′
a and

y′(b) = y′
b. In other words, at points x = a and x = b, not only has the func-

tion f (x) specified values, but f ′(x) is uniquely defined as well. This implies

that y′
a + αη′(a) = y′

a for any value of α, therefore η′(a) = 0. Similarly, if

y′
b + αη′(b) = y′

b, then η′(b) = 0. You should now give y a variation as we

have done in this chapter; when you take the derivative of the functional with

respect to α, integrate once by parts the second term of the definite integral,

and twice by parts the third term.

Answers

7.1 a) If F = F(x, y), the Euler equation reduces to ∂ F
∂y (x, y) = 0, an algebraic

equation in (x, y) and not a differential equation. For a solution to exist, the

solution must contain the boundary conditions, so these conditions cannot

be set arbitrarily as we have done in this chapter. This case is similar to

what we have seen in section 3 of this chapter, when the functional was an

affine function of y′.

b) If F depends on y′ only, the Euler equation is d
dt

∂ F
∂y′ (y′) = 0, or

∂2 F
∂y′2 (y′)y′′ = 0. Either y′′ = 0 or ∂2F/∂y

′2 = 0. The first case leads to

y′ = C1 and y = C1x + C2. In the second case, we have an equation in

the sole variable y′, which may or may not have solutions. Suppose it has a

solution s. So y′ = s, and the linear solution is y = sx, a particular solution

of y = C1x + C2 when C1 = s and C2 = 0.
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c) If F depends upon x and y′ only, the first term of the Euler equation cancels,

and we have

d

dt

∂ F

∂y′ (x, y′) = 0.

The Euler equation therefore reduces to the first-order differential equation
∂ F
∂y′ (x, y′) = 0.

d) In appendix 3, we have given Elsgolc’s solution of the brachistochrone. You

will notice that this problem corresponds precisely to such a case where the

integrand depends solely on y and on y′ and we were led to the Beltrami

equation. We meet here one of those rare variational problems in physics

that is amenable to an analytic solution, thanks to the reduced order of

the underlying differential equation. (We will later benefit from such an

analytic simplification – see chapter 10.)

7.2 For Roberval’s property: calculate the area A = ∫ 2πr
0 ydx by changing the

variable of integration, using the system x = r (α − sin α) and y = r (1 −
cos α). You finally get A = 3πr2. The Wren property can be obtained by cal-

culating the length l = ∫
D ds where ds = [(dx)2 + (dy)2]1/2, which gives

l = 8r.

7.3 The problem may be written

Max I =
∫ b

a
F(x, y, y′, y′′)dx .

Let us suppose that y is the solution, such that y(a) = ya ; y(b) = yb;

y′(a) = ya ; y′(b) = yb. Let αη(x) be a variation given to the solution y(x).

The comparison function is y(x) + αη(x). Since for any α we must have

y′(α) + αη′(a) = y′
a + αη′(a) = y′

a , η(α) must be equal to 0. Similarly,

η′(b) = 0. Since y is fixed as the solution, and η(x) is arbitrarily fixed, the

functional I reduces to a function of α :

I = I (α) =
∫ b

a
F(x, y + αη, y′ + αη′, y′′ + αη′′)dx .

Denote Y = y + αη; Y ′ = y′ + αη′; Y ′′ = y′′ + αη′′. Then

I ′(α) =
∫ b

a

[
∂ F

∂Y
η(x) + ∂ F

∂Y ′η
′(x) + ∂ F

∂Y ′′η
′′(x)

]

dx

and

I ′(0) =
∫ b

a

[
∂ F

∂y
η(x) + ∂ F

∂y′η
′(x) + ∂ F

∂y′′η
′′(x)

]

dx .
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As we have seen in this chapter, integrating by parts the second term yields

− ∫ b
a η(x) d

dx
∂ F
∂y′ dx . Integrate now twice by parts the third term. We have:

∫ b

a

∂ F

∂y′′η
′′(x)dx = ∂ F

∂y′′η
′(x)

∣
∣
∣
∣
∣

b

a

−
∫ b

a
η′(x)

d

dx

∂ F

∂y′′ dx

= ∂ F

∂y′′η
′(x)

∣
∣
∣
∣

b

a
− η(x)

d

dx

∂ F

∂y′′
∣
∣
∣
∣

b

a
+

∫ b

a
η(x)

d2

dx2

∂ F

∂y′′ dx .

Since η(a) = η(b) = η′(a) = η′(b) = 0, this integral reduces to
∫ b

a η(x) d2

dx2
∂ F
∂y′′ dx . We can factor out η(x) in the integrand of I (0) to

obtain

I (0) =
∫ b

a
η(x)

[
∂ F

∂y
− d

dx

∂ F

∂y′ + d2

dx2

∂ F

∂y′′

]

dx .

In order to get a condition on y leading to I (0) = 0, we can now apply the

fundamental lemma of the calculus of variations we have seen in this chapter:

the bracketed term in the integrand of the above equation should be zero,

which leads to the Euler–Poisson equation

∂ F

∂y
− d

dx

∂ F

∂y′ + d2

dx2

∂ F

∂y′′ = 0.

Note that this is, generally, a fourth-order differential equation. Indeed, if

we write explicitly this Euler–Poisson equation – quite a tedious task – at a

point we have to take the second derivative of ∂ F
∂y′′ (x, y, y′, y′′) (the third term

of the above equation). The first derivative is

d

dx

∂ F

∂y′′ = ∂2F

∂y′′2 + ∂2F

∂y∂y′′ y′ + ∂2F

∂y′∂y′′ y′′ + ∂2F

∂y
′′2 y′′′.

In turn, when taking the derivative of this expression with respect to x , the

fourth derivative y(iv) will appear. Needless to say, we cannot hope, gener-

ally, to solve analytically the Euler equation of this type, and only numerical

methods may be applied. Fortunately, however, we will be blessed with an eco-

nomic application where it is possible to have an analytic solution (chapter 11);

this is due to the fact that the integrand of our functional will depend solely

upon y′′, and not on any of the arguments x, y or y′.
The real surprise will come when we discover that there are much quicker

ways to obtain the Euler–Poisson, which rest upon extensions of the Dorfma-

nian, to be introduced in our next chapter (8).



CHAPTER 8

Other major tools for optimal growth
theory: the Pontryagin maximum

principle and the Dorfmanian

Complex dynamic systems, in particular those with inequality constraints, have

made it necessary to extend the classical calculus of variations. This work has been

carried after the Second World War by Richard Bellman in the United States, in

the form of dynamic programming, and by Lev Pontryagin and his associates in

Russia. This latter contribution is also called “optimal control theory”; its central

result is known as the Pontryagin maximum principle.

The full-fledged maximum principle requires some very advanced mathematics

and its proof extends over some 50 pages.1 We will indicate here only the result in

its simplest form, using the beautiful economic interpretation of this principle that

was given by Robert Dorfman2 (1969). The power of Robert Dorfman’s analysis

will be obvious: not only does it permit us to solve dynamic optimization problems,

but it will also enable us to obtain the classical results of the calculus of variations

(the Euler–Lagrange equation and its extensions) through economic reasoning.

But the reason why Dorfman’s contribution is so important is that it goes well

beyond a very clever, intuitive, explanation of the Pontryagin maximum principle.

Robert Dorfman introduced a new Hamiltonian, which has profound economic

significance. To honour Professor Dorfman’s memory, we call this “modified

1 The original contribution by Pontryagin and his associate is: L. S. Pontryagin, V. G. Boltyanskii,

R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes
(translated by K. N. Trirogoff). Interscience, New York, 1962.

Very precise and complete results of optimal control theory can be found in K. J. Arrow,

“Applications of Control Theory to Economic Growth”, American Mathematical Society, Math-
ematics of the Decision Sciences, Part 2. Providence 1968, pp. 85–119; K. J. Arrow and

M. Kurz, Public Investment, the Rate of Return, and Optimal Fiscal Policy. Stanford University

Institute for Mathematical Studies in the Social Sciences, 1968.
2 Professor Robert Dorfman (1917–2002) taught at Berkeley and at Harvard University. His article

“An Economic Interpretation of Optimal Control Theory” (1969) is a masterpiece.
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Hamiltonian” a Dorfmanian. In turn this Dorfmanian can be extended to obtain

all high-order equations of the calculus of variations (the Euler–Poisson and the

Ostrogradski equations).

The reader will notice in this chapter and those that follow that many tools are at

his disposal to solve the simple variational problems of optimal economic growth:

he can use the classical calculus of variations, the Pontryagin maximum principle

and the Dorfmanian. He may then ask two questions: is one of the methods to be

preferred? And if the choice between methods is completely open, would some be

redundant? For simple problems like the ones we will deal with, there is indeed

complete equivalency in the methods. But there is certainly no redundancy: the

Dorfmanian offers remarkable insights which are not present in the calculus of

variations, and we would never have been able to prove the second part of Adam

Smith’s theorem, as enunciated in our introduction, without the Dorfmanian. We

hope that this will be evident to the reader in chapter 15.

1 The maximum principle in its simplest form

Let kt be a state variable (for instance the stock of capital of a nation, or that of

a firm); this is a variable which is inherited at time t from past conditions and

decisions. Let xt be a control variable; for instance, it may be the consumption

of a nation at time t , or some kind of expenditure made by a firm at time t . The

trajectory of kt will be determined by an initial condition at time t = 0 and by the

time derivative of kt , denoted k̇t . This derivative is supposed to depend upon three

variables: the value of the state variable itself at time t, kt ; the control variable xt ;

and time t . This last hypothesis means that the relationship between k̇t on the one

hand, and kt and xt on the other, is time dependent. So we have the constraint

k̇t = f (kt , xt , t). (1)

On the other hand, we have an objective function in the form of the definite

integral of a so-called profit function. Denoted u, the profit function depends, at

any time t , upon the state variable kt , the control variable xt and time. We have

u = u(kt , xt , t) (2)

and the optimal control problem is to find the whole trajectory of x such that it

maximizes
∫ T

t
u(kτ , xτ , τ )dτ (3)

under the constraint

k̇τ = f (kτ , xτ , τ ). (1)
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This problem can be solved by setting a Hamiltonian3 defined as

H = u(kt , xt , t) + λ(t) f (kt , xt , t)

where λ(t) is a function of time to be determined. The optimal trajectory xt , as

well as kt and λ(t) are determined by the following system of three equations:

∂ H

∂xt
= ∂u

∂xt
+ λ(t)

∂ f

∂xt
= 0 (4)

∂ H

∂kt
= ∂u

∂kt
+ λ(t)

∂ f

∂kt
= −λ̇(t) (5)

∂ H

∂λt
= k̇t = f (kt , xt , t). (6)

Among these three equations, number (6) just comes from the definition of

k̇t , as f (kt , xt , t). Our task will be to give an intuitive explanation of equations

(4) and (5). Before we do so, let us check that this principle does generalize the

calculus of variations.

2 The relationship between the Pontryagin maximum
principle and the calculus of variations

It is important to see how the Pontryagin principle can be used to obtain the Euler

equation. Remember that the basic variational problem is to find y(x) such as to

maximize
∫ b

a
F[y(x), y′(x), x]dx .

Compare this to the problem of finding xt such that

max
xt

∫ b

a
u(kt , xt , t)dt

subject to

k̇t = f (kt , xt , t).

We can make the second problem equivalent to the first by considering that the

three-variable function k̇t = f (kt , xt , t) reduces to xt , so that k̇t = f (kt , xt , t) =
xt . The Hamiltonian is then:

H = u(kt , k̇t , t) + λ(t)k̇t . (7)

3 This name is given in honour of the Irish mathematician and physicist William Rowan Hamilton

(1805–65). At age 22, Hamilton was named Royal Astronomer and full professor of mathematics

at Trinity College, Dublin.
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Applying the Pontryagin maximum principle, equations (4) and (5) lead to

∂ H

∂xt
= ∂u

∂ k̇t
+ λ(t) = 0 (8)

and

∂ H

∂kt
= ∂u

∂kt
= −λ̇(t) (9)

respectively.

In order to eliminate λ(t) between these two equations, let us take the derivative

of (8) with respect to t . We get λ̇(t) = − d

dt

∂u

∂ k̇t
; replacing λ̇(t) into (9) yields

∂u

∂kt
− d

dt

∂u

∂ k̇t
= 0, (10)

which is the Euler equation.

3 An economic derivation of the maximum principle

Robert Dorfman gave two methods of deriving the fundamental equations of the

maximum principle from an economic point of view. Each is highly interesting in

its own right.

3.1 First derivation

The reader may remember the way Lagrange solved the fundamental problem of

the calculus of variations: he managed to transform the problem of optimizing a

functional, I [y(x)], into the familiar problem of optimizing a function I [y(x) +
αη(x)] = I (α), where both y(x) and η(x) are fixed; y(x) is fixed because it is

supposed to be the solution of the problem; as to η(x), it is an arbitrary, fixed,

variation of y(x).

The same kind of reasoning can be applied here. Instead of trying to determine

the whole trajectory of x maximizing the functional ∫T
t u(kτ , xτ , τ )dτ subject to

k̇τ = f (kτ , xτ , τ ), let us suppose that we know the optimal time path of x from

t + �t onwards (where �t is extremely small), and that we are to determine the

single value of x at time t, xt . So we write
∫ T

t
u(kτ , xτ , τ ) dτ = u(kt , xt , t)�t +

∫ T

t+�t
u(kτ , xτ , τ )dτ . (11)

The integral on the right-hand side of (11) does not depend any more on the

trajectory of x , since the latter is fixed as the optimal time path of x from time t + �t
to time T . From t + �t onward, the whole trajectory of k is determined by the

differential equation k̇τ = f (kτ , xτ , τ ) , and, since xτ is known from τ = t + �t
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to τ = T , it hinges solely upon the initial value of k at time t + �t , kt+�t .

Therefore, for a fixed value T , the integral on the right-hand side of (11) depends

solely upon kt+�t and t + �t .4 This function of kt+�t and t + �t can be denoted

V (kt+�t , t + �t); we have

V (kt+�t , t + �t) =
∫ T

t+�t
u(kτ , xτ , τ )dτ . (12)

Our task is to determine the optimal value xt that will maximize

u(kt , xt , t)�t +
∫ T

t
u(kτ , xτ , τ )dτ = u(kt , xt , t)�t + V (kt+�t , t + �t).

(13)

It is important to underline at this point the dependency that exists between the

first argument of V (which is kt+�t ) and xt . Indeed, we have in linear approxi-

mation

kt+�t ≈ kt + k̇t�t = kt + f (kt , xt , t)�t .

Hence, if we maximize (13) with respect to xt , we are led to the first-order

condition

∂u

∂xt
�t + ∂V

∂xt
(kt+�t , t + �t) = ∂u

∂xt
�t + ∂V (kt+�t , t + �t)

∂kt+�t
· ∂ f

∂xt
�t = 0.

(14)

The rate of increase of the optimal value V with respect to one unit of the state

variable at time t + �t may be interpreted as the price of the state variable at time

t + �t and denoted λ(t + �t). Therefore (14) becomes

∂u

∂xt
�t + λ(t + �t)

∂ f

∂xt
�t = 0. (15)

Dividing both sides of (15) by �t and taking �t → 0 leads to equation (4).

In order to derive equation (5), suppose that equation (4) has enabled us to

determine xt . Therefore the functional in the left-hand side of (11) can be written

as the optimal value V (kt , t), and (11) becomes the identity

V (kt , t) = u(kt , xt , t)�t + V (kt+�t , t + �t). (16)

Take the derivative of (16) with respect to kt :

∂V

∂kt
= ∂u

∂kt
�t + ∂V

∂kt+�t
· ∂kt+�t

∂kt
. (17)

4 Basically, it implies that V depends on the point of time we start from (t + �t), and on the amount

of the state variable that is available at that time (Kt+�t ).
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In (17) we can consider, as before, the first-order approximation

kt+�t ≈ kt + f (kt , xt , t)�t (18)

and hence

∂kt+�t
∂kt

≈ 1 + ∂ f

∂kt
�t . (19)

On the other hand

∂V

∂kt+�t
= λ(t + �t) ≈ λ(t) + λ̇(t)�t . (20)

Finally, we can use our notation λ(t) ≡ ∂V /∂kt to write (17) as follows:

λ(t) = ∂u

∂kt
�t + (

λ(t) + λ̇(t)�t
)
(

1 + ∂ f

∂kt
�t

)

(21)

which becomes

λ(t) = ∂u

∂kt
�t + λ(t) + λ(t)

∂ f

∂kt
�t + λ̇(t)�t + λ̇(t)

∂ f

∂kt
(�t)2. (22)

Cancelling λ(t) on both sides of (22), neglecting the second-order term in (�t)2,

and dividing through by �t , we finally get

0 = ∂u

∂kt
+ λ(t)

∂ f

∂kt
+ λ̇(t) (23)

which is just equation (5).

This fine reasoning proposed by Dorfman to get the fundamental equations

of the Pontryagin maximum principle is wonderfully matched by the alternative

derivation proposed by Dorfman himself. The careful reader of page 822 of Dorf-

man’s essay will certainly be impressed by the fact that his second demonstration

came as a remarkable afterthought, when the author had completed his first demon-

stration.

3.2 A beautiful idea

Robert Dorfman proposed to consider a modified Hamiltonian H∗ defined as

follows:

H∗ = u(kt , xt , t) + d

dt
[λ(t)kt ]

= u(kt , xt , t) + λ(t)k̇t + λ̇(t)kt

= H + λ̇(t)kt . (24)

Its economic interpretation is the following. At any time t , H∗ constitutes

the total benefits generated both directly through the profit function u(kt , xt , t),
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and indirectly through the rate of increase of the value of the state variable kt .

The value of the state variable is equal to the amount of the variable, kt , times

its price λ(t). This value can change for two reasons: a change in quantity, giv-

ing λ(t)k̇t – in linear approximation – and a change in price, whose outcome

is measured by λ̇(t)kt . Robert Dorfman called H∗ a “modified Hamiltonian”.

As a tribute to the memory of Professor Robert Dorfman, we will call H∗ a

Dorfmanian.

The Dorfmanian H∗ is equal to the ordinary Hamiltonian H plus the rate of

increase of the state variable’s value due to the sole change of its price, λ̇kt . A

first-order condition for H∗ to be maximized at any time t is to take both partial

derivatives of H∗ (with respect to xt and kt ) and equate them to zero:

∂ H∗
∂xt

= ∂u

∂xt
+ λ(t)

∂ f

∂xt
= 0 (25)

∂ H∗
∂kt

= ∂u

∂kt
+ λ(t)

∂ f

∂kt
+ λ̇(t) = 0. (26)

Equations (25) and (26) are just equations (4) and (5) of the maximum principle,

obtained with no calculations at all.

4 First application: deriving the Euler equation
from economic reasoning

The power of the Dorfmanian is best illustrated by the fact that this economic

construct enables us to derive the Euler equation in two lines.5 To show this,

revert to the initial problem of the calculus of variations, with the initial notation

where x designates the variable of integration:

Max
y(x)

∫ b

a
F(y, y′, x) dx .

Let λ(x) be the price of the variable y, and λ(x)y(x) the total value of the

variable. The Dorfmanian is then

H∗ = F(y, y′, x) + d

dx
[λ(x)y(x)]

= F(y, y′, x) + λ′y + λy′. (27)

5 Contrast this to the early developments of the calculus of variations. It took nearly half of a

century to find the solution of general variational problems. Indeed, the brachistochrone problem

was posed by Johan Bernouilli in 1698 and Leonhard Euler found in 1744, through finite difference

methods, the second-order differential equation corresponding to the general problem. An analytic

derivation (due to Lagrange) had to wait ten more years.
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Set both
∂ H∗
∂y

and
∂ H∗
∂y′ equal to zero. We get:

∂ H∗
∂y

= ∂ F

∂y
+ λ′ = 0 (28)

and

∂ H∗
∂y′ = ∂ F

∂y′ + λ = 0. (29)

Take now the derivative of (29) with respect to x ; we then get λ′ = − d

dx

∂ F

∂y′ ;

replacing λ′ into (28) yields

∂ F

∂y
(x, y, y′) − d

dx

∂ F

∂y′ (x, y, y′) = 0,

the Euler equation.

We will apply those methods to optimal growth theory in the chapters that

follow.

5 Further applications: deriving high-order equations
of the calculus of variations

The Dorfmanian can itself be generalized to tackle higher-order equations of

the calculus of variations, i.e. those corresponding to functionals depending not

only on y(x) and its first derivative y′(x), but on higher derivatives as well.

Consider for instance the problem of finding the extremal of the functional
∫ b

a F(x, y, y′, y′′)dx . Analytical methods enable us to show that the extremal

must satisfy the fourth-order differential equation

∂ F

∂y
(x, y, y′, y′′) − d

dx

∂ F

∂y′ (x, y, y′, y′′) + d2

dx2

∂2F

∂y′′ (x, y, y′, y′′) = 0 (30)

i.e. the Euler–Poisson equation. This equation enables us to show, for instance, that

the polynomial minimizing the curvature or the deformation energy of a continuous

term structure curve – more on this in chapter 11 – must be of the third order.

We will now show that the Euler–Poisson equation can be derived by extending

the Dorfmanian in either of two directions.

5.1 First extension

Consider a modified Dorfmanian defined as the original Dorfmanian, to which we

add the rate of change of the value of the first derivative of y. Let λ0(x) denote

the price of y(x), and define now as λ1(x) the price of y′(x). The value of y′(x) is
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then λ1(x)y′(x). Define a modified Dorfmanian D∗ as

D∗ = D + d

dx
[λ1(x)y′(x)]

= F(x, y, y′, y′′) + d

dx
[λ0(x)y(x)] + d

dx
[λ1(x)y′(x)] (31)

= F(x, y, y′, y′′) + λ′
0y + (λ0 + λ′

1)y′ + λ1y′′. (32)

Consider now the derivatives of D∗ with respect to y, y′ and y′′, respectively,

and equate each to zero. We have:

∂ D∗
∂y

= ∂ F

∂y
+ λ′

0 = 0 (33)

∂ D∗
∂y′ = ∂ F

∂y′ + λ0 + λ′
1 = 0 (34)

∂ D∗
∂y′′ = ∂ F

∂y′′ + λ1 = 0. (35)

Differentiating (35) twice leads to λ′′
1 = − d2

dx2
∂ F
∂y′′ ; differentiating (34) once

gives

d

dx

∂ F

∂y′ + λ′
0 + λ′′

1 = 0. (36)

Replacing in (36) λ′′
1 by its value enables us to determine λ′

0, which finally can be

replaced into (33) to yield the Euler–Poisson equation

∂ F

∂y
− d

dx

∂ F

∂y′ + d2

dx2

∂ F

∂y′′ = 0.

5.2 Second extension

Consider now a new Dorfmanian DC defined as the original Dorfmanian D to

which we add the convexity of the value of the extremal we are looking for,

λ0(x)y(x); this convexity is just the second derivative

d2

dx2
[λ0(x)y(x)] = λ′′

0(x)y(x) + 2λ′
0(x)y′(x) + λ0(x)y′′(x).

The Dorfmanian with convexity is then

DC = D + d2

dx2
[λ0(x)y(x)]

= F(x, y, y′, y′′) + λ′
0y + λ0y′ + λ′′

0 y + 2λ′
0y′ + λ0y′′

= F(x, y, y′, y′′) + (λ′
0 + λ′′

0)y + (λ0 + 2λ′
0)y′ + λ0y′′. (37)
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Taking the partial derivatives of (37) and equating them to zero leads to:

∂ HC
∂y

= ∂ F

∂y
+ λ′

0 + λ′′
0 = 0 (38)

∂ HC
∂y′ = ∂ F

∂y′ + λ0 + 2λ′
0 = 0 (39)

∂ HC
∂y′′ = ∂ F

∂y′′ + λ0 = 0. (40)

Differentiating (40) with respect to x twice gives λ′′
0 as − d2

dx2
∂ F
∂y′′ ; differen-

tiating (39) once enables to obtain λ′′
0 and yields λ′

0 as − d
dx

∂ F
∂y′ + 2 d2

dx2
∂ F
∂y′′ .

Replacing λ′
0 and λ′′

0 into (38) leads to the Euler–Poisson equation.

5.3 Further extensions

These modified Dorfmanians D∗ and DC can both be extended to cover functionals

of the type
∫ b

a F(x, y, y′, . . . , y(n))dx , leading to the Euler–Poisson equation of

order 2n

∂ F

∂y
− d

dx

∂ F

∂y′ + d2

dx2

∂ F

∂y′′ + · · · + (−1)n
dn

dxn
∂ F

∂y(n)
= 0, (41)

and also functionals defined by multiple integrals. For instance, consider the prob-

lem of finding the function of two variables z(x, y) maximizing the integral

∫∫

D
F

(

x, y, z,
∂z

∂x
,
∂z

∂y

)

dxdy. (42)

Denote p ≡ ∂z/∂x and q ≡ ∂z/∂y; the integrand in (42) is a function of the

arguments x, y, z, p, q where each of the arguments z, p and q are functions of x
and y.

Let Fp and Fq denote the partial derivatives of F with respect to p and q
respectively. Each in turn depends upon the five arguments x, y, z, p, q. We thus

have:

∂ F

∂p
= Fp(x, y, z, p, q) (43)

∂ F

∂q
= Fq (x, y, z, p, q). (44)
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Maximizing (42) leads to the Ostrogradski6 second-order partial differential

equation

∂ F

∂z
− ∂

∂x

∂ F

∂p
− ∂

∂y

∂ F

∂q
= 0. (45)

Care must be exercised when reading (45), because the second and third terms on

the left-hand side are total derivatives of the partials Fp and Fq . We have first,

recalling that p = ∂z/∂x and q = ∂z/∂y:

∂

∂x

∂ F

∂p
= ∂ Fp

∂x
+ ∂ Fp

∂z

∂z

∂x
+ ∂2F

∂p2

∂p

∂x
+ ∂2F

∂p∂q

∂q

∂p

= ∂ Fp

∂x
+ ∂ Fp

∂z

dz

dx
+ ∂2F

∂p2

∂2z

∂x2
+ ∂2F

∂p∂q

∂2z

∂y∂x
. (46)

The fact that the last two terms on the right-hand side of (46) are second-order

derivatives of z(x, y) gives the second-order characteristic of the Ostrogradski

partial differential equation. Similarly, the third term on the left-hand side of

(45) is

∂

∂y

∂ F

∂q
= ∂ Fq

∂y
+ ∂ Fq

∂z

∂z

∂y
+ ∂2F

∂p∂q

∂2z

∂x∂y
+ ∂2F

∂q2

∂2z

∂y2
. (47)

All high-order equations of the calculus of variations can be obtained from

suitable extensions of the Dorfmanian.7 This is a testimony of the power of Robert

Dorfman’s remarkable discovery. We will now apply those tools, in particular the

Dorfmanian, to optimal growth.

6 Mikhail Ostrogradsky (1801–62) was a Professor of Mathematics at the University of Kiev. He

made major contributions in mathematics, probability theory and mathematical physics.
7 The interested reader can find them in our paper: “New Hamiltonians for High-Order Equations

of the Calculus of Variations: a Generalization of the Dorfman Approach, Archives des Sciences,

45, 1, 51–8, 1992.



CHAPTER 9

First applications to optimal growth

Our aim is now to look for optimal growth paths, given initial conditions of the

economy. The reader will see that for most problems the calculus of variations is

quite sufficient; but we feel that we should present applications of the maximum

principle as well because it is so widely used.

Most important however, is the following caveat: in this chapter we will present

the traditional results of optimal growth theory as they have been expounded in the

literature for more than four decades. This bulk of literature is an outgrowth of the

seminal paper by Frank Ramsey (1928) in which the author was looking for optimal

investment trajectories maximizing a sum of utility flows entailed by consumption.

We should stress that the great part of this literature remained very much the-

oretical in the sense that it just posited the existence of a concave utility function

that would be accepted by society as a whole. Results were discussed from a qual-

itative point of view, on the basis of the phase diagram that gave the directions of

the fundamental variables of the economy – in general, the capital–labour ratio, on

the one hand, and consumption per person on the other. Whenever the differential

equations were solved (through numerical methods) at the beginning of the sixties,

the strangest of results appeared whatever the utility functions used: for instance,

exceedingly high savings rates (in the order of 60–70%). The consequence of this

dire situation is that optimal economic growth always remained in the realm of

theory, and no serious attempt to compare optimal investment policies to actual

time paths was ever carried out.

In the next chapter we will show that the culprit is the very utility function

itself. We will analyse in a systematic way the consequences of using any member

of the whole spectrum of utility functions, and we will show the damage done

by them. We will then suggest another, much more direct, way of approaching

optimal growth, leading to applicable results.

For the time being, however, we want to stick to the traditional approach because

the reader should be familiar with the hypotheses, methods and results of this

mainstream approach.

210
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1 The mainstream problem of optimal growth:
a simplified presentation

We will now present a problem of optimal growth with a single aim in mind:

to illustrate the methods of economic dynamics that were presented in the last

chapter. For that purpose, we shall deal with the simplest model we can imagine;

it is stripped of any complication which might interfere with the exposition of the

way methods work.1

Thus we will suppose that capital is the only factor of production; net income

(net of depreciation) is given by Yt = F(Kt ), where F(.) is strictly concave

(F ′(.) > 0; F ′′(.) < 0). The problem is to determine Kt such that

Max
Kt

∫ ∞
0

U (Ct )e−itdt (1)

subject to the constraint

K̇ t ≡ It = Yt − Ct (2)

where i is a discount rate which applies to all utility flows U (Ct ). The utility

function, U (.), is supposed to be concave (thus U ′(.) > 0 and U ′′(.) < 0). By far

the most widely used family of utility functions is given by
⎧
⎨

⎩
U = Cα − 1

α
, for α < 1

U = log C , for α = 0.2
(3)

There are two initial conditions: at time 0, the capital stock is K0 and the initial

investment is I0. Equivalently, this last condition, coupled with the first, amounts

to an initial condition on C0: indeed, at t = 0, consumption is F(K0) − I0 = C0.

To solve this problem, we shall first use the calculus of variations, which will

lead to a second-order non-linear differential equation in Kt , or equivalently to a

system of first-order differential equations in either Kt and K̇ t , on the one hand, or

Kt and Ct , on the other. We will then turn to the Pontryagin maximum principle,

using first the Hamiltonian, and then the Dorfmanian.

2 The calculus of variations approach

In ordinary differential calculus, we know that very often we can maximize a func-

tion of severable variables under a given constraint by replacing in the objective

1 A more elaborate model, involving n capital goods and m non renewable resources, can be

found in our paper “Capital Theory, Optimal Growth, and Efficiency Conditions with Exhaustible

Resources”, Econometrica, Vol. 48, No 7, November 1980, pp. 1763–76.
2 This is the limit of U (C) when α → 0, which can be determined by applying L’Hospital’s rule.

We have limα→0 U (C) = limα→0 Cα log C = log C .



212 First applications to optimal growth

function one of the variables expressed as a function of the remaining variables,

using the constraint to that effect. We thus obtain the simpler problem of maxi-

mizing a function free of any constraint. Here we will do something very similar:

in the objective functional we can replace Ct by F(Kt ) − K̇ t . We get:

Max
K (t)

∫ ∞
0

U [F(Kt ) − K̇ t ]e−itdt . (4)

2.1 Applying the Euler equation

This classical problem of the calculus of variations permits a direct application of

the Euler equation. Call the integrand in (4) G(Kt , K̇ t , t). Then the Euler equation

∂G

∂K
− d

dt

∂G

∂ K̇
= 0 (5)

yields

U ′
C F ′

K e−it − d

dt
[U ′

C (−1)e−it] = U ′
C F ′

K e−it + U̇ ′
C e−it + U ′

C e−it(−i) = 0. (6)

Dividing (6) through by U ′
C e−it leads to

i = F ′
K + U̇ ′

C
U ′

C
. (7)

We now have to verify that this Euler equation (7) – which will turn out to be

a second-order differential equation – does entail a maximum of the functional

(4). Remember Takayama’s theorem: if the integrand of the functional is con-

cave in its arguments K and K̇ , then the Euler equation constitutes a necessary

and sufficient condition to yield a global maximum of the function. We should

therefore check the concavity of the integrand. This integrand can be written,

for any t , G(K , K̇ , t) = U [C(K , K̇ , t)]. Theorem 17.6 on concave functions by

K. Sydsaeter and P. J. Hammond (1995), p. 628, mentioned at the end of our

chapter 7, states that a composite function M(x) = M(N (x)) is concave in x if

the two following conditions are met: N is concave in x, and M is increasing and

concave in N . In our case we know that U (C) is concave and increasing in C ; let

us now check whether C(K , K̇ ) is concave in K and K̇ . We have

C(K , K̇ ) = [F(K ) − K̇ ].

Therefore:

CK K = FK K < 0

CK̇ K̇ = 0

CK K̇ = 0.
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The set of necessary and sufficient conditions for C(K , K̇ ) to be con-

cave in K , K̇ , i.e. CK K � 0, CK̇ K̇ � 0 and CK K CK̇ K̇ − C2
K K̇

� 0 is met.

Thus G(K , K̇ , t) is indeed concave in K and K̇ , and the Euler equation will

lead to a global maximum for whatever initial conditions on K and K̇ we

impose.

This equation, sometimes called the “Ramsey equation” (although the Ramsey

model and its equations were very different from the above) makes so much sense

that we can in fact derive it from economic reasoning, in at least two ways. The first

method focuses on a limited time span; the second method considers an infinite

time span.

2.2 Economic derivations of the Ramsey equation

Suppose we are at time t . We have to decide whether the splitting of income

Y between investment I and consumption C is optimal or not, and whether, for

instance, we should rather decrease consumption by an amount dC in order to

invest it. We can say that the splitting of Y between I and C will be optimal if the

sacrifice entailed by consuming dC less is exactly compensated by the rewards

we will receive in the future if we invest that amount.

Why should it be so? The argument is subtle, because we might be tempted

to reason, falsely, as follows: why not prefer a situation in which the marginal

reward is larger than the marginal sacrifice? The answer to this apparent paradox

is at the heart of the nineteenth-century marginal analysis, and in fact comforted

by mathematical reasoning. Maximizing net gain of society will not imply a sit-

uation where marginal income is larger than marginal cost as long as society

can change its situation precisely to reap that net benefit. From a mathematical

point of view, it means that if profit (defined as revenue less cost) is to be at

a maximum, the derivative of profit should be equal to zero, thus implying the

derivative of revenue (economists call it marginal revenue) equals the derivative

of cost (marginal cost). Consider total profit as π = R(q) − C(q) where R and C
are the revenue and cost of a firm, for instance; both are functions of the quan-

tity produced q. A first-order condition for maximizing π is π ′(q) = 0, entail-

ing R′(q) = C ′(q), not R′(q) > C ′(q). This means that in an optimal situation

marginal revenue should not be larger than marginal cost, except in the very spe-

cial cases where the firm or the economy would be prevented by some constraints

from reaping the marginal benefit that is offered to it – entailing so-called “corner

solutions”.

We will thus evaluate the sacrifice and the reward and equate both. It turns out

that several methods are available. A solution based upon approximations is first

presented. We then offer exact methods, using either an infinite or a finite horizon.
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2.2.1 A first, intuitive, approach with a very short time interval

Consider a very short period �t , and suppose that we can evaluate costs and

rewards either at the beginning of the period or at the end of it. We will choose to

make that evaluation at the end of �t .
The sacrifice is measured in terms of utility; consuming dC less costs, at time

t, U ′
C (t)dC ; that amount of utility at time t + �t , taking the discount rate in

consideration, is worth U ′
C (t)dC + iU ′

C (t)dC�t at the end of period �t .
On the other hand, investing an amount equivalent to dC means that the

stock of capital is increased by �K = dC�t ; in turn, this additional capital

enables to increase income by �Y = F ′
K (t + �t)dC�t , which can be evalu-

ated in terms of utility as U ′
C (t + �t)F ′

K (t + �t)dC�t . At time t + �t , we still

have the additional amount of capital dC�t at our disposal,3 which can be con-

sumed, thus yielding dC , evaluated as U ′
C (t + �t)dC . In total, the rewards are

U ′
C (t + �t)F ′

K (t + �t)dC�t + U ′
C (t + �t)dC .

Equating costs to rewards yields:

U ′
C (t)dC + iU ′

C (t)dC�t = U ′
C (t + �t)F ′

K (t + �t)dC�t + U ′
C (t + �t)dC.

(8)

In equation (8), carry U ′
C (t)dC to the right-hand side, and divide throughout

by U ′
C (t)dC�t to get:

i = U ′
C (t + �t)F ′

K (t + �t)

U ′
C (t)

+ 1

U ′
C (t)

[
U ′

C (t + �t) − U ′
C (t)

�t

]

. (9)

Taking the limit of (9) when �t → 0 gives

i = F ′
K (t) + U̇ ′

C
U ′

C

which is (7).

2.2.2 Infinite horizon

We can now reason over a period of infinite length. Consider the sacrifice of

investing one unit of consumption at time t , in terms of utility. It is U ′
C (t) times

one unit of consumption, i.e. U ′
C (t) (note the dimension of U ′

C : it is utility units).

On the other hand, let us evaluate the rewards of this investment. At any time

τ between t and +∞, and during an infinitesimal interval dτ , it yields an income

F ′
K (τ )dτ which can be evaluated in terms of utility as U ′

C (τ )F ′
K (τ )dτ .

3 Remember that throughout this book, F(K ) is net income, i.e. net of capital depreciation. So

one unit of capital invested at time t is still available at any later time, because provisions are

continuously made to replace its part that depreciates.
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This utility flow, discounted to time t , is equal to U ′
C (τ )F ′

K (τ )e−i(τ−t)dτ . The

total rewards, taken from τ = t to infinity are then ∫∞
t U ′

C (τ )F ′
K (τ )e−i(τ−t)dτ .

Equating costs to rewards at any time t thus gives

U ′
C (t) =

∫ ∞
t

U ′
C (τ )F ′

K (τ )e−i(τ−t)dτ . (10)

Using Leibniz’s formula, take the derivative of (10) with respect to time t :

U̇ ′
C (t) = i

∫ ∞
t

U ′
C (τ )F ′

K (τ )e−i(τ−t)dτ − U ′
C (t)F ′

K (t). (11)

In the right-hand side of (11), replace the integral by U ′
C (t), and divide through-

out by U ′
C (t). We get the Ramsey equation (7) again.

2.2.3 Finite horizon

We could now suppose that the investment is not made during a period of time of

infinite length, but during a finite time span, of length T − t . At some time T in

the future, the unit of capital that was invested may then be sold or consumed. The

analysis of costs and rewards may be carried out either in present value (at time t),
or in future value (in terms of time T ). We shall consider flows in present value.

The sacrifice of investing one unit of consumption, in terms of utility at time

t , is just U ′
C (t). The rewards are made of two parts: first, we have the sum of the

production flows generated by the investment, these flows being translated into

utility flows and discounted to time t . One such flow, received at time τ during a

very short period dτ , as we had seen earlier, is equal to U ′
C (τ )F ′

K (τ )e−i(τ−t)dτ ,

and the sum of these flows from t to T is then
∫ T

t U ′
C (τ )F ′

K (τ )e−i(τ−t)dτ . On the

other hand, when the unit of capital is transformed into consumption at time T , it

generates a utility flow U ′
C (T ) whose present value is U ′

C (T )e−i(T −t). Altogether

the advantages of investing are
∫ T

t U ′
C (τ )F ′

K (τ )e−i(τ−t)dτ + U ′
C (T )e−i(T −t).

In equilibrium, we must then have:

U ′
C (t) =

∫ T

t
U ′

C (τ )F ′
K (τ )e−i(τ−t)dτ + U ′

C (T )e−i(T −t). (12)

There are now two ways of deriving the Ramsey rule from this equilibrium

condition. We can either differentiate this equality with respect to t or to T .

First derivation: differentiating with respect to t
Taking the derivative of (12) with respect to t yields:

U̇ ′
C (t) =

∫ T

t
U ′

C (τ )F ′
K (τ )e−i(τ−t) · idτ − U ′

C (t)F ′
K (t) + U ′

C (T )e−i(T −t) · i.

(13)
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There are in turn two ways of completing the demonstration. First, factor out

i from the integral on the right-hand side of (13); then, using (12), this integral is

found to be equal to U ′
C (t) − U ′

C (T )e−i(T −t), and (13) can be written as

U̇ ′
C (t) = i

[
U ′

C (t) − U ′
C (T )e−i(T −t)

]
− U ′

C (t)F ′
K (t) + i.U ′

C (T )e−i(T −t).

(14)

Cancelling equal terms and dividing by U ′
C (t) yields the Ramsey rule

i = F ′
K (t) + U̇ ′

C (t)

U ′
C (t)

.

Alternatively, consider the limiting value of (13) when T → t . The integral

in the right-hand side of (13) goes to zero, and the last term tends to U ′
C (t) · i .

Dividing then through by U ′
C (t) yields the Ramsey equation.

Second derivation: differentiating with respect to T
Consider now the derivative of (12) with respect to T . We have then:

0 = U ′
C (T )F ′

K (T )e−i(T −t) + U̇ ′
C (T )e−i(T −t) + U ′

C (T )e−i(T −t)(−i). (15)

Dividing through by e−i(T −t) yields

0 = U ′
C (T )F ′

K (T ) + U̇ ′
C (T ) + U ′

C (T )(−i),

which must be true also when T → t , thus entailing (7) again.

2.2.4 Alternative derivations in future value

We should stress that the time of reference used to make our evaluations (which is

time t , considered as “today”) is perfectly arbitrary. We could have used any time

in the future – for instance time T ; we would have obtained the Ramsey equation

as well. The reason is that valuing costs and rewards as expressed in equation (12)

in terms of any other time T implies multiplying both sides of (12) by ei(T −t);

taking the derivative of the resulting products with respect to t does not alter the

results.

3 The Pontryagin maximum principle approach

As we have stressed in the introduction of this chapter, the calculus of variations and

the Euler equation are sufficient tools to solve the simple variational problems we

envision in optimal growth theory. Nevertheless, most economic texts and papers

in this area have recourse to optimal control theory in the form of the Pontryagin

maximum principle. It is therefore necessary to show how this methodology applies
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here. We first use the Hamiltonian. We then use the Dorfmanian, introduced in

chapter 8.

3.1 The Hamiltonian approach

The problem is to find Kt , or K̇ t , that maximizes

∫ ∞
0

U (Ct )e−itdt

subject to the constraint Ct = F(Kt ) − K̇ t . Optimal control principles leave us

the choice of selecting either consumption Ct or investment It = K̇ t as the con-

trol variable. We will select It = K̇ t as the control variable (choosing Ct as the

control variable is offered as an end-of-chapter exercise).

The problem can be written as

Max

∫ ∞
0

U
[
F(Kt ) − K̇ t

]
e−itdt.

Let us form the Hamiltonian

H = U
[
F(Kt ) − K̇ t

]
e−it + λ(t)K̇ t .

Equation (4) of the maximum principle is ∂ H/∂xt = 0; here the control vari-

able xt is investment, i.e. K̇ t . We then have

∂ H

∂ K̇
= −U ′

C e−it + λ(t) = 0. (I)

Equation (II) is ∂ H/∂K = U ′
C F ′

K e−it = −λ̇(t); it leads to

∂ H

∂K
= U ′

C F ′
K e−it = −λ̇(t). (II)

(I) and (II) constitute two equations in three unknowns, λ(t), Kt and Ct . To elim-

inate λ(t), differentiate (I) with respect to time. We get

λ̇(t) = U̇ ′
C e−it + U ′

C e−it(−i).

We can replace λ̇(t) in (II). This leads to the Ramsey equation

i = F ′
K + U̇ ′

C
U ′

C
,

which, together with the constraint Ct = F(Kt ) − K̇ t can lead, as we will see in

section 4 of this chapter, either to a system of two non-linear differential equations

in Ct and Kt , or to a second-order differential equation in Kt .
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3.2 The Dorfmanian approach

Let us form the Dorfmanian

H∗ = U
[
F(Kt ) − K̇ t

]
e−it + λ(t)K̇ t + λ̇(t)Kt

and equate to zero its partial derivatives ∂ H∗/∂ K̇ and ∂ H∗/∂K . We get:

∂ H∗
∂ K̇

= −U ′
C e−it + λ(t) = 0

and

∂ H∗
∂K

= U ′
C F ′

K e−it + λ̇(t) = 0

which correspond to equations (I) and (II) of the Hamiltonian approach, leading

to the same result.

4 Optimal paths

Our task is now to derive the optimal time paths implied by the Ramsey rule. We will

show that the Ramsey equation (7), together with the constraint Ct = F(Kt ) − K̇ t ,

can be treated either as a second-order, non-linear differential equation in Kt , or

as a system of two first-order, non-linear differential equations in Kt and Ct .

We have already made an assumption about the utility function (we have sup-

posed that it was given by (3)). There remains to make an assumption about the

production function F(K ). In the spirit of this methodological section, we will

make the simple hypothesis that it is given by the power function Y = K δ; this

corresponds to a Cobb–Douglas production function where labour is constant, and

Y is normalized, so that a capital stock of one unit yields an income flow of one

unit per unit of time.

4.1 The second-order differential equation in Kt

Consider now the term U̇ ′
C/U ′

C in (7). It is equal to

U̇ ′
C

U ′
C

= U ′′
C

U ′
C

· Ċ = C

U ′
C

· U ′′
C · Ċ

C
. (16)

So it is equal to the elasticity of the marginal utility of consumption with respect

to consumption, (C/U ′
C )U ′′

C , times the growth rate of consumption. From (3) we

can see that this elasticity is equal to α − 1. So we get

U̇ ′
C

U ′
C

= (α − 1)
Ċ

C
. (17)
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On the other hand, F ′
K = δK δ−1. The Ramsey equation in this simple case

thus reads:

i = δK δ−1 + (α − 1)
Ċ

C
. (18)

Since C = F(K ) − K̇ = K δ − K̇ , we have

Ċ = δK δ−1 K̇ − K̈ . (19)

Replacing C and Ċ by their values into (18) yields

i = δK δ−1 + (α − 1)
δK δ−1 K̇ − K̈

K δ − K̇
, (20)

the second-order, non-linear differential equation in K . Solving it, i.e. obtaining

the optimal paths of Kt , and subsequently those of K̇ t , Yt and Ct , can be done

through numerical methods only. Today there exist software that enables us to

do this. We would just have to set two initial values: K0, and K̇ 0 = I0. Notice that

once the value of K0 is set, deciding upon an initial value for K̇ 0 or I0 implies

deciding upon an initial consumption value, because K0 implies Y0 = F(K0)

(= K δ
0 in this case), and C0 = Y0 − I0 = K δ

0 − K̇ 0.

4.2 The system of first-order differential equations in Kt and Ct and

its phase diagram

More insight, however, can be gained into the behaviour of these optimal tra-

jectories of Kt and Ct (two of the fundamental variables of our economy) by

considering the system of the pair of first-order, non-linear differential equations

in Ct and Kt given by equations

i = δK δ−1 + (α − 1)
Ċ

C
(18)

and

Ct = K δ
t − K̇ t (21)

which can be conveniently written as the system

Ċt = Ct

1 − α
(δK δ−1

t − i) (22)

K̇ t = K δ
t − Ct . (23)

Indeed, since the system (22), (23) is autonomous, we can draw a phase diagram

indicating the general direction taken by each variable Kt and Ct as a function of

their initial or acquired position (K , C).
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First we can draw the locus of points in (K , C) space where C will remain

constant. This locus is obtained by setting Ċt = 0 in (22), and is therefore given

by δK δ−1 − i = 0, equivalent to

K∗ =
(

δ

i

) 1
1−δ

. (24)

This locus of points (K , C) is seen to be independent of C ; on figure 9.1, it is the

vertical line of abscissa K∗ = (δ/ i)1/(1−δ). Suppose that δ = 0.3 and i = 0.06.

This abscissa is therefore 510/7 ≈ 9.97. It means that if ever Kt were equal to the

value K∗ = 9.97, consumption would not change.

Similarly, the locus of points (K , C) leading to a constant K is obtained by

setting K̇ t = 0 in (23), which yields

C = K δ. (25)

From an economic point of view, it means that consumption is equal to total

production and income; therefore investment is zero – and of course K does not

move. In figure 9.1, the power function C = K δ gives this locus corresponding to

K̇ = 0.

The vertical line K∗ crosses the curve C = K δ at height

C∗ = F(K∗) = (K∗)δ =
(

δ

i

) δ
1−δ

; (26)

with the same parameter values for δ and i as above, C∗ ≈ 2.

At point (K∗, C∗), denoted E , we have an equilibrium in the sense that if

ever the economy were located at that point, it would not move from there. We

mentioned earlier that K̇ = 0 implied that there was no net investment. This means

that at point E the entire output is consumed. This is confirmed by the value of

C∗ given by (25): it is equal to F(K∗) (= (δ/ i)δ/(1−δ) ≈ 2 in this case).

Both loci, K = K∗ and C = K δ , delineate four areas in (K , C) space, denoted

I to IV. In area I, we have K < K∗ and C < K δ . Let us examine first what

K < K∗ implies. The value K∗ was determined as that value of K such that

δK δ−1 − i = 0, i.e. that value of K such that the marginal productivity of capital

(δK δ−1) is equal to i . Now 0 < δ < 1; thus the marginal productivity of capital is

a decreasing function of K (see figure 9.2); then, if K < K∗, it means that δK δ−1

is larger than i ; therefore

δK δ−1 − i > 0

and

Ċt = Ct

1 − α

(
δK δ−1

t − i
)
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I
II

IV

III

K

C C = 0

K = 0

C = F(K ) = Kδ

E (K = 0 ; C = 0)

K * = (δ/i)
1

1–δ

Figure 9.1 The phase diagram corresponding to the system of non-linear first-order
differential equations

{
Ċt = Ct

1−α (F′
K − i)

K̇ t = F(K ) − C.

The locus of points (K ,C) corresponding to K̇ = 0 is given by the curve C = F(K ).
The locus (K ,C) entailing Ċ = 0 is given by K∗ such that F′

K∗ = i; this is the vertical of
abscissa K ∗. To each quadrant corresponds a direction of displacement for each variable
K and C . For instance, in quadrant I, C < F(K ), therefore K̇ > 0; also, K < K ∗, implying
F′

K > F′
K ∗ = i (because F′

K is decreasing), and Ċ > 0.

together imply Ċt > 0. If the economy is in area I, it means that C will always

increase. On the other hand, consider the behaviour of Kt in area I. By definition of

this area, C < K δ or C < F(K ) = Y . We can conclude either from this inequality

or directly from (23) that investment is positive, and thus that K increases in this

area. This is the maximum qualitative information the phase diagram will give us.
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K

K

F(K  ) = Kδ

F  ′(K  )

FK = δKδ – 1

Y = F(K  )

′

i

K*

K*

C > 0 C < 0

α tg a = i

Figure 9.2 The concavity of the production function F(K ) and its consequences. The
concavity of F(K ) implies that the marginal productivity F′(K ) is a decreasing function
of K . As a consequence, any value of K smaller than K ∗ entails F′

K > i and therefore

Ċ = Ct
1−α (F′

K − i) > 0; conversely, K > K ∗ implies Ċ < 0.
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It is conveyed by the pair of arrows depicted in areas I. The same type of analysis

can be carried out for areas II, III and IV.4

Let us now consider what happens if, for some reason, the economy hits any

point of the loci K̇ = 0 (the curve C = F(K )) or Ċ = 0 (the vertical of abscissa

K∗ corresponding to F ′
K = i). Suppose first that the time path (Kt , Ct ) hits a

point of C = F(K ) at the border of areas I and IV. We know that if C = F(K ),

K̇ t = 0 and K does not change. Furthermore, since at such a point K < K∗, we

know that F ′
K − i > 0 and therefore Ċ > 0. We conclude that at such a point, K

will not change, but C will continue to increase. We indicate this by a very small

arrow crossing the border, pointing upwards. The reason the arrow is very small

is that this holds over an interval of C infinitely small at the border point: below

that point K increases, and above that point K decreases. The arrow at the border

has the meaning of the tangent to the time path, with an indication of direction

that holds over an interval of infinitely small length, for an infinitely small length

of time. It is easy to figure out in a similar way what happens on the other borders

of the various areas in the phase diagrams; the outcomes are represented by small

arrows.

We must stress here that we do not know, from any initial point of area I,

whether the time path (Kt , Ct ) will eventually hit the vertical line K = K∗ –

and as a consequence move into area II – or whether it will hit the curve C =
K δ – and therefore move into area IV; neither do we know whether it will move

asymptotically toward the equilibrium point E(K∗, C∗). To have an inkling of this,

we must solve the system of equations (22), (23), and we must do this numerically.

It is therefore wrong to try to infer, from this sole information about the phase

diagram, the position of a time path of the economy, given its initial location. We

stress this point because all too many treatments of this question take the bold step

of casually drawing those time paths, implying for instance properties about their

convexity or concavity, or, worse, the position of the initial point (K0, C0) that

will lead to the equilibrium point E .

To solve numerically system (22), (23), many software programs are available.

Maple 9, for instance, enables us to carry out the following calculations. First,

Maple 9 can solve numerically the second-order differential equation (20) once we

give the program the initial conditions K (0) = K0 and K̇ (0) = K̇ 0 = I0. Second,

Maple 9 can solve the system of first-order equations (22), (23), and draw the

phase diagram corresponding to the time paths of Kt and Ct for any initial pair

(K0, C0). Thus it is possible to determine, by trial and error, the initial value that

leads asymptotically to the equilibrium point E(K∗, C∗).

4 Note that the exact direction of the economy at points not located on the areas’ borders cannot be

inferred solely by the system of arrows. Such a direction can be obtained analytically by the ratio

dC/d K = Ċ(K , C)/K̇ (K , C), i.e. by forming the ratio of the right-hand sides of equations (22)

and (23).
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Figure 9.3a The optimal trajectories of the economy in the case α = 0.5, for six initial
values of C0 (0.7 to 0.95 by steps of 0.05).

The circles correspond to the location of the economy after one year (the stars: after
two years). Notice that for C0 equal to or above 0.85 the economy crashes within two years.
Also, the economy accelerates toward its doom: along each curve the distance between the
origin and the one-year point is smaller than the distance between the one-year point and
the two-year point. This difference increases with C0.

4.3 A first experiment with utility functions

It is natural to adopt, together with the parameters already chosen, a utility function

with a parameter in the range of those commonly used in textbook treatments, that

is 0 ≤ α < 1. The case α = 0 would correspond, as we mentioned earlier, to

U = log C . So we could start with a value α = 0.5. Our system of differential

equations thus becomes

Ċt = 2Ct
(
0.3K−0.7

t − 0.06
)

(27)

K̇ t = K 0.3
t − Ct . (28)
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Figure 9.3b The optimal trajectories of the economy in the case α = 0.5. The only initial
value C0 leading asymptotically to the steady-state equilibrium E is in the vicinity of 0.34,
implying a very high initial savings rate of 64%. The arrows correspond to a duration of
exactly 3 years. The time path described with the arrows starts at C0 = 0.3449; should the
economy follow that trajectory, it would collapse within 22.5 years.

Let the initial value of Kt be K0 = 1 (implying Y0 = 1), and let us choose a

range of C0 values among commonly observed values (between 0.70 and 0.95).

The resulting optimal time paths are given in figure 9.3a.5 The surprise is

how far they are from anything that could be considered as optimal. Indeed, very

quickly all time paths reach the point where all income is consumed, and net

investment is nil – trajectories touch very quickly the locus C = F(K ) where

K̇ = 0. Then the economy starts eating its own capital, until, in less than one

5 I owe the construction of all phase diagrams in this book to the generosity of my colleague Ernst

Hairer, who used his program Dopri 5 to that effect; see E. Hairer, S.P. Nørsett, G. Wanner,

Solving Ordinary Differential Equations, Volume 1, Second Edition, Springer Verlag, New York,

2000.
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Figure 9.4a The optimal trajectories of the economy in the case α = 0.9, for six initial
values of C0 (0.7 to 0.95 by steps of 0.05). Increasing α from 0.5 to 0.9 spells bad news. The
system becomes even more unstable than in the earlier case. Here the squases depict the
location after 3 months only; the triangles, after 6 months.

year, the economy collapses. Indeed, all those trajectories lead to K = 0 in finite

(and short!) time, along curves that are first concave, and then turn convex. The

exact time taken for the economy to crash is 0.77 years when C0 is 0.70 and 0.62

years when C0 is 0.95. As soon as K declines, production and income decline too;

the fact that consumption rises is due solely to the fact that society is consuming

its capital. When capital is equal to zero, production as well as consumption

are nil.

We could try to remedy this situation by looking for the initial value of con-

sumption that would place us on the stable trajectory leading to the equilibrium

point E. The big surprise here is how low the initial consumption C0 should be:

using a software like Maple 9, the reader will quickly discover that C0 is between

0.339901 and 0.339902, i.e. society should invest about 67% of its initial income.

Figure 9.3b displays the optimal paths corresponding to a wide range of initial
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Figure 9.4b The optimal trajectories of the economy in the caseα = 0.9.For the economy
to be located on a stable arm leading to the equilibrium point E, an initial consumption
level of slightly less than 0.02 is required, implying an initial savings rate of more than
98%.

values C0, including values of C0 very close to the one that puts us on the stable

trajectory leading asymptotically to the equilibrium point E .

On figure 9.3b, arrows are located on the trajectory starting at C0 = 0.3449

(only 5 thousandths above the value of C0 leading to E). The length of each

arrow corresponds to a duration of exactly 3 years. The reader can see that the

trajectory slows down in the vicinity of the point where K̇ = 0 (at the crossing of

the C = F(K ) = K 0.3 curve); this happens after about 13 years; it then abruptly

veers away from the equilibrium point E and accelerates toward its doom; the

economy crashes after 22.5 years.

Having come to this point, the experimenter will no doubt try another value of α

in order to get a more acceptable optimal investment path. If he tries the seemingly

more prudent α = 0.9, he will face the big surprise that the economy becomes even



228 First applications to optimal growth

.0 .2 .4 .6 .8 1.0 1.2 1.4

.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

C

K

Figure 9.5a Optimal trajectories of the economy in the case α = 0 (or U = log C) for six
initial values C0 (0.7 to 0.95 by steps of 0.05). The circles, stars and squares indicate the
location of the economy after one, two and three years respectively. The stability of the
system is slightly improved, but the economy still collapses within 5 years for an initial
level C0 equal to 0.7 (corresponding to a savings rate of 30%).

more unstable than in the case α = 0.5. The system (22), (23) now becomes

Ċt = 10Ct (0.3K−0.7
t − 0.06) (29)

K̇ t = K 0.3
t − Ct . (30)

Two conclusions quickly emerge. First, for the same initial values as before

(C0 = 0.7, . . . , 0.95), the economy crashes even quicker than in case α = 0.5

(see figure 9.4a). Second, in order for the economy to converge toward the

equilibrium E, the initial value of C0 should be between 0.0191 and 0.0192,

implying now that society should initially save and invest more than 98% of its

income (see the family of trajectories of the economy in figure 9.4b).
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Figure 9.5b Optimal trajectories of the economy in the case α = 0 (or U = log C). An
initial savings rate of 45% is required for the economy to be set on the stable arm leading
to E.

Obviously, increasing α was not the right decision to take at this point; we could

then think of reducing α to 0, and therefore use the utility function U = log C .

The new system, corresponding to U = log C , is

Ċt = Ct
(
0.3K−0.7

t − 0.06
)

(31)

K̇ t = K 0.3
t − Ct (32)

(the reader may verify that (31) can be obtained either by replacing α by 0 into

(22), or by using U = log C in the Ramsey equation (7)).

The situation will hardly improve. As shown in figure 9.5a, the economy crashes

after exactly 5 years for an initial consumption rate C0 as low as 70%, and of course

even sooner for all reasonable initial consumption values (see figure 9.5a); only a

still exceedingly high initial investment ratio of about 55% puts the economy on

the stable arm leading asymptotically to equilibrium E (see figure 9.5b).
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At this juncture the reader or the experimenter may well conclude that

our inability to obtain optimal growth paths that make sense is due to the

oversimplification of the model. This is why we will now analyse, in the next

chapter, the full-blown, central model of optimal growth as it has been known for

more than 40 years.

Exercises

9.1 Suppose that the rate of preference for the present is variable through time.

This implies, for instance, that the present value (at time t) of a utility flow

received at time τ is U ′
C (τ )e− ∫ τ

t i(z)dz .6 Using economic arguments, derive

the Ramsey rule either with a finite or an infinite horizon.

9.2 In this exercise you can show that the time of reference chosen for the eval-

uation of costs and rewards is arbitrary, and that valuing those flows at any

other arbitrary time than present time (t) would also lead to the Ramsey rule.

Verify that this indeed is true by considering time T (
= t) as the time of

reference.

9.3 When we showed the results of optimal growth theory using optimal control

theory, we considered investment (It = K̇ t ) as the control variable. In this

exercise, you are invited to obtain those results using consumption (Ct =
F(Kt ) − K̇ t ) as the control variable. Apply first the Hamiltonian, and then

the Dorfmanian.

Answers

9.1 Suppose we consider the infinite horizon approach. The equilibrium equation

now reads:

U ′
C (t) =

∫ ∞
t

U ′
C (τ )F ′

K (τ )e− ∫ τ
t i(z)dzdτ . (1)

Differentiating (1) with respect to t yields:

U̇ ′
C (t) =

∫ ∞
t

U ′
C (τ )F ′

K (τ )e− ∫ τ
t i(z)dz · i(t)dτ − U ′

C (t)F ′
K (t). (2)

In the right-hand side of (2), factor i(t) out of the integral and replace the

integral by U ′
C (t). The Ramsey equation results, where the constant i is now

replaced by i(t).

6 This exercise implies that the reader is familiar with the concept of instantaneous forward interest

rate. If not, he will find a detailed exposition of the concept in chapter 11.
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If we consider the finite horizon approach, the equilibrium condition eval-

uated at time t is:

U ′
C (t) =

∫ T

t
U ′

C (τ )F ′
K (τ )e− ∫ τ

t i(z)dzdτ + U ′
C (T )e− ∫ T

t i(z)dz . (3)

Taking the derivative with respect to t gives:

U ′
C (t) =

∫ T

t
U ′

C (τ )F ′
K (τ )e− ∫ τ

t i(z)dz · i(t)dτ

− U ′
C (t)F ′

K (t) + U ′
C (T )e− ∫ T

t i(z)dz · i(t). (4)

The limiting process works like the one described in this chapter. When

T → t , the integral vanishes, and the last term converges towards U ′
C (t)i(t),

from which the Ramsey equation results.

9.2 The cost and rewards equation, expressed in future value of time T , now reads

U ′
C (t)ei(T −t) =

∫ T

t
U ′

C (τ )F ′
K (τ )ei(T −τ )dτ + U ′

C (T ). (5)

Taking the derivative of (5) with respect to t gives:

U̇ ′
C (t)ei(T −t) + U ′

C ei(T −t) · (−i) = −U ′
C (t)F ′

K (t)ei(T −t). (6)

Dividing (6) throughout by U ′
C (t)ei(T −t) leads to

i = F ′
K + U̇ ′

C (t)

U ′
C (t)

.

9.3 Let us consider Ct as the control variable. Then we have K̇ t = F(Kt ) − Ct .

The Hamiltonian is

H = U (Ct )e−it + λ(t) [F(Kt ) − Ct ] .

Equation (I) of the Pontryagin maximum principle becomes

∂ H

∂xt
= ∂ H

∂Ct
= U ′

Ct
e−it − λ(t) = 0. (I)

Equation (II) is:

∂ H

∂Kt
= λ(t)F ′

Kt
= −λ̇(t). (II)

From (II), the growth rate of λ(t) is −F ′
Kt

. Taking λ̇/λ in (I) and replacing

its value by −F ′
Kt

yields the Ramsey equation.
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Alternatively, we can form the Dorfmanian

H∗ = U [Ct ] e−it + λ(t)K̇ t + λ̇(t)Kt

= U [Ct ] e−it + λ(t) [F(Kt ) − Ct ] + λ̇(t)Kt .

Equate to zero the partial derivatives of H∗ with respect to Ct and Kt :

∂ H∗
∂Ct

= U ′
Ct

e−it − λ(t) = 0

∂ H∗
∂Kt

= λ(t)F ′
Kt

+ λ̇(t) = 0.

These equations correspond to (I) and (II) and yield the same result.



CHAPTER 10

Optimal growth and the optimal
savings rate

The fall in the savings rate observed in most OECD countries in recent years

propounds the perennial question of optimal savings, and foremost the problem of

defining an optimality criterion. For nearly eighty years – since Frank Ramsey’s

seminal contribution (1928) – the fundamental problem of optimal savings policy

has been to find the time path of capital accumulation maximizing, over a finite or

an infinite horizon, the sum of discounted utility flows pertaining to consumption.

The Ramsey problem was a problem in the theory of optimal growth; unfortu-

nately however, it remained in the realm of theory. No serious attempt to compare

an optimal strategy of investment to the amounts actually invested in a given nation

was ever carried out. In our opinion, this is due to the fact that the optimal paths

resulting from the differential equations governing the motion of the economy

were simply inapplicable because they implied unrealistic policies, in particular

exceedingly high savings rates.

We hold that a fundamental reason for such a lack of applicability of the

traditional model is the use of an arbitrary utility function. However, the idea of

introducing a concave utility function cannot be dismissed outright because it has

considerable intuitive appeal. Indeed, one could well envision (as many writers

did) a benevolent planner for whom adding one more unit to consumption when

total consumption is low has more value for society than when total consumption

is high, and who therefore would have a bias toward giving more consumption to

poorer generations; hence, one could feel well justified to use a concave utility

function. But the outcome of those models is, as we will see, exactly the contrary of

what intuition would dictate. A few warning lights had been flashed in the sixties:

in a two-sector model, Goodwin (1961) had obtained “optimal” savings rate in

excess of 60%; and Stoléru (1970), in the only numerical solution of the Ramsey

problem ever given, was led to savings rates in the order of 90%.

We feel that the time has come to make a systematic analysis of the role played

by utility functions upon optimal trajectories of the economy. We have known since

233
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the sixties that the model exhibited only saddle-point stability, implying that, given

an initial capital–labour ratio, one and only one initial value of consumption (or

saving) would eventually lead to a steady state, the slightest departure from this

initial value entailing the collapse of the economy. But we still possess only scant

indications about the exact properties and the implications of the rare transition

path eventually leading to the steady state.

In this chapter our preliminary aim is to take a close look at optimal growth

paths implied by the families of utility functions commonly referred to in the

literature, the power function and the negative exponential function. A first surprise

with power functions will be to discover that for all acceptable initial values of

consumption the economy collapses almost immediately – in fact within a couple

of years, thus revealing the extreme instability of the model. We will then show

that if we want to set foot on the stable path leading to the steady state, we have

to adopt outrageously low initial values of consumption. As a consequence, we

will address the inverse problem: if we want optimal policies to imply reasonable

initial consumption values, what should be the corresponding utility functions?

We will discover that the relevant utility functions have perfectly unacceptable

properties, implying typically that massive increases in consumption per person,

even starting from a low level, carry no significant increase in society’s welfare.

As to the negative exponential, the situation deteriorates even further: in addition

to the drawback just mentioned, an equilibrium point does not exist any more.

This evidence alone would be ample reason to dispense with the services of

a utility function. But we will argue that there are other reasons as well to do

so. We will then suggest to focus on maximizing a welfare objective for society

defined by the sum of discounted consumption flows. This will have many rewards.

Most prominently, the optimal savings rate will turn out to have reasonable, very

reachable values.

1 The central model of optimal growth theory

We will briefly recall the features of the mainstream model of optimal growth

theory that has been in existence in the last forty years. We suppose that the

economy is driven by a homogeneous of degree one production function, namely

a CES production function exhibiting labour augmenting progress at constant rate

g. The function is

Yt = F(Kt , Lt , t) = [δK
p
t + (1 − δ)(Lt egt )p]1/p (1)

where Yt , Kt and Lt are indices of income, capital and labour respectively. Yt is

net income (net of capital depreciation1) at constant prices. Yt is a general mean

1 Assuming that capital decays exponentially would not lead to any additional insights.
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of order p of Kt and Lt egt ; p = 1 − 1/σ (σ �= 1) where σ is the elasticity of

substitution; thus, because of properties of general means, Yt is an increasing

function of σ . When σ → 1, p → 0 and Yt becomes the geometric mean

Yt = K δ
t (Lt egt )(1−δ). (2)

The work force increases exponentially at rate n; so Lt = L0ent ; without loss

of generality, we can take L0 = 1. Since the labour augmenting technical progress

property has the effect of multiplying the labour force at any instant t by exp(gt),
the production function is

Yt = F(Kt , Lt , t) = [
δK

p
t + (1 − δ)e(n+g)tp]1/p

(3)

when p �= 0 (or σ �= 1), and

Yt = K δ
t e(1−δ)(n+g)t (4)

when p = 0 (or σ = 1).

Denote Ct society’s consumption flow at any time t ; since Yt is net income, we

have Ct = Yt − K̇ . Let now ct ≡ Ct/Lt be consumption per person, and U (ct ) be

a standard utility function in the sense that U (.) is twice differentiable, increasing

and strictly concave, so that U ′(Ct ) > 0 and U ′′(Ct ) < 0. The classic problem is

then to maximize the integral
∫ ∞

0
LtU

(
Ct

Lt

)

e−itdt (5)

where i is a discount rate, subject to the constraint

Ct = Yt − K̇ = F(Kt , Lt , t) − K̇ . (6)

In the literature on optimal growth theory, two families of utility functions have

been declared fit for service so far. Both are strictly increasing and concave in c.

The most frequently used and referred to is an affine transform of a power function,

with the logarithmic function as a particular case:
⎧
⎪⎪⎨

⎪⎪⎩

U (c) = cα − 1

α
, with 0 < α < 1

or α < 0

U (c) = log c, corresponding to α = 0.

(7a)

Innocuous as the case α < 0 may look, it has deep consequences for the prop-

erties of the utility function. Indeed, whereas the cases 0 < α < 1 correspond to

a utility level that tends to infinity when c → ∞, α < 0 implies that U (c) tends

to a finite number (1/α) when c → ∞. We will see the importance of this in

applications.
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The second family of utility functions is the negative exponential:

U = − 1

β
e−βc, β > 0. (7b)

Our analysis will first focus on the first family of utility functions (equations

(7a)). We will then examine the implications of the second family (7b).

2 The consequences of using power utility functions

As is usually done, it will be convenient to work in a time-independent framework

by using the following transformed variables. Define the ratio of capital to effective

labour force as

rγ ≡ Kt

egt Lt
. (8)

Using the homogeneity of degree one property of F(.), we can then write:

yγ ≡ Yt

egt Lt
= F

(
Kt

egt Lt
, 1

)

= ϕ(rγ ).

We then have:

ϕ(rγ ) = [δr
p
γ + (1 − δ)]1/p (9)

if p �= 0 (or σ �= 1), and

ϕ(rγ ) = rδ
γ (10)

if p = 0 (or σ = 1).

Denoting r ≡ Kt/Lt , y ≡ Yt/Lt , c ≡ Ct/Lt , we know that the equation of

motion of the capital–labour ratio r is

ṙ = y − c − nr. (11)

We can then write from (8):

ṙγ
rγ

= ṙ

r
− g, (12)

and, using (11):

ṙγ = ṙ

r
rγ − g rγ = ṙ e−gt − g rγ

= (y − c − nr )e−gt − g rγ .

Denoting cγ ≡ ce−gt , the equation of motion of capital to effective labour

force is

ṙγ = ϕ(rγ ) − cγ − (n + g)rγ , (13)
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so that

cγ = ϕ(rγ ) − ṙγ − (g + n)rγ . (14)

The problem defined by (5) and (6) will now turn into a time-autonomous one.

Using the fact that Lt is just ent , we can write:

Max
rγ

∫ ∞
0

U (c)e−(i−n)t dt (15)

subject to the constraint

c = cγ egt = [ϕ(rγ ) − ṙγ − (g + n)rγ ]egt . (16)

There are at least three methods of solving this problem. The first is to sub-

stitute the constraint (16) into the functional (15) and apply the Euler–Lagrange

equation of the calculus of variations. The second is to form a Hamiltonian H =
U (c)e−(i−n)t + λ(t)ṙγ and use the Pontriaguine principle by writing Hcγ = 0

and Hrγ = −λ̇. The third is to form, following Robert Dorfman’s remarkable

interpretation of optimal control theory (1969), a modified Hamiltonian, or Dorf-

manian H∗ = U (c)e−(i−n)t + d
dt [λ(t)rγ ] and take H∗

cγ
= 0 and H∗

rγ
= 0. The

first method immediately leads to a pair of first-order differential equations in

(rγ , cγ ). The remaining two methods yield a system of three differential equa-

tions in (rγ , cγ , λ), from which the former system in (rγ , cγ ) can be recovered.

We will choose the most direct route, i.e. the Euler–Lagrange method.

Replacing (16) into (15) leads to:

Max
rγ

∫ ∞
0

U {[ϕ(rγ ) − (g + n)rγ − ṙγ ]egt }e−(i−n)t dt. (17)

Designating the integrand in (17) as G(rγ , ṙγ , t), the Euler–Lagrange equation
∂G

∂rγ
− d

dt

∂G

∂ ṙγ
= 0 leads, after simplification, to:

ϕ′(rγ ) + U̇ ′
c

U ′
c

− i = 0. (18)

From (7a), the growth rate of U ′
c is:

U̇ ′
c

U ′
c

= c
U ′′

c
U ′

c

ċ

c
= (α − 1)

ċ

c
= (α − 1)

(
ċγ

cγ
+ g

)

. (19)

Replacing (19) into the Euler–Lagrange equation (18) yields the equation of motion

of cγ ; ċγ is the following function of (cγ , rγ ):

ċγ = cγ

1 − α
[ϕ′(rγ ) − i + (α − 1)g], α �= 1 (20)
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where

ϕ′(rγ ) = [δr
p
γ + (1 − δ)]

1−p
p δr

p−1
γ (21)

if p �= 0 (or equivalently if σ �= 1), and

ϕ′(rγ ) = δrδ−1
γ (22)

if p = 0 (or σ = 1).2

We now have to check whether the Euler equation (18) leads to a global maxi-

mum of the functional defined in (17). From Takayama’s theorem, we know that

the concavity of the integrand of (17), together with the Euler equation, does con-

stitute a set of necessary and sufficient conditions for such a maximum. In order

to check the concavity of the integrand, notice it is a composite function of rγ
and ṙγ through a function which is itself an increasing and concave function of its

argument. Indeed, the integrand in (17) can be denoted e−(i−n)tU (c), and U (c)

is such that U ′(c) > 0 and U ′′(c) < 0. Let us now check whether c is concave in

rγ and ṙy . We have

∂c

∂rγ
= egt [ϕ′(rγ ) − (g + n)];

∂c

∂ ṙγ
= −egt

and

∂2c

∂r2
γ

= egtϕ′′(rγ ) < 0;
∂2c

∂ ṙ2
γ

= 0;
∂2c

∂rγ ∂ ṙγ
= 0.

As a result, c is concave in (rγ , ṙγ ) and we can apply theorem 17.6 in Sydsaeter and

Hammond (1995): the integrand is concave in rγ , ṙγ . From Takayama’s theorem,

the Euler equation (18) does yield a global maximum.

The steady-state value of rγ , obtained by setting ċγ = 0 in (20) and by using

(21) and (22), is:

r∗
γ =

⎧
⎪⎨

⎪⎩

1 − δ
[

δ
i+(1−α)g

]1−σ − δ

⎫
⎪⎬

⎪⎭

σ
σ−1

if σ �= 1 (23)

2 It is to be noted that (18) is a second-order non-linear differential equation in rγ , in accordance

with the general character of Euler equations. This can be verified by replacing, in (20), cγ and ċγ

from (14) (see exercise 10.1); the second derivative of rγ will appear in ċγ . Neither the resulting

second-order differential equation, nor the corresponding system of first-order equations (13), (20)

lead to an analytic solution. This is the reason we concentrate on the system (13), (20) in order to

understand, with the phase diagram, the fundamental instability of the system, as we have done in

chapter 9.
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and

r∗
γ =

[
δ

i + (1 − α)g

] 1
1−δ

if σ = 1, (24)

which now enables to determine the steady-state values of the saving-investment

rate s∗.

First we obtain the steady-state income per efficiency labour unit ϕ(r∗
γ ) by

plugging (23) and (24) into (9) and (10), respectively. Setting ṙγ = 0 in (13) and

dividing throughout by ϕ(r∗
γ ), we get

s∗ = (n + g)

[
δ

i + (1 − α)g

]σ

(25)

which is valid both for σ �= 1 and σ = 1.

Time has now come to make a thorough examination of the actual time paths

that may or may not lead to this steady state.

2.1 A close look at optimal growth paths

We will now determine numerically the time paths corresponding to the pair of

non-linear differential equations

ṙγ = ϕ(rγ ) − cγ − (n + g)rγ (13)

and

ċγ = cγ

1 − α

[
ϕ′(rγ ) − i + (α − 1)g

]
(20)

where ϕ(rγ ) and ϕ′(rγ ) are given respectively by

ϕ(rγ ) = [δr
p
γ + (1 − δ)]1/p (9)

and

ϕ′(rγ ) = δ[δr
p
γ + (1 − δ)]

1−p
p r

p−1
γ (21)

if p �= 0 or σ �= 1, and by

ϕ(rγ ) = rδ
γ (10)

and

ϕ′(rγ ) = δrδ−1
γ (22)

if p = 0 or σ = 1.

Since we are dealing first with functional forms U = (cα − 1)/α, we need to

choose a number of values for the parameter α. A first natural choice, among many,

would to be to start with α = 1/2, implying for U (c) an affine transform of the

square root of c (we know from general principles of the calculus of variations that



240 Optimal growth and the optimal savings rate

.0 .2 .4 .6 .8 1.0 1.2

.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

rγ

cγ

Figure 10.1a Optimal time paths for α = 0.5. This diagram depicts the time paths of rγ
and cγ when the initial value rγ (0) = r (0) is equal to 1, for 6 initial values cγ (0) = c(0)
from 0.7 to 0.95 by steps of 0.05. The circles denote the position of the economy after 1 year;
the stars: after 2 years. The economy crashes after 1.61 years if it starts at c(0) = 0.95 and
after 2.61 years if c(0) = 0.7. Notice that the increasing length of the paths between the
circles and the stars – if any – denotes the acceleration of the economy toward its doom.
This acceleration is an increasing function of c(0).

any affine transformation of the integrand of the functional will have no bearing

on the solution).

Also, we have to choose values for the other parameters. We will first opt

for the following middle-of-the-road values: i = 0.07; δ = 0.3; σ = 1; n = 0.01;

g = 0.015. Variations from this central scenario will be considered in a systematic

way.

Assume that at time 0 the capital stock is equal to one unit, and therefore, from

our previous hypotheses, that rγ (0) = 1; accordingly, ϕ[rγ (0)] = y(0) = 1. It is

natural to ask what will happen to the economy if the initial consumption rate
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Figure 10.1b Optimal time paths for α = 0.5. An initial savings rate of ∼63.3% (!)
is necessary to put us on the stable arm of the phase diagram. Only the initial value
c0 = 0.36663293269 . . .will lead to the equilibrium point E ≡ (r∗

γ, c∗
γ ). Any departure

from this razor’s edge will lead to the collapse of the economy. The inner upper curve
starts at c(0) = 0.372. After 13 years, the curve veers away, and the economy crashes after
20 years. The arrows on the curve correspond to a duration of exactly 3 years.

of the economy c(0) = cγ (0) is chosen within an interval of frequently observed

values. We will then choose the six following values for c(0), namely c(0) = 0.70

to 0.95 by increments of 0.05.

The first shocking answer is in figure 10.1a. The six time paths in (rγ , cγ ) space

are depicted for each initial value of c(0). The circles denote the position of the

economy after exactly one year, and the stars denote its position after two years.

Remembering that the capital stock after one year is K (1) = rγ (1)eg+n (1.0253

rγ (1) in this case), we can see from the diagram that if the initial consumption rate

is between 85% and 95% society will start eating up its own capital stock after
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Figure 10.2a Optimal time paths for α = 0.9. The situation deteriorates further if we
look for less concavity in the utility function. This time, with the same initial values of c(0)
(0.7 to 0.95 by steps of 5%), the economy collapses before one year (the triangles on each
curve denote the position of the economy after 6 months only).

less than one year. There are no stars on those paths: this means that the economy

has collapsed before two years (since σ is equal to one in this example, K = 0

entails Y = 0).

Very high initial savings rates s0 = 0.25 and 0.20 (corresponding to c0 = 0.75

and 0.80), do not help much: in those cases, more than 40% of the initial capital is

depleted after two years. If c0 is 0.75, the economy collapses after 2.32 years. On

any path the economy is accelerating toward its doom; this acceleration is itself an

increasing function of c0. For the six time paths corresponding to c0 = 0.7 . . . 0.95,

K becomes zero after 2.61; 2.32; 2.09; 1.9; 1.74; 1.61 years respectively. (Notice

that, contrary to the qualitative treatments of the phase diagram in the literature, the

collapse of the economy is never along concave paths throughout; at some points
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Figure 10.2b Optimal time paths for α = 0.9. Decreasing the concavity of the utility
function only makes things worse. Only an initial consumption rate c0 of 3% (or an initial
saving rate of 97%) can put us on the stable path.

in time, the paths always become convex, although the crash (K = 0) happens in

finite time.)

What then is the initial value c0 that would lead to the steady state? Calculations

show the dreadful result that it lies between 0.366632 and 0.366633, implying an

investment-savings rate of about 63%! Figure 10.1b displays the trajectories that

start in the vicinity of the required value for c0 (on the diagram, the length of

an arrow corresponds to a duration of exactly 3 years). The equilibrium point

E ≡ (r∗
γ , c∗

γ ) is indicated on the diagram. It is a testimony to the highly unstable

nature of the model that initial values of c0 as close to the stable arm value as 0.372

and 0.362 will lead to the two inner time paths on Figure 10.1b; after 13 years they

will start to diverge violently from the stable arm; if the economy is on the upper

path, it will collapse within 20 years.
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Figure 10.3a Optimal trajectories for α = 0 (U = log c). The economy stays alive a little
longer, although not by much, for reasonable initial values of c(0). The circles give the
position of the economy after 1 year; stars: 2 years; squares: 3 years.

Facing this disquieting news, the experimenter may wonder whether something

has gone astray in his selection of the utility function. He may then opt for more

prudent concavity, and choose an alpha closer to one, say α = 0.9. To his dismay,

he will see that the situation deteriorates even further: this time, an initial value

of consumption c0 equal to 0.9 will make the whole capital stock of the economy

collapse after little more than 3 months (see figure 10.2a). As to the initial value of

consumption that will put him on the stable arm, its order of magnitude is a paltry

3%, implying that the savings rate should be 97%! (figure 10.2b).

This is definitely not the direction to take; at that point our experimenter will

probably rush all the way down to α = 0 (corresponding to U = log c). This hardly

improves the situation. Indeed, for the very reasonable c0 = 0.8, for instance, the

whole capital stock vanishes in about three years and a half. For the same initial
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Figure 10.3b Optimal trajectories for α = 0 (U = log c). Still a very low initial consump-
tion rate c(0) ≈ 0.56 is necessary to put us on the stable arm leading to the steady state.

values c0 between 0.7 and 0.95 the time paths are given in figure 10.3a. What is,

then, for U = log c, the initial value c0 that would lead to the steady state? It is

still a very low 56.5%, implying an initial savings rate of 43.5% (figure 10.3b).

2.2 The initial value of c0 leading the economy to the steady state as

a function of α

We definitely need now a general picture of the initial values c0 that are necessary

to put us on the stable arm of the phase diagram, as a function of parameter α

(α ∈ [0, 1)). Figure 10.4a gives the initial value of consumption

c0 = c0(α; σ ; i, δ, n, g) (26)
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Figure 10.4a The initial value c0 leading to the study state, as a function of α (0 ≤ α < 1)
for σ = 0.8 (lower curve) to σ = 1.2 (upper curve) by steps of 0.1. No positive value of
α entailing a concave utility function permits an acceptable initial value c0. Even α = 0
implies an initial savings rate close to or in excess of 40%.

leading to the steady state as a function α (α ∈ [0, 1)), for the same parameters

δ̄, ī, n̄ and ḡ as before, and for five different values of σ : σ = 0.8, 0.9, 1, 1.1 and

1.2.3

Clearly, increasing or decreasing the concavity of the utility function will never

enable us to reach acceptable values for the initial value of consumption leading

to a steady state. Something much more dramatic has to be found. The solution is

to consider that α becomes negative, thus entailing a utility level tending toward

1/α when c → ∞. Figure 10.4b depicts the initial value of c0 for all values of α

such that α ∈ [−4, +1), and for the five values of σ mentioned above. Note that

if α → −∞ each curve c0(α; σ ; i, δ, n, g) tends toward 1.

3 We owe to the generosity and the competence of our colleague Ernst Hairer the construction of

the program to determine c0 as a function of α and the other parameters of the system.



The consequences of using power utility functions 247

c0

α−4 −3 −2 −1 0 1

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

Figure 10.4b Stable arm initial values of c0 for −4 ≤ α < 1 and for σ = 0.8 to 1.2 by
steps of 0.1; other parameters: same as in central case. Only strongly negative values of α
lead to acceptable initial values c0.

We may wonder how the shape and position of the curves c0(α; σ ; .) depend

on the parameters other than σ . For σ = 1, diagrams 10.5, 10.6, 10.7 and 10.8

show those curves when i, δ, g and n depart from their central values 0.07, 0.3,

0.015 and 0.01 respectively. In figure 10.5, the discount rate moves from i = 5%

(upper curve) to 9% (lower curve). In figure 10.6, the lower curve corresponds to

δ = 0.25, the upper curve to δ = 0.35. Figures 10.7 and 10.8 display the c0 curves

when n and g move up and down from their central values by 0.5%. The curves

c0(α; .) are little sensitive to rather substantial changes in the parameters.

2.3 Questioning the relevance of power utility functions

Coming back to the case of the central values of the parameters, what should then

be the value of α for a very acceptable initial savings rate s(0) of, say, 14%? It
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Figure 10.5 The initial values of c0 leading to the steady state for −4 ≤ α < 1, σ = 1 and
different values of i : 0.05 (upper curve); 0.07 and 0.09 (lower curve); other parameters:
same as in central case.

should be in the vicinity of α = −3. Now we should take a close look at the utility

function entailed by an alpha equal to −3, i.e.

U (c) = c−3 − 1

−3
= 1

3
(1 − c−3)

Its shape is depicted in figure 10.9 as the strangest utility curve anybody would

ever come up with, since for values of consumption per person above 2.4 or so, it

has no slope to speak of. This comes from the fact that U (c) tends asymptotically

toward −1/α (1/3 in this case), and very quickly at that because of the power

−3 in U (c). Not surprisingly, for α = −3 the steady-state value of the savings-

investment rate, given by (25), is a very weak 5.77%, leading to a long-term weak

economy.
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Figure 10.6 The initial values of c0 leading to the steady state for −4 ≤ α < 1, σ = 1 and
different values of δ : 0.25 (lower curve); 0.3 and 0.35 (upper curve); other parameters:
same as in central case.

Thus, the only way to set foot on the stable path leading to the steady state is

either to force society to save an exceedingly high share of its income or to give

no value to additional consumption per person beyond abnormally low levels.

3 The consequences of using exponential utility functions

Having recourse to the negative exponential U (c) = − 1
β

e−βc(β > 0) turns out

to be even more disastrous. Indeed, if in the case of the power utility function

there existed a saddle-point equilibrium – however unstable and unreachable with

reasonable initial conditions – now equilibrium does not exist any more. As we

will show, whatever the initial conditions, the economy is doomed in finite time

either by a collapse of its capital stock or by a zero consumption rate.
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Figure 10.7 The initial values of c0 leading to the steady state for −4 ≤ α < 1, σ = 1 and
different values of g : 0.01 (lower curve); 0.015 and 0.02 (upper curve); other parameters:
same as in central case.

The pair of differential equations now becomes

ṙγ = ϕ(rγ ) − cγ − (n + g)rγ (27)

ċγ = 1

βegt
[
ϕ′(rγ ) − i

] − gcγ (28)

i.e. a non-autonomous system.4 Numerical analysis shows that it does not have an

equilibrium point any more in the positive space (rγ , cγ ). The divergent solutions

are also extremely sensitive to initial conditions, and much more complex than in

the case of power functions.

4 See exercise 10.2.
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Figure 10.8 The initial values of c0 leading to the steady state for −4 ≤ α < 1, σ = 1 and
different values of n : 0.005 (lower curve); 0.01 and 0.015 (upper curve); other parameters:
same as in central case.

Typical of such divergent solutions are those which correspond to β = 1. All

time paths reach both axes in finite time, with one trajectory having a cusp5

(point C in figure 10.10). When the cγ axis is reached (when rγ is equal to zero),

5 This cusp (r̂γ , ĉγ ) and the time at which the trajectory reaches it can be determined numerically

as follows. Let ṙγ = h1(rγ , cγ ) and ċ = h2(rγ , cγ , t), and let r (t, c0) and cγ (t, c0) be time

paths with initial conditions r (0, c0) = 1 and cγ (0, c0) = c0. The cusp implies a curve non-

differentiable in (rγ , cγ ) space, but differentiable in (rγ , cγ , t) space, with ṙγ = 0 and ċγ = 0.

So the initial value ĉ0 of the trajectory and the time t̂ at which the cusp is reached are determined

by solving numerically the system in (t, c0):

h1[rγ (t, c0), cγ (t, c0)] = 0

h2[rγ (t, c0), cγ (t, c0), t] = 0
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,α < 1, α �= 0; U = log c(α = 0)

The utility function corresponding to α = −3, U = −(1/3)(c−3 − 1), has no slope to
speak of above c = 2.4.

ṙγ < 0, but the system is not defined any more for negative values of rγ – and

of course such negative values do not make economic sense. On the other hand,

when the rγ axis is reached, cγ becomes negative, which is devoid of economic

sense as well; mathematically, time paths still exist, converging toward point E
corresponding to cγ = 0 and to an rγ value such that 0 = ϕ(rγ ) − (n + g)rγ
(figure 10.11).

Insight into the surprising complexity of the time paths may be gained by

the enlargement of the cusp area (figure 10.12) and by the extreme difficulty of
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Figure 10.10 With the negative exponential utility function, no equilibrium point exists
any more for positive (rγ, cγ ). One trajectory has a cusp (point C); it ultimately veers
toward cγ = 0.

determining the initial value of c0 leading to divergence toward either axis. The

value ĉ0 leading to the cusp is definitely not this separating value.

The initial value ĉ0 leading to the cusp is ĉ0 = 0.4917672367 (this precision

is required by the sensitivity of the trajectories); the time t̂ at which the cusp C is

reached is somewhat above 34 years. The 20 trajectories to the right or to the left

of the cusp have their initial values separated by 0.5 × 10−5 only; the complexity

of the trajectories is illustrated by the fact that immediately to the left of the cusp

what appears as one trajectory veering to the left is in fact eleven (!) trajectories,

all starting in the vicinity of 0.4917972963 (this is a little above ĉ0) and separated

by 10−10. All those time paths will ultimately separate; seven of them will diverge

toward the rγ axis; the remaining four will end up on the cγ axis.
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Figure 10.11 The only equilibrium point implies lim
t→∞ cγ = 0 and negative values for cγ .

Finally, it is to be noticed that contrary to what might be inferred by a casual

look at figure 10.10, time paths in the vicinity of the cusp cross other curves and

may curl upon themselves, thereby passing through the same point at two different

times (see figure 10.13).

From the above analysis, we conclude that making use of a utility function leads

invariably to perfectly unacceptable growth policies and therefore should be very

seriously questioned. This would be ample reason to discard it when searching for

an optimal growth policy. But we will argue that the use of such a function should

be questioned for the following reasons as well.

A first reason is the very arbitrary character of a utility function at the aggregate

level of a society. Secondly, this arbitrariness is compounded by an additional dif-

ficulty: for the sum of utility flows to converge, the utility flows must be discounted

at a rate whose value is no less arbitrary. Furthermore, it is difficult to imagine
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Figure 10.12 Enlargement of the cusp area. The cusp point C does not separate diverging
time paths toward either axis. The separating initial point C0 is just above Ĉ0, the initial
value leading to the cusp. The trajectory immediately to the left of the cusp is in fact 11
time paths; 7 ultimately diverge toward the rγ axis; 4 diverge toward the cγ axis.

why a nation should be viewed as valuing its capital stock in an entirely different,

arbitrary way from what individuals and firms have done until now and presumably

always will. Indeed, when individuals or firms are making investment decisions,

they try to rely on carefully forecast cash flows (or so they say is their intent) as

well as on appropriate discount factors, but they would never come up with the

odd idea of transforming their cash flows through some utility function. Finally,

at the international level, it is hardly conceivable that comparisons of growth per-

formances would ever be carried out with utility rescalings. For all these reasons,

we will search for an optimal savings policy based upon the maximization of the
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Figure 10.13 A further enlargement or the cusp area. The complexity of the time paths
is illustrated by the fact that not only trajectories cross each other, but that some will curl
upon themselves. The line ending vertically just below 1.45 depicts the first phase of the 11
trajectories in Figure 10.12, 7 of which diverge toward the rγ axis, and 4 of which end up
on cγ .

sum of discounted consumption flows. This will be done in the third part of this

text (chapter 13).

Exercises

10.1 Show that the Euler equation (18) is a second-order non-linear differential

equation in rγ . (Hint: Once you get the value of U̇ ′
c/U ′

c as a function of c,

express it as a function of cγ , as in (19). Then use (14).)

10.2 Show that in the case of the negative exponential function the system of

differential equations governing the economy is given by (23), (24).
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10.3 This problem can be considered as a project. Using software such as

Maple 9, for instance, verify the fundamental instability of the system of

differential equations in (rγ , cγ ) of this chapter. In particular, check the

order of magnitude of the initial values c0 leading to equilibrium in the case

of the power utility function U (c) = (cα − 1)/(1 − α) for the parameter val-

ues we have chosen. In the case of the negative exponential utility function

U = −(1/β)c−β , β > 0, verify that no equilibrium point exists any more.

In this last case, you will have to be careful: there exists a “middle” time path

in (rγ , cγ ) space that will seem to be heading toward an equilibrium point. In

fact, it does not. One time path leads to a cusp point, from which divergence

always results. Thus the model with a negative exponential utility function

does not even exhibit saddle-point equilibrium as in the case of the power

utility function; it is entirely unstable.

Answers

10.1 In the Euler equation

ϕ′(rγ ) + U̇ ′
c

U ′
c

− i = 0

we derive
U̇ ′

c
U ′

c
as c

U̇ ′′
c

U ′
c

ċ

c
= (α − 1)

ċ

c
. Indeed from equation (7a), the marginal

utility of consumption is U ′
c = cα−1, and the elasticity of U ′

c with respect

to c is α − 1. Also, since c = cγ egt , ċ/c = ċγ /cγ + g. Then
U̇ ′

c
U ′

c
is equal

to (α − 1)(ċγ /cγ + g). Now use equation (14) to determine

ċγ = ϕ′(rγ ) · ṙγ − r̈γ − (g + n)ṙγ = [ϕ′(rγ ) − (g + n)]ṙγ − r̈γ .

Therefore the Euler–Lagrange equation is

(α − 1)
[ϕ′(rγ ) − (g + n)]ṙγ − r̈γ
ϕ(rγ ) − ṙγ − (g + n)rγ

+ ϕ′(rγ ) − i = 0, (1A)

a second-order non-linear differential equation in rγ , where ϕ(rγ ) is given

either by (9) or (10) depending upon σ �= 1 or σ = 1 respectively. In con-

sequence, the equation has no more analytical solutions than the first-order,

non-linear system (13), (20). But the numerical solutions of (13), (20) in

(rγ , cγ ) will be much simpler to read and interpret than the numerical solu-

tions of (1A).

10.2 With U = −(1/β)e−βc, the marginal utility and its derivative are:

U ′
c = e−βc
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and

U ′′
c = −βeβc,

so that the term U̇ ′
c/Uc of the Ramsey equation is

U̇ ′
c/U ′

c = U ′′
c · ċ/U ′

c = −β ċ.

This last term can also be written

U̇ ′
c/U ′

c = −cβ(ċ/c).

Since c = cγ egt , ċ/c = ċγ /cγ + g, and U̇ ′
c/U ′

c can be expressed in terms

of cγ as

U̇ ′
c/U ′

c = −cγ eγ tβ

(
ċγ

cγ
+ g

)

.

This can be plugged into equation (18) in the text to yield:

cγ eγ tβ

(
ċγ

cγ
+ g

)

= ϕ′(rγ ) − i

from which the following differential equation in cγ results:

ċγ = 1

βegt [ϕ′(rγ ) − i] − gcγ ,

which is equation (28). Equation (27) stays the same as (13).
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A unified approach

Bethe1 had found out that if you do just the right things,
if you kind of forget some things and don’t forget other

things, do it just right, you can get the right answers.
Richard Feynman2

In this book we have presented the theory of economic growth along the lines it

followed in the twentieth century: in Part I, we considered positive, or descriptive

growth theory. Assumptions were made about the functioning of the economy

(income was generated through a production function); the savings rates s chosen

by society; and finally the growth rate of population. In Part II, we discussed the

normative approach, whereby society chooses a savings rate so as to meet a long-

term objective such as the maximization of welfare over a long horizon. This was

the heart of optimal growth theory.

We will now show, in the third part of this book, that both approaches can,

and should, be unified. If, as Robert Solow pointed out in his path-breaking essay,

we are in a competitive economy, the wage rate and the real rental rate are deter-

mined by the traditional marginal productivity equations. We underline the second

relationship, namely the equality between the real rental rate and the marginal pro-

ductivity of capital because, as we will show, it determines a savings rate leading

to an optimal, dynamic, allocation of capital.

Thus, the 1956 essay by Robert Solow is a major landmark not only because it

freed the theory of rigid production constraints adopted in the literature of the first

part of the twentieth century, but also because it carries all the seeds of optimal
economic growth. In our opinion, this has not yet been recognized. Indeed, if

the Solow growth model has been the subject of innumerable descriptions, the

part of his paper where he discusses the roles of the capital rental rate and the

1 Hans Bethe (1906–2005) received the 1967 Nobel Prize in Physics.
2 Richard Feynman, The pleasure of finding things out, Penguin Books, London, New York, 1999,

p. 235.
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rate of interest in the growth process has received amazingly short shrift; more

importantly, to the best of our knowledge their fundamental link to optimal growth

has never been uncovered.

In order to emphasize the importance of Solow’s analysis, we cannot do better

than to quote it in its entirety. In the following extract, the reader will find a central

piece on the basis of which we will set out to unify the two major strands of

economic growth theory.

In a competitive economy the real wage and real rental are determined by

the traditional marginal-productivity equations:

(10)
∂ F

∂L
= w

p
and

(11)
∂ F

∂K
= q

p
.

Note in passing that with constant returns to scale the marginal productivities

depend only on the capital-labor ratio r , and not on any scale quantities.

The real rental on capital q/p is an own-rate of interest – it is the return

on capital in units of capital stock. An owner of capital can by renting

and reinvesting increase his holdings like compound interest at the variable

instantaneous rate q/p, i.e., like e∫t
0 q/pdt . Under conditions of perfect

arbitrage there is a well-known close relationship between the money rate

of interest and the commodity own-rate, namely

(12) i(t) = q(t)

p(t)
+ ṗ(t)

p(t)
.

If the price level is in fact constant, the own-rate and the interest rate

will coincide. If the price level is falling, the own-rate must exceed the

interest rate to induce people to hold commodities. That the exact relation

is as in (12) can be seen in several ways. For example, the owner of $1 at

time t has two options: he can lend the money for a short space of time,

say until t + h and earn approximately i(t)h in interest, or he can buy 1/p
units of output, earn rentals of (q/p)h and then sell. In the first case he

will own 1 + i(t)h at the end of the period; in the second case he will have

(q(t)/p(t)h + p(t + h)/p(t). In equilibrium these two amounts must be

equal

1 + i(t)h = q(t)

p(t)
h + p(t + h)

p(t)
or

i(t)h = q(t)

p(t)
h + p(t + h) − p(t)

p(t)
.
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Dividing both sides by h and letting h tend to zero we get (12). Thus this

condition equalizes the attractiveness of holding wealth in the form of capital

stock or loanable funds.

Another way of deriving (12) and gaining some insight into its role in

our model is to note that p(t), the transfer price of a unit of capital, must

equal the present value of its future stream of net rentals. Thus with perfect

foresight into future rentals and interest rates:

p(t) =
∫ ∞

t
q(u)e− ∫ u

t i(z)dzdu.

Differentiating with respect to time yields (12).3

A number of remarks are now in order. First, we need to be familiar with the

concepts of instantaneous rate of return and forward rate used by the author, as well

as with the concept of continuous time discounting with forward rates. Secondly,

we must explain how the mechanism of arbitrage may work in order to establish

the equality between the real rate of interest and the marginal productivity of

capital. Finally, it may be useful to show how these relationships can be extended

to conditions of uncertainty.

This is why a detailed exposition of these concepts is given in the next two

chapters. In chapter 11, the continuously compounded spot rate, the instantaneous

forward rate and the intimate links between those two concepts are discussed. In

chapter 12, we describe the arbitrage process that may bring equilibrium between

the capital goods market and the market for loanable funds. We will then be on

firm ground to show, in chapter 13, how the fundamental equation of interest – the

Fisher equation – is in fact a Euler equation, implying optimal growth paths for the

capital stock and for investment, and therefore an optimal savings rate. Another

surprise is in store for us: we will show that this optimal savings rate implies that

the economy is on its equilibrium path.

3 Extract from Robert Solow, “A Contribution to the Theory of Economic Growth”, The Quarterly
Journal of Economics, Vol. 70, No 1 (February 1956), 79–81.





CHAPTER 11

Preliminaries: interest rates and
capital valuation

Throughout this book, we have underlined the role of investment in the growth

process. Until now, however, we have considered that the decision to invest was

either exogenous (independent of any variable in the system) or driven by the

general aim of maximizing a sum of discounted utility flows, as we have described

it in our chapters on optimal growth theory. But so far we have left aside the

essential role played by the rate of interest, the price of loanable funds which is

both a cost to investors in capital goods and a reward to those agents who are

willing to supply those funds. For investors, we know from general economic

principles that their decision to invest depends both on expected future rewards

and on the rate of interest.

Along a growth process, four prices are in search of an equilibrium: the spot

price of any capital good, its future price, the rental rate, and the rate of interest.

Those four prices are linked in a fundamental equation developed formally for

the first time by Irving Fisher (1896). This equation will turn out to be of central

importance: it has far reaching, surprising consequences. In particular, we will

demonstrate that if competitive equilibrium enforces it, society maximizes the

sum of all future discounted consumption flows it can acquire.

Before showing this, we have to be very precise about the nature of the interest

rates and the process by which equilibrium can be reached simultaneously on the

capital goods market and on the loanable funds market. But even before doing

so, we should ask the question: “Why do interest rates exist in the first place?”

We will also explain how both lenders and borrowers alike benefit from the very

existence of an equilibrium interest rate. We will then turn to the various concepts

of interest rates, their fundamental properties, and their intimate links.1

1 To do this we have relied in the first part of this chapter on some of our previous work. Section 1

borrows from chapter 1 of our book Bond Pricing and Portfolio Analysis – Protecting investors in
the Long Run, MIT Press, Cambridge, Mass., 2003, pp. 10–13; section 2 is adapted from our chapter

263



264 Preliminaries: interest rates and capital valuation

1 The reason for the existence of interest rates

Most people, when asked the innocuous-looking question about the reason why

interest rates should exist in the first instance, respond that since inflation is a

pervasive phenomenon common to all places and times, it is therefore only natural

that lenders will want to protect themselves against rising prices; borrowers might

well agree with that, therefore establishing the existence of an equilibrium rate of

interest.

It is rather strange that inflation is so often the first explanation given for the

existence of interest rates. In fact, positive interest rates have always been observed

in countries where there was practically no inflation – or even a slight decrease

in prices. Although inflation is certainly a contributor to the magnitude of interest

rates, it is in no way their primary determinant. There are two other principal causes.

First, and foremost, an interest rate exists because one monetary unit can be

transformed, through fixed capital, into more than one unit after a certain period of

time. Some people are able, and willing, to perform that rewarding transformation.

On the other hand, other people are willing to lend the necessary amount, and it is

only fitting that a price for that monetary unit be established between the borrowers

and the lenders. Let us add that on any such market both borrowers and lenders

will find a benefit in this transaction. We will soon discover this.

Second, an interest rate exists because people usually prefer to have a con-

sumption good now rather than later. For that they are prepared to pay a price; and

as before, others may consider they could well part with a portion of their income

or their wealth today if they are rewarded for doing so. There again, borrowers

and lenders will come to terms that will be rewarding for both parties, in a way

entirely similar to what we have seen in the case of productive investments.

Together with expected inflation, these reasons explain the existence of interest

rates. The level of interest rates will depend on the attitudes of the parties regarding

each kind of transaction, and of course on the perceived risk of the transactions

involved.

An important point now should be made, which is particularly relevant in the

context of economic growth. We know how central the level of the interest is in

the investment decision and hence in the growth process. We may then view the

interest rate as a cost to investors, mitigated from the point of view of society as a

whole by the fact that it is a gain for those who loan funds. But there is much more

to this. Indeed, provided that the loanable funds is competitive, the whole society

benefits from the very existence of such a market; those benefits have, to the best of

“Protecting Investors against Changes in Interest Rates”, in Asset and Liability Management,
W. Ziemba and S. Zenios, eds., Elsevier North-Holland, 2006, pp. 69–138. Authorizations from

the editors are gratefully acknowledged.
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Figure 11.1 An equilibrium rate of interest on any financial market maximizes the sum
of the lenders’ and the borrowers’ surpluses, as well as the amount of loanable funds at
society’s disposal.

our knowledge, received short shrift until now. As in any commodity market, the

mere existence of an equilibrium interest rate set at the intersection of the supply

and demand curves for loanable funds entails two major consequences: first, the

surplus of society (the surplus of the lenders and the borrowers) is maximized

(shaded area in figure 11.1); second, the amount of loanable funds that can be used

by society is also maximized.2

Suppose that at its equilibrium the interest rate sets itself at 6%. Generally, lots

of borrowers would have accepted a transaction at 7%, or even at much higher

levels, depending on the productivity of the capital good into which they would

have transformed their loan. The difference between the rate a borrower would

have accepted and the rate established in the market is a benefit to him. On the other

hand, consider the lenders: they lend at 6%, but many of them might well have

settled for a lower rate of interest (perhaps 4.5%, for instance). Both borrowers and

lenders derive benefits (what economists call surpluses) from the very existence of

a financial market, in the same way that buyers and suppliers derive surpluses from

their trading at an equilibrium price on markets for ordinary goods and services.

Let us now consider that for some reason interest rates are fixed at a level

different from the equilibrium level (ie). Two circumstances, at least, can lead

to such fixed interest rates. First, government regulations could prevent interest

rates from rising above a certain level (for instance i0, below ie). Alternatively, a

monopoly or a cartel among lenders could fix the interest above its equilibrium

value ie (for instance, at i1).

2 For the reader who is not familiar with the concepts of surplus, a brief presentation is given in

section 1 of chapter 1.
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Figure 11.2 Any artificially fixed interest rate reduces both the amount of loanable funds
at society’s disposal and the surplus of society (the hatched area).

If interest rates are fixed in such a way, the funds actually loaned will always

be the smaller of either the supply or the demand. Indeed, the very existence of

a market supposes that one cannot force lenders to lend whatever amount the

borrowers wish to borrow if interest rates are below their equilibrium value – and

vice versa if interest rates are above that value. We can then draw the curve of

effective loans when interest rates are fixed – the kinked, dark line in figure 11.2.

Should the interest rate be fixed either at i0 or at i1, the loanable funds will be l̄ (less

than le), and the loss in surplus for society will be the shaded area abE . Innocuous

as these properties of financial markets may seem, they are either unknown or

ignored by governments when they nationalize banks – or when they close their

eyes to cartels established among banks, nationalized or not.

But the consequences of a competitive equilibrium in the loanable funds market

extend even beyond the benefits which we have just described. Indeed, in chapter

13 we will show that, together with competitive equilibrium on the capital mar-

ket, such equilibria constitute a necessary and sufficient condition for society to

achieve quite a surprising result: the maximization of the sum of all discounted

consumption flows it can acquire in the future, and, at any point of time the maxi-

mization of the value of society’s activity, measured as consumption plus the rate

of increase in the capital stock’s value.

2 The various types of interest rates and their
fundamental properties

The concept of an interest rate compounded once a year, or a finite number of times

per year, is a familiar one. For instance, some savings accounts may carry a 4%
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yearly rate of interest, with interest paid quarterly. This implies that $1 invested

into such an account and left there for one year will become more than $1.04

at the end of the year, because the contract between the bank and the depositor

stipulates that at the end of the first quarter 1 + 0.04(1
4) is due; this new amount,

$1.01, is to be remunerated at the rate of 4% for the next quarter, thus becoming

(1.01)(1.01) = 1.0201 after 6 months; this process will be repeated until the end

of the year, yielding not 1.04 to its owner, but
[
1 + 0.04

(
1
4

)]4 = 1.0406. It turns

out that in the economic or financial literature, ample use is made of interest rates

that are not compounded a finite number of times a year, but an infinitely high

number of times a year. This process is called “continuous compounding”. The

reason is two-fold: first it greatly simplifies calculations, because, as we will see,

products will be transformed into sums, and geometric means become arithmetic

means. Furthermore, when we deal with interest rates or growth rates as random

variables, this very transformation enables us to apply one of the most important

and powerful theorems ever found in statistics, the central limit theorem – we have

done this in chapter 6.

The concept of continuous compounding applies to the two main types of

interest rates, depending on the type of contract signed between the lender and the

borrower.

First, a contract may be signed at time t for a loan starting in the future at time

τ , for a time span �τ . Such a contract is a forward contract, and defines a forward
interest rate, which may be denoted f (t, τ , �τ ). Sometimes, to simplify notation,

the first and the last arguments of f (·) are omitted, and the forward rate is denoted

simply as f (τ ). It is understood that the contract is signed at some date t (t < τ ),

which depends upon the context, for a loan to start at time τ ; the loan is supposed

to be paid back �τ later.

Second, an important special case of the forward rate is the spot rate, whereby

the starting point in time of the contract is t . Thus s(t, �t) ≡ f (t, t, �t) denotes

an interest rate decided upon at time t , for a loan starting immediately (at time t),
with a duration �t . Often, instead of designating the duration �t of the contract

specified in the spot rate, it is simpler to designate as v, for instance, the time

of reimbursement. Then, with �t = v − t , the spot rate is often denoted s(t, v).

Since the concept of the forward rate generalizes the concept of the spot rate, we

will start with the forward rate. We emphasize that, in what follows, those rates

will always be measured per year.

2.1 The forward rate with discrete and continuous compounding

Consider a time span [u, v] subdivided into n intervals �z1, . . . , �z j , . . . , �zn .

This partitioning of [u, v] is arbitrary in the following sense: each �z j interval

( j = 1, . . . , n) has arbitrary length; two given intervals, say �z1 and �z2, may
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Figure 11.3 An arbitrary partitioning of the time span [u, v].

or may not be equal. Such an arbitrary partitioning of the time span [u, v] is

represented in figure 11.3.

Suppose that to each interval �z j corresponds a forward rate. Such a forward

rate is defined as the yearly interest rate for a loan agreed upon at time u; the

loan is to start at the beginning of the �z j interval, and is to be paid back at the

end of �z j . Call f j this forward rate. For instance, f j may be equal to 5% per

year.

If $1 is lent at the beginning of this time interval �z j , what will be the amount to

be reimbursed at the end of �z j ? There are many ways of answering this question.

For instance, one could agree that it is

� either (1 + f j )�z j , in conformity with annual interest compounding if �z j is

typically equal to a few years;
� or 1 + f j�z j , following what is usually done if the interval �z j is smaller than

one year, which will be justified below.

Until now, we have said nothing of the length of the time span [u, v]. In fact,

inasmuch as the partitioning of [u, v] is arbitrary, so is its length: it could be a non

integer number of years or days. It turns out that, whatever this length may be, we

will at one point consider that the number n of intervals �z j tends toward infinity,

and that at the same time the largest of those intervals tends toward zero. Therefore,

we can assume already at this stage that �z j is small. We will now show why it is

both natural and legitimate to use the second formula, i.e. 1 + f j�z j , although it

is not necessary to do so; the first formula would work as well for our purposes.

We could first observe that, for any fixed value �z j , 1 + f j�z j is a first-

order approximation of (1 + f j )�z j at point f j = 0. This can be shown by tak-

ing the first-order Taylor expansion of (1 + f j )�z j around f j = 0. But there is

more to it. It turns out that 1 + f j�z j is an excellent, second-order, approx-

imation of the function (1 + f j )�z j around point ( f j , �z j ) = (0, 0). Indeed,

consider the latter expression as a function of the two variables f j and �z j ,

denoted momentarily, for convenience, as f and h respectively. Let ϕ(.) be the

function

ϕ( f, h) = (1 + f )h ≡ (1 + f j )�z j . (1)



The various types of interest rates and their fundamental properties 269

Expand (1) in Taylor series around point ( f, h) = (0, 0). The second-order

approximation is

ϕ( f, h) ≈ ϕ(0, 0) + ∂ϕ

∂ f
(0, 0) f + ∂ϕ

∂h
(0, 0)h

+ 1

2

[
∂2ϕ

∂ f 2
(0, 0) f 2 + 2

∂2ϕ

∂ f ∂h
(0, 0) f h + ∂2ϕ

∂h2
(0, 0)h2

]

. (2)

Immediate calculations show that of the six terms in the right-hand side of (2), all

are equal to zero except the first one, equal to 1, and the fifth (involving the cross

second-order derivative), equal to f h. Therefore, we may write

1 + f h ≈ (1 + f )h (3)

as a second-order approximation. From a geometric point of view, 1 + f h is a

surface which has a high (second-order) degree of contact with surface (1 + f )h at

point (0, 0) because all partial derivatives up to the second order are equal for each

function (as for the tangent plane at (0, 0), or the first-order contact surface, it is just

ϕ( f, h) = 1). To get some sense of this closeness, suppose that f j is 5% per year

and �z j is one month, or 0.083̄ year. On the one hand, (1 + f j )�z j = 1.0041,

while 1 + f j�z j = 1.0042 on the other.

Consider now that the rate of interest f j is compounded not once within interval

�z j , but m times. Using this approximation, one dollar invested at the beginning

of this interval thus becomes (1 + f j�z j/m)m where �z j/m is the length of

time over which the interest is compounded. Now set f j�z j/m = 1/k; thus

m = k f j�z j and one dollar becomes (1 + 1/k)k f j�z j . Take the limit of this

amount when the number of compoundings m within �z j tends towards infinity

– equivalently, when k → ∞, since the f j�z j ’s terms are finite. We get

lim
k→∞

(

1 + 1

k

)k f j�z j
= e f j�z j . (4)

This result could have been reached without recourse to the second-order

approximation (1 + f j )�z j ≈ 1 + f j�z j . From formula (1 + f j )�z j , when

interest is compounded m times within �z j , we get (1 + f j/m)m�z j at the

end of interval �z j . Now set f j/m = 1/k, so that m = k f j . One dollar becomes

(1 + 1/k)k f j�z j , and we get the above result.

If the same limiting process is taken for each interval �z j ( j = 1, . . . , n), an

investment Cu at time u becomes

Cv = Cue

n∑

j=1

f j�z j

(5)

at time v.



270 Preliminaries: interest rates and capital valuation

Suppose now that, whatever the initial partitioning of the time span [u, v], the

sum
∑n

j=1 f j�z j tends towards a unique limit when the number of time intervals

n tends toward infinity, and when the maximum interval length �z j tends towards

zero. The forward rate function is then said to be integrable, and the limit is the

definite integral of f j over [u, v]. We have

lim
n→∞

max �z j→0

n∑

j=1

f j�z j =
∫ v

u
f (z)dz. (6)

We are now ready for a definition of the instantaneous forward rate.

Def in it ion Let [u, v] be a time span. Let z be any point of time within this

interval. The instantaneous forward rate f (z) is the yearly interest rate decided

upon at time u for a loan starting at time z, z ∈ [u, v], for an infinitesimally small

trading period dz.

Sometimes, as noted earlier, to recall the time (u) at which this instantaneous

forward rate is agreed upon, the forward rate is denoted f (u, z). If, for instance,

the time of inception of the contract is 0 and the time at which the loan starts is

t (with an infinitesimal trading period), the instantaneous forward rate is denoted

f (0, t), and so forth.

From (5) and (6) a sum Cu invested during [u, v] at the infinite number of

instantaneous forward rates f (u, z) – or f (z) for short – becomes

Cv = Cue
∫ v

u f (z)dz . (7)

A final word about (6) and (7) is in order. Notice the dimension of the infinites-

imal element f (z)dz in the integral: since f (z) is in (1/time) units, and since dz is

in time units, f (z)dz is dimensionless; and so are
∫ v

u f (z)dz and exp[
∫ v

u f (z)dz].

2.2 The continuously compounded spot rate

Consider the following, particular, rate of interest:

� the time of signing of the contract and the starting point of the loan are the same:

u;
� the length of the loan is the time span [u, v] or v − u; and
� the amount loaned is Cu ; the amount due is Cv .

There are a number of ways of defining the rate of interest on such a loan. If this

rate is calculated once only over the whole period [v − u] (which may or may not

be an integer number of years), one could define this rate as the spot rate (because

it corresponds to a loan starting at the very signing of the contract) compounded

once over [v − u]. Denote such a spot rate as s(1)
u,v . The lower indices of s are
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self-explanatory; the superscript (1) refers to the fact that the rate of interest is

calculated once over [u, v]. We have

s(1)
u,v = Cv − Cu

Cu
/(v − u) (8)

and equivalently

Cv = Cu
[
1 + s(1)

u,v(v − u)
]
. (9)

Suppose now that our spot interest is compounded m times over interval (v − u)

instead of once only. It implies that the length of time between any two successive

compoundings is (v − u)/m. The spot rate is now written s(m)
u,v , and equation (9)

becomes

Cv = Cu
[
1 + s(m)

u,v (v − u)/m
]m

. (10)

In order for the contracts to be equivalent (that is, to yield the same amount

due Cv), the right-hand sides of (9) and (10) must be equal. Hence

1 + s(1)
u,v(v − u) = [

1 + s(m)
u,v (v − u)/m

]m
(11)

or

sm
u,v = m

v − u

{[
1 + s(1)

u,v(v − u)
]1/m − 1

}

. (12)

Replacing m by 1 in the right-hand side of (12) yields s(1)
u,v as it should.

Consider now what happens to (10) when the number of compoundings m
tends toward infinity. Similarly to what we did before (§2.1), we can replace

s(m)
u,v (v − u)/m by 1/k; therefore, with m = k s(m)

u,v (v − u), we can write

Cv = Cu

(

1 + 1

k

)k s(m)
u,v (v−u)

. (13)

Taking the limit of Cv when m → ∞ and k → ∞

lim
m→∞
k→∞

Cv = Cues(∞)
u,v (v−u). (14)

This leads to the following definition.

Def in it ion Let[u, v] be a time span. The continuously compounded spot
rate is the yearly interest rate, denoted s(u, v) that transforms an investment Cu
at time u into Cv at time v, the rate being compounded over infinitesimally small

time intervals between u and v.

Denote for simplicity s(∞)
u,v ≡ s(u, v). Equation (14) is

Cv = Cues(u,v)(v−u). (15)
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From (15), we deduce

s(u, v) = log(Cv/Cu)

v − u
. (16)

Notice that there is another way of deriving the continuously compounded rate

of interest, which proceeds directly from equation (10). Indeed, we can write from

(10), denoting w = 1/m

s(m)
u,v = m

v − u

[(
Cv

Cu

)1/m
− 1

]

=
(

Cv
Cu

)1/m − 1

v−u
m

=
(

Cv
Cu

)w − 1

w(v − u)
. (10a)

When the number of compoundings m within the period v − u tends to infinity

(or when w = 1/m tends to zero), both numerator (N ) and denominator (D) in

(10a) tend to zero. Therefore we can apply the Marquis de L’Hospital’s rule to get

lim
m→∞ s(m)

u,v = lim
w→0

N ′(w)

D′(w)
= lim

w→0

(Cv/Cu)w log(Cv/Cu)

v − u
= log(Cv/Cu)

v − u
(10b)

as before.

There is an all-important relationship between the continuously compounded

spot rate s(u, v) and the forward rate f (z) (a function defined over the interval

[u, v]). Arbitrage without transaction costs guarantees that the right-hand sides of

(7) and (15) must be identical. Thus, from

e
∫ v

u f (z)dz = es(u,v)(v−u)

we get

s(u, v) =
∫ v

u f (z)dz

v − u
. (17)

Therefore the spot rate s(u, v) is nothing else than the average value of the forward

rate function f (z) over the interval [u, v]. In this average the infinitely large number

of elements f (z) are all weighted by the infinitely small quantities dz/(v − u)

whose sum is equal to one.

On the other hand, it is always possible to express a forward rate as a function

of a spot rate. Write (17) as
∫ v

u
f (z)dz = (v − u) s(u, v) (18)

and take the derivative of (18) with respect to v. This yields

f (v) = s(u, v) + (v − u)
∂s(u, v)

∂v
. (19)
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It is important to consider the spot rate as a function of two variables (u and

v). The partial derivatives of the spot rate are, using (17):

∂s

∂u
= 1

v − u
[s(u, v) − f (u)] (17a)

and

∂s

∂v
= 1

v − u
[ f (v) − s(u, v)] . (17b)

The instantaneous forward rate and the continuously compounded spot rate play

respectively exactly the roles of a marginal and an average quantity, in economics

parlance. This fact does not seem to be well known, and for that reason we will now

introduce what we feel to be the missing link between the two concepts, namely

the continuously compounded total return.

2.3 Introducing the missing link: the continuously compounded

total return

Let us first simplify our notation. Without loss of generality, call 0 instant u, and

t instant v. Our time span [u, v] is now [0, t]. The simplification comes from the

fact that t stands both for an instant of time and for the length of the time span

[0, t].

2.3.1 Definition of the continuously compounded total return

Let f (0, z) be an instantaneous forward rate agreed upon at 0 for a loan starting

at z (0 ≤ z < t), for an infinitesimal trading period. Define the continuously com-
pounded total return at time t as the integral sum of the forward rates between 0

and t , equal to
∫ t

0 f (0, z)dz. Denoted S(0, t), it is a pure (dimensionless) number.

The continuously compounded total return will now be abbreviated as the “total

return”, the continuously compounded spot rate s(0, t) will be called the “spot

rate”, and “forward rate” will stand for the instantaneous forward rate f (0, t).
From what precedes, we have the following equalities:

S(0, t) =
∫ t

0
f (0, z)dt = s(0, t)t = log(Ct/C0). (20)

We can see that the total return, defined by the integral sum of the forward

rates, is nothing else than the product of the spot rate and the investment horizon.

This implies that the relationship between the amount invested C0 and the

amount collected Ct can be expressed in either of the following ways:

Ct = C0eS(0,t) = C0e
∫ t

0 f (z)dz = C0es(0,t)t . (21)
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Average return: spot rate
s (0, T)

units: 1/year

Total return
S (0, T)

units: pure number

Marginal return: forward rate
f (0, T )

units: 1/year

S(0, T)
s(0, T ) =

s(0, T ) =

f (0, T ) = s(0, T ) +

S (0, T ) = s(0, T )T S (0, T ) = ∫0  f (0, z ) dz

f (0, T ) =
dS (0, T )

ds (0, T )

∫0  f (0, z) dz

dT

dT

T

T

T

T

T

Figure 11.4 Summary of the relationships between the total return S(0, t), the spot rate
s(0, t) and the forward rate f (0, t).

Figure 11.4 summarizes all the relationships between the total return, the spot

rate and the forward rate. Each of these three concepts are set at the corner of a

triangle to underscore the fact that each of them can be derived from the two others

in the following way:

� Total return ≡ S(0, t) = ∫ t
0 f (0, z)dz

= s(0, t)t

� Spot rate ≡ s(0, t) = S(0, t)

t

=
∫ t

0 f (0, z)dz

t

� Forward rate ≡ f (0, t) = d

dt

∫ t
0 f (0, z)dz

= s(0, t) + t
ds(0, t)

dt

As an illustration, consider that the continuously compounded total return is

S(0, t) = S(0, 20) = 1.2, or 120% after 20 years. This means that, equivalently:

� the spot rate (continuously compounded) is 6% per year
� the forward rates f (0, z), denoted f (z) between 0 and t are given by any

function f (z) such that its average value over t is equal to 0.06. In other
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words, we can choose any function f (z) from the infinity of functions f (·)
such that

∫ t
0 f (z)dz = 1.2, or

∫ t
0 f (z)dz/20 = 0.06. How can we do this?

It is enough to choose any spot rate curve s(0, t) that goes through point

(20, 0.06), take the derivative of s(0, t) with respect to t , s′(0, t), and finally

write f (t) = s(0, t) + ts′(0, t) (from equation (19)). An example may be use-

ful: consider the spot rate defined by the arc of parabola

s(0, t) = 0.01(−0.005 t2 + 0.2t + 4) (22)

for t = 0 to t = 20, and by s(0, t) = 0.06 for t ≥ 20.

This curve increases from point (0, 0.04) to (20, 0.06). At this last point, it goes

through a maximum; it then remains constant at level 0.06 for t ≥ 20.

The forward rate curve is then (from (19) and (22)):

f (t) = s(0, t) + s′(0, t)t = 0.01(−0.015t2 + 0.4t + 4)

for t = 0 to t = 20, and by f (t) = 0.06 for t ≥ 20.3

This is just one of the infinitely large number of forward curves that would

correspond to a spot rate s(0, 20) = 0.06. We can verify that the total return is 1.2.

We have indeed:

S(0, 20) =
∫ 20

0
f (z)dz =

∫ 20

0
0.01(−0.015t2 + 0.4t + 0.04)dz = 1.2,

which is also equal to s(0, 20) · 20 = (0.06)20 = 1.2 as it should.

The spot rate and the forward rate in this example are represented in figure

11.5a. Notice that the forward rate curve goes through a maximum at t̂ = 13.3̄

years before decreasing to reach the maximum of the spot rate at t = 20 years.

The fact that the forward rate goes through a maximum when the spot rate curve

is concave, increasing toward a plateau as we have described in this example, is a

general property about which more will be said very soon.

The total return, S(0, t) = s(0, t) · t , is the third-order polynomial

0.01(−0.005t3 + 0.2t2 + 4t) from t = 0 to t = 20; it goes through a point of

inflection at t = 13.3̄ (see figure 11.5b). For t ≥ 0, the total return becomes the

linear function S(0, t) = 0.06t .

2.4 An economic interpretation of e

We will now use the above relationships to give an economic interpretation

of the number e. From (21), we can write equivalently the future value of the

3 Note that another method of getting the forward curve would have been to multiply s(0, t) by t
(to obtain the total return S(0, t) = ∫ t

0 f (z)dz) and take the derivative of S(0, t) with respect to t.
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0.05

0.04

0.03

5 10 15

spot rate, forward rate

spot rate

20 520

δ

δ

time horizon and instant t

forward rate

t̂

Figure 11.5a The spot rate curve s(0, t) (lower curve) and the corresponding forward
rate curve f (0, t) (upper curve). The forward curve is f (0, t) = s(0, t) + t ds(0,t)

dt and is
constructed geometrically in the diagram.

investment as

Ct = C0e

∫ t
0 f (z)dz

t ·t = C0es(0,t)·t (23)

In order to isolate the number e, it suffices to set C0 = 1 and [
∫ t

0 f (z)dz]/t =
s(0, t) = 1/t ; in other words we just choose a spot rate equal to the inverse of the

investment period. Thus we have the following interpretation of e:

e = 2.71828 . . . is equal to the future value of $1 at time t when, equivalently:

� the average of the instantaneous forward rates is 1/t
� the continuously compounded spot rate is 1/t

Suppose, for instance, that t = 20 years. Then 1/t is 0.05/year, or 5% per

year. One dollar will become e = 2.718 . . . if the average of the forward rates over

20 years is 5% per year, or if the spot rate is 5% a year.
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Figure 11.5b The total return S(0, t) = s(0, t) · t =
∫ t

0 f (0, z)dz.

2.5 An economic interpretation of log x

Let x designate the future value of a $1 investment after any fixed period of time,

one year for example. (The analysis can be made much more general than this; at the

end of this section 2.5 we will give a general interpretation of log x corresponding

to any time period �z.) Equivalently, x designates the ratio between the future

value of an investment after one year, C1, and the value of that investment at time

0, C0. So x = C1/C0, which we may call the yearly growth factor of C ; it is equal

to the growth rate of C plus one.

Then log x is the corresponding continuously compounded spot rate that trans-

forms 1 into x after one year. This comes from our equation (21), Ct = C0es(0,t)t ,

where we replace C0 and t by 1, and take logs.

For instance, if an investment increases by 20% over one year ($1 becomes

$1.2 after one year), the corresponding continuously compounded spot rate is

log(1.2) = 0.1823. It is useful to picture the relationship between x = C1/C0, on

the one hand, and R0,1 ≡ (C1 − C0)/C0 ≡ s(1)
0,1 and log(C1/C0) ≡ s(0, 1), on

the other. R0,1 = s(1)
0,1 = x − 1 is the linear approximation of s(0, 1) = log x at

x = 1 (see figure 11.6a).
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1

0.5

0
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–1
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x

m[x1/m – 1], log x

m = ∞;  s0,1  = log x(∞)

case m = 1; s0,1 = x – 1
(1)

Figure 11.6a The growth rate of C , s(m)
0,1 , compounded m times per period, as a func-

tion of the growth factor x = C1/C0; s(m)
0,1 = m[(Cv/Cu)1/m − 1]. The cases from m =

1 ((Cv/Cu) − 1 = x − 1) to m = 5 have been depicted, as well as the case m → ∞
(log x).

This economic interpretation of log x is also useful to get the order of mag-

nitude of log x when x is close to 1. For instance, we can estimate log(0.8) in

the following way. We just need to figure out the continuously compounded rate

of return that would decrease the value of an investment by 20% after one year.

We can figure that it will be somewhat less than −0.2 for the following reason.

Suppose that the rate is compounded twice over one year at rate −20% per year.

After 6 months, the investment becomes 0.9; after one year, it has lost again 10%

and thus becomes 0.81. For the investment to be 0.8 only after one year, the

rate of interest compounded twice a year should therefore be less than −20%;

the argument holds of course for interest rates compounded more than twice per
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year, in particular for the continuously compounded rate of interest, which is

log(0.8) ≈ −0.223.4

It is also useful to picture the relationship between the yearly growth factor of

C , i.e. C1/C0 ≡ x – or what $1 becomes after one year – and the corresponding

rate of return or growth rate s(m)
0,1 when the number of compoundings within one

year is m. From equation (12) we know that, with v − u = 1 year, u = 0, v = 1

we have

s(m)
0,1 = m

[(
Cv

Cu

)1/m
− 1

]

= m[x1/m − 1] (24)

(we verify that s(1)
0,1 is equal to x − 1 = (C1 − C0)/C0). This parametric relation

between the growth factor and s(m)
0,1 is represented in figure 11.6a, for values of m

equal to 1 (the case corresponding to s(1)
0,1 ≡ R0,1 = C1−C0

C0
), 2, 3, 4, 5 and ∞

(this last case corresponds to s(∞)
0,1 = log(C1/C0). It can be seen how the family of

curves m[(x − 1)1/m + 1] converges toward log x when m → ∞. For relatively

low values of m, the curves cluster relatively quickly; but the convergence toward

log x is relatively slow; the vicinity of log x is reached only with high values of m.

This is made clear by enlarging the areas of the diagram in the vicinity of x = 0.8

(figure 11.6b) and x = 1.2 (figure 11.6c).

The above interpretation of log x can be made much more general. Indeed, we

should not restrict ourselves to a “one year” framework; any time period can be

used as we will now demonstrate.

Let �z be a period of any length; it may be a year, a month, a day, a fraction

or a multiple – not necessarily an integer – of any of those time spans. Let r (1)
�z be

the growth rate of C defined over that period, compounded once over that same

period.5 Then, by definition: r (1)
�z = Cu+�z−Cu

�z
, or Cu+�z = Cu(1 + r (1)

�z). For

instance, if �z is one day, r (1)
�z is the daily growth rate compounded once per day.

Let r (m)
�z designate the growth rate of C compounded m times over the interval

�z. We then have

Cu+�z = Cu

(

1 + r (m)
�z · 1

m

)m
= Cu

⎛

⎝1 + r (m)
�z
m

⎞

⎠

m

4 From a geometric point of view, we may observe that log x being a convex function, log(0.8) must

be somewhat smaller than its first order (linear) approximation x − 1 = −0.2.
5 Note that, as we mentioned at the end of the introduction of section 2, the spot rate and the forward

rates are always defined per year (i.e. on a yearly basis). Now the rate r (1)
�z is defined over period

�z.
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Figure 11.6b Enlargement of area around x = 0.8.

from which we deduce r (m)
�z as a function of Cu+�z/Cu :

r (m)
�z = m

[(
Cu+�z

Cu

)1/m
− 1

]

.

In order to determine limm→∞ r (m)
�z , we just write

r (m)
�z =

(
Cu+�z

Cu

)1/m − 1

1/m

and apply L’Hospital’s rule. Denoting limm→∞ r (m)
�z = r (∞)

�z ≡ r�z the contin-

uously compounded growth rate over period �z, we get

lim
m→∞ r (m)

�z ≡ r�z = log(Cu+�z/Cu).

We can call Cu+�z/Cu ≡ x the growth factor of C over period �z, and we have

the following interpretation of log x :
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Figure 11.6c Enlargement of area around x = 1.2.

Let x be the growth factor of a variable during any time period; log x is the

corresponding continuously compounded growth rate defined over the same

period.

For example, suppose an asset increases by 2% over one day. The growth fac-

tor is then x = C1/C0 = C1−C0
C0

+ 1 = 1.02. Then log x = log 1.02 ≈ 0.0198 =
1.98% is the corresponding continuously compounded daily growth rate. If C had

grown by 2% over one month or over one year, log 1.02 x ≈ 1.98% would have

been the corresponding continuously monthly or yearly growth rate.

2.6 Fundamental properties

From the very definition of the forward and spot rates we can deduce the following

properties.
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(1) The forward rate is above (below) the spot rate if and only if the spot rate

is increasing (decreasing). It is equal to the spot rate if and only if the spot rate is

constant at least over an infinitesimally small interval.

Proof Using f (0, t) = s(0, t) + tds(0, t)/dt , ds(0, t)/dt � 0 implies

f (0, t) � s(0, t), and conversely.

(2) If the spot rate s(0, t) is an increasing, concave function of t , levelling off

at s(0, t̄) = s̄ for an abscissa t , and equal to level s̄ beyond t , then:

(a) the forward rate goes through a maximum in the interval (0, t̄) and is

decreasing in an interval to the level of t̄ . If t ≥ t̄ , the forward rate is equal to the spot

rate s̄.

(b) the total return is an increasing function of t with at least one inflection

point for 0 < t < t̄ . For t ≥ t̄ , the total return becomes a linear function of t̄ .

Proof See exercise 11.5; (detailed answers to each exercise appear at the

end of the chapter).

(3) At the origin, the slope of the forward curve is twice that of the spot rate

curve (exercise 11.6).

3 Applications to the model of economic growth

We are now able to apply those concepts to some central issues in the valuation of

capital as presented by Robert Solow in his path-breaking essay.

We will first consider the future value of a dollar invested in a capital good

when returns are measured in continuous time and when those returns are variable

through time. Then we will measure the value of capital in the same framework.

Finally, we will derive the Fisher equation, which will play a central role in unifying

the approaches to economic growth theory.

3.1 The future value of a dollar invested in a capital good

Let us first explain why, as Robert Solow writes, one dollar invested in capital

earning a real rental q(τ )/p0 becomes, after a time period t, e
∫ t

0 [q(τ )/p0]dτ (we

use the letter τ to distinguish the integration variable from the upper bound of

the integral). Let us check the units of this expression. If q(τ ) denotes the rental

rate of capital at time τ , it is expressed in $ per unit of capital, per unit of time.

We have, in units:

q(τ ) = “dollars”

“unit of capital · unit of time”
at time τ .
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The price of capital p0 is expressed as

p0 = “dollars”

“unit of capital”
at time τ .

The inverse of p0, 1/p0, is also a price: it is the price of one dollar expressed in

units of capital

1

p0
= “units of capital”

“dollar”
at time τ .

Therefore the ratio q(τ )/p0 is expressed as

q(τ )

p0
= 1

“unit of time”
at time τ ;

it is a pure number divided by a unit of time – which may very well be a year.

Therefore, as Solow writes, it plays exactly the role of an interest rate. q(τ ) can be

decided upon at time τ ; it is then the current rate existing at time τ . Alternatively,

it may be decided upon already at time 0. It is then a forward rate, applying at the

future date τ . In both cases the rate applies over an infinitesimal period dτ . The

formula e
∫ t

0 [q(τ )/p0]dτ in Solow’s essay is just an illustration of the formula

Cv = Cue
∫ v

u f (z)dz (25)

which applies directly here: we just replace Cu by 1, u by 0 and v by t ; and

the forward rate is replaced by q(τ )/p0, with
∫ t

0 [q(τ )/p0]dτ being the (unitless)

continuously compounded total return over period [0, t].

It is important to observe that if the formula e
∫ t

0 [q(τ )/p0]dzgives indeed the

value of $1 invested in capital when the real rental rate is q(τ )/p0, the investor

will, in addition, also benefit – or suffer – from any changes in the value of capital.

Therefore, at any point of time τ we have to consider the real rental rate q(τ )/p0 as

well as any relative change in the value of capital ṗ(τ )/p(τ ); the total rate of return

received by an investor of $1 in capital stock is then q(τ )/p0 + ṗ(τ )/p(τ ), and the

total return over a period t is
∫ t

0 [q(τ )/p0 + ṗ(τ )/p(τ )]dz. Hence when the total

rate of return is considered, one dollar becomes exp{∫ t
0 [q(τ )/p0 + ṗ(τ )/p(τ )]dz}

after a time period t . We will make use of this fact very soon.

3.2 Evaluating one unit of capital

We can now easily understand the valuation of capital as the indefinite integral

p(t) =
∫ ∞

t
q(τ )e − ∫ τ

t i(z)dzdτ . (26)

The left-hand side is expressed in $ (it is the value of one unit of capital at time t ,
equal to ($/unit of capital) times (1 unit of capital). One such unit of capital
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generates, during an infinitesimal period of time dτ , a cashflow equal to q(τ )dτ ,

expressed in dollars. We have indeed:

units of q(τ ) dτ = “dollars”

“unit of capital” · “unit of time”
× 1 “unit of capital”

× duration dτ = dollars

(27)

Since dτ is infinitesimally small, there is an infinite number of cashflows within

any finite time interval
[
t1, t2

]
, and of course there is an infinity of such cashflows

in the infinite interval [t, ∞). Let us now use equation (7) to evaluate the present

value Cu : it is Cv = Cue− ∫ v
u i(z)dz . Therefore, the present value at time t of the

cashflow q(τ )dτ received at time τ during the infinitesimally small interval dτ is

q(τ )e− ∫ τ
t (i(z)dzdτ , and the price of capital at time t is just the integral sum of

this infinite number of cashflows, i.e.
∫ ∞

t q(τ )e− ∫ τ
t i(z)dzdτ .

Note that there is no need to express the present value of the cashflow q(τ )dτ

by using the forward rate function i(z). Indeed, the very existence of this forward

rate function implies the existence of a spot rate that applies over any interval

τ − t , denoted s(t, τ ) and equal to
(∫ τ

t i(z)dz
)
/ (τ − t). Therefore, we could have

written the value of capital equivalently as:

p(t) =
∫ ∞

t
q(τ )e−s(t,τ ).(τ−t)dτ . (28)

3.3 Deriving the Fisher equation

There are many ways to obtain the Fisher equation

i(t) = q(t)

p(t)
+ ṗ(t)

p(t)
. (29)

Robert Solow gives two of them (see the extract at the beginning of Part III of

this book). The first cleverly uses approximations of the returns an investor would

receive over a finite horizon either on the financial market or on the capital market;

it then applies conditions of arbitrage leading to the equality of those returns and

finally takes the limit of the equality when the horizon goes to zero. The second

equates the cost of one unit of capital to its discounted returns; differentiating this

equality with respect to t yields the Fisher equation.

How would the first Solow approach work without recourse to any approx-

imation? The answer to this question will enable us to show the intimate links

between the two methods. After a period h, one dollar invested at the variable rate

i(τ ) becomes e
∫ t+h

t i(τ )dτ . On the other hand one dollar enables, at time t , to buy

a quantity 1/p(t) of the capital good, which can be rented at a rate q(τ ) at any time

τ between t and t + h, thus earning over an infinitesimal period a rental
q(τ )
p(t) dτ .
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Each of those rentals can be invested on the financial market at the variable rate

i(z), yielding, at time t + h,
q(τ )
p(t) e

∫ t+h
τ i(z)dzdτ . The total of those returns will

be
∫ t+h

t
q(τ )
p(t) e

∫ t+h
τ i(z)dzdτ . In addition the investor holds at time t + h a capital

stock 1/p(t) whose value is p(t + h)/p(t). Arbitrage will lead to the equality

e
∫ t+h

t i(z)dz =
∫ t+h

t

q(τ )

p(t)
e
∫ t+h
τ i(z)dzdτ + p(t + h)

p(t)
. (30)

Differentiating (30) with respect to h gives

e
∫ t+h

t i(z)dz · i(t + h)

= i(t + h)

∫ t+h

t

q(τ )

p(t)
e
∫ t+h
τ i(z)dzdτ + q(t + h)

p(t)
+ ṗ(t + h)

p(t)
. (31)

Taking the limit when h → 0 yields the Fisher equation.

Notice how Solow’s second method is linked to the first one by going through

the following steps. Use the fact that the price of capital can always be expressed

as the sum of discounted cashflows received until some future time t + h and the

present value of the residual value of capital at time t + h. From equation (26)

corresponding to Solow’s second method, write:

p(t) =
∫ ∞

t
q(τ )e− ∫ τ

t i(z)dzdτ

=
∫ t+h

t
q(τ )e− ∫ τ

t i(z)dzdτ +
∫ ∞

t+h
q(τ )e

−
[∫ t+h

t i(z)dz+∫ τ
t+h i(z)dz

]

dτ .

(32)

In the second integral of the right-hand side of (32), the exponential

e− ∫ t+h
t i(z)dz does not depend upon τ and hence can be factored out, leaving

e− ∫ t+h
t i(z)dz ∫ ∞

t+hq(τ )e− ∫ τ
t+h i(z)dzdτ , which is nothing else than the present

value of one unit of capital at time t + h. Thus (32) can be written as

p(t) =
∫ t+h

t
q(τ )e− ∫ τ

t i(z)dzdτ + e− ∫ t+h
t i(z)dz p(t + h). (33)

Multiplying through (33) by e
∫ t+h

t i(z)dz and dividing by p(t) leads to equation

(30), corresponding to the first method.

3.4 Deriving the value of an asset from the Fisher equation

Until now we have shown multiple ways of deriving the fundamental equation

of interest theory from the value of an asset. We will now explain how to do the

reverse, i.e. determine the value of a unit of capital stock from the Fisher equation.

Observe that the Fisher equation (29) is a first-order non-linear differential

equation in p(t). Integrating it will not prove difficult, but care should be exercised
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when identifying the constant of integration. Two options at least are open to us.

The first is to suppose that when time tends to infinity our capital stock tends to a

value p(∞) which, large as it may be, is such that limt→∞ p(t)/e
∫ t

0 i(z)dz = 0. In

other words, we will assume that p(∞)e− ∫ ∞
0 i(z)dz = 0. The second is to suppose

that we know the residual value of capital at some future date t + h, p(t + h).

In the appendix of chapter 2, we had shown that the solution of the first-order

non-linear differential equation

a(t)y′(t) + b(t)y(t) = g(t),

with initial condition y(t0) = y0 was

y(t) = e
− ∫ t

t0
b(z)
a(z) dz

(

y0 +
∫ t

t0

g(τ )

a(τ )
e

∫ τ
t0

b(z)
a(z) dz

dτ

)

. (34)

Here our differential equation (29) can be written

ṗ(t) − i(t)p(t) = −q(t). (35)

The functions y(.), a(.), b(.) and g(.) are, in this case, p(.), 1, −i(.) and −q(.)

respectively. Depending upon the context, the time variable will be denoted t , τ

or z.

3.4.1 First solution: identification of t0 with ∞ and y0 with p∞
We first set

lim
t→∞ p(t) = p∞ (36)

with one proviso: p∞e− ∫ ∞
t i(z)dz = 0. This implies that p∞ and i(z) are such

that p∞ is of smaller order than exp[
∫ ∞

0 i(z)dz]. Applying now (34), we get:

p(t) = e
∫ t
∞ i(z)dz

(

p∞ +
∫ t

∞
−q(τ )e− ∫ τ

∞ i(z)dzdτ

)

. (37)

In view of our hypothesis, the first term in the right-hand side of (37) multiplied

by p∞ cancels. Also, the exponential term e− ∫ ∞
t i(z)dz depends upon t only; it

can therefore be inserted in the integral of the right-hand side; (37) then becomes

p(t) =
∫ ∞

t
q(τ )e−[∫ ∞

t i(z)dz+∫ τ
∞ i(z)dz

]
dτ

=
∫ ∞

t
q(τ )e− ∫ τ

t i(z)dzdτ (38)

which is the capital valuation equation over a horizon of infinite length; this was

the first form of evaluation used by Solow (equation 26).
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3.4.2 Second solution: identification of t0 with t + h and y0 with p(t + h)

We now set the “initial” conditions as follows: when t0 = t + h, the residual value

of capital is p(t + h). So, in (34) we replace y0 by p(t + h). Applying (34) gives

p(t) = e
∫ t

t+h i(z)dz
(

p(t + h) −
∫ t

t+h
q(τ )e− ∫ τ

t+h i(z)dzdτ

)

. (39)

Carrying out the multiplication and, as before, introducing the first exponential

term into the integral, we end up with our second form of capital valuation (33)

p(t) =
∫ t+h

t
q(τ )e− ∫ τ

t i(z)dzdτ + e− ∫ t+h
t i(z)dz p(t + h).

Until now, we have simply assumed that arbitrage would enforce equality

between a return on the financial market and a return on the capital good market.

Our task is now to show the mechanisms and the forces at play that will lead to

this equilibrium. This will be done in our next chapter.

Exercises

11.1 What is the yearly, continuously compounded, growth rate which makes an

interest rate decrease from 7% to 4% over 250 years? What would be the

corresponding yearly rate compounded once a year?

11.2 Can you give economic interpretations of the exponential function y = ex ?

(Hint: You can give three of them if you think of the continuously com-

pounded total return, spot rate and forward rate.)

11.3 Demonstrate the following proposition (its importance stems from the fact

that the spot rate most often has the general outlook described hereafter).

Let the spot rate s(0, t) be represented by an increasing, concave function

of maturity t , levelling off at s(0, t) = s̄ for an abscissa t , and equal to level

s̄ beyond t . Then:

(a) the forward rate goes at least through one maximum in the interval

(0, t) and is decreasing in an interval to the left of t . If t ≥ t , the forward rate

is equal to the spot rate s̄.

(b) the total return is an increasing function of t , with at least one inflection

point for 0 < t < t . If t ≥ t , the total return becomes a linear function of t .

11.4 The reason why practitioners use third-order polynomials for splines is little

known, and merits mentioning here. It stems from the following important

property. If a polynomial represents a curve joining a given set of points,

a third-order polynomial minimizes both its curvature and its deformation

energy. Indeed, either of these concepts is basically represented – within the
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confines of affine transformations – by the functional

I [s(z)] =
∫ b

a
[s′′(z)]2dz

where s′′(z) is the second derivative of the spot rate – or of the spline (denoted

s(z) for convenience). Show that minimizing I leads to a third-degree poly-

nomial. (Hint: use the Euler–Poisson equation; see chapter 7).

11.5 In this chapter, we obtained the Fisher equation from the valuation of capital

expressed as

p(t) =
∫ ∞

t
q(τ )e− ∫ τ

t i(z)dzdτ ,

by taking the derivative of both sides of the above equation with respect to t .
Derive the Fisher equation when cashflows are discounted with the spot rate.

(Hint: you have to be careful and consider the spot rate as the two-variable

function s(t, τ )).

11.6 Derive the Fisher equation by equating the cost of one unit of capital to its

discounted future rewards, evaluated as the present value of income streams

for a period h plus the present value of its residual value at time t + h.

Answers

11.1 Let i0 be the initial interest rate and i250 the interest rate after 250 years. Let

x be the yearly, continuously compounded, rate; x must be such that

i250 = i0ex .250

or x = 1

250
log

(
i250

i0

)

.

In the example, x = −0.002238 = −0.2238% per year.

Let x(1) be the corresponding growth rate compounded once a year. x(1)

must be such that

i250 = i0(1 + x(1))250

or

x(1) =
(

i250

i0

) 1
250 − 1 = −0.2236%.

Equivalently, x(1) could have been determined from what we have seen as

x1 = ex − 1.
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(This example illustrates the fact that continuously compounding implies

very little difference in results if the rates are very small; also, we will use

these numbers in chapter 15.)

11.2 y = ex is what $1 becomes if the continuously compounded total return is x ,

for any investment horizon T we may want to choose. It means that the spot

rate, s(0, T ) (the average of the instantaneous forward rates
∫ T

0 f (z)dz/T ),

is equal to x/T . For example, e0.5 is what $1 becomes if T = 10 years,

s(0, T ) = ∫ T
0 f (z)dz/T = ∫ 10

0 f (z)dz/10 = 0.05 per year. Equivalently it

is what $1 becomes after 10 months if the monthly continuously compounded

spot rate is 0.05; it is also what $1 becomes after 10 days if the daily contin-

uously compounded spot rate is 0.05.

11.3 Let us first consider the behaviour of the slope of the forward rate curve at

the origin, i.e. when t → 0. The above assumptions imply ds(0, 0)/dt > 0.

On the other hand, taking the derivative of f (0, t) = s(0, t) + tds(0, t)/dt
with respect to t , we deduce

d f (0, t)

dt
= ds(0, t)

dt
+ d2s(0, t)

dt2
t + ds(0, t)

dt
= 2

ds(0, t)

dt
+ d2s(0, t)

dt2
t

and therefore, with t = 0

d f (0, 0)

dt
= 2

ds(0, 0)

dt
.

Notice how surprisingly simple this intermediate result is: whatever the spot

rate curve, and in particular whatever the sign of the spot curve slope at the

origin, the initial slope of the forward rate curve will always be twice that of

the spot curve.

This result can be generalized while retaining its simplicity. At the origin

the nth derivative of the forward rate is (n + 1) times the nth derivative of

the spot rate, i.e. dn f (0, 0)/dtn = (n + 1)dns(0, 0)/dtn .

Coming back to (30), we know that for t = t , ds(0, t)/dt = 0 and its left-

hand side second derivative is negative (d2s(0, t−)/dt2 < 0), as implied in

our concavity hypothesis. This leads to a left-hand side derivative of f (0, t)
equal to

d f (0, t−)

dt
= d2s(0, t−)

dt2
t < 0

and therefore the forward rate is decreasing in an interval on the left-hand

side of t .
We know that d f (0, 0)/dt is strictly positive and that d f (0, t−)/dt is

strictly negative. It follows that d f (0, t)/dt changes sign from positive to

negative at least once within the interval [0, t], and therefore that f (0, t)
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goes through a local maximum at least for one value of the maturity. We

denote such a value t̂ (t̂ ∈ (0, t̄)) – assuming it is unique.

The final part of part a) of the property is evident: if ds(0, t)/dt = 0 for

t > t , then f (0, t) = s(0, t).
Part (b) is just a direct consequence of (a). If f (0, t) goes through a unique

maximum in the interval [0, t] (at t = t̂), its integral (the total return S(0, t))
has an inflection point at t̂ ; it is a convex function between 0 and t̂ and a

concave function between t̂ and t̄ . Finally, if (for t ≥ t̄) f (0, t) is equal to a

constant s(0, t) ≡ s̄, then

S(0, t)|t≥t̄ =
∫ t

0
f (0, z)dz

∣
∣
∣
∣
t≥t̄

=
∫ t̄

0
f (0, z)dz +

∫ t

t̄
f (0, z)dz

∣
∣
∣
∣
∣
t≥t̄

= s̄ t̄ + s̄t − s̄t
∣
∣
t≥t = s̄t |t≥t ,

a linear function of maturity t . The proof is thus complete.

These properties allow for the following interpretation. Consider the con-

tinuous maturity as a discrete variable, albeit with infinitesimally short incre-

ments. First, let us explain the property that at the origin the forward rate is

equal to the spot rate, and that the forward curve has twice the slope of the

spot curve. Let ε(ε → 0) be the first maturity, 2ε the second one. For only

one maturity, the spot rate is the average of one forward rate only; therefore it

is equal to it. So s(0, 1) = f (0, 0). Suppose now that the spot rate for matu-

rity 2ε has increased by an amount �s. If an average increases by �s for

one additional element, it implies that the second element has increased by

twice the increase of the average, i.e. by 2�s. (The same argument applies,

of course, to the case where the average decreases by �s.) Therefore at the

origin the slope of the forward rate must be twice the slope of the spot rate.

Furthermore, at the point where the spot rate (the average of the forward

rates) reaches a maximum, the last forward rate must equal the spot rate.

The fact that between the origin and that point the forward rate goes at least

through one maximum is just a consequence of Rolle’s theorem applied to

the difference between the forward rate and the spot rate.

The property that the forward rate must be decreasing just before the spot

rate has reached its maximum (or its plateau) has the following interpretation.

Consider an increasing spot rate. It means that the last forward rate is above
it: this is what has made the spot rate increase. If the spot rate, for the next

maturity, does not change (because it has reached a maximum, or a plateau),

the forward rate must be decreasing. Indeed, suppose the contrary: if the

forward rate increases or stays constant, the spot rate will still increase,
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entailing a contradiction with our hypothesis. Therefore, the forward rate

can only decrease.

This property could be generalized in a natural way to the relationship

between the derivative of a function f ′(x) and the unit value of that function,

f (x)/x .

A corollary of this property is the following:

Let the spot rate be represented by a decreasing, convex function of matu-

rity t , levelling off at s(0, t) = s̄ for an abscissa t , and equal to level s̄ beyond

t . Then:

(a) the forward rate goes at least through one minimum in the interval

(0, t) and is increasing in an interval to the left of t . If t ≥ t , the forward rate

is equal to the spot rate s̄.

(b) the total return is an increasing function of t , with at least one inflection

point for 0 < t < t . If t ≥ t , the total return becomes a linear function of t .
The proof follows the same lines as above.

11.4 Minimizing the integral I is a particular case of minimizing a functional

J [s(z)] =
∫ b

a
F[z, s(z), s′(z), s′′(z)]dz.

Such a problem is solved by the Euler–Poisson fourth-order differential equa-

tion

∂ F

∂s
(z, s, s′, s′′) − d

dz

∂ F

∂s′ (z, s, s′, s′′) + d2

dz2

∂ F

∂s′′ (z, s, s′, s′′) = 0.

In our case, the arguments z, s and s′ are missing in F , which depends solely

upon s′′. So the Euler–Poisson equation becomes

d2

dz2

∂ F

∂s′′ (s′′) = 0. (A1)

In the case of I = ∫ b
a [s′′(z)]2dz, we have F(s′′) = [s′′]2; therefore

∂ F

∂s′′ (s′′) = 2s′′(z);

thus a first-order condition for s(z) to minimize the functional I is that it

solves the fourth-order differential equation

d2

dz2
[2s′′(z)] = 2s(4)(z) = 0,

which leads to the third-order polynomial

s(z) = α3z3 + α2z2 + α1z1 + α0.
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11.5 The value of capital is expressed as

p(t) =
∫ ∞

t
q(τ )e−s(t,τ ).(τ−t)dτ ;

application of the Leibniz formula yields

ṗ(t) =
∫ ∞

t
q(τ )e−s(t,τ ).(τ−t)

{

− ∂

∂t
[s(t, τ ) . (τ − t)]

}

dτ − q(t).

To evaluate the partial derivative inside the integral, use (17a). You end

up with − f (t), equal to −i(t). Factoring i(t) out of the integral gives

ṗ(t) = i(t)p(t) − q(t)

and the Fisher equation follows as before.

The economic interpretation of the property ∂
∂t [s(t, τ ) . (τ − t)] = −i(t)

is the following: the rate of loss of the total return when investment is post-

poned from time t by an infinitesimal amount of time is just the forward rate

for a loan starting at t , i.e. i(t) = f (t) = s(t, t).

11.6 The cost is p(t); in present value, the rewards are
∫ t+h

t q(τ )e− ∫ τ
t i(z)dzdτ +

p(t + h)e− ∫ t+h
t i(z)dz . The equality reflecting equilibrium is

p(t) =
∫ t+h

t
q(τ ) e− ∫ τ

t i(z)dzdτ + p(t + h) e− ∫ t+h
t i(z)dz .

Differentiating this equality with respect to h:

0 = q(t + h) e− ∫ t+h
t i(z)dz + ṗ(t + h)e− ∫ t+h

t i(z)dz

−p(t + h) . i(t + h)e− ∫ t+h
t i(z)dz .

Taking h → 0 yields the Fisher equation.



CHAPTER 12

From arbitrage to equilibrium

In chapter 11, we described outcomes of investing either on the financial market
or the capital goods market. We had also made the hypothesis that market forces
would be at play to establish an equilibrium between those outcomes. Our aim
in this chapter is to describe those forces. We begin with the case of a risk-free
world in the sense that the existence of forward markets enables some investors to
protect themselves against uncertainty (section 1). We then introduce uncertainty
(section 2).

1 The case of risk-free transactions

We have considered four prices in the Fisher–Solow equation of interest: p(t) is
the price of the capital good at time t ; p(t + h) is the forward price for time t + h,
decided upon at time t ; q(t + h) is the forward rental rate of the capital good, to be
received at time t + h; and i(t), the interest rate, is the price of loanable funds at
time t . Until now, we have just supposed that an equilibrium would exist between
these four prices, stemming from an equality between the available returns on the
financial market and on the capital goods market. We will now describe the forces
that come into play to establish this equilibrium.

Two types of forces should be distinguished. The first is arbitrage; we define
arbitrage as the action of individuals who will earn benefits without committing
their own resources. The second is investing, i.e. the action of agents who buy cap-
ital goods (or assets) with their own resources. In order to simplify the exposition,
we suppose that the capital good may be borrowed, and also that we are able to
sell it on a forward market.

Suppose that at time 0 we observe the four following prices: p0, p1, q1, and
i0, resulting from supply and demand curves as described in figure 12.1. The
question now is: can these four prices be considered in equilibrium in the sense
that, if nothing else is disturbed in the economy, these numbers will remain constant

293
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Figure 12.1a (Spot) asset market.
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Figure 12.1b Financial market.
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Figure 12.1c Rentals market.
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Figure 12.1d Forward asset market.

Figure 12.1a–d The consequences of arbitrageurs’ actions and investors’ behaviour.

at least for a short time? To answer this question, let us retrace the steps of Solow’s
first method, supposing that h is one year. An investor of $1 on the risk-free
financial market will earn 1 + i0 after one year. If he invests in the capital good,
he will buy 1/p0 units of the capital good; in order to protect himself against any
uncertainty, he does two things: he sells his capital good on the forward market at
price p1, and rents it for one year at rate q1, with such guarantees that the contract
is riskless.
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Table 12.1 The gain of arbitrageurs in the case of an undervalued

capital good or asset; 1 + i0 <
q1
p0

+ p1
p0

Time 0 Time 1

Action Cashflow Action Cashflow

1. Borrow $1 +1 1. Receive rentals + q1
p0

2. Buy 1/p0 units of asset −1 2. Receive value of asset
sold on the forward
market

+ p1
p0

3. Sign rental contract 0 3. Reimburse loan −(1 + i0)
4. Sell 1/p0 units of asset 0

on forward market
at prices p1

Net cashflow: 0 Net cashflow:
q1 + p1

p0
− (1 + i0) > 0

1.1 The case of an undervalued asset

Suppose now that the proceeds of investing in the capital good are higher than
those on the financial market; this translates as the inequality

1 + i0 <
q1
p0

+ p1
p0

. (1)

Two sets of forces will come into play to establish equilibrium. The first is
due to the appearance of arbitrageurs. The second results from the behaviour of
investors who were operating initially on these markets.

1.1.1 Arbitrageurs

We describe in table 12.1 the actions taken by arbitrageurs and the resulting cash-
flows.

First, arbitrageurs will borrow $1 at rate i0 (cashflow: +1). They will buy 1/p0
units of capital, for a cashflow equal to −1. Also they will sign a rental contract
at a rate q1, to be paid at time 1. No cashflow at time 0 results from that action.
Finally, they will sell 1/p0 units of capital on the forward market; this does not
generate either any cashflow. In total, their net cashflow at time 0 will be nil.

At time 1, they will collect q1/p0 in rentals and will sell the capital good for
p1/p0, implying a cashflow of (q1 + p1)/p0, and will reimburse 1 + i0. This
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translates into a positive, net profit equal to

q1 + p1
p0

− (1 + i0) = q1
p0

+ p1 − p0
p0

− i0

although arbitrageurs have not committed one cent of their own money. Notice
that, per dollar invested, the arbitrageurs manage to reap exactly the difference
between the observed total rate of return on the capital good and the existing rate
of interest.

These actions will trigger changes in the four markets considered. The fact that
arbitrageurs start borrowing will displace to the right the demand curve of loanable
funds on the financial market (figure 12.1b). This will lead to an increase of i0,

perhaps to i
′
0. Their willingness to buy the asset will lead as well to an increase of

its price, to p′
0 (figure 12.1a). Also, the market for rentals will also be modified

in the sense that the supply curve will move to the right, therefore entailing a
decrease of q1 to q ′

1 (figure 12.1c). Finally, the fact that arbitrageurs start selling
the asset on the forward market will push down the price p1 on that market to p′

1
(figure 12.1d). This is a first series of forces that will tend to increase the left-hand
side of inequality (1), and to decrease its right-hand side.

1.1.2 Investors’ behaviour

Other forces will be at play as well to establish equilibrium. Indeed, there is no
reason why investors initially on the four markets should continue behaving as
described in the diagrams of figure 12.1. First, consider the suppliers of loanable
funds. Since investing in the asset market is more rewarding, investors will decrease
their supply of loanable funds (S moves to S′ in figure 12.1b), and they will start
investing on the asset market (the demand curve will move once more to the right,
to D′′ – figure 12.1a), and finally they will displace once more the supply curve on
the rentals market (to S′′). The outcome of those actions will be to accentuate the
increase of i0 and p0 (to i ′′0 and p′′

0 respectively) and the decrease of q1 (to q ′′
1 ).

Finally, consider the behaviour of those agents who wanted to buy the asset on
the forward market. Since the initial price on the forward market, p1, is such that
p1 > p0(1 + i0) − q1, their interest is to buy the asset on the spot market. The
demand on the forward market will shrink to D′, triggering a lower price p′′

1 . To
buy one unit of the asset they may borrow on the financial market, entailing D′′′
and i ′′′0 . On the asset market, demand will be displaced to D′′′, leading to a spot
price p′′′

0 . They will sign a rental contract, displacing the rentals supply curve to
S′′′, and driving the price to q ′′′

1 . Their actions will thus have the same effect as
described earlier: an increase in the interest rate and in the spot price; a decrease
in the rental rate and in the forward price.
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It is to be noted that the actions described above do not exhaust all possibilities of
establishing equilibrium. For instance, we may think of the behaviour of suppliers
of the asset on the spot market. They may soon discover that rather than selling
the asset at the spot price p0, they should sell on the forward market, and borrow –
precisely because what they will have to reimburse, p0(1 + i), is smaller than what
they will receive at time 1 (p1 + q1). They will thus displace to the left the supply
curve on the spot market, and to the right the supply curve on the forward market,
and so forth.

Of course the presentation here is voluntarily simplified; the actions of arbi-
trageurs and investors will take place simultaneously, and some agents may very
well be playing both roles at the same time. Nevertheless, barring any indivisibil-
ities, lack of information and transactions costs, those actions as described above
are bound to lead to the equilibrium characterized by the Fisher equation.

1.2 The case of an overvalued asset

Suppose now that we observe the reverse inequality:

1 + i0 >
q1
p0

+ p1
p0

and therefore that it is more rewarding to invest in the financial market than to
commit funds in the capital good. We will describe how arbitrageurs and investors
alike will re-establish equilibrium. Care must be exercised, because the actions to
be taken are not exactly symmetrical to those described in section 1.1, although
the outcomes on prices will be.

1.2.1 Arbitrageurs’ actions

The asset being overvalued (p0 is too high for the equality between 1 + i0 and
(q1 + p1)/p0 to hold), it should be sold. Arbitrageurs will step in and borrow
the asset for a year; this will not lead to any (positive or negative) cashflow. They
will sell the asset for a positive cashflow p0, then lend the proceeds, implying a
negative cashflow of −p0. At the same time, they will buy on the forward market
the asset at price p1 in order to be able to give it back to its owner at time 1.
Buying the asset on the forward market does not entail any cashflow. In total the
net cashflow at time 0 for arbitrageurs is zero, as it should.

At time 1, the arbitrageur receives the proceeds of the loan, p0(1 + i0). This
enables him to buy the asset which he had committed at time 0 to buy at price
p1 (cashflow: −p1). He then returns the asset to its owner; also, he has to pay
the owner the rentals the latter could not collect (cashflow: −q1). In all, his net
cashflow at time 1 will be p0(1 + i0) − p1 − q1, a positive amount by the very
fact that we had observed the inequality 1 + i0 > q1/p0 + p1/p0. The effects of
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Table 12.2 The gain of arbitrageurs in the case of an overvalued capital

good or asset; 1 + i0 >
q1
p0

+ p1
p0

Time 0 Time 1

Action Cashflow Action Cashflow

1. Borrow asset 0 1. Receive proceeds +p0(1 + i)
of loan

2. Sell asset on spot +p0 2. Buy asset −p1
market

3. Loan proceeds −p0 3. Give back asset 0
to owner

4. Buy asset on forward 0 4. Pay forgone rentals −q1
market at price p1 to owner

Net cashflow: 0 Net cashflow: p0(1 + i0) − p1 − q1 > 0

the arbitrageur’s behaviour on prices will be the following: a decrease in p0 and
i0; an increase in p1.

1.2.2 Investors’ behaviour

Naturally, traditional investors will not remain inactive; demand for the asset will
shrink on the spot market and will expand on the forward market, thus reinforcing
the decrease of p0 and the increase in p1. Consider now the behaviour of those
owners of the asset who intended to sell on the forward market; they will now sell
on the spot market, invest; they will earn p0(1 + i0) > q0 + p1; their action will
reinforce the movements in prices described earlier. Other investors’ behavior can
easily be inferred.

2 Introducing uncertainty and a risk premium

Until now we have supposed that investments were risk free. There was no pos-
sibility of default from the borrowers’ part, and the existence of forward markets
enabled some investors to have perfect foresight on the future cashflows generated
by their investments. This of course is a simplification of reality. The purpose of
this section is to show how equilibrium prices may be modified by the introduction
of uncertainty.

It can be safely assumed that an investor is unwilling to undertake a risky
project if his expected return is not above the risk-free rate i(t) we have referred
to until now. Symmetrically, lenders will definitely want to receive a higher return
on a risky loan. Neither of these claims prevents, however, an equilibrium to
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Figure 12.1b The equilibrium price of capital as a function of E(q1 + p1), i and ρ.

be established in such markets where investments are at risk. Both lenders and
borrowers may agree on a price of loanable funds that may be separated from the
risk-free rate by a risk premium, which may be variable through time, and which
we denote ρ(t). The Fisher equation would read

i(t) + ρ(t) = E[q(t)]

p(t)
+ E[ ṗ(t)]

p(t)

Thus, the risk-free rate i(t) would be augmented by the risk-premium ρ(t); and
instead of certain rental rates q(t) and capital gains ṗ(t), the investor would take
into consideration their expected values E[q(t)] and E[ ṗ(t)].

In order to have a precise view of the way a risk-premium diminishes the price
of capital, let us carry out our analysis in discrete time and consider as before
an investment horizon of one year. E[q(t)] would simply be E(q1), the expected
value of the rental rate to be paid in one year. E[ ṗ(t)] would be E[p1 − p0] =
E(p1) − p0. So the Fisher equation reads, with t = 0

i0 + ρ0 = E(q1 + p1)

p0
− 1 (2)

Equivalently, the equilibrium value of capital is given by

p0 = E(q1 + p1)

1 + i0 + ρ0
, (3)

i.e. by the discounted value of the asset’s expected rental and future price.
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The price of capital is thus represented by the hyperbola in (p, 1 + i + ρ) space
(figure 12.2). It can be easily seen either from figure 12.2 or equation (3) how the
equilibrium price of the asset may change if any of the four parameters in the
right-hand side of (3), E(q1), E(p1), i0 or ρ0 receives a shock of any kind. For
instance, an increase in E(q1), E(p1) or a decrease in i0 or ρ0 will lead to an
increase in the equilibrium price of the asset.

The difficult question now is to know how the market determines the risk-
premium of an asset. Indeed, should we have that knowledge, together with the
market’s expected values E(q1) and E(p1), we would immediately know whether
an asset is undervalued or overvalued, and act in consequence.

The first attempt to determine the risk-premium for financial assets was carried
out by William Sharpe in 1964; it built upon the optimal diversification principles
enunciated in 1952 by Harry Markovitz. Both authors received in 1990 the Nobel
Prize in economics for those outstanding contributions, which find a detailed
exposition in all textbooks in finance.

Here, in this highly aggregated model of the economy, what is the risk-
premium? The expected rental rate, denoted E(q/p), is just the expected marginal
productivity of capital, which we write as E(FK ). So we have

i(t) + ρ(t) = E(FK ) + E( ṗ/p)

The risk-premium, in real terms, is simply ρ(t) − E( ṗ/p) = E(FK ) − i(t);
so it is the difference between the expected value of the marginal productivity
of capital and the risk-free rate. How we can evaluate this risk premium will be
described in our next chapter.



CHAPTER 13

Optimal savings: a general approach

Enrich the time to come with smooth-faced peace,
with smiling plenty and fair prosperous days

Richmond (King Richard III)

In chapter 10 we described the serious difficulties entailed by the use of utility

functions in the definition of optimal savings policies. We then suggested to look

for optimal investment paths that would maximize the sum of time-discounted

consumption flows. This is what we will now do.

We will be led to show that the theory of economic growth should not be

separated into two strands: positive, or descriptive theory on the one hand, and

normative theory on the other. Traditionally, the literature has indeed asked two

different types of questions: what would be the evolution of the economy if the

investment-savings rate were a given, exogenous, rate s? And another question

was: what should be the savings rate if some global welfare objective were to

be attained? It is essential here to understand that when asking the first ques-

tion, we assume the economy to be competitive, and in consequence the basic

marginal equalities apply: the marginal productivity of labour is equal to the wage

rate; the marginal productivity of capital is equal to the real rate of interest. But

those very hypotheses are in fact the answer to the apparently unrelated question:

how can a society maximize the sum of the discounted consumption flows it can

acquire? We will show that the optimal savings rate is endogenous to a competitive

economy.

In this chapter, we will deal in detail with this important issue. The main result

is that the optimal savings rate will now have reasonable, very reachable values.

We will then be able to carry out comparative dynamics. A change in the elasticity

of substitution will be shown to have more impact on the optimal savings rate

than a change in any other parameter. And, even more surprising, the ultimate

benefits that society can derive from an increase in the elasticity of substitution

are considerably larger than those which would be generated by the same increase

in the rate of technical progress.

301
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1 Competitive equilibrium and its resulting savings rate

Our starting point is the fundamental equation of equilibrium on the competitive

financial and capital goods markets. We can express it either in differential form

or in integral form.

In differential form, it is

i(t) = FK (t) + ṗ(t)

p(t)
. (1)

In integral form, it can be written equivalently as

p(t) =
∫ ∞

t
FK (τ )e− ∫ τ

t i(z)dzdτ (2)

or

p(t) =
∫ t+h

t
FK (τ )e− ∫ τ

t i(z)dzdτ + p(t + h)e− ∫ t+h
t i(z)dz, (3)

depending upon the constant of integration we have chosen, as we have seen in

chapter 11. In equation (2) the price of capital is valued as the sum of discounted

cashflows over an infinitely long horizon. In equation (3), p(t) is equal to the sum

of discounted cashflows over a time span of length h, plus the discounted residual

value of capital at time t + h.

Since our analysis will always be in real terms, we will consider that i is the

real interest rate (net of ṗ/p) and keep the same notation

i(t) = FK (4)

in the differential form (1), where i(t) now designates the real rate of interest. In

integral form therefore, we can consider p as a constant that can be normalized to

one (as we did in chapter 8). Our equations (2) and (3) become

1 =
∫ ∞

t
FK (τ )e− ∫ τ

t i(z)dzdτ (5)

if cashflows are counted over an infinite horizon or equivalently

1 =
∫ t+h

t
FK (τ )e− ∫ τ

t i(z)dzdτ + e− ∫ t+h
t i(z)dz (6)

if cashflows are received over a horizon of length h, with a residual value of capital

(equal to 1) at time t + h – remember that F is net income (net of depreciation).

Differentiating (6) with respect to h and taking h to zero yields (4).

Let us now concentrate on the Fisher–Solow equation in real terms (4) which

we may write, with the dependent variables, as

i(t) = FK (Kt , Lt , t). (7)
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The dependency of the marginal productivity of capital on the time variable may

reflect the hypothesis of factor-augmenting technical progress, a hypothesis we

will retain throughout.

Before going any further, let us think about the meaning of “the interest rate”

in this highly aggregated model of the economy. We will always consider it as the

society’s rate of preference for the present in real terms. Its dependency on time

reflects possible changes in its very long term trend. It might be measured, in a

first approximation, as a moving average of real interest rates over a very long time

span (perhaps a century). We may venture to think that the rate of preference for

the present has slowly declined in those societies which experienced an increase

in their welfare over the centuries.

It definitely does not reflect the daily or yearly movements of the short-term

or long-term interest rates, because the capital stock of a society does not and

could not adjust to the stochastic behaviour of interest rates. In chapter 8, we had

supposed, as a simplification, that i(t) was a constant – in a way, an average,

long-term rate. But we should definitely examine in detail the consequences of a

variable rate of preference for the present. This will be done in due course in this

chapter.

Consider the very definition of the savings rate: it is the ratio of (net) investment

to net income, and it can be written

s = It
Yt

= K̇ t

F(Kt , Lt , t)
. (8)

The savings rate resulting from competitive equilibrium will thus be determined

as the solution of the system of equations (7) and (8):

i(t) = FKt (Kt , Lt , t) (7)

s = K̇ t

F(Kt , Lt , t)
(8)

Depending upon the structure of the production F(.), many ways to solve this

system are available, as will be demonstrated. But more fundamentally we will

now show that the above system exactly corresponds to the maximization of the

sum of the discounted consumption flows, and henceforth to an optimal growth

policy for society.

2 The optimal savings rate: derivation from optimal growth

The general problem of finding the optimal savings rate of an economy can be

written as follows: determine the optimal trajectory of capital K∗
t that maximizes

the functional

V =
∫ ∞

0
Ct e− ∫ t

0 i(z)dzdt (9)
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under the constraint

Ct = Yt − It = F(Kt , Lt , t) − K̇ t (10)

where F(Kt , Lt , t) is a concave function in K and L .

Straightforward substitution of (10) into (9) leads to maximize
∫ ∞

0
[F(Kt , Lt , t) − K̇ t ]e− ∫ t

0 i(z)dzdt (9a)

without any constraints. If G(K , K̇ , t) denotes the integrand of (10), the Euler

equation

∂G

∂K
(K , K̇ , t) − d

dt

∂G

∂ K̇
(K , K̇ , t) = 0

leads to the Fisher–Solow equation in real terms (7), i(t) = FK (Kt , Lt , t).
Furthermore, since G(K , K̇ , t) is concave1 in (K , K̇ ), we know from

Takayama’s theorem – see chapter 7 – that (7) constitutes a condition which is

both necessary and sufficient for a global maximum of the functional (9).

On the other hand the savings rate s is defined by the ratio st = It/Yt , and the

optimal savings rate is given by s∗
t = I∗

t /Y ∗
t = K̇∗

t /Y ∗
t where K∗

t is the optimal

time path of capital. So the solution of the problem is given by the very system of

equations

i(t) = FK (Kt , Lt , t) (7)

s∗
t = K̇ t

F(Kt , Lt , t)
; (8)

(7) is entailed either by competitive equilibrium, or by the intertemporal maxi-

mization of 9a as we wanted to ascertain. Figure 13.1 summarizes this result.

Notice the structure of this system (7),(8). The first equation gives Kt in implicit

form; the second equation includes both Kt in implicit form and its derivative K̇ t .

Therefore two general methods can be pursued to solve this system. The first

method consists in differentiating equation (7) with respect to time, solve it in

terms of K̇ t and replace K̇ t into equation (8). In the second method, we would

determine K∗
t from (7), then calculate Y ∗ = F(K∗

t , Lt , t), I∗
t = K̇∗

t and finally

s∗ = I∗
t /Y ∗

t . Furthermore, if the production function is homogeneous of degree

1 From chapter 7 we remember that G(K , K̇ , t) is concave in (K , K̇ ) if and only if the following

set of three conditions is met: G K K � 0; G K̇ K̇ � 0; G K K G K̇ K̇ − G2
K K̇

� 0. Here G K =
FK e− ∫ t

0 i(z)dz ; G K̇ = − e− ∫ t
0 i(z)dz . Thus G K K = FK K e− ∫ t

0 i(z)dz < 0; G K̇ K̇ = 0; G K K̇ = 0.

Hence G is concave in (K , K̇ ). Another way of checking the concavity of G is to use the concavity

of F in (K , K̇ ), and Sydsaeter and Hammond’s theorem: since G is an increasing and concave

function of F , G is concave in (K , K̇ ).
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the Fisher–Solow

equation, a Euler

equation

Optimal time paths:
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Max 0 Cte – 
0
 i(z)dz dt
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Figure 13.1 The common outcome of competitive equilibrium, optimal growth policy and
optimal, instantaneous economic policy.

one, both methods will apply as well when the central variable of interest Kt is

replaced by the capital–labour ratio rt = Kt/Lt .

Another point is worth noting. We had noticed that the Euler equation (18) in

chapter 10 led to a second-order non-linear differential equation, or equivalently

to a system of two first-order, non-linear differential equations which did not

have an analytic solution. Now equation (7) of this chapter – or its equivalent

i(t) = f
′
r (rt , t) if F(.) is homogeneous of degree one in Kt , Lt – becomes an

ordinary equation2 which usually yields a unique, closed-form solution.

Let us determine s∗ if hypotheses of the central model of economic growth

apply. We will suppose that F(.) is a CES function with labour-augmenting

technical progress at variable rate g(t); also, the work force will be increas-

ing at the variable rate n(t). These last two hypotheses mean that Lt is

2 This is due to the fact that the integrand of the functional (9a) is an affine function of K̇ (see

appendix of chapter 7).
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L0 exp{∫ t
0 [n(τ ) + g(τ )]dτ }, and the growth rate of Lt is L̇t/Lt = nt + gt . The

production function (where L0 is normalized to 1) is then

Y = F(Kt , Lt , t) =
[

δK
p
t + (1 − δ)e p

∫ t
0 [n(τ )+g(τ )]dτ

]1/p
. (11)

We now use the homogeneity of degree one of F with respect to K and L
to determine the optimal savings rate. Denoting rt = Kt/Lt , equation (7) can be

written

i(t) = f
′
(rt ) (12)

and equation (8) becomes

s∗ = K̇ t

Yt
= K̇ t

Kt

Kt/Lt

Yt/Lt
=

(
ṙt

rt
+ nt + gt

)
rt

f (rt )
. (13)

On the other hand, differentiating (12) gives

i ′(t)
i(t)

= f ′′(r )r

f ′(r )
· ṙ

r
(14)

and, denoting for simplicity rt ≡ r and f (rt ) ≡ y,

ṙ

r
= i ′(t)

i(t)

y′
y′′(r )r

≡ i ′(t)
i(t)

y′
y′′r . (15)

(Notice that if it is increasing, the growth rate of r will be negative, as it should

since y′′ = f ′′(r ) < 0).

From the expression of the elasticity of substitution

σ = − y′(y − r y′)
r yy′′

we deduce

y′
y′′r = −σ

y

y − r y′ = −σ
1

1 − r y′/y
= −σ

1

1 − π (r )
(16)

where π (r ) = FK · K/Y = f ′(r )r/y is the capital share.

So we have

ṙ

r
= − σ

1 − π

i ′(t)
i(t)

. (17)

The value of ṙ/r given by equation (17) can now be replaced in (13); also,

using (12) we can write

s∗ = r

f (r )

f ′(r )

it

[

nt + gt − σ

1 − π (r )

i ′(t)
i(t)

]

= π (r )

it

[

nt + gt − σ

1 − π (r )

i ′(t)
i(t)

]

. (18)



The optimal savings rate: derivation from optimal growth 307

But we know from chapter 4, equation (35), that π (r ) is equal to the geometric

average of δ and i , with weights σ and 1 − σ respectively, where i is now a function

of time it :

π (r ) = δσ i1−σ
t ; (19)

so finally the optimal savings rate s∗ is

s∗ =
(

δ

it

)σ
[

nt + gt − σ

1 − δσ i1−σ
t

· i
′
t

it

]

(20)

which depends solely on the parameters of the model.

This result can be verified by focusing on the K∗
t variable and applying the

second method we referred to (see exercise 2 at the end of this chapter).

Note that if σ = 1 (the Cobb–Douglas case, with y = f (r ) = rδ) the formula

remains directly applicable and reduces to

s∗ =
(

δ

it

) [

nt + gt − 1

1 − δ

i
′
t

it

]

. (21)

In line with what we stated at the beginning of this chapter, let us now consider

that i(t) is society’s very long term rate of preference for the present, and that it has

been slowly decreasing over the last centuries, presumably because of the increase

in living standards. Suppose for instance that France’s rate of preference for the

present decreased from 7% in Turgot’s century to 4% today. Such a decrease

of 300 basis points over, say, a 250-year time span means that the correspond-

ing average continuously compounded growth rate of i , denoted ξ , is such that

0.04 = 0.07 exp(ξ250), or ξ = (1/250)
∫ 250

0 [i ′(t)/ i(t)]dt = (1/250) log(4/7) =
−0.00224. It is thus in the order of minus 0.2 per cent per year. Let us now examine

the order of magnitude of the coefficient multiplying i ′(t)/ i(t) in the formula of

the optimal savings rate (this coefficient is σ/(1 − δσ i1−σ )). We will consider

that σ is within the range where it has been observed (between 0.7 and 1.1 – see

chapter 5) and that it is between 3% and 6%. Tables 13.1a and 13.1b give the

values of this coefficient for δ = 0.3 and δ = 0.25 respectively. It can be observed

that the values of the coefficient remain between 0.81 and 1.77 (it is 1 for δ = 0.3,

it = 0.04 and σ = 0.8), so that in the optimal savings rate formula nt + gt would

be reduced by a number between a minimum of 0.81 × 0.2% = 0.16% and a max-

imum of 1.77 × 0.2% = 0.35%, a number well within the margin of error of our

estimate of nt + gt (we have taken nt + gt = 2.5% as a central value through-

out this text). We feel therefore entitled to consider the rate of preference for the

present as a constant, given at time t . In the same vein, we can consider also the

population growth rate nt and the coefficient of technical progress gt as fixed at
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Table 13.1 Values of σ/(1 − δσi1−σ), the coefficient

multiplying i ′(t)/ i(t) in the optimal savings rate s∗

(a) δ = 0.3

σ 0.7 0.8 0.9 1 1.1
it

0.03 0.82 0.99 1.18 1.43 1.77
0.04 0.84 1.00 1.19 1.43 1.74
0.05 0.85 1.01 1.20 1.43 1.72
0.06 0.86 1.02 1.21 1.43 1.70

(b) δ = 0.25

σ 0.7 0.8 0.9 1 1.1
it

0.03 0.81 0.96 1.13 1.33 1.60
0.04 0.81 0.97 1.14 1.33 1.59
0.05 0.83 0.98 1.14 1.33 1.56
0.06 0.84 0.99 1.15 1.33 1.55

long term values, n and g. The optimal savings rate, if F(.) is a CES function with

labour-augmenting technical progress, is then given by

s∗ =
(

δ

i

)σ

(n + g). (22)

We will now show how this optimal, competitive equilibrium savings rate can

be constructed geometrically.

3 A geometric construction of the optimal savings rate

Suppose that the parameters of our model are constant and that the rate of techno-

logical progress g is zero (if g had a positive value, we would just work in (rγ , yγ )

space as we have done before). The equation i = f ′(r ) implies that we must stay

at an equilibrium point r∗, f (r∗), with r∗ = f
′−1(i). From this we know that the

optimal savings rate s∗ must be such that s∗ f (r∗) = nr∗, or s∗ = nr∗/ f (r∗). On

figure 13.2, draw f (r ) and nr . From the curve f (r ), determine abscissa r∗ such

that f ′(r∗) = i = tg α. Normalizing f (r∗) to one, the optimal savings rate is just

the distance nr∗.

Consider now changes in the long-term values of i and n. From the diagram it

can be immediately seen why the optimal savings rate is a decreasing function of

i and an increasing function of n. When i decreases (for instance from i0 to i1),

the equilibrium capital–labour ratio increases from r∗
0 to r∗

1 . The optimal savings
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Figure 13.2 A geometrical construction of the optimal savings rate s∗ implied by com-
petitive equilibrium. From the curve y = f (r ) determine the abscissa r∗ for which
f ′(r∗) = i(t). Since r∗ has to be maintained at that level, s∗ must be such that s∗ f (r∗) =
nr∗. So s∗ = nr∗/ f (r∗). If y = f (r∗) is normalized to 1, s∗ is just the height nr∗. The exis-
tence of competitive equilibrium enforces an equilibrium capital–labour ratio as well as an
optimal savings rate.

rate is then s∗
1 = nr∗

1 / f (r∗
1 ), which is obviously larger than s∗

0 = nr∗
0 / f (r∗

0 ). The

fact that s∗ is increasing with n is also evident from the diagram.

4 Values of the optimal savings rate and its sensitivity to
parameter changes

Table 13.2 gives an overview of the values of s∗
t when σ is between 0.7 and 1.2,

and for values of i between 2% and 10%; δ, n and g have the central values used

before: δ = 0.3; n = 0.01 and g = 0.015.

Contrary to the values of s∗ we had in chapter 10, these are reasonable, very

reachable numbers.
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Table 13.2 The optimal investment-savings rate s∗ as a function of the

rate of interest i and the elasticity of substitution σ (in per cent;

n + g = 2.5%; δ = 0.3)

it 4% 5% 6% 7% 8% 9% 10%
σ

0.7 10.2 8.9 7.7 6.9 6.3 5.8 5.4
0.75 11.3 9.6 8.4 7.4 6.7 6.2 5.7
0.8 12.5 10.5 9.1 8.0 7.2 6.6 6.0
0.85 13.9 11.5 9.8 8.6 7.7 7.0 6.4
0.9 15.3 12.5 10.6 9.3 8.2 7.4 6.7
0.95 17.0 13.7 11.5 10.0 8.8 7.8 7.1
1 18.8 15 12.5 10.7 9.4 8.3 7.5
1.05 20.7 16.4 13.5 11.5 10.0 8.9 7.9
1.10 22.9 17.9 14.7 12.4 10.7 9.4 8.4
1.15 25.4 19.6 15.9 13.3 11.4 10.0 8.8
1.20 28.1 21.5 17.2 14.3 12.2 10.6 9.3

For example, suppose that the values of n and g are 1% and 1.5% respectively.

Suppose also that the rate of preference for the present is 6% (this value may be

the addition of a 4% risk premium and a riskless real interest rate of 2%); finally,

suppose that σ = 0.9 and δ = 0.3; then the optimal savings-investment rate is

10.6%.

We are now able to carry out comparative dynamics with the optimal savings

rate s∗. We will want to know the sensitivity of s∗ to changes in the parameters of

the system. Denoting by ez,x the partial elasticity of z with respect to x (ez,x ≡
∂ log z/∂ log x), we have the following partial elasticities with respect to i, n, g
and σ , and their values when the parameters take their central values δ = 0.3;

i = 6%; σ = 0.9; n = 1%; g = 1.5%:3

es∗,i = −σ = −0.9

es∗,nt = nt

nt + gt
= 0.4

es∗,gt = gt

nt + gt
= 0.6

es∗,σ = σ log

(
δ

i

)

= 1.8

By far the parameter whose change has the greatest impact upon the optimal

savings rate is the elasticity of substitution. This confirms the importance of that

parameter in the growth process we had underlined in chapter 4.

3 Notice that δ being the partial elasticity of output with respect to capital at the base year used to

measure the indexes Y, K and L , we have not considered changes in this normalizing constant.
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In section 7, we will take a step still further and examine the impact of σ on

the ultimate variable of optimal growth, i.e. the maximum value of the discounted

consumption flows obtained by society. Before doing so, we will address the issues

of estimating the risk premium of an economy, and transition growth.

5 Estimating the risk premium of the economy

In chapter 6, we underlined the fact that an economy operates in a fundamentally

uncertain environment. Therefore, either at a micro- or macro-economic level, an

equilibrium Fisher equation must incorporate, on the side of the rate of interest, a

risk premium. In this section we will apply this very principle: we will consider

that the rate of preference for the present, which we called i(t), includes a risk

premium. Society may very well continue to equate the marginal productivity

of capital to the rate of preference for the present; but what society takes into

consideration is the expected value of the marginal productivity of capital. For that

very reason its preference for the present that would be prevalent in a risk-free

world, which we could denote as r f , is naturally augmented by a risk premium ρ.

As we have done earlier with the rate of preference for the present, we view its

component, the risk premium of the economy, as a long-term variable. We may

also conjecture that, likewise, it decreased through the centuries, perhaps with

somewhat higher variability. It is conceivable that in the Europe of the Middle

Ages the rate of preference for the present was much higher than today, and that it

reached its peak in the fourteenth century, when society was devastated by the great

plague and never-ending conflicts. It may have then decreased in the Renaissance.

War, the fear of war, and peace may have been prime factors for its fluctuations in

the last few centuries.

Let us now suppose that for some decades society has benefited from a state

of competitive equilibrium, and let us try to estimate the risk premium ρ of its

economy. If we make the assumption of competitive equilibrium, we will not need

the expected marginal productivity of capital to estimateρ. Indeed, the equilibrium,

optimal savings rate s∗ only will be needed. To see that, consider both r f and ρ

as constant. Then, replacing it by r f + ρ in (22) we have

s∗ =
(

δ

r f + ρ

)σ

(nt + gt ) (23)

from which the equilibrium risk premium, in real terms, of the economy, can be

deduced:

ρ = δ

(
nt + gt

s∗
)1/σ

− r f . (24)
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For example, consider our central case of δ = 0.3, σ = 1, nt + gt = 0.025;

suppose also that r f = 0.03 and s∗ = 0.1.4 Then ρ = 4.5%, a result which makes

quite some of sense. Also, note that ρ is a decreasing function of the optimal savings

rate s∗.

6 Growth in disequilibrium

We have shown earlier that competitive equilibrium implied an optimal savings

rate. Suppose now that, for some reason, the Fisher equation does not apply any

more, for instance because the marginal productivity of capital is above the social

rate of preference for the present, including its risk premium. We know that to

re-establish equilibrium the capital stock per person should increase. But at what

speed? Variational principles would dictate that the gap between existing capital

and the optimal capital stock should be filled as quickly as possible, i.e. by investing

all income, which is plainly indefensible.

There is no clear-cut solution to such a problem; however, it seems appropriate

to revert to the values of optimal savings s∗ that correspond to equilibrium, and

examine what would be the consequences of applying them. Remember that we

had observed in chapter 8 that those values were always in a very reasonable,

acceptable range. Let us now examine the consequences of applying s∗ when

FK > i . If we draw s∗ f (r ) in the phase diagram (figure 13.2) we can see that the

equilibrium r∗ will be reached asymptotically. For r∗ to be reached in finite time

the savings rate should be marginally above s∗. We observe that s∗ is the minimum
value of the savings rate for the economy to converge toward its equilibrium,

optimum point. But how much above s∗ should a nation save and invest remains

an open question.

Symmetrically, if the rate of preference for the present were above the marginal

productivity of capital, we have no clear-cut rule to determine what would be the

optimal policy to be pursued. We can say however that a savings rate of s∗ is

the maximum savings rate which enables the economy to direct itself toward its

competitive, optimal equilibrium. We conclude from those observations that the

rate s∗ is a useful benchmark if, in case of disequilibrium, we still try to define

what an optimum path for the economy should be.

7 Consequences for our future

We have supposed that society tries to maximize its discounted consumption flows

over an infinite horizon. The maximum value of the functional, denoted V ∗, is

V ∗ =
∫ ∞

0
C∗(t)e−i t dt (25)

4 Remember that s∗ is the net savings rate, net of depreciation.
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where C∗(t) is the optimal time path of consumption, which we will now deter-

mine. There are several ways to do this. We will indicate the method that looks

the simplest. We first consider σ �= 1.

Coming back to equation (7) and using the production function (11), we can

determine the optimal time path of capital K∗
t as

K∗
t = e(n+g)t

⎡

⎢
⎣

1 − δ
(

δ
i

)1−σ − δ

⎤

⎥
⎦

σ
σ−1

. (26)

From this optimal path, we can deduce the optimal time path of income Y ∗
t by

plugging K∗
t into the production function (11). We obtain

Y ∗
t = F(K∗

t , Lt , t) = e(n+g)t

⎧
⎪⎨

⎪⎩
δ

⎡

⎢
⎣

1 − δ
(

δ
i

)1−σ − δ

⎤

⎥
⎦ + (1 − δ)

⎫
⎪⎬

⎪⎭

σ
σ−1

. (27)

The optimal path of consumption C∗
t is just the difference Y ∗

t − I∗
t = Y ∗

t −
K̇∗

t . Here we can either calculate the derivative of (26) with respect to time, and

determine the difference Y ∗
t − K̇∗

t , or, more directly since we know the optimal

savings rate s∗, calculate C∗ = (1 − s∗)Y ∗
t . We then obtain

C∗
t =

[

1 −
(

δ

i

)σ

(n + g)

]
⎧
⎪⎨

⎪⎩
δ

⎡

⎢
⎣

1 − δ
(

δ
i

)1−σ − δ

⎤

⎥
⎦ + (1 − δ)

⎫
⎪⎬

⎪⎭

σ
σ−1

e(n+g)t .

(28)

The calculation of V ∗ is now almost immediate. With

V ∗ =
∫ ∞

0
C∗

t e−i t dt

=
[

1 −
(

δ

i

)σ

(n + g)

]
⎧
⎪⎨

⎪⎩
δ

⎡

⎢
⎣

1 − δ
(

δ
i

)1−σ − δ

⎤

⎥
⎦ + 1 − δ

⎫
⎪⎬

⎪⎭

σ
σ−1 ∫ ∞

0
e(n+g−i)t dt

(29)

we get V ∗ which depends upon the parameters σ , i, δ, n and g:

V ∗(σ , i, δ, n, g) =
1 −

(
δ
i

)σ
(n + g)

i − (n + g)

⎧
⎪⎨

⎪⎩
δ

⎡

⎢
⎣

1 − δ
(

δ
i

)1−σ − δ

⎤

⎥
⎦ + 1 − δ

⎫
⎪⎬

⎪⎭

σ
σ−1

.

(30)
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If σ = 1, we just replace F(Kt , Lt , t) by the Cobb–Douglas with labour aug-

menting technical progress at rate g and follow the same procedure. We then

obtain

V ∗(i, δ, n, g) =
1 −

(
δ
i

)
(n + g)

i − (n + g)

(
δ

i

) δ
1−δ

. (31)

We will now measure the sensitivity of this optimal value V ∗ to changes in

i, σ and g. In particular we will want to know how a change in the elasticity of

substitution σ compares to a change in the rate of technical progress from the point

of view of society’s welfare. But before that we should have a look at the speed of

convergence of the integral in (25).

7.1 The (in)significance of an infinite time horizon

Let us now ask how much time is needed to be very close to the value V ∗. “Very

close” will be defined as within 5 per thousand or less. Denoting the sum of the

discounted consumption flows from time 0 to time T as V ∗
T , we have

V ∗ = lim
T →∞ V ∗

T

and V ∗
T is equal to

V ∗
T = (1 − s∗

t )

∫ T

0
Y ∗

t e−i t . (32)

In the case σ �= 1, an immediate calculation, replacing by T the infinite upper

bound of the integral in (25), yields

V ∗
T =

1 −
(

δ
i

)σ
(n + g)

i − (n + g)

⎧
⎪⎨

⎪⎩
δ

⎡

⎢
⎣

1 − δ
(

δ
i

)1−σ − δ

⎤

⎥
⎦ + 1 − δ

⎫
⎪⎬

⎪⎭

σ
σ−1

×
{

1 − e−[i−(n+g)]T
}

(33)

so that the relationship between V ∗
T and its limiting value V ∗ is simply

V ∗
T = V ∗ {

1 − e−[i−(n+g)]T
}

. (34)

(The same result applies if σ = 1). Thus, the ratio V ∗
T /VT is just 1 − exp{−[i −

(n + g)T ]}, and does not depend on the parameters δ and σ . Table 13.3 and figure

13.3 indicate the ratio V ∗
T /V ∗ for values of i − (n + g) between 2% and 5% by

steps of 0.5%, and for various values of horizon T .

It is clear that V ∗
T reaches 0.995 V ∗ quickly. For any practical purpose, we

could replace “infinity” by 265 years for such a low discount rate i − (n + g)

as 2%.
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Table 13.3 Ratio of the definite integral V∗
T to the indefinite integral V∗

for various values of i − (n + g) and T ; V∗
T/V∗ = 1 − e−[i−(n+g)]T .

i − (n + g) 0.02 0.025 0.03 0.035 0.04 0.045 0.05
T

50 0.63 0.71 0.78 0.83 0.86 0.89 0.92
100 0.86 0.92 0.95 0.97 0.98 0.99 0.99
200 0.98 0.99 1 1 1 1 1
265 1∗ 1 1 1 1 1 1

∗ A value of 1 indicates a ratio V ∗
T /V ∗ closer to 1 than to 0.99.
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Figure 13.3 Ratio of the definite integral V∗
T to the indefinite integral V∗(V∗

T/VT =
1 − e−[i−(n+g)]T ) for values of i − (n + g) ranging from 0.02 (lower curve) to 0.05
(upper curve) by steps of 0.005.
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7.2 The optimal value V ∗ as a function of i and σ

We first give the general picture of V ∗ for various values of i and σ , supposing

that δ and n + g are fixed at 0.3 and 0.025 respectively. Table 13.4a summarizes

the results. Note that the numbers are expressed in units of net national product of

the initial year.

We all know that increasing interest rates spell bad news. The surprise here is the

amount of the damage done to society by such increases. Suppose, for instance, that

the elasticity of substitution is 0.95 and that the interest rate is 5%. Should this rate

become 6% and stay there, the total consumption flows of society as measured by

their maximum value V ∗ would fall from 78.7 to 53.6, i.e. by no less than 32%! An

increasing rate of interest is indeed paid dearly. This is quite paradoxical. Indeed,

if society’s rate of preference for the present increases, we might think (and society

might think) that its additional gain in today’s consumption is just matched by a

decrease in consumption of the same magnitude in the future. As this example

shows, this is far from true: there is a net loss for society.

How could society be compensated, at least partially for a loss in total welfare

entailed by a permanent increase in i? Clearly either by an increase in the elasticity

of substitution σ , or by an increase in the rate of technical progress g. Which way

would be more efficient is what we are now set to discover.

7.3 Is a change in the elasticity of substitution preferable to a change in

the rate of technical progress?

Consider first the effects of a change in the elasticity of substitution. The elas-

ticity of the optimal value of the functional V ∗ with respect to the elasticity of

substitution is, assuming σ �= 1:5

eV ∗,σ ≡ ∂ log V ∗
∂ log σ

= −σ

(
δ
i

)σ
(n + g) log

(
δ
i

)

1 −
(

δ
i

)σ
(n + g)

− σ

(σ − 1)2
log

⎡

⎢
⎣δ

1 − δ
(

δ
i

)1−σ − δ

+ 1 − δ

⎤

⎥
⎦ + σ2δ

σ − 1
· 1 − δ
[(

δ
i

)1−σ − δ

]2

·
(

δ

i

)1−σ

· log

(
δ

i

)

·

⎡

⎢
⎣δ

1 − δ
(

δ
i

)1−σ − δ

+ (1 − δ)

⎤

⎥
⎦

−1

. (35)

5 In the case σ = 1, eV ∗,σ is determined numerically.
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Table 13.4a Optimal value V∗(i, σ; δ, n, g) =
∫ ∞

0 C∗
t e−i t dt as a

function of the rate of interest i and the elasticity of substitution σ;

δ = 1/3 and n + g = 0.025

i 0.04 0.05 0.06 0.07 0.08 0.09
σ

0.7 97.1 57.3 40.2 30.7 24.6 20.5
0.75 102.5 60.2 42.1 32.0 25.6 21.2
0.8 108.9 63.7 44.3 33.6 26.8 22.1
0.85 116.6 67.8 46.9 35.3 28.0 23.1
0.9 126.0 72.7 49.9 37.4 29.5 24.2
0.95 137.6 78.7 53.6 39.8 31.2 25.4
1 152.4 86.1 58.0 42.7 33.2 26.9
1.05 179.6 95.4 63.4 46.2 35.6 28.6
1.10 197.2 107.5 70.3 50.5 38.5 30.6
1.15 233.1 123.6 79.1 55.8 42.0 32.9
1.2 286.1 146.0 90.7 62.6 46.3 35.8

Table 13.4b Elasticity of the optimal value V∗ =
∫ ∞

0 C∗
t e−i t dt with

respect to the elasticity of substitution σ(δ = 1/3; n + g = 2.5%)

i 4% 5% 6% 7% 8% 9% 10%
σ

0.7 0.72 0.67 0.62 0.57 0.53 0.49 0.45
0.75 0.85 0.69 0.73 0.67 0.62 0.57 0.52
0.8 1.03 0.94 0.86 0.79 0.72 0.65 0.60
0.85 1.23 1.12 1.01 0.92 0.83 0.75 0.69
0.9 1.48 1.33 1.20 1.08 0.97 0.87 0.78
0.95 1.80 1.69 1.42 1.26 1.12 1.01 0.90
1 2.19 1.92 1.68 1.48 1.31 1.16 1.03
1.05 2.69 2.32 2.01 1.74 1.53 1.34 1.19
1.10 3.34 2.83 2.41 2.07 1.79 1.56 1.37
1.15 4.23 3.49 2.92 2.47 2.11 1.82 1.58
1.2 5.46 4.37 3.57 2.96 2.50 2.12 1.82

It can be seen from table 13.4b (where δ = 0.33; n = 0.01 and g = 0.015)

that this elasticity is a strongly increasing function of the elasticity of substitution.

When σ = 0.9 and i = 0.04, eV ∗,σ = 1.48. For the same interest rate, when

σ = 1, eV ∗,σ = 2.19 and it is 3.34 when σ is 1.1.

Notice also that this elasticity is a decreasing function of i . There is always a

penalty to pay when interest rates increase.
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Table 13.4c Elasticity of the optimal value V∗ =
∫ ∞

0 C∗
t e−i t dt with

respect to the rate of technical progress g(δ = 1/3; n = 0.01; g = 0.015)

i 4% 5% 6% 7% 8% 9% 10%
σ

0.7 0.93 0.54 0.37 0.29 0.23 0.19 0.16
0.75 0.92 0.53 0.37 0.28 0.23 0.19 0.16
0.8 0.91 0.52 0.36 0.28 0.22 0.18 0.16
0.85 0.89 0.51 0.36 0.27 0.22 0.18 0.16
0.9 0.88 0.50 0.35 0.27 0.21 0.18 0.15
0.95 0.86 0.49 0.34 0.26 0.21 0.18 0.15
1 0.84 0.48 0.33 0.25 0.20 0.17 0.15
1.05 0.82 0.47 0.32 0.24 0.20 0.16 0.14
1.10 0.79 0.45 0.31 0.24 0.19 0.16 0.14
1.15 0.76 0.43 0.30 0.23 0.19 0.15 0.13
1.2 0.72 0.41 0.28 0.22 0.18 0.15 0.13

Table 13.4d The ratio of the sensitivities of V∗ to a change in the

elasticity of substitution σ and to a change in the rate of technical

progress g: eV∗,σ/eV∗,g = ∂ log V∗
∂ logσ �

∂ log V∗
∂ log g (δ=1/3; n=0.01; g=0.015)

i 4% 5% 6% 7% 8% 9% 10%
σ

0.7 0.8 1.2 1.7 2 2.3 2.6 2.8
0.75 0.9 1.5 2 2.4 2.7 3.0 3.2
0.8 1.1 1.8 2.4 2.8 3.2 3.5 3.8
0.85 1.4 2.2 2.8 3.4 3.8 4.2 4.4
0.9 1.7 2.6 3.4 4.1 4.5 4.9 5.2
0.95 2.1 3.2 4.2 4.9 5.4 5.8 6.1
1 2.6 4.0 5.1 5.9 6.5 6.9 7.1
1.05 3.3 5.0 6.2 7.1 7.8 8.2 8.4
1.10 4.2 6.3 7.8 8.8 9.4 9.8 9.9
1.15 5.6 8.1 9.8 10.9 11.5 11.8 11.8
1.2 7.6 10.7 12.6 13.7 14.2 14.3 14.1

Let us now turn to the effects of a change in the rate of labour-augmenting

technical progress. The elasticity of V ∗ with respect to g is

eV ∗,g = ∂ log V ∗
∂ log g

= g

⎡

⎢
⎣

(
δ
i

)σ

(
δ
i

)σ
(n + g) − 1

+ 1

i − (n + g)

⎤

⎥
⎦ . (36)
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Its values for various i and σ , and for the same values of the parameters δ, n
and g as previously are in table 13.4c.

As is obvious by comparing tables 13.4b and 13.4c, the elasticity of substitution

is a long winner over the rate of technological change. Apart from extremely

low – and rather irrealistic – values of σ and i , the sensitivity of V ∗ to a change in

σ is significantly higher than the sensitivity of V ∗ to a change in g. Table 13.4d

gives the ratio of both elasticities.

The results are compelling. For instance, if σ = 0.95 and i = 8%, the ratio is

5.4. While it is quite natural that the advantage of σ over g increases with σ , it is

striking that this advantage also increases with i . This tells a lot about the benefits

a society can derive from an increase in the elasticity of substitution in face of

possible higher interest rates or higher risk.

8 Conclusion

In our introduction we had mentioned the observed decline of the savings rate

in most OECD countries. A natural step is now to suggest an explanation of this

phenomenon in light of what we have just seen. We may then offer the follow-

ing conjecture. Suppose that throughout all these years during which a declining

savings rate has been witnessed, countries have been following optimal savings

policies, equating their marginal productivity to the rate of preference for the

present. We have shown that the optimal savings rate was inversely related to that

rate, and an increasing function of the elasticity of substitution (equation (40)).

Furthermore, there is evidence that the elasticity of substitution has increased in

all OECD countries. If the parameters n and g can be considered as fairly constant

during that period, we can conclude that the observed decline in savings may well

be due to a significant increase in the rate of preference for the present.

Confidence in this explanation implies that we can answer the question of opti-

mal savings. To do that, we must agree on three issues, significant hurdles in their

own right: first, the production process that drives the economy today and will drive

it in the future; and secondly, the rate of preference for the present. A final hurdle

is perhaps the most formidable one: do we have any assurance that large invest-

ment expenditures reflect the consent of the governed? Such assurance requires

democracy, the same condition for the existence of competitive equilibrium, which

we have shown to be at the very heart of optimal growth. In the last millennium,

the evolution of democracy has looked like a fractal process, with sudden, unex-

pected downfalls, sometimes identified as “accidents of history”. Nevertheless, its

upward trend has carried with it economic growth. Because of the first hurdles we

mentioned, we will perhaps never know how much a nation should save. But we

have one certainty: progress in civilization, slow as it may seem, cannot fail to

drive actual saving rates toward their optimal values.
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Exercises

13.1 The following exercises are designed to show the many ways that can

be used to determine the optimal investment-savings rate s∗ maximizing∫ ∞
0 Ct e−i t dt subject to Ct = F(Kt , Lt , t) − K̇ t . Suppose labour grows at

rate n and F(.) is Cobb–Douglas, with labour-augmenting technical progress

at rate g. Determine s∗, using the fact that FK (Kt , Lt , t) = f ′
r (rt , t). You can

get the answer by determining s∗ such that (1) i = f ′(rt , t) is maintained,

and (2) ṙ and s∗ are related by the fundamental equation of motion of the

economy (equation (14) of chapter 2). You should end up with s∗ = δ
i (n + g)

(the particular case of equation (22) where σ = 1).

13.2 Verify the formula for the optimal savings rate s∗ as given by equation (21)

by determining s∗ through the second method we indicated in this chapter

(you can deduce from i(t) = F(Kt , Lt , t) the optimal trajectory K∗
t , and

then compute K̇∗
t = I∗

t , Y ∗
t = F(K∗

t , Lt , t) and s∗ = I∗
t /Y ∗

t ).

Answers

13.1 If F(Kt , Lt , t) is Cobb–Douglas with labour-augmenting technical progress

at rate g, income Y is, with Lt = L0ent ,

Yt = K δ
t (Lt egt )1−δ = K δ

t (L0ent · egt )1−δ;

normalizing L0 to 1, we get

Yt = K δ
t e(n+g)(1−δ)t (A1)

and income per person Yt/Lt , denoted yt is

Yt

Lt
≡ yt = K δ

t e(n+g)(1−δ)t · e−nt = K δ
t ent−δnt+g(1−δ)t−nt

= K δ
t e−δnt+g(1−δ)t =

(
Kt

Lt

)δ

eg(1−δ)t ≡ rδ
t eg(1−δ)t = f (rt , t).

(A2)

Suppressing for convenience the time variable and subscript t , the marginal

productivity of capital is

∂ F

∂K
= f ′(r ) = δrδ−1eg(1−δ)t . (A3)

We know that maximizing
∫ ∞

0 Ct e−i t dt subject to Ct = F(Kt .Lt , t) − K̇ t
leads to the Fisher–Solow equation i = ∂ F/∂K = f ′(r ). In this case the

equation turns out to be

i = δrδ−1eg(1−δ)t , (A4)
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from which we deduce the optimal trajectory for rt :

r∗ =
(

δ

i

) 1
1−δ

egt (A5)

as well as the corresponding optimal trajectory of income per person (using

equation (A2)):

y∗ = f (r∗) =
(

δ

i

) δ
1−δ

egt . (A6)

In order to determine the value s∗ that will maintain r at its optimal level

r∗, remember that r is always governed by the fundamental equation of

motion ṙ = s f (r ) − nr . Here, the equation can be conveniently written in

terms of r ′s growth rate, ṙ/r . We have:

ṙ

r
= s f (r )

r
− n. (A7)

From equation (A5), for r∗ to be on its optimal trajectory, its growth rate

must be equal to g. We must have then, using (A7):

s f (r∗)

r∗ − n = g (A8)

and finally

s∗ = r∗
f (r∗)

(n + g) = (δ/ i)1/(1−δ)

(δ/ i)δ/(1−δ)
(n + g) = δ

i
(n + g), (A9)

which is indeed the optimal savings rate given by equation (22) when σ = 1.

13.2 If our production function is

Yt = F(Kt , Lt , t) =
[

δK
p
t + (1 − δ)L

p
0 e p

∫ t
0 [n(τ )+g(τ )]dτ

]1/p
,

(A10)

normalizing L0 to 1, equation i(t) = FK (Kt , Lt , t) leads to

i(t) =
[

δK
p
t + (1 − δ)e p

∫ t
0 [n(τ )+g(τ )]dτ

] 1
p −1

δK
p−1
t (A11)

from which the optimal path of capital accumulation K∗
t results:

K∗
t = e

∫ t
0 [n(τ )+g(τ )]dτ

⎡

⎢
⎣

1 − δ
(

δ
i(t)

)1−σ − δ

⎤

⎥
⎦

σ
σ−1

. (A12)
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The optimal time path of production, or income, Y ∗ is obtained by plug-

ging (A12) into (A10). We then get:

Y ∗
t = e

∫ t
0 [n(τ )+g(τ )]dτ

⎧
⎪⎨

⎪⎩
δ

⎡

⎢
⎣

1 − δ
(

δ
i(t)

)1−σ − δ

⎤

⎥
⎦ + (1 − δ)

⎫
⎪⎬

⎪⎭

σ
σ−1

.

Differentiating K∗
t with respect to time results, after simplifications, in

the optimal investment path

I∗
t = e

∫ t
0 [n(τ )+g(τ )]dτ

⎡

⎢
⎣

1 − δ
(

δ
i(t)

)1−σ − δ

⎤

⎥
⎦

σ
σ−1

×
{

nt + gt − σ

1 − δσ i1−σ
t

i ′t
it

}

.

The optimal savings rate can now be determined by forming the ratio

I∗
t /Y ∗

t . After simplifications, this yields

s∗
t =

(
δ

it

)σ
[

nt + gt − σ

1 − δσ i1−σ
t

i
′
t

it

]

as in (21).



CHAPTER 14

Problems in growth: common traits
between planned economies and

poor countries

Planning the economy is just one manifestation of the perennial desire to mould

society into a very precise, rigid, shape. All too often, unfortunately, that shape

results from the whim of a few individuals. The problem with planning is two-fold:

on the one hand its aims are intuitively appealing, since they are nothing less than

society’s future welfare. Also, the unfortunate appeal of planning is founded on

the belief that private interests are fundamentally opposed to public interests. That

belief is very deep, and may be traced as far back as we can go in history. Han

Fei Tzu justifies this opposition by the very way “private” and “public” have first

been written: “In ancient times when Ts’ang Chieh created the system of writing,

he used the character for ‘private’ to express the idea of self-centeredness, and

combined the elements for ‘private’ and ‘opposed to’ to form the character for

‘public’. The fact that public and private are mutually opposed was already well

understood at the time of Ts’ang Chieh. To regard the two as being identical in

interest is a disaster which comes from lack of consideration”.1

A further difficulty to dismissing planning offhand is that it is almost impossible

to imagine that its consequences will be the exact opposite of its intent. A planned

economy, as it will turn out, will achieve neither the objectives assigned to it, nor

its potential.

In this chapter, we will describe some of the problems encountered by planned

economies. We will then draw a parallel between those economies and countries

whose fate is to remain poor unless they put together a number of conditions

necessary for growth and development.

1 See Han Fei Tzu in Basic Writings of Mo Tzu, Hsün Tzu, and Han Fei Tzu, translated by Burton

Watson, in: Records of Civilization: Sources and Studies, Columbia University Press, New York,

1965. It is believed that Han Fei Tzu’s work dates from the middle of the third century BC.
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That society could acquire more of some essential goods or services at a lesser

cost is a natural wish. Why shouldn’t a central authority decide upon the amount

of goods to be produced and the prices at which these should be sold? In the event

of possible refusal, producers may be coerced to do so, for instance by turning

private ownership of capital (land and all industrial equipment) into public, or state

property.

1 The consequences of planning

Among the most important characteristics of a planned economy is the fact that

the capital stock (land, technical equipment) is public, not private, property. The

state will decide what to produce, in which quantities, and at what prices output

will be sold on markets. For instance, consider an agricultural market (figure 14.1).

The state may urge farmers to produce an amount q0. This amount will be bought

from farmers by a state agency – that may be a “popular commune” – at a price

p̄. The commune will then decide upon the price at which it will sell the produce

it has received from the farmers.

The first problem, of course, is that for a price p̄ producers are willing to

produce q̄ , and not more. So it is the amount q̄ that the commune will receive from

producers, and sell on the market. The commune has now a number of options:

first, it can sell this amount for the high price, p̂ = pD(q̄) that consumers are

prepared to pay for this relatively low quantity.2 Another option is to sell at any

other price below p̂, for instance at a price below pe. We will consider both cases,

and their consequences.

1.1 First possibility: the selling price is fixed at p̂

The commune has received a quantity q̄ from the farmers. It may very well decide

that it can sell this quantity at the price consumers are willing to pay for it, p(q̄) =
p̂. Consequences for society are important, and can be analysed in a very precise

way.

The commune will make a gross profit equal to the difference between the

selling and the buying price, p̂ − p̄, multiplied by the quantity q̄, i.e. ( p̂ − p̄)q̄.

This is equal to area a + c in figure 14.1. Observe that this amount does not

correspond to any value added by the commune; this amount is just the result

of transfers in income: a is financed by consumers, who have to pay p̂ − pe in

addition to what they would have paid before the institution of the commune and

if, in a free market, the equilibrium price pe had prevailed. The remainder of the

commune’s receipts, c, is transferred from producers who are paid pe − p̄ less on

the quantity q̄ which they could have sold for pe.

2 An additional reason for the amount at the communes’ disposal to be small is that sometimes

part of the production is confiscated by the state and sold or bartered abroad.
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Figure 14.1 The planned economy. First possibility: the price is fixed at p̂.

Comparing the situation of a free market, characterized by equilibrium point

E = (qe, pe), to the new equilibrium created by the commune (point E ′ = (q̄, p̂)),

we have:

• gain of the commune = a + c.

Consumers lose on two grounds: they are now able to buy qe − q̄ less of the

good; and they have to pay p̂ − pe more for the quantity q̄ they still buy. These

losses translate for the first part into a loss in surplus equal to area b, and into the

additional amount they have to disburse, a. Notice that if a, as we have observed,

is a transfer from consumers to the commune, the area b is not transferred to

anybody, it is merely lost; it will account as a net loss for society. In summary:

• loss for consumers : a + b.

Producers lose also on two grounds. First, they cannot earn the profits d they

made before; on the other hand, their profit on q̄ is reduced by c, the amount they

transfer to the commune. Symmetrically to the consumers’ fate, their loss is made
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of a transfer to the commune, c, and a net loss for society, d. We have

• loss for producers : a + d.

Let us now establish the global consequences for society from this sole, very

restrictive, accounting point of view. It is restrictive because we envision a transfer

of one monetary unit from one agent to another as neutral from society’s point of

view. We will come back to this point very soon.

Society is considered to be receiving the aggregate net gains of each agent in

the economy. We have already seen that the commune’s gains were just transfers

from consumers and producers, and that both consumers and producers suffered

net losses. We may well surmise that society will experience a net loss. This is

confirmed by aggregating the results of the three agents:

• loss for society = consumers’ loss + producers’ loss

– commune’s gain : (a + b) + (c + d) − (a + c) = b + d.

As we mentioned earlier, society will experience losses that go far beyond those

pure monetary losses. History amply documents the drama, including famine,

experienced in the Soviet Union and China when collective farming was forced

upon them. But those events are certainly not confined to those places or times.

For instance, we should think of the famines endured by France under the dictator-

ships of the Terror and the Directoire. (On this see Pierre Gaxotte, Histoire de la
révolution française.) The dramatic situation in France opened wide the door to a

series of other disasters: a first war of conquest whose initial and foremost purpose,

reckoned by the Directoire itself, was the pillage of Northern Italy, and the rise of

other authoritarian regimes, namely the Consulate and the Empire, leading to the

unending Napoleonic wars.3

Our purpose here is not to recall those events and their outcomes. We want to

concentrate on the sole economic consequences of a command economy, using the

example of an agricultural market. The first consequence is an impoverishment of

the economy, due to the very decrease in the production of the good considered.

3 It is estimated that they cost Europe four million lives – among which three million on the French

side. From the far less important economic perspective, those events would cost France dearly.

To illustrate, it would take 70 years for France to recover the level of foreign trade it experienced

before the French revolution. In the meantime, England who at the time of the Seven Year War had

an income per person about half that of France – see Turgot de l’Aulne, Réflexions sur la formation
et la distribution des richesses, 1766 – took the lead after the Treaty of Vienna. A vivid illustration

of the economic gap between France and Northern Europe in the middle of the nineteenth century

is the map of the european railway network in existence in 1850. As David Landes expressed it

very well, “the density of the railway networks is the best physical marker of the location and

pattern of European industrial development” (The Wealth and Poverty of Nations, Norton, 1998,

p. 260). While the network is dense in central Europe and extremely dense in Great Britain, Paris

is not yet connected to Lyon, not to mention Bordeaux, Marseille or Milano.
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A second series of consequences stems from the redistribution of income from

consumers and producers, on the one hand, to the commune, on the other hand.

They are important both for the present and the future of the economy.

First, the authoritarian regime will direct its income flow to areas which may

be quite different from those that society would have chosen in a more democratic

system. Second, the income transferred both by consumers and producers could

have been spent in ways that would have shaped differently the future of the

economy.

The consumers could have done two things with the income they lost. They

could have used it to buy goods and services from sectors that were not to be those

chosen by the state for development. Also, they could have saved part of it, and

those savings could have been channelled through the financial system to sectors

that might have been quite different from the areas privileged by the political

power.

Producers are clearly deprived of profits which could have been used for invest-

ment, thereby enabling the introduction of technical progress. Marginal costs

would have been pushed down, and the supply curve would have been displaced

to the right, generating an increasing surplus, and thereby the growth process we

described in chapter 2.

1.2 Second possibility: the selling price is fixed below p̂

Suppose now that the planning authorities decide that the commodity should be

sold at a price lower than p̂. We will choose it to be at p0, at a level lower than

pe (figure 14.2). This case was indeed frequently observed in planned economies:

prices were often lower than the equilibrium prices which would have prevailed

in free markets, or which could be observed in market economies with a similar

level of technical development.

The situation on the market is the following. At price p0, demand is now

qD(p0), considerably above the supply which remains fixed at qS( p̄) = q̄. Thus

an excess demand qD(p0) − q̄ is created. Such an excess demand will entail a

number of problems to be examined in turn. Two types of consequences may

follow, depending on the policy adopted. The first is organized rationing; the

second, in the absence of such a policy, is the appearance of a black market.

1.2.1 Consequences of rationing

Suppose that the state decides to ration the rare produce q̄ by distributing an equal

number of coupons to each individual, the total of coupons being equal to q̄. On

average each individual will receive a share q̄/qD(p0) of total demand. The new

equilibrium is now E ′′, and we want to compare that situation to the previous one,

characterized by equilibrium E .
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Figure 14.2 The planned economy. Second possibility: the price is fixed at p0, below pe.

Consumers lose area b and gain c1; so their loss is b − c1. For producers, they

still lose d + c1 + c2, the same amount they lost when the commune sold their

product at p̂, since they still receive only p̄ from the commune. The latter now

gains only c2. The final outcome is then:

• loss for society : b − c1 + d + c1 + c2 − c2 = b + d.

The loss is the same as the loss that prevailed when price was fixed at p̂. This

result was predictable: indeed, fundamentally society loses a quantity qe − q̄.

Society values this amount by the area under the demand curve corresponding

to this segment of the abscissa, and the cost of producing this amount is the area

under the supply curve; the difference of those two areas, the net loss, is just b + d.

1.2.2 The black market

It is obvious that rationing is preferable to a system whereby a very high price may

be fixed by the black market at p̂. If the net loss for society is the same, at least

the amount q̄ is distributed more equitably among the population – while a price
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p̂ enables only a few to gain access to the product. However, a rationing system

will seldom be successfully implemented and might soon be replaced by the black

market, driven by the very existence of an excess demand.

2 Common traits of centrally planned economies and
poor countries

After World War II, planning the economy was an idea that was by no means

confined to Eastern European countries, Russia or China. It was pervasive in

Western Europe as well – but with a fundamental difference: the principle of

private property was kept enforced, and the final step of collectivizing the capital

stock was never taken. Thus Europe embarked for almost half a century upon one

of the most remarkable – and perhaps unique – economic experiments in history,

its eastern part choosing the road of collectivization.

We may now draw a parallel between the main characteristics of planned

economies and poor countries. Common features are a closed economy, a

broken growth process, the absence of equality of chances, and the stability of

the system.

2.1 A closed economy

Planned economies and poor countries are usually closed to foreign competition;

they levy high duties on imports, or suppress imports altogether. The reasons

may differ: in poor countries, customs duties are an easy way of levying taxes;

and planned economies will tend to shun exchanges with the outside world for

political reasons. The result will be comparable to what we just saw: net losses

will be suffered by society compared to an economy that is open to the world. It

is possible to determine with precision those losses, in a manner similar to what

we have just done to measure the impact of fixed prices (see exercises 14.1, 14.2

at the end of this chapter).

2.2 A broken growth process; the potential of the economy is

not achieved

The second striking common feature is a broken growth process. Indeed, what is

called investment does not enhance the capital stock of the nation (I �= d K/dt).
Throughout this text on growth, we assumed that the capital stock and labour

combined with technological progress to generate an output which was desired by

society, divided into consumption and investment in carefully calculated propor-

tions: society invested an amount such that the present sacrifice would be exactly

matched by its rewards. In planned economies and in poor countries, investment

has been conducted on premises which have little in common with those objectives.
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The potential of the economy is not achieved for other reasons as well, which

differ however. In poor countries, the reason is the insufficient public spending on

health and education; planned economies do not achieve their potential because

the state chooses its own areas of development.

2.3 Absence of equality of chances

A problem common to planned and poor countries is that their societies are not

truly egalitarian in the sense that we defined earlier. This inequality will take a form

somewhat different in each system. In planned economies, success is bestowed

upon those close to the political power, or who work in activities privileged by

the power. In poor countries, inequalities, particularly those based upon age and

gender, are forced upon society by tradition and particular interests.

2.4 Stability of the system

Some poor countries remained so for centuries; and the experiment of planning

dragged on not for a few years, but for decades. The reason for such stability

seems to be, in each case, the weakness or the altogether absence of democracy.

The non-separation of the three powers: legislative, executive and judicial may be

self-perpetuating for a long time.

We are now led naturally to try to define the fundamental, necessary, condi-

tions for economic growth. This will be the object of our next and concluding

chapter.

Exercises

14.1 On a given market demand and supply are given respectively by:

qD = −p + 7

and

qS = p/2 − 1/2

where q is the quantity (in millions of tons), and p is the price (in hundreds

of dollars per ton).

Initially, this market is in competitive equilibrium.

(a) Determine the equilibrium price and quantity.

(b) Determine the consumers’ surplus and the producers’ surplus.

(c) Suppose that a State agency intervenes on this market, forcing producers

to sell to the said agency their produce at price p = 3. Determine the

quantity produced and the price at which the agency will sell this product,
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supposing that this price corresponds to the maximal level that consumers

are willing to pay.

(d) Indicate the losses incurred by consumers and producers; the profit made

by the agency; the transfers within society; the net loss suffered by society.

14.2 Use the same data as in question 14.1 Suppose now that the State agency

aims at maximizing its profit (defined by the difference between its income

and its costs).

(a) Which quantity will it buy from producers? At which price? What will

be the price at which the agency will sell this quantity? What will be its

profits?

(b) In a figure under the supply and demand diagram set in abscissa the

quantity of the good considered and in ordinate the profit made by the

agency. Draw the curve corresponding to that profit. Indicate the point

where this profit is maximum and those where it is equal to zero.

Answers

14.1 (a) quantity: 2 million tons; price $500/ton

(b) consumers’ surplus: $200 million; producers’ surplus: $400 million

(c) quantity: 1 million tons; price $600/ton

(d) in $millions: losses incurred by consumers: 150; losses incurred by pro-

ducers: 300; profit made by the agency: 300; transfers from consumers

to the agency: 100; transfers from producers to the agency: 200; net loss

incurred by society: 150.

14.2 100 million tons at price $300/ton; this quantity will be sold at $600/ton; the

agency’s prifit will be $300. The profit curve is the parabola π = −3q2 + 6q,

with a maximum at q = 3, and zeroes at 0 and 2.



CHAPTER 15

From Ibn Khaldun to Adam Smith, and
a proof of Smith’s conjecture

Our first aim in this concluding chapter is to bring together the fundamental condi-

tions of economic growth. As we mentioned at the outset of Part I, we believe they

were laid out in a definitive, masterly way by Ibn Khaldun in his Muqaddimah
(Introduction to History, 1377).

Western civilization had to wait four centuries for those conditions to be for-

mulated independently. One of them would be expressed in a most daring and

powerful conjecture: we owe it to Adam Smith. It is intimately linked to the very

engine of growth we have described in this text: investment, or the accumulation

of capital. Smith wrote that whenever individuals try to find the most advanta-

geous use of their capital, they are led to prefer that employment which is most

advantageous to society. By doing so, the individual “intends his own gain, and he

is in this as in many other cases, led by an invisible hand to promote an end which

was no part of his intention”.1

Here is what Kenneth Arrow and Frank Hahn had to say about Smith’s con-

jecture: “The notion that a social system moved by independent actions in pursuit

of different values is consistent with a final coherent state of balance, and one

in which the outcomes may be quite different from those intended by the agents,

is surely the most important intellectual contribution that economic thought has

made to the general understanding of social processes”.2

The conjecture is daring: it is not in the least supported by intuition. It is also

far reaching because it can steer society away from what might appeal to many:

the centralization of decisions, or planning. Our second aim in this chapter will be

to convert Smith’s conjecture into a theorem.

1 A. Smith, An Inquiry into the Nature and the Causes of the Wealth of Nations (1776). This edition:

Dent & Sons, London and Toronto, 1975, p. 400.
2 Kenneth Arrow and Frank Hahn, General Competitive Analysis, Holden-Day, San Francisco,

Oliver and Boyd, Edinburgh, 1971, p. 1.
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The power and similarity of the messages of Ibn Khaldun and Adam Smith

will induce us in a natural way to ask the question of the convergence of ideas and

values among civilizations.

1 Ibn Khaldun’s message

Ibn Khaldun built his theory of economic growth on a deep understanding of

fundamental economic mechanisms which would come to be comprehended only

very slowly, centuries later, in the Western world.3 We should cite here the idea

of the gains society can derive from the division of labour and specialization; the

mutual advantages received by two parties in an exchange process, an outcome

that was casually denied not only by Aristotle but also, two millennia later, by

some thinkers of the mercantilist school.

We will now indicate the five fundamental factors of the growth process as they

were expounded by Ibn Khaldun in his Introduction to History. They are:

� demographic growth
� technical progress
� the search for individual profit
� the principle of private property
� the soundness of political and legal institutions.

Let us examine each of these factors in turn. Some of them (the first and the

third) might come as a surprise to the reader; all have profound implications on

the organization of society. The way they are presented is not random. On the

contrary, as the reader will discover, there are logical links between them.

3 The first arabic edition of the Muqaddimah appeared in Egypt in 1857, published by Nasr al-

Hûrı̂nı̂. Almost simultaneously, another arabic edition was published in France by Etienne Marc

Quatremère, under the title Les Prolégomènes d’Ibn Khaldun (Firmin Didot Frères, Paris, 1858).

The Muqaddimah was first translated, partially, into Turkish in 1730 by Pirizade Effendi. This

Turkish translation of the first five chapters remained in manuscript form until 1859 when it was

published in Cairo. The first complete translation was made in French, and is due to William

de Slane, who based his work on the Quatremère arabic edition, on the manuscripts used by

Quatremère, the Egyptian edition, as well as on the Turkish translation. The three volumes of the

Prolégomènes appeared in 1862, 1865 and 1868 in the Notices et Extraits des manuscrits de la
Bibliothèque impériale.

The first English translation is due to Franz Rosenthal. It was published in 1958 by Routledge

and Kegan Paul, London and Henley, under the title The Muqaddimah – An Introduction to History.

We have used here the second edition (1967).

Ibn Khaldun has been a precursor of innumerable economic ideas that would be independently

rediscovered only centuries later. The fascinating life of Ibn Khaldun is beautifully related both in

Slane (1862) and Rosenthal (1958).
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1.1 First factor: demographic growth

This first factor may sound surprising to anybody who is accustomed to measuring

growth – as we all do – by an increase in income per person, and who would

therefore conclude that since the growth rate of income per person is the difference

between the growth rate of income and the growth rate of population, demographic

growth may impede economic progress. Ibn Khaldun’s idea is much more subtle:

an increase in the population will enhance the division of labour, and hence all

the gains that a society can derive from specialization and exchange. This was

certainly a remarkable observation, which could explain some of the advantages

a civilization would derive when transforming its living mode from nomadic to

sedentary.

1.2 Second factor: technical progress

Not only will demographic growth enhance the division of labour, but the con-

comitant increase in the division of labour will improve the chances of innovation

from the very fact that an individual will be able to concentrate more of his time

to a given task. Therefore, odds are that he will perfect it, or that he will be able

to find entirely new means of obtaining a given result.

1.3 Third factor: the search for individual profit

What will be the motivation for seeking to improve the way things are produced?

Possibly curiosity; but most certainly the search for profit. If only for that reason,

the search for profit would thus play a major role in economic growth. But Ibn

Khaldun, like Adam Smith four centuries later, goes much further. They will

assert that the mere search for profit is conducive to enhanced welfare for the

whole society. Let us first hear Ibn Khaldun.

Civilization and its well-being as well as business prosperity depend on pro-

ductivity and people’s efforts in all direction in their own interest and profit.

When people no longer do business in order to make a living, and when they

cease all gainful activity, the business of civilization slumps, and everything

decays. People scatter everywhere in search of sustenance, to places outside

the jurisdiction of their present government. The population of the partic-

ular region becomes light. The settlements there become empty. The cities

lie in ruins. The disintegration of (civilization) causes the disintegration of

the status of dynasty and ruler, because (their peculiar status) constitutes

the form of civilization and the form necessarily decays when its matter (in

this case, civilization) decays.4

4 Ibn Khaldun, The Muqaddimah – An Introduction to History (1377), Translated from the Arabic

by Franz Rosenthal, Routledge and Kegan Paul, London and Henley; first printing, 1958; this

edition, 1986, p. 104. The parentheses have been added for clarity by the translator.
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Those words were echoed, independently, four centuries later by Adam Smith

in his Inquiry into the Nature and Causes of the Wealth of Nations (1776):

Every individual is continually exerting himself to find out the most advan-

tageous employment for whatever capital he can command. It is his own

advantage, indeed, and not that of the society, which he has in view. But

the study of his own advantage naturally, or rather necessarily, leads him to

prefer that employment which is most advantageous to the society. . .

He generally, indeed, neither intends to promote the public interest, nor

knows how much he is promoting it . . . He intends only his own gain, and

he is in this, as in many other cases, led by an invisible hand to promote an

end which was no part of his intention.5

This is perhaps the most surprising among the factors determining economic

growth as proposed by Ibn Kahldun and Adam Smith. Indeed, how could one

imagine that in the event that some odd person (whom we do not even know) tries to

increase his own profit, his very action will benefit you or me? Neither Ibn Khaldun,

nor Adam Smith, four centuries later, would demonstrate that proposition. Theirs

was an intuition, and it became their conviction.

Both Ibn Khaldun and Smith have been very clear about the means that are not

permissible to increase profit, and among these are the creation of monopolies: Ibn

Khaldun opposed private or state monopolies; Smith denounced the large-scale

cartels that employers had formed on the labour markets.

We will show in sections 2 and 3 how this remarkable conjecture – perhaps the

most important that was ever made in economics or the social sciences – can find

a proof and how it can be illustrated.

1.4 Fourth factor: the principle of private property

The logical consequence of the search of profit as a fundamental factor of economic

growth is the principle of private property. In a section headed “Injustice brings

about the ruin of civilization”, Ibn Khaldun writes

It should be known that attacks on people’s property remove the incentive

to acquire and gain property. People, then, become of the opinion that the

purpose and ultimate destiny of (acquiring property) is to have it taken

away from them. When the incentive to acquire and obtain property is

5 Adam Smith, An Inquiry into the Nature and Causes of the Wealth of Nations (1776); this edition:

Dent: London, 1975, pp. 398–400. This quotation is extracted from Book Four, “Of Systems of

Political Economy,” Chapter II, “Of Restraints upon the Importation from Foreign Countries of

such Goods as can be produced at Home.” In this chapter, while advocating free trade, Smith held

the view that, by investing domestically (rather than abroad), individuals would maximize the

“annual revenue of society.”
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gone, people no longer make efforts to acquire any. The extent and degree

to which property rights are infringed upon determines the extent and degree

to which the efforts of the subjects to acquire property slacken. When attacks

(on property) are extensive and general, extending to all means of making a

livelihood, business inactivity, too, becomes (general), because the general

extent of (such attacks upon property) means a general destruction of the

incentive.

Ibn Khaldun analyses in detail the principle of private property, not only from

a legal but also from an economic point of view. In particular, he gives three exam-

ples, or situations, in which the principle is violated, with dramatic consequences

for society: first, slavery, which was unequivocally condemned by Ibn Khaldun –

to the best of our knowledge, he was the first writer ever to do so. Also the principle

of private property is violated by the constitution of private or state monopolies,

as well as by excessive taxation.

1.4.1 The first transgression: slavery

Here is what Ibn Khaldun had to say about slavery:

One of the greatest injustices and one which contributes most to the destruc-

tion of civilization is the unjustified imposition of tasks and the use of the

subjects for forced labor. This is so because labor belongs to the things

that constitute capital, as we shall explain in the chapter on sustenance.

Gain and sustenance represent the value realized from labor among civi-

lized people. All their efforts and all their labors are (means) for them (to

acquire) capital and (to make a) profit. They have no other way to make

a profit except (through labor). Subjects employed in cultural enterprises

gain their livelihood and profit from such activities. Now, if they are obliged

to work outside their own field and are used for forced labor unrelated to

their (ordinary ways of) making a living they no longer have any profit and

are thus deprived of the price of their labor, which is their capital (asset).

They suffer, and a good deal of their livelihood is gone, or even all of it. If

this occurs repeatedly, all incentive to cultural enterprise is destroyed, and

they cease utterly to make an effort. This leads to the destruction and ruin

of civilization.6

1.4.2 The second transgression: private and public monopolies

Ibn Khaldun goes on by showing how the principle of property is violated by the

state when it organizes public monopoly, monopsony, or both: “An injustice even

6 Ibn Khaldun, op. cit., p. 108–9.
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greater and more destructive of civilization and the dynasty than (the one just

mentioned) is the appropriation of people’s property by buying their possessions

as cheaply as possible and then reselling the merchandise to them at the highest

possible prices by means of forced sales and purchases.”7 In section 2.1 we will

show how this scheme exactly applied six centuries later when China organized,

under Mao Tse Tung, the popular communes.

1.4.3 The third transgression: excessive taxation

The last infringement on property is high taxes, which lead ultimately to the

disappearance of the dynasty:

[The] customs and needs [of the dynasty]8 become more varied because

of the prosperity and luxury in which they are immersed. As a result, the

individual imposts and assessments upon the subjects, agricultural laborers,

farmers, and all the other taxpayers, increase. Every individual impost and

assessment is greatly increased, in order to obtain a higher tax revenue.

Customs duties are placed upon articles of commerce and (levied) at the city

gates, as we shall mention later on. Then, gradual increases in the amount

of the assessments succeed each other regularly, in correspondence with the

gradual increase in the luxury customs and many needs of the dynasty and

the spending required in connection with them. Eventually, the taxes will

weigh heavily upon the subjects and overburden them. Heavy taxes become

an obligation and tradition, because the increases took place gradually, and

no one knows specifically who increased them or levied them. They lie

upon the subjects like an obligation and tradition. The assessments increase

beyond the limits of equity.

The result is that the interest of the subjects in cultural enterprises disap-

pears, since when they compare expenditures and taxes with their income

and gain and see the little profit they make, they lose all hope. There-

fore, many of them refrain from all cultural activity.9 The result is that

the total tax revenue goes down, as (the number of) the individual assess-

ments goes down. Often, when the decrease is noticed, the amounts of

individual imposts are increased. This is considered a means of compen-

sating for the decrease. Finally individual imposts and assessments reach

their limit. It would be of no avail to increase them further. The costs of

all cultural enterprise are now too high. The taxes are too heavy, and the

7 Ibid., p. 109.
8 The brackets and parentheses have been added for clarity by the translator, Franz Rosenthal.
9 The translation “cultural activity” and, further, “cultural enterprise” can be considered as synony-

mous with “enterprise”.
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profits anticipated fail to materialize. Thus the total revenue continues to

decrease, while the amounts of individual imposts and assessments con-

tinue to increase, because it is believed that such an increase will compensate

(for the drop in revenue) in the end. Finally, civilization is destroyed, because

the incentive for cultural activity is gone. It is the dynasty that suffers from

the situation, because it (is the dynasty that) profits from cultural activity.

If (the reader) understands this, he will realize that the strongest incentive

for cultural activity is to lower as much as possible the amounts of individual

imposts levied upon persons capable of undertaking cultural enterprises. In

this manner, such persons will be psychologically disposed to undertake

them, because they can be confident of making a profit from them.

1.4.4 Consequences

The consequences of such acts by the ruler are described by Ibn Khaldun:

If no trading is being done in the markets, [the subjects] have no livelihood,

and the tax revenue of the ruler decreases or deteriorates, since, in the mid-

dle (period) of a dynasty and later on, most of the tax revenue comes from

customs duties on commerce, as we have stated before. This leads to the

dissolution of the dynasty and the decay of urban civilization. The disinte-

gration comes about gradually and imperceptibly. This happens whenever

the ways and means of seizing property described above are used. On the

other hand, if (the property) is taken outright and if the hostile acts are

extended to affect the property, the wives, the lives, the skins, and the honor

of people, it will lead to sudden disintegration and decay and the quick

destruction of the dynasty. It will result in disturbances leading to com-

plete destruction. On account of these evil (consequences), all such (unfair

activities) are prohibited by the religious law. The religious law legalizes

the use of cunning in trading, but forbids depriving people of their property

illegally. The purpose is to prevent such evil (consequences), which would

lead to the destruction of civilization through disturbances or the lack of

opportunity to make a living.10

1.5 Fifth factor: soundness of political and legal institutions

We have already mentioned that the ideas contained in the Introduction to His-
tory would be rediscovered in Western civilization only centuries later. This is

true also of Ibn Khaldun’s view of an ideal political system in which individuals

should be protected. The idea would finally re-emerge in Europe in the eighteenth

10 Ibid., pp. 110–11.
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century; it would appear in the US Declaration of Independence; very slowly, the

principle would be written down in Western constitutions, and even more slowly

implemented in every citizen’s life. For Ibn Khaldun, not abiding by this principle

would lead to decadence. Let us now see how he defended this principle.

1.5.1 The all-important letter from Tâhir b. al-Husayn (821)

It is highly illuminating to see how Ibn Khaldun defined the optimal political and

legal system that should be set up. He refers to a famous letter addressed more than

five centuries before, in the year 821, by Tâhir b. al-Husayn, al-Ma’mûn’s general,

to his son Abdallâh b. Tâhir, when the latter had just been appointed governor

of an Egyptian province. Ibn Khaldun quotes here important parts of the text,

whereby Tâhir b. al-Husayn tells his son on which principles he must establish his

power:

God has been benevolent to you. He has made it obligatory for you to show

kindness to those of His servants whom He has made your subjects. He

has made it your duty to be just to them, to see to it that His rights and

punishments are observed in connection with them, to defend them and

protect their families and women, to prevent bloodshed, to make their roads

safe, and to enable them to live in peace.11

And further:

Consider it your most important task to take personal charge of the affairs of

(your) officials and to protect your subjects by looking after their needs and

providing for their requirements.12. . . Do not be greedy. Let the treasures

and riches you gather and hoard up be piety, the fear of God, justice, the

improvement of your subjects, the cultivation of their country, the supervi-

sion of their affairs, the protection of the mass of them, and support of the

unfortunates. You should know that property, once it is gathered and stored

in treasuries, does not bear fruit, but if it is invested in the welfare of the sub-

jects and used for giving them what is due to them and to prevent them from

need, then it grows and thrives. The common people prosper13. . . Devote

yourself to looking after the affairs of the poor and indigent, those who are

not able to bring before you complaints about injustices they have suffered,

and other lowly persons who do not know that they may ask for their rights.

Inquire about these people in all secrecy, and put good men from among your

subjects in charge of them. Command them to report to you their needs and

conditions, so that you will be able to look into the measures through which

11 Ibid., p. 141. 12 Ibid., pp. 143–4. 13 Ibid., pp. 145–6.
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God might improve their affairs. Have regard also for people who have suf-

fered accidents, and for their widows and orphans. Give them stipends from

the treasury, following the example of the Commander of the Faithful. . . .

Set up houses for muslims who are ill, shelter them, (appoint) attendants

in these houses who will handle them kindly, and (appoint) physicians who

will treat their diseases. Comply with their desires so long as it does not

lead to waste in the treasury.14

In the mind of Tâhir b. al-Husayn, God has endowed the ruler with power and

responsibilities he is strictly accountable for. The letter, as quoted by Ibn Khaldun,

adds: “God will punish you in connection with the duties He has placed upon you

(if you do not take care of them properly). He will make them your concern and

hold you responsible for them and reward you for (the good deeds) you have done

or (the evil deeds you have) not done.”15

1.5.2 Ibn Khaldun’s valuation of the Tâhir b. al-Husayn letter

Highly significantly, Ibn Khaldun reports that according to historians

the people liked the letter when it appeared, and it found wide circulation.

Al-ma’mûn heard about it. When it had been read to him, he said: “Tâhir did

not omit any of the matters that concern this world, the religion, administra-

tion, (the formation of) opinion, politics, the improvement of the realm and

the subjects, the preservation of the government, obedience to the caliphs,

and maintenance of the caliphate. He has dealt very well with all these

matters, and has given directions (how to handle) them.” Al-ma’mûn then

ordered the letter to be sent to all officials in the various regions, so that

they might use it as a model and act accordingly.16

A final quote of Ibn Khaldun is essential: it shows how much the famous Tâhir

b. al-Husayn letter epitomizes the ideal political system he could ever conceive:

“This is the best treatment of this type of politics that I have found”.17

2 Two illustrations of the message of Ibn Khaldun and
Adam Smith

The reader will easily be convinced of the soundness of each of Ibn Khaldun’s

propositions as fundamental causes of the growth process. There might be, how-

ever, one exception: it may be tricky, indeed, to prove the third proposition, i.e.

the search for individual profit.

14 Ibid., p. 153. 15 Ibid., p. 141. 16 Ibid., p. 156. 17 Ibid., p. 156.
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As we mentioned earlier, neither Ibn Khaldun nor Adam Smith gave a for-

mal proof of the idea. Our intent here is to offer two illustrations, which are

proofs in particular but important cases, before giving a proof of Adam Smith’s

conjecture.

Let us already note that we can understand easily that the profit motive is

certainly a sufficient condition for growth in the sense that it may be a strong

incentive both to investment (not necessarily accompanied by technical progress)

and to the introduction of technical progress which will in turn induce investment in

capital goods of a new type. Both sources of investment would definitely contribute

to the enhancements of the capital stock of the nation, and therefore to its growth.

But the message of Ibn Khaldun and Smith goes well beyond that: what they say is

that not only the economy will grow as a result of the actions of some individuals,

but the whole society will benefit from those actions; Smith will even add that

individuals’ independent decisions will lead to the maximization of advantages

received by society. This is the part which is very far from obvious, where a proof

is required; it will be the object of section 3.

We will first give two illustrations of Smith’s conjecture. Each of them applies

independently of time or place. However, the first builds upon one of the most

momentous events in the political and economic history of the second part of the

twentieth century: the suppression of the popular communes in China in 1978,

after Mao Tse Tung’s death. The second one shows how firms, when introducing

technical progress for their own benefit, end up increasing society’s welfare –

although this may occur at the expense of an ultimate decrease in their own profits.

2.1 First illustration: the consequences of suppressing popular

communes and (partially) liberalizing markets

Consider now the initial situation of a planned economy; as an example, we can

envision the situation of the popular communes in China under Mao Tse Tung. The

commune buys the production of farmers at price p̄, and the farmers have to remit

all their product to the commune; so they produce q̄, which is then sold by the

commune at the high price that consumers are prepared to pay for this relatively

scarce commodity, i.e. p̂. Thus, the commune gains the difference between its

selling price p̂ and its buying price p̄, times the quantity q̄, i.e. ( p̂ − p̄)q̄, which

is area a + c in figure 15.1.

It is a good place to note that this scheme by which the state buys some good

(usually an agricultural good) to resell at a higher price is common to all times and

places. Remember also that these schemes had been denounced by Ibn Khaldun

in very precise terms – see the above quote in section 1.4.2.

Let us briefly see what the welfare loss to society such a system entails. Con-

sumers lose a + b; a is the additional amount they have to pay in order to buy
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Figure 15.1 The net gain of society from the suppression of the popular communes. When
farmers receive the right to produce and sell on the market more than what they have
to remit to the cooperative (q̄), the equilibrium point moves from E(q̄, p̂) to E′(qe, pe).
The consumers’ net gain is a + b; the producers’ net gain is d; the loss of the popu-
lar commune is a, which is transferred to consumers. Society’s net gain is b + d, part
of which will be invested, both in agriculture and in other sectors, leading to a growth
process.

the quantity q̄; b is the surplus they would enjoy on quantity qe − q̄ if the price

was pe. Producers lose c + d; indeed, c is lost on quantity q̄ because their price

is reduced by pe − p̄; and d is the profit they would be making if they produced

the additional quantity qe − q̄.

Suppose now that the system is partially liberalized in the following sense (as

it was a few years after Mao Tse Tung’s death). Farmers are still required to sell a

quota q̄ of their production to a cooperative, at price p̄. However, they are free to

produce more than q̄ and sell it at the price they can find on the market. Farmers

do not take long to discover that they can charge, for their additional production, a
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price far superior to the one they currently receive ( p̄); in fact, they could sell some

units at a price very close to p̂. To be precise, at price p̂ they would be prepared to

supply much more than the quantity the consumers are prepared to buy (q̄). Thus

at price p̂ they immediately create an excess supply whose effect is two-fold: first

the price is driven down (the cooperative is now competing with the farmers and

has to lower its price as well); second, demand increases. The adjustment takes

place until the new equilibrium point E is reached.

Let us now measure the benefits to society of such a partial liberalization

scheme. Consumers gain a + b; producers gain d. The popular commune (now

transformed into a cooperative) loses a; in all, society’s welfare increases by

a + b + d − a = b + d .

Ibn Khaldun and Smith are once more vindicated. The producers’ intent was

to increase their profit: this they certainly achieved (by the amount d); but in

addition – and this was definitely not part of their intention – they have given

consumers a net surplus (b). How did this happen? The reason is that competition

has forced the producers to lower the initial price p̂ – and this has resulted in a

gain for the consumers.

We should now recall what the effects of that liberalization policy were in

China in the last 25 years. The surplus thus entailed in the agricultural sector

generated a huge demand both in the form of consumption and investment goods.

A remarkable growth process was thus set in motion, to an extent which has hardly

been observed anywhere else, or at any time.

2.2 Second illustration: the advantages derived by society from

technical progress introduced by firms for their own profit

Consider a given market characterized by a demand from many consumers, and

by a supply from a few – or many – competing firms. Suppose that, spurred by the

profit motive, some firms introduce technical progress in the production process.

For instance, we could imagine that these new production techniques are energy

saving.

The effect of this is to reduce the marginal costs in those firms that have

introduced those techniques; the ultimate outcome is to move the supply curve to

the right (see figure 15.2). The equilibrium point of the market thus moves from

E to E ′. Let us now draw a picture of the gains made by consumers and producers

after this process has been completed.

Let us consider first the consumers’ gain. It is equal to the areas a + b + c.

This result can be derived in two different ways: first, it can be determined as

the difference between the new consumers’ surplus and the former one. Second,

we can see that the consumers’ gain is made of two parts: the saving they make

by paying less for the initial quantity they bought q0; this saving amounts to
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Figure 15.2 The net gain of society from introducing technical progress. Technical
progress has the effect of reducing the marginal costs of firms, thus displacing the sup-
ply curve from S to S′ and the equilibrium point from E to E′. Consumers gain a + b + c.
The producers’ gain is e + f − a (due to the price decrease, this may turn out to be neg-
ative). However the net gain of society is e + b + c + f , always positive. The area e + b
is the cost reduction in the quantity initially produced; c + f is the net gain of society
corresponding to the increase in the quantity at society’s disposal.

q0(p1 − p0), which is equal to the area a + b; in addition, they receive a surplus

on the additional quantity they buy at the new price p1: this additional surplus is

area c; in total, they receive a + b + c.

Turn now to the producers. Initially their profits were a + d; their new profits

are d + e + f ; so their gain is d + e + f − a − d = e + f − a; here we have

a surprise: their gain is not necessarily positive; it may well be the case that

a > e + f , and thus introducing technical progress might well entail lower profits

for firms. The reader may easily figure out a diagram where that would be the case.

Consider finally society’s gains. They are just the sum of the consumers’ and the

producers’ gains (that may be negative). So they are a + b + c + e + f − a =
b + c + e + f . This area is always positive: hence society will always find an

advantage in technical progress being introduced by producers, although producers

as a set of individuals will not necessarily gain from it.

Let us now give an economic interpretation of the net advantage received by

society. We had simply calculated it as the sum of the gains made by consumers and

by producers. But the a priori odd-looking shape made by the b + c + e + f area

can be interpreted directly from the diagram, and makes a lot of economic sense.

Consider first the area b + e: this is what society saves on the initial quantity q0,

which is now produced at a lower cost. Secondly, society reaps another advantage

by the fact that it receives an increase in quantity (q1 − q0) which it values by
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the area under the demand curve, while it costs the area under the supply curve to

produce; the net benefit is precisely the area c + f . So the gain made by society is

partly made on the former quantity at its disposal, in terms of lower costs (to the

amount of b + e) and in a surplus on an additional amount it acquires (that surplus

is c + f ). We thus understand why the gain of society is always positive.

Let us now examine the fundamental cause of the potential miscalculation of

producers, and of the necessary decrease in price. At the initial equilibrium point,

any firm that manages to reduce its marginal cost is not any more in equilib-

rium, because its marginal revenue (the initial price p0) becomes larger than its

marginal cost (which has been reduced following the innovation in the produc-

tion technique). The firm has now a strong incentive to increase its production,

precisely to reap those marginal profits, until its new marginal cost curve meets

the horizontal p0. This is true for all firms who have managed to reduce their

marginal cost. The effect of this, of course, is to displace the supply curve S to its

new positions S′, thus entailing an excess supply at the initial price level. Firms

will compete to put on the market the additional quantity they would like to sell.

They will lower the price; demand will increase, and supply will fall along the

new supply curve S′ until the new equilibrium point E ′ is reached.

We observe finally that society will benefit from the introduction of technical

progress in an initially competitive market only if competition is maintained. This

gives striking significance to the position that both Ibn Khaldun and Smith had

taken against monopolies.

3 A proof of Smith’s conjecture

We will now take one step further. As we have seen, both Ibn Khaldun and Adam

Smith had stressed individual profit searching as a potent explanatory variable of

growth, Smith adding that not only would it be to society’s benefit, but that it

would maximize it. We will now prove Smith’s conjecture in a general setting.

What is, for society, the purpose of building up a capital stock in the amount of

K (t) at time t? It is only to receive, ultimately, consumption flows from it. Let us

then determine the whole trajectory of capital K (t), denoted �K , such that society

maximizes the sum of the discounted cashflows it can acquire from now (time 0)

to infinity.

Any consumption flow at time t is discounted via a rate of preference for the

present, equal to a risk-free rate plus a risk premium. Indeed, we may consider that

all future production, and hence future consumption, will be obtained with a degree

of uncertainty which is captured by including a risk premium in the discount factor.

Let exp(− ∫ t
0 i(z)dz) be the discount factor that applies to any cashflow received

at time t , as we have seen in chapter 9. Production at time t , Yt , is obtained via a

production function depending upon three arguments: capital Kt , labour Lt and
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the state of technological progress, as we supposed throughout this book; thus

Yt = F(Kt , Lt , t); Yt is society’s net income (net of capital depreciation).

The problem can be written

Max
�K

∫ ∞
0

Ct e− ∫ t
0 i(z)dzdt (1)

subject to

Ct = F(Kt , Lt , t) − K̇ t . (2)

We have shown in chapters 9 and 10 the many ways in which problems of this

kind can be solved, using the calculus of variations or the Pontryagin maximum

principle either with the Hamiltonian or the Dorfmanian. We choose here to use

the latter, together with the Dorfmanian, for the following reason. Using the Dorf-

manian leads to quite a remarkable conclusion: as we will show, it is not only one,

but two magnitudes that society maximizes through competitive equilibrium on

the capital market. First, society maximizes the sum, calculated over an infinite
horizon, of the discounted consumption flows which it can enjoy. Second, it max-

imizes at any point of time the benefits of its activity. It is our strong belief that the

Dorfman approach best mirrors the thinking of Ibn Khaldun and Adam Smith –

and who knows? – they might have approved of it.

Let us introduce as λ(t) the present value, as measured as of today (time 0)

of one additional unit of capital received at time t . This is defined as the present

value of the rate of increase of the optimal value of the functional per additional

unit of capital received at time t . This value will be determined as soon as the

optimization has been carried out. So λ(t)K (t) is the present value of the quantity

of capital in existence at time t , and d
dt [λ(t)K (t)] = λ(t)K̇ t + λ̇(t)Kt is the rate

at which the value of capital in existence at time t increases.

On the other hand, the direct benefit received by society is the consumption

flow Ct , expressed in present value, i.e. Ct e− ∫ t
0 i(z)dz . So our Dorfmanian is:

D = Ct e− ∫ t
0 i(z)dz + d

dt
[λ(t)K (t)]. (3)

It is indeed the total benefit society can receive at any time t if an optimal policy

in the form of an optimal trajectory of capital �K is pursued. This total benefit can

be written

D(Kt , K̇ t , t) = [F(Kt , Lt , t) − K̇ t ]e− ∫ t
0 i(z)dz + λ(t)K̇ t + λ̇(t)Kt . (4)

Let us now maximize D with respect to Kt and K̇ t . Equating the gradient of

D to zero leads to

∂ D

∂Kt
= FKt (Kt , Lt , t)e− ∫ t

0 i(z)dz + λ̇(t) = 0 (5)
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and

∂ D

∂ K̇ t
= −e− ∫ t

0 i(z)dz + λ(t) = 0 (6)

which, together with the concavity of the Dorfmanian with respect to K and K̇
gives a necessary and sufficient condition for a global maximum of D.

Differentiating (6) with respect to t and replacing λ̇(t) into (5) yields the Fisher–

Solow equation

FK (Kt , Lt , t) = i(t) (7)

which is at the very core of the individual’s objective in Ibn Khaldun’s and Smith’s

messages: the search of each individual’s advantage means that capital is employed

in such a way that its marginal productivity is equal to the rate of preference for

the present.

We should now verify that the value of λ(t), given by equation (6) as λ(t) =
exp(− ∫ t

0 i(z)dz), is indeed the present value of the rate of increase of the func-

tional’s optimal value with respect to one additional unit of capital received at time

t . Let �K designate the optimal path of capital accumulation from time t to infinity,

and V ∗(Kt , t) the maximum value of the functional. We have

V ∗(Kt , t) = Max
�K

∫ ∞
t

Cτ e− ∫ τ
t i(z)dzdτ , (8)

and the rate of increase of V ∗(Kt , t) with respect to Kt is

∂V ∗
∂Kt

= ∂

∂Kt

∫ ∞
t

[F(Kτ , Lτ , τ ) − K̇ τ ]e− ∫ τ
t i(z)dzdτ

=
∫ ∞

t
FK (Kτ , Lτ , τ )e− ∫ τ

t i(z)dzdτ . (9)

Since Kτ follows the optimal path �K , equation (7) applies at all instants τ , and the

marginal productivity of capital FK (Kτ , Lτ , τ ) in equation (9) can be replaced

by i(τ ). The rate of increase of V ∗ with respect to Kt is then:

∂V ∗
∂Kt

=
∫ ∞

t
i(τ )e− ∫ τ

t i(z)dzdτ . (10)

The indefinite integral of i(τ ) exp[− ∫ τ
t i(z)dz] is − exp[− ∫ τ

t i(z)dz] plus an

arbitrary constant. We then have:

∂V ∗
∂Kt

= −e− ∫ τ
t i(z)dz

∣
∣
∣
∞
t

= 1 (11)
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and hence λ(t), the present value of ∂V ∗/∂Kt , is

λ(t) = e− ∫ t
0 i(z)dz ∂V ∗

∂Kt
= e− ∫ t

0 i(z)dz (12)

as stated in equation 6.

The economic interpretation of this result is the following. Since the decay

of capital is systematically taken into account (F designates net income – net of

depreciation), receiving one additional unit of capital at time t implies that from

that point of time onward this unit is at society’s disposal. Keeping it as such has

an opportunity cost, measured by the consumption society could have enjoyed

instead of having that unit of capital. So the value of one additional unit of capital

at time t must be exactly one unit of consumption, and its present value is therefore

exp(− ∫ t
0 i(z)dz).

We can thus convert Smith’s conjecture into the following theorem:

Theorem If individuals find out the most advantageous employment for
whatever capital they can command by equating the marginal productivity of
capital to the rate of preference for the present, society maximizes simultaneously
two magnitudes:

(1) the sum of the discounted consumption flows society can acquire from now
to infinity

(2) the benefits of society’s activity at any point of time t; those benefits are the
sum of the consumption flows received at time t plus the rate of increase in the
value of the capital stock at that time.

This result is both surprising and powerful. It means that competitive equilib-

rium entails the maximization of society’s advantages measured by (1) as well as

by (2). It implies that the capital stock trajectory Kt and its derivative, the invest-

ment time path K̇ t , are definitely not goals in themselves, but appear as the mere

instruments of achieving society’s welfare – which they should be.

Another striking result is the following. In uncertainty, we have no idea of the

functional relationship that might prevail between the production factors and output

in the future. For instance, we do not know what kind or level of technological

progress will be achieved thirty years from now, nor do we know the very structure

of the resulting production function. The growth process may, and probably will,

be changing in a way that we can little imagine today. But in the far future, people

will know the entire history of those variables and relationships and they may

ask the question: “What should have been the optimal time path of Kt such that

society had maximized the integral of the discounted consumption flows and at

the same time its benefits at any point of time?” The answer of course is that

the Fisher–Solow equation applied at all times, and this is exactly the essence of

Smith’s conjecture.



IN CONCLUSION: ON THE CONVERGENCE OF IDEAS

AND VALUES THROUGH CIV IL IZATIONS

In the last chapter, we have shown how a conjecture of tremendous import for
the future of our societies, namely Ibn Khaldun’s and Adam Smith’s idea that our
well-being is driven by competitive equilibrium, is vindicated today by economic
theory.

Their conjecture came from two different worlds, four centuries apart. Nev-
ertheless, their works were linked in more ways than one. William Letwin had
these words to conclude his “Introduction” to Adam Smith’s magnum opus: “Far
from being a hymn in praise of anarchic greed, the Wealth of Nations is a reasoned
argument for justice, order, liberty and prudent plenty”.1 It would certainly be
difficult to find a better way to characterize the Muquaddimah by Ibn Khaldun.

We can pursue the examples of the convergence of ideas and values among
civilizations on the normative level. Remember how Ibn Khaldun had relied on
the Tâhir b.al-Husayn letter, written in 821, to define what in his mind was the
optimal form of government, and how its responsibilities were to be defined. It
turns out that Tâhir’s letter found an exact echo four centuries later, in Thomas
Aquinas’ letter to Hugues II, King of Cyprus (De Regno ad Regem Cypri, 1265).2

We will never know if Thomas Aquinas had known of Tâhir’s letter. It is most
likely that he had not. This convergence toward a common political and social
ethic is then nothing short of remarkable.

Some of the most cherished values of Western civilization were independently
formulated in the ancient chinese philosophical writings of Mo Tzu3 (later half of
the fifth century BC). Mo Tzu spent a good part of his life trying to advocate the
principle of defensive wars, and condemning offensive warfare. But this is not the
only way he announces the Augustinian precepts. His message of universal love
is based upon the fundamental principle of equality among individuals, families,

1 William Letwin, in the Introduction of A. Smith, op. ci t ., p. xxii.
2 See the profound analysis of Aquinas’ De Regno ad Regem Cypri (1265) by Patrick de Laubier,

in Pour une civilisation de l’amour, Fayard, Paris, 1990.
3 See Basic Writings of Mo Tzu, Hsün Tzu and Han Fei Tzu, translated by Burton Watson, Columbia

University Press, New York, 1963. I am very grateful to my colleague Patrick de Laubier for
bringing to my attention Mo Tzu’s work.
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cities and States – they are all equal under the Heavens. This principle would take
thousands of years to be slowly, very imperfectly implemented in law and societal
behaviour.

Mo Tzu announced values that we recognize today as belonging to
civilization – a rich, complex concept designed to characterize the multi-faceted
development of society. A civilization grows in step with the degree by which indi-
viduals, being considered as equal, are respected in their persons and in their ideas.
Progress takes many forms; it means progress in equality of rights, in tolerance,
as well as in the respect of nature. The concept is intertemporal in the sense that it
requires to heed the interests not only of the current, but of the future generations
as well. The Mo Tzu principle applies: from one generation to another, society
transmits more than it has received.

Economic growth is just one of those facets; it is only one of the interdependent
processes which make up civilization. Like natural phenomena, they do not follow
smooth paths, and defy prediction. In each of those fractal-like processes, tiny and
apparently harmless events may lead to momentous, unpredictable consequences,
often referred to as “accidents of history”. Not only the economic development of
societies, but also the evolution of ideas may experience steep, sustained downfalls
marked by the strangest of ideologies, carrying down civilization with them. Those
downfalls were endured in China after Mo Tzu’s time, during and after Europe’s
Renaissance, and throughout the French revolution; they doomed our twentieth
century, in China and on the Western and the Eastern sides of the Danube alike.

Nevertheless, how could we not see an upward trend in the paths that are slowly
shaping civilization? When we hear the voices of Mo Tzu, Tâhir b. al-Husayn, Ibn
Khaldun, Thomas Aquinas, Adam Smith, those voices from a distant past and at
the same time so close to each of us, how could we ever doubt that civilizations
will converge toward a system of common, elevated values? This is the message
of hope I want to convey to you.
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An excellent companion of this book, illustrating the difficulties and challenges

of growth and development, is William Easterly, The Elusive quest for growth:
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Eicher, T. and C. Garcia-Peñalosa, (eds.), Institutions, development and economic growth, MIT

Press, Cambridge, MA, 2006.
Eicher, T. and S. Turnovsky, (eds.), Inequality and growth, theory and policy implications, MIT

Press, Cambridge, MA, 2007.
George, Donald A. R., Oxley, Les and Carlaw, Kenneth I., Surveys in economic growth: theory

and empirics, Oxford: Blackwell, 2004.
Gylfason, Thorvaldur, Principles of economic growth, Oxford University Press, Oxford, 1999.
Helpman, Elhanan, The mystery of economic growth, Cambridge, Harvard University Press,

2004.
Jensen, B. S., The dynamic systems of basic economic growth models, Dordrecht: Kluwer

Academic Publishers, 1994.
Jones, Charles I., An introduction to economic growth, Norton, 1997.
Klundert, Theo van de, Growth theory in historical perspective: selected essays of Theo van

de Klundert, Edward Elgar, Cheltenham, UK. Edited by Sjak Smulders, 2001.



Further reading 353

Lucas, Robert E., Jr., In search of prosperity: analytic narratives on economic growth, Princeton:
Princeton University Press, 2002.

Malinvaud, E., Macroeconomic theory: a textbook on macroeconomic knowledge and analysis,
translated into English by Fenella Kirman, Elsevier, Amsterdam, 1998.

Parker, Philip M., Physioeconomics: the basis for long-run economic growth. MIT Press,
Cambridge, MA, 2000.

Rodrigo, G. Chris, Technology, economic growth and crises in East Asia. Edward Elgar, Chel-
tenham, UK, 2001.

Rodrik, Dani (ed.), In search of prosperity: analytic narratives on economic growth, Princeton:
Princeton University Press, 2003.

Rogers, Mark, Knowledge, technological catch-up and economic growth. Edward Elgar,
2003.

Romer, David, Advanced macroeconomics, 2nd edition. McGraw-Hill, Boston, MA, 2001.
Ros, Jaime, Development theory and the economics of growth, University of Michigan Press,

2000.
Solow, Robert M., Growth theory: an exposition (2nd edition), Oxford University Press, Oxford,

2000.
Thirlwall, Tony, The nature of economic growth: an alternative framework for understanding

the performance of nations, Edward Elgar, forthcoming. Mexico lectures, 2002.
Weil, David N., Economic growth, Pearson, Addison-Wesley, 2005.

An excellent synthesis of the research presently conducted on the all-important

environmental issues is in:

Brock, William A. and M. Scott Taylor, “Economic growth and the environment: a review of
theory and empirics”, in Aghion, P. and Durlauf, S., op. cit., 2005.

Other references, quoted in this book

Antras, P., “Is the U.S. aggregate production function Cobb-Douglas? New estimates of the
elasticity of substitution”, Harvard University and NBER Working Paper, September
2003.

Arrow, K., H. Chenery, B. Minhas and R. M. Solow, “Capital-labour substitution and economic
efficiency”, Review of Economics and Statistics, 43, No 4, pp. 225–50.

Arrow, K. J. and F., Hahn, General competitive analysis, Holden-Day, San Francisco, Oliver
and Toyd, Edinburgh, 1971.
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