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Jan E. Bäckvall) and The Scripps Research

Institute (with K. C. Nicolaou), he began

his independent research career at the

RWTHAachen in 1997 (with Dieter Enders).

In 2001, he finished his Habilitation and

moved to the University of Bonn as professor

for organic chemistry. Since 2003, he has

been full professor at the Karlsruhe Institute

of Technology in Germany. His research

interests include methods in drug discovery

(including drug delivery), combinatorial

chemistry towards the synthesis of biologi-

cally active compounds, total synthesis of

natural products, and nanotechnology.
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xi



Carsten S. Kramer studied biomedical

chemistry and molecular biology at the Uni-

versity of Mainz. After finishing his diploma

thesis on Aza-Claisen rearrangements

and the use of microreactors in asymmetric

synthesis (with U. Nubbemeyer), he was

awarded the Join-the-Best-Scholarship

(with the Helmholtz association as partner

company), which funded his research in bio-

physics and cell biology at the German Can-

cer Research Centre and at the NIH (USA)

(with J. Lippincott-Schwartz). As a Kekulé
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exander von Humboldt Fellowship (2010–

2011). His research interests are focused on

natural product synthesis and innovations in

transition metal catalysis.

About the Authors xiii



Anne C. Meister studied chemistry at

the University of Karlsruhe (now Karlsruhe

Institute of Technology (KIT)) from 2005

to 2010. She completed her diploma thesis

with the title “Synthesis of 4-hydroxy-5-

methylcyclohex-2-enones as building

blocks for the total synthesis of secalonic

acids” in the group of Prof. Stefan Bräse in
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1 Introduction

Mycotoxins – from the Greek mύk�ς (mykes, mukos) “fungus” and the Latin

toxicum “poison” – are a large and growing family of secondary metabolites and

hence natural products produced by fungi, in particular by molds (1). It is estimated

that well over 1,000 mycotoxins have been isolated and characterized so far, but this

number will increase over the next few decades due the availability of more

specialized analytical tools and the increasing number of fungi being isolated.

However, the most important classes of fungi responsible for these compounds

are Alternaria, Aspergillus (multiple forms), Penicillium, and Stachybotrys. The
biological activity of mycotoxins ranges from weak and/or sometimes positive

effects such as antibacterial activity (e.g. penicillin derivatives derived from Peni-
cillium strains) to strong mutagenic (e.g. aflatoxins, patulin), carcinogenic (e.g.
aflatoxins), teratogenic, neurotoxic (e.g. ochratoxins), nephrotoxic (e.g. fumonisins,

citrinin), hepatotoxic, and immunotoxic (e.g. ochratoxins, diketopiperazines)

activities (1, 2), which are discussed in detail in this volume.

The hazardous nature of mycotoxins was first associated with a disease

(mycoroxicosis) in the mid-1950s (3), however, mycotoxin-associated diseases

have been known for centuries. For example, aflatoxin was isolated and identified

in 1961, following a 1960 incident in which 100,000 turkey poults in the British

Isles died from eating feed containing contaminated peanut meal (3).
Currently, many laboratories around the world have specialized in the detection

of mycotoxins (4) in food products and contaminated housing supply materials (5).
A large number of review articles, books, and book chapters have appeared on this

topic in the last 50 years.

In this volume, we will focus on the most important classes of mycotoxins and

discuss advances in their chemistry over the last ten years. In each section, the

individual biological impact will be discussed. The chapters have been arranged

according to mycotoxin class (e.g. aflatoxins) and/or structural classes (e.g.
resorcylic acid lactones (6), diketopiperazines (7, 8)). The biological aspects will

be treated only in brief (9). For a recent, comprehensive treatise of mycotoxin

chemistry, we refer the reader to a major review (10).

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic

Natural Products, Vol. 97, DOI 10.1007/978-3-7091-1312-7_1,
# Springer-Verlag Wien 2013
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2 Aflatoxins

The aflatoxins were discovered in the 1960s, when they were identified as toxic

compounds of the fungus Aspergillus flavus, which is shown in Fig. 2.1 (11, 12).

This fungus was found in ground nut meal, which had been fed to different farm

animals. Due to this contamination, 100.000 turkeys died in 1960 in Britain of the

so-called “Turkey-X disease” (13). Later, the aflatoxins were also found in other

Aspergillus species and in some Penicillium fungi. The name “aflatoxin” is an

abbreviation of Aspergillus flavus toxins (14). Up to the present, the aflatoxins are

among the most acutely toxic and carcinogenic compounds known (13). Although
most countries in the world now have limitations for the maximum tolerated levels

of aflatoxins in food, contamination by these compounds is still a problem (15).
Aflatoxins are found regularly in different foods, especially the milk of cows, which

gets intoxicated by affected animal feed (13, 15, 16).

Fig. 2.1 Aspergillus flavus spores as seen under the light microscope under 600-fold magnification

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic

Natural Products, Vol. 97, DOI 10.1007/978-3-7091-1312-7_2,
# Springer-Verlag Wien 2013
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The most widely examined aflatoxin is aflatoxin B1 (1), which is also the most

toxic, carcinogenic, and mutagenic aflatoxin among all that are presently known

(17, 18). It was isolated together with aflatoxins B2 (2), G1 (3), and G2 (4), which are

shown in Fig. 2.2 (19). Their structures were revealed by the group of B€uchi in 1963
(B1 (1) and G1 (3)) and 1965 (B2 (2) and G2 (4)) (20, 21). This group also elucidated
the absolute stereochemistry of aflatoxins in the B and G series by chemical

degradation (22). Structurally, these compounds consist of five rings, having

a furofuran moiety (rings B and C), an aromatic six-membered ring (A), a

six-membered lactone ring (D), and either a five-membered pentanone or a

six-membered lactone ring (E).

While the aflatoxins B and G are major compounds of the fungus Aspergillus
flavus, there are also minor aflatoxin constituents from this organism, e.g.
hydroxylated derivatives of aflatoxin B1 (1) and B2 (2), the so-called “milk-toxins”,

M1 (5) and M2 (6), which bear a hydroxy group at the junction of the two furan rings

(19). They are called “milk toxins”, because they are metabolites of aflatoxin B1 (1)

and B2 (2), formed when cows get fed with contaminated foodstuffs. The toxins are

then contained in the cow’s milk. Other aflatoxins have a hydroxy group instead of
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Fig. 2.2 The aflatoxins B1, B2, G1, and G2 (1–4)

4 2 Aflatoxins



a carbonyl group at ring E (R0 (7), RB1 (9), RB2 (10), and H1 (8)). They can be

formed by microbial transformation or by chemical reduction with sodium borohy-

dride (23, 24). In some aflatoxins, the D-ring (RB1 (9), RB2 (10)) or the E-ring

(B3 (11)) is opened. Aflatoxin B3 (11) is also called parasiticol, because it was first

isolated from Aspergillus parasiticus (23). All aflatoxins shown in Fig. 2.3 are

metabolic transformation products from the aflatoxins B (19).
Biosynthetically, the aflatoxins are all formed from the same precursor,

versiconal hemiacetal acetate (12) (25). Compound 12 is formed from acetate, the

units of which are converted into a polyketide. The polyketide is then metabolized

to the xanthone 12 (see Scheme 2.1) (26). Intermediate 12 can then be transformed

either into versicolorin A (13) or versicolorin B (14) in several steps. Versicolorin A

(13) may be converted to sterigmatocystin (15), while 14 can lead to dihydro-

sterigmatocystin (16). Sterigmatocystin (15) can be metabolized to aflatoxins G1 (3)

or B1 (1) and the latter may then be transformed to aflatoxin M1 (5). Aflatoxins B2

(2) and G2 (4) are formed from dihydrosterigmatocystin (16) and aflatoxin M2 (6) is

formed by conversion from B2 (2). Pathways also exist to convert aflatoxin B1 (1) to

B2 (2), M1 (5) to M2 (6), and G1 (3) to G2 (4), and vice versa. Important biosynthesis

steps are shown in Scheme 2.1.
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2.1 Biological Properties

Aflatoxins are acutely toxic compounds, and produce hepatic changes, which can

cause serious liver damage (27). The liver is the main organ affected, followed by

the kidneys. Hemorrhage, cirrhosis, and fatty degeneration of the liver are the most

common effects on ingestion, but the pancreas, gall bladder, lung, and gut may also

be affected (28).
When taken orally, the aflatoxins are absorbed from the gut and are transported

to the liver where they are metabolized. For example, aflatoxin B1 (1) may be

transformed to aflatoxin M1 (5), representing a detoxification, since aflatoxin M1 (5)

is less active than aflatoxin B1 (1) (see below) (27). However, a common metabolic

process is diol formation at the double bond of the furan ring. The resultant

aflatoxin B1-2,3-diol is much more toxic than aflatoxin B1 (1) itself. Accordingly,

diol formation results from metabolic activation to a very toxic species (29).
Among the naturally occurring aflatoxins, aflatoxin B1 (1) is the most acutely

toxic representative, followed by aflatoxins G1 (3), B2 (2), and G2 (4). This is shown

by LD50 values of one-day-old ducklings. While the LD50 of aflatoxin B1 (1) is

0.36 mg/kg, the corresponding value for aflatoxin B2 (2) is five times higher, with

this compound containing a saturated furan ring. This shows that the unsaturated

furan moiety has an important effect on acute toxicity. On comparing the LD50

value of aflatoxin G1 (3) with that of B1 (1), where the cyclopentanone ring has been

converted in the former compound into a six-membered lactone ring, 3 is consider-

ably less potent (0.78 mg/kg). Therefore, the cyclopentanone ring is of lesser

importance for the mediation of acute toxicity (27, 30).
Besides their acute toxicity, aflatoxins are also highly carcinogenic. In fact,

aflatoxin B1 (1) is the most potent known liver carcinogen for mammals. It can

not only induce tumors and metastases when directly injected, but also when it is

given orally over a long period (13). Aflatoxins inhibit DNA-, RNA-, and protein

biosynthesis by adduct formation (14, 31, 32). Their mutagenic potential is related

to these biological effects. Structure-activity relationships for the carcinogenicity

and mutagenicity of aflatoxins show the same general trends as for their acute

toxicity. After aflatoxin B1 (1), aflatoxin R0 (7) is the most powerful mutagen,

followed by aflatoxins M1 (5), H1 (8), B2 (2), and G2 (4) (17). When tested for their

effects on chromosomes, aflatoxins cause a highly significant increase in the

number of abnormal anaphases, with fragmentation of the chromosomes and

inhibition of mitosis being observed (13).
The high toxicity and carcinogenicity of the aflatoxins makes it impractical to

use them as pharmacological agents. Only very few studies have been carried out to

investigate their potential as drugs or pesticides. In one study, it was shown that

aflatoxins are able to inhibit sporulation of different fungi by inhibiting the activity

of essential enzymes (33). However, the fact that they belong to the most toxic,

carcinogenic, and mutagenic group of mycotoxins known, makes it improbable that

these substances will ever be applied as therapeutic agents.

2.1 Biological Properties 7



2.2 Total Syntheses of Aflatoxins

2.2.1 Total Syntheses of Racemic Aflatoxins

The group of B€uchi, who also determined the structure and absolute configuration

of several aflatoxins (20–22), achieved the first total synthesis of racemic aflatoxin

B1 (1) in 1966 (34, 35). They started from phloroacetophenone (17), which was

converted in two steps into its monomethyl ether 18 (see Scheme 2.2). Selective

monobenzylation, followed byWittig condensation and selenium dioxide oxidation

gave the bicyclic aldehyde 19 in good yield.

Reduction of the double bond with zinc/glacial acetic acid and in situ rearrange-

ment resulted in the tricyclic species 20, which already possesses three of the five

aflatoxin rings. Deprotection of the benzyl ether by hydrogenation, followed by a

Pechmann condensation with ethyl methyl b-oxoadipate gave the lactone 21. The

two methyl esters and the methyl ether were hydrolyzed under acidic conditions and

the lactone 22 formed immediately. Conversion of the acid into its chloride with

oxalyl chloride formed the five-ring lactone 23. Reduction to the corresponding

lactol, acetoxylation, and pyrolysis gave racemic aflatoxin B1 (1) in 13 steps and

0.9% overall yield from 17.

OH
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HO
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(phloroacetophenone)

a), b)

O
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O

HO
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O

O

O

O
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c) - e) f)
O

O

O

OBn

O

20

g), h)

O

O

O

O
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CO2Me

CO2Me

O

i)

OO

O

O

O

O

CO2H

22

j)

OO

O

O

O

O
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O

k) - m)

rac-1
(rac -aflatoxin B1)

Scheme 2.2 First total synthesis of aflatoxin B1 (1), achieved by B€uchi et al.. Reagents and

conditions: a) Ac2O, 110–165
�C, 2 h, 40%; b) CH2N2, Et2O/dioxane, rt; then HCl, MeOH, reflux,

8 h, 83%; c) BnBr, K2CO3, acetone, rt, 14 h, 82%; d) carbethoxymethylenetriphenylphosphorane,

170�C, 19 h, 72%; e) SeO2, xylene, reflux, 5 h, 93%; f) Zn, HOAc, 100–120�C, 1.5 h, 80%; g) H2,

Pd/C, ethanol, rt, 2 h, quant; h) b-oxoadipate, HCl, MeOH, �12 to �20�C; then 3–5�C, 18 h, 57%;

i) HOAc, H2O, HCl (aq.), rt, 24 h, quant; j) (COCl)2, CH2Cl2, 5
�C to rt, 48 h; then AlCl3, CH2Cl2,

�5 to 5�C, 10 h; thenHCl, rt, 2 h, 37%; k) disiamylborane, diglyme/THF, 60�C, 84 h, 16%; l) p-TsOH
(cat.), Ac2O, HOAc, rt, 12 h, 70%; m) 240�C, 15 min, 0.01 mm, 40%
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In 1969, B€uchi et al. published the first total synthesis of racemic aflatoxin

M1 (5) (36). They started with the diol 24, which was first dimethylated with

dimethyl sulfate, then mono deprotected by aluminum chloride, and finally

benzylated to afford species 25 (see Scheme 2.3).

Bromination at the a-position to the carbonyl group, and conversion into the

benzyl ether gave acetal 26. Grignard addition of allylmagnesium bromide to the

ketone, followed by diol formation and oxidative glycol cleavage with sodium

periodate and osmium tetroxide, yielded aldehyde 27. Hydrogenolysis of the two

benzyl ethers, followed by acetoxylation and pyrolysis gave the tricyclic alcohol

28. The acetoxy group was cleaved by basic hydrolysis and the resulting alcohol

was coupled with 2-carboxyethyl-3-bromocyclopent-2-enone to give racemic afla-

toxin M1 (5) in 11 linear steps from 24 and 0.7% overall yield.

One year later, in 1970, B€uchi andWeinreb presented a total synthesis of racemic

aflatoxin G1 (3) and an improved synthesis of aflatoxin B1 (1) (37). The synthesis of 1
involved the same coupling with a cyclopentenone as described above for the total

synthesis of aflatoxin M1 (5) (see last step in Scheme 2.3). Accordingly, this group

was able to increase the overall yield to 2.5%with the same number of reaction steps.

O

OH

OH

O

a) - c)

O

O

OBn

O
24 25

d), e)

O

O

OBn

O

26
BnO

f), g)

O

O

OBn

OH

27

BnO

O

h), i)
O

O

O

OAc
OH

28

j), k)
rac -5

(rac -aflatoxin M1)

Scheme 2.3 Total synthesis of racemic aflatoxin M1 (5) by B€uchi et al. Reagents and conditions:
a) Me2SO4, K2CO3, dimethoxyethane, reflux, 3 h, 79%; b) AlCl3, CH2Cl2, reflux, 1.25 h; then HCl,

reflux, 64%; c) BnBr, K2CO3, dimethoxyethane/DMF, reflux, 74%; d) Me3NPhBr3, THF, 88%;

e) CaCO3, BnOH, D, 1.5 h, 65%; f) allylmagnesium bromide, THF/Et2O, 0
�C, 10 min; g) NaIO4,

OsO4, NaHCO3, dioxane/water, rt, 1 h, 63% over two steps; h) H2, Pd/C, NaOAc, Ac2O/benzene,

rt, 1.5 h, 27%; i) toluene, 450�C, 73%; j) NaHCO3, MeOH/H2O, rt, 0.75 h, 94%; k) 2-carboxy-3-

bromocyclopent-2-enone, NaHCO3, ZnCO3, CH2Cl2, rt, 20 h, 32%
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The synthesis of aflatoxin G1 (3) is shown in Scheme 2.4. The acid chloride 29 was

coupledwith diethylmalonate (! 30), then the benzyl protecting groupwas removedby

hydrogenolysis and lactone 31 formed. Conversion of the hydroxy group into the

bromidewith oxalyl bromide, followedby couplingwith buildingblock32gave racemic

aflatoxin G1 (3). Different syntheses of the tricycle 32 are presented in Sect. 2.3.2.

Aflatoxin B2 (2) was first synthesized by Roberts et al. in 1968 (38). They started
from the tricyclic compound 33, for which the synthesis is described in Sect. 2.3.1.

Pechmann condensation with diethyl b-oxoadipate generated the lactone 34.

Hydrolysis of the ethyl ester, followed by acid chloride formation with oxalyl

chloride, gave 35. This was used without further purification for a Friedel-Crafts
acylation reaction to yield racemic aflatoxin B2 (2). The synthesis is presented in

Scheme 2.5, which also shows another total synthesis of aflatoxin B2 (2). The

second one was published in 1990 by Horne et al. (39). This group started from

the same intermediate 33 and first diiodinated it. Regioselective deiodination gave

36. The free alcohol was then protected as a benzyl ether, then a metal halogen

exchange was realized with n-BuLi, followed by a transmetalation with lithium 2-

thienylcyano cuprate. Final cuprate addition to the cyclopentanone 37 gave 38.

Cleavage of the benzyl ether by hydrogenolysis and acidic cleavage of the ester

group produced the five-ring-species 39 in situ. Oxidation to aflatoxin B2 (2) was

achieved with DDQ.

OBn

COCl

a)

OBn

O

CO2Et

CO2Et

29 30 31 32

rac -3
(rac -aflatoxin G1)

b) O

O

CO2Et

HO

c), d)

O

O

OH

O

Scheme 2.4 Total synthesis of racemic aflatoxin G1 (3). Reagents and conditions:

a) diethylmalonate, Mg, ethanol/CCl4, 0
�C; then Et2O, reflux, 3 h; then 29, Et2O, rt, 2 h, 97%;

b) H2, Pd/C, EtOAc, rt, 2 h, 64%; c) (COBr)2, benzene, rt, 96%; d) 32, ZnCO3, LiI, CH2Cl2, rt, 3 h;

then reflux, 7 h; then rt, 14%
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2.2.2 Enantioselective Total Syntheses of Aflatoxins

In 2003, Trost and Toste presented the first enantioselective total synthesis of

aflatoxins B1 (1) and B2a (46) (40, 41). In Scheme 2.6, their synthesis is shown.

The starting material for this sequence is catechol 40. A Pechmann condensation

with diethyl b-oxoadipate and iodination with iodine chloride gave the lactone 41.

O

O

O
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33
O

O

O

O

34

O

CO2Eta)

O

O

O

O

35

O

CO2Clb), c)

O

O

O

O

O O

rac-2
(rac-aflatoxin B2)

d)

O

O

O

OH

33

e), f)

O

O

O

OH

36

I g) - j)

O
EtO2C

37

O

O

O

OBn

38

EtO2C
O

k), l)

O

O

O

O

39

O O

m)
rac-2

(rac -aflatoxin B2)

Scheme 2.5 Syntheses of aflatoxin B2 (2) by Roberts et al. (above) and by Horne et al. (below).
Reagents and conditions: a) diethyl b-oxoadipate, HCl, ethanol, rt, 19%; b) KOH, ethanol, reflux,

2 h, 76%; c) (COCl)2, CH2Cl2; d) AlCl3, CH2Cl2,�5�C, 3 h, 38% over two steps; e) Me3BnNICl2,

MeOH/CH2Cl2; f) NaH, 0
�C; then n-BuLi, �100�C, 15 min, 70%; g) BnBr, K2CO3; h) n-BuLi,

�78�C; i) lithium 2-thienylcyano cuprate, �78�C to 0�C; j) 37, �78�C to rt, 60% over three steps;

k) H2, Pd/C, EtOAc, rt, 9 h, 200 psi; l) TFA, CH2Cl2, rt, 60% over two steps; m) DDQ, dioxane, rt,

quant
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The stereogenic centers were then introduced by palladium-catalyzed dynamic

kinetic asymmetric transformation. Therefore, 41 was coupled with lactone 42 in the

presence of chiral ligand (R,R)-43 and gave 44 in 89% yield. The synthesis of 42 is

shown below in Scheme 2.6. Compound 44 was subjected to an intramolecular Heck
reaction followed by acidic cleavage of the ester function (! 45). The intramolecular

Heck reaction only produced one diastereomer, because the cis-annelated rings are

favored. Scandium(III)-mediated cyclization and reduction of the lactone with DIBAL-

H yielded (–)-aflatoxin B2a (46). It was acetoxylated and then pyrolyzed to give (–)-

aflatoxin B1 (1) in 1.6% overall yield and nine linear steps from catechol (40).

In 2005, Zhou and Corey presented an enantioselective total synthesis of aflatoxin

B2 (2) (42). This is shown in Scheme 2.7. The stereospecificity was induced in the first

step by an asymmetric [3 + 2]-cycloaddition with a chiral borazine. Methoxy p-
benzoquinone (49) reacted with dihydrofuran (50) in the presence of 51 and gave 52

in 99% enantiomeric excess. Sequential ortho-formylation and triflate ester formation

yielded 53. Ketone 54 was formed by Grignard reaction and Dess-Martin-periodinane
oxidation. Baeyer-Villiger oxidation and reductive removal of the triflate group,

together with deacetoxylation produced the alcohol 55. Conversion into (–)-aflatoxin

B2 ((–)-2) (2.5% overall yield for eight steps) was achieved by coupling with 3-bromo-

2-carboxyethyl-cyclopent-2-enone.
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O
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O O j)
O

O

HO k)
O
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424847

NH HN
OO

Ph2P

PPh2

(R,R)-43

d), e) O

O

O

O

O

CO2H

O
45

f), g) O

O

O

OH

O

O
(-)-46

(( -) )-aflatoxin B2a

O

h), i)
(-)-1

((-)-aflatoxin B1)
H

H

H

H

Scheme 2.6 Enantioselective total synthesis of (–)-aflatoxin B2a (46) and (–)-aflatoxin B1 (1).

Reagents and conditions: a) diethyl b-oxoadipate, HCl, ethanol, rt, 3 d, 47%; b) ICl, CH2Cl2, rt,

30 min, 92%; c) 42, Pd2dba3•CHCl3, (R,R)-43, tetrabutylammonium chloride, CH2Cl2, rt, 12 h,

89%; d) (CH3CN)2PdCl2, NEt3, DMF, 60�C, 1 h, 93%; e) HCl, HOAc, H2O, rt, 2 d, quant; f) Sc

(OTf)3, LiClO4, CH3NO2, 60
�C, 4 h, 32%; g) DIBAL-H, CH2Cl2, �78�C, 1 h, 57%; h) Ac2O,

HOAc, rt, 20 h; i) 240�C, 15 min, 24% over two steps; j) Rose Bengal, O2, MeOH, 450WHg lamp,

8 h; k) Boc2O, pyridine, THF, rt, 12 h, 61% over two steps
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2.3 Syntheses of Aflatoxin Building Blocks

2.3.1 Syntheses of Building Blocks for Aflatoxins B2

and G2

There are many different syntheses for the important building block 33 (Fig. 2.4).

From this molecule, one can easily build aflatoxins B2 (2) and G2 (4) by the

reactions presented in Sect. 2.2.

The first access to 33 was published by Knight et al. in 1966 and is presented in

Scheme 2.8 (43). The diol 56 was monomethylated, benzylated, and then oxidized

by selenium dioxide (! 57). The acetal was then formed with ethanol, the benzyl

group was removed with hydrogen, and the resulting alcohol was converted into

acetate 58. Reduction of the lactone to the lactol afforded ring opening and

following acidic hydrolysis of the acetate gave the desired building block 33 in

5.3% overall yield.
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O
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(-)-2
((-)-aflatoxin B2)
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H
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H
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H
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Scheme 2.7 Enantioselective total synthesis of aflatoxin B2 (2). Reagents and conditions: a) 51,

CH2Cl2/CH3CN, �78�C to rt, 7 h, 65%, 99% ee; b) hexamethylenetetramine, HOAc, 110�C, 48 h,
40%; c) DMAP (cat.), pyridine, Tf2O, CH2Cl2, �20�C to 0�C, 80%; d) MeMgBr, THF, �20�C,
2 h; e) DMP, CH2Cl2, 0

�C to rt, 85% over two steps; f) TFAA, urea•H2O, CH2Cl2, rt, 63%;

g) Raney-Ni, H2, MeOH, rt, 3 h, 60%; h) NaHCO3, ZnCO3, ethyl 2-bromo-5-oxocyclopent-1-

enecarboxylate, CH2Cl2, rt, 20 h, 36%

O

O

OH

O

33

Fig. 2.4 Building block 33 for aflatoxins B2 (2) and G2 (4)
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A straightforward access to 33 in six steps and 49% overall yield was published by

Castellino and Rapoport in 1985 and is shown in Scheme 2.9 (44). The first step was an
imine formation (! 61). By heating under acidic conditions, an oxaza-Cope rearrange-
ment occurred, which, after hydrolysis, led to ring closure to the furan 62. Under these

conditions, the benzoyl group was cleaved. The free alcohol was then protected by

degradation products of the solvent THF, which were formed by acid cleavage. Basic

hydrogenolysis gave the regioisomers 63 and 64, which were not separated. With

catalytic amounts of p-TsOH under heating, ring closure occurred. The free alcohol

was then methylated and the mesyl group was removed to form 33 together with its

regioisomer 65.

Other syntheses of 33 have been presented in more recent years:Weeratunga et al.
presented a nine-step-synthesis with 4% overall yield (45), where the key steps were a
cyclization-deiodination-reaction and a lead tetraacetate-conducted ring closure.

Koreeda et al. published their building-block-synthesis in 1993 with 11% overall

yield (46), and in 1996, Pirrung and Lee synthesized 33 via a rhodium carbenoid

dipolar cycloaddition (47).
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a) - c)
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d) - f)
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EtO OEt

g)
O

O

OH

O

33
O

Scheme 2.8 First synthesis of 33. Reagents and conditions: a) Me2SO4, Na2CO3, H2O, 80
�C,

0.5 h, 33%; b) BnCl, NaI, Na2CO3, acetone, reflux, 8 h, 81%; c) SeO2, xylene, reflux, 6 h, 59%;

d) HCl, EtOH, (EtO)3CH, rt to 50
�C; then rt, 89%; e) H2, Adams catalyst, EtOAc, rt, 88%; f) Ac2O,

pyridine, 86%; g) LiAlH4, Et2O, reflux, 4 h; then HCl, 50%

O
OBz

OMs

MsO O
NH2

+
59

60

OMs

MsO O
N

OBz
H

61

MsO

MsO

O

OBz

Cl
62

RO

R'O

O

OH

Cl
63 R = H, R' = Ms
64 R = Ms, R' = H

O

O

OR

R'O
33 R = Me, R' = H
65 R = H, R' = Me

a) b)

c) d) - f)

Scheme 2.9 Short access to 33 via oxaza-Cope rearrangement. Reagents and conditions: a) HCl,

ethanol, reflux, 83%; b) HCl, THF, 65�C, 24 h, 87%; c) LiOH•H2O, THF/H2O, 40
�C, 1 d, 95%;

d) p-TsOH (cat.), 4 Å activated sieves, CH3CN, rt, 45 min, 95%; e) Me2SO4, K2CO3, CH3CN, rt,

1.75 h, 93%; f) Et4NOH, THF/H2O, reflux, 5 h, quant
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A recent synthesis of this building block has been published by Eastham et al. in
2006 (48). Their key step is a D€otz benzannulation reaction and is shown in

Scheme 2.10. The bromohydrin 66 was formed from dihydrofuran (50). Cobalt-

mediated cyclization, followed by ozonolysis with reductive work-up yielded 68

after hydrazine formation. Reductive removal of the hydrazine function, followed by

chromium-carbonyl formation gave the D€otz reaction precursor 69. This reacted with

an alkyne in the D€otz reaction, and was then oxidized and hydrogenated (! 70).

Pyrolysis gave the protected alcohol and the remaining free alcohol was protected as a

triflate (! 71). Reductive removal of the triflate and deprotection of the silyl ether

yielded the desired 33 in 1.2% overall yield.

2.3.2 Syntheses of Building Blocks for Aflatoxins B1

and G1

There exist many references describing the syntheses of aflatoxin B1 and G1 building

blocks. Since aflatoxin B1 (1) can be converted via hydrogenolysis into aflatoxins B2

(2) and G1 (3) into G2 (4), the building blocks described in this chapter can also be

precursors for aflatoxins B2 (2) and G2 (4).

There are different syntheses for unsubstituted model systems of aflatoxin precursors.

However, these cannot be used for total synthesis (Fig. 2.5). Compound 72 has been

synthesized by Pawlowski et al. in four steps (49). Compound 73 was obtained in four

steps by Snider et al. via a ketene-[2 + 2]-cycloaddition and a Baeyer-Villiger oxidation
(50). Mittra et al. synthesized 74 in the same way as Snider et al. (51).

O

50

O

Br

O

rac-66

O O

67

O O

N

68

H
NSO2p-Tol

O O

69

Cr(CO)5

OEt

O O

HO TBS

O

OH
70

O O

TBSO

O

OTf
71

O O

HO

O

33

a) b) c) - e) f) - i)

j) - l) m), n) o), p)

Scheme 2.10 Synthesis of 33 via a D€otz reaction. Reagents and conditions: a) prop-2-yn-1-ol,

NBS, CH2Cl2, 94%; b) CoLn, NaBH4, NaOH, ethanol, 62%; c) O3, CH2Cl2; d) Me2S, 74% over

two steps; e) p-TolSO2NHNH2, THF, 79%; f) Na, triglycol, 120�C, 73%; g) t-BuLi, THF, �78�C;
h) Cr(CO)6; i) Et3OBF4, 52% over three steps; j) t-butyl(methoxyethynyl)dimethylsilane, THF,

80�C, 31%; k) CAN, H2O/CH3CN, 0
�C, 10 min, 93%; l) H2, Pd/C, EtOAc, quant; m) toluene,

110�C, quant; n) Tf2O, pyridine, DMAP (cat.), CH2Cl2, 93%; o) Raney-Ni, MeOH; p) TBAF,

THF, 35% over two steps
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Matsumoto and Kuroda presented a short and elegant synthesis for an aflatoxin B1

precursor by a [2 + 4]-cycloaddition with singlet oxygen (see Scheme 2.11). From 75, an

intermediate was formed that reacted with iso-butyl vinyl ether (! 76). Acid hydrolysis

gave the free alcohol, which induced the formation of 77 (52).

In 1988, Sloan et al. presented a building-block synthesis via radical-induced ring

closure (53). The aromatic alcohol 78 was first substituted on 5-bromofuran-2(5H)-one,
then an intramolecular, radical 1,4-addition formed 79. Removal of the MOM-protecting

group then gave 80. The synthesis is shown in Scheme 2.12. From this intermediate,

B€uchi et al. described the synthesis of aflatoxin B1 (1) (35). Other syntheses of building
block 80 have been described by Hoffmann et al. and Bujons et al. (54, 55).

2.3.3 Synthesis of a Building Block for Aflatoxin M2

For aflatoxin M2 (6), the required building block has been synthesized by Kraus and
Wang, as shown in Scheme 2.13 (56). The starting material, 1,3,5-trimethoxybenzene

(81), was first acylated and mono-demethylated in situ, then a 1,2-addition to the ketone
provided 82. Under basic conditions, ring closure and hydrolysis of the remaining

chloride occurred and gave hemiacetal 83. With p-toluenesulfonic acid, the last ring

was closed, and with boron trifluoride, selective mono-demethylation yielded the desired

building block 84. Conversion into aflatoxin M2 (6) can be achieved according to the

protocol of B€uchi for the synthesis of aflatoxin M1 (5) (36, 37).
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OBn
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O Oi-Bu
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O

OHOBn

O

75 76 77

c)b)a)

Scheme 2.11 Matsumoto’s synthesis of 77. Reagents and conditions: a) 1O2; b) i-butyl vinyl
ether, 39%; c) H2SO4 (cat.)
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a), b) c)

Scheme 2.12 Building block synthesis via radical ring closure. Reagents and conditions:

a) 5-bromofuran-2(5H)-one, K2CO3, acetone, reflux; b) Bu3SnH, AIBN, benzene, reflux;

c) 9-BBN-Br, CH2Cl2, �78�C to 0�C, 1.5 h
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O
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O
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Fig. 2.5 Model systems for aflatoxin precursors
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2.3.4 Enantioselective Syntheses of Aflatoxin Building Blocks

The first enantioselective synthesis of an aflatoxin building block was published in

1993 by Marino (57). He presented a synthesis of 32 in 80% enantiomeric excess

and induced the stereospecificity via optically active vinyl sulfoxides (see

Scheme 2.14). Catechol (40) was acylated, mono-iodinated and then coupled with

chiral vinyl sulfoxide 85 under Stille conditions (! 86). Dichloroketene

lactonization under reductive conditions followed by zinc-promoted dechlorination

gave the major diastereomer 87.

With HCl, deacetylation and ring closure occurred. Then, the free aromatic

alcohol was TBS-protected and the lactone was reduced with DIBAL-H to lactol

88. The alcohol was converted into the thio ether, then oxidized with m-CPBA, and
finally pyrolyzed. Fluoride-driven deprotection of the TBS ether then gave building

block 32 in 80% ee.
In 1994, Civitello and Rapoport presented a further enantioselective synthesis of

an aflatoxin B1 building block with an oxaza-Cope rearrangement as a key step (58).
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a), b) c) d), e)

Scheme 2.13 Synthesis of building block 84 for aflatoxin M2 (6). Reagents and conditions:

a) AlCl3, oxetan-2-one, 80–85%; b) LiCHCl2, THF, 93%; c) K2CO3, i-PrOH (aq.), 70%;

d) p-TsOH, CH2Cl2, 4 h, 74%; e) BF3•OEt2, NaI, 71%
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Scheme 2.14 Enantioselective synthesis of a building block (28) for aflatoxin B1 (1). Reagents

and conditions: a) AcCl, pyridine, 98%; b) HgO•HBF4•SiO2, I2, 49%; c) 85, Pd(0), PPh3, toluene,

reflux, 65%; d) Zn(Cu), Cl3CCOCl, THF, �50�C; e) Zn, HOAc, D, 70% over two steps, quant ee;
f) HCl, acetone, D, 55%; g) TBSCl, imidazole; h) DIBAL-H, 80% over two steps; i) 1-(phenylthio)

pyrrolidine-2,5-dione, PBu3, benzene, 80%; j) m-CPBA, CH2Cl2, �78�C; k) pyridine, toluene,
110�C; l) CsF, CH3CN, 0

�C, 96% over three steps
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For aflatoxin B2 (2), enantioselective syntheses of precursors have also been

reported. Shishido and Bando presented their procedure in 1997, which gave an ee of
89% (59, 60). The stereospecificity was induced by lipase-catalyzedmonoacetoxylation

of diol 89 (see Scheme 2.15). The remaining alcohol was mesyl-protected, converted

into its cyanide and then deacetoxylated (! 90). With TPAP/NMO, the alcohol was

oxidized to the aldehyde, then theMOM-groups were removed under acidic conditions,

which caused lactolization.With triethoxyethane, the alcohol was protected in situ, and,
in the next step, the remaining aromatic alcohol was benzylated (! 91). Under basic

conditions, the nitrile was converted into the corresponding carboxylate, which was

reduced to the alcohol by borane. With p-TsOH, ring closure afforded 92.

Hydrogenolysis of the benzyl group gave building block 33, which can be converted

into aflatoxin B2 (2) according to B€uchi’s or Robert’s conditions (37, 38).

2.4 Syntheses of Biosynthetic Aflatoxin Precursors

Various biosynthetic precursors of aflatoxins have been synthesized. Some of these

have then been converted biosynthetically into the aflatoxins. In this section, syntheses

of important aflatoxin precursors will be presented.

In 1971, rac-O-methylsterigmatocystin (OMST, 96) was synthesized by Rance and
Roberts (61). With respect to biosynthesis, this is an important intermediate between

sterigmatocystin (15) and the aflatoxins B1 (1) and G1 (3) (see Scheme 2.1). The

synthesis starts with building block 80 (for its synthesis see Scheme 2.12), which was

ring-opened and methyl-protected under acidic conditions (Scheme 2.16). Ullmann
coupling with bromide 93, followed by acidic ester and ether hydrolysis led to ring

closure and gave 94. The carboxylic acid was converted into its chloride with oxalyl

chloride, which reacted in situ to a xanthone species. Reduction of the lactone with

disiamylborane gave lactol 95. The alcohol was acylated and rac-O-methylsterigma-

tocystin (96) was obtained by repeated sublimation.
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89% ee
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Scheme 2.15 Enantioselective synthesis of the aflatoxin B2 building block 33. Reagents and

conditions: a) Lipase AL, vinyl acetate, Et2O, rt, 72%, 89% ee; b) MsCl, DIPEA, DMAP, CH2Cl2,

89%; c) KCN, 18-Crown-6, DMSO, 72%; d) LiOH, THF/H2O, 83%; e) TPAP, NMO, 4 Å MS,

CH2Cl2; f) HCl, HC(OEt)3, EtOH; g) BnCl, K2CO3, DMF, 50% over three steps; h) KOH, EtOH/

H2O; i) BH3•SMe2, THF; j) p-TsOH, CH2Cl2, 43% over three steps; k) 1,4-cyclohexandiene, Pd/C,

MeOH, quant
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Another synthesis of rac-O-methylsterigmatocystin (96) was published by

Casillas and Townsend in 1999 (62). They used N-alkylnitrilium salts and a

carbonyl-alkene interconversion as key steps for synthesizing O-methylsterigma-

tocystin (96) in 19 steps (see Scheme 13.6. in Sect. 13.1.3).

In 1985, O’Malley et al. published the total syntheses of rac-averufin (103) and

rac-nidurufin (104) (63). These are both early precursors of the aflatoxins in their

biosynthesis. Nidurufin (104) is the direct successor of averufin (103) and the direct

precursor of versiconal hemiacetal acetate (12, see Scheme 2.1). Nidurufin (104)

and averufin (103) are accessible by the same synthesis route; only the two last steps

differ from each other (see Scheme 2.17). The first reaction was a double Diels-
Alder reaction with dichloro-p-benzoquinone (97) and two equivalents of diene 98.
Then, three of the four alcohol functions were selectively MOM-protected (! 99).

The remaining alcohol was converted into the allyl ether and then subjected to a

reductive Claisen rearrangement, followed by MOM-protection of the redundant

alcohol (! 100). By addition/elimination of PhSeCl, 101 was formed.

Deprotonation of t-butyl 3-oxobutanoate, followed by reaction with 101 yielded

the pivotal intermediate 102. This could be converted into rac-averufin (103) by

deprotection of the alcohols and decarboxylation at the side chain. The last step was

a p-TsOH-catalyzed cyclization to give 103. By treating 102 with m-CPBA, the
double bond is epoxidized. rac-Nidurufin (104) was then formed by cyclization of

this epoxide under acidic conditions.
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Scheme 2.16 Synthesis of rac-O-methylsterigmatocystin (96). Reagents and conditions:

a) HCl, MeOH,�10�C, 1 h; then rt, 18 h, 75%; b) NaOMe, MeOH; then pyridine, 93, CuCl, reflux,

4 h, 41%; c) HOAc, HCl, rt, 88%; d) (COCl)2, benzene, reflux, 24 h, 71%; e) disiamylborane, THF,

reflux, 48 h, 17%; f) HOAc, Ac2O, p-TsOH (cat.), rt, 7 d, 49%; g) 250�C, 0.05 mm, 53%
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Other syntheses of rac-averufin (103) have been presented by Townsend et al. in
1981 and 1988, both via methoxymethyl-directed aryl metalation (64, 65).

A later precursor of the aflatoxins, versicolorin A (13, see Scheme 2.1), has been

synthesized by Graybill et al. in 1999. They also described the total syntheses of

versicolorin B (14, see Scheme 2.1), versicolorin A hemiacetal (105), and

6-deoxyversicolorin A (106) (shown in Fig. 2.6) (66).

The synthesis of rac-versicolorin A (13) is shown in Scheme 2.18. Resorcinol

(107) was MOM-protected and formylated to yield 108. Horner-Wadsworth-
Emmons reaction with 109, followed by deprotection and reaction with ethyl

bromoacetate gave, after hydrolysis, phenyl acetaldehyde 110. With TIPSOTf

and triethylamine, cyclization occurred rapidly, followed by mono deprotection.
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Scheme 2.17 Total syntheses of averufin (103) and nidurufin (104). Reagents and conditions:

a) THF, �78�C to rt, 2 h; then 120�C; then MeOH/HCl (aq.), reflux, 0.5 h, 50%; b) MOMCl,

DIPEA, THF, 0.5 h, 88%; c) MOMCl, KOt-Bu, THF, 95%; d) allyl bromide, K2CO3, acetone,

reflux, 12 h, 97%; e) NaHCO3, Na2S2O4, DMF/H2O, 90
�C, 89%; f) MOMCl, t-BuOK, THF, 91%;

g) PhSeCl, CCl4, rt; h) H2O2, pyridine, 0
�C to rt, 2 h, 83% over two steps; i) NaH, t-butyl

acetoacetate, DMSO, 1 h; then NaI, 101, rt, 12 h, 70%; j) HOAc/H2O, H2SO4 (cat.), 90
�C, 3 h;

k) p-TsOH (cat.), toluene, D, 50% over two steps; l) m-CPBA, CHCl3, rt, 93%; m) HOAc/H2O,

H2SO4 (cat.), 90
�C, 4 h; 69%
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Fig. 2.6 Versicolorin A hemiacetal (105) and 6-deoxyversicolorin A (106), synthesized by

Graybill et al.
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NBS brominated the aromatic ring at the ortho-position to the OMOM-group and

DIBAL-H reduced the ethyl ester to give aldehyde 111. Catalytic amounts of

TIPSOTf promoted lactolization (! 112). After lithium-bromine exchange at

112, reaction with lactone 113 gave a xanthone species, which reacted, after

deprotection of the TIPS-group, to the five-ring species 114. Transformation of

the alcohol into thioether 115, followed by global deprotection, oxidation, and

pyrolysis gave rac-versicolorin A (13).
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Scheme 2.18 Total synthesis of rac-versicolorin A (13) (66). Reagents and conditions:

a) MOMCl, DIPEA, 81%; b) n-BuLi, DMF, 63%; c) n-BuLi, 109, THF, �70�C, 1 h; then

�78�C, 108, 30 min; then 15�C; d) n-BuLi, �78�C; then �65�C, 2 h; then ethyl 2-bromoacetate,

�78�C to rt, 66% over two steps; e) TIPSOTf, TEA, THF, 0�C, 82%; f) NBS, 77%; g) DIBAL-H,

Et2O, �95�C, 99%; h) TIPSOTf (cat.), CH2Cl2, �43�C, 5 min, 96%; i) LiTMP, 113, �78�C; then
�43�C, 112, 2 h, 34%; j) TBAF, THF, �78�C to �20�C, 90%; k) 2-(phenylthio)isoindoline-1,3-

dione, PBu3, THF, �78�C to 0�C; then �78�C, 114; then �2�C, 92%; l) HCl, HOAc, THF/H2O,

65�C, 5 h, 97%; m) m-CPBA, CHCl3, �15�C, 2 h; n) toluene, reflux, 45 min, 79% over two steps
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3 Citrinin

3.1 General

Citrinin (116) (Fig. 3.1), first reported in 1931 following its isolation from Penicillium
citrinum (67), was found to display a significant antibiotic activity against severalGram-
positive bacteria in the 1940’s (68, 69). In the following decade (at the time of the

widespread application of penicillin), there was a considerable interest in citrinin (116)

and other antibacterials of fungal origin. Despite this, and its additional insecticidal

properties (70), the investigation of 116 for either therapeutic or agrochemical applica-

tion was abandoned due to its substantial toxicity (71), including nephrotoxicity (72).
Both Whalley and co-workers and Cram published extensively on the stereo-

chemistry of citrinin (116) in the 1940’s, particularly through the use of degradation

studies (73, 74). Further stereochemical data were later provided from X-ray analysis

(75). In particular, the (3R,4S)-configuration was determined by comparison of degra-

dation products with compounds of known stereochemistry (76, 77). In addition to

these degradation studies, a prominent product of degradation, “phenol B” (117)

(Fig. 3.1), was utilized by several groups for enantioselective and racemic syntheses

of the natural product (78, 79).
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Fig. 3.1 Citrinin (116) and derivatives of interest

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic

Natural Products, Vol. 97, DOI 10.1007/978-3-7091-1312-7_3,
# Springer-Verlag Wien 2013
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Citrinin (116) has an interesting structure: as a hydroquinone activated towards

nucleophilic attack, and as a potential participant in redox processes, consistent

with a variety of toxic effects in biological systems. Many derivatives of 116

were also isolated by various groups, including those reported by Curtis et al.
in 1968 (80). Under certain conditions (aqueous decomposition with heating), a

decarboxylated and ring-opened derivative, citrinin H2 (118), was isolated and

shown to have greatly diminished cytotoxicity (81). Under similar conditions, the

formation of a notably toxic derivative of citrinin (116), citrinin H1 (119) (Fig. 3.1),

has been observed (82). In more recent times, a new dimeric species, dicitrinin A

(120) has been identified by Capon et al. at the University of Queensland (83). This
compound also occurred as an artifact, generated during handling and storage of

biological extracts of the organism of origin.

3.2 Total Syntheses of Citrinin

The Barber and Staunton synthesis of (�)-citrinin (rac-116) was reported in 1986 (84).
This synthesis employed selective benzylic lithiation as a key transformation, and was

followed shortly thereafter by an asymmetric variant to give access to (+)-citrinin

(the unnatural stereoisomer of 116).

The synthesis pathway started with the lithiation of ethylbenzene 121 at the

benzylic position, followed by acylation of the toluate anion intermediate at low

temperature. It is noteworthy that a potentially competing ortho-lithiation of the

type championed by Snieckus (85) (i.e. between the two stabilizing methoxyl

radicals) was not reported under these conditions. Subsequent reduction of

benzylketone 122 provided smooth access to the threo-dimethyl-substituted bicy-

clic intermediate 123 via lactonization. DIBAL reduction (! 124) and reductive

debenzylation with palladium on charcoal gave the ring-opened alcohol 125, which

was further demethylated to provide a 1,3-diphenol, and then carboxylated under

buffered conditions to yield acid 117, also known as “phenol B”. This compound

was formylated with trimethyl orthoformate and acid, then cyclized to give the

quinone structure and natural product, 116 (Scheme 3.1).
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In a later study, the team made use of a chiral amide base in order to selectively

deprotonate only one of the prochiral alkyl protons of 121, with a 70% enantiomeric

excess and a diastereoselectivity of 3:1 (86). The product was then converted via a

threo-lactone to the unnatural enantiomer of citrinin (116), (+)-citrinin.
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Scheme 3.1 Barber and Staunton’s synthesis of citrinin (116). Reagents and conditions: a) LDA,
THF, –78�C; then AcCl –130�C, 50%; b) NaBH4, MeOH, 86%; c) DIBAL, toluene, 72%; d) H2,

Pd/C, AcOH, MeOH, quant; e) BBr3, CH2Cl2, 79%; f) KHCO3, CO2, glycerol, 150
�C, 75%; g) HC

(OEt)3, HCl, 38%
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Scheme 3.2 R€odel and Gerlach’s synthesis of (�)-citrinin. Reagents and conditions: a) Mg, THF;

b) oxirane 128, catalyst (MgBr2, COD•CuCl), 76%; c) Ph3P, HCO2H; then DEAD, 59%; d) KOH,

MeOH/H2O/THF, reflux, 99%; e) H2, Pd/C, AcOH/MeOH, 89%; f) KHCO3, CO2, glycerol,

150�C; g) HC(OEt)3, HCl, 41% over two steps

3.2 Total Syntheses of Citrinin 25



R€odel and Gerlach reported their synthesis of citrinin (116) in 1995, starting

from the dibenzyl-protected aryl bromide 127 (Scheme 3.2) (87). Transformation of

this material to the Grignard reagent provided a nucleophile for the ring-opening

of enantiomerically pure (S,S)-2,3-dimethyl oxirane (128), a step mediated by

magnesium dibromide and cuprous chloride•cycloactadiene catalyst. Inversion of

stereochemistry at the hydroxy group-bearing carbon of 129 was accomplished

with a classic method. Thus, a Mitsunobu reaction with formic acid as nucleophile

followed by hydrolysis allowed the erythro-configured intermediate to be converted

to the threo-isomer 131 with 99% de. Debenzylation and then the familiar sequence

of carboxylation, formylation, and cyclization followed, in order to complete the

synthesis of naturally occurring (–)-citrinin with good stereoselectivity.
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4 Ergot Alkaloids

The complex family of ergot alkaloids plays an important role as pharmaceuticals,

in the food industry, and in ecological systems (88). Ergot alkaloids share a

common heterocyclic ergoline ring system (132), which can be chemically

interpreted as a fused indole-heptahydroquinoline system. This family of indole

derivatives is produced by fungi of the families Clavicipitaceae (e.g. Claviceps
(Fig. 4.1) and Neotyphodium) and Trichocomaceae (including Aspergillus and

Penicillium) (88–90). In addition, ergot alkaloids have also been identified in plants
of the families Convolvulaceae, Poaceae, and Polygalaceae, in which there is

evidence to suggest that these compounds are produced by plant-associated fungi

alone or together with the host plants (88, 90).

Fig. 4.1 Claviceps purpurea grown on the ears of rye

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic

Natural Products, Vol. 97, DOI 10.1007/978-3-7091-1312-7_4,
# Springer-Verlag Wien 2013
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4.1 Structural Subclasses of Ergot Alkaloids

The characteristic structural feature of all ergot alkaloids is the presence of the

tetracyclic ergoline ring (132) (Fig. 4.2). According to their structures, ergot

alkaloids can be classified: clavine-type alkaloids, also called clavines, simply

consist of the tetracyclic ergoline ring system (132) or its tricyclic precursors

(88). Ergoamides and ergopeptines are carbon acid amide derivatives of D-lysergic

acid (133), whereas ergopeptines can be seen as a special sub-category of the

ergoamide class. Related compounds bearing more divergent functionalities are

summarized in the section “Related Structures”, 4.1.5.

4.1.1 Tricyclic Precursors of Ergot Alkaloids

Tricyclic ergot alkaloids can be seen biosynthetically as precursor structures in

which the D-ring of the ergoline system is not closed (Fig. 4.3). The common

6,7-seco-D-ring motif has led to the naming “secoergolenes” or “tricyclic seco
derivatives” (88, 91). Some important naturally occurring representatives of these

tricyclic ergot alkaloids are chanoclavine-I (134), its two isomers chanoclavine-II

(135) and isochanoclavine-I (136), chanochlavine-I aldehyde (137), and 6,7-seco-
agroclavine (138) (88).

132 tetracyclic ergoline system
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21
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Fig. 4.2 Ergoline (132) as the common scaffold of ergot alkaloids
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4.1.2 Clavine-Type Alkaloids

Clavine-type alkaloids have been isolated from various fungal strains, and, in

particular, they have been found in the family Trichocomaceae (Fig. 4.4) (88).
Agroclavine (139) and elymoclavine (140) contain a double bond in the D-ring of

the ergoline framework. Festuclavine (141) and pyroclavine (142) possess a

saturated D-ring and differ in their stereochemistry at C-8. Their stereoisomers

costaclavine (143) and epicostaclavine (144) have been isolated also from various

fungi (88, 92).
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Fig. 4.3 Some ergot alkaloids consisting of only the A,B,C-ring system
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Fig. 4.4 Representative clavine-type alkaloids
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As can be seen in Fig. 4.5, fumigaclavines A (145), B (146), and C (147) are

oxidized at position C-9 and fumigaclavine C (147) carries a reverse prenyl moiety

at C-2 (88). In his recent review, Li drew attention to the fact that published

structures of fumigaclavines have led to some confusion about the configuration

at positions C-8 and C-9 (88): structures with both (8S,9S) and (8R,9S)
configurations were assigned to fumiglavines A, B, or C (88, 91, 93–98). Further-
more, Li et al. reported that “the (8S,9R) diastereomers of fumigaclavines A and B

have been called isofumigaclavines A (148) and B (149) (99) or roquefortines A
and B (100, 101), respectively” whereas “isomers with a (8R,9R) configuration
have not yet been reported” (88). For a better differentiation of these compounds

and to avoid confusion in the future, Li suggested in his recent review that “the

names fumigaclavine A, B, and C should be applied to each group of all four

possible diastereomers, whereby the stereochemistry at C-8 and C-9 should be

defined by prefixing them with (R) or (S) descriptors” (88).
Recently Ge and co-workers reported the isolation of other prenylated

fumigaclavines from A. fumigatus, namely, 9-deacetoxyfumigaclavine C (150)

and 9-deacetylfumigaclavine C (151) (88, 93).
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Fig. 4.5 The structural class of fumigaclavines as classified by Li et al.
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4.1.3 Ergoamides

Ergoamides are primary or secondary carbon acid amides of D-lysergic acid (133).

One important ergoamide isolated from Claviceps purpurea is ergometrine (152),

which is known also as ergonovine and ergobasine (Fig. 4.6) (88, 102, 103). An
ergometrine semisynthetic derivative, methylergometrine (153), has pharmaceuti-

cal use in obstetrics. The semisynthetic ergot alkaloid, lysergic acid diethylamide

(“LSD”, 154), is undoubtedly one of the most well-known non-natural compounds

and was initially developed for the treatment of various psychiatric disorders (104).
Due to the fact that lysergic acid diethylamide (154) is a very potent hallucinogenic

substance, this compound is prohibited. It is illegal to manufacture, buy, possess,

process, or to distribute LSD.

4.1.4 Ergopeptines

Like ergoamides, ergopeptines (155) are derivatives of lysergic acid (133) wherein

the tripeptide moieties are connected via amide bonds (Fig. 4.7). Lactam ergot

alkaloids, also called ergopeptams (156), are seen as precursors in the biosynthesis

of ergopeptines (155) (105). In their biosynthesis, an oxygenase-catalyzed hydrox-

ylation of the amino acid adjacent to the lysergic acid moiety leads to cyclol

formation, which forms the oxazolidin-4-one moiety in ergopeptines (155) (105).
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Fig. 4.6 Natural (152) and semi-synthetic ergoamide derivatives (153 and 154)
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Fig. 4.7 Common structures of ergopeptines 155 and ergopeptams 156
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Themost important representative of the ergopeptine subclass is ergotamine (157),

which is produced byC. purpurea as the main ergot alkaloid (Fig. 4.8) (88, 106–108).
Whereas ergotamine (157) and its semi-synthetic derivative dihydroergotamine

(158) have a clinical purpose for the treatment of several diseases (88, 109–112),
ergovaline (159) is involved in livestock toxicoses caused by ingestion of

endophyte-infected grasses (88, 113, 114).

The peptide alkaloid ergotoxine was originally believed to constitute a single

compound, but later was shown to be a mixture of several ergopeptines, namely,

ergocornine (160), ergocristine (161), a-ergocryptine (162), and b-ergocryptine
(163) (Fig. 4.9) (115). Each component of the ergotoxine alkaloids contains a

tripeptide moiety, with two of three amino acids (L-valine and L-proline) being

in common in all of the compounds, while the third amino acid differs (115).
The ergotoxines 160–163 isolated from natural sources can be hydrogenated to

yield the 9,10-dihydroergotoxines 164–167, composed of dihydroergocornine

(164), dihydroergocristine (165), a-dihydroergocryptine (166), and b-dihydroergo-
cryptine (167) (115). As methanesulfonates, the 9,10-dihydroergotoxines 164–167

are approved drugs for different indications (116).
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Fig. 4.8 Ergotamine (157), dihydroergotamine (158) and ergovaline (159)
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4.1.5 Related Structures

This section of the chapter will describe alkaloids identified in fungal strains that

are biosynthetically related to ergot alkaloids. These compounds carry a modified

ergoline scaffold like epoxyagroclavine-I (168) or even an obviously different

skeleton like aurantioclavine (176) (Fig. 4.10) (88, 91, 117).
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Epoxyagroclavine-1 (168), isolated from Penicillium kapuscinski (91), contains
a clavine-type skeleton and bears an epoxide function between C-8 and C-9. In

cycloclavine (169), isolated from Aspergillus japonicus, the six-membered piperi-

dine ring is replaced by a cyclopropane-fused pyrrolidine ring (118). Rugulovasine
A (170), its epimer rugulovasine B (171), as well as their 8-chlorinated derivatives

172 and 173, contain an interesting spirocyclic 2-furanone moiety and have been

identified in various fungal strains, including Penicillium species (88, 91, 119–121).
In paspaclavine (174), isolated from Claviceps paspali, the D-ring of the ergoline

skeleton is substituted with an acetalic 1,3-oxazinane structure (122). Clavicipitic
acid (175), isolated from Claviceps fusiformis (123, 124), and its decarboxylated

derivative aurantioclavine (176), derived from Penicillium aurantiovirens (91,
125), have only the indole moiety in common with other ergot alkaloids, whereby

the indole core is fused with a seven-membered azepane ring. This azepinoindole

framework can be also found in the communesin family (126).
Due to the examination of biosynthetic gene clusters, the biosynthesis of ergot

alkaloids is well understood and descriptions can be found in the literature (88, 89).

4.2 Biological Properties

It has been stated that “Ergot alkaloids, of which lysergic acid is representative,

are particularly important as they possess the widest spectrum of biological

activity found in any family of natural products” (127). Furthermore, for some

considerable time it has been possible to distinguish between the valuable phar-

macological properties of ergot alkaloids and their toxic effects (ergotism),

known from livestock poisonings. The latter aspect is important from an eco-

nomic point of view in terms of crop loss. In addition, the abuse of LSD (154),
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Fig. 4.10 Ergot alkaloids with unusual structural motifs
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which can be prepared from natural occurring ergot alkaloids, has to be taken into

account in terms of a benefit-harm-assessment of the biological effects of ergot

alkaloids.

Without going into great detail on the biological profiles of certain alkaloids,

since this information can be found elsewhere (128, 129), their pharmacological

effects can be reasonably explained by their general structure: many of their

activities arise most probably from the structural similarity between the ergoline

scaffold 132 and important neurotransmitters, such as dopamine (177), noradrena-

line (178), and serotonin (179) (Fig. 4.11) (130). In interacting with one or all of the
associated receptors, ergot alkaloids can act as either an (partial) agonist or as an

antagonist or even in a dual role (130, 131).

Some ergot alkaloids or their derivatives have found their way to clinical use,

such as dihydroergotamine (158), which is utilized in the treatment of migraine

headaches (130, 132). “Dihydroergotoxin” (164–167) finds application as an anti-

hypertensive drug and in the treatment of cerebral dysfunction in gerontology (130,
133, 134). The ergotoxine a-ergocryptine (162) and its semi-synthetic derivative

2-bromoergocyptine (bromocriptine, not shown) are effective in cases of hyperpro-

lactinemia (130, 135), whereas bromocriptine is also used for the treatment of

Parkinson’s disease (130, 136).

4.3 Total Syntheses

Since the first chemical experiments of Hofmann with ergot alkaloids in the 1930s

and the first total synthesis of lysergic acid (133) by Kornfeld and Woodward in

1956 (137), ergot alkaloids have attracted interest from the chemical synthesis

community. In this chapter, synthetic approaches within the last two decades are

presented, wherein attention is focused on syntheses using the application of

modern catalytic methods and metal-organic reagents. Within the body of

132 ergoline skeleton
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Fig. 4.11 Chemical similarity of the ergoline ring system 132 to the neurotransmitters dopamine

(177), noradrenaline (178), and serotonin (179)

4.3 Total Syntheses 35



published total, partial, and formal synthesis procedures, enantioselective syntheses

are featured more prominently in this section, in addition to reactions applied to the

rapid construction of the ergoline skeleton.

4.3.1 Enantioselective Synthesis via Pd-Catalyzed Oxidative
Kinetic Resolution: (�)-Aurantioclavine

In 2008, Stoltz and co-workers presented the enantioselective total synthesis of

(�)-aurantioclavine ((�)-176) (Scheme 4.1), by application of a new method for

kinetic resolution of secondary alcohols (138).
The starting material for the synthesis was tosylated indole-4-carbaldehyde

(180) (Scheme 4.1) (139). Addition of the dianion, derived from isobutylene

oxide (140), to 180, afforded (�)-181. Afterwards, Pd-catalyzed oxidative kinetic

resolution with (�)-sparteine ((�)-182) as chiral ligand was applied to the racemic

diol (�)-181, to deliver the enantioenriched alcohol (�)-181 with 96% ee and in

36% yield (91% of the theoretical maximum, selectivity factor S ¼ 18.2 (138,
141)). Along with the unreacted enantioenriched alcohol, (�)-181, ketone 183

was isolated in 56% yield (81% of the theoretical maximum). In an additional

recycling step, ketone 183 could be readily back-transformed to (�)-181 in 95%

yield by reduction with lithium aluminum hydride. The enantioenriched alcohol

(�)-181 was converted to azidoalcohol 184 with hydrazoic acid under Mitsunobu
conditions (142). To avoid any racemization at the sensitive benzylic stereogenic

center, this substitution reaction was conducted at low temperature. Afterwards, the

azide function in 184 was hydrogenated and the resulting amine was protected as a

2-nitrobenzenesulfonamide (143) to furnish sulfonamide 185. Aromatic bromina-

tion to 186 and subsequent Stille coupling (144) with tributyl(vinyl)tin afforded

vinyl indole 187. Phosphorus oxychloride in pyridine was found to be the appro-

priate dehydrating reagent to afford the desired trisubstituted olefin isomer 188 as

the major product. Regioselective hydroboration followed by oxidative work-up

delivered the amino alcohol 190. ApplyingMitsunobu conditions to 190 closed the

seven-membered ring in excellent yield to give 191. Deprotection of the allylic

amine yielded the free amine 192, and subsequent removal of the tosyl group by

n-tetrabutylammonium fluoride (TBAF) finally delivered the natural product

(�)-aurantioclavine ((�)-176) in 13 steps with <1% overall yield (145).
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4.3.2 Asymmetric Alkenylation of Sulfinyl Imines:
(�)-Aurantioclavine

Two years after Stoltz’ (138) total synthesis of (�)-aurantioclavine ((�)-176)

(Scheme 4.1), Ellman and co-workers found a way to produce the enantiomerically

pure natural product in six steps in 27% overall yield using a newly developed Rh

(I)-catalyzed addition of N-methyliminodiacetic acid (MIDA) boronate 198
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Scheme 4.1 Reagents and conditions: a) isobutylene oxide, LiDBB, THF, �78�C, 69%;

b) 10 mol% (�)-182, MS 3 Å, t-BuOH, 40 to 70�C, 1 atm O2, 98 h, (59% conversion), 51%

yield, 86% of theoretical maximum for 183, 36% yield, 91% of theoretical maximum, 96% ee,
kinetic resolution selectivity factor S ¼ 18.2 for (�)-181; c) LiAlH4, THF, �78�C, 95%; d) HN3,

PBu3, DIAD, toluene, �78�C to �20�C, 80%; e) H2, cat. Pd/C, HCl/MeOH, 23�C; f) o-NsCl,
Et3N, CH2Cl2, 0

�C to rt, 89% over two steps; g) PyHBr3, CH2Cl2, 0
�C to 23�C, 72%; h) tributyl

(vinyl)tin, 20 mol% Pd(PPh3)4, toluene 100�C, 75%; i) POCl3, pyridine, 0
�C to 23�C, 95%;

j) 9-BBN, THF, 23�C, 10 h; k) NaOH, H2O2, THF/EtOH/H2O, 0
�C to 23�C, 48% over two steps;

l) DIAD, PPh3, toluene, 0
�C to rt, 95%; m) PhSH, K2CO3, DMF, 23�C, 53%; n) TBAF, THF,

70�C, 68%
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(Scheme 4.2) (145). Employing a Grignard reagent addition sequence, the route

could be shortened to five steps producing a 29% overall yield.

The first step was the Pd-catalyzed formylation of the commercially available

bromoindole derivative 193 using a procedure reported by Beller and co-workers

(Scheme 4.2) (146). It was found to be necessary to protect to alcohol function with

TMSCl in situ to avoid formation of a seven-membered lactone. The crude aldehyde

194was directly converted with 195 to the N-t-butanesulfinyl imine 196 in 53% yield

over two steps. Double protection of the alcohol and the aromatic amine function

from 196 yielded the bis-tosylated N-sulfinyl imine 197 in good yield. The Rh(I)-

catalyzed addition of the newly developed MIDA boronate 198 (147) provided

sulfonamide 199 in 78% yield and with high diastereoselectivity. Deprotonation of

the sulfonamide function of 199 led to closure of the azepine ring system to furnish

200. Subsequent removal of the protection groups in 200 afforded the natural product

(�)-176 in quantitative yield and with high optical purity.

Despite the precedence for lower selectivity, Ellman and co-workers realized

that addition of a Grignard reagent proved to be more efficient (145). After

Grignard reagent addition to ent-197, spontaneous cyclization to azepine 201

occurred upon formation of the nucleophilic sulfonamide anion (Scheme 4.3). It

is interesting to mention that because Grignard addition provides the opposite

diastereoselectivity in comparison to Rh(I)-catalyzed addition, the other enantio-

mer of N-t-butanesulfinyl imine (ent-197) had to be applied.
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Scheme 4.2 Reagents and conditions: a) TMSCl, 0.5% Pd(OAc)2, 1.5% P(Ad)2Bu, H2:CO (2:1),

TMEDA, 100�C, toluene; b) 195, Ti(OEt)4, THF, 53% (over 2 steps); c) TsCl, NEt3, DMAP,

�20�C, CH2Cl2, 78%; d) 2 equiv. 198, 2.5 mol% [Rh(OH)(cod)]2, 5.0 mol% dppbenz, 2 equiv.

K3PO4, H2O/dioxane (3:2), 60�C, 20 h, dr ¼ 97:3, 81%; e) NaH, THF, 85%; f) HCl, MeOH, rt,

0.5 h; g) Mg(0), MeOH, rt, 99% over two steps
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4.3.3 The IMDAF-Approach to (�)-Cycloclavine

In 2011, Wipf and Petronijevic reported their synthesis route to (�)-cycloclavine

(169) (Scheme 4.4), in which the total synthesis proceeded in 14 steps with 1.25%

overall yield (148). One key feature of their approach included the formation of the

indole moieties through an allylic alcohol-IMDAF (intramolecular Diels-Alder cycli-
zation of furan) reaction (212 to 213) (149, 150). Another pivotal step of this route is
the synthesis of the cycloclavine indoline core through a stereoselective intramolec-

ular Diels-Alder reaction of a methylenecyclopropane building block (208 to 209).
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Scheme 4.4 Reagents and conditions: a) THP, HCl (cat.), 90%; b) CHBr3, Et3N, cetrimide, NaOH

(aq.), CH2Cl2, 95%; c) n-BuLi, THF,�95�C; then CH3I,�95�C to rt, 82%; d) t-BuOK, DMSO, rt,

69%; e) p-TsOH,MeOH, rt, 79%; f)MsCl, Et3N, CH2Cl2, 0
�C to rt, 1 h; g) 206, NaH, DMF, rt, 12 h,

67% (over two steps); h) NaHMDS, THF,�78�C; then TBSCl, quant. without purification; i) MW,

a,a,a-trifluorotoluene, 195�C, 1 h, 52% (72% brsm); j) TBAF, THF, rt, 85%; k)MeOC(O)Cl, 70�C,
3 h, 71%; l) LDA, THF,�78�C, 1 h; then TMSCl (1.3 equiv); then Pd(OAc)2 (1.3 equiv), CH3CN,

12 h, 67%; m) n-BuLi, THF, �78�C, 211, 51%; n) MW, a,a,a-trifluorotoluene, 180�C, 0.5 h, 44%
(56% brsm); o) LiAlH4, THF, 66

�C, 0.5 h, quant
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Scheme 4.3 Reagents and conditions: a) 2,2-dimethylvinyl magnesium bromide, CH2Cl2,�48�C to

rt, dr ¼ 81:19, 88%; b) HCl, MeOH, rt, 0.5 h; c) Mg(0), MeOH, rt, 98% over two steps
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In the first step, b-methylallyl alcohol 202 was protected as a THP-ether and

subsequent cyclopropanation under phase transfer conditions afforded 203 in 86%

combined yield (Scheme 4.4) (151). Treatment of the dibromocyclopropane 203

with 1 equiv. n-BuLi at �95�C and following exposure of the monobromo-

monolithiated intermediate to methyl iodide afforded the monobromo species 204

(152). Elimination of hydrogen bromide under thermodynamic conditions and

following deprotection of the THP protecting group furnished the desired cyclopro-

pylmethylidene alcohol 205. The free alcohol function of 205 was mesylated and

the resulting mesylate was treated with the anion of the vinylogous amide 206 to

give the substitution product 207 in 67% yield over the two steps. The vinylogous

amide 207 was converted to the siloxy diene 208 in quantitative yield using

NaHMDS with subsequent TBSCl trapping of the enolate. The raw material 208

was then heated to 195�C under microwave irradiation in a,a,a-trifluorotoluene to
furnish the Diels-Alder-product along with unreacted starting material 208.

Removal of the silyl protecting group from the newly formed indoline using

TBAF yielded the tricyclic ketone 209 in 85% yield. For the further steps of the

synthesis it was found to be necessary to protect the basic amine moiety as a

carbamate function (153). In this way, dealkylative protection of 209 afforded the

targeted carbamate-protected intermediate that was converted subsequently to the

a,b-unsaturated cyclic 210 ketone using Saegusa-Ito oxidation (154). Exposure of
enone 210 with the tin-lithium exchange product of stannane 211 yielded the

tertiary alcohol 212 in 51% yield. The tertiary alcohol 212 was converted in the

following microwave-promoted IMDAF reaction (149, 150) at 190�C in a,a,a-
trifluorotoluene to furnish the desired indole 213 in 44% yield. In the final step,

the IMDAF product 213 was deprotected with LiAlH4 to provide (�)-cycloclavine

(169) in quantitative yield.

4.3.4 Enantioselective Pd-Catalyzed Domino Cyclization Strategy
to (+)-Lysergic acid, (+)-Lysergol, and (+)-Isolysergol

In 2011, the enantioselective syntheses of (+)-lysergic acid ((+)-133), (+)-lysergol

((+)-214), and (+)-isolysergol ((+)-215) were reported by Ohno and co-workers

(Scheme 4.7) (155). The key feature of these total syntheses is the construction of

the C/D ring system in one reaction sequence by applying a Pd-catalyzed domino

cyclization of allenes bearing a nucleophilic functionality (for more information

on these reaction types see (156)). Except for Oppolzer’s intramolecular imino-

Diels-Alder strategy, most synthesis studies have relied on a stepwise construction

of the ergoline C/D ring system (155, 157). Besides the sequential regioselective

bond formation for the construction of the C/D ring system, the stereospecific

transfer of the axial chirality from the allene into the new stereogenic center was

the second challenge. Initial experiments on a model system by Ohno and co-

workers proved the potential of the domino reaction to face these challenges (158).
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For the first step, commercially available 4-bromoindole 216 was selectively

allylated at position 3 using Tamaru’s procedure (Scheme 4.5) (159). The resulting
3-allylindole 217 was protected and subsequently converted to the aldehyde 219 by

OsO4/NaIO4-mediated oxidative cleavage of the double bond in 218 (160). For the
subsequent intended preparation of the enantiomerically pure allene 226 via Myers
method (161), aldehyde 219 had to be coupled with the enantiomerically pure

alkyne 223 to furnish the required propargylic alcohol 224a.

In order to synthesize alkyne 223, enantioenriched ethynylaziridine 220 was

prepared by a known four-step sequence (162) from (S)-Garner’s aldehyde (163, 164).
A reductive coupling reaction (165, 166) of the aziridine 220 with formaldehyde in

the presence of Pd(Ph3)4 and InI furnished the 2-ethynyl-1,3-amino alcohol 221.

Protection of 221 as benzylidene acetal gave the alkyne 222, which was converted

in the next step to the corresponding iodoalkyne 223 (167).
With both coupling partners 219 and 223 in hand, it was revealed that conditions

of the Cr(II)/Ni(0)-mediated Nozaki-Hiyama-Kishi (NHK-)reaction were optimum

to furnish the desired propargyl alcohol in 90% yield in a 1:1 ratio of 224a and 224b

(Scheme 4.6) (168–170). Even the use of chiral sulfonamide ligands did not prevent

the poor diastereoselectivity of this reaction (for examples of asymmetric NHK-
reactions see (171)). To synthesize neat 224a, the newly generated stereogenic

center in 224a/224b had to be converted by oxidation with DMP to afford ketone

225. Subsequent asymmetric reduction of 225 using (R)-alpine-borane (172) gave
the desired neat propargyl alcohol 224a with the correct stereocenter in high

selectivity. By applyingMyers’method, the alcohol 224a could be stereoselectively

transformed into the allene 226 using nosyl hydrazine under Mitsunobu conditions

(161). Subsequent cleavage of the benzylidene protecting group in 226 with PTSA

yielded the allenic amide 227, which was used in the following pivotal domino

cyclization reaction. The Pd-catalyzed domino cyclization of 227 provided the
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Scheme 4.5 Reagents and conditions: a) Pd(PPh3)4, Et3B, allyl alcohol, THF, 50�C, 87%;

b) TsCl, NaOH, n-Bu4NHSO4, CH2Cl2, 96%; c) OsO4, NMO, THF/H2O; d) NaIO4, THF/H2O,

86% (over two steps); e) 3 mol% Pd(PPh3)4, 1.2 equiv. InI, formalin, THF/HMPA (4:1), 70%;

f) PhCH(OMe)2, CSA, ClCH2CH2Cl, 70
�C, 78%; g) NIS, AgNO3, THF, 89%
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desired ergot derivative 228 as the only product in good diastereoselectivity (158).
This outcome can be explained by the proposed mechanism in Scheme 4.6. The

domino cyclization can proceed through two competing pathways: aminopal-

ladation and carbopalladation (155, 158). After oxidative addition of 227 to Pd

(0), the indolylpalladium halide A formed underwent an amino-palladation path-

way through conformer B to give the alkenylpalladium(II) intermediate C stereose-

lectively (155, 158). Reductive elimination of intermediate C afforded 228 as the

major isomer.

In three additional steps, (+)-isolysergol ((+)-215) could be prepared from 228

by cleavage of the tosyl groups with sodium naphthalenide and subsequent

N-methylation (Scheme 4.7). To have synthesis access to (+)-lysergic acid

((+)-133) and (+)-lysergol ((+)-214), the primary alcohol function of 228 had to

be converted into the methyl ester 229 using Dess-Martin reagent and NaClO2

followed by esterification with TMSCHN2. After cleavage of the two tosyl groups

and N-methylation, a diastereomeric mixture of methyl isolysergate (230a) and
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Scheme 4.6 Reagents and conditions: a) NiCl2, CrCl2, THF, 0
�C; b) Dess-Martin periodinane,

CH2Cl2, 95%; c) (R)-alpine borane, THF, 86%; d) NsNHNH2, DEAD, Ph3P, THF, �15�C to rt,

77%; e) PTSA, MeOH/CH2Cl2, 50
�C, 85%; f) Pd(PPh3)4, K2CO3, DMF, 100�C, 76%
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lysergate (230b) was obtained. LiAlH4-reduction of the unseparated mixture of

230a/230b afforded (+)-lysergol ((+)-214) in 49% yield along with (+)-isolysergol

((+)-215) in 24% yield. Finally, saponification of 230a/230b, with accompanying

isomerization at C-8 to the desired isomer (173, 174), afforded (+)-lysergic acid

((+)-133) in 54% yield and high enantiopurity.

4.3.5 Intramolecular Vinylogous Mannich Approach
to Rugulovasines A and B

In their concise synthesis of rugulovasines A and B (231a, 231b), Martin and

co-workers were able to prove the usefulness of a vinylogous Mannich reaction

(Scheme 4.8) (175–177). Whereas most natural products are isolated as single

enantiomers, rugulovasines A and B (231a, 231b) were both isolated in racemic

form, and it was found that they both underwent interconversion via an achiral

intermediate upon warming (120, 178, 179).
The starting material for the synthesis was 4-bromoindole (216), which was

readily converted into the corresponding 3-indolylacetonitrile derivative 232 using

a one-pot procedure (Scheme 4.8) (180). After the indole nitrogen was protected,

the nitrile function of the resulting carbamate 233 was reduced with DIBAL-H to
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Scheme 4.7 Reagents and conditions: a) sodium naphthalenide, THF, �78�C; b) formalin,

NaBH3CN, AcOH, MeOH; c) separation (46% over three steps); d) Dess-Martin periodinane,

CH2Cl2, 0
�C to rt; e) NaClO2, NaH2PO4, 2-methylbut-2-ene, t-BuOH/THF/H2O; f) TMSCHN2,

MeOH/toluene, 0�C; g) separation (64% over four steps); h) sodium naphthalenide, THF, �78�C;
i) formalin, NaBH3CN, AcOH, MeOH; j) 1 NNaOH, EtOH, 35�C; then 0.1 NHCl to pH 6.2, 54%;

k) LiAlH4, THF, 0
�C, 49% for (+)-214, 24% for (+)-215
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yield the desired aldehyde 234. The crude aldehyde 234 was then allowed to react

with benzylmethylamine. The product underwent facile reaction with silyloxyfuran

236 in the presence of CSA, which presumably proceeded over the stabilized

intermediate 235. This vinylogous Mannich reaction provided a 1:2 mixture of

diastereomeric adducts 237. For the construction of the spirocyclic moiety, it was

intended to cyclize the aminoalkyl butenolide 237 via an intramolecular SRN1

reaction. It was found that irradiation of 237 in refluxing ammonia in the presence

of freshly sublimed potassium t-butoxide were appropriate conditions to furnish

N-benzylated rugulovasines A and B (238a and 238b) in 51% yield as an insepara-

ble mixture (1:2). Concomitant deprotection of the Boc-protecting group during

this reaction shortened the route, so just the benzyl group had to be removed in the

final step. Therefore, the hydrochloride salt of 238a/238b was allowed to react

with Pearlman’s catalyst under a hydrogen atmosphere to yield a mixture (1:2) of

rugulovasines A and B (231a and 231b) in 74% yield.

4.3.6 Intermolecular Vinylogous Mannich Approach
to Setoclavine

The group of Martin was able to show that the spirocyclic rugulovasine natural

product class is rapidly accessible via intermolecular vinylogousMannich reactions
(see Sect. 4.3.5) (175–177). Next, they turned to the question of whether or not it

would be possible to convert the butyrolactone subunit of the accessible spirocyclic
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Scheme 4.8 Reagents and conditions: a) HNMe2 (aq.), CH2O (aq.), AcOH, 0�C to 25�C; b) KCN,
DMF/H2O (1:1), 140�C, 2 h, 71% over two steps; c) (Boc)2O, DMAP, Et3N, CH2Cl2, 25

�C, 25 h,

91%; d) DIBAL, CH2Cl2, –78
�C to 25�C; e) benzylmethylamine, CH2Cl2, 25

�C, 7 h; f) CSA; then
236, benzene, 80�C, 1 h, 45% over three steps; g) t-BuOK, NH3, reflux, hn, 1 h, 51%; h) HCl,

EtOH, H2 (1 atm), 20% Pd(OH)2/C, 25
�C, 9 h, 74%
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compounds into the fully fused ergoline skeleton (175). Such a transformation

would provide access to the characteristic tetracyclic ring system found in lysergic

acid (133) or setoclavine (239) (Scheme 4.9).

The synthesis of setoclavine (239) commenced from the previously described

3-indolylacetonitrile derivative 232 (see Sect. 4.3.5), which was N-protected by

tosylation to give the desiredN-tosyl derivative 240 (Scheme 4.9). Stille coupling of
240 with stannane 241 (181) to biaryl 242 and the subsequent tandem reduction/

vinylogous Mannich reaction yielded the spirocyclic butenolides 243a and 243b

with 76% overall yield. In the next step, the ring expansion reaction was conducted

by reduction of 243a and 243b to the corresponding lactol that underwent facile

isomerization and dehydration to generate a mixture of epimeric dihydropyridine

derivatives. Afterwards, the imine function of the dihydropyridine moiety was

reduced and the newly formed amine function was methylated to furnish a mixture

of the diastereomeric amino alcohols 244a and 244b in 41 and 29% overall yield.

The N-tosyl protecting group was readily removed by reduction with magnesium in

methanol. At the same time, these conditions also facilitated the rearrangement of

the diastereomeric allyl alcohols to yield the natural product setoclavine 239 as the

major product along with other side products. The product spectrum of this reaction

could be shifted to the natural product by treatment of the crude product mixture,

obtained upon detosylation, with aqueous acid (the previously mentioned acid-

catalyzed rearrangements of similar compounds were described in refs. (182–184)).
Following this procedure, setoclavine (239) was isolated in 64% overall yield.
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Br

CN

R

243a : a -NH2242232 : R = H
a)

240 : R = Ts

O OTIPS

241

243b: b -NH2

N CN
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O
OTIPS c)

N

O

O

Ts

NH2

244a : a -OH

244b : b -OH

N
Ts

N
HO

HN

N

OHH3C

f), g)
Bu3Sn

Scheme 4.9 Reagents and conditions: a) NaH, TsCl, THF, 0�C to rt, 7 h, 73%; b) 241, Pd(PPh3)4,

K2CO3, toluene, reflux, 3 h, 95%; c) DIBAL-H, CH2Cl2, �78�C to rt, 4 h; then SiO2, 76%;

d) DIBAL-H, CH2Cl2/THF, �78�C, 2 h; e) 3.5 equiv. NaBH3CN, CH3CN, AcOH; then 38% aq.

CH2O, 41% (244a) and 29% (244b) over two steps; f) Mg, MeOH, rt, 1,5 h; g) 1 N HCl, rt, 64%

over two steps
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4.3.7 Biomimetic Three-Step Synthesis of Clavicipitic Acids

For the production of natural products on an industrial scale, fermentation processes

are often preferable in comparison to chemical processes. In biosynthesis processes,

natural products may be generated efficiently and cleanly via enzymatic catalysis

(185). Thus, the development of synthesis approaches similar to their biosynthesis

is one of the main objectives of the synthesis community. To pursue this goal,

Yokoyama and co-workers developed a bio-similar three-step synthesis of optically

active clavicipitic acid (175) (186), which was isolated from natural sources as an

isomeric mixture (Scheme 4.10) (187).

In the first step, 4-bromoindole (216) was allowed to react with racemic serine

(rac-245) heated with two equivalents of acetic anhydride prior to reaction with 216
(Scheme 4.10). There is published evidence that treatment of rac-245 with acetic

anhydride might lead to formation of an oxazolone (188), which can be attacked by
4-bromoindole (216) to furnish the racemic bromotryptophan derivative rac-246.
The observation that the use of enantiomerically pure L-serine (L-245) also leads to

the racemic bromotryptophan derivative rac-246 can be reasonably explained by

the formation of this oxazolone. In the next step, N-acetyl-4-bromotryptophan

(rac-246) was treated with the enzyme “Aspergillus acylase” to yield the unpro-

tected bromotryptophan (S)-247 in high enantiopurity but in just moderate yield.

The subsequently intended aqueousHeck-reaction showed an interesting pH depen-

dence: under strongly basic conditions the desired C-4–vinylation at the indole core

216

a)

N
H

Br

rac -246

N
H

Br
NH2

c)

N
H

Br
NHAc

CO2H

N
H

NH2

OH

175 (clavicipitic acids)

N
H

H
N

b)

(S)-247

N
H

Br

NHAc

(R )-246

+

trans -175: a -10H
cis -175: b -10H

10

248 (2:1)

> 99% ee

COOH

COOH

COOH COOH

Scheme 4.10 Reagents and conditions: a) rac-serine (rac-245), Ac2O, AcOH, 50
�C, 5 h; then

216, 80�C, 4.5 h, 73%; b) “Aspergillus acylase”, CoCl2, NaH2PO4, pH 7, 37�C, 2 d, 49%; c) 0.1

equiv. Pd(OAc)2, 0.2 equiv. TPPTS, 3 equiv. K2CO3, 130
�C, 8 h, sealed tube; then 60% aq. AcOH,

60�C, 2 h, 61%
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occurred, whereas N-allylation at the amino group was observed under neutral or

weakly basic conditions. Using potassium carbonate and strong heating, the Heck
reaction proceeded smoothly in an aqueous medium to furnish the coupling product

248 as its potassium salt in 91% yield. It is noteworthy that in spite of the strongly

basic conditions used (3 equiv. of base at 130�C for hours), no racemization was

observed. By acidification of the reaction mixture from the Heck reaction, the

cyclization of 248 to the natural product 175 proceeded smoothly. This one-pot

procedure gave an isomeric mixture (2:1) of the natural products 175 in 61% yield

(from (S)-247). After esterification of the isomeric mixture 175 with TMSCHN2

and subsequent separation, it could be shown that each clavicipitic acid methyl ester

showed high enantiopurity, thus avoiding the occurrence of racemization.

By using a related synthesis strategy, Jia and co-workers could accomplish the

total syntheses of (�)-trans- and (+)-cis-clavicipitic acid as well as the syntheses of
both aurantioclavine enantiomers (189). Thereby, misassignments regarding the

relative configuration of trans- and cis-clavicipitic acid could be corrected.
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5 Fumonisins

Fumonisins have been isolated of the fungus Fusarium moniliformeMRC 826 from

corn intended for human consumption in Transkei, South Africa (190, 191)
(Fig. 5.1 (192, 193), Table 5.1).

Fig. 5.1 Fusarium fungus and corn fusariosis

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic

Natural Products, Vol. 97, DOI 10.1007/978-3-7091-1312-7_5,
# Springer-Verlag Wien 2013
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The structures of the fumonisins were first characterized in 1988 by

Benzuidenhout et al. (194). Fumonisin B1 (249) is one of the major fumonisin

representatives in culture and in naturally contaminated samples (195–197). Seven
other fumonisins – B2, B3, B4, A1, A2, A3, and A4 (250–256) have been isolated; the

A-series are N-acetates of fumonisins B1 – B4 (249–252) and appear not to be toxic.

The analogues, fumonisins C1 – C4 (257–260), found in 1993 by Branham and

Plattner et al. (198), exhibit the loss of the terminal methyl group, but constitute

less than 5% of all fumonisins in terms of their natural abundance.

In 1996,Musser et al. reported the isolation and characterization of a new series

of fumonisins, the P series (261–264), in which the amine of the B series is replaced

with an N-linked 3-hydroxypyridinium moiety (199).
Another group of toxins called the “AAL-toxins” was found to have a structural

relationship to the fumonisins, since they have only one tricarboxylic acid (TCA)

moiety. AAL-toxin TA1 (265) and TA2 (266) (Fig. 5.2) are produced by the fungus

Alternaria alternata f. sp. lycopersici and can lead to phytotoxic effects on several

crops such as tomatoes and weeds (200). Due to the toxic effects of long alkyl-chain
pyridinium compounds, this new class of fumonisins is of high interest (201).

Table 5.1 Structures of fumonisins 249–264

O

O
R1

R2 OH

R3

R4

O

CO2H

CO2H

O

CO2H

CO2H

No. R1 R2 R3 R4 Trivial name

253 OH OH CH3 NHAc Fumonisin A1

254 H OH CH3 NHAc Fumonisin A2

255 OH H CH3 NHAc Fumonisin A3

256 H H CH3 NHAc Fumonisin A4

249 OH OH CH3 NH2 Fumonisin B1

250 H OH CH3 NH2 Fumonisin B2

251 OH H CH3 NH2 Fumonisin B3

252 H H CH3 NH2 Fumonisin B4

257 OH OH H NH2 Fumonisin C1

258 H OH H NH2 Fumonisin C2

259 OH H H NH2 Fumonisin C3

260 H H H NH2 Fumonisin C4

261 OH OH CH3 pyOHa Fumonisin P1
262 H OH CH3 pyOHa Fumonisin P2
263 OH H CH3 pyOHa Fumonisin P3
264 H H CH3 pyOHa Fumonisin P4
apyOH ¼ 3-hydroxypyridinium
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5.1 Biological Properties

Fumonisin B1 (249) can amount up to 70% of all fumonisins in the food and is

responsible for most cases of toxicosis caused by this class of mycotoxin. The toxic

effects include the inhibition of sphingolipid biosynthesis, resulting in cell damage

(202) and equine leukoencephalomalacia (ELEM) and hydrothorax in swine (203,
204). ELEM is a neurological disorder of horses and is accompanied by inflamma-

tion and edema formation of the CNS. Symptoms of this disease are blindness,

paralysis of the facial muscles, locomotor abnormalities, hyperesthesia, and stupor,

finally leading to death (205, 206). Furthermore, fumonisin B1 (249) is a causal

agent of nephrotoxicity, hepatotoxicity, and hepatocarcinogenicity, and an

increased rate of apoptosis in the liver and kidney in laboratory animals is also

reported (207). Hydrothorax in swine, a pulmonary edema, can occur from expo-

sure to fumonisin B1 concentrations of over 100 ppm, whereas liver lesions have

been observed at a concentration of >23 ppm (208). The intake of fumonisin B1

by turkeys leads to a reduction of body weight and a decrease of white blood

cells (209). Broiler chickens react with a reduction in the prothrombin time, an

increase in plasma fibrinogen and serum globulin levels, and a decrease in serum

albumin (210).
In some regions where corn is essential for human nutrition, the occurrence

of esophageal carcinoma has been reported, and this has been associated with

fumonisin contamination (211). Concerning the AAL-toxins (see previous sec-

tion), these were found to be associated with human esophageal cancer, equine

leukoencephalomalacia, and liver diseases in humans (212). In the laboratory,

these compounds have been shown to inhibit sphingolipid synthesis (213) and to

cause apoptosis in tomato cells and green monkey kidney cells (214, 215).

5.2 Total Syntheses

5.2.1 Total Synthesis of Fumonisin B1

Fumonisin B1 (249), the primary mycotoxin produced by the fungus Fusarium
moniliforme, was first synthesized by McDonald et al. in 2009 (216). This group

OR1

OR2

NH2

OH

OH OH

AAL-toxin TA1 265 R1 = H, R2 = TCA
AAL-toxin TA2 266 R1 = TCA, R2 = H

Fig. 5.2 AAL-toxins
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divided the synthesis into three parts, the C-1–C-9 sector, the C-10–C-20 core, and

finally coupling and completion to afford fumonisin B1.

The construction of the C-1–C-9 sector (Scheme 5.1) started with a stereospe-

cific allylic transfer using the camphor-derived reagent 267 to the alkynyl aldehyde

268 (217), furnishing the homoallylic alcohol 269 with chiral control at the C-5

alcohol group as well as (Z)-alkene selectivity (218). The following hydroxy

group-directed epoxidation to compound 270 was catalyzed with vanadium

acetylacetonate (219), and the inversion of the C-5 hydroxy group to the correct

stereochemistry to give 271 was provided by a Mitsunobu reaction (142). With the

help of the chelating reagent Ti(O-i-Pr)2(N3)2, the introduction of an azide was

achieved (220), forming 272 as major regioisomer. After producing the terminal

alkyne, the sector C-1–C-9 was completed by protecting the hydroxy groups as

benzyl ethers, preparing the first part, 273.

The synthesis of the second part started with a stereospecific allylic transfer

reaction, which combined the deconjugative aldol product 274 with the chiral

nonracemic aldehyde 275 using TMSOTf (221–223) (Scheme 5.2). In this manner,

the core structure 276 could be afforded, producing the stereochemistry of the C-14

hydroxy group and (E)–alkene by a 2-oxonia-Cope rearrangement (224–227). The
C-14 alcohol was then benzylated under neutral conditions (228) and ester 277 was
formed by catalytic asymmetric conjugate addition of methylmagnesium bromide

(229, 230). To deblock the 14,15-diol selectively at a late stage of the synthesis, the

H

O

H

TIPS

+

dr 2:1

a)
OH

TIPS

2 95

b)

3

OH

TIPS

2 95

3O
c), d)

OH

TIPS

2 95

3O

OH

TIPSN3

2
953

OH
e) f), g)

OBn

HN3

2
953

OBn

rac -267

268 rac -269

rac -270 rac -271

rac -272 rac -273

OH

Scheme 5.1 Synthesis of the C-1–C-9 sector. Reagents and conditions: a) cat. CSA, CH2Cl2, rt,

5–6 h, 70%, >95:5 er, (E)-alkene only; b) cat. VO(acac)2, t-BuOOH, CH2Cl2, 0
�C, 3 h, rt, 24 h,

73%, 10:1 dr; c) Ph3P, DIAD, HOAc, 0
�C, 2 h, 87%; d) K2CO3, MeOH, rt, 3 h, 85%; e) Ti(O-i-

Pr)2(N3)2, benzene, 80
�C, 5 h, 47% of 272 + 17% of the C-3–azide regioisomer; f) Bu4NF, THF,

rt, 6 h, 84%; g) NaH, BnBr, THF/DMF, 0�C to rt, 30 min, <85%
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benzyl ethers were replaced with acetonide in compound 278 (231, 232), which was
finally converted into the Weinreb amide 279 and the primary alcohol 280.

For the final part (Scheme 5.3), the 20-carbon chain of fumonisin B1 was

coupled from the lithium acetylide derived from 273 and the Weinreb amide 279

(233). After enantioselective reduction of the alkynyl ketone 281 (234, 235),
the C-10 stereochemistry was set, followed by benzyl ether formation and

acid-catalyzed acetonide removal, to provide diol 282 (236). Using tricarballylic

acid dibenzyl ester, the two hydroxy groups were esterified (237) and the

hydrogenation of the azide, the alkyne, and the benzylic ethers led to the target

product, fumonisin B1 (249). The spectroscopic analysis matched with those of

commercial fumonisin B1 and further experiments on the synthetic material showed

inhibitory activity on sphingolipid biosynthesis.
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R3SiO
O

H

H

MeO2C

H

OBn OBn
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b), c)
OBn

MeO2C
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d), e)
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O
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f) or g)

rac -274 rac -275

rac -276

rac -277
rac -278 R = MeO2C
rac -279 R = MeON(Me)C=O
rac -280 R = HOCH2

Scheme 5.2 Construction of the C-10–C-20 core via allylic transfer. Compound 275 was

synthesized in five steps from 2-hepten-1-ol: (1) Ti(O-i-Pr)4, L-DIPT, t-BuOOH, 87%;

(2) Me3Al, 73%; (3) PhCH(OMe)3, CSA, 74%, (4) DIBAL-H, 95%, (5) IBX, 83%. Reagents

and conditions: a) TMSOTf, CH2Cl2, 0
�C, 1 h, 61%,>95:5 dr, (E)-alkene only; b) 2-benzyloxy-N-

methylpyridinium triflate, MgO, PhCF3, 85�C, 24 h, 66%; c) MeMgBr, cat. CuI, cat.

(R)-tol-BINAP, MTBE, �20�C, 3 h, 69%; d) BCl3, CH2Cl2, – 45�C, 2 h, 88%; e) Me2C(OMe)2,

cat. TsOH, rt, 1 h, 80%; f) Me(Me-O)NH•HCl, i-PrMgCl, THF, – 25�C, 40 min, 83%; g) LiAlH4,

THF, 0�C, 15 min, 71%
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5.2.2 Enantioselective Total Synthesis of Fumonisin B2

In 1997, Kishi et al. reported an enantioselective total synthesis of fumonisin B2

(250), which can also be used for the preparation of remote diastereomers of

fumonisin B2 and other analogues (238). Therefore, the molecule was divided

into three fragments, wherein the first segment began with coupling of the chiral

alkyne 284 (239, 240) with triflate 285 (Scheme 5.4). Site-selective osmylation, Pb-

(OAc)4 cleavage of the resultant diol, NaBH4 reduction, Na/NH3 reduction of the

alkyne into a (E)-alkene, and Swern (241) and NaClO2 (242) oxidation afforded the
(E)-alkene acid 287. The stereoselective introduction of the vicinal hydroxy groups
at C-14 and C-15 was achieved by iodolactonization (243, 244), followed by ring

opening of the lactone with PhCH2ONa to provide the C-14–C-15 epoxide benzyl

ester. Final deprotection of the resultant benzyl ester yielded the lactone alcohol

with the desired stereochemistry at the C-14 and C-15 positions. The last steps for
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Scheme 5.3 Synthesis of fumonisin B1 (249). Reagents and conditions: a) 273, n-BuLi, THF;
then 279, �78�C to 0�C, 2 h, 65%; b) (R)-CBS, catecholborane, �78�C to – 65�C, 5 h, 71–75%,

9:1 dr; c) NaH, BnBr, THF/DMF, rt, 40 min, 86%; d) Amberlite-120 H+, MeOH, rt, 24 h, 80%;

e) 283 (was synthesized in three steps from but-3-enoyloxazolidinone: (1) LiHMDS, benzyl

bromoacetate, 68%; (2) BnOLi, 80%; (3) NaIO4, cat. RuCl3–H2O, 91%) EDCl, DMAP, CH2Cl2,

rt, 20 h, 71%; f) H2 Pd(OH)2/C, t-BuOH/THF/HCl, rt, 18 h, 45%
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the first fragment included a reduction of the alcohol to a triol, protection of the

vicinal hydroxy groups as an acetonide, and Swern oxidation of the following

primary alcohol provided compound 289 (245).

The preparation of the second part of fumonisin B2 (250) is shown in Scheme 5.5.

Allylation of a-amino aldehyde 290 (246) with Brown’s chiral (–)-B-allyldiisopi-
nocampheylborane (247) afforded the syn-amino alcohol 291. After protection of

291 as an acetonide, ozonolysis of the alkene with dimethyl sulfide work-up, and

reduction of the resultant aldehyde with B-allyldiisopinochamphenylborane

provided the anti-alcohol 292. Alcohol 292 was converted to ester 293 via
acetonide deprotection, benzyl group protection, ozonolysis of the resultant alkene

to an aldehyde, a two-carbon chain elongation under Horner-Wadsworth-Emmons
conditions, and hydrogenation using the Lindlar catalyst. Removal of the Boc

group, protection of the amine, and reduction of the methyl ester to an alcohol,

followed by transformation into an alkyl iodide and treatment with triphenyl

phosphane yielded the phosphonium salt 294.

A Wittig reaction of the ylide 294 with the aldehyde 289 formed the backbone

295, which was then treated with trifluoroacetic acid to remove the acetonide,

followed by acylation of the diol with the (–)-TCA segment 296 (248).
Hydrogenation of the alkene and hydrogenolysis of all benzyl protecting

groups with H2 (1 atm) and Pearlman’s catalyst afforded fumonisin B2 (250)

(Scheme 5.6).

n-Bu
+ TfO

a) n-Bu

284 285 286

b) - g ) OHn-Bu

O
287

h)

O

n-Bu

I

O
288

14
15

i) - m)
n-Bu O

O

1415

O

H

289

Scheme 5.4 Synthesis of the left segment of fumonisin B2 (250). Reagents and conditions:

a) n-BuLi, THF, �78�C, 30 min to rt, overnight, 70%; b) K2OsO4�H2O, t-BuOH/H2O (1/1), rt,

5 h, 94%; c) Pb(OAc)4, CH2Cl2, 0
�C, 10 min; d) NaBH4, EtOH, 0

�C to rt, 1 h, 97% two steps;

e) Na/liq. NH3, t-BuOH, reflux, 4 h, 92%; f) (COCl)2, DMSO, Et3N, CH2Cl2, �50�C to rt, 1 h;

g) NaClO2, t-BuOH, rt, 20 min, 92% over two steps; h) I2, CH3CN, �30�C, overnight, 84%;

i) BnONa, THF, �30�C, 3 h; j) H2, Pd/C, p-TsOH (cat.), Et2O, rt, 2 h, 87% over two steps;

k) LiAlH4, Et2O, 0
�C, 4 h, 90%; l) p-TsOH (cat.), (CH3)2C¼O, rt, 20 min; m) (COCl)2, DMSO,

Et3N, CH2Cl2, �78�C to rt, 1 h, 79% over five steps
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Scheme 5.5 Synthesis of the right-half sector of fumonisin B2 (250). Reagents and conditions:

a) (–)-Ipc2B-allyl, toluene, �78�C to rt, 1 h, 80%, 94% de; b) p-TsOH, (CH3)2C¼O, rt, 2 h, 93%;

c) O3, Me2S, CH2Cl2/MeOH (1/1),�78�C to rt, 2 h; d) (+)-Ipc2B-allyl, Et2O,�78�C, 6 h, 65%, dr
10:1; e) p-TsOH (cat.), MeOH, rt, 1.5 h, 91%; f) NaH, BnBr, TBAI, THF, rt, overnight, 88%;

g) O3, Me2S, CH2Cl2/MeOH (1/1),�78�C to rt, 2 h; h) (MeO)2POCH2COOMe, NaH, THF, 0�C to

rt, 30 min, 91%, 70% over five steps; i) H2/Lindlar cat., rt, 2 h; j) TFA, CH2Cl2, 0
�C to rt, 30 min;

k) BnBr, K2CO3, EtOH/H2O (1/1), rt, 4 h, 90%; l) DIBAL-H, Et2O, �78�C to 0�C, 1.5 h, 95%;

m) I2, PPh3, imidazole, benzene, rt, 1.5 h, 88%; n) PPh3, CH3CN, reflux, 16 h, 90%, 75% over five

steps
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Scheme 5.6 Completion of fumonisin B2 (250). Reagents and conditions: a) n-BuLi, THF, 81%;

b) TFA, H2O, THF, 95%; c) TCA (1) O3, Jones reagent, (CH3)2C¼O; (2) DMAP, BnOH, EDCl,

CH2Cl2, 29% over two steps; (3) TFA, CH2Cl2, 29% over three steps, DMAP, EDCl, CH2Cl2, 90%

over two steps; d) H2, Pd(OH)2 on carbon, HCl, t-BuOH/THF (4/1), 60%
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5.2.3 Total Synthesis of AAL-toxin TA1

Since 1988, it has been known that AAL-toxin TA1 (265) is a tumor promoter (190),
Oikawa et al. generated a synthesis route to lead to this target compound and to

study the structure-activity relationships of these toxins (249, 250).
The synthesis of AAL-toxin TA1 (265) is divided into three segments, with the

first part beginning by silylation of 3-hydroxy-2-methylproprionate and treatment

with DIBAL-H and vinyl magnesium bromide in a one-pot reaction, which gave the

alcohol 298 (Scheme 5.7). The separation of diastereomers was carried out by

benzylation to compound 299, and oxidation with OsO4 resulted in diol 300 as a 6:1

separable mixture. Further reactions comprised a Sharpless oxidation (251), an
acetylide addition, and transformation into lactone 303. Deprotection of the silyl

group followed by a Swern oxidation and aWittig reaction led to olefin 304. The last

CO2Me
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HO BPSO

OR

d)
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OBn

OH

OH

c) 298 R = H
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O

OBn

304

O

O

l), m) n)

OBn
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O
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OBn

306 8.7:1

O
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Scheme 5.7 Construction of the left segment 306 of AAL-toxin TA1 (265). Reagents and

conditions: a) BPSCl, Im, DMF, quant; b) DIBAL-H, Et2O, CH2¼CHMgBr, 77%; c) NaH,

BnBr, n-Bu4NI, THF, 91%; d) OsO4, NMO, acetone/H2O (8/1), 91%; e) MeC(OMe)3, cat. PPTS,

CH2Cl2; AcBr, CH2Cl2; K2CO3, MeOH, 77%; f) ethyl ethynyl ether, n-BuLi, BF3∙Et2O, THF; g)
HgCl2, EtOH; h) K2CO3, MeOH, 3M HCl, 59% over three steps; i) TBAF, THF, 80%; j) (COCl)2,

DMSO, Et3N, CH2Cl2; k) Ph3PCH3Br, n-BuLi, THF, 19% over two steps; l) H2, Pd-C, EtOAc; m)

CCl3C(¼NH)OBn, TfOH, CH2Cl2/cyclohexane (1/1), 57% over two steps,; n) LiHMDS, CH3I,

THF, 68%
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steps included hydrogenation, acidic debenzylation, and a-methylation to synthe-

size the left segment, 306.

The synthesis of the right segment and TCA segment was published in a

preceding paper in 1996 (249). The condensation of lithium acetylide derived

from 5-pentynol 307 with n-BuLi and epoxide 308 resulted in a homopropargylic

alcohol, which was hydrogenated to the (Z)-olefin 309. An asymmetric

dihydroxylation afforded triol 310, whereas the hydroxy groups were protected

via benzylation. The right building block 312 was completed by subsequent trans-

formation with a Corey-Fuchs reaction (Scheme 5.8).

Scheme 5.9 shows the preparation of the tricarballylic acid (TCA) segment 315.

Racemic methyl-2-benzylsuccinate (313) was separated using lipase-catalyzed
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Scheme 5.8 Synthesis of right segment 312. Reagents and conditions: a) n-BuLi, BF3∙Et2O, THF,
75%; b) H2, Pd/BaSO4, quinolone, 98%; c) cat. OsO4, DHQD-IND, K3Fe(CN)6, K2CO3, t-BuOH/
H2O, 85%, dr ¼ 4:1; d) NaH, BnBr, TBAI, THF, 81%; e) TBAF, THF, 89%; f) CBr4, PPh3,

DIPEA, CH2Cl2, 75%; g) n-BuLi, BF3∙Et2O, THF, 75%
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Scheme 5.9 Formation of the TCA-segment. Reagents and conditions: a) lipase (PPL), KH2PO4-

buffer (pH 7.2); b) 1 M NaOH, MeOH; c) TMSCH2CH2OH, EDC, Et3N, DMAP, CH2Cl2, 79%
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hydrolysis. Hydrolysis and TMSE protection (TMSE ¼ trimethylsilylethyl) of the

(S)-enantiomer, followed by oxidation of the phenyl ring afforded acid 315.

The last part of the total synthesis comprised a condensation between lactone

306 with acetylene 312, then deoxygenation of the C-10 carbonyl by a Luche
reduction (252) and formylation followed by palladium-catalyzed deoxygenation

(253) to give product 318. Orthogonal deprotection of the acyl and THP groups

afforded diol 319 and transformation into azide 320 was conducted under

Mitsunobu conditions (142). After acylation with the tricarballylic acid moiety

315 using the Yamaguchi method (254), deprotection of the TMSE groups, reduc-

tion of azide and triple bond and hydrogenolysis of all benzyl groups finally gave

AAL-toxin TA1 (265) (Scheme 5.10).
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Scheme 5.10 Completion of the synthesis of AAL-toxin TA1 (265). Reagents and conditions:

a) n-BuLi, 306, Et2O, 72%; b) NaBH4, CeCl3, MeOH, 85%; c) Ac2O, HCO2H, Py, 97%; d) Pd

(OAc)2, n-Bu3P, THF, 84%; e) LiAlH4, THF; f) PPTS, EtOH, 89% over two steps; g) HN3, Ph3P,

DEAD, toluene, 69%; h) 2,4-NO2C6H4COCl, (S)-315, Et3N, toluene; then 320, DMAP, 71%;

i) TBAF, THF; j) H2, Pd/C, t-BuOH/THF/1 M HCl (3/1/0.04), 76% over two steps
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6 Ochratoxins

The ochratoxins were isolated and characterized from Aspergillus ochraceus
(Fig. 6.1 (255)) in 1965 (256, 257).

These compounds were found to be important mycotoxin constituents of

Aspergillus species shortly after the discovery of the aflatoxins (see Chap. 2.).

The ochratoxins are isocoumarin derivatives coupled with b-phenylalanine. The
major representatives of this class of pentaketides are shown in Fig. 6.2. Ochratoxin

B (324) is the dechloro analog of ochratoxin A (323), which is the most important

member of this group with respect to its toxicity. The corresponding methyl and

ethyl esters of ochratoxin A (323) and B (324) were found also in Aspergillus
species and the ethyl ester of ochratoxin A (323) has been named ochratoxin

C (325). Ochratoxin a (326) is a free carboxylic acid that represents the dihydroi-

socoumarin nucleus of ochratoxin A (323).

Fig. 6.1 Aspergillus ochraceus under a light microscope (400-fold magnification)

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic

Natural Products, Vol. 97, DOI 10.1007/978-3-7091-1312-7_6,
# Springer-Verlag Wien 2013
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6.1 Biological Properties

Ochratoxin A (323) is by far the most commonly occurring member of the class of

ochratoxins and therefore is the best-characterized and most thoroughly

documented (258). It is produced not only by Aspergillus ochraceus and other

Aspergillus species but has been found also in Penicillium verrucosum, and occurs

with other mycotoxins associated with improperly stored food products (259)
(Fig. 6.3 (260)).

Compound 323 is the most toxic of the ochratoxins and shows neurotoxic,

nephrotoxic, teratogenic, hepatotoxic, and immunotoxic properties. Furthermore,

in 1993 it was classified as a possible carcinogen to humans by the International

Agency for Research on Cancer (261).
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Fig. 6.2 Structures of ochratoxins A–C (323–325) and ochratoxin a (326)

Fig. 6.3 Pencillium ear rot caused by ochratoxin-producing fungi. (Courtesy of the University of

Illinois Extension)
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Ochratoxins B, C, and a (324–326) show similar pharmacological profiles to

ochratoxin A (325), but at about a thousand-fold higher dose level in each case. The

toxicity of the ochratoxins includes effects on DNA, RNA, and protein synthesis.

Also evident are inhibition of enzymes involved in various biosynthesis steps,

enhancement of lipid peroxidation, which leads to hepatoxic effects, and effects

on mitochondrial ATP production (259). These molecules are easily absorbed

through the gastrointestinal tract and possess high binding affinities to plasma

proteins (262). These properties lead to both the good bioavailability and prolonged
half-lives of the toxins.

6.2 Total Syntheses

All ochratoxins and their derivatives have been obtained by total syntheses.

The first so-produced were ochratoxins A (323) and B (324) by Steyn et al. in
1967 (263), two years after they were first reported as a class of mycotoxins. This

group was able to synthesize racemic ochratoxin a (326) in six steps. However, for

the stereoselective synthesis of ochratoxins A (323) and B (324), (R)-ochratoxin a
(326) obtained through hydrolysis of the natural product was used as the starting

material.

6.2.1 Enantioselective Total Synthesis of (R)-Ochratoxin a
and Ochratoxins A, B, and C

It took another 35 years until the first (and still the only known) enantioselective

total synthesis of (R)-ochratoxin a (326), and therefore of ochratoxins A and B, was

published by Gill et al. in 2002 (264, 265). Scheme 6.1 shows six steps of the

nine-step synthesis, which was achieved with 10% overall yield. The first three

steps of the procedure are not shown and comprise the preparation of 327 from

(R)-2-methyloxirane according to ref. (266). Ketene dimethyl acetal and acetylenic

ester 327 react in an intermolecular cycloaddition to give 328. This diene undergoes

a Diels-Alder reaction with methyl propiolate to yield 329. Lactonization (! 330),

demethylation (! 331), chlorination (! 332), and methyl ester cleavage finally

furnished enantiomerically pure ochratoxin a (326) (267).
Ochratoxin a (326) or the dechlorinated derivative 331 can be converted easily

to ochratoxin A (323) and C (325) or ochratoxin B (324), respectively. Steyn et al.
formulated this approach in 1967. They converted the free acid to the acid chloride,

converted this into the acid azide and coupled the product with L-phenylalanine
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(263). A few years later, Roberts and Woollven published a more convenient

method using EEDQ (2-ethoxy-1-ethoxycarbonyl-1,2-dihydroguinoline) as cou-

pling reagent and the t-butyl ester of L-phenylalanine as condensation partner for

326 (268). Later, Kraus et al. used this methodology for the synthesis of ochratoxin

B (324). Since this group also developed a more efficient synthesis route toward

racemic ochratoxin a (326), they disclosed the short and industrial-scale syntheses

of ochratoxins A–C in only a few steps and good yields in a patent (267).

6.2.2 Total Syntheses of Racemic Ochratoxins a
and Ochratoxins A, B, and C

In 1985, Snieckus et al. reported another method for the preparation of racemic

ochratoxin a (326) and its dechloro analog 331 in only four steps (269). They used

the readily accessible O-aryl carbamates 333a and 333b (270) as starting materials

for their synthesis (Scheme 6.2). The O-carbamate benzamides 334a and 334b

were obtained by metalation of the carbamates followed by quenching with

diethylcarbamoyl chloride. The next step consisted of a 1,3-carbamoyl
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Scheme 6.1 Total synthesis of (R)-ochratoxin a (326) as well as ochratoxins A–C (323–325).

Reagents and conditions: a) ketene dimethyl acetal, sealed tube, 165�C, 23 h; b) methyl propiolate,

sealed tube, 145�C, 22 h, 69% over two steps; c) p-TsOH, CH2Cl2, rt, 72 h, 82%; d) BCl3, CH2Cl2,

0�C, 10 min, 92%; e) SO2Cl2, CH2Cl2, rt, 48 h; f) MeOH, LiOH•H2O, reflux, 5 h, 68% over two

steps; g) L-phenylalanine t-butyl ester, EEDQ, THF, rt, 15 h; h) EtOH
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rearrangement to give derivatives 335a and 335b. Further metalation, trans-

metalation, and treatment with allyl bromide yielded 336a and 336b. A one-pot

lactonization, amide hydrolysis, and demethylation finally led to the racemic

isocoumarins 326 and 331 in 6% and 14% overall yields.

In 2009, Gabriele et al. published a new and expedient synthesis of racemic

ochratoxin a (326) (271). After coupling with protected L-phenylalanine, they were

able to separate the resulting diastereoisomers by preparative TLC. Thus, they

obtained enantiomerically pure (R)-ochratoxin A (323) and its (3S)-diastereomer

343a in six steps and 9% and 6% overall yields, from commercially available

starting materials (Scheme 6.3). Furthermore, they were able to synthesize

d5-ochratoxin A (342b) and its (3S)-diastereomer 343b. The former can be used

as an internal standard in a stable isotope dilution assay that is an important

quantification tool for micro components in food such as the ochratoxins (272).
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MgBr2•Et2O, �78�C, 45 min; then allyl bromide, �78�C to rt, overnight, 55% (336a), 38%

(336b); d) HCl (aq.), reflux, 6 h, 50% (rac-326), 49% (rac-331)
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The synthesis starts with the reaction of dimethyl-3-oxopentanedioate (337) and

crude but-2-ynal (available by oxidation of but-2-ynol with MnO2 (273)) to give the
substituted benzene 338 in moderate yield. Deprotonation of its methyl group,

condensation with acetaldehyde and acidic work-up furnished lactone 339.

Through chlorination and ester hydrolysis, racemic ochratoxin a (326) was

obtained in 23% overall yield. L-Phenylalanine (340a) and L-d5-phenylalanine
(340a) were protected and coupled with 326 in the presence of EDC (N-ethyl-
N0-(3-dimethylaminopropyl)carbodiimide and HOBt (N-hydroxybenzotriazole))
to give ochratoxin A (323) and d5-ochratoxin A (342b), as well as their (3S)-
diastereomers. To date, this route to ochratoxin a is the most efficient one with

23% overall yield in three steps, when compared to the methods of Kraus (17% over

four steps), Snieckus (6% over five steps), and Gill (10% over nine steps).

6.2.3 Total Syntheses of All Stereoisomers of Ochratoxin A

The latest total synthesis of ochratoxins was published in 2010 by Humpf et al. and
aimed at the preparation of all stereoisomers of ochratoxin A, i.e. the natural

compound 323 (3S,14S), 345 (3R,14S), 346 (3R,14R), as well as 347 (3S,14R)
(274, Scheme 6.4).

For the synthesis of racemic ochratoxin a (326), the authors used the method

previously described by Gabriele et al. (271). Thus, L-340a and D-phenylalanine

(344) were coupled with HATU (N,N,N0,N0-tetramethyl-O-(7-azabenzotriazol-1-yl)
uranium hexafluorophosphate)-activated 326. Accordingly, the HPLC-separable

diastereomers 323 and 345 as well as 346 and 347 could be synthesized in 53%

yield from ochratoxin a (326). Since (3R,14R)-ochratoxin A (346) was recently
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discovered to be a thermal degradation product of ochratoxin A (323) in food (275),
the authors investigated the cytotoxic and apoptotic effects of all four compounds.

They found that the stereochemistry of the ochratoxins has a large effect on their

toxicity. Only 323 and 345, with the (S)-configuration of the phenylalanine moiety,

showed any cytotoxic potential in an assay using a cultured human liver cell line.
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7 Patulin

7.1 General

Patulin (348) is a mycotoxin of notable importance due to its extremely widespread

and frequent occurrence in foodstuffs intended for human consumption, particu-

larly fruits and fruit products. Patulin (348) displays mutagenic properties (276),
and, due to its ability to interfere with DNA and RNA synthesis (277–279), it has
been suggested as a likely carcinogen. Despite the observation that 348 does not

seem to be a particularly potent toxin, its common occurrence, and genotoxic

as well as possible carcinogenic nature (280), has led the World Health Organiza-

tion and European Union to set maximum recommended concentration levels in

foodstuffs for human consumption, as, for example, 50 mg/dm3 in apple juice (281).
Patulin (348) has been found to occur in an extensive variety of foods: bananas,

pineapples, grapes, peaches (282), pears (283), apples and apple juice (284), and the
jams of various berries during storage (285).

The microbial culprit organisms found to produce this environmental toxin are

mostly Penicillium, Aspergillus, and Byssochlamys species (286–288) including
P. patulum (289), P. urticae (290), P. claviforme (291), and P. expansum (292).
While patulin (348) possesses antibiotic properties (293), it has not been investi-

gated fully in this respect due to its toxic effects against mammals and plants (294).
The chemical identity of patulin (348) was proposed initially incorrectly in 1948

(295), with the structure corrected by Woodward and Singh the following year to

the structure shown (348, Fig. 7.1).

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic
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Patulin (348) is a quite small natural product, but it nonetheless has a diverse

complement of potent chemical functionality: cyclic hemiacetal (the natural

product is racemic) and allylic acetal moieties are present, and the molecule

potentially can react with the nucleophilic residues of biomolecules as either a

1,4- or 1,6-Michael acceptor (see Fig. 7.1). Neopatulin (349) (296), ascadiol (350),
and penicillic acid (351) are structurally related ylidenebutenolides, as are also

metabolites of tetronic acid (352).

7.2 Total Syntheses of Patulin

The initial synthesis ofWoodward and Singh was reported for patulin (348) in 1950
(297). However, the yield was low and the synthesis impractical. Two almost

identical syntheses were reported independently by the groups of Stapleton in

1988 (298, 299) and Riguera in 1989 (300). Both commenced from L-arabinose, a

readily available starting material from the chiral pool; notwithstanding this,

deprotection of a late-stage acetal intermediate to deliver the natural product was

followed, perhaps unsurprisingly, by rapid racemization at the hemiacetal center.

For details of these earlier syntheses, the reader is directed to our recent review (10)
and the primary literature.

More recently, Tada and co-workers reported the total synthesis of patulin (348)
in 1994 (Scheme 7.1) (301). Starting with the condensation of acetonedicarboxylic

acid dimethyl ester (353) and chloroacetaldehyde to form an appropriately 2,3-

disubstituted furan 354, this was further reduced and selectively oxidized at the

aromatic carbinol to deliver 3-furaldehyde 355. Dean-Stark condensation of this

species in the presence of methanol gave the methyloxy furanopyran 356. Oxidative

ring-opening to a carboxylate intermediate and subsequent methylation with

diazomethane provided ester 357, which was lactonized and finally demethylated

to deliver the natural product 348 in 7% yield over a total of eight consecutive steps.
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More efficient in terms of the number of steps (six) and overall yield (41%) was a

later synthesis from Boukouvalas and co-workers (Scheme 7.2) (302). Bis-silyl-
protected 3-hydroxymethyl 2,4-dihydrofuran-2-one (359) was selectively

deprotected/condensed with benzyloxyacetaldehyde to give the alcohol, which

was protected as a pivalate ester and subjected to selective desilylation then

TEMPO-mediated oxidation. The resulting aldehyde 361 was then cyclized with

a Lewis acid. Elimination of pivalic acid from ester 362 gave mainly the desired

ylidenebutenolide regioisomer and the natural product (348).

Rychlik and Schieberle reported a synthesis of 13C-labeled patulin (348) in 1998
(303). The synthesis was from L-arabinose (363), as described by Stapleton and co-
workers (298), with an initial methyl acetal formation, protection of a 1,2-diol, then
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oxidation of the remaining hydroxy group to give 365. The authors then

incorporated ethyl bromo[13C2]acetate (366) in a subsequent Wadsworth-Emmons
olefination to form 367, and completed the sequence to patulin via lactonization to

368, activation to a methanesulfonate, elimination, and formation of the hemiacetal

(Scheme 7.3) (298). The resulting 13C-labeled compound was used as an internal

standard in stable isotope dilution assays, which may be of use in future studies of

patulin (348) metabolism in vivo.
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8 Trichothecenes

The trichothecenes belong to the sesquiterpenoid class, and are found commonly in

cereal grains, with to date more than 200 different compounds of this type being

known. Generally, they can be divided in two sub-groups: macrocyclic

trichothecenes, constituting approximately 60%, and the remaining 40%, which

are non-macrocyclic molecules (304). The first non-macrocyclic trichothecene,

trichothecin (369), was isolated 1948 from Trichothecium roesum (305) (Fig. 8.1).

Two years earlier, “glutinosin” was isolated by the Butterwick (later Akers)

Laboratories of Imperial Chemical Industries Ltd. from Myrothecium verrucaria.
After this, “glutinosin” was identified as a mixture of verrucarins A (380) and B

(381). Trichothecenes are produced by a number of different fungal genera such as

Fusarium, Myrothecium, Stachybotrys, Cylindrocarpon, Verticinimonosporium,
Phomopsis, Trichoderma, and Cephalosporium (306, 307). Selected fungi are

shown in Fig. 8.2 (308–311).

O

O

H H

O

O

O

369 (trichothecin)

Fig. 8.1 Trichothecin (369), first isolated from Trichothecium roseum

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic

Natural Products, Vol. 97, DOI 10.1007/978-3-7091-1312-7_8,
# Springer-Verlag Wien 2013
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All trichothecenes include the tricyclic 12,13-epoxytrichothec-9-ene core, 370.

Based on this structure and its substitution pattern, the mycotoxins have been

classified into four types, A (371), B (372), C (373), and D (374), by Ueno et al.
Type A (371) can have a hydroxy group, an ester, or no functional group at C-8.

Type B (372) possesses a carbonyl group at C-8, type C (373) has an epoxide

function at C-7/C-8, and type D (374) mycotoxins are macrocyclic trichothecenes.

Included among these four types there are some exceptions, which cannot be

grouped accurately using this classification. Other classification systems for

trichothecenes were proposed by Jarvis et al. (312) and Tamm et al. (313), but
these will not be further discussed in this volume (Fig. 8.3).

To date, only a few total syntheses of trichothecenes have been published, such

as the non-macrocyclic trichothecenes trichodermin (375), anguidine (376), and

sporol (377). Examples of the synthesis of macrocyclic trichothecenes are for

roridin E (378), baccharin B5 (379), and verrucarin A (380) (Fig. 8.4).

Fig. 8.2 Fusarium sp. (upper left), cultures of a Phomopsis strain (upper right), Trichoderma
viride (bottom left), and Stachybotrys chartarum (bottom right)
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Fig. 8.3 Classification of trichothecenes into four types, A, B, C, and D, by Ueno et al.
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8.1 Biological Properties

The trichothecenes are found commonly in cereal and grain crops. In general, they

have a very high toxicity and some represent the most toxic compounds so far known

that do not contain a nitrogen atom. They are small and amphiphatic molecules and

can move passively across cell membranes and are easily absorbed via the integu-

mentary and gastrointestinal systems. This is the primary reason for their toxicity to

animals and human beings. However, the majority of the trichothecenes show a broad

range of interesting biological activities. Most of them are antibacterial, antibiotic,

antifungal, and insecticidal. The biological properties originate from the macrocyclic

lactone core and the epoxy group as the essential structural requirements for activity.

These natural products are known to inhibit eukaryotic protein synthesis. In particular,

they prevent peptide bond formation at the peptidyl transferase center of the 60S

ribosomal subunit. Additionally, they are inhibitors of the mitochondrial protein

synthesis and interact with protein sulfhydryl groups. Furthermore, trichothecenes

show phytotoxicity and antitumor activities and are some of the most potently

cytostatic materials found to date (304, 314–318).

8.2 Total Syntheses

8.2.1 Non-Macrocyclic Trichothecenes

8.2.1.1 Synthesis of Trichodermin

In 1971, Raphael et al. published the total synthesis of racemic trichodermin (375),

which was the first synthesis of a member of the trichothecene family (319).
Trichodermin (375) was isolated initially by Vangedal et al. from the culture

fluid of a strain of Trichoderma viride in 1965 (320).
The total synthesis started with a Birch reduction of p-methoxytoluene (382)

to obtain the dihydro compound 383, which was treated with p-toluenesulfonic acid
to obtain acetal 384. Cyclopropanation with ethyl diazoacetate and transaceta-

lization led to compound 385, which reacted to the unsaturated keto ester 386

on treatment with base. In the next step, the keto ester 386 was methylated with

methylmagnesium chloride, and it reacted selectively at the 2-positon to yield 387.

Lactonization with further methylation with methyl iodide afforded homo-lactone

389, which reacted with lithium salt 390 to alkyne 391 and was reduced with

sodium borohydride to diol 392. Partial reduction of the triple bond to the double

bond was obtained with sodium in ammonia and further treatment with acid led to

hydrolysis of the acetal, which subsequently cyclized to 394 (Scheme 8.1).

After having 394 in hand, Raphael et al. had planned to oxidize the alcohol to a

ketone function; however, this molecule did not undergo an intramolecular aldol

condensation. For this reason, it was necessary to oxidize the alcohol 394 in two

steps to keto acid 395, which was then converted into the enol lactone 396.
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Compound 396 was obtained as an inseparable mixture of two racemates. Reduc-

tion of this mixture, followed by acetylation of the alcohol group, resulted in 397.

SubsequentWittig reaction converted ketone 397 into methylene 398. Deprotection

of the alcohol group facilitated regio- and stereoselective epoxidation with

m-CPBA and final acetylation of the alcohol group afforded the racemic natural

product trichodermin (375) (Scheme 8.2).
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Scheme 8.1 Synthesis of the trichodermin precursor 394. Reagents and conditions: a) Birch
reduction; b) p-TsOH, MeOH; c) CH2N2, CO2Et, CuBr, TsOH, acetone; d) NaOAc, EtOH;

e) MeMgCl; f) NaOH, H2SO4; g) LDA, MeI; h) NaBH4; i) Na, NH3, EtOH; j) AcOH, NaOAc, H2O
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Scheme 8.2 Total synthesis of rac-trichodermin (375). Reagents and conditions: a) CrO3,

pyridine, CH2Cl2; b) CrO3, H2SO4, acetone; c) NaOAc, Ac2O; d) LiAl(Ot-Bu)3H, Ac2O, pyridine;
e) H2C¼PPh3; f) NaOH; g) m-CPBA, Na2HPO4, CH2Cl2; h) Ac2O
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8.2.1.2 Synthesis of Anguidine

In 1960, Brian et al. isolated anguidine (376) for the first time from Fusarium equiseti
(321). Brooks et al. published the synthesis of a precursor of anguidine (376) in 1982
(322), followed by a total synthesis in 1983 (323). When compared to the synthesis of

trichodermin (375), where the group of Raphael started with the functionalization of
the A-ring and condensed the C-ring during the last steps, Brooks first synthesized a

fully functionalized C-ring system, where the A-ring was added, followed by an

intramolecular ring closure to afford ring B and thereby the tricyclic system.
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Scheme 8.3 Synthesis of anguidine precursor 407. Reagents and conditions: a) active baker’s

yeast, D-glucose, pH 7, rt, 70%; b) p-TsCl, pyridine, rt, 85%; c) KNO2, DMF, 85�C, 70%;

d) imidazole, DMAP, TBSCl, DMF, 60�C, 90%; e) ethylene glycol, TsOH, HC(OEt)3, rt, 90%;

f) K2CO3, NaIO4, KMnO4, t-BuOH, H2O, rt, 75%; g) CH2N2, Et2O, 95%; h) PhMe3NBr3, THF, rt,

95%; i) DBU, 90�C, 85%; j) NMO, OsO4, acetone, H2O, rt, 95%; k) MeOH, KOH, rt; l) Ac2O, 0
�C,

60%; m) BzCl, pyridine, Et2O, rt
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To obtain the cyclopentanoid C-ring precursor 407 (Scheme 8.4), this group

started with 2-allyl-2-methylcyclopentane-1,3-dione (399) and reduced selectively

one of the two keto functions with actively fermenting baker’s yeast to obtain the

optically active alcohol 400, with (S)-configuration at positions 2 and 3. However,

for the enantioselective synthesis of anguidine (376), the (R)-configuration in

position 3 was required. Therefore, the corresponding tosylate was treated with

potassium nitrite to obtain the (2S,3R)-stereoisomer 401. In the next steps, the

alcohol and the keto groups were protected and compound 402 was obtained.

Oxidation of the allyl alkene, followed by esterification, afforded 403, which was

then brominated with phenyltrimethylammonium tribromide and treated with DBU

to produce olefin 404. The double bond was oxidized with osmium tetroxide and

NMO and gave a separable 5:1 mixture of the cis vicinal diols 405 and 406. Then,

405 was saponified and treatment with acetic anhydride gave a 3:1 mixture of

lactones. After protection with benzoyl chloride, it was possible to separate 407

and 408. Intramolecular lactonization of the carboxylic acid of 406was not possible

due to its geometry (Scheme 8.3).

Having precursor 407 in hand, Brooks et al. were able to synthesize anguidine

(376) in a further 17 steps. Thus, precursor 407 was converted into enamine 409,

which was hydrolyzed to hydroxymethylene derivative 410. Michael reaction with

butanone afforded the exo product 411. Followed by an intramolecular Michael
aldol condensation, enone 412 was obtained, which was methylated to the allyl

alcohol 413 using methyl iodide. Subsequent reduction with lithium aluminum

hydride led to tetraol 414. This was converted to the triacetate and selectively

deprotected to diol 415. Acid-catalyzed cyclization and protection of the free OH

group afforded the trichothecene skeleton 416. Afterwards, the acetal 416 was

deprotected and the ketone was reacted in a Wittig reaction to the olefin, which

was treated with TBAF to afford compound 417. Epoxidation with m-CPBA,
followed by acetylation and final mono-deprotection, afforded the trichothecene,

anguidine (376) (Scheme 8.4).
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8.2.1.3 Synthesis of Sporol

Sporol (377) is a further non-macrocyclic trichothecene, which was isolated in 1986

by Tempesta et al. from Fusarium sporotrichioides (324). The structure first

thought to be sporol (377) was proven to be neosporol and a structural revision
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Scheme 8.4 Total synthesis of anguidine (376). Reagents and conditions: a) CH(NMe2)3, 120
�C,

99%; b) HOAc, NaOAc, H2O, rt, 99%; c) butanone, DIPEA, THF, rt, 95%; d) LDA, THF, �78�C,
80%; e) MsCl, imidazole, DMF, rt, 80%; f) MeLi, THF, �78�C, 90%; g) LiAlH4, DME, reflux,

75%; h) Ac2O, pyridine, rt, 95%; i) NH4OH, MeOH, rt, 70%; j) cat. p-TsOH, CH2Cl2, rt, 90%;

k) Ac2O, pyridine, rt, 95%; l) HCl, MeOH, rt, 70%; m) CH2PPh3, THF, 60
�C, 75%; n) TBAF,

THF, rt, 70%; o) m-CPBA, CH2Cl2, 0
�C, 75%; p) Ac2O, pyridine, rt, 95%; q) NH4OH, MeOH,

rt, 65%
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was published in 1988 (325), which was confirmed in 1992 with the total synthesis

of sporol (377) by Ziegler et al. (326).
Nitrile 421 was synthesized from the hydroxy methylene ketone 419. Initially,

this was converted into isoxazole 420, with its ketone function then protected with

ethylene glycol. Treatment with potassium t-butoxide afforded the keto-nitrile 421

(Scheme 8.5).

The second starting material, mesylate 426, was synthesized from alcohol 422.

Swern oxidation followed by addition of propargyl zinc bromide led to compound

423 in 79% yield, which was converted into thionocarbonate 424 (41% yield over

three steps). Radical ring closure with tributyltin hydride and oxidation with Dess-
Martin periodinane afforded ketone 425. Treatment with DMAP led to the rear-

rangement of the double bond and subsequent reduction with sodium borohydride

and mesylation gave compound 426 (Scheme 8.6).

The next step was O-alkylation: therefore, nitrile 421 was converted into the

potassium salt and it was added to the solution of the mesylate 426, which was not

isolated but prepared in situ. The Claisen rearrangement of 427 following

represents a very important key step in the total synthesis of sporol (377) as it set

the relative stereochemistry at three different centers and product 428 could be

isolated as major diastereomer in 68% yield (Scheme 8.7).
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Scheme 8.6 Synthesis of intermediate 426. Reagents and conditions: a) Swern oxidation;

b) propargyl bromide, Zn/Hg, THF, 79% (over two steps); c) p-TsOH, MeOH; d) (Im)2C¼S,

CH2Cl2; e) TBSOTf, Et3N, CH2Cl2, 0
�C, 41% (over three steps); f) Bu3SnH, AIBN, toluene,

reflux, 60%; g) DMP; h) DMAP, CH2Cl2, 84%; i) NaBH4, MeOH; j) Ms2O, Et3N, DMAP
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Scheme 8.5 Synthesis of keto-nitrile 421. Reagents and conditions: a) NH2OH•HCl, aq. EtOH,

reflux, 76%; b) HO(CH2)2OH, TsOH, benzene, 98%; c) t-BuOK, HMPA
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Having 428 on hand, Ziegler et al. were able to complete the total synthesis in

further ten steps. First, they deprotected the alcohol group, followed by treating the

compound with urea/hydrogen peroxide complex, which led to a mixture of the

desired dioxolane 430 and triol 429 in a 7:2 ratio. Both compounds 429 and 430

could be transformed into mesylate 431 using Ms2O and Et3N (Scheme 8.8).

The next steps included inversion of the hydroxy group with potassium super-

oxide to 432 and subsequent conversion with camphorsulfonic acid to molecule

433. Transformation of the keto group into an olefin was achieved via Wittig
olefination under Conia conditions and reduction of the nitrile function led to

compound 433. The final ring closure with camphorsulfonic acid afforded the

natural product rac-sporol (377) (Scheme 8.9).
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Scheme 8.7 Preparation of 428 from keto-nitrile 421 and mesylate 426. Reagents and conditions:

a) t-BuOK, HMPA, 18-crown-6, 0�C; b) 426, �20�C – 0�C, 47%; c) n-nonane, reflux, 68%
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8.2.2 Macrocyclic Trichothecenes

There exist just a few total syntheses of macrocyclic trichothecenes. However, all of

these deal with the synthesis of verrucarol (454), a hydrolysis product of the

naturally occurring verrucarin A (380). Verrucarol (454) represents the

sesquiterpenoid moiety of most macrocyclic trichothecene derivatives. To date,

there are several syntheses of this moiety. In 1998, the most recent total synthesis

was published by Tadano et al. (327).

8.2.2.1 Synthesis of Verrucarol

The synthesis of verrucarol (454) started with the a-methylated bicyclic g-lactone
437, which was synthesized in 23 steps from commercially available diacetone

glucose 435 (328, 329) (Scheme 8.10).
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Scheme 8.9 Total synthesis of rac-sporol (377). Reagents and conditions: a) K2O, DMSO, 18-

crown-6; b) CSA, CH2Cl2; c) HCl, 32% (over four steps); d) PH3PCH3Br, t-BuOK, THF, 82%;

e) DIBAL, aq. H2SO4; f) DIBAL, 37%; g) CSA, CH2Cl2, 45%
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The first step was an aldol-like reaction of the enolate of 437 with 4-(t-
butyldiphenylsilyloxy)butanal where a separable mixture of the two diastereomers

438 and 439 was obtained. Diastereomer 438 could be converted through an

oxidation-reduction strategy into the other conformer 439, which was achieved in

74% yield (438: 13%). In order to protect the secondary alcohol group with

MOM-chloride, it was necessary to deprotect the primary alcohol group and then

reprotect it with pivaloyl chloride, with 440 being obtained. The reaction of MOM-

chloride with 439was rather slow and the desired MOM-ether was only sustained in

low yields. After having obtained compound 441, Jones oxidation led to a carbox-

ylic acid, which was directly esterified to 442. Dieckmann cyclization followed by

protection with TBSOTf afforded a separable diastereomeric mixture of the tricy-

clic compound, with 443 as the major product (Scheme 8.11).
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Scheme 8.11 Synthesis of verrucarol (454). Reagents and conditions: a) LDA/THF, PhMe,

–78�C; b) PCC; c) NaBH4; d) TBAF; e) PivCl; f) MOMCl; g) NaOMe; h) Jones reagent;
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Scheme 8.10 Synthesis of verrucarol precursor 437 in 23 steps. Reagents and conditions: a) four

steps, 38%; b) 19 steps, 10–15%
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Saponification of the ester group of both diastereomers provided the same

conformer 444 in 81% yield. Subsequent conversion of the carboxylic ester fun-

ction into an alcohol function afforded an inseparable diastereomeric mixture of

445. However, acetylation of the alcohol group made separation possible and

deprotection with DIBAL-H afforded diastereomer 446. The other diastereomer

could be converted into the desired former via oxidation/reduction with PDC and

DIBAL-H. Mesylation of compound 446 led to 447, which was able to undergo ring

enlargement: treating with TBAF deprotected the TBS-group and the intermediate

448 rearranged to ketone 449 (Scheme 8.12).

In the next step, alkene 450 was formed via a Wittig reaction, then the MOM-

groups were deprotected with TMSBr and the diol was obtained, which was

monoprotected with TBSOTf to give 451. This diol is known as 12,13-

deoxyverrucarol and was isolated as an alkaline hydrolysis product of verrucarin

K by Breitenstein and Tamm (330).

To introduce an epoxy group on the terminal double bond, the other alkene

function was protected by bromoetherification to produce the bromo ether, which

was desilylated and compound 452 provided. In the final two steps, olefin 453 was

epoxidized with m-CPBA and deprotected with a zinc-silver complex to obtain

(�)-verrucarol (454) (Scheme 8.13).
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Scheme 8.12 Synthesis of verrucarol (454). Reagents and conditions: a) 4 M KOH; b) WSC,

DMAP, t-BuSH, O2; c) Ac2O/py; d) DIBAL-H; e) PDC; f) DIBAL-H; g) MsCl; h) TBAF
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The following total syntheses of verrucarin A (380), roridin E (378), and

baccharin B5 (379) all use verrucarol (454) as an intermediate.

8.2.2.2 Synthesis of Verrucarin A

Verrucarin A (380) is one of the most important and best described macrocyclic

trichothecenes. This compound was obtained for the first time in 1962 by isolation

from Myrothecium roridum and M. verrucaria by Tamm et al. (331). This same

group performed a considerable amount of research in this area and in 1982 they

published the total synthesis of verrucarin A (380) (317).
In its retrosynthesis, the natural product 380 was disconnected through cleavage

of the ester bonds to furnish verrucarol (454), verrucarinic acid (455), and

(E,Z)-muconic acid (456) as starting compounds (Scheme 8.14).
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The half ester of (E,Z)-muconic acid (456) was synthesized in three steps as

follows: Starting from catechol (457), oxidative cleavage with a peracid led to the

(Z,Z)-diacid 458, which was monoprotected via lactonization to provide compound

459, and by treatment with Eschenmoser’s base the desired monoester 460 was

obtained (Scheme 8.15).

For the second building block for verrucarin A (380), a derivative of verrucarinic

acid (465) was synthesized in enantiomerically pure form from diester 461. Cleav-

age with pig liver esterase led to monoester 462, which was reduced to the alcohol

with borane dimethylsulfide complex and protected with TBSCl to obtain the

molecule 463. a-Hydroxylation with molybdenum oxide generated alcohol 464,

and final protection and saponification afforded compound 465 (Scheme 8.16).

Having verrucarol (454), the derivative of verrucarinic acid (465), and the half

ester of (E,Z)-muconic acid (456) all on hand, the total synthesis of verrucarin A

(380) could be completed in a further five steps. Thus, verrucarol (454) was

esterified first with compound 465 and second with compound 460. Then, molecule

467 was desilylated, macrolactonized under Yamaguchi conditions, and finally

deprotected to achieve the natural product verrucarin A (380) (Scheme 8.17).

RO2C

HO2C

R = CH2CH2SiMe3 (TMSE)

OH

OH
HO2C

CO2H

O

O

RO2C
457 458 459 460

a) b) c)

Scheme 8.15 Preparation of half ester 460. Reagents and conditions: a) peracid oxidation;

b) Me3Si(CH2)2OH, DCC, DMAP, CH2Cl2/DMF, 80%; c) Eschenmoser’s base, 75%

OTBS

CO2H

THPO

CO2Me

CO2Me

CO2H

CO2Me CO2Me

OTBS

CO2Me

OTBS

HO

461 462 463

464465

a) b), c)

d), e)

f), g)

Scheme 8.16 Preparation of precursor 465. Reagents and conditions: a) pig liver esterase, 95%;

b) BH3•SMe2, THF; c) TBSCl, NEt3, DMAP, CH2Cl2; d) LDA, THF; e) MoO5•Py, HMPA,

�78�C, 2 h, 40%; f) DHP, PPTS; g) KOH, MeOH
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8.2.2.3 Synthesis of Roridin E and Baccharin B5

In 1983, Still et al. published methods for the total synthesis of roridin E (378) and

baccharin B5 (379) (332). Roridin E (378) was isolated for the first time in 1965

from Myrothecium verrucaria and baccharin B5 (379) was obtained in 1976 from

the plant Baccharis megapotamica (333, 334).
The synthesis of both compounds started from verrucarol (454) and D-xylose

(471). First, intermediate 470 was synthesized. Next, butynol (468) was ethoxycar-

boxylated and then methylated to provide 469, which was reduced and compound

470 was obtained (Scheme 8.18).

O
O

OH

H H

HO
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380 (verrucarin A)
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O
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O

O
O

OTMSE

H

THPO

H

TBSO

O

467

a)

b)

c) - e)

O
O

O
O

O
O

O

H

HO

H

O

Scheme 8.17 Total synthesis of verrucarin A (380): a) DCC, 465, DMAP or

4-pyrrolidinopyridine, 55%; b) DCC, 460, DMAP or 4-pyrrolidinopyridine, 95%; c) TBAF,

THF; d) TCBACl, NEt3, THF; e) DMAP, toluene, reflux, 50%

Cl

TBSOHO

OEt

TBSO

O
468 469 470

a) - c) d), e)

Scheme 8.18 Preparation of chloride 470. Reagents and conditions: a) TBSCl; b) BuLi, ClCO2Et;

c) Me2CuLi; d) LiAlH4 (45% over four steps); e) NCS, Me2S
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Then, commercially available D-xylose (471) was treated with cyclopentanone

to protect two of the four alcohol groups as acetals. Subsequent tosylation of the

primary alcohol function and reduction to a methyl group led to compound 472 in

65% over four steps. In the next step, the xylose derivative was coupled with olefin

chloride 470, followed by desilylation and oxidation with Jones reagent to provide

the xylose derivative 473. This was coupled with verrucarol (454) and then

converted into phosphono ester compound 474 (Scheme 8.19 and 8.20).

In the last steps of the total syntheses, ester 474 was converted into aldehyde 475

in four steps with an overall yield of 65%. Macrocyclization was possible via a

Horner-Wadsworth-Emmons reaction and precursor 476 for roridin E (378) and

baccharin B5 (379) was obtained. The final step in the synthesis of roridin E (378)

was the isomerization of the double bond.

For the total synthesis of baccharin B5 (379) six more steps were necessary.

First, the alcohol group was protected and then the unconjugated double bonds

could be epoxidized selectively to provide 477 as a single product. Subsequently,

the epoxide of the macrocycle 477 was eliminated to an allylic double bond, which

could be epoxidized again and gave the epimer of baccharin B5. Last, the epimer

was converted into baccharin B5 (379) via a Mitsunobu reaction (Scheme 8.21).

O

HO OH

OH

471 (D-xylose)

O

O

O

HO

472

HO
a) - d) e) - h)

O

O

O
O

O

OH

473

Scheme 8.19 Synthesis of intermediate 473. Reagents and conditions: a) cyclopentanone,

CuSO4, cat. H2SO4; b) 0.2% HCl; c) p-TsCl, py; d) LiAlH4, 65% over four steps; e) 470, NaH;

f) cat. TBAI, HMPA; g) TBAF; h) CrO3, H2SO4, (75% over four steps)
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O

P(OMe)2O

Scheme 8.20 Synthesis of precursor 474 for roridin E (378) and baccharin B5 (379). Reagents

and conditions: a) DCC, 0.1mol% 4-pyrrolidinopyridine, 95% yield at 55% conversion;

b) HO2CCH2PO(OMe)2, DCC, 4-pyrrolidinopyridine, quant
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Scheme 8.21 Total synthesis of roridin E (378) and baccharin B5 (379). Reagents and conditions:

a) TsOH; b) NaIO4; c) Et3N, MeOH; d) Ph3PCH2CHO, 65% over four steps, (E):(Z) ¼ 4:1;

e) K2CO3, 18-crown-6, 45%; f) t-BuOK, 70%; g) TBSOTf, lutidine, 95%; h) m-CPBA, 70%;

i) KOt-Bu, 90%; j) t-BuOOH, VO(acac)2, 90%; k) HCO2H, DEAD, PPh3, 40% conversion/90%

yield; l) TBAF, 99%
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9 Resorcylic Acid Lactones

The resorcylic acid lactones (RALs) are a family of benzannulated macrolides,

which are produced by a variety of fungi and show versatile biological activities

(6). According to their name, they consist structurally of a partially substituted

b-resorcylic acid scaffold, which is linked to a 12- or 14-membered macrolactone

moiety. Selected members of this group are shown in Fig. 9.1.

Radicicol (478) (335), formerly called monorden (336), was first isolated from

Monosporium bonorden in 1953 (337). The most well-known member of the RAL

family, zearalenone (F-2) (479), was found in 1962 in spoiled grain infected with

Gibberella zeae, which was fed to swine. This contamination led among other

symptoms to vulvar hypertrophy, vaginal eversion, and the growth of mammary

glands among the affected animals (338, 339). Figure 9.2 shows the fungus

Gibberella zeae on corn (340).
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Fig. 9.1 Selected resorcylic acid lactones
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The reduced form of zearalenone (479), a-zearalenol (480a) (341), and

hypothemycin (481) (342) are further examples of the first known RALs. It should

be noted that the initial structure proposed for hypothemycin (343) was erroneous.
During the last decade, two new subgroups of 14-membered resorcylic macrolides,

the aigialomycins (344) and the pochonins (345) have been isolated and

characterized, leading to a renewed interest in this class of natural products.

While aigialomycins A–F were isolated together with hypothemycin from the

marine mangrove fungus Aigialus parvus, pochonins A–F were found in cultures

of Pochonia chlamydosporia var. catenulata. Recently, two further subgroups,

paecilomycins A–F and cochliomycins A–C, have been isolated from a

Paecilomyces fungus and Cochliobolus lunatus (346, 347). (Z)-Resorcylide (484),
called in the literature mostly (cis)-resorcylide, and lasiodiplodin (485), are

examples of bioactive RALs containing a 12-membered macrolactone system

(348, 349).

9.1 Biological Properties

According to their structural diversity, the RALs exhibit a variety of biological

activities. Although it is classed as a mycotoxin, zearalenone (479) is barely toxic

(9). Its anabolic and uterotrophic traits (338) are the result of its interaction with

estrogenic receptors. Zearalenone (479) is able to bind to these receptors and thus

mimic the ability of 17b-estradiol to stimulate transcriptional activity. Therefore, it

Fig. 9.2 Corn infected with Gibberella zeae
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is also called a non-steroidal estrogen (350). a-Zearalenol (480a) possesses the

same type of activity, but is about three times more potently estrogenic than

zearalenone (479) or its non-naturally occurring b-isomer 480b (341, 351). The
anabolic properties of zearalenol have been used as a growth-promoting agent for

cattle and sheep, but since 1989 it has been prohibited in the EU (348, 352).
Zearalenol (480) has also been tested to treat symptoms caused by endocrinological

changes at the menopause in women (353).
Radicicol (478) exhibits a variety of antifungal and antibiotic properties (337).

Furthermore, it shows remarkably low toxicity and acts as a potent sedative (336).
More recent studies have revealed the antitumor activity of radicicol (478) (354). It
inhibits selectively heat shock protein 90 (Hsp90) of tumor cells, which leads to the

destruction of oncogenic cells (355) (Fig. 9.3). Hsp90 inhibitors have been shown

also to reduce protein aggregates associated with Huntington’s and Parkinson’s
diseases, as well as other tau-protein related neurodegenerative diseases (356).

Hypothemycin (481) and other RALs containing a (Z)-enone are potent

inhibitors of several kinases such as mitogen-activated protein (MAP) kinase

(357, 358). Along with the aigialomycins (e.g. aigialomycin D (482)), hypo-

themycin (481) exhibits antimalarial activity and both of these compounds are

cytotoxic for cancer cells (344). The pochonins show antiviral activity against

herpes simplex virus 1 (HSV1), with pochonin C (483) being the most potent

among these compounds (345). The 12-membered macrolides, resorcylide (484)

and lasiodiplodin (485) inhibit the growth of plants (348, 349).

9.2 Total Syntheses

Since the discovery of this class of mycotoxins, the total syntheses of these

molecules have been of considerable interest. To date, numerous total syntheses

for RAL-mycotoxins have been published, with zearalenone (479) being the most

Fig. 9.3 Co-crystal structure of radicicol (478) bound to Hsp90
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widely explored resorcylic macrolide in this regard. In general, a macrolide synthe-

sis affords two major problems, namely, the construction of the macrolactone and

the stereochemical control of the chiral centers (359). Therefore, these synthesis

investigations have involved the development of new cyclization methodologies,

such as macrolactonization reactions, by the groups of Corey, Nicolaou, and

Masamune (360, 361) as well as ring-closing metathesis procedures (362). Due to
the simplicity and similarity of the syntheses of the 12-membered RALs compared

to the 14-membered macrolides, these will not be described in the following

paragraphs. Furthermore, the first stereoselective total synthesis of paecilomycin

E, which was reported by Srihari et al. in 2012 (363), also will not be detailed.

9.2.1 Total Syntheses of Zearalenone

The first total syntheses of racemic zearalenone (rac-479) were reported in the

1960s by the Merck and Syntex research groups (364, 365). In their multistep

synthesis routes of the seco acid, the double bond was introduced by a Wittig
reaction, but the required (E)-configured double bond was not formed selectively

and the yields of the following lactonization were very low. The yields of macrolac-

tonization were improved remarkably by Corey (360) and Masamune (361) using
new activation methods for carboxylic acids (366). In all the syntheses of

zearalenone, the macrolide was formed by lactonization, but numerous possibilities

are evident for the cyclization step. Figure 9.4 illustrates some different approaches

to the synthesis of zearalenone (367).

Hurd and Tsuji promoted the formation of the macrocycle at the ketone using an

internal Dieckmann condensation or an intramolecular alkylation of a protected

cyanohydrin (368, 369).

O

O

OOH

HO

Merck 1967, Syntex 1968,
Corey 1974, Masamune 1975

Hurd 1973
T suji 1981

T suij 1979
Keinan 1991

Fürstner 2000
Barrett 2008
Yadav 2011

Hegedus 1991
Nicolaou 1998

Pattenden 1990/92

Fig. 9.4 Several ring-closure approaches to zearalenone (479)
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In 1990, the first enantioselective synthesis of (S)-(�)-zearalenone (479) was

reported by Pattenden et al. (370). Using this procedure, the macrolide was formed

via a 14-endo-trig cyclization from an allylic radical intermediate. Stereochemical

information was introduced using enantiomerically pure starting material. An

intramolecular alkylation method via stabilized carbanions to obtain racemic

zearalenone was described by Tsuji et al. (366). A few years later, Keinan et al.
explored the stereoselective modification of this reaction using the biocatalyst

Thermoanaerobicum brockii alcohol dehydrogenase (TBADH) to generate the

stereogenic center (367).
A further ring-closure approach was investigated by Hegedus (371) and extended

by Nicolaou et al. (372). The two groups applied the Stille coupling reaction to form
the macrocycle and both of them employed (R)-propylene oxide as a chiral building
block (367). In addition, Nicolaou used a solid-phase strategy and the cleavage from
the polymer resin came along with the intramolecular coupling reaction.

The latest total syntheses, presented by the groups of F€urstner (362), Barrett
(373), and Yadav (374), are all based on a ring-closing metathesis (RCM) as the key

step. In the following sections, several total syntheses of zearalenone (479) will be

described.

9.2.1.1 Total Synthesis of (S)-Zearalenone by Nicolaou

The solid-phase total synthesis of (S)-zearalenone by Nicolaou et al. (372) started
with the preparation of the resins 488 and 489 from the Merrifield resin (486,

Scheme 9.1). Oxidation, followed by olefination of the resulting aldehyde, gave a

polystyrene vinyl resin (487), which was converted into dibutyltin chloride 488. In

this process, the stannylation reagent n-Bu2SnHCl was formed in situ from

n-Bu2SnCl2 and n-Bu2SnH2. Reduction of 488 yielded the polymer supported tin

hydride 489.

The stereochemical information was introduced by applying a chiral pool strat-

egy as described by Hegedus et al. in 1991 (371) (Scheme 9.2). They started from

the enantiomerically pure epoxide 490, which was converted into the chiral mag-

nesium organyl 494 in six steps.

Hegedus described an applied strategy for the next steps in solution

(Scheme 9.3). Addition of lithium reagent 495 to chloride 488 led exclusively,

Cl
a), b) c) Sn

Cl

nBu nBu

486 487

d) Sn
H

nBu nBu

488 489

Scheme 9.1 Preparation of the modified resins 488 and 489. Reagents and conditions: a) K2CO3,

DMSO, 145�C, 15 h; b) CH2¼PPh3, THF, 23
�C, 8 h; c) n-Bu2SnCl2, n-Bu2SnH2, AIBN, hn,

toluene, 0�C, 4 h, 90% from 486; d) LiBH4, THF, 23
�C, 4 h
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after deprotection and oxidation, to the required (E)-olefin 496, whereas the

reaction of tin hydride 489 with alkyne 497 gave a nonselective (E)/(Z)-mixture

of tin organyl 498. Subsequent addition of Grignard reagent 494 either to

O +
MgBr HO TBSO

OH
TBSO

MgBr
a) b) - d) e), f)

494493492490 491

Scheme 9.2 Preparation of the chiral precursor 494 byHegedus. Reagents and conditions: a) CuI,
THF, 47%; b) TBSCl; c) 9-BBN, THF, 25�C, 19 h; d) H2O2, NaOH, 0

�C to 25�C, 10.5 h, 75%

(over three steps); e) CBr4, PPh3, K2CO3, CH2Cl2, 0
�C, 95%; f) Mg, Et2O
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Scheme 9.3 Total synthesis of (S)-zearalenone (479) by Nicolaou et al. Reagents and conditions:
a) 495, THF, –78�C to 23�C, 4 h (87%); b) TBAF, THF, 23�C, 5 h (94%); c) NCS, Me2S, 0

�C,
15 min; then add resin, 0�C, 1 h; Et3N, 0�C to 23�C, 0.5 h; d) 497, AIBN, toluene, 100�C, 4 h (90%
from 488); e) 494, THF, 0�C to 23�C, 4 h; f) NCS, Me2S, 0

�C, 15 min; then add resin, –40�C, 1.5 h,
Et3N, –40

�C to 23�C, 0.5 h (97%); g) TBAF, THF, 23�C, 13 h; h) 500, PPh3, DEAD, 0�C to 23�C,
6 h (76%, two steps); i) Pd(PPh3)4, toluene, 100

�C, 48 h (54%); j) 2:1 THF/HCl (aq.) (5%), 23�C,
5 d (80%)
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aldehyde 496 with following Corey-Kim oxidation or to Weinreb amide 498, gave

ketone 499. Deprotection of the hydroxy group, ensued by Mitsunobu esterifica-

tion with benzoic acid 500 (371), afforded the desired precursor 501. Cyclization

was achieved by a Stille coupling reaction, which resulted in cleavage from

the resin, and led after acid-induced deprotection to the target molecule

(S)-zearalenone (479). However, cyclization was only observed in case of the

(E)-isomer.

9.2.1.2 Total Synthesis of (S)-Zearalenone by Barrett

In 2008, Barrett et al. reported on a biomimetic synthesis of (S)-zearalenone
involving a late-stage aromatization (373). They started with the synthesis of the

two building blocks 505 and 509 (Scheme 9.4). The enantiopure alcohol 505 was

prepared in five steps from (�)-5-hexanolide (502) by applying a lipase-mediated

strategy. Dioxinone 509 was synthesized using a vinylogous Mukaiyama aldol

reaction to link aldehyde 506 with olefin 507.

The two building blocks prepared were converted into triketo-ester 510 by

thermolysis of the dioxinone and trapping of the intermediate triketo-ketene with

alcohol 505. Aromatization of triketo-ester 510, followed by deprotection of the

ketone gave resorcylate 511. Finally, RCM using the second generation Hoveyda-
Grubbs catalyst 512, led to (S)-zearalenone in good yield. Further investigation

revealed that the last four steps could be carried out without isolation of the

intermediates in a single vessel (Scheme 9.5).
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Scheme 9.4 Preparation of the building blocks 505 and 509. Reagents and conditions: a) Et2O,

THF, –78�C to rt, 77%; b) Ac2O, pyridine, 60
�C, 24 h, 71%; c) ethylene glycol, p-TsOH·H2O, PhH,

90�C, 18 h, 73%; d) KOH, H2O, MeOH, 25�C, 3 h, 93%; e) CAL-B lipase, vinyl acetate, 35�C,
80 min (repeat once), ee >99%; f) BF3·Et2O, 503, CH2Cl2, –78

�C, 1.5 h, 61%; g) DMP, CH2Cl2,

0�C; h) HF, H2O, MeCN, 0�C; i) DMP, CH2Cl2, 0
�C, 5 h
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9.2.2 Total Synthesis of Zearalenol

One approach to the synthesis of zearalenol (480) is the reduction of zearalenone

(479) (375). In 2000, an independent total synthesis of zearalenol was presented by
Ley et al. (376). This enantioselective synthesis enables the preparation of both

diastereomers, namely, naturally occurring a-zearalenol (480a) as well as

b-zearalenol (480b). Starting with reduction of ester 513, Swern oxidation and

subsequent Horner-Wadsworth-Emmons homologation led to (E)-olefin 514

(Scheme 9.6). The cyclic sulfite 515 was available through deprotection of the

diol and ensuing treatment with thionyl chloride. Conversion with diironnona-

carbonyl led to an equimolar mixture of the diastereomeric p-allyltricarbonyl iron
complexes endo-516 and exo-516, which could be smoothly separated. Following

this, the stereogenic center was generated by reduction with tripropyl aluminum and

ensuing decomplexation. Thus, protection and hydrogenation afforded the alcohols

518 and 521, which were transformed into the stannanes 519 and 522.

Stille coupling reaction of stannane 519 and aromatic iodide 500 led to precursor

523 (Scheme 9.7). Subsequent deprotection of both hydroxy groups and the car-

boxylic acid enabled macrolactonization usingMukaiyama conditions. Cleavage of
the MEM-ethers finally provided a-zearalenol (480a), while b-zearalenol (480b)
could be obtained in the same way by starting from stannane 522.
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Scheme 9.5 Total synthesis of (S)-zearalenone (479) by Barrett et al. Reagents and conditions:

a) toluene, 110�C; b) KOMe, MeOH; c) HCl, MeOH; 82%; d) 512, toluene, 80�C; e) toluene,
110�C, 2 h; f) Cs2CO3, MeOH, 12 h; g) Dowex 50WX8-400 resin, 24 h; h) 512, toluene, 80�C,
24 h, 63%
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Scheme 9.6 Synthesis of the stannanes 519 and 522 by Ley et al. Reagents and conditions:

a) LiAlH4, Et2O, 0
�C, 2 h; b) (COCl)2, DMSO, Et3N, CH2Cl2, –78

�C, 3 h; c) (EtO)2P(O)CH2CO

(CH2)4OBn, NaH, THF, –78
�C, 1 h, 83% (over three steps); d) AcOH/H2O (1:1), 40�C, 24 h, 92%;

e) SOCl2Et3N, Et2O, 0
�C, 30 min, 89%; f) Fe2(CO)9, benzene, sonification, 30

�C, 3 h, 70%

(dr ¼ 1:1); g) n-Pr3Al, CH2Cl2, 0
�C 94% (80%); h) NaBH(OAc)3, THF, 3 d, 75% (83%);

i) TBSCl, imidazole, DMF, 0�C, 30 min; then rt, 24 h, 87% (85%); j) Pd/C, H2, EtOAc, 30 min,

94% (93%); k) see (b), 86% (80%); l) Bu3SnCHI2, CrCl2, DMF, 0�C, 67% (69%)
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9.2.3 Total Synthesis of Radicicol

The first total synthesis of radicicol (478) was published by Lett et al. in 1992 (377,
378) (Scheme 9.8). In this route, the stereogenic centers were constructed by

reaction with (S)-propylene oxide (528) and by applying a Sharpless asymmetric

epoxidation. Thus, aldehyde 530 could be generated, which was converted into

stannane 532. Subsequent Stille reaction with chloride 533 led to the coupling

product 534. After cleavage of this isocoumarin, affording also the deprotection of

one alcohol, macrocyclization was successfully conducted using a Mitsunobu
reaction, which resulted in precursor 535. The formation of the conjugated diene

was realized by the elimination of the methoxymethyl ether (OMOM), after

renewed TBS protection. Chlorination and concluding deprotection furnished the

natural product radicicol (478).

Ten years later, this synthesis was improved by replacing the MOM group by a

PMB protecting group, which could be smoothly removed and then exchanged for a

mesylate (379). The following elimination of the mesylate proceeded easily and led

to improved yields of the conjugated diene. Furthermore, the Stille coupling was

substituted by aMiyaura-Suzuki coupling reaction in order to avoid the contamina-

tion by toxic tin organyls (380).
A further, modular route to radicicol (478) was presented byDanishefsky et al. in

2001 (10, 381). Their synthesis started with the preparation of three key

intermediates, 538, 541, and 544, which then were joined together (Scheme 9.9).

Horner-Wadsworth-Emmons homologation of the previously protected chiral ester

536 followed by reduction led to (E)-allylic alcohol 537. Formation of the asym-

metric epoxide was realized by applying Sharpless asymmetric epoxidation. Dienyl

dithiane 541, an acyl anion equivalent, was easily prepared from commercially

available aldehyde 539 in one step. Beginning with the protected alcohol 542, the

third building block was obtained by formylation, ensuing conversion of the alcohol

to the chloride, and closing with changing the protecting groups.

519

OMEM

CO2Me

IMEMO

500

OMEM

CO2Me

MEMO

OTBS

OTBS
523

OMEM

CO2H

MEMO

OH

OH
524

OTBS

OTBS

Bu3Sn
a)

e)

480a (a-zearalenol)

MEMO

MEMO

OH
525

+

b), c) d) O

O

O

OOH

HO

OH

Scheme 9.7 Synthesis of a-zearalenol (480a) by Ley et al. Reagents and conditions: a) Pd2(dba)3,
P(2-furyl)3, toluene, 100

�C, 4 h, 82%; b) HF·pyridine, pyridine, THF, 12 h, 95%; c) 10 M aq.

KOH, ethane-1,2-diol, 120�C, 4 h, 87%; d) syringe pump addition of a solution of 524, Et3N, and

MeCN over 10 h to 1-methyl-2-chloropyridinium iodide, MeCN, reflux, 64%; e) 1.5 M aq. HCl,

THF, 40�C, 93%
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Scheme 9.9 Syntheses of the building blocks 538, 541, and 544 by Danishefsky et al. Reagents
and conditions: a) TBDPSCl, imidazole, <95%; b) DIBALH, –78�C, 92%; c) LiCl, DIPEA,

(EtO)2P(O)CH2CO2Et, 95%; d) DIBALH, –20�C, 96%; e) (+)-DET, Ti(Oi-Pr)4, TBHP, 90%;

f) SO3·pyridine, Et3N, DMSO, 90%; g) Ph3PCH3Br, NaHMDS, 0�C, 82%; h) TBAF, 89%; i) 540,

MgClO4, H2SO4, 64%; j) POCl3, DMF, 75�C, 93%; k) BBr3, 85%; l) TBDPSCl, 95%; m) NaClO4,

95%

OH O
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OH

HO

O

O
Cl

O

TBSO

TBSO

O

Cl

c), d)

e) - g)

h)

i), j)

k)

l) - n)

o) - r)

526
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529 530

531

532

533

534535

OMOM

Scheme 9.8 Synthesis of radicicol (478) by Lett et al. Reagents and conditions: a) 527, POCl3,

CH2Cl2, 0
�C – rt, 85%; b) BuLi, 528, BF3·Et2O, –78

�C; c) TBSCl, imidazole, DMF, rt; d) IRN 77,

MeOH, rt 80% (over three steps); e) LiAlH4, NaOMe, THF, –10�C – rt, 75%; f) L-DET, t-BuOOH,
Ti(Oi-Pr)4, CH2Cl2, 90%; g) (COCl)2, DMSO, Et3N, 87%; h) 531, –78�C, 57%; i) MOM-Cl,

i-Pr2EtN, CH2Cl2, rt, 92%; j) TBAF, THF, rt, 98%; k) 534, PdCl2(CH3CN)2, PPh3, DME, reflux,

75%; l) DIBAL-H, THF; m) NaClO2, NaH2PO4, t-BuOH, pyridine, 44%; n) DEAD, Ph3P, toluene,

rt, 71%; o) TBSCl, i-Pr2EtN, DME, rt, 85%; p) K2CO3, DME, reflux, 25%; q) Ca(OCl)2, CH2Cl2,

0�C to rt; r) borax, MeOH, THF, rt
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Next, the three building blocks were connected sequentially. Initial esterification

was attempted via standard Mitsunobu conditions, which afforded poor results due

to the formation of the undesired 2,4-phthalide. Nevertheless, esterification was

achieved by the use of trifuryl phosphine and diiso-propyl azodicarboxylate,

providing benzoic ester 545. The ensuing addition of previously lithiated dithiane

541 led to the open chain precursor 546. RCM under application of the Grubbs ӀӀ
catalyst 547 was successfully used to create the macrolide 548. Removal of the

dithiane and cleavage of the methyl ethers as well as subsequent regioselective

aromatic chlorination completed this total synthesis of radicicol (478)

(Scheme 9.10).

9.2.4 Total Synthesis of Hypothemycin

In 2002, Lett et al. published a convergent stereospecific synthesis of the resorcylic
macolactone LL-Z1640-2 (567) (Scheme 9.13) and hence hypothemycin (481)

(382, 383). They started with the preparation of the three building blocks, 551,

555 (Scheme 9.11), and 564 (Scheme 9.12). Methyl ester 551 was produced from

4-methoxysalicylic acid (549) in four steps. Reaction of alkyne 552 with

enantiopure (R)-propylene oxide 490 afforded chiral alkyne 553, which then was

converted into (Z)-vinyl iodide 555.
The two stereogenic centers of alcohol 560 were generated applying Sharpless

asymmetricepoxidationfollowingbycarbamate-assistedepoxideopening (Scheme9.12).

Hydrolysis of the carbonate,which involved thedeprotectionof the terminal alkyne, led to

triol 561. After specific protection of the primary alcohol, acetonide formation resulted in

HO
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Cl Cl
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O

S

S
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PCy3

Cl

Cl

MesN NMes

547

Ph

a)

b)

c), d)

e), f)

+

Scheme 9.10 Syntheses of radicicol (478) by Danishefsky et al. Reagents and conditions:

a) P(fur)3, DIAD, benzene, 24 h, 75%; b) 541, n-BuLi, –78�C, 50%; c) TBSCl, 88%; d) Grubbs
ӀӀ catalyst 547, 42�C, 60%; e) NaHCO3, MeOH, 60%; f) SO2Cl2, 58%
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562. Then, aldehyde 563 was obtained by reprotection of the alkyne with subsequent

selective cleavage of the TBS ether and Swern oxidation.
Next, the building blocks were coupled (Scheme 9.13). Transmetallation of

vinyl iodide 555, followed by reaction with aldehyde 563 gave a product mixture

of two diastereomeric alcohols. Deprotection of the alkyne with ensuing protection

of the alcohol afforded compound 565. The open chain precursor 566 was obtained

using a Suzuki coupling of bromide 551 with the vinyldisiamylborane, which was

prepared in situ, followed by deprotection of the alcohol and the carboxylic acid.

Once again,Mitsunobumacrocyclization was applied to obtain the macrolide. After

OH

OH

I
OTBS

SMT
O

SMT
O

SMT

O
O

O

OH

O NHPh

OH

OH

OH O

OTBS

SMT O

O

a) - d)

e) - h)

i)

j) k), l) m) - o)

556 557

558

559 560

561 562 563

O O

Scheme 9.12 Synthesis of the building block 563 by Lett et al. Reagents and conditions:

a) Red-Al1, toluene, THF, 0�C to rt, overnight, 81%; b) NaH, THF, rt, 1 h; then �78�C,
TBSCl, 36 h, 74%; c) MsCl, NEt3, CH2Cl2, –10

�C to rt, 30 min; d) NaI, acetone, rt, 1 h; e) 558,

THF, n-BuLi, –78�C, 30 min; then 557 and HMPA, rt, 4 h, 90%; f) DDQ, MeCN/H2O (9/1), rt, 2 h,

74%; g) Ti(Oi-Pr), (+)-DET, CH2Cl2, t-BuOOH, –25
�C, overnight, 85%; h) PhNCO, CH2Cl2,

pyridine, rt, 1 h; i) BF3·Et2O, Et2O, –20
�C, 2 h; then 1 M H2SO4, rt, overnight, 91%; j) MeONa,

MeOH, rt, 8 h; then Dowex 50 WX8 column eluted by MeOH, 93%; k) TBSCl, imidazole, DMF,

rt, 1 h; l) 2-methoxypropene, cat. TsOH, CH2Cl2, rt, 1 h; m) n-BuLi (n-hexane), Et2O, –30
�C,

30 min; then TMSCl, –30�C to �10�C, 98%; n) DDQ, MeCN/H2O (9/1), rt 2 h, 73%, o) oxalyl

chloride, DMSO, CH2Cl2, –78
�C, 30 min; then product of (n), 30 min, NEt3, –78

�C to 0�C

TMS

H

TMS

HO

H

TBSO
TBSO

I

O

OH

O

O

OH

TBSO

O

O

NEt2

Br

OH

O

O

O

Br

a), b) c) - d)

e)

f), g) h), i)

549 550 551

552

490

553 554 555

Scheme 9.11 Syntheses of the aromatic part 551 and the iodide 555 by Lett et al. Reagents and
conditions: a) Et2NAlMe2 from Me3Al and Et2NH, toluene, –6

�C to rt, 45 min; then bis-OTBS,

reflux, overnight, 98%; b) t-BuLi (pentane), Et2O, –78
�C, 10 min; then Br2, 75%; c) Me3O

+ BF4
-,

CH2Cl2, rt, overnight; then evaporation, 76%; d) aq. satd. Na2CO3/MeOH (1/1), rt, 6 h; e) Et2O,

–78�C, n-BuLi, 30 min; then 553, and further addition of BF3·Et2O, 50 min, –78�C, 89%;

f) TBSCl, imidazole, DMF, rt; g) K2CO3, MeOH, rt, 5 h, 86% (over two steps); h) n-BuLi,
THF, hexane, –78�C, 15 min; then I2, THF, 86%; i) Sia2BH, THF, –20

�C to 0�C, 3 h; then AcOH,
65�C, 3 h
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removal of the PMB group, oxidation of the alcohol and deprotection of the diol,

567 (LL-Z1640-2) was obtained, which is also a known RAL. The final diastereo-

selective epoxidation of LL-Z1640-2 (567) afforded hypothemycin, albeit in poor

yield.

A further synthesis of hypothemycin (481) was published by the group of

Winssinger in 2009 (384). They used a partial solid-phase strategy with a benzylic

sulfide linker to build up the resorcylic macrolactone. The applied macrolacto-

nization step proceeded extremely efficiently and epoxidation of LL-Z1640-2 (567)

with dimethyldioxirane afforded hypothemycin with excellent regio- and stereose-

lectivity, but in a poor yield.

9.2.5 Total Synthesis of Aigialomycin D

After the isolation of the aigialomycins in 2002 (344), only two years later

Danishefsky and co-workers published the first total synthesis of aigialomycin D

(482) (385). Their synthesis strategy is denoted by a late-state aromatization via
Diels-Alder cyclization. Starting with readily available D-2-deoxyribose (568),

alcohol 569 was obtained by protection of the diol, subsequent Wittig reaction,

formation of the pivaloyl ether, and concluding hydroboration with oxidative

workup (Scheme 9.14). Oxidation of the primary alcohol to aldehyde with a

subsequent proparylation, led, after protection and deprotection, to alkyne 570.
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O
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OH
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a) - c)

d) - f)
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g) - j)k)

Cl3C
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Scheme 9.13 Syntheses of LL-Z1640-2 (567) and hypothemycin (481) by Lett et al. Reagents and
conditions: a) 563, Et2O, –78

�C; then t-BuLi (n-pentane), 15 min; then addition of 555 in pentane,

–78�C to 0�C, 77%; b) K2CO3, MeOH, rt, 5 h, 74%; c) 564, Et2O, TfOH, rt, 4 h, 31%; d) Sia2BH,

THF, –25�C to rt, 2 h; then aq. 2 M K2PO3; then addition of that mixture to a solution of 551 and

Pd(OAc)2, Fu3P in DME, DME/H2O (7/1), reflux, 8 h, 71%; e) TBAF 1 M/THF, rt, 6 h, 93%;

f) 2 M aq. NaOH/MeOH (1/3), reflux, overnight, 71%; g) PPh3, DEAD, cat. hydroxy acid, toluene,

rt, 15 min, 67%; h) DDQ, CH2Cl2/pH 7 buffer (9/1), rt, 30 min, 94%; i) PCC, 2,5-DMP, CH2Cl2,

0�C, 6 h, 62%; j) p-TsOH, CH2Cl2/MeOH (1/1), rt, 3.5 h, 76%; k) m-CPBA/NaHCO3, –20
�C to

0�C, 4 h, 17%
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Afterwards, the implementation of a vinyl group as well as carboxylation of the

ethynyl group resulted in carboxylic acid 571, which was esterified with chiral

alcohol 572 under Mitsunobu conditions.

After masking of the alkyne function by a dicobalthexacarbonyl complex, RCM

was used to cyclize the diene 573 (Scheme 9.15). Then, decomplexation enabled a

Diels-Alder reaction with the disiloxydiene 575, ensued by elimination of iso-
butylene. Two hydroxy groups of the resorcylic macrolide (576) obtained were

protected and the TBS-ether was cleaved. Thus, dehydration with concluding

deprotection of all alcohol functions furnished aigialomycin D (482), in an overall

yield of 8%.

Two years later, Winssinger and co-workers reported on another synthesis of

aigialomycin D and analogues (386). A key point of this synthesis is the application

of a selenoether at the benzylic position, which was thought to facilitate subsequent

alkylation at this position. As shown in Scheme 9.16, this synthesis started with the

preparation of the acetonide-protected diol 582, which was built up in six steps from

bromide 578.Mitsunobu esterification of orseillinic acid (583) with (R)-penten-2-ol
(584) was followed by the protection of the hydroxy groups. Subsequent imple-

mentation of the selenoether afforded precursor 585. After addition of the protected

diol 582, RCM led to macrolide 586. H2O2 was used to oxidize and eliminate the

selenide. Concluding cleavage of the acetonide and of both EOM ethers thus

furnished aigialomycin D (482). Moreover, Winssinger et al. developed a solid-

phase synthesis by replacing the selenide with a polymer-bound thioether, which

was as efficient as solution-phase synthesis.

Further syntheses of aigialomycin D (482) were published by the groups of Pan
and Harvey (387, 388). The synthesis route of Pan et al. includes a Sharpless
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O
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Scheme 9.14 Synthesis of diene 573 by Danishefsky et al. Reagents and conditions: a) 2-

methoxypropene, p-TsOH, DMF, 3 h, 62%; b) KHMDS, PhP+CH3I
-, THF, –78�C to rt, 68%;

c) PivCl, Et3N, DMAP, CH2Cl2, 10 h, 90%; d) 9-BBN, THF, 0�C to rt, 4 h; then NaOH, H2O2,

H2O, 2.5 h, 88%; e) SO3-Py, DMSO, CH2Cl2, Et3N, 0
�C, 1 h; f) propargyl bromide, zinc, THF,

0�C, 2 h; g) TBSOTf, 2,6-lutidine, CH2Cl2, 10 h, 89% from 569; h) NaOMe/MeOH, 10 h, 88%;

i) SO3-Py, DMSO, CH2Cl2, Et3N, 0
�C, 2 h; then KHMDS, PhP+CH3I

-, THF, –78�C to rt, 10 h, 86%

(over two steps); j) BuLi, dry ice, –78�C to rt, 2 h; k) 572, DIAD, PPh3, toluene, 10 h, 85% (over

two steps)
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asymmetric epoxidation to generate both stereogenic centers of the diol, a Julia-
Kocienski reaction to build up the two (E)-configured double bonds as well as a

Yamaguchi macrolactonization. A key feature of the total synthesis by Harvey was
the combination of a Ramberg-B€acklund reaction and a ring-closing metathesis.
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(aigialomycin D)

Br
HO OH

Br
O

Br

O
O

O O

OH

HO

OH

O
HO

EOMO

EOMO

O

O

SePh

EOMO

EOMO

O

O

PhSe

O
O

578

579

580

581

582

583

584

585

582

586

a) - d) e), f)

g) - i) j), k)
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Scheme 9.16 Synthesis of aigialomycin D (482) by Winssinger et al. Reagents and conditions:

a) 579, Hoyveda-Grubbs catalyst ӀӀ, CH2Cl2, 23
�C, 4 h, 97%; b) L-DET, Ti(Oi-Pr)4, t-BuOOH,

CH2Cl2, –40
�C, 30 min; then allyl alcohol, –24�C, 12 h, 85%; c) SO3·pyridine, CH2Cl2/DMSO,

0�C, 30 min; d) PH3P¼CH2, THF, –10
�C, 10 min, 70% (over two steps); e) Sc(OTf)3, THF/H2O,

23�C, 2.5 h, quant; f) dimethoxypropane, TsOH·H2O, CH2Cl2, 23
�C, 12 h, 70%; g) PS-DEAD,

584, m-ClPh3P, CH2Cl2, 23
�C, 0.5 h, 83%; h) DIPEA, EOMCl, TBAI, DMF, 80�C, 5 h, 95%;

i) LDA, THF, –78�C; then (PhSe)2, 2 h, 75%; j) LDA, 582, THF/HMPA, –78�C, 20 min, 75%;

k) Grubbs ӀӀ catalyst, toluene, 80�C, 12 h, 92%; l) H2O2, THF, 23
�C, 3 h, 85%; m) PS-SO3H,

MeOH, 50�C, 2 h, quant
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Scheme 9.15 Synthesis of aigialomycin D (482) by Danishefsky et al. Reagents and conditions:

a) Co2(CO)8, toluene, 30 min, 94%; b) Grubbs ӀӀ catalyst 547, CH2Cl2, 10 h, 80%; c) CAN,

acetone, –10�C, 15 min, 95%; d) 575, 140�C, 36 h, 79%; e) MOMCl, DIPEA, CH2Cl2, 10 h, 81%;

f) HF·pyridine, pyridine, THF, 10 h, 83%; g) [PhC(CF3)2O]2SPh2, CH2Cl2, 0
�C to rt, 2 h, 87%;

h) 0.5 M HCl, H2O/MeOH, 2 d, 69%
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9.2.6 Total Synthesis of Pochonin C

In 2004, the group of Winssinger presented a modular synthesis of pochonin C

(483) (389). They partitioned the target compound into three parts, which were then

linked. The first key intermediate, epoxide 591, could be synthesized in seven steps

from alcohol 587 (Scheme 9.17). Silyl protection of the hydroxy group followed by

ozonolysis led to aldehyde 588, which was converted to halohydrin 590 via a

modified Brown allylation. A SN2 reaction with thiophenol was used to invert the

configuration of chloride 590, revealing trans-epoxide 591 in another three steps.

The second building block, Weinreb amide 593 was obtained smoothly from

chloride 592 by reaction with thiophenol and ensuing allylation.

Modified Mitsunobu conditions were also used to connect the third part,

orseillinic acid (583), to epoxide 591. After MOM protection of both phenols,

deprotonation with subsequent addition ofWeinreb amide 593 afforded the precur-

sor 595. Oxidation and ensuing elimination of the thioether, followed by RCM led

to diene 596. The aromatic chlorination as well as the stereoselective opening of the

epoxide proceeded in a single step by treatment with sulfuryl chloride. Thus,

cleavage of the MOM ethers, gave the desired RAL, pochonin C (483).Winssinger
et al. also presented the conversion of pochonin C (483) into radicicol (478) by

treatment with potassium carbonate (Scheme 9.18).
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Scheme 9.17 Synthesis of the building blocks 591 and 593 by Winssinger et al. Reagents and
conditions: a) TBDPSCl, imidazole, CH2Cl2, 23

�C, 4 h, 98%; b) O3, CH2Cl2, –78
�C, 5 min, Ph3P,

23�C, 2 h, 94%; c) allyl chloride, LiNcHex2, IpcBOMe, BF3OEt2, –97
�C, 4 h, 68%; d) thiophenol,

t-BuOK, 23�C, 1 h; then 590, DMF, 0�C to 23�C, 86%; e) Me3OBF4, CH2Cl2; f) DBU, CH2Cl2,

0�C, 4 h, 80% (two steps); g) TBAF, THF, 23�C, 6 h, 98%; h) PhSH, K2CO3, DMF, 23�C, 98%;

i) LDA, HMPA, allyl bromide, THF, –78�C to 23�C, 3 h, 82%
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Scheme 9.18 Synthesis of the pochonin C (483) and radicicol (478) byWinssinger et al. Reagents
and conditions: a) 591, P(m-ClC6H4)3, DIAD, toluene, 23

�C, 3 h, 84%; b) MOMCl, DIPEA, TBAI

(cat.), DMF, 80�C, 3 h, 91%; c) LDA, THF, –78�C, 593, 81%; d) H2O2, (CF3)2CHOH, 23
�C, 3 h;

then toluene 80�C, 1 h, 92%; e) Grubbs ӀӀ catalyst, toluene, 120�C, 10 min, 87%; f) SO2Cl2, Et2O,

0�C, 68%; g) HCl, 23�C, 3 h, 74%; h) K2CO3, DMF, 23�C, 1 h, 86%
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10 (Thio)diketopiperazines

The smallest cyclic peptides built from amino acids are the so-called

diketopiperazines (DKP). In recent research, the DKPs and higher functionalized

analogs – the thiodiketopiperazines (TDKP) – have become attractive due to their

broad biological activity (390). The DKP or TDKP moiety can be found in a great

variety of mycotoxins. Both DKPs and TDKPs can, for example, be isolated from

Aspergillus, Candida, Chaetomium, Gliocladium, Penicillium, and Verticillium
species (7, 390). The most common structural motifs A–D of this class of

compounds are depicted in Fig. 10.1. Many of these natural products show C2

symmetry, which means they consist of two identical amino acids (R ¼ R
0
in

Fig. 10.1).

To date, a large number of different DKPs and TDKPs have been isolated and

characterized. Selected examples are shown in Fig. 10.2 (391–399).
(+)-Okaramine C (600) can be isolated from extracts of Penicillium

simplicissimum and Aspergillus aculeatus that grow on okara, which is a soybean
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Fig. 10.1 General structural motifs of DKPs (A), bis(sulfide)- TDKPs (B), bis(methylthio) TDKPs (C),

bis(polysulfide) TDKPs (D)

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic

Natural Products, Vol. 97, DOI 10.1007/978-3-7091-1312-7_10,
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residue from soymilk production (Fig. 10.3 (400)). Okaramine C (600) and

okaramines N and J possess insecticidal properties.

Epicoccin A (602) was isolated from Epicoccum nigrum among several other

epicoccins (B–P) (397, 401, 402) (Fig. 10.4 (403)). This class of mycotoxins is of

great interest due to the bis(polysulfide) moiety and due to their antimicrobial

effects.
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Fig. 10.2 Selected DKPs (top) and TDKPs (bottom): viridamine (597), brevianamide F (598),

verruculogen (599), (+)-okaramine C (600), emestrin (601), epicoccin A (602), exserohilon (603),

and gliotoxin (604)

Fig. 10.3 Okara or soy pulp is part of traditional Japanese, Korean, and Chinese cuisines and can

be infected with the mycotoxin okaramine C (600)
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Exserohilon (603) can be found in Exserohilum rostratum together with

rostratins A–D (398) (Fig. 10.5 (404)). These mycotoxins exhibit in vitro cytotox-

icity against the HCT-166 human colon cancer cell line (405).

10.1 Biological Properties

Due to the great structural variety of DKP and TDKP mycotoxins, no general type

of biological activity for this class of compounds can be defined. To name a few

properties of this family of compounds, they have shown e.g. antibacterial, antifun-
gal, antihyperglycemic, antimycotic, antitumor, antiviral, cytotoxic, and immuno-

suppressive effects (8). The DKPs are interesting targets for medicinal chemists

since they mimic peptidic pharmacophoric groups. They can be synthesized readily

with a great structural diversity from amino acid derivatives and are resistant to

Fig. 10.4 Epicoccum nigrum under a light microscope (400-fold magnification)

Fig. 10.5 Exserohilum rostratum
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proteolysis (406). The biological properties of TDKPs can be attributed to their

sulfur bridge, because the activities of these compounds decrease after its removal.

One proposed mechanism is conjugation with proteins, i.e. with cysteine residues

therein. Another theory is the production of reactive oxygen species (ROS) through

a redox process between the reduced (dithiol) and oxidized (disulfide) form of

TDKPs (390).

10.2 Total Syntheses

To date, only a few examples of the total syntheses of the large family of (T)DKPs are

known. In particular, the introduction of a sulfur bridge to obtain TDKPs remains a

challenge (407). After the first total synthesis in 1981 of a TDKP, gliotoxin, by Kishi
et al. (408), it took almost 30 years until additional compounds of this type were

synthesized, in and after 2009 (see Sect. 10.2.2). Selected examples of (T)DKP total

syntheses will be presented in the next two sections (10.2.1 and 10.2.2).

10.2.1 DKP Total Syntheses

In 1999, Danishefsky et al. published the total synthesis of the acetyl-CoA-cholesterol
acyltransferase inhibitor gypsetin (615) (Scheme 10.1) as well as of the related

mycotoxins deoxybrevianamide E (605), brevianamide E (606), and tryprostatin B

(607) (Fig. 10.6) (409).

The starting material for this synthesis (Scheme 10.1) was N-phthaloyl-
tryptophan methyl ester (608), which can be prepared from L-tryptophan methyl

ester according to ref. (410).
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Fig. 10.6 Structure of the mycotoxins deoxybrevianamide E, brevianamide E, and tryprostatin B
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The authors assumed that the reaction of tryptophan derivative 608 with

t-butylhypochlorite and base led to the formation of the unstable product 609.

Treatment of this intermediate with prenyl-9-BBN gave compound 610 in very

good yield. Removal of the phthalimide-protecting group with hydrazine led to 611.

Introduction of the Boc-protecting group (! 612) followed by saponification of the

methyl ester furnished derivative 613. Coupling of this compound to 611 was

accomplished with the use of BOP-Cl (bis(2-oxo-3-oxazolidinyl)phosphonic chlo-

ride) as activating agent. Removal of the Boc-protecting group, followed by

ammonia-catalyzed cyclization, yielded diketopiperazine 614. Oxidative conver-

sion with dimethyldioxirane finally furnished the natural product gypsetin (615).

Ganesan et al. reported the total synthesis of the cell cycle inhibitor

(–)-spirotryprostatin B (622) in 2000 (411). Their synthesis started with L-tryptophan

methyl ester 616, which was treated with senecialdehyde to give imine 617. The

indole derivative reacted in a N-acyl-iminium Pictet-Spengler condensation to yield

the tetrahydro-b-carboline derivative 618 (412) (Scheme 10.2).

After NBS oxidation (! 619), Fmoc-deprotection led to dihydrospirotry-

prostatin B (620). A phenylselenylation reaction yielded 621 and a small amount

of 622 among many side products. Compound 621 could be converted to spirotry-

prostatin B (622) by consecutive Boc-protection, elimination, and Boc-deprotection

in good yields. This synthesis route is not an efficient strategy for the preparation of

the natural product 622, but gives a versatile method for the rapid synthesis of its

analogs.

In 2000, two further diketopiperazine derivatives, the anti-microtubule

compounds phenylahistin (633a) and aurantiamine (633b), were synthesized by

Hayashi et al. (413). Their synthesis started with the aldol reaction of ethyl iso-
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Scheme 10.1 Synthesis route to gypsetin (615). Reagents and conditions: a) t-butylhypochlorite,
Et3N, THF, �78�C, 30 min; b) prenyl-9-BBN, �78�C, 6 h, 95%; c) NH2NH2, EtOH, rt, 3 d, 65%;

d) (Boc)2O, Et3N, THF, 1 h, quant; e) LiOH/THF/MEOH/H2O, rt, 3 h, quant; f) 613, BOP-Cl,

CH2Cl2, –78
�C to 0�C, 1 h; g) TFA, CH2Cl2, rt, 1 h; h) NH3, MeOH, reflux, 12 h, 73% from 613;

i) dimethyldioxirane, CH2Cl2/acetone, �78�C to 0�C, 40%
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butyrate (623) with acetaldehyde in the presence of LDA (! 624), followed by

elimination with p-tosyl chloride, to give unsaturated ester 625 (Scheme 10.3).
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Scheme 10.3 Total synthesis of phenylahistin (633a) and aurantiamine (633b) (413). Reagents
and conditions: a) LDA, CH3CHO, THF, �70�C, 88%; b) p-Ts-Cl, pyridine, rt, 88%; then DBU,

reflux, 96%; c) NaOH (aq.), EtOH, rt, 99%; d) SOCl2, reflux; then EtOCOCH2COOH, BuLi, THF,

�70�C to �10�C, 85% over two steps; e) SO2Cl2, CHCl3, reflux, 77%; f) formamide, H2O, reflux,

48%; g) DIBAL-H, toluene, �30�C, 50%; then MnO2, acetone; rt, 95%; h) Cs2CO3, DMF, rt;

i) 28% NH4OH, rt; then enantioselective HPLC, 7% over two steps (633a), 20% over two steps

(633b)
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Scheme 10.2 Total synthesis of (–)-spirotryprostatin B (622). Reagents and conditions:

a) (CH3)2C¼CH-CHO, HC(OMe)3; b) Fmoc-L-Pro-Cl, pyridine, CH2Cl2, 0
�C, 1 h; then rt 6.5 h;

c) NBS, THF/AcOH/H2O (1/1/1), 0�C, 5 min; then rt, 12 min, 68%; d) 20% piperidine in CH2Cl2, rt,

12min, quant; e) LDA,�75�C, 40min; then PhSeBr,�78�C, 1 h, 7% (+ 3% 622); f) Boc2O, DMAP,

CH2Cl2, rt, 5 h; g) MsCl, Et3N, CH2Cl2, rt, 70% over two steps; h) TFA, Et3SiH, CH2Cl2, rt, 15 min,

74%
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Saponification of 625 and treatment with SOCl2 gave the acid chloride of 626,

which could be condensed with monoethylmalonate to obtain the b-ketoester 627 in
good yield. The latter was chlorinated with sulfuryl chloride to furnish derivative

628, which led to the formation of imidazole 629 upon heating under reflux with

formamide. Ester 629 was reduced to the alcohol with DIBAL-H and reoxidized

with MnO2 to give aldehyde 630. The latter was condensed with the diacetyldike-

topiperazine derivatives 631a and 631b in the presence of cesium carbonate.

Intermediate 632 was detected by HPLC analysis, but immediately deacetylated

with aqueous NH4OH to give the natural products phenylahistin (633a) and

aurantiamine (633b). This efficient synthesis route can also be employed for the

development of related compounds with a potential antitumor activity.

The bispyrrolidinoindoline diketopiperazine alkaloids ent-WIN 64821 (644)

(Scheme 10.4) and ditryptophenaline (651) (Scheme 10.5) were prepared through

total syntheses in 2001 by Overman et al. (414). The synthesis started with the
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Scheme 10.4 Total synthesis of ent-WIN 64281 (644). Reagents and conditions: a) NaIO4, THF/

H2O, quant; b) n-Bu3SnCH2OTMSE, n-BuLi, THF,�78�C; then MgBr2•Et2O, THF,�40�C to 0�C,
44% (636), 42% (637); c) Ph3P, DEAD, DPPA, toluene, rt, 84%; d) Red-Al, toluene, rt to 100�C,
71%; e) Fmoc-(R)-Phe-OH, DCC, CH2Cl2, rt, 94%; f) BCl3, CH2Cl2,�78�C, 80%; g)DMP, MeCN,

0�C; then NaClO2, KH2PO4, THF/H2O/t-BuOH, 2-methyl-2-butene; h) piperidine, CH2Cl2, rt; then

DCC, CH2Cl2, 40
�C, 62% over two steps; i) H2, 10% Pd/C, EtOH, rt, 70%
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preparation of 634 in 30% overall yield and five steps from (S)-tartaric acid (415).
Dialdehyde 634 could be cleaved and thus gave two separable products, 636 and

637. The latter was used for the synthesis of ditryptophenaline (651, see below).

Compound 636 was converted to 638 under Mitsunobu conditions. Reduction

upon heating led to the cyclization product 639. Coupling with a (R)-phenylalanine
derivative yielded tetrapeptide 640, which was deprotected to give free diol 641.

Diacid 642 was obtained after two consecutive oxidation steps with Dess-Martin
periodinane and NaClO2. Fmoc-deprotection, DCC-mediated cyclization (! 643)

and benzyl deprotection furnished diketopiperazine ent-WIN 64821 (644).

The total synthesis of ditryptophenaline (651) used stereoisomer 637, which was

oxidized (! 645) and reduced to give diol 646 (Scheme 10.5). Analogous to the

previously described synthesis, 646 was subjected to a Mitsunobu reaction and

reduction to furnish cyclization product 647. Benzyl deprotection and coupling

with a Fmoc-protected N-methyl-(S)-phenylalanine derivative yielded tetrapeptide

648. TMSE-deprotection, two oxidations (! 650), Fmoc-deprotection, and

DCC-mediated cyclization finally led to the natural product ditryptophenaline (651).

These two syntheses were the first examples of the concise preparation of

C2-symmetric bispyrrolidinoindoline diketopiperazines with a cis-configuration of

the two hydrogen atoms between the pyrrolidine nitrogens. The versatility of the

route allows an efficient structural variation that might afford synthetic alkaloids

with new or better biological profiles.
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Scheme 10.5 Total synthesis of ditryptophenaline (651). Reagents and conditions: a) PDC,

MeCN, rt, 88%; b) NaBH4, MeOH, �78�C, 90%; c) Ph3P, DEAD, DPPA, toluene, rt, 91%;

d) Red-Al, toluene, rt to 100�C, 52%; e) Na, NH3, THF, �78�C; then Fmoc-(S)-MePhe-OH,

DCC, HOAt, MeCN, rt, 82% over two steps; f) BCl3, DTBMP, toluene, �78�C, 87%; g) DMP,

CH2Cl2, rt; then NaClO2; h) piperidine, THF, rt; then DCC, CH2Cl2, 40
�C, 54% over two steps
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In 2010, de Lera et al. synthesized the heterodimeric diketopiperazine

(+)-pestalazine B (658) (416). With this material in hand, they were able to revise

the earlier proposed structure 659 for the natural product. These investigators

utilized a convergent synthesis strategy, starting with the condensation of L-trypto-

phan methyl ester (616) and N-Fmoc-D-phenylalanine (652), to give diketopi-

perazine derivative 653 after Fmoc-deprotection (Scheme 10.6). This was reacted

with 3a-bromopyrrolidinoindoline 654 (417) to furnish the dimeric product 655.

Boc-deprotection (! 656), coupling with N-Fmoc-D-leucine (! 657), and Fmoc-

deprotection finally led to compound 658 for which the spectroscopic data matched

those of the natural product.

A general approach for the synthesis of symmetrical and unsymmetrical

diketopiperazines from unprotected amino acids has been published by Br€ase
et al. in 2007 (418) (Scheme 10.7). The phosphorus-promoted coupling method

developed is a stereoselective one-pot synthesis that works either by conventional

heating or in a microwave-assisted way (419). The suitability of this method for
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Scheme 10.6 Total synthesis of (+)-pestalazine B (658) and proposed structure 659 for

(+)-pestalazine B. Reagents and conditions: a) EDC, CH2Cl2, rt, overnight; then Et2NH,

MeOH, rt, overnight, 68% over two steps; b) t-BuOK, MeCN, 12�C, 30%; c) TMSCl, MeCN,

0�C, 85%; d) N-Fmoc-D-leucine, HATU, Et3N, DMF, 0�C to rt; then Et2NH, MeOH, rt, 57% over

two steps
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highly complex proline-type amino acids has also been shown by Br€ase et al. in
their work directed towards the synthesis of thiodiketopiperazine mycotoxins with a

hydroindole core (420, 421).

10.2.2 TDKP Total Syntheses

In 2009, Movassaghi et al. published the first total synthesis of a dimeric TDKP,

which was at the same time only the second report on the preparation of a TDKP,
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following after Kishi et al. in 1981 (408). The authors described the synthesis of the
mycotoxin (+)-11,110-dideoxyverticillin A (669), which shows inhibitory effects on

tyrosine kinase EGF (epidermal growth factor) receptor and possesses

antiangiogenic as well as cytotoxic activity (422) (Scheme 10.8).

The synthesis started with the coupling of the N-sulfonylated tryptophan 660

(prepared from N-Boc-tryptophan in one step) and L-alanine methyl ester 661 to

give dipeptide 662. The cis-diketopiperazine 663 was formed through cyclization

with morpholine after treatment with trifluoroacetic acid. The reaction of 663 with

molecular bromine followed by N-alkylation with methyl iodide furnished mono-

meric tetracyclic bromide 664. The dimeric octacyclic derivative 665 was available

by cobalt(I)-mediated reductive dimerization. Due to the preference of the 5,5-ring

system to build cis-annelated products this method is an efficient strategy for the

preparation of two vicinal quaternary stereogenic centers.

The following steps of the synthesis refer to the introduction of the sulfur bridge to

a diketopiperazine. The method is based on the postulated biosynthesis of gliotoxin

(604) (423), which comprises the formation of acyliminium ions through dehydra-

tion. Therefore, Movassaghi et al. treated diketopiperazine 665 with the mild and

selective oxidizing agent bis(pyridine)-silver(I)permanganate to obtain a dimeric

octacyclic tetraol as a single diastereomer (666 without the TBS-protecting group).

The mechanism involves a radical abstraction of the Ca-methine protons. The

observed diastereoselectivity was attributed to a very fast abstraction-addition pro-

cess, which cannot be transferred to acyclic systems. Protection of two of the four

hydroxy groups with TBS-Cl and deprotection of the sulfonylated indole nitrogen

furnished compound 666. This can be attacked by the sulfur nucleophile

trithiocarbonate. Due to the geometry of the reagent, both sulfur atoms react from

the same side of the molecule to give the bridged derivative 667. Treatment with

ethanolamine furnished the free tetrathiol 668, which can be oxidized with potassium

triiodide to obtain the cis-dithiodiketopiperazine, (+)-11,110-dideoxyverticillin A

(668). The method presented describes the total synthesis of a complex natural

product in only eight steps from the readily available protected amino acids L-alanine

and L-tryptophan.

One year later, in 2010, Sodeoka et al. reported on the total synthesis of two

similar dimeric TDKPs, (+)-chaetocin A (677) and its antipode ent-chaetocin A

(678) (424, 425) in only nine steps. The natural product was isolated from

Chaetomium minutum (426) and shows antibacterial and cytostatic activity (427,
428) as well as an inhibitory effect on histone methyltransferases (429). The latter
play an important role in gene expression and the total synthesis of inhibitors and

their analogs could lead to helpful tools for epigenetic research (Scheme 10.9).

The authors started their synthesis with the preparation of diketopiperazine 672

from the commercially available D-tryptophan derivative 670 and known N-Cbz-
protected N-methyl-D-serine (671) (430). Tetracyclic derivative 673 was available

through a stereoselective bromocyclization reaction with NBS. Treatment of 673

with more NBS and the radical initiator V-70 led to a two-fold bromination at the

diketopiperazine ring (! 674). Hydrolysis with water afforded diol 675 as a major

diastereomer in a mediocre yield with three other stereoisomers as side products.
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According to the procedure used by Movassaghi et al. for their total synthesis

described earlier (431), the authors employed a cobalt(I)-mediated reductive cou-

pling to yield dimeric product 676 as a single stereoisomer. The octacyclic com-

pound was subjected to condensed H2S in the presence of BF3•Et2O. The crude

product so obtained was treated with molecular iodine, which led to the formation

of the natural product (+)-chaetocin A (677). In this final step, ten bond-forming

and -cleaving reactions occurred, including substitution of a hydroxy group with

thiol, Boc- and TBS-deprotection, and the sulfur bridge formation. By changing the

starting materials for the total synthesis from D- to L-amino acids, the antipode

ent-chaetocin A (678) was accessible.

Later in 2010, Movassaghi et al. proposed an alternative synthesis for

(+)-chaetocin A (677) as well as syntheses for the epipolythiodiketopiperazines

(+)-chaetoxin C (693) and (+)-12,120-dideoxychetracin A (694) (432). These were
the first reports on the preparation of high-order polysulfides. Studies have shown

that the polysulfide bridge is important for the biological activity of these

compounds and that potency increases with the number of sulfur atoms

incorporated (433). Therefore, the versatile construction of this scaffold might

lead to highly active substrates.

Similar to their synthesis described in Scheme 10.8, the authors started from

two protected amino acids, N-Boc-L-tryptophan and L-serine methyl ester hydrochlo-

ride, to synthesize diketopiperazine 679 in three steps (Scheme 10.10).
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Bromocyclization led to the formation of tetracyclic 680 as a single stereoisomer.

Kinetic deprotonation followed by treatment with methyl iodide furnished derivative

681. Compound 682 was obtained by exchanging the silyl ether with acetate. Again,

cobalt(I)-mediated reductive coupling afforded the dimeric diketopiperazine 683.
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benzene, 59%; b) LiHMDS, MeI, DMPU, THF, �78�C to �40�C, 86%; c) HF•py, THF; then
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Tetrahydroxylation according to the synthesis of (+)-11,110-dideoxyverticillin A

(669) (422) led to tetraol 684. Treatment with trifluoroacetic acid in hydrogen

sulfide-saturated nitromethane diastereoselectively furnished bisthiohemiaminal

685. Addition of iso-butyryl chloride generated the more stable compound 686.

N-Desulfonylation under irradiation (! 687) followed by hydrazinolysis and

sulfenylation of the free thiol furnished bis(triphenylmethandisulfide) derivative

688 in a very good yield. Ionization of the iso-butyryl residues and loss of a

triphenylmethyl cation finally led to 689, which was subjected to methanolysis

(434) to afford the natural product (+)-chaetocin A (677).

Scheme 10.11 shows the total syntheses of epitrithiodiketopiperazine

(+)-chaetocin C (693) and epitetrathiodiketopiperazine (+)-12,120-dideoxychetracin
A (694). Movassagi et al. used intermediate 686 (see Scheme 10.10) and treated it

with either chloro(triphenylmethane)disulfane (X ¼ SS) or chloro(triphenylmeth-

ane)trisulfane (X ¼ SSS) after hydrazinolysis to obtain compounds 690a and 690b,
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�C; then TrSSCl, NEt3, 86%; b) N2H4, THF,
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respectively. In the case of 690a, trifluoroacetylation generated trithiodiketopi-

perazine 692a in a very good yield. Methanolysis of the acetates followed by

hydrazinolysis of the trifluoroacetamides finally led to the natural product

(+)-chaetocin C (693). Compound 690b was converted to 692b, which could easily

be converted to the dimeric tetrasulfide (+)-(+)-12,120-dideoxychetracin A (694) by

acid-catalyzed methanolysis. This strategy represents an efficient strategy for the

divergent sulfenylation of diketopiperazines to obtain di-, tri-, and tetrameric

epithiodiketopiperazine alkaloids (435).
In 2011, Overman et al. reported (Scheme 10.12) the total synthesis of the

epithiodioxopiperazine, (+)-gliocladine C (707) (436). This natural compound

was isolated from the fungus Gliocladium catenulatum (437). In the first step, 3-

hydroxy-3,30-biindolin-2-one (695), readily available from isatin and indole (438),
was reduced and Boc-protected to give compound 696. This oxoindole was reacted

with 2,2,2-trichloro-1,1-dimethylethyl chloroformate in the presence of Fu’s
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pentadienyl)iron, THF, 40�C, 88%; c) NaBH4, MeOH, 0�C, 81%; d) HC(OMe)3, 10 mol-% PPTS,

MeOH, 65�C, 83%; e) LiBH4, MeOH, Et2O, rt to 40�C, 84%; then DMP, pyridine, CH2Cl2, 95%;
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catalyst (439) to give 697 in a very good yield and a 98:2 enantiomeric ratio.

Indoline N,O-acetal 698 was obtained by reduction of the keto group and methyla-

tion of the resulting hydroxy group with trimethyl orthoformate. Soai reduction and
Dess-Martin oxidation furnished biselectrophile 699 in good yield. This was

reacted with the lithium enolate of piperazinedione 700 (readily available from

N-methylamide hydrochloride) to generate condensation product 701 exclusively

as the (Z)-diastereomer. Cyclization and demethylation afforded the

trioxopiperazine-fused cyclotryptamine 702, which was converted to

dioxopiperazine 703. After dihydroxylation and acetylation, diacetate 705 was

treated with condensed H2S and BF3•OEt2 to give, after exposure to oxygen,

epithiodiketopiperazine 706. The authors explain the observed stereoselectivity

with the formation of an iminium ion in the DKP ring, which is attacked from the

less hindered side opposite both the angular indolyl substituent and the adjacent

acetate. Removal of the acetate finally furnished the natural product, (+)-

gliocladine C (707), in only ten steps and 11% overall yield.

Nicolaou et al. reported on the synthesis of epicoccin G (721), a symmetrical

epithiodiketopiperazine, in 2011 (440). The natural product exhibits anti-HIV

activity and is therefore an interesting target for a versatile synthesis strategy.

The first two steps of the total synthesis consisted of a literature-known procedure

for the conversion of protected tyrosine 708 to enone 709 (441) (Scheme 10.13).

Consecutive acetylation, zinc reduction, and base-induced isomerization led to the

deoxygenated product 710. Luche reduction generated 711, which was Boc-

deprotected (! 712) and saponified (! 713). Dimer 714 was obtained through a

BOP-Cl (bis(2-oxo-3-oxazolidinyl)phosphonic chloride)-facilitated coupling. Boc-

deprotection followed by a base-induced ring closure furnished pentacyclic system

715. Introduction of the second double bond (! 717) was achieved through the

intermediate bistrifluoroacetate 716 on exposure to a palladium(0)-catalyst.

Inspired by the work of Schmidt et al. in the 1970s (442), the authors used a base

(NaHMDS, Schmidt et al. used Na in liquid NH3 in their work) and molecular sulfur

for the preparation of the mixture of bridged oligosulfenylated products 718.

Reduction with NaBH4, followed by the addition of MeI gave way to the

bismethylthio derivative 719. Treatment with singlet oxygen followed by a

Kornblum–DeLaMare rearrangement (443) afforded dihydroxy enone 720.

Hydrogenation finally furnished the natural product epicoccin G (721).

Nicolaou et al. were also able to apply their strategy to the synthesis of

8,80-epi-ent-rostratin B (722), a derivative of the marine mycotoxin rostratin B

with a disulfur bridge. Treatment of intermediate 718 with NaBH4, followed by

reduction with potassium triiodide, addition of oxygen, Kornblum–DeLaMare
rearrangement, and hydrogenation afforded product 722. Thus, these authors

demonstrated the versatility of their method, which represents a direct procedure

for the sulfenylation of diketopiperazines to obtain both bismethylthio derivatives

and epithiodiketopiperazines.
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After gliotoxin, its derivative dehydrogliotoxin (731) is one of the best

characterized epithiodiketopiperazines. It was addressed again in 2011 by Wood
et al. (444) after it had been the first TDKP (together with gliotoxin) to be

synthesized in 1981 (408).
The convergent (formal) synthesis of 731 started with the preparation of aniline

derivative 726 from the inexpensive o-anisidine (723) in four steps (see

Scheme 10.14). Acid 728 was obtained by using a known procedure in one step

(445). Its conversion to the corresponding acid chloride followed by the reaction

with aniline 726 furnished bis-amide 729. Base-mediated ring closure afforded

diketopiperazine 730, which had already been transformed into dehydrogliotoxin
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Scheme 10.13 Total syntheses of epicoccin G (721) and 8,80-epi-ent-rostratin B (722). Reagents

and conditions: a) see reference; b) Ac2O, Et3N, DMAP, CH2Cl2, 0
�C to rt, 4 h; c) Zn, AcOH,

MeOH, 65�C, 0.5 h; d) DBU, toluene, 65�C, 3 h, 51% over three steps; e) NaBH4, CeCl3•7 H2O,

MeOH, �78�C to 0�C, 1 h, 92%; f) TFA/CH2Cl2 (1/1), 0
�C to rt, 0.5 h, 99%; g) LiOH (aq.)/THF

(5/1), 0�C to rt, 3 h, 99%; h) 712, 713, BOP-Cl, NEt3, CH2Cl2 0�C to rt, 15 h, 86%; i) TFA,

CH2Cl2, 0
�C to rt, 1.5 h; then NEt3, CH2Cl2, 0

�C to rt, 15 h, 77% over two steps; j) (CF3CO)2O,

NEt3, DMAP, MeCN, �40�C to rt, 1 h, 69%; k) Pd(PPh3)4, K2CO3, dioxane, 65
�C, 0.5 h, 90%;

l) NaHMDS, S8, THF, rt; then 717; then NaHMDS, rt, 0.5 h; m) NaBH4, THF/MeOH (1/1), 0�C to

rt, 0.75 h; then MeI, rt, 15 h; 58% over three steps; n) O2, TPP, CH2Cl2, 400 W Philips-MH400/U

sun lamp, �45�C, 40 min; then DBU, �45�C to 0�C, 1 h, 52% over two steps; o) H2, Pd(OH)2/C

(20w%), MeOH, 25�C, 1 h, 86%
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by Kishi et al. (408) in 11 steps. This short and efficient synthesis is applicable to

similar compounds and is therefore an interesting strategy for the synthesis of new

bioactive compounds.

In summary, much progress has been made in the area of (thio)diketopiperazine

synthesis, especially in the last few years. Nevertheless, only a few syntheses of the

numerous known (T)DKP natural products have been reported so far (see earlier in

this chapter and refs. 446–448). Progress towards the preparation of synthetic

fragments of challenging (T)DKP derivatives can be found also in literature (449,
450, 420, 421). Furthermore, methodological work for the thiolation of diketopi-

perazines has been published recently (451, 452). Thus, there will probably be

additional total syntheses on this class of compounds reported in due course. Most

of the mycotoxins belonging to this group are very complex molecules that have to

be synthesized under both sensitive and selective conditions. This makes every

transformation very demanding and it is necessary to adapt published procedures

from the very first step for a (T)DKP to be synthesized.
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11 Alternaria Metabolites

Metabolites of the genus Alternaria are apparently ubiquitous and have long been

recognized as important plant pathogens, causing diverse diseases such as tobacco

brown spot (453), potato and tomato blight (Fig. 11.1), and citrus seedling chlorosis

(454). Although A. alternata has been regarded as the major mycotoxin-producing

species, other species such as A. citri, A. longipes, A. solani, and the A. arborescens,
A. infectoria, and A. tenuissima species groups also produce the characteristic

Alternaria mycotoxins (455).

The Alternaria toxins, alternariol (732) or alternariol 9-methyl ether (733), are

produced by a variety of Alternaria fungi and were first isolated in 1953 (456). For
example, Alternaria tenuis afforded an ether extract containing alternariol methyl

ether and alternariol in the proportion 10:1. These compounds were the first

recorded substituted dibenzo-a-pyrones of fungal origin (457, 458) and they also

represent the main toxic metabolites (459). Figure 11.1 shows the fungus Alternaria
alternata (460).

Fig. 11.1 Alternaria alternata fungus on tomatoes, Alternaria alternata conidia. (Courtesy of

Selmar Petzoldt)

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic

Natural Products, Vol. 97, DOI 10.1007/978-3-7091-1312-7_11,
# Springer-Verlag Wien 2013
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Less is known about minor Alternaria metabolites, including altenuene

734 (461–463), isoaltenuene 735 (464, 465), neoaltenuene 736 (466), and

dehydroaltenusin 737 (467–469), which have been found in infested fruits in

sub-milligram amounts (Fig. 11.2).

Altenuene 734 was isolated 1970 by Pero et al. from the fungus Alternaria tenuis
and is related structurally to the A. tenuis metabolites alternariol 732 and alternariol

9-methyl ether 733 (462). Isoaltenuene 735, a diastereomer of altenuene, with

inverted configuration at C-20, was found in rice cultures of Alternaria alternata in

1989 by Visconti et al. (464). Also from extracts of the fungus Alternaria alternata
cultured on rice, five other dibenzo-a-pyrones were isolated in 1993 by the group of

Blunden and Turner (466), among them neoaltenuene (736). Dehydroaltenusin (737),

a myosin light chain kinase inhibitor, had been identified in culture broths of

Penicillium verruculosum IAM-13756 in 1994 by Nakanishi et al. (467).
Another group of Alternaria metabolites are the hydroxyperylenequinone

compounds, altertoxins I (738), II (739), and III (740), which were first isolated

in 1973 (470) (Fig. 11.3). In 1979, Scott and Stoltz reported the chromatographic

separation of A. alternata mycelium extract, which yielded several fractions muta-

genic in the latter system, including an altertoxin I-containing fraction (471). In
1986, Stack and Prival performed an Ames test on an extract of the mold Alternaria
alternata and isolated all three altertoxins, which showed mutagenicity against

Salmonella typhimurium (472).

732 R = H (alternariol)
733 R = Me (alternariol 9-methyl ether)
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Fig. 11.2 The most well-known Alternaria toxins (732–737)
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The structure of the perylene metabolite altertoxin I (738), first reported in 1982

by the group of Stinson, and the scaffolds of the other altertoxins, are unusual, since
the two aromatic centers in the molecules are completely isolated from each other

due to non-conjugated bonding (473).
Compounds 738–740 belong to the class of perylenequinones (474), but until

now, there has been no approach to the total synthesis of altertoxins, based on the

difficulty in formation of two neighboring but separate aromatic centers.

One of the most toxic components among Alternaria mycotoxins is tenuazonic

acid (741) (475) (Fig. 11.4), a tetramic acid derivative, which was first isolated

from the culture filtrates of Alternaria tenuis in 1957 by Rosett et al. (476) and
shows potent biological activity (475). Tenuazonic acid is biosynthesized from

L-iso-leucine and its structure was revealed four years later by Stickings and his

group (477).

11.1 Biological Properties

A number of Alternaria species are toxic to a wide spectrum of organisms,

including bacteria (456, 478), fungi (479), viruses (478), and higher plants (480,
481). Furthermore, it is known that many saprophytic species, associated with

agricultural commodities, produce toxic metabolites to mammals (482).
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Fig. 11.4 Tenuazonic acid (741)

OH

HO

O OH

OH

O

738 (altertoxin I)

OH

HO

O

OH

O

739 (altertoxin II)

O

O

HO

O

OH

740 (altertoxin III)

O

O

Fig. 11.3 Altertoxins I, II, and III (738–740)
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Investigations of the cytotoxicity of the dibenzo-a-pyrones have indicated a high
toxicity (483). Alternariol (732) and alternariol 9-methyl ether (733) exhibited IC50

values of 6 and 8 mg/cm3 for HeLa and lymphoma L5178Y cells. Using Bacillus
mycoides as a test organism, 732 was the most potent inhibitory compound from

the Alternaria spp., but when in combination with alternariol 9-methyl ether (733),

a striking synergistic effect was shown. Only 0.5 mg of a 1:1 mixture of alternariol

(732) and alternariol 9-methyl ether (733) was necessary to induce a zone of

inhibition. Another investigation using alternariol (732) with female mice also

showed fetotoxic effects (470).
In 1991 Liu et al. found that extracts of Alternaria alternata led to reverse

mutation in Escherichia coli, unscheduled DNA synthesis in cultured human

amnion FL cells, chromosomal aberrations, and sister chromatid exchange in

human peripheral blood lymphocytes, mutation in V79 cells, and transformation

of NI3T3 cells (484, 485).
The possibility that Alternaria toxins have causal effects in the etiology of

esophageal cancer in Linxian, People’s Republic of China, has been investigated

since 1987 by Dong (486), Zhen (487), and Liu et al. (484). They observed that

alternariol 9-methyl ether (733) and alternariol (732) combine with DNA

isolated from the human fetal esophageal epithelium, activate the oncogenes,

c-H-ras and c-mys, and promote the proliferation of human fetal esophageal

cells in vitro. Moreover, 732 might induce squamous cell carcinoma of the fetal

esophagus.

In 2004, Mizushina et al. reported dehydroaltenusin (737) as a mammalian

DNA polymerase a inhibitor, whereas 737 was shown to be incorporated into

liposomes and prevent the proliferation of human cultured cancer cells by halting

the cell cycle.

As mentioned above, altertoxins I, II, and III (738–740) showed mutagenic

bioactivity in Ames tests on Salmonella typhimurium. It has been found that

altertoxin III (740) is 1.5 times more potent as a mutagen when compared to

altertoxin II (739), which, in turn, was reported to be 23 times more potent

than altertoxin I (738) in this regard (488). This type of toxicity can be related

to the number of epoxide groups in these octahydroperylene compounds

(Fig. 11.3).

Tenuazonic acid (741) is also of great interest since it is considered to exhibit the

greatest toxicity among the Alternaria mycotoxins. It exhibits phytotoxic, insecti-

cidal, zootoxic, cytotoxic, antibacterial, antitumor, and antiviral activities (489,
490). Furthermore, 741 might be the causal factor of onyalai, a hematological

disorder in man (491).
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11.2 Total Syntheses

11.2.1 Total Synthesis of Alternariol and Alternariol
9-Methyl Ether

In 1986. Staunton et al. published the biomimetic syntheses of alternariol (732) and

alternariol 9-methyl ether (733) (492, 493), after an earlier report by Harris et al. in
1967 (494). The synthesis method used is outlined in Scheme 11.1. Thus, protected

orsellinate thioester 742 was treated with lithium diiso-propylamide (LDA) to

generate an anion, which reacted with the tetrafluoroborate pyrylium salt 743.

After cleavage of the protecting silyl group, pyrone 744 was achieved, which was

then methylated to form a pyrylium salt by methyl group transfer from the previous

pyrylium salt 743. A ring opening of the pyrylium derivative with water formed the

isomeric methyl enol ether. The presumed natural key intermediate 745 was

obtained by acidic hydrolysis as a mixture of enol tautomers and under mild

cyclization conditions alternariol 9-methyl ether 733 was produced.

Podlech et al. recently reported on a total synthesis of alternariol (732) with a

palladium-catalyzed Suzuki-type coupling as the key reaction (495). The synthesis
began by preparing the orcinol-derived boronic acid 748 by methylation and

subsequent bromination with N-bromosuccinimide (NBS) of orcinol 746 (362),
and treatment of 747 with butyllithium, followed by forming the boronic acid with

triiso-propyl borate (496) (Scheme 11.2). The brominated Suzuki-coupling partner

was achieved by a Vilsmeyer formylation of 3,5-dimethoxybromobenzene (749)

(497), which was further oxidized under Kraus conditions (242) and esterified to

obtain the methyl ester 751.

a)

b)
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O
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SEt

O

+
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OO
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O O O
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O

OH

O

OH 733

732

Scheme 11.1 Biomimetic synthesis of alternariol and alternariol 9-methyl ether. Reagents and

conditions: a) LDA, THF, �78�C, acidic workup, 20%; b) NaOH, MeOH/H2O (4/1), acidic

workup, >75%
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A Suzuki coupling of ester 751 with boronic acid 748 was not successful, but the
coupling proceeded with the carbaldehyde 750, to yield biaryl 752, which was then

transformed into the acid 753 by Kraus oxidation. The final step included

deprotection of hydroxy group functions using boron tribromide to attain the

desired molecules 732 and 733 (Scheme 11.3).
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O Br

O

751

O

O Br
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e), f) O

Scheme 11.2 Synthesis of the Suzuki-coupling partners. Reagents and conditions: a) Me2SO4,

K2CO3, acetone, reflux, 4 h, 99%; b) NBS, CHCl3, rt, 99%; c) n-BuLi, B(Oi-Pr)3, THF, �78�C,
15 min, rt, 12 h, 99%; d) POCl3, DMF, 100�C, 4 h, 78%; e) NaH2PO4, NaClO2, 2-methyl-2-butene,

t-BuOH/H2O (5/1), rt, 2 h, 85%; f) CH2N2, Et2O, 70%
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Scheme 11.3 Synthesis of alternariol and alternariol 9-methyl ether by Podlech et al. Reagents
and conditions: a) K2CO3, cat. Pd(PPh3)4, DMF, 100�C, 4 h, 78%; b) NaH2PO4 NaClO2, 2-methyl-

2-butene, t-BuOH/H2O (5/1), rt, 2 h, 85%; c) BBr3, CH2Cl2, 0
�C, 24 h, 73%

132 11 Alternaria Metabolites



11.2.2 Total Synthesis of Altenuene and Isoaltenuene

One year after publishing the total synthesis of alternariol and alternariol 9-methyl

ether, Podlech and his group reported on the total synthesis of altenuene 734 and its
epimer, isoaltenuene (735) (498). At this point, there was no confident information

on the absolute configuration of these natural products, so it was decided to use

quinic acid (754) as starting material. An iodinated Suzuki-coupling substrate was

produced in four steps by published procedures (499, 500), followed by reaction

with methyl magnesium bromide, which gave a separable mixture of diastereomers

756a and 756b. Boronic ester 759 was synthesized in three steps beginning with

commercially available acetal 757 (501) (Scheme 11.4).

Scheme 11.5 shows the completion of the altenuene and isoaltenuene synthesis

by the Suzuki coupling of iodinated compound 756 and boronic ester 759 as the

key reaction, using the S-Phos ligand (502, 503). Fortunately, this Suzuki coupling
step simultaneously promoted the formation of lactones 760 and 761. The last step,

the cleavage of the diol-protecting acetal group, was accomplished using

trifluoroacetic acid (TFA). Since the absolute configuration was unknown before

this synthesis was completed, commercially available altenuene was compared with

the synthesized material. Podlech and co-workers determined that natural altenuene

had an enantiomeric excess of only 2%, and thus they had synthesized the major

enantiomer.

4 steps
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Scheme 11.4 Synthesis of building blocks for altenuene (734). Reagents and conditions:

a) MeMgBr, THF, �40�C to rt, 68%; b) pinacol borane, Et3N, 5mol% Pd(PPh3)4, dioxane,

80�C, 2 h, 88%
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11.2.3 Total Synthesis of Dehydroaltenusin

Dehydroaltenusin (737), isolated from Alternaria tenuis, has shown promising

biological activities, making it an interesting natural product for total synthesis.

Kamisuki et al. reported the first synthesis of racemic dehydroaltenusin in 2004

(501). The key step involves a Suzuki-coupling reaction of an aryltriflate with an

aryl boronic acid. Synthesis of the aryltriflate began from commercially available

2,4,6-trihydroxybenzoic acid (762). Reaction with thionyl chloride (SOCl2) in the

presence of N,N-dimethylaminopyridine (DMAP) led to acetonide 763.

Regioselective methylation was accomplished under Mitsunobu conditions with

diiso-propyl azodicarboxylate-triphenylphosphine in the presence of benzyl alco-

hol, and afforded monomethyl ether 764. The reaction following comprised the

treatment with triflic anhydride-pyridine to obtain triflate 765. The coupling partner

769 was synthesized with 4-methylcatechol 766 as precursor, which was

brominated and then protected with methoxymethyl chloride (MOMCl), gaining

ether 768. Aryl boronic acid 769 was then prepared in a one-pot reaction with n-
butyllithium, followed by treatment with triiso-propyl borate (Scheme 11.6).

The step following was a Suzuki coupling of triflate 765 and boronic acid 769 in
the presence of tetrakis(triphenylphosphine)palladium, potassium phosphate, and

potassium bromide to obtain the coupling product 770 (504). Alkaline hydrolysis of

a) b)
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Scheme 11.5 Suzuki coupling and completion of the total synthesis of altenuene (734) and

isoaltenuene (735). Reagents and conditions: a) 756b, 2mol% Pd(OAc)2, 4mol% S-Phos,

Cs2CO3, dioxane/H2O (5/1), 80�C, 2 h, 70%; b) TFA/H2O (9/1), 10 min, rt, 55%; c) 756a,

2mol% Pd(OAc)2, 4mol% S-Phos, Cs2CO3, dioxane/H2O (5/1), 80�C, 2 h, 72%; d) TFA/H2O

(9/1), 10 min, rt, 62%
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compound 770 and subsequent acid treatment yielded altenusin (771), which was

also furnished by treatment with boron trichloride (BCl3) from 770 in one step. The

final reaction was an oxidation initiated by FeCl3 (476) to afford dehydroaltenusin

(737), for which the spectroscopic and physical properties were identical with

natural dehydroaltenusin (Scheme 11.7).
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Scheme 11.7 Suzuki-coupling reaction for completion of dehydroaltenusin (737). Reagents

and conditions: a) (Ph3P)4Pd, K3PO4, KBr, dioxane, 100
�C, 93%; b) 2 M KOH, EtOH, 60�C;

c) 10% HCl-MeOH, CH2Cl2, rt, 64% over two steps; d) BCl3 (10 equiv.), CH2Cl2, 0
�C to rt, 63%;

e) FeCl3, aq. EtOH, rt, 82%
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Scheme 11.6 Preparations of the Suzuki precursor material. Reagents and conditions: a) acetone,

SOCl2, DMAP, DME, rt, 56%; b) DIAD, Ph3P, MeOH, THF, rt, 89%; c) Tf2O, pyridine, 0
�C, 94%;

d) MOMCl, NaH, DMF, 0�C, 90%; e) n-BuLi, THF, �78�C to �40�C, (i-PrO)3B, Et2O, �78�C
to rt, 95%
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11.2.4 Total Synthesis of Neoaltenuene

In 2009 Podlech et al. carried out the total synthesis of neoaltenuene (736) for the

first time in 14 steps and an overall yield of 10%, with quinic acid and

phloroglucinic acid as precursor molecules. As before, the key reaction consisted

of a palladium-catalyzed Suzuki reaction, coupling an arene boronate with an

iodinated cyclohexene. Starting from quinic acid (754), b-hydroxy-ketone 772

was afforded in three steps according to a published procedure (499), by treatment

with methylmagnesium bromide to gain a single isomer, most probably due to steric

hindrance (505). The steps following included an oxidation step using tetrapropyl-

ammonium perruthenate (TPAP) and elimination to obtain cyclohexenone 745.

Iodination was accomplished with trimethylsilyl azide (TMSN3), iodine, and

subsequent treatment with pyridine (506) to yield the iodinated enone 475, which

was then reduced using diiso-butylaluminium hydride (507) to lead to alcohol 776

(Scheme 11.8).

The Suzuki-coupling partner 778 was synthesized with phloroglucinic acid 777

as starting material in four steps, consistent with a published procedure (498, 508),
followed by a Suzuki reaction (502, 509, 510) on the iodinated enone 776 using

palladium(II) acetate, cesium carbonate, and S-Phos (2-dicyclohexylphosphanyl-

20,60-dimethoxybiphenyl) (Scheme 11.9). Fortunately, lactone 779 was directly

achieved under these conditions, so there was only a deprotection step with

trifluoroacetic acid remaining to prepare neoaltenuene (736) in an overall yield of

10% in 14 steps.
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Scheme 11.8 Synthesis route to iodide 776. Reagents and conditions: a) MeMgBr, THF, 50%;

b) TPAP, NMO, CH2Cl2, rt, 12 h, 80%; c) i-Pr2NEt, Ac2O, DMAP, CH2Cl2, 0
�C to rt, overnight,

90%; d) TMSN3, I2, CH2Cl2, 0
�C to rt; then pyridine, overnight, 75%; e) DIBAL-H, THF,�78�C,

1.5 h, 98%
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11.2.5 Total Synthesis of Tenuazonic Acid

Tenuazonic acid (741), a phytotoxin produced by Alternaria spp., is structurally

related to the tetramic acid family of compounds, and has been found to exhibit

antibiotic activity (511). Since 1964, there have been several publications on

the total synthesis of 741 (512–515), including the report by Poncet and his

group in 1990 (516) (Scheme 11.10). A general method to synthesize the tetramic

acids is an intramolecular Dieckmann cyclization of N-acyl amino esters. Begin-

ning with methyl L-isoleucinate 780, the N-acyl compound 782 was obtained

through a nucleophilic reaction (512), which then cyclized to tenuazonic acid 741

under basic conditions and neutralization by acidic work-up. The synthetic product

showed a diastereomeric excess of 89%, with the major epimer presenting the same

configuration as its precursor (517).
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Scheme 11.9 Preparation of neoaltenuene (736). Reagents and conditions: a) 776, Cs2CO3, Pd

(OAc)2, S-Phos, dioxane/H2O (6/1), 80�C, 2.5 h, 61%; b) TFA/H2O (6/1), 15 min, rt, 85%
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Scheme 11.10 Preparation of tenuazonic acid by Dieckmann cyclization. Reagents and

conditions: a) NEt3, CHCl3, rt, 16 h (78%); b) CH3ONa, MeOH, reflux, 2 h (97%, 89% de)
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12 Skyrins

Skyrins are a family of natural products that have a bisanthraquinone structure with

one to four bonding sites between two anthraquinone moieties. These metabolites

have been isolated from a variety of fungi and lichens. The ingestion of skyrins

has been related to the development of malignant and non-malignant hepatomas

(liver tumors), because these compounds occur widely in contaminated rice, corn,

and cereals (518). Accordingly, their biological activities have been investigated

extensively. The skyrins were discovered initially in the 1950s by Raistrick and co-
workers. The first representative isolated was skyrin (783) itself in 1954, followed

by iridoskyrin (784), rubroskyrin (785), and erythroskyrin (not shown). They were

all isolated from the same fungus, Penicillium islandicum (see Fig. 12.1 (519)), in
the form of yellow or red crystals (520, 521). A detailed review on biaryls that occur

in Nature – including the skyrins – has been published by Bringmann et al. in 2001
(474).

Fig. 12.1 Skyrin-containing Penicillium species under the light microscope with 400-fold

magnification

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic

Natural Products, Vol. 97, DOI 10.1007/978-3-7091-1312-7_12,
# Springer-Verlag Wien 2013
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In 1955, rugulosin A (786a) was isolated as yellow crystals from Penicillium
rugulosum (522). Based on chemical degradation and spectroscopic data, the first

structural suggestions for the skyrins were made in the 1950s. In 1958, Tanaka
reported the structure of skyrin (783) and in 1960, Gatenbeck determined the

structures of iridoskyrin (784) and rubroskyrin (785), with the structure of 785

corrected later (523, 524). These are all bisanthraquinones: skyrin (783) and

iridoskyrin (784) have only one bonding site between the two anthraquinones,

while rubroskyrin (785) has two. All compounds possess a methyl group on the

aromatic site. Skyrin (783) and iridoskyrin (784) have six aromatic hydroxy groups,

with two of these differentially substituted. Rubroskyrin (785) bears two additional

hydroxy groups at the aromatic rings and because of the second bonding site, the

aromatic structure of the connected rings is reversed.

Shibata et al. isolated and described the skyrins rubroskyrin (785), rugulosin

A (786a), and luteoskyrin (787). They showed that there are three bonding sites

between the two anthraquinone moieties for 786a and 787 (see Fig. 12.2).

Rugulosin A (786a) has two hydroxy groups less than rubroskyrin (785), while

luteoskyrin (787) has the same number of these functionalities. Shibata et al. also
showed that the skyrins are optically active (783) (525, 526). Skyrin has the
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Fig. 12.2 The first isolated skyrins (783 to 787)
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(R)-configuration at the C-C bond and the sign of its optical rotation is positive. The

sign of optical rotation of both rubroskyrin (785) and luteoskyrin (787) is negative

and is positive for rugulosin A (786a) (527). The structures and absolute

configurations of 783, 785, 786a, and 787 have been proven by determining the

crystal structure of a dibromo derivative of rugulosin (527, 528).
Up to the present, several skyrin derivatives have been isolated from a large

number of fungi and lichens. Beside the skyrins 783, 784, 785, and 787, oxyskyrin,

skyrinol, dicatenarin, erythroskyrin, and many others have been isolated from

Penicillium islandicum (all not shown). They are all hetero- or homo-dimeric

bisanthraquinones, built either from two different or two identical anthraquinone

units (525). Skyrin (783) itself has been isolated from many different Penicillium
and Endothia species (528), and from Preussia multispora (529) and Hypomyces
lactifluorum as well as from the lichens Physcia obscura and Pyxine endochrysina
(530, 531). Rugulosin A (786a) has also been obtained from different Penicillium
species (but not including P. islandicum) and Endothia species (528), as well as
from Myrocethium verrucaria (532).

In 2010, Yamazaki et al. discovered the two new rugulosins B and C (786b, 786),

which were obtained as Penicillium radicum constituents (533). Their structures,
which were proposed using NMR spectroscopic methods, are shown in Fig. 12.2:

rugulosin B (786b) possesses a CH2OH group instead a methyl group and is a

heterodimer of two different anthraquinones, while rugulosin C (786c) possesses

two CH2OH groups and is, like rugulosin A (786a), a homodimer.

An interesting crystalline 1:1 complex of (�)-luteoskyrin (787) and (+)-

rugulosin A (786a) was reported by Jiang et al. in 2010 (518). This complex is

formed by four hydrogen bonds between the two skyrins and the X-ray crystallo-

graphic structure is shown in Fig. 12.3.

Fig. 12.3 X-ray structures of a 1:1-complex of luteoskyrin (787) and rugulosin A (786a)
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Rugulin (788), a skyrin with four bonds between the anthraquinone moieties,

was isolated as a minor metabolite from Penicillium rugulosum in 1978 by Sedmera
et al. (534). The structure as shown in Fig. 12.4 was proposed based on spectro-

scopic data. Instead of hydroxy groups at the connected rings, there are methoxy

groups and the aromatic rings possess one hydroxy and one methyl group each.

Nicolaou et al. synthesized this structure in 2008 and showed that the NMR spectra

did not match the structure originally proposed (535). However, up to the present,

the true structure of rugulin has not been clarified.

In 2000, Brady et al. isolated two new bisanthraquinones from the CR200

strain of a Cytospora species (536), which were named cytoskyrins A (789a) and

B (789b) (Fig. 12.4). Both have three bonding sites between the anthraquinones and

instead of a methyl group at the aromatic rings, they possess methoxy groups.

Cytoskyrin B (789b) is a heterodimer, because it has also one hydroxy group at one

of its anthraquinone moieties.

In its biosynthesis, skyrin (783) plays a central role (524). It is formed very early

and is therefore the precursor for all skyrins: they are formed from this parent

compound by gradual condensation (536). Skyrin itself is formed from emodin

(791), an anthraquinone, by phenolic oxidation, as demonstrated by Franck et al.
(537). They reacted emodin (791) with potassium hexacyanoferrate (III) and

produced skyrin (783) in a low yield. An even earlier precursor of skyrin is the

diketonaphthol 790 (538). Franck et al. fed Penicillium islandicum cultures with
14C-labeled diketonaphthol 790 and generated significant amounts of 14C-labeled

skyrin (783). The important steps of this biosynthesis are shown in Scheme 12.1.
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Fig. 12.4 Purported structure of rugulin (788) and cytoskyrins A and B (789a, 789b)
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12.1 Biological Properties

Among the skyrins, in particular, skyrin (783), rugulosin A (786a), and luteoskyrin

(787) have been well investigated biologically. Skyrin (783) is neither mutagenic

nor carcinogenic, but binds to DNA and RNA (539, 540). It shows inhibitory effects
on RNA transcription but not on the RNA polymerase of viral RNA (541). Skyrin
(783) also has inhibitory effects on murine leukemia cells and on the ATPase

activity of microsomes (539). The cytotoxic effect on human leukemia cells is

weak (apoptosis at an IC30 value of 40 mg/cm
3) (542). Skyrin (783) has antioxidant

activity, and acts as a scavenger for radicals (•OH or carbon radicals •R) and singlet

oxygen (1O2), but its antioxidant potency is about five times less than that of

vitamin E (543).
Luteoskyrin (787) is the most active hepatocarcinogenic, hepatotoxic and

mutagenic skyrin derivative (518, 545), with a hepatocarcinogenic potential some

10 times greater for mice than that determined for rugulosin A (786a) (546). In a

DNA-repair test in rat hepatocytes, 100% of the cells showed DNA damage with a

10�5 molar solution of luteoskyrin (544). The main point of action is the liver,

because luteoskyrin and rugulosin A (786a) get accumulated there, especially in the

mitochondrial and microsomal fractions (518, 545). Luteoskyrin (787) is hepato-

toxic and hepatocarcinogenic to rats as well as mice (545). It also shows a potent

cytotoxic effect on human leukemia cells (542): the IC30 value was 0.1 mg/cm3,

which is 400 times more potent than the IC30 value of skyrin (783). Luteoskyrin

(787) has also inhibitory effects on the RNA-polymerase activity of viral RNA

(541).
Rugulosin A (786a) is, like luteoskyrin (787), a hepatotoxic and carcinogenic

compound to mice (518, 546). It is poisonous to mice and rats and causes acute liver

injury with cell necrosis and fatty degeneration, but its hepatotoxic effect is about

O
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O

O

OH OH

HO

791 (emodin)

OH

OH O OH

O

HO

783 ((+)-skyrin)

O OH

HO

O

Scheme 12.1 Biosynthesis sequence for skyrin (783). Each arrow can refer to more than one

reaction
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two-fold less than that of luteoskyrin (787). Because of slow transportation in the

bloodstream and gradual hepatic accumulation, rugulosin A (786a) is a slow-acting

toxicant (545). For human leukemia cells (IC30 value, 5 mg/cm3), rugulosin

A (786a) is more cytotoxic than skyrin (783) but less so than luteoskyrin (787)

(542). Rugulosin A (786a) has not been found to be mutagenic in the Ames/
Salmonella assay but shows growth inhibitory effects for concentrations higher

than 0.3 mg/plate (540). Its hepatocarcinogenicity derives from forming polychelate

and stable complexes with nucleic acids, but it is less potent in this regard than

luteoskyrin (540, 544, 546). Rugulosin A (786a) causes chronic hepatocellular

injury and hepatotoxicity, and, as mentioned, its hepatocarcinogenic potency is

only one tenth that of luteoskyrin (787) (546). The LD50 value for female rats

(Wistar strain) is 55 mg/kg; for male mice (ddys strain) it is 44 mg/kg. Rugulosin A

was given intraperitoneally as a solution in olive oil (546, 547). Like luteoskyrin

(787), rugulosin A (786a) shows inhibitory effects on RNA-polymerase activity

(541), and is cytotoxic to tumor and mammalian cells (545, 546). Rugulosin A

(786a) and rugulosin C (786c) showed antimicrobial activity against Staphylococ-
cus aureus (533).

The mutagenic action of rubroskyrin (785) was examined by Mori and

co-workers, who revealed that this activity resulted from the generation of

active oxygen in the course of detoxification. Rubroskyrin (785) becomes

reduced by NADH and is autoxidized by dissolved oxygen. Then, H2O2 is pro-

duced, which immediately decomposes to reactive oxygen by a catalase. Thereaf-

ter, superoxide dismutase produces the very reactive superoxide anion. Once this

process is completed, rubroskyrin is transformed to stable products that are not

toxic (548).
Cytoskyrin A (789a) was found to be highly active in a biochemical induction

assay, which identifies compounds that damage DNA or inhibit DNA synthesis.

It inhibits the incorporation of thymidine into DNA. Rugulosin A (786a),

luteoskyrin (787) and cytoskyrin B (789b) do not show detectable activity in this

biochemical induction assay. Their activity seems to be highly dependent on the

three-dimensional structure of the compound (536, 549). The antimicrobial activity

of cytoskyrin A (789a) is in the same range as penicillin G. Compound 789a is

active against Gram-positive bacteria and Escherichia coli but not against other
Gram-negative bacteria. It is also cytotoxic against human tumor cell lines (IC50

4–24 mg/cm3).

To summarize, the skyrins show very different biological activities. The main

organ affected is the liver (518), especially by luteoskyrin (787), which showed

potent hepatotoxic and hepatocarcinogenic activity (544, 545). Rugulosin A (786a)

is less active than luteoskyrin (787) (544–546), and skyrin (783) is neither a

mutagenic nor a carcinogenic substance (539, 540). Cytoskyrin A (789a) has

potential as an anticancer agent (536, 549), while skyrin (783) shows antioxidant

effects (543).
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12.2 Syntheses of Skyrin Model Systems

The first synthesis of a rugulosin-model system, was published by Shibata et al. in
1978 (550). Later syntheses have built on this first procedure, which is described in
Scheme 12.2 (551). The synthesis, which is biomimetic, started with the reduction

of the anthraquinone 792 with hydrogen/palladium and gave 793. Oxidation with

lead tetraacetate gave the quinone 794, which could be further oxidized with

chromium(VI) oxide to give as intermediate the flavoskyrin-type structure 795.

This is formed by a [4 + 2]-cycloaddition and was then converted in situ to the

skyrin-like structure 796 by ether cleavage. Using pyridine, a cascade of two

Michael reactions occurred and gave bisdeoxynorrugulosin (797a) and bisdeoxyr-

ugulosin (797b) as products.

This first synthesis of Shibata was optimized by Snider et al. in 2005. With the

same reactants but different reaction conditions, they could increase the overall

yield to 52% (552). Snider et al. also attempted to synthesize rugulosin A (786a),

but did not achieve this goal. Nevertheless, they presented a new route to a

promising rugulosin precursor (see Scheme 12.3). Starting from the cyclohexenone

798 and the lactone 799, the tricyclic species 800 was formed after deprotection.

With lead tetraacetate, the flavoskyrin-type structure 801 was obtained (see also
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Scheme 12.2 First synthesis of rugulosin model compounds (797) by Shibata et al. Reagents and
conditions: a) H2, Pd/C; b) Pb(OAc)4, HOAc, rt, 84% for 794a; c) CrO3, HOAc, rt, 3.9% for 796a;

d) pyridine, rt, 1% for 797b
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Scheme 12.2). A notable feature about this reaction is that only one diastereomer

was formed. The authors explained this by the steric effect of the residue R group.

With pyridine, the rugulosin-type structure 802was formed by the same mechanism

as described for Shibata’s synthesis (see above). Snider et al. tried to convert 802b

into rugulosin A (786a). Initially, the acetate was hydrolyzed with potassium

carbonate (! 803b), then the resulting alcohol was oxidized with Dess-Martin-
periodinane. A Grignard reaction with methyl magnesium bromide, followed by

repeated oxidation with Dess-Martin-periodinane, gave the ketone 804b. It was

planned to insert an oxygen by Baeyer-Villiger-oxidation, but the ester 805b could

not be formed, even under the various conditions used.

In the same year, Nicolaou et al. reported an interesting cascade reaction, in

which it was possible to form model systems of skyrin (783), flavoskyrin (806, see

Fig. 12.5), rubroskyrin (785), cytoskyrin A (789a), and the purported structure of

rugulin (788).
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Scheme 12.3 Racemic synthesis of rugulosin model compounds 802a and 804b by Snider et al..
Reagents and conditions: a) t-BuOK, DMSO, 0�C to rt, 50 min for 798a; t-BuOK, THF, �78�C to

0�C, 50 min for 798b; b) BBr3, CH2Cl2, �78�C to rt, 3 h, 48% over two steps for 800a; BBr3,

CH2Cl2, �78�C to 0�C, 16 h, 40% over two steps for 800b; c) Pb(OAc)4, HOAc, rt, 20 min; then

75�C, 40 min, 74% for 801a, 53% for 801b; d) pyridine, 75�C; then 85–110�C, 70% for 802a;

pyridine, 80–110�C for 802b; e) K2CO3, MeOH, rt, 2 h, 88% over two steps for 803b; f) DMP, rt,

1 h; g) MeMgBr, THF, 0�C; h) DMP, CHCl3, rt, 2 h, 36% over three steps; i) m-CPBA
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The important anthraquinone-intermediate 810 has been synthesized in two

steps from the lactone 807, which has also been used by Snider et al. for their
synthesis. With LiHMDS and cyclohex-2-enone (808), the tricyclic 809was formed

(see Scheme 12.4 (553)). Oxidation with cerium ammonium nitrate gave the

anthraquinone 810.

In the so-called “cytoskyrin cascade”, the anthraquinone 810 was converted into

five different model systems (Scheme 12.5). Thus, with catalytic amounts of

camphorsulphonic acid, the flavoskyrin-model system 811 was formed in excellent

yield. Under the same conditions but with the addition of manganese dioxide, the

rugulin-model system 813 was obtained. Reaction with camphorsulphonic acid,

followed by reaction with manganese dioxide and triethylamine, gave the

cytoskyrin A-model system 814. By addition of manganese dioxide to 814, 813

was formed. The flavoskyrin-model system 811 could be converted into the skyrin-

model system 812 (with manganese dioxide) and the cytoskyrin A-model system

814 (with manganese dioxide and triethylamine). This product could also be

obtained from the skyrin-model system 812 (with five equivalents of triethylamine)

or the rubroskyrin-model system 815 (with triethylamine). The rubroskyrin-model

system was formed from 812 with only two equivalents of triethylamine.

Nicolaou et al. obtained crystal structures of the model systems 811, 812, and

815. The crystal structures of the skyrin- and flavoskyrin-model systems are shown

in Fig. 12.6.
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Scheme 12.4 First steps towards Nicolaou’s skyrin-model systems. Reagents and conditions:

a) LiHMDS, THF, �78�C; then 808, �78�C to rt, 4 h; b) CAN
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Scheme 12.5 Nicolaou’s racemic “cytoskyrin-cascade” for the synthesis of five model systems

by oxidation and Michael addition. Reagents and conditions: a) CSA (cat.), CH2Cl2, rt, 1 h, 94%;

b) MnO2, CH2Cl2, rt, 1 h, 83%; c) CSA (cat.), CH2Cl2, 1 h, rt; d) MnO2, CH2Cl2, rt, 88 h, 75% over

two steps; e) CSA (cat.) CH2Cl2, rt, 1 h; f) MnO2, NEt3, CH2Cl2, 45
�C, 36 h, 66% over two steps;

g) MnO2, CH2Cl2, 45
�C, 48 h, quant; h) MnO2, NEt3, CH2Cl2, rt to 45�C, 20 h, quant; i) NEt3

(5 eq.), CH2Cl2, 45
�C, 16 h, 95%; j) NEt3 (2 eq.), CH2Cl2, rt, 1 h, 65%; k) NEt3, CH2Cl2, 45

�C,
16 h, 95%; l) MnO2, CH2Cl2, rt, 20 h, 95%

Fig. 12.6 Crystal structures of the flavoskyrin-model system 811 (left) and the skyrin-model

system 812 (right), as synthesized by Nicolaou et al.
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12.3 Total Syntheses of Skyrins

The first total syntheses of two skyrins were presented by Nicolaou et al. in 2005

(554). For both, the same route was taken, which is shown in Scheme 12.6. The

starting material was the chiral diester 816, which was MOM-protected and then

regioselectively mono-hydrolyzed with porcine liver esterase. Oxidation of the

remaining alcohol 817 with pyridinium chlorochromate, following elimination

with diazabicyclo[5.4.0]undec-7-ene, gave the cyclohexenone 818 in good yield.

The phenol 819 was first TBS-protected, and then the amide 820 was obtained from

the acid chloride. With tert-butyllithium and DMF, the corresponding aldehyde was

formed, which was converted into the deprotected nitrile by treatment with

TMSCN.
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Scheme 12.6 Total syntheses of (+)-2,20-epi-cytoskyrin A (824) and (+)-rugulosin A (786a) by

Nicolaou et al. Reagents and conditions: a) MOMCl, DIPEA, CH2Cl2, rt, 1.5 h; b) PLE, buffer pH 8,

t-BuOH, rt, 4 h, 95% over two steps; c) PCC, NaOAc, CH2Cl2, rt, 12 h; (d) DBU, CH2Cl2, rt, 10 min,

68% over two steps; e) TBSCl, imidazole, DMF, rt, 16 h; f) (COCl)2, DMF (cat.), CH2Cl2, 0
�C, 2 h;

thenMe2NH•HCl, NEt3, CH2Cl2, 0
�C, 30 min, 85% over two steps for 820a; 74% over two steps for

820b; g) TMEDA, t-BuLi, DMF, THF, –78�C to rt; h) TMSCN, KCN (cat.), 18-Crown-6 (cat.),

CH2Cl2, rt, 4 h; then AcOH, 12 h; i) MOMCl, DIPEA, CH2Cl2, 0
�C, 1 h, 64% over 3 steps for 821a;

50% over three steps for 821b; j) LiHMDS, 818, THF,�78�C; then 821,�78�C to 0�C, 2 h; k)MnO2,

CH2Cl2, rt, 10 min; then MnO2, NEt3, rt to 45
�C, 12 h, 60% over two steps for 823a; 50% over two

steps for 823b; l) HCl, MeOH, THF, 60�C, 12 h, 93% for 824; 98% for 786a
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Reprotection with MOMCl gave lactone 821. This was converted with lithium

hexamethyldisilazane and the cyclohexenone 818 to the tricyclic species 822.

Oxidation with manganese dioxide, followed by dimerization, gave

bisanthraquinone 823. Global deprotection with hydrogen chloride yielded (+)-

2,20-epi-cytoskyrin A (824) and (+)-rugulosin A (786a). A crystal structure of the

latter is shown in Fig. 12.7.

A compound thought to be rugulin (788, see Fig. 12.4) was synthesized by

Nicolaou et al. in 2008. By comparing the NMR spectra of the synthesized

substance and the isolated rugulin, it was apparent that the reported structure of

rugulin was incorrect. However, the actual structure of rugulin has not been

elucidated to date. The synthesis of the reported structure for rugulin (Scheme 12.7.

(535, 555)) began with the same diester 816 used for the syntheses of (+)-2,20-epi-
cytoskyrin A (824) and (+)-rugulosin A (786a). Protection as a methyl ether and

selective hydrolysis with porcine liver esterase gave the alcohol 825 in 65% ee.
Oxidation and elimination afforded cyclohexenone 826, which was converted with

lactone 821b into the tricyclic 827. For the synthesis of 821b, see Scheme 12.6.

Oxidation and dimerization of 827 with manganese dioxide and triethylamine

yielded the bisanthraquinone 828. With an excess of manganese dioxide, 829 was

formed, and deprotection of the MOM-ether gave a compound with the reported

structure of rugulin (788).

The structure of the product was proved from its X-ray crystal structure, thereby

providing evidence that the structure of rugulin reported is incorrect (see Fig. 12.8).

Fig. 12.7 Crystal structure of rugulosin A (786a), as synthesized by Nicolaou et al.
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Scheme 12.7 Total synthesis of the reported structure of rugulin (788) by Nicolaou et al..
Reagents and conditions: a) MeOTf, DIPEA, CH2Cl2, rt, 24 h; b) PLE, phosphate buffer pH 8,

t-BuOH, rt, 35% over two steps, 65% ee; c) PCC, CH2Cl2, rt, 12 h; d) DBU, CH2Cl2, rt, 10 min,

90% over two steps; e) LiHMDS, 821b, THF, –78�C, 1 h; then 826, 52%; f) MnO2, CH2Cl2, rt, 1 h;

then NEt3, CH2Cl2, rt to 45
�C, 12 h, 40%; g) MnO2, CH2Cl2, rt, 18 h, 70%; h) TFA, CH2Cl2, 0

�C,
10–15 min, quant

Fig. 12.8 Crystal structure of the structure reported for rugulin (788), as synthesized by

Nicolaou et al.
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13 Xanthones

Xanthones are produced by a variety of multi- and unicellular fungi, with many of

these having specific toxic or therapeutic effects to other species, including humans.

Since 1985, the synthesis of xanthone natural products from fungi has resulted

in the total synthesis of some large and structurally complex compounds. Also,

new methods have been developed for the synthesis of the challenging tetra-

hydroxanthone core, which was hitherto almost unknown. The synthesis of xan-

thone natural products is also becoming of increasing interest to members of the

medicinal chemistry community, as the many different biological activities pos-

sessed by the xanthone core, and the many target biomolecules with which it

interacts, are beginning to become unveiled. Hence, some xanthones have been

termed “privileged structures” (556) (Fig. 13.1).

The xanthone family as found in fungi has four sub-classes, and fully

aromatized, dihydroxanthones, tetrahydroxanthones, and hexahydroxanthones all

occur in Nature, and can be found also in combination with other xanthone

components as either homodimers or heterodimers. The numbering of the xanthone

nucleus is in accordance with IUPAC recommendations.
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Xanthone biosynthesis occurs by distinct pathways in fungi, with the xanthone

unit being completely derived from polyketide species (835, Scheme 13.1). Even at

the time of a major review by Roberts it was suggested that the xanthone nucleus

may be of “polyacetic acid” origin (557). Earlier, in 1953, Birch and Donovan
had suggested this pathway, which utilizes the head-to-tail linkage of acetate units,

to explain the generation of structures associated with many phenolic natural

products (558). A polyacetate unit, 835 (Scheme 13.1) is cyclized to form an

anthraquinone, 836, followed by oxidative cleavage. The following biosynthesis

pathways are dependent on the producing organism: xanthones (e.g. 838) may form

via cyclization directly from a benzophenone intermediate (837 to 838, pathway

(1)). Alternatively, it has been proposed that in some cases the fully aromatic

species may result by elimination from, or allylic re-arrangement of,

polyhydrogenated intermediate xanthones (837 to 839 to 838, pathway (2)) (559).
While the number of methodologies for the synthesis of hydro-xanthones is

much lower, an effective and general one-step methodology for the synthesis of
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the partially reduced xanthone core has been developed in the form of a domino

oxa-Michael aldol condensation reaction of salicylaldehyde derivatives and

cyclohexenones (556, 560–566).

13.1 Xanthones

13.1.1 Bikaverin

In 1957, Nakamura and co-workers isolated bikaverin (841, Fig. 13.2), a deep red

colored compound, from Gibberella fujikori (567). Bikaverin was later re-isolated

from the same source (568, 569) and the structure determined (569, 570) and

confirmed by a single crystal X-ray diffraction study (571). The compound has

also been isolated from Fusarium oxysporum (570, 572), Fusarium f. sp.
bycoppersici, andMycogone jaapai (573) and is known to have a vacuolation effect
in fungi (570), a specific antiprotozoal activity against Leishmania brasiliensis
(568), and to be cytotoxic to various tumor cell types (574, 575).

Other full (575–579) and partial (580, 581) syntheses of bikaverin (841) have

been reported. Vining and co-workers have investigated the biosynthesis of this

compound, finding it to be formed from a single polyketide species (582).

13.1.2 Pinselin and Pinselic Acid

Pinselin (843) and pinselic acid (844) (Fig. 13.3) were first isolated from cultured

Penicillium amarum and were originally identified by chemical degradation

processes (583). In a rarely occurring event, pinselin (843) was also isolated

from the plant Cassia occidentalis (584), although it was misidentified initially as

1,7-dihydroxy-5-methoxycarbonyl-3-methylxanthone and later corrected as being

identical with pinselin (843) (585). 4-Bromopinselin (845) and 4-chloropinselin

(846) have been isolated from Monilinia fructicola by Kachi and co-workers in

1986 (586), and the latter compound was also isolated together with some ring-

expanded lactones by Suzuki and co-workers in 1989 (587).
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Fig. 13.2 Bikaverin (841) and norbikaverin (842)
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In 1985 Whalley and co-workers reported the synthesis of pinselin (843) by a

Lewis acid-mediated furan-ring opening/pyranone-ring closing of bromide 848,

followed by oxidation of this alcohol, a-bromination, and aromatization with base

to give pinselin (843) (588, 589) (Scheme 13.2)

13.1.3 Sterigmatocystin and Derivatives

The optically active fungal metabolite sterigmatocystin (15) (Fig. 13.4, see also

Sect. 13.2) was first isolated (but not structurally defined) from Aspergillus
versicolor by Abou-Zeid in 1953 (590), and has been purified subsequently a

number of times from this species (591–594) as well as the related A. parasiticus
(595) and A. multicolor (596), and both Emericella venezuelensis (597) and

Emericella astellata (598) (both of which also produced aflatoxins).
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Fig. 13.3 Pinselin (843), pinselic acid (844), 4-chloropinselin (845), and 4-bromopinselin (846)
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13.1.3.1 Isolation and Structural Determination

The structure of sterigmatocystin was originally determined (557) using a combi-

nation of spectroscopic techniques and chemical degradation (599–600). Bullock
and co-workers reported in 1962 the characterization of isosterigmatocystin (852),

formed by reaction of sterigmatocystin (15) with base, and the reassignment of the

previously reported structure 851 (Fig. 13.4) to the correct structure 15 (601), which
represented the first known natural dihydrofurobenzofuran ring system. Such a

structural motif was later also found in the aflatoxins and other carcinogenic

products from microorganisms. The same group reported in 1963 the isolation of

6-methoxysterigmatocystin (855) (Fig. 13.4) after isolating it and a related
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anthraquinone (but not sterigmatocystin) from a mutant variety of Aspergillus
versicolor (602). Holker and Kagal reported in 1968 the isolation of

5-methoxysterigmatocystin (854) from a mutant strain of Aspergillus versicolor,
produced by irradiation of wild strain spores (603). Small amounts of 5,6-dimethox-

ysterigmatocystin (857) were reported alongside sterigmatocystin (15) by Hatsuda
and co-workers from A. multicolor (596). In 1977, Hamasaki and co-workers

reported the structure of 5,6-dimethoxysterigmatocystin (857), which they isolated

from Aspergillus multicolor Sappa, having also isolated sterigmatocystin and

averufin (103) from the same extract. The structure of 856 was determined based

on chemical degradation, NMR studies and finally confirmed with single-crystal

X-ray studies of the monoacetate (604).
In 2007, Lin and co-workers reported the structure of dihydrosterigmatocystin

(16) and secosterigmatocystin (858) (Fig. 13.4), which they isolated from the South

Chinese Sea mangrove fungus ZSUH-36 (605). These compounds were isolated

alongside two anthraquinones and the two known xanthones, sterigmatocystin (15)

and 5-methoxysterigmatocystin (854), to which they are related (see Fig. 13.4).

Their structures were determined from NMR data and LC-MS experiments (605).
Also in 2007, Lin and co-workers reported the structure of the three xanthones

sterigmatocystin (15), dihydrosterigmatocystin (16), and secosterigmatocystin

(858) (Fig. 13.5), which they isolated from the endophytic mangrove fungus

Kandelia candel (606). These structures were determined also using NMR spectro-

scopic data interpretation and by LC-MS. Biological testing showed the weak

cytotoxic activity of sterigmatocystin (15) against two tumor cell lines with IC50

values in the mid-micromolar range (606).

13.1.3.2 Biosynthesis

Sterigmatocystin (15) is both a carcinogenic hepatotoxin and a biosynthetic precursor

to the important mycotoxin, aflatoxin, and, as such, its biosynthesis pathway has been

studied quite extensively (607–608). This is purported to begin with a single C20

polyketide unit, which is folded in only one mode to form averufin (103) and then

sterigmatocystin (15) (609). The authors provided evidence to support the identity of
this compound through the synthesis of a common product from both it and from a

O O
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Fig. 13.5 New xanthones from the mangrove fungus Kandelia candel
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derivative of dihydrosterigmatocystin (16) (Fig. 13.5). Burkhardt and Forgacs
described O-methylsterigmatocystin (96) (Fig. 13.5) from an isolate of a highly

toxic aflatoxin-containing strain of Aspergillus flavus (cycad strain II) and its structure
confirmation by synthesis from 15 (610). In 1984, Maes and Steyn reported

3,8-dihydroxy-4-(2,3-dihydroxy-1-hydroxymethylpropyl)-1-methoxyxanthone (856)

(Fig. 13.4), an open-chain isomer of the difuran component of the sterigmatocystins,

after isolation from Bipolaris sorokiniana. This species also contained sufficient

amounts of anthraquinones (averufin (103), versicolorin C (861), versiconol (862),

versiconol acetate (863), and sterigmatocystin (15) for isolation (608).
The isolation of all these compounds alongside each other provides some evidence

to support the proposed acetate/polymalonate pathway to polyhydroxylated anthra-

quinones by cyclization/condensation to xanthones by oxidative cleavage and to

coumarins (i.e. aflatoxins) through rearrangement: such a sequence had already

been suggested for the ergochromes (see Sect. 13.3.3) (611) and ravenelin (840b)

(Scheme 13.1) (612, 613). In 2002, Gloer and co-workers reported the isolation of

7-deoxysterigmatocystin (853) (Fig. 13.4) together with two non-xanthone products

from Humicola fuscoatra, a mycoparasitic fungus that invades other fungi (614)
(Scheme 13.3 and Fig. 13.6).
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The final steps of conversion to aflatoxin seem to be catalyzed by a single

cytochrome-P450 oxidative cleavage of the aromatic ring with an epoxide inter-

mediate, O-demethylation, dehydration, decarboxylation, and rearrangement to

give aflatoxin B1 (1) (607), and the pathway also involves an intermediate

reductive step. Following previous studies on the 13C NMR spectrum of sterigma-

tocystin (15) (615, 617), Nakashima and Vederas reported in 1982 the use of the

spin-echo resolution technique in the 13C NMR analysis of 15 isolated from

Aspergillus versicolor grown in the presence of 13C-labeled sodium acetate

(616). In a previous study, 13C incorporation suggested that the intermediate

(benzophenone) between versicolorin A (13) (anthraquinone) and sterigma-

tocystin (15) (xanthone) is unsymmetrical, as the resulting pattern of 13C

incorporation is unscrambled (617). Of two possible modes of oxa-Michael
addition to form the xanthone ring of sterigmatocystin (15), via path A or B

(Scheme 13.4), the authors determined that the cyclization occurs only from path

A, i.e. nucleophilic attack of the hydroxy group of a benzophenone intermediate

derived from oxidative ring-cleavage of versicolorin A (13) (618). This study by

Zamir and Hufford on the intermediates in aflatoxin biosynthesis was carried out

using kinetic pulse-labeling, beginning with radioactive acetate. The various

intermediates could be radiotraced (with TLC analysis) so as to follow their

order of appearance in the A. versicolor cultures. As expected, averufin (103)

and norsolonic acid (156) appeared first, followed by versicolorin A (13),

aflatoxins, and sterigmatocystin (15), a finding that led the authors to speculate

that perhaps 15 is the result of a branched biosynthesis pathway, rather than

necessarily being an aflatoxin precursor.
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13.1.3.3 Bioactivity

Sterigmatocystin (15) has been found to be an inhibitor of the growth of

transplanted P-388 and L-1210 leukemias in mice (619). Interestingly, 15 has

also been isolated from an Aspergillus fumigatus strain, which was isolated from

surgically removed human lung samples (620) and can be collected from the air

in various environments when high in organic matter-derived dust, such as

composting plants (621), and from Aspergillus versicolor samples collected from

household carpet dust (622), highlighting the significant nature of this environmen-

tal toxin to humans.

13.1.3.4 Synthesis

Horne and Rodrigo reported in 1990 the synthesis of dihydro-O-methylsterigma-

tocystin (868) (623) utilizing an iodide intermediate, 865, which they had devel-

oped for an earlier synthesis of aflatoxin B2 (2) (39), as part of an investigation for

a general method leading to the synthesis of substituted xanthones. The key

conversions are an esterification, anionic Fries rearrangement, and base-mediated

cyclization of a phenol upon an aryl fluoride to deliver the xanthone core of 868

(623) (Scheme 13.5).

Having found that standard methods of xanthone synthesis were not applicable

to the synthesis of sterigmatocystin species of their interest, Casillas and Townsend
synthesized O-methylsterigmatocystin (96) in 18 steps utilizing new methodology.
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The synthesis involved a modified Houben-Hoesch reaction as the key step with

N-alkylnitrilium salt, in conjunction with the effective, if unusual, protection of a

carbonyl group as an alkene (i.e. via addition of n-butyllithium and elimination of

H2O) (62) (Scheme 13.6). The facile removal of the butenyl group was then

effected with m-chloroperbenzoic acid.
In a subsequent paper, the Townsend group utilized a very similar synthesis

sequence with a (protected) 3-hydroxyarene variant of nitrile 869 in order to access

the related 11-hydroxy-O-methylsterigmatocystin (a putative biosynthesis interme-

diate, not shown) (607) (Scheme 13.6). Further to the interest of these authors in the
biosynthesis of these significant environmental carcinogens (624), this compound

was used as an enzyme substrate to support a proposed biosynthesis sequence

leading to aflatoxin B1 (1). In this sequence, cytochrome P450 catalyzes a series of

oxidative transformations from anthraquinone to xanthone to coumarin, and the

xanthone intermediates are demonstrated to involve first O-methylsterigmatocystin

and then 11-hydroxy-O-methylsterigmatocystin, both of which were converted by

the OrdA cytochrome P450 of Aspergillus parasiticus (607).
In a later report, Henry and Townsend investigated the order of the reductive

and oxidative steps of the synthesis of demethylsterigmatocystin (881/882), a

key intermediate in the aflatoxin biosynthesis pathway. Towards this end, they

synthesized sterigmatocystin analogues 881 to 884 (Fig. 13.7). It was found that the

“bent” isomers (with the oxygen ortho- to the carbon framework of the difurano-

ring) isomerized spontaneously to the more stable “linear” species over a period of

2 weeks under acidic conditions (catalyzed by silica gel), thus providing another

example of the facile nature of the oxa-Michael and retro-oxa-Michael reactions.
It was found that an unusual sequence of oxidation-reduction-oxidation was

involved in the biosynthetic conversion of versicolorin A (13) to demethylsterig-

matocystin (881/882).
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Esserry and co-workers developed some derivatives of 5-methoxysterig-

matocystin for the purpose of testing them as antitumor agents (625). They found

that the double bond of the furan system is necessary for the mediation of such

activity by the parent compound.

13.1.4 Nidulalin A

The dihydroxanthone nidulalin A (885) (Fig. 13.8) was reported by Kawai and
co-workers in 1994 from an isolate of Emericella nidulans (626). In 1997, Tsuji and
co-workers reported the re-isolation of nidulalin A and the related derivatives

F390B (886) and F390C (887) from a Penicillium sp. (627). These compounds

were shown to have potent antitumor (colon 26 murine adenocarcinoma) activities

as a result of their effects on DNA topoisomerase II (628). This enzyme is

responsible for regulating DNA topology, with this effect regulating the key aspects

of replication, translation, and transcription.

In 1998, Fujimoto and co-workers reported the isolation of a novel nidulalin

derivative, the 1,9a-dihydro derivative of nidulalin A (888) (Fig. 13.8), along with

the known compounds, emodin (791), and 1,7-dihydroxy-3-methylxanthone, from

the ascomycete Anixiella micropertusa (629). These authors also reported the

isolation of this same compound in 2006, denoting it as GS-4 (888) (Fig. 13.8),
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along with nidulalin A (885), from the ascomycete Gelasinospora santi-florii, in
addition to a related novel compound from Emericella quadrilineata, (4S,4aR,9aR)-
4a-carbomethoxy-1,4,4a,9a-tetrahydro-4,8-dihydro-6-methylxanthone (889),

which they designated as EQ-7 (630). The configuration of EQ-7 was determined

at the cyclohexyl alcohol moiety, based on the modifiedMoshermethod, using (R)-
and (S)-(trifluoromethyl)phenylacetate ester derivatives, with the configuration

inferred for GS-4.

In 1999, Tsuji and co-workers investigated the synthesis of esterase-stable

amide analogues of the methyl ester of nidulalin A (885), starting from the

natural product itself. These compounds were stable to hydrolysis in the pres-

ence of endogenous murine plasma esterases, and showed variable toxicity as

well as increases or decreases in activity against Topo I and II as compared to

885 (628).
In 2009, Hosokawa and co-workers reported the synthesis of nidulalin A (885)

(and ent-nidulalin A, not shown) from the benzophenone 890 (Scheme 13.7), which

was cyclized under oxidative conditions to xanthone 891 (631). This was followed
by a sequence of three reductions that delivered cyclohexanol 894, which was

then converted to racemic nidulalin A (885) in two steps. Conversion to camphanic

ester diastereomers, and separation and hydrolysis, gave nidulalin A (885) and its

unnatural enantiomer. This synthesis confirmed the absolute stereochemistry previ-

ously determined using spectroscopic methods.
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13.2 Tetrahydroxanthones

Tetrahydroxanthones from fungi include the blennolides (895-901), dihydroglobo-

suxanthone (931) (632), diversonol (932) and the diversonolic esters (972, 973)

(Fig. 13.15). Tetrahydroxanthones are the monomeric components of interesting

mycotoxins such as the beticolins (1063-1070) and the secalonic acids (1034-1046)

(see Sect. 13.5.3).

13.2.1 Blennolides

In 2008, the long-anticipated but never-before-detected monomeric components of

the secalonic acids (blennolides and hemisecalonic acids 895 to 900, Fig. 13.9)

were isolated from an endophytic Blennoria sp., in addition to secalonic acid B

(1037) (vide infra) (Fig. 13.9) and several other biosynthetically related isolates,

named blennolides A-G (895-901) (633). The structure of blennolide A (895), the

monomeric unit of secalonic acid B (1037), was confirmed using single-crystal

X-ray analysis; blennolide B (896) is the monomeric unit of secalonic acid

D (1035). The configurations of all these compounds were ascertained using CD

spectra to determine the absolute stereochemistry of the 10a position as (R), and
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then the other stereogenic centers on the basis of relative stereochemistry (except

for blennolide D (898), which is (10aS)-configured).
Dihydrobenzopyranones 900 to 901 seem to be derived from 895 and 896

by rearrangement of the tetrahydroxanthone ring to a g-lactone in a manner similar

to that reported for the heterodimer xanthoquinodin A3 (1058) (Fig. 13.28), In

the case of 898, an inversion of the C-10a stereocenter appeared to have taken

place during this process. Dimer 901 is comprised of blennolide A (895) and

11-deoxyblennolide F (900) monomers, and is, like ergoxanthin (1048), a member

of the ergochrome family rearranged to incorporate a g-lactone unit. Interestingly,
earlier a compound had already been assigned the structure now ascribed to

blennolide C (897) (see entry for b-diversonolic ester (973)) (634) (Figs. 13.15
and 13.10).

In 2008, Nicolaou and Li reported the synthesis of blennolide C (897), in

addition to the racemic synthesis of diversonol (932) and the diversonolic esters
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(972, 973) (Fig. 13.15), through a commonly applicable methodology (635). The
synthesis sequence (Scheme 13.8) involved manipulation of a silyl-protected 4-

hydroxycyclohex-2-enone (902) through several steps to the 2-bromo-3-

carboxymethyl ester 905, then reaction of this species with the aldehyde 906 to

form the intermediate benzophenone 907. This product was first desilylated, then

de-allylated, with a second deprotection followed by an in situ cyclization of the

phenolic intermediate, to give blennolide C (897) and the diastereomer 908 in an

approximately 2:1 diastereomeric ratio, after 11 steps from cyclohexenone 258

(635).
Also in 2008, Gérard and Bräse reported the synthesis of blennolide C (897) and

some analogues (636), confirming the suggestion made by Krohn that this com-

pound has the structure formerly assigned to b-diversonolic ester (973) (Fig. 13.15).
In common with the group synthesis of diversonol (Scheme 13.13), the ABC-ring

tricyclic xanthone was constructed in a single step via an efficient domino oxa-

Michael-aldol reaction (556�566, 637) from the substituted salicylic aldehyde 909

(Scheme 13.9) and 4-hydroxycyclohex-2-enone (910), of which the latter can be

accessed enantioselectively and constructed efficiently using a synthesis developed

earlier (638). Use of the weak base imidazole was made to deliver the tricycle in

61% yield as a 1.5:1 ratio of diastereomers. Hydroxy group protection and

bromohydration gave the bromide 912, and elimination of HBr from this enabled

the completion of the tetrahydroxanthone core.

Fig. 13.10 X-ray structure of blennolide A (895)
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Michael addition to this enone was performed using the Gabbut method (639),
wherein lithiated trimethylorthomethanetrithioate was added trans to the OMEM

group. The additional steps included debromination, conversion to the methyl ester,

and demethylation to provide blennolide C (897) in nine steps in total from

4-hydroxycyclohex-2-enone (910). The authors pointed out that this monomeric

unit is found in the dimeric compounds neosartorin (1078), xanthonol (1086), the

xanthoquinodins (1058-1062) (Fig. 13.28), and the beticolins (1063 - 1070) (636).
In their investigations of the blennolides, König and co-workers described a

pathway divergence in the formation of xanthones (Scheme 13.10), which can even

occur via both pathways at once within the same fungus, and is a result of the

asymmetric nature of cleavage of the anthraquinone precursor (559) to yield

benzophenone intermediates 918 or 919. As a result in this case, the methyl

group can end up on the reduced ring, or the non-reduced ring, allowing the fungus

to create a more diverse array of biochemical agents. Interestingly, Krohn and co-

workers have observed that both pathways can operate within a single xanthone-

producing organism, for example to give rise to blennolides A and C (897 and 895,

Scheme 13.10 (640)) (559). The resulting xanthone structures are isomeric, with

one methylated on the aryl position and the other methylated on the

tetrahydroxanthone ring. In the former case, (hetero)-dimers can be made through
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oxidative coupling at the benzylic position (beticolins (1063–1070),

xanthoquinodins (1058–1062) (Fig. 13.28), see Sect. 13.3.3).

Recently, Porco and co-workers described a novel retro-biomimetic synthesis

strategy to access the tetrahydroxanthone core, utilizing the vinylogous addition

of siloxyfurans to benzopyryliums, reduction of the lactenone products, and intramo-

lecular Dieckmann cyclization as the key steps (641). They utilized this strategy to

synthesize diastereoselectively racemic blennolides B (896) and C (897)

(Schemes 13.11 and 13.12).An expedient synthesis of blennolideB (896)was achieved

by first conversion of chromene 920 to the benzopyrylium salt intermediate, which was

then reacted with 4-methyl-2-trimethylsiloxy furan (922) (Scheme 13.11), prior to

deprotection. Variation in temperature in the addition step gave different diastereos-

electivities, likely due to epimerization of the initial product at higher temperatures.

Lactenone 923 was reduced with rhodium on aluminum oxide in methanol to give

lactone 925, and Dieckmann condensation then provided blennolide B (896).

In the synthesis of blennolide C (897) (Scheme 13.12), the sequence commenced

from methyl-substituted chromenone 926 with 2-trimethylsiloxyfuran (930),

followed by deprotection to the chromones 928 and 929. It was found that the

contrast in selectivities at different temperatures was even greater than determined

previously. The lactenone was reduced with nickel chloride hexahydrate and

sodium borohydride to lactone 930, with Dieckmann condensation following

again, in order to deliver blennolide C (897).
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Scheme 13.11 Porco’s synthesis of blennolide B (896). Reagents and conditions: a) i-Pr2Si
(OTf)2, 2,6-lutidine, CH2Cl2, rt, 0.5 h; b) 922, �78�C, 1 h; c) 0�C, 3 h; d) Et3N·(HF)3;

e) Rh/Al2O3 (10mol%), MeOH, rt, 12 h, 37% from 923; f) NaH, THF, 60�C, 76%
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13.2.2 Dihydroglobosuxanthone

Krohn and co-workers reported in 2009 the isolation of 3,4-dihydroglobosuxanthone
A (931) as a result of their reinvestigation of aMicrodiplodia sp. (559). As with the
diversonolic esters (A and B, 972, 973) (Fig. 13.15) this compound has the methyl

ester located at the C-1 position, rather than the usual C-4a position, as found for

remaining monomeric and dimeric members of the tetrahydroxanthone family.

This compound was demonstrated to have potent antibacterial activity against

Escherichia coli, Bacillus megaterium, and Chlorella fusca (Fig. 13.11).
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13.2.3 Diversonol

In 1978, Turner reported the isolation of several fungal metabolites, including a

compound from the phenolic fraction of cultured Penicillium diversum that was

named subsequently diversonol (932) (642). It was not made clear in the initial

publication if diversonol (932) was obtained as a racemate or, if this was not the

case, the absolute configuration. Mention was made in this initial publication to

X-ray crystallographic data that were to be reported later, but it evidently such work

did not come to completion (Fig. 13.12).

Diversonol (932) was selected as a target by the Bräse group in their ongoing

studies on the synthesis of the secalonic acids (1034-1046) and related natural

products (556, 560–566), and the successful synthesis of the racemate was reported

in 2006 (643). The synthesis started with the synthetic intermediate 270

(Scheme 13.13), common with the group’s synthesis of blennolide C (897)

(see Scheme 13.9). Enone substrate 270 was doubly activated for diastereoselective
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Fig. 13.12 Diversonol (932)

O

O

OH

O
OH

OH

O

O

O

OMEM

O

Br

O

O

OH

OMEM

O

Br

O

O

O

OMEM

O
OH

a)

d) e)

914 933

935

936

932
(diversonol)

b)

c)

O

O

OH

OMEM

O

934

Scheme 13.13 Bräse’s synthesis of diversonol (932). Reagents and conditions: a) MeLi, CuCN,

Et2O, �78�C, 5 h, 52%; b) t-BuLi, THF, �78�C, NaHCO3, 4 h, 93%; c) manganese monoperoxo-

phthalate, EtOH, rt, 5 h, 57%; d) BBr3, CH2Cl2, rt, 7 h, 40%; e) NaBH4, MeOH,�78�C, 0.3 h, 66%
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Michael-addition of methyl cyanocuprate to afford 290. Debromination and

diastereoselective oxidation with manganese monoperoxophthalate gave alcohol

292, which was deprotected and finally reduced to give the polyhydroxylated core,

and thus racemic diversonol (932), in ten steps starting from 4-hydroxycyclohexen-

2-one (266).

In 2008,Nicolaou and Li reported a synthesis of diversonol (932) (Scheme 13.14)

(635). The synthesis involved the nucleophilic addition of a lithiated cyclohexene

species derived from bromide 938 with the allyl-protected aldehyde 939, followed

by oxidation, desilylation, deallylation, and spontaneous xanthone-ring closure of

the intermediate phenol (not shown). As in the Bräse synthesis, the enol moiety is

oxidized and the C-ring ketone reduced with NaBH4 to generate diversonol (932),

which was obtained in eight steps from cyclohexenone 937.

In 2008, Tietze and co-workers reported on their stereoselective synthesis of

4-dehydroxydiversonol (951) utilizing pathways involving both Pd-catalyzed

domino-Wacker-Heck and domino-Wacker-carbonylation reactions (644). The

shortest and highest yielding sequence was as follows: dimethylation and ortho-
lithiation-directed formylation of orcinol (943) (Scheme 13.15), followed byWittig
olefination, Lombardo methylenation, and monomethyl cleavage with sodium

ethanethiolate, to give the domino-Wacker-Heck substrate 946. This was reacted

with methyl acrylate in the presence of Pd ditriflate and (S,S)-Bn-BOXAX ligand

O

O

OH

O
OH

OH

h)

O

OTBS

OH

OTBS

Br

a), b) c), d)+

AllylO

OAllyl

OHC

O O

OTBS

AllylO

OAllyl

e), f)

O

OOH OH

OH

941:942 (2:1 d.r.)

g)

937 938

939

940

936

932
(diversonol)
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90%; b) DiBAL-H, 95%; c) MeLi, t-BuLi; then aldehyde; d) IBX, DMSO, rt, 1 h, 72% (two steps);

e) HF·pyridine, THF, rt, 96%; f) n-Bu3SnH, Pd(PPh3)4, benzene, rt, 90%; g) magnesium

monoperoxophthalate, EtOH, rt; h) NaBH4, MeOH, CH2Cl2, �78�C, 0.3 h, 73%, two steps
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(952) alongside p-benzoquinone (as a catalyst reoxidant), giving chromane 947 in

55% yield and 88% ee. The same compound was synthesized by a complementary

three-step sequence involving an enantioselective domino Wacker-carbonylation
process, which gave chromane 947 in 96% ee (not shown). This species was

reduced and oxidized to a chromanone before intramolecular acylation with TiCl4
and Et3N (the use of strong bases led to poor conversions) to give the xanthone

tricycle 949. This compound was trans-selectively oxidized with DMDO, reduced
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Scheme 13.15 Tietze’s synthesis of 4-dehydroxydiversonol (951). Reagents and conditions:

a) Me2SO4, K2CO3, 24 h, 94%; b) n-BuLi, TMEDA; then DMF, 87%; c) Ph3PCHC(O)CH3,

98%; d) H2, Pd/C, 92%; e) Zn, CH2Br2, TiCl4, 84%; f) NaSEt, DMF, 92%; g) methyl acrylate,

Pd(OTFA)2, (S,S)-Bn-BOXAX (952), p-benzoquinone, 55%, 88% ee; h) H2, Pd/C, 98%; i) Mn

(OAc)3, t-BuOOH, rt, 3 d, 71%; j) TiCl4, Et3N, 63%; k) DMDO, 74%; l) NaBH4, 71%; m)

BBr3, 85%
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at the C-ring ketone, and demethylated to give (–)-(S)-4-dehydroxydiversonol
(951). Its relative configuration was confirmed by single-crystal X-ray crystallog-

raphy (644) (Fig. 13.13).

Volz, Bröhmer, and Bräse also reported a synthesis of 4-dehydroxydiversonol

(951) in the following year (645). The reaction sequence involved an enantio-

selective domino oxa-Michael–aldol reaction mediated by the organocatalyst 960

(Scheme 13.16), followed by a Wittig ring-opening reaction to ester 956, which was

reduced to give ester 958. This, when subjected to a similar sequence to the Tietze
synthesis, delivered 4-dehydroxydiversonol (951).

Bröhmer, Bourcet, Nieger, and Bräse reported an enantioselective synthesis of

diversonol (932) in 2011 (Scheme 13.17), and allowed for the synthetic confirmation

of the absolute configuration of diversonol (932) (646), which had previously been

inferred by Krohn and co-workers. This synthesis strategy was executed contempo-

rarily to that of Porco and co-workers (641), also using a “retrobiomimetic”

approach, whereby the putative products of further secondary metabolism of

xanthones, chromone lactones (e.g. blennolides D to F (898-900)) (Fig. 13.9) were

converted synthetically via Dieckmann cyclization to form the xanthone nucleus.

A domino reaction between salicylaldehyde 913 and 3-methylcrotonaldehyde (914)

catalyzed by Jørgensen’s catalyst gave enantioselective access to the tricyclic lactol

955 in 67% yield and 83% ee. Dehydration and 1,2-cis-dihydroxylation gave the two
diastereomeric diols 962 and 963, and the former (major) product of the tricyclic

lactol was used in the synthesis of ent-lachnone C (969). Conversion of the minor diol

Fig. 13.13 X-Ray structure of dehydroxydiversonol (951) (CCDC-686256)
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963 through the aldehyde tautomer (not shown) with a Wittig reaction gave the

a,b-unsaturated ester 964, which was hydrogenated and, after two consecutive

acid-catalyzed steps and one reductive step, converted to chromane lactone 942.

Oxidation to chromone 942 and Dieckmann cyclization gave the xanthone

framework.

The final steps involved demethylation with boron tribromide, then a sequence

of oxidation and reduction steps taken directly from the Nicolaou racemic synthesis

(635), delivering the unnatural isomer of diversonol (ent-932), with a superimpos-

able CD spectrum to that supplied by Krohn and coworkers of the natural product

(647). Hence, natural diversonol (932) is the enantiomer of the product ent-932
shown in Scheme 13.17, namely, that of (5S,5aS,8S,8aR) configuration. Also in this
study, the chromone lactones lachnone C (969) and epi-lachnone C (not shown)

were synthesized enantioselectively for the first time, utilizing common synthesis

intermediates (Fig. 13.14).
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13.2.4 Diversonolic Esters

In 1983 Holker, Simpson, and O’Brien reported the isolation of the diversonolic

esters (972, 973) (Fig. 13.15), which they obtained from Penicillium diversum,
along with lichexanthone (840a) and several other known compounds (634). The
authors performed a structural analysis for these new compounds based on methyl-

ation, proton-NMR analysis, chelate ferric effects, and other spectroscopic

techniques, which led to the assignment of the structures of these new compounds

as 970 and 971. These substances appear reminiscent of hemisecalonic acids

(ergochrome monomers), but the structures originally proposed were later found

to be incorrect (see below).

Twenty-five years later, the racemic syntheses of diversonolic esters (972, 973)

were reported by Nicolaou and Li, along with the synthesis of blennolide C (897)

and diversonol (932) (see entries above) (85). In a twist of good fortune, the use of

MOM-protecting groups as an alternative to allyl groups (see diversonol synthesis)
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and oxidative conditions resulted in the synthesis of compounds 972 and 973

through nucleophilic attack of the phenolic group on either the enone in an

oxa-Michael addition, or on the ketone, followed by loss and then readdition of

water. As a result of their synthesis of these two compounds, which had identical

spectroscopic characteristics to those originally reported for the diversonolic esters

(972, 973), the structures of 970 and 971were revised to 972 and 973 (see Fig. 13.15)

(635) (Scheme 13.18).

13.3 Hexahydroxanthones

Hexahydroxanthone derivatives have been identified in nature from various fungal

sources. These include the applanatins (978, 979), the isocochlioquinones (982,

983), and the monodictysins (984 - 986).

13.3.1 Applanatins

Wang, Dong, and Liu reported the structure of two new hexahydroxanthones,

applanatins A (978) and B (979), and one known hexahydroxanthone, ganoderma

aldehyde (980) (Fig. 13.16) after isolating these compounds together with

ganodermic acids A, B, D, and G, from Ganoderma applantum. This fungus has
long been used as a traditional medicine in China, Japan, and Korea. The structures

of 978 and 979 were determined spectroscopically, and the structure of ganoderma

aldehyde (980) was revised based on its NMR data (648).
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13.3.2 Isocochlioquinones

Isocochlioquinones, xanthone isomers of the cochlioquinone-type food crop-

associated mycotoxins (649), are of mixed biosynthetic origin, with the addition

of a farnesyl unit and methionine-derived methyl groups (650). Isocochlioquinones
A and C (981 and 982) (Fig. 13.17) were isolated from Bipolaris cynodontis cynA
(651) and the culture broth of Bipolaris bicolor EI-1 (652), and also from Bipolaris
oryzae (649). These compounds were also purified from Drechslera dematioidea, a
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fungus that is associated with the marine red alga Liagora viscida (650).
Isocochlioquinone A and its bis-acetyl derivative (981 and 983) (Fig. 13.17),

were both isolated from Drechslera dematioidea as a result of a study on fungi

associated with nest-building bees. In such an environment, the antifungal

properties exhibited by these compounds lead to a protective function for the bee

colony members (653). Both isocochlioquinones A and C inhibit the growth of

Plasmodium falciparum in vitro (IC50 values <5 mg/cm3). Cochlioquinones have

antiangiogenic and chemokine-receptor (CCR5) antagonist properties, and

isocochlioquinone A and bis-acetyl isocochlioquinone A (981 and 983) were

found to be cytotoxic against HeLa and KB cells in the low micromolar and mid-

micromolar ranges.

13.3.3 Monodictysins

The hexahydroxanthone-derived monodictysins A–C (984 to 986) (Fig. 13.18)

were isolated together with monodictyxanthone (987) from Monodictys putrenidis,
a fungus occurring in the inner tissue of green algae, and reported in 2007 by König
and co-workers (640). Monodictysin B (985) was also reported as a constituent of

the fungus Leptosphaeria sp. in 2010 (654). Unlike the majority of dimeric

xanthones (for example the secalonic acids (1034–1046) and their monomeric

units, the blennolides), which have carboxymethyl substituents at C-10a, the

monodictysins have a methyl substituent at the C-5a position. Additionally,

monodictysin A instead has a methyl group at C-3 rather than C-6, as found in

monodictysin B and C, indicating an alternative oxidative cleavage in their biosyn-

thesis. The relative configuration of monodictysin A was determined by X-ray

crystal structure analysis, with those of monodicysins B and C determined using

NOE experiments. A comparison of the CD spectra of these compounds was made

with TDDFT calculations (Fig. 13.19).
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In terms of bioactivity, monodictysin B was shown to inhibit cytochrome P450
1A with an IC50 value of 3.0 mM. Both monodicysins B and C were shown to effect

the induction of NAD(P)H:quinone reductase (QR) in Hepa cells. The modulation

of Phase II detoxifying enzymes such as QR is important for both the metabolism

and excretion of carcinogens, and this target enzyme is employed frequently in the

study of potential cancer chemopreventive agents (637) (640).

13.4 Xanthone Dimers and Heterodimers

Xanthone dimers and heterodimers possess increasingly complex and interesting

structures, and in many cases have shown specific and selective biological

properties. They include acremoxanthones A–C (347, 989), vinaxanthone (991),

and xanthofulvin (1004).

13.4.1 Acremoxanthones

Acremoxanthones A and B (988 and 989, Fig. 13.20 (655, 656)) were reported by

the Isaka group in 2009 after being isolated from an air-borne fungus, together with

some biosynthetically related products (655). The authors suggested that these

compounds are formed by coupling of xanthone (elminthosporine) and anthraqui-

none (pinselin) units, resulting in a xanthoquinodin species of the type represented

by the beticolins (1063-1070) and the xanthoquinodins (1058-1062). Mass spectro-

metric and 13C NMR data of acremoxanthone A indicated a non-symmetrical

structure with the molecular formula, C33H24O11. Further analysis using

2D-NMR experiments (COSY, HMBC, NOESY) data indicated that C-110 and
H-10 have a syn-facial relationship. The relative configurations of 988 and 989

were also determined using these NOESY data; OH-9a and H-10 occupy

pseudoaxial positions.

Fig. 13.19 X-ray structure of monodictysin A (984)
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It has been found that both acremoxanthones A and B show antibacterial activity

(against Staphylococcus aureus and Bacillus cereus), antifungal activity

(acremoxanthone A showed activity against Candida albicans), and antiplasmodial

activity (acremoxanthone B showed activity against Plasmodium falciparum), as
well as activity against three cancer lines (KB, BC, and NCI-H187 cells) and the

Vero cell line, with IC50 values from 0.87 to 14 mg/cm3) (655). In 2011, a third

member of this series, acremoxanthone C (990), was isolated and characterized

structurally (656). Synthesis studies have been provided by the Porco group (657).

13.4.2 Vinaxanthones

Vinaxanthone (991) (Fig. 13.21) was isolated by Yokose and Seto in 1991 from the

soil microbe, Penicillium vinaceum, and shown to be a novel phospholipase C

(PLC) inhibitor, with an IC50 value in the low micromolar range (658). PLC is an

enzyme that hydrolyzes phosphatidylinositol biphosphate (PIP) in the cellular

membrane, and is involved in the signal transduction cascade and pathways affect-

ing cell proliferation. Encountering difficulty in the structure elucidation process

due to both the low solubility and highly substituted nature of 991, the authors used

a series of NMR techniques including 2D-INADEQUATE and selective

1D-INADEQUATE experiments to solve the structure.

Vinaxanthone (991) was isolated subsequently from Penicillium glabrum
in 1994 by Wrigley and co-workers, in association with three new xanthones
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(992-994) (Fig. 13.21), and identified as an effective CD4-binder. The protein CD4

is involved in the immune response system and is known as a cellular receptor for

HIV (659). These compounds were identified based on their mass spectrometric

data and the results of multiple 2D-NMR experiments (using ROESY as an

alternative to NOESY). The authors propose that these polyketide-derived products
result from dimerization of a C14-polyketide related to polivione, also a metabolite

of P. galabrum. In 2003, vinaxanthone was again isolated by Kumagai and

co-workers, and shown to have semaphorin inhibitory activity (660). Semaphorins

are a group of endogenous molecules that inhibit axonal growth of specific cells in

the nervous system. Inhibitors of the binding of Sema3A to its receptor may be of
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interest for the purpose of studying neuronal growth and regeneration, for example

in the damaged nervous system (661).
In 2008, Řezanaka and co-workers reported the isolation and characterization

(including determination of absolute configuration) of (R)-20-methoxyvinaxanthone

(995, Fig. 13.21), isolated from Penicillium vinaceum (662). Computational

chiroptical methods were used to define this compound conformationally as the

(R)- or (M)-atropisomer, due to negligible free rotation at room temperature around

the biaryl bond linking the xanthone and chromone components (the calculated free

energy required is 103.5 kJ/mol). This compound showed no antibacterial nor

antifungal activity in standard assays, but was active in both sea urchin and

crown gall tumor (potato disk) tests (662).
The total synthesis of vinaxanthone (991) (Scheme 13.19) was conducted in

2007 by Tatsuta and co-workers, starting from vanillin (996) (661). A sequence of

13 steps yielded the natural product, including a key intermolecular Diels-Alder
(IMDA) reaction to link the xanthone and chromone components, constructing the

xanthone C-ring in the process. Interestingly, this IMDA was assisted greatly in
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terms of selectivity by the addition of Dt-BMP (1003), since without this reagent

the product distribution favored the elimination and aromatization of the products.

The authors suggested that this species acts as an electron-acceptor by way of the

corresponding quinone, while the addition of standard oxidants had no such effect.

13.4.3 Xanthofulvin

Xanthofulvin (1004) was first isolated by Masubuchi and co-workers from a

Eupenicillium strain and found to be a chitin synthase II inhibitor (IC50 ¼ 2.2 mM).

Kimura and co-workers reported the isolation of SM-216289 or xanthofulvin (1004,

Fig. 13.22) in addition to the known tautomer, vinaxanthone (991, (Fig. 13.21),

from cultures of Penicillium sp. SPF-3059 (660). The authors demonstrated that

xanthofulvin (1004) (Fig. 13.22) is also a semaphorin inhibitor (see vinaxanthone,

above); Sema3A was inhibited at a low concentration level (IC50 ¼ 0.16 mM).

13.5 Tetrahydroxanthone Dimers and Heterodimers

Arguably the most structurally and biologically interesting (as well as synthetically

challenging) xanthones from fungi are in the expanding group of tetrahydroxanthone

dimers and heterodimers. Those known include ascherxanthone (1032), the beticolins

(1063-1070), the dicerandrols (1071-1073), the ergochromes (including the secalonic

acids (1034-1046), the ergochrysins (1039, 1042), and the ergoxanthines (1048)), the

microsphaerins (1074-1077), neosartorin (1078), the parnafungins (1005-1010)

(Sect. 13.5.1), the phomoxanthones (1080, 1081), the rugulotrosins (1082, 1083),

Sch 42137 (1084), Sch 54445 (1085), xanthonol (1086), and the xanthoquinodins

(1058-1062).
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13.5.1 Parnafungins

The parnafungins (1005-1010, Fig. 13.23) were isolated by a team from Merck as

an equilibrating mixture of four interconverting species (A1-2 and B1-2) from the

lichenicolous fungus, Fusarium larvarum, after the crude fermentation extract was

determined as being positive in a Candida albicans fitness assay (663). The latter

organism (an ascomycetous yeast) is a human pathogen, and the fitness test uses a

whole cell assay with 5,000 modified C. albicans strains, of which each is hetero-

zygous for a specific gene from the genome, allowing the responsible biochemical

target to be identified when a new antifungal compound is applied (664). Such
chemical-genetic profiling was thus developed as a strategy for natural products

drug discovery and, in particular, to investigate previously unexploited biochemical

pathways in pathogenic fungi (664, 665).

The interconversion between the four parnafungin forms (para- and ortho-
oxygen connection giving parnafungins A and B), and syn (A1 (1005) and B1

(1007), major diastereomers) and anti (A2 (10050) and B2 (1008), minor

diastereomers), is due to a retro-oxa-Michael-addition, a process that is seen

frequently among tetrahydroxanthones. This interconversion was blocked by meth-

ylation of the C-15 alcohol, which allowed the structure of a derivative of

parnafungin A1 (1005) to be established by X-ray crystallography (Fig. 13.24).
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The methyl carboxylate at the AB ring junction is always in an axial orientation,
while the major parnafungin diastereomers A1 (1005) and B1 (1007) have the C-15
hydroxy group in an equatorial orientation. Shortly after the initial report,

parnafungins C (1009) and D (1010) were also isolated by the same team from a

species taxonomically closely related to F. larvarum (666) and also produced small

amounts of a parnafungin A and B mixture (667, 666). The authors propose that

parnafungins C (1009) and D (1010) are derived from methylation (and oxidation

for D) of parnafungin A (1005), rather than B (1007), supporting the hypothesis that

parnafungin A (1005) is the compound biosynthesized initially by the fungal

species of origin (667).
Parnafungins are structurally unique in that they contain an unprecedented

isoxazolidinone ring, which is required for a broad spectrum of antifungal activity.

These compounds have no observable activity against Gram-positive or -negative
bacteria, however. Parnafungins are suggested to inhibit mRNA processing, with

the target enzyme determined as polyadenosine polymerase (PAP) by both bio-

chemical and genetic experimentation (664). Several yeast species were found to be

Fig. 13.24 X-Ray structures of parnafungin A (top) and B (bottom) analogues
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sensitive to the application of a purified parnafungin A/B mixture, including

Candida albicans (MIC 0.014 mg/cm3), Candida krusei (0.014 mg/cm3), and Sac-
charomyces cerevisiae (3.3 mg/cm3).

It was determined further that the linear parnafungin A (1005) is the species from

the equilibrating mixture that is responsible for interacting with PAP, using an

ingenious affinity selection/mass spectrometry technique (665). The PAP enzyme

was exposed to the interconverting mixture of parnafungins at physiological pH,

with the sample then subjected to rapid SEC chromatography, which separates

bound ligand from unbound ligand and protein selectively. The ligand and protein

complex is then diverted to low pH conditions, which both dissociate the ligand and

freeze the interconversion, allowing the parnafungin active in binding to the target

be discerned by HPLC. The linear parnafungins C and D had similar biological

activities to A, with D being the most potent (667).
Ring-opened benzoquinoline isomers 1011 and 1012 (Fig. 13.25) were also

observed to form under basic or neutral conditions, and somewhat more slowly

under acidic conditions. It is likely that these result from the inherent instability of

the isoxazolidinone core (by either E2 elimination or a hydrolysis/elimination

sequence).

Not long after these reports, a synthesis of the tetracyclic isoxazolo[4,3,2-de]
phenanthridinone fragment 1017 (Scheme 13.20) was reported by Zhou and Snider
(668). After some initial investigations, they developed a sequence based on Suzuki
coupling to form the biaryl segment 1015. A sequential one-pot nitro-reduction-

isoxazolone formation gave 1016, then mesylation and ring closing afforded the

target isoxazolone 1016 in high yield. It was found also that a similar ring opening

observed for parnafungins A (1005) and B (549) took place in deuterated chloro-

form, and that the treatment of 1017 with phenanthridine N-oxide in aqueous base

gave the isoxazolidinone ring.

The authors also suggested a biosynthesis route to the parnafungins, involving

the oxidative coupling of blennolide C (897) (Scheme 13.21) at the C-2 position to

anthranilic acid (1018), followed by benzylic oxidation of 561 and ring closure

(668).
Another report from Zhou and Snider in 2010 described the synthesis of

hexacyclic parnafungin A and C models, utilizing Suzuki coupling of the 2-iodo-
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Fig. 13.25 Isoxazolidinone ring-opened species
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substituted aromatic xanthone components 1021 and 1022 with 3-carboxymethyl-

2-nitrophenyl pinacol boronate (1023), to yield intermediates of the type 1024 and

1025 (Scheme 13.22) (669). These were subjected to zinc and ammonium chloride

reductive formation of the benzisoxazolinone core, followed by mesylation and SN2

cyclization under basic conditions to give 1029 (parnafungin C model, R ¼ Me)

and 1028 (parnafungin A model). The authors noted that the ready isomerization of

parnafungins A1, A2, B1, and B2, and their propensity to rapidly (<1 h) decompose

to phenanthridines under neutral or basic conditions, makes these natural products

especially challenging synthesis targets.
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Collaborative work by the Williams and Bräse groups led to a short synthesis of

phenanthrenes to serve as model systems towards the total synthesis of parnafungin

(Scheme 13.23) (670). In addition, the Bräse group also synthesized biaryls related

to parnafungin (671), using tin chemistry (see Sect. 13.5.3).
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13.5.2 Ascherxanthone

The symmetrical dimeric structure of ascherxanthone A (1032, Fig. 13.26) was

reported in 2005 after being isolated from Aschersonia sp., an entomopathogenic

fungus collected on a Homoptera scale insect (672). The relative configuration

around C-5, C-6 and C-10a was determined using 1H NMR spectroscopy and

NOESY experiments. Like diversonol (932) (see Sect. 13.2.3), this compound has

methyl substituents at the C-4a position, but, however, the absence of a hydroxy

group at C-8 and C-80 is unique among this family of natural products. The compound

exhibited strong inhibitory activities for both Plasmodium falciparum (IC50 ¼
0.20 mg/cm3) and Vero cells (IC50 0.80 mg/cm3), and cytotoxic activity against

three cancer cell lines (IC50 values in the range from 0.16 to 1.7 mg/cm3) (672).
In 2009, Chutrakal and co-workers reported the large-scale isolation from

Aschersonia luteola BCC 8774 of a new compound related to ascherxanthone A,

albeit with hydroxy groups in the place of the alkenyl hydrogen substituent of 1032

(673). This compound was isolated after in vitro screening of antifungal substances,
and exhibited significant inhibitory activity (IC90 ¼ 0.95 mM) against a virulent
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strain of the rice blast fungus, Magnaporthe grisea. Subsequently, preliminary

in vivo tests were also carried out. The use of NOESY and other NMR techniques

confirmed that the compound possesses the same relative configuration as 1032,

and it was named ascherxanthone B (1033).

13.5.3 Secalonic Acids

The secalonic acids (1034–1046) (Fig. 13.27) are comprised of dimers of the

blennolides (vide supra). This class of compounds, also named ergochromes, has

been the subject to extensive investigation due to their biological activity.

Although no total synthesis has been reported so far, considerable efforts have

been made in the last decade. Xanthone dimers have been synthesized using Suzuki
chemistry (674) (Scheme 13.24) or Stille couplings (671) (Scheme 13.25).
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Bräse and co-workers described a novel one-pot methodology for the synthesis of

symmetrical biaryls as a part of their ongoing investigations in the synthesis of the

secalonic acids (1034-1046), their monomeric units, and related tetrahydroxanthones

(674). Building on methodology developed by Miyaura et al. for the synthesis of

boronic acids by palladium-coupling of arylhalides with bis(pinacolato)diborane

(Scheme 13.24) (675–676), these researchers modified their original conditions

effectively through the use of a more nucleophilic base (potassium carbonate rather

than acetate). The new conditions promoted the Suzuki cross-coupling of the in situ
formed arylboronic ester (not shown) with a molecule of starting aryl halide or

equivalent 1049 due to the enhanced nucleophilicity (674) of a proposed intermediate

penta-coordinated palladium species.

The resulting symmetrical biaryls 1052 (Scheme 13.24) were formed under mild

conditions (K2CO3,DMSO, 80 �C). It was found also that the addition of a diphenylpho-
sphinoferrocene (dppf) ligand improved the reaction by suppressing the degradation of

catalyst in the form of palladium black. The yields were substrate dependent (steric

effects appear important), but tolerated a range of functional groups, and incorporated

several (heterocyclic) aromatic cores with varying success (40–94% isolated yield, 21

examples). The methodology was applied successfully also to the synthesis of a

secalonic acid model, bisxanthene 1052, through the reaction of two equivalents of

bromide 1050 (Scheme 13.24). Recently, it has been shown by the same group that the

stannane 1053 can also serve as suitable partner (Scheme 13.25) (671). It is noteworthy
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R R
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R1,2,3 = OMe, OBn, Ac, CO2Et, CN, H
X = Br, I, perfluoroalkylsulfonyl
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1051 1052

Br

O

OMe
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Scheme 13.24 Bräse’s one-pot biaryl synthesis using boron reagents. Reagents and conditions:

a) (PinB)2, PdCl2(dppf)2, K2CO3, DMSO, 80�C, 16 h

O

O

O
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R

R+
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X = Br, OTf

Scheme 13.25 Bräse’s biaryl synthesis using tin reagents. Reagents and conditions: a) Pd(PPh3)4,
LiBr, CuI, toluene, 80�C, 40 h
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that these Stille couplings to afford the biaryls 1055 tolerate a broader range of

substituents.

Sahin, Nieger, and Bräse have reported also the oxidative coupling of various

hexahydro-xanthenols. The application of an iron complex as oxidant converted the

2-hydroxy-substituted xanthenes 1056 (Scheme 13.26) to the 3,3-bis-coupled biaryl
1057 (565). It appears that these two papers ((564) and (674)) represent the only

chemical studies published on the topic of xanthone or xanthene biaryl-coupling.

13.5.4 Xanthoquinodins

The xanthoquinodins A1–A3 and B1–B2 (1058 to 1062, Fig. 13.28) were identified

initially as anticoccidal antibiotics isolated from a Humicola sp. Feeding

experiments with 13C and extensive spectroscopic data analysis on the resulting

isotopically enriched compounds allowed for the structure determination of these

five compounds (678, 679). These heterodimers, like the beticolins, also result from

the coupling of a xanthone with an anthraquinone, although the coupling is now in

an end-to-tail fashion. The relative configuration at C-110 and C-140 is S and R,
respectively, and C-2 is S and C-3 is S.

Unlike the beticolins, these different forms of xanthoquinodins can interconvert

merely by being heated in solution (655). Heat treatment of xanthoquinodin A1

gave a mixture of all five compounds. Heat treatment of the other compound A2

gives mixtures with the following exception: A3 appears to represent a final

product, which is effectively removed from the interconversion pool by virtue of

its unique lactone ring.
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HO

OH

1056

1057

OH a)

Scheme 13.26 Bräse’s oxidative biaryl synthesis. Reagents and conditions: a) [K3Fe(CN)6],

KOH, H2O, MeOH, 4 d, 24–45%
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13.5.5 Beticolins

The beticolins (ascertained structures shown, b0, 2, 4, 6, 8, 13, 1, 3, and 1063-1070,

respectively, Fig. 13.29) are a fascinating family of closely related non-host-specific

mycotoxins produced by several strains of Cercospora beticola, a fungus responsible
for cercosporiosis, a leaf spot disease of sugar beet (Beta vulgaris) (680–683).
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13.5.6 Dicerandrols

The dicerandols A–C (1071 to 1073, Fig. 13.30) were isolated from Phomopsis
longifolia, an endophytic fungus found to be growing on the endangered Floridian

mint species, Dicerandra frutescens (684). The structures were determined using

NMR experiments in combination with a positive FeCl3 experiment, which is
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indicative of a para-unsubstituted phenol, requiring that the dimer dicerandrol A

must be linked in the more common 2,20-manner. The relative configuration of

these was determined to be the same as for secalonic acids B and E (see below).

These species exhibited antimicrobial activities against Bacillus subtilis and

Staphylococcus aureus, which were correlated with their extent of acylation (i.e.
C > B > A). Dicerandrol B (1072) showed the most potent growth inhibitory

activities for the HCT-116 colon and A549 lung tumor cell lines (684).

13.5.7 Microsphaerins

Microsphaerins A–D (1074-1077, Fig. 13.31) were found to be produced by the

anamorphic soil fungusMicrosphaeropsis sp. via a bioassay-guided isolation process
(685). These species were identified as being inhibitory for methicillin-resistant

Staphylococcus aureus (MRSA), which has been demonstrated to have an almost

20% lethality rate among infected patients in one study of U.S. hospitals (686).
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The microsphaerins were found to be active against MRSA in a whole cell assay with

IC90 values in the low micromolar range (1–5 mM), although cytotoxic effects

precluded these compounds from further investigation for their in vivo efficacy

(Fig. 13.32).

The four compounds were isolated from two strains of Microsphaeropsis (B–D
from the first, and A and D from the second), and were characterized structurally

with the use of spectroscopic techniques inclusive of a ROESY NMR experiment.

Structural confirmation was provided by the single-crystal X-ray analysis of

microsphaerins A and D. Microsphaerins B–D each possess a bicyclo[3.2.1]octane

ring. A retro-oxa-Michael-addition process was suggested to account for the slow

interconversion of microsphaerins B and C, which are diastereomeric structures at

the C-5 ether-bearing position. This process is similar to that described for the

beticolins and parnafungins (see above, Sect. 13.5.1). It appears as though

microsphaerin A is the putative precursor for the other microsphaerins, which can

be formed by reduction of the innermost aromatic rings and their subsequent

cyclization to form microsphaerins C and D. Accordingly, microsphaerin D may

represent a half-way point in this biosynthesis process.

Fig. 13.32 X-ray structures of microsphaerin 1 (top) and 2 (bottom)
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13.5.8 Neosartorin

A novel ergochrome, neosartorin (1078, Fig. 13.33), was isolated from the myce-

lium of the soil mold Neosartorya fischeri, and the chemical structure was deduced

with a variety of spectroscopic techniques (687). This compound is an isomer of the

eumitrins. It was determined that the relative configurations at the C-5, -6 and -10

(and C-50, -60 and -100) positions are the same as in secalonic acids A and D.

13.5.9 Phomoxanthones

Phomoxanthones A and B (1080 and 1081, Fig. 13.34) were isolated from the

endophytic fungus, Phomopsis sp., when an extract from this species was found to

exhibit in vitro antimalarial activity (688). Phomoxanthone A is a symmetrical

homodimer with a 4,40- (para-para)-linkage, while phomoxanthone B has a

2,40-(ortho-para)-linkage, as seen with the eumitrins. These structures are similar

to those of the ergochromes, however, the carboxymethyl substituents at C-10a
(C-10a0) have been replaced with acetoxymethyl substituents, and the C-6 (C-6a)
hydroxy group moieties are acetylated. The relative configuration of both

phomoxanthones A and B was determined by NMR experiments. The compounds

proved to be inhibitory in vitro for Plasmodium falciparum, Mycobacterium tuber-
culosis, and several cancer cell lines (Fig. 13.35).

The absolute configuration and axial chirality of phomoxanthone A (1079,

Fig. 13.34) were ascertained by Krohn and co-workers using a combination of

single-crystal X-ray analysis, and CD and calculated CD spectra (689). This

compound was isolated from an extract of a different Phomopsis species, shown
to exhibit antibacterial and antifungal activity. Deacetylphomoxanthone B (1081,

Fig. 13.34) was reported in 2007 as a metabolite from Phomopsis sp. PSU-D15,
with dicerandrol (1071, Fig. 13.34) also found as a constituent of this fungus (689).
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13.5.10 Rugulotrosins

Rugulotrosins A and B (1082 and 1083, Fig. 13.36) were reported in 2004 after

being isolated from cultures of a Penicillium sp. from soil samples. Rugulotrosin A

is a symmetrical 2,20-(ortho-ortho)-coupled dimer of tetrahydroxanthone subunits,

Fig. 13.35 X-Ray diagram for phomoxanthone A (1079)
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Fig. 13.34 Phomoxanthones A and B and deacetylphomoxanthone B (1079-1081)
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while rugulotrosin B is a comparatively rare 2,40-(ortho-para)-coupled dimer (690).
The structures of these compounds were determined by spectroscopic analysis,

and that of rugulotrosin A was confirmed by single-crystal X-ray analysis. The

compounds showed considerable growth inhibitory activity against Bacillus subtilis
and rugulotrosin A also exhibited significant effects against Enterococcus faecalis
and Bacillus cereus.

13.5.11 Sch 42137

The natural product Sch 42137 was reported by Cooper and co-workers in 1992 as a
novel antifungal antibiotic, after its isolation from cultures of a soil-derived Gram-
positive actinomycete bacterium, Actinoplanes sp. SCC 1906 (691). The structure
(1084, Fig. 13.37), having both an isoquinoline and xanthone component, is related

to the actinoplanones and the albofungins (see above), the cervinomycins (see

Sect. 13.3.1), lysolipin (see Sect. 13.3.1), and the simaomicins (see below). The

authors described the culturing, isolation, and structure elucidation of the parent

molecule and two acetate derivatives. These compounds were compared spectro-

scopically to the simaomicins, since for a member of which a crystal structure was

already known. Sch 41237 demonstrated potent inhibitory activity for six strains of

Fig. 13.36 Rugulotrosins A and B (relative stereochemistry shown) (1082, 1083); X-ray diagram

of rugulotrosin A

13.5 Tetrahydroxanthone Dimers and Heterodimers 203



Candida albicans, and also inhibited the growth of the dermatophytes

Trichonophyton mentagrophytes, T. rubrum, T. tonsurans, and Microsporon canis.

13.5.12 Sch 54445

The potent Sch 54445 (1085, Fig. 13.38, proposed structure shown) was reported by

Chu and co-workers in 1997 after being isolated from the fermentation broth of

Actinoplanes sp. (692). This is a member of the albofungin family, possessing both

a xanthone and an isoquinoline component. The structure was proposed as 1085

based on information derived from a variety of spectroscopic techniques, although a

combination of NOESY data and CD spectra with computational techniques proved

not sufficient to elucidate the stereochemistry around the G-ring. However, an anti-
configuration was proposed based on the similarity of the optical rotation to

albofungin, a compound for which the stereostructure has been established.

Sch 54445 was found to have antifungal potency against several yeast, dermato-

phyte, and Aspergillus species, with MIC values in the sub-micromolar range

(~0.4 mg/cm3). Like albofungin and Sch 42137 (1084) (see above, for both), Sch

5445 was found to be highly toxic when administered to mice, with an LD50 of

1 mg/kg.
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13.5.13 Xanthonol

The novel unsymmetrical dimeric xanthone, xanthonol (1086) (Fig. 13.39), was

isolated from the fermentation broth of a non-sporulating fungus found in the leaf

litter ofManikara bidentata (693). A point of interest is that this compound exhibits

a methyl group substitution in an aryl position, in the same manner as the

rugulotrosins, rather than the C-6(C-60) methylation observed for the secalonic

acids, dicerandrols and phomoxanthones. Also interesting is the benzoylated alcohol

at the C-50 position. Xanthonol (1086) has been found to exhibit antihelmintic

properties against the larvae of Lucilia sericata, Aedes aegypti, and Haemonchus
contortus. Synthesis efforts have been made by the Bräse group using the procedure
described in Sect. 13.2.1. (694) (Scheme 13.9).
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14 Cytochalasans

The cytochalasans are a group of structurally diverse fungal metabolites exhibiting

a wide range of biological activities. Their name is derived from the Greek (kύtoς,
kytos, cell; wάlasiς, chalasis, relaxation) due to their most well-known effect,

namely, the influence on actin filament networks in eukaryotic cells, which results

in a deterioration of the dynamic processes involving the cytoskeleton formation.

Together with some other biological properties, the cytochalasans represent a group

of potential drug candidates, especially as anticancer agents.

The first two cytochalasans (cytochalasin A (1087) and B (1088), Fig. 14.1) were

isolated in 1966 and structurally determined in the same year. They were discovered

independently by Tamm and Rothweiler at the University of Basel (695) and

Aldridge et al. at Imperial Chemical Industries Ltd. (696). At the time of their

isolation, these two compounds were named dehydrophomin and phomin, after the

species of their isolation (Phoma S298). To date, more than 100 cytochalasans have

been discovered, and are produced only by fungal organisms such as Ascochyta,
Aspergillus,Chaetomium,Chalara,Daldinia,Hypoxylon,Metarhizum,Penicillium,
Phoma, Phomosis, Pseudeurotium, Rosellinia, Xylaria, and Zygosporium (10).

Structural characteristics of the cytochalasans include a highly substituted,

fully hydrogenated and conserved isoindolone core, which is fused to a 11- to

16-membered macrocyclic ring – typically a carbocycle, a lactone, or a cyclic

carbonate. The nitrogen atom of the perhydroisoindolone moiety results from

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic

Natural Products, Vol. 97, DOI 10.1007/978-3-7091-1312-7_14,
# Springer-Verlag Wien 2013
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an amino acid precursor, e.g. phenylalanine, tyrosine, tryptophan, leucine, or

alanine, hence these compounds are polyketide-amino acid hybrids. This is also

affirmed by biosynthetic radioactive labeling studies, supporting the incorporation

of malonate/acetate units, phenylalanine, and methyl groups from methionine

(697). Moreover, the cytochalasans are divided into various groups according to

the amino acid substituent present at the perhydroindolone core: cytochalasins

(benzyl group), pyrichalasins (p-methoxybenzyl group), chaetoglobosins ((indol-

3-yl)methyl group), aspochalasins (2-methylpropyl group), and alachalasins

(methyl group), while other names for several subgroups and derivatives also

exist due to the large number of known compounds of this type. The high diversity

of cytochalasans is evident as the result of a wide variety of substitution patterns.

Since a detailed depiction of all compounds in this series would go beyond the

scope of this chapter, the reader is referred for more detailed information to a
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comprehensive review with many examples given, including some biosynthesis

schemes, as published by Hertweck et al. (698).
Binder and Tamm introduced a systematic nomenclatural scheme based on the

size of the macrocycle for this compound class (699) (Fig. 14.2). However, on
account of their structural complexity, the trivial names of these mycotoxins

are employed typically, with these based on either their organism of origin (e.g.
zygosporins from Zygosporium spp.) or as a result of their biological activity (e.g.
the cytochalasins).

Furthermore, uncommon structures are also known among the cytochalasans

(Fig. 14.3). For instance, cytochalasins Z10–Z15 (1105–1110) bear an open carbon

chain instead of a macrocycle (700). Spicochalasin A (1111) (701) and phomopsi-

chalasin (1112) (702) show novel pentacyclic structures, while the macrocycles of

the penochalasins (e.g. 1113) (703) include a pyrrole ring. In 2011, four novel

cytochalasans, named phomachalasins A–D (1114–1117), were isolated from

Phoma exigua var. exigua. These contain a 15- or 16-membered macrocyclic ring,

the largest such ring systems so far known among this mycotoxin class. In addition,

this is fused to an unusual hexasubstituted bicyclo[3.2.0]heptene unit (704).
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14.1 Biological Properties

Many biological effects have been observed by the cytochalasans. The most

well-documented ones result from an influence on cellular processes, such as

intracellular motility, exo- and endocytosis, and cytokinesis, and is based on the

interference with actin filament network formation. This is due to interaction with

actin (705), one of the key components of the cytoskeleton, leading to inhibition of

cytokinesis (cell division) without any influence on karyokinesis (nuclear division).

Thus, multinucleated cells were observed after treatment of proliferating cells with
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a subtoxic amount of cytochalasans (706). When the cytochalasin concentration

exceeded a cytotoxic concentration, even total denucleation appeared. They are

therefore useful compounds for the investigation and understanding of actin-

involved cellular processes like cell division and migration (707).
In a pioneering paper on the cytochalasan molecular mode of action, Spudich

and Lin discovered a decrease in viscosity of actomyosin from rabbit muscle – the

active protein complex of actin and myosin – when treated with cytochalasin B

(1088) in micromolar concentrations. Actin was identified as direct binding partner

of cytochalasin B (1088), thus the first proof on the target of this compound was

provided (705). Further studies by several groups revealed that cytochalasins B

(1088) and D (1091) inhibit, but not completely arrest, actin filament elongation

(708, 709). A plausible mechanism was proposed by Goddette and Frieden (710).
Recently, in 2008, the exact binding situation between cytochalasin and actin

was clarified, as Trybus et al. achieved the crystallization of cytochalasin D (1091)

in complex with actin (Fig. 14.4) (711).

Apart from the effect on cellular processes, most cytochalasans also exhibit a

range of highly cytotoxic properties, including inhibitory activity against a variety

of cancer cell lines, such as HeLa (712), P388 leukemia (713), and HT29 colonic

adenocarcinoma cells (714). Cytochalasin E (1096) is known to possess cytotoxic,

antiangiogenic, and tumor growth inhibitory effects (715, 716). A promising

Fig. 14.4 Crystal structures of actin in complex with cytochalasin D (1091). The actin

subdomains (blue) are labeled 1–4. Cytochalasin D (1091) is displayed as space-filling represen-

tation (orange), ATP in stick representation (orange) and two Ca2+ ions as yellow spheres.
Cytochalasin D (1091) is located in the hydrophobic cleft between subdomains 1 and 3 and

connected to the protein via six hydrogen bonds (not shown). a) Crystal obtained by soaking

protein crystals in ligand solution; b) crystal obtained by co-crystallization
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strategy for therapeutic applications in cancer treatment is the targeting of actin,

which plays an important role in cellular morphology changes particularly present

in transformed cells. However, because cytotoxic effects towards tumor cells are

not of high enough selectivity, no actin-targeting compounds have yet entered

clinical trials (717).
Furthermore, cytochalasans exhibit antimicrobial effects, whereas cytochalasin

A (1087), for example, inhibits the growth of Bacillus subtilis and Escherichia coli
and cytochalasin D (1091) acts as an antifungal agent against Botrytis cinerea (718,
719). Antiparasitic activities have been demonstrated for cytochalasins B (1088), D

(1091), E (1096), and for dihydrocytochalasin B, which inhibit growth and differ-

entiation and influence excystation/encystation of the amoeba Entamoeba invadens
(720). Cytochalasin B (1088) is able also to influence monosaccharide transport

systems (721–725) and hormone release (726, 727). Moreover, in 1992, the

antiviral cytochalasan L-696,474 (1139, Scheme 14.3) was discovered, exhibiting

an inhibitory effect on HIV-1-protease (728–730).

Penicillium expansum is a common fungus present on rotten fruit (Fig. 14.5,

(731)). This organism is relevant in respect to the production of highly toxic

mycotoxins, which can cause disease after consumption of contaminated food.

A screening procedure has revealed that chaetoglobosins – or tryptophan-derived

[13]cytochalasans – are produced consistently in all P. expansum strains evaluated

to date in both cultures and natural samples (732). Since they might represent a

potential health hazard, the investigation of toxic effects is a subject of interest. It is

known that the chaetoglobosins are toxic towards chick embryos (733), 1-day-old
cockerels (734), rats (735), and mice (736, 737), and they also show cytotoxicity

towards HeLa cells and teratogenity in mice (736).

Fig. 14.5 An apple contaminated with Penicillium expansum
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14.2 Total Syntheses

Chemical syntheses of cytochalasans are challenging with regard to the numerous

stereogenic centers and functional groups at the perhydroisoindolone core and the

construction of the macrocyclic ring, respectively. Many cytochalasans are com-

mercially available because they are useful tools for biological studies, which is

another reason why there are only few total syntheses to date. One extensively

investigated approach to the formation of isoindolones has been facilitated by the

use ofDiels-Alder reactions (738). Indeed, all total cytochalasan syntheses require a
Diels-Alder reaction at some point in the procedure. One possibility is the simulta-

neous creation of the isoindolone and the macrocycle by [4 + 2]cycloaddition,

while another approach implies the subsequent fusion of the macrocycle to a

previously built up isoindolone (739).
In the late 1980s, the number of total syntheses for these compounds showed an

upswing, and several were reported by Thomas et al., who accomplished the

preparation of cytochalasins H (1099), D (1091), G (1098), and O (1160), following

their Diels-Alder strategy for the stereoselective synthesis of many of the cyto-

chalasan cores.

14.2.1 Total Synthesis of Cytochalasin B and L-696,474

Cytochalasin B (1088) belongs to the [14]cytochalasan group and was isolated from

Helminthosporium dematioideum (696) and Phoma S298 (695). Its first total

synthesis was accomplished by Stork et al. in 1978 (740). Later, this group

published a more simplified synthesis, utilizing an intramolecular Diels-Alder
reaction as the key step, forming both perhydroisoindolone and the macrocyclic

moiety in a single reaction (741).
In 2004,Myers and Haidle reported a convergent and modular total synthesis of

cytochalasin B (1088) and the [11]cytochalasan L-696,474 (1139) (742), using a

late-stage macrocyclization step involving an intramolecular Horner-Wadsworth-
Emmons olefination. Their strategy is applicable for the synthesis of cytochalasans

of different ring sizes, as exemplified by these two total syntheses. Both

macrolactone and macrocarbocyclic cytochalasans can lead back retrosynthetically

to the same precursors. The synthesis of the tricyclic isoindolone precursor to

cytochalasin B (1088) and L-696,474 (1139) is shown in Scheme 14.1.

The starting material for this synthesis was N,N-dibenzyl phenylalanal (1118),
which is readily accessible from the corresponding amino acid (743). This was

submitted to a Horner-Wadsworth-Emmons reaction with diethyl 3-oxo-2-

butylphosphonate. The olefin obtained was then mono-N-debenzylated, and then

treated with t-butyldimethylsilyl triflate and 2,6-lutidine to give the silyl enol ether

1119. Addition-elimination by treatment with methylene lactone 1120, synthesized

earlier (744), provided Diels-Alder substrate 1121, which at high temperature
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underwent a diastereoselective [4 + 2] cycloaddition to tricycle 1122. The desired

endo diastereomer was obtained in 77% yield (compared to 14% of the exo
diastereomer). After this, the benzyl group was exchanged by a Boc protecting

group and the silyl enol ether was cleaved in a highly diastereoselective manner,

which afforded a-methyl ketone 1123 as the only product. After regioselective

formation of the corresponding enol triflate, addition of lithium dimethyl cuprate

afforded substituted alkene 1124 as a building block, from which point on the total

syntheses of cytochalasin B (1088) (! macrolactone route, Scheme 14.2) and

L-696,474 (1139) (! macrocarbocyclic route, Scheme 14.3) diverge. The comple-

tion of cytochalasin B (1088) from precursor 1124 is shown in Scheme 14.2.

The tricyclic system 1124 underwent a smooth epoxidation by treatment with

DMDO (quantitative yield). Afterwards, cleavage of the N-Boc group and oxidation
of the resulting free amine furnished epoxy imine 1125. In the single-step procedure

following, both opening of the g-lactam ring and deformylation occurred, thus

delivering a hydroxylactam, which was then transformed to aldehyde 1126 by

oxidation with Dess-Martin periodinane. Attachment of the necessary aliphatic

chain for later macrocyclization by Julia-Kocienski coupling withN-phenyltetrazole
sulfone 1127 (for preparation of 1127, see Ref. (742)) afforded olefin 1128. Boc-

protection of the lactam group and subsequent a-oxygenation with trans-2-
(phenylsulfonyl)-3-phenyloxaziridine furnished the tertiary alcohol 1129, which

was transformed into a phosphonate. Then, the primary and less hindered TBS

group was selectively deprotected and oxidized to aldehyde 1130. The following

key step in the total synthesis – an intramolecular Horner-Wadsworth-Emmons
reaction – allowed the formation of macrolactone 1131 in 60% yield. Cleavage of
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Scheme 14.1 Synthesis of the tricyclic precursor 1124 to cytochalasin B (1088) and L-696,474

(1139). Reagents and conditions: a) diethyl 3-oxo-2-butylphosphonate, Ba(OH)2, THF/H2O, rt, 87%;

b) 2,3-dichloro-5,6-dicyanobenzoquinone, CH2Cl2/pH 7 buffer, rt, 86%; c) t-butyldimethylsilyl

triflate, 2,6-lutidine, CH2Cl2, �78�C to rt, 99%; d) MeOH, rt, 98%; e) m-xylene, 150�C, 77%;

f) H2, 10% Pd/C, Boc2O, Et3N, EtOH, rt, 96%; g) TBAF, AcOH, THF, 0�C; h) KHMDS, THF,

�78�C; then 2-[N,N-bis(trifluoromethylsulfonyl)amino]-5-chloropyridine, 93% over two steps;

i) Me2CuLi, THF,�78 to 0�C, 95%
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the N-Boc group and the silyl ether provided compound 1097, which is a natural

product (cytochalasin F) and could be transformed finally to cytochalasin B (1088)

by allyl alcohol rearrangement under elevated temperatures in the presence of

magnesium sulfate.

The macrocarbocyclic cytochalasan L-696,474 (1139) was also synthesized

from tricyclic precursor 1124 following a similar strategy that involved also a

Julia-Kocienski olefination for attachment of an aliphatic chain (Scheme 14.3).

First, removal of the N-Boc group and oxidation of the resulting amine generated

imine 1132. In order to invert the quaternary stereogenic center present at the

pyrrolidine ring, 1132 was subjected to a non-hydrolytic ring opening with

1,3-diaminopropane in the presence of trifluoroethanol in buffer solution, followed

by re-closing to the amine 1133. After epoxidation at the cyclohexenemoiety, which

proceeded diastereoselectively, the hydroxy group was transformed into an alde-

hyde (! 1134) suitable for Julia-Kocienski olefination with the separately

synthesized N-phenyl tetrazole 1135 (for preparation of 1135, see Ref. (742)).
Thus, the aliphatic chain for later macrocyclization could be attached to the
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Scheme 14.2 Total synthesis of cytochalasin B (1088), starting from precursor 1124. Reagents

and conditions: a) dimethyldioxirane, acetone, rt, quant.; b) trifluoroacetic acid, CH2Cl2, 0
�C;

c) [bis(trifluoroacetoxy)iodo]benzene, 4 Å MS, CH2Cl2, rt, 92% over two steps;

d) ethylenediamine, t-amyl alcohol, rt, 96%; e) Dess–Martin periodinane, NaHCO3, CH2Cl2, rt;

f) 1127, KHMDS, THF, �78�C; then 1126, �100 to �40�C, 60% over two steps; g) LiHMDS,

THF, �78�C; then Boc2O, �78 to �40�C, 80%; h) KHMDS, THF, �78�C; then trans-2-
(phenylsulfonyl)-3-phenyloxaziridine, �100 to �78�C, 85%; i) diethylphosphonoacetic acid,

DCC, CH2Cl2, rt, 81%; j) HF•pyridine, THF, �20�C, 69%; k) Dess–Martin periodinane,

NaHCO3, CH2Cl2, rt; l) NaOCH2CF3, CF3CH2OH, DME, rt, 65% over two steps;

m) Mg(OCH3)2, MeOH, rt, 95%; n) TBAF, THF, rt, 96%; o) MgSO4, benzene, 70
�C, 66%
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perhydroisoindolinone core in good yield (! 1136). Transformation into a

phosphonate and subsequent deprotection/oxidation of the primary TBDPS group

then afforded Horner-Wadsworth-Emmons (HWE) substrate 1137. The HWE reac-

tion following accomplished the key macrocyclization with the best diastereos-

electivity (5:1) when treated with sodium 2,2,2-trifluoroethoxide in hot DME, which

yielded the desired [11]cytochalasan 1138. The final steps towards the natural

product 1139 comprised diastereoselective reduction of the macrocyclic ketone,

followed by acetylation and treatment with magnesium sulfate in heated benzene.

14.2.2 Total Synthesis of Proxiphomin

Proxiphomin was the first [13]cytochalasan to be synthesized (745, 746). This
synthesis was carried out by Thomas and Whitehead in 1985, after which several

other cytochalasan syntheses followed using the same approach (intramolecular

Diels-Alder reaction). In the next sections, the syntheses of cytochalasin H (1099)

and G (1098) are outlined in detail.
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Scheme 14.3 Total synthesis of L-696,474 (1139), starting from precursor 1124. Reagents and

conditions: a) trifluoroacetic acid, CH2Cl2, 0�C; b) [bis(trifluoroacetoxy)iodo]benzene, 2,6-

lutidine, 4 Å MS, CH2Cl2, rt, 90% over two steps; c) 1,3-diaminopropane, CF3CH2OH, Et2O, rt;

Et2O-pH 7 buffer; d) KOH, I2, MeOH, rt, 96% over two steps; e) dimethyldioxirane, acetone, rt,

95%; f) Dess-Martin periodinane, NaHCO3, CH2Cl2, rt; g) 1135, KHMDS, THF, �78�C; then
1134, �100 to �40�C, 86% over two steps; h) (MeO)2POCH2Li, THF, �78�C to rt; i) TBAF,

AcOH, THF, rt, 81% over two steps; j) Dess-Martin periodinane, NaHCO3, CH2Cl2, rt;

k) NaOCH2CF3, CF3CH2OH, DME, 80�C, 52% over two steps, 5:1 mixture of diastereomers;

l) CeCl3•7 H2O, NaBH4, THF/MeOH, �40�C; m) Ac2O, pyridine, rt, 86% over two steps;

n) MgSO4, benzene, 60
�C, 77%
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14.2.3 Total Synthesis of Cytochalasin H

Cytochalasin H (1099), an isomer of cytochalasin D (1091), was synthesized in

1986 by Thomas andWhitehead utilizing an intramolecular Diels-Alder reaction to

build up both the isoindolone and macrocycle moieties in a single step (747–749).
The formation of the Diels-Alder precursor 1143 together with the steps following

for the completion of the synthesis of cytochalasin H (1099) are outlined in

Scheme 14.4.

Diels-Alder precursor 1143 was accessible from aldehyde 1140, dienylpho-

sphonate 1141, and benzoyl pyrrolidinone 1142 in 18 steps. Elimination of the

phenylselenyl group generated a double bond, which was subjected to an intramo-

lecular, diastereoselective Diels-Alder reaction at elevated temperatures to yield
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Scheme 14.4 Total synthesis of cytochalasin H (1099). Reagents and conditions: a) m-CPBA,
H2O2, �40 to 0�C; b) toluene, 80–100�C, 37% over two steps; c) KOH, MeOH, 0�C, 98%; d) LDA,

THF/n-hexane, �78�C; then TMS-Cl, 98%; e) PhSeCl, TBAF, THF, 0�C, 78%; f) pyridine, H2O2,

H2O, CH2Cl2, rt, 68%; g) NaBH4, EtOH, 0
�C, 72%; h) pyridine, DMAP, Ac2O, CH2Cl2, rt, 94%;

i) m-CPBA, CH2Cl2, �20 to 0�C, 19% (37% regioisomer); j) Al(Oi-Pr)3, o-xylene, 125
�C, 67%; k)

5% HF (aq.), acetonitrile, rt, 40%
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tricycle 1144. After deprotection of the amine moiety (! 1145), the macrocyclic

double bond was introduced by a-deprotonation of the ketone, and subsequent

phenylselenylation followed by elimination (! 1146). Reduction with sodium

borohydrate and O-acetylation gave compound 1147. The final functionalization

at the cyclohexene ring to create an exo-double bond was realized by epoxidation to
1148 (unfortunately, epoxidation occurred mainly at the unwanted double bond

present in the macrocycle; however, separation of the regioisomers was possible),

followed by elimination and ring opening to 1149, which, after SEM-deprotection,

finally yielded cytochalasin H (1099).

In addition, the same research group conducted an alternative approach

to cytochalasin H (1099) by formal synthesis. For this purpose, they prepared

a phenylalanine analogue of cytochalasin G (1098) and treated it with a

methyl-Grignard reagent to yield a key intermediate for the cytochalasin H (1099)

synthesis (750).

14.2.4 Total Synthesis of Cytochalasin G

The first total synthesis of a tryptophan-derived cytochalasan – cytochalasin

G (1098) – was accomplished in 1986 by Thomas and co-workers (751, 752). The
same strategy as for cytochalasin H (1099), an intramolecular Diels-Alder reaction,
was used as the key step (Scheme 14.5).
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Scheme 14.5 Total synthesis of cytochalasin G (1098). Reagents and conditions: a) 1151,

LiHMDS, �70�C, THF/n-hexane; then addition to 1150, THF, �70 to 0�C; b) LiHMDS,

�70�C; then PhSeCl in THF, �70�C, 57% over two steps; c) H2O2/H2O, m-CPBA, CHCl3,
�50�C; d) toluene, 86�C, 31% over two steps; e) HCl (aq.), THF, rt, 71%; f) m-CPBA, CH2Cl2,

rt, 39%; g) NaOH (aq.), MeOH, rt, 62%
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The Diels-Alder substrate was prepared by connecting the building blocks 1150

and 1151 with a following phenylselenyl-mediated elimination of 1152 to the

corresponding diene-dienophile system. After cycloaddition, tricycle 1153 was

obtained, which, on further deprotection and epoxidation, could be transformed

into cytochalasin G (1198).

14.2.5 Total Synthesis of Cytochalasins D and O

In 1990, Merifield and Thomas reported a total synthesis of cytochalasin D (1091)

(753, 754). Some years later, they also achieved the total synthesis of cytochalasin

O (1160) by functionalization of a late-stage intermediate of cytochalasin D (1091)

(754). These syntheses proceeded similarly to the above-described syntheses of

cytochalasins H (1099) (Scheme 14.4) and G (1098) (Scheme 14.5), in utilizing a

Diels-Alder reaction to form the tricyclic core. Therefore, only the total synthesis of

cytochalasin O (1160), structurally characterized by the presence of a syn-diol
moiety, is described in the following scheme starting from Diels-Alder product

1155 (Scheme 14.6).
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Scheme 14.6 Total synthesis of cytochalasin O (1160), starting from Diels-Alder product 1155.
Reagents and conditions: a) OsO4, pyridine, �20�C, 69%; b) 2,2-dimethoxypropane,

p-toluenesulfonic acid, CHCl3, rt; c) LDA, PhSeCl, THF, �35�C, 52% over two steps; d) NaOH,

MeOH (aq.), rt; e) H2O2 (aq.), pyridine, CH2Cl2, rt, 88% over two steps; f) NaBH4, CeCl3•7 H2O,

MeOH, 10�C, 98%; g) Ac2O, NEt3, DMAP, CH2Cl2, rt, 81%; h) p-toluenesulfonic acid, MeOH, rt,

74%; i) oxalyl chloride, DMSO, NEt3, CH2Cl2,�60�C to rt, 66%; j) HCl (aq.), MeOH, reflux, 78%
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After oxidation with an excess of osmium tetraoxide to tetraol 1156, this was

protected to give bis-acetonide 1157. As a result of the previously developed

protocol, a phenylselenyl mediated elimination, as well as N-deprotection was

carried out. The resulting a,b-unsaturated ketone was reduced to the corresponding
alcohol with sodium borohydride in excellent yield and afterwards acetylated to

compound 1158. One acetonide functionality was removed selectively, and the

resulting diol was converted into the a-hydroxyketone 1159. Finally, cytochalasin
O (1160) was obtained through deprotection of the remaining diol in good yield. By

comparison of several properties of this product with an authentic sample, the

absolute stereochemistry at the cyclohexane ring of cytochalasin O (1160) was

finally confirmed as a result of the total synthesis that was carried out.

14.2.6 Total Synthesis of (�)-Aspochalasin B

A different approach to cytochalasan natural products was investigated by Trost
et al. and resulted in the total synthesis of the leucine-derived [11]cytochalasan,

(�)-aspochalasin B (1176), in 1989 (755). The strategy consisted in synthesizing an
isoindolone part and the utilization of a palladium-catalyzed formation of the 11-

membered carbocycle (Scheme 14.7).

As starting material for this synthesis, the Cbz-protected leucine ester 1161 was

used. Reduction of the ester group and condensation with malonic acid dimethyl

ester gave olefin 1162, which was reacted with diene 1163 in a Diels-Alder reaction
to yield tricycle 1164. The lactone ring was hydrolyzed and the resulting carboxylic

acid converted to the methyl ester using diazomethane (! 1165). The following

Swern oxidation proceeded in excellent yield and delivered aldehyde 1166. Addi-

tion of dipropenylcuprate (! 1167), introduction of a sulfone unit (! 1168), and

treatment with ethyl b,b-diethoxyacrylate (1169) to undergo condensation/rear-

rangement allowed for the preparation of 1170, which upon decarboxylation,

methyl esterification, chemoselective reduction and oxidation yielded the

corresponding aldehyde 1172. For the introduction of another C2 unit, again a

cuprate was the reagent of choice, leading to an enol ether alcohol, which was

trapped with methyl chloroformate (! 1173). Next, the key step of this total

synthesis was a Pd-catalyzed macrocyclization, which proceeded via a syn-p-allyl
palladium complex with a remarkable diastereoselectivity and delivered a single

isomer 1174 with a (Z)-configured enol ether double bond. Treatment with

peracetic acid gave an enol ether epoxide, which was immediately hydrolyzed to

hydroxy ketone 1175. The second macrocyclic double bond was finally introduced

by sulfone elimination, hence yielding (�)-aspochalasin B (1176) in 19 overall

steps from simple starting materials.
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Scheme 14.7 Total synthesis of (�)-aspochalasin B (1176). Reagents and conditions: a) DIBAL-

H, toluene, �78�C; b) CH2(CO2CH3)2, TiCl4, CCl4, THF, 0
�C; then pyridine, rt, 51% over two

steps; c) 1163, xylene, BHT, 130�C, 33–40%; d) KOH, H2O, MeOH, benzene, rt; then NaHSO4;

e) CH2N2, ether, MeOH, 94%; f) oxalyl chloride, DMSO, CH2Cl2, NEt3, �78�C, 90% – quant;

g) [CH2¼C(CH3)]2CuLi, THF, �78�C, 58%; h) n-BuLi, CH3SO2Ph, THF, HMPA, 0�C, 80%;

i) 1169, PPTS, rt, 68%; j) 1M KOH (aq.), THF, rt; then HCl; k) toluene, reflux; l) CH2N2, ether, rt,

71% over three steps; m) n-BuLi, DIBAL-H, THF, 0�C; n) PCC, CH2Cl2, rt, 47% over two steps;

o) [CH2¼C(OEt)2]CuLi, THF, ether, �78�C; p) ClCO2CH3, pyridine, 0
�C, 42% over two steps;

q) 10% Pd(PPh3)4, 10% dppp, THF, rt; then reflux, 49%; r) peracetic acid, AcOH, K2CO3, CH2Cl2;

then PPTS, H2O, THF, rt, 62%; s) benzyltrimethylammonium fluoride, THF, CH2Cl2, rt, 53%
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14.2.7 Total Synthesis of Zygosporin E

In the first total synthesis of zygosporin E (1195), Vedejs et al. also utilized a Diels-
Alder reaction to form the isoindolone core (739), but used an alternative strategy

for stereochemical control at the macrocycle. During the macrocycle construction,

a sulfur functionality served as a tool for stereospecific introduction of ring

substituents (756, 757). The zygosporin E (1195) route is outlined in Scheme 14.8.

In this sequence, reaction of triene 1178 with the doubly activated dienophile

1177 proceeded at room temperature via the least hindered endo transition state,

delivering the desired adduct 1179 as major isomer (>15:1). To this compound,

four additional carbon atoms were required for the 11-membered macrocycle. A

strategy using a sulfur-containing group facilitated this procedure. A phenacylthio

group was introduced (! 1180), which upon sun-lamp irradiation was converted to

the corresponding thioaldehyde 1181. This reactive species underwent a Diels-
Alder cycloaddition with (t-butyldimethylsilyloxy)butadiene yielding 1182 (10:1

ratio with a minor isomer). After removal of the N-benzoyl group, the carbonyl

group adjacent to the quaternary stereogenic center was reduced and subsequently

treated with acetic anhydride, which led to both O- and N-acetylation (! 1183).

Then, the allylic silyl ether group had to be converted to a functionality suitable for

a sulfur-mediated ring formation. This was realized by converting silyl ether 1183,

after deprotection (! 1184), to an allyl iodide 1186, which upon heating

underwent a ring expansion via sulfur ylide 1187. The resulting thioether 1188

was isolated in 78% yield. Deprotonation generated the bridgehead enolate, hence

methylation occurred only at this position. The introduction of another methyl

group worked best after exchanging the N-acyl group by a silyl group and treating

the resulting compound 1189 with LiHMDS and iodomethane. Afterwards, the

nitrogen was desilylated (! 1190) and re-acetylated. The sulfur functionality was

methylated to a sulfonium salt, which was cleaved by treatment with Rieke zinc

(! 1191). Unfortunately, the product with the desired stereochemistry could only

be isolated in a 1:2.6 ratio with its C-18 epimer (87% overall and 24% for 1191).

Nevertheless, the total synthesis was continued and after subsequent deacetylation

to 1192, an electrophilic selenylation to compound 1193 was carried out by

treatment with a reagent freshly prepared from diphenyl diselenide andMeerwein’s
reagent (Me3OBF4). After oxidation of the selenide, the system underwent a highly

selective 2,3-sigmatropic shift to allylic alcohol 1194. The final transformation

consisted in elimination of the methylthio group via oxidation and sulfoxide

pyrolysis at 135�C, which finally generated zygosporin E (1195).
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Scheme 14.8 Total synthesis of zygosporin E (1195). Reagents and conditions: a) rt, 93%;

b) phenylacyl thiol, K2CO3, THF, 88%; c) sunlamp irradiation; d) (t-butyldimethylsilyloxy)

butadiene, DBU, THF, 0�C, 60% over two steps; e) LiEt3BH, THF, �78�C; f) DIBAL-H, toluene,
0�C; g) Ac2O, DMAP, NEt3, THF, 20

�C, 52% over three steps; h) Et3NHF, MeOH; i) Bu3P, CCl4,

78% over two steps; j) NaI, K2CO3, MeCN; k) D, 71% over two steps; l) LDA, THF, MeI, 99%;

m) K2CO3, THF, MeOH, rt, 98%; n) TBS-Cl, DMAP, DBU, MeCN, rt, 76%; o) LiHMDS, �78 to

�40 to �78�C; then MeI; p) Et3NHF, THF, MeOH, rt, 79% over two steps; q) Ac2O, DMAP,

NEt3, THF, rt, 88%; r) allyltrimethylsilane, Me3OBF4, DME, 35�C to rt; then AcOH, Rieke zinc,
THF, 24%; s) K2CO3, THF, MeOH, �15�C, 70%; t) PhSeSe+(Me)Ph•BF4

�, CH2Cl2, �78�C,
97%; u) NaIO4, pH 7 buffer, dioxane, 0�C to rt, 88%; v) m-CPBA, NaHCO3, CH2Cl2, �78�C,
77%; w) CaCO3, xylenes, 135

�C, 52%
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15 Peptidic Mycotoxins

Peptides are omnipresent in all living organisms. In particular, fungi produce a large

number of mycotoxins containing peptide moieties. (Thio-)diketopiperazines

(cyclodipeptides) represent a large family of peptidic mycotoxins, which were

comprehensively illustrated in the corresponding chapter. Apart from diketopi-

perazines, there also exist other structural motifs containing one or more amino

acid residues. These motifs can be both linear and cyclic. Depsipeptides, e.g.
destruxins (Fig. 15.1) (758) and enniatins (759), are mostly cyclic peptide structures

which, apart from amide bonds, also contain ester bonds by incorporation of a-
hydroxy acids.
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Fig. 15.1 General structures of destruxins and enniatins

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic
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Peptidic mycotoxins are, among others, produced by Aspergillus, Fusarium,
Penicillium, Pithomyces, and Trichoderma (10).

15.1 Biological Properties

The destruxins, cyclic peptides containing five amide bonds and one ester bond, were

first isolated byKodaira in 1961 fromOospora destructor (760), hence the naming of

these compounds. Well-documented biological effects are insecticidal and phyto-

toxic activities (758). Furthermore, also antitumor, inotropic, or enzyme inhibitory

effects are reported. Destruxin E, for example, was synthesized in 2010 (761).
Enniatins isolated from Fusarium avenaceum show cytotoxic activities towards

various cell lines of human origin (759). In addition, they show antibiotic (762),
phytotoxic (763), and insecticidal (764–766) effects, and inhibit the enzyme acyl-

CoA:cholesterol acyl transferase (767). Due to their structural properties, the

enniatins are able to form complexes with alkali metal ions, thus influencing and

increasing the ionic permeability of membranes (768, 769). Beauvericin (1196)

(Fig. 15.2) is a highly symmetric member of the enniatins (hexacyclodepsipeptide

with alternating N-methylphenylalanine and hydroxy-iso-valeryl residues) and was
first isolated from Beauveria bassina, but is also produced by Fusarium species.

It possesses a pronounced ability to induce programmed cell death in mammalian

cell lines (770).

Enchinocandins B, C, and D were isolated from Aspergillus rugulosis and

Aspergillus nidulans (771, 772). Some semisynthetic derivatives are utilized

clinically as antimycotics (773, 774).
The so-called Nep1-like proteins (NLPs), a family of highly conserved and

mostly 24 kDa proteins, are produced by a variety of taxonomically unrelated
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Fig. 15.2 Structure of beauvericin

226 15 Peptidic Mycotoxins



microorganisms, including oomycetes, bacteria, and some fungi. They play a

crucial role as elicitors in plant necrosis (775).
The first member of the NLP group, Nep1 itself, was discovered in culture

filtrates of Fusarium oxysporum (Fig. 15.3) and was found to induce ethylene

production and necrosis in leaves of the coca plant, Erythroxylum coca (776).
Furthermore, Nep1 enhances the damaging effect to poppy plants in combination

with treatment of Pleospora papaveracea significantly (777) (Fig. 15.4).

Fig. 15.3 Fusarium oxysporum under the light microscope (Courtesy of Selmar Petzoldt)

Fig. 15.4 Necrosis on poppy plants 7 days after treatment. a) Negative control; b) after treatment

with Nep1 protein (5 mg/cm3); c) after treatment with Pleospora papaveracea (5 � 105 conidia

per cm3); d) after treatment with both Nep1 protein and P. papaveracea
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15.2 Total Syntheses

We will make no attempt here to describe existing syntheses of classical peptides,

but will only focus on compounds with more specialized structural features and/or

on challenging synthesis pathways.

15.2.1 Total Synthesis of Pithomycolide

Pythomycolide (1198), a cyclodepsipeptide of the pasture fungus Pithomyces
chartarum, has an unusual structure in bearing two b-substituted residues, thus

forming a 17-membered ring. It is known to bind strongly to Na+ and Ca2+ ions in

organic solvents. The total synthesis was conducted in 1994 by Le Quesne et al. on
the macrolactonization of compound 1197 to the natural product pithomycolide

(1198) (Scheme 15.1) (778, 779).

15.2.2 Total Synthesis of Ustiloxins D and F

The ustiloxins, isolated from the fungus Ustilaginoidea virens associated with rice

plants, show antimitotic properties by inhibiting microtubule formation (780, 781).
Structurally, they are characterized by the presence of two peptide bonds and one

unusual tertiary alkyl-aryl ether connection. The first total synthesis of ustiloxin D

(1205) was achieved in 2002 (782) by Joullié et al., followed by a shorter synthesis
by Wandless et al. (783, 784). Later on, its synthesis was conducted again (785)
along with ustiloxin F (1206) (786) in a more convergent manner than previously by

Joullié et al. (Scheme 15.2).

Ethynyl aziridine 1199 and tyrosine derivative 1200 were connected to 1201 by

ring opening of the aziridine in 90% yield. After removal of the nosyl protecting

group, the resulting free amine was subsequently coupled with N-Cbz valine (for
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H

N

O

O

O O

O Ph O

OH

Ph

NH

O

O

N

O

O

Ph

O

Ph

O
O

O

1197

1198 (pithomycolide)

a)

Scheme 15.1 Synthesis of pithomycolide (1198). Reagents and conditions: a) BOP-Cl, DIPEA,

CH2Cl2, 11%
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the synthesis of ustiloxin D) or N-Cbz alanine (for the synthesis of ustiloxin F).

Treatment with hydrogen and palladium resulted in deprotection of all of the benzyl

ester, benzyl ether, and Cbz groups, as well as hydrogenation of the alkyne bond, in

a single step. On achieving this, the macrocycle was formed through peptide

coupling utilizing EDC•HCl and HOBt. Finally, subsequent deprotections yielded

ustiloxin D (1205) and ustiloxin F (1206) in one further step.

15.2.3 Total Synthesis of Malformin C

Malformin C (1215), isolated from Aspergillus niger FKI-2342, is a G2 checkpoint
inhibitor and thus regarded as a promising anticancer agent (787). In 2008 a

convergent total synthesis of this tricyclic peptide containing a disulfide bond was

accomplished by Omura et al. (788) (Scheme 15.3).

L-Leucine benzyl ester (1207) was coupled with Boc-D-leucine, which after Boc-

deprotection gave dipeptide 1208. This was converted into tripeptide 1209 by

condensation with Fmoc-L-valine and hydrogenolytic removal of the benzyl ester.

Furthermore, another dipeptide 1212was prepared starting from commercially avail-

able Fmoc-D-S-tritylcysteine (1210), which was first converted into its allyl ester,

subsequently freed of the Fmoc group (! 1211), and then coupled with another

equivalent of Fmoc-D-S-tritylcysteine (1210), followed by Fmoc deprotection

(! 1212). Tripeptide 1209 and dipeptide 1212 were afterwards coupled to
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Scheme 15.2 Convergent total synthesis of ustiloxin D (1205) and F (1206). Reagents and

conditions: a) CuOAc (1 mol%), DBU, toluene, 0�C, 90%; b) PhSH, Cs2CO3, DMF, rt, 78%;

c) 1202, EDC•HCl, HOBt, NaHCO3, DMF, 0�C to rt; d) H2, Pd black, EtOH, rt; e) EDC•HCl,

HOBt, NaHCO3, DMF, rt; f) TFA, Et3SiH, CH2Cl2, rt, 8.7% over four steps for 1205; 8.8% over

four steps for 1206
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Scheme 15.3 Total synthesis of malformin C (1215). Reagents and conditions: a) Boc-D-Leu-OH,

EDC•HCl, HOBt, DIPEA, CH2Cl2, rt, 98%; b) 4 M HCl/dioxane, 0�C; c) Fmoc-L-Val-OH,

EDC•HCl, HOBt, DIPEA, CH2Cl2/DMF (4:1), rt; d) H2, Pd(OH)2, EtOAc, 40
�C, 86% over

three steps; e) Cs2CO3, allyl bromide, DMF, rt; f) piperidine, CH2Cl2, 0
�C, 93% over two steps;

g) Fmoc-D-Cys(Tr)-OH (1210), EDC•HCl, HOBt, DIPEA, CH2Cl2, rt; h) piperidine, CH2Cl2, 0
�C,

72% over two steps; i) HBTU, HOBt, NMM, CH2Cl2/DMF (4:1), rt, 93%; j) piperidine, CH2Cl2,

0�C; k) 1 M NaOH, THF, rt, 81% over two steps; l) HATU, HOAt, NMM, CH2Cl2, 0
�C, 69%;

m) I2, DMF, rt, 85%
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pentapeptide 1213 in very good yields (93%). The remaining protecting groups were

removed, which yielded cyclization precursor 1214. Macrocyclization proceeded

best when 1214 was treated with HATU/HOAt and NMM in a highly diluted

solution. Eventually, the resulting cyclic pentapeptide was subjected to oxidative

conditions using iodine in DMF, which provided the natural product 1215.

15.2.4 Total Synthesis of Unguisin A

Recently, a total synthesis of the moderately antibacterial unguisin A (1219) was

reported (789). This naturally occurring cyclopeptide from Emericella unguis
possesses an unusual g-butyro acid residue contained within the macrocycle. Its

total synthesis, a combination of solid phase and solution chemistry, is outlined in

Scheme 15.4.

Starting from Fmoc-L-phenylalanine bound to Wang resin (1216), standard

solid-phase peptide synthesis using the Fmoc-strategy was carried out, until the

desired heptapeptide 1217 was obtained. Deprotection and cleavage from the solid

phase yielded fully unprotected heptapeptide 1218, and consequent cyclization

delivered unguisin A (1219) in 81% yield.
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Scheme 15.4 Total synthesis of unguisin A (1219). Reagents and conditions: a) 10%

piperidine, DMF; b) Fmoc-amino acid (3 equiv.), HBTU (2.9 equiv.), DIPEA (6 equiv.),

DMF; c) 10% piperidine, DMF; d) TFA/triiso-propylsilane/H2O (95/2.5/2.5), 96% from

1216; e) 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium tetrafluoroborate, DIPEA,

DMF, 81%
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Abbreviations

9-BBN 9-Borabicyclo[3.3.1]nonane

Ac Acetyl

Ad Adamantyl

AD Asymmetric dihydroxylation

AIBN Azo-bis-iso-butyronitrile
ATPase Adenosine triphosphatase

BHT Butylhydroxytoluene

BIA Bioinductive assay

Bn Benzyl

Boc t-Butyloxycarbonyl
BOP-Cl Bis(2-oxo-3-oxazolidinyl)phosphonic chloride

brsm Based on recovered starting material

Bu Butyl

BuLi n-Butyllithium
Bz Benzoyl

CAN Cerium ammonium nitrate

CBS Corey-Bakshi-Shibata catalyst

Cbz Benzyloxycarbonyl

CNS Central nervous system

CoA Coenzyme A

cod 1,5-Cyclooctadiene

CSA Camphorsulfonic acid

Cys Cysteine

dba Dibenzylideneacetone

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene

DCC Dicyclohexyl carbodiimide

DDQ 2,3-Dichloro-5,6-dicyanobenzoquinone

DEAD Diethyl azodicarboxylate

DET Diethyl tartrate

DHP Dihydropyran

S. Bräse et al., The Chemistry of Mycotoxins, Progress in the Chemistry of Organic

Natural Products, Vol. 97, DOI 10.1007/978-3-7091-1312-7,
# Springer-Verlag Wien 2013
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DHQ Dihydroquinidine

DIAD Diisopropyl azodicarboxylate
DIBAL Diisobutyl aluminum

DIPEA Diisopropyl ethyl amine

DIPT N,N-Diisopropyltryptamine

DKP Diketopiperazine

DMAP Dimethylaminopyridine

DMDO Dimethyldioxirane

DME Dimethoxyethane

DMF Dimethylformamide

DMP Dess-Martin periodinane

DMSO Dimethylsulfoxide

DNA Desoxyribonucleic acid

DPPA Diphenylphosphoryl azide

dppbenz 1,2-Bis(diphenylphosphino)benzene

dppp 1,3-Bis(diphenylphosphino)propane

dr Diastereomeric ratio

DTBMP di-t-Butylmethylpyridine

EDC (N-Ethyl-N0-(3-dimethylaminopropyl)carbodiimide

ee Enantiomeric excess

EEDQ 2-Ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline

EGF Epidermal growth factor

ELEM Equine leukoencephalomalacia

equiv. Equivalents

er Enantiomeric ratio

Et Ethyl

EU European Union

Fmoc Fluorenylmethyloxycarbonyl

h Hour

HATU N,N,N0,N0-tetramethyl-O-(7-azabenzotriazol-1-yl)uronium
hexafluorophosphate

HBTU O-Benzotriazole-N,N,N0,N0-tetramethyl-uronium

hexafluorophosphate

HIV Human immunodeficiency virus

HMDS Hexamethyldisilazane

HMPA Hexamethylphosphoramide

HOAt Hydroxy-7-azabenzotriazole

HOBt N-Hydroxybenzotriazole
HPLC High-performance liquid chromatography

Hsp Heat shock protein

IBX 2-Iodoxybenzoic acid

IC Inhibitory concentration

IPC Isopinocampheyl

kDa kilodalton
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KHMDS Potassium bis(trimethylsilyl)amide

LAH Lithium aluminum hydride

LD Lethal dose

LDA Lithium diisopropylamide

Leu Leucine

LiDBB Lithium 4,40-di-tert-butyl biphenyl
LiHMDS Lithium bis(trimethylsilyl)amide

m-CPBA meta-Chloroperbenzoic acid
Me Methyl

MIDA N-Methyliminodiacetic acid

MOM Methoxymethyl

Ms Mesyl

MS Molecular sieves

MTBE Methyl tert-butyl ether
MW Microwave

NaHMDS Sodium bis(trimethylsilyl)amide

NBS N-Bromosuccinimide

NCS N-Chlorosuccinimide

Nep1 Necrosis and ethylene-inducing peptide1

NHK Nozaki-Hiyama-Kishi
NIS N-Iodosuccinimide

NLP Nep1-like protein

NMM N-Methylmorpholine

NMO N-Methylmorpholine oxide

NMR Nuclear magnetic resonance

Ns 2-Nitrophenylsulfonyl

OMST O-Methylsterigmatocystin

PCC Pyridinium chlorochromate

PDC Pyridinium dichromate

Ph Phenyl

PHAL Phthalazine

Phe Phenylalanine

Phth Phthaloyl

Piv Pivalyl (= 2,2-dimethylpropanoyl)

PLE Porcine liver esterase

PMB Paramethoxybenzyl ether

PPTS Pyridinium para-toluenesulfonate
PPY 4-(1-Pyrrolidinyl)pyridine

Pr Propyl

Pro Proline

PS Polystyrene

PTSA para-Toluenesulfonic acid
Py Pyridine

R Residue
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RAL Resorcylic acid lactones

Red-Al Sodium bis(2-methoxyethoxy)aluminum hydride

RNA Ribonucleic acid

ROS Reactive oxygen species

rt Room temperature

SEM [2-(Trimethylsilyl)ethoxy]methyl

Sia Siamyl (1,2-dimethylpropyl)

SPhos 2-Dicyclohexylphosphino-20,60-dimethoxybiphenyl

t tert-
TBAF tetra-butyl ammonium fluoride

TBAI tetra-butyl ammonium iodide

TBDPS tert-butyldiphenylsilyl
TBHP tert-butyl hydroperoxide
TBS tert-butyldimethylsilyl

TBU 1,8-Diazabicyclo[5.4.0]undec-7-ene

TCA Tricarboxylic acid

TDKP Thiodiketopiperazine

TEA Triethylamine

TEMPO (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl

Tf Triflyl

TFA Trifluoroacetic acid

TFAA Trifluoroacetic acid anhydride

THF Tetrahydrofuran

THP Tetrahydropyranyl

TIPS Triiso-propyl silyl
TLC Thin-layer chromatography

TMEDA N,N,N0,N0-Tetramethylethylenediamine

TMP 2,2,6,6-Tetramethylpiperidine

TMS Trimethylsilyl

TMSE Trimethylselenonium

Tol Toluyl

TPAP tetra-propylammonium perruthenate

TPPTS 3,30,300-Phosphinidynetris(benzenesulfonic acid) trisodium salt

Tr Trityl (=triphenylmethyl)

Ts para-Toluenesulfonyl
Val Valine

WSC 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride

236 Abbreviations



References

1. Richard JL (2007) Some Major Mycotoxins and their Mycotoxicoses—an Overview. Int J

Food Microbiol 119: 3

2. Hussein HS, Brasel JM (2001) Toxicity, Metabolism, and Impact of Mycotoxins on Humans

and Animals. Toxicology 167: 101

3. http://publications.tamu.edu/publications/Corn/B-1279%20Mycotoxins.pdf

4. Turner NW, Subrahmanyam S, Piletsky SA (2009) Analytical Methods for Determination of

Mycotoxins: a Review. Anal Chim Acta 632: 168

5. Robbins CA, Swenson LJ, Nealley ML, Gots RE, Kelman BJ (2000) Health Effects of

Mycotoxins in Indoor Air: a Critical Review. Appl Occup Environ Hyg 15: 773

6. Winssinger N, Barluenga S (2007) Chemistry and Biology of Resorcylic Acid Lactones.

Chem Commun: 22

7. Martins, MB, Carvalho, I (2007) Diketopiperazines: Biological Activity and Synthesis.

Tetrahedron 63: 9923, and references cited therein

8. Fox, EM, Howlett, BJ (2008) Biosynthetic Gene Clusters for Epipolythiodioxopiperazines in

Filamentous Fungi. Mycol Res 112: 162, and references cited therein

9. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16: 497

10. Bräse S, Encinas A, Keck J, Nising CF (2009) Chemistry and Biology of Mycotoxins and

Related Fungal Metabolites. Chem Rev 109: 3903

11. Nesbitt BF, O’Kelly J, Sargeant K, Sheridan A (1962) Toxic Metabolites of Aspergillus
flavus. Nature 195: 1062

12. http://www.schimmel-schimmelpilze.de/presse-download.html

13. Lilly LJ (1965) Induction of Chromosome Aberrations by Aflatoxin. Nature 207: 433

14. Schoental R (1967) Aflatoxins. Annu Rev Pharmacol 7: 343

15. Van Egmond HP, Jonker MA (2004) Worldwide Regulations on Aflatoxins – The Situation in

2002. J Toxicol 23: 273

16. Decastelli L, Lai J, Gramaglia M, Monaco A, Nachtmann C, Oldano F, Ruffier M, Sezian A,

Bandirola C (2007) Aflatoxins Occurrence in Milk and Feed in Northern Italy During 2004–

2005. Food Control 18: 1263

17. Wong JJ, Hsieh DPH (1976) Mutagenicity of Aflatoxins Related to Their Metabolism and

Carcinogenic Potential. Proc Natl Acad Sci USA 73: 2241

18. Carnaghan RBA, Hartley RD, O’Kelly J (1963) Toxicity and Fluorescence Properties of the

Aflatoxins. Nature 200: 1101

19. Schuda PF (1979) Aflatoxin Chemistry and Syntheses. Top Curr Chem 91: 75

20. Asao T, Büchi G, Abdel-Kader MM, Chang SB, Wick EL, Wogan GN (1963) Aflatoxins B

and G. J Am Chem Soc 85: 1706
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87. Rödel T, Gerlach H (1995) Enantioselective Synthesis of the Polyketide Antibiotic (3R,4S)-
(−)-Citrinin. Liebigs Ann: 885

88. Wallwey C, Li SM (2011) Ergot Alkaloids: Structure Diversity, Biosynthetic Gene Clusters

and Functional Proof of Biosynthetic Genes. Nat Prod Rep 28: 496

89. Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot Alkaloids - Biology and Molecular

Biology. In: Cordell GA (ed), The Alkaloids: Chemistry and Biology, vol 63. Academic

Press, San Diego, CA, p 45
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333. Böhner B, Fetz E, Härri E, Sigg HP, Stoll C, Tamm C (1965) Über die Isolierung von

Verrucarin H, Verrucarin J, Roridin D und Roridin E aus Myrothecium-Arten. Helv Chim

Acta 118: 1079

334. Kupchan SM, Jarvis BB, Dailey RG, Bright JrW, Bryan RF, Shizuri Y (1976) Baccharin, a

Novel Potent Antileukemic Trichothecene Triepoxide from Baccharis megapotamica. J Am
Chem Soc 98: 22

250 References

http://www.schimmel-schimmelpilze.de/trichoderma.html
http://www.schimmel-schimmelpilze.de/stachybotrys.html


335. Mirrington RN, Ritchie E, Shoppee CW, Taylor WC, Aternhell S (1964) The Constitution of

Radicicol. Tetrahedron Lett 7: 365

336. McCapra F, Scott, AI, Delmotte P, Delmotte-Plaquee J, Bhacca NS (1964) The Constitution

of Monorden, an Antibiotic with Tranquilising Action. Tetrahedron Lett 15: 869

337. Delmotte P, Delmotte-Plaquee J (1953) A New Antifungal Substance of Fungal Origin.

Nature 171: 344

338. Stob M, Baldwin RS, Tuite J, Andrews FN, Gilette KG (1962) Isolation of an Anabolic,

Uterotropic Compound from Corn Infected with Gibberella zeae. Nature 196: 1318
339. Urry WH, Wehrmeister HL, Hodge EB, Hidy PH (1966) The Structure of Zearalenone.

Tetrahedron Lett 27: 3109

340. http://www.agrigold.com/media/Rotten_Grain_In_The_Corn5.jpg by Andrew Westhoven,

Regional Agronomist, AgriGold Hybrids, 2009

341. Hagler WM, Mirocha CJ, Pathre SV, Behrens JC (1979) Identification of the Naturally

Occurring Isomer of Zearalenol Produced by Fusarium roseum ‘Gibboseum’ in Rice Culture.

Appl Environ Microbiol 37: 849

342. Agatsuma T, Takahashi A, Kabuto C, Nozoe S (1993) Revised Structure and Chemistry of

Hypothemycin. Chem Pharm Bull 41: 373

343. Nair MSR, Carey ST (1980) Metabolites of Pyrenomycetes XIII: Structure of (+)

Hypothemycin, an Antibiotic Macrolide from Hypomyces trichothecoides. Tetrahedron Lett

21: 2011

344. Isaka M, Suyarnsestakorn C, Tanticharoen M, Kongsaeree P, Thebtaranonth Y (2002)

Aigialomycins A-E, New Resorcylic Macrolodes from the Marine Mangrove Fungus

Aigialus parvus. J Org Chem 67: 1561

345. Hellwig V, Mayer-Bartschmid A, Müller H, Greif G, Kleymann G, Zitzmann W, Tichy H-V,

Stadler M (2003) Pochonins A-F, New Antiviral and Antiparasitic Resorcylic Acid Lactones

from Pochonia chlamydosporia var. catenulata. J Nat Prod 66: 829

346. Xu L, He Z, Xue J, Chen X, Wei X (2010) β-Resorcylic Acid Lactones from a Paecilomyces
Fungus. Nat Prod 73: 885

347. Shao C-L, Wu H-X, Wang Ch-Y, Liu Q-A, Xu Y, Wei M-Y, Qian P-Y, Gu Y-C, Zheng C-J,

She Z-G, Lin Y-C (2011) Potent Antifouling Resorcylic Acid Lactones from the Gorgonian-

Derived Fungus Cochliobolus lunatus. J Nat Prod 74: 629

348. Oyama H, Sassa T, Ikeda M (1978) Structured of New Plant Growth Inhibitors, trans- and
cis-Resorcylide. Agric Biol Chem 42: 2407

349. Aldridge DC, Galt S, Giles D, Turner WB (1971) Metabolites of Lasiodiplodia theobromae. J
Chem Soc: 1623

350. Miksicek RJ (1994) Interaction of Naturally Occuring Nonsteroidal Estrogens with

Expressed Recombinant Human Estrogen Receptor. J Ster Biochem Mol Biol 49: 153

351. Shier WT, Shier AC, Xie W, Mirocha CJ (2001) Structure-Activity Relationship for Human

Estrogenic Activity in Zearalenone Mycotoxins. Toxicon 39: 1435

352. Hodge EG, Hidy PH Wehrmeister HJ (1966) Estrogenic Compounds and Animal Growth

Promotors. US Pat 3239345

353. Utian WH (1973) Comparative Trial of P1496, a New Non-steroidal Oestrogen Analogue. Br

Med J 1: 579

354. Kwon HJ, Yoshida M, Fukui Y, Horinouchi S, Beppu T (1992) Potent and Specific Inhibition

of p60v-src Protein Kinase Both in vivo and in vitro by Radicicol. Cancer Res 52: 6926

355. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A High-

affinity Conformation of Hsp90 Confers Tumour Selectivity onHsp90 Inhibitors. Nature 425: 407

356. Barluenga S, Dakas P, Boulifa M, Moulin E, Winssinger N (2008) Resorcylic Acid Lactones:

A Pluripotent Scaffold with Therapeutic Potential. C R Chim 11: 1306

357. Schirmer A, Kennedy J, Murli Sumati, Reid R, Santi AV (2006) Target Covalent Inactivation

of Protein Kinases by Resorcylic Acid Lactone Polyketides. Proc Natl Acad Sci USA 103:

4234

References 251

http://www.agrigold.com/media/Rotten_Grain_In_The_Corn5.jpg


358. Zhao A, Lee SH, Jenkins RG, Patrick DR, Huber HE, Goetz MA, Hensens OD, Zink DL,

Vilella D, Dombrowski AW, Lingham RB, Huang L (1999) Resorcylic Acid Lactones:

Naturally Occurring Potent and Selective Inhibitors of MEK. J Antibiot 52: 1086

359. Masamune S, Bates GS, Corcoran JW(1977) Macrolides. Recent Progress in Chemistry and

Biochemistry. Angew Chem Int Ed Engl 16: 585

360. Corey EJ, Nicolaou KC (1974) An Efficient and Mild Lactonization Method for the Synthesis

of Macrolides. J Am Chem Soc 96: 5614

361. Masamune S, Kamata S, Schilling W (1975) Syntheses of Macrolide Antibiotics. III. Direct

Ester and Lactone Synthesis from S-tert-Butyl Thioate (Thiol Ester) J AmChem Soc 97: 3515

362. Fürstner A, Thiel OR, Kindler N, Bartkowska B (2000) Total Syntheses of (S)-(−)-
Zearalenone and Lasiodiplodin Reveal Superior Metathesis Activity of Ruthenium Carbene

Complexes with Imidazol-2-ylidene Ligands. J Org Chem 65: 7990

363. Srihari P, Mahankali B, Rajendraprasad K (2012) Stereoselective Total Synthesis of

Paecilomycin E. Tertrahedron Lett 53: 56

364. Taub D, Girotra NN, Hoffsommer RD, Kuo CH, Slates HL, Weber S, Wendler NL (1967)

Total Synthesis of the Macrolide, Zearalenone. Chem Commun: 225

365. Vlattas I, Harrison IT, Tökés L, Fried JH, Cross AD (1978) The Synthesis of DL-Zearalenone.

J Org Chem 33: 11

366. Takahashi T, Kasuga K, Takahashi M, Tsuji J (1979) A Simple Total Synthesis of (±)-

Zearalenone by Intramolecular Alkylation Using a Butadiene Telomer as Building Block. J

Am Chem Soc 101: 5072

367. Keinan E, Sinha SC, Sinha-Bagchi A (1991) Thermostable Enzymes in Organic Synthesis,

Part 6. Total Synthesis of (S)-(−)-Zearalenone Using a TBADH-generated Trifunctional

Chiron. J Chem Soc Perkin Trans 1: 3333

368. Hurd RN, Shah DH (1973) Total Synthesis of the Macrolide (R,S)-Zearalenone. J Med Chem

16: 543

369. Takahashi T, Ikeda H, Tsuji J (1981) New Synthetic Method for Orsellic Acid Type

Macrolides by Intramolecular Alkylation of Protected Cyanohydrin. The Synthesis of (±)-

Zearalenone. Tetrahedron Lett 22: 1363

370. Hitchcock SA, Pattenden G (1990) Synthesis of Macrocycles via Allylic Radical

Intermediates. A Total Synthesis of (±)-Zearalenone. Tetrahedon Lett 31: 3641

371. Kalivretenos K, Stille JK, Hegedus LS (1991) Synthesis of β-Resorcylic Macrolides via
Organopalladium Chemistry. Application to the Total Synthesis of (S)-Zearalenone. J Org
Chem 56: 2883

372. Nicolaou KC, Winssinger N, Pastor J, Murphy F (1998) Solid-Phase Synthesis of Macrocy-

clic Systems by a Cyclorelease Strategy: Application of the Stille Coupling to a Synthesis of

(S)-Zearalenone. Angew Chem Int Ed 37: 2534

373. Navarro I, Basset J-F, Hebbe S, Major SM, Werner T, Howsham C, Bräckow J, Barrett AGM
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498. Altemöller M, Podlech J, Fenske D (2006) Total Synthesis of Altenuene and Isoaltenuene.

Eur J Org Chem: 1678

499. Murray LM, O’Brien P, Taylor RJK (2003) Stereoselective Reactions of a (−)-Quinic Acid-
Derived Enone: Application to the Synthesis of the Core of Scyphostatin. Org Lett 5: 1943

500. Barros MT, Maycock CD, Ventura MR (2001) Approaches to the Synthesis of (+)- and (−)-
Epibatidine. J Chem Soc Perkin Trans 1: 166

501. Kamisuki S, Takahashi S, Mizushina Y, Hanashima S, Kuramochi K, Kobayashi S,

Sakaguchi K, Nakata T, Sugawara F (2004) Total Synthesis of Dehydroaltenusin. Tetrahe-

dron 60: 5695

502. Barder TE, Walker SD, Martinelli JR, Buchwald SL (2005) Catalysts for Suzuki-Miyaura
Coupling Processes: Scope and Studies of the Effect of Ligand Structure. J Am Chem Soc

127: 4685

503. Walker SD, Barder TE, Martinelli JR, Buchwald SL (2004) A Rationally Designed Universal

Catalyst for Suzuki-Miyaura Coupling Processes. Angew Chem Int Ed 43: 1871

504. Oh-e T, Miyaura N, Suzuki A (1990) Palladium-catalyzed Cross-coupling Reaction of Aryl

or Vinylic Triflates with Organoboron Compounds. Synlett: 221

505. Cieplak AS (1999) Inductive and Resonance Effects of Substituents on π-Face Selection.

Chem Rev 99: 1265

506. Sha CK, Huang SJ (1995) Synthesis of β-Substituted α-Iodocycloalkenones. Tetrahedron
Lett 36: 6927

507. Alves C, Barros MT, Maycock CD, Ventura MR (1999) An Efficient Transformation of

Quinic Acid to Shikimic Acid Derivatives. Tetrahedron 55: 8443
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Höller, U., 265

Holzapfel, C.W., 248, 253

Hooper, J.W., 262

Horak, R.M., 245

Horan, A., 267

Horinouchi, S., 251

Horn, W.S., 267

Horne, S., 10, 11, 161, 162, 238, 263

Hosangadi, B.D., 261

Hosokawa, S., 165, 264, 265

Hosotani, N., 265

Howard, B.H., 258, 259

Howlett, B.J., 237, 253

Howsham, C., 252

Hsi, J.D., 238

Hsia, M.T.S., 238

Hsieh, D.P.H., 237

Hsu, A., 269

Hsu, M.J., 265, 266

Hu, W., 245, 265

Hua, D.H., 250

Huang, L., 252, 258, 269

Huang, S.J., 258

Huang, S.L., 247

Huang, X.H., 270

Huber, H.E., 252

Hubner, S., 243

Hufford, K.D., 160, 263

Author Index 279



Hughes, A.B., 255

Hui, R.A.H.F., 239

Hui, Y.Z., 246

Humpf, H.U., 66, 248

Hung, D., 255

Hunter, L., 271

Huot, R., 259
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Nüesch, J., 270

Numata, A., 267

Nursid, M., 253

Nyfeler, R., 270

O

Oberlies, N.H., 265

O’Brien, E., 179, 264

O’Brien, M., 241

O’Brien, P., 258

Ochiai, Y., 250

Ochse, M., 257

Ogawa, S., 250

Ogihara, Y., 259, 260

Ohata, M., 243

Ohbayashi, F., 260

Oh-e, T., 258

O’Herron, F.A., 263

Ohga, M., 246
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Řezanaka, P., 265
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Histone methyltransferases, inhibition, 119

HIV-1-protease, 212
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Humicola fuscoatra, 159
Humicola sp., xanthoquinodins, 196
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I

IMDAF (intramolecular Diels-Alder
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157, 159, 161
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Microsphaerins, 187, 199

Microsphaeropsis spp., microsphaerins, 199

Milk toxins, 4

Monilinia fructicola, 155
Monodictysins, 180, 182

Monodictyxanthone, 182
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Monosporium bonorden, 91
MRSA, 199
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Mycobacterium tuberculosis, 201
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Myrothecium roridum, 86
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N

Neoaltenuene, 128, 136

Neopatulin, 70

Neosartorin, 169, 187, 201

Neosartorya fischeri, neosartorin, 201
Nep1, 227

Nep1-like proteins (NLPs), 226

Nidulalin A, 164

Nidurufin, 19

Non-steroidal estrogen, 93

Noradrenaline, 35

Norbikaverin, 155

Norsolorinic acid, 159

Nozaki-Hiyama-Kishi (NHK reaction), 41

NLPs. See Nep1-like proteins (NLPs)
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Ochratoxins, 61

Okaramines, 109

Oospora destructor, 226
Orcinol, 174

P

Paecilomyces spp., 92
Paecilomycins, 92

Parasiticol, 5

Parkinson’s disease, 35, 93

Parnafungins, 187, 188

Paspaclavine, 34

Patulin, 69

Penicillic acid, 70

Penicillium amarum, 155
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Penicillium citrinum, 23
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patulin, 69

Penicillium glabrum, vinaxanthone, 184
Penicillium islandicum, 141
Penicillium kapuscinski, 34
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Penicillium radicum, 141
Penicillium rugulosum, 140
Penicillium simplicissimum, 109
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phomachalasins, 209

Phoma S298, cytochalasin B, 213
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Phomopsichalasin, 209
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Phomopsis sp., phomoxanthones, 201

trichothecenes, 73

Phomoxanthones, 187, 201

Phospholipase C (PLC) inhibitor,

vinaxanthone, 184

Physcia obscura, 141
Pinselic acid, 155

Pinselin, 155

Pithomyces chartarum, 228
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Plasmodium falciparum, 182, 184,
193, 201

Pleospora papaveracea, 227
Pochonia chlamydosporia var.

catenulata, 92
Pochonins, 92, 93, 107

Potato blight, 127

Preussia multispora, 141
Proxiphomin, 216

Pyrichalasins, 208

Pyroclavine, 29

Pyxine endochrysina, 141
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Radicicol (monorden), 91, 93, 100

Resorcylic acid lactones (RALs), 91

Resorcylide, 92

RNA synthesis, patulin, 69

Roridin E, 74, 88

Rostratins, 111, 124

Rubroskyrin, 139, 140, 146

Rugulin, 142, 146

Rugulosins, 140, 141, 143

Rugulotrosins, 187, 202

Rugulovasines, 34

intramolecular vinylogous Mannich
approach, 43

S

Sch 42137, 187, 203

Sch 54445, 187, 204

Secalonic acids, 166, 173, 182, 194

Secoergolenes, 28

Secosterigmatocystin, 158

Semaphorins, inhibition, 185

Serotonin, 35

Setoclavine, intermolecular vinylogous

Mannich approach, 44

Simaomicins, 203

Skyrins, 139

Sparteine, 36

Sphingolipid biosynthesis, inhibition,

fumonisins, 51, 53

Spicochalasin A, 209

Sporol, 74, 80

Stachybotrys chartarum, 74
Sterigmatocystin, 5, 156

Sulfinyl imines, asymmetric alkenylation, 37
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Tenuazonic acid, 129, 137

Tetrahydroxanthones, 153, 166, 188, 202

dimers/heterodimers, 187

Tetramic acids, 137

Tetronic acid, 70

Thiodiketopiperazines (TDKP), 109, 125

Tobacco brown spot, 127

Tomato blight, 127

Trichoderma viride, 74, 76
Trichodermin, 74, 76

Trichothecenes, 73

Trichothecin, 74

Trichothecium roseum, 73
Tryprostatin, 112

Turkey-X disease, 3

U

Unguisin A, 231

Ustilaginoidea virens, 228
Ustiloxins, 228

V

Verrucarinic acid, 86, 87

Verrucarins, 74, 83, 86

Verrucarol, 83, 84

Verruculogen, 110

Subject Index 299



Versicolorins, 5, 20, 159

Versiconol, 159
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Vinaxanthone, 183, 184, 187

Viridamine, 110

X

2-Xanthenes, hydroxy-substituted, 196

Xanthofulvin, 183, 187

Xanthones, 153, 169

dimers/heterodimers, 183

Xanthonol, 169, 187, 205

Xanthoquinodins, 167, 169, 183, 187, 196

Y

Ylidenebutenolide, 71

Z

Zearalenol, 92, 93, 98
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