
an informa business

Many areas of mining engineering gather and use statistical information, provided by observing the 
actual operation of equipment, their systems, the development of mining works, surface subsidence that 
accompanies underground mining, displacement of rocks surrounding surface pits and underground drives 
and longwalls, amongst others. In addition, the actual modern machines used in surface mining are equipped 
with diagnostic systems that automatically trace all important machine parameters and send this information 
to the main producer’s computer. Such data not only provide information on the technical properties of the 
machine but they also have a statistical character. Furthermore, all information gathered during stand and lab 
investigations where parts, assemblies and whole devices are tested in order to prove their usefulness, have 
a stochastic character. All of these materials need to be developed statistically and, more importantly, based 
on these results mining engineers must make decisions whether to undertake actions, connected with the 
further operation of the machines, the further development of the works, etc. For these reasons, knowledge 
of modern statistics is necessary for mining engineers; not only as to how statistical analysis of data should be 
conducted and statistical synthesis should be done, but also as to understanding the results obtained and how 
to use them to make appropriate decisions in relation to the mining operation. 

This book on statistical analysis and synthesis starts with a short repetition of probability theory and also 
includes a special section on statistical prediction. The text is illustrated with many examples taken from mining 
practice; moreover the tables required to conduct statistical inference are included. 
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Preface and acknowledgements

The variety of technical devices that is available on the market is quite rich. The items offered 
have, in the majority of cases, the broad possibility of realizing their targets. Very often 
the devices that are selected are set up together, creating systems to execute predetermined 
functions. In mining engineering, mechanized systems are formed in order to excavate rocks, 
to haul broken material, to dump waste, to store excavated ore or to carry out ore treatment 
by mechanical, chemical or thermal means. The technical objects being used nowadays are 
complicated constructions. In order to apply them in an appropriate manner, we should follow 
the recommendations formulated by their producers and we should frequently observe the 
realization of their operation (exploitation)1 process, which is understood here as the process 
of changes in their properties during the use of the object. Running changes are interesting 
first of all for the constructor and producer of the object. They are also interesting for the 
user of the equipment, who is concerned in its application to attain the best performance of 
the item purchased over the long term. Information gathered during the operation of the 
object creates statistical data.

Actually, the more complicated machines used in mining (and pieces of equipment from 
other engineering areas) are furnished with special systems which diagnose a continuously 
running machine, collect information on its exploitation events and send it to the main 
producer’s computer. In many cases the information that is transmitted is very rich comprising 
a few tens of units of information. Again, this trio: the constructor, producer and user are 
interested in the accumulated material. And once again, this information has statistical 
character.

The information that is generated through the realization of the operation of a machine 
has a twofold meaning. It provides information on the technical parameters that are of 
interest at a given moment of time directly, e.g. power consumption, force applied during 
retardation, mass accumulated in the shovel etc. But very often there is concern about 
the average characteristics of the observed data, i.e. there is concern about the statistical 
characteristics of collected material.

It is easy to enumerate at least several further areas of mining engineering interest in which 
the important information that is gathered has a statistical character; investigations made 
during research on a stand in a lab generating records, collected data from an instrument 
with a new device installed and operating in real working conditions, sensors continuously 
tracing excessive shocks in a rock mass near mining production areas, information taken 
from an ore processing plant and connected with a given stage of ore treatment etc. All of 
these examples show areas that generate information of a statistical character. Information 
that should be analysed carefully; its synthesis should be conducted and statistical inference 
should be carried out.

The main goal of this book is to acquaint readers with a basic knowledge of  mathematical 
statistics; knowledge that should be known by contemporary mining engineers. For this reason 
this book is addressed—first of all—to students of mining faculties and schools. The majority 
of the cases considered here are taken from the field of mine mechanization. However, there 

1These two terms will be used here interchangeably, i.e. they are synonyms. Grounds for such an approach 
can be found in Chapter 1, Czaplicki 2010.
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are also practical examples taken from different areas such as ore treatment, blasting, rock 
mechanics and some econometric problems associated with mining engineering.

Some parts of this book that deal with the reliability and exploitation problems of a 
variety of equipment will be interesting for reliability engineers. Similarly, some examples 
may be of interest for earthmoving engineers. Because of the universal character of the 
models and methods presented here, some parts may also be attractive for civil engineers, 
engineers involved in production as well as for engineers working at industrial institutes, 
especially mining ones. Students learning mathematical statistics and searching for practical 
applications of it will find some chapters interesting as well. Additionally, I hope that my 
academic colleagues working at mining universities will also find this book interesting, and 
perhaps useful in their educational work.

It is presumed that readers of the book have knowledge of the basics of probability theory. 
Nevertheless, in order to ensure a better understanding of the text, a short repetition from 
this field is presented in Chapter 1. It is also recommended that readers have some idea 
of the theory of reliability and the theory of exploitation. There are actually many books 
related to both probability and reliability theories and therefore no specific book is suggested 
here. There is a different situation related to the theory of exploitation (terotechnology, to a 
certain extent). One suggested book is “Mining equipment and systems. Theory and practice 
of exploitation and reliability” (2010) and also written by the author of this book. In order 
to make the considerations conducted here more communicative, several basic probabilistic 
terms are defined. The author has made a special effort to present definitions in such a 
form so as to be immediately understandable for even those readers with less knowledge of 
probability theory. Where terms of mathematical statistics are concerned, a special chapter at 
the end has been added where the majority of the essential terms are defined.

In the entire text terms and notations taken from the field of engineering that interlace with 
statistical terminology are commonly applied. In order to make the text more understandable 
examples are given; in many cases taken from author’s practice. Data have been collected from 
different mines, different equipment producers and from several different countries. However, 
in several cases, data and results are taken from books and dissertations of colleagues; and 
the author is very grateful for their acceptance of the use of their great works in this book.

The construction of the examples is similar: the goal of the investigation is formulated, 
an examination is conducted and there is a need to work with the outcomes to get proper 
interpretation of the properties of the reality observed. It is necessary to apply the appropri-
ate mathematical tools from mathematical statistics in order to obtain suitable results from 
the investigation. The next step is very sensitive: how to properly interpret the outcomes? 
This means that the information acquired must be translated into engineering language.

Often, during statistical inference, attention is paid to the nuances of the methods applied, 
to subtleties contained in the observations and to sensitive points of interference. This enriches 
the information that is the result of the investigation.

I would like to express my very warm thanks to Prof. Leon Dziembała, who passed away 
just recently, for support, Ms Michele Simmons for proofreading and Janjaap Blom, Senior 
Publisher CRC Press / Balkema—Taylor & Francis Group and his open and extremely 
professional team for their reliable and efficient cooperation.

Jacek M. Czaplicki
Mining Mechanization Institute

Silesian University of Technology, Gliwice, Poland
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List of major notations

 E(X)  – expected value, mean value, mathematical hope of the random variable X
 F(n, m)  – F Snedecor distribution with F(n, m) degrees of freedom
 H0, H1  – statistical hypotheses: basic and alternative 
 n  – sample size
 N(m, σ)  – normal distribution with parameters m and σ
 N(0, 1)  – standardised normal distribution with parameters m = 0 and σ = 1
 rS, r′S  – Spearman correlation coefficient
 R  – linear Pearson correlation coefficient
 R  – non-linear correlation coefficient 
 t(n)  – Student’s t probability distribution with n degrees of freedom
 u  – residual
 uα  – quantile of order α standardised normal distribution N(0, 1)
 z  – Fisher’s distribution
 α  – level of significance
 φN(x)  – probability density function of standardised normal distribution N(0, 1)
 ΦN(x)  – probability cumulative function of standardised normal distribution N(0, 1)
 χ 2(n)  – χ 2 (chi-squared) distribution with n degrees of freedom
 σ 2(X)  – variance of the random variable X
 ρ  – correlation coefficient in general population
   – has distribution

Each example considered has following signs:
■ – beginning of example
◀ – end of example
 – end of a phase of consideration in the example; considerations will be continued

Random variables are usually marked in bold. Sets are usually marked by Frankenstein 
letters.
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1

CHAPTER 1

Fundamentals

1.1 GOAL AND TASK OF STATISTICS

Originally, i.e. until the first half  of the 19th century, the term statistics—a word taken from 
the Latin language: status—meant a set of data or numbers describing the state of a political 
body. The first notations in this regard were used in ancient China and Egypt and later in the 
Roman Empire. Such data were very useful and this was confirmed once again in the Middle 
Ages. Later on, the scope of the term was enlarged to include all sets of data. In the 20th 
century, methods for the analysis of the collected information were incorporated.

There is a difference in meaning in the English language as to whether the word statistics 
is used as a singular or plural noun.1

Statistics means:

a. A discipline of science, the branch of mathematics that deals with quantitative methods to 
investigate mass phenomena

b. A set of data that is a picture of the running changes of some phenomena (processes) in a 
certain space.

Statistics relates to status. Statistic means a characteristic describing the determined prop-
erties of a set of numbers. This characteristic is in fact an estimator (function) of an unknown 
parameter of the general population being investigated through taking a sample.

Statistics, as a science dealing with the methods used to gain, to present and to analyse 
data, has the main goal of  obtaining generalised useful information about some phenomenon 
or property.

Such a phenomenon must have a mass character, i.e. it should be connected with a large 
number of cases. In such a situation, some regularity can be traced. In every case, this regu-
larity is the result of the action of some causes; causes that create a set. Regularities of such 
a nature are called statistical regularities, i.e. they cannot usually be found by observing only 
one, singular event.

The reasons that generate statistical regularity can be divided into the:

• main ones or
• random ones.

The main reasons create a systematic component whereas the random reasons create a 
stochastic component.

The mass character of a phenomenon does not give a ground to apply statistical methods. 
These methods can only be used when the set is composed of similar elements that have non-
identical properties.

The first stage of  a statistical investigation consists of  the construction of  an investiga-
tion plan. It is composed of  the goal and subject of  the examination planned. The elements 
of  the statistical population have to be identified together with their properties, which are 

1 There is no such difference in some other languages.

Book.indb   1Book.indb   1 12/9/2013   12:21:50 PM12/9/2013   12:21:50 PM



2 Statistics for mining engineering

slightly different for each element. These are called statistical properties. These features 
can be:

• measurable (such as: mass, power, the number of hoists per day, the time of repair)
• immeasurable (e.g. the machine type, the type of conveyance applied, the existence or non-

existence of a certain furnishing item in a given system).

Measurable properties can be:

• discrete (the number of cycles of a machine per unit of time, the number of device failures 
per tonne of mass transported etc.)

• continuous (for example: the time of renewal, the age of a piece of equipment)
• quasi-measurable (making order).

Quasi-measurable properties determine the intensity of the investigated feature in the 
population. Examples of quasi-measurable properties can be incomes or wages, which to a 
certain limit have continuous character, but later on become discrete in nature.

Each statistical unit can be described by one feature or many features, depending on the 
investigation goal formulated. In this context, we have one-dimensional populations or multi-
dimensional ones.

Another division of statistical properties distinguishes:

• constant features
• variable features.

Constant features are described as answering the questions: What? When? Where? These 
features are common for all elements of the population of interest. They are not the subject 
of the investigation; they decide whether these elements belong to the population. The fea-
tures that are the subject of investigation are variable ones.

When the subject of an investigation is fixed and the method of gathering data is decided, 
the next step is data collection and later—their control and ordering in a convenient way, 
grouping together, segregating etc. Such material is the input for the analysis of information 
accumulated.

To summarise—every statistical investigation consists of the following phases:

1. preparation
2. observation (data collection)
3. work with the gathered information
4. analysis
5. inference.

The main task of mathematical statistics is the analysis and interpretation of the results 
that arise from the application of appropriate methods.

The population whose elements are observed is called a sample, i.e. it is a subpopulation 
(subset) of the general population. Commonly, a sample is understood as a small part of any-
thing or one of a number, which is intended to show the quality, style or nature of the whole; 
the specimen. However, the set observed is not always a trail in the statistical sense.

The decision to take only a sample has different grounds, e.g.:

− the general population is infinite in number (or almost infinite) and there is no possibility 
of testing all of the elements

− the investigation has a destructive character; to test all of the elements would to destroy the 
whole population; it makes no sense

− the cost of the testing of a large number of elements is very high
− we are interested in only a rough estimation of a certain property of the population; it 

makes no sense to test many elements.
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Fundamentals 3

The conclusions on the general population—formulated on a sample taken—will be cor-
rect if  the sample is similar to the general population. This similarity means that the sample 
is representative. Errors due to the observation of a certain part of the population only are 
subject to the probability calculus law. It allows the value of an inaccuracy that is made to 
be estimated. However, one condition must be fulfilled here—the sample has to be random. 
This means that which elements will be in a sample depends on a purely chance event. From 
a statistical point of view, this is an element selection in which two conditions are fulfilled:

1. every elementary element of the population has an equal chance of being selected; a 
chance that has a positive probability

2. the possibility exists of estimating the probability of every subpopulation as a sample.

Mathematical statistics deals with the construction of rules to determine the properties of 
the general population based on the sample taken.

Taking into account the type of topic considered, the tasks of mathematical statistics can 
described as:

• the estimation of unknown parameters of the investigated feature of a statistical unit; this 
feature is treated as a random variable

• the verification of statistical hypotheses
• the identification of random processes
• decision-making in the case of uncertainty.

For proper understanding and for the appropriate usage of methods of statistical inference 
later on, it is necessary to have elementary information from probability calculus and the 
theory of random variables. Let us make a short review in this regard.

1.2 BASIC TERMS OF PROBABILITY THEORY

1.2.1 Random events and some definitions of probability

The foundation of mathematical statistics is the theory of probability which explains 
the ‘mechanisms’ that disclose statistical properties—the regularities occurring in mass 
phenomena.

In mining engineering we deal with results of some magnitude measurements or observa-
tions based on some experiments. Usually these experiments have a random character. A set 
that contains the effects of these experiments is called a sample space and every subset of it is 
called a random event. If  a particular subset comprises indivisible elements we call it a set of 
elementary events. A set of subsets of elementary events is called a Borel field of sets whose 
elements are random events. A Borel field consists of:

• Elementary events
• Sum, product and difference of events
• Sure event
• Impossible event.

Due to the fact that events can be treated as elements of a set—let us recall briefly a few 
basic terms from event calculus.

The sum of events A1, A2, ..., Ak is such event A

 A AiA
i

k

=1
∪ ,  (1.1)

which consists of all of the elementary events belonging to at least one of the sets A1, A2, ..., Ak.
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4 Statistics for mining engineering

The sum of events is generalised for an infinite sequence of events.
The product of events A1, A2, ..., Ak is such event A

 A AiA
i

k

=1
∩ , (1.2)

whose elements are common (joint) for all events A1, A2, ..., Ak.
The product of events is generalised for an infinite sequence of events.2

The difference between two events A1 and A2 is the event A

 A = A1 – A2 (1.3)

that consists of the elementary events belonging to A1 but not to A2.
It follows from the symmetrical character of these definitions of the sum and the product 

that the operations of addition and multiplication are commutative, i.e. we have

 A1 ∪ A2 = A2 ∪ A1 and A1 ∩ A2 = A2 ∩ A1

An important and particular case arises when A1 coincides with the whole space . The 
difference
 

A*
1 =  − A1 

 (1.4)

is the set of all of the elements of a space which do not belong to A1 and this event is called a 
complementary event or simply a complement of A1.

The operations of addition and multiplication may be brought into relation with one 
another by means of the idea of complementary sets. If  there is a given finite or numerable 
sequence A1, A2, ... the following relations hold:

 A A A A1 2AA 1 2AA( )A A1 2AA ∪A2AA = AAA ∩ ( )A A1 2AAAAA ∩ = A1AA ∪... ...* * *A * * *A

A sure event is an event comprising the whole space of the elementary events, and for this 
reason for any event A the following relation holds:

 A* ∪ A =  (1.5)

An impossible event is an event that cannot occur under given circumstances. Therefore, 
the following relation holds:

  = * (1.6)

Two events having a joint part but with no elements are called separate (disjoint) events.
One of the cardinal terms of this theory is probability. It has been defined differently.

The development of the theory of probability can be traced to the second half  of the 19th 
century. Its beginnings were like those of an illegitimate child. One famous gambling addict—
Chevalier de Meré—wanted to increase his chances in gambling and asked a well-known 

2 Notice, that here (operating on sets or events) we have different notations when symbols of multiplication 
and summation are concerned. This is necessary to differentiate from acting on numbers (in algebra).
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contemporary mathematician, Pascal, what to do to be successful in games of hazard. Pascal 
was positively astonished by the problem formulated. He gave no answer but he started to 
study the problem.

In addition to Pascal, Fermat, Bernoulli and Laplace also considered the problem of 
games of chance.

In 1812 Pierre Simon de Laplace formulated the so-called classical definition of the prob-
ability of  the occurrence of a random event as a measure of the chance of the appearance 
of this event. He determined this measure as the ratio of the number of events that were 
favourable for the occurrence of this given event (events mutually excluding themselves) and 
the number of all possible events identically possible. For example, when tossing a dice, the 
probability of the occurrence of an even number is 3/6 provided that the dice is made prop-
erly (honestly), i.e. all of the walls of the dice have the same chance of occurrence.

This classic definition has several defects because it can only be applied when the sets of 
events considered are finite and the structure of these sets is known. Moreover, this definition 
is a tautological one. It defines the probability of a random event taking into account a set of 
identically possible events, which means that they have the same probability.3

Along with the classic definition, some other definitions were formulated afterwards. 
Finally, in 1933 Andrey Kolmogorov formulated the axiomatic definition and this definition 
has become the ground for the modern theory of probability. Originally, this definition read 
as follows:

‘Let  be a collection of elements which we shall call elementary events and  be a set of 
subsets of ; the elements of set  will be called random events.

Axioms:

1.  is a field of sets.
2.  contains the set .
3. A non-negative real number P(A) is assigned to each set A in . This number is called the 

probability of event A.
4. P( ) = 1.
5. If  A and B have no element in common, then

 P(A∪B) = P(A) + P(B).’

In the above set of axioms only a finite number of events were taken into account; how-
ever, in the same publication, Kolmogorov extended his reasoning to an infinite number of 
events.4

Based on the theory of sets, it can easily be concluded that event  is a sure event and 
P(Φ) = 0, if  Φ denotes an impossible event.

The primitive notion (not definable) in the axiomatic approach to probability theory is the 
whole space  of elementary events—this is the set of all of the possible elementary, indivis-
ible results of experiments or observations.

The subsets of the space of elementary events that belong to the enumerable additive field 
of subsets are called random events or events—for short. All subsets of the set of elementary 
events are events if  this set is finite or enumerable.5

The probability is a non-negative real number supported at a [0, 1] interval.
Some mathematicians, however, (Kopociński 1973, Grabski and Jaźwiński 2001 for instance), 

are of the opinion that probability is a function in which the arguments are random events and 

3 A more comprehensive consideration in this regard was presented, for instance, by Papoulis (1965).
4 In modern mathematics:  is a sample space,  is an event space.
5 More on the additive classes of sets can be found for instance in Cramer (1999, Chapter 1.6).
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6 Statistics for mining engineering

the values are real numbers and this function fulfils the above axioms. The probability is a 
number for a fixed event. This approach is more general than the original one.

It is worth adding here that where the definitions of probability are concerned, there are 
also some other theories dealing with probability, i.e. the theory of subjective probability 
and Bayesian theory. The first theory formalises the personal assessment of the chances of 
the occurrence of a given random event. In practical applications individuals assessing the 
chances of this appearance are selected purposely by presuming that their estimation will be 
significant, which is important because they have substantial knowledge in the case being 
considered. The second theory applies two terms – a priori probability for the description of 
knowledge about the investigated phenomenon before the investigation is done and a posteri-
ori probability for the description of enriched knowledge because the results of investigation 
are known.

The conditional probability denoted by P(A|B) is the probability of the occurrence of event 
A provided that event B has appeared (i.e. P(B) > 0). It is calculated as the quotient of the 
joint probability of A and B and the probability of B6,7

 P B
P

P
( |A ) ( )A B

( )B
=  (1.7)

The probability of the sum of two events A and B

 P(A ∪ B) = P(A) + P(B) – P(A ∩ B) (1.8)

We say that the random variable A is stochastically independent8 of an event B if

 P(A|B) = P(A) (1.9)

This means that the occurrence of one does not affect the probability of the other. The 
concept of independence extends to any dealing with collections of more than two events or 
random variables.

Considering the above, we can easily see that for two independent events the following equa-
tion holds:

 P(A ∩ B) = P(A) P(B) (1.10)

Remark. Events can be pairwise independent but simultaneously jointly dependent.
Consider a set {A1, A2, …, Ak} of pairwise disjoint events whose union is the entire space. 

For any event B of  the same probability space, the following relation holds:

 P P P Ai iP A
i

k

( )B ( )AiA ( |BB )=
=
∑

1

 (1.11)

This is the formula for the total probability.

6 This is the so-called classical Kolmogorov definition. A different approach was presented by Bruno de 
Finetti who preferred to introduce conditional probability as an axiom of probability.
7 Notice, that if  for a certain event B, the corresponding P(B) = 0, the expression P(A|B) is undefined. 
Nevertheless, it is possible to define a conditional probability with respect to a σ-algebra of such events 
(such as those arising from a continuous random variable).
8 The following terms can be found in the literature: statistically independent, marginally independent 
or absolutely independent.
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Fundamentals 7

The summation can be interpreted as a weighted average and consequently the marginal 
probability. Probability P(B) is sometimes called ‘average probability’ or ‘overall probability’.9

This law usually has one common application where the events coincide with a discrete 
random variable taking each value in its range.

Consider a set {A1, A2, …, Ak} of pairwise disjoint events whose union is the entire space. 
If  P(Ai) are known and also the conditional probabilities P(B | Ai) then the conditional 
probability

 P B
P A A

P P A
i

i iA A

i iP A
i

k( |AiA ) ( |B ) (PP )
( )AiA ( |BB )

=
=∑ 1

 
(1.12)

This is the so-called the Bayes’ Theorem. Probability P(Ai | B) is called a posteriori whereas 
probabilities P(Ai) are called a priori.

1.2.2 Random variables, distribution function and probability density function

In our previous considerations, there was no specific meaning given to the event being 
observed. Actually, to every result of an experiment ξ a number will be ascribed which means 
a function is to be constructed x(ξ). Notice, that the independent variable ξ will not be a 
number but an element of set .

A real random variable X is a function supported on the space  of random events if:

a. the set {X ≤ x} is an event for any real number x,
b. the following equations holds:

 P{X = ∞} = P{X = −∞} = 0 (1.13)

In other words, a measurable function assigning real numbers to every outcome of the 
experiment is called a random variable.

Random variables will be marked in bold.
A random variable is a discrete one if  it is supported by a finite or enumerable set of numbers. 

Examples of probability distributions for discrete variables will be given in Chapter 1.2.5.
In order to characterise a random variable, it is necessary to determine a set of its possible 

values and the corresponding probabilities.
A function F(x), which is defined as the probability of an event {X ≤ x}, is called a 

distribution (distribution function, cumulative function) of the random variable X, i.e.

 FX(x) = P{X ≤ x} (1.14)

The distribution is a non-decreasing monotonic function, continuous on the left and—as 
a probability—supported by a [0, 1] set.

If  a distribution FX(x) of random variable X can be defined as

 F f u duXFF
x

( )x )u=
−∞
∫ Xff  (1.15)

then the random variable X is continuous, its distribution is continuous and the function fX(x) 
is called a probability density function. Function fX(x) can be treated as a density mass on the 

9 Pfeiffer (1978), Rumsey (2006).
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8 Statistics for mining engineering

x axis. If function fX(x) is finite, it has a simple interpretation of a linear mass density, i.e. a 
mass on (x, x + Δx) interval equals fX(x)dx. The probability that random variable X takes a value 
from a certain interval equals a mass located on this interval. The distribution FX(x) equals the 
mass over (−∞, x) interval if  the random variable is determined over the whole x axis.

Notice that

 f x f u dX Xf xf ff)xx )u)≥
−∞

∞

∫∫ 1duff )u) =dufff )u0 ∫d  (1.16)

if  the variable is determined over the whole x axis.
There are two types of random variables being commonly applied, namely:

• continuous random variables
• discrete random variables.

Having defined the term of random variable, we can return to the Bayes’ Theorem consid-
ering random variables rather than random events. This problem is significant for instance, 
for strength of materials.

If  the probability distribution of the load or strength of a given object is known and we get 
new information in this regard then—based on an equivalent of formula (1.12)—we can find 
a new, more likely probability distribution of the load (or strength) of the object. Melchers 
(1999) illustrates the relations between these distributions as is shown in Figure 1.1.

Notice that if  additional information is of a low likelihood, i.e. its corresponding distribu-
tion is of a high spreading, then this information is given no significant input. In Fig. 1.1 the 
information is substantial and our knowledge is increased; the mean value shifted to the right 
(the first significant change) and the dispersion decreased (the second significant change). 
Our knowledge about the random variable of interest is more important, and thus more reli-
able than before the investigation.

It is obvious that for discrete random variables the integrals in patterns (1.15) and (1.16) 
must be replaced by a summation symbol and the formula for the probability function is 
different because it is now of a discrete type. Following forthcoming changes—if the consid-
ered random variable is continuous we have probability density function. If  a random variable 
is discrete, we have a probability mass function.

The most comprehensive information on a random variable is given by its probability 
mass/density function.

1.2.3 Descriptive parameters of a random variable

Some constants connected with the probability mass/density function in a univocal way play 
very important roles in probability theory, in reliability theory and some other disciplines 
of science. These are the parameters of a random variable. Here are the most essential ones.

f(x)

x

Distribution a priori

Distribution
a posteriori

Additional
information

Figure 1.1. Relation between information a priori, additional information and information a posteriori; 
information expressed by probability density functions.
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Fundamentals 9

The expected value of  a random variable X is a number ascribed to the integral10

  (1.17)

where  is the domain of determinacy of X.
Several other terms are used to describe this parameter, which include mathematical expec-

tation, mean and mathematical hope. The expected value of a random variable is, in fact, the 
weighted average of all possible values that this variable can take on. However, from a rigor-
ous theoretical point of view, the expected value is the integral of the random variable with 
respect to its probability measure.

For a discrete random variable that takes the values xi with probabilities pi we have

 E x pi ip
i

( ) ∑  (1.18)

For engineers, it is important to say that the expected value is the centre of gravity of its 
probability density.

Some essential properties can be formulated for this mean directly from the definition, 
namely:

• The expected value of a constant is simply the value of this constant

 E(a) = a (1.19)

• The following relationship holds

 E[(aX)k] = ak E(Xk) (1.20)

• The expected value of the linear function of a random variable equals the linear function 
of the expected value of this random variable, i.e.

 E(aX + b) = aE(X) + b (1.21)

• For a random variable defined as:

 Y = X − E(X) we have E(Y) = 0 (1.22)

In the theory of probability and in many of its diverse applications, the expected value is 
the most important parameter of a random variable. In engineering practice, the majority of 
the so-called nominal parameters of technical objects are just mean values.

The expected value may be intuitively understood by the law of large numbers: the expected 
value, when it exists, is almost surely the limit of the sample mean as the sample size increases to 
infinity. Nevertheless, the value cannot be expected in the everyday meaning—the expected value 
itself may be unlikely or even impossible. The expected value when throwing a dice is 3.5.

By knowing the properties of integrals, we can easily come to the conclusion that not all 
random variables have a finite expected value, since the integral may not converge absolutely. 

10 This definition differs from the definition usually presented in statistical books. Most commonly, there 
is a statement that an expected value is an integral or a sum. However, we obtain a number as the result 
of integration (or summation when a random variable is a discrete one) because the integral is a definite 
one (Riemann’s integral). By the way, do not try to say to a mining engineer that the average number 
of—for instance—shearer knives worn at the mine is an integral.
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10 Statistics for mining engineering

And what is more, some random variables have no expected values. Usually, the Cauchy’s dis-
tribution is given as an example. Its example probability density function is defined by the 
formula:

 
f x t

t x
)x = 1

2 2xπ   
−∞ < < ∞x

as shown in Figure 1.2.

Moments
If  for a given integer number k (k > 0) the function xk is integrable with regard to the function 
F(x), then the mean value

  (1.23)

where  is the domain of the determinacy of X, is called a raw (crude) moment of  the order 
k of  the random variable X.

Obviously,

 m0 = 1 m1 = E(X) = m.

When the term ‘moment’ is mentioned, an engineer usually associates it with the cor-
responding idea which plays a major role in mechanics.11 Formula (1.23) is defined as the 
moment of the probability density distribution.

If  a denotes a certain constant then the formula:

 E a dFddk ka{( ) }k ( )aa ( )x(X a) }ka) }
−∞

∞

∫  (1.24)

is called a moment of k-th order about a value of  the random variable X.

 For a = 0 we have raw moments.
 For a = m we have central moments.

11 Generally, in physics, the term moment can refer to many different concepts such as the moment of 
force, the magnetic moment, the electric dipole moment etc.

0.1

0.05

0
−10 −5 0

x

f(x)

5 10

Figure 1.2. Probability density function for Cauchy’s distribution.
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Fundamentals 11

Of great particular usage in the engineering world is the second central moment called 
variance that is determined by the pattern:

 E{(X – m)2} = σ2(X) = E(X2) – [E(X)]2 (1.25)

The positive square root of variance is called the standard deviation.
Standard deviation is a measure12 of the average dispersion of the values of the random 

variable around its expected value. A low standard deviation indicates that the data points 
tend to be very close to the mean, whereas a high standard deviation indicates that the data 
points are spread out over a large range of values.

Considering the definition of variance, some important properties can be formulated. 
The standard deviation is invariant under changes in location and scales directly with the 
scale of the random variable. Thus, for a constant a and random variables X and Y we have:

• The variance of constant a is zero

 σ2(a) = 0 (1.26)

• Adding a constant to the random variable does not change the variance:

 σ2(X + a) = σ2(X) (1.27)

• The following equation holds:

 σ2(aX) = a2σ2(X) (1.28)

• For a linear function of a random variable we have:

 σ2(aX + b) = a2σ2(X) (1.29)

• For a random variable Y defined as:

 Y = X/σ(X) we have σ2(Y) = 1 (1.30)

• For any constant a ≠ E(X) the following inequality holds:

 σ2(X) < E(X – a)2 (1.31)

• If  the investigated population is divided into k groups, then the variance of the whole 
population is the sum of two components:
− the arithmetic mean of the variance within groups
− the variance of the means of the groups, i.e. the variance between the groups.

The role of standard deviation as a parameter describing the distribution of random vari-
ables is proven by the Chebyshev’s inequality (also spelled the Tchebysheff’s inequality). This 
will be given in Chapter 3, formula (3.14).

Using formulas (1.22) and (1.30), we can make a standardisation of a random variable.

12 In this book the term ‘measure’ appears very often. Let us recall its definition. If  denotes any σ-algebra 
of any space X and if μ is a real function of the space X as determined in  then every real function μ 
is called a measure in the σ-algebra. Moreover, every subset belonging to  is called a measurable with 
regard to measure μ. If μ takes values not greater than 1, this measure is called a probabilistic one.
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12 Statistics for mining engineering

If  a random variable of the expected value E(X) is given and the corresponding standard 
deviation σ(X), then the random variable:

 U X= ( )X
( )Xσ

 (1.32)

is called the standardised random variable. Its expected value is zero and its standard devia-
tion is 1.

Generally, the standardisation of a random variable is a transformation aimed at bringing 
different distributions of random variables of different means and degrees of differentiation 
to comparability. The difference between a certain probability density function before and 
after standardisation is shown in Figure 1.3.

In some cases, the standardisation of random variables is applied in the structural reliability 
analyses conducted in connection with the uncertainties related to the resistance and load of tech-
nical objects. Both resistance and load are generally treated as random variables that have known 
distribution functions, although in some practical cases these functions are unidentified. However, 
there is still a possibility of carrying out a reliability analysis by applying the third-order polyno-
mial normal transformation technique engaging the first four central statistical moments and the 
explicit fourth-moment standardisation function (Yan-Gang Zhao and Zhao-Hui Lu 2007).

The root of equation

 F(xα) = α 0 < α < 1 (1.33)

is called a quantile of the order α in the distribution F(x). Figure 1.4.
There are many such roots which used to be applied in analyses of data in descriptive sta-

tistics. The most important and the most frequently used is the quantile of the order ½ which 
is called median, i.e.

 Me(X) = x1/2 where F(x1/2) = 
1
2  which means that f x dx

x

)x
/

−∞
∫ =
1 2/ 1

2  (1.34)

Practically, this is a very interesting statistical measure because of its property. The prob-
ability that a random variable takes a value not greater than the median equals the probability 
that the random variable takes a value not lower than the median and this probability is ½. 
A median divides the mass/density of probability in half. It is only defined on one-dimensional 

Mean = 0
Stand. Dev. = 1

Mean = m
Stand. Dev. = σ

Before
standardization

After standardization

f(x)

−4 −3 −2 −1 0
m

1 2 3

x

Figure 1.3. Probability density functions before and after standardisation.
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Fundamentals 13

data13 and is independent of any distance metric. In a sample of data or a finite population, 
there may be no member of the sample whose value is identical to the median (in the case of 
an even sample size), and, if  there is such a member, there may be more than one so that the 
median may not uniquely identify a sample member.

The medians of certain types of distributions can be easily calculated from their parameters, 
e.g. the median of a Cauchy’s distribution with the location parameter x0 and the scale parameter y 
is x0, the location parameter. But for some distributions median formulas are complicated or there 
is no single formula that can be used to find the median (for example, Binomial distribution).

The mode of  a random variable X (Mo(X)) is such that its value corresponds with:

− the greatest probability of the occurrence when the random variable is a discrete one
− the local maximum of the probability density function when the random variable is a con-

tinuous one.

Like the mean and median, the mode is a way of expressing, in a single number, important 
information about a random variable or a population. The mode is not necessarily unique, 
since the same maximum frequency may be attained at different values. The most extreme 
case appears in uniform distribution, where all values occur equally frequently.

Information on the mode (sometimes called a dominant) of a given random variable is 
important when the prognosis of realisation of this random variable should be done and 
this prognosis will be done only once (not repeated). The proposed value should be simply 
the mode because it has the greatest chances of occurring. This prognosis can be different if  
additional information is at hand.

Of particular value are order statistics and their functions, which are used to estimate 
order parameters.

Let X1, X2, …, Xn be an n-dimensional random vector and let x1, x2, …, xn be its realisa-
tion. The order statistic Xk,n is a function of the random variables X1, X2, …, Xn taking the 
k-th largest value in each sequence of values x1, x2, …, xn. Order statistics are important, for 
instance, in durability studies.

1.2.4 Relationships between parameters of random variables

When the probability distribution of a random variable is a symmetric one, then its expected 
value, its mode and its median take the same value14, e.g. for the Gaussian distribution. In a 
case where a given distribution is asymmetric, these basic parameters of the random variable 
are different in value. A moderately asymmetric probability density function having a positive 
skew and positions of the mean, median and mode are shown in Figure 1.5.

13 A geometric median, on the other hand, is defined in any number of dimensions.
14 Some exceptions such as the Cauchy’s distribution or the uniform one, for instance, are neglected here.

1

0.5

0
0 50 100 150 200

F(xα)
F(x)

xαx

Figure 1.4. Quantile of the order α in the distribution F(x).
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14 Statistics for mining engineering

A few terms have been used here that need to be defined.
Skewness is a property of the probability distribution of a random variable. Its particular 

cases are the symmetry and asymmetry of the shape of the probability mass/density function. 
There are several measures of skewness in mathematical statistics but two are applied most 
frequently. The first one is defined as:

 γ
σ1

3 3

2 3=
⎛
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⎛⎛
⎝⎝

⎞
⎠⎟
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3

⎞ ⎤
⎥
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X
( )X

( )X
[( ( )X ) ]3

{ [E ( (X E− )) ]} / 22
 (1.35)

Someone suggested using the following ratio as a measure of skewness:

 ϖ
σ

= E o( ) ( )
( )

M− oMM) (  (1.36)

(Weisstein).
The skewness value can be positive, negative or zero. Qualitatively, a negative skew indicates 

that the tail on the left side of the probability density function is longer than the one on the 
right side and the bulk of the values (possibly including the median) lie to the right of the mean. 
A positive skew indicates that the tail on the right side is longer than the one on the left side 
and the bulk of the values lie to the left of the mean. A zero value indicates that the values 
are relatively uniformly distributed on both sides of the mean, typically (but not necessarily) 
implying a symmetric distribution.15

In availability investigations randomisation16 of  the steady state availability is sometimes 
done and it is presumed that beta distribution is a good model to describe its distribution 
for a group of  identical items. Obviously, this presumption needs to be verified. This is 
similar when research concerns the utilisation of  a given piece of  equipment on a daily 
basis. And here again the beta probability distribution17 is applied as a rule because it is sup-
ported on an [0, 1] interval. (Utilisation can also be expressed in percentages). Depending 
on the values taken by parameters of  this distribution, the shapes of  the probability density 

15 These considerations are correct provided that the probability distribution is not a multimodal one. 
Such a distribution may occur if  the population being investigated is not homogeneous. There are also 
some further probability distributions for which the above regularities do not hold but these distribu-
tions are considered mainly in theory (e.g. heavy-tailed distributions).
16 Randomisation relies on making something random. Randomisation can concern different things (e.g. 
the randomisation of an experiment) but here in our discussion a constant parameter is treated as a 
random one.
17 This distribution is defined by formula (1.61).
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Figure 1.5. A moderately asymmetric probability density function.
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function are different. However, because the availability of  actually constructed machines is 
high as a rule and their utilisation also, thus the probability distribution that is applied has 
a negative skew and the positions of  the mode, median and mean is opposite to the one in 
Figure 1.5. An example of  the probability distribution of  the utilisation of  a hoist is shown 
in Figure 1.6.

The last term that will be defined in this chapter is a class of probability distributions.
A class of probability distribution creates a family of distributions that have the same 

cumulative function (or mass/density function) but whose structural parameters can be 
different.

The parameters of probability density functions can be divided into three groups:

• location parameters
• shape parameters
• scale parameters.

If  there is a change in the value of the location parameter, the probability density function 
is displaced along the x axis (Figure 1.7).

If  there is a change in the value of the shape parameter, the probability density function 
changes its profile (Figure 1.8).

A change in the value of the scale parameter makes the probability density function fatter 
or causes it to be raised up (Figure 1.9).

A function of a random variable is a random variable as well.
Let us review some of the most frequently applied probability distributions in mining 

engineering.

4
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Figure 1.6. Probability density function of the utilisation of a hoist; Mo(X) > Me(X) > E(X).
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Figure 1.7. Two probability density functions with different values of the location parameter only.
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16 Statistics for mining engineering

1.2.5 Probability distributions of discrete random variables

Bernoulli distributions
A random variable X that takes an x1 value with the probability p, 0 < p < 1 and an x2 value 
with the probability 1 – p is called a double-point Bernoulli random variable. Its probability 
distribution is given by the formula:

 
F

x x
p x x

x x
( )x =

≤
< ≤x
>

⎧
⎨
⎪⎧⎧
⎨⎨
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⎨⎨
⎩⎩

0

1

1

1 2x x< x
2

 (1.37)

Usually an alternative formula is given stating:

 P(X = x1) = p and P(X = x2) = 1 − p (1.37a)

An example of the probability mass function and corresponding cumulative function for 
the double-point Bernoulli distribution are shown in Figure 1.10.

In probability theory and statistics, the Bernoulli distribution, named after the Swiss sci-
entist Jacob Bernoulli, is a discrete probability distribution, which takes value 1 with success 
probability p and value 0 with probability 1 – p. Thus
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Figure 1.8. Probability density functions with different values of the shape parameter only.
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Figure 1.9. Probability density functions with different values of the scale parameter only.
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Fundamentals 17

 P(X = 1) = 1 − P(X = 0) = p

This is the particular case of the double-point Bernoulli distribution.
The expected value and the variance for both distributions are the same:

 E(X) = p σ2(X) = p(1 – p) (1.38)

If a point of interest is the certain state in which a given technical object can be in given 
moment and there are only two possibilities (e.g. two alternative states: work and repair), this 
means that this point of interest is the random variable of the double-point Bernoulli distribu-
tion. We may ascribe the notation 1 to the work state and the notation 0 for the repair state.

Binomial distribution
Let X1, X2, …, Xn be independent random variables of the identical double-point Bernoulli 
probability distribution with the parameter p. Such a defined sequence of random variables 
is called a sequence of independent Bernoulli experiments (trials). It is presumed that if  the 
random variable Xi takes the value 1 then it is classified as a success. If  in the i-th Bernoulli 
trial the random variable takes the value 0, it is classified as a failure.

The probability that in n independent Bernoulli trials success occurs exactly k times is 
given by the formula:

 
n
k

pk n k( )k ( )pp=)k
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−  (1.39)

where k
n n

k n k( ) = −
!

!( )!  is the binomial coefficient.

Formula (1.39) defines the Bernoulli probability function.
An example of the Bernoulli probability density function is shown in Figure 1.11.
The main parameters—the expected value and the variance—of the random variable are 

determined as follows:

 E(X) = np σ2(X) = np(1 – p) (1.40)

Presume that there is a given mechanised system applied in an underground coal mine and 
that this system consists of a shearer, two scraper chain conveyors and a certain number of 
belt conveyors that deliver broken coal from the wall to the shaft. The system is observed over 
n production shifts and the point of interest is the work state of the system in a given moment 
of time in a shift. The probability that the system will be k times (k ≤ n) in the work state in a 
given moment is determined by formula (1.39).

f(X)

x

p

1−p

x1 x2 x1 x2

F(X)

x

p

1

0

Figure 1.10. The probability mass function f(x) and the corresponding cumulative function F(x) for a 
double-point Bernoulli distribution.
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18 Statistics for mining engineering

Geometric distribution
This distribution is defined in a twofold manner:

a. as the probability distribution of the number X of  independent Bernoulli trials needed to 
get one success; this distribution is supported on the set {1, 2, …}

b. as the probability distribution of the number Y = X – 1 of failures before the first success; 
this distribution is supported on the set {0, 1, 2, …}

If the probability of success in every trial is p, then the probability that in k-th trial will be 
success is determined by the pattern:

 P(X = k) = (1 – p)k−1p for k = 1, 2, … (1.41a)

Similarly, if  the probability of success in every trial is p, then the probability that there will 
be k-th failures preceding the first success is determined by the pattern:

 P(Y = k) = (1 – p)kp for k = 0, 1, 2, … (1.41b)

Often, the name shifted geometric distribution is adopted for the distribution of the number 
X. This ‘displacement’ is visible looking at the mode because for X the random variable is 1 
whereas for the second random variable it equals 0.

The expected value and the variance in these probability distributions are the following:

 E(X) = 1/p E(Y) = (1 – p)/p σ2(X) = σ2(Y) = (1 – p)/p2 (1.42)

The geometric probability distribution is the discrete equivalent of the exponential distri-
bution18 and it has no memory as does its exponential counterpart.19

An example of the probability mass distribution for geometric distribution is given in 
Figure 1.12.

Considering the number of hoist winds up to the moment of the over-winding at an extreme 
level, it is easy to see that this number is a random variable that is geometrically distributed in 
which p denotes the probability of over-winding in a single hoist work cycle.

18 This distribution is given by formula (1.52).
19 The idea of a lack of memory is extended into the area of stochastic processes, e.g. the Poisson process 
in which the time from the occurrence of one event to the next one is an exponential one that is charac-
terised only by lack of memory. This lack of memory means that the probability of the appearance of 
k events in the interval (T, T + t) does not depend on how many events and in which manner they have 
occurred up to the moment T (Gnyedenko and Kovalenko 1966).

Figure 1.11. The Bernoulli probability density function.
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Fundamentals 19

Poisson distribution
This distribution was first introduced by Siméon Denis Poisson and published together with 
his probability theory (1837).

A practical application of this distribution was made by Władysław Bortkiewicz in 1898 
when he was given the task of investigating the number of soldiers in the Prussian army who 
were accidentally killed by horse kicks. This investigation led to the Poisson distribution and 
according to some researchers to the field of reliability engineering.20

If  the random variable X takes values at points k  = 0, 1, 2, … with the probability

 P k
k

e
k

( )k
!

=)k >−λ λλ 0  (1.43)

then we say that this random variable has a Poisson distribution (Figure 1.13).
The expected value and the variance are identical and

 E(X) = λ σ2(X) = λ (1.44)

If  we are interested in the probability distribution of the number of failures of a given type 
in a given time interval and the events that occur create a memoryless stream of arrivals, then 
the probability distribution of this random variable is given by formula (1.43).

By observing the process of the operation of belt conveyors in mining, we can easily deter-
mine that the mean time between two neighbouring failures is long compared to the mean 
time of repair. Thus, it is usually presumed that the operation process from a reliability point 
of view is described by the Poisson process of  which the probability of the occurrence of k 
failures in time t is given by formula (1.43) where the parameter is λt (t – time).

The Poisson distribution can also be applied to systems with a large number of possible 
events, each of which is rare and the process of occurring events can usually be described by 
the Poisson process. The Poisson distribution is sometimes called a ‘Poissonian’.

1.2.6 Probability distributions of continuous random variables

Uniform distribution
The uniform distribution, sometimes also known as the rectangular distribution, is a distribu-
tion that has a constant probability.

20 Vide: http://en.wikipedia.org/wiki/Poisson_distribution#cite_note-4.

Figure 1.12. An example of the probability mass distribution for a geometric distribution.
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20 Statistics for mining engineering

A continuous random variable X which has the probability density function given by the 
pattern:

 f x x)x
( . ).

= ( )b a ∈ [ ]a b,⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

−1

(0 14
for
otherwise (( i

 (1.45)

A frequently used notation is X: U(a, b).
The expected value and the mean are the same:

 E(X) = Me(X) = ½ (a + b) (1.46)

Depending on definition of mode some researchers are of the opinion that the mode is any 
value in the interval [a, b]; some that the mode does not exist.

The variance is determined by the formula

 σ2(X) = (b − a)2/12 (1.47)

The uniform distribution is applied to estimate the parameters for probability distribu-
tions, making use of additional information (a priori) on estimating the parameters of a 
random variable. If  all of the values that are taken into account are equally probable, the 
uniform distribution is used.

This additional information is described by the probability distribution that is chosen and 
then the Bayesian approach is applied. The Bayesian inference can still be used when one or 

Figure 1.14. The probability density function of the uniform distribution.

Figure 1.13. An example of the probability mass function and the cumulative function for the Poisson 
distribution.
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Fundamentals 21

even two limited values a and b are −∞ and ∞. It was proved (see de Groot 1970, for example) 
that even presuming an improper distribution, there is still a possibility of conducting the 
Bayesian procedure and the distribution a posteriori will be the proper one.

The uniform distribution has several interesting properties, among other things:

• If  the random variable X has the a uniform distribution supported on the (0, b) interval, 
then the random variable Z = ln(b/X) has the exponential distribution of the expected 
value equals 1.

• If  random variables X1, X2, …, Xn are stochastically independent and have the same uniform 
distribution supported on the (0, 1) interval and if  n tends to infinity, then the probability 

distribution of their sum tends to the normal distribution N ( )n n
2 12  and the distribution 

of their mean tends to the normal distribution N ( )n
1
2

1
12, .

Gamma distribution
If  the probability density function of the random variable X is given by the formula

 f x x e xx)x
( )

, ,= ≥x e xx >,ν ν
ξ

ξ

ξ
ξ

Γ
1 0 0, >ν 0  (1.48)

then we say that this random variable has a gamma distribution with the shape parameter ξ 
and the scale parameter ν.

A frequently used notation is X: Ga(ξ, ν).
The expected value and the variance are as follows:

 E(X) = ξ /ν σ2(X) = ξ /ν2 (1.49)

The gamma function, being a component of the function (1.48), is determined by the pattern:

 Γ ( )ξ ξ= −
∞

−∫ x eξ dxx1

0

 (1.50)

The gamma function is an extension of the factorial function and it has the following 
property:

 Γ(ξ) = (ξ – 1) Γ(ξ – 1) (1.50a)

For ξ  being an integral number

 Γ(ξ) = (ξ – 1)! (1.50b)

For large values of ξ , the gamma function can be calculated using Stirling’s formula and then

 Γ( )ξ ξ πξ
ξ

ξ
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12e

 (1.51)

If  a scale parameter is a multiple of ½, then the distribution is named the chi-squared or 
χ2-distribution21. This distribution is extremely significant in mathematical statistics.

21 See formula (1.109).
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22 Statistics for mining engineering

If  the scale parameter is not larger than 1, the distribution is extremely asymmetric.
Different shapes of the gamma probability distribution are shown in Figure 1.15.
The gamma distribution is applied to describe the load and strength of some machine ele-

ments (Warszyński 1988). It is also employed for the modelling of the lifetime of items that 
are subject to cumulating agents. It is suitable for modelling the processes of the wearing of 
the elements of machines and devices (Gertzbah and Kordonsky 1966).

In mining, winders have probability distributions of times of work and repair states that 
can be satisfactorily described by the gamma distribution. The repair time of dumpers used 
in open pit mines as well as of power shovels can be described by this distribution. The 
gamma distribution is frequently applied in the mathematical description of the processes of 
the wearing of tyres.

This probability distribution was also applied in the study of the processes of the sepa-
ration of grains in pulsators. It was assumed that the length of a single jump of a particle 
during water pulsation is a random variable of the gamma distribution (Smirnow 1979). 
The application of a generalised gamma distribution for the approximation of the composi-
tion functions for grains was presented by Nipl (1979). Some particular cases of the gamma 
distribution have been used in the description of certain material characteristics during ore 
enrichment processes (vide: Tumidajski and Saramak 2009 p. 63).

If  the shape parameter is 1 in the gamma distribution, then the probability density func-
tion is given by the formula

 f x( )x = >x−ν νee xν 0  (1.52)

and this distribution is called an exponential distribution (Figure 1.16).
This probability distribution has many applications in engineering practice because it is 

easy to use. Many electric and electronic parts have a lifetime probability distribution of an 
exponential character. When the first models of the processes of the changes of states for 
technical objects occurred in literature, they were almost exclusively composed of exponen-
tial random variables. The processes of changes of states in which the times of the states are 
mutually independent and described by exponential distributions are called Markov proc-
esses. Their parameters and characteristics are shown in an explicit form, which is easy to 
use. For this reason, exponential distribution was widely applied during the early days of 
reliability development as well as in the theory of the exploitation of premature growth. This 
distribution was abused in those days, but excuses can be found in the poor development 
of advanced modelling by applying other, more complicated distributions. In those days, 
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Figure 1.15. Gamma probability density functions.
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Fundamentals 23

engineers working with the data gathered applied this distribution even when the goodness 
of the description was evidently poor (e.g. Barbaro and Rosenshine 1986 analysing the opera-
tion22 of a shovel-truck system). Unfortunately, engineers who are engaged in research have 
fallen into the habit of applying exponential distribution and they still use it, even in cases 
where it should not be applied. One can get the impression that engineers have not noticed 
that the actual models are much more advanced using different probability distributions. 
Some modern models allow any probability distribution to be employed, i.e. such a distribu-
tion can be exponential as well as another different model (e.g. Sivazlian and Wang 1989). 
However, it should be clearly stated that these modern models are more advanced and more 
difficult to use in analyses and application.

Nevertheless, many pieces of equipment, also in mining (e.g. conveyors of different types, 
excavating machines, stackers), have probability distributions of work times that can be satis-
factorily described by exponential distribution. Similarly, many machines used in earthmov-
ing engineering have probability distributions of a work time exponential.

The probability distribution of work time is also described by exponential distribution in 
many modern sophisticated electronics systems. In some cases, the repair time has a prob-
ability distribution of exponential character as well.

Erlang distribution
The sum of k independent random variables distributed exponentially has a gamma prob-
ability distribution with the parameter ξ = k. This distribution is called the Erlang distribu-
tion of the order k. Its cumulative function is given by the formula:

 ( ) ( )
!

,
i

i

i

k
x= >,

=

−

∑ 0( )
e xx ≥−1− ∑ 0

1

1 λ λλ  (1.53)

It is easy to notice that the gamma distribution of the scale parameter taking a natural 
number is in fact the Erlang distribution.

22 The terms ‘exploitation’ and ‘operation’ are used interchangeably. Recall, according to the classical 
definition used in the theory of exploitation that the exploitation process is the process of changes in 
the properties of an object. This process does not concern either the design/construction or production 
phases.

1.5

0 1 2 3 4 5

x

f(x)

Figure 1.16. Probability density functions of an exponential distribution.
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24 Statistics for mining engineering

The Erlang distribution was developed by A.K. Erlang, a Danish mathematician, statisti-
cian and engineer who invented and developed the fields of traffic engineering and queuing 
theory. In the early years of the 20th century, he examined the number of telephone calls 
which could be made at the same time to the operators of switching stations. This work 
on telephone traffic engineering has been expanded to consider waiting times in queuing 
systems in general. The distribution is now also used in the fields of stochastic processes, 
telecommunication and biomathematics.

When the scale parameter of the Erlang distribution is 2, then the distribution simplifies 
to the chi-squared distribution with 2k degrees of freedom. It can therefore be regarded as a 
generalised chi-squared distribution.

The term ‘degrees of freedom’ was used here and therefore needs explanation.
In statistics, the number of degrees of freedom is the number of values in the final calcula-

tion of a statistic that are free to vary. The degrees of freedom of an estimate of a statistical 
parameter is equal to the number of independent outcomes that go into the estimate minus 
the number of parameters used as the intermediate steps in the estimation of the parameter 
itself.

The Erlang distribution is extremely significant in the queuing theory that is called the mass 
servicing theory in Central Europe. More than half  a century ago the so-called Erlangian sys-
tems, which can be analysed based on the decomposition of the Erlang random variable into 
the sum of independent random variables exponentially distributed, came into existence. An 
example of an analysis of such a machinery system—the system applied in surface mining—
was presented in Czaplicki’s book (2004 and 2010).

Weibull distribution
If  the probability density function of the random variable X is determined by the formula:

 f x x e xx)x , ,= ≥x e xx >αλ λ, λ,α λe
α

0, α > 0  (1.54)

then we say that this random variable has the Weibull probability distribution.
The notation that is sometimes used for this random variable is X: W(α, λ).
This function has two structural parameters. The parameter α is the shape parameter 

whereas the parameter λ is the scale parameter.
The picture showing the probability density functions for the Weibull distribution is quite 

similar to the gamma distribution. Both distributions are particular cases of the generalised 
gamma distribution.

The expected value and the variance for the Weibull distribution are determined as follows:
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The name of this distribution came from Waloddi Weibull, who described and applied 
this distribution to the strength of materials (Weibull 1939), although some researchers used 
it earlier. It is said that it was identified by Fréchet who published it in a Polish mathemati-
cal journal (1927) and was first applied by Rosin and Rammler (1933) to describe the size 
distribution of particles. However, a comprehensive mathematical analysis was done by 
Gnyedenko (1941). This distribution was generalised by Weibull, who added the parameter 
of the displacement of the origin of the coordinate system, in 1956.

The probability distributions of the lifetime of many mechanical parts can be described by 
the Weibull distribution.
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It was proved (Gercbach and Kordonsky 1968) that if  the elements of a system have 
work times of a gamma distribution of slightly different values of the parameters, then the 
probability distribution of the work time of the system is the Weibull distribution when the 
number of elements is large. Internal combustion engines have several cylinders, gas turbines 
have many vanes and many electronic systems have many identical parts. All systems having 
the same elements are characterised by the fact that the work time probability distribution 
tends to be the Weibull distribution if  the number of these elements is increased.

In some cases, the Weibull distribution is obtained from a theoretical analysis that is asso-
ciated with an empirical situation. Consider a system consisting of a certain number of ele-
ments connected in a sequence with each element consisting of a pair of items working in a 
parallel way. A failure of the system occurs when both elements in any pair fail. If  the reliabil-
ity of an element is described by the exponential distribution then it was proved (Gnyedenko 
et al. 1969, Chapter 2.2) that when two simple mathematical conditions are fulfilled, the reli-
ability (survival) function has a limit and this boundary is the Weibull distribution.

An analysis of the process of operation of powered support of operating in underground 
coal mines is presented in Czaplicki’s book of 2010 (Chapter 7.6) and, based on empirical 
data, the probability distributions of the times of states are described by the Weibull family 
of functions. An analysis of the system of power shovel-crusher-conveyors is also presented in 
the same chapter. The author took into account that the empirical distributions of the random 
variables of work and repair times are often different to the exponential and for this reason he 
applied the Weibull function. He stated that the process of changes of states is a semi-Markov 
one. This probability function was used to describe the distribution of the instantaneous pro-
ductivity of bucket wheel excavators (Jurdziak 2006, Dworczyńska et al. 2012).

The Weibull distribution is extremely significant in the reliability of objects working until 
the first failure occurrence. The hazard function23 (a function of the conditional intensity 
of failure) of an item for which the lifetime is a random variable described by the Weibull 
distribution has a variety of different shapes (Figure 1.17) and because of this property, the 
Weibull distribution can be applied in many empirical cases24.

For α = 1 the Weibull distribution becomes an exponential one.

Normal (Gaussian) distribution
If  the probability density function of the random variable X is determined by the pattern:

 f x m( )x = −
⎡
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⎤⎤

⎦⎦
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2 2
0

2

2σ π2 σ
σexp ( )x m ,) ,)  (1.56)

then we say that the random variable has a normal distribution.
A frequently used notation is X: N(m, σ).
This function has two structural parameters: m and σ. The first one is the location param-

eter and the second is the scale parameter.

23 A hazard function is associated with items working until the occurrence of the first failure. It is the 
probability that an item will fail in the near future (a brief  time interval) provided that the item has been 
functioning well until now. Mathematically, it is the conditional intensity of the failure of an item and is 
determined by the formula: λ(t) = f(t)/R(t), where R(t) is the reliability function.
24 The Weibull distribution has had a tremendous career amongst practitioners, especially engineers. 
In 1977 Weibull himself  collected 1019 references (articles) and 36 titles of books in which his model 
is mentioned in a technical report of Förvarets Teletekniska Laboratorium (in Stockholm, Sweden) 
(all these titles are only in English). Due to the enthusiasm related to this distribution, Giorski (1968) 
draws the attention of what he calls ‘Weibull euphoria’ arguing that the model is very useful but it is not 
 ‘universal’ (one year later, Ravenis (1969) proclaimed that Weibull’s model is a ‘potentially universal p.d.f. 
for scientists and engineers’…).
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26 Statistics for mining engineering

The expected value and the variance are determined as follows:

 E(X) = m σ2(X) = σ2 (1.57)
The visible different normal density functions that have different structural parameters are 

shown in Figure 1.18.
The Gaussian distribution is considered to be the most prominent probability distribution 

in the field of statistics. There are some significant reasons for this. Firstly, the normal dis-
tribution arises from the central limit theorem,25 which states that under mild conditions, the 
mean of a large number of random variables independently drawn from the same distribu-
tion is distributed approximately normally, irrespective of the form of the original distribu-
tion. Secondly, the normal distribution is very tractable analytically, that is, a large number 

25 This Theorem may be expressed in the following way: Whatever the distributions of the independent 
random variables are—subject to certain very general conditions—their sum is asymptotically normal, 
where the summarised expected value is the sum of the expected values of the random variables that are 
the components of the sum and the variance is the sum of all component variances.
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Figure 1.18. The probability density function of a normal distribution.
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Figure 1.17. Hazard function for the Weibull distribution of different parameters.
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of results involving this distribution can be derived in an explicit form. Moreover, the normal 
distribution is often used as the first approximation to describe the random variables that 
gather around a single mean value.

In mining, the probability distribution of a stream of rock won in a time unit that is gener-
ated by winning machines during the excavation process can be satisfactorily described by the 
normal distribution. As a rule, the times of the work cycle phases for trucks, i.e. load-haul-
dump-return can be described by the Gaussian distribution. The total mass of broken rock 
delivered to a shaft during a shift in an underground mine can usually be modelled by the 
Gaussian distribution. The times of loading and unloading for many transporting machines 
can be depicted by a bell-shaped distribution, i.e. can be described by the normal distribu-
tion. The distribution of random measuring errors of different physical magnitudes is also 
normal most of the time.

The particular case of the normal distribution is the standardised normal distribution for 
which the expected value is zero and the standard deviation is one. Keeping in mind formula 
(1.32), we can conclude that the relationship between the random variable X of the normal dis-
tribution and a random variable U that has a standardised normal distribution is as follows:

 U = (X – m) / σx

About 68% of the values drawn from the normal distribution are within one standard 
deviation σ away from the mean, about 95% of the values lie within two standard deviations 
and about 99.7% are within three standard deviations. This fact is known as the 68-95-99.7 
rule or the empirical rule or the 3-sigma rule.

This probability distribution has very broad applications in mathematical statistics and it 
is frequently used in research in engineering practice.

Log-normal distribution
A random variable that includes only positive real numbers has a log-normal distribution if  
its logarithm has a normal distribution. Depending on which logarithm is taken into account, 
we have slightly different shapes of the probability density functions and slightly different 
formulas to determine the parameters of these random variables. The decision as to which 
logarithm is taken into account depends as a rule on further parts of the research procedure. 
The logarithm that is chosen for the investigation is the one which will be more convenient 
for further analysis.

The probability density function of this random variable is given by the formula:
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Figure 1.19. The probability density functions of the log-normal distribution.
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28 Statistics for mining engineering

A variable might be modelled as log-normal if  it can be thought of as the multiplicative 
product of many independent random variables each of which is positive. This is justified by 
considering the central limit theorem in the log-domain. For example, in finance, the vari-
able can represent the compound return from a sequence of many trades (each expressed as 
its return + 1) or a long-term discount factor can be derived from the product of short-term 
discount factors. In wireless communication, the attenuation caused by shadowing or slow 
fading from random objects is often assumed to be log-normally distributed.

The expected value and the variance of the random variable X is given by the formulas:
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The median and mode are as follows:
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In hydrology, the log-normal distribution is used to analyse the extreme values of such 
variables as the monthly and annual maximum of daily rainfall and river discharge volumes. 
It was proposed that coefficients of friction and wear may be treated as having a log-normal 
distribution (Steele 2008). This type of distribution is applied to describe fatigue strength and 
strength against long-lasting stresses (Gercbah and Kordonsky 1966). Also, durability meas-
ured in the number of work cycles of technical objects is often described by a log-normal 
distribution. Some trials were performed to describe the times of truck work cycles using this 
distribution (Hufford et al. 1981, Griffin 1989).

A theoretical approach to the determination of the distribution of grain size during the 
shredding process was analysed by Kolmogorov (1941) and Epstein (1947). They proved that 
under certain conditions related to long-lasting repeated crushing, the grain size distribution 
can be satisfactorily described by a log-normal distribution. A log-normal distribution cumu-
lative function was applied in ore dressing to describe the grain composition function of the 
variance being the function of some empirical constants (Andreyev et al. 1959).

Beta distribution
If  the probability density function of the random variable X is determined by the pattern

 f(x) = B−1(c, d) xc−1 (1–x)d−1 0 ≤ x ≤ 1, c > 0, d > 0 (1.61)

where:

 B d x dxdd
c dc dx( ,c ) (xc ) ( )c ( )d
( )c d

−(x =∫∫
0

1
11 Γ (c

Γ
 is the beta function (1.62)

then we say that the random variable has a beta distribution.
Plots of the probability density functions of the beta distribution of different parameters 

are shown in Figure 1.20.
A frequently used notation is X: Be(c, d).
The expected value and the variance in this probability distribution are

 E
c

c d
cd( ) ( )

( )c d ( )c d
c) ( =

)d (c
σ2

2  (1.63)
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The probability distribution of steady-state availability—treated as a random variable—
for identical pieces of equipment are described by the beta distribution. Similarly, as a rule 
the probability distribution of the utilisation of equipment is described by this type of prob-
ability distribution.

There are several further probability distributions that are applied in mining engineering 
(e.g. the Pareto distribution, logistic distribution, M1 and M2 distributions that are based 
on the hyperbolic cosine and used in the pulverisation of coal (Mianowski 1988, Tumidajski 
1992)). However, their applications are not very frequent and for this reason they are not 
considered in this text.

Let X be a random variable and  be the Borel set26 on the x axis that 0 < P(X ∈ ) < 1. 
The conditional distribution determined for a real number x by the expression P(X ≤ x, 
X ∈ ) is called the truncated distribution of  the random variable X.

Example. If  the probability density function is determined as

 
f u

f x
F b F

a u b
1ff

0
)u

)x
( )b ( )a= −

uu⎧
⎨
⎪⎧⎧
⎨⎨
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⎨⎨
⎩⎩

for

elsewhere
 (1.64)

where function f(x) is determined by formula (1.56) and F f v dv
x

( )x )v=
−∞∫−

 (the integrand 
is the density function before truncation), then we say that the random variable U has a 
truncated normal distribution supported on interval [a, b].

The expected value and the variance of the random variable above can be defined as follows:

 
E

I
I

( )U = +μ σm= + 1II

0II
 (1.65)

26 A Borel set is any set in a topological space that can be formed from open sets (or, equivalently, 
from closed sets) through the operations of a countable union, countable intersection and relative 
complement.
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Figure 1.20. The probability density functions of a beta distribution.

Book.indb   29Book.indb   29 12/9/2013   12:22:28 PM12/9/2013   12:22:28 PM



30 Statistics for mining engineering

 σ2(U) = (I2 I0
2 – I1

2) (σ/I0)
2 (1.66)

where:
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ΦN(y)—the distribution function of a normal standardised random variable N(0, 1); see 
Table 9.1 at the end of this book,

φN(y)—the probability density function of the normal standardised random variable N(0, 1).
The distribution of a stream of excavated rock which flows over a belt conveyor system in 

a unit of time can be described by the truncated normal distribution. The left side boundary 
is zero (x ≥ 0) whereas the right side boundary is defined by the inequality: x ≤ xmax, where xmax 
is the maximum conveyor output (the maximum mass of excavated rock that can physically 
be located on the conveyor, in unit of time).

1.2.7 Two-dimensional random variable and its moments

The considerations examined up to now have concerned a one-dimensional random variable. 
However, in some empirical cases, we may have two or more random variables. It is necessary 
to consider the statistical measures that allow these variables to be described. Let us confine 
our attention to a two-dimensional case.

The probability distribution F(x, y) of a two-dimensional random variable is defined as:

 F y P x y f u v
yx

( ,x ) (P , )y ,u ) .dudv(P
−∞−∞
∫∫X x≤  (1.70)

if  the random variable is a continuous one.
We frequently interpret the probability distribution by means of the distribution of a unit 

of mass over the (x, y) plane. By projecting the mass in a two-dimensional distribution on 
one of the coordinate axes, we obtain the marginal distribution of the corresponding vari-
able. Thus, we have:

 FX(x) = P(X ≤ x) and FY(y) = P(Y ≤ y) (1.71)

It is easy to enlarge these considerations to include discrete random variables.
If  a two-dimensional random variable (X, Y) is given, then the raw statistical moment of 

the order k + l; k, l = 0, 1, … of this variable is given by the pattern:
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  (1.72)
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Therefore:

 m10 = E(X) m01 = E(Y) m20 = E(X2) m02 = E(Y2) m11 = E(XY) (1.73)

The last moment above, m11 is called the second order product moment or more concisely, 
the mixed moment.

Similarly, we can define the central moments for a two-dimensional random variable (X, Y).
The central moment of the order k, l is given by the formula:

 νkl = E{[X – E(X)]k [Y – E(Y)]l} (1.74)

If  k = l = 1, then

 ν11 = E{[X – E(X)] [Y – E(Y)]} = Cov(X, Y) (1.74a)

is called the covariance of  (X, Y).
This statistical parameter has some interesting properties, namely:
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 (1.75)

If  the random variable X is independent of the random variable Y, then their covariance 
is zero. The converse theorem does not hold.

If  the random variables X and Y have Cov(X, Y) = 0, then we say that they are uncorrelated 
linearly.

Further covariance properties are:

 −σ(X) σ(Y) ≤ Cov(X, Y) ≤ σ(X) σ(Y) (1.76)

 σ2(X ± Y) = σ2(X) + σ2(Y) ± 2 Cov(X, Y) (1.77)

A generalisation of the concept of variance is the variance matrix or the variance-covariance 
matrix.27 Such a matrix for the random vector X X X1 2X XX ,2X ,… n  has the form:
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σ  (1.78)

This matrix is symmetric and its determinant is non-negative.
A very important parameter called the linear correlation coefficient (ρ) is related to the 

covariance. It is defined in the following way:

 ρ = Cov(X, Y)/σ(X) σ(Y) (1.79)

27 Some statisticians call this matrix the variance of the random vector because it is a natural generalisa-
tion to the higher dimensions of the one-dimensional variance (see for instance Feller 1957). Others call 
it the covariance matrix because it is the matrix of covariances between the scalar components of the 
random vector. The term cross-covariance is also sometimes used. Finally, very often the matrix is called 
the variance-covariance matrix since the diagonal terms are in fact variances.
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This coefficient has several important properties, namely:

• it is supported on [−1, 1] interval;
• if  two random variables are stochastically independent linearly, then their correlation coef-

ficient is zero;
• the necessary and sufficient condition for ρ2 = 1 is that the following relationship holds:

 P(Y = aX + b) = 1 for a > 0 (1.80)

Because of the last relation, the coefficient is called a linear correlation coefficient.

A particular case of a two-dimensional random variable is the Gaussian random variable 
which is characterised by the probability density function:
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where x, y, m10, m01 are supported on an infinite set of numbers, σx and σy takes only positive 
values and ρ ∈ [−1, 1]. The expected values m are determined by (1.73).

The expected value of a conditional two-dimensional probability distribution (the con-
ditional expected value) of the random variable X provided that Y = y is determined by the 
pattern:
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 (1.82)

where 
p
p

ij

j.  and f
f
( )x y,

( )y2ff
 are the probability mass functions and the probability density function in 

the conditional distribution of the random variable X, respectively.

There are some two-dimensional random variables that are used in mining engineering 
problems but their applications are rare; perhaps they will be more useful in the future. Two 
of these distributions are as follows.

3

3

2

2
1

10

0−1
−1−2

−2
−3 −3

Figure 1.21. The probability density function of a two-dimensional normal random variable.
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a. The two-dimensional composition of a gamma distribution and a standardised normal 
distribution; this probability density function is given by the formula:
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0 elsewhere (Figure 1.22)

 (1.83)

 where: a > 0, b > 0, α > 0, γ > 0, A ∈ {(x, y): x > 0, y > 0}

 α
π

β γ
γ β

= 2 a bγ
b aβ bβ Γaβ ( )b  (1.83a)

 The random variables X and Y that are components of the above function are stochasti-
cally dependent because:

 f(x, y) ≠ f(x) f(y)

 It is interesting that the function (1.83) has a constant regression function of the first type 
equals

 m = ≅4 0 7 2[ (+1 2 )] .ϕ

 This function was applied in a study concerning reliability (Czaplicki 1981).

b. The Morgenstern distribution (Morgenstern 1956, Butkiewicz 1997, Butkiewicz and Hys 
1977) for which the probability density function is given by the formula:
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where: μ ∈ [−1, 1]
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This probability distribution is significant in investigations related to grain size, their mag-
netic susceptibility and perhaps some further physical-and-chemical properties of grains 
(Tumidajski and Saramak 2009).

Figure 1.22. An example of the probability density function (1.83).
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1.2.8 Stochastic process

Generalisation of the concept of a random variable is a stochastic (random) process.
A stochastic process X(t) is a set of random variables depending on the parameter t that 

belong to a certain set of real numbers. Very often it is presumed that this parameter is time. 
However, in engineering practice it is much better to analyse many stochastic processes that 
are dependent on different parameters28 such as: the total mass of transported material, the 
work executed by a given machine, the number of work cycles of a piece of equipment, 
the productivity of a system etc.

When parameter t is fixed, the stochastic process is a random variable. When an elemen-
tary event is fixed, a random process is the function of time x(t) that is called the realisation 
of the stochastic process. In order to avoid any misunderstandings that may arise when using 
the word value (the value of parameter and the value of process), the values that take the 
random variable X(t) will be called process states.

During empirical investigations we observe the realisation of a certain stochastic process 
only. When the investigation of the process is repeated, we observe stochastic copies of it. 
A set of such realisations and conditions of the choice of the observation is the statistical 
information based on which a statistical inference is being made.

We say that a stochastic process X(t) is completely described when for every set of moments 
t1, t2, …, tn the joint distribution of the random variables X(t1), X(t2), …, X(tn) is known. Know-
ing this distribution, we are able to find the basic characteristics of the process such as: the 
expected value, its variance, the limited probability distribution of the process states and so on.

An important property of a stochastic process is its stationarity.
Two types of stationarity are distinguished in theory.
We say that a stochastic process has strict (strong) stationarity if  its joint probability dis-

tribution does not change when shifted in time or space. Accordingly, parameters such as the 
average value and variance, if  they exist, also do not change over time or position.

If  the first moment and covariance do not vary with respect to the time of a certain sto-
chastic process, we say that such a process has a wide-sense (weak-sense) stationarity.

Two types of stochastic processes are widely applied in engineering analyses. These are 
processes that depend on the continuous parameter t and processes that are determined on 
the set of nonnegative integer numbers. The latter ones are called stochastic chains.

The stochastic processes with the broadest applications in engineering practice are the 
Markov processes.

A stochastic process X(t) of the continuous parameter t, t ≥ 0 (or a stochastic chain X(t), 
t = 0, 1, …) is called a Markov process (Markov chain) when for every system of moments 
t1< t2< … < tn< t and any set of real numbers x0, x1, …, xn, x the following equality holds;

 P(X(t) < x | X(ti) = xi, i = 0, 1, …, n) = P(X(t) < x | X(tn) = xn) (1.85)

In other words, if the state of the Markov process in moment tn is known, then any addi-
tional information on the states of the process before tn does not have any influence on the 
distribution of the process values in later moments. The Markov process can be thought of as 
‘memoryless’. It is the characteristic property that the process of the changes of the states of a 
continuous parameter of the Markov type has all of the states of the exponential distribution.

The idea of the Markov chain can be described as follows.
A set of states  = { 1, 2, …, n} is given. The process starts in one of these states and moves 

successively from one state to another. Each move is called a step or jump. If  the process is 

28 Some researchers are of the opinion that time does not exist; it is only a very convenient measure that 
was invented and introduced by people. Notice that devices measuring time in fact show the progress of 
a certain physical process only.
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currently in state i, then it moves to state j at the next step with a probability denoted by 
pij and this probability does not depend on which state the process was in before the current 
state (memoryless property). The probabilities pij are called transition probabilities. The proc-
ess can remain in state i with the probability pii. An initial probability distribution, defined 
on , specifies the starting state. In a continuous space, the probability distribution that has 
a memoryless property is an exponential distribution whereas in a discrete space, it has a 
geometric distribution. The process is called a ‘chain’ because not only are the states discrete 
but the moments when the jumps occur are also discrete ones.

The processes of operation (exploitation), which are understood as processes of changes 
of states of mechanised systems in mining and also in earthmoving engineering, can be 
described by the Markov processes in many cases (Sajkiewicz 1982, Czaplicki 2010a for 
instance). The process of the fluctuation of a mass in bins can be modelled by the Markov 
process in some cases (Benjamin and Cornell 1970) as can the process of road surface deg-
radation (ibidem).

Nowadays, a growing interest in the application of semi-Markov processes can be observed 
in engineering practice (Brodi and Pogosjan 1973, Barlow and Proschan 1975, Bousfiha et al. 
1996, Bousfiha and Limnios 1997, Limnios and Oprişan 2001, Grabski and Jaźwiński 2001). 
This trend also concerns the mining engineering field (Czaplicki 2010a and 2010b, Czaplicki 
and Kulczycka 2012).

A semi-Markov process is a random process X(t) with a finite or countable set of states  
that have stepwise trajectories with jumps at times 0 1 2< < <τ τ1 <1 ...  such that

• the values X(τ) at its jump times form a Markov chain with transition probabilities:

 pij = P{X(τn) = j | X(τn−1) = i} (1.86)

• the distributions of the jumps τn are described in terms of the distribution functions Fij(t) 
as follows:

 P{τn − τn−1 ≤ t, X(τn) = j | X(τn−1) = i} = pij Fij(t) (1.87)

This process is called a semi-Markov process (see Korolyuk and Turbin 1976, Limnios and 
Oprişan 2001, Harlamov 2008)29.

It is of practical importance to emphasise that states in this type of process are mutually 
independent.

If  Fij(t) are exponential then the semi-Markov process is a continuous-time Markov chain 
or simply a Markov process. If  all of the distributions degenerate to a certain point, the result 
is a discrete-time Markov chain. In analytic terms, an investigation of semi-Markov processes 
can be reduced to a system of integral equations (Korolyuk and Turbin 1976).

1.3 BASIC TERMS OF STATISTICAL INFERENCE

An essential task of mathematical statistics is statistical inference. It can only be applied in 
relation to the outcomes of random experiments. Two cardinal parts of this field of science 
are the theory of estimation and the theory of the verification of statistical hypotheses.

29 Semi-Markov processes were introduced by Levy (1954) and Smith (1955). Takács (1954, 1955) inves-
tigated similar processes. The foundations of the theory of semi-Markov processes were mainly laid by 
Pyke (1961a, b), Pyke and Schaufele (1964), and Korolyuk and Turbin (1976).
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The theory of estimation deals with the assessment of unknown parameters of the general 
population that are based on a random experiment.

1.3.1 Estimator

A basic term of the theory of estimation is an estimator. This is understood as a clearly 
defined function of the outcomes of a random trial implied by an unknown parameter θ of  
the general population. If  so, the estimator is a random variable.

Notice that if  the point of interest is an unknown parameter θ of  the general population 
and that a random sample of size n is taken to estimate its value, then by applying the estima-
tor Tn we have the following situation:

 Tn = f (X1, X2, …, Xn | θ) (1.88)

because every element of the sample can be treated as a random variable.
A value calculated based on a random sample taken tn of  the estimator is called an estimate 

of  the unknown parameter θ. This estimate is given by the equation:

 t f x xn nf x( ,xx , ..., )2xx  (1.89)

It is a number, the deterministic value.

1.3.2 Properties of estimators and methods of their construction

Theoretically, an infinite number of  estimators can be constructed. Some of  them will give 
a worse assessment of  the unknown parameter, some—better. Thus, we must have the pos-
sibility of  making an evaluation of  which estimator is better and which is worse. Or, to 
be more precise, which estimator has better properties that will usually yield better esti-
mates because the estimator is a function. This gives us a tool with which to select a good 
estimator.

There are two important items connected with each estimator, namely:

• the error of estimation
• the properties that characterise the selected estimator.

It is obvious that one can be almost certain that when making an estimation an error will 
occur because a statistical inference is made based on a trial only. This error is called the error 
of estimation.

It can be defined as:

 d = Tn – tn (1.90)

The right side of the equation determines a certain random variable because the function 
of a random variable is also a random variable. Therefore, the left side of the equation is also 
a random variable. Therefore, the estimation error is a random variable. It has its own prob-
ability distribution and we are able analyse its basic parameters.

To achieve a precise estimation, i.e. to ensure a small error of estimation, it is necessary 
to pay attention to both the correct sampling and the selection of an estimator with good 
statistical properties.

A good estimator should be, among the other things, characterised by following properties:

• unbiasedness
• consistency
• efficiency
• sufficiency.
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It is said that an estimator Tn of  parameter θ is unbiased if  its expected value is the same as 
the value of the estimated parameter30, i.e.

 E(Tn) = θ (1.91)

Notice that the expected value of a random variable is a deterministic value31.
An unbiased estimator allows the unknown parameter to be estimated without systematic 

errors.
The difference:

 Δ = E(Tn) – θ (1.92)

is called a bias of the estimator Tn. Obviously, the bias of an unbiased estimator is zero.
Let us consider the estimation of an unknown expected value m in a certain general popu-

lation . Let us use the arithmetic mean formula:
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This estimator is an unbiased one since:
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The second statistical parameter used most frequently, besides the expected value, is the 
standard deviation σ or its square—the variance. Presume now that for the estimation of the 
unknown variance σ2 of the general population, the following estimator was applied:
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Let us test the bias of the estimator above. Here we have:
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Thus, the above estimator is a biased one. Its bias is:
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30 There are more general notions of bias and unbiasedness. Here ‘bias’ is de facto ‘mean-bias’ in order 
to distinguish mean-bias from the other notions with the most noteworthy ones being ‘median-unbiased’ 
estimators. See for example Rojo (2012).
31 In some statistical investigations, a randomisation of the expected value is made, i.e. we treat that value 
as a random variable although this is a targeted exception from the rule.
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Notice, that when the sample size taken is large, its bias is:
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Therefore, this estimator is asymptotically unbiased for this reason. It can be applied when 
the sample size is large; practically n > 30.

By analysing the bias of the investigated estimator, a conclusion can be formulated that it 
gives estimates of the variance that are too low.

It is easy to prove that an estimator:
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of the unknown variance of the general population is an unbiased one. It can be applied in 
any sample size.

If  a sample of N elements is given and it consists of k groups of size ni; i = 1, 2, …, k, the 
following equation holds:
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where: si
2—the estimate of variance within the i-th group

 x—the arithmetic mean of the whole sample
 xi—the arithmetic mean of the i-th group
 s i

2( )xi —the variance between groups.

By looking more carefully at pattern (1.96), a simple conclusion can be drawn—the more 
differentiated the population, the greater the value of its variance. The relationship (1.96) is 
called the ‘variation identity’ (Sobczyk 1996 p. 46). This pattern is useful in the calculation of 
some combined machinery systems (Czaplicki 2010a p. 230) as well as in calculations con-
nected with the homogeneity of shovel-truck systems (ibidem p. 266).

The second important property that must be investigated before the application of a given 
estimator is its consistency.

It is said that estimator Tn of the parameter θ is consistent if  it converges in probability 
(stochastic convergence) to the true value of the parameter, i.e. the following equation holds:

 
lim
n

P
→∞

− ={| | }TnTT θ | < ε1 0>ε  (1.97)

Looking at this relationship, one may easily come to the conclusion that enlarging the sam-
ple size leads to a situation in which the estimates that are obtained will be closer and closer 
to the real value of the unknown parameter θ.

Suppose one has a sequence of observations {x1, x2, …} from a normal N(μ, σ) distribu-
tion. In order to estimate the unknown expected value μ, one uses the sample mean deter-
mined by formula (1.93). Now assume that every element of the sample is a random variable. 
If  so, the estimator (1.93) becomes a random variable. Denote it by Tn. From the properties 
of the normal distribution, we know that Tn is itself  normally distributed with the mean μ 
and the variance σ2/n. Equivalently, the random variable (Tn − μ)/(σ/ n ) has a standard nor-
mal distribution. Therefore, the following relationship holds:

 P(|Tn − μ | ≥ ε ) = P[(|Tn − μ | n / σ ≥ (ε n /σ)] = 2 [1 − ΦN(ε n /σ)] → 0
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as n tends to infinity for any fixed ε > 0. Thus, the estimator Tn of  the sample mean is consist-
ent for the population mean μ.

An estimator can be unbiased but not consistent. For example, for independent and identi-
cally distributed32 random variables that are components of a sample {X1, ..., Xn}, one can 
use Tn = x1 as the estimator of the mean E(X).

Alternatively, an estimator can be biased but consistent. For example, if  the mean is esti-
mated by the formula [(1/n) + (Σxi /n)], this estimator is biased, but as sample size n tends to 
infinity, it approaches the correct value and so it is consistent.

A significant property of estimator is its efficiency.
A given estimator is the most efficient if  it is unbiased and of the lowest variance among 

all of the possible the unbiased estimators constructed on samples.
A small value of the variance of a given estimator ensures a small dispersion of the esti-

mates of the unknown value of the parameter that we can obtain from it.
When investigating the efficiency of a given estimator, we compare at least the variances 

between two estimators of the same parameter. The estimator with a lower variance is more 
efficient than the other.

Compare, for instance, an efficiency of the estimators of variances basing on the mean and 
the median. We have:
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The final property of estimators to consider is sufficiency.
An estimator of  an unknown parameter is sufficient if  it contains all of the information 

comprised in a sample taken and there is no other estimator that gives more information on 
the parameter being estimated.

Consider, for example, two unbiased estimators of the expected value E(X). One defined 
by formula (1.93) and the second determined by the pattern:

 
x 1

2
( )x x+x ,min mx+ ax

where xmin and xmax are the lowest and the highest value in the sample taken, respectively.
The estimator �x  is insufficient because it takes only two values from the sample. The arith-

metic mean takes all of the sample elements into account.
Further considerations concerning the theory and practice of estimation will be conducted 

in Chapter 4 where a synthesis of the information obtained from a statistical investigation is 
analysed.

1.3.3 Statistical hypotheses and their types
The basic terms in the theory of verification of statistical hypotheses are: statistical hypoth-
esis33 and statistical test.

A statistical hypothesis is any conjecture (supposition) concerning the general population.
In practice, we almost always have some information on the population of interest, e.g. the 

investigated random variable is a continuous one and we know its physical limits, what values 
the random variable takes and so on. This information determines a certain set of admissible 

32 Sometimes the abbreviation ‘i.i.d.’ is used for the term ‘independent and identically distributed’.
33 A hypothesis (from Greek ποτιθ ναι—hypotithenai, Latin hypothesis meaning both ‘to put under’ or 
‘to suppose’) is a proposed explanation for a phenomenon; a statement requiring verification.
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40 Statistics for mining engineering

(possible) hypotheses. Denote this set by . This set determines a set of probability distribu-
tions and we know that these distributions may characterise the population. These distribu-
tions can be different in both, in formulas that indicate a class of distribution and the values 
of the parameters can be different (differences in a given class).

Each formulated statistical hypothesis separates a certain subset  from the set . It can 
be written as:

 

If the subset contains only one element (i.e. determines one distribution only), then such a 
hypothesis is called a simple hypothesis. Otherwise, the hypothesis is a composite (complex) one.

Let us divide the statistical hypotheses remaining in a given class of distribution.
A supposition that is formulated can concern:

• the parameter of the population
• the class of the population.

If  a hypothesis is formulated in relation to a parameter of the random variable, we say that 
the hypothesis is a parametric one provided that the distribution is known. If  a hypothesis 
is formulated and there is no information on the population, we say that the hypothesis is a 
nonparametric one.

Let us presume that the random variable of our interest is a discrete one (e.g. the number 
of failed machines, the number of occupied service stands, the number of spare parts) etc. 
Therefore, the set of admissible hypotheses comprises all of the possible distributions of dis-
crete random variables that are nonnegative. If  we have a ground to guess that the random 
variables of interest may be described by a binomial distribution, our hypothesis is both a 
parametric one and a complex one. A subset  contains all of the binomial distributions with 
different values of parameters. If, in turn, a hypothesis was formulated that the binomial 
distribution has the parameter p = 0.1, then the hypothesis is simple.

The formulation of a statistical hypothesis is a very important part of statistical analysis; 
however, it sets the challenge of verifying this supposition.

1.3.4 Statistical tests and critical region

A statistical test is any rule of conduct used to predicate whether the verified statistical 
hypothesis should be rejected or whether there is no basis to do this. The statement that there 
is no ground to reject the hypothesis is not the same as stating that the hypothesis is a true one. 
It may happen that based on the result of a different sample taken for the verification of this 
supposition, an inference may be altered—in which case the hypothesis should be rejected.

The division of statistical hypotheses into parametric and nonparametric ones means that 
all tests in statistics are divided into parametric tests and nonparametric tests.

A statistical test is constructed according to some rules.
Firstly, a hypothesis is formulated that will be the subject of verification. This hypothesis 

is called a null one and is noted as:

 

In addition, an alternative hypothesis is also formulated which is different to the null one. 
Often, it is a denial statement compared to the verified hypothesis. It can be noted as:

 

and this hypothesis is accepted as the true one when the null hypothesis is rejected.
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Notice that a sample W x xn nWW x( ,xx )xx,  can be treated as a certain point in the 
n-dimensional space of trials. Denote a set of all possible results of trials by . A statistical 
test relies on the determination of such a region  that if  Wn ∈ , then the verified hypothesis 
should be rejected. This region is a critical one. If  Wn ∈  – , then the verified null hypoth-
esis can be accepted.

The region  is the area of the rejection of the verified hypothesis and also the critical region 
of the test. The area of the acceptance of the hypothesis is obviously determined by:  − .

Because inference about the properties of the investigated population is conducted based 
on a sample, there is a real possibility that the deduction will produce an incorrect result. The 
information contained in the sample may be such that we recognise the verified hypothesis as 
false and we reject it, although the hypothesis is a true one. Similarly, we may make a mistake 
by accepting a hypothesis which an untrue one. This means that two possible errors can be 
made during statistical inference. The relationship between the property of the hypothesis—
true or false—and the decisions made during statistical inference is presented in the table 
below.

Decision

Hypothesis H0

True False

Reject I type error √

Accept √ II type error

The probability that an error of the first type will be made is given by the pattern:

 P(Wn ∈  |H0) = α( ) (1.98)

whereas the probability that an error of the second type will be made is given by the pattern:

 P(Wn ∈ (  − ) |H1) = β( ) (1.99)

The best test would be one which ensures a minimum of both errors. Unfortunately, there 
is no way to attain the simultaneous minimisation of both probabilities. If  the probability 
of making an error of the first type is zero, then the rejection region is an empty set. Thus, 
the acceptance region overlaps with set , and for this reason, the probability is that relation 
Wn ∈  will be 1 for all of the hypotheses. This also means that β( ) = 1 for hypothesis H1.

In the theory of the verification of statistical hypotheses, tests are constructed in such a 
way as to minimise the probability of making a type II error presuming that the probability 
of making a type I error is constant and appropriately low. Such tests are called the most 
powerful ones. A certain probabilistic measure is associated with these tests—the probability 
that a false hypothesis will be rejected and the alternative hypothesis which states the truth 
will be accepted. This measure is called the power of a statistical test.

Therefore it can be written as:

 P(Wn ∈  |H1) = M( ) (1.100)

where M( ) is the power of the test.
The relationship between the power of the test and the probability that a type II error will 

be made is given by the relationship:

 β( ) = 1 − M( ) (1.101)
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The task of the general theory of testing statistical hypotheses is to formulate methods for 
the construction of the best tests, i.e. the most powerful tests. However, in some cases such 
tests do not exist. Thus, the further task of the theory is to indicate what to do when there is 
no most powerful test.

Look more carefully at formula (1.98), which provides information about the probability 
of making a type I error. If  the verified hypothesis is rejected due to the information con-
tained in the sample, then it can be assessed that a rare event occurred because the probability 
α is small. Moreover, if  the event was Wn ∈ , then the assumption on the truthfulness of 
the null hypothesis was wrong. In a case when the event will not happen, we can say that we 
have no ground to discard the hypothesis. Notice, that we have no basis for evaluating the 
hypothesis as a true one because true hypothesis can be different. Such a property of statis-
tical tests characterises tests of significance. These tests allow the verified hypothesis to be 
rejected with a high probability when it is false. However, they do not allow the problem of 
whether the null hypothesis is a true one to be resolved. The probability α is called the level 
of significance. Thus, if  this level is assumed to be 0.05 (this is the most frequently presumed 
level of significance in engineering investigations), it means that taking 5 out of 100 cases on 
average, the verified hypothesis will be rejected—based on the sample taken—despite the fact 
that the hypothesis is a true one. The reason for the rejection is connected with the informa-
tion contained in samples and is not associated with the statistical procedure conducted.

Tests of significance are most frequently used in practice not only in the engineering field 
and they are very simple in application.

Nonetheless, it should be noted that there is a certain freedom in the construction of tests of 
significance and this freedom is not only connected with the arbitrary presumed level of signifi-
cance. Basically, there is independence in the selection of the statistic (estimator) which will be 
used to estimate the unknown parameter of the general population in parametric tests or in a 
different type of inference (in nonparametric tests of significance). Practically, the method of 
the selection of the level of significance and the selection of the statistic alone is usually imposed 
by what would be found in the literature on the subject. As was stated, the level of significance is 
usually assumed to be α = 0.05 and it is a rare event when this level is higher or lower than that.

There is also a rule that is only one hypothesis is articulated presuming silently that the 
alternative hypothesis is its negation in tests of significance. In addition, nothing is stated 
about the level of the probability of a type II error.

When a parametric test of significance is applied, its procedure is as follows.

1. Formulate the basic hypothesis (null one) H0 stating that parameter q = q0, which means it 
is suspected that the population of interest has a parameter q of  q0 value

2. Take a sample of size n from the general population
3. Construct the statistic Q, which is a gauge (tester) of the verified hypothesis
4. Determine the probability distribution of the tester and find the critical region  for the 

presumed level α of  significance; a condition to fulfil is:

 P{Q ∈  | H0} = P {|Q – q0| > k } = α k > 0, (Figure 1.23) (1.102)

5. Make a decision based on the result of the investigation: reject the verified hypothesis or 
there is no basis to discard it.

A different case can also be considered. If  an estimation of the unknown parameter is 
obtained using the information contained in the sample taken and its value is q̂ , then the 
corresponding probability can be calculated from the formula:

 0 ˆ{| | }q̂ p=| }|− >>>0 ˆP{|  (1.103)
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If the following inequality holds:

 p > α (1.104)

then there is no basis to reject the verified hypothesis H0 (Figure 1.24).

1.3.5 Probability distributions for the verification of statistical tests

Coming to the end of the consideration of the basic terms used in mathematical statistics, let 
us briefly review the most important probability distributions that are applied in the verifica-
tion of the statistical hypotheses that are frequently used in engineering practice, not only in 
mining.

Many tests are based on the normal distribution when the hypotheses concern the param-
eters of random variables, especially in cases when some parameters are known or when the 
sample taken is large. However, when conditions of application of the normal distribution 
are not fulfilled then several different probability distributions can be applied. These are:

• the Student’s t probability distribution
• the χ2 (chi-squared) probability distribution
• the F Snedecor’s (Fisher-Snedecor) probability distribution.

In some cases (see for instance in the chapter concerning prediction), the Fisher’s z distri-
bution is useful.

Figure 1.23. Graphical illustration of the critical region determined by formula (1.102).

Figure 1.24. Graphical illustration of the critical region determined by the pattern (1.103).
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We say that the random variable tr has a Student’s probability distribution with r degrees 
of freedom (this is a parameter of the random variable) when its pr obability distribution is 
given by the formula:

 
S P

rB
dt
rr rSS P

t

( )tt { }tr ( / , /r ) ( /t )
, (t )/= PP = −(( )r+

−∞
∫

2
2/ 2 2 2/) ∞, ∞  (1.105)

Notice that there is a function beta defined by the pattern (1.62) in the denominator here.
Example plots of the probability density function of the Student’s distribution are shown 

in Figure 1.25.
The mode and median are zero and the expected value provided that r > 1, otherwise is 

undefined.
The density of this random variable is symmetric with regard to point t = 0 and for this 

reason:

 S Sr rSS SS( )tt ( )t=)t −1

Let there be n independent measurements of a random variable X. Let x  denote the mean 
from the sample and  is the unbiased estimator of the standard deviation (1.95) in the 
sample. A random variable defined by the formula:
  

(1.106)

where m is the expected value of the random variable of interest is the Student’s random variable 
with r = n – 1 degrees of freedom34. The random variable which probability distribution function 
is given by formula (1.105) is the same as the random variable determined by the formula:

 t Xr XX nX −−( ( )) ( )x m−x1 1  (1.106a)

34 The Student’s t-distribution is a special case of the generalised hyperbolic distribution.

Figure 1.25. Student’s probability density functions.
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where s(X) is the biased estimator of the standard deviation.
A number t(α, r) which fulfils the equation:

 P{|tr| > t(α, r)} = α (1.107)

is called a critical value of the distribution tr.
For a large r the Student’s random variable has approximately the normal standardised 

probability distribution N(0, 1)35.
Tables of the critical values t(α, r) are given at the end of this book—Table 9.3.
Random variables defined by patterns (1.105) and (1.105a) are applied in the interval esti-

mation of the mean and in the verification of some statistitical hypotheses. This will be a 
point of interest in a further part of the book.

A random variable defined as the sum of squares of n independent random variables Xi, 
i = 1, 2, …, r having the identical normal distribution N(0, 1) is the random variable of the 
chi-squared distribution with r degrees of freedom. Thus, it can be written as:

 χr
2 = X1

2 + X2
2 + … + Xr

2 (1.108)

The random variable χr
2 has the chi-squared probability distribution with r degrees of free-

dom if  its cumulative function is given by:

 
F u e dur rFF r( }r ( /r )
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1
2 2r ( /r/ 2 0rPP{P{ u e du,/e ue/ 2

2d/u( /r 2) 2u du(r /ue 22} 1
2

 (1.109)

Typical charts of the probability density function of the chi-squared random variable are 
shown in Figure 1.26.

The expected value and the variance are determined by the patterns:

 
E r
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( )r

2
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 (1.110)

For large values of r, the random variable (2χr
2)1/2 – 2 1 has approximately the stand-

ardised normal distribution N(0, 1).
A number 2 ( ) that satisfies the equation:

 P rr
2 2 ( )r  (1.111)

is called a critical value of the chi-squared distribution; 2 ( ) is the quantile of the order 
(1 − α) of the chi-square distribution with r degrees of freedom.

If r is large, the critical values can be calculated using the following approximation:

 
2

1

3

1 2
9

2
9

( ))
r

u
r

1r  (1.112)

35 The Student’s t-distribution, especially in its three-parameter (with a location-scale) version, arises 
frequently in Bayesian statistics as a result of its connection with the normal distribution. Whenever 
the variance of the normally distributed random variable is unknown and a conjugate prior placed over 
it that follows the inverse gamma distribution, the resulting marginal distribution of the variable will 
follow the Student’s t-distribution.
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or

 χ αα
2

1

21
2

2 1( )) u2r2≅ +( )−  (1.112a)

where uα is the quantile of the order α of the standardised normal distribution (see Table 9.2).
Notice that the random variable:

 t UUr rt Ut r ( )r
/2 1) 2  (1.113)

where U is the standardised normal random variable is the Student’s random variable with r 
degrees of freedom.

Tables of the critical values ( )2χα r  are given in Table 9.4.
The chi-squared distribution is one of the most widely applied probability distributions in 

inferential statistics, e.g., in hypothesis testing or in the construction of confidence inter-
vals. The chi-squared distribution is used in the common chi-squared tests for the goodness-
of-fit of an observed distribution to a theoretical one (Chapter 4.2), the independence of 
two criteria of the classification of qualitative data (Chapter 5.1) and in the estimation of 
the confidence interval for a population standard deviation of a normal distribution from 
a sample standard deviation. Many other statistical tests also use this distribution, like the 
 Friedman’s analysis of variance by ranks.

We say that a random variable Fr rFF
1 2r rr r  has the Snedecor’s F distribution (or F-distribution or 

the Fisher-Snedecor distribution, after R.A. Fisher and G.W. Snedecor) with (r1, r2) degrees 
of freedom if  its distribution function is determined by the pattern:
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Figure 1.26. The Chi-squared probability density functions.
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A few probability density functions of the Snedecor’s distribution are shown in 
Figure 1.27.

The number Fα(r1, r2) that satisfies the equation

 r{ (Fr r , )}
1 2r rrr rr r, 1 2, =r(F , )r }rr , rrαFF α  (1.115)

is called a critical value of the F distribution; this is the quantile of the order (1 – α) of this 
distribution.

The critical values satisfy the equation:
 Fα αFF ( ) (FF , )r ,1α (FF αFF rr 2 1=  (1.116)

and also

 F Fr rFF r rFF
1 2r rr r 2 1r rr r 1r2r 2r

=  (1.117)

If  the random variables χr
2 and χs

2 are of the chi-sqaured distribuiton with r and s degrees 
of freedom, respectively, then the random variable:

 Fr,s = (χr
2 /r) : (χs

2/s) (1.118)

has the Snedecor’s F distribution of (r, s) degrees of freedom36.
Let Sr(t) be the cumulative function of the Student’s distribution with r degrees of freedom 

and let t(α, r) be the critical value in this distribution. Then
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where sign x = −1 for x < 0, 0 for x = 0 and + 1 for x > 0.

36 Because the chi-squared distribution is a particular case of the gamma distribution then the random 
variable of the F Snedecor distribution can be treated as the quotient of two independent random vari-
ables of gamma distribution.

Figure 1.27. The Snedecor’s F probability density functions.
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Tables 9.5–9.7 contain the critical values F rαFF ( ,r )1 2rr,rr .

We say that a random variable has a z Fisher’s distribution with (r1, r1) degrees of freedom 
if  its distribution function is given by the formula:
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 (1.122)

An example of the probability density function of the Fisher’s z distribution is sown in 
Figure 1.28.

The number z(α, r1, r2) that satisfies the equation

 P r{ (zr r , )}
1 1r rr rr rr r, 1 2, =(z )} α)}α, 2, =r r, r )}2r rr rrr  (1.123)

is called a critical value of the z distribution.
If  the random variable Fr,s has the distribution F with (r, s) degrees of freedom then the 

random variable:

 Z Fr s r sFF, ,s r
1
2 ln  (1.124)

has the z Fisher’s distribution with (r, s) degrees of freedom.
When the degrees of freedom become large (r, s → ∞), the Fisher’s distribution approaches 

normality with the mean and variance determined by the formulas:

 E
s r s r

r( )r s ( )r s,s )s
s r)r s ( =

− −1 1r−
2

1 1r+ −

2 2s( )r s,r( rσ  (1.125)

This book is primarily intended to present the relationships between mathematical statistics 
and mining engineering practice and for this reason, the next chapter presents a description 
of an exploitation (operation) process of a technical object and the problems of a statistical 
nature that are associated with it.

Figure 1.28. The Fisher’s z probability density function.

Book.indb   48Book.indb   48 12/9/2013   12:23:14 PM12/9/2013   12:23:14 PM



49

CHAPTER 2

Some areas of the application of mathematical statistics in mining

In English the term ‘mining’ usually means1:

a. The act
b. A kind of process
c. A branch of industry

all of which are connected with the extraction of useful mineral2. Here, we neglect its associa-
tion with the military.

Mining engineering is an engineering discipline that involves the practice, the theory, the 
science, the technology and the application of extracting, hauling (sometimes dumping) and 
processing minerals from a naturally occurring environment. Mining engineering also com-
prises the processing of minerals for additional value. Thus, in mining engineering the points 
of interest are the identified processes and their properties and also the properties of objects, 
understood here in a broad sense. 

These processes are of different natures. They are connected with methods of winning 
rocks and the identification of mineral deposits, their extraction, haulage and ore dressing, 
dumping of overburden etc. Different processes are connected with the operation of the 
equipment involved in mining development and the point of interest here is the exploitation 
process of pieces of equipment, their parts and assemblies and also entire machinery systems. 
In mining, the interesting processes are those that accompany mining development, i.e. the 
displacement of rocks due to rock extraction and all of the repercussions connected with this 
process.

The objects of interest are mainly of two kinds:

• Pieces of equipment that are a part of mine development and
• Surrounding rocks near a mine.

Changes in the properties of these two kinds of objects during a mining operation require 
the greatest attention of mining engineers.

Many problems considered in this book concern technical objects, and whether this object 
means a single item or a system does not matter. For this reason, it seems worth considering 
some aspects of the properties and life course.

Each technical object basically has three characteristic phases of its life.
It is presumed that the source of the birth of any technical object is ‘a need’3. There is a 

certain technological process and there is a need to design an object that will be able to real-
ize this process or that will be of service in order to realize some phases of the process. In 
some cases ‘a need’ may be different. There is a piece of equipment which properly fulfils its 
duties but its parameters are not so advantageous compared to modern standards. This may 
concern the output that is usually attained by this item, its low effectiveness, the average level 
of its reliability and so on. All of these indicate that there is ‘a need’ to create a new item 

1 In English books, one may find slightly different definitions, e.g. SME Mining Engineering Handbook 
(1973, 2011).
2 In some other languages the term ‘mining’ only means (b) and (c) (e.g. in Polish).
3 A need here is a concept of primary (primitive notion) as in economics. One can find a definition of a 
need in psychology, e.g. it is such a state of an individual that is a deviation from an optimal state. 
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with better parameters. Sometimes, a competitive company has just presented a new piece of 
equipment with better characteristics than our product. Finally, pressure sometimes appears 
to get better achievements. Our factory has modern machines, well-trained personnel with 
the knowledge and experience to produce a given piece of equipment cheaper. There is ‘a 
need’ to create a new item.

In the first stage the object does not exist physically. It comes into being. It commences its 
existence in concepts, models, drafts, notes and in virtual notations. Later on it becomes more 
concretized; it appears as a list of parts and assemblies, a description of their mechanical and 
electrical connections and comes into being in a calculation procedure. This stage is ended 
when the design and construction documentation is completed. Actually, this is a virtual ver-
sion. The non-existent object has got its properties—forecasted properties.

The second stage of an object’s life is its production. The item is formed physically. Its final 
properties are created during the production process, i.e. the features of the object which will 
characterize it in the third phase of its life. Properties—these real ones—are usually rather 
different than those given in the first stage of its life by designers and constructors; the pro-
duction process is not an ideal realisation of their intentions. This stage is finished when the 
object exists physically and is ready to be transferred to the user. 

When the object is purchased by its user, the third phase of its life usually begins4 and its 
usage commences. This is a process that continues over time and for the majority of objects 
is accompanied by the process of its maintenance5. These two processes interlace each other. 
The object realizes the purpose of its existence. Also, the process of changes in its properties 
commences. Elements of the object begin to show wear and tear. Some of these occur in a 
significant way and failures occur. The object becomes more and more degraded. However, 
for objects that can be renewed periods of maintenance occur (repairs, prophylactic actions, 
adjustments) and the process of degradation is reduced. Periods of maintenance happen 
in either a random way or in a deterministic way if  planned. The process of changes in an 
object’s properties used to be termed the exploitation process6.

There are two essential terms of exploitation theory associated with the term ‘exploitation 
process’. These are: the state of the object and the exploitation events.

During the object’s exploitation, i.e. during the process of  the object’s utilisation and 
maintenance, the properties of  the object change. For some features these changes will be of 
a continuous type, sometimes slow, sometimes transitional and sometimes drastic. There-
fore, an object at a given moment in time is not identical to the object at a different moment 
in terms of  its properties. In order to describe the process of  these changes the term state is 
applied. 

When defining a set of an object’s essential properties ,  = {c1, c2, …, cm}, we can say 
that the state of the object at time t is determined by a certain function:

 (t) = f [ (t)] = f [c1(t), c2(t), …, cm(t)].

Kaźmierczak (2000, p. 119) gave a similar assessment of the term ‘state’: under the term 
state of object we are going to understand here a ‘photograph’ of values of object properties in 
a given moment of time.

In practical applications this function is not considered to be a continuous one. Discreti-
sation occurs regularly and states are named. These names are usually associated with the 

4 In some considerations more than three phases of an object’s life are taken into account, e.g. storage or 
montage in the final operation place. 
5 There is a class of technical objects that cannot be renewed, e.g. hoist head ropes or balance ropes.
6 Some researchers are of the opinion that ‘the exploitation process of an object’ is everything that 
happens with the object from the moment of the end of its production until the moment of its final 
withdrawal from utilisation (Kaźmierczak 2000, p. 156).
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physical nature of the state, e.g. repair state, work state, stand-still state and so on. Notice 
that a simple conclusion can be made here: The exploitation process of an object can be 
understood as the sequence of the states of the object or—the usual formulation—as the 
process of the changes of states.

As a result of this discretisation, at each moment when a change of state occurs, an exploi-
tation event takes place. Sometimes, such events are visible and to some extent perceptible, e.g. 
a certain element of the object fails and the machine ceases its operation. Sometimes events 
are conventional ones—nothing physically happens apart from the fact that a certain object 
parameter exceeded its assumed limited value, e.g. a brake lining worn excessively. At this 
moment, it is assumed that the object is in a different state.

Based on the consideration above, different theoretical models of the exploitation proc-
esses of technical objects can be constructed.

The simplest model is the one that describes the process of impulses (Figure 2.1). An 
object operates and as a parameter of the process a time is taken into account. At moments 
t1, t2, t3, ... interesting exploitation events occur, e.g. failures. In the process considered, only 
one state is distinguished and the process has one type of exploitation events. At first glance, 
this model looks very simple. However, when considering it more carefully, many significant 
problems arise.

Many essential questions connected with this process can be formulated; essential for the 
object’s user and for the object’s constructor and producer. Some of these questions are as 
follow:

– What kind of statistical properties does the observed sequence of times {ti+1 – ti}, i = 1, 2, 
3, … have?

– If  this sequence is a stationary one and it has no peculiar properties, then what kind of 
probability distribution can be used to associate it with the random variable: ‘time between 
neighbouring impulses’?

– If  there is a possibility of two or more failures occurring at the same moment of time, then 
is this possibility stable or not?

– If  the probability of the occurrence of failures is independent of time, then what is the 
probability distribution that describes the number of failures that can occur at a given 
moment in time?

– Until what moment the analysis of the course of this process makes sense?

To obtain answers to the above questions it is necessary to have a knowledge of the physi-
cal nature of the object as well as to have the knowledge and skills to conduct a proper 
mathematical analysis. It is necessary to use the appropriate mathematical tools from the 
probabilistic area as well as from the field of mathematical statistics. All of these should 
be undertaken in order to identify the properties of the object exploitation process that is 
described by the theoretical model just presented.

Secondly, the most frequently used theoretical model is the model of the process of changes 
of states that is illustrated in Figure 2.2.

The object is used and in moments t1, t2, t3, ... interesting exploitation events occur—
changes of states. This model is more complicated than the previous one. The exploitation 

Figure 2.1. Exploitation process as a process of impulses.
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repertoire  is associated with this model. It is determined by the set of states of the object 
that can happen during the operation of the object:

  = < 1, 2, ..., m> = < i ; i = 1, 2, ..., m >

The set  of possible transitions between states is associated with this set: 

  = <λij ; i, j = 1, 2, ..., m >

where λij are the intensities of the transitions between states. For some stochastic processes 
the probabilities are considered instead of the intensities.

The determination of both sets can be achieved by logical analysis bearing in mind the 
operational reality. Notice that a special case of the above process is the process of changes in 
states: work-repair type, which is very well known in reliability theory (e.g. Gnyedenko et al. 
1969, Kopociński 1973). The estimation of measures associated with the individual nonzero 
elements of the sets requires an extensive analytical procedure and here again one may for-
mulate a list of questions that are worth answering.

– What kind of statistical properties does each sequence of times of states have?
– If  a given sequence is stationary and has no peculiar properties, then what kind of prob-

ability distribution may be used to describe well, in a statistical sense, the random variable 
‘time of given state’? 

– Are times of states independent of each other?
– If  some states are stochastically dependent, then what kind of random dependence is it?
– Until what moment the analysis of the course of this process makes sense?

The above list is similar to the previous one. Nevertheless, the necessary analysis connected 
with a trial to get answers to these questions is more complicated and more comprehensive.

In both lists of questions is the presumption stating ‘if  this sequence is a stationary one 
and it has no peculiar properties then …’. Let us explain what this means.

When a statistical observation has been made and a sample has been taken, one obtains a 
sequence of the times of a given state {t1, t2, ..., tn}. And here a fundamental question should 
be formulated: What kind of stochastic properties characterize the sequence? These proper-
ties contain rich information about the running physical processes in the object being inves-
tigated and about the repercussions of these processes. An exploitation reality is determined 
by the particular realisation of a given sequence. It is worth remembering that three elements 
determine the course of the exploitation process of a technical object, namely:

• Properties of the object given by the designer, the constructor and set up by the producer
• Properties of the surroundings of the object (recall: surroundings of an object includes 

everything that is around it and that remains in a certain interaction with it)
• Executed policy of use and maintenance of the object.

Figure 2.2. Model of an exploitation process as the process of changes of states.
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Each sequence observed contains encoded information. By performing an adequate analy-
sis and using suitable statistical tools in an appropriate sequence, we are able to decode it 
and translate it into engineering language. Usually, we are looking for answers, among other 
things, to the following questions:

– Is the observed sequence homogeneous or does it perhaps have untypical elements that 
distinctly differ from the others?

– Is the observed sequence stationary or is there a trend in it?
– Is there a stable dispersion of values in the sequence or does it depend on time?

Obviously, the above list can be extended according to our needs.
A trial to answer the above listed questions is the subject of consideration in the next 

chapter, which is the first part of an analysis conducted in the book. The next step will 
be the statistical synthesis: The estimation of the parameters of random variables that are 
being investigated as well as finding the theoretical probability distributions that describe the 
empirical distributions well 7.

A further part of the considerations will concern a case in which two or more random vari-
ables are observed. Two problems are important here—the investigation of whether random 
variables are independent of each other and—if not—an examination of the interdepend-
ence (in the shape of a correlation) between the variables. The second problem comprises a 
much broader scope of analysis than the first one. 

The next part, in turn, comprises the second stage of the statistical analysis. If  there is 
information that random variables are stochastically dependent, the problem is: What kind 
of relationship exists between them? This part will present a description in the form of a func-
tion illustrating this stochastic interdependence. Consideration commences from a simple 
linear regression analysis and linear transformations up to multidimensional models. Next, 
more advanced models will be presented starting from autocorrelation and autoregression 
models, through classical linear regression for many variables and regressions when errors in 
the values of random variables are traced. This part of the consideration concludes by tak-
ing into account that in some cases there is additional information on the random variables 
examined and this information should be included in the study in order to improve statistical 
inference conducted.

Chapter 7 contains a special topic—statistical prediction. There are many problems con-
nected with any inference about the future. They concern terminology, definitions in use, the 
areas of study and so on. In this chapter some order is presented in this regard and a few 
examples are presented based on data taken from practice. 

The penultimate chapter is a supplement where basic statistical terms are defined in order 
to better understand the considerations presented in the book.

The book concludes with Chapter 9 in which a set of tables to carry out statistical infer-
ence is included.

7 In this book the phrase ‘…describe well …’ will be found in many places. This term ‘well’ does not have 
the commonly understood meaning in this context but it is the use of ‘well’ in a statistical sense. This 
means further that the statistical investigation was conducted and a positive result was obtained. Thus, 
we are authorized to state that, for example: ‘This model describes well the empirical data.’ 
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CHAPTER 3

Analysis of data

The subject of consideration in this chapter is the study of the properties of the observation 
outcomes noted during the realisation of a statistical investigation. It is presumed that the 
recorded data has the form of a sequence of numbers. In order to translate this into statisti-
cal language—a sample is taken and it is necessary to make a primary analysis; this is the 
primary because a further part of the analysis depends on the information obtained from it. 
This information can be of different natures and this will determine the direction of the later 
investigations into different areas of the statistical consideration.

3.1 TESTING OF SAMPLE RANDOMNESS

When the decision is made to observe only a certain part of the population that was the point 
of interest, we must be sure that this separated representation will have all significant proper-
ties of the population. Practically, a point of interest is one feature or a few features, and it is 
expected that this separated part in the form of a sample will characterise the whole population 
well, i.e. the sample will be representative. A long time ago, it was stated that a sample is repre-
sentative when it is taken in a random way1. And that this is a necessary condition. Therefore, 
the subject under consideration here will be a certain property of a sample—its randomness.

Neglect here the problem of the definition of randomness. By studying some papers con-
cerning randomness (starting from Kendall and Smith 1938 up to Wolfram 2002 p. 1067), 
some subtle differences can be noticed. It is also dependent on whether the consideration is 
in the area of mathematical statistics or whether attention is being paid to engineering prob-
lems. Our approach to randomness is a typical engineering one—a sample was taken and we 
want to know whether it is random. In order to resolve this problem it is necessary to choose 
the appropriate statistical tool—a test. This problem can be solved in the area of the theory 
of statistical hypotheses.

It is said that there are not many tests that can be used in this case2. Here our analysis will 
be based on a number of series (runs) in a sample taken using the median of the variable that 
is being investigated3.

The procedure of the test is as follows.

3.1.1 The test procedure

The sample is in the form of a sequence of numbers that are successively noted accord-
ing to their occurrence. One should order the sequence monotonically in order to estimate 
the median. The number in the middle is the estimation of the unknown median from the 

1 If  all of the samples of the same size have an equal chance of being selected from the general popula-
tion, we say that the samples have a random character.
2 By the way, some tests for the randomness of a sample—for example ‘the rank correlation test for the 
randomness of a sample’ presented by Gopal (2006, test 71)—do not test the randomness of a sample. 
Gopal’s test is, in fact, a test for the stationarity of a sequence. Similar examples of improper statements 
can be found in the literature related to the subject.
3 Recall, the median was defined by formula (1.34).
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population. When the sample has an even number of items, then the arithmetic mean of the 
two middle numbers is an estimate of the median. Now, the original sequence of numbers 
translates into a sequence of plus and minus signs; each number will have a sign. A plus sign 
will be given to all numbers greater than the median and a minus sign will be associated with 
all numbers lower than the median. Any numbers equal to the median should be rejected. The 
next step in the test is the calculation of the number of series, i.e. the number of monomial 
signs. Denote the number of + signs by n+ and the number of − signs by n−.

Now, the statistical hypothesis H0 is formulated, which proclaims that the elements of the sam-
ple were selected in a random manner, whereas the alternative hypothesis H1 rejects H0. In order 
to verify the premise H0, one compares the number of series in the sample with the critical value 
that is taken from the statistical table for the given number of signs and a presumed level of sig-
nificance α. The critical region consists of two sub-regions: the left side and the right side, which 
means that there are two limited values: the minimum number of series (the critical region for 
α/2) and the maximum number of series (the critical region for 1 2− α ). If the number of series falls 
between these two critical values, we have no ground to reject the null hypothesis. Otherwise, the 
alternative hypothesis H1 is the true one. This means that the rejection of the verified supposition 
is a consequence of the fact that there are either too many series in the sample or too few series.

Consider an example.

■ Example 3.1

A reliability investigation of selected machines was carried out in an underground copper 
mine. The sequence of the repair times of one LHD machine was noted:

2.5; 1.4; 4.3; 0.8; 3.2; 0.4; 2.2; 3.4; 5.4; 7.2; 0.9; 2.8; 2.9; 1.8 h.

Verify the hypothesis that the observed sequence is random.

By arranging the sequence monotonically we have:

0.4; 0.8; 0.9; 1.4; 1.8; 2.2; 2.5; 2.8; 2.9; 3.2; 3.4; 4.3; 5.4; 7.2

The sample contains 14 elements. Calculate the median of the sample:

 Me = + =2 5 2 8
2

2 65. .+5 2 .

Convert the original sample into a sequence of signs. We have:

 – – + – + – – + + + – + + –

The number of the series is 9, the number of signs n+ = n+ = 7. Presuming a level of signifi-
cance α = 0.05 and using Table 9.8, we have:

 Kα/2(7, 7) = 3 and K1−α/2(7, 7) = 12
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The empirical number of the series fulfils the inequality 3 < 9 < 12, thus we have no ground 
to reject the verified hypothesis H0. We can now agree with the statement that the sample has 
a random property. ◀

The statistic that is the number of series also has an application in the verification of the 
hypothesis that proclaims that the two samples are from the same population.

As a rule, tables of the critical values for a series comprise up to 20 signs so the problem 
arises of what to do when a sample size is greater than 20. For large n+ and n− the series 
number distribution can be satisfactorily described by the normal distribution N(m, σ) of the 
parameters determined by the formulas:

 m n n
n n

=
+

++ −n

+ −n
2 1  (3.1)

and

 σ = ( )−

( )+ ( )+ −
+ −2 (

2

n++ −
++ ++

.  (3.2)

The above relationships can be used for approximate calculations.

3.1.2 Results of a randomness investigation

The finding that a given sample is non-random in mining practice does not occur frequently. 
This regularity is undoubtedly associated with the fact that studies are usually prepared with 
certain insight and diligence bearing in mind observations of the conditions for proper inves-
tigations. Nevertheless, there are some realisations of random variables in mining engineering 
that are non-stationary ones, e.g. the total number of wire breaks versus the time in the hoist 
head ropes (or better—versus the number of hoist cycles executed). In this case, one observes 
the realisation of a non-stationary random process and randomness testing makes no sense.

If—as the result of statistical testing, the non-randomness of the sample was stated—we 
cannot make any further statistical inference concerning the random variable except to trace 
why this regularity has been noticed.

There are many reasons for such a set of  circumstances. One possibility is the existence 
of  a cyclic component in the realisation of  the observed random variable. The opera-
tion of  many pieces of  equipment in mining has a cyclic character and this periodicity 
can generate a cyclic component in the process of  their exploitation. A stream of  rock 
that is being excavated—it does not matter whether it is continuous or discrete—has a 
periodic character because of  the cyclic character of  a mining operation. And again, this 
can have an influence on processes that are running in mining. Another possibility is that 
during the repair of  a technical object, a certain assembly has been replaced by an assem-
bly from a different machine. As a rule, this new item is much more sensitive to failures 
than the original one. It can be much more susceptible to the periodic character of  the 
operation. Generally, all these ‘abnormal’ events can generate non-randomness in the data 
observed.

For a researcher carrying out an investigation, information about the non-randomness 
of the sample should be a clear signal that something untypical was noticed. Finding the 
reasons for this untypical regularity is by all means recommended. It may be the source of 
significant information on the object being investigated and it does not matter whether it is a 
technical item, a process or a property of the surrounding rocks. Sometimes, the reason can 
be prosaic—an informatics error in the system that is collecting the data.
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3.2 AN OUTLIER IN A SAMPLE

This problem can be included in the category of homogeneity investigations. Homogeneity 
alone can be defined in different ways depending on the subject of the research and in what 
sense it is understood. An example in this regard are studies on the homogeneity of a shovel-
truck system that were presented in Czaplicki’s book (2010, Chapter 10). The basic statisti-
cal measure of the homogeneity of the machinery system was the standard deviation and 
also the probability distribution that was the result of the calculation scheme. Homogeneity, 
which is the point of interest here, is understood as a property of a random variable being 
investigated. This property relies on the possibility of describing data by using a model that 
is the probability distribution function.

When a sample is taken, there is sometimes one outcome, very rarely two, that does not fit the 
sample at first glance due to the fact that this observed value clearly differs from the others. The 
outcome either has a very high or a very low value compared to the other data. In mathematical 
statistics such an outcome is termed an outlier4. Immediately the question arises as to whether this 
number belongs to the sample or whether it has been put into the data due to a wrong decision, a 
mis-recording or an error in the measurement. Outliers are often easy to spot in histograms.

A histogram is an important tool in statistics and is a graphical representation that shows 
a visual impression of the distribution of data. It is an estimate of the probability distribu-
tion of a continuous variable and was first introduced by Karl Pearson (1895). A histogram 
consists of  tabular frequencies, which are shown as adjacent rectangles that are erected over 
discrete intervals (called bins) with an area equal to the frequency of the observations in the 
interval. The height of  a rectangle is also equal to the frequency density of  the interval, i.e. 
the frequency divided by the width of the interval. The total area of the histogram is equal to 
the number of the items of data. A histogram may also be normalised in order to display rel-
ative frequencies. It then shows the proportion of cases that fall into each bin/category with 
the total area equalling 1. The categories are usually specified as successive, non-overlapping 
intervals of  a variable. The bins must be adjacent, and often are chosen to be of the same 
size. The rectangles of  a histogram are drawn so that they touch each other to indicate that 
the original variable is continuous. An example of a histogram with an outlier being far to 
the right is shown in Figure 3.1.

An outlier is also easy to trace in a conventional x–y diagram when the data gathered 
concern the relationship between these two variables. A set of collected data shown in the 
coordinate system and an outlier visible far beyond main course of the rest of data are pre-
sented in Figure 3.2.

The main problem that arises when an outlier is noticed in a sample is whether this extraor-
dinary number belongs to the probability distribution that describes data observed well or 
whether it does not.

Ignoring the problem that authors have given different definitions of an outlier (see, for 
example, Grubbs 1969, Zeliaś 1996, Moore and McCabe 1999, Czekała 2004, www.math-
words.com/o/outlier.htm), it is worth noting that mathematical statistics has a variety of tests 
that allow the hypothesis that states that such an outcome belongs to a given sample to be 
verified. Literature from this field is rich (cf. Barret and Lewis 1994) and particular problems 
of untypical observations have been considered by many authors for years (see, for example, 
Fisher 1929, Gnyedenko et al. 1965, Czaplicki 2006).

Let us look at the problem of outliers from a practical point of view. Sometimes in the 
reliability investigations of pieces of equipment, a repair occurs which has evidently taken a 

4 One can find some further definitions that are not entirely statistical ones: a person whose residence 
and place of business are at a distance or something (such as a geological feature) that is situated away 
from or classed differently from a main or related body.
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longer time to clear than the other data. Ignoring the problem of what are the causes of such 
observation, we can quickly come to the conclusion that the mean time of repair becomes 
significantly longer than before the outlier appeared and especially the corresponding standard 
deviation.

In such a case, the first reaction should be to perform a penetrating analysis of the reasons 
for the occurrence of such an event—an out-of-statistics analysis.

Before one commences this type of  analysis, it is worth being aware of  a certain regular-
ity. There is a large class of  technical objects that can be seriously damaged during their 
operation. The environment of  the objects can also be devastated and the threat to the lives 
and health of  personnel can be observed as well. For example, when a hoist conveyance 
over-winds beyond its capacity (a catastrophic type event), it can strike the crush beams 
and a rupture can occur in the hoist head rope. The intensity of  failures of  this type is 
completely different than other regular failures of  the object. In addition, the time required 
to clear the failure is significantly longer. This means that these two types of  exploitation 
events cannot be analysed together. The intensity of  failures and the times of  repair (if  
repair is possible) are completely different, but repair time, for instance, is not an outlier in 
a statistical sense. The exploitation process of  an object of  this type is a superposition of 
two processes; regular failures occur in one process whereas in the second one, rare events 
occur.

A similar approach to events that occur can be repeated in different areas. When register-
ing the shocks that appear in the rocks around underground excavations a sudden great earth 
tremor can sometimes be observed. In reality, it is obvious that these unusual events should 
be analysed separately and they are not outliers compared to the tremors that are registered 
day-to-day in a mine5.

5 Often, it is additionally presumed that extraordinary shocks and regular ones are independent of each 
other. Fortunately, in some cases this assumption does not hold; closely followed events in this regard 
allowed such an event that is a precursor of a coming great shock to be registered (Sokoła-Szewioła 
2011). This information is important for the safety of mining operations.

x

h(x)

Figure 3.2. Empirical relationship between two variables and an outlier.

x

h(x)

Figure 3.1. Histogram with an outlier.
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Thus, let us presume at the very beginning of our consideration that we are able to rec-
ognise and exclude events which are untypical and are caused by the nature of a complex 
phenomenon from further study.

However, if  there is no indication as to why an outlier has occurred in the sample, we have 
to make use of statistical tools.

Consider the following statistical scheme.
Presume there is a sample that was gathered from the elements of two different popula-

tions. The variables connected with these populations differ from each other considerably in 
regard to the mean value. Moreover, one population is very large in number in relation to the 
second one. In such a situation, we can expect that a number may occur in the sample taken 
that is significantly different from the other elements of the sample. The occurrence of such 
an item allows a hypothesis to be formulated stating inhomogeneity with regard to the feature 
that is the objective of the investigation. In order to formalise it, one can write it down.

There is a given sample:

{X1, X2, …, Xk, …, Xn}

There is a supposition that the k-th element of the sample is untypical—an outlier.
Assume the mean value of the rest of the elements is:

E(Xi, i≠k) = μi = μ.

Formulate a null hypothesis H0:E(Xi) = μ. This supposition says that all of the elements are 
taken from one population. An alternative hypothesis is:

H1: μk ≠ μ ∧ μi, i≠k = μ

which means that the k-th element has a significantly different mean value.
A further part of the analysis depends on the kind of information that is available. In min-

ing practice two probability distributions are applied most frequently, namely, exponential 
distribution and Erlang distribution. (Gaussian distribution is also applied often, especially 
when the times of the work cycle of machines operating periodically is concerned.) Let us 
also discuss a case when there is no information on the distribution of the random variable 
being investigated.

Commence consideration when the random variable being investigated can be described 
by an exponential distribution.

3.2.1 Exponential distribution

Note at the very beginning that when an exponential distribution is concerned, we are in a 
peculiar situation. The intensive development of reliability theory in the sixties and seventies 
of the previous century as well as exploitation theory later on initiated the development of 
mathematical tools from the field of statistics in order to investigate the properties of techni-
cal objects that are manifested during the operation of an object. For this reason, there are 
several tests on the homogeneity of a sample and the tracing of outliers.

Presume that the exponential distribution is of the parameter λ. It is a well-known fact that 
the product 2 1λΣ i i1 k

n
i=i1, X  has the probability distribution χ2 with (2n − 1) degrees of freedom 

because the sum of the random variables that are exponentially distributed has the Erlang 
distribution of (n − 1) degrees of freedom and multiplying it by the product 2λ, one obtains 
the Chi-square random variable with (2n − 1) degrees of freedom. Denote it conventionally:

 2 2
1 1

2λ χX
i 1 k

n

i
i

n

≠i1
∑ ∑λ2λ2i

,

: (2χ ( )1n )  (3.3)
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By introducing the estimator of the expected value:

 mn i
i i k

n

n
Xi

= ≠i

=
− ∑1

1

1
1 ,

 (3.4)

one can rearrange pattern (3.3) into
 

2 21
2λ χ11 (2χ ( )1 )211 (2χ (n 2(χ1

Presuming that the null hypothesis is a true one and considering the ratio of quotients, it 
is easy to perceive that

 m mn nm
n

n n n2
2 2

2n 11
λ λ2( )n 1n

( )n 1n
: (F , (2 ))−−:

where mn is the estimator of the mean taking into account the outlier and the symbol F(2n, 
2(n − 1)) denotes the F-Snedecor’s random variable with 2n, 2(n − 1) degrees of freedom. By 
simplifying one can get

 (mn : mn−1) : F(2n, 2(n − 1)) (3.5)

Now we are able to verify the null hypothesis. It should be rejected if—for the presumed 
level of significance α—the quotient of the left-hand side of this relationship is greater than 
the quantile of the order α of  the distribution F, that is

 (mn : mn−1) > Fα(2n, 2(n − 1)) (3.6)

A slightly different approach for the verification of an outlier was presented by Fisher in 
1929 (the problem of outliers in those days was almost non-existent in the formal sense). He 
presented a test for the simultaneous verification of the hypothesis of the exponential distri-
bution of the random variable being tested together with the existence of an outlier that was 
significantly greater than the rest of the elements in the sample in his paper. Fisher proposed 
that the following formula be considered:

 η =
= ≠∑
X

X
kX

iX
ii= k

n

,1

 (3.7)

If the random variables Xi ; i = 1, 2, …, n are stochastically independent and have the same 
exponential distribution, then the probability distribution of statistic η does not depend on λ.

The critical values for this function were given in the paper cited, thus allowing for the veri-
fication of the formulated hypothesis (see also Gnyedenko et al. 1965 or Gnyedenko 1969).

■ Example 3.2

During a reliability investigation carried out in an underground coal mine, the following 
sequence of work times of a belt conveyor was observed:

290, 880, 670, 1420, 590, 380, 6220, 110, 280, 410, 770, 480, 60, 1330, 2070, 860, 1190, 
1610, 820, 180  h

The seventh element of the sample looked strange at first glance. A suspicion was formu-
lated that possibly a gap in recording took place.
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Perhaps, a failure occurred at that time and was not recorded6.
Begin from a randomness testing of the sample. Presume that the outlier belongs to the sam-

ple. If during a further part of the research it will be proved that this does not hold, our analy-
sis will be repeated. The sample consists of n = 20 elements. If so, the median of sample is:

 Me = + =670 770
2

720 h

The sequence of signs that depend on the fact that the given value is greater or lower than 
the median is as follows:

 – + – + – – + – – – + – – + + + + + + –

The number of series in the sequence is 11. The number of plus and minus signs is identical 
and equals 10. Presume a basic hypothesis H0 that proclaims the randomness of the sample 
versus the alternative supposition that it does not hold. One can read the critical values 6 and 
15 from Table 9.8. Because the number of series in the sample is 11, there is no basis to reject 
the basic hypothesis. We can assume that the sample has a randomness character.

Let us calculate two mean values: one for all of the elements but without the outlier and 
the second one including it. We have:
 

Xn n−1 031031 335h hXnX =X 1335,

The difference between them is significant. (A greater difference is visible in the corre-
sponding standard deviations: 552 h and 758 h for this obvious reason).

As many empirical investigations have proven, in the majority of cases the probability 
distributions of the work time for belt conveyors can be satisfactorily described by an expo-
nential distribution.

Calculate the ratio of the mean values:

 X
X

n

n−

≅
1

1 3.

Formulate a null hypothesis stating that the data are homogeneous and the quotient of 
means is not significantly different from the alternative hypothesis that proclaims that the 
ratio of the average values is significantly different from unity.

6 There are many such cases in mine practice and it is not a mining ‘specialisation’. In their book 
Gnyedenko et al. (1969) described a case where a member of staff  who was responsible for registering 
failures took a break and nothing was recorded during this period.
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The critical value is taken from the F-Snedecor’s tables for degrees of freedom for this 
example (Table 9.6) and it is presumed that α = 0.05 is:

 Fα=0,05(40, 38) = 2.12

Because the empirical value does not exceed the critical one, there is no basis to reject the 
hypothesis, i.e. there is no ground to remove the outlier from the sample. ◀

3.2.2 Erlang distribution

The above consideration can be expanded for a case where the values of the sample can be 
satisfactorily described by the Erlang probability distribution. It is enough to notice that the 
product 2 1λΣ i i1 k i= ≠i1,

n X  has a Chi-squared distribution with 2k(n − 1) degrees of freedom. It can 
be noted conventionally as

 2 1 1
21

λ ni
i i1 k

n

= ≠i1
∑ ⎛

⎝⎝⎝
⎞
⎠⎟
⎞⎞
⎠⎠,

(k:GaG
⎝⎝⎝

),  (3.8)

Applying analogical reasoning one obtains:

 (mn : mn−1) > Fα(2kn, 2k(n − 1)) (3.9)

which means that the null hypothesis should be rejected when for the presumed level of sig-
nificance α the quotient visible on the left side of the inequality (3.9) is greater than the 
quantile of the order α of  the F probability distribution.

■ Example 3.3

The operation of  a suspended loco used in an underground coal mine to refurnish long-
wall faces was investigated. A sequence of  repair times was recorded giving the following 
data:

160, 60, 175, 320, 100, 360, 120, 70, 210, 45, 590, 250 120, 230, 30, 140, 55, 510, 60, 95, 180, 
310, 190, 150, 2220, 200 min.

Attention was paid to element number 25, which was significantly greater than the other 
times. There was no description of what had happened and why this time was so long. There 
was also a suspicion that something had broken and there was no spare part in the mine’s 
warehouse. But in such a case there should be proof that a special order was submitted to the 
producer of the loco on that date. There was no such proof.

Investigate whether the sample has randomness character.
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The median of the sample is:

 
Me = + =150 160

2
155 min

and the sequence of signs is as follows:

 + – + + – + – – + – + + – + – – – + – – + + + – + +

The series number is 17. The number of plus and minus signs is the same and equals 13. The 
critical numbers for the presumed level of significance α = 0.05 are: 8 and 19 (see Table 9.8). 
Conclusion: there is no basis to reject the null hypothesis that proclaims the randomness of 
the sample that has the outlier in it.

Discuss now the existence of the outlier in the sample from a statistical point of view.
An earlier reliability investigation gave grounds to conclude that the probability distribu-

tion of repair times could be satisfactorily described by the gamma distribution with the 
shape parameter just below two, and it was assumed that k ≅ 2. Thus, it was assumed that the 
Erlang distribution described the statistical data well.

Two average times were calculated for the loco based on the sample; one presuming that all 
of the elements come from one homogeneous population and that the second one excludes the 
outlier. Results are

 mn = 267.3 min and mn−1 = 189.2 min;

(the standard deviations are 428.8 and 140.5 min, respectively).
The ratio is:

 m
m

n

n−

=
1

1 41.

Formulate a hypothesis H0: the data are homogeneous and the quotient of the average 
values is non-significantly different than the one against the hypothesis H1, which states that 
the ratio of the average values is considerably greater than one, which means that the outlier 
does not belong to the sample.

The quantile of the order (2kn, 2k(n − 1)) taken from the appropriate table (F Snedecor, 
Table 9.6) for the presumed level of significance α = 0.05 is:

 F0.05(104, 100) ≈ 1.39

The empirical value is greater than the critical one and for this reason we have ground to 
reject hypothesis H0. The sample is not homogeneous and the outlier should be excluded 
from further analysis.

The above result indicates that our previous inference on the randomness of the sample 
has to be repeated. If  so, calculate the median of the sample which is now 160 min. The 
sequence of signs is as follows:

 – + + – + – – + – + + – + – – – + – – + + – +

(The number of signs was reduced by 2 because there is no outlier and the element that 
equals the median was also rejected).

The number of series is now 16. The number of – signs is 12. The critical values for the 
same level of significance are: 7 and 18 (Table 9.8). Corollary: there is no basis to reject the 
hypothesis that proclaims the randomness of the sample.
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Note. Further inquiry in this regard permits information about what happened to be 
obtained. Two bolts fixing the rail to the roof had been slackening due to the displacement 
of the surrounding rocks. The displacement was small but was strong enough to weaken the 
bolts. When the heavy unit arrived at the loosened rail part, the bolts slipped out and the loco 
went off  the rail. Some parts of the loco were broken. We can assess this event as a rare one, 
and it can be counted among catastrophic ones. Observations of the operation of several 
similar locos at that mine indicated that there was no evidence of any comparable event. ◀

3.2.3 Other distributions

Consider now when the data contained in a sample can be satisfactorily described by a Gaus-
sian distribution.

As we know, the domain of determinacy for a random variable described by this distribu-
tion is the whole axis of real numbers. This is not accepted in engineering applications. All 
physical magnitudes used in the field of engineering have their own limits.

However, such an approach in which the values of a random variable are supported over 
the whole real axis should be treated as a margin model. Very often the left-side natural limit 
for physical magnitude is zero. Not many physical magnitudes are supported over a certain 
part of a negative value axis. These are, first of all, load, stress, braking force, deceleration or 
the dynamic moment.

Magnitudes that are considered in reliability analyses are determined over a nonnegative 
set of values as a rule. This set contains real number values when times of states are con-
cerned. The effect of the existence of a machine work state is the specific job executed by 
this machine and in mining engineering may have the form of an excavated, hauled, dressed, 
dumped or stored mass of rock that has been won. This set can also contain natural numbers 
only if  the point of interest is the number of pieces of equipment that are in a particular state 
at a given moment of time, the number of repair stands, spare parts etc. Where transport 
means are concerned, the proper determination of the right-side limit for random variable 
values determines whether the results of the calculation of their basic parameters will be 
adequate to the reality. Many practical examples testify that in the world of engineering and 
especially in mining the Gaussian distribution should have both side limits, which means that 
the probability distribution is truncated. In a case where the distribution has only one bound-
ary or it has no limits, it is necessary to evaluate any error generated by such an assumption. 
If  its value is small, it may be approved.

Consider a homogeneity analysis. A hypothesis H0 that is verified is a statement that all 
of the elements of the sample are taken from one population in spite of the fact that one 
element differs considerably from the others. This formula can be used to check whether the 
supposition H0 is true:

 T X
SkTT k n

n

n
n

m=
−

− −

−1
1

2

 (3.10)

where:

 Sn i n
i i k

n

n
=

− ∑∑ 1i n2 = ∑ 2

1

1
2

( )X X 1i nX Xi n−i n
, ≠

 (3.11)

is the estimator of the standard deviation of the variable being observed without the outlier. 
If  the verified hypothesis is true, the random variable Tk has a Student’s t-distribution with 
(n – 2) degrees of freedom. If  the alternative hypothesis H1 is true, the random variable Tk has 
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a non-central Student’s t-distribution7. The hypothesis that is verified should be rejected for 
the presumed level of significance α if  the following inequality holds:

 Tk ≥ tα(n − 2) (3.12)

where tα(n − 2) is the quintile of the order α of  the Student’s t-distribution with (n – 2) degrees 
of freedom.

■ Example 3.4

The unloading times of hauling trucks were recorded in a certain open pit mine. The follow-
ing sequence was noted:

1.02; 1.10; 1.12; 0.98; 1.21; 1.09; 0.94; 1.05; 0.93; 1.66; 1.22; 1.08; 1.02; 0.88; 1.03; 1.09; 
1.00; 0.86 min.

The 10-th time looks strange (1.66 min) so it is excluded from further analysis. Verify 
whether this decision was a proper one.

Commence from testing whether the sample has a randomness property.
The sample consists of 18 elements. If  the outlier is rejected, the sample has an odd number 

of items and for this reason—after arranging the sequence monotonically—the element that 
is in the middle is the estimate of the unknown median. This means that the time of dumping, 
which equals 1.03 min, is the estimate of the median. There is such an element in the sample, 

7 In probability and statistics, the non-central t-distribution generalises the Student’s t-distribution using 
a non-centrality parameter. Like the central t-distribution, the non-central t-distribution is primarily 
used in statistical inference, although it may also be used in robust modelling for data. In particular, the 
non-central t-distribution arises in power analysis. The cumulative distribution function with v degrees 
of freedom and non-centrality parameter μ can be expressed as:
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so if  one rejects it, the sequence of plus and minus signs (elements greater than the median 
and elements lower than the median) is as follows:

 − + + − + + − + − + + − − + − −

The number of series is 11 and the number of plus signs is equal to the number of minus 
signs, which is 8. The critical values for the level of significance α = 0.05 are: 4 and 13 
(Table 9.8). Corollary: because the empirical value falls between the critical boundaries there 
is no basis to reject the hypothesis that states the randomness of the sample.

Now evaluate whether the decision to reject the outlier was a correct one.
Calculate the average values for the sample with the outlier and without it. Here we have:

 mn−1 = 1.04 min and mn = 1.07 min

The corresponding standard deviations are:

 Sn−2 = 0.10 min and Sn−1 = 0.18 min.

Now calculate the value of the statistic Tk—patterns (3.10) and (3.11): Tk = 6.36.
Presume the level of significance α = 0.05. The critical value for this level is tα(n − 2) = 2.12 

(Table 9.3). The empirical value significantly exceeds the critical value. The outlier has to be 
rejected from further considerations. 

Note. This extraordinary dumping time was caused by a malfunction of the hydraulic 
system that lifted and lowered the loading box. �

It is time to consider a case in which there is no information on the random variable being 
investigated, and thus we are not able to formulate a statistical hypothesis in this regard in 
addition to the fact that we know the sample that has just been taken. This may be the case 
when the sample is small or when the test that permits the probability distribution to be iden-
tified gives ambiguous information.

In such a case, the oldest principle that is used is the rule of 3σ. According to this principle, 
the rejection region is determined by the inequality given by formula:

 X > +Xn n− S 2+ −n+ Sn3  (3.13)

where the first component of the right side of the equation is the mean based on the (n − 1) 
sample whereas the second is the product of three times the standard deviation of the 
sample.

By the way, let us evaluate how this principle holds for the case just discussed—example 
3.4. Applying the estimates that were found during the analysis, one obtains

 X > 1.04 + 3 × 0.10 = 1.34 min

The outlier (1.66 min) is above this value. Notice that the dispersion of the random vari-
able being investigated is comparatively low8. ◀

8 A basic measure of the relative dispersion of a random variable is the Coefficient of Variation (CV). It 
is a measure of the differentiation of the distribution of a random variable. It is the ratio of the standard 
deviation to the expected value of the random variable provided that the mean is different than zero. Its 
estimator—both parameters assessed based on the sample—is consistent but biased in a general case. 
CV is usually given in percentages.

Book.indb   67Book.indb   67 12/9/2013   12:23:39 PM12/9/2013   12:23:39 PM



68 Statistics for mining engineering

Although it is difficult to determine unequivocally what is the probability that the above 
inequality holds (it depends on the type of probability distribution that we are dealing with), 
we can be sure that this probability is very small, assessed as a few per cent (in the case of an 
exponential distribution for instance, it does not exceed 2%). A rather stronger statement in 
this regard is the limited estimation that is determined by Cheybyshev’s inequality theorem, 
which is as follows.

Let X be a random variable with a finite expected value and a finite non-zero variance. 
Then, for any real number k > 0, the following inequality holds:

 
P

k
{ }k x| ( ) |X(E ≤) |X(E ≥ −1 1

2  (3.14)

However, only the case k > 1 provides useful information. When k < 1, the right side of 
the inequality is greater than one, so it becomes vacuous because the probability of any event 
cannot be greater than one. When k = 1, it simply means that the probability is less than or 
equal to one, which is always true. If  for instance k = 3 then, keeping in mind pattern (3.14), 
the lower estimation is approximately 0.9.

Several further tests concerning outliers are applied in statistics. One of them is the so-
called Q test.

For verification of the statistical hypothesis H0 that proclaims that an outlier is necessary 
in a sample to order the sample monotonically, presume that the elements of the sample were 
presented in a non-decreasing way, i.e.

 {y1 ≤ y2 ≤ ... ≤ yn < Xk} (3.15)

Define the statistic:

 Q X y
X y

= k ny

k 1

 (3.16)

The formula (3.16) determines the empirical value of the statistic Q. It should be compared 
with its counterpart Qα(n), which is a critical value. The critical values are given in Szepke’s 
paper (1967). If  the following inequality holds:

 Q ≥ Qα(n)

then the verified hypothesis H0 should be rejected at the level of significance α. It is obviously 
understood that the alternative supposition is accepted; the hypothesis that proclaims that 
the outlier belongs to the sample.

At the conclusion of the considerations on outliers, note the following regularity. There are 
many probability distributions that are used in mathematical statistics and they have various 
properties. One such property is robustness on the outliers’ appearance. Although the problem 
of robustness in statistics is much wider9, we are discussing the possibility of the occurrence of 
untypical outcomes in a sample here. Literature on the subject of robustness appeared mainly 
in the late seventies and eighties of the previous century (e.g. Huber 1981, Rousseeuw and Leroy 
1987), and many probability distributions were tested in this regard. The Gaussian distribution 

9 There is a term ‘robust statistics’ which provides an alternative approach to standard statistical methods, 
such as those for estimating some parameters of a random variable. The main point is to make such 
estimators which are not unduly affected by outliers or small departures from model assumptions.
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proved to be robust on the appearance of outliers while gamma and Weibull did not. This 
means that an extraordinary outcome may appear and the sample will be homogeneous.

Generally, it is worth remembering that if  an untypical outcome is in a sample, it is neces-
sary to verify the source of information in order to check the possible physical reasons for 
its appearance etc. And, if  all of these non-statistical potential reasons are attested and no 
motive is found then it is time to apply statistical tools.

As has been shown, the presence of an outlier in the sample generates a problem. If  further 
analysis is carried out and some statistical measures are estimated—or, when for example, 
performing least squares fitting to the data—it is often the best solution to discard the out-
lier before computing. This should even be done when the appropriate statistical test gives 
no grounds to reject the hypothesis that the outlier belongs to the given sample characterised 
by a certain probability distribution. It is worth noting that if  a sample is large, the rejection 
of one element does not cause a great loss. If, however, a sample is small, the value of the 
outlier has an enormous influence on the values of the calculated parameters. Estimates will 
be distorted and therefore it is better to reject it.

3.2.4 Result of an outlier analysis

This provides unequivocal information about which part of the gathered data should be 
taken into further investigations.

In a case where an untypical element belongs to the sample, it is noteworthy information 
that during the operation of the object such event can sometimes occur.

3.3 STATIONARITY TESTING OF SEQUENCES

In our analysis, two steps were done first—we checked the randomness of the sample taken 
and rejected the outlier (if  there was one). The next step should be an examination of whether 
the observed sequence of outcomes is stationary or not. The result of this examination has a 
significant influence on further parts of the statistical analysis. This is because if  a sequence is 
a non-stationary one (which means that the values of the sample are increasing or decreasing, 
on average), it indicates that we have observed the realisation of a certain stochastic process 
of the monotonically expected value of the variable. If  so, our further analysis should be 
done in the area of the theory of stochastic processes. However, if  the sequence is stationary, 
we can presume that our sample was the realisation of a certain random variable and the 
scope of further consideration should be on the analysis of the field of the random variables. 
Such analysis is much simpler than an analysis of stochastic processes.

Generally, stationarity means that something is fixed in a position or mode that is immo-
bile or unchanging in condition or character. Stationarity in connection with the exploita-
tion process of a technical object is associated with the way in which the process is realised. 
Therefore, it is a kind of property of a random process.

Let us ignore the subtleties connected with the different kinds of stationarity that are 
considered in the theory of stochastic processes (see, for example, Feller 1957, Kovalenko 
et al. 1983, Ross 1995). Instead, we will approach the problem of stationarity from a practical 
engineering point of view.

Each sequence of the times of a given state should be tested to see whether the observations 
increase or decrease on average over time. Because the parameter of the process is a time, this 
verification concerns stationarity. Nevertheless, in engineering practice there are some opera-
tions for which the most important process parameter is not time. For a mine hoist installation, 
the number of winds to be executed is much more important. Similarly, for a transportation 
system, the number of tons of mass to be displaced is critical. For many machines the number 
of work cycles to be performed is vital. For these reasons, the point of interest is a defined 
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stochastic property of the sequence of values being observed. However, in order to make further 
considerations more communicative, it will be presumed that the process parameter is time.

There are several statistical tests that allow this property to be checked for a given sequence, 
but the one that is most frequently used in econometrics and technometrics is the test that 
applies the Spearman’s rank correlation coefficient (see, for example, Hollander and Wolfe 
1973). Correlation is a kind of stochastic relationship between random variables. It is the 
statistical proportionality of the results of the measurements of different phenomena. It is 
sometimes stated that it refers to the departure of variables from independence10. A basic 
measure of correlation is a correlation coefficient, however several other correlation coef-
ficients are used in different investigative situations.

The procedure for the Spearman rank correlation test is as follows.

3.3.1 The test procedure

A natural number that follows the sequence of the occurrence of the elements in time is 
assigned to each element of the sample. These natural numbers are called ranks11. Next, the 
sample is ordered monotonically. Natural numbers going up or down are assigned to all of 
the elements of the new sequence. (For general purposes, it does not matter if  these numbers 
are assigned going up or down, as this only generates a change in the sign of the coefficient.) 
If  a situation occurs in which a few values are identical, a rank that is the arithmetic mean 
of their ranks should be assigned. In such a way, a second set of ranks, vi, i = 1, 2, …, n is 
obtained. These two sets of ranks create a matrix:

 v v v1 2v
1 2

... n

n
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

To assess the Spearman’s rank correlation coefficient, the following statistic is applied:

 r RS nr Rr
n

1 1 6
( )n −12  (3.18)

where:

 Rn iR
i

n
=

=
∑( )i i−i

2

1
 (3.19)

This correlation coefficient is a normalised measure that is determined over [−1, 1] inter-
val and it is created based on the Pearson’s linear correlation coefficient. If  the investigated 
sequences are independent of each other, the rank Spearman’s correlation coefficient equals 
zero. However, if  these sequences are functionally dependent, then this coefficient equals 1 in 
the modulus. A value near zero indicates that these sequences are not correlated; there is no 
interrelationship between the value that appears in the sequence and its order in the sequence, 
i.e. it testifies to the stationarity of the sequence being investigated.

Formally, the procedure of statistical investigation is as follows. A statistical hypothesis is 
formulated H0: ρ = 0 (where ρ is the correlation coefficient in the entire population), which 
states that there is no dependence between the values with respect to time. This hypothesis is 

10 For more on correlation see Chapter 6.
11 Rank refers to the relative position, value, worth, complexity, power, importance, authority, level etc. 
of a person or object.
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set against the hypothesis H1 : ρ ≠ 0, which states that the values of a variable depend on time. 
If  the following inequality holds:

 |rS | ≥ rS (α, n) (3.20)

where rS (α, n) is the critical value (taken from Table 9.14) for the given level of significance α 
and the sample size n, the hypothesis H0 must be rejected. Paying attention to the sign of the 
coefficient and confronting it with the way of assigning ranks, we can conclude what kind of 
tendency is in the sequence: increasing when the sign is plus or decreasing when it is minus.

The estimator (3.18) had been applied in statistical investigations for a long period of time 
up to a moment when the problem of the influence of the ranks associated with the same 
values (called tied ranks) was taken into consideration. Due to the fact that in mathematical 
statistics there are many tests that apply ranks (e.g. Mann-Whitney test or Kruskal-Wallis 
test), the problem was crucial. Researchers easily came to the conclusion that such ranks have 
an effect on the statistical inference being conducted and that this effect is negative. Gener-
ally, the greater the number of tied ranks, the greater their effect is. In the test just presented, 
they decrease the value of the sum of squares of the deviations of natural numbers from their 
mean. Thus, it is necessary to introduce a correcting sum:

 
j j

j

g

ΣTT
=

∑( )w wj jw−w3

1

 (3.21)

where g is the number of groups of tied ranks, while wj is the number of tied ranks in the j-th 
group. The final pattern of the estimator for the rank correlation coefficient is:

 ′ =
−

−
r

R T−

T
Srr

nR( )n n−

( )n n− ( )−n n

3

3 2)n 3

6 1
2 ΣTT

ΣTT
 (3.22a)

or

 ′ =r
i −

Srr
i12 3n 2

3 3

v ( )1+n

( )−n n− T3 n T ( )−n n3n
.

ΣTT
 (3.22b)

Generally, the application of the test for an investigation of the rank correlation coef-
ficient is possible when n ≥ 4 for the presumed level of significance α = 0.05. If  α = 0.01, 
the sample size n ≥ 5. For a larger n, in practice for n > 10, this correlation coefficient has 
approximately the normal distribution N( , ( )n )(n 1− , while statistic Rn has approximately 
the normal distribution:

 N n n n( )n , ( )n2

6 6
1n) (n −

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

For this reason if  n is large (practically, already if  n > 10), the critical value can be calcu-
lated from the pattern:

 r n
u
nSrr ( , ) ,u

−
1

1
 (3.23)

where u1−α is the quantile of the order (1 – α) of the standardised normal distribution N(0, 1).
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■ Example 3.5

Reliability investigations concerned armoured flight conveyors operating in underground 
coal mines where the longwall method was being used. For one conveyor the sequence of 
repair times was as follows:

110, 40, 60, 10, 100, 70, 30, 50, 155, 65, 170, 35, 90, 85, 230, 40, 35, 95, 65, 100, 45, 180, 80, 
60, 30, 140, 170, 120, 25, 80, 130, 105, 70, 20, 15  min.

A question to answer is whether this sequence is stationary.

Firstly, investigate the randomness of the sample. The size of the sample is 35. Arranging 
the sequence monotonically, one can find that 18-th element is 70 min. This is the median of 
the sample. By transforming the sequence into the sequence of signs, one has:

 + – – – + – – + – + – + + + – – + – + – + + – – + + + – + + + – –

The number of series of signs is 20. The sequence now has 33 elements because two ele-
ments were rejected (they were identical to the median). The number of plus signs is 17 
whereas the number of minuses is 16. We next verify the basic hypothesis that states the ran-
domness of the sample versus the alternative supposition that rejects it. Presuming the level 
of significance α = 0.05 and bearing in mind parameters of the sample, the critical values 
are: 11 and 23 (see Table 9.8). Therefore, we have no ground to reject the null hypothesis—we 
assume that the sample has a randomness character.

Because the sample has no outlier, let us check whether the sequence observed is stationary.
Making all of the necessary calculations (Table 3.1), one gets:

 r
nSrr = − × = − × =1 6 6957 5 1 6 6957 5

35
0 0262 21

35
.

( )n −12 1
.

( )−35 1235
.

Immediately a conclusion can be formulated that such a small value should not be sig-
nificant. Formally, a null hypothesis is stated that proclaims the stationarity of the sequence 
given by the sample versus an alternative supposition rejecting it. The critical value can be 
calculated by applying the formula (3.23). Here we have:

 r
nSrr ( , ) , .=n, )

−
=1 645

1
0 282

Looking at this result one can state that there is no basis to reject the null hypothesis that 
proclaims the stationarity of the sample.

Some readers have probably noticed that there are several values in the table that are 
repeated and obviously their ranks also. Let us investigate the influence of these ranks on our 
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statistical inference—on the value of the correlation coefficient. Calculate the correcting sum 
as determined by formula (3.21). In the case being considered, g = 9 (the number of groups) 
and the sum is:

 TΣ = 132

By applying pattern (3.22a), one calculates the corrected value of the rank correlation coef-
ficient, which is now:

 r′S = – 0.037.

As you can see the difference is small, negligible.

Table 3.1. Auxiliary calculations.

Value
Rank 
vi # group

Number 
i (vi – i)2

110 27  1 676
40 9.5 III  2 56.25
60 13.5 IV  3 110.25
10 1  4 9
100 24.5 VIII  5 380.25
70 17.5 VI  6 132.25
30 5.5 I  7 2.25
50 12  8 16
155 31  9 484
65 15.5 V 10 30.25
170 32.5 IX 11 462.25
35 7.5 II 12 20.25
90 22 13 81
85 21 14 49
230 35 15 400
40 9.5 III 16 42.25
35 7.5 II 17 90.25
95 23 18 25
65 15.5 V 19 12.25
100 24.5 VIII 20 20.25
45 11 21 100
180 34 22 144
80 19.5 VII 23 12.25
60 13.5 IV 24 110.25
30 5.5 I 25 380.25
140 30 26 16
170 32.5 IX 27 30.25
120 28 28 0
25 4 29 625
80 19.5 VII 30 110.25
130 29 31 4
105 26 32 36
70 17.5 VI 33 240.25
20 3 34 961
15 2 35 1089

Σ 6957.5
� 
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74 Statistics for mining engineering

It is worth noting that the non-stationarity of the sequence examined here is not frequently 
observed. However, there are some processes in mining engineering that have a dependence 
on time or another process parameter. There are three basic areas in which the non-station-
arity of data can be perceived in mine mechanisation.

When a piece of equipment commences to fulfil its duties, a period of running-in 
(grinding-in) often begins. Some structural elements that work together begin to fit better. The 
cooperation becomes smoother over time. If  this is so, any potential failures should occur less 
frequently. For this reason, the mean work time between failures increases. This process has 
a fading character. At the very beginning, the intensity of failures, which is relatively high, 
decreases toward its characteristic appropriate level that is associated with the properties of 
the object. When this level is reached, the regular exploitation process of the object begins. 
Producers of high-quality machines eliminate this period by performing the running-in 
period when the production of the machine is finished in their factory. The purchaser of the 
machine obtains an object in which the elements already work together smoothly. Some other 
machine manufacturers whose products have a running-in period during regular operations 
guarantee the replacement of failed elements through this special period free of charge or 
guarantee a low price on the items necessary to replace those that have failed. This period is 
warranted by the producer.

A second special period in which the intensity of failures increases is the period during 
which a piece of equipment becomes worn—aging. Some signs of wear and tear are clearly 
visible in some machine elements. Elements begin to work together less efficiently over time. 
The number and intensity of failures increases. The exploitation process of the machine 
shifts from the regular period (II) to a third period—a period of significantly increasing 
degradation. The end of the working life of this object is approaching. Users of the machine 
are interested in getting rid of it in order to avoid operational problems and economic losses. 
However, nowadays, the economic end of a machine occurs rather than its mechanical death. 
A problem that sometimes faces users of machines is the appearance on the market of a new 
machine that has better parameters and better properties. This problem raises the question 
of whether it may be more profitable to withdraw the machine from use, sell it and purchase 
a new machine.

There is also a different source generating non-stationarity in data.
Mining practice has shown that sometimes unusual situations arise. The process of the 

generation of a stream of rock that is being excavated is running with a high degree of inten-
sity when suddenly a failure occurs in a machine that is important for production. There is 
time pressure—this machine should be repaired as quickly as possible. And, unfortunately, 
there is no spare element to replace the one that has failed. Miners sometimes try to solve 
this problem by making use of a similar element (as a direct replacement or after some modi-
fication) during the repair. The machine operates again but the intensity of failures changes. 
The modified element (sometimes it is an entire assembly) fulfils its duties but not entirely 
in the way that is expected. This period when the machine begins to perform its duties and 
the intensity of failure increases is a non-stationary one, and this means that the work time 
between two neighbouring failures is shortened and the intensity of the failures increases. 
This type of repair practice is obviously not recommended but unfortunately it can some-
times be observed in mining reality.

Be aware that phases of operation of machines described above concern objects that can 
be repaired. However, there are some other technical items that are non-repairable and that 
fail during their usage and that some periods of non-stationarity occur when this happens. 
A hoist head rope in a hoist can be given as an example. Its process of wearing, which is usu-
ally understood as the process of breaks in the wires, results in breaks after a period without 
showing any signs of fatigue (stationary period) thus entering into a non-stationary phase 
with an accelerating accumulation of breaks.
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■ Example 3.6

The use of an underground suspended loco was investigated. The times of its work were noted 
as well as any failures that occurred. Next, the total work time between two neighbouring fail-
ures was calculated. In such way a sequence of 13 times of the use of the loco was obtained:

241.1; 205.4; 26.1; 25.0; 68.1; 41.0; 9.2; 17.1; 5.2; 69.1; 1.0; 4.9; 0.5 h

Looking at this sequence it is easy to see that the total work time from failure to failure 
decreases stochastically. Let us verify this supposition. Apply a test based on the Spearman’s 
rank correlation coefficient.

By assigning ranks and making all of the necessary calculations, one gets the data shown 
in Table 3.2.

Calculate the coefficient. Here we have:

 r
nSrr = − × = −1 6 662 0 822( )n −12 .

Formulate a null hypothesis stating that the sequence is a stationary one. Compare this 
value with the corresponding critical one taken from Table 9.14:

Table 3.2. Auxiliary calculations.

Value
Rank 
vi

Number 
i (vi – i)2

241.1 13  1 144
205.4 12  2 100
 26.1  9  3  36
 25  8  4  16
 68.1 10  5  25
 41  7  6   1
  9.2  5  7   4
 17.1  6  8   4
  5.2  4  9  25
 69.1 11 10   1
  1  2 11  81
  4.9  3 12  81
  0.5  1 13 144

Σ 662
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 rS(α = 0.05; n =13) = 0.53.

The empirical value is significantly greater in modulo than the critical one. This gives the 
ground to reject the null hypothesis. Taking into consideration how the ranks were ascribed 
and the sign of rS, we can conclude that the total work times from failure to failure decreases 
and not incidentally, significantly in a statistical sense.

Remark. There was no way to obtain information about what the physical reason for such 
a phenomenon was but when the last failure occurred the loco went under a general repair 
that lasted for quite some time. ◀

There are some further different areas of mining engineering where the data indicate non-
stationarity. Figures 3.3–3.6 illustrate the statistical relationships between:

• The number of tonnes of hard coal sold in Poland on a monthly basis in 1995–2007
• The lost time incident rate for the mining industry in the USA
• Vertical displacements of rocks over the time interval connected with tremor recorded in 

the ‘Rydułtowy-Anna’ coal mine, Poland
• The theoretically determined subsidence w(t) of point S and the observed vertical displace-

ment wp(t) in an area of the ‘Halemba’ underground coal mine, Poland.

All of these plots contain important and useful information although in some cases further 
statistical analysis is difficult and requires the application of sophisticated statistical tools.

Make some comments on the problem of stationarity.
Let us repeat at the very beginning, due to importance of this material, that information on 
non-stationarity has great repercussions for any further statistical analysis that is conducted. 
This information is also vital if  the analysis concerns the problems of mine mechanisation for 
instance. If  the data collected refers to the realisation of the exploitation process of a techni-
cal object (and it does not matter whether it is a single item or the entire system), the infor-
mation on non-stationarity should be a clear signal to observe the object carefully. The main 
point of interest should be the answer to two questions:

• What is the physical source of such regularity?
• What will probably happen to the object in the near future?
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Figure 3.3. The number of tonnes of hard coal sold on a monthly basis in 1995–2007 (Manowska, 2010).
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Figure 3.4. The lost time incident rate for the mining industry in the USA (Saporito and Self, 2012).

Figure 3.5. Vertical displacements of rocks over the time interval connected with tremor recorded in 
the ‘Rydułtowy-Anna’ coal mine (Szewioła-Sokoła, 2011).

Time h

27-10-2005
Energy: 8.00E+04 J

Figure 3.6. The theoretically determined subsidence w(t) of point S and the observed vertical displace-
ment wp(t) in an area of the ‘Halemba’ underground coal mine during the period 24-10-2005 to 31-10-2005 
(Sokoła-Szewioła 2011).
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Sometimes this information is alarming. By analysing it more carefully and in more 
depth one may get information that the existence of  the object will very likely be jeopard-
ised or even that its existence will be seriously threatened in the near future. The respon-
sibility falls on the person performing the analysis if  he/she does not generate running 
events.

In the regular operation of technical objects, non-stationarity seldom occurs unless the 
periods of running-in and intensive aging are neglected. However, there are some technical 
objects that have a non-stationary process of wear nearly from the beginning of their use 
(vide: hoist head ropes). There are also some objects for which the operation process can 
change drastically because of significant changes in their surroundings. It concerns powered 
support systems, for example. When a longwall is being constructed in an area where another 
longwall is in operation (this second excavation can be below or above the longwall), the 
stresses that exist in the rocks change and soon have a considerably different dispersion than 
in an intact rock. Drastically changed stresses in rocks can also be observed when the excava-
tion comes into contact with geological faults. All of these situations cause a higher number 
of failures of powered support elements.

Look now at Figures 3.3–3.6. Information about the non-stationarity of  the sequences 
noted in these figures ‘gives’ an analyser the ground to make some important decisions. 
Generally, in Figure 3.3 one can detect the process of  changes in coal production in 
Poland. This occurred during the period of  the restructuration of  the Polish mining 
industry after the collapse of  the previous political system. One can guess that the situa-
tion on the market stabilised over time and a certain sales level was reached. This infor-
mation is useful for planning the further production of  hard coal in Poland. Figure 3.4 in 
turn ‘carries’ different information. There is a positive tendency in mining in the USA 
that the lost time incident rate decreases over time. This is a clear indication that its pol-
icy in this regard is a correct one that should be maintained. However, it can be predicted 
that the general tendency tends to a certain asymptote if  there are no significant changes 
in the mining methods being applied. Figures 3.5 and 3.6 contain essential information, 
which is a precursor of  a coming tremor caused by running mining operations. If  such an 
event is observed in a mine monitoring station, an appropriate action should be under-
taken immediately. This problem will be discussed in the chapter on prediction.

Non-stationarity testing of sequences in mining engineering is of immense importance in 
some areas.

Let us conduct our consideration presuming, so far, that the sequence observed and later 
analysed is a stationary one in a sense of the mean value.

3.4 OUTCOME DISPERSION TESTING

If during the analysis being conducted there is no basis to reject the hypothesis that proclaims 
the stationarity of the sequence noted, i.e. that the values in the sequence do not change 
over time on average, then this does not mean that this sequence is free from any depend-
ence on time. This relationship can be subtler, e.g. the dispersion of the sequence values is 
not constant but changes with time on average. As a rule, in mining practice, if  a value is not 
constant, it increases over time.

A problem of this type can occur, for instance, when an examination of the data is being 
carried out and the point of interest is to find a good function that can satisfactorily describe 
the information that has been obtained. Such a situation can be observed when analysing 
records concerning the fatigue-wearing processes of a head rope of a hoist. Usually, a default 
presumption is that this function should describe the data that are in hand well and this 
goodness should be approximately constant over time. Unfortunately, very often the  opposite 
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 regularity is noticed—the goodness of  the description worsens with the amount of work 
executed by the rope. This goodness worsens because of the increasing dispersion of the val-
ues noted (total number of breaks of wires) around the expected value function.

■ Example 3.7

A plot of the function is shown in Figure 3.7: the total number of cracks in the wires of a 
hoist head rope versus the number q of  winds executed by this hoist12.

More than a half  century ago, it was proposed (Kowalczyk 1957) that the empirical data in 
such case be approximated by a power function determined by the formula:
 

Θt t c t= δ χ ζζζζ  (3.24)

where: δ, χ—structural parameters of the function
 Θt—total number of cracks of rope wires
 t—time (or number q of  winds)
 c—constant
 ζt—random component of the function.

Usually, linearisation of function (3.24) is being done by applying the natural logarithm 
and for this reason c = e which makes that the random component ζt is in an additive way 
connected with the regression function.

It was presumed that the random component of  the model comprises the whole sto-
chastic nature of  the process of  the accumulation of  cracks during the rope’s utilization. 
It exclusively explains the fact that the theoretical function does not precisely cover the 

12 Notice, that this plot begins at a certain distance from the inception point (0, 0) because after its 
installation the rope in the hoist works for a certain period of time without any break. It makes no sense 
to consider any approximation function to fit the data during this period.

Figure 3.7. Total number of cracks in the wires of a hoist head rope vs. the number q of winds exe-
cuted; θi empirical plot, Θi theoretical plot.
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empirical values. The total number of  breaks at a given moment is a random variable 
(the left side of  the equation). This means that the right-hand side of  equation is also 
a random variable. The only stochastic element of  this side is the random component. 
It is unobservable directly; however, it can be estimated by determining the sequence of 
residuals which measure how different the theoretical and empirical values are. The series 
of  empirical values of  θt are usually noted following the utilisation of  a rope and create 
statistical data.

Considering function (3.24) the random component can be defined in two ways:

a.  As a sequence of the differences between the empirical values of θi and its theoretical coun-
terparts; it is the sequence for formula (3.24):

 u at ii i i
b =θ 1 2, ,2 ,…  (3.25)

where a and b are estimates of the unknown structural parameters δ, χ

b. As the sequence of residuals defined by pattern:

 ˆ ln 1, 2, ,i
i b

i

û lni at
θln  (3.26)

which is the result of the appropriate conversion of formula (3.24). Notice, that the residual 
here is the index of power and c = e.

Both measures are correctly defined and they are two different measures of the random 
component for function (3.24).

The structural parameters are estimated by making a linearsation of the power function, 
that is:

 lnΘt t= +χ δl lnlnt +lnlnt ζ  (3.27)

and applying the method of least squares. The appropriateness of this method is ignored here 
(see Chapter 6 for more on this topic). Presuming that the process parameter is the number of 
winds executed, the results of the estimation of the function given in Figure 3.7 are:

 Θi i
uq ei

i= −5 28 1× 0 5 3q 78.

This function is shown as a continuous one in Figure 3.7.
Incidentally, many engineers use this way of reasoning and they are usually convinced 

that everything is correct. But this is not true. For more on this topic, see Czaplicki 2010, 
Chapter 5.3.2.

Now observe what the course of  the residuals looks like. Figure 3.8 illustrates the 
residuals ui determined by function (3.25) for the sequence of  the data observed and Fig-
ure 3.9 shows the residuals determined by function (3.26) against the number of  winds 
executed by the rope. In both figures, the points of  the residuals are connected by straight 
lines.

Both plots are different from a typical realisation of a pure stochastic process with a zero 
mean and a finite variance, as could be expected because of the least squares method that 
was applied. If  this is so, this supposition should be verified. A suggestion can be formulated 
that there has to be a certain factor that generates this difference. Looking at both figures, 
a hypothesis can be postulated that the dispersion of the values is not uniformly distributed 
over time in a stochastic sense.
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To verify this supposition the data were divided in half  and the standard error of estima-
tion was calculated for both sequences giving S1 = 3.32 for the first half  and S2 = 6,75 for the 
second. The problem now is to verify whether this difference is statistically significant or only 
random. An appropriate statistical test must be applied to clear up these doubts.

At least two tests can be considered:

a. The test applying the F-Snedecor’s distribution
b. The Kruskal-Wallis one-way analysis of variance.

The reasoning based on (a) assumes a Gaussian distribution of the random variable being 
tested. This is the most frequently used method; however, this assumption must be verified 
before further analysis.

The reasoning based on (b) is a non-parametric method for testing the equality of the 
population medians among groups. It is identical to the one-way analysis of variance with 
the data being replaced by their ranks. Since it is a non-parametric method, this test does 
not assume the normal population (Kruskal and Wallis 1952, Siegel and Castellan 1988); 
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Figure 3.8. Residuals determined by function (3.25) for the sequence of data noted.
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Figure 3.9. Residuals determined by function (3.26) vs. the number of winds executed by a rope.
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82 Statistics for mining engineering

therefore, this approach is more general (more general than the test based on the F-Snede-
cor’s random variable). There is a presumption in the test that the probability distribution 
describes a continuous random variable13.

In the case being considered, an assumption can be made that the calculated sequence of 
differences has a normal probability distribution. Therefore, case (a) can be analysed.

Formulate a null hypothesis H0 : σ1
2 = σ2

2 that the variance in the first half  of the data does 
not differ significantly from the variance in the second half  of the data. Looking at the data, 
an alternative hypothesis can be: H1 : σ1

2 > σ2
2.

In order to verify the basic hypothesis, calculate the ratio of the empirical variances. This 
should be done in such way that the variance in the numerator must be not greater than 
the variance in the denominator. In our case we have the ratio S2 

2 /S1 
2, which is the random 

variable that has the F-Snedecor’s distribution with (n1 – 1, n2 – 1) degrees of freedom if  the 
hypothesis H0 is the true one.

If  the ratio is greater than the critical value Fα(n1 − 1, n2 − 1), which is taken from the 
appropriate statistical table presuming a level of significance α, the hypothesis H0 must be 
rejected in favour of the alternative supposition. This means that the variances of residuals 
are statistically different, which is identical to the statement that the standard deviations are 
significantly different from each other.

In the case being analysed we have:

 
2 2
2 1 0,05

ˆ ˆ2 4.14 whereas (14,15) 2.42=0,05F S S= =2 2
2 1 = 4 14 whereas 0

for the presumed level of significance α = 0.05 (Table 9.6). The critical value should be 
determined in such way that the number of degrees of freedom associated with the greater 
variance is in the upper row of the table. The number of degrees of freedom associated with 
the smaller variance is placed in the side column of the table.

Due to the fact that the calculated F value is greater than that taken from Table 9.6: F0,05 
(14, 15) = 2.42, we have the ground to reject the null hypothesis. Thus, it can be assumed that 
the dispersion of the residuals of the random variable being investigated increases with the 
number of winds that are executed by the hoist. ◀

By the way, when looking at Figure 3.3, we may suspect that the dispersion of the number 
of tonnes of hard coal sold on a monthly basis between the years 1995–1999 is significantly 
greater than in the next eight years.

Let us make some comments on an analysis of the outcomes of dispersion testing
The first piece of crucial information is that the data that are at hand is in fact the realisa-

tion of a certain stochastic process, and what is more, the dispersion of its values around the 
mean increases. If  so, a further part of the analysis being conducted should be placed on an 
analysis of random processes.

Secondly, there must be a physical factor which generates the variability of the dispersion. 
Usually, this will be a certain process running in time. This process and its properties should 
be identified because much important information is associated with it.

Thirdly, the expected value function for the process is often estimated using a math-
ematical model that can be linearised and the least squares method is applied to esti-
mate its unknown parameters. However, if  the dispersion is not constant, one of  the 

13 It is true that this test is more universal than Snedecor’s F test but it is weaker in its power than the 
F test.
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basic assumptions that must be fulfilled in order to allow the least squares method to be 
applied is not satisfied. Thus, if  the least squares method is still applied, the estimates 
obtained can be less credible and in some cases false conclusions can be drawn based on 
them.

If the analysis concerns the wear process of a hoist head rope, this false inference can 
affect the assessment of the level of safety of the rope and this can be dangerous. Moreover, 
when an inference on the degree of rope wear in the future is conducted periodically, the 
formulated prognoses will be of a diminishing likelihood over time because of the increasing 
dispersion. This means that uncertainty increases with time where the accuracy of the predic-
tion is concerned.

Because it is impossible to renew a rope that is in operation in a shaft, the only solution to 
keep safety at an appropriate level is to execute more precise and more comprehensive rope 
diagnostics and obviously to perform them more often.

When analysing the regular exploitation processes of  pieces of  equipment or proc-
esses of  changing states, the variability of  dispersion over time is rarely noted. Some-
times such a regularity can be observed when the object is in operation for a long 
time without any maintenance or planned prophylactic actions which should have been 
made.

3.5 CYCLIC COMPONENT TRACING

Many processes in mining have a cyclic character.
The cyclic character of  processes is generated by the periodic character of  the organi-

sation of  work. The cycle of  a process can be connected with the calendar—season, 
day or production progression per day or shift. By looking more carefully at the opera-
tion of  many machines, it is easy to notice that their exploitation process has a periodic 
nature, and that it can be understood in a different sense. Periods alone can have a more 
or less stochastic character. Many years ago, a hypothesis was formulated that proved 
that this cyclic nature of  operation can periodically distort the processes of  changes of 
states (Czaplicki 1974, 1975). The hypothesis proclaimed that in some periods of  opera-
tion time—during the exploitation of  a technical object (a single machine or a system of 
machines), the occurrence of  some states are more probable than that of  others. If  this is 
so, the probability of  the appearance of  a given state is not constant in time but is rather 
a function of  time and this function is a cyclic one. In addition, a stream of  rock being 
extracted or hauled by transport means very often also has a periodic character. These 
two functions are frequently correlated with each other. In some cases, a stronger state-
ment can be formulated: if  a stream of  rock being transported increases, and usually has 
greater dispersion in value, it means that the probability of  the occurrence of  a failure in 
the transporting units increases. Therefore, the output of  a hauling unit that is calculated 
as the product of  the probability of  the work of  the unit and the mean mass of  the rock 
being transported gives an incorrect estimation because the higher the mass being trans-
ported, the lower the probability of  its displacement. Thus, this estimation gives higher 
values than it should.

Consider the problem of the existence of a cyclic component from a formal point of view. 
There are two cases to consider:

a. the period of cycle is known
b. the period of cycle is unidentified.

Consider these cases in a sequence.
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3.5.1 The period of cycle is known

If the period of a cycle is known, we can presume that during the cycle one observes consecutive 
stochastic copies of the same phenomenon. Denote this cycle by [0, T]. Presume that the object14 
can be in any of k mutually excluding states, j = 1, 2, …, k. The object is observed N times—that is, 
records of what was going on with the object during N cycles are given. If we pay attention to one 
unit of cycle time (it can be any), we notice one out of the k events. If so, the construction of the 
probability distribution of a random variable that a given state is observed k times in N independ-
ent trials (N ≥ k) is now possible. This distribution is multinomial and is given by the formula:

 P
N

b b b
p p p

kb
b b

k
bkb

1 2bb 1 2p 2pb bb bp 1{ }b b bk kbXb1 1bbb 2 2b=Xbb 2 =X2 2bb
!

!b2bb ... !
... ,  (3.28)

where:

 b N
j

k

jb
j

k

=b
=

∑ ∑pj
1 1j =j

and bj is the multiplicity of the occurrence of the j-th state.
Consider one state of an object. Its realisation in time consists of the realisations in N 

periods of time. If  all of these realisations are put together, the frequency of the occurrence 
of this state versus the time cycle will be obtained for N independent trials. The relative 
frequency, in turn, is the j-th estimator that is unbiased, consistent and most efficient for 
parameter p of  the distribution (formula 3.28).

The following hypothesis can be formulated: the method of the exploitation of an object 
can generate a significant irregularity in the process of the changes of the states of the object. 
In other words, some states can occur more frequently in some periods of time during the 
cycle and some states will be observed less often.

If we have the diagrams of the relative frequency against time in the cycle for all states, the 
above hypothesis can be verified. It is obvious that a certain irregularity of the process of the 
appearance of a given state will be visible due to the stochastic character of the process. How-
ever, the problem arises of whether the changes that are observed are connected exclusively with 
the stochastic nature. By reversing the problem, a question can be formulated: how many times 
can a given state occur in a moment of cycle time in N trials that such an event can be assessed 
as very rare—so rare that a certain exploitation factor probably generated this irregularity?

Let us simplify our consideration and study only one state. Denote it by s. If  it is the only 
one of interest, it can be specified in the following way:

 P b
N

b b
p ps s

s jb
j s

s
b

j
b

j s

sb jb{ }bs sb
!

!bjb
=}b

∏∏ ∏

However

 pj
j s

s jpb

j s
s

N bjb sb( )ps ,
s j

∏ ∏b N b ijb sb i(N

14 In some cases the term ‘technical object’ stands for a system of pieces of equipment. If  this system 
is observed during a longer period of time, it may happen that some pieces are withdrawn or added. 
A cardinal feature of mine systems is their changeability because the lengths of the hauling distances 
change almost continuously. If  only one piece of equipment is added or withdrawn from the system, the 
system is not the same. Its characteristics change.
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thus

 P b N
b ps s

sb s
b

s
N bs sb N b{ }bs sb ( )p( )sp .=}b ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞  (3.29)

The multinomial distribution is reduced to a binomial one. The problem of a significant 
irregularity in the occurrence of state s is reduced to finding the number bs, which has a prob-
ability of appearance lower than that presumed, a small level of probability, say υ (where 
υ << 1), that is:

 N
b p

sb s
b

s
N bsb⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ <N bsN b( )ps− psp .υ  (3.30)

Due to the well-known properties of the binomial distribution, there will be two values bs 
that fulfil this inequality. Denote them by bs

(l ) and bs
(u), where b bsb sb( ) ( )l  (see Figure 3.10). From 

this figure it is easy to observe that the critical area is determined by level υ; all events that 
have a probability below this level should be comprehensively considered; we may suspect 
that their appearance was non-random.

The probability density function of this distribution has a maximum for:

 b = (n + 1)p if  (n + 1)p ∉ 

—set of natural numbers and has two maximum values:

 b1 = (n + 1)p and b2 = (n + 1)p − 1,

if  (n + 1)p ∈ .
Large reliability investigations comprising continuous mechanised systems operating in 

both underground and surface mining were carried out in Poland in the mid-seventies of the 
previous century. The point of interest was, among other things, the problem of whether the 
cyclic character of the work of these systems had an influence on the course of the operation 
process of these systems.

A histogram illustrating the frequency of the occurrence of a repair state in a certain series 
system operating in the underground coal mine in the Silesian District of Poland is shown 
in Figure 3.11. The system consisted of a coal shearer, two armoured flight conveyors and a 
certain number of belt conveyors that delivered the coal that was won to the shaft bin. The 
observation consisted of N elementary observations repeated during every morning shift 
excluding the first hour. Because of the properties of the series system, any repair of any 
piece of equipment of the system meant a repair state for the whole system. In the figure two 
probability levels are visible for which the probability υ was presumed to be 0.05.

P

υ

bsbs
(l) (u)

Figure 3.10. Binomial probability density function.
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Looking at Figure 3.11, four events should be considered—all of them connected with 
the fact that the frequency of the occurrence of a repair state was above the presumed level. 
Further analysis comprised an examination of the records to find out whether the reasons 
for the appearance of this state were repeated. If  the reasons were repeated, they generated 
such a rare event that it can be assessed as not entirely random. Immediately, a recommenda-
tion can be formulated to eliminate them from the further operation of the system. However, 
if  the reasons were different in each, they can be evaluated as purely random and therefore it 
does not matter how rare this event was15.

It is very important to understand that as a result of the application of a statistical proce-
dure, information is obtained that indicates which events should be taken into further compre-
hensive consideration. And that is all. Advanced analyses must proceed outside of the area of 
mathematics; physical aspects have to be taken into account before any final assessment can 
be made.

To complete these considerations it is necessary to construct an estimator of the unknown 
probability ps that is given in formula 3.29. Following the relative frequency approach, the 
number of favourable events is represented by the area of the histogram, whereas all pos-
sible events are represented by an extraordinary event when only one state is observed in all 
N trials. Thus, an interesting estimator is determined by the function

15 The elimination of every first hour of the operation was connected with the fact that the operation 
of the system was not a full one. For this reason the frequency cw was below the lower critical level as a 
rule for obvious reasons.

0 T

bs

t

bs

cw

(u)

(l)

Figure 3.11. Histogram of the relative frequency cw of  the occurrence of a repair state for a certain 
series system obtained by observing the system during N exploitation shifts.
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 ˆ sii
s

t
p

NT
= ∑  (3.31)

where tsi is the i-th time of state s. The denominator determines the total observation time 
whereas the numerator defines the total time of state s in the period of observation16.

Consider now the second case.

3.5.2 The period of the cycle is unknown

In the theory of stochastic processes X(t), it has been proved that each stochastic process can 
be decomposed17 into three components:

a. The trend that is associated with the expected value function (the systematic component), S(t)
b. The cyclic component, C(t)
c. The pure random component, Ξ(t).

The first two components are deterministic functions whereas the third one is a random 
one. This comprises the whole stochastic nature of the process. At the very beginning of the 
analysis of the process, the problem arises as to whether the composition of these three items 
should be an additive, multiplication and mixed one. It is suggested that if  the process being 
analysed has an explosive character, the multiplication model should be applied. If  the course 
of the process is rather smooth, the additive model would be better.

In mining engineering practice, the majority of the processes that are analysed have no explo-
sive character even if they are non-stationary ones. For this reason, in our further considera-
tion we presume that the model of the process is additive, multiplicative and mixed one. i.e.:

 X(t) = S(t) + C(t) + Ξ(t) (3.32)

If  this is so, with data usually in the form of  a time series, x(t1), x(t2), …, x(tn) that is 
the discrete observation of  the realisation of  a certain stochastic process, the first step in 
the analysis of  the process is the identification of  the trend of  the process. If  this func-
tion is identified, S(t), then the data should be transformed in order to obtain a new time 
series:

 y (ti) = x(ti) – S(ti); i = 1, 2, …, n (3.33)

The above sequence has no trend and for this reason is stationary but still has both a 
cyclic and a pure component18. From a theoretical point of view we have the following situ-
ation. The sequence is a realisation of a mixture of two stochastic processes that are mutu-
ally uncorrelated and stationary with average values that equal zero. The properties of these 
processes are completely different. One process is strictly cyclic; the second one has no such 
property. Therefore, if  these processes overlap, the final process can have a periodicity that 
is difficult to trace. The intensity of the obliteration of this periodicity depends on the auto-
correlation of the cyclic process and increases when its variance increases (Granger and 
 Hatanaka 1969). Nevertheless, it is necessary to identify these processes beginning with the 
cyclic component.

16 For more on this subject from a mining engineering point of view, see Czaplicki 2010, p. 34–36.
17 Decomposition generally means to express something in terms of a number of independent simpler 
components.
18 Obviously, there may be a case in which the realisation has no cyclic component.
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There are some methods in mathematical statistics that allow a periodic component in time 
series to be identified. These methods are: spectral analysis and harmonic analysis.

To describe the concept of the method of spectral analysis, we must introduce the term: 
function of the power spectrum, which is the first derivative of the spectrum distribution 
F(ω) of the stochastic process. This function can be expressed as:

 dF(ω) = f2(ω) + σi
2 f2(ω) = dF2(ω)/d(ω) (3.34)

where f2(ω) is the spectral density of the process X2(t) that ‘hides’ the cyclic component and 
σr

2 is the r-th variance of the process X1(t) of strict periodicity.
The relationship (3.34) can be used as a tool for an analysis of periodicity for two main 

reasons:

a. if  the cyclic component equals zero (X1(t) = 0), then the function dF(ω) = f2(ω), which 
means it covers the spectral density of the process X2(t), which is an absolutely continuous 
function

b. if  there is a cyclic component (X1(t) ≠ 0), then the function dF(ω) is not absolutely con-
tinuous; in points ω = ωr the value of the function jumps up because to the value of the 
function f2(ω) is added the variance σr

2 of the r-th component of the process X1(t).

In practice, when a graphical picture of the function dF(ω) is drawn, it is easy to notice 
such points (ωr; r = 1, 2, …, s) where the value of the function increases drastically. There-
fore, one can say on the periodicity of the process in its points 2π/ωr. A difficult problem 
arises when in some points the function increases only slightly. Unfortunately, estimation the 
function dF(ω) is usually done with a certain accuracy only and there is no clear indication 
whether the observed increment of the value of the function is significant or not. However, 
there are several methods that can be used to dispel any doubts. Different authors recom-
mend different tests; however, many of them are complicated procedures.

Let us first consider the idea of harmonic analysis due to its simplicity.
If  the observed time series y(ti); i = 1, 2, …, n has no trend, it can be expanded in a Fourier 

series. In mathematics, a Fourier series decomposes a periodic function into the sum of 
simple oscillating functions, namely sines and cosines. Following this line of reasoning, 
we can write:

 y ti a
i

n

( )ti = +aa ( )a t b tia i i i i icos i
=
∑1

2 1

t bi i i st bi it ibb in  (3.35)

where a0, ai, bi are the Euler–Fourier coefficients.
The estimators of these coefficients are as follows:

• The expected value estimator

 ∑0
1

1ˆ ( )
n

i
i

a y t= ∑0 (
n

 (3.36)

• Further estimators of the Euler–Fourier coefficients

 
1=

2 2 2 2π∑ πˆ )sinπ2 22 2π
j i j i∑ ∑

i i=1

ijπ2)sin2
a = ∑2 ∑ˆ ((∑π =π

j i j∑ ∑ ((∑ ((∑n n n n∑ ∑
1 1=

j∑ ∑
i =1

 (3.37)

 for j = 2, …, n/2.

The values of these statistics can be applied to verify the hypothesis that a cyclic compo-
nent is significant in a given sample.
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Consider the square amplitude of the process. It is given by the equation:
 

2ˆ
j j jÂ a b= +2 2 + ˆ
j j jj +  (3.38)

Its expected value is

 σ2
2( ) 4=2

j E))E Â A2( )) =2 )
n

 (4.39)

where σ2 is the variance of the process.
By replacing the unknown variance σ2 with its unbiased estimator (the variance estimated 

from the sample), one obtains:

 ( ) )
=
∑ 2))

1

4
1)−

n

i(∑j ) 1) i

E Â y t y(( ) ( −(≅ ∑2 4 ( )j i) (((≅ ∑ (
( 1)n j(((

 (3.40)

where y  is the estimate of 0â , i.e. the arithmetic mean calculated from the sample.
The probability that an event that 2

jÂj  will be α times greater than AEA2  is determined by the 
pattern:
 ( ) −α)j EαP Â A e(( )> α =)2 2> αj > α  (3.41)

which—after rearrangement—gives:
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⎝ ⎠ ⎪
⎬⎬

⎪
⎨⎨
⎝ ⎠⎜ ⎟⎜ ⎟

⎩⎪⎪ ⎭⎪⎪
P  (3.42)

If  the level of significance presumed equals α, one can verify a null hypothesis stating that 

the i-th jump that is the value of the quotient ( )2
j

E

Â
A  is significant. If  the inequality holds

 
⎛ ⎞

> − α⎜ ⎟
⎛ ⎞⎛ ⎞

⎝ ⎠⎜ ⎟⎜ ⎟

2

l

then the verified null hypothesis should be rejected. This means that we can presume that the 
time series shows important oscillations with the period that equals n/i. This regularity holds 
with the probability 1 – α.

In some cases, information that some periodic oscillations are significant is enough to take 
the proper decision in relation to the source of the observed data. But in some other cases it is 
not enough; for instance, we need to predict what the probable course of the process observed 
in the near future will be. Let us ignore for the time being what the prognosis means and let 
us conduct our consideration on a decomposition of a time series a little further. Here a more 
advanced approach will be presented that makes use of the fundamental monograph written 
by Box and Jenkins (1976).

If  all of the significant fluctuations are identified, we are able to construct the cyclic com-
ponent function C(t)19. Then, having specified two deterministic components, we are able to 
identify the third element, a purely stochastic one. Consider the following sequence:

19 A cyclic component can consist of a few functions.
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90 Statistics for mining engineering

 u(ti) = x(ti) – S(ti) – C(ti); i = 1, 2, …, n (3.43)

The above relationship determines the time series of  the residuals generated by the 
differences. It can be presumed that this sequence is a realisation of  the unknown purely 
stochastic component ξt. Usually, it is also presumed that the sequence u(ti) has a zero 
expected value and the finite and constant standard deviation σξ. In the majority of 
cases, a stronger presumption is formulated namely: Nξ(0, σξ). Ignoring how strong the 
presumptions are, it is necessary to verify—by applying the appropriate statistical tests—
whether all of  these assumptions hold when confronted with the properties of  data in 
hand.

■ Example 3.8 (Based on Manowska’s Ph.D. dissertation, 2010, Chapter 14)

In Figure 3.12 is a graph of a mass of hard coal sold in Poland versus time counted in months. 
The data comprise the period of the turn of the century: the late nineties—beginning of 21st 
century. A great restructuring of the mining industry (mainly coal) took place in Poland dur-
ing this period.

It is easy to notice that the time series is a non-stationary one and that it decreases with 
time. Therefore, a linear function20 was applied as the first approximation of the trend in the 
data, i.e.
 

βˆ ( )S tβy t t u= α + β +( )S = α + β +( )

The classical method of least squares was applied in order to estimate the unknown param-
eters a and b (see Chapter 6.2) obtaining the following equation:
 

ˆ ( ) t) = − + + ζ25.56 1094725.56Sy

where ζt is a random component. The linear regression function is visible in this Figure.

20 This function makes sense in the interval observed and perhaps, for only a few months ahead. The 
more proper one should be a decreasing function that tends to a certain horizontal asymptote.

14000

13000

12000

11000

10000

9000

M
as

s o
f 

ha
rd

 c
oa

l s
ol

d 
(t

ho
us

an
d 

to
nn

es
)

8000

7000

6000
0 20 40 60 80

Months

y(t)

t
100 120 140 160

Figure 3.12. Mass of hard coal sold versus time.
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Analysis of data 91

It was suspected that there was a cyclic component in the sequence, thus ζt consisted of the 
constituent and the purely random one.

As the next step, the differences were calculated: ˆ( ) ( )ˆ) () (Sy y( )) −  for all of the months of the 
sample. All of these differences are shown in Figure 3.13.

The sequence visible in this figure was the income data for the Fourier analysis with its 
transform applied. The Matlab 5.3 program was used and the result of the Fourier study is 
presented in Figure 3.14.

It is important whether a dominating frequency is observed in terms of the module of the 
spectrum in such a graph. If  so, a cyclic component very likely exists.

It was presumed that the general form of a cyclic function is described by the following 
pattern:
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Figure 3.14. Result of the application of the Fourier transform (Manowska 2010).
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Figure 3.13. Time series of the differences ˆ( ) ( )ˆ) () (sy y( ))  (Manowska 2010).
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 y t t AC ( )t si t= sin
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎠⎠

2
0

π ϕ
Τ0

 (3.44)

where: T0—period, number of months in one cycle,
 ϕ—the phase displacement,
 A—the amplitude.

Next, the harmonic analysis was applied that relies on a description of the residuals as the 
sum of the sinus functions for whatever period, amplitude and phase were selected using the 
appropriate algorithm. This algorithm relies on the analysis of the mean square error that is 
the result of the application of the sinus functions. The minimum of this error was a point of 
interest. In order to search for this minimum, the period was changed from 1 to 156 (sample 
size), the amplitude varied from 0 to 1000 tonnes and the phase displacement varied from 
0 to 2π.

The minimum of the mean square error was 10,400 tonnes for the period equal to 12 and 
the phase displacement was 2.17. The amplitude was 820 tonnes. Therefore, the formula for 
the cyclic function was:

 y t tC1 2
12

2 17 820( )t sin .t 2= +t2sin t2⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

π

If  so, a further point of interest was the next time series, the second residuals. They were 
obviously determined by the general formula: 1ˆ( ) ( ) ( )ˆS Cy t y t y t1( ) ( ) () ( ) (− − 1S C( )( )) . This sequence is shown in 
Figure 3.15.

This way of further reasoning was repeated and the Fourier analysis applied. The result of 
its application is presented in Figure 3.16.

The minimum of the mean square error was 8,272 tonnes for the period equal to 114 and 
the phase displacement 0.72. The amplitude was 506 tonnes. Therefore, the formula for the 
cyclic function was:

 y t tC 2 2
114

0 72 506( )t sin .t 0= +t2sin t2⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
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⎠⎠
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Figure 3.15. Time series of the differences: 1ˆ( ) ( ) ( )ˆS Cy t y t y t1( ) ( ) () ( ) (− − 1S C( )( ))  (Manowska 2010).

Book.indb   92Book.indb   92 12/9/2013   12:24:14 PM12/9/2013   12:24:14 PM



Analysis of data 93

A further point of interest was the next time series, the third residuals, given as the difference: 
2ˆ( ) ( ) ( ) ( )ˆS C C1y t y t y t y t2( ) ( ) ( ) () ( ) ( ) (− − −−− 1 2S C1( )( )) 1 , for all points noted. This sequence is shown in Figure 3.17.

Based on this data, a third plot was constructed that showed the result of the application 
of the Fourier analysis. Figure 3.18 illustrates again the relationship between the modules of 
spectrum against time.
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Figure 3.17. Time series of the differences: 2ˆ( ) ( ) ( ) ( )ˆS C C1y t y t y t y t2( ) ( ) ( ) () ( ) ( ) (− − −−− 1 2S C1( )( )) 1  (Manowska 2010).
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Figure 3.16. Result of the application of the Fourier transform for the second residuals of the time 
series (Manowska 2010).
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94 Statistics for mining engineering

By analysing Figure 3.18 more carefully it is easy to conclude that there is no dominating 
frequency that is clearly greater than the others. Therefore, it can be suspected that no other 
cyclic functions should be constructed. However, this way of reasoning was repeated as in 
the previous cases and the mean square error was greater than before. It is obvious that the 
construction of the next cyclic function is not needed; a model with such a function will be 
worse than without it.

Thus, the final model to generate the observed time series is:

 ( ) S C C t1 2) = + + + ξˆ ( ) ( ) ( )ˆS C C1 2 )y ( ) ( ) (( ) ( ) (( ) ( )1 2S C C1 2( ) ( ) (( )) ( ) (1 2y  �

3.6 AUTOCORRELATION ANALYSIS

There are some processes in mining engineering that depend on many factors that can be 
grouped together to create two specific sets: the properties of the object that is the point of 
the investigation and the main characteristic features of its operational process. They can 
comprise many elementary components such as: material fatigue, corrosion, friction wear, 
local weight loss, pitting and so on, all of which concern technical objects. However, there 
are some other processes running in the rocks surrounding a mine that also depend on many 
features and it is difficult to take all of them into account. In such cases, the course of an 
interesting variable can be described by the values of it that were noted in the past. This leads 
to the application of an autoregression model, which can be used if  the values of the variable 
that were noted in sequent moments of time depend on each other.

There are also some other cases when the dependence of the actual values of the variable 
being investigated, for which the values were recorded in the past, are significant. This can 
concern a purely random component in time series.

Let us consider two examples.
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Figure 3.18. Result of the application of the Fourier transform for the third residuals of the time series 
(Manowska 2010).
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■ Example 3.9

The object of consideration was a hoist head rope with a triangular shape of strands working 
in the main shaft of an underground mine. The point of interest was the course of the wear 
of the rope. Observations were made every ν = 103 hoist cycles and the number of breaks in 
the wires were noted. The empirical data are shown in Figure 3.19. The plot of the theoretical 
function is also visible in this figure:

 N ai iNN bνaa

for which the estimates of the unknown structural parameters were: a = 6.48 × 10−5 and 
b = 3.22. These estimates were obtained after the linearisation of this power function and 
after the application of the least squares method.

The goodness of the estimation using this power function was investigated by analysing 
the residuals that were determined by the formula:

 εi = ni – Ni

The graph of these differences is presented in Figure 3.20.
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Figure 3.19. Plot of the total number of cracks in the wires of the hoist head rope vs. the number of 
winds executed by the hoist; ni empirical plot, Ni theoretical plot.
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Figure 3.20. Graph of sequent residuals εi.
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96 Statistics for mining engineering

This graph is not a typical realisation of a purely random process with a zero mean and a 
constant variance, which is what might be expected.

Let us investigate the residuals by searching for internal stochastic relationships.
One of assumptions of the classical method of least squares says that the residuals should 

not be correlated with each other, i.e.
 

E i ji j( )i ji = ≠i0  (3.45)

The term correlation was introduced here in relation to the stationary testing of the realisa-
tion of the random variable that was observed. Recall that correlation is a certain type of sto-
chastic relationship. It relies on such regularity that when the values of one variable increase (or 
decrease), on average the values of the second variable decrease or increase. Thus, it is a statistical 
relationship. If the consideration concerns only one variable, we say it is an autocorrelation.

Calculate the correlation coefficients of first, second and third order: r1
(a), r2

(a), r3
(a). This 

means that we investigate the interdependence between the two sequences that are noted; the 
original sequence and the sequence derived by the first, second and third beginning elements, 
respectively. Note, that the number of elements taken under consideration decreases one by 
one when one calculates the sequent autocorrelation coefficients. As the measure of correla-
tion, the classic Pearson’s linear correlation coefficient can be applied if  a sample is given in 
the form (xi, yi; i = 1, 2, …, N). The coefficient can be expressed as:

 R
y

y
XYR i iy

i

N

iyi i

N

i

N
= =

==

∑
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( )x xi xx ( )y yyy

( )x xi xx ( )y yyy
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2 2N∑ ( )y y
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 (3.46)

In the case when the autocorrelation coefficient of the first order is being calculated, pat-
tern (3.46) takes the form:
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 (3.47)

where:
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Notice, that for an increasing sample size, the difference in the mean values becomes negligible.
One can construct further autocorrelation coefficient formulas in a similar way.
The results of the calculation of the autocorrelation of the residuals in the sample were as 

follows:
 

r r rar r1 2r rr r 3rr 0 884( )a ( )aa ( )a. .r2rr 3rr0 866 0=r rrrr 3rr
( )

The values obtained are high, but we have no idea whether they are significant in a statis-
tical sense. In order to answer this question, the Durbin-Watson test is usually the one that 
comes to mind (Durbin 1953, Durbin and Watson 1950, 1951). However, the Durbin-Watson 
statistic is only valid for stochastic regressors and first order autoregressive schemes (such as 
AR(1)). Furthermore, it is not relevant in many cases; for example, if  the error distribution 
is not normal, or if  it concerns the dependent variable in a lagged form as an independent 
variable. In these cases, it is not an appropriate test for autocorrelation. The tests that are 
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 suggested and which do not have these limitations are the Breusch-Godfrey test (Breusch 
1979, Godfrey 1978, 1988) as well as the Pawłowski J test (Pawłowski 1973). Because the 
first of these tests is well-known and much simpler to apply when compared to the latter test, 
further reasoning will be performed using this kind of examination.

The Breusch-Godfrey statistic is determined by the following formula:

 
χχχχ2 2

( ) ( ) ( )) ( r) cr( ( )  (3.48)

where c is the autocorrelation order.
A verified hypothesis is H0 : ρc = 0, i.e. there is no autocorrelation of the order c in the ran-

dom variable being tested. If  the following inequality holds:

 
χχχχ2 2

( ) ( ) ( )) ( r) cr( ( )
then there is no ground to reject the null hypothesis. Otherwise, one can presume that the 
autocorrelation of the order c is significant.

Making all of the necessary calculations and reading the critical values from the table of χ2 
distribution for a presumed level of significance α = 0.05 (Table 9.4), we have:

 37.35 (3.84) 32.97 (5.99) 32.04 (7.82)

where the first number is the empirical value and the corresponding critical one is in the 
brackets.

The Breusch-Godfrey test can also be supported by the F-Snedecor’s statistic by making 
use of the well-known relationship between the χ2 statistic and the F-Snedecor’s statistic. It 
has been proven using a simulation technique for small samples that such an approach is 
better than that one based on the χ2 statistic. In the case being analysed, it does not matter 
which statistic is applied (either χ2 or F-Snedecor’s), the result of verification is identical: all 
empirical values are significant.

By translating this result into engineering language, one can say that there is a significant 
dependence between the degree of rope wear in a given moment of time and the degree of 
rope wear a while ago and two whiles before. It also means that the wear process of the rope 
has a memory and—as investigations showed (Czaplicki 2010, Chapter 5)—this memory 
can be constant with time in a stochastic sense but it can also be variable depending on the 
number of winds that have been executed by the rope. ◀

Some important remarks can be formulated in connection with autocorrelation testing 
when random variables are the objects of engineering interest.

• If  during a statistical investigation, the autocorrelation of the random variable being tested 
was traced, then one can be almost certain that there is a physical reason generating this 
statistical regularity.

• Autocorrelation means that there is a ‘memory’ in the process that is observed and the 
future state depends—as a rule—on the state just before, sometimes on some states that 
happened earlier.

• If  the autocorrelation was traced, it gives ground to formulate the supposition that the 
adequate model describing the course of the random variable being tested is an autore-
gression function and vice versa.

• If  autocorrelation was found, the further investigation should be focused on recognising 
the physical grounds that are the source of this autocorrelation. This can provide important 
knowledge on the nature of the process that is being observed which can allow for some 
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counteraction if  this phenomenon is disadvantageous (if  possible) or can allow engineers 
to make use of it if  it is useful.

3.7 HOMOGENEITY OF DATA

The statement that something is homogeneous means that it is alike, similar or uniform from 
a certain point of view. In the statistical sense, homogeneity is a property of a data set and 
relates to the validity of the very advantageous assumption that the statistical properties of 
the samples that were taken are identical to the whole population.

There are some areas of analysis in mining engineering in which we cannot complain that 
the data are poor or small in number. This often concerns analyses from ore dressing areas. 
A similar situation applies to gathering data on the regular vibrations of surrounding rocks 
of a mine. Moreover, there are also some different fields of mining engineering interest where 
the information that is collected is usually poor. In reality, the machines that are in opera-
tion are often of a high quality and reliability and failures do not occur very often. There-
fore, in order to gather an appropriately large enough sample of information on how a given 
machine fulfils its duties from a reliability point of view is difficult; such a technical object 
should operate for a long time—frequently too long in comparison to mining reality. In some 
other cases, when research concerns destructive tests, we cannot permit so many items to 
be destroyed. However, in many cases, it is possible to examine a certain number of similar 
objects operating in similar conditions and it can be expected that data that are obtained will 
be homogeneous; all of the observations can be gathered together in order to create a large 
sample so that statistical inference will have a strong foundation. In other words—we have 
observed a certain number of stochastic copies of the same phenomenon and these data cre-
ate the entirety.

The homogeneity of random variables is also of interest in comparative studies. One has 
two slightly different technical objects or slightly different processes and the point of interest 
is to answer the question of whether the difference that exists is significant or not.

In engineering studies of a probabilistic nature, homogeneity is usually understood in two 
ways, namely:

a. As the equality of distributions, i.e. the probability distributions of random variables that 
are the subject of interest are identical ones

b. As the equality of parameters; the parameters of a statistical nature characterising the 
selected properties of the object of investigation, e.g. average values, standard deviations, 
probabilities of occurrence of determined events or states etc., differ from each other only 
negligibly from a statistical point of view.

Consider case (a).
There are a number of statistical tests that allow the hypothesis that the data are homogeneous 

to be verified from the distribution point of view. Divide this problem into two separate cases:

  i. There are two samples
ii. There are three or more samples

and we are interested whether we can assume that they come from the same population. 
This division is connected with the properties of the tests that are applied.

When the data in hand comprise two samples, using the Smirnov test is recommended21. The 
variable tested should be a continuous one. A model considered for this test is as follows.

21 There is also the Smirnov test, which allows three samples to be compared (Birnbaum and Hall 1960).
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Let (X1, X2, …, Xn) and (Y1, Y2, …, Yn) be two simple samples. A verified null hypothesis 
states that both samples come from the same population.

Construct two empirical distribution functions for both random variables according to the 
following patterns:

 F
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where (x(1), x(2), …, x(n)) and (y(1), y(2), …, y(m)) are the samples arranged monotonically into 
non-decreasing sequences.

The statistic that measures the distance between distributions Fn(x) and Gm(y) is deter-
mined in one of the following ways:
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 (3.51)

which means that the point of  interest is the maximum of  the mismatch. In other words, 
if  you plot the sorted values of  sample x against the sorted values of  sample y as a series 
of  increasing steps then the test statistic is the maximum vertical gap between these two 
plots.

Obviously, Dn,m = Dm,n. Both statistics Dn mD ,
+  and Dn mD ,

−  have the same distribution. Let us 
devote our attention to only one of them.

Denote by Dn mD , ( )+  and Dn,m(α) the critical values for both statistics if  the level of signifi-
cance in the test is α. Due to the discontinuity of the statistic distribution Dn,m, the corre-
sponding critical value is determined by the formula:

 D Dn m n md d, ,m n( ) inf{ (( ) }n m dd) inf{ : (P )≥DDn m

The critical value Dn m, ( )+  is determined analogically.
In practice statistics are calculated by applying one of the formulas:
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To apply the above test it is necessary to make use of Table 9.16a, which gives the critical 
values Dn,m(α). These values are valid for n = 3(1)20, m = 2(1)n and α = 0.01; 0.02; 0.05; 0.10. 
The intersection of the line that corresponds with data n and m and the column that corre-
sponds with the probability α determines two numbers: the integer dn,m(α) and the fractional 
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100 Statistics for mining engineering

number α*. At the same intersection of the line with the column denoted by k read the 
integer kn,m. The critical value is given by the formula:

 D
d

kn mD n md

n mk,
,

,

( )
( )

=  (3.52)

The number α* is the real level of significance of the test, in which α* ≤ α. The differences 
between α* and α come from the discontinuity of the distribution of statistic Dn,m.

The distribution of statistic Dn,m for n = m = 1(1)40 is presented in Table 9.16b. For a given n 
and k = 1(1)12, the probability P{Dn,n ≤ k/n} can be read off. Due to the fact that for α ≤ 0.10, 
the following approximate equality holds:
 

D Dn mD n m, ,m n( ) ( )+ Dn mD) (

There is no table for the statistic Dn mD , ( )+ .

■ Example 3.10

A durability investigation of a certain mechanical part of an articulated dump truck was 
carried out. The point of interest was the number of load cycles but not as related to the fail-
ure occurrence but the number of load cycles that were the difference between the assumed 
level and the number achieved. Two parts were tested and for this reason two samples were 
obtained. They were as follows:

(0.46 0.14 2.45 −0.32 −0.07 0.30) × 103 cycles

(0.06 −2.53 −0.53 −0.19 0.54 −1.56 0.19 −1.19 0.02) × 103 cycles

A hypothesis was formulated stating that these two samples came from the same popula-
tion. The alternative supposition rejects this.

The calculation procedure is as follows.

1. Construction of the empirical distribution Fn(x) for the first sample:

i X Fn(x)

1 −0.32 0
2 −0.07 1/6
3  0.14 2/6
4  0.30 3/6
5  0.46 4/6
6  2.45 5/6
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2. Construction of the empirical distribution Gm(y) for the second sample:

j y Gm(y)

1 −2.53 0
2 −1.56 1/9
3 −1.19 2/9
4 −0.53 3/9
5 −0.19 4/9
6  0.02 5/9
7  0.06 6/9
8  0.19 7/9
9  0.54 8/9

3. Sort values of both samples to get distribution functions Fn(x) and Gm(y) as k/r where r is 
the minimum common multiple for numbers n and m

4. Further calculation procedures are as follows:

u Fn(u) Gm(u) Fn(u) − Gm(u)

−2.53 0 0  0
−1.56 0 2/18 −2/18
−1.19 0 3/18 −3/18
−0.53 0 4/18 −4/18
−0.32 0 8/18 −8/18
−0.19 3/18 8/18 −5/18
−0.07 3/18 10/18 −7/18
 0.02 6/18 10/18 −4/18
 0.06 6/18 12/18 −6/18
 0.14 6/18 14/18 −8/18
 0.19 9/18 14/18 −5/18
 0.30 9/18 16/18 −7/18
 0.46 12/18 16/18 −4/18
 0.54 15/18 16/18 −1/18
 2.45 15/18 1 −3/18

5. Look for the maximum inconsistency in the last column. Here we have:
 

D u u6 9D 6 9u 8 18, |F6FF| (F ) (G9GG ) | /uu(F6F =a

From Table 9.16a one gets the critical value:
 

D6 9D 05 18, ( .0 ) /13

By looking at both values, it is easy to conclude that there is no ground to reject the verified 
hypothesis proclaiming that both samples come from the same population.  ◀

Remark. If  n, m → ∞ then the statistic:

 D
nm

n mn mD ,
+

+

has χ2 distribution with 2 degrees of freedom.
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The statistic:

 D
nm

n mn mD , +

has a Kolmogorov K(y) distribution22.

We continue to consider case (a) but the number of samples is two, three or more.
In statistics there are a few tests that can be applied in such a case but the most popular in 

engineering practice seems to be the Kruskal-Wallis test based on the sum of ranks (Kruskal-
Wallis 1952). It is a non-parametric test and is used to compare more than two samples that 
are independent, or not related. The model considered for this test is as follows.

Presume that k objects are observed with regard to a certain feature and therefore k sam-
ples are obtained. A convenient feature of the test is that the samples can have different sizes. 
Denote them by ni; i = 1, 2, …, k. Assume that the random values of a measure of the feature 
can be described by a certain probability distribution F(x) and a statistical hypothesis H0 is 
formulated that all probability distributions are identical, which is:
 

H x x xk0 1HH 2: (F1FF ) (F2FF ) (FkFF )x(F2FF

The alternative hypothesis H1 rejects the null supposition.

3.7.1 The test procedure

All elements of all of the samples are gathered together and ranks are assigned for the monot-
onically ordered set—from 1 to N, where N is the total number of elements in all samples, 
∑ ==i

k
i N=1 . If  tied values exist, the average of ranks must be assigned to tied values. Next, the 

value of the following statistic is calculated:

 K T
N

iTT

ii

k

N n
= −i

=
∑12 3

2

1( )N 1
( )N 1N  (3.53)

where Ti is the sum of ranks in i-th sample.
Looking at formula (3.53), it is easy to notice that if  there are more differences between 

the average sample ranks and the general mean rank, statistic KN is larger. A low dispersion 
in this regard, in turn, will be favourable for the hypothesis H0—providing that there is no 
ground to reject it.

Kruskal and Wallis observed that if  k grows and if  the sizes ni increase, the random vari-
able KN has the asymptotic probability distribution of χ2 with k − 1 degrees of freedom.

Therefore, if  the following inequality holds:

 N ≥ χα
2 ( )k −k 1  (3.54)

where χα
2 ( )1  is the critical value for the assumed level of significance α, the verified null 

hypothesis should be rejected.
For a large k, the random variable 2 2 11

2χk− 2( )1(k −k  has approximately the standard-
ised normal distribution N(0, 1). Accordingly, for a large k, the following approximations can 
be applied:

22 The Kolmogorov distribution has a cumulative function: P y yi
( ) exp ( )i=) − ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦=

∑y 2 i
81

2

2
π π∞ 2

.
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 χα α
2

1

3

1 2
9

2
9

( ) ( )1
( )1 ( )1

)1 ( u)1 −1)1 +
⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠−  (3.55a)

or

 χα α
2

1

21
2

( ) ( )11 2)1 ( u)1 +)1( )−  (3.55b)

Large amounts of computing resources are required to calculate the exact probabilities for 
the Kruskal-Wallis test. Existing software only provides exact probabilities for sample sizes of 
less than about 30 participants. These software programs rely on asymptotic approximation for 
larger sample sizes. Exact probability values for larger sample sizes are actually available. Spurrier 
(2003) published exact probability tables for samples with as many as 45 participants. Meyer and 
Seaman (2006) made precise probability distributions for samples as large as 105 participants.

If  some of ni values are small (that is, less than 5), the probability distribution of KN can be 
quite different from this Chi-square distribution.

In order to obtain a more precise reasoning when tied ranks are in samples, a correction 
should be done by first calculating the following measure:

 υ = −
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟=

−

∑
1 1

1
( )−

N N−
j
S

jj

g

S  (3.56)

where g is the number of groups of tied ranks, and tj is the number of tied ranks in j-th group.
Then multiply number υ by the estimate KN. It can be proved that υ > 1 always and for this 

reason the new value of statistic (3.53) will be greater than the one calculated without correc-
tion. This means that by taking the correction into account the chance of the rejection of the 
verified null hypothesis increases.

■ Example 3.11

The investigation concerned four scrapers with the same parameters, made by the same pro-
ducer. Repair times were noted and the following data were gathered:

Machine I: 85, 150, 430, 30, 170, 600, 210
Machine II: 50, 80, 750, 140, 320, 260, 360, 180
Machine III: 135, 90, 490, 110, 145, 190
Machine IV: 580, 120, 330, 100, 160, 240.
All times are given in minutes.
Here, we have small size samples. In order to create a large sample, a hypothesis was for-

mulated that all of these data are homogeneous.
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The Kruskal-Wallis was applied to verify this supposition. The calculation procedure was 
as follows.

No.

Sample I Sample II Sample III Sample IV

Time 
min Rank

Time 
min Rank

Time 
min Rank

Time 
min Rank

1  85  4  50   2 135  9 580 25
2 150 12  80   3  90  5 120  8
3 430 23 750  27 490 24 330 21
4  30  1 140  10 110  7 100  6
5 170 14 320  20 145 11 160 13
6 600 26 260  19 190 16 240 18
7 210 17 360  22
8 180  15

Σ 97 Σ 118 Σ 72 Σ 91

Calculate the estimate for KN statistic. We have:

 KN += + +
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−12
27 28

97
7

118
8

72
6

91
6

3 2× 8 0= 6
2 2118 2 291

×
.

Compare this value with the critical one. From the table of χ2 critical values (Table 9.4), 
we have χα

2 (3) = 7.8 for the presumed level of significance α = 0.05. Because the critical value 
is greater than the empirical value, there is no ground to reject the verified hypothesis. This 
means that all of the data can be treated as one sample. If  so, this new sample has 27 ele-
ments. Now, we can try to find a theoretical probability distribution that will satisfactorily 
describe the empirical data. ◀

Our previous considerations on homogeneity of data are important for two reasons at least.

• If  there is no ground to reject the hypothesis that the investigated data are homogeneous, 
there is a possibility to gather all of the data and to create a large sample. This is important 
because the unit samples in some cases can be small. Working with a large sample, there is 
a greater likelihood that stronger statistical inferences can be made.

• If  there is a basis to reject the hypothesis on homogeneity in the data, a further investiga-
tion should be done to find the reason why the data are inhomogeneous and which object 
has ‘made’ it so. Discovering the reason that is generating this ‘unfitness’ can give valuable 
information from an operational point of view.

Let us now consider the second of the cases listed—(b); some parameters are the points 
of our interest. It was stated that our interest in homogeneity is not always as strong as the 
equality of distributions. One can be interested in the identity of certain parameters of a sta-
tistical nature that characterise specific features of the object of interest. In reliability investi-
gations of mine equipment, we can be interested, for instance, in whether some probabilities 
of failure occurrence are identical from a stochastic point of view.

Let us study the following probabilistic model.
We investigate k technical objects and we are interested in the number of work cycles that 

are executed by these objects. Let n1, n2, …, nk denote these numbers till the moment of the 
occurrence of m-th failure. Denote by Q the probability of the appearance of one failure in 
one work cycle. We would like to check whether the following hypothesis holds:

 H0 : Q1 = Q2 = ... = Qk
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which states that the probability of the occurrence of a failure in a work cycle for all of the 
objects is the same. An alternative hypothesis rejects this.

To verify the basic supposition, one can apply the Cochran’s test23.
A measure in this test is the statistic:

 Θ = −
+ +

max( , , )n n
n + n

k

k m−

1 2, n,

1 2n+
1…

�
 (3.57)

The verified hypothesis should be rejected if  the following inequality holds:

 Θ ≥ qk m, ( )−  (3.58)

where qk,2m(1 – α) is the quantile of order (1 – α) of the Cochran’s statistic (Table 9.9).
In the literature on the subject it is recommended (see for instance Migdalski 1992) that 

the Hartley’s test should be applied when the number of objects being observed is small 
(k ≤ 12).

A measure in this study is:

 Λ = −
−

max
min

( , , , )
( , , , )

n, n
n, n

k

k

1 2, n,

1 2, n,
1
1

 (3.59)

The verified hypothesis should be discarded if  the following inequality:
 

Λ ≥ ηk m, ( )α−  (3.60)

where ηk,2m(1 – α) is the quantile of order (1 – α) of the Hartley’s statistic is the true one.

■ Example 3.12

In a certain quarry seven wheel loaders operated that loaded blasted rock into the crushers 
and onto dumpers; they were also used in some auxiliary works. The operating machines 
came from two different producers. However, their reliability was similar. In a different 
quarry, owned by the same contractor, it was planned to replace some machines of this type 
but the problem was which producer has better machines.

Let us ignore a problem of negotiations, the possible discounts offered by producers, con-
ditions of payment, realisation of the purveyance and assurance of spare parts—all of which 
are connected with the potential transaction, and let us devote our attention to the reliability 
of the equipment that will be purchased.

23 There are a few tests in mathematical statistics that are connected with the name of William Cochran.
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A reliability study of machines comprising maintenance problems and especially repairs 
was done. The applied statistical test has no ground to reject the hypothesis stating that all 
of the repair times could be satisfactorily described by one probability distribution. It was 
presumed that a satisfactory deciding criterion would be satisfactory frequency of satisfac-
tory occurrence of failures. A new reliability investigation was performed with this criterion 
in mind and a day was presumed as a basic elementary period of operation.

A decision was made to observe machines up to the moment of the 10-th failure occurrence.
For machines from the first producers, the following sequence was noted:

 22.6 18.0 26.0 19.8 days

and

 10.9 18.6 16.7 days

was noted for machines from the second producer.
At first glance, the reliability of the machines of the first producer looks better than those 

of the second one. However, formulating the problem from a statistical point of view, we 
should answer the question of whether this ‘difference’ is significant statistically or not.

Because there are only seven machines in operation, we should apply the Hartley’s test.
Calculate an estimate of the statistic:

 max
min

( , , , )
( , , , ) .

.1 2,

1 2,
1 25

9.
2 5. 2n n, ,2

n,, n
k

k

− = =

This value should be compared with the critical value. Presume a level of  signifi-
cance α = 0.05 as usual. The corresponding critical value (Table 9.10) is:
 

ηk , ,( ) ( )α .ηηm )α 20η)α (η)α 3 9. 4)α)α =)α

Comparing these two values, we have no doubts that we have no basis to reject the verified 
hypothesis. The observed differences in values are not statistically significant. ◀

Let us notice that the above test rather carelessly used the information that was in 
hand. It only takes into consideration the maximum and minimum values. The rest of 
the information is ‘useless’. It looks more proper if  the hypothesis will be formulated 
stating that the times of  repair can be described by one probability distribution and to 
apply an appropriate statistical procedure to verify this supposition. Another approach 
can be used to check whether our guess that the data can be treated as homogeneous one 
is correct.

We can also investigate, using the Wilcoxon-Mann-Whitney’s test (see for instance 
Lehmann & D’Abrera 2006), whether the supposition stating that the data come from two 
different populations having the same expected values is a true one. The condition of the 
application of the test is in the form of a probability distribution that should be similar to the 
probability distribution of the random variables tested.

■ Example 3.13

In the seismic station of a certain underground coal mine, tremors of the rock surrounding 
the mine were noted. A point of interest was the rock vibrations whose energy exceeded 105 J. 
In the selected period of observation, 33 events were recorded:
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 (7, 15, 280, 190, 900, 8, 8, 100, 10, 2, 800, 2000, 1000, 900, 850, 95,
 25, 100, 950, 9, 320, 210, 20, 20, 40, 6, 600, 40, 5, 7, 105, 2, 80) × 105 J

The randomness of the sample was tested first. The sample has 33 elements and for this 
reason the 17-th element is the sample median for the sample arranged monotonically. This 
element is recorded as the last one: 80 × 105 J.

Converting the sample into a sequence of signs we have:

 − − + + + − − + − − + + + + + + − + + − + + − − − − + − − − + −

The number of series in this sequence is 15. The number of n+ signs = n+ = 16. Presuming a 
level of significance α = 0.05 and using Table 9.8, we have two critical values:

 Kα/2(16, 16) = 11 and K1−α/2(16, 16) = 22

The empirical number of the series is above the critical numbers and for this reason we 
have no ground to reject the hypothesis stating randomness. We can presume that the sample 
has a random property.

Figure 3.21 is an illustration of the sequence of tremors noted taking into account their 
energy.

Let us now investigate whether this sequence is a stationary one. Apply the test based on 
the Spearman’s rank correlation coefficient. Using the procedure described in Chapter 3.3, 
we can construct a table which facilitates further reasoning (Table 3.3). It contains the sum of 
squares of differences that equal 6975.5, the number that is important for further analysis.

Calculate the Spearman’s rank correlation coefficient—formula (3.18) supported by (3.19). 
We have

 rSrr = − × = −1 6 6975 5
33

0 1662

.
( )−33 12 .

Formulate hypothesis H0 stating there is no dependence between the values with respect 
to time. This hypothesis is set against a hypothesis H1 : ρ ≠ 0, stating that the values of the 
variable depend on time.

2000

1800

1600
105 J

1400

1200

1000

800

600

400

200

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Figure 3.21. The sequence of the energy of several seismic tremors (×105 J).

Book.indb   107Book.indb   107 12/9/2013   12:24:50 PM12/9/2013   12:24:50 PM
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To verify the null supposition the critical value rα(n) should be taken from Table 9.14 for a 
given level of significance α, and the sample size n = 33. However, the sample size is large and 
in such case the approximation can be applied, i.e.

 r n
u
nSrr ( , ) α≈

−
−1

1

where u1−α is the quantile of order (1 – α) of the standardized normal distribution N(0, 1).
In our case we have:

 rSrr ( , ) . .≈n, ) =1 9. 6
32

0 346

Looking at the empirical value and the corresponding critical one we have no ground to 
reject the null hypothesis. We can assume that the sequence noted is free from dependence 
of time.

Table 3.3. Auxiliary calculations.

No. Value Rank (vi − i)2

1 7 5,5 20,25
2 15 11 81
3 280 24 441
4 190 22 324
5 900 29,5 600,25
6 8 7,5 2,25
7 8 7,5 0,25
8 100 19,5 132,25
9 10 10 1
10 2 1,5 72,25
11 800 27 256
12 2000 33 441
13 1000 32 361
14 900 29,5 240,25
15 850 28 169
16 95 18 4
17 25 14 9
18 100 19,5 2,25
19 950 31 144
20 9 9 121
21 320 25 16
22 210 23 1
23 20 12,5 110,25
24 20 12,5 132,25
25 40 15,5 90,25
26 6 4 484
27 600 26 1
28 40 15,5 156,25
29 5 3 676
30 7 5,5 600,25
31 105 21 100
32 2 1,5 930,25
33 80 17 256

Σ 6975,5
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Let us conduct our consideration further. Check whether a memory exists in the realisation 
of the random variable. Thus, we formulate a hypothesis stating that the mutual correlation 
between the values of the random variable does not exist versus an alternative supposition 
which rejects this.

Let us check the autocorrelation of the first order. Firstly, using formula (3.47), we have 
estimations of the means:
 

x x1
5

2
5300 8 10 303 10300 = ×303. J58 108 J

which allow the correlation coefficient to be calculated

 r i ii

n

ii

n
ii

n1rr
1i 21

1

1
2

1

1
1 2

2
1

( )a
( )x xi x1 ( )x x1xix 2

( )x xi 1 ( )x xi 1 2x
=

)x (x

)x (x
=

−

=

−
+=

∑
∑ −−∑

=
1

0 434.

In order to check whether this value is significant or not, calculate the Breusch-Godfrey 
statistic:
 

χ2
1

2 5 842( )1 ( )1 ( )1 .( ))1 ( 11 =)1 ( )11

Now, we can compare this value with the one from theory. Let us read the critical value 
from the Table of χ2 distribution for the presumed level of significance α = 0.05 (Table 9.4). 
Here we have:
 

χχχα=0 05
2 3= 841. ( )= 1 .

The empirical value clearly exceeds the critical one. We have the ground to discard the null 
hypothesis. There is a memory in the realisation of the random variable of interest. It con-
cerns the neighbouring values. This is important information for the researcher.

Let us now check whether the memory can be extended into the next step. Formally, verify 
the hypothesis stating that there is no autocorrelation of the second order. We calculate the 
appropriate average values:
 

x3
5

4
5310 4 10 312 2 10310 4. J Jx4
5312 2 10= 312 2.x4 312312

and we calculate the linear correlation coefficient for every second value. Here we have:

 r i ii

n

ii

n
ii

n2rr
2i1

2

1
2

1

2
2 2

2
1

( )a
( )x xi x1 ( )x x2x xix

( )x xi 1 ( )x xi 2 2x
=

)x (x

)x (x
=

−

=

−
+=

∑
∑ −−∑

=
2

0 186.

Using this estimate, calculate the Breusch-Godfrey statistic:
 

χ2
2

2 5 654( )2 ( )2 ( )2 .( ))2 ( 22 =)2 ( )22

Compare this value with the one from theory. Read the critical value from the table of χ2 
distribution for presumed level of significance α = 0.05 (Table 9.4). Here we have:
 

α=0 05
2 5= 991. ( )= 2 .

The empirical value does not exceed the critical one. We have no ground to discard the 
null hypothesis. There is no memory of the second type in the realisation of random variable 
tested. ◀
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There is no doubt that the problem of sudden rock displacement of great energy is 
extremely important in underground mining. This problem is a multi-dimensional one. One 
dimension is time; more precisely, a random variable which is the time from one tremor to the 
next tremor. Notice that in example 3.10, time was excluded from the analysis; the data com-
prised only the sequence of events. The second dimension is the energy that is connected with 
a given tremor. Again, it is a random variable. The dispersion of this variable is sometimes 
very high and the range of values is very broad. For these reasons, probability distributions 
serving as theoretical models often use logarithms (log-normal, log-gamma or log-Weibull).

There is also a subtle problem connected with the effect of a given tremor. Some tremors 
produce displacement of rock masses that are not serious for mining production even when 
the energy level is very high. In some other cases, the energy involved in a given tremor is not 
so great but the result is very serious—e.g. a roof collapse in some underground openings. 
Thus, one considers two random variables:

a. The energy of a rock tremor with ‘safe’ repercussions—the variable characterised by a 
certain density function f(x)

b. The energy of a rock tremor with serious repercussions—the variable characterised by a 
certain density function g(x).

The probability density functions of these two random variables overlap (see Figure 3.22). 
Generally, the location of these probability distributions is as follows. The density function 
f(x) is located on the left because the values that take the random variable X, which express 
energy are low, on average. In Figure 3.22 the level of energy x0 is such that mine detectors 
record tremors only above a certain value. The density function g(x) in turn is on the right 
compared to the location of the density f(x). Therefore, the range of the variation of energy 
is divided into three intervals. In the first interval (I) the energy involved in the occurring 
tremor is low and the repercussion is not serious. The second is interval (II) in which there is 
an increasing probability of serious repercussions—the probability that the tremor from this 
interval will cause severe damage increases. The last interval (III) is characterised by a certain 
event. A tremor from this interval has drastically serious consequences.

IIIIII

Energy

0.4

0.3

0.2
f(x)

g(x)

0.1

0
0 x

Safe
repercussions

Serious
repercussions

x0 

Figure 3.22. The probability density functions of the energy of rock tremors and their repercussions.
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CHAPTER 4

Synthesis of data

Having behind us all of the investigations that are connected with statistical diagnostics (pre-
vious chapter), we now presume that the data in hand are a classical random sample.

If  so, we can make an evaluation of this information in the sense of an estimation of 
the selected numerical characteristics as well as in the sense of certain functions which will 
describe the data that were obtained well. The parameters of first choice in the engineering 
world are: the expected value and the standard deviation. These parameters are well-known, 
communicative and contain significant, useful information.

Some further parameters can be enumerated, but what will be taken into account depends 
on the scope of the consideration.

If  the points of interest are econometrics problems (mineral sales in time, market demand 
for a given mineral commodity, the prognosis of its price and so on), these supplementary 
parameters are usually taken from descriptive statistics, e.g. quantiles (especially—median) 
and typical functions connected with the description of random variables.

In a reliability investigation, parameters such as the intensity of the failures for an object 
that can be repaired and the mean times of the states are commonly applied. But the most 
important and most frequently used parameter is the steady-state availability, which is a 
function of the repair rate. Where functions are concerned, the probability density function 
is very important. In addition, the survival function, the hazard function and the renewal 
function can be joined to the list but they are concerned with objects that cannot be repaired. 
We neglect here functions that are of less importance.

In safety studies, the basic parameters are mainly probabilities such as: the probability of 
correct performance of a technical object during a given period of time and the probability 
that a load will exceed the strength of the machine. Some further parameters are: the factor 
of safety1, the confidence factor and the mass of the probability common to the distribution 
of the load and strength. Functions are first of all the probability distributions of the opera-
tion load and operation strength.

All of these parameters are well defined on the basis of their theories. However, a problem 
comes into play here, how to adequately estimate these characteristics when the data (sample) 
are in our hands. Therefore, a further consideration that will be conducted here concerns the 
theory and practice of estimation.

A concept of the function that permits estimating an unknown value of a parameter was 
introduced in Chapter 1.3 and the desired properties of a good estimator were described. Let 
us now enlarge the scope of our consideration of estimation.

If  we would like to estimate an unknown value of one or more parameters of the distribu-
tion of a random variable, we say it is a parametric estimation.

If  our inference does not concern the parameters and if  information about the distribution 
function is not available, which means that we have no idea about the class of the distribu-
tion, we say that it is a non-parametric estimation.

Let us now consider the problem of the estimation of the unknown parameters of random 
variables.

1 Remember, the factor of safety has a loose connection with safety. Probabilistic measures of safety are 
much better.
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4.1 ESTIMATION OF THE PARAMETERS OF A RANDOM VARIABLE

There is a scope of consideration in the theory of estimation in which the point of interest 
is to obtain an estimate of an unknown parameter in the form of a number. This is point 
estimation. It involves the use of a sample in order to calculate a single value that is to serve 
as the ‘best guess’ or ‘best estimate’ of an unknown (fixed or random) population parameter. 
It is the application of a point estimator to the data.

Consider a problem of the methods of the construction of functions that allow estimates 
of the unknown values of parameters to be obtained.

There are a number of methods of construction of estimators that have desirable proper-
ties. The oldest general method proposed for this purpose is the method of moments intro-
duced by K. Pearson (1894, 1898). This method consists in equating a convenient number of 
the sample moments to the corresponding moments of the distribution, which are functions 
of the unknown parameters. By considering as many as there are parameters to be estimated, 
and solving the resulting equations with respect to the parameters, estimates of the latter 
are obtained. This method usually leads to comparatively simple calculations. Estimators 
obtained by this method are consistent but frequently biased and of a low efficiency.

Consider, for instance, the application of this method to get estimators of the unknown 
structural parameters of gamma distribution given by formula (1.48). The relationships 
between the expected value and the variance and these structural parameters were defined 
by patterns (1.49). Having a sample, we replace the expected value with its estimate (x —the 
mean of the sample) and the variance by its estimate (SxS2—the variance of the sample). At 
this moment, we have to replace the structural parameters with their evaluating functions. 
Therefore, a new pair of patterns is as follows:

 
2

2

ˆ ˆ

ˆ ˆ xx S2and
ˆ

and x
ξ ξdx and= x and
ν ν

 (4.1)

By rearranging them, we have:

 

2

2
ˆ

x x

x xˆ
S S2

x x

ν = ξ =2
ˆ andx d

S2
 (4.2)

Notice the difference by comparing them to the formula (1.49). The above patterns are 
estimators and these functions are random variables because one can get different estimates 
for different samples that are taken.

Similarly, one can obtain, for example, the estimators for the structural parameters of the 
beta distribution that is determined by formula (1.61). Using patterns for the expected values 
and the variance (1.63), we can construct the following set of equations:

 
=2

2

ˆˆ ˆ
ˆ ˆ=

2ˆ ˆ2ˆ ( ) ( 1)+x
c cd2ˆ ˆ

dx S= Sandˆ andc d
c d+ˆ ( ) () (+ +++ +2ˆ ˆˆ 2

 (4.3)

Finding estimators for the unknown structural parameters for this distribution is now not 
a problem.

A different method that is used to obtain estimators is the method of quantiles. There are 
several methods for estimating the quantiles (Serfling 1980). The idea is to compare a theo-
retical quantile to the corresponding one that is constructed from the sample, similar to that 
in the method of moments. If  several parameters are evaluated, then several equations should 
be made using the appropriate number of quantiles based on the sample taken.
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It can be proved (Gnyedenko et al. 1968) that if  some general assumptions are fulfilled, 
the quantile of order p based on a sample (recall, Fn(zp) = p) has an asymptotically Gaussian 
distribution with the expected value being the quantile of order p of  the theoretical distribu-
tion (F(ζ) = p) and the variance as determined by the pattern: [ ( )p( n1 2− ζ)] (p nfnff 2 .

This method does not give estimators with good statistical properties and has actually 
almost been abandoned.

The method that is recommended is the method of maximum likelihood. From a theoreti-
cal point of  view it is the most important general method. In specific cases, this method 
was already applied by Gauss (1880), although it was introduced as a general method of 
estimation by R.A. Fisher (1912) and later was developed in a series of  works by the same 
author.

A cardinal term of this method is the sample likelihood that is expressed by the likelihood 
function. The sample likelihood is the joint density of the continuous probability distribution 
of the outcomes (x1, x2, …, xn) given by the sample where this likelihood depends on the real 
value of the estimated parameter. For discrete distribution, one can say on the joint prob-
ability that corresponds with the density. Denote by f (x, ξ) the probability density function. 
The function:

 
L x xn i

i

n

( ,x , , ; )1 2x,
1

ξ ξf xif x) ;xix
=

∏  (4.4)

is called a likelihood function.
When the values of a sample are given, the likelihood function L becomes the function 

of the single variable ξ. The method of maximum likelihood relies on the selection of such 
an estimator of ξ that assures the maximum of the likelihood function. It is known that a 
function attains its maximum at a certain point if  the first derivative of the function equals 
zero and the second derivative in this point is less than zero. Thus, it is necessary to solve the 
equation:

 

∂ ( )
∂

=
L(

ξ
0  (4.5)

with respect to ξ. It is very often much more useful to use the equation:

 

∂ ( )
∂

=
lnL(

ξ
0  (4.5a)

instead of (4.5) because its logarithmic function is more convenient for differentiation. Both 
functions L(xi ; ξ) and lnL(xi ; ξ) have the extreme at the same point.

A significant limitation of this method is the necessity to have information on the prob-
ability distribution function.

Remark. Estimators obtained by this method are sometimes biased.
Consider, as an example, a population that is characterised by the exponential distribution 

with parameter θ. A sample was taken of elements xi ; i = 1, 2, …, n and the point of interest 
is the construction of an estimator of the distribution using the method of likelihood.

The likelihood function in this case is as follows:

 L e ex x x n
xi

i

n

e
∑−

=θ θe xe θ θe xn =e nθ θ θ
θ

2e xeeθ 1...
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Calculate the logarithm of both sides of the equation

 
ln lnL n xi

i

n

lnn
=

∑θ θ−
1

Therefore

 

d L
d

n xi
i

n

θ θ
= n

=
∑1

1

and

 
n xi

i

n1 0
1θ

=x
=

∑∑

Now, the estimator that takes the following form can be constructed:

 =

θ = =
∑ 1

1ˆ
n

ii

n
xx

 
(4.6)

The investigation plan has significant influence on the final form of the estimator in 
reliability investigations of technical objects as well as in investigations of their operation 
processes.

A plan of investigation in reliability should include this trio:

 < n, ,  >

where: n—sample size, number of items investigated,
 —sampling principle,
 —criterion for the termination of the investigation.

The most common sample principles are:

• Sampling without return ( ); a failed element is not replaced with a new one
• Sampling with return ( ); a failed element is replaced with new one.

The criteria of an investigation of a termination can be different. Those most frequently 
applied are:

• Moment of the r-th failure occurrence
• Amount of work executed
• Research is carried out over time T
• Research is carried out either over time T or up to the r-th failure occurrence depending on 

which criterion will be achieved earlier.

Graphical illustrations of the realisations of a reliability investigation are presented in 
Figure 4.1 are shown.

Let us illustrate, for instance, formulas that are used to determine the estimators of the 
parameter of the exponential probability distribution in relation to the tests performed.

− For plan [n, , T]

 
= ( )ˆ

nT
λ d  (4.7)
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where d(T) is the number of failures noted during the investigation

− For plan [n, , r]

 

−= 1ˆ
r

r
n

λ
t

 (4.8)

where tr is time up to the r-th failure occurrence

− For plan [n, , T]

 
= ( )ˆ

( )S(
λ d  (4.9)

where:

 S T Ti i( )T [ ( )]( )T= ∑ =1
d ti [n+ [n  (4.9a)

ti—the i-th time to failure occurrence

− For plan [n, , r]

 

−= 1ˆ
( )r

r
S

λ  (4.10)

Plan [n,    , T] Plan [n,    , r] 

T

1 

2
. 
. 
. 

n
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2
. 
. 
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1

2
.
.
.

n

1

2

3

4

r

. . .

tr

T tr

1

2
.
.
.

n

1

2

r

. . .

Plan [n,    , r]Plan [n,    , T]

Figure 4.1. Graphical illustration of the mode of reliability investigations for a given criterion of their 
termination.
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where:

 S nr i
r

i r( )r ]rn r t∑ nn=1
 (4.10a)

Remark. Estimator (4.9) is a biased one.
Our previous considerations were devoted to the construction of estimators in order to 

assess the unknown values of the structural parameters of probability distribution functions; 
‘structural’ means that they are in formulas of these distribution functions. However, there is 
also an area in mathematical statistics in which estimation is oriented on a different problem. 
We are still interested in building formulas that will permit unknown structural parameters 
of functions to be estimated but these relationships are not connected with the distribution 
functions. These multi-element relations express a variety of dependences between random 
variables. In order to estimate the structural parameters in this case, the least squares method 
is applied as a rule. This method originated in the fields of astronomy and geodesy as sci-
entists and mathematicians sought to provide solutions to the challenges of navigating the 
Earth’s oceans during the Age of Exploration. It was created by Carl Gauss in 1795 (vide: 
Bretscher 1995). The most important application of the least squares method is in data-
fitting. The best fit in the least squares sense minimises the sum of squared residuals; residual 
here is understood as the difference between the observed value and the corresponding value 
that is provided by the model. A description of this method along with applications will be 
given in Chapter 6.

When data have been obtained and the estimator selected one calculates an appraisal in 
the form of a number that is a point estimation. However, it is easy to perceive the probability 
that the estimate will be identical to the unknown value of the parameter, which is practi-
cally zero, when the population is a continuous one. This means that we made an error dur-
ing such estimation with the probability that is near one. Bearing this in mind, statisticians 
developed a different method of estimation—interval estimation. Its idea is to construct an 
interval instead of calculating a single value. For the time being, we will presume that this is 
an interval of possible or probable values of the unknown population parameter. Spława-
Neyman (Neyman 1937), who introduced this idea, identified interval estimation as distinct 
from point estimation. In doing so, he recognised that the then-recent work quoting results in 
the form of an estimate plus-or-minus a standard deviation indicated that interval estimation 
was actually the problem that statisticians really had in mind.

The most widespread forms of interval estimation are:

• Confidence intervals
• Credible intervals applied using the Bayesian method.

Other common approaches to interval estimation that are included in statistical theory 
are:

• Tolerance intervals
• Prediction intervals
• Likelihood intervals2.

For our further analyses, we will presume that the constructed numerical interval covers 
the unknown value of population parameter being estimated with a certain presumed prob-
ability. The idea of a confidence interval is as follows.

Presume that the random variable X has in its population the distribution function deter-
mined by the unknown parameter θ. Presume also that a sample was taken xi; i = 1, 2, …, n 

2 Non-statistical methods that can lead to interval estimates include fuzzy logic.
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from this population and the estimator θ̂n of the parameter was constructed. The estimator, as 
a random variable has its own probability density function ˆ( ; ).θnh  Define two such functions 
c1(θ) and c2(θ) that fulfil two equations:

 

θ

−∞

< θ = θ = α∫
1( )

1
1ˆ ˆ ˆ{ ( )} ( ; )
2

c

n n nP c h dθ θ θ
 

(4.11a)

 

∞

= α∫
2 ( )θ

1ˆ ˆ ˆ∫{
2n n n∫2( )} ( ; )∫2

c

P c h d{ ( )} ( ; )∫ θ( )} ( ; )θ θθ θ∫2 d( )} ( ; )( )} (> θ = θθ = θθ = ∫θ θθ θ>
 

(4.11b)

where α is any number from (0, 1) interval.
Bearing the above relationships in mind and making any necessary transformations, the 

following equation can be obtained:

 
= − α = γ∫

2

1

( )θ

1
( )θ

ˆ ˆ ˆ ˆ∫ ( ) 1=1

c

n n n n∫2 θθ
c

P{ ( ) ( )} ( ; )( ) ( )} ( ; )∫1 ) ( )} ( ; )( )) ( )} (< θ < = θ= θ= θ= ∫< θ < θθθ< θ <  (4.12)

The interval obtained in this way 1
ˆ ˆ[ ( ), ( )]1 n n2(2(1 ), (), (2(2)  is called a confidence interval and its 

boundary values lower and upper confidence limits, respectively. The number γ is called the 
confidence coefficient or level of confidence.

Observe the following regularities and pay attention to their correct interpretation:

a. An interval obtained in this way is random
b. For a given γ an infinite number of intervals can be found that fulfil relationship (4.12) 

and depending on sample size the point of interest will be those intervals with the narrow-
est range

c. The statement that for a given parameter θ the confidence interval was found, keeping the 
confidence coefficient γ in mind, means that in 100 γ % of the cases the interval covers the 
unknown value of parameter θ.

Figure below is an illustration of the above statement. The lengths of intervals are ran-
dom, many of them cover the unknown value of parameter θ but sometimes constructed 
interval does not cover it.

The construction of a confidence interval can concern an inference on the one side (either 
(4.11a) or (4.11b)) and here we have one side interval where attention should be paid to the 
limits of the determination of the variable.

In practice, one is obviously confined to one sample and to the determination of only one 
confidence interval. It is worth noticing that presuming a confidence interval near one is not 
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very convenient. The greater the value of γ; the wider the confidence interval and for this 
reason the accuracy of the estimation lower.

In the majority of statistics books, many examples of a Gaussian distribution are given. 
In engineering analyses, the application of this distribution is not so wide. Moreover, the 
frequently set up presumption (in many statistics books) that one parameter of this distribu-
tion is known does not hold in practice. Therefore, consider the construction of a confidence 
interval for the mean of a random variable of an unknown distribution.

In such a case, we are in an inconvenient situation. If  we would like to make a credible 
study, we should have a large sample size.

It is a well-known fact in mathematical statistics that the arithmetic mean based on a sam-
ple of size n taken from any distribution has the following limited distribution:

 
N m

n
n, σ⎛

⎝⎝⎝
⎞
⎠⎟
⎞⎞
⎠⎠

→ ∞for

where m is the expected value and σ is the variance. Observe that if  the distribution is normal 
the above pattern holds for any sample size n.

It can be assumed that for a large n (greater than 30) the mean has such a distribution in 
which the statistic:

 
U x m

s
n= : (N , )0,

Thus, we can construct the following equation:

 
P u x m

s
n u<u <⎛

⎝⎝⎝
⎞
⎠⎟
⎞⎞
⎠⎠

=γ γs
n u< γ  (4.13)

where uγ is the multiplication factor of the estimation error of the unknown average value. 
This factor can be taken from the table of standardised normal distributions for the level of 
confidence γ and for the value (1 + γ)/2. This factor is in fact the quantile of the standardised 
distribution N(0, 1).

Transforming equation (4.13) correctly, we get:

 
xP s

n
s
n

− < < +⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=u um< +xγ γn
um x< +x γ  (4.14)

Remark. The confidence interval for the unknown expected value m that is defined by the 
above equation is the same as the confidence interval for the mean in the normal distribution 
when the standard deviation is σ except that in the formula (4.14) is presumed that σ ≅ s.

In engineering practice, we often use exponential distribution. Therefore, let us look at 
the confidence intervals for a structural parameter of this distribution in cases of different 
investigation plans being used (the estimators for this parameter were determined by formu-
las (4.7)–(4.10)).

− For plan [n, , T] the interval is:

 

Δ
1 2 2−⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥

α α( )
,

[ ( )]ΔαΔ( ) 1 [

nT

T

nT
 (4.15a)
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where: Δβ[d(T)] is the quantile of order β of  the Poisson distribution for the  number of fail-
ures noted d(T)

− For plan [n, , r] the interval is:

 

Δ
1 2 2

1 1Δ
−

Δ⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥

α αΔ
,

[ ]1

n r rt tnr n
 (4.15b)

− For plan [n, , T] the interval is:

 

1 1
1

1 1
T p1 p T

ln
[ ( )]

, l1 n
[ ( )]p[

⎡

⎣
⎢
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⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
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1T pTT( )])]
,
T [−1TT(

 (4.15c)

where p T[ ( )] and p T[ ( )] are the lower and upper limits of the confidence interval for 
parameter p in the binomial distribution.

− For plan [n, , r] the interval is:

 

Δ
1 2 2

1 1Δ
−

Δ⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
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α αΔ

( )
,

[ ]1

( )S Sr r) (S) (S() S
 (4.15d)

where α is the presumed probability near one.
The quantiles of the Poisson distribution are in the construction of confidence intervals 

(4.15a), (4.15b) and (4.15d). This is connected with the fact that the most important infor-
mation of a statistical nature that is obtained from the investigation is statistic d(T)—the 
number of failures noted and the distribution of its random variable is simply the Poisson 
distribution. The exception to this rule is pattern (5.15c) because the value of the statistic 
d(T) in this plan of investigation does not depend on the parameter λ for technical objects of 
high reliability in practice (more on this topic see Gnyedenko et al. 1969, Chapter 3.4). Hence, 
the transformation was made by replacing the Poisson distribution with the binomial one.

Now, let us make some generalisations about the consideration being conducted by look-
ing at interval estimations for a technical object whose operational process is of the work-
repair type and both distributions of states are exponential.

Consider the process cycle twi + tni; i = 1, 2, …; tw—work time, tr—repair time. Let us 
devote our attention firstly on the work state. A sequence of times is associated with this 
state. Consider the sum Σ i

n
wit=1 . This sum is a random variable and it can be presumed that 

the component variables are independent and obviously exponentially distributed. If  so, this 
sum has the Erlang distribution of order n or, what is the same thing, the product 2 1λΣ i w1 i

n t  
has χ2 distribution with 2n degrees of freedom (vide formula (3.3)). This statement allows 
the interval estimation for the unknown parameter λ to be obtained because the following 
equation holds:

 
twi

i

χ λ χ α1
2

2
2

1

1nn ( )n2ntλ
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⎬
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⎭
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∑
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which yields

 

P
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1
2

1( )n2 ( )n2
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1
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< <λ
⎧
⎨
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⎫
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⎬⎬
⎭⎭

= −1  (4.16)
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The above formula determines the interval estimation for the intensity of failures of the 
object whose operation process is being observed.

For χ1
2 0=  and χ χα2

2 2χ ( )2  we have the left side confidence interval, for χ2
2 → ∞ and 

χ χ α1
2

1
2
− ( )2  we have the right side confidence interval and for χ χ1

2
1
2

( )α 2α ( )2 , χ χα2
2

2
2 ( )2  

we have sided interval.
Analogically, the interval estimation can be obtained for the intensity of repair β.
Based on the previous study, an interval estimation for the unknown expected values 

of the times of states can be constructed. It is enough to notice that the random variable 
2 1Σ i

n
wi wtwi t= / (E ) has an χ2 distribution with 2n degrees of freedom. Thus
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 (4.17a)

Similarly
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When the repair rate κ is analysed3 it is enough to perceive that if  χ2(r1) and χ2(r2) are the 
independent random variables of the Chi-squared distribution with r1 and r2 degrees of free-
dom, respectively, then the random variable

 

χχ χχχ χχχ2
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2
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2
1 2
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r1
2

r2
r r1 2

= Fr

has the Snedecor’s distribution with (r1, r2) degrees of freedom (compare formula (1.120)). 
Because we presume that our observation comprised n cycles of the process, thus r1 = r2 = 2n 
and then

 

E t

E t
r wt ii

n

w rt ii

n n n

( )tr )

( )tw )
,

=

=

∑
∑

=1

1

2 2nF2

Hence, it is true that

 

P F n
t

t
wii

n

rii

n1FF 1

1

22 2 1( ,n2n ) (Fwii
n

1
2 , )2i 1

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭=

∑
∑

αnn 1(F2FF , )n2i 1 ⎬ = −1

3 Recall, κ = λ/β.
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By transforming the above we have:
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This equation determines the confidence interval for the unknown repair rate from the 
population.

It is worth noticing that
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is the estimator of the repair rate based on the sample.
Determination of the confidence interval for the steady-state availability A is not a prob-

lem now and the following equation holds:
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The reasoning above can be successfully enlarged on series systems that consist of identical 
elements (which almost always holds true in practice).

Bearing in mind the first principle of reduction for series systems (see for instance Czaplicki 
2010 p. 130), we can state that the intensity of failures λS of  a series system consisting of k 
identical elements is the sum of all of the intensities λ(j); j = 1, 2, …, k that is λS = kλ and for 
this reason the random variable:
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where N is the number of the process cycles of the system observed has the Chi-square dis-
tribution with 2Nk degrees of freedom.

The interval estimation for the intensity of failures in a series system λS can be obtained 
from the equation:
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while the interval estimation for the unknown expected value of work time can be obtained 
from the pattern:
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 (4.21)

In accordance with the principles of reduction for series systems, the intensity of repair in 
the system is:

 βS = β
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and this means that the confidence interval is the same for any element of the system and for 
the whole system. Analogically, the confidence interval for the expected value of the repair 
of an element is the same as for the whole series system. The only difference is that for the 
system, we have N instead of n.

Consider now the following random variable:

 

χχ χχχ χχχ2 2χχχχ
2 22 2

: ( )2
,Nk N Nk N= F2

This variable is useful to obtain the interval estimation for the unknown repair rate κS of  
the considered system because:
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The above equation is advantageous to get the interval estimation for the unknown steady-
state availability AS of  the system
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(4.23)

After certain modifications, the interval estimations can be obtained for a series system 
that is composed of non-identical elements (Czaplicki 1977).

In reliability analyses of technical objects working to first failure occurrence, it is important 
to assess the lower limited value for the unknown mean time of the population if  no failure 
was recorded during investigation.

Generally, it should be distinguished whether a random variable associated with the popu-
lation is described by a function that has one or more structural parameters. If  only one 
parameter characterises the distribution function, no further information is required.

Presume that n objects have been tested in time T and no failure was recorded, then by 
presuming an appropriately high level of probability δ, we will search for a formula that 
defines the lower limited value LL for the unknown expected value expressed in time units for 
the population.

Thus, if  the probability distribution is, for example, exponential (see pattern (1.53)) then the 
lower limit LL for the expected value of life time can be obtained by solving the equation:
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= −nT
LeL

1 δ  (4.24)

with respect to the limit Le , which yields to the formula:

 
L nT

eL = −
ln( )− δ

 (4.25)

If  the probability distribution has two structural parameters, it is necessary to have some 
information on at least one of the parameters.
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If we postulate that the probability distribution is the Weibull one (1.56), then the lower 
limited value LW for the expected value can be obtained by solving the equation

 exp( )λ δ) γ=  (4.26)

Believe that information on the shape parameter α can be available. Bearing in mind the 
equation to determine the expected value for the Weibull distribution (1.58) and making all 
of the necessary mathematical transformations, one obtains:

 
L

T
WLL =

+⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞Γ 1 1

1
α

γ δ( l− n )γ
 (4.27)

In some cases the Gaussian distribution is applied but we already have knowledge on the 
limitations of this distribution (see Chapter 1). For this reason, we presume that the variation 
coefficient v is low (v < 1

3) and that we know this value. If  so, the equation to be solved is:
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The above equation allows the limited value LN to be found, which is in this case is deter-
mined by the equation:

 
L T

vuNL =
−1 γ

 (4.29)

where uγ is the quantile of order γ of  the standardised normal distribution (Table 9.2).
If  the probability distribution is a log-normal one and information on the standard devia-

tion σ is in hand, the equation to determine the limited value is:

 L lgTlLL +lgTl +σ σu +γ 1 1513 2  (4.30)

■ Example 5.1

Suppose that n = 100 identical elements were tested over time T = 1000 h. We compare the 
limited values for different distributions presuming that the probability δ = 0.95.

Assume that the shape parameter in the Weibull distribution α = 2, the coefficient of varia-
tion in the normal distribution v = 0.10 and the standard deviation σ = 0.10 in the log-normal 
distribution.

We have:

− L nT
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δ
h

− L
T

WLL = ( )+
=

Γ
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− LLL = 1583h
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By changing the probability δ as well as changing the values of the supplementary param-
eters (α, ν, σ), we obtain different numbers of the limited values for the means. ◀

4.2 PROBABILITY DISTRIBUTION DESCRIPTION

When a sample is taken and it is the representative one, i.e. it is such that it represents the 
population satisfactorily in a statistical sense, and the random variable tested can then be 
characterised in a synthetic way by means of selected parameters as was shown in the previ-
ous chapter, we can try to find a theoretical distribution that will describe the data in a satis-
factory way; satisfactory in a statistical sense.

Sometimes we have some information a priori on the distribution of the random variable 
of interest. Basically, there are two sources of such information, namely:

− Theoretical; a theoretical study indicates what kind of distribution we are dealing with
− Empirical; there is information about what kind of statistical model can be applied from 

research that had previously been carried out.

However, if  there is a lack of any information in this regard, we should follow the scheme 
presented below.

A histogram should be constructed based on the sample. This is a graphical representa-
tion of the distribution of the amount or frequency of a given set of elements that is classi-
fied with regard to the feature that is being investigated. Because a histogram is constructed 
based on the sample, the graph shows the empirical distribution of the feature. In the case 
of a frequency diagram, the chart illustrates the empirical density distribution function. This 
method of presentation was introduced by Pearson (1895). A histogram consists of tabular 
frequencies, which are shown as adjacent rectangles, erected over discrete intervals (bins) 
with an area equal to the frequency of the observations in the interval. The height of a rec-
tangle is also equal to the frequency density of the interval, i.e., the frequency divided by the 
width of the interval. The total area of the histogram is equal to the number of data. A his-
togram may also be normalised to display relative frequencies. It then shows the proportion 
of cases that fall into each of several categories with the total area equalling 1. The categories 
are usually specified as consecutive, non-overlapping intervals of a variable. The categories 
(intervals) must be adjacent, and often are chosen to be of the same size. The rectangles of a 
histogram are drawn so that they touch each other in order to indicate that the original vari-
able is continuous.

Practically, the number of intervals should be at least five; otherwise, the histogram will be 
difficult to read. In order to inference appropriately, a few elements to each interval should be 
ascribed at least. It follows that the sample should have at least 30 elements. If, however, there 
had been a previous investigation concerning the population of the specified and known 
distribution, then the sample size could be a little smaller.

In a mathematical sense, a histogram is a function mi that counts the number of 
observations that fall into each of  the disjoint categories, whereas the graph of  a his-
togram is only one way to represent a histogram. Thus, if  we let n be the total number 
of  observations and k be the total number of  bins, the histogram mi meets the following 
conditions:

 
n mi

i

k

=
∑

1

A conclusion can be formulated from the consideration presented above that the way to 
find the theoretical distribution that will describe the data well relies on the construction of 
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the empirical probability density function and searching for such a theoretical counterpart to 
which the graph is similar to the empirical one.

Selection of such a method for proceeding results from the fact that plots of density func-
tions for different classes of distributions usually differ significantly from one another. If  we 
would like to find the theoretical distribution using, for instance, the distribution function, 
then it will be very difficult to discover it. Plots of distribution functions are very similar to 
each other. However, a certain different way of finding a theoretical model in this regard and 
in this mode is sometimes used in a reliability investigation when technical objects working 
to the first failure occurrence are considered. The point of interest here is the function of the 
conditional intensity of failures (the so-called hazard function). Graphs of this function dif-
fer distinctly from each other in many cases.

Notice a certain subtleness. Often a few theoretical distributions can be ascribed to a given 
histogram. Principally, the decision of which model will be chosen depends on the researcher. 
However, it is worth considering some additional problems or using some hints. Some indi-
cations in this regard can be obtained by considering the goal of the investigation to be 
conducted. If  the distribution function will be used in a further part of the investigation, its 
properties should be convenient to use in planned analysis. Sometimes the point of interest 
in further study is associated with the tail of the probability density function. Many prob-
ability distributions differ in the properties of their tails. Generally, if  two density functions 
can be applied, attention should be paid to the distribution of the mass along the values of 
the variable.

� Example 3.5 (cont.)

In example 3.5 stationary testing was done in connection with the sample taken. There was no 
basis to reject the hypothesis stating the stationarity of the sequence of the numbers noted. 
Now, we try to find a theoretical probability distribution that will satisfactorily describe the 
data.

Let us divide the range variation of the variable into five separable 50-minute-long inter-
vals. Taking into consideration that 0 does not belong to the set of data, the right side limited 
values of the bins will belong to their bins. The histogram is presented in Figure 4.2. It gives 
information that the theoretical density function should be asymmetric supported on the 
positive real values.

The probability distributions that are most frequently applied in such a case are the gamma 
or Weibull function. Let us try to describe our data using the gamma distribution.
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Recall that the probability density function for this distribution is given by formula (1.48)
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Estimate the unknown structural parameters for this function.
Let us apply the method of moments—patterns (4.2). The estimates of the expected value 

and the standard deviation are as follows:

 x SxS83 0 5SxS =S 3 1i . m1 in

which give these estimations of the structural parameters:
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Making use of the formulas taken from the method of maximum likelihood, we calculate 
the logarithm of the function L for a sample of size n
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Now, it is necessary to solve the set of equations that allow the estimates of structural 
parameters to be found, namely
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Combining the above equations we get:
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Figure 4.2. The histogram and the theoretical probability density function for the repair times from 
Example 3.5.
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This set can only be solved applying an appropriate computer program.
It turns out that the estimates obtained in this way differ insignificantly from the estimates 

obtained using the method of moments.
Now, we have the theoretical model that should describe the distribution of data well. The 

next step is to verify this supposition, which has the following statistical form: the theoretical 
function describing the distribution of the empirical data differs insignificantly from the cor-
responding empirical function. The alternative hypothesis rejects this. �

The research situation that has been just described touches the sphere of consideration in 
mathematical statistics that belongs to non-parametric4 tests of significance and especially 
tests of the goodness-of-fit.

Non-parametric tests can generally be divided into three groups:

• Tests of the goodness-of-fit
• Randomness tests
• Independence tests.

These tests characterise a lower power than parametric tests; however, they have the advan-
tage of simple construction and uncomplicated calculations. An example of an application 
of randomness analysis was presented in Chapter 3.1. Now the point of interest will be the 
application of tests of the goodness-of-fit. Independence tests will be considered in the next 
chapter.

Tests of the goodness-of-fit investigate the compatibility (accordance) of the empirical dis-
tribution with the theoretical one. It is also possible to verify the hypothesis that few distribu-
tions are consistent using some of these tests, which means that they can be described well by 
means of one probability function.

In the case just considered the point of interest is a problem of whether the theoretical 
model that has just been selected describes the data well. In order to answer this question, a 
test of the goodness-of-fit should be applied. Two tests are used most frequently—the Pear-
son’s Chi-squared test and the Kolmogorov test. They are based on two different approaches 
to the issue of compatibility. In the Pearson’s test attention is paid to a comparison of the 
frequencies; empirical and theoretical. In the Kolmogorov test attention is focused on the 
maximum of the inconsistency between the distributions, again, a theoretical one with an 
empirical distribution5.

Pearson’s Chi-squared test. The test has one disadvantage—the data to be analysed should 
be large. This is due to a requirement that is part of the test procedure. The range of the vari-
ation of the variables is divided into a certain number of separate intervals that are in contact 
with a neighbouring interval. It is suggested that approximately 8 to 10 sample outcomes, on 
average, should belong to each interval. The test procedure is as follows.

Presume that the population of interest is characterised by some distribution. A sample 
is taken of size n. The outcomes are divided into r separate bins. Denote the number of out-
comes in a given bin by ni; i = 1, 2, …, r. Obviously

 
n ni

i

r

=
∑

1

The empirical probability density function is obtained in this way.

4 There is a large amount of information in mathematical statistics dealing with non-parametric prob-
lems (see for instance Corder and Foreman (2009), Gibson et al. (2003) or Wasserman (2007)).
5 There are also some tests that are focused on one family of probability distributions, e.g. the Shapiro-
Wilk test deals exclusively with the normal distribution.
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A verified hypothesis states that the population can be characterised by a certain specified 
probability function F(x). Using the information contained in the empirical distribution, one 
can calculate the probability pi; the probability that the random variable tested will take a 
value from the bin. Multiplying these probabilities by the sample size, one gets a theoretical 
number that should occur in a given bin if  the verified hypothesis is a true one. Using all of 
the data, the following statistic should be calculated:

 
χ2

2

1

=
=
∑ ( )−

np
i i

ii

r

 (4.32)

which has—if the verified hypothesis is the true one—the asymptotical χ2 distribution with 
r − k − 1 degrees of freedom where k denotes the number of parameters of the distribution 
F(x).

The critical region in this test is the right-side one. The critical value χα
2 ( )1  should be 

read from the Table (9.4) of χ2 distribution for r − k − 1 degrees of freedom and a presumed 
level of significance α.

If  the following inequality holds

 P

then the verified hypothesis should be rejected, i.e. the difference between the empirical distri-
bution and the theoretical one is statistically significant. Otherwise, there is no basis to reject 
the null hypothesis. It is said that if  the value given by formula (4.32) is closer to zero, then 
the verified hypothesis is more reliable.

■ Example 4.2 (Tumidajski 1993; Example 9.2)

In a mine dressing plant 263 portions of the material that was fed mechanically for dressing 
were collected. The data were used to verify a hypothesis that states that the useful com-
ponent (copper) in this material can be described by a Gaussian distribution. The samples 
had an identical mass and a chemical analysis was carried out. Outcomes were grouped 
in bins, the necessary calculations done and a table to facilitate further calculations was 
constructed.

Table 4.1. Auxiliary calculations.

Bin intervals 
Cu content ni ui Φ(ui) pi npi

( )
np

i i

i

2

<1.78 30 −1.063 0.144572 0.144572 38.02 1.6918
  1.78 ÷ 1.89 28 −0.719 0.235762 0.091190 23.98 0.6739
  1.89 ÷ 2.00 35 −0.375 0.351973 0.116211 30.56 0.6451
  2.00 ÷ 2.11 44 −0.031 0.488034 0.136061 35.78 1.8884
  2.11 ÷ 2.22 42  0.312 0.621720 0.133686 35.16 1.3306
  2.22 ÷ 2.33 29  0.656 0.745373 0.123653 32.52 0.3810
  2.33 ÷ 2.44 26  1.000 0.841345 0.095972 15.24 0.2290
>2.44 29 – 1.000000 0.158655 41.73 3.8834

where pi = Φi+1 − Φi for i ≠ 1.
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Information was obtained from a previous investigation that the distribution of the data 
could be satisfactorily described by a Gaussian distribution. Therefore, a null hypothesis was 
constructed repeating that way of reasoning. The arithmetic mean from the samples that had 
just been taken was calculated obtaining x = 2 1181. , and the standard deviation s = 0.3228.

Upper limits of bins were standardised as ui
x x

s
i= , whereas values Φ(ui) were read from 

the Table of the standardised normal distribution N(0, 1).
By calculating the Chi-squared statistic, the following result was obtained χ2 = 10.72.
Presume a level of significance α = 0.05. The number of degrees of freedom is r − 2 − 

1 = 5. From Table 9.4, we have the critical value: 11.07.
The empirical value is below the critical one—conclusion: there is no ground to reject the 

verified hypothesis. We can assume that the distribution N(2.12; 0.32) describes the distribu-
tion of copper in the broken rock delivered to the dressing plant well. ◀

■ Example 4.3

In the seismic station of a certain underground coal mine tremors of rock surrounding the 
mine were noted between 14-09-2001 and 21-10-2010. The point of interest was the time 
(counted in days) between two neighbouring tremors whose energy was above the defined 
level. Within the selected period of observation, 32 events were recorded, namely:

10, 131, 81, 116, 17, 196, 29, 178, 20, 147, 23, 134, 20, 222, 129, 207, 95, 
89, 80, 75, 145, 112, 15, 85, 219, 53, 99, 49, 71, 318, 381, 211 days  Figure 4.3.

Let us perform a statistical analysis of the sample.
First of all, the randomness of the sample should be tested. The sample has 32 elements 

and for this reason the median is the arithmetic mean of two neighbouring elements—
number 16 and 17—for the sample ordered monotonically. Thus, the median is 1

2 ( )95 99 =)99  
97 days.

The original sample is now converted into a sequence of signs: all of the observations in 
the sample larger than the median value are given a + sign and those below the median are 
given a – sign. Thus, the sequence is as follows:

– + – + – + – + – + – + – + + + – – – – + + – – + – + – – + + +

400
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Figure 4.3. Time between two neighbouring tremors for the period 14-09-2001 and 21-10-2010.
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The number of series in this sequence is 22. The number of signs n− = n+ = 16. Presuming a 
level of significance α = 0.05 and using Table 9.8, we have two critical values for our case:

 Kα/2(16, 16) = 11  and  K1−α/2(16, 16) = 22

The empirical number of the series touches the right side critical value. The outcome is 
ambiguous. Formally we can reject the hypothesis proclaiming randomness. But we may try 
to conduct our analysis a bit further.

Usually, in such a case, there are two ways to conduct further analysis. One way is to collect 
a new sample, but in the case being considered this was not possible. A second way is to apply 
a different test. Unfortunately, the author of this book is not familiar with any different test 
for the randomness of a sample than that presented in Chapter 3.1.

Thus, let us conduct a further study assuming with a certain carefulness that the sample 
has a randomness property.

There is no outlier in the sample.
Let us check whether the sample is a stationary one by applying the test based on the 

Spearman’s rank correlation coefficient. Calculations connected with this test are as follows:

Order i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Value 10 131 81 116 17 196 29 178 20 147 23 134 20 222 129 207 95
Rank vi 1 21 13 19 3 26 7 25 4, 5 24 6 22 4, 5 30 20 27 16

Order i 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Value 89 80 75 145 112 15 85 219 53 99 49 71 318 381 221
Rank vi 15 12 11 23 18 2 14 28 9 17 8 10 31 32 29

Calculate the coefficient (formula 3.18). We have:

 
r

nSrr
ii

n

= − ==∑1
6

0 255
2

1
2

( )v ii

( )n −12 .

Let us check whether this value is significant. The null hypothesis states that the station-
arity of the sequence versus an alternative supposition rejecting it. The critical value can be 
calculated by applying formula (3.23). Here we have:

 
r

nSrr ( , ) . .=n, )
−

=1 645
1

0 295

Comparing these two values, we can state that there is no basis to reject the null hypothesis 
that states the stationarity of the sample.

If  so, we can try to find a theoretical model which will describe the distribution of the 
data well. Let us divide the range of observations into five 80-day-long intervals. By ascrib-
ing to each interval the corresponding values, a histogram is obtained which is presented in 
Figure 4.4. The theoretical models that could be considered here are: exponential, gamma or 
Weibull distributions. Let us reject the exponential model because this is a particular case for 
gamma distribution as well as for the Weibull distribution.
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Let us try to use the Weibull distribution. It was defined by pattern (1.54). Recall

 f x x e x)x , ,= ≥x e x >αλ α λ,,α λe
α

0, α > 0x

In order to estimate unknown values of the structural parameters, we can apply the method 
of moments first. This means that we need to solve the following set of equations:

 

ˆ1 1/

2
2
ˆ

ˆˆ( )

ˆ
x

x

Sx
α

Γ α λ =1 1/ˆ(1+ )ˆ − − α1 1/)1

⎛ ⎞ ⎛ ⎞2 121 2 2Γ ⎞⎞1⎛⎛1+ 1+22 2⎛⎛1+ 2
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1 ⎞⎞⎞⎞1+1+⎛⎛⎛⎛1+ ⎠ ⎝⎠ ⎝⎟ ⎜⎟ ⎜⎟ ⎜

=
λ

 (4.33)

where x  is the average value of the observations and SxS2  is the corresponding variance.
This set can easily be solved using an appropriate computer program.
For the data in hand

 x SxS11 2 2d y d dSxS =S 79952 7995 ays

and therefore

 
−α = λ = × 3ˆˆ 10λ = ×λ =

The probability density function with these parameters is depicted in Figure 4.4. Notice 
that two pieces of information here indicate that the exponential distribution has no validity. 
Firstly, the standard deviation of the random variable investigated is distinctly different than 
the mean. Secondly, the shape parameter α is clearly different than unity.

Apply now the method of most likelihood. We have the set of equations:

 

ˆ
1

ˆ
( )

ˆ

n
ii

n

n

α
=

λ =

⎡ ⎤ˆ
n n

=α̂
⎡ ⎤l⎢ ⎥iλ −λ − ilnxln iln ⎤⎤l⎡⎡

⎣ ⎦1 1i i11
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∑
( ) lα( ))( ))) ln) ln) ln) ln) lnl( )( i i))

 (4.34)

Figure 4.4. The histogram and the theoretical probability density function for the times from 
Example 5.3.
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Inserting the estimates of  parameters that were obtained using the method of 
moments, we come to the conclusion that the estimates are good enough. Changes in the 
values of  the parameters because of  the application of  the method of  most likelihood 
are negligible.

Now we have the theoretical model that describes the distribution of data. Let us check 
whether this model describes the distribution of data well in a statistical sense. It is necessary 
to apply the test of the goodness-of-fit. Our data are not so rich and for this reason, it seems 
advisable to use the Kolmogorov test. �

In the Kolmogorov test two distribution functions are compared—the empirical one with 
the theoretical one. A null hypothesis H0 that is verified states that these distribution func-
tions are identical, i.e. H0:F

(e)(x) = F(t)(x), where F(e)(x) is an empirical function and F(t)(x) is 
the corresponding theoretical one. If  the population has a distribution that is in accordance 
with the theoretical one—this means that the null hypothesis is true—then the values of both 
distribution functions should be close to one another. In the Kolmogorov test, the absolute 
differences between these functions are investigated and attention is paid to the largest gap 
between these values. This difference is the basis for the construction of the Kolmogorov sta-
tistic whose distribution is independent of the theoretical distribution function. The critical 
values were calculated based on this statistic and they are given in Table 9.12. If  the maximum 
difference between the theoretical and empirical functions is greater than the critical value, 
the verified hypothesis should be rejected.

The test procedure is as follows.
Observations are ordered monotonically and they are grouped in separate intervals (bins). 

In this way information on a number nj; j = 1, 2, …, k, …, r of  the outcomes belonging to each 
interval is obtained. Obviously, Σ j

r
jn nj=1 .

The empirical distribution function is determined as:

 
F

n
nj

j k

( )e ( )x = ∑1
 (4.35)

where Σj ≤ k nj is the total number of observations up to the k-th interval, inclusively.
Next, based on the theoretical distribution function for each sample value (if  the size of 

the sample is small) or for each interval (bin), one calculates the value of the function. Thus, 
we have two sequences of values of these distribution functions. Afterward, one calculates 
the absolute difference between the two value functions and the greatest difference is noted. 
This value is compared with the corresponding critical value for a given number of observa-
tions and a presumed level of significance. If  the largest gap is below the critical value, we 
have no ground to discard the verified hypothesis.

� Example 4.3 (cont.)

Following the reasoning presented above, calculate the values of the distribution functions—
empirical and theoretical—in the points that correspond with the empirical values. The results 
of the calculation are presented in Table 4.2.

Presume a level of significance α = 0.05. For such a level of significance and the sample size 
n = 32, the critical value in the Kolmogorov test is 0.234 (see Table 9.12). The maximum differ-
ence between these functions is 0.090. Thus, there is no ground to reject the verified hypoth-
esis. This means that there will be no objection to the statement that the Weibull distribution 
with the parameters (1.33; 1.58 × 10−3) describes the empirical distribution of data well.
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� Example 3.5 (cont.)

As a result of the preliminary analysis and bearing in mind the histogram shown in Figure 4.2, 
we came to the conclusion that the distribution of data could be described by the gamma 
function (1.49) with parameters (2.44; 0.03).

Now it is time to check whether this description is good in a statistical sense. The sample is 
not so rich, and therefore the Kolmogorov test can be applied.

Therefore, formulate the hypothesis H0:F
(e)(x) = F(t)(x) versus the hypothesis H1 which 

denies it.
In order to check whether the basic supposition is not false, the sample was ordered 

monotonically in an increasing way. Both distribution functions were calculated at the points 

Table 4.2. The empirical and theoretical distribution functions for 
Example 4.3.

xj F(e)(x) F(t)(x) max|F(e)(x) − F(t)(x)|  

j days

F
j
n

F f x dx
xj

( )e

( )t

( )x

( )x )x

=

= ∫
0

1 10 0.031 0.033
2 15 0.062 0.056
3 17 0.094 0.066
4 20 0.125 0.081
5 20 0.156 0.097
6 23 0.187 0.097 0.090
7 29 0.219 0.13
8 49 0.250 0.244
9 53 0.281 0.267
10 71 0.313 0.367
11 75 0.344 0.389
12 80 0.375 0.415
13 81 0.406 0.421
14 85 0.438 0.441
15 89 0.469 0.461
16 95 0.5 0.491
17 99 0.531 0.51
18 112 0.563 0.568
19 116 0.594 0.585
20 129 0.625 0.637
21 131 0.656 0.645
22 134 0.688 0.656
23 145 0.719 0.694
24 147 0.750 0.7
25 178 0.781 0.789
26 196 0.813 0.829
27 207 0.844 0.851
28 219 0.875 0.871
29 221 0.906 0.874
30 222 0.937 0.876
31 318 0.969 0.965
32 381 1 0.986

◀
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that corresponded to the empirical values. The results of the calculation are presented in 
Table 4.3.

Presume a level of  significance α = 0.05. For such a level of  significance and the sample 
size n = 35, the critical value in the Kolmogorov test is 0.224 (see Table 9.12). The maximum 
difference between these functions is 0.064. Thus, there is no ground to reject the verified 

Table 4.3. The empirical and theoretical distribution functions for example 3.5.

xj F(e)(xj) F(t)(xj) max|F(e)(xj) − F0(xj)| F(t)(xj)

j [min] gamma Weibull

1 10 0.029 0.014 0.028
2 15 0.057 0.033 0.053
3 20 0.086 0.061 0.083
4 25 0.114 0.095 0.116
5 30 0.143 0.134 0.152
6 30 0.171 0.134 0.152
7 35 0.200 0.177 0.191
8 35 0.229 0.177 0.191
9 40 0.257 0.222 0.230
10 40 0.286 0.222 0.064 0.230
11 45 0.314 0.268 0.271
12 50 0.343 0.315 0.312
13 60 0.371 0.408 0.394
14 60 0.400 0.408 0.394
15 65 0.429 0.453 0.434
16 65 0.457 0.453 0.434
17 70 0.485 0.496 0.473
18 70 0.514 0.496 0.473
19 80 0.543 0.575 0.548
20 80 0.571 0.575 0.548
21 85 0.600 0.612 0.583
22 90 0.629 0.646 0.616
23 95 0.657 0.678 0.648
24 100 0.686 0.707 0.678
25 100 0.714 0.707 0.678
26 105 0.743 0.735 0.706
27 110 0.771 0.76 0.733
28 120 0.800 0.804 0.781

(Continued)
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hypothesis. This means that there will be no objection to the statement that the gamma 
distribution with the parameters (2.44; 0.03) describes the empirical distribution of  data 
well. ◀

If  there is no indication of what kind of distribution should be applied, one can choose 
any of them provided that the selected distribution describes—in a statistical sense—the dis-
tribution of empirical data well. In the case just considered, the Weibull function has a simi-
lar shape as the distribution. By repeating the calculation for the Weibull distribution, one 
obtains the theoretical distribution function values, which are shown in the last column of 
this Table. It is easy to notice that the Weibull distribution of the calculated structural param-
eters can also be used because the maximum difference between the cumulative functions 
does not exceed the critical value in the Kolmogorov test.

4.3  AN EXAMPLE OF EMPIRICAL–THEORETICAL INFERENCE ABOUT 
THE DISTRIBUTION OF A RANDOM VARIABLE

Many systems in mining are of the series type in a reliability sense, especially the mechanised 
ones, e.g., BWE—belt conveyors—stacker in surface mining; shearer—AFC—belt conveyors 
in underground coal longwall mining; crusher (sizer, Australian)—belt conveyor—dumping 
machine; screen—receiving conveyor. These systems consist of pieces of equipment that can 
be repaired (are renewable). There are also series systems in mining that consist of non-
renewable objects.

In reliability theory, a system has a series structure if, and only if, the failure of any element 
of the system means the failure of the system.

This type of structure is the worst of all of those that are possible, i.e. such a system has 
the most inconvenient reliability parameters and characteristics.

If, for instance, any piece of equipment that is engaged in the excavation and haulage of 
the coal won in an underground mine fails, then the whole system will not have any stream of 
coal quite soon. An exception to this rule is when such a system has a bin in its structure and 
a certain amount of the mineral can be stored in it.

The reliability parameters of renewable series systems are calculated by applying the 
Markov processes theory if  the times of the states (work and repair) can be satisfactorily 
described by exponential distributions. If, however, the probability distributions of the times 
of the states are not exponential but are still stochastically independent, then the theory of 
semi-Markov processes should be applied.

If  a system is of a series structure and its components work to the first failure occurrence, 
which means that the whole system works to the first failure occurrence, then order statistics 
should be applied. A system of this type can be found, for instance, in electronics.

Table 4.3. (Continued).

xj F(e)(xj) F(t)(xj) max|F(e)(xj) − F0(xj)| F(t)(xj)

j [min] gamma Weibull

29 130 0.829 0.842 0.822
30 140 0.857 0.872 0.857
31 155 0.886 0.908 0.898
32 170 0.914 0.935 0.929
33 170 0.943 0.935 0.929
34 180 0.971 0.948 0.945
35 230 1 0.984 0.986
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Before a definition of order statistics is given, let us consider a random variable that 
describes the time of work of such a system that consists of identical elements. It is defined 
by the equation:

 X X X X1,XX in( , , )n
(1) (X 2) ( )n,  (4.36)

where: X(i); i = 1, 2, …, n denote the work times of the elements
 X1,n denotes the first (shortest) time amongst n possible.

Denote by F(i)(x) the probability distribution of the random variables X(i).
Assuming that the work times of the elements are stochastically independent, the prob-

ability distribution of the work time for a series system is determined by the formula:
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i

n

1FF
1

1 1,
( )i( )x ( )x= 1 −( )

=
∏  (4.37)

which means that the reliability (survival) function is given by the pattern:

 
R Rn
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,
( )i( )x ( )x=

=
∏  (4.38)

Recall

 R FF( )i ( )i( )xx ( )x= −1  (4.38a)

If  the probability distributions of the work time of the elements are exponential, i.e.

 F ( )i ( )i ( )i( )xx e p( )= >1 exp(− − 0λ λ)i ) 0xx)i ) ≥xx( )i )  (4.39)

where λ(i) is the intensity of the failures of the i-th element then the probability distribution 
of the work time of the system is also exponential and given by the formula:
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∑λ  (4.40)

The formula above contains information that the intensity of the failures of the system is 
the sum of all of the intensities of the failures of all of its elements.

The mean time of work of the system is determined by the equation:
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Particularly, if  all of the elements are the same in a reliability sense then

 R xn
n

1,RR ( )x [ (R )]=

and for the exponential law
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■ Example 4.4

Often, durability tests of chains, which are not used only in mining, rely on the following 
scheme. In testing a device, a three-link or five-link segment of the chain is fixed and an 
alternating load is applied periodically. Such tests are usually normalised. The test is finished 
the moment that any link breaks off. The number of load cycles until the moment of the 
occurrence of the break is noted6.

When the data collected from strength tests are gathered, it is usually presumed that the 
number of cycles noted contains information about the durability of the links in the chain 
and because this number is a random variable, the probability distribution is usually esti-
mated and—as a rule—a log-normal distribution is applied.

The presented reasoning is flawed.
The random variable that is observed in testing—the number of load cycles until the 

moment of the failure of one out of three chain links or one out of five chain links—is the 
first order statistic X1,n, n = 3 or 5. From a reliability point of view, a chain segment is a system 
consisting of three or five identical elements, stochastically taking. All of the elements work 
until the moment of the first failure occurrence. Thus, these systems are non-repairable ones.

Recall now the definition of an order statistic.
Let X1, X2, …, Xn be a random vector of size n and let x1, x2, …, xn be the realisation of this 

vector. An order statistic Xk,n is a function of the random variables X1, X2, …, Xn taking k-th 
largest value in every sequence x1, x2, …, xn.

If  f(x) denotes the probability density function of the random variable x and F(x) is 
the cumulative function, then the probability density function fk,n(x) is determined by the 
pattern:

 
f x

n
k n k

f x x xk nff k nx k
, )x

!
( )k !( )!

)x [ (F )] [ (FFF )]=
−n

−nF  (4.42)

As you can see the probability distribution functions of order statistics are different.
If  the estimation of the probability distribution of the random variable—the number of 

load cycles until the moment of the failure occurrence—is done, this distribution is F1,n(x). 
Therefore, if  there is interest in the probability distribution of the durability of the links in a 
chain F(x) then, bearing in mind formula (4.37) and rearranging it appropriately, we have:

 
F xn

n( )x ( (F n )),= 1 (− 1FF  (4.43)

6 Some other investigations use a slightly different scheme. A given segment of a chain is tested for a 
given number of load cycles. If  there is no failure during this test, the investigation is finished and it is 
assumed that the chain fulfils the stipulated requirements.
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As the investigations show, the data gathered during durability tests can be satisfactorily 
described by a log-normal distribution and this distribution is F1,n(x). Now, the problem is 
what can be stated about the probability distribution F(x).

Let us analyse this problem in more depth.
Presume that as a result of testing, a sequence of numbers was obtained that created a 

sample of size n; x1, x2, …, xn. Knowing a priori that the theoretical model is log-normal, 
it is necessary to convert the sample into a sequence of logarithms log x1, log x2, …, log xn. 
The next step is the estimation of the structural parameters, i.e. the estimation of the average 
value and the standard deviation.

Presume that the estimation gives the following result:

− The estimate of the average value of the number of load cycles until the moment of the 
first failure occurrence out of n links tested, equals 3 × 104 (μ = log 3 × 104 = 4.477)

− The estimate of the standard deviation equals 1.5 × 104 (σ = log 1.5 × 104 = 4.176).

Having the estimations of these parameters of the probability function, a test of the 
goodness-of-fit should now be applied in order to verify the hypothesis which states that 
the empirical and the theoretical functions are identical statistically. It should be possible to 
describe the distribution of logarithms by the Gaussian distribution.

Presume that the test that was used gave no ground to reject the verified supposition.
If  so, the probability density function is given by the pattern:
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x xn1ff
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σ π2

μ
σ

and this is shown in Figure 4.5.
Let us now start a statistical inference about the probability density function f(x) that 

already has the probability density function f1,n(x) determined. Unfortunately, it is easy to 
come to the conclusion—looking at formula (4.43)—that there is no way to present the func-
tion that is being searched for in an explicit form.

We can only:

− state that the distribution that is being searched for is not a log-normal one
− find a plot of the probability density function f(x) by applying an appropriate computer 

program.

0 2 . 104 4 . 104 6 . 104 8 . 104 1 . 105
0

5 . 10–6

1 . 10–5

f1,n(x)

x

Figure 4.5. The probability density function of a log-normal distribution of the first order statistic of 
a chain link.
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A graph of the probability density function of the number of load cycles of a chain 
link until the moment it fails for the data being considered and only the three chain links 
that created the segment (i.e. the diameter of the links of the chain is large) is presented in 
Figure 4.6.

Although the course of the function is similar to the function from Figure 4.5, it does not 
have a log-normal distribution. You can only try to find the theoretical distribution that will 
describe this function satisfactorily from a statistical point of view. Obviously the expected 
values and the standard deviations should be the same. ◀

0.006

0.004

0.002

0

f(x)

x
0 10 20 30 40 50

Figure 4.6. The probability density function of chain link durability for n = 3.
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CHAPTER 5

Relationships between random variables

We have reached the point in our considerations at which we have the statistical diagnostics 
(a preliminary analysis of data) and the sample that is characterised by synthetic numerical 
characteristics—the parameters of the random variable being investigated. Moreover, a theo-
retical distribution was found that describes the data collected well.

However, this is obviously not enough. Often there is such a situation in which we sus-
pect that the random variable that is being investigated has an influence on a certain dif-
ferent random variable or even several random variables. It is therefore necessary to check 
this supposition. A similar problem can arise from different reasoning. We would like to 
theoretically describe the functioning of a certain technical object. A theoretical model was 
found but every model has some assumptions that have to be fulfilled in order to validate its 
application. Often the requirements of the model are such that some random variables have 
to be independent (often). And again, the problem of verifying whether this requirement has 
been fulfilled comes into play—the independence or dependence of some random variables. 
Sometimes, the following situation appears during the research that is being carried out: the 
independence of some random variables was expected but—as the result of statistical test-
ing—something opposite has been found. Such a situation is very interesting from a research 
point of view. We should find the reason why such an irregularity exists.

The points of interest in this chapter are such problems. We start our study from an inves-
tigation of the independence of random variables.

5.1 THE CHI-SQUARE TEST OF INDEPENDENCE

We will presume for the time being that our investigation concerns only two random variables 
and that they are of a categorical nature. Generally, variables can be classified as categorical 
(qualitative) or quantitative (numerical).

• Categorical variables take on values that are names or labels. The colour of a ball (e.g., red, 
green, blue) or the type of hoist conveyance (e.g., skip, cage, bucket) would be examples of 
categorical variables.

• Quantitative variables are numerical. They represent a measurable quantity. For example, 
when we speak about the population of a country, we are talking about the number of peo-
ple in the country—a measurable attribute of the country. Therefore, population would be 
a quantitative variable.

Let us formulate a question as to whether changes in the values   of one variable are accom-
panied by changes in the values of another variable.

The simplest case is when the investigation concerns independence and when this freedom 
is confirmed by an appropriate statistical investigation, the investigation is finished. But, 
when information is obtained during investigation that the random variables are dependent, 
some questions immediately arise such as: how dependent—strongly or weakly? What is the 
character of this dependence—linear? Nonlinear? Etc.

A basic test for an investigation into the independence of two categorical random variables 
is the Pearson’s Chi-squared test of independence. The idea behind the test is as follows.
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142 Statistics for mining engineering

A sample of  size n from the population that is being investigated is taken; remark: the 
sample should be large. The outcomes are classified to create a so-called contingency table 
(independence table) with w rows and k columns. The interior of  the table creates the matrix 
nij and nij, which means how many times the i-th realisation of  the category (feature) X 
occurs and simultaneously the j-th realisation of  the category Y. It is recommended that 
Λi,j nij ≥ 5.

By summing up in rows and columns, we obtain the marginal numbers ni· and n·j that is:

 
n ni

j
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in ji
i
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=
∑ ∑n nin ji jn n

1 1i=
 (5.1)
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Table 5.1 shows the concept of an independence table.
A hypothesis that proclaims the independence of the categories being investigated as 

expressed by the random variables is formulated as:

 
H P P Pi P0HH : P{ }X Y yi jY y,X xi Yx = P{ }X xi=X { }Y yjY y  (5.3)

in accordance with the formula (1.10).
In the test the statistic criterion that is being considered is determined as:

 
χ2

2

11

=
( )

==
∑∑

n n−
n

ij ij

ijj

k

i

w *

*
 (5.4)

where

 
n

n n
nij

i jn* =  (5.5)

The statistic (5.4) has the asymptotic Chi-squared distribution with (w − 1) (k − 1) degrees 
of freedom if  the verified hypothesis is a true one. The critical region in this test is the right-
side test. Presuming the level of significance α and knowing the number of degrees of free-
dom, the critical value should be taken from Table 9.4. If  the empirical value given by the 

Table 5.1. Contingency table.

Feature Y  

y1 y2 … yj … yk ni·

Fe
at

ur
e 

X

x1 n11 n12 n1j n1k n1·
x2 n21 n22 n2j n2k n2·
…   
xi ni1 ni2 nij nik ni·
…  
xw nw1 nw2 nwj nwk nw·
n·j n·1 n·2 n·j n·k n
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formula (5.4) is greater than the critical one, the null hypothesis should be rejected. Other-
wise, there is no ground to reject the verified hypothesis.

Analysing the merits and demerits of this test more carefully, it is worth noticing that the 
numbers in the table have a discrete character. This suggests that the probability of the first 
type of error is underestimated—it is easier to reject the verified hypothesis. Therefore, this is 
a certain bias of the test. This takes on a special meaning if  there is a case when the features 
have only two categories. Removal of the bias can be done by the introduction of a corrective 
amendment1, the so-called Yates amendment and the formula (5.4) is:

 
χ2

2

1

2

1

2 0 5
=

−( )
==

∑∑
n n−

n
ij ij

ijji

*

*

.
 (5.6)

At the beginning of the description of the test, the statement was given that the sam-
ple should be large. Generally, in mathematical statistics a truism is the statement that it is 
advantageous if  a sample is large. In some national standards, there are recommendations 
that sample size should have at least 100 elements and marginal numbers—8 elements at 
least.

Martin (1972) suggested that the Yates amendment should be applied to a four-fold table 
and also when the sample size does not exceed 60 elements. Siegel and Castellan (1988) made 
a different suggestion. They recommended not using the test when the sample size is below 
20. They also made more suggestions related to the conditions of the application of the 
test.

In some areas of study in mining engineering, we have no possibility to gather a large sam-
ple. In such a case, a different approach should be used. We will now consider the outlook for 
tables of sizes 2 × 2 and 2 × 3 that are based on Bennet and Nakamura (1963) and Bolshev 
and Smirnov (1965).

The tables that are the point of interest are presented as:

(A)

m1 m2 m

n1 – m1 n2 – m2 n – m

n1 n2 n

or

(B)

m1 m2 m3 m

n1 – m1 n2 – m2 n3 – m3 n – m

n1 n2 n3 n

Table (A) is constructed in the following way: a sample of size n is taken from the popula-
tion being investigated. A property of the sample is that m (m < n) elements of the sample 
possess a certain feature while the others do not. The sample is divided into two parts of size 
n1 and n2; n1 + n2 = n in a random way. Among the items in the first part (n1), m1 elements have 
the feature that is of interest. Similarly, among the items of the second part (n2), m2 elements 
have the feature that is of interest.

Table (B) is constructed based on a similar experiment, where it is necessary to separate 
the features into three groups.

In order to fulfil the requirements of the test, a 2 × 2 table was constructed in such way 
that: n1 ≥ n2 and (m1/n1) ≥ (m2/n2). A 2 × 3 table was constructed in such a manner that: 
m1 ≤ m2 ≤ m3 and m ≤ n − m. A limitation of this test is the requirement: n1 = n2 = n3.

1 This amendment is recommended for smaller samples.
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Denote by Mi; i = 1, 2, 3 the random variables whose realisations are observed in the form 
of the numbers mi and denote them by:

 
p E M

ni
iM

i

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

the corresponding probability. If  the probability of the classification of an element into the 
i-th part does not depend on whether this element has the feature of interest, then p1 = p2 in 
case (A) and p1 = p2 = p3 in case (B).

The hypothesis that is verified—considering the 2 × 2 table—proclaims the identity of the 
probabilities, H0: p1 = p2 versus an alternative supposition H1: p1 ≠ p2. There is also the pos-
sibility to verify the null hypothesis when the alternative hypothesis is: H1: p1 > p2. If  the table 
is 2 × 3, the verified hypothesis proclaims: H0: p1 = p2 = p3 versus the alternative hypothesis 
that rejects it.

The set of tables with the critical values for the test comprise almost 60 pages and for this 
reason it is not included in this book. Besides, many books that consist of sets of statistical 
tables include this set.

■ Example 5.1

The durability of the pinions used in some mine machinery was investigated. To improve the 
reliability of toothed gear transition in which the pinions operate a high level of performance 
was established, which expressed by the number of hours of work that the pinions should 
operate without any failure.

During the reliability investigation 21 pinions from the first producer and 19 pinions pro-
duced by a second producer were tested. As a result of the investigation, it was observed that 
11 pinions from the first producer and only 3 pinions from the second producer fulfilled the 
requirement.

However, a statistical hypothesis was formulated, which stated that the durability of pin-
ions manufactured by the second producer was the same as the durability of pinions manu-
factured by the first producer.

The outcomes of the investigation are presented in the table below. 

Producer

first second Σ

Result
positive 11  3 14

negative 10 16 26

Σ 21 19 40

Presume the level of significance α = 0.025. Using the appropriate statistical table (see for 
instance Zieliński 1972), we get the critical value m2(21; 19; 11; 0.025) = 3. Due to the fact that 
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the empirical value m2 = 3 is not greater than the critical value, there is the ground to reject 
the verified hypothesis provided that the random variables are arranged monotonically in the 
same way. However, both values are the same, and this fact may generate some doubts where 
the reasoning is concerned.

Note some further problems connected with this investigation:

1. By presuming a slightly different level of significance, a different result of the statistical 
reasoning can be obtained; e.g. for α = 0.05 the critical value is m2 = 4

2. The alternative hypothesis can be formulated otherwise suspecting that the durability of 
the pinions from the second producer is worse. Readers can check such an approach for 
themselves. ◀

5.2 THE PEARSON’S LINEAR CORRELATION COEFFICIENT

If information is obtained that some random variables are mutually statistically depend-
ent during an investigation, further research should be directed towards the analysis of this 
interdependence.

Generally, the first area of consideration as to whether statistical interdependence was 
stated is correlation analysis.

Correlation is the certain stochastic relation between two or more random variables. It 
relies on such a regularity that changes in the values of one variable are accompanied by 
systematic stochastic changes in the values of the second variable or variables. Sometimes, 
correlation is described as a certain degree of stochastic ‘brotherhood’ of the changes in 
random variables.

There are a few different methods that can be used to check whether or not there is a cor-
relation between variables.

One of most commonly applied methods is the construction of a statistical table like the 
one that was presented in the previous chapter (table of independence). If  the numbers lie 
principally on the main diagonal or the largest numbers lie on the main diagonal, then it can 
be expected that the random variables are correlated linearly. If  the numbers are located in a 
certain characteristic way in the table but not linearly, a supposition can be formulated that a 
nonlinear correlation exists between random variables.

A different method, which is often applied in practice, is the construction of a diagram of 
the dispersion of the random variables in a rectangular coordinate system X, Y in which pairs 
of observations (xi, yi) are used. If  these points are accumulated in such a way that they can 
be closed by an ellipse, then we can suspect that a linear correlation exists between random 
variables. If  the points are closer to each other, a stronger relationship can be expected. If  the 
points are scattered, one can expect a lack of correlation.

Example diagrams are shown in Figure 6.2.
A precise statement about whether the correlation between random variables exists can be 

obtained by analytical reasoning.
There are many correlation measures in mathematical statistics, such as: linear correlation 

coefficients, rank correlation coefficients, nonlinear correlation coefficients, partial correla-
tion coefficients, multiple correlation coefficients and so on. Many of these measures have 
found applications in mining engineering and they have been used for years.

Let us discuss the problem of correlation between two random variables.
There is no doubt that the measure of correlation that has been most commonly applied 

for years is the Pearson’s linear correlation coefficient. It is defined by formula (1.79). Recall 
that this is a normalised measure and is determined over a [−1, +1] interval. In the case of 
functional relationship between variables X and Y, this coefficient becomes 1 when the incre-
ment in the values of one variable is accompanied by an increment in the values of a second 
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variable. If  the relationship is reversed but is still strict, then the coefficient reaches –1. Gener-
ally, the greater the value in the modulus of the correlation coefficient, the stronger the inter-
dependence between the random variables. Remember, we are only considering the linear 
relationship between the variables. If  the random variables are mutually independent, then 
the value of the correlation coefficient is zero.

Let us now turn from theory to practice.
Having some information about the general population, we can use estimator (3.46); how-

ever, some varieties of this measure can be found in statistical books.
Similarly, as in many previous research situations, the point of interest is whether the esti-

mate that is obtained is statistically significant or not. Obviously, a test is needed to resolve 
the problem. Usually, the procedure is as follows.

A statistical hypothesis H0 is formulated that proclaims that there is no correlation between 
the random variables that are being investigated which is noted as: H0: ρ = 0; ρ means the 
correlation coefficient in the whole population. An alternative hypothesis rejects it.

There are at least two ways to verify the null hypothesis.
One way is to apply the Student’s statistic, namely: if  n ≥ 3 and the verified hypothesis is 

true one then the statistic

 

t =
−

−
R

R
nX YR

X YR
,

,1
2

2
 (5.7)

has the Student’s distribution with n − 2 degrees of freedom2. From the table with the critical 
values of the Student’s distribution, we read off  the value t (α, n − 2) for the presumed level 
of significance α and the number n − 2 degrees of freedom. If  the estimate (5.7) is not lower 
in the modulus than the critical value, then the verified hypothesis should be rejected. Other-
wise, there is no basis to reject the null hypothesis.

The second way is to use the critical values table for the Pearson’s correlation coefficient. 
They are given in Table 9.13; parameter ν here is n − k and k is the number of random vari-
ables (k = 2) that are being investigated.

■ Example 5.2

At the beginning of seventies of the 20th century a reliability investigation of mine hoist head 
ropes comprising 35 mines was carried out in Poland.

The information that was gathered contained: the technical data of the hoists and opera-
tional parameters such as, for instance, the average number I of  winds per day. The speed of 
the increment of wire breaks was assumed as the measure of rope wear.

The number of days T of  work was calculated until the moment at which the speed attained 
a certain value presuming that this value was the maximum for all of the ropes that were 
investigated. All of the ropes had the same construction (triangle shape of strands) and for 
this reason it was presumed that the wear measure was selected well.

2 The number two is connected with the fact that two random variables are considered.
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After having defined these two parameters, an interesting problem was whether these two 
values were correlated, i.e. when the increment in the intensity of the hoist work was noticed, 
it should have been accompanied by a decrement in the rope durability.

The empirical pairs (T, I) are shown in Figure 5.1.
A statistical hypothesis was formulated which stated that there was no correlation between 

random variables, i.e. H0: ρ = 0 versus an alternative hypothesis that rejected it. The level of 
significance was presumed α = 0.05.

The Pearson’s correlation coefficient was calculated obtaining RT,I = −0.333.
For the given sample size and the presumed level of significance the critical value was 

calculated by interpolating values because the critical values are given for n = 30 and for 35 
in Table 9.13. In the case that was considered ν = 33. The formula (5.7) that gives can also be 
applied:

Table 5.2. Auxiliary calculations.

T
Days

I
Av number 
of winds/day

 1 316 680
 2 205 720
 3 960 640
 4 440 680
 5 331 680
 6 693 680
 7 782 640
 8 360 640
 9 331 640
10 472 640
11 305 680
12 522 400
13 146 620
14 226 560
15 321 520
16 525 480
17 409 520
18 239 560
19 479 520
20 333 880
21 363 880
22 525 840
23 414 880
24 405 840
25 345 880
26 290 880
27 462 880
28 554 680
29 643 680
30 560 520
31 276 520
32 729 400
33 617 480
34 913 480
35 940 460
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t = −

( )
= −0 333

1− (−
33 2 03

2

. .

Making use of Table 9.3 we get the critical value:

 t(α = 0.05, n – 2 = 33) ≅ 2.04

The critical value is greater than the empirical value and thus we have no ground to reject 
the null hypothesis.

Nevertheless, both values are very close to each other and this fact creates a sensitive point. 
If  the level of significance is presumed to be slightly higher, the result of the reasoning is dif-
ferent and the final conclusion as well.

As there are some doubts about the result of inference, let us check it using the critical 
values for the Pearson’s correlation coefficient. For the presumed level of significance and the 
known sample size (Table 9.13), we have the critical value 0.334, which is also obtained from 
the interpolation. Thus, because this way of reasoning gives the same result, there is no ground 
to reject the verified hypothesis, but—again—both values, the empirical and critical ones, are 
very close to each other. Notice that from an engineering point of view we suspect the exist-
ence of a certain relationship between the random variables that are being investigated. This 
was the reason that we paid attention to the very small difference between the critical and the 
empirical values. At this that stage of our analysis, we accept the outcome of that part of the 
statistical inference, although it looks as though further research should be conducted.

Our conclusion stating that there is no correlation between variables being investigated can 
be strengthened by analysing Figure 5.1 and Figure 6.2. It is easy to notice that the empirical 
points scattering in Figure 5.1 does not correspond with any sketch visible in Figure 6.2. �

Our previous considerations comprised problems related to the stochastic interdependence 
between two random variables. Now it is time to enlarge the scope of interest for a greater 
number of random variables.

If  the number of random variables of interest is k and the relationship between them is lin-
ear, we can then estimate the linear correlation coefficients for the whole set of pairs of vari-
ables. These coefficients can be arranged in matrix R, which is called a correlation matrix:
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Figure 5.1. Empirical points for the hoist head ropes: durability of the rope versus the average number 
of winds that were executed.
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where Rij = Rji.
Formally, if  X1, X2, …, Xk are random variables with the non-zero variances σ2

1 > 0, 
σ2

2 > 0, … σ2
k > 0 then the entries Rij ; i ≠ j are equal to the correlation coefficients; for i = j 

the element is defined as 1. The properties of the correlation matrix R are determined by the 
properties of the covariance matrix ∑, according tothe relation:

 Σ = D R D

where D is the diagonal matrix with entries σ1, σ2, … σk.

5.3  PARTIAL CORRELATION COEFFICIENT AND 
MULTIPLE CORRELATION COEFFICIENT

We are often interested in the stochastic interdependence between two random variables 
ignoring the influence of a third variable or other variables.

A measure that allows such a relationship to be investigated is the partial correlation coef-
ficient. In a general case, it is defined as:

 Kij = − Rij /(Rii Rjj)
1/2, (5.9)

where Rij, Rii and Rjj are the algebraic components that correspond to the elements of the 
matrix R.

In the case of three random variables that are marked by the numbers 1, 2 and 3, we 
have:

 

K R R R

R
12KK 3

12RR 13RR 23RR

13
2

23RR211 RRR2; =
( )( )

 (5.10)

Let us return to Example 5.2.

� Example 5.2 (cont.)

As a part of the research, a calculation of the maximum stress σ2 daN/mm2 (daN stands 
for 0.1 × Newton) for each rope was done3. An interesting problem that had been formu-
lated during the investigation was to get the answer to the question of whether a statistical 

3 In engineering nomenclature, the symbol σ denotes stress and it has nothing to do with standard devia-
tion as in the mathematical statistics that were just noted. Similarly, the symbol E in statistics means the 
expected value while in mechanics it is the Young’s modulus.
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relationship existed between the intensity of the hoist work and the durability of the rope 
ignoring the influence of the total rope stress. These data are presented in Table 5.3.

The following correlation coefficients were calculated:

 RTσ = −0.224  RIσ = −0.061

The partial correlation coefficient between the random variables T and I was calculated 
using the formula (see pattern 5.10) ignoring the influence of the random variable σ:

 K
R R R

R
TIKK TIRR T IRR R

T IR
;

. ( . ) ( . )
(

σ
σ σIR

σIRσ

=
( )( )

= − ) (−

1 RRR−

0 0 061
12 2R)(1)( −−−

= −
( .− ))( ( . ) )

.
224 1− (− 061

0 356
2 2))( ( )1 ( 061

Table 5.3. Auxiliary calculations.

T
Days

I 
Av number 
of winds/day

σ
daN/mm2

 1 316 680 30.0
 2 205 720 30.0
 3 960 640 30.
 4 440 680 30.0
 5 331 680 30.0
 6 693 680 30.0
 7 782 640 30.0
 8 360 640 25.7
 9 331 640 25.7
10 472 640 25.7
11 305 680 25.7
12 522 400 37.1
13 146 620 37.1
14 226 560 37.1
15 321 520 37.1
16 525 480 37.1
17 409 520 37.1
18 239 560 37.1
19 479 520 37.1
20 333 880 34.4
21 363 880 34.4
22 525 840 34.4
23 414 880 34.4
24 405 840 34.4
25 345 880 34.4
26 290 880 34.4
27 462 880 34.4
28 554 680 27.3
29 643 680 27.3
30 560 520 37.1
31 276 520 31.6
32 729 400 31.6
33 617 480 31.6
34 913 480 31.6
35 940 460 31.6
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A statistical hypothesis was formulated stating that there is no correlation between the ran-
dom variables of interest ignoring the influence related to the total rope stress. An alternative 
hypothesis rejected this. The level of significance was presumed α = 0.05.

The critical value for the given sample size and the degrees of freedom equal to (35 – 3) is 0.340 
(Table 9.13). Taking into account that |−0.356| > 0.340, the null hypothesis should be rejected 
at the presumed level of significance. This means that there is a statistically significant negative 
relationship between the average number of winds that are executed by the rope and its durabil-
ity if the influence of the total rope stress is ignored. However, this dependence is rather weak.

Notice that the sign before the coefficient value is very important.
The outcome that was obtained meets engineering expectations. ◀

Three significant remarks in connection with the correlation coefficient analysis are worth 
noting, namely:

a. If  the correlation coefficient from the sample is near 1, it does not mean that a cause-effect 
relation exists: between the random variables; we can say on a strong stochastic depend-
ence (it may be totally random similarity of  two samples).

b. The small correlation coefficient does not mean that a statistical dependence exists between 
the random variables being investigated; there may be a dependence but it can have a char-
acter that is different than a linear one (more precisely, rectilinear).

c. The correlation coefficient can be underestimated due to measurement errors that may 
be connected with one or more variables; however, there are statistical measures that take 
such faults into account.

Let us make some generalisations about our considerations. The subject of interest will 
now be an investigation on correlation in a case where several random variables are con-
cerned. Presume that there is given a random variable Y in the population and the point of 
interest is the influence of the set of different variables (X1, X2, …, Xk) on that variable. In 
econometrics, variable Y is treated as the variable that is being explained and variables Xi are 
treated as the variables that provide the explanation4. The measure Rm determines the degree 
of dependence of the correlation relationship between variables Xi; i = 1, 2, …, k and the vari-
able Y is the multiple correlation coefficient that is determined by the formula:

 Rm = [1 – (|R|/RYY)]1/2, (5.11)

where: |R|—determinant of the matrix R of  correlation coefficients,
 RYY—algebraic component of the element YY of  this matrix.

A multiple correlation coefficient is a normalised measure supported on the closed interval 
[0, 1]. The higher its value and the closer to unity, the stronger the correlation dependence is. 
There is a possibility to verify its significance by applying the appropriate statistical test. The 
critical values of the multiple correlation coefficient are given in Table 9.15.

Often several additional significant problems occur during correlation analysis especially 
those connected with the proper interpretation of results obtained. Every so often some sup-
plementary statistical measures must be applied in order to obtain a final result. An example 
of such an extensive analysis was given in Czaplicki’s book (2010, Chapter 3.9, which was 
entitled ‘Mutual dependence of random variables’). The example concerned the results of the 
reliability investigations of the main hoists that were operating in the Polish mining industry 
in the late seventies of the 20th century.

4 In many countries students are taught ‘mathematical determinism’, i.e. if  x increases two times y 
increases four times strictly because y = 2x2 and x is the independent variable and y is the dependent 
variable. In practice a strict relationship seldom exists. Moreover, in some research works x is the vari-
able giving explanation and in some different analyses x is explained.
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5.4 NON-LINEAR CORRELATION MEASURES

Let us make some generalisations about the concept of the linear correlation coefficient.
Assume that a sample (xi, yi); i = 1, 2, …, n was taken and a model in the form of the func-

tion y = f(x) was found. Consider the following measure:
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The above measure, which is called the goodness-of-fit factor here, is normalised and it 
takes its values from closed interval [0, 1]. When the value of this measure is known, the mul-
tiple correlation coefficient Rm can be calculated because:

 RmR = −1 2ϕ  (5.13)

This measure determines the conformity between the function that was found (called the 
regression function) and the empirical values that are contained in the sample. Accordance is 
greater if  the correlation coefficient is closer to unity and obviously ϕ2 is closer to zero.

There is a certain inconvenience in the application of the correlation coefficient. It can 
be estimated provided that the regression function is known. If  this model is unidentified, a 
different measure must be applied instead of the correlation coefficient R (5.13)—correlation 
ratio. This ratio can be used if  the dependence between the variables is non-linear. It can be 
calculated if:

a. the sample that was taken is rich
b. values of the variables are divided into categories.

Categories have a physical validation in an independent analysis. Categories can be con-
structed without being in touch with the physical background and can be based on a purely 
mathematical treatment. Note that such a sample allows for the construction of a table of 
correlation similar to what was done in the case of the contingency table. An example of a 
correlation table is given below.

For the data given in the correlation table, the goodness-of-fit factor is determined by the 
formula:
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where w and k denote the number of categories of the features X and Y.
The correlation ratio of feature Y with respect to feature X is the statistic:
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where:
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is the arithmetic mean in the marginal distribution of variable Y
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is the average value in the marginal distribution of variable X = xi; i = 1, 2, …, w.
When the positions of both variables are replaced, the correlation ratio ηX|Y of  the feature 

X with respect to the feature Y will be obtained.

■ Example 5.3

Calculate both correlation ratios for data given in Table 5.4.
Look at pattern (5.15). It can be expressed as:

 
ηY X

i ii

w

j jj

k

n

yj n
S

|

( )i Y

( )y Yj

( | ) (S | )= = =⋅=

=

∑
∑

YY 2
1

YY
1

2

Y
Y |

S ( ) S(2 YY )

where:  S2(Y|X) and S(Y|X) are the conditional variance and the conditional standard devia-
tion among the categories for random variable Y

  S2(X|Y) and S(X|Y) are the conditional variance and the conditional standard devia-
tion among the categories for random variable X

  S2(Y) S2(X) and S(Y) S(X) are the variances and the standard deviations for random 
variables Y and X respectively in the marginal distributions.

Similarly, the formula for ηX|Y can be developed.
Now, calculation is needed to obtain evaluation of correlation ratios of interest. It is pre-

sented in Table 5.5.

Table 5.4. An example of a correlation table.

No of 
category k

Y
No of 
category i

X

1 2 3 4 5 6 7

31–33 33–35 35–37 37–39 39–41 41–43 43–45 n·j

1 3.25–3.75 1 1  2
2 3.75–4.25 2  3  4  1 10
3 4.25–4.75 1 3  6  3  3 1 17
4 4.75–5.25 1 2  4  5  2 1 15
5 5.25–5.75  1  3  4 2 10
6 5.75–6.25  2 1 1  4
7 6.25–6.75 1 1  2

ni· 3 8 14 15 12 6 2 60

Table 5.5. Supplementary calculations—the characteristics of the marginal distribution.

Xi ni· Xi ni· (Xi – Xs)
2ni· Ys|xi (Ys|xi – Ys)

2ni· Yj n·j Yj n·j (Yj – Ys)
2n·j Xs|yj (Xs|yj – Xs)

2n·j

32 3 96 97.47 4.33 0.78 3.5 2 7 3.59 33 44.18
34 8 272 109.52 4.37 1.77 4.0 10 40 7.06 36.8 8.1
36 14 504 40.46 4.61 0.74 4.5 17 76.5 1.96 36.82 13.16
38 15 570 1.35 3.87 14.11 5.0 15 75 0.38 37.07 5.95
40 12 480 63.48 5.12 0.94 5.5 10 55 4.36 39.4 28.9
42 6 252 110.94 5.5 2.61 6.0 4 24 6.73 41.5 57.76
44 2 88 79.38 6.25 3.98 6.5 2 13 5.51 43 56.18

60 2262 502.6 24.93 60 290.5 29.59 214.24
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where:

 
XsX = =2262

60
37 7.

 
YsYY = =290 5

60
4 84. .

Calculate now the unconditional and conditional standard deviations:

 
S Y( )X

. . (S ) . .= = = =502 6
60

2. 29 59
60

0 7. 0

 
S Ys s( |XsX ) . (S | ) . .y xYsYY) SS | = =214 24

60
1. 24 93

60
0 645

Thus, the correlation ratios are as follows:

 
η ηX X| |ηY Y

.
.

.

.
.= =0 645

0 7. 0
0 921 1 8. 9

2 8. 9
0 654

Let us make some short comments.
Because both values are significantly different so the relationship between investigated 

random variables is nonlinear.
Greater cognitive sense has correlation ratio ηX|Y than ηY|X. ◀

The correlation ratio is a unitless measure, normalised and takes values between 0 and 1. 
Theoretically, the limit η = 0 represents the special case of no dispersion among the means of 
the different categories. The limit η = 1 refers to no dispersion within the respective catego-
ries. There is also a third special case when all of the data take the same value; in this case the 
correlation ratio is undefined. All of these cases are interesting from a theoretical point of 
view only. If  the value of the correlation ratio increases, the relationship between the random 
variables will be assessed as becoming stronger. This measure does not allow the direction of 
changes to be stated but it is obvious taking into account that we have a non-linear relation-
ship here. This measure is unsymmetrical, thus

 η ηY Y| |ηX X≠  (5.18)

However, in the special case in which the relationship is rectilinear, the following formula 
holds:

 η ηY Y XYRXX| |ηX X
2 2η 2=η |η  (5.18a)

In other cases the above relationship does not hold and the following relationships are 
true:

 ηY Y XYRXX| |ηX XY X
2 2R 2 2Rη YηXR  (5.18b)
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Thus, if  at least one of the correlation ratios is zero then RXY = 0.
No relationship exists between the correlation coefficients ηY X|

2  and ηX Y|
2  and they may 

radically differ from each other.
There is the possibility to test the significance of the correlation ratio.
Assume that the investigated random variables X and Y have a certain two-dimensional 

distribution with unknown correlation ratios:

 
H

E Y E
Y XHH |

{ (E | )X ( )Y }
( )Y

2
2

2= −
σ  

(5.19a)

 
H

E X E
X YH |

{ (E | )Y ( )YXYY }
( )X

2
2

2= −
σ  

(5.19b)

and a null hypothesis is formulated that proclaims a lack of the correlation H HY XHH0HH 2 0: | =  
against an alternative hypothesis H HY XHH1HH 2 0: | ≠ . If  the null hypothesis is true then the statistic:

 
F =

−
−
−

η
η
Y X

Y X

n
k

|

|

2

21
1
1

 (5.20)

has the Snedecor’s F distribution with (w – 1, k – 1) degrees of freedom.
Presuming the level of significance α, the critical region is above the interval (F1–α(w – 1, 

n – 1), + ∞). If  the empirical value falls into that region, the verified hypothesis should be 
rejected. Otherwise, there is no basis for rejection.

Presume now that the point of interest is the verification of the hypothesis
H HX YH0HH 2 0: | = . If  so, the following statistic should be considered:

 
F =

η
η
X Y

X Y

n w−
w

|

|

2

21 1− −ηX Y w|
2

 (5.21)

It has the Snedecor’s F distribution with (w – 1, n – w) degrees of  freedom. The further 
part of  statistical inference is well known.
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CHAPTER 6

Synthesis of data—regression analysis

6.1 PRELIMINARY REMARKS

If two or more random variables in a general population are of interest, they are interde-
pendent stochastically and if  an appropriately rich sample is taken, we can try to find an ana-
lytical formula of a functional nature that describes this interdependence well. This problem 
is extremely important in many engineering areas and mining engineering is no exception to 
this rule. This problem has had a very rich literature for many years and is still under devel-
opment. In this chapter some elementary information as well as some connections with mine 
practice will be provided.

Presume for the time being, that only two random variables are of interest.
Usually, a research situation is of  such a nature that the values of  one variable Y are 

obtained by being read off  at some regular intervals of  time or after the execution of 
given piece of  work (counted in the amount of  the mass of  extracted, hauled or dumped 
rock etc.) A second variable X is more or less determined on the values of  the first 
variable. Let us call variable X an explanatory variable and variable Y the variable being 
explained1.

The relation between variables can be of different nature, namely:

  i. Variables are connected by a cause-and-effect relationship, i.e. because the explanatory 
variable took a certain value, the variable being explained took a corresponding value, e.g. 
for a greater intensity of machine usage, its durability is reduced by a certain number of 
work cycles, on average;

a. A mathematical model has a physical sense and compatible dimensions.

 ii. Variables are connected by a symptomatic relationship, i.e. we do not have the possibility 
to observe the variable that directly causes the value that will be taken by variable Y but 
we have the possibility to observe a different variable, which is significantly and strongly 
correlated with the causal variable;

a. A mathematical model constructed in this case has no physical relationship, but there 
is often the possibility to make the dimensions compatible by assigning the appropriate 
dimensions to some model parameters.

b. The possibility to apply symptomatic model seldom occurs in engineering practice.

iii. Variables are connected by neither a cause-and-effect relationship nor by a symptomatic 
relationship; the model describes only the process of how the values of variable Y are 
formed as a function of a certain parameter, e.g. the compressive strength of the soil as a 
function of the depth of the soil layer being investigated;

1 The terms ‘independent variable’ and ‘dependent’ variable’ are commonly used. However, in econo-
metrics or technometrics these terms are not well-suited. In some cases the variables that are treated as 
independent—during a statistical analysis—are dependent on each other. The terms proposed here seem 
to be more appropriate ones and they are in common use in some European languages.
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158 Statistics for mining engineering

a. The constructed model has no compatible dimensions and is a model of the tendency of 
the development of the trend2.

iv. The explanatory variable and the variable being explained are the same variables but val-
ues of the explanatory variable are displaced over a certain parameter; the model is of 
an autoregressive character and is usually applied when the future values of the variable 
depends on the previous values.

a. The model has compatible dimensions and contains information on a memory in the 
process that is being investigated.

v. Variables are not connected by any physical relationship; the model has an adaptive char-
acter and is only constructed in such a way that will describe the evolution of the values 
of variable Y well.

a. Such a model has no physical logic and its only sense is to describe how the values of 
the variable being described change following certain parameter well.

Let us assume that a model whose analytical formula is being investigated is described by 
the formula:

 Y = +f X )X ξξξξ  (6.1)

where: X—the explanatory variable,
 ξ—the stochastic component of the model, the random variable.

The explanatory variable X can have a different nature. It can be a deterministic variable; 
in some cases it can be treated as random variable.

Notice (this is important) that the variable being explained is a random variable. In the 
case when the explanatory variable is not a random one, then the only variable that ensures 
the compliance of both sides of equation (6.1) is the stochastic component. It comprises the 
whole stochastic nature of the right side of equation (6.1).

Before the construction of a trial model, i.e. before the construction of the function f, a 
researcher involved in the investigation tries to become familiar with the literature concern-
ing the subject under consideration and tries to find any model that has already been estab-
lished. If  such a model exists, then basically the problem of the identification of the model 
is resolved. However, there is a problem as to whether the data that have just been gathered 
conform to the model from the literature. The term that was just used—basically—makes 
sense. It does not matter how serious an investigation has been made and how magnificent 
the researcher who was involved in it is, validation of the model must be performed.

However, if  there is a lack of publications in this regard, then it is necessary to choose an 
analytical model that will describe the data. In some cases, the results of the investigation 
can ‘suggest’ what kind of model should be applied. If  there is an autocorrelation in the data 
gathered, it means that there is a memory in the process that is being investigated. For this 
reason, the first choice of a model should be an autoregressive one.

Sometimes, there is such a situation in which there is no hint as to what character the 
model being searched should have or what kind of function should be applied. In such a case, 
the first step is usually the construction of a plot in the rectangular coordinate system X, Y. 

2 Econometricians are usually of the opinion that a model of the tendency of development is connected 
with time. In the engineering world the model parameter is frequently different, e.g. the number of tonnes 
of rock extracted or the number of cycles executed by a machine. These measures are more adequate 
because the reasons that generate the course of the process are physical phenomena, not time. Recently, 
in cosmology, a more and more popular opinion is that time does not exist. Time is a convenient measure 
but it was created by people. When measuring time, we compare only two courses of physical processes.
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In such a way, a diagram illustrating the distribution of the empirical points on the plane can 
be obtained.

If  the scattering of points creates a ‘cloud’ such as is visible in Figure 6.1, then the further 
investigation can be conducted presuming that this distribution is a picture of a certain two-
dimensional random variable.

Often the arrangement of empirical points on a plane ‘suggests’ which hypotheti-
cal function should be taken into consideration in the further part of the investigation 
(Figure 6.2a–6.2f).

Let us discuss what the procedure of estimation of the unknown structural parameters for 
hypothetical model actually looks like.

6.2 LINEAR REGRESSION

Let us start from the simplest case when the proposed regression3 line is a simple straight line 
function:

 y = +β β+ ξ1 0β+  (6.2)

This function also has a very wide application in mining engineering, e.g. the speed of the 
corrosion of a shaft furnishing versus time can be described by a linear function (Carbogno 
et al. 2001); the resistance to the compression of soil samples depending on the depth of 
the sample location can also be modelled by this function (Bejamin and Cornell 1977), the 
utilisation rate for the means of transport in relation to its productivity can be designed 
using pattern (7.2) (Lin Zaikang et al. 1997), the unit energy of an excavation as a function 
of the rock compressive strength can be modelled using the linear function (Ceylanoğlu and 
Görgülü 1997) and the relationship between the peak cutting force and the cutting depth is 
also linear (Brown and Frimpong 2012).

The point of our interest will be an estimation of structural parameters β0 and β1 in order 
to obtain the analytical recipe of the right side of equation (7.2) that will give the best fit to 
the empirical data. Notice a certain subtleness. Due to the fact that the information in hand 

3 The term ‘regression’ is used in several different sciences such as: biology, economics, geography, psy-
chology, geology and so on. In statistics, it is usually understood as the analysis or measure of the asso-
ciation between random variables.

Y

X

Figure 6.1. Empirical distribution of points that is probably a picture of a two-dimensional random 
variable.
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Y 

X 

Consider 
y = ax + b + ξ

a)

Y 

X 

Consider
y = a + bx + cx2 + ξ

b) 

Y

X

Consider 
y = baxcξ or y = bxacξ

or y = a + bx + cx2 + ξ 

c) 

Y 

X 

Consider 
y = b + a log x + ξ or y = bxacξ

lub y = axξ/(x + b)

d) 

Y 

X 

Consider 
y = (a + bx + ξ)−1 or y = x[a + (b + ξ)x]−1

or  y = a/x + ξ

e) 

Y

X 

f)

Consider 
y = k(a + be−cx + ξ)−1 or  
y = a + bx + cx2 + dx3 + ξ

Figure 6.2. Examples of the distribution of empirical points and the proposed analytical regression 
functions.
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is in the form of a sample, we have no possibility of finding the real values of the model 
parameters; we can only estimate these parameters.

Denote these estimates by b0 and b1 appropriately and estimate the random component; 
the so-called residuals, by u. These residuals are defined as the differences:

 i iy −y ( )b x b+1 0ib xb bbi +  (6.3)

and they take both negative and positive values.
If  an assumption is made that it does not matter whether the difference value is negative 

or positive, then the best estimates of the unknown parameters of equation (6.3) will be such 
assessments for which the following sum
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attains the minimum. Therefore, the following set of equations should be solved:
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which gives the following set of equations:
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 (6.6)

The above set is called the set of normal equations of  the least squares method.
Move this consideration onto a theoretical ground.
There is a statistical population in which the values of the categories create a certain two-

dimensional distribution. Let the relationship between these variables be given by formula 
(6.2). Thus, the following relationships hold:
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 (6.7)

where: ρ is the linear correlation coefficient between variables X and Y.
E(X), E(Y) are the expected values of the random variables X and Y, respectively.
σX, σY are the standard deviations of the random variables X and Y, respectively.

Because the only information is the sample taken, the estimators of the unknown struc-
tural parameters are obtained by solving the set of equations (6.6), namely:

 

b R
S
S

b y b x

YSS

XS1bb

0 1b yb bb−yy

⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩ ,

 (6.8)
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162 Statistics for mining engineering

where the symbols here are already well known.
Having such estimators the question arises as to what kind of properties do these relation-

ships have?
Look at the stochastic ‘mechanism’ that generates the observations.
Assumptions of the classical least squares method are as follows (Goldberger 1966, Draper 

and Smith 1998):

a. Equation (6.2) means that each observation of yi; i = 1, 2, …, n is the linear function of the 
observation xi and the random component

b. The random component ξ is a random variable with a zero expected value and an unknown 
constant variance σξξξξ

2, i.e. E(ξ) = 0 and σξξξξ
2 = const as well as σξξξξ

2 0>
c. The random variables ξi and ξj are uncorrelated for i ≠  j, thus cov (ξi, ξj) = 0
d. The variable xi is non-random, thus xi and ξi are independent for every i.

If  the assumptions above are fulfilled, then the estimators just obtained are the best unbi-
ased estimators with the minimum variance. If  these assumptions are not satisfied, then the 
estimators have worse statistical properties and their application can mean that the estimates 
obtained will be of a low likelihood. If, for instance, these estimators are applied to safety 
problems, it may happen that a safety risk will be underestimated.

Often, an additional assumption (e) is made, which states that the random component 
distribution is normal, and then we decide on the classical model of normal linear regression 
(Goldberger 1966).

After the estimation of the structural parameters, an assessment of the random compo-
nent should be made. The applied method of the least squares ensures that the mean value 
equals zero or the mean value that is assessed using the sample will be negligibly different 
than zero. The important information will be a measure of its dispersion.

The unbiased estimator of the unknown variance σξξξξ
2 of the random component in the 

model of the linear regression is determined by the function:
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∑  (6.9)

Having the estimates (b0, b1) of the structural parameters (β0, β1) of the regression function 
that describes how these variables are mutually dependent and knowing the estimate of the 
unknown variance of the random component, the question can be formulated as to whether 
these estimates are significant.

If  assumption (e) is a rational one, the significance can be easily verified.
Formulate a hypothesis that states that there is no linear relationship, H0: β1 = 0 between 

the variables that are being investigated; an alternative hypothesis rejects it.
It can be proved (Goldberger 1966) that the statistic:

 
t = =∑b x∑

s
ii

n

u

1bb 2
1
( )−x xi  (6.10)

has the Student’s distribution with n − 2 degrees of freedom.
Therefore, if  |t| (6.10) is above the critical value taken from Table 9.3 for a presumed level 

of significance α, then the null hypothesis should be rejected. Otherwise, there is no basis to 
discard the verified conjecture.

The reasoning that is performed here can easily be generalised.
Maintaining assumption (e), the confidence interval for the parameter β1 can be deter-

mined by applying the following formula:
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presuming the level of probability 100(1 − α). By calculating expression (6.11) and presum-
ing the plus sign, one obtains the right-side boundary; presuming the minus sign the left-side 
boundary is obtained.

Testing the significance of the regression can be conducted by making use of the statistic 
F Snedecor’s if  the relationship between the random variables t and F is known (see the end 
of Chapter 1).

If  positive information is obtained, i.e. there is a statistically significant linear relation-
ship between the variables tested, then the standard deviations of the random variables of 
estimated parameters will be very useful information. They give information about how good 
the estimates are.

The standard deviation of parameter b1 is given by formula:
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 (6.12)

where as the standard deviation of parameter b0 is:
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 (6.13)

The greater the standard deviation, the smaller the accuracy of the estimates. The standard 
deviation of the estimator is called its mean error.

Very important information for the researcher carrying out the investigation is in the 
sequence of the residuals: u y y yi iy i i−y −y( )t ( )b x bb +1 0ib x bbib xb + , which is in fact the sequence of the 
differences between the empirical values of the variable being explained and its theoreti-
cal values. This sequence is a representation of the random component that is not directly 
observable.

The sum of  these residuals should be zero or insignificantly different from zero. The 
sequence should be stationary, should have constant dispersion and a lack of  autocor-
relation in accordance with the assumptions that were made. It is recommended that 
it be checked whether these conditions are fulfilled in all of  the cases that are being 
considered.

■ Example 6.1

A tribology investigation was carried out to analyse the wear process of the linings used in 
the disc brakes of a winder. The linings were made from different materials and some changes 
in the production process had been introduced.

One of the investigation results was the course of the wear process of the lining for the disc 
that was fluorescently nitrided versus the number of brakes that were executed by the tester.

The results of the investigation are presented in Figure 6.3.
The results of the investigation clearly indicated that the relationship between the number 

of brakes that were executed x and the linear loss of linings (measured in mm) is linear, which 
was expected based on the literature on the subject.
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Firstly, the linear correlation coefficient was calculated that gives:

 RXYR = 0 990.

This value is high, which ‘suggests’ that there is really a significant linear relationship 
between the variables that were investigated. Formally, a hypothesis was formulated that 
stated that there is no linear correlation between the variables versus an alternative hypoth-
esis that rejects the statement of a null hypothesis.

For a presumed level of significance α = 0.05 and a sample size n = 21, the critical value, 
which is 0.433, was taken from Table 9.13. Thus, the null hypothesis should be rejected in a 
favour of the alternative supposition. It can be stated that there is a strong linear relationship 
between the number of brakes that were executed and the linear loss of the lining.

The next step was the estimation of the structural parameters of the linear function.
Using the set of questions (6.6), the following estimates were obtained:

 b b1bb 3
0b 0 132= −. .b0bb 0

Thus, the relationship between the variables that were of interest can be expressed as:

 y u× +−1 342 10 0 1323
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Figure 6.3. The linear wear of the lining for the disc that was fluorescently nitrided versus the number 
of brakes that were executed by the tester.
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The accuracy of the estimation was determined by two standard deviations:

 S Sb bS S
0 1b bb b0 029 4 10 5=SbS −

The residuals are presented in Figure 6.4.
The mean loss and the corresponding standard deviation were as follows:

 u u× =s−4 7 10 0 064. .sus 0 mm

The mean loss was not precisely zero because of the rounding up of some values. The small 
value of the standard deviation indicates that the theoretical function was properly selected 
and fit the empirical values well.

A sequence of the residuals was calculated and is presented in the Table below. This series 
was the object of further investigations.

Firstly, the stationarity of the sequence was tested using the Spearman’s correlation 
coefficient.

The coefficient was calculated and the result was:

 rS = 0.056

This is very low value and it was suspected that this sequence was uncorrelated with the 
number of brakes executed. A null hypothesis was formulated stating that there was no linear 
correlation between the number of brakes and the goodness of fit of the theoretical function 
to the empirical values, H0: ρ = 0 versus an alternative hypothesis rejecting it.

A level of significance was maintained as previously. For the known sample size and 
α = 0.05, the critical value was 0.368 (Table 9.14).

The empirical value was significantly lower than the critical one; there was no ground to 
reject the verified hypothesis.

Let us conduct this investigation further by orientating it on dispersion testing, first of all.

i ui

0 0.048
1 0.051
2 0.063
3 0.026
4 0.029
5 −8.05 ⋅ 10−3

6 −5.2 ⋅ 10−3

7 −0.032
8 −0.039
9 −0.047
10 −0.074
11 −0.081
12 −0.058
13 −0.055
14 7.6 ⋅ 10−3

15 −0.02
16 −0.027
17 −0.064
18 0.039
19 0.132
20 0.105
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By dividing the sequence of residuals in half  and calculating the standard deviation for 
each sub-sequence (subsample), we have:

 S S1 2S SS 0 028 0 052=S2S .2SS 0 mm

These figures differ significantly at first glance. It is necessary to verify whether this differ-
ence is statistically important. The test that can be applied in this case is that one based on a 
comparison of the variances of random variables.

By calculating the variances, a null hypothesis was formulated that stated that these vari-
ances differ non-significantly, H0 1HH 2

2
2: σ σ1

2 . Looking at Figure 6.4, we can suspect that the 
dispersion increases. Thus, an alternative hypothesis can be formulated as: H0 1HH 2

2
2: σ σ1

2 < .
The test is based on the F Snedecor’s statistic because:

 

S
S

2SS2

1SS2 1 2n 1n2n= F (n(n1 1n )

where n1, n2 are the size of the first and the second subsample, respectively4.
Calculating, we have S2SS2

1
2 45/ .S1SS2 3 . Compare this value with the corresponding critical one 

for a level of significance α = 0.05 and the subsamples sizes (9, 9) which is:

 F0.05(9, 9) = 3.18 (Table 9.6)

The empirical value is distinctly above the critical one5. The null hypothesis should be 
rejected on the presumed level of significance. The dispersion in the second half  of the obser-
vation is significantly greater than in the first half. It looks as though we are right to suggest 
that the dispersion increases with an increase in the number of brakes that were executed.

The last step in the investigations of the residuals can be autocorrelation testing.
Calculate the correlation coefficient between the values that are distant from each other by 

one, two and three steps. The results of calculations are as follows:

 r r rr1 2r rr r 3rr0 374 0 042( )a ( )a ( )a.2rr 0 .=r2rr
( ) =

4 To be more precise, it is assumed that the subsamples are taken from a Gaussian distribution. It looks 
as though this assumption holds in the case of the residuals in this case.
5 Remember that if  the alternative hypothesis rejects only what the null hypothesis says, the critical value 
is the quantile F0.025(9, 9).

0 5 10 15
−0.1

0

0.1

0.2

20
j

u j

Figure 6.4. The residuals of the function of the linear mass loss of disc brake lining.
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Let us check the null hypothesis that states a lack of autocorrelation of the order c of  the 
investigated random variable, H0: ρc = 0 versus an alternative hypothesis H1: ρc > 0.

A measure that allows the null hypothesis to be tested—as we already know—is the statistic:

 
χχχχ2 2

( ) ( ) ( )) ( r) cr( ( )
By making all of the necessary calculations and taking the critical values from the Chi-

squared distribution for a presumed level of significance α = 0.05, we have the following 
results:

 11.283 (3.841)   2.658 (5.991)   0.761 (7.815)

where the numbers in brackets are the critical values.
Only an autocorrelation of the first order is statistically significant. This is important 

information because in the majority of cases the existence of the autocorrelation is con-
nected with physical reasons. Rarely is the autocorrelation connected with a purely random 
arrangement of numbers. In the case being considered, it would be worthwhile to undertake 
an investigation to identify these reasons, i.e. the physical process that is generating the auto-
correlation and very likely causing that the increases in the dispersion.

We can only state that when the lining is successively worn, important information for 
short-term prediction will be information on the wear at the current moment of time. The 
existence of the autocorrelation of residuals makes the statistical properties of the applied 
estimators to deteriorate but improves the process of inferences about the future. The prob-
lem of forecasting the degree of the wear of a lining can be significant for the functional 
reliability of the brake. However, what is more important is the vital information from the 
point of view of safety. ◀

6.3 LINEAR TRANSFORMATIONS AND MULTIDIMENSIONAL MODELS

Our previous considerations can be generalised. The generalisation itself  can be of a different 
nature. Let us list some of these. The generalisation can rely on:

a. A consideration of a function that is different than linear but that describes the course of 
the random variable being explained well

b. A consideration of a linear function with component variables that have errors in their 
values

c. A consideration of a linear function of one or more variables for which there is some 
additional information about these variables.

In this chapter our consideration will be orientated on the problem of the estimation of 
the function parameter based on a sample that is non-linear; however, it is of such a prop-
erty that it can be transformed into a linear one. In such a case, we call it the linearisation of 
regression function (linear transformation).

There is a certain class of functions for which the structural parameters can be easily esti-
mated because of the possibility of transforming them into a linear function. Let us consider 
some examples.

Let the model being analysed be expressed by an exponential function of two variables for 
instance:

 y = αa b czb ξξξξ
 (6.14)
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where α, a and b are the structural model parameters, x and z are the explanatory variables 
and ξ is the random component. In this case, the symbol c denotes a constant that is depend-
ent on the assumed logarithm during linearisation.

The logarithms of both sides give:

 log log log log+log +α x log blogbllog ξξξξ  (6.15)

which allows it to be stated that the function is a linear one of the form:

 v = a x a z0 1a 2+ +a x1a +ξξξξ  (6.16)

where:

 v =log lyy og log l= ogl= og a b0 1og al= og 2α  (6.16a)

Similarly, the power model:

 y = βx z db cz ξξξξ  (6.17)

after taking the logarithms gives a linear model.
Such functions were applied in modelling the processes of the wear of hoist head ropes and 

for modelling the effective intensity of the wear of brake lining materials (Broś et al. 1976).
Another function, which after some transformations, gives a linear model is the function:

 
yξξξξ = ax

x b+
 (6.18)

where a and b are the structural function parameters, x is the explanatory variable and ξ is 
the random component of the model.

By making the substitution:

 z −( )yξξξξ 1  (6.19)

we have

 
z = = +x b+

ax a
b

ax
1  (6.20)

and further

 
v x b

a
x =−1 1

1λ δa= 1a− z z=1 ξξξξ  (6.20a)

which gives the linear function:

 z1 = ( )λ δ+ ξξξξ  (6.21)

In some cases the following function can also be taken into consideration:

 
yξξξξ =

+ +
x

a + x a+ w0 1a+ 2  (6.22)
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that linearisation gives:

 
( )ξξξξ − = + + = + +1 0 1 2 0= 1 2

a +0 + x a+ w
x

a
x

a a+1 + w
x

 (6.23)

which yields

 m1 0 1 2( )0 1 2+v +v0 +v 2 ξξξξ  (6.24)

where:

  

 

1
1y

m v mm m= = =1m
x

w
x

h ξξξξ  (6.24a)

It is assumed that after the linearisation of  a given model, the appropriate conversion 
of  the values of  the observed variables occurs, and later the estimation of  the structural 
parameters of  a new (linearised) model is done. After these estimates are found, a return 
conversion is made in order to get the estimates of  the structural parameters of  the primary 
function.

There are two noteworthy problems associated with the above procedure.
Firstly, the method of least squares minimises the sum of squares of the deviations of 

the empirical values from the theoretical ones but only for the linearised function, not the 
primary one. Nonetheless, the solutions found are quite near to the real unknown solutions 
and for this reason, this procedure is widely applied; especially due to the simplicity of its 
calculation.

Secondly, there is more subtle and difficult problem that is connected with the random 
component. Notice that it is variously integrated into its model. Because this component 
is a random variable any transformation of it means that one achieves a different random 
variable and that its probability density function can be obtained by an appropriate trans-
formation. However, this density function is often complicated. The problem of finding a 
probability distribution that can be commonly applied in statistics that the density function 
describes well arises—the function obtained on the way to linearisation. In some cases this 
problem causes serious difficulties.

Linearisation has found applications in the graphical methods of statistical inference that 
are connected with distribution functions by using probability papers. By using such a paper, 
we can:

a. Verify a statistical hypothesis in the form of a probability distribution function; however, 
without introducing the concept of level of significance

b. Estimate the unknown value of one or two of the structural parameters of the distribution 
function that is of interest.

Therefore, these methods concern one- or two-parameter distribution functions 
exclusively.

A probability paper of  a given distribution of the random variable X that is characterised 
by the probability distribution function F(x) is an appropriately selected orthogonal coordi-
nate system with the abscissa ϖ = ψ1(x) and the ordinate η = ψ2[F(x)] in which the distribution 
function (or its complement—important in reliability analyses) is linearly determined by the 
formula:

 η ϖb
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The most frequently applied probability papers are for the:

a. Gaussian function
b. Lognormal function
c. Exponential function
d. Weibull function
e. Gumbel function6

f. Logistic function7

g. Rosin-Rammler distribution8

h. Power distribution9.

If  the distribution of the variable X that is being investigated has the assumed form, then 
the empirical points that are projected onto the probability paper should concentrate approx-
imately on the straight line of the pattern:

 
* *ˆ b*η = + ϖa b

where a* and b* are estimates of the unknown values of the structural parameters a and b. 
These estimates can be obtained using, for instance, the method of least squares.

If, for example, the investigation concerns the Gaussian distribution, the following equa-
tions are applied:

 
1 2ˆ( ) [ ( )]ˆ x m m) [ (ˆ − ϖˆmm ˆϖ = ψ = η = ψ = η = −1 2( ) ; [ ( )] ;2) ; [ () ; [ (; 2 σ σ σ

It is also possible to construct a confidence region for the cumulative function F(x) by 
using the quantiles of the Snedecor’s statistic (see for instance Firkowicz 1970).

The use of probability papers was popular in the sixties and seventies of the 20th century, 
especially in reliability analyses. However, their popularity declined with the growing applica-
tion of computers and advanced statistical programs.

Sometimes, a multinomial model is applied to get a statistically good description of data. 
It is necessary to remember that the higher the degree of the multinomial, it is necessary to 
have more structural parameters to assess and a larger sample size.

If  for example the model is:

 y = + + +α α+2
2

1 0+ αxα+ 1 ξξξξ  (6.25)

the set of normal equations obtained from the application of the least squares method is:

6 The cumulative distribution function of the Gumbel distribution is expressed by the formula: exp(−e−(x–μ)/β). 
This distribution is used to model the distribution of the maximum or the minimum of a number of 
samples of various distributions. The Gumbel distribution (1954) is a particular case of the generalised 
extreme value distribution (also known as the Fisher-Tippett distribution). It is also known as the log-
Weibull distribution and the double exponential distribution (which is sometimes used to refer to the 
Laplace distribution).
7 The cumulative distribution function of the logistic distribution is expressed by the formula: ( ) .1

x−
−

μ

 
In some cases this distribution is applied in ore dressing to approximate the particle size distribution 
curve (Saramak and Tumidajski 2006).
8 This distribution is sometimes applied in particle size analysis of comminution processes.
9 This distribution is connected with the generalised gamma distribution proposed by Stacy (1962); 
however, a similar distribution had already been considered by Amoroso (1925). Amoroso-Stacy’s 
distribution was intensively studied by two Polish engineers: Firkowicz (1969) and Ciechanowicz (1972) 
in connection with quality control and reliability.
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 (6.26)

for the estimation of the unknown structural parameters.
The generalisation of the method for a case in which variable y is described by a multino-

mial of order k of  the variable x does not cause any problems.

■ Example 6.2

The wear process of a hoist head rope was observed and the total number, nt, of cracks in the 
wires was noted depending on time from the 86th day of its usage until the 468th day when the 
decision was made to withdraw the rope from further operation. Empirical points were inserted 
into the diagram and these points were connected by continuous lines—see Figure 6.5.

A power model was applied the first approximation function for the empirical data

 NtN t c= δ γ ξξξξ

Note, that this model is a model that only describes the trend and has no physical sense. 
Its exclusive task is to describe the course of empirical data well.

A linearisation was made by applying a common logarithm and for this reason c = 10. 
The least squares method was applied and the following estimates were obtained:

• The estimate g of  the exponent γ; g = 2.46
• log d = −4.079, which gives d = 8.33 × 10−5 and is the estimate of the proportional coefficient δ.

A plot of the function:

 Nt = dtg

was inserted into Figure 6.5.

200 300 400
0

100

200

300
340

0

nt

Nt

470021 t

Figure 6.5. The total number of cracks in the wires of the rope versus the number t of  days the rope 
was in operation; nt—the empirical data, Nt—the theoretical data (the power function).
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Looking at this Figure, it is easy to state that the goodness of fit is rather poor, especially 
where larger numbers of data are concerned.

Study the diagram of the residuals ut = Nt − nt for this theoretical function. It is given in 
Figure 6.6.

Looking more carefully at this Figure, it is easy to perceive that there are long intervals in 
which the residuals have the same sign. This proves that the empirical model was not selected 
properly; the signs of the residuals should be mixed. Moreover, the investigation concerning 
the dispersion stability with time gives information that it is not fulfilled.

For these reasons, a different theoretical model should be applied.
Let us check the exponential function of the pattern:

 NtN t tt= +α β γtt )2 ζζζζ  (6.27)

where: α, β and γ are the structural function parameters and ζ is the random component.

Making the linearization, we have:

 ln lN tl ttNN ln + +tα β γttt2 ζζζζ

200 300 400
−30
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−10
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20

30

468126 t

ut

Figure 6.6. The residuals ut = Nt − nt chart for the power function as the theoretical model.
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The second degree of polynomial is obtained in such a way. The set of equations (6.26) can 
be used to estimate the unknown structural parameters.

By making all of the necessary calculations, the following theoretical function is 
obtained:

 NtN t= × −0 7478 976 10 05 2t. e7478 xp( .1 . )t +t022 ζζζζ  (6.27a)

Let us check whether this model describes the data well. This function and the empirical 
figures are visible in Figure 6.7.

Looking at this figure, we are inclined to say that the description does not satisfy our needs. 
Let us make sure by analysing the residuals  τt = Nt − nt for exponential function (6.27a). They 
are shown in Figure 6.8.

Both of the proposed approximation functions should be rejected due to their poor descrip-
tion of the data. Moreover, when the analysis of the residuals for both theoretical functions is 
conducted a little further, it turns out that these sequences have an autocorrelation up to the 
third order, which means that memories exist in both sequences.

200 300 4000
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470120
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Figure 6.7. The total number of cracks in the wires of the rope versus the number t of  days of the 
rope’s operation; nt—empirical data, Nt—theoretical data (the power function).
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Figure 6.8. The residuals τt = Nt − nt; chart for the exponential function as the theoretical model.
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The results of the autocorrelation testing provide important information, namely:

• There is a memory in the wear process of the rope—the state of the rope at a given moment 
of time strongly depends on the state of the rope a while before

• The autoregression function should be considered as an approximation function. ◀

6.4 AUTOCORRELATION AND AUTOREGRESSION MODELS

In theory, autoregressive models occur when the reversibility of stochastic stationary proc-
esses is analysed (e.g. Box and Jenkins 1976). In this chapter these models will be considered 
from an engineering point of view.

Presume that there is given laboratory data or data gathered during an investigation or 
information collected during operation research. The best situation is when data are in the 
form of a large sample. The point of interest is to find such a function that will describe the 
collected data well. The usual procedure is as follows. We select a function that has a cer-
tain number of structural parameters. These parameters are usually estimated using the least 
squares method. The next step is the calculation of the residuals—very often as a sequence 
of the differences between the empirical values and the corresponding theoretical ones. An 
examination of the residuals allows an assessment of how good the selected model is.

Consider the set of assumptions for the least squares method given at the beginning of this 
chapter. In engineering practice assumption (a) is usually fulfilled. Assumption (b) is fulfilled 
when the investigation concerns stationary processes. If the investigated process is non-stationary, 
assumption (b) is fulfiled in some cases, while in other cases it is not. There is also an area of 
engineering consideration in which the postulate of a lack of autocorrelation (assumption (c)) 
does not hold. In such a situation the problem of interdependence between variables arises.

Consider a model in which E(ξ) = 0 and the variance σξξξξ
2 = const but there is an autocorrela-

tion in the realisation of the random component.
Presume that the structural parameters were assessed using method that gave biased esti-

mators and the sequence of the residuals is evaluated. Suppose further that the autocorrela-
tion of the random component was traced and that the following relationship holds:

 
ξξ ξξξ ξ χξξ χχχt i t i

i

L

tξξξξ
=
∑

1

 (6.28)

where {χt} is the pure random process and L is the natural number.
In practical applications the problem of how large the number L should be arises. Or to 

put it differently, how far back to go? Here it is worth referring to theoretical publications 
in this regard as well as to look at the practice of the application of such models that have a 
confirmed autocorrelation of a random variable in econometrics and technometrics.

In practice the deciding factor in how many elements of the right side of the equation (7.28) 
should be taken into account is information that the autocorrelation coefficients are significant.

However, a situation can occur in practice in which many autocorrelation coefficients are 
significant, sometimes up to fifth or even eighth order, inclusively (Czaplicki 2000). In such 
a situation a decision should be taken as to how many components of the sum the model 
should have (6.28).

Let us look at this problem from a theoretical point of view.
In 1925 Fisher suggested that in the autoregressive model, the coefficients for subsequent 

variables that are delayed in time decrease systematically with movement to more distant 
periods. This idea was revisited and developed by Koyck (1954) and Nerlove (1958). Koyck 
presumed that the coefficients decrease geometrically for elements connected with receding 
elements. Thus, model (6.28) should have two or three components and should neglect the 
random component.
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It is worth noticing that each the process element, i.e. the value of the process at a given 
moment of time, depends on the values from previous moments and it does not matter how far 
back our inference is done. Thus, in the coefficients that are one or more steps back, there is 
information about the history. Therefore, a model that takes into account many steps back will 
have a weak rationale. Usually, in practice, applications have models with L = 1, L = 2 or L = 3, 
rarely more. A practical approach to the selection of the number of components of the autore-
gression model was presented in example 3.8 and will also be presented in example 6.4.

The unknown parameters δi are estimated by applying the method of least squares taking 
into consideration the residuals.

Presume now that model (6.28) is replaced by the model with the estimates of the unknown 
structural parameters and that this model will be used for forecasting. If  the prediction is 
unbiased, we neglect the pure random component χt, which is the integral constituent of the 
model. This is the reason that errors are generated. Taking into account that these errors can 
accumulate, any inference too far into the future is inadvisable, especially if  the variance of 
the component is high. However, if  the prognosis will concern only one or two steps ahead, 
model (6.28) should be useful.

If  the autocorrelation of the random component in the model being analysed was stated, 
and especially if  the variance of this component is not constant with time, then the autore-
gressive model as a regression function:

 
Y Yt kYY t k t

k

U

+Yt kYY
=

∑∑ ζζζζ
1

 (6.29)

where νk is the structural parameter of the model and ζt is the pure random component of 
the model should be considered.

Having the sample taken, we can estimate the unknown structural parameters, which is a 
minor task because the model considered is a linear one. The model has a physical sense and 
compatible dimensions. It is easy to construct a set of normal equations.

If, for example, the model concerns two steps back:

 Yt tYY t t+Y +ν+Y 1t−tYtYY 2 2YtYYt ζζζζ  (6.30)

then we have the following set of equations:

 

1 1 2 1 2 1

1 1 2 2 2 2

ˆ

ˆ

t t
t t t

t t
t t t

y y

y y

⎧ν1⎪
⎧⎧
⎨
⎪⎪

ν1⎪
⎨⎨
⎩⎪⎪

∑ ∑ ∑2 ˆ2
t t tt t1 2 1 21 2 11 21 2 1 21 2 1 21 2 111 21 2 1 2111 2 11 2+ ν =+ ν2y y yy y2

1 2 1 21 2 12 1 21 2 1 21 2 11

∑ ∑ ∑2ˆt t tt1 2 2 21 2 2 21 2 2 21 2 2 21 2 22 2 21 2 2 22 22 21 2 2 2+ ν =+ ν 2y y yy2
1 2 2 21 2 22 21 2 2 21 2 22 2

 (6.31)

It is not a problem to find the estimators for the above structural parameters.

■ Example 6.3

The wear process of a hoist head rope was observed and the total number ni of  cracks in the 
wires was noted depending on the number of winds v that were executed. The data that were 
gathered are presented in a graphical form in Figure 6.9.

Two functions were taken into consideration in order to describe the data:

• The power function

 N i i
gdv c= εεεε

where: d and g are the structural function parameters and ε is the random component
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• The exponential function

 M i i i+= +β γi +i ν )2 χχχχ

where: α, β and γ are the structural function parameters and χ is the random component.

The method for estimating the structural parameters is well known so let us look at the 
results of estimation, which are presented in a graphical form—Figure 6.10.

It is easy to see that both of the proposed theoretical functions describe the empirical data 
poorly.

Knowing that very often the autoregression function describes the empirical data well, the 
following function was considered

 A ni iA n i i i=n + +nν n + ζ1 iini 2iin −i

An estimation of structural parameters ν1 and ν2 was done and the result in a shape of the 
plot Ai was inserted into Figure 6.10.

There is no doubt that the autoregression function describes the data well.

100 200
0

100

200

300

400

500

ni
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Figure 6.9. The number ni of  total cracks in the wires for a hoist head rope versus the number νi of  
winds that were executed.
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Perform an investigation of the residuals u ni in i i−n ( )n n+1 ini 2inin −i , where ι1 and ι2 are the 
estimates of the parameters ν1 and ν2 that were obtained from the application of the least 
squares method. A sequence of these residuals is presented in Figure 6.11.

Looking at this figure it can be seen that:

1. The positive values are well mixed with the negative values
2. The values of the residuals probably increase when the total number of winds that are 

executed increases.

Calculate the two basic parameters for the sequence {ui}, namely: the expected value and 
the corresponding standard deviation. Here we have:

 u u0 6 5s =s2 16.u 5su. k cracks

Remember the theory that the average value should be zero. It is different than that in this 
case. We can presume that this is due to rounding up and imperfect calculations. Therefore, 
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Figure 6.10. Diagram of the total number of cracks in the wires of a hoist head rope versus the 
number νi of  winds that were executed: ni—the empirical data, Ni—the power function, Mi—the expo-
nential function, Ai—the autoregression function.
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Figure 6.11. Residuals ui generated using the autoregressive function.
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formulate a hypothesis that states that the average value u  is insignificantly different from 
zero, H0: m = 0 (m is the average value in the population) versus an alternative hypothesis that 
rejects it.

The following statistic can be applied to verify the null hypothesis:

 
t u

s
n

u

=

which—if the null hypothesis is the true one—has the Student’s distribution with n − 1 degrees 
of freedom.

After the calculation we have t = 0.82.
Presume a level of significance α = 0.05. From Table 9.3 the critical value for a sample size 

of n = 47 is 2.01. Because the empirical value is below the critical value, there is no ground to 
reject the verified hypothesis. Our supposition was right.

Check supposition (2). Divide the sample in half  and calculate the corresponding standard 
deviations for both subsamples. We have:

 s1 = 3.05 cracks s2 = 6.76 cracks

The numbers differ distinctly. A hypothesis H0 is formulated that states that there is no 
significant difference between these parameters. If  this is true, then the ratio of the variances 
has the F Snedecor’s statistic. By calculating one obtains: s2

2
1
2 93/ .s1
2 4 .

Formulate an alternative hypothesis H1 that states that the dispersion in values for the sec-
ond half  of the observation is greater, H1 2HH 2

1
2: σ σ2

2 > . If  so, the critical value taken from Table 9.6 
for a presumed level of significance α = 0.05 is F0.05(22, 23) = 2.03.

The empirical value is definitely greater than the critical one. The alternative hypothesis is 
the true one. The dispersion in the second half  of the data is significantly greater than in the 
first half. We are right to suspect that the dispersion of the random variable increases with an 
increase in the number of winds that are executed.

A more precise analysis of the diagram presented in Figure 6.9 allows one to notice that 
the nature of the course of the increasing number of cracks in wires up to (160 ÷ 170) × 103 
work cycles is gentle; the increment in the number of cracks is slow. However, the number 
of cycles grows as the speed of increment increases. Thus, a supposition can be formulated 
that something physically happened in the rope wear process that generated this increment. 
Ignoring the presumed essence of the event here10, we can formulate a hypothesis that the 
nature of the wear process up to this figure is different than the one above this figure. If  so, 
two different regression functions should be applied to describe the data. Following this path 
of reasoning, we should get two sequences of residuals and the test of the significance of the 
dispersion should be repeated separately for each case.

As the investigations show (Czaplicki 2010, p. 111 and more), this supposition was justified 
and resulted in a different evaluation of the reliability of the rope. ◀

Consider the problem of the number of elements in the equation (6.28) in greater depth. 
This problem is important in time series analysis. It was found (see for instance Box and Jenkins 
1976) that a function that can be useful to identify the trend of the lag in an autoregressive 
model is the Partial Autocorrelation Function (PACF). Once can determine the appropriate 
number of lags by plotting the partial autocorrelative function. This allows the stochastic 
‘mechanism’ of the autoregression in the data analysed and the order of the autoregression 

10 A model of the fatigue wear of a wire rope used in hoisting installations in mines was presented in 
Czaplicki’s book 2010.

Book.indb   178Book.indb   178 12/9/2013   12:27:08 PM12/9/2013   12:27:08 PM



Synthesis of data—regression analysis 179

model to be identified. This order, say p, is identified based on changes in the values of the 
partial autocorrelation ϕll that is calculated by solving the Yule-Walker matrix equation:
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 (6.32)

where ρi is the autocorrelation function determined by the pattern:

 
ρlρρ E t l t

E t
= l[ (X ) ]m− [ (X ) ]m

[ (X ) ]m 2  (6.33)

If  ϕll ≠ 0 for l ≤ p and ϕll = 0 for l > p, then the order of the autoregression function 
should be p.

■ Example 6.4 (based on Sokoła-Szewioła’s dissertation 2011)

The process of the vertical displacement of a selected point located on the surface in the 
area that was under the direct influence of mining operations was noted in one of the under-
ground coal mines in the Silesian Coal Basin. The point of interest was the increment of the 
displacement at a point in successive two-hour-long time intervals. The increment, which was 
denoted as Δw, was calculated from the formula:

Δw Z Z i ni iZ iZ−Z =+1 1 2, ,2 ,…

where Zi was the observed height of the point in i-th measurement.
There are many factors that have an influence on rock displacement around drives and 

longwalls that are associated with the extraction of rock (the physical proximity of these 
openings, the speed of mining operation, the properties of the rocks surrounding the open-
ings etc.). This rock movement finally reaches the surface and as a rule causes the subsidence 
of this surface.

The significance of these factors can vary over time. It is very hard to find any analytical 
model that takes into account all of these issues and that weighs their significance appropri-
ately. Therefore, it was presumed that a good model to describe the vertical displacement of 
rock masses on the surface would be an autoregressive one described as:

w wi j
j

p

i j id +ΔwΔ i j
=

∑
1

εεεε

where: dj ; j = 1, 2, …, p are the structural function parameters
 ε—the random component; Nε(0, σε)
 p—the order of the autocorrelation.

Data were gathered, and an example of the daily distribution of the vertical displacement 
increments of the rock masses at the observed point in the period involved in the research is 
presented in Figure 6.12.

Simultaneously, any seismic activity of tremors with an energy E ≥ 7 × 103 J was recorded11. 
The results of the observation are presented in Figure 6.13.

11 This figure was obtained from a separate study. This limited value is different for different mines.

Book.indb   179Book.indb   179 12/9/2013   12:27:10 PM12/9/2013   12:27:10 PM
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The author of the research presumed that the sequence that was observed was a realisation 
of a certain random process. Based on a previous investigation, she suspected that this proc-
ess was a stationary one but it was necessary to verify this.

Recall here that the stochastic process X(t) is stationary if:

1. E{X(t)} = m = const
2. E{[X(t) − m][X(s) − m]} depends on the difference (t − s) only.

Thus, as the first step, the stationarity of  the sequence was analysed bearing the expected 
value in mind. Instead of  the classical approach that applies a test based on the rank corre-
lation coefficient, the author decided to solve the problem in a different way. She calculated 
the expected value of  the random variable for subsamples of  size l, l < n. Three sizes were 
presumed: l = 5, 25, 50. The following function was used as the estimator for the expected 
value:

m
l

w l k n i nk il
w

i k

k l

+w lw= n i =
+k

∑∑1 1 2 132
1

Δ , , ,…

The values of the parameter k varied: k = 0, 1, 2, …, 75.
An example result of the estimation on the average value for l = 50 is shown in Figure 6.14.
Further analysis of the estimations showed that the average value did not depend on k for 

the presumed value of l. This indicated that the sequence could be treated as a stationary one 
as far as the expected value was concerned.
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Figure 6.12. Daily distribution of vertical displacement increments of the rock masses at the observed 
point in the period involved in the research (Sokoła-Szewioła 2011).
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Figure 6.13. Daily distribution of analysed tremors expressed in energy units within the period 
involved in the research (Sokoła-Szewioła 2011).
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The next point of the investigation was the calculation of the covariance according to the 
pattern:

Cov( , ) ( )( )l,
n l k i l i

i k

n

=
−l

)(
−

∑1 1

where Δw is the average value. The estimation was done for the time interval [k, n − l] and 
[k + l, n].
An example plot of the covariance for l = 25 and k = 0, 1, 2,…, 50 is presented in Figure 6.15.

Afterwards, the following values were found:

max ( ) i ( , ) .
max

1 50
6

1 50

6 3553 10≤
−=) ×x x50 1( , ) ≤ ,5() i (5(5(((5,( , ), ) i) min) minminmin) min

Cov Cvv ov( , ) i ( , ) .
max (Cov , )

7897 10
50

1 50
6

1 50

k kCov) i ( , )kCov( ×
−

−

mimm n ( , ) .1 50
650 5 7082 10−×.= 5 7082

When looking at these numbers, a simple conclusion can be drawn that the covariance is 
constant over time.

The next characteristic that was taken into consideration was the process autocorrelation 
function. The following function was applied as its estimator:

 

1
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1

( )( )
ˆ

( )

n l
i i1 )()(1i

l n k
ii

)()(1=

=

)()()()()(1 )()()()(1ρ =ll
∑

∑
The results of the calculation for l = 1, 2, …, 12 are shown in Figure 6.16.
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Figure 6.14. Estimation of the average value for k = 0, 1, 2, …, 75 and l = 50 (Sokoła-Szewioła 2011).
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Figure 6.15. The covariance diagram for l = 25 and k = 0, 1, 2, …, 50 (Sokoła-Szewioła 2011).
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The author of the research perceived that because the correlogram12 became extinct when 
l increased; it indicated that the process was stationary one13.

The subsequent step at this stage of the investigation was the identification of the autore-
gression order, i.e. it was necessary to recognise how many elements the autoregression for-
mula should have.

Based on the changes in the values of the partial autoregression function ϕll that were 
calculated by solving equation (6.32) for l = 1, 2, …, 12, it was found that the order of the 
autocorrelation should be: p = 4.

A juxtaposition of the values of the partial autoregression function is presented in the 
table below and the data is presented graphically in Figure 6.17.

l 1 2 3 4 5 6

ϕll −0.3812 −0.1658 −0.1958 −0.2869 −0.0839 −0.1710

l 7 8 9 10 11 12
ϕll −0.0627 −0.0589 −0.0654 −0.0328 −0.0697 −0.0574

After the investigations of the statistical properties of the data, an estimation of the struc-
tural function parameters was performed, which gave the model:

 Δw w w w wi iw i iw iw− −− − −i0 532990 0 3252678 0 3325874 0 28688591 wii0 3252678 33iw 1 0 .iw 03 44 + εi

12 A correlogram is a plot of the sample autocorrelation function. Its counterpart, which is important in 
geology, is the variogram, which is connected with spatial statistics.
13 The value of the first autocorrelation coefficient is high and very likely is statistically significant.
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Figure 6.16. The autocorrelation diagram for l = 1, 2, …, 12 (Sokoła-Szewioła 2011).

Figure 6.17. Values of the partial autocorrelation ϕll for l = 1, 2, …, 12 (Sokoła-Szewioła 2011).
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The sequence of residuals εi was calculated and tested to determine whether they could be 
described by the Gaussian distribution N(0, σε). The Shapiro-Wilk test gave no ground to 
reject this hypothesis14. 

Generally, the autoregression function has information about the stochastic interdepend-
ence of the random variable. What is more, it carries important information. It is very likely 
that there is a physical background that generates such interdependence. The process that was 
analysed has a memory. Additionally, by analysing the magnitude of the particular param-
eters, we are able to assess how great the influence of the value of the process one or two or 
more steps back on the current state of the process is.

Where hoist head ropes are concerned, investigations have shown (Dłubała 2009) that the 
magnitude of rope wear at a given moment of time depends on the magnitude of the rope 
wear in the previous rope survey in almost 80% of the cases and in almost 20% of the cases 
on the rope wear two steps back. Moreover, an investigation can be made to test the strength 
of this memory. A question can be formulated as to whether the dependence that is found 
is steady in time. As investigations have proven (Czaplicki 2010), this memory strength is 
often constant in the processes of hoist rope wear. However, there are sometimes processes in 
which the importance of the most recent notations increases. Here once again, this can be an 
indication that a certain physical factor commences its action.

It seems that a recommendation can be formulated stating that the constant tracking and 
investigation of some physical processes is highly suggested because much important infor-
mation is encoded in the realisations that are observed. And a task for the researcher is to 
catch, to identify and to explain their physical sense. Such information can be significant for 
the further inspection of some technical objects. Such information can also be beneficial to 
object’s producer as it can indicate in which ways it can be improved.

6.5 CLASSICAL LINEAR REGRESSION FOR MANY VARIABLES

Consider a certain generalisation of the classical model of regression connecting two random 
variables. Instead of two variables, a certain number of random variables will be consid-
ered. Here we take into account one variable Y, which will be explained, and K variables 
xi, i = 0, 1, …, K will be explanatory. The model has the form:

 
= + =

=
∑βi i
i

K

x+i ζζζζ
0

0 1  (6.34)

Because this model is not so broadly applied in mining practice as the one considered 
in Chapter 6.2, the analysis presented here will be confined to some basic information. An 
example from an ore dressing area will be used to illustrate the study that is presented.

In a case with many variables and with a random sample of size n (thus we have n × K ele-
ments in the data), it is advisable to apply the matrix notation due to its simplicity.

Thus, relationship (6.34) can be expressed as:
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 (6.35)

14 Incidentally, due to the fact that the process is stationary in a weak-sense and is normal, it means that 
it is of a strict stationarity. This is because the distribution of a normal process is specifically determined 
by means of the average value and the autocorrelation. 
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or in short

 Y = XB + Z (6.36)

where: Y—the vector of the observations of the variable being explained
 X—the matrix of the observations of the explanatory variables
 B—the vector of the structural function parameters
 Z—the random component vector.

Traditionally, the basis for selecting the best fit hyperplane to the empirical data is the 
method of least squares. A vector of the estimates of the structural parameters can be 
obtained from the equation15:

 b = (X′X)−1X′ Y (6.37)

Therefore, one can obtain the vector of the theoretical values of the variable being explained 
Y(t) from the formula:

 Y(t) = Xb (6.38)

whereas the residual vector is determined by the difference:

 u = Y − Y(t) (6.39)

The assumptions of the model are as follows:

a. Y = XB + Z
b. E Z = O (6.40)
c. E Z Z′ = σ2I (6.41)
d. X is the matrix of fixed elements in repeated attempts
e. r(X) = 1 + K < n, (6.42)

where: I is the unit matrix and r(X) means the rank of the matrix X.

According to assumption (a), each observation of the variable y is the linear function of 
the observations of variables x and the random component.

Assumption (b) says that each random component has an expected value of zero.
The next assumption (c) gives two pieces of information. Firstly, that the variance σ2 is 

constant. Secondly, that the random components are not correlated.
Assumption (d) says that the explanatory variables are not random, which means that X 

and Z are independent. Moreover, this statement informs us that there is no linear relation-
ship between variables x, which is a necessary condition for estimation.

In the linear regression model, the best unbiased linear estimator of the structural vector 
parameters is the vector obtained by applying the least squares method. It has the minimum 
variance and the variance-covariance matrix is given by:

 V = s2(X′X)−1 (6.43)

where s2 is the estimate of the unknown variance of the random component.
If  an in-depth analysis is not conducted, at least three measures of the stochastic structure 

are calculated, namely:

15 Notice that during the calculation, a column of ones appears in matrix X because of the free term.
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• the residual variance:
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′U U′  (6.44)

• the goodness of fit factor:
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• the multiple correlation coefficient:

RmR = −1 2ϕ  (compare (5.12) and (5.13))

The interpretation of these measures and their properties has already been discussed16.

■ Example 6.5 (based on Gawenda 2004)

In Gawenda’s Ph.D. dissertation (2004), the problem of the analysis and proper description 
of the process of the comminuition of porphyry in a jaw crusher was studied. Based on the 
paper of Cardou (Cardou et al. 1993), it was stated that the grain composition during crush-
ing in jaw crushers can be described well by the modified Weibull distribution given by the 
formula:
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where c, ϖ, dmax are the structural parameters estimated based on the empirical data.

Many issues connected with such a description were considered. Among other things was 
the problem of the selection of a model to describe the relationship between parameter ϖ 
and two basic technical parameters of a jaw crusher, namely: x1 the input slot width to the 
crusher and x1 the jaw pitch. The experiment was carried out and its results are shown in the 
table below.

16 For more on this topic see for instance Draper and Smith (1998) or Goldberger (1966).
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Ignoring the method of reasoning made by the author of the research here, let us find a 
model to describe the relationship between these variables. It was known from previous inves-
tigations that the relationship should be linear one.

Thus, the proposed model was as follows:

ϖϖ ζϖϖ ζζζ1 1 2 2 0

Using equation (6.37), the following estimates are obtained:

 b0 = 1.17873; b1 = −0.00817; b2 = −0.001226

which means that the model is:

 ϖ = −0.00817x1 – 0.01226x2 + 1.17873 + ζ

Now assess the residuals. Their average value is 0 and the standard deviation is 0.0553. 
Looking at these figures we are inclined to say that the model describes the data well.

Calculate the goodness of fit factor. By applying formula (6.45), we get ϕ2 = 0.374. Having 
this parameter, the multiple correlation coefficient is:

 R = 1 0− = 7912ϕ .

This value looks high; however, it is necessary to check whether it is significant.

x1 x2 ϖ

 1 25 13.4 0.810
 2 25 13.4 0.860
 3 25 13.4 0.771
 4 25  8 0.899
 5 25  8 0.864
 6 25  8 0.855
 7 20  8 0.916
 8 20  8 0.869
 9 20 10.7 0.899
10 15 10.7 1.028
11 15 10.7 0.957
12 15 10.7 0.842
13 25 10.7 0.850
14 25 10.7 0.904
15 25 10.7 0.840
16 20 10.7 0.835
17 20 10.7 0.915
18 20 10.7 0.893
19 20  5.3 0.981
20 20  5.3 0.919
21 20  5.3 0.898
22 15  5.3 1.025
23 15  5.3 1.068
24 15  5.3 0.973
25 15  2.7 0.965
26 15  2.7 1.158
27 15  2.7 0.965

Gawenda (2004).
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Formulate a null hypothesis that states that there is no significant correlation between the 
investigated variables versus an alternative hypothesis rejecting it. Presume a level of signifi-
cance α = 0.05

The sample size is 27 and the total number of variables 3. Thus, the critical value taken 
from Table 9.15 is 0.470.

The empirical value is clearly above the critical one. Thus, there is a reason to reject the 
verified hypothesis. The model gets its substantiation.

The variance-covariance matrix is as follows:
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Readers may comment on these parameters themselves. ◀

6.6 REGRESSION WITH ERRORS IN VALUES OF RANDOM VARIABLES

A few generalisations were made in the consideration that was conducted starting from 
the traditional model of regression. In this chapter a new important generalisation will be 
made—one that is important from an engineering point of view.

Return for a moment to the simplest linear model that can be determined by formula (6.2). 
Assumptions (a)–(d), which were listed on p. 174, were associated with this model. Let us make 
a break in these assumptions that comes closer to engineering reality. Presume that the obser-
vations of the explanatory variable are not accurate, but were made with a certain error. For 
an engineer, it is obvious that when looking at the digits given by a measuring device or when 
looking at a gauge pointer, the information is read with some preciseness. In many economet-
ric problems the issue of the accuracy of some variables is very difficult to formalise.

In mathematical statistics there is an extensive chapter that deals with total least squares 
in which data modelling takes into consideration observational errors for both types of vari-
ables. The method deals with both linear and non-linear models17.

Because the level of considerations here is a basic one, we confine our study to a simple 
case in which only two variables are taken into account and the errors are exclusively con-
nected with the explanatory variable. Readers who are interested in this topic should become 
familiar with Gillard’s elaboration (2006) and Fuller’s monograph (2006); for non-linear 
models, the book by Carroll et al. (2006) is recommended.

Presume now that instead of the observation of variable x a different variable is perceived 
that is the sum of two variables:

 X = x + u (6.46)

where u is a certain random variable. It can be presumed that no systematic errors are being 
made and therefore

 u: N(0, σu) (6.47)

17 In statistics there is a special chapter that is dedicated to the errors-in-variables model, which tries 
to find the line of the best fit for a two-dimensional set of data only. This is the so-called Deming 
regression, although the model was considered much earlier by Adcock (1878) and Kummell (1879). 
These ideas were almost entirely unknown until the appearance of Koopmans’ work (1937). Later, only 
Deming (1943) propagated this idea. 
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188 Statistics for mining engineering

The observed variable X is sometimes called the manifest variable or the indicator variable. 
The unobservable variable x is called a latent variable. Models with a fixed x are called func-
tional models18. Models with a random x are called structural models.

Now, it is necessary to determine the mutual relationship between the variables that are the 
components of the model.

Assume that the error in measurement of variable X is independent from:

a. The real value of this variable and
b. Independent from the random variable that is a component of the model.

Let us analyse what kind of repercussions are connected with such a research situation.
Construct the variance–covariance matrix, similar to the one made in formula (6.43). We 

have:
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β σ β σ
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 (6.48)

Let us define the regression coefficient based on the information contained in the sample 
taken:
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∑
∑

 (6.49)

where all of the variables with a straight accent above the mean are the average values.
Calculate its expected value. Having in mind that the random variables are normal, we 

have:

 

2

1 2 2
ˆ( ) x

x u

E( σ= β
σ σ2 +x

 (6.50)

Looking more carefully at the formula above, it is easy to see that the regression coef-
ficient has been attenuated (its value is reduced) by the presence of a measurement error. 
It is assumed (see for instance Fuller 2006) that the basic measure of this attenuation is the 
quotient:

 
κ σ

σxX
x

X

=
2

2  (6.51)

i.e. the ratio of the variances of the variable x and X. This measure is called the reliability 
ratio. However, it is not a reliability measure of a technical item that could be expected by an 
engineer. It is a determined statistical measure that is associated with the theory and practice 
of measurement19.

18 There is again some inconsistency in understanding terms. The term ‘functional’ as presented here 
comes from econometrics; engineers will have a different association with it.
19 In genetics this ratio is a measure of heritability. An observed characteristic of a plant or an animal, 
the X value, is called the phenotype and the unobserved true genetic makeup of the individual, the x 
value, is called the genotype. The phenotype is the sum of the genotype and the environmental effect, 
where the environmental effect is the measurement error.
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If this measure can be estimated, then the estimator of the structural parameter standing 
with the explanatory variable is given by the formula:

 
 (6.52)

The second parameter can be estimated using the pattern:

  (6.53)

Now define the variance–covariance matrix connected with the defined estimators. It is 
determined as the following:

 

 (6.54)

where:

 
 (6.55)

and it is the residual variance of the model

 

 (6.56)

and it is the unbiased estimator of the conditional variance of 1β̂

 
 (6.57)

Unfortunately, it is seldom the case when the reliability ratio is known in engineering prac-
tice. At most, you can meet with cases in which we are able to determine its approximate 
value, but we are not able to assess the error that results from this approximation.

Consider now a different case.
Examination often allows it to be realised that the values of the variable that are read off  or 

calculated are flawed. This means that the data are imprecise. Concern arises that the model 
that is created will be less accurate. In engineering practice in some areas of consideration, 
e.g. in issues that are associated with safety problems, we cannot afford to commit significant 
errors. Thus, by all means, it is advisable to assess the scale of the error of a given model.

Often an engineer who is conducting research is able to assess the accuracy that is con-
nected with reading off  the values of physical magnitude. But, he/she has no idea about 
repercussions that will be generated if  the regression model that is selected is applied. What 
is more, he/she does not know how the accuracy of the estimation of the variable being 
explained will change because of the model that is applied.

Therefore, presume that the standard deviation of the measurement error is known. Note 
that even if  this parameter is unknown, the measurement can usually be repeated many times 
and then the estimation of this parameter can be achieved.
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190 Statistics for mining engineering

Thus, we can assume that the value of σu is known.
Let us make an estimation of the empirical product moments that apply the formulas:
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Now, we are able to construct the estimators of the most important regression parameters. 
They are as follows (compare Fuller 2006):

 
2 2ˆ x XX uσ = − σ2
x XXm  (6.59)
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 (6.60)

 
2 2 2ˆˆ 2 2
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 0 1
ˆ ˆ X1β = − β0 y  (6.62)

Look at the two relationships (6.59) and (6.61) that determine the variances. It is the same 
element in both of these formulas—the variance of the measurement error. It is known that 
the variance is almost always positive. This condition allows the upper limit of this error to 
be determined. This problem is important in engineering practice.

By analysing formula (6.59), we come to the conclusion that

 σu XXXXm2 ≤

whereas by appropriately transforming pattern (6.61). it can be stated that:
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≤ −XXXm

which is a stronger restriction than the previous one.
And further

 
σu XXXX

Xy
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m
m

≤ −XXXm
2

 (6.63)

The right side of inequality (6.63) determines the maximum of the allowable average meas-
urement error that can be taken into consideration when examining this regression analysis.

Express this limit as the percentage of the average value of the variable x that yields:
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 (6.64)
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Pattern (6.64) determines the upper limit of the measurement error which cannot be 
exceeded in this regression analysis as a percentage.

The matrix of the variance–covariance of the structural parameter estimators (6.60) and 
(6.62) is given by the formula:
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vn

⎤⎤)⎡⎡ S2 β1( ) () (1X V2 ( ))1 (V2 ( )
⎢ ⎥ˆ ˆˆ ˆ

n⎢ ⎥⎢ ⎥n
⎢ ⎥ˆˆ ˆˆ )
⎢ ⎥⎢ ⎥ˆˆ ˆ( ) () (XV ( )⎣ ⎦1 1)1 ⎥⎥)1⎢⎢ β1( 1( ) () (1XV ( )1

 (6.65)

where now:
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 (6.67)

and the random variable

 v 1u  (6.68)

■ Example 6.6

In the article by Pyra et al. (2009), the discussion was related to selected problems of  blast-
ing and the impact of  shock waves that are generated by setting off  explosives. This problem 
was studied in connection with a surface mining operation. Some statistical data were ana-
lysed, the relationship between the speed of  propagation read off  from a measuring device 
and the air pressure shock wave, among other things. This pressure was also taken from the 
gauge.

Let us use the data which are in this article. This information is presented in Figure 6.18.
We made only one correction here assuming that the point (0, 0) belongs to the data.
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For the information presented in Figure 6.18, we have:

• The pressure characterised by two parameters:

 X SxS =S1 1 1 104 9.SxS 104 Pa

• The speed also characterised by two parameters:

 y SyS1 0S/03 . /73SyS 0SyS =S .73 s//

Presume now, for the time being, that both variables are given precisely, i.e. without 
errors.

If  so, the regression function of these variables can be found by applying the classical 
regression model.

This path of reasoning gives the following estimates of the unknown values of the struc-
tural parameters:

 b b1bb 3
0

31b0b 7 101 7 −1b 7 10. .08 1b0bb 1

A graph of the function:

 y(x) = b1x + b0

is shown by a continuous line in Figure 6.18.
Let us make an estimation of the standard deviation of the random component ξ of  the 

model:
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Figure 6.18. Relationship between the speed of propagation read off  from a measurement device and 
the air pressure shock wave (Pyra et al. 2009).
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Presume now that the variable x—the pressure—is estimated imprecisely and that the 
standard error of estimation is known, is stable and equals σu.

Make an estimation of the limit in the accuracy of the measurement.
The estimation of the empirical product moments is as follows:

 Xy yy XX=m ×75 28 0 53 1mXX = 101 104. .myy8 0 .

and we are able to estimate the matrix of the product moments:
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Taking into account relationship (6.63), we have

 σu ≤ 20 18. P18 a

which represents 13.4% of the average value of the variable X.
Assume for the purposes of our analysis that the standard deviation that determines 

the accuracy of the measurement of the variable x equals: 4; 8 and 12% of the average 
value of X.

The results of estimations of the structural parameters of the regression function and the 
standard deviations are presented in the table below where:

b11—The estimation of the structural parameter standing by the variable X
b00—The estimation of the free term
Sx—The estimation of the standard deviation of the variable x
Sξ—The estimation of the standard deviation of the random component ξ
Sv—The estimation of the standard deviation of the random variable v.

σu
b11 b00 Sx Sξ Sv

formula (6.60) (6.62) (6.59) (6.61) (6.66)

Pa 10−3 mm/s Pa mm/s Pa mm/s mm/s

0.04 X
–

6.86 −0.002 104.76 0.13 0.14

0.08 X
–

6.93 −0.01 104.23 0.11 0.15

0.12 X
–

7.05 −0.03 103.35 0.06 0.15

The plots of the function for three analysed cases are shown Figure 6.19.
Let us analyse the most important information contained in this figure.
Firstly, the value of parameter b11 changes; its value increases with an increment in the 

measurement error, which causes the second parameter to decrease.
Secondly, when the accuracy of the measurement worsens, the regression function per-

forms a rotation around a certain point. This point is determined by the average values of 
both variables.

It follows that any analysis or prediction of the variable values that are being explained 
that are not much different than the mean value will be correct even when the measurement 
error is larger. For values that are far from the average, the likelihood of statistical inference 
gets worse.
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194 Statistics for mining engineering

A slight decrease of the standard deviation Sx that increases the measurement error is obvi-
ous taking into account equation (6.59). Along with an increase in the size of the error there 
is a decrease in the importance of the explanatory variable.

Similarly, as in the classical regression analysis, an investigation can be made to check the 
significance of the regression that has been done, i.e. verification of the hypothesis that states 
that parameter β1 is zero, H0 : β1 = 0. However, the verification procedure is more subtle than 
the previous one.

It can be proved (Fuller 2006) that the statistic

 

= 1 1
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β
t  (6.69)

has approximately the standardised normal distribution N(0,1). However, it is recommended 
that this variable be treated as a variable of the Student’s distribution with n − 2 degrees 
of freedom. This approximation is fully justified (ibidem) when the following condition is 
fulfilled:
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Figure 6.19. Regression function: the speed y of propagation vs. the pressure x with measurement 
errors for three levels of accuracy; y1(x) for σu X= 0 04. , y2(x) for σu X= 0 08.  and y3(x) for σu X= 0 12. .
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This means that it is preferred when the sample size is large and the variance of the ran-
dom variable u small. If  this does not hold, any interference based on statistic (6.69) should 
be treated as one with a reduced likelihood.

Notice that so far the consideration does not deal with the issue of the latent variable x. 
A case often occurs in which we are interested in finding this variable. And here two cases 
should be considered.

Looking at equation (6.48), it can be assumed that:

a. The latent variable is deterministic
b. The latent variable is random.

Analysis of both cases will lead to the construction of two different procedures.
Consider case (a).
Let us change our notation a little. The model can be described as:
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 (6.71)

Note, that the values β0, β1, σξ and σu are known.
Equation (6.71) is the classical linear regression model in which it can be assumed that xi 

is the unknown parameter that is being estimated. Using the formulas that were developed 
on the basis of regression theory, we can state that the best unbiased estimator for the latent 
variable in a general case is given by the expression:

 ε ε
′= β ∑�� 1 ′β ′ˆ ˆ ˆ ˆ′1 ′ )β ∑ β β ∑β ∑ β β ∑− β β ∑β β ∑β β− −−−−′∑ β β ∑∑ β β∑ β β ∑i i iβ1 1 1 0ε εβ β βε εβ ∑ β β ∑∑ β β∑ β β ∑ε ε − β0β i0β ,0βx  (6.72)

where ∑ε is the variance-covariance matrix of the two-dimensional random variable εε ξεε ξξξi iξξξξ i,ξξξξiξξξξ )u .
If  the matrix ∑ε is a diagonal20 one Σε ξσ σξ= ′( )diag u

2 2σ, , then equation (6.72) is reduced:
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The variance of estimator (6.72) is determined by the formula:

 ε
′− = β ∑ 1 1−′β1 1ε βε

ˆ ˆ1( ) [( ,1) ( ,1) ]− = β ∑ β= β ∑−�� ′β1∑ β∑ε( i iV ( −��
 

(6.73)

whereas estimator (6.72a) has a variance that is given by:
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σ

( )��i iV ( −��  (67.3a)

Consider case (b)—the latent variable has a stochastic character.
The number of random variables of the model increased. The variance-covariance matrix 

now has the form:

20 Recall, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero. 
The diagonal entries themselves may or may not be zero.
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The unbiased estimator of the latent random variable is the statistic:

 
� � � �X y� � Xi iX yX iX+ γ 2  (6.75)

where:
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Let us write the equation so that the estimations of the parameters �γ1 and �γ 2  are achieved 
in the following form:
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 (6.80)

Construction of estimator (6.75) in the explicit form can be achieved based on equations 
(6.76) and (6.80).

The variance of the estimator (6.75) can be assessed by applying formula:

  (6.81)

� Example 6.4 (cont.)

Making use of the information obtained earlier during the analysis in example 6.4 let us find 
the estimator for the latent variable assuming σu X= 0 12. .X12
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Presume that the latent variable is deterministic.
Using formula (6.72a), we have:

 ��x Xi iy iX= +yiy +114 27 0 195 3 428.iy +iy 0 .

Presume now that the latent variable is random.
Making use of formula (6.80) and (6.76) we have:

 �x y Xi iy iX−y +147 13 0 036 4 296.iy 0 .

As you can see, the formulas are slightly different.
Now look at how the values of the variable x look depending on whether the mine records 

are treated as:

1. Correct and without errors
2. Deterministic but with random errors with a known variance
3. Randomly inaccurate.

In Figure 6.20 in which, in order to be more communicative, the values of each set are con-
nected by straight lines so that all three sets of data are visible.

The information contained in this figure comprises:

1. The results of measurements; these outcomes are treated as correct and without errors
2. The calculated values of the pressure that correspond with these outcomes assuming that 

the measurements have random errors that are normally distributed with a zero expected 
value and a finite constant variance

3. The calculated values of the pressure assuming that the measurements are randomly 
imperfect.
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Figure 6.20. Pressure in consecutive measurements depending on how the data are treated.
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Some comments on the information contained in Figure 6.20:

• All three courses of the pressure are similar
• The data gathered at the mines represent a kind of point of reference although the state-

ment that the data are correct and without errors raises objections
• Both courses with random components are very similar
• By analysing both sets of data with random components more comprehensively, it can be 

stated that greater dispersion is connected with the information when three random vari-
ables are considered (the greatest number of stochastic components amongst the models 
that were considered)

• It should be taken into account that the limitation in measurement imperfection is rather 
sharp, thus the differences in the courses of the latent variable are small

• By analysing which assumption on randomness is closer to the reality in the mine, it looks 
as though the postulation on the randomly imperfect measurement of the explanatory 
variable is closer to reality in the mine. ◀

6.7 LINEAR REGRESSION WITH ADDITIONAL INFORMATION

The idea of this regression relies on taking an advantage of any supplementary information 
that the researcher sometimes has—additional in the sense that it is information outside the 
sample. This information can be of a different nature and it can come from different sources. 
It can originate from:

• Theoretical considerations
• Information from earlier investigations and analyses
• Previously taken samples.

In engineering practice we often make use of information from research that had been con-
ducted earlier. Therefore, we are able to formulate some conditions that have to be fulfilled 
by the structural parameters of the regression function. In some cases these conditions are 
determined by strict relationships; in other cases the conditions can have a different form, e.g. 
some of the parameters are defined only over certain intervals.

The basic purpose of this type of regression is to find the increment in the efficiency of the 
statistical inference by using this a priori information. In some cases the Bayesian approach is 
applied; information from a sample is coupled with information that comes from outside the 
sample. We are not going to consider the Bayesian approach here; it goes rather beyond the 
basic level that is presented here. At this time, we will discuss a few methods that allow a priori 
information about the structural parameters of the model being analysed to be used during 
their estimation within the framework of classical statistical inference.

Additional information—exact linear limits
In this model one assumption is that the additional information has the form of linear rela-
tionships that link the structural parameters together—all of them or only some of them. 
The information in hand can be expressed in the following matrix form:

 g = G B (6.82)

where: g—a known vector of size (J × 1), J ≤ K
 G—a known matrix of size (J × K)
 B—the vector of the structural function parameters.
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Synthesis of data—regression analysis 199

The information that the number of additional conditions is J is contained in equation 
(6.82) and obviously this number does not exceed the number of structural parameters.

These conditions can have different forms, e.g.

a. Some values of the parameters are known, for instance

 β β2 2β*   and then (6.83)

 g = [β2
*]  G = [0 1 0 … 0], (6.83a)

b. Some ratios of the parameters are known, for instance
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c. Some linear combinations of the parameters are known, for instance

 
βi

i

K

=
=
∑ 1

1

  and then (6.85)

 g = [1]  G = [1 1 1 … 1] (6.85a)

Let us pay more attention to the condition above. In some cases not all outcomes con-
tained in the sample are treated in the same way during the estimation; a case may occur in 
which some observations are more important or have a greater likelihood than the others. 
In such a case weights are usually assigned to each outcome according to some presumed 
principle. The sum of these weights is close to unity. Such an attitude is regularly applied 
when an estimation of  the abundance of  deposits, for example gold, is carried out. This 
method is called kriging and relies on assigning appropriate weights to particular measure-
ment points located in the area being estimated in order to minimise the mean squares error 
of  estimation. In this technique greater weights are allocated to the points that lie near the 
testing point. This method gives the best unbiased linear estimations of  the variable being 
analysed21.

It can be proved (Goldberger 1966) that estimator b1 of the unknown values of parameters 
B can be determined by the formula:

 b1 = b + (X′X)−1G′ [G (X′X)−1G′]−1(g – Gb) (6.86)

The estimator is unbiased. It is easy to see that this statistic differs from estimator b that 
is obtained from the classical regression by the expression that is the linear function (g – Gb), 
which means that the estimator without additional information does not fulfil the defined 
conditions.

21 For more on this topic see Hustrulid and Kuchta (2006, Chapter 3.10).
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200 Statistics for mining engineering

The matrix of variance–covariance is given by the pattern:

 V1 = V – VG′(GVG′)−1 GV (6.87)

where V = σ2(X′ X)−1 and it is the variance–covariance matrix (6.43).
It is worth noting that we have achieved a profit in effectiveness. Matrix V is the positively 

defined matrix. The second matrix on the right side of equation (6.87) is the non-negative 
defined matrix. This means that every diagonal element of matrix V1 is smaller or equal to the 
corresponding element of matrix V. Thus, the variance of each coordinate of vector b1 is not 
greater than the variance of the corresponding variance of the coordinate of b.

Now define two vectors of the residuals:

 u1 = Y − X b1 (6.88)

 u2 = X(b − b1) (6.89)

The first vector is the vector of the differences between the observed values of the variable 
being explained and the corresponding theoretical values that are obtained from the estima-
tion of the structural model parameters using the conditional method.

The second vector is the vector of the differences between the theoretical values of the vari-
able being explained that are obtained from the estimation of the structural model param-
eters using the unconditional method and the theoretical values obtained by applying the 
conditional method.

It was proved (Dziembała 1972) that the residual variance of variable u1 is given by the 
formula:
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u1 1 22=1 1 (  (6.90)

The first component of the sum is known as the residual variance which is obtained from 
the estimation of the parameters using the unconditional least squares method, whereas the 
second component is the so-called differentiating variance. The root square of the variance 
gives information about how the theoretical values differ from each other on average; the 
theoretical values obtained from the unconditional method and the corresponding theoreti-
cal values obtained from the conditional method.

The following sum should be considered as the second basic measure of the stochastic 
structure:

 

ϕ ϕ2
1
2

2

1
2

1

2

1+ =ϕ1
2 ( )

( )
+

( )=

=

=∑
∑

∑y y−

−

y y−

y
t ty

t

n

t

n
t tt

n

t

( )t ( )t ( )tw

( )(( ( )
t

n
y−( )=∑ 2

1

 (6.91)

where y ( )tw  is the arithmetic mean of the theoretical values that are obtained from the condi-
tional method.

The first component of the sum is known as the goodness-of-fit factor (6.45), while the 
second component is the so-called inconsistency factor. This is supported on the [0, 1]  interval 
and it informs which part of the variance of the variable is the differentiating variance. The 
closer the value ϕ1

2 to zero, the smaller the difference between estimators b and b1.
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Dziembała proposed (ibidem) that the following factor be analysed additionally:
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It is a kind of factor to measure the goodness-of-fit of the proposed model. It is supported 
on the same interval [0, 1] and for rd1 = 1, we have the ideal compatibility between the empiri-
cal and theoretical values. When rd1 decreases, the goodness-of-fit also decreases.

Sometimes, in some practical cases, a slightly different approach can be more advanta-
geous. This relies on first using the conditions at hand to eliminate some structural param-
eters and second to applying the least squares method to the reduced model that is obtained. 
At the final stage of analysis, we should return to the conditions in order to estimate the rest 
of the parameters. For example, presume that the model of interest is:

 y = +β β+ ε1 1 2 2xβ+ 2

provided that

 β β1 2β 1βββ2β

Substituting we have:

 y = +( − 2 1 2 2β β+)2 1) ε2β+1

and further

 y − x =1 2= 2 1β ε+2 2 1−x2 1x2

This equation can be written as

 y* *= β ε* +2

By applying the least squares method, one obtains an estimate b2bb* and next we make use of 
the condition to obtain

 b b1 2b bb b* *b

Additional information—estimates of structural parameters
Assume now that the additional information is in the form of the unbiased estimators of 
some structural parameters of the linear model. Such a situation occurs, for instance, when 
there is a continuation of a previous investigation.

Consider the relationship as divided into blocks:

 y = X1 B1 + X2 B2 + E (6.93)

Presume that vector b*
1, which is the unbiased estimator of vector B1, is known, i.e.

 b*1 = B1 + h (6.94)
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202 Statistics for mining engineering

where h is the vector of size (p × 1); 1 ≤ p ≤ K and it is the vector of the random errors of the 
estimates components of vector b*1.

Assume also that

 E(h) = O E(h E′) = O (6.95)

Information from the sample taken and the additional information can be connected and 
therefore the following equation can be written:
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 (6.96)

where G = [I O].
The variance-covariance matrix of the ‘enlarged’ random component is:
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 (6.97)

where

 W = E(h h′ ) (6.97a)

Knowing vector W = E(h h′), it can be proved (Goldberger 1966) that the best unbiased 
estimator of vector B is the statistic:

 b** = (σ−2 X′X + G′W−1G)−1 (σ−2 X′y + G′W−1 b*
1) (6.98)

Consider the following example. Assume that vector B1 contains only one element, which 
means that G = [1 0 0 … 0] (compare formula (6.83a)). In such a case the matrix W is a scalar. 
Denote it as W = σ2

w.
Calculating we have:
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The normal equations corresponding with this case can be shown as:
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 (6.100)
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whereas

 
ϕ σ

σ
=

2

2
w

 (6.101)

The only difference between the above set of equations and the set of the normal equations 
that are obtained from the least squares method is:

− The first entry upper left in the matrix X′X
− The first upper entry in the vector X′y.

The method just considered requires accurate knowledge about variance σ2 and the matrix 
W to the proportional coefficient. If  these parameters are unknown, their estimation can be 
used, however the solutions obtained will only be approximate. For example, by applying the 
unbiased estimator of variance, σ2 can be obtained using the least squares method (without 
any conditions) and the unbiased estimator of W can be achieved from the regression in 
which b*1 was determined22.

Intuitively, it can be stated that using conditional estimators makes sense only if  their vari-
ances are small. If, however, their dispersions are high, then this a priori information is poor 
and it does not mean much in the interference. Therefore, it can be omitted.

■ Example 6.6

Data for this example are taken from Ścieszka’s investigation (1971) and his dissertation (1972).
In order to identify factors that have a significant influence on the wear process running in 

the brake linings of winders, the following function was tested as the theoretical model:

 IgI a bkp v eb= ξξξξ

where: Ig—the intensity of mass wear
 p—the unit pressure on brake lining
 v—the sliding speed
 k, a, b—the structural parameters of the model
 ξ—the random component.

22 For more on this topic see, for instance, Goldberger 1966.
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204 Statistics for mining engineering

This function was linearised:

 ln lnI kl a pln b vlgI +kln + +b vln ξξξξ

and becomes a recipe for a linear function of the form:

 Y u0 1 1 2 2

The investigation of the wear process was carried out in the stand at the Mining Faculty. 
The data were gathered and natural logarithms were calculated from which the following sets 
of outcomes were obtained:
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By making an appraisal of the structural model parameters using the least squares method, 
the following estimates were achieved (pattern (6.37)):
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The residual variance (pattern (6.44)) is:

 SuS2 0 0363= .

The variance-covariance matrix (pattern (6.43)) is:
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The goodness of fit factor (pattern (6.45)):

 ϕ2 = 0.0532

and the multiple correlation coefficient

 R = 1 0− = 9732ϕ .

This value is high and looks substantial. Let us check it statistically. A hypothesis is for-
mulated that states that there is no significant correlation between the random variable being 
explained and the explanatory variables, H0: ρ = 0 against and alternative hypothesis is that 
rejects it.

Presume a level of significance in our reasoning α = 0.05. We have the sample size n = 16 
and the number of variable K = 3. Thus, the critical value for the multiple correlation coef-
ficient is (Table 9.15) 0.608. The empirical value is high and is above the critical value. There 
is a ground to reject the basic hypothesis. The model can be accepted.

Notice that the analysis presented here is carried out in the area of linearised function, not 
the original function.

A year before this investigation a similar examination had been carried out (Ścieszka 1971) 
in which the main point of interest was sliding speed and the form of the function was also 
a power one. At the end of the investigation, the estimate of the power exponent obtained 
whose value was 0.6508 and the variance equalled 0.0615.

Looking at both estimates of this power exponent, it looks as though they are similar. Let 
us check how our assessment will change if  we include the information from the previous 
investigation into our procedure.

Consider formula (6.99). Construction of both patterns takes into account information 
about the first structural parameter; in our case, it is the second parameter. So, rearranging 
both patterns appropriately and using formula (6.98), we have:
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By comparing both sets of estimates of the structural parameters, we observe that the dif-
ferences are very small, as was expected.

Let us make an assessment of the residual variance. By applying formula (6.90), we get:

 SuS 2 0 0337= .

The accuracy of our inference increases somewhat. However, this increment does not 
change the estimate in the multiple correlation coefficient (a change is observed for further 
decimal places). ◀
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CHAPTER 7

Special topic: Prediction

7.1 INTRODUCTION AND BASIC TERMS

It is a good practice that the basic terms, together with their definitions, which are associated 
with this field are presented before any study of problems from a given area. Usually such 
an approach makes the considerations that are conducted unambiguous and communicative. 
But in some cases, although rare, this principle fails.

Before we clarify such terms as prediction, prognosis, predictor and a few other expres-
sions that are connected with forecasting, let us commence our consideration from the term 
‘anticipation’.

Anticipation (prescience) is an inference about unknown events that is based on events that 
have happened and that are known. These unknown events can be located in the future; they 
can also be located in past, but the main feature is that they are unknown (unidentified), e.g. 
evaluating the abundance of a mineral deposit through test drillings.

An inference on events that will happen in the future that is based on information from 
the past is called predicting (forecasting) the future. This act of predicting can be rational or 
irrational.

A rational forecast is when the inference is based on a logical process that runs from 
premises, i.e. from a set of facts that belong to the past along with their proper interpretation 
towards their conclusions.

We call this a scientific prediction on future events when the process of the inference is 
based on the rules of science.

Among the problems that are connected with a general prediction1 of the future is a suba-
rea that is associated with the use of logical tools for forecasting, and this scope is called 
scientific forecasting or a scientific prediction. It is characterised by an approach that that is 
based on a research process that comprises learning about the past, i.e. gathering the data 
and diagnosing them by applying an appropriate method—appropriate in the sense that the 
model possesses the property of using the data concerning the past to infer future events. 
This property is usually expressed by a suitable mathematical component in the model being 
used that indicates that the inference concerns the future. Moreover, this component should 
change with time because usually the further into the future that we are discussing, the less 
precise is our inference2. However, in some engineering areas a degenerated approach to pre-
diction is presented that relies on the assumption that what has happened in the past will be 
repeated unchanged in the future. And then it is not necessary to have any component that 
is associated with forecasting, and the term ‘prognosis’ is also not required. In such a case, 
it is hard to call it a prediction, and only modelling remains3. Such an approach can often 
be found, for instance in reliability books (see for instance Dovitch (1990), Smith (2007), 
O’Connor (2005)); however the term ‘prediction’ is there used.

1 Cramér said ‘prediction is the practical aim of any form of science’ (1999, p. 339).
2 We ignore here the precision of displacement of—for example—planets; the prediction horizon can be 
extended very far and the precision of the inference will still be high.
3 O’Connor writes openly: ‘reliability prediction, i.e. modelling’ (2005, p. 75).
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An essential term that is associated with prediction is the word ‘prognosis’.
Let us cite some of the scientific definitions of this term4.

‘Any judgement in which truthfulness is a random event of known and high enough prob-
ability’ (Hellwig 1963, Cieślak 2001, p. 20).

‘Future value of a stochastic process’ (Gichman and Skorochod 1965).
‘A function’ (Goldberger 1966).
‘Prognosis is a number’ (Benjamin and Cornell 1970).
‘It is a particular (numerical) result of an inference process of the future’ (Pawłowski 

1973).
‘A random variable’ (Czaplicki 1976).
‘A judgment of unknown states of physical objects’ (Rybicki 1976).
‘A specific result of prediction’ (Greń 1978).
‘Prognosis is a state of the predicted variable belonging to the future’ (Cieślak 2001, p. 37).
‘Prognoses are made by means of models, judgements, and models and judgements, and 

they are final product of the forecasting process’ (Kasiewicz 2005).
‘Estimated future value of the sequence’ (Bielińska 2007).

There is no doubt that a mining engineer may feel lost in this area; however, this diversity 
of definitions can be partly justified by the multiplicity of prognostic situations, the different 
goals of prediction and the variety of methods applied.

A typical engineering situation in which problems of prediction have been considered in 
many specialised articles and conference papers since the early 1970s is reliability although 
here the situation is no better when a general approach is concerned. Melchers (1999) in his 
extensive book that had the word ‘prediction’ in the title used this term only twice in the 
whole book. In books concerning reliability in mining engineering (Dhillon 2008 and Cza-
plicki 2010a), the problem of prediction does not occur; in many reliability books, prediction 
in fact only means modelling.

There is also a problem of how to understand a formula that allows a prognosis to be 
obtained. This ‘recipe’ is termed a ‘predictor’.5

‘A quantity giving a prognosis is a stochastic process’ (Gichman and Skorochod 1965).
‘A quantity giving a prognosis is a random variable’ (ibid em).
‘It is a function’ (Benjamin and Cornell 1970).
‘Operator, function’ (Greń 1978).
‘Functional’ (Pawłowski 1973).
‘Stochastic functional’ (Czaplicki 1976).
‘Random variable, functional, element or transformation’ (Rybicki 1976).

What a wealth of approaches, concepts and ideas. However, an engineer likes to move on 
the solid ground of exact sciences.

Thus, let us now create some order in the material above.

1. Not wanting to formulate another definition of prognosis and prediction, let us presume 
the following statements for our further study:

• Prediction is the process of inference on an unknown current state or future state of the 
external world

• The result of this process of inference is prognosis
• Prognosis can be a number, a function (in a particular random variable or stochastic 

process); it can also be a matrix (deterministic or stochastic)

4 On the Web the word ‘prognosis’ is frequently associated with medicine.
5 Sometimes predictor means a formula for determining additional values or derivatives of a function 
from the relationship of its given values or is a term used for an independent variable.
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2. A recipe that is used in prediction is every functional that ascribes a prognosis to each 
model that is applied to define the course of the variable being predicted

3. Each procedure in prognostic inference is based on some assumptions; two main ones are6:

a. There is information on the course of the magnitude that will be predicted; this infor-
mation concerns its past, or it can be current information and it is in fact a sample in a 
statistical sense

b. The properties of this course are stable overtime

4. Each prognosis should be calculated together with the appropriate measure of the accu-
racy of the prediction (this is a so-called basic postulate).

An analytical description of a predictor  can be expressed as:

  = ΦT[G(Y )] (7.1)

where: Φ—operation that should be performed to get a prognosis
 G—model describing the course of the variable that is being predicted
 Y—the variable that is being predicted
 T—the period for which the prediction is being done.

Looking more carefully at formula (7.1), two additional terms should be determined.
An approach to the construction of a prognosis that relies on selection of a form of opera-

tor Φ will be called the principle of prediction.
The application of a particular principle of prediction to one class of the models that 

describe the course of the variable being forecasted will be called the method of prediction.
In econometrics one method of prediction, which relies on determination of the expected value 

of the variable being predicted, is very often applied. This principle is based on the reasoning that 
errors in plus and errors in minus create a balance and no systematic error7 will be made. Con-
sider, for example, a model that describes the course of variable Y that is given by the formula:

Y ( )) i i t
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k
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1

and we are interested in obtaining the prognosis for variable Y(t = T) presuming an unbiased 
principle of prediction. If  so, expression (7.1) takes the form:
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If  the least squares method was applied to estimate the structural parameters, the random 
variable ξ will have the normal distribution of zero expected value. If, additionally, there is no 
autocorrelation in the random component, we have:
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i i
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1 1i =i

Notice a certain subtleness. Usually, we don’t know the exact values of the explanatory 
variables that will be taken by them in the future. Thus, we have to treat these variables as 

6 In some particular cases, this list is longer, e.g. there is knowledge on values of explanatory variables for 
the period being predicted (see for instance Pawłowski 1973).
7 In prediction theory, we say an error of the predictor, error of the prediction procedure (sometimes 
called error of prediction for short) and error of prognosis. The first one has a theoretical meaning only, 
the second one is connected with the prediction method that is applied, and the last one is the difference 
between the prognosis and the real value of the variable being investigated.
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random and the above pattern is correct for this reason. Nevertheless, if  these future values 
are known (from a theoretical consideration, for instance, or if  we knowingly and intention-
ally presume these values), then the model used for prediction is simplified and the problem 
of forecasting becomes minor.

However, in engineering considerations an approach that is based on expected values is 
correct in some cases but in some other cases it is not correct. An error of prognosis, for 
instance, that relies on underestimating the wear magnitude of a hoist head rope operating 
in a mine shaft can have serious repercussions compared to overestimating this rope wear. 
A long list of similar examples can be enumerated in mining engineering8.

In prediction theory there is a well-known principle that if  a prognosis can only be done 
once and will not be repeated, it is better to select a mode of the variable being forecasted 
because it has the greatest chances of occurring.

In some cases weights are given to any result for which overestimating or underestimating 
the variable forecasted will probably occur and these weights are important components of 
the prediction procedure.

In some other cases, it is better not to consider the point estimation (prediction) of the 
variable of interest but a prediction interval paying special attention to any area that is con-
nected with a possible crossing over of the limited value by the forecasted variable.

In a case in which the postulates associated with the prediction are concerned, often an 
additional postulate is formulated that concerns the desirability of the efforts necessary to 
achieve a high degree of effectiveness of the prediction (see for instance Pawłowski 1973); 
however, it is not entirely correct. It was proved that when an optimal decision is being taken, 
a prognosis that is less accurate can be more useful; one with a lower likelihood (Winters 
1960). It was also proved that sometimes a situation can happen in which the use of the prog-
nosis that was obtained is useless or can even be adverse (Sadowski 1977).

7.2 SUBJECT OF PREDICTION

Taking into account a meritum of  the consideration of the problems of prediction in the 
engineering world, problems of prediction can be divided into two groups:

• Forecasting of future realisations of random variables, stochastic processes and (rarely)
random fields9,10

• Forecasting of future realisations of the parameters and characteristics of random 
variables, stochastic processes and random fields.

Where mining engineering is concerned, the first group of problems are mainly connected 
with the diagnostic and operational issues of a technical object as well as with econometric 
issues.

In mine practice, an engineer must make a decision of whether to allow the further use of 
a hoist head rope in the main mine shaft by predicting the state (degree of wear) of this rope 
in the near future (at least until the date of the next inspections). The process of rope wear 
has a stochastic character. When forecasting the future surface subsidence, an engineer must 
make a decision about whether to continue the current underground extraction process or to 
change it significantly. The process of surface deformation has a random character. When 
estimating the course of the commodity price of a mineral on the world market, a mining 

8 Errors in prediction are generally divided into ex-ante and ex-post if  the criterion for the division is 
time.
9 However, sometimes, we are interested in a single number only.
10 A method of prediction of non-stationary–stationary stochastic field was presented for example in 
Czaplicki’s article (1977a).
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engineer must make a decision to continue the operation of a mine or to change its course 
significantly (to speedup or to slow down). These changes have a stochastic nature. When 
observing the development of a pit, an engineer may come to the conclusion that the removal 
of the overburden is too slow and that it threatens the level of production and that he must 
make a decision to accelerate removal of overburden in order to avoid economic losses; all 
based on a prediction. Thus, all of these problems can be considered on the ground of the 
extrapolation of stochastic processes; in some special cases—stochastic fields. Observe that 
in mining engineering prediction is usually directly associated with decision making, which as 
a rule has significant after-effects either in economics or in safety or both.

Sometimes tracking changes in economic magnitudes that are connected with a mining 
time series are obtained and their analysis, decomposition and the identification of particular 
components are difficult, time consuming and require good knowledge and proficiency in 
the statistical area. An example of such a procedure will be given in Example 7.1, which is a 
continuation of Example 4.8.

The second group of problems are mainly connected with reliability prediction. When 
observing the realisation of a given diagnostic parameter of a technical object, it is easy to 
come to the conclusion that its changes have a random character. Some parameters are so 
important that if  they go above or below defined limits, they can have serious repercussions. 
Mining operations are often connected with safety problems and there is no way to ignore 
them.

Depending on the character of the observed variable whose value will be forecasted, we 
say it is a prediction of:

• Stochastic chains
• Time series
• Stochastic streams (fluxes)
• Processes of changes of states
• Continuous random processes
• Stochastic fields.

The prediction of stochastic chains is mainly used in forecasting any realisations of wear 
processes as well as in the renewal processes of technical objects and in predicting the occur-
rence of special events. A basic model here is the Markov chain.

By predicting the processes of the wear and renewal of technical objects and having some 
a priori information, it is possible to construct a prognosis (Koźniewska and Włodarczyk 
1978) of:

− the predicted distribution of the number of technical objects of a given age interval at a 
given moment in time

− the predicted number of a given subpopulation at a given moment in time
− the predicted number of renewals at a given moment in time.

This type of prediction is a passive one. The term ‘passive prognosis’ usually means such a 
prognosis for which the future realisation of a variable is a direct consequence of the actions 
of a certain stochastic ‘mechanism’ and this action is stable over a certain period of time. 
In some cases, the point of interest is a so-called active prognosis that is based on a random 
process that is the source of information and that is accompanied by decisions to change 
the course of the process in the proper direction. An active prognosis helps a suitable deci-
sion to be made. Such a forecast is not a prognosis in the common sense (Koźniewska and 
Włodarczyk 1978).

When data are collected through discrete notations, then the information has the character 
of a time series. In such a case, the prediction is a procedure composed of several stages. The 
researcher who has the data selects the appropriate method of the extrapolation of the time 
series and then follows the steps that are associated with this method. Frequently, the core 
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of consideration is either such a mathematical depiction of the course of the investigated 
variable that faithfully describes its path and that enables forecasting, or a decomposition of 
the time series is done before the forecast that gives the appropriate tool for prediction. An 
example of such decomposition was discussed in Example 3.8.

Actually, there are many methods for the prediction of a time series, which are mainly 
applied in econometrics (see for instance: Holt (1957)11, Brown (1959), Hellwig (1963), Box 
and Jenkins (1976), Clements and Hendry (1998), Armstrong (2001), Chatfield (2001), 
Bowerman et al. (2005)). In some cases these methods are useful for mining engineering 
when the study concerns the future courses of the prices of mineral commodities on the 
world market, the demand for a given mineral commodity etc. The models that are applied in 
these cases are usually in the form of a classical mathematical description of trends that are 
accompanied by a conventional analysis of the statistical properties of the data. An example 
of such a way of prediction will be presented in the next subchapter.

In some particular cases when there is no possibility to apply such models and for which 
there is also no way to apply a cause-and-effect pattern because of many stochastically 
dependent variables, a model of autoregression is used, often with success. Obviously, mem-
ory in sequence should be observed. Such an approach to inference in the future will be 
shown in Example 7.2.

Problems with forecasting stochastic streams usually comprise issues such as:

− the prediction of the parameters and characteristics of impulse processes (impulse fre-
quently means failure)

− the prediction of the parameters and characteristics of the times between impulses.

The most commonly investigated topics in this class of prediction problems are: the pre-
diction of the number of failures in a given time period and the prediction of the time to the 
nearest failure (e.g. Cunningham et al. (1973), Czaplicki (1976)).

The basic information that is needed to study stochastic streams is the identification of:

− the essential properties of the stream being investigated (singularity or not, stationarity or 
not, the existence of memory or not)

− the distribution of the time between successive impulses
− the stream parameter (in some cases this can be a function)
− the distribution of the number of impulses that can appear at a given moment in time
− the stochastic relationships that exist between the above-mentioned stream characteristics.

In the theory of exploitation the term ‘operation process of a technical object’ is usually 
understood as the process of changes of states (Czaplicki 2010). Its past, current and future 
properties are of interest from the operational and reliability points of view. An interval 
prediction of parameters for the work-repair process of the Markov type will be given in 
Example 7.3 as an example of such an issue.

The area of prediction also includes issues that are connected with forecasting in durability 
investigations. The most interesting problems are: the prediction of the length of the inves-
tigation, the problem of how many failures will be recorded during the investigation and the 
application of the prediction to shorten the length of the investigation12.

7.3 EXAMPLES

We will discuss three examples of prediction—three different models to describe the courses 
of the forecasted variables from three different areas of mining engineering. The first two 

11 See Gelper et al. 2008.
12 See for instance Czaplicki (1980) and (1981a).
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cases are taken from practice, the third, which is theoretical, concerns the reliability problems 
of single items and their systems whose process of changes of states is of the Markov type.

The first two studies were especially selected in order to show not a quick simple reasoning 
but a procedure in which many steps are needed and for which sophisticated statistical tools 
are sometimes required in order to achieve the final result. Such a scheme is closer to the real-
ity of mining engineering and has a didactic nature.

■ Example 7.1 (Continuation of Example 3.8; based on Manowska’s dissertation 2010)

Our consideration is connected with the mass of hard coal that was sold in Poland around 
the end of the 20th century for which the final formula that describes the time series that was 
observed after its decomposition will be presented. This pattern was as follows:

= + + + ξ1 2ˆ( ) ( ) ( ) ( )S C C tt y t y t y ty

Continuing the previous analysis, a study of the pure random component ξt should now be 
made. The properties of this component should be identified by analysing the time series of 
the residuals (here: differences) that are determined by general pattern:

= − + +1 2ˆ( ) ( ) [ ( ) ( ) ( )]S C Cu t y t y t y t y t

An analysis of the time series of residuals should comprise several points, namely:

a. Verification hypothesis to determine whether the series is a stationary one by applying, for 
instance, a test based on the Spearman’s rank correlation coefficient

b. If  the series is stationary, calculating the average value of the residuals
c. Verification of a hypothesis that states that this calculated mean is insignificantly different 

from zero13; e.g. by applying the test using the Student’s t statistic
d. Calculation of the standard deviations of the residuals for the first and for the second 

half  of the sample; verification of a hypothesis that states that the calculated values differ 
insignificantly from each other

e. If  both standard deviations differ insignificantly from each other, calculation of the stand-
ard deviation of the residuals for the whole sample

f. Verification of the hypothesis that states that there is no autocorrelation between the 
sequences of the residual values.

Let us briefly discuss the above-listed points.
If  the procedure of the decomposition of the time series was made properly, we can expect 

that the series of residuals is stationary. This gives meaning to point (b) and we can be certain 
that verification of the hypothesis that states that this calculated mean is not significantly dif-
ferent than zero gives a positive result, i.e. there is no systematic error in the deviations.

Point (d) is a more subtle point of the analysis being conducted. However, taking into 
account that the cyclic component that was traced consisted of two pieces, we may suspect 
that the dispersion of the residuals should be stable over time; however, this is only a supposi-
tion. This gives meaning to the next point (e).

The last but one point (f) concerning autocorrelation in the sequence of the residuals is 
free of any suggestion in this regard. The result of the investigation is unknown and the only 
solution is to apply the appropriate statistical test. The outcome of this study is important if  
a prediction of the time series is to be done.

13 As a rule the least squares method is applied to estimate the systematic component. It should ensure 
that the average value of the residuals equals zero. If  this value is different, it is usually only slightly 
different, which is a result of rounding during calculation.
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Let us analyse these points one by one.
The sequence of the residuals in relation to time is presented in Figure 7.1.
Let us first check whether this sequence is independent of time. Formulate a hypothesis H0 

that states that there is no dependence of time versus the alternative hypothesis that rejects it.
By applying the test for stationarity based on the Spearman’s rank correlation coefficient, 

we have (pattern (3.18) and (3.19)):

rSrr = − × =1 6 594052
160

0 12982( )−160 12 .

Let us compare this empirical value with the critical one. By applying formula (3.23) we have:

r u
nSrr ( . ; )n . .αn =

−
= =−05

1
1 645

159
0 13051

By comparing these two values, we see that the empirical one does not exceed the critical 
one, which means that there is no ground to reject the hypothesis H0. Thus, we can conclude 
that the sequence of residuals is a stationary one. However, because both values are quite 
close to each other, the result obtained should be treated cautiously.

By calculating the average value of the residuals, we have:

u = −41 5. t5 onnes

Formulate a hypothesis H0 that states that this value differs insignificantly from zero versus 
the alternative hypothesis that rejects it. Presume the level of significance α = 0.05.

If  it is presumed that the residuals can be satisfactorily described by the normal distribu-
tion, then the statistic that can be applied is from the formula:

t
u

s
n

u

= − 0

where su is the estimate of the standard deviation of the residuals that has the Student’s distri-
bution with n – 1 degrees of freedom provided that the basic hypothesis is true.

By calculating, we obtain:
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Figure 7.1. The sequence of residuals versus time.
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In Table 9.3 we look for such a value for the presumed level of significance α that 
corresponds with the sample size n – 1 = 159. We have: t(α = 0.05; n – 1 = 159) = 1.98. The 
empirical value in modulo is distinctly lower than the critical one, thus there is no ground to 
reject the verified hypothesis, which means that the sequence of residuals can be treated as 
having a zero expected value.

Analyse the dispersion of the residuals. Let us check whether it is constant over time.
Divide the sequence in half  and calculate the standard deviations for each half  separately. 

We have:

su u
( ) ( )) ( 527 7 ts( ) .suss( =s( ) 527 7 onnes

The difference in the values between these parameters is substantial. If  a hypothesis is 
formulated that states that this difference is insignificant and the ratio of the variances is 
used (as in Chapter 3.4) as the verifying statistic, we can immediately come to the conclu-
sion that this ratio will have a large value. However, this ratio is the F Snedecor’s statistic and 
for a large sample size its critical value is quite close to unity; just a little above 1. Thus, a 
clear and immediate conclusion can be formulated that the dispersion of residuals decreases 
over time.

Compare this outcome with the original data. The information that was gathered con-
cerned the period of restructuring in the Polish hard coal mining industry and the total mass 
of coal sold decreased over time. The situation was due to the transition from the old system 
to a new one, which now has a clear economic background. Therefore, it can be expected 
that the trend should slowly go towards a certain stabilised level and the dispersion should 
decrease over time. For this reason the dispersion of the residuals should also decline, again, 
to a certain level.

Continue the analysis of the dispersion. Divide the period of observation into four dis-
joint periods, each period forty elements in length. Calculate the standard deviations for each 
period. We have:

1028 1027.6 513.9 588.7 tonnes

It looks as though the standard deviation is stable for the first half  of the sequence observed 
(2 × 40) as well as in the second half. The first two standard deviation values are almost 
identical. Check whether the second pair can be treated as the same values statistically.

Calculate the ratio of the variances:

588 7
513 9

1 31
2

2

.

.
.=

Compare this empirical value with the critical one presuming a level of significance α = 0.05 
as usual. We have the critical value: Fα = 0.05(r1 = 40 – 1, r2 = 40 – 1) = 1.68 for the same sample 
sizes in both cases.

The empirical value does not exceed the critical one, and therefore there is no foundation 
to reject the verified hypothesis that states that these two standard deviations differ in signifi-
cantly from each other. Thus, we can actually state that the dispersion of the residuals was 
stabilised after approximately 80 months of observation.

This result has serious repercussions. It seems reasonable to state that a further considera-
tion should be conducted based on the last 80 notations only and that these data should be 
used to:

   1. Conduct a preliminary analysis consisting of:

a. the identification of the trend
b. the identification of the cyclic components
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c. the determination of the residuals together with an analysis of their properties
d.  the construction of a model of the time series that was investigated that can be used 

for prediction

    2.  Estimation of the distribution of the ex-post error of the prognosis based on data from 
the past

a. the selection of the size of a subsample from which forecasting will be commenced
b. the identification of the model for prediction
c. the selection of the range (reach) of prediction
d. the calculation of the prognoses
e. the calculation of the ex-post errors
f.   the repetition of calculations adding successive elements of the time series (up to the 

last but one notation)
g.  the identification of the statistic properties of the ex-post error versus the range of 

prediction

    3.  Prediction of the variable that is being investigated

The way of reasoning is now extended and it looks as though there will be many phases 
to pass.

Thus, a new sample size to be analysed should consist of approximately 80 elements—the 
most recent notations. However, taking into account that a possible cyclic component con-
sists of a 12-month period (and probably 2 times 6), we should presume that the sample size 
should be a multiple of 12 elements. Therefore, our new sample size has 6 × 12 = 72 months 
and covers the months in the years 2002 to 2007. If  the sample size is different in its length 
because it is not a multiple of the period, the sum of residuals very likely will not be zero.

The outcomes taken into further analysis are presented in Figure 7.2.
The linear trend that can be associated with the time series above can be expressed by the 

formula:

ˆ ( ) 14.4 8462S tt t u= − + +y

for which the structural parameters were estimated by applying the least squares method.
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Figure 7.2. Mass of hard coal sold versus time.
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We can now verify whether the pattern found is significant from a statistical point of view.
By calculating the linear correlation coefficient between random variables x and y, we have:

Rx,y = −0.370

Compare this figure with the critical one assuming no stochastic dependence between the 
random variables being tested. The critical number taken from Table 9.13 is ≅ 0.217. Because 
the empirical value in modulo is clearly above the critical one, we are can assume that the 
trend can be depicted by the function ˆ ( )Sy t(S . However, the value of the coefficient is low.

Relate this formula with the one that takes into account all of the data (160 elements; 
Example 3.8). The slope angle of the trend is now flatter than before, which means that the 
situation on the market is becoming stabilised.

This result also gave the ground to conduct further reasoning and the residuals were calcu-
lated removing the trend from the data. The series of these residuals (first ones) are presented 
in Figure 7.3.

The cyclic component, which was estimated applying the same method as previously, is 
also visible in this picture.

The pattern that determined this component was:

⎛ ⎞π= + ϕ⎜ ⎟⎝ ⎠1
0

ˆ ( ) sin 2Cy t t A
T

where: T0 = 12  ϕ = 2.2  A = 721

The information contained in the formula above is important. The period of the component 
is twelve months, which means that the periodicity is connected with a calendar year. This infor-
mation strengthens the previous conclusion that the situation is approaching stabilisation14.

A further investigation was focused on tracing any second periodic component. The 
sequence that was tested was obtained from a calculation of the differences:

= − 1ˆ ˆ( ) ( ) ( )S Ct y t y ty

14 In many countries the amount of coal sold versus time has a cyclic component of a 12-month period.
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Figure 7.3. Time series of the first differences and the first cyclic function.
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Again, a cyclic component was found by applying the same method of analysis as previ-
ously. A model of this component was:

⎛ ⎞π= + ϕ⎜ ⎟⎝ ⎠2
0

ˆ ( ) sin 2Cy t t A
T

where: T0 = 6  ϕ = 4.28  A = 338

And here again it is easy to read the outcome obtained—with the exception of one year, 
the period exists as a half  year cycle.

The second residuals and the second cyclic function are presented in Figure 7.4.
The model of random process observed is now:

= + + + ξ1 2ˆ ˆ ˆ( ) ( ) ( ) ( )S C C tt y t y t y ty

The sequence of the third residuals was calculated removing both the trend and the cyclical 
constituents from the data. This sequence is shown in Figure 7.5. It is the realisation of the 
pure random component of the model. Let us examine its properties.

Let us first check whether this sequence is independent of time. Formulate a hypothesis H0 
that states that there is no dependence of time versus the alternative hypothesis that rejects it.

By applying the test for stationarity based on the Spearman’s rank correlation coefficient, 
we have (patterns (3.18) and (3.19)):

rSrr = − = −1 407748
72

0 093
( )−72 1

.

This figure is small and we can suspect that is not significant. Verify it formally. A statis-
tical hypothesis that states that there is no dependence between the values of the variable 
occurring in time and time was formulated. The critical value for the test can be obtained 
using the formula:

r
u
nSrr ( . ; ) . .α=

−
= =−05; nn

1
1 645
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Figure 7.4. Time series of the second differences and the second cyclic function.
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The empirical value in modulo is below the critical one, therefore there is no basis to reject 
the verified hypothesis. We can assume that the sequence of the third residuals is independ-
ent of time.

Calculate the average value of the residuals. We have:

u = 0 tonnes

Calculate the standard deviation of the residuals. Here we have:

su = 502 4. t4 onnes

Analyse the dispersion of the residuals. Let us check whether it is constant over time.
Divide the sequence in half  and calculate the standard deviations for each half  separately. 

We have:

s su u
( ) ( ) .suss) ( =s( ) 501 1tonnes

We can assume that the dispersion is constant over time.
The last but one property of the residuals to check is their autocorrelation.
By applying formula (3.47), one gets an estimation of  autocorrelation of  the first 

order:

r i ii

N

i ii

N

i

N1rr
1i 21

1

2
1 2

2
1

1

1

( )a
( )u ui u1 ( )u u1uiu 2

( )u ui u1 ( )u uiu 1 2u
=

)u (u

)u (u
=

−

+=

−

=

∑
∑∑−−∑

= −
1

0 031.

Calculate the value of the Breusch-Godfrey statistic:

χ2 2 271 031 068( ) ( )( ) ( .0 ) .2 0( )) ( )( c( = 71(
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Figure 7.5. Time series of the third differences.
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220 Statistics for mining engineering

The verified hypothesis is H0 : ρc = 0, i.e. there is no autocorrelation of the order c = 1 in 
the tested random variable.

Read the critical value. For the given order c = 1 and presuming the level of significance 
α = 0.05 (Table 9.4).

χα
2 3 84( )1 ,1

The critical value is above the empirical one. We can assume that the null hypothesis is 
true—there is no autocorrelation in the sequence being analysed.

The final property to be checked is whether the sequence of residuals can be satisfactorily 
described by the normal distribution.

The sample size is large and for this reason the Chi-squared test of goodness of fit can 
be applied. An estimation of the basic statistical parameters—the average value and the 
standard deviation—was just done. Thus, the theoretical probability distribution is specified. 
Following all of the further steps described in Chapter 4.2, the Chi-squared statistic (4.32) 
is finally:

χ2 = 10.21

The verified hypothesis states that the theoretical Gaussian probability distribution of the 
specified parameters describes the empirical distribution well. Presume a level of significance 
α = 0.05. For the number of degrees of freedom r − 2 − 1 = 5, the critical value taken from 
Table 9.4 is: 11.07.

The empirical value is below the critical one—conclusion: there is no ground to reject the 
verified hypothesis. We may assume that the distribution N(0; 502.4) describes the distribu-
tion of residuals well.

Now, we have the theoretical model fully defined. It is given by the formula:

= + + + ξ1 2ˆ ˆ ˆ( ) ( ) ( ) ( )S C C tt y t y t y ty

where:

⎛ ⎞π
⎟
⎞⎞

⎝ ⎠⎜ ⎟⎜ ⎟

⎛ ⎞π
⎟
⎞⎞

⎝ ⎠⎜ ⎟⎜ ⎟

ξ =

1

2

ˆ ( ) 14.4 8462+

ˆ ( ) 721 i ⎛ π⎛⎛ π ++

ˆ ( ) 338 i ⎛ π⎛⎛ π ++

(0; 502.4)=

S

C

C

u

y t t( ) 14.4) 14.4= −S

y t ⎜⎜1( ) 721sin= ⎛⎛⎛⎛
⎜⎜C

y t ⎜⎜2( ) 338 sin= ⎛⎛⎛⎛
⎜⎜C

=

and there is no autocorrelation in the realisation of the residuals.
The preliminary analysis (I) is now finished. The model specified above can be used for 

prediction.
Now, there is no problem to forecast the further realisation of the random variable that is 

being discussed, say for one, two or three months in the future because the forecasted random 
variable is the normal one and therefore the unbiased prediction and the most likely predic-
tion are identical. As an ex-ante accuracy measure of the prediction, the standard deviation 
su can be used.

There is also a possibility to improve the prediction inference.
The sample size, which is the main source of information, is large and for this reason we 

can use a certain part of it to learn about the accuracy of the prognoses.
The idea in this regard is as follows.
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Presume that we have information that the realisation of the random variable of inter-
est is less, say, without the 12 last notations, which means that the sample size comprises 
72 − 12 = 60 elements, which are associated with the first 60 months. Using the previous 
method, we are able to:

− find the trend
− find both cyclic components
− identify the pure random component

for this shorter sequence.
The theoretical model for the random variable investigated is found in this way and by 

making use of it, we can predict the future realisation of the random variable. However, we 
are in possession of information about the real value that the variable has taken. Thus, the 
error of the prognosis can be calculated.

This procedure can be repeated presuming that the sample size consists of 61, 62, … up to 
72 elements. Twelve patterns for the trend will be found in this way. We can presume that the 
cyclic components are the same. Some important information can be obtained using this way 
of reasoning. Two of the most important pieces of information are:

− the evolution of the trend
− the error of the prognosis.

Let us devote our attention to predicting only one month ahead. Having the twelve prog-
noses and twelve real values that were taken by the random variable, the twelve errors of the 
prognosis (prognosis, because it concerns still the same random variable) can be calculated. 
Each error is a number but we can treat this information as information about the realisation 
of a certain random variable. We make a randomisation of this parameter of prediction in 
this way. If  so, the average value of the error can be estimated as well as the corresponding 
standard deviation. These parameters are ex-post measures of the accuracy of the prediction 
for the method of forecasting that was applied. What is important here is that the calculation 
of the error concerns the most recent notations.

Let us do the calculation.
Firstly, calculate twelve formulas for the trend. The proportional coefficient (slope of a 

straight line) increases in modulo, which means that the trend becomes more horizontal. The 
two trend functions that differ most in their formulas are presented in Figure 7.6. Such a 
change is obvious because the situation on the market developed to stability.
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ˆ

Figure 7.6. Trend functions.
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222 Statistics for mining engineering

Look at Figure 7.7. Both realisations of the sequences—the prognosis and the real values 
are visible in it.

Check the sequence of the errors of prognosis. This sequence has the following properties:

a. There is no ground to reject the hypothesis that states its stationarity
b. The growing dispersion in it is statistically insignificant
c. There is no autocorrelation in it.

If  so, calculate the mean and the corresponding standard deviation. They are as follows:

Δ Δ= − =380 5 388 1. .Δ5 388t s td

By presuming the same cyclic functions, one can calculate the prognoses. These are shown 
in the table below in the first column. In the next column are the real values that were taken 
by the random variable. The errors of prognosis are given in the last column.

Prognosis 
  t

Real values 
  t

Error of prognosis 
    t

7871.6 7796.5 −75.1
7744.3 7169.7 −574.6
7646.4 7752.1 105.7
7364.7 6699.3 −665.4
6933.1 6775.2 −157.9
6738.3 6464 −274.3
6983.0 6539.8 −443.2
7578.9 7018.4 −560.5
8152.4 7324.1 −828.3
8334.3 8606 271.7
8149.5 7857.4 −292.1
7760.0 6688.2 −1071.8
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Figure 7.7. Real values of the total mass of hard coal sold in Poland and the corresponding prognosis.
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Looking at these figures, we can state that:

− Because the prognosis is below the real value taken by the random variable on average, 
we can suspect that our next prognosis will also underestimate the forecasted value; the 
mean error in this regard is 380 t

− The ex-post error of the prognosis is 388 t and this is information about the predicted 
accuracy of our inference for the future15.

Notice that this error is 23% smaller than the ex-ante one, which was 502 t. This means that 
this way of reasoning is more effective than the previous one statistically. Recall, our infer-
ence is based on the most recent (fresh) notations.

■ Example 7.2 (based on Sokoła-Szewioła’s dissertation 2011)

In Example 6.4 the final model was presented that describes the vertical displacement of 
mining terrain situated in the area under the direct influence of a mining operation that was 
being conducted in one of the underground coal mines in the Silesian Coal Basin. This model 
was developed after the empirical and theoretical study and its ultimate form was:

Δw w w w wi iw i iw iw− −− −0 5329900 0 3252678 0 3325874 0 28688591 wii0 3252678 3iw 1 0 .iw 03 −− −4 εi

Remember that Δwi is an increment in the height of the point that is being observed in i-th 
measurement16.

This model was the basis for the prediction. It corresponds with notation G in formula 
(7.1). The point of interest was to forecast one step ahead. Because notations were done every 
two hours, the question was what the increment would be for two hours counting from the 
moment of last notation. It was presumed that measurements i − 1, i − 2, … were the history 
and for this reason the i-th measurement already belongs to the future.

Such a formulated prediction problem has repercussions in relation to the model selected. 
All of the addends on the right side of the equation above are deterministic and known 
values except for the random component. So, the whole stochastic nature of this equation is 
connected with this component. Knowing that it has a zero expected value, we can be sure 
that there will be no systematic error connected with the prediction. Thus, the prediction will 
be unbiased. Moreover, because the Shapiro-Wilk test that was applied during the statistical 
analysis gave no ground to reject the hypothesis that the residuals can be described by the 
Gaussian distribution, then calculated prognoses will have the greatest chances of being real-
ized; the mode equals the expected value.

Hence the predictor is:

= ⇒
= −

Φ ΔT i

i i−E
(G )

( .− .
( )PwΔ= Δ

5329900 0 3252678 0 33258742−iiw −i w0 32526781 0 3252678 www
w w

i

i i= − −w
3 4i

2wiw −i

0
0 5329900 0 3252678 0 3325

. )+w 4iw −iwiw2868859
. wi5329900 . 87488 0 2868859 4w w0 28688593 0 2868859 wi i3 8 883 0 2868859 i3 =4w0 28688590 2868859 ( )PΔ

Notice the difference. The symbol = Δwi
( )P  denotes the random variable which is predicted. 

The symbol = Δwi
( )P  in this case means a prognosis concerning i-th measurement and this 

prognosis is a number. However, if  the prediction is repeated, the model applied is identical 
and almost all of the data used in the prediction are the same, then the following prognoses 
that are calculated can be treated as the realisation of a certain random variable.

15 Often, errors of prognosis are expressed in percentages that relate to real values.
16 Notice that all of the components of the sum are of the same signs; they are negative. This mathematical 
regularity has a physical background—the successive subsidence of rock masses.
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Moreover, an important conclusion can be formulated that the model that generates a 
decrement in the height of a point that is located on the surface—which is under the direct 
influence of the mining operation that is being conducted in the underground mine—is an 
autoregressive one that describes a stationary Gaussian process with memory and constant 
dispersion. This was proved in the cited dissertation by investigating different points in dif-
ferent mines.

Now pay attention to the standard deviation. In the case being considered, it has an impor-
tant role because this parameter is the same for the right side of the equation and for the left 
side, i.e.

σ(Δw) = σ(ε)

and this is a measure ex-ante of  the accuracy of the prediction.
Using the data gathered, the standard deviation was estimated obtaining:

s(ε) = 0.00542969 ≅ σ(ε)

Taking into account that a large sample was taken, it can be assumed that the real value is 
close to the calculated one17.

But the main purpose of the study was to forecast sudden great tremors of high energy that 
would cause the sudden relatively significant displacement of rock masses and subsidence of 
the surface18. The author of the dissertation assumed that this should be a presage of a com-
ing tremor of this type and she tried to trace it in the sequences of these very small values 
of ground subsidence. She knew that the appearance of such a precursor should have a sto-
chastic nature. She did not expect that it would be possible to predict this great tremor using 
any analytical model but her attention was focused on the accuracy of the prognosis—an 
error value, i.e. the error of the prognosis. When making a prediction differences between 
prognoses and real values were regularly smaller or greater but sometimes, rarely, a great 
divergence was noted. And this divergence should be the precursor being searched for—it 
was assumed.

Thus, having such rich data, successive prognoses were calculated and the difference 
between the real value and the projected one were also calculated. It was presumed that all of 
the errors of the prognoses lying in the area ±3σ(Δw) could be neglected.

The successive errors of prognoses, the zone determined by boundaries ±3s(ε) and addi-
tionally, the tremors of high energy (E ≥ 7 × 103 J) are presented in Figure 7.8.

Looking at this figure, we can come to the conclusion that Sokoła-Szewioła was right. 
During the period of observation, six tremors were noted and only one was unpredicted—the 
preceding error of prognosis remains in the zone.

Similar results were obtained when data from a few different mines were analysed; however, 
the assumed level of energy was different. The specific conditions that exist in rock masses 
connected with geology parameters as well as with mining operations being conducted deter-
mine the level of energy that should be considered in a given mine.

A separate set of problems is connected with the decisions about where to set a measure-
ment point, how to detect rock displacements, what kind of devices should be applied, how 
often measurements should be done and how many etc.

At the end of considerations connected with the above example, let us pay attention to 
some generalisation possibilities.

17 Such a large number of digits was needed because of the dimensions that were applied; this estimate 
was converted into the length dimension: σ(ε) ≈ 1.63 mm.
18 The term ‘relatively significant’ is specifically used here; ‘significant’ in relation to the prognosis that 
was made. In some cases no subsidence was noted, again, in contradiction to the forecast.
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Presume that interest is focused on a prognosis two steps ahead. Immediately, the inference 
is less certain because the model for prediction is:

Δw wi i i i+ −− −wi ii i 20 5329900 0 3252678 0 3325874 0 286( )P ( )Pwiwi .i 2 0w −1ii w0 3325874 885988 3wi− + ε

This means that the right side of the equation has two random variables, which results in 
an increment in the variance of the prognosis expressed by the left side of the equation. The 
value of the ex-ante measure of the accuracy of the prediction increases although the calcula-
tion itself  is simple. This way of reasoning in forecasting uses the so-called chain principle of 
prediction19 at is connected with recursive equations. 

Let us extend the reasoning presented in the example above.
Notice at first that the sequence that was the basis for the analysis and for further pre-

diction was a sequence of differences. This means that the original components of these 
differences were in the primal information. However, the sequence of this primordial data 
Zi; i = 1, 2 …, n is nonstationary; subsidence almost always increases over time (sometimes 
it becomes zero and rarely does the ground rise). Instead of reasoning in the area of nonsta-
tionary processes, the author reduced the problem to a stationary process by calculating the 
sequence of the first differences. It is obvious that the analysis and prediction of a stationary 
process is much easier to conduct compared to a nonstationary one.

The idea of converting data that comprise a description of a nonstationary process to a sta-
tionary one, especially when prediction is concerned, was popular in the late 1960s and 1970s. 
The usual way of reasoning was to simply calculate the differences in adjacent series of elements 
(those that were nonstationary) as was done in Example 6.4. A new sequence of first differences 
often occurred in the stationary one. However, sometimes the test that was applied for stationar-
ity rejected the hypothesis that stated the stationarity of the sequence of differences. In such a 
case, a new sequence of differences was calculated; differences between differences. In most cases, 
this new sequence had a stationary character. Generally, it was recommended to make such a ‘dif-
ferentiation’ until a stationary sequence was obtained. When this was achieved, prediction was 

19 H. Wold seems to be the father of this principle (1964) but some researchers assign paternity to 
Tinbergen (1951).

Δw
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 Δ
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Successive observations

Tremors
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Unpredicted

Figure 7.8. Errors in the prognoses, the zone determined by boundaries ±3s(ε) and tremors of high 
energy (Sokoła-Szewioła 2011).
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226 Statistics for mining engineering

done and a prognosis was calculated in the area of stationary processes. The last but one step was 
to return to the original sequence with the prognosis attained, after any necessary mathematical 
transformations. A condition was formulated that the prognosis that was transferred to the origi-
nal space should correspond with the properties of the nonstationary process. A final step was 
the calculation of the accuracy of the prognosis and an analysis of the result attained.

It was obvious that such a way of reasoning was not suitable for all cases. This way of 
analysis is not adequate if  the stochastic process that is being analysed has an explosive char-
acter. Thus, the terms ‘quasi-stationary stochastic process’ or ‘almost stationary stochastic 
process’ were formulated.

A stochastic process Yt that has the following property:

(1 )t
tt∧ < + ωY �

where: YtYY  means the length of the stochastic vector of Yt
 ϑ—constant
 ω—any positive number

can be called a quasi-stationary stochastic process20.
A characteristic feature of such a process is that any changes have an evolutionary charac-

ter without a rapid pace of growth of the length of the vector Yt as time increases.
Presume now that m random variables Yi ; i = 1, 2, …, m are observed that are stochastic 

copies of each other and that a sample of size N was taken. Presume additionally that all 
moments t < t0 belong to the past and all moments t ≥ t0 belong to the future.

If  so, the following matrix can be constructed with all of the known elements:

Y =
y N y y t
y N y y t

m

m

1 0y ty 2 0 0

1 0y ty 2 0 0y2

( )−t N0t ( )t N−0t ( )−t N0

( )−t N +0t 1 ( )N0t 1+t N−t ( )− +t N0 1
…
…

… ……… …
…

…
y y y tm1 0y ty 2 0t 0yy( )t0t 1 ( )0t 1t0t ( )t0 1y1 t

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟⎠⎠
⎟⎟

All of the row vectors of this stochastic matrix are stationary whereas the column vectors 
can be either stationary or nonstationary. Assume that the column vectors are realisations of 
quasi-stationary random processes.

Now, if  (t0 − s) denotes any quasi-stationary stochastic vector and if  (t0 − s) denotes 
the stochastic vector of differences, then the formula that allows the stationary vector to be 
obtained is given by the pattern:

 
X Y( ) ( ) ( )k

k

k
0

0
0

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠=

∑
ρ ρ  (7.2)

where: ρ is the multiplicity of calculation of the differences needed to obtain the stationary 
sequence: s = 1, 2, …, N − ρ.

The number ρ also informs about the number of lost elements from the original sample of 
size N because of the calculation of the differences.

If  we are interested in a prognosis at a moment just at t0, then using formula (7.2), we can 
state that

 
Y Y( ) ) ( ) ( )( ) ( )X) ((

k( )) (X() k

k
0 0) (X) (

0
0−)( )X(X( ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

=
∑ ρρ

 (7.3)

where symbol (P) denotes the prognosis.

20 Compare Zadora (1974).
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By looking at formula (7.3), we can state that by having the prognosis of the stationary 
process for moment t0, we are able to get the prognosis for the quasi-stationary process for 
the same moment.

This way of reasoning can be extended (Czaplicki, Ph.D. dissertation 1975) but it will not 
be presented here because it is significantly beyond the basic level of considerations which is 
presented here.

■ Example 7.3

In Chapter 4.1 the problem of interval estimation was considered and the set of formulas that 
allows the confidence intervals for the parameters of technical object which the process of 
changes of states is of work-repair type, to be obtained. The process was presumed to be the 
Markov process. This means that the times of both states are independent and exponentially 
distributed. The reason that these patterns are presented is the fact that many of the techni-
cal objects in mining have operational processes that can be satisfactorily described by such 
a model.

By following this line of reasoning, it appears to be advantageous to present a similar set 
of formulas but which are orientated to the future.

The process whose parameters are the subject of our interest is stationary, which means 
that these parameters are independent of time. If  so, it can be assumed that the interval esti-
mations (based on the sample taken) that are obtained remain valid for the future provided 
that neither the method of operation nor the exploitation conditions do not change signifi-
cantly. This is very simplified approach to prediction.

However, there is a possibility to improve this reasoning.
Assume that we are interested in the prediction intervals of these parameters for m future 

process cycles and that we have information on the process comprising n process cycles. We 
know that the random variable 1λ twii

n
=∑  has a χ2 distribution with 2n degrees of freedom. 

Analogically, it can be stated that the random variable 2 1λ twii
m ( )P
=∑  has a χ2 distribution with 2m 

degrees of freedom and the upper script (P) denotes the future (predicted) value.
Consider the equation:

m t

n t
mwii

n

wii

m
=

=

∑
∑

=1

1

2
( )P

( ,n2n )F

Because the formula:

=

=
∑ ( )

1

ˆ
nn

wii

n
t

λ

is the estimator of the intensity of the failures of a sample of size n, then the following 
equation can be constructed:

 

⎧ ⎫⎪ ⎪< < = − α⎨ ⎬
⎪ ⎪⎩ ⎭

( )
( )

1 2
( )

ˆ
(2 , 2 ) (2 , 2 ) 1ˆ

P
m

n

P F n m F n m
λ
λ

where ( )
( )λ̂  concerns the future as before.

Thus, the prediction interval for the intensity of failures for m future process cycles is 
determined by the pattern:

 < < = − α( )
( ) 1 ( ) ( ) 2

ˆ ˆ ˆ{ (2 , 2 ) (2 , 2 )} 1P
n m nP F n m F n mλ λ λ  (7.4)
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228 Statistics for mining engineering

Analogically, the prediction interval for the intensity of repair for m future process cycles 
is determined by the pattern:

 < < = − α( )
( ) 1 ( ) ( ) 2

ˆ ˆ ˆ{ (2 , 2 ) (2 , 2 )} 1P
n m nP F n m F n mβ β β  (7.5)

To construct the prediction intervals for the expected values of times of states is easy 
and—having equation (1.119) in mind—the following equations hold:

 < < = − α( )
( ) 1 ( ) ( ) 2{ (2 , 2 ) (2 , 2 )} 1P

w n w m w nP F m n F m nT T T  (7.6)

 P F nr{ (r ) ( ,m )}( )nn ( )m
( )P

( )n( )(F T)n T 2FFr1 m r( , )n )m ( )n)n(FF Tr2mm 2,m 1<( )
( )PTr( )mTr = −1 α  (7.7)

where obviously:

 
TwTT

i
ri

i

n

n n
t( )n

=
∑ ∑Twi rTTt

n( )n =T ( )
1 1n

∑ T
1 1in =in

Now consider the quotient of two F statistics:

 
=

( ) ( )
( ) ( )

( ) ( )

ˆ ˆ (2 , 2 ):ˆ ˆ (2 , 2 )

P P
m m

n n

n m
n m

λ β
λ β

F
F

 (7.8)

Denote this random variable by ϑ(2n, 2m). If  so, equation (7.8) can be expressed as:

 =( )
( ) ( )ˆ ˆ (2 , 2 )P
m n n mκ κ ϑ  (7.9)

Now, we can obtain the prediction interval for the repair rate from the expression:

 ϑ < < ϑ = − α( )
( ) 1 ( ) ( ) 2ˆ ˆ ˆ{ (2 , 2 ) (2 , 2 )} 1P
n m nP n m n mκ κ κ  (7.10)

Similarly, the prediction interval for the steady-state availability can be achieved using the 
equation:

 

⎧ ⎫⎪ ⎪< < = − α⎨ ⎬+ − ϑ + − ϑ⎪ ⎪⎩ ⎭

( ) ( )( )
( )

( ) ( ) 2 ( ) ( ) 1

1
( 1) (2 , 2 ) ( 1) (2 , 2 )

n nP
m

n n n n

P
n m n m

Â Â
Â

Â Â Â Â
 (7.11)

Note, that

 ϑ1 22 2 1(2 ) (ϑ2ϑ , )2n, 2 =  (7.12)

By constructing the prediction intervals for M future cycles of the process of the series 
system consisting of k identical elements, one obtains the following formulas, which allow 
these intervals to be found:

• The prediction interval for the intensity of failures from the equation:

 < < = − α( )
( ) 1 ( ) ( ) 2

ˆ ˆ ˆ{ (2 , 2 ) (2 , 2 )} 1P
N M NP F Nk Mk F Nk Mkλ λ λ  (7.13)
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Special topic: Prediction 229

• The prediction interval for the expected value of work time from the equation:

 P k F k NkNNw w w{ (w )k ( ,k )}( )NN ( )M
( )P

( )NΤ(Fw )NkNw Τ Τ( )(PΤΤ ΤΤΤ1 2FFw w( , ) )M ( )NΤMk(FF , )Nk Τw )MΤΤw ΤwΤΤw2 kMkMk, MkMM 1ΤΤ ( )
( )PΤΤΤΤw( )MΤΤw = −1 α  (7.14)

• The prediction interval for the intensity of repair from the equation:

 < < = − α( )
( ) 1 ( ) ( ) 2

ˆ ˆ ˆ{ (2 , 2 ) (2 , 2 )} 1P
N M NP F N M F N Mβ β β  (7.15)

• The prediction interval for the expected value of repair time from the equation:

 P F Nr{ (r ) ( , )}( )NN ( )
( )P

( )N( )(Fr Τ)NNr Τ Τ( )PΤΤ ΤΤΤ 2FFr1 r( , ) ( )M ( )NΤ(FF , )N Τr )MΤΤr ΤrΤΤr2MM 2,M 1ΤΤ ( )
( )PΤΤΤΤr( )MΤΤr = −1 α  (7.16)

The prediction interval for the repair rate of the system can be determined using the ratio 
of two statistics F (not identical ones this time), namely:

 
=

( ) ( )
( ) ( )

( ) ( )

ˆ ˆ (2 , 2 ):ˆ ˆ (2 , 2 )

P P
M M

N N

Nk Mk
N M

λ β
λ β

F
F

 (7.17)

Denote this random variable by Ω(2Nk, 2Mk, 2N, 2M). If  so, the following equation can 
be constructed:

 Ω < < Ω = − α( )
( ) 1 ( ) ( ) 2ˆ ˆ ˆ{ (2 , 2 ,2 ,2 ) (2 , 2 , 2 , 2 )} 1P
N M NP Nk Mk N M Nk Mk N Mκ κ κ  (7.18)

which allows the prediction interval for the repair rate of the system to be obtained.
The prediction interval for the steady-state availability of the system can be obtainedfrom 

the pattern:

⎧ ⎫⎪ ⎪< <⎨ ⎬+ − + −⎪ ⎪⎩ ⎭
= − α

( ) ( )( )
( )

( ) ( ) 2 ( ) ( ) 1( 1) (2 ,2 ,2 ,2 ) ( 1) (2 ,2 ,2 ,2 )

1

N NP
M

N N N N

P
Nk Mk N M Nk Mk N MΩ Ω

Â Â
Â

Â Â Â Â

 
 (7.19)

After certain modifications, the interval estimations can be obtained for a series system 
that is constructed from non-identical elements (Czaplicki 1977b).

Constructing the prediction interval for the repair rate of a series system consisting of k 
of  the same elements and for the steady-state availability of this type of system, it is neces-
sary to know the values of the random variable Ω(δ1, δ2, δ3, δ4), which is the quotient of two 
F statistics F(δ1, δ2) and F(δ3, δ4) for the presumed level of probability21 α. A particular case 
of this random variable is the random variable ϑ that appears in formulas (7.10) and (7.11), 
and this variable is the quotient of two F statistics with the same degrees of freedom. For the 
two most frequently applied probability levels α = 0.95 and α = 0.99, the values ϑα are given 
in Table 9.17.

21 The probability density function of this random variable is given by the formula: 

f ( ) Γ)
Γ Γ Γ Γ ( )( ) ( ) ( ) ( )

δ δ δ δ
δ δ δ δ

Γ) ( δ

1
2

2
2

3
2
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2

3
2

Γ ΩΓΓ
δ δ δ δ

δ δ δ

δ δ δ δ

1
2

1 2δ
2 1

1 2

1 2δ
2

3 4

3 4δ
2

1

0

−
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( )δ δ
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∫ F d2 Fdd

22( )δ δ1 2δδδδ2δ ( )δ δ(δ3 4δδδ
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230 Statistics for mining engineering

If  the critical values of the Ωα distribution are needed, the following approximation can 
be applied:

 
Ωα α≅ + +

⎡

⎣
⎢
⎡⎡ ⎤

⎦
⎥
⎤⎤

⎦⎦
exp u k

Nk
k
Mk

1+1 k  (7.20)

where uα is the quantile of the order α of  the standardised normal distribution.
The above approximation is obtained from the following reasoning. By calculating the 

logarithms of both sides of the equation (7.15), one obtains:

 Ω = λ λ − β β( ) ( )
( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆln ln( / ) ln( / )P P
M N M N  (7.21)

Both logarithms of the right side of the equation are the Fisher’s z transformation of the 
statistic F. For a large M, N and k become normal distributions with a zero expected value; 
where the first logarithm has the variance ((Nk)−1 + (Mk)−1) while the second one has the 
variance22 (N−1 + M−1). For his reason, the random variable lnΩ has an approximately normal 
distribution with a zero expected value and the variance ((Nk)−1 + (Mk)−1 + N−1 + M−1).

When the variable  is being analysed, the approximation has the form:

 
ϑα α≅ +α

⎡

⎣
⎢
⎡⎡ ⎤

⎦
⎥
⎤⎤

⎦⎦n m
2 2  (7.22)

At the end of these considerations, it looks as though it is worth recalling the obvious 
stipulation that the information about the past should comprise a longer period than that 
concerning the future.

The presented relationships fulfil the mathematical requirements but now it is necessary to 
refer to engineering practice. There is information about ‘when the number of process cycles 
becomes large …’. In some cases, this constraint is difficult to fulfil in practice. There are 
some pieces of equipment for which the exploitation process can be satisfactorily modelled 
by the Markov process but these are of very high reliability, e.g. many main belt conveyors. 
Failures are recorded only a few times per year on average and therefore, in order to get a 
large sample where the process cycles are concerned, it is necessary to observe a dozen years 
or more. However, very often such conveyors do not work in one place for such a long period. 
A cardinal feature of mine transport routes is their changeability, especially where their length 
is concerned. From time to time, new pieces are added or sometimes some pieces are with-
drawn. This problem is connected with both a large sample size and with how far statistical 
inference should be conducted in cases for which prediction is being analysed. All researchers 
should keep these things in mind when undertaking a study in the field of forecasting.

22 See formula (1.125).
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CHAPTER 8

Explanations of some important terms

Correlation—a certain kind of stochastic relation between two or more random variables; it 
relies on such a regularity that any changes in the values of one variable are accompaniedby 
systematic stochastic changes in the values of the second variable or other variables.
Correlation coefficient—a basic measure of the strength of the stochastic relationship between 
the random variables being investigated
Critical region of test—a region of the rejection of the verified statistical hypothesis; the 
region is determined by the test that is applied.
Degrees of freedom (the number)—the number of independent outcomes of the observa-
tion reduced by the number of relationships that connect these outcomes among themselves. 
When an estimation of the structural parameters of the regression function is done and their 
significance is tested, then the number of degrees of freedom equals the number of observa-
tions reduced by the number of parameters that are being estimated.
Error of type I (error of the first kind)—an error that may be made during the verification of 
a statistical hypothesis; it relies on the rejection of the true hypothesis.
Error of type II (error of the second kind)—an error that may be made during the verification 
of a statistical hypothesis; it relies on the approval of the false hypothesis.
Estimation—the process of finding an estimate; an approximate calculation; in mathemati-
cal statistics a chapter on such a statistical inference that deals with the assessment of the 
unknown values of parameters in the general population based on a sample taken from it.

Interval estimation—such a method of the assessment of the unknown value of the gen-
eral population parameter that relies on the construction of a numerical interval of a 
random length that covers the unknown value of the parameter with a presumed a priori 
level of the probability.
Point estimation—such a method of the assessment of the unknown value of the general 
population parameter that this value is assumed to be the value of its estimator based on 
data taken from the sample.

Histogram—a graphical representation of a function that assigns a number of observations 
falling within it to each discrete interval (bin) of the investigated variable; a histogram may 
also be normalised in order to display the relative frequencies that show the proportion of 
cases that fall into each of several categories, with the total area equaling 1.
Hypothesis (statistical)—any supposition concerning an unknown distribution or parameters 
of the general population for which this supposition is verified based on a random sample 
taken from this population.

Null hypothesis—the basic statistical hypothesis that is being verified.
Alternative hypothesis—any statistical hypothesis that is a competitive one to the null 
hypothesis.
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232 Statistics for mining engineering

Intensity of failures

 1.  For nonrenewable technical objects (i.e. working to the first failure occurrence), it is the 
conditional probability that a failure will occur in time unit t + Δt provided that until 
time t no failure has occurred.

 2.  For renewable technical objects, it is the unconditional probability that a failure will 
occur; it is the reciprocal of the expected work time between two successive failures; 
dimension: failure per unit of time.

Interval, confidence—a random interval determined by the estimator distribution; this interval 
has such a property that it covers, with a presumed a priori probability (level of confidence), 
the unknown value of the population parameter or parameters.
Least squares method—a method for the estimation of the parameters of the regression func-
tion based on empirical data shown in the form of a sequence of numbers. The method relies 
on such a selection of the values of the parameters of the approximate function so as to 
achieve the minimum of the sum of squares of the deviations of the empirical points from the 
corresponding theoretical points as determined by the approximation function. The method 
of least squares is a standard approach to the approximate solution of over-determined sys-
tems, i.e. sets of equations in which there are more equations than unknowns.
Level of confidence—the presumed, near to 1, probability that the confidence interval covers 
the unknown value of the general population. Most frequently, the presumed level of signifi-
cance is 0.10; 0.05 or 0.01.
Level of significance—the probability, presumed near zero, of making an error of type I; most 
frequently the level is presumed to be 0.1; 0.05 or 0.01.
Parameters (of the general population)—parameters of the distribution of the random 
variable being tested from the general population; they characterise this distribution in a 
synthetic way. Usually parameters are divided into several groups: measures of an average 
level (e.g. mean, median), measures of dispersion (e.g. variance, standard deviation), measures 
of asymmetry, measures of concentration and other statistical measures (e.g. correlation); 
these measures are applied during the statistical study of a population.
Population, general population—a set, any finite or infinite aggregation of elements (homoge-
neous, but not identical) from which samples are drawn.
Regression—the analysis or measure of the association between random variables; the analy-
sis that allows the mean value of the variable being explained by one or more explanatory 
variables to be described.
Sample, random—an observed part of the general population; the sample that was taken in 
a random way and that will be used to make an inference on a determined regularity in the 
whole population.
Sample, representative—a random sample for which the structure is not significantly different 
than the structure of the general population for the variable that is being investigated and 
which is taken into consideration.
Sequence—a function from a subset of the natural numbers to a different set (numbers, 
points, functions etc.).
Standard estimation error—the square root of the variance, i.e. the standard deviation in the 
estimator distribution; the estimator that is used to assess the unknown value of a parameter 
of the general population.
Statistic—any function of outcomes of the sample, a random variable; theoretically, any 
function of a number of random variables, which are usually identically distributed, that may 
be used to estimate a population parameter.
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Statistics—
 1. formerly, knowledge on the state
 2.  the discipline of science that deals with the quantitative methods for investigating mass 

phenomena
 3. the numerical facts or data themselves.

Time series—a sequence of ordered observations of the variable of interest, which is con-
nected with different or identical moments in time or time periods; a significant feature of a 
time series is its arrangement according to the occurrence of the observations in time.
Test (statistical)—a rule of conduct that allows the decision to be made to reject the verified 
hypothesis or not, based on a sample taken.
Test of significance—a test that allows, with a presumed high probability, for the rejection of 
the verified hypothesis if  it is false; it does not allow it to be stated that the verified hypothesis 
is a true one.
Variable (explanatory)—a variable that is used to explain the formation of another variable 
or variables that are being investigated and that are logically associated with it.
Variable (being explained)—a dependent variable; a variable whose formation is explained 
by another variable or variables that are being investigated and that are logically associated 
with it.
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CHAPTER 9

Statistical tables

Table 9.1. Distribution function Φ(z) of standardised normal distribution N(0, 1). 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

For z < 0 values Φ(z) are calculated applying formula Φ(z) = 1 − Φ(−z).
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Table 9.2. Quantiles of the standardised normal distribution N(0, 1).

p 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 p

0.50 0.000 000 0.002 507 0.005 013 0.007 520 0.010 027 0.012 533 0.015 040 0.017 547 0.020 054 0.022 562 0.50
0.51 0.025 069 0.027 576 0.030 084 0.032 592 0.035 100 0.037 608 0.040 117 0.042 626 0.045 135 0.047 644 0.51
0.52 0.050 154 0.052 664 0.055 174 0.057 684 0.060 195 0.062 707 0.065 219 0.067 731 0.070 243 0.072 756 0.52
0.53 0.075 270 0.077 784 0.080 298 0.082 813 0.085 329 0.087 845 0.090 361 0.092 879 0.095 396 0.097 915 0.53
0.54 0.100 434 0.102 953 0.105 474 0.107 995 0.110 516 0.113 039 0.115 562 0.118 085 0.120 610 0.123 135 0.54

0.55 0.125 661 0.128 188 0.130 716 0.133 245 0.135 774 0.138 304 0.140 835 0.143 367 0.145 900 0.148 434 0.55
0.56 0.150 969 0.153 505 0.156 042 0.158 580 0.161 119 0.163 658 0.166 199 0.168 741 0.171 285 0.173 829 0.56
0.57 0.176 374 0.178 921 0.181 468 0.184 017 0.186 567 0.189 118 0.191 671 0.194 225 0.196 780 0.199 336 0.57
0.58 0.201 893 0.204 452 0.207 013 0.209 574 0.212 137 0.214 702 0.217 267 0.219 835 0.222 403 0.224 973 0.58
0.59 0.227 545 0.230 118 0.232 693 0.235 269 0.237 847 0.240 426 0.243 007 0.245 590 0.248 174 0.250 760 0.59

0.60 0.253 347 0.255 936 0.258 527 0.261 120 0.263 714 0.266 311 0.268 909 0.271 508 0.274 110 0.276 714 0.60
0.61 0.279 319 0.281 926 0.284 536 0.287 147 0.289 760 0.292 375 0.294 992 0.297 611 0.300 232 0.302 855 0.61
0.62 0.305 481 0.308 108 0.310 738 0.313 369 0.316 003 0.318 639 0.321 278 0.323 918 0.326 561 0.329 206 0.62
0.63 0.331 853 0.334 503 0.337 155 0.339 809 0.342 466 0.345 126 0.347 787 0.350 451 0.353 118 0.355 787 0.63
0.64 0.358 459 0.361 133 0.363 810 0.366 489 0.369 171 0.371 856 0.374 544 0.377 234 0.379 926 0.382 622 0.64

0.65 0.385 320 0.388 022 0.390 726 0.393 433 0.396 142 0.398 855 0.401 571 0.404 289 0.407 011 0.409 735 0.65
0.66 0.412 463 0.415 194 0.417 928 0.420 665 0.423 405 0.426 148 0.428 894 0.431 644 0.434 397 0.437 154 0.66
0.67 0.439 913 0.442 676 0.445 443 0.448 212 0.450 986 0.453 762 0.456 542 0.459 326 0.462 113 0.464 904 0.67
0.68 0.467 699 0.470 497 0.473 299 0.476 104 0.478 914 0.481 727 0.484 544 0.487 365 0.490 189 0.493 018 0.68
0.69 0.495 850 0.498 687 0.501 527 0.504 372 0.507 221 0.510 073 0.512 930 0.515 792 0.518 657 0.521 527 0.69

0.70 0.524 401 0.527 279 0.530 161 0.533 049 0.535 940 0.538 836 0.541 737 0.544 642 0.547 551 0.550 466 0.70
0.71 0.553 385 0.556 308 0.559 237 0.562 170 0.565 108 0.568 052 0.570 999 0.573 952 0.576 910 0.579 873 0.71
0.72 0.582 842 0.585 815 0.588 793 0.591 777 0.594 766 0.597 760 0.600 760 0.603 765 0.606 775 0.609 791 0.72
0.73 0.612 813 0.615 840 0.618 873 0.621 912 0.624 956 0.628 006 0.631 062 0.634 124 0.637 192 0.640 266 0.73
0.74 0.643 345 0.646 431 0.649 524 0.652 622 0.655 727 0.658 838 0.661 955 0.665 079 0.668 209 0.671 346 0.74
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0.75 0.674 490 0.677 640 0.680 797 0.683 961 0.687 131 0.690 309 0.693 493 0.696 685 0.699 884 0.703 089 0.75
0.76 0.706 303 0.709 523 0.712 751 0.715 986 0.719 229 0.722 479 0.725 737 0.729 003 0.732 276 0.735 558 0.76
0.77 0.738 847 0.742 144 0.745 450 0.748 763 0.752 085 0.755 415 0.758 754 0.762 101 0.765 456 0.768 820 0.77
0.78 0.772 193 0.775 575 0.778 966 0.782 365 0.785 774 0.789 192 0.792 619 0.796 055 0.799 501 0.802 956 0.78
0.79 0.806 421 0.809 896 0.813 380 0.816 875 0.820 379 0.823 894 0.827 418 0.830 953 0.834 499 0.838 055 0.79

0.80 0.841 621 0.845 199 0.848 787 0.852 386 0.855 996 0.859 617 0.863 250 0.866 894 0.870 550 0.874 217 0.80
0.81 0.877 896 0.881 587 0.885 290 0.889 006 0.892 733 0.896 473 0.900 226 0.903 991 0.907 770 0.911 561 0.81
0.82 0.915 365 0.919 183 0.923 014 0.926 859 0.930 717 0.934 589 0.938 476 0.942 376 0.946 291 0.950 221 0.82
0.83 0.954 165 0.958 124 0.962 099 0.966 088 0.970 093 0.974 114 0.978 150 0.982 203 0.986 271 0.990 356 0.83
0.84 0.994 458 0.998 576 1.002 712 1.006 964 1.011 034 1.015 222 1.019 428 1.023 651 1.027 893 1.032 154 0.84

0.85 1.036 433 1.040 732 1.045 050 1.049 387 1.053 744 1.058 122 1.062 519 1.066 938 1.071 377 1.075 837 0.85
0.86 0.080 319 0.084 823 0.089 349 0.093 897 0.098 468 0.103 063 0.107 680 0.112 321 0.116 987 0.121 677 0.86
0.87 0.126 391 0.131 131 0.135 896 0.140 687 0.145 505 0.150 349 0.155 221 0.160 120 0.165 047 0.170 002 0.87
0.88 0.174 987 0.180 001 0.185 044 0.190 118 0.195 223 0.200 359 0.205 527 0.210 727 0.215 960 0.221 227 0.88
0.89 0.226 528 0.231 864 0.237 235 0.242 641 0.248 085 0.253 565 0.259 084 0.264 641 0.270 238 0.275 874 0.89

0.90 1.281 552 1.287 271 1.293 032 1.298 837 1.304 685 1.310 579 1.316 519 1.322 505 1.328 539 1.334 622 0.90
0.91 0.340 755 0.346 939 0.353 174 0.359 463 0.365 806 0.372 204 0.378 659 0.385 172 0.391 744 0.398 377 0.91
0.92 0.405 072 0.411 830 0.418 654 0.425 544 0.432 503 0.439 531 0.446 632 0.453 806 0.461 056 0.468 384 0.92
0.93 0.475 791 0.483 280 0.490 853 0.498 513 0.506 262 0.514 102 0.522 036 0.530 068 0.538 199 0.546 433 0.93
0.94 0.554 774 0.563 224 0.571 787 0.580 467 0.589 268 0.598 193 0.607 248 0.616 436 0.625 763 0.635 234 0.94

0.95 1.644 854 1.654 628 1.664 563 1.674 665 1.684 941 1.695 398 1.706 043 1.716 886 1.727 934 1.739 198 0.95
0.96 0.750 686 0.762 410 0.774 382 0.786 613 0.799 118 0.811 911 0.825 007 0.838 424 0.852 180 0.866 296 0.96
0.97 0.880 794 0.895 698 0.911 036 0.926 837 0.943 134 0.959 964 0.977 368 0.995 393 2.014 091 2.033 520 0.97
0.98 2.053 749 2.074 855 2.096 927 2.120 072 2.144 411 2.170 090 2.197 286 2.226 212 0.257 129 0.290 368 0.98
0.99 0.326 348 0.365 618 0.408 916 0.457 263 0.512 144 0.575 829 0.652 070 0.747 781 0.878 162 3.090 232 0.99
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Table 9.3. Critical values of the Student’s t-distribution.

 v         α 0.2 0.1 0.05 0.02 0.01 0.002 0.001  α        v

1 3.078 6.314 12.706 31.821 63.657 318.309 636.619 1
2 1.886 2.920 4.303 6.965 6.925 22.327 31.598 2
3 1.638 2.353 3.182 4.541 5.841 10.212 12.941 3
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610 4
5 1.476 2.015 2.571 3.365 4.032 5.893 6.859 5

6 1.440 1.943 2.447 3.143 3.707 5.208 5.959 6
7 1.415 1.895 2.365 2.998 3.499 4.785 5.405 7
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041 8
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781 9

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587 10

11 1.363 1.796 2.201 2.718 3.106 4.025 4.437 11
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318 12
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221 13
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140 14
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073 15

16 1.337 1.746 2.120 2.583 2.921 3.686 4.015 16
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965 17
18 1.330 1.734 2.101 2.552 2.878 3.611 3.922 18
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883 19
20 1.325 1.725 2.086 2.528 2.845 3.552 3.850 20

21 1.323 1.721 2.080 2.518 2.831 3.527 3.819 21
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792 22
23 1.319 1.714 2.069 2.500 2.807 3.485 3.767 23
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745 24
25 1.316 1.708 2.060 2.485 2.787 3.450 3.725 25

26 1.315 1.706 2.056 2.479 2.779 3.435 3.707 26
27 1.314 1.703 2.052 2.473 2.771 3.421 3.690 27
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674 28
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659 29
30 1.310 1.697 2.042 2.457 2.750 3.385 3.646 30

40 1.303 1.684 2.021 2.423 2.704 3.307 3.551 40
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460 60

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373 120
∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291 ∞
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Table 9.4. Critical values of the Chi-squared distribution.

 v      α 0.9995 0.999 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005 0.001 0.0005   α   v

1 0.06393 0.05157 0.04393 0.03157 0.03982  0.02393 0.0158  2.706  3.841  5.024  6.635  7.879 10.828 12.116  1
2 0.02100 0.02200 0.0100 0.0201 0.0506  0.103 0.211  4.605  5.991  7.378  9.210 10.597 13.816 15.202  2
3 0.0153 0.0243 0.0717 0.115 0.216  0.352 0.584  6.251  7.815  9.348 11.345 12.838 16.266 17.730  3
4 0.0639 0.0908 0.207 0.297 0.484  0.711 1.064  7.779  9.488 11.143 13.277 14.860 18.467 19.997  4
5 0.158 0.210 0.412 0.554 0.831  1.145 1.610  9.236 11.070 12.832 15.086 16.750 20.515 22.105  5

6 0.299 0.381 0.676 0.872 1.237  1.635 2.204 10.645 12.592 14.449 16.812 18.548 22.458 24.103  6
7 0.485 0.598 0.989 1.239 1.690  2.167 2.833 12.017 14.067 16.013 18.475 20.278 24.322 26.018  7
8 0.710 0.857 1.344 1.646 2.180  2.733 3.490 13.362 15.507 17.535 20.090 21.955 26.125 27.868  8
9 0.972 1.153 1.735 2.088 2.700  3.325 4.168 14.684 16.919 19.023 21.666 23.589 27.877 29.666  9

10 1.265 1.479 2.156 2.558 3.247  3.940 4.865 15.987 18.307 20.483 23.209 25.188 29.588 31.420 10

11 1.587 1.834 2.603 3.053 3.816  4.575 5.578 17.275 19.675 21.920 24.725 26.757 31.264 33.136 11
12 1.934 2.214 3.074 3.571 4.404  5.226 6.304 18.549 21.026 23.336 26.217 28.300 32.909 34.821 12
13 2.305 2.617 3.565 4.107 5.009  5.892 7.042 19.812 22.362 24.735 27.688 29.819 34.528 36.478 13
14 2.697 3.041 4.075 4.660 5.629  6.571 7.790 21.064 23.685 26.119 29.141 31.319 36.123 38.109 14
15 3.108 3.483 4.601 5.229 6.262  7.261 8.547 22.307 24.996 27.488 30.578 32.801 37.697 39.719 15

16 3.536 3.942 5.142 5.812 6.908  7.962  9.312 23.542 26.296 28.845 32.000 34.267 39.252 41.308 16
17 3.980 4.416 5.697 6.408 7.564  8.672 10.085 24.769 27.587 30.191 33.409 35.718 40.790 42.879 17
18 4.439 4.905 6.265 7.015 8.231  9.390 10.865 25.989 28.869 31.526 34.805 37.156 42.312 44.434 18
19 4.912 5.407 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582 43.820 45.973 19
20 5.398 5.921 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997 45.315 47.498 20

(Continued)
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21  5.896  6.447  8.034  8.897 10.283 11.591 13.240 29.615 32.671 35.479  38.932  41.401  46.797  49.010  21
22  6.404  6.983  8.643  9.542 10.982 12.338 14.041 30.813 33.924 36.781  40.289  42.796  48.268  50.511  22
23  6.924  7.529  9.260 10.196 11.688 13.091 14.848 32.007 35.172 38.086  41.638  44.181  49.728  52.000  23
24  7.453  8.085  9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364  42.980  45.558  51.179  53.479  24
25  7.991  8.649 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646  44.314  46.928  52.618  54.947  25

26  8.538  9.222 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923  45.642  48.290  54.052  56.407  26
27  9.093  9.803 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.194  46.963  49.645  55.476  57.858  27
28  9.656 10.391 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461  48.278  50.993  56.892  59.300  28
29 10.227 10.986 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722  49.588  52.336  58.301  60.735  29
30 10.804 11.588 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979  50.892  53.672  59.703  62.162  30

40 16.906 17.916 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342  63.691  66.766  73.402  76.095  40
50 23.461 24.674 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420  76.154  79.490  86.661  89.561  50
60 30.340 31.738 35.535 37.485 40.482 43.188 46.459 74.397 79.082 83.298  88.379  91.952  99.607 102.695  60
70 37.467 39.036 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215 112.317 115.578  70
80 44.791 46.520 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321 124.839 128.261  80
90 52.276 54.155 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299 137.208 140.782  90

100 59.896 61.918 67.328 70.075 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169 149.449 153.167 100

Table 9.4. (Continued).

 v      α 0.9995 0.999 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005 0.001 0.0005  α    v
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Table 9.5. Critical values of the Snedecor’s F distribution for α = 0.10.

 v2
   

v1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞  
v1    v2

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33 1
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49 2
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13 3
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76 4
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10 5

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72 6
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47 7
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29 8
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16 9

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06 10

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97 11
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90 12
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85 13
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80 14
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76 15

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.09 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72 16
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69 17
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66 18
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63 19
20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61 20

(Continued)
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21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59 21
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57 22
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55 23
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53 24
25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52 25

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50 26
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49 27
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48 28
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47 29
30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46 30

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38 40
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29 60

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19 120
∞ 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00 ∞

Table 9.5. (Continued).

 v2
   

v1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞  
v1    v2
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Table 9.6. Critical values of the Snedecor’s F distribution for α = 0.05

 v2
    

v1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞  
v1    v2

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3 1
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.39 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50 2
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53 3
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63 4
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36 5

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67 6
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23 7
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93 8
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71 9

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54 10

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40 11
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30 12
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21 13
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13 14
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07 15

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01 16
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96 17
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92 18
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88 19
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84 20
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21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81 21
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78 22
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76 23
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73 24
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71 25

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69 26
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67 27
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65 28
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64 29
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62 30

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51 40
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39 60

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25 120
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00 ∞

Table 9.6. (Continued).

 v2
    

v1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞  
v1    v2
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Table 9.7. Critical values of the Snedecor’s F distribution for α = 0.025.

 v2
   

v1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞  
v1    v2

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 976.7 984.9 993.1 997.2 1001 1006 1010 1014 1018 1
2  38.51 39.00 39.17 39.25  39.30  39.33  39.35  39.37  39.39  39.40  39.41  39.43 39.45  39.46   39.46   39.47   39.48   39.49   39.50 2
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90 3
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26 4
5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02 5

6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.85 6
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.42 4.36 4.31 4.25 4.20 4.14 7
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67 8
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33 9

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08 10

11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88 11
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72 12
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60 13
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49 14
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40 15

16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32 16
17 6.04 6.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25 17
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19 18
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13 19
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09 20
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Table 9.7. (Continued).

 v2
   

v1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞  
v1    v2

21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04 21
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00 22
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97 23
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94 24
25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91 25

26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88 26
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85 27
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83 28
29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81 29
30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79 30

40 4.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64 40
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48 60

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43 1.31 120
∞ 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00 ∞
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Table 9.8. Critical values of the series distribution.

α = 0.05 α = 0.95

   n1

n2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 n1 
    n2

2 4 2

3 5 6 3

4 2 5 6 7 4

5 2 2 3 5 7 8 8 5

6 2 3 3 3 5 7 8 9 10 6

7 2 3 3 4 4 5 7 8 9 10 11 7

8 2 2 3 3 4 4 5 5 7 9 10 11 12 12 8

9 2 2 3 4 4 5 5 6 5 7 9 10 11 12 13 13 9

10 2 3 3 4 5 5 6 6 6 5 7 9 10 11 12 13 14 15 10

11 2 3 3 4 5 5 6 6 7 7 5 7 9 11 12 13 14 14 15 16 11

12 2 3 4 4 5 6 6 7 7 8 8 5 7 9 11 12 13 14 15 16 16 17 12

13 2 3 4 4 5 6 6 7 8 8 9 9 5 7 9 11 12 13 14 15 16 17 17 18 13

14 2 3 4 5 5 6 7 7 8 8 9 9 10 5 7 9 11 12 13 15 16 16 17 18 19 19 14

15 2 3 4 5 6 6 7 8 8 9 9 10 10 11 5 7 9 11 13 14 15 16 17 18 18 19 20 20 15

16 2 3 4 5 6 6 7 8 8 9 10 10 11 11 11 5 7 9 11 13 14 15 16 17 18 19 20 20 21 22 16

17 2 3 4 5 6 7 7 8 9 9 10 10 11 11 12 12 5 7 9 11 13 14 15 16 17 18 19 20 21 21 22 23 17

18 2 3 4 5 6 7 8 8 9 10 10 11 11 12 12 13 13 5 7 9 11 13 14 15 17 18 19 20 20 21 22 23 23 24 18

19 2 3 4 5 6 7 8 8 9 10 10 11 12 12 13 13 14 14 5 7 9 11 13 14 15 17 18 19 20 21 22 22 23 24 24 25 19

20 2 3 4 5 6 7 8 9 9 10 11 11 12 12 13 13 14 14 15 5 7 9 11 13 14 16 17 18 19 20 21 22 23 24 24 25 26 26 20
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Table 9.8. (Continued).

α = 0.025 α = 0.975

   n1

n2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 n1 
    n2

2 4 2

3 5 6 3

4 5 7 8 4

5 2 2 5 7 8 9 5

6 2 2 3 3 5 7 8 9 10 6

7 2 2 3 3 3 5 7 9 10 11 12 7

8 2 3 3 3 4 4 5 7 9 10 11 12 13 8

9 2 3 3 4 4 5 5 5 7 9 11 12 13 13 14 9

10 2 3 3 4 5 5 5 6 5 7 9 11 12 13 14 15 15 10

11 2 3 4 4 5 5 6 6 7 5 7 9 11 12 13 14 15 16 16 11

12 2 2 3 4 4 5 6 6 7 7 7 5 7 9 11 12 13 15 15 16 17 18 12

13 2 2 3 4 5 5 6 6 7 7 8 8 5 7 9 11 13 14 15 16 17 18 18 19 13

14 2 2 3 4 5 5 6 7 7 8 8 9 9 5 7 9 11 13 14 15 16 17 18 19 19 20 14

15 2 3 3 4 5 6 6 7 7 8 8 9 9 10 5 7 9 11 13 14 15 17 17 18 19 20 21 21 15

16 2 3 4 4 5 6 6 7 8 8 9 9 10 10 11 5 7 9 11 13 15 16 17 18 19 20 20 21 22 22 16

17 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11 5 7 9 11 13 15 16 17 18 19 20 21 22 22 23 24 17

18 2 3 4 5 5 6 7 8 8 9 9 10 10 11 11 12 12 5 7 9 11 13 15 16 17 18 19 20 21 22 23 24 24 25 18

19 2 3 4 5 6 6 7 8 8 9 10 10 11 11 12 12 13 13 5 7 9 11 13 15 16 17 19 20 21 22 22 23 24 25 25 26 19

20 2 3 4 5 6 6 7 8 9 9 10 10 12 12 13 13 13 13 14 5 7 9 11 13 15 16 17 19 20 21 22 23 24 24 25 26 26 27 20
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Table 9.9. Critical values of the Cochran statistic for α = 0.05.

K  
vx 1 2 3 4 5 6 7 8 9 10 16 36 144 ∞

2 0.9985 0.9750 0.9392 0.9057 0.8772 0.8534 0.8332 0.8159 0.8010 0.7880 0.7341 0.6602 0.5813 0.5000
3 0.9669 0.8709 0.7977 0.7457 0.7071 0.6771 0.6530 0.6333 0.6167 0.6025 0.5466 0.4748 0.4031 0.3333
4 0.9065 0.7679 0.6841 0.6287 0.5895 0.5598 0.5365 0.5175 0.5017 0.4884 0.4366 0.3720 0.3093 0.2500
5 0.8412 0.6838 0.5981 0.5441 0.5065 0.4783 0.4564 0.4387 0.4241 0.4118 0.3645 0.3066 0.2513 0.2000

6 0.7808 0.6161 0.5321 0.4803 0.4447 0.4184 0.3980 0.3817 0.3682 0.3568 0.3135 0.2612 0.2119 0.1667
7 0.7271 0.5612 0.4800 0.4307 0.3974 0.3726 0.3535 0.3384 0.3259 0.3154 0.2756 0.2278 0.1833 0.1429
8 0.6798 0.5157 0.4377 0.3910 0.3595 0.3362 0.3185 0.3043 0.2926 0.2829 0.2462 0.2022 0.1616 0.1250
9 0.6385 0.4775 0.4027 0.3584 0.3286 0.3067 0.2901 0.2768 0.2659 0.2568 0.2226 0.1820 0.1446 0.1111

10 0.6020 0.4450 0.3733 0.3311 0.3029 0.2823 0.2666 0.2541 0.2439 0.2353 0.2032 0.1655 0.1308 0.1000

12 0.5410 0.3924 0.3264 0.2880 0.2624 0.2439 0.2299 0.2187 0.2098 0.2020 0.1737 0.1403 0.1100 0.0833
15 0.4709 0.3346 0.2758 0.2419 0.2195 0.2034 0.1911 0.1815 0.1736 0.1671 0.1429 0.1144 0.0889 0.0667
20 0.3894 0.2705 0.2205 0.1921 0.1735 0.1602 0.1501 0.1422 0.1357 0.1303 0.1108 0.0879 0.0675 0.0500
24 0.3434 0.2354 0.1907 0.1656 0.1493 0.1374 0.1286 0.1216 0.1160 0.1113 0.0942 0.0743 0.0567 0.0417
30 0.2929 0.1980 0.1593 0.1377 0.1237 0.1137 0.1061 0.1002 0.0958 0.0921 0.0771 0.0604 0.0457 0.0333

40 0.2370 0.1576 0.1259 0.1082 0.0968 0.0887 0.0827 0.0780 0.0745 0.0713 0.0595 0.0462 0.0347 0.0250
60 0.1737 0.1131 0.0895 0.0765 0.0682 0.0623 0.0583 0.0552 0.0520 0.0497 0.0411 0.0316 0.0234 0.0167

120 0.0998 0.0632 0.0495 0.0419 0.0371 0.0337 0.0312 0.0292 0.0279 0.0266 0.0218 0.0165 0.0120 0.0083
∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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250 Statistics for mining engineering

Table 9.10. Critical values of the Hartley statistic for α = 0.05.

n − 1 K 2 3 4 5 6 7 8 9 10 11 12

2 39.0 87.5 142 202 266 333 403 475 550 626 704
3 15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104 114 124
4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4
5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9
6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7

7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8
8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7
9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34
12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48

15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93
20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59
30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39
60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36
∞ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 9.11. Quantiles of the Poisson distribution.

 d    α 0.99993 0.9999 0.9993 0.999 0.993 0.99 0.95

 0 0.000070 0.000100 0.000700 0.00100 0.00702 0.01005 0.05129
 1 0.01188 0.01421 0.03789 0.04540 0.12326 0.14855 0.35536
 2 0.07633 0.08618 0.16824 0.19053 0.38209 0.43604 0.81769
 3 0.21115 0.23180 0.38894 0.42855 0.74108 0.82325 1.36632
 4 0.41162 0.44446 0.68204 0.73937 1.17032 1.27911 1.97013
 5 0.66825 0.71375 1.03236 1.10710 1.65152 1.78528 2.61301
 6 0.97222 1.03840 1.42874 1.52034 2.17293 2.33021 3.28532
 7 1.31628 1.38697 1.86297 1.97041 2.72659 2.90611 3.98082
 8 1.69465 1.77758 2.32894 2.45242 3.30682 3.50746 4.69523
 9 2.10271 2.19758 2.82197 2.96052 3.90942 4.13020 5.42541
10 2.53672 2.64323 3.33840 3.49148 4.53113 4.77125 6.16901
11 2.99367 3.11150 3.87531 4.04244 5.16960 5.42818 6.92421
12 3.47103 3.59988 4.43033 4.61106 5.82265 6.09907 7.68958
13 3.96672 4.10632 5.00152 5.19544 6.48871 6.78235 8.46394
14 4.47896 4.62904 5.58725 5.79398 7.16642 7.47673 9.24633
15 5.00626 5.16657 6.18615 6.40533 7.85464 8.18111 10.03596
16 5.54732 5.71762 6.79705 7.02835 8.55241 8.89457 10.83214

(Continued)
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Statistical tables 251

 d    α 0.93 0.90 0.80 0.70 0.60 0.50 0.40

 0 0.07257 0.10536 0.22314 0.35667 0.51082 0.69315 0.91629
 1 0.43081 0.53181 0.82439 1.09733 1.37642 1.67835 2.02231
 2 0.94230 1.10206 1.53504 1.91379 2.28508 2.67406 3.10338
 3 1.53414 1.74477 2.29679 2.76371 3.21132 3.67206 4.17526
 4 2.17670 2.43259 3.08954 3.63361 4.14774 4.67091 5.23662
 5 2.85488 3.15190 3.90366 4.51714 5.09098 5.67016 6.29192
 6 3.53984 3.89477 4.73366 5.41074 6.03924 6.66966 7.34265
 7 4.28584 4.65612 5.57606 6.31217 6.99137 7.66925 8.38977
 8 5.02895 5.43247 6.42848 7.21993 7.94661 8.66895 9.43395
 9 5.78633 6.22130 7.28922 8.13293 8.90441 9.66871 10.47568
10 6.55583 7.02075 8.15702 9.05036 9.86440 10.66852 11.51533
11 7.33581 7.82934 9.03090 9.97161 10.82624 11.66836 12.55317
12 8.12496 8.64594 9.91010 10.89620 11.78972 12.66823 13.58944
13 8.92222 9.46962 10.79398 11.82373 12.75462 13.66811 14.62431
14 9.72672 10.29962 11.68206 12.75388 13.72081 14.66802 15.65793
15 10.53773 11.13539 12.57389 13.68639 14.68814 15.66793 16.68043
16 11.35465 11.97613 13.46913 14.62103 15.65651 16.66785 17.72191

 d    α 0.30 0.20 0.10 0.05 0.025 0.01 0.005

 0 1.20397 l.60944 2.30258 2.99573 3.68888 4.60517 5.29832
 1 2.43922 2.99431 3.88972 4.74386 5.57164 6.63835 7.43013
 2 3.61557 4.27903 5.32232 6.29579 7.22469 8.40595 9.27379
 3 4.76223 5.51504 6.68078 7.75366 8.76727 10.04512 10.97748
 4 5.89036 6.72098 7.99359 9.15352 10.24159 11.60462 12.59409
 5 7.00555 7.90599 9.27467 10.51303 11.66833 13.10848 14.14976
 6 8.11105 9.07538 10.53207 11.84240 13.05947 14.57062 15.65968
 7 9.20895 10.23254 11.77091 13.14811 14.42268 15.99996 17.13359
 8 10.30068 11.37977 12.99471 14.43465 15.76319 17.40265 18.57822
 9 11.38727 12.51875 14.20599 15.70522 17.08480 18.78312 19.99842
10 12.46951 13.65073 15.40664 16.96222 18.39036 20.14468 21.39783
11 13.54798 14.77666 16.59812 18.20751 19.68204 21.48991 22.77926
12 14.62316 15.89731 17.78158 19.44257 20.96158 22.82084 24.14494
13 15.69544 17.01328 18.95796 20.66857 22.23040 24.13912 25.49669
14 16.78512 18.12509 20.12801 21.88648 23.48962 25.44609 26.83398
15 17.83246 19.23316 21.29237 23.09713 24.74022 26.74289 28.16406
16 18.89769 20.93782 22.45158 24.30118 25.98300 28.03045 29.48198

Table 9.11. (Continued).
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Table 9.12. Critical values in Kolmogorov test of goodness-of-fit.

n  
α 0.20 0.10 0.05 0.02 0.01 n  

a
0.20 0.10 0.05 0.02 0.01

1 0.900 00 0.950 00 0.975 00 0.990 00 0.995 00  51 0.146 97 0.167 96 0.186 59 0.208 64 0.223 86
2 0.683 77 0.776 39 0.841 89 0.900 00 0.929 29  52 0.145 58 0.166 37 0.184 82 0.206 67 0.221 74
3 0.564 81 0.636 04 0.707 60 0.784 56 0.829 00  53 0.144 23 0.164 83 0.183 11 0.204 75 0.219 68
4 0.492 65 0.563 22 0.623 94 0.688 87 0.734 24  54 0.142 92 0.163 32 0.181 44 0.202 89 0.217 68
5 0.446 98 0.509 45 0.563 28 0.627 18 0.668 53  55 0.141 64 0.161 86 0.179 81 0.201 07 0.215 74

6 0.410 37 0.467 99 0.519 26 0.577 41 0.616 61  56 0.140 40 0.160 44 0.178 23 0.199 30 0.213 84
7 0.381 48 0.436 07 0.483 42 0.538 44 0.575 81  57 0.139 19 0.159 06 0.176 69 0.197 58 0.211 99
8 0.358 31 0.409 62 0.454 27 0.506 54 0.541 79  58 0.138 01 0.157 71 0.175 19 0.195 90 0.210 19
9 0.339 10 0.387 46 0.430 01 0.479 60 0.513 32  59 0.136 86 0.156 39 0.173 73 0.194 27 0.208 44

10 0.322 60 0.368 66 0.409 25 0.456 62 0.488 93  60 0.135 73 0.155 11 0.172 31 0.192 67 0.206 73

11 0.308 29 0.352 42 0.391 22 0.436 70 0.467 70  61 0.134 64 0.153 85 0.170 91 0.191 12 0.205 06
12 0.295 77 0.338 15 0.375 43 0.419 18 0.449 05  62 0.133 57 0.152 63 0.169 56 0.189 60 0.203 43
13 0.284 70 0.325 49 0.361 43 0.403 62 0.432 47  63 0.132 53 0.151 44 0.168 23 0.188 12 0.201 84
14 0.274 81 0.314 17 0.348 90 0.389 70 0.417 62  64 0.131 51 0.150 27 0.166 93 0.186 67 0.200 29
15 0.265 88 0.303 97 0.337 60 0.377 13 0.404 20  65 0.130 52 0.149 13 0.165 67 0.185 25 0.198 77

16 0.257 78 0.294 72 0.327 33 0.365 71 0.392 01  66 0.129 54 0.148 02 0.164 43 0.183 87 0.197 29
17 0.250 39 0.286 27 0.317 96 0.355 28 0.380 86  67 0.128 59 0.146 93 0.163 22 0.182 52 0.195 84
18 0.243 60 0.278 51 0.309 36 0.345 69 0.370 62  68 0.127 66 0.145 87 0.162 04 0.181 19 0.194 42
19 0.237 35 0.271 36 0.301 43 0.336 85 0.361 17  69 0.126 75 0.144 83 0.160 88 0.179 90 0.193 03
20 0.231 56 0.264 73 0.294 08 0.328 66 0.352 41  70 0.125 86 0.143 81 0.159 75 0.178 63 0.191 67

21 0.226 17 0.258 58 0.287 24 0.321 04 0.344 27  71 0.124 99 0.142 81 0.158 64 0.177 39 0.190 34
22 0.221 15 0.252 83 0.280 87 0.313 94 0.336 66  72 0.124 13 0.141 83 0.157 53 0.176 18 0.189 03
23 0.216 45 0.247 46 0.274 90 0.307 28 0.329 54  73 0.123 29 0.140 87 0.156 49 0.174 98 0.187 76
24 0.212 05 0.242 42 0.269 31 0.301 04 0.322 86  74 0.122 47 0.139 93 0.155 44 0.173 82 0.186 50
25 0.207 90 0.237 68 0.264 04 0.295 16 0.316 57  75 0.121 67 0.139 01 0.154 42 0.172 68 0.185 28
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26 0.203 99 0.233 20 0.259 07 0.289 62 0.310 64  76 0.120 88 0.138 11 0.153 42 0.171 55 0.184 08
27 0.200 30 0.228 98 0.254 38 0.284 38 0.305 02  77 0.120 11 0.137 23 0.152 44 0.170 45 0.182 90
28 0.196 80 0.224 97 0.249 93 0.279 42 0.299 71  78 0.119 35 0.136 36 0.151 47 0.169 38 0.181 74
29 0.193 48 0.221 17 0.245 71 0.274 71 0.294 66  79 0.118 60 0.135 51 0.150 52 0.168 32 0.180 60
30 0.190 32 0.217 56 0.241 70 0.270 23 0.289 87  80 0.117 87 0.134 67 0.149 60 0.167 28 0.179 49

31 0.187 32 0.214 12 0.237 88 0.265 96 0.285 30  81 0.117 16 0.133 85 0.148 68 0.166 26 0.178 40
32 0.184 45 0.210 85 0.234 24 0.261 89 0.280 94  82 0.116 45 0.133 05 0.147 79 0.165 26 0.177 32
33 0.181 71 0.207 71 0.230 76 0.258 01 0.276 77  83 0.115 76 0.132 26 0.146 91 0.164 28 0.176 27
34 0.179 09 0.204 72 0.227 43 0.254 29 0.272 79  84 0.115 08 0.131 48 0.146 05 0.163 31 0.175 23
35 0.176 59 0.201 85 0.224 25 0.250 73 0.268 97  85 0.114 42 0.130 72 0.145 20 0.162 36 0.174 21

36 0.174 18 0.199 10 0.221 19 0.247 32 0.265 32  86 0.113 76 0.129 97 0.144 37 0.161 43 0.173 21
37 0.171 88 0.196 46 0.218 26 0.244 04 0.261 80  87 0.113 11 0.129 23 0.143 55 0.160 51 0.172 23
38 0.169 66 0.193 92 0.215 44 0.240 89 0.258 43  88 0.112 48 0.128 50 0.142 74 0.159 61 0.171 26
39 0.167 53 0.191 48 0.212 73 0.237 86 0.255 18  89 0.111 86 0.127 79 0.141 95 0.158 73 0.170 31
40 0.165 47 0.189 13 0.210 12 0.234 94 0.232 03  90 0.111 25 0.127 09 0.141 17 0.157 86 0.169 38

41 0.163 49 0.186 87 0.207 60 0.232 13 0.249 04  91 0.110 64 0.126 40 0.140 40 0.157 00 0.168 46
42 0.161 58 0.184 68 0.205 17 0.229 41 0.246 13  92 0.110 05 0.125 72 0.139 65 0.156 16 0.167 55
43 0.159 74 0.182 57 0.202 83 0.226 79 0.243 32  93 0.109 47 0.125 06 0.138 91 0.155 33 0.166 66
44 0.157 96 0.180 53 0.200 56 0.224 26 0.240 60  94 0.108 89 0.124 40 0.138 18 0.154 51 0.165 79
45 0.156 23 0.178 56 0.198 57 0.221 81 0.237 98  95 0.108 33 0.123 75 0.137 46 0.153 71 0.164 93

46 0.154 57 0.176 65 0.196 25 0.219 44 0.235 44  96 0.107 77 0.123 12 0.136 75 0.152 91 0.164 08
47 0.152 95 0.174 81 0.194 20 0.217 15 0.232 98  97 0.107 22 0.122 49 0.136 06 0.152 14 0.163 24
48 0.151 39 0.173 02 0.192 21 0.214 93 0.230 59  89 0.106 68 0.121 87 0.135 37 0.151 37 0.162 42
49 0.149 87 0.171 28 0.190 28 0.212 77 0.228 28  99 0.106 15 0.121 26 0.134 69 0.150 61 0.161 61
50 0.148 40 0.169 59 0.18 841 0.210 68 0.226 04 100 0.105 63 0.120 67 0.134 03 0.149 87 0.160 81
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Table 9.13. Critical values of a linear correlation coefficient and a partial correlation 
coefficient.

N 
α 0.1 0.05 0.02 0.01 0.001

1 0.98769 0.99692 0.999507 0.999877 0.9999988
2 0.90000 0.95000 0.980000 0.990000 0.99900
3 0.8054 0.8783 0.93433 0.95873 0.99116
4 0.7293 0.8114 0.8822 0.91720 0.97406
5 0.6694 0.7545 0.8329 0.8745 0.95074

6 0.6215 0.7067 0.7887 0.8343 0.92493
7 0.5822 0.6664 0.7498 0.7977 0.8982
8 0.5494 0.6319 0.7155 0.7646 0.8721
9 0.5214 0.6021 0.6851 0.7348 0.8471

10 0.4973 0.5760 0.6581 0.7079 0.8233

11 0.4762 0.5529 0.6339 0.6835 0.8010
12 0.4575 0.5324 0.6120 0.6614 0.7800
13 0.4409 0.5139 0.5923 0.6411 0.7603
14 0.4259 0.4973 0.5742 0.6226 0.7420
15 0.4124 0.4821 0.5577 0.6055 0.7246

16 0.4000 0.4683 0.5425 0.5897 0.7084
17 0.3887 0.4555 0.5285 0.5751 0.6932
18 0.3783 0.4438 0.5155 0.5614 0.6787
19 0.3687 0.4329 0.5034 0.5487 0.6652
20 0.3598 0.4227 0.4921 0.5368 0.6524

25 0.3233 0.3809 0.4451 0.4869 0.5974
30 0.2960 0.3494 0.4093 0.4487 0.5541
35 0.2746 0.3246 0.3810 0.4182 0.5189
40 0.2573 0.3044 0.3578 0.3932 0.4896
45 0.2428 0.2475 0.3384 0.3721 0.4648

50 0.2306 0.2732 0.3218 0.3541 0.4433
60 0.2108 0.2500 0.2948 0.3248 0.4078
70 0.1954 0.2319 0.2737 0.3017 0.3799
80 0.1829 0.2172 0.2565 0.2830 0.3568
90 0.1726 0.2050 0.2422 0.2673 0.3375

100 0.1638 0.1946 0.2301 0.2540 0.3211
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Table 9.14. Critical values of the Spearman’s 
rank correlation coefficient.

n

α

0.05 0.01

4 1.000 –
3 0.900 1.000
6 0.829 0.943
7 0.714 0.893
8 0.643 0.833
9 0.600 0.783
10 0.564 0.746
12 0.506 0.712
14 0.456 0.645
16 0.425 0.601
18 0.399 0.564
20 0.377 0.534
22 0.359 0.508
24 0.343 0.485
26 0.329 0.465
28 0.317 0.448
30 0.306 0.432

Table 9.15. Critical values of a multiple correlation 
coefficient.

N    
k 3 4 5 6

1 0.999
1.000

0.999
1.000

0.999
1.000

0.999
1.000

2 0.975
0.995

0.983
0.997

0.987
0.997

0.990
0.998

3 0.930
0.977

0.950
0.983

0.961
0.987

0.968
0.990

4 0.881
0.949

0.912
0.962

0.930
0.970

0.942
0.975

5 0.836
0.917

0.874
0.937

0.898
0.949

0.914
0.957

6 0.795
0.886

0.839
0.911

0.867
0.927

0.886
0.938

7 0.758
0.855

0.807
0.885

0.838
0.904

0.860
0.918

8 0.726
0.827

0.777
0.860

0.811
0.882

0.835
0.898

9 0.697
0.800

0.750
0.837

0.786
0.861

0.812
0.878

10 0.671
0.776

0.726
0.814

0.763
0.840

0.790
0.859

(Continued)
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Table 9.15. (Continued).

N    
k 3 4 5 6

11 0.648
0.753

0.703
0.793

0.741
0.821

0.770
0.841

12 0.627
0.732

0.683
0.773

0.722
0.802

0.751
0.824

13 0.608
0.712

0.664
0.755

0.703
0.785

0.733
0.807

14 0.590
0.694

0.646
0.737

0.686
0.768

0.717
0.791

15 0.574
0.677

0.630
0.721

0.670
0.752

0.701
0.776

16 0.559
0.662

0.615
0.706

0.656
0.738

0.687
0.762

17 0.545
0.647

0.601
0.691

0.641
0.724

0.673
0.749

18 0.532
0.633

0.587
0.678

0.628
0.710

0.660
0.736

19 0.520
0.620

0.575
0.665

0.615
0.697

0.647
0.723

20 0.509
0.607

0.563
0.652

0.604
0.685

0.636
0.712

21 0.498
0.596

0.552
0.641

0.593
0.674

0.624
0.700

22 0.488
0.585

0.542
0.630

0.582
0.663

0.614
0.690

23 0.479
0.574

0.532
0.619

0.572
0.653

0.604
0.679

24 0.470
0.565

0.523
0.609

0.562
0.643

0.594
0.669

25 0.462
0.555

0.514
0.600

0.553
0.633

0.585
0.660

26 0.454
0.546

0.506
0.590

0.543
0.624

0.576
0.651

27 0.446
0.538

0.498
0.582

0.536
0.615

0.568
0.642

28 0.439
0.529

0.490
0.573

0.529
0.607

0.560
0.633

29 0.432
0.522

0.483
0.565

0.521
0.598

0.552
0.625

30 0.425
0.514

0.476
0.557

0.514
0.591

0.545
0.618

40 0.373
0.454

0.419
0.494

0.455
0.526

0.484
0.552

60 0.308
0.377

0.348
0.414

0.380
0.442

0.406
0.467

120 0.221
0.272

0.251
0.300

0.275
0.322

0.295
0.342

The upper row is for α = 0.05; the lower row for α = 0.01.
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Table 9.16a. Critical values Dn,m(α) in the Smirnov test of goodness-of-fit for two empirical 
distributions.

n m

α

k0.10 0.05 0.02 0.01

3  3 3 0.100 — — — 3

4  4 4 0.029 4 0.029 — — 4
 3 12 0.057 — — — 12

5  5 4 0.079 5 0.008 5 0.008 5 0.008 5
 4 16 0.079 20 0.016 20 0.016 — 20
 3 15 0.036 15 0.036 — 15
 2 10 0.095 — — — 10

6  6 5 0.026 5 0.0026 6 0.002 6 0.002 6
 5 24 0.048 24 0.048 30 0.004 30 0.004 30
 4 9 0.095 10 0.048 12 0.010 12 0.010 12
 3 5 0.095 6 0.024 — — 6
 2 6 0.071 — — — 6

7  7 5 0.053 6 0.008 6 0.008 6 0.008 7
 6 28 0.091 30 0.038 35 0.015 36 0.009 42
 5 25 0.066 29 0.030 30 0.015 35 0.003 35
 4 21 0.067 24 0.030 28 0.006 28 0.006 28
 3 18 0.067 21 0.017 21 0.017 — 21
 2 14 0.056 — — — 14

8  8 5 0.087 6 0.019 6 0.019 7 0.002 8
 7 34 0.087 40 0.033 42 0.013 48 0.005 56
 6 15 0.093 17 0.043 20 0.009 20 0.009 24
 5 27 0.079 29 0.042 35 0.009 35 0.009 40
 4 6 0.085 7 0.020 8 0.004 8 0.004 8
 3 21 0.048 21 0.048 24 0.012 — 24
 2 8 0.044 8 0.044 — — 8

9  9 6 0.034 6 0.034 7 0.006 7 0.006 9
 8 40 0.079 46 0.047 54 0.011 55 0.008 72
 7 36 0.098 42 0.034 47 0.015 49 0.008 63
 6 11 0.095 13 0.028 14 0.014 15 0.006 18
 5 30 0.086 35 0.028 36 0.014 40 0.006 45
 4 27 0.062 28 0.042 32 0.014 36 0.003 36
 3 7 0.091 8 0.036 9 0.009 9 0.009 9
 2 18 0.036 18 0.036 — — 18

10  10 6 0.052 7 0.012 7 0.012 8 0.002 10
 9 50 0.084 53 0.045 61 0.018 63 0.007 90
 8 22 0.095 24 0.050 28 0.012 30 0.007 40
 7 40 0.087 46 0.036 50 0.016 56 0.006 70
 6 18 0.092 20 0.042 22 0.019 24 0.009 30
 5 7 0.061 8 0.019 8 0.019 9 0.004 10
 4 14 0.084 15 0.046 18 0.010 18 0.010 20
 3 24 0.070 27 0.028 30 0.007 30 0.007 30
 2 9 0.091 10 0.030 — — 10

11  11 6 0.075 7 0.021 8 0.004 8 0.004 11
 10 57 0.092 60 0.043 69 0.017 77 0.008 110
 9 52 0.089 59 0.039 63 0.019 70 0.007 99
 8 48 0.081 53 0.047 61 0.013 64 0.007 88

(Continued)
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 7 44 0.083 48 0.049 55 0.014 59 0.006 77
 6 38 0.092 43 0.048 49 0.013 54 0.006 66
 5 35 0.074 39 0.044 44 0.014 45 0.010 55
 4 29 0.098 33 0.035 40 0.007 40 0.007 44
 3 27 0.055 30 0.022 33 0.005 33 0.005 33
 2 20 0.077 22 0.026 — — 22

12  12 6 0.100 7 0.031 8 0.008 8 0.008 12
 11 64 0.091 72 0.050 77 0.017 86 0.009 132
 10 30 0.093 33 0.049 37 0.020 40 0.007 60
 9 19 0.078 21 0.041 23 0.018 25 0.007 36
 8 13 0.091 15 0.032 16 0.018 17 0.009 24
 7 46 0.098 53 0.034 58 0.017 60 0.010 84
 6 8 0.046 8 0.046 9 0.015 10 0.004 12
 5 36 0.096 43 0.033 48 0.010 50 0.007 60
 4 9 0.048 9 0.048 10 0.016 11 0.005 12
 3 9 0.088 10 0.044 11 0.018 12 0.004 12
 2 11 0.066 12 0.022 — — 12

13  13 7 0.044 7 0.044 8 0.013 9 0.003 13
 12 71 0.091 81 0.049 92 0.019 95 0.009 156
 11 67 0.100 75 0.048 86 0.015 91 0.009 143
 10 64 0.094 70 0.049 78 0.018 84 0.010 130
 9 59 0.098 65 0.042 73 0.018 78 0.008 117
 8 54 0.099 62 0.039 67 0.019 72 0.009 104
 7 50 0.094 56 0.046 63 0.017 65 0.007 91
 6 46 0.086 52 0.034 54 0.019 59 0.007 78
 5 40 0.087 45 0.040 50 0.015 52 0.007 65
 4 35 0.089 39 0.038 44 0.013 48 0.004 52
 3 30 0.071 33 0.036 36 0.014 39 0.004 39
 2 24 0.057 26 0.019 26 0.019 — 26

14  14 7 0.059 8 0.019 8 0.019 9 0.005 14
 13 78 0.097 89 0.049 102 0.017 104 0.010 182
 12 39 0.087 43 0.044 47 0.020 52 0.008 84
 11 73 0.090 82 0.041 90 0.017 96 0.009 154
 10 34 0.091 37 0.049 42 0.016 45 0.008 70
 9 63 0.082 70 0.046 80 0.015 84 0.008 126
 8 29 0.091 32 0.046 36 0.018 38 0.009 56
 7 8 0.083 9 0.033 10 0.012 11 0.003 14
 6 24 0.086 27 0.037 30 0.014 32 0.008 42
 5 42 0.079 46 0.047 51 0.019 56 0.006 70
 4 19 0.072 21 0.030 24 0.010 24 0.010 28
 3 33 0.050 36 0.029 39 0.012 42 0.003 42
 2 12 0.100 13 0.050 14 0.017 — 14

15  15 7 0.075 8 0.026 9 0.008 9 0.008 15
 14 92 0.100 98 0.044 111 0.017 123 0.009 210
 13 87 0.088 96 0.047 107 0.019 115 0.008 195
 12 28 0.078 31 0.040 34 0.017 36 0.010 60
 11 76 0.099 84 0.048 95 0.018 102 0.009 165
 10 15 0.077 16 0.050 18 0.018 20 0.006 30
 9 38 0.073 25 0.042 28 0.015 30 0.007 45

(Continued)

Table 9.16a. (Continued).

n m

α

k0.10 0.05 0.02 0.01
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 8 60 0.086 67 0.042 75 0.014 81 0.010 120
 7 56 0.079 62 0.047 70 0.014 75 0.009 105
 6 17 0.087 19 0.040 21 0.016 23 0.006 30
 5 10 0.052 11 0.023 12 0.009 12 0.009 15
 4 40 0.086 44 0.042 48 0.018 52 0.008 60
 3 11 0.086 12 0.049 14 0.010 14 0.010 15
 2 26 0.088 28 0.044 30 0.015 — 30

16  16 7 0.093 8 0.035 9 0.011 10 0.003 16
 15 101 0.093 114 0.048 120 0.019 133 0.009 240
 14 48 0.093 53 0.048 60 0.017 63 0.009 112
 13 91 0.089 101 0.047 112 0.018 121 0.009 208
 12 22 0.084 24 0.047 27 0.017 29 0.008 48
 11 80 0.086 89 0.049 100 0.019 106 0.009 176
 10 38 0.088 42 0.044 47 0.017 50 0.009 80
 9 69 0.100 78 0.043 87 0.016 94 0.007 144
 8 9 0.058 10 0.024 11 0.009 11 0.009 16
 7 59 0.094 64 0.048 73 0.018 77 0.010 112
 6 27 0.086 30 0.042 33 0.019 36 0.008 48
 5 48 0.088 54 0.041 59 0.018 64 0.007 80
 4 11 0.070 12 0.034 13 0.014 14 0.006 16
 3 36 0.072 39 0.041 45 0.008 45 0.008 48
 2 14 0.078 15 0.039 16 0.013 — 16

17  17 8 0.045 8 0.045 9 0.016 10 0.005 17
 16 109 0.096 124 0.045 139 0.020 143 0.009 272
 15 105 0.094 116 0.049 131 0.018 142 0.009 255
 14 100 0.096 111 0.048 125 0.018 134 0.009 238
 13 96 0.091 105 0.050 118 0.019 127 0.008 221
 12 90 0.093 100 0.046 112 0.017 119 0.009 204
 11 85 0.092 93 0.046 104 0.018 110 0.010 187
 10 79 0.097 89 0.044 99 0.017 106 0.008 170
 9 74 0.091 82 0.049 92 0.016 99 0.009 153
 8 68 0.097 77 0.044 85 0.018 88 0.009 136
 7 61 0.099 68 0.046 77 0.019 84 0.007 119
 6 56 0.084 62 0.040 68 0.016 73 0.010 102
 5 50 0.094 55 0.048 63 0.015 68 0.005 85
 4 44 0.085 48 0.046 56 0.012 60 0.005 68
 3 36 0.098 42 0.035 45 0.018 48 0.007 51
 2 30 0.070 32 0.035 34 0.012 — 34

18  18 8 0.056 9 0.021 10 0.007 10 0.007 18
 17 118 0.091 133 0.047 150 0.018 164 0.009 306
 16 58 0.093 64 0.048 71 0.019 77 0.009 144
 15 37 0.096 41 0.046 46 0.017 49 0.010 90
 14 52 0.100 58 0.048 65 0.018 70 0.008 126
 13 99 0.098 110 0.050 123 0.020 131 0.010 234
 12 16 0.094 18 0.042 20 0.016 21 0.010 36
 11 88 0.097 97 0.048 108 0.019 118 0.009 198
 10 41 0.099 46 0.047 52 0.016 54 0.010 90
 9 9 0.088 10 0.041 11 0.017 12 0.007 18

(Continued)

Table 9.16a. (Continued).

n m

α

k0.10 0.05 0.02 0.01
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 8 36 0.088 40 0.040 44 0.017 47 0.010 72
 7 65 0.095 72 0.046 83 0.014 87 0.008 126
 6 11 0.053 12 0.025 13 0.011 14 0.004 18
 5 52 0.099 60 0.038 65 0.019 70 0.008 90
 4 23 0.090 25 0.049 28 0.019 30 0.010 36
 3 13 0.084 15 0.030 16 0.015 17 0.006 18
 2 16 0.063 17 0.032 18 0.011 — 18

19  19 8 0.068 9 0.027 10 0.009 10 0.009 19
 18 133 0.097 142 0.049 160 0.019 176 0.009 342
 17 126 0.095 141 0.046 158 0.018 166 0.010 323
 16 120 0.096 133 0.048 151 0.018 160 0.009 304
 15 114 0.100 127 0.048 142 0.020 152 0.010 285
 14 110 0.095 121 0.047 135 0.019 148 0.008 266
 13 104 0.097 114 0.046 130 0.018 138 0.009 247
 12 99 0.090 108 0.050 121 0.019 130 0.010 228
 11 92 0.094 102 0.049 114 0.018 122 0.009 209
 10 85 0.089 94 0.047 104 0.019 113 0.009 190
 9 80 0.092 89 0.046 99 0.016 107 0.009 171
 8 74 0.097 82 0.049 93 0.018 98 0.010 152
 7 69 0.088 76 0.044 86 0.016 91 0.009 133
 6 64 0.082 70 0.043 77 0.019 83 0.009 114
 5 56 0.082 61 0.043 70 0.015 71 0.009 95
 4 49 0.077 53 0.041 57 0.019 64 0.008 76
 3 42 0.073 45 0.045 51 0.013 54 0.005 57
 2 32 0.095 36 0.029 38 0.010 38 0.010 38

20  20 8 0.081 9 0.034 10 0.012 11 0.004 20
 19 144 0.098 160 0.049 171 0.019 187 0.010 380
 18 68 0.098 76 0.048 85 0.019 91 0.009 180
 17 130 0.099 146 0.048 163 0.019 175 0.009 340
 16 32 0.089 35 0.049 39 0.020 42 0.009 80
 15 25 0.079 27 0.046 30 0.019 32 0.010 60
 14 57 0.095 63 0.049 71 0.019 76 0.009 140
 13 108 0.099 120 0.049 135 0.018 143 0.009 260
 12 26 0.091 29 0.043 32 0.018 35 0.007 60
 11 96 0.096 107 0.046 118 0.020 127 0.010 220
 10 10 0.062 11 0.029 12 0.012 12 0.005 20
 9 84 0.095 93 0.049 104 0.020 111 0.010 180
 8 20 0.087 22 0.44 25 0.014 26 0.009 40
 7 72 0.085 79 0.043 91 0.016 93 0.008 140
 6 33 0.082 36 0.035 40 0.016 44 0.007 60
 5 12 0.085 13 0.047 15 0.012 16 0.005 20
 4 13 0.087 15 0.027 16 0.013 17 0.007 20
 3 42 0.095 48 0.040 54 0.011 57 0.005 60
 2 17 0.087 19 0.026 20 0.009 20 0.009 20

Table 9.16a. (Continued).
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Table 9.16b. Distribution of the Smirnov statistic Dn,m P{Dn,m ≤ k/n}.

k   
n

1 2 3 4 5 6 7

 1 1.000 000 0.666 666 0.400 000 0.228 571 0.126 984 0.069 264 0.037 296
 2 1.000 000 0.900 000 0.771 428 0.642 857 0.525 974 0.424 825
 3 1.000 000 0.971 428 0.920 634 0.857 142 0.787 878
 4 1.000 000 0.992 063 0.974 025 0.946 969
 5 1.000 000 0.997 835 0.991 841
 6 1.000 00 0.999 417
 7 1.000 000

k   
n

8 9 10 11 12 13 14

 1 0.019 891 0.010 530 0.005 542 0.002 903 0.001 514 0.000 787 0.000 408
 2 0.339 860 0.269 888 0.213 070 0.167 412 0.131 018 0.102 194 0.079 484
 3 0.717 327 0.648 292 0.582 476 0.520 849 0.463 902 0.411 803 0.364 515
 4 0.912 975 0.874 125 0.832 178 0.788 523 0.744 224 0.700 079 0.656 679
 5 0.981 351 0.966 433 0.947 552 0.925 339 0.900 453 0.873 512 0.845 065
 6 0.997 513 0.993 706 0.987 659 0.979 260 0.968 563 0.955 727 0.940 970
 7 0.999 844 0.999 259 0.997 943 0.995 633 0.992 140 0.987 350 0.981 217
 8 1.000 000 0.999 958 0.999 783 0.999 345 0.998 503 0.997 125 0.995 100
 9 1.000 000 0.999 989 0.999 937 0.999 795 0.999 500 0.998 979
10 1.000 000 0.999 997 0.999 982 0.999 937 0.999 836
11 1.000 000 0.999 999 0.999 995 0.999 981
12 1.000 000 0.999 999 0.999 998
13 1.000 000 1.000 000

k   
n

15 16 17 18 19 20 21

 1 0.000 211 0.000 109 0.000 056 0.000 028 0.000 014 0.000 007 0.000 003
 2 0.061 668 0.047 743 0.036 892 0.028 460 0.021 922 0.016 863 0.012 955
 3 0.321 861 0.283 588 0.249 392 0.218 952 0.191 938 0.168 030 0.146 921
 4 0.614 453 0.573 706 0.534 647 0.497 409 0.462 071 0.428 664 0.397 187
 5 0.815 583 0.785 465 0.755 040 0.724 581 0.694 310 0.664 409 0.635 020
 6 0.924 535 0.906 673 0.887 622 0.867 606 0.846 826 0.825 466 0.803 687
 7 0.973 751 0.965 002 0.955 047 0.943 981 0.931 910 0.918 942 0.905 183
 8 0.992 344 0.988 800 0.984 439 0.979 252 0.973 250 0.966 458 0.958 911
 9 0.998 162 0.996 984 0.995 389 0.993 331 0.990 776 0.987 701 0.984 094
10 0.999 646 0.999 329 0.998 847 0.998 160 0.997 232 0.996 032 0.994 532
11 0.999 947 0.999 880 0.999 761 0.999 570 0.999 285 0.998 884 0.998 343
12 0.999 994 0.999 983 0.999 960 0.999 916 0.999 843 0.999 729 0.999 561
13 0.999 999 0.999 998 0.999 994 0.999 987 0.999 971 0.999 944 0.999 899
14 1.000 000 0.999 999 0.999 999 0.999 998 0.999 995 0.999 990 0.999 980
15 1.000 000 1.000 000 0.999 999 0.999 999 0.999 998 0.999 996
16 1.000 000 0.999 999 0.999 999 0.999 999
17 1.000 000 1.000 000 1.000 000

(Continued)
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Table 9.16b. (Continued).

k   
n

22 23 24 25 26 27 28

 1 0.000 001 0.000 001 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000
 2 0.009 942 0.007 622 0.005 838 0.004 468 0.003 417 0.002 611 0.001 993
 3 0.128 321 0.111 963 0.097 599 0.085 006 0.073 980 0.064 337 0.055 914
 4 0.367 613 0.339 899 0.313 982 0.289 796 0.267 262 0.246 302 0.226 833
 5 0.606 260 0.578 218 0.550 963 0.524 546 0.499 004 0.474 362 0.450 633
 6 0.781 631 0.759 421 0.737 166 0.714 957 0.692 876 0.670 992 0.649 361
 7 0.890 738 0.875 705 0.860 177 0.844 239 0.827 971 0.811 443 0.794 721
 8 0.950 653 0.941 731 0.932 196 0.922 101 0.911 498 0.900 437 0.888 969
 9 0.979 952 0.975 279 0.970 086 0.964 388 0.958 206 0.951 561 0.944 480
10 0.992 710 0.990 548 0.988 034 0.985 162 0.981 927 0.978 330 0.974 375
11 0.997 641 0.996 759 0.995 679 0.994 385 0.992 865 0.991 109 0.989 109
12 0.999 326 0.999 009 0.998 598 0.998 079 0.997 439 0.996 666 0.995 750
13 0.999 831 0.999 732 0.999 594 0.999 409 0.999 167 0.998 861 0.998 482
14 0.999 963 0.999 936 0.999 895 0.999 837 0.999 756 0.999 647 0.999 505
15 0.999 993 0.999 986 0.999 976 0.999 960 0.999 936 0.999 901 0.999 853
16 0.999 998 0.999 997 0.999 995 0.999 991 0.999 985 0.999 975 0.999 961
17 0.999 999 0.999 999 0.999 999 0.999 998 0.999 996 0.999 994 0.999 990
18 1.000 000 1.000 000 0.999 999 0.999 999 0.999 999 0.999 998 0.999 998
19 1.000 000 0.999 999 0.999 999 0.999 999 0.999 999
20 1.000 000 1.000 000 0.999 999 0.999 999

k   
n

29 30 31 32 33 34 35

 1 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000
 2 0.001 521 0.001 160 0.000 884 0.000 674 0.000 513 0.000 390 0.000 297
 3 0.048 563 0.042 153 0.036 570 0.031 710 0.027 482 0.023 808 0.020 615
 4 0.208 772 0.192 036 0.176 546 0.162 222 0.148 989 0.136 773 0.125 505
 5 0.427 822 0.405 929 0.384 946 0.364 860 0.345 656 0.327 315 0.309 815
 6 0.628 305 0.607 054 0.584 454 0.566 263 0.546 505 0.527 197 0.508 355
 7 0.777 865 0.760 926 0.743 954 0.726 991 0.710 076 0.693 241 0.676 518
 8 0.877 140 0.864 996 0.852 579 0.839 930 0.827 085 0.814 080 0.800 946
 9 0.936 988 0.929 112 0.920 879 0.912 317 0.903 453 0.894 313 0.884 922
10 0.970 069 0.965 419 0.960 438 0.955 137 0.949 530 0.943 629 0.937 451
11 0.986 859 0.984 356 0.981 599 0.978 588 0.975 325 0.971 814 0.968 060
12 0.994 681 0.993 451 0.992 054 0.990 483 0.988 735 0.986 806 0.984 695
13 0.998 020 0.997 469 0.996 821 0.996 069 0.995 206 0.994 228 0.993 128
14 0.999 325 0.999 100 0.998 825 0.998 494 0.998 102 0.997 644 0.997 113
15 0.999 790 0.999 706 0.999 600 0.999 466 0.999 302 0.999 104 0.998 868
16 0.999 940 0.999 912 0.999 875 0.999 825 0.999 762 0.999 683 0.999 586
17 0.999 984 0.999 976 0.999 964 0.999 947 0.999 925 0.999 896 0.999 859
18 0.999 996 0.999 994 0.999 990 0.999 985 0.999 978 0.999 968 0.999 955
19 0.999 999 0.999 998 0.999 997 0.999 996 0.999 994 0.999 991 0.999 987
20 0.999 999 0.999 999 0.999 999 0.999 999 0.999 998 0.999 997 0.999 996

(Continued)
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Table 9.16b. (Continued).

k   
n

36 37 38 39 40

 1 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000
 2 0.000 226 0.000 171 0.000 130 0.000 099 0.000 075
 3 0.017 844 0.015 440 0.013 354 0.011 546 0.009 980
 4 0.115 119 0.105 553 0.096 746 0.088 644 0.081 194
 5 0.293 133 0.277 243 0.262 120 0.247 737 0.234 068
 6 0.489 989 0.472 106 0.454 713 0.437 810 0.421 399
 7 0.659 934 0.643 511 0.627 272 0.611 234 0.595 412
 8 0.787 713 0.774 409 0.761 059 0.747 686 0.734 312
 9 0.875 305 0.865 485 0.855 485 0.845 325 0.835 027
10 0.931 011 0.924 322 0.917 402 0.910 264 0.902 925
11 0.964 067 0.959 843 0.955 395 0.950 731 0.945 858
12 0.982 400 0.979 921 0.977 260 0.974 418 0.971 396
13 0.991 904 0.990 551 0.989 067 0.987 450 0.985 698
14 0.996 507 0.995 820 0.995 049 0.994 189 0.993 239
15 0.998 589 0.998 265 0.997 891 0.997 464 0.996 981
16 0.999 467 0.999 325 0.999 156 0.998 958 0.998 729
17 0.999 812 0.999 754 0.999 683 0.999 598 0.999 496
18 0.999 938 0.999 916 0.999 888 0.999 854 0.999 812
19 0.999 981 0.999 973 0.999 963 0.999 950 0.999 934
20 0.999 994 0.999 992 0.999 988 0.999 984 0.999 978
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Table 9.17. Critical values α(2n, 2m) of the  distribution.

α = 0.99

 n    m 1 1 2 3 4 5 6 7 8 9 10 15 20 ∞

1 66.12 539.35 188.89 146.30 130.89 123.02 118.26 115.07 112.79 111.07 109.74 105.9 104.1 99

2 32.76  13.91  46.36  31.16  25.94  23.37  21.84  20.84  20.12  19.59  19.18  18.0  17.4 16

3 26.76  10.62   7.86  19.60  15.71  13.76  12.69  11.96  11.44  11.07  10.78   9.9   9.5  8.5

4 24.37   9.32   6.77   5.75  12.32  10.66   9.69   9.04   8.57   9.24   7.98   7.2   6.9  6.0

5 23.10   8.62   6.18   5.21   4.70   9.14   8.25   7.56   7.23   6.92   6.86   6.0   5.7  4.8

6 22.31   8.19   5.78   4.88   4.37   4.05   7.38   6.82   6.42   6.13   5.91   5.2   4.9  4.2

7 21.77   7.90   5.54   4.65   4.14   3.84   3.63   6.28   5.89   5.61   5.39   4.8   4.5  3.7

8 21.39   7.69   5.37   4.48   3.98   3.68   3.47   3.32   5.52   5.24   5.03   4.4   4.1  3.4

9 21.10   7.54   5.52   4.35   3.86   3.56   3.36   3.20   3.09   4.97   4.77   4.2   3.9  3.1

10 20.87   7.41   5.13   4.24   3.76   3.46   3.26   3.11   3.00   2.91   4.56   4.0   3.7  2.9

15 20.21   7.06   4.82   3.94   3.48   3.18   2.98   2.83   2.72   2.63   2.36   3.4   3.1  2.4

20 19.9   6.9   4.7   3.8   3.4   3.1   2.9   2.7   2.6   2.5   2.2   2.1   2.8  2.1

∞ 19.0   6.39   4.28   3.44   2.98   2.69   2.49   2.34   2.222   2.1   1.84   1.69   1.0  1.0

 n    m 1 2 3 4 5 6 7 8 9 10 15 20 ∞

α = 0.95
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an informa business

Many areas of mining engineering gather and use statistical information, provided by observing the 
actual operation of equipment, their systems, the development of mining works, surface subsidence that 
accompanies underground mining, displacement of rocks surrounding surface pits and underground drives 
and longwalls, amongst others. In addition, the actual modern machines used in surface mining are equipped 
with diagnostic systems that automatically trace all important machine parameters and send this information 
to the main producer’s computer. Such data not only provide information on the technical properties of the 
machine but they also have a statistical character. Furthermore, all information gathered during stand and lab 
investigations where parts, assemblies and whole devices are tested in order to prove their usefulness, have 
a stochastic character. All of these materials need to be developed statistically and, more importantly, based 
on these results mining engineers must make decisions whether to undertake actions, connected with the 
further operation of the machines, the further development of the works, etc. For these reasons, knowledge 
of modern statistics is necessary for mining engineers; not only as to how statistical analysis of data should be 
conducted and statistical synthesis should be done, but also as to understanding the results obtained and how 
to use them to make appropriate decisions in relation to the mining operation. 

This book on statistical analysis and synthesis starts with a short repetition of probability theory and also 
includes a special section on statistical prediction. The text is illustrated with many examples taken from mining 
practice; moreover the tables required to conduct statistical inference are included. 
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