BUILDING

HIGH
PERFORMANCE
AGILE TEAMS

44 MadeTech

Building High Performance
Agile Teams

by Made Tech

Copyright © 2017 by Made Tech
All rights reserved.

No part of this publication may be reproduced, distributed, or transmitted in any form or by any means,
mcluding photocopying, recording, or other electronic or mechanical methods, without the prior written
permission of the authors, except in the case of brief quotations embodied in critical reviews and certain
other noncommercial uses permitted by copyright law.

ISBN: 1544972687
First Printing: April 2017

www.madetech.com

Ilustrations by Alexi McCarthy

Introduction

These days, software is becoming a huge part of increasingly more
organisations and businesses. From content management systems to warehouse
databases and e-commerce stores, software applications are fundamental to
any successful business, yet frequently a source of frustration for the business
owner.

Software teams are there to take that frustration away by creating
software that provides a positive experience for both the organisation running
it, and the audience using it. Whether in-house or external, the team responsible
for building and maintaining that software needs to be well equipped to handle
the challenges they’ll face.

At Made Tech, our mission is to improve software delivery in every
organisation we have the opportunity to work with and, with each organisation,
we’ve spent a lot of time investigating how to build better software teams in
order to produce the best software possible. This means taking stock of the
day-to-day practices being used, both in the organisations we work with and
our own, and looking at how they can be improved in such a way that the
benefits are felt across the entire organisation.

This book breaks the subject down into three sections: Communication,
Quality and Empowerment. Each section 1s composed of several essays
written by the Made Tech team, previously published at
www.madetech.com/blog.

Over the course of the next 15 chapters, you’ll learn how you can build a
great software team through practices such as making sure you have a
communicative environment, giving teams ownership and responsibility of
delivery, and allowing teams to structure the way they work.

Communication

Delivering software well 1s hard. You need to master your language,
framework and toolchain. You need to constantly refine processes to manage
the flow of work. You need to stay on top of the constantly evolving technology
landscape. But, more than this, you'll almost certainly need to work with others
in some capacity.

While mastering the craft of software development 1s critical to
delivering good software, a great many problems can be overcome with
improved communication.

Creating an environment that values regular and open communication,
both within the team delivering the product and with the wider stakeholder
team, can go a long way to removing impediments in the delivery process.

In this first section of the book, we introduce strategies you can implement
to promote a culture of communication and continuous introspection, ranging
from pair programming to overhauling your feedback mechanisms.

Chapter 1: Creating Environments That Promote
Communication

In any organisation, one of the most powerful ways you can empower your
team is to give them an environment that allows them to communicate freely at
all levels. At Made Tech we actively encourage every member of the team to
nitiate or join any discussion that interests them, whether it be giving their
opinion on how a part of the business runs, or introducing a new way of
approaching how we work.

As a result, we've had valuable contributions from the entire team that
have gone on to improve the way we work, build camaraderie and keep
everyone up to speed on the goings on across the entire business.

The benefits of good communication

Visibility

As organisations grow, it's often easy for, as the saying goes, the left hand to
have no 1dea what the right hand is doing. Project teams may not be aware of
what each other 1s working on, 1t may not be clear to the wider team what
pieces of work management are trying to win, and it's especially difficult for
peers to know who i1s trying to develop a particular skill they might be able to
help with.

As well as that, such a lack of visibility allows silos to develop naturally,
where one or more developers wall themselves off to outside interference in
order to concentrate on work. Whilst this is not a bad trait in moderation, left
unchecked it can lead to those individual developers having exclusive domain
knowledge, which then leads to bigger problems if there's a problem with the
project they've been working on and they're unavailable for any reason.

By increasing visibility, via the methods described later in this chapter,
teams gain a shared understanding of the direction the company 1s headed in,
who's working on what, and individual projects. Team members are also
actively able to help each other grow, which ultimately benefits the entire

company.
Team cohesion

A good company culture 1s important, and giving your team ways to flex their
tech muscles outside of obligations to customers 1s a great way to promote that.
Whether it's an hour tackling a small, fun coding challenge, an entire day
learning about a new technology, or a few days away on a company retreat, the
time spent will go a long way to ensuring both that your team are getting
exposure to technologies and practices that interest and excite them, and that
they're becoming a stronger and more collaborative team for it.

Provide open channels to share knowledge

The first steps to creating a communicative environment for your team is
establishing open forums in which everyone is invited to contribute as much as
they'd like. We've got a few 1n place in Made Tech, all of which have had a
positive impact on the way we work:

Continuous feedback

Continuous Feedback and its benefits are discussed at length in Chapter 7 but,
in a nutshell: Continuous Feedback is the practice we use to encourage and
address regular feedback from everyone, about everyone.

We found that annual reviews fell short in helping individuals learn and
grow, and switching over to Continuous Feedback has allowed us to geta
better sense of the goals people are trying to reach, and the areas in which they
need improvement.

Importantly, 1t also allows us to act quickly to help them reach those
goals, and give them the support they need in the areas in which they need

improving.
Share progress and achievements with a weekly email

One of the problems we were having was that it often wasn't clear what other
people outside of your team was working on week to week. They may have
been on a new project, running with a new initiative, or on a recruiting drive.
Our solution to this problem is what we've lovingly dubbed "TGIFs".

A TGIF 1s simply an email sent at the end of every Friday, with a short
breakdown of what each of the various teams and departments within the
company have achieved that week. Each team sends their breakdown to one
person, and that person collates them all and sends out the email.

TGIFs are a great way of giving your entire team visibility on what's
happening within the company, and also reminding people of important events
coming up the following week.

Comradrospectives

Retrospectives are a key component of the Agile process, occurring at the end
of a period of work and allowing teams to reflect on what went well, what
didn't go so well, and what they can learn from that.

We've re-appropriated that idea and applied it to the entire company, so
that the entire team gathers together every few weeks to discuss our biggest
sources of frustration, share our achievements, and figure out what we need to
focus on in order to continue to improve the experience we provide to our
customers, and the way we work.

Prior to each comradrospective, each team and department have a brief
retrospective, and then bring the notes from that to the larger meeting. A
Facilitator hosts the comradrospective, going around the room and prompting
discussions about what each team found 1n their retrospectives. The Facilitator
then looks for common threads between those discussions, which often leads to
the highlighting of a wider company issue that can be focussed on over the next
few weeks.

It should be noted that the role of Facilitator doesn't belong to one person,
we actively encourage everyone on the team to take up the mantle for two
reasons. One: each person will approach the role differently, ensuring
comradrospectives never feel old, and two: it gives everyone a little bit of
exposure to standing up in front of people and leading the conversation, which
1s valuable experience to have when your team is expected to present things
like showcases to clients.

Presentations

No two individuals are alike, and within every organisation you're going to
have an incredibly diverse set of interests and opinions. New technologies and
frameworks are released to the public almost daily and, if your team are
passionate about their craft, occasionally one of those technologies will
resonate with someone on the team. They'll spend their own time researching
it, decide whether it's for them and, 1f it 1s, spend even more time mastering it
and becoming excited about the possibilities it provides.

As someone cultivating a communicative environment, it's important that
everyone on your team knows they have a platform for sharing their excitement
with everybody. Giving them the freedom to host presentations on topics
they're enthusiastic about means everybody is regularly exposed to ideas and
concepts that could potentially offer real value to your organisation.

This sort of exposure to new 1deas and technologies then leads to a
willingness to implement them in future projects, meaning your organisation is
constantly evolving, rather than sticking with practices that will ultimately end
up outmoded or obsolete.

Hack days

Hack days are another great way of exposing your team to new technologies.
They're also a way to mix things up and potentially even produce products you
or your customers will use for a long time.

As an example, a customer of ours wasn't aware of that their SSL
certificate was due to expire, leading to browsers designating their website as
insecure. This 1s a problem we've seen in organisations as big as Instagram, so
we decided to hold a hack day dedicated to solving the problem.

The result was SSLCatch, a relatively small application that simply alerts
domain owners in the days, weeks and months before an SSL certificate 1s due
to expire. The whole team worked together over eight hours, regularly
communicating with each other to get the clearest sense of what everybody was
working on, solve blocking 1ssues and ultimately get the application live as
quickly as possible.

We now have hack days every one to two months, and they've often
resulted in new internal tools we use regularly. More than that, they're always
a great opportunity to get the whole team swarming on a single project, solving
problems together.

Regular standups

Daily standups, also known as scrum meetings, are an important tool for getting
everyone up to speed on what people will be working on that day. Teams can
highlight any issues they have, or how they can help others facing their own

1ssues.
Daily standups should be short, around ten minutes max, and should only
involve team members working on the same project or in the same department.

Extreme Programming

Extreme programming is a popular methodology that encompasses many
different programming practices, most of which are beyond the scope of this
article. That said, two practices in particular are very useful when it comes to
promoting communication within your team: pair programming and "whole
team”.

Pair programming

We’ll discuss pair programming in Chapter 4 but, in short, pair programming
leads to stronger communication by encouraging each programmer to articulate
their thought processes and engage in conversation about the best possible
solution for the problem they're facing.

Whole team

The phrase "whole team" refers to a way of working in which teams are given
the freedom to organise themselves, and whose team members can, between
them and their various sets of skills, can solve any technical challenge a
project might present.

As well as that, when building software for customers, one of the biggest
sources of frustration 1s often not being able to get hold of the customer when a
critical question about the work arises. "Whole team" then, means having the
customer, at the beginning of the engagement, designate one of their own team
to be the Product Owner throughout.

The role of the Product Owner is to be available at all times to your team,
so that they can give guidance and answers to your team as and when they need
it. In our experience with Product Owners, we've found that having the Product
Owner on site leads to an even better experience, as they're instantly more
approachable and, from a wider business perspective, it becomes very easy to
build a relationship with the customer.

Challenges in maintaining good communication

Tuning out

Every programmer knows the feeling of being in flow, when they're highly
focussed and incredibly productive. It's very important not to make that state
harder to achieve, as it can lead to frustration. Even so, left unchecked, it can
be tempting for some to almost permanently block everything else out, forging
ahead on their own path and rarely communicating with the rest of their team.

This then leads to either the programmer having exclusive domain
knowledge over a significant part of the application and becoming a silo, or
spending time going down a path of work without getting more information
from others, potentially producing something that can't be used.

Too many cooks

On the flip side, too much communication is A Bad Thing. Making time to
communicate 1s important, but when it comes down to 1t you need to make sure
the work you're communicating about is getting done. Pushing communication
too much can lead to discussions or debates where there are too many
opinions, and finding an actionable outcome to them proves impossible and
time consuming.

While 1t's important to make sure everyone has a voice within your
organisation, there will inevitably be times when action needs to be taken, but
you're debilitated by too much discussion. Judge these situations carefully, and
don't be afraid to take the lead 1f 1t means resolving a conversation that's gone
on for too long.

By giving your team an environment in which they're able to communicate
freely about whatever excites them, challenges they're facing, how your team
could be doing things differently and ways they can help each other improve,
you're ensuring your organisation is able to constantly grow and meet any
challenge an ever changing industry throws at you.

by Scott Mason

Chapter 2: Agile Planning

Both words, "agile" and "planning", mean different things to different people.
In this chapter I hope to provide an overview of agile planning without going
into specific implementations like Scrum or Kanban whilst still providing
practical advice for any implementation.

For the purpose of this chapter, agile planning refers to the organisation of
teams and work in order to deliver value iteratively. You might consider it a
strategy where planning is not a phase and 1s not completed ahead of
implementation but instead happens frequently during a delivery, enabling
teams to adapt to change.

Start with the value

Every project will want to provide value to an organisation or person. If we
choose agile we may not plan and document everything up front but we'll
always be working towards a known, or partially known, value. It makes sense
then to understand the shapes that value can take and work out what high level
value we want to achieve.

We can group our value into 5 abstractions. Each deal with a different
unit, each with their own stakeholders to whom they provide value.

e Vision is the central mass that holds the project together
e Goals arc quantifiable measurements of value
e Capabilities are provided in order to reach goals

e Features implement capabilitics

® Tasks arc the units of work that produce features

You can read more about these units in Liz Keogh's article on estimating
complexity'. She first introduced me to this 1dea and it's stuck with me ever
since.

Even 1f you haven't knowingly defined these units before, your project
will likely have them. They are natural artifacts of software engineering
projects. Your team may not be aware of the vision, but your product owner or
the manager ensuring the project's completion should do. Your team may be
asked to complete a set of features without being given the freedom to consider
alternative ways of providing capabilities. Start with a vision and goals that
work towards it.

I hope those reading this chapter, those that haven't always identified
vision and goals, capabilities and features, will be able to identify them in
future. Even better, have the team understand and help define them. If you do
not have a vision and set of related goals defined for your product or project,
grab your team and stakeholders and define them now.

Layers of agile delivery

You could see the project's vision, goals, capabilities, features and tasks each
as interdependent layers. Each layer helps achieve the layer above them. Goals
implement a vision, capabilities implement goals, features capabilities and so
on. This 1s the direction of the dependence.

Capability Capability Capability Capability

Feature

Feature

Never assume a feature is the only way to provide a capability. When you think
about each layer's dependencies as travelling in a single direction, as a single
direction of authority, you begin to think less in solutions and more in
problems. You start with a vision, this is the highest authority. Your vision
defines 1ts goals. Goals then require capabilities. Only then do our capabilities
need features to implement them. Why then do we march into new projects
with a bunch of features in our heads? Probably because they're the most
tangible output of a project but that doesn't make it sensible, or agile at that.

A charity might have a vision to provide free access to travel for the
elderly. A goal to measure the success of this vision might be to provide 10
elderly people free access to travel a week. Now, 1n order to provide 10
elderly people free access to travel, we'll need a way of transporting them.
Transportation 1s our capability. Only then do we consider a feature that
provides this capability. We might choose taxi, bus, volunteer driver,

spaceship or a mixture of them. The point is we haven't locked ourselves to a
particular solution. We've left our options open.

When features become subservient to our capabilities, goals and vision
we are no longer so attached them them. When we realise a feature is going to
take too long to deliver we can consider our alternatives. When a goal needs to
change, we are more inclined to let go of the capabilities and features as we
know the success of our project is related to it's goals and not how those goals
are implemented.

Moving through the layers with iterations

Agile teams will use iterations to complete tasks. They might have several
iterations for one task, or complete many tasks in a single iteration. What is
common is the use of an iteration to receive feedback on work completed to
ensure it's meeting expectations and providing value. Iterations enable us to
move down through the layers understanding the problem all the way down to
individual tasks, and then we travel all the way back up solving problems at
each abstraction.

Vision

Capability

-
- L

Feature

Be clear on your purpose, bring it back to the vision. During an iteration we
travel through each layer in order to understand the problem. In order to decide
on a feature we must understand what capability we are trying to provide, the
vision and goals can help us make decisions.

We might only track tasks on our board and capabilities on our roadmap
but it's always useful to keep the parent abstractions in mind. Write up your
vision and goals above your boards and maps. At the beginning of every stand
up, reiterate the feature you're working towards before describing the task
you're stuck on, don't stick to the minutiae, try and remember why you're doing
the task 1n the first place.

Focus on high quality output. At the end of every iteration you'll want
something usable that you can put in front of stakeholders. It's the job of your
team and stakeholders to be able to judge the output of the iteration against the
projects goals. You therefore want a finished product in front of you at the end
of every iteration.

What do we mean by finished product though? Well, if you are iterating
over the design of an interface, that finished product would most likely be
something more visual than functional. It would need to be finished though, you
wouldn't want the text on a button missing, or some graphics being unrelated
placeholders; you want the stakeholders to be able to buy into the vision and
therefore everything needs to make sense.

As for web applications, they need to be working and all known bugs
fixed. If you get to the end of an iteration and that 1sn't the case, your team's
first job 1s to admit this and communicate their challenges. They can then pick
this up later in their retrospective.

Keep iterations short. If you're focussing on high quality output then
keeping to shorter iterations can really help with that focus. By working on a
small slice your team can focus on getting that done done.

You could choose to tackle the entire checkout in one iteration. However
that's a lot of work to complete without receiving feedback. It's also a lot of
work to ensure it's done done. It might be easier to take each step in the
checkout as an iteration. You might even spend a couple of iterations on each
checkout to ensure they're exactly what you need.

Communication is key

Before, during and after an iteration communication will ideally be maintained
between the team and stakeholders. Planning the next chunk of work, giving
status updates and presenting a final showcase can all help with
communication.

The main purpose for communication is to ensure everyone knows they
are working towards the same goals. The team need to coordinate with each
other. Stakeholders need to know when the team are blocked so they can help
as necessary. Stakeholders also need to give feedback and answer the team's
questions.

Stakeholders won't always understand every layer. You may have product
owners, or other stakeholders in your business join your stand ups. It is the
team's responsibility to remember that the stakeholders may have decreasing
levels of understanding as you go down the layers.

Sometimes 1t might make sense to split your stand up into two or more
based on your audience. You don't need to spend any more time than usual, just
exclude stakeholders from the really technical implementation details. You can
go 1nto the gory details of your deployment failure with the colleagues who
understand your pain; spare the Head of Finance.

In order to be respectful to your audience and also provide them
understanding, only go into as much detail as they will understand.

Using ceremony to get things done

Many agile practices introduce ceremony. Scrum often includes estimation
planning sessions. We already mentioned stand ups. Hopefully everyone 1s
doing retrospectives.

Use showcases to encourage communication, pace and achievement. We
like to use showcases during and at the end of iterations. Typically occurring
every 2-5 days, the showcase will bring stakeholders and teams together. The
team will have a polished showcase that has been well rehearsed and aimed at
explaining the value of the work they're producing, The team will end with any
questions or blockers they have.

Explaining what goals along with the actual changes made allows the
audience to understand the context in which the team have worked and
assumptions the team have made. Communication is the main aim and feedback
1s always desired.

Another benefit of the showcase 1s encouraging pace. When the team
knows a showcase 1s looming, they will learn to ensure they ready their current
changes ahead of time into a polished state. It encourages them to think about
the goal and the organisation rather than just cutting code.

Finally, a showcase is a time for the team and stakeholders to celebrate
the new value and learnings that the last iteration provided. When everyone
champions the process, the process thrives.

Ever changing landscapes

Change is acknowledged and accepted by agile practices. At the end of an
iteration we do not necessarily have to continue working with the same set of
assumptions in the the next. When we build out a prototype and realise it's not
going to do the job, we can reprioritise our roadmap and adapt for change.

Prioritise by value. Never assume that a roadmap has to be set in stone. It
should be fluid and adapt as you work through it. Items in the roadmap will
need reordering. Sometimes you'll find a capability isn't even required after
achieving a goal sooner than expected. Sometimes a problem you thought you
had 1sn't a problem at all.

If a team sets out to deliver a particular feature over a number of
iterations, but realises after the first iteration that what they've produced 1s
releasable, release it! Get users using it. You may find that it quells a need and
you might find a different goal or capability to work towards after realising
you're getting enough value already.

Acknowledge scope will change. Scope can and should be variable. If
your project has a hard deadline, you're going to end up reducing your initial
scope. That's almost certain. Acknowledge that the image in your head of the
final picture at the beginning of a project will never be the same as what you
finally produce.

Have the destination in sight

Not every delivery team will have a project with a deadline. We prefer
thinking in a product mindset where delivery is continuous, visions and goals
evolving as we go. That said, having a destination in sight is still important.

The 1nitial phases of product development may result in U/UX artifacts
like wireframes or component libraries and these won't necessarily be
deployable to end users but should be of high quality. You should aim to get
through these phases within a few days or a few weeks at most. You want to be
producing software that end users can use and provide you feedback in the
form of real data whether that be automatically collect metrics or user surveys.

In a back office environment we aim to be handing over changes to end
users every few days, a week at most. Getting things shipped means you can
adapt your plan based on feedback. You'll never go too far down a rabbit hole,
at most wasting an iteration or two which is a matter of days.

Learn from mistakes with retrospectives, moving fast, your team will
make mistakes and that's okay - you'll have great successes too. No matter your
flavour of agile, make sure you have regular retrospectives. You might have
one at the end of your sprint if you're practicing Scrum. If you're using Kanban
you might have one every 2 weeks. Make sure you hold yourselves to account
with your actions. Keep a log of all retrospectives and their actions, and
always recap on all actions every retrospective until they no longer have
value.

Finally, always measure your success against the vision and goals of your
delivery. Yes, shipping a new feature means you've put effort in and completed
something, but the real success lies in whether that feature provides the desired
value.

by Luke Morton

Chapter 3: Pair Programming

We've helped a number of organisations successfully adopt pair programming,
giving their teams the ability to increase productivity, improve knowledge
sharing and enhance the quality of their software.

As a company, we've been using pair programming for around eighteen
months, and we've discovered it brings a significant number of benefits, along
with one or two challenges we've had to overcome.

In this chapter, we'll be sharing the experiences we've had when
introducing pair programming to software teams. We'll then take you through
the techniques you'll need to apply what we've learnt to your organisation.

Background

Pair programming was first introduced as part of the Extreme Programming
(XP) software development methodology, as an 'extreme' way to practice
regular code reviews. Conceived of by Kent Beck in 1999, XP is a collection
of software principles which help teams to deliver higher quality software. It
places value on communication, simplicity, feedback, courage and respect, all
of which, as you'll discover, lead to a positive pair programming experience.

How it works

Pair programming involves two developers sitting at one computer, with one
driving, and the other navigating, The driver types out the code, whilst the
navigator constantly reviews what is being typed and, at regular intervals, the
developers switch roles. Throughout their time together, the pair constantly
communicate their thought processes, allowing the other developer to
collaborate and help shape the direction of the code.

There are a few guidelines that you should follow when pair
programming, These will help you to get the most out of your pair
programming experience, and sidestep some of the more common pitfalls
we've seen teams experience.

Driving

The driver is solely responsible for typing and controlling the screen. They
should externalise their thoughts as they type, and be sure to constantly
communicate with their navigator, discussing ideas and clarifying where
necessary.

One of the more frustrating aspects of being the driver is that their
navigator often has more time to think, meaning they're able to convey their
ideas faster than the driver, who is more concerned with typing out code with
the right syntax. The driver will often feel clumsy or slow, as the navigator
will be able to spot things more quickly than they can. This 1s OK and to be
expected, and the roles switch so regularly that both developers experience the
situation from both sides.

Navigating

The navigator is responsible for reviewing everything the driver types,
suggesting improvements to the code being written, alternative ways to think
about the problem at hand. The navigator should be considerate and careful to
minimise unnecessary interruptions when the driver 1s in flow. Much like a

conversation, choose the right moments to point out trivial errors, like spelling
mistakes.

Switching

The pair should switch roles to allow each person to get a mix of driving and
navigating. There are a couple of methods that are often used to determine
switching frequency. One technique is time based, where the developers
switch at regular short intervals. Another technique 1s Ping Pong?, where
developers take turns writing a failing test case, that the other developer then
has to make pass.

Taking breaks

Pair programming 1s intensive, especially over the course of a few hours or a
whole day. It's important that pairs don't burn themselves out, so they must
make time for regular breaks away from pairing throughout the day. These
breaks provide good opportunities to do things that might otherwise distract a
developer during pair programming, such as checking emails, instant
messaging, or making coffee.

Pairing, not coaching

Pair programming involves two peers of a similar skill level working together,
but it's not uncommon to see some organisations use pair programming as a
form of coaching, where a more experienced developer will sit with a less
experienced developer and attempt to upskill and explain their rationale
around particular design solutions.

There are definite benefits to coaching, but it's important not to confuse it
with pair programming, as it can lead to backseat driving, and the less
experienced developer becoming demotivated.

Why it works

Modern software delivery has shown us that shorter feedback cycles, frequent
communication and regular displays of progress are techniques valuable to any
organisation. They help to minimise the risk of a project failing, and they are
all inherent 1n good pair programming.

Programming is hard

We should all know that the most time consuming aspect of software
engineering isn't typing, it's the time spent thinking about how to solve the
current problem and to design a solution that works well. There are a huge
number of choices that need to be considered with every line of code a
developer writes, and pair programming helps share that responsibility.

Increased brainpower

Two heads are better than one and, in a pair, each developer will have
knowledge in areas the other doesn't, meaning their ability to find good
solutions 1s much better than it would be were they working alone.
Additionally, because each idea a developer has needs to meet the approval of
their partner, they're forced think a lot more critically about solutions,
ultimately leading to better code.

Validation of ideas

Pairing encourages you to explain your thought process as you go, whether
you're the driver or the navigator, and in a lot of cases there are several ways
to solve a particular problem. By having a partner there to constantly bounce
1deas off, you can quickly weed out sub optimal 1ideas and concentrate on the
best solution.

Benefits of pairing

There are many business benefits to pair programming, such as improving the
quality of software delivered, building collaboration within a team and helping
to share domain knowledge across multiple people.

Productivity and focus

Working so closely with someone else means you've got no other option but to
double down on the thing you're working on. The quality of the code becomes a
shared responsibility, and means that, when pairing is done properly, you're
both driven to produce the best code possible.

The back and forth nature of pair programming also helps to keep you
engaged; whether you're switching roles every fifteen minutes, or you've gone
the Ping Pong route, navigators are often eager to get back on the keyboard and
keep momentum going.

Higher quality

A developer working alone can often be tempted to take shortcuts, either in the
interest of time or because they're not quite sure what the best solution 1s and
don't want to feel stuck. It's much more difficult to let that happen when you're
working as a pair, because everything you do is being evaluated by another
person and you're both responsible for the quality of the code.

Domain understanding

Pairing is a great way to share domain knowledge within an organisation, and
makes it much easier for developers to move back and forth across different
codebases. By working this way, it means that if a particular developer 1s
absent for any reason, whether it be holiday, sickness, or they've decided to
leave, there's at least one other person in the team who has a good

understanding of the project and can easily continue working on it.

Improved resiliency

Whatever environment you're working in, the number of things that can
interrupt or distract a developer working alone is huge. When you're part of a
pair, you become much more resilient to those interruptions because you're
both committed to the task at hand. You're less likely to be interrupted by
colleagues because they can clearly see that you and your partner are in flow,
and you'll more easily resist the temptation to check emails because you're both
committed to completing the task at hand.

Team building and cohesion

The stereotypical view of software developers is that they work alone and are
poor at communicating with others. Whether or not this stereotype is true, it's
not uncommon to find developers who favour working alone and, for teams,
this 1s not ideal.

Pair programming encourages a much more social and collaborative way
of working, which helps to build rapport between team members and a culture
where your team solves problems collectively.

Learning

The number of technologies and languages within the field of software
engineering is vast, so it's inevitable that there'll be areas where one developer
1s stronger than another.

With pair programming, it becomes much easier for developers to learn
from one another as they're being introduced to new concepts as they go.

Continuous code review

Code reviews are a valuable part of any organisation's software development
lifecycle. Pair programming takes that concept to an extreme, by having the

navigator constantly reviewing what the driver is typing, suggesting
improvements or alternate approaches that might help catch edge cases.

Challenges in pairing

Moving from programming alone to becoming a strong pair programmer is not
always an easy transition. We've encountered a number of specific challenges
which you should watch out for.

Switching mindsets

Programming has historically been a solo activity, so the mindset shift required
to work on code together 1s significant. Developers often struggle to take
onboard others 1deas and externalise thought processes. This can be
particularly challenging if you've worked solo for a long time and are not
accustomed to social coding and working closely with others.

People and time

As a business, you shouldn't expect two developers to complete a task 1n half
the time. Often it will take a little longer than if a developer was working
alone, so there 1s a short term cost associated with adopting pair programming,
This additional cost 1s offset by the long term benefits of having higher code
quality, less technical debt, and shared domain knowledge.

Exhaustion

Pairing is exhausting,. When you've spent the entire day thinking critically about
every line of code, justifying and communicating those thoughts and decisions,
it's likely that you'll feel drained, but that you've achieved a lot. It's critical that
you take regular breaks, that you have some flexibility, and choose appropriate
times to pair.

Skill disparity

You'll often find pairing works less well when you've got signifiant skill
disparity between a pair. If one engineer is clearly more experienced and is
making all the decisions, then this can lead to the less experienced feeling
overwhelmed and demotivated, which can lead to disengagement.

Pairing with the wrong people

It's important that developers pair with someone they're well suited to. The
most beneficial pairing will be two people who can learn from one another,
share similar philosophies and balance each other out.

Backseat driving

When a pair of developers have significant skill disparity, or one member of
the pair is louder then the other, then you may encounter backseat driving. This
will typically manifest itself in the navigator telling the driver exactly what to
type, and the driver following their instructions.

You should encourage the backseat driver to be more considerate, or
consider switching the pair members so they are working with people who
have similar skill levels.

“Your baby is ugly”

It's important that you are able to communicate honestly with your pair. If one
has an idea that the other knows to be bad, they must be capable of saying this
and able to present a case for an alternate approach.

Disengagement

Some developers will be resistant to pairing or will spend their time less
engaged in the activity. Developers checking their phone constantly, sitting
back in their chair or not communicating actively are signs of an individual that
1s disengaged.

This 1s detrimental to the team, and it's important to try to understand why

it's happening, It may be that the developer really does work better alone, or
it's a sign that they're exhausted, there's disparity in skill between them and
their partner, or that they simply don't get on with their partner.

Introducing pairing

When introducing pairing to your team, there's a number of things to consider,
such as the practicalities, and the typical objections you might face from the
business.

Getting started

Start small, take two developers who are keen on the idea of pairing, set them
a task to complete and give them the space they need. Get them to champion it,
so others can get a sense of how it's working for them.

Have them pair together for a short while, perhaps a couple of weeks, so
that they have time to address any teething problems.

Don't assign pairs

Don't force two people to pair together, let pairs form naturally. Keep an eye
out for signs of the challenges mentioned above, and provide guidance if it
seems like a pair 1s less effective than it could be.

When not to pair

Not every task requires two developers to tackle it. Having two developers
working on the same thing may not be the best use of your team's time; a task
may be so straightforward to complete that it relies more on muscle memory
than critical thinking, or one developer is tired of pairing and in need of a
timeout.

Blockers: ""Double the hours”

A popular argument for not adopting pairing is that you're doubling the man
hours needed to complete a task, which is simply not true. You're likely to find

that the number of man hours does increase, but you'll also find they produce

better quality code and spend less time stuck on problems or dealing with
technical debt.

Blockers: Management buy-in

Software projects can fail and the most common reason for failure is poor
communications or mounting technical debt. Pair programming embeds
collaboration into the process, which results in a software product that is of
higher quality, and has fewer defects.

When teams engage in pair programming, 1t means there is less risk when
a developer leaves, or 1s away, as domain knowledge has been spread across
the team.

Cynics

It's a hot button topic in software and you'll frequently find people opposed to
pairing. You can't force a cynic to engage in pair programming, but you can get
the people who are interested 1n pair programming to evangelise it. Over time,
we've found this helps to bring some people around.

Review

As with any agile process, it's valuable to regularly review progress and see 1f
it's working well for your organisation. We've found Agile retrospectives to be
a handy tool 1n helping to understand what has worked well and what may not
have worked so well.

Pairing Environments

Workspace and equipment

We see the 1deal pairing workstation as having two mirrored screens, plus a
shared keyboard and computer. The pairs should be able to comfortably sit
side by side with one another 1n an environment which 1s ergonomically
friendly. At the bare minimum, a pair should have a single computer which they
pass back-and-forth.

Remote pairing setup and tools

As remote working has become more popular, tools such as Screenhero have
gained traction in the pair programming community, and are a great way to
collaborate from different locations.

Unless you're Ping Pong pairing, a Pomodoro app is a must. We use
Tomato One, but there are hundreds out there that could be used for pair
programming,

Through the increased adoption of open source and a plethora of online tools
that help software teams to collaborate, programming has become more social
and, with communication being one of the biggest problems in software
delivery, we see pair programming as being the natural evolution of this. In
fact, many forward-thinking organisations have already adopted the practice,
some to the extent that their developers program exclusively in pairs.

by Rory MacDonald & Scott Mason

Chapter 4: Code Reviews Using The Pull Request
Workilow

As developers we always appreciate a second pair of eyes and an extra brain.
The eyes are really helpful for catching that extra whitespace you might have
missed. The additional brain power might help you solve a problem in your
code with 5 fewer lines. All of this results in better code and more
collaboration.

A way of formalising code reviews within your organisation can be the
pull request workflow, which aims to encourage regular code reviews with
minimal disruption to your productivity, while gaining tremendous value.

Why code review?

Knowledge share

If you're new to an existing project, what better way to get valuable insight to
the workings of it than getting someone familiar to have a look over your
changes? It's really difficult to sit and read through the many lines of existing
code to fully understand what is available for you to use, but they'll have used
existing functions a lot more than you, and will be able to help reduce code
duplication.

The code review encourages the start of conversations that lead to
improvement of the overall codebase, sharing of best practices and experience
from both the reviewee and reviewer.

It's important that reviews are treated as a positive tool. While it's easy to
be defensive of your work there's probably a reason a reviewer is suggesting
an alternative. In any case, the reviewee should feel comfortable to start a
discussion about suggestions provided; it's a good chance to learn.

Developers shouldn't fear having their code picked over, as comments
provided should be constructive and it allows to them to gain real insight from
their peers. Likewise, a reviewer should always feel comfortable providing
constructive criticism if they feel 1t will lead to improvements.

Visibility

It's one thing for an existing member of the team to join a project, but for new
recruits it can be especially daunting. Having frequent code reviews is a great
onboarding mechanism to get them involved in the process early on, helping
them become familiar with alien codebases.

More often than not, they'll also have new ideas, or other experiences that
you can benefit from. Making the code review process as transparent and as
open as possible will only encourage this. It also doesn't restrict the
conversation to single teams, allowing the wider organisation to have input.

Standards

Code standards aid in readability and maintainability of code. Sometimes
standards come in written form, a large set of rules to follow, but other times
they're unwritten rules that you'll only really learn the more you develop within
an organisation.

This 1s where that extra set of eyes come 1n handy. Ensuring that standards
are followed doesn't require much brain power, but they are often easy to miss,
especially if you're unfamiliar with them.

Catching these violations early on saves time in the long run and allows
everyone to be on the same page, ensuring good readability, and giving the
opportunity to open conversations around the standards themselves.

Testing

While a reviewer 1s normally checking over implementation code, a review
offers the opportunity to ensure good practices have been followed while
developing code, for example: Test Driven Development (TDD). It's important
to make sure tests are present as part of a review if this 1s a practice your
organisation adheres to.

Tests, hopefully, allow the reviewer to follow the design of the
implementation while also opening up another area for improvement. Reviews
are a great way to ensure that the tests provided are valuable and efficient. An
important question to ask here 1s: do the tests cover all the changes?

Catching bugs

Having another developer look over your work also provides an opportunity to
catch any bugs you may not have noticed. While you might have a wonderful,
green test suite, a peer might be aware of another edge case within the project
that would otherwise have slipped by.

Readability of code

At Made, we feel that if code 1sn't understandable without comments, this
represents a smell. While it's common to see this crop up as a suggestion, is it
really required 1f your functions and variables are clearly and consistently
named throughout and have obvious and sensible data returned? Comments can
provide value in some cases but they should never be a hard requirement for a
code review.

ChecKlists not required?

While some of the above may look like a checklist, it's not. We're trying more
to present some best practices for code reviews, not rules that you have to
follow.

We'll dive deeper 1nto this idea as we expand on the value we derive
from having adopted a Pull Request Workflow. Some of the things we've
covered above can be easily automated to make code reviewing more valuable
as a result of this.

Pull request workflow

Pull Requests (PRs) allow for a standard and efficient way of doing code
reviews within an organisation. Most popular tools these days, such as Github
or Bitbucket, offer features that allow for easy adoption of the pull request
workflow.

Adopting the flow

PRs revolve around the idea of using dedicated branches for small feature sets.
The branches of work are then submitted to your source control tool, and are
opened up for review amongst your team. Only when the majority of people
involved are happy with the work will it be merged into your master branch.

Branches

Working in isolated branches reduces the risk of conflicting with the work of
other developers. By not working in master, you can remain focused on your
goal rather than constantly having to pull in others code.

Single responsibility pull requests

The core 1dea behind this area 1s that the less code there 1s to review the more
valuable the review will most likely be. Small features covering only a single
area allow for a hyper-focused review and clear understanding of what's trying
to be achieved.

A reviewer can easily tell if the tests are present, valuable and covering
these small chunks. Working in this style makes it easier for the reviewee
themselves to write the tests and feature.

Short lifespans

A great way to avoid merge conflicts with other features and stale code is to
impose an arbitrary time limit on a PR. Whether it's a day or just 15 minutes,
making sure PRs don't hang around in limbo 1s an efficient way to maintain
momentum on a project.

If more work arrises out of a review don't just stop the conversation,
move it out to an issue or multiple 1ssues. Then, assuming everything has been
signed off, merge the PR. This allows more time to be spent on the
conversation and potentially more opinions to be provided and more thought
around the area.

Sign off

While it can be tempting to review your own work if others are busy... don't.
This would render the whole process pointless, as it's the extra eyes and brain
power you were after in the first place. It would be equivalent to working
directly on the master branch.

Try and encourage a culture within the organisation where people are
available to comment on PRs as they're submitted, even if they're working on a
different project. This encourages having all repositories on Github, and their
PRs open to the organisation.

Tooling the flow

We've talked about code standards and tests as part of your review process.
These usually follow codified rules that can easily be automated with modern
tools and services.

Using your platform fully

Knowing how to leverage your platform for the easiest adoption of this work
style 1s a lot simpler than it may seem at first.

Minor things such as having a clear and brief title and an accompanying
description explaining the feature can make it much easier for the reviewer to
quickly grasp the purpose of the PR. This can allow them to assess if they have
relevant input or want to involve others and also that the feature matches the

description provided.

Keeping the conversations around reviews and PRs within the PR itself 1s
the best way to ensure you don't lose any knowledge that surfaces. While 1t can
be easy to take the conversation offline, to email or to Slack, anyone who
comes along after will be missing potentially vital context.

Tests and code standards

Github, Bitbucket and other platforms allow integration with 3rd party services
or your own Continuous Integration server.

These can be used for automatically running your test suite whenever a
pull request is created and updated. This gives constant feedback to the
reviewers of a PR, helping them know tests are passing, meaning they don't
need to pull down your code and run the tests themselves.

The same can be done for code standards. Linting services are available
that can be integrated directly into Github. All of these integrations mean the
reviewers can focus on the feature being developed and best practices around
the implementation of that code, which is difficult, or impossible to automate.

Notifications

Github has notifications built into their PR functionality. In its simplest form it
sends emails for when a PR 1s created and also when comments are made.

Integration with chat applications, such as Slack, can be added to your
Github organisation to give even faster notifications when PRs are ready for
review. This can help you have short lived PRs, and when PRs are merged in
notifications are sent too.

Optional extras

Github allows protecting branches meaning you can lock down master to avoid
anyone pushing to it accidentally. More usefully however, it also allows for
PRs to only be merged if the tests and/or linting 1s 1n a passing state.

While not essential, adopting these extras can help with keeping master safe
and secure from accidental commits.

Visibility

Having the ability to look back and see who introduced a feature and the
conversation surrounding reviewing it 1s a valuable way to foster knowledge
sharing. If someone is looking to develop a new similar feature or improve
upon the original, they can see from the description and conversation why the
feature was implemented in this fashion.

We believe using code reviews and pull requests in tandem gives you the most
value 1n terms of time, knowledge shared and potential cost to clients.

The buy-in to adopt this workflow is far less these days because the tools
make 1t far more accessible to the majority. It can be rolled out across a team,
a project or the entire organisation.

by Ryan MacGillivray & David Winter

Chapter 5: Retrospectives

At the end of an iteration it's good to take some time to reflect as a team to
assess what worked, what didn't work, and what could be improved upon. This
can result in future iterations being more efficient and productive, as well as
increasing happiness in the team.

At 1ts most basic level, a retrospective is simply having the team sit
together and allowing them to voice their opinions on went well and what
didn't. This provides increased insight throughout the team. Teams list out each
of the points made and then take a vote on which of these are the highest
priority. Keeping this to a small list is most prudent as it won't overload the
team, and any points that didn't make the list will show up in future
retrospectives if they're a persistent problem.

From that list, action points are agreed upon to tackle each item, and the
team bears them in mind when going about their day to day business. In future
retrospectives, any action points that led to big improvements within a team
should be shared back to the organisation as a whole, so that other teams can
potentially benefit from learnings.

The Prime Directive

Regardless of what we discover, we understand and truly believe
that everyone did the best job they could, given what they knew at
the time, their skills and abilities, the resources available, and the
situation at hand

- Norm Kerth

It's vital that a retrospective is run in a way where all members feel safe to
discuss their viewpoints. Mistakes are something to be celebrated, as they
present opportunities to learn, so when describing something that went wrong,
be sure not to place the blame at the feet of an individual team member. If
someone feels unsafe they're unlikely to be able to fully engage with the
retrospective. Violations of The Prime Directive, deliberate or otherwise,
should be seen as a team smell and may lead to the team going into the next
iteration with a negative mindset.

There are some steps you can take to help maintain safety, such as
reminding everyone of The Prime Directive before beginning the retrospective
proper, or having facilitators conduct safety/pressure checks.

Safety checks

It's worth running safety checks to gauge how comfortable everyone feels
before tackling larger issues. The facilitator should ask each team member to
write a number between 0 and 5 on a piece of paper, to mean one of the
following:

5 - I’ll talk about anything

4 - 'l talk about almost anything, but one or two few things might be hard
3 - I’'ll talk about some things, but others will be hard to say

2 - mnot going to say much, I’1l let others bring up 1ssues

1 - I’'ll smile, claim everything is great and agree with authority figures

0 - I'm not comfortable talking/I don't want to do this/I want to leave

Once these have been anonymously collected, the facilitator should tally the
count. If there are more low numbers than high they should ask if the team
would like the retrospective to continue. Either way there should be a brief
discussion as to why the team thinks the numbers are low. If it's decided that
the retrospective shouldn't go ahead, then it's worth running this quick exercise
to determine why people are feeling unsafe:

e The Facilitator asks everyone to put themselves in the shoes of
someone who might not feel safe, then note down what could make
them feel that way

e Based on the submitted notes, have the team work together to list
reasons that might cause these 1ssues

e Based on the potential causes, ask the team to present and discuss
potential solutions

e Run the safety check again

e [fthe safety level has increased after this point, then you can run the

retrospective.

Facilitators

A key role in a retrospective is that of the Facilitator. They contribute feedback
along with the rest of the team, but they're responsible for:

e Outlining the retrospective exercise to the team

e Keeping the exercise on track, with a balance of strict time keeping
while trying to keep the atmosphere relaxed and informal

e Ensuring the Prime Directive 1s adhered to
e Helping and prompting thoughts and ideas if the team 1s struggling

e Reiterating and sharing any agreed upon action points after the
retrospective

e Trying to ensure everyone on the team contributes to the discussion

To keep retrospectives fresh and different, try occasionally rotating the
Facilitator role so that different members of the team get a chance to define
how the session will run.

When deciding upon a retrospective activity, you can choose to go with a
tried and tested i1dea, or something wildly different to help spice things up.
We'll discuss some different ideas below, but there are numerous websites out
there that provide plenty of ideas to take advantage of.

Scheduling and frequency

We derive the most value from retros when we run them at the end of each
iteration (for us this 1s weekly) directly after a showcase. By running them
before the next iteration begins, the team is able to take the learnings and
outcomes directly into the following week.

If for whatever reason the team is unable to run one, we've found it best to
wait until the next scheduled retrospective, so as to not disrupt the current
iteration. Ideally these shouldn't be missed barring illness or holidays. If a
team member has contributions to make but can't attend they can choose to
provide these to the facilitator ahead of time.

Exercises

To keep energy up in a retrospective and help provide focus to the areas the
team aims to cover it's common to use exercises.

These are some of our favourite exercises:

The happiness graph

Ask each team member to draw a graph of how happy they were over the
duration of the sprint. The X-axis denotes days, and the Y-axis denotes mood.
As moods, we use happy, indifferent, sad and angry, but you may find a
different scale works better for you. Have the team chart a line representing
their mood over the course of the sprint. When everyone has finished, take the
time to discuss any notable peaks and troughs, and make a note of the reasons
for each.

As well as being a good way to see how everyone 1s feeling, with those
notes, you can discuss ways you can make sure the things that made people
happy continue to happen, and ways to prevent the things that made people
unhappy from ever happening.

Hot air balloon

The hot air balloon exercise 1s popular within our team, with the format being:

e Draw a hot air balloon on a whiteboard or other canvas, with a sun
to the right of the balloon, and a storm to the left.

e The Facilitator provides a prompt like "Looking back, what was our
hot air, taking us higher, and what were our sand bags, bringing us
down?"

e The team then writes these down above and below the balloon as

appropriate.

e The team discusses each point as they go to make sure there is a
shared understanding.

e The facilitator then offers another prompt "Looking ahead, what
stormy weather can we see making the route to our goal difficult, and
what steps can we take to move towards sunny days and an easier
path?"

e These suggestions are again mapped to their appropriate area on the
drawing, and discussed among the team.

By approaching the retrospective in this way we can reflect on the previous
iteration, as well as look ahead to try to avoid any potential pitfalls.

Both of these exercises follow the same outline as the basic idea
mentioned earlier. Most exercises work to elicit the following from team
members:

e What went badly?
e What went well?

e How can we improve going forward?

Don't let retrospectives become monotonous; mixing these exercises up 1s an
1deal way to keep things fresh and provide different perspectives and prompts
to these questions.

Action points

The outcomes of a retrospective can be used to identify action points that can
be used to try and enact improvements to the next iteration. In the example of
the hot air balloon these would be the items listed featured in the sunny area.
Ensuring that these action points are focussed and achievable is essential to
their success.

Comradrospectives

Where a standard retrospective is for smaller teams, we've taken to holding a
company wide retrospective, known as a Comradrospective. They're an hour
long, and we hold them at regular intervals, often two weeks, after each team
has had a retrospective. They have the following in common with
retrospectives:

e The Prime Directive 1s read out at the beginning
e A safety check is held before hand
e A facilitator is assigned

e Action points are decided on at the end of the session

These sessions can be focused on a particular topic, or each team can bring
discussion points from their retrospectives, to share with the wider company.
For example: things that have been holding them back, and their biggest
successes. The facilitator of the team retrospective can collate these in
advance and propose them to the wider group.

Through sharing and discussing these points as a group the company can
1dentify issues affecting all teams and create further action points to address
them. We make a point of revisiting agreed upon action points in future
sessions to discuss whether we've been actively focussed on them, and
whether they're still a priority for the company.

Customer inclusive retrospectives

Involving stakeholders from the customer side in a retrospective can be a
valuable way to both improve communication and provide greater
understanding for both sides. This allows for clear feedback from the
customer, beyond the scope of a showcase. As well as that, because they can
see you're actively taking steps to address any issues raised previously, it
strengthens your working relationship.

Retrospectives, in any of their many forms, are an invaluable tool for
maintaining healthy, happy software teams. By giving everyone a platform on
which to voice their concerns, learn from their mistakes and celebrate their
victories, you're ensuring your team will continue to evolve.

by Ryan MacGillivray & David Winter

Chapter 6: Continuous Feedback

We believe it's important to foster an environment of continuous improvement,
whereby the performance of every aspect of the organisation is encouraged to
be on an upward trajectory.

This 1s especially true in service and knowledge-based businesses,
where, to throw 1n an early cliche, people are generally your most valuable, or
only asset.

What is Continuous Feedback?

The goal of Continuous Feedback is to significantly shorten the personal
feedback loop in your teams.

When delivering software, lean and agile tell us to value things like short
feedback cycles and regular retrospectives and course corrections. However,
for many organisations, the individuals seem to have been sidelined, and the
more traditional annual review continues to prevail.

With Continuous Feedback, instead of having a touchpoint every 6 or 12
months, individuals have one every couple of weeks. By focusing on events
from the last fortnight, the feedback 1s more current, and because the next
review 1s only two weeks away, it's an ideal forum for regularly tracking
progress on smaller, more incremental goals.

What's wrong with traditional performance
reviews?

We perceive a number of downsides to more traditional performance reviews:

Feedback is not current

If a feedback session happens once every 6 months or, worse, once a year, the
time between any event that warrants discussion or course correction can be
significant, missing the opportunity to course correct or reinforce that
behaviour sooner.

There's also a natural bias to focus more on recent events, rather than
potentially more important things that happened 6+ months earlier.

Goals are not tracked regularly

On a similar thread, setting goals to be achieved over the course of a year
without more regular opportunities to share progress seldom yields the desired
outcome. In the days running up to an annual review you may see a flurry of
activity against last year's goals. If there is an opportunity to share progress in
the next couple of weeks, it's likely to be a much more current concern.

Feedback season is overly time consuming

For managers with many direct reports, feedback season can be a particularly
time consuming period as they try to recall the pertinent events of the previous
year. In addition, if the organisation performs '360 feedback' team members
need to be badgered, and possibly reminded on how to give good quality
feedback.

While it's true that Continuous Feedback likely adds up to more time spent
on feedback activity over the course of the year, each feedback window 1s a
less daunting prospect.

Feedback is not owned by the individual

In a traditional review format, where the manager authors or collects the
feedback, and it's delivered to the individual, there's little feeling of ownership
over the feedback. The individual 1s almost a passenger in the process. If the
feedback is from a third party, the individual may also miss the ability to talk
to the feedback giver to better understand its 1mpact.

With these downsides 1n mind, and with what we can learn from modern
software delivery practices, we can consider another approach.

How does Continuous Feedback work?

With the primary goal to shorten feedback loops, Continuous Feedback offers
up far more frequent review sessions. For us, once every 2 weeks has proven
to be a sweet spot.

These sessions are typically much lighter than a more traditional review,
running for somewhere 1n the region of 15 - 25 minutes per session.

Individual responsible for collecting feedback

With Continuous Feedback, it's the individual who should take responsibility
for their own feedback, and for bringing it to the session. This gives the
individual more ownership of the process, and also provides them a forum to
discuss the feedback with the giver ahead of the session.

We'd generally steer away from anonymising the feedback process,
instead trying to encourage a culture where the team is able to provide well
thought feedback, and where people are open to receiving such feedback to aid
with their personal development.

Short sessions and short-term goals

As mentioned earlier, because Continuous Feedback sessions typically happen
much more regularly than more traditional review processes, the sessions
themselves are generally much shorter.

Because the next session should be booked in for a couple of weeks time,
Continuous Feedback makes short-term goals far more relevant. Individuals
can be encouraged to think about the changes they'd like to make in the
immediate term based on the feedback they've just received, as well as what
incremental steps they can take towards their longer term goals.

The sessions should also provide a forum to add some check-up and
holding to account for goals that were set in the previous session. Individuals
should be coached to set achievable goals, and there should be an expectation
that the majority of these goals will be achieved.

Understand individual dissatisfaction sooner

Review sessions should allow for two-way traffic (though in many
organisations they may not!). If an individual 1s dissatisfied in their role
through lack of progress, a lack of enjoyment for the work, having relationship
1ssues with others in their team etc, it's generally far better to hear about this
sooner, so it can be rectified before becoming a larger problem.

Sessions can be facilitated by a peer

To encourage more autonomy in teams, it's possible to have peers facilitate
each other's review sessions, and further, facilitate sessions for their managers.
It can be a useful tool to level out an organisations hierarchy, and to offer
another forum for individuals to further develop their softer skills.

In adopting a peer-led structure, organisations may want to consider how
any individual dissatisfaction can be fed back to people in the organisation
who are able to make changes, 1f for whatever reason the peer who is
facilitating the session is not able to act on it.

So now you've heard about the benefits of Continuous Feedback, how can this
be rolled out to your organisation?

How to adopt Continuous Feedback

Continuous Feedback is likely to be a significant change in format for many
organisations. The scale of the organisation and how open to change it is will
be a large factor in your path to adoption.

That said, one approach almost always provides greatest traction:

Start with a small group

If possible, steer away from launching a 'big bang' change on any sizeable
group of people. Our recommendation would be to take a group of 3 or 4
people initially, and introduce the process to them, ideally in the form of a
short face-to-face discussion on how you see things working, and why you're
keen on giving this a go.

Hand-picking your first cohort can be a good idea - people who are
generally receptive and enthused by new ways of working, and people who
you think may be good allies to evangelise this process to a wider audience.

After facilitating a Continuous Feedback session for everyone in this
group, take the next group of people, and introduce the process in much the
same way to them. If you've chosen to adopt peer facilitation, it's a good
opportunity to have some of the first group induct the second.

Coach on how to give and receive effective feedback

People in many organisations seldom have the chance to provide feedback, and
so may not be well skilled in it.

As the team will be expected to deliver feedback regularly, and because
they'll be delivering that feedback direct to the recipient, it's a good 1dea to
provide some guidance on how to give constructive and actionable feedback.

Equally important is coaching people to receive feedback well. It is
likely to be the case that some feedback will talk about areas for improvement
for the individual, and so helping people to graciously accept feedback, and
ask insightful questions when they don't fully understand the impact can help

encourage a more open culture.
Once the feedback has been collated, we need to do something with it.

Encourage ultra-timely feedback

Even with a window of a couple of weeks, it's sometimes hard to keep track of
the most pertinent events on which to provide feedback. It can be worth
encouraging the giving of feedback as close to the event as possible, so the
individual can bring it to their next session.

Givers of feedback may also choose to keep their own journal of
feedback they have for other people, so they can quickly recall some recent
feedback when asked for it.

A word of caution here: if feedback is of a more critical nature, it may be
wise to encourage the giver of that feedback to 'sleep on it'. Feedback of such a
nature should never be given in the heat of the moment.

Provide a framework for making feedback actionable

During the review session, the individual should bring their collected feedback
along.

It's a good 1dea to provide a framework that encourages the individual to
document what impact the event in question had, and what the key points to
take-away should be. The role of the facilitator should be to bounce ideas off,
and to ask questions to help the individual to think more deeply about the
feedback.

Once the feedback has been discussed, it's a good 1dea to look at some
goals. Discussing progress towards the previous goals, closing out wherever
possible, and identifying any new goals, either based on course corrections
from the feedback, or as smaller increments towards the individuals longer-
term goals. The facilitator should be doing what they can to hold the individual
to account in achieving these short term goals.

Keep momentum up

As with any organisational initiative, keeping momentum remains a challenge.
In the hustle of day-to-day work, it can be easy to allow commitments such as
this to drop.

You can consider rewarding buy-in from those who perform best at
keeping their commitment high, offering public recognition, a company lunch or
some other soft benefit. These people can be good allies 1n encouraging
similar from their peers.

Encouraging individuals, when asking for feedback, to highlight particular
areas they're focusing on can help people provide more relevant and
actionable feedback.

In much the same way as retrospective exercises provide different
formats with generally similar outcomes, you can occasionally switch up the
format of the review session to keep things fresh.

Overcome resistance

When rolling out any change to an organisation, you're likely to meet some
pockets of resistance. These are some of the common arguments we've seen:

HR won't let me do this

In larger organisations, HR may be a large skills silo with autonomy over how
such things work. If you're unable or unwilling to fight this battle, you can run
Continuous Feedback in parallel in your own team. You might have to continue
to adhere to the more traditional approach provided by your HR team, but at
least you'll have generated and documented plenty of feedback throughout the
year to feed in to that process.

Shouldn't managers manage?

Some organisations are precious over the hierarchy of managers managing
people. It's possible to pick and choose how you want your implementation of
Continuous Feedback to work - it's entirely possible for managers to facilitate
all of the sessions, for example.

As a principle, we'd be encouraging devolution of everything reasonably

possible to the team, but that's a discussion for another chapter.

How can we let people go?

Without the paper-trail of objective setting and measurement that more
traditional approach offers, Continuous Feedback could be said to be a poor
means by which to manage business exits. We believe such events aren't the
norm, and so should be managed by other means.

Our observations

We've been practising Continuous Delivery for some time. There are a number
of hurdles or downsides that we've observed.

More employees buy into it than others

As with many initiatives, it's likely that some people will be more enthused
than others. Some people can become anxious when expecting to receive
overly-negative feedback (which seldom turns out to be the case), while others
value the opportunity to have regular personal course correction discussions.

Poor forum for larger issues

If there are larger issues afoot with an individual, Continuous Feedback is not
a good forum for dealing with them. This remains a good forum in which to
involve a HR specialist.

Without monitoring it's easy for people to duck under the
radar

Particularly where the program is largely delivered by peers, without some

sort of tooling in place to increase visibility on the review schedule, some
people may go for longer periods without a review.

Struggle to keep accountability around short term goals
A potential downside to delivering the sessions with peers, 1s that some
accountability on goals can be lost. Some people are less comfortable in

holding individuals to account on their achievement of their goals.

We believe Continuous Feedback to be a logical next step for teams who have

been working hard to shorten feedback loops around their software delivery,
and who have been practising team retrospectives as a part of their
development cycle.

If nothing else, it forces teams to have more conversation about
individuals growth and development objectives, and provides a regular forum
for people to vent their frustrations with a co-worker. The agile manifesto
reminds us to value individuals and interactions, after all.

by Chris Blackburn

Chapter 7: Recognition & Reward

|
|

L1

L]
I

Morale is closely related to job satisfaction. When morale is high, your team is
happier, more productive, and more likely to believe in your organisation's
vision. On the flip side, not enough (or any) praise for a job well done, dealing
with difficult clients, or heavy workloads can significantly lessen morale, and
sometimes lead to higher employee turnover.

In this chapter we'll discuss the importance of morale and how you can
identify when levels are moving in an unfavourable direction, as well as how
to give teams a boost by taking the time to recognise, and possibly even
reward, their efforts.

Recognising low morale

Identifying the root cause of low morale can be complex, with a number of
contributing factors. It 1s a situation that no organisation wants to be in as it has
significant costs down the line: quality of the product suffers, clients become
unhappy and there 1s no energy within the team.

Reasons morale drops

There are various reasons for morale dropping within a company, and the
following are some of the more common causes.

Poor leadership

Teams should be given the opportunity to self direct and self organise, so that
they're better able to complete tasks, engage with customers and work together.
That said, teams still need direction from a leader, and without that, teams can
begin to feel unimportant, as though what they're doing has little worth.

Poor communication

Everyone needs to be kept in the loop with what's going on in the current
project. Goals, praise, performance or personal gripes will always arise and
need to be communicated within the team. Team members also need to be
upfront with each other.

The last thing you want is a disengaged workforce where individuals feel
left out and undesirable social hierarchies start to form. There's a lot you can
do to help promote communication amongst teams, and we've discussed it at
length here.

Unresolved conflict situations

The act of creating software is a very subjective topic and, given the speed at

which the software industry moves and new technologies are introduced,
conflict situations are sure to arise when opinions clash. Dealing with these
conflicts and others is critical to maintaining morale, as lingering resentment
over unresolved conflicts leads to a break down of trust between team mates,
and can also lead to a fear of any kind of workplace conflict.

Lack of empowerment or autonomy

If you do not allow your team to take ownership of a feature, they will take less
pride in it. Here at Made we believe that programmers should be responsible
for delivering features end to end. This means dealing with all aspects of it
from communication with clients, to infrastructure and programming. If you
only deliver a very small slice of this, you will not appreciate the positive
impact that you are having on the problem, which may lead to dissatisfaction.

Heavy workloads

Bad estimates and poor planning can result in significant workloads on
individuals. No one wants to work overtime, especially if they are not being
compensated for it. Failing to understand the underlying requirements of a
piece of work can have drastic consequences on the amount of work that is
required to be completed. An overburdened workforce may also be a sign of
significant understaffing, and as such is a problem that needs to be rectified
sooner than later.

Poor working conditions

A team cannot do their best work in an environment not equipped to handle
their needs. Without a space that allows them to collaborate, communicate,
focus and relax, your team will become increasingly dissatisfied and more
prone to distraction.

Knowing how and why a team's morale drops is the first step 1n making
their happiness a priority, but beyond simply trying to prevent such a negative
outcome, there are plenty of positive moves you can make to raise morale, and

it starts with recognising the effort your team 1s putting in.

Recognition

A downside of only having individual recognition is that it can introduce
competition. To receive recognition, you must excel compared to your
colleagues. Unfortunately, this can lead to unhealthy environments and slow
degradation of teamwork.

By contrast, cultures with only full team recognition lead to a marked
increase in amounts of cooperation and collaboration, as this is the only way to
achieve success. The downside of team-only recognition is that it can go awry
when individuals begin to feel that underperformers are receiving just as much
reward for their actions.

Another solution seen in other cultures is never to recognise anyone for
fear of causing these problems. It is important to consider that this will begin
to cause individuals to feel unvalued.

Although we value individual recognition, we favour team recognition.
We also believe that people should be recognised primarily through ad-hoc
channels, by their peers, not by whoever sits above them in the hierarchy. We
use Continuous Feedback as a platform for this recognition.

It's important to recognise the highly positive impact that recognising teams and
individuals has on morale and, potentially more importantly, the disturbing
implications of poorly handling mistakes as well.

Handle mistakes in a positive way

In a high safety, high trust environment, with practices such as Continuous
Feedback and retrospectives, the detection of a mistake should not be seen as
an opportunity for a chastising or otherwise attacking the individual(s)
responsible for that mistake.

Morale can be boosted during periods of adversity too, through robust,
mature methods for picking up the pieces after a mistake has been made. Using
mistakes as opportunities to engage in positive learning and improvement
experiences, rather than downtrodden experiences, makes people feel both
happier and supported in their role.

Not to mention that as a leader, you can be more effective in your role
when individuals feel they can share their mistakes openly and freely with
everyone else. The reason is simple: the entire team can learn how to avoid
making that mistake in future. By contrast, in environments where individuals
are incentivised to cover their mistakes, from fear of retribution, then the wider
team misses out on the learnings gained.

Communicate openly

Agile values communication with customers highly. A team should be driven to
do the things that build customer happiness, with the hope that they are
delighted by the team's efforts. Since this is the case, teams that work in close
collaboration with customers have the benefit of receiving that praise directly.
This praise, when received as part of a tight feedback loop with the customer,
can be used as an early warning sign that something is not quite right when the
amount of praise decreases.

Peer recognition

Recognition has a half-life. One consideration of solely using annual reviews
as an opportunity for recognition and praise is that these cultures risk leading
to large dips in morale. As an alternative, spreading recognition throughout the
year, with a platform for peer-to-peer recognition in place ensures there is
never the opportunity for such dips.

At Made Tech, we have "Made Merits", a form of Karma system that 1s
used to reward good deeds on a peer-to-peer basis. A consideration of using
such a platform is that it can lead to a dip in intrinsic motivation, this can be
initially manifested by "will you give me a Merit if [do that" but also
demotivation when a Merit isn't received. While we believe that "Made
Merits" are a harmless part of our culture, it is possible to draw parallels
between Merits and other extrinsic motivators.

Recognise dependence on recognition, an extrinsic motivator, and
ensuring they are also finding their work intrinsically rewarding is something
that only the individual team member can do by themselves.

Reward

Having recognised and acknowledged the great work your team has done, it's
time to talk about the ways in which teams and individuals can be rewarded.
As we see it, rewards can be either extrinsic, something that either is or costs
money, or intrinsic, something that lends itself to helping the people being
rewarded feeling fulfilled and happy.

Intrinsic

Arguably the more powerful type of reward is the intrinsic reward. It's also the
trickier to give, since these rewards are something teams need to feel, rather
than be given, and you can't force people to feel a certain way.

Purpose

By making a point of monitoring and keeping morale up, along with creating
communicative environments where their hard work can be recognised,
allowing your team to structure the way they work, giving them ownership of
delivery and many of the other practices we've discussed, the members of your
team will feel a sense of purpose, a sense that they, and the work they're doing,
matters.

With a sense of purpose, a team knows why what they're doing is
important, they're driven to do it, and to do it well. Understanding how their
work feeds into the wider company objectives plays a big part of instilling a
sense of purpose, and we found it particularly useful to define a company
mission in order to clarify why the company exists and what we're trying to
achieve.

Each of our teams knows our company mission 1s to improve software
delivery in every organisation, meaning every member of said teams believes
in our mission, and anybody joining us wants to help us achieve it.

Freedom to learn

We're proud of the work we do with our customers, but every software
engineer loves having the freedom to go off and get stuck into a technology that
interests them, and the two things don't always align. Rather than snuffing that
thirst for knowledge out, giving your team the space to pursue and share their
interests 1s an excellent way to keep morale up, and may even yield benefits
for the wider organisation down the line.

At Made Tech, the entire team often engages in a number of non customer
focussed activities, such as code dojos and hack days, where we set aside an
hour a week or an entire day every month or so for everyone to do something
fun and interesting that doesn't necessarily have to have commercial benefits.

This creates an environment where every member of the team knows they
have the freedom to suggest other ways in which to promote learning, and that
their team will respond positively to their suggestions. A recent example is the
"Code Roast", a variation on the traditional practice of code reviews, whereby
a team member will pull out a piece of code they're particularly not proud of;
present it to the rest of the team, who spend an hour pointing out its flaws and
then working together to improve it.

Fresh challenges

For organisations like ours, who work on a variety of different projects for
different customers, having a team stay on one project for months on end can
become tiresome, leading to a loss of productivity and enthusiasm.

While it's beneficial to have somebody on the project throughout the
engagement, 1f only to help build and maintain a relationship with the customer,
we've found it important to let our teams know that, if they have a burning
desire to do so, they have the opportunity to change things up at semi-regular
intervals throughout the year.

A team member can choose to either stick, and stay on the project they're
on, or twist, so that they can pursue a fresh challenge. Knowing that you're not
shackled to a particular project for what could be years is liberating, and
keeps things feeling fresh.

Extrinsic

On the other side of the coin are extrinsic rewards. These are things the
company can give to teams to both celebrate their work, and also to maintain a
healthy level of morale. While we're not advocating showering them with gifts,
we do see benefits to treating your team beyond just material gains.

The following are two examples of situations we've felt it was important
to hand out extrinsic reward; there are many other appropriate ways to reward
your organisation, you just need to find what works best for you, your team and
your organisation.

Company Retreat

Recently, having had a particularly successful year which saw the company
grow in many positive ways, thanks to the combined efforts of the entire Made
Tech team, 1t was decided that, for the first time since the company was
founded, everybody would be taken on a company retreat.

This took the shape of a 5 day break in Spain, where we'd spend a few
hours each day building a product we'd use internally, and then hanging out in
the evenings. This could be seen as both an extrinsic and intrinsic reward;
everything was paid for by the company, but we used the building of the
project as another opportunity to learn, and the entire experience was a great
team building activity.

Celebrating success

Whether it's successfully launching a project, completing an engagement with a
customer, or your team has reached a landmark point during the engagement,
it's important to recognise these moments and celebrate them. These moments
only come about because the entire team pulled together to produce the best
work they possibly could, and letting those efforts go unnoticed is a sure fire
way to leave your team feeling deflated. Whether it's something as simple as a
trip to the pub for a few team drinks, or something more extravagant, celebrate
the achievements your team is responsible for.

It goes without saying that your team is vitally important. Without them, nothing

gets done, so making sure your team feels happy, fulfilled and committed to
their goals should be near the top of your organisation's list of priorities. By
taking the time to check in with your team and gauge how they're doing,
listening to what they have to say and recognising the efforts they're putting in,
you're creating a positive environment for everyone within the organisation.

by Craig Bass, Scott Mason & Emile Swarts

Quality

Having given your teams the tools they need to improve communication both
amongst themselves and within the wider organisation, you need to ensure that
those teams are capable of delivering quality software.

A team is made up of individuals, and each individual will inevitably
have their own way of working, which can lead to competing or conflicting
opinions on the best way to proceed with the tasks at hand. Discussion is
important, and helps the learning process, but by establishing a framework for
quality, you can steer that discussion to a place that promotes both learning and
better software.

In this next section, we’ll discuss practices you can put into place that
will ensure quality is not only maintained but continuously improved upon,
through techniques like giving teams the responsibility of delivering the
software they’ve built, and learning how to react positively to mistakes and
failures.

Chapter 8: Give Teams Ownership of Delivery

It's a poorly kept secret that increasing levels of responsibility, particularly
with knowledge workers, often correlates to an increase in performance.

We strive to have the team dedicated to a software product responsible
and accountable for the end-to-end delivery: from initial requirements capture,
right through to launching and supporting the application.

In devolving responsibility to teams, there are a number of areas worth
consideration, the first of which is what skills you'll need on the team to best
achieve this.

Shaping the team

When pulling together a new team, it's important to consider the blend of skills
that you need. We tend to shy away from specialist roles, such as database
administrators or dedicated testers, though we do see value in ensuring a
healthy mix of experience levels on a team.

We package desirable behaviours in to documented traits, describing a
series of attributes people can work towards. One of these traits is delivery,
which encompasses process improvements, understanding commercial
objectives, and ensuring customer needs are met. Other organisations may
choose to recognise related attributes 1n other ways, such as through team lead
or similar titles. Whatever your flavour, it's sensible to consider having an
experienced pair of hands in the team with the nous to nudge things in the right
direction.

On the flipside, it's wise to be wary of conflict in teams where everyone
1s chasing the same personal objective. If you have multiple people on the team
who are used to playing a delivery lead role, the team may not easily settle.
Having a mix of people skilled in a number of different areas who can coach
and upskill other members in their various strengths is a positive place to be.

Once you're confident you have the right mix of people together, the next
step 1s to consider how to better empower them.

Empowering the team

Successful team empowerment typically comes from blending expectations,
responsibility, and accountability. Without these forces working in balance,
you're likely headed for frustration.

It's firstly important to instil a sense of responsibility that everything from
understanding what the customer needs, right through to launching the thing in
production 1s down to the team.

Depending on the culture in your team and wider organisation, you may
need to do some work to set expectations on what you expect the team to be
achieving. This should shy away from task-level goals, but be a higher level
goal - perhaps something along the lines of: increasing customer happiness
through delivering valuable, working software regularly.

Once you've done this, your next step is to not interfere. For many
managers, this part is particularly tricky.

Your only responsibility from here on in should be to hold the team to
account for meeting their commitments and for delivering to the higher-level
expectations that you've agreed. We cover accountability in a little more detail
later.

An empowered team should be focusing its efforts on problems, not on
implementing perceived solutions provided by an external architect or other
higher being,

Task teams with problems, not solutions

Ensure that the team are being engaged at the correct level. If you're looking to
encourage strategic, rather than just tactical skills, don't ask the team to deliver
a pre-defined solution to the problem.

Instead, ensure the team are empowered with, and are actively seeking
out, an understanding of the commercial goals behind each and every feature.

Have the team take responsibility for identifying and then delivering
solutions to these commercial problems, rather than executing against a pre-
baked task list. This ownership of the fuller problem should help accelerate a
feeling of empowerment.

When relinquishing any kind of control, or when trying to increase the
empowerment of others, it's highly likely that many things will not be done as
you would have done so yourself, and it's important to quickly come to terms
with this.

Be prepared to accept mistakes

If you were managing a task-list for a team and having them execute it, it's
likely you're going to be getting your own way a lot of the time. When a team
moves to working toward higher order goals, this is likely to not be the case.

It's important to be prepared to accept that mistakes will be made.
Wherever possible, you'll need to allow the team the freedom to do this, even
where there's a cost involved, and where you believe you can clearly foresee
the problem.

If you're overly keen to jump back in and provide input, you'll too easily
undo the work involved in imparting a true sense of responsibility and
empowerment, and before you know it, members of the team will be deferring
decision making outside of the team.

You should try to see your role as preventing the team from jumping off a
cliff, but not much more. Opening yourself to the right conversations can help a
seasoned leader more easily accept this transfer of decision making.

This topic is discussed more fully in Chapter 10.

Ensure you're being asked the right questions

Particularly with newly empowered teams, you should make yourself open to
discussing strategies with the team. However, you should be careful to avoid
allowing the team to too easily devolve lower-level decision making your
way.

A quick and easy technique is when asked a question, first ask the other
person what they think the best course of action is. Even if you'd consider
doing things differently, unless you believe what's being proposed is
significantly detrimental, let the team run with 1t without providing input.

You should move to a mindset of providing advice from outside of the
team. One easy tactic to accelerate this shift 1s to ensure the day-to-day point of
contact 1s inside the team.

Point of contact

In most engineering teams, it's natural for there to be a primary point of contact
for the Product Owner, Customer, or similar role. It's of paramount importance
that this primary day-to-day contact be someone 1n the team, rather than having
communication fed through intermediaries, particularly those more senior
within the organisation, and those not full-time committed to the engagement.

Having communication come from a conduit outside the team
disempowers the team from building direct relationships with those
commissioning the software, and it hinders open conversations that help
engineers better understand the true commercial objectives and pressures.

The point of contact is unquestionably an important role within the team,
particularly if you provide consultancy-like services to other organisations.
You should be conscious to invest in upskilling, nurturing, and providing
regular support to those new to this role.

Upskilling the team

There are a number of areas in which you could consider upskilling the team,
particularly if increased responsibility and empowerment is new for them.

Delivery mindset

If someone has spent much of their time being assigned tasks, and then
executing them, it's likely some work is needed to coach more of a delivery
mindset.

This involves thinking at a higher level about how to best move from a
stated problem, to working, released software. Likely this will entail higher
level of communication with customers, helping shape priorities, identifying
and articulating solutions, and ensuring there's an appropriate framework in
place to facilitate fast delivery and fast feedback.

Customer service

Many organisations make the mistake of hiding their engineers away from the
customer, instead relying on a middleman to collate requirements, showcase
the software, and generally keep the customer happy.

You should encourage a solutions-focused culture, where engineers see
their role as facilitating the customer, be it an internal or external stakeholder,
in achieving their commercial goals. Ensuring regular and open
communication, and regular showcasing of the software can go a long way.

In many organisations, if software engineers have historically been
engaged later in the process, after pre-conceived solutions have been devised,
there can be a pervasive no culture', where engineers will not be used to
engaging in the process of helping to solve higher order problems. In these
cases, additional effort will be required to shift the culture to one of more
open, helpful dialogue.

Understanding the problem

If your team have historically been focused more on solving task-based
problems, coaching is likely to be necessary to help in how to better gain an
understanding of the higher level problem to be solved. Consider encouraging
communication with the end user, support in navigating organisations to reach
the true stakeholders, and relentless questioning of why requirements are
important.

Commercial understanding

In some organisations, you may observe engineers shielded or otherwise
1solated from the commercial drivers behind software deliveries. In the worst
cases, which are thankfully a little less common nowadays, engineers can be
tasked with building libraries with specific interfaces, with no understanding
of what's going to be interacting with this interface, even at the software level,
let alone the higher-level commercial goal it's designed to solve.

Instead, we believe people perform best when they understand the domain
in which they're working, and when they understand the commercial goals that
the software 1s supposed to solve. Empowered with this understanding,
coupled with their software engineering know-how, engineers can often
propose easier and cheaper solutions to achieve the same aim.

To ascend a team to true autonomy, healthy mechanisms need to be in
place to keep accountability levels high. Without them, the temptation for
managers to interfere often become too great.

Keeping teams accountable

An 1mportant, sometimes overlooked, trait when increasing ownership within
teams 1s putting in place appropriate mechanisms to hold the team to account
for unacceptable deliveries.

As a consequence of empowering the team with higher level
responsibilities, you'll often see teams naturally holding themselves to higher
account. This is the ideal culture to be building.

That said, it's likely that, given enough iterations, even amongst teams
who have plenty of experience with higher levels of empowerment, there will
be occasions where less desirable performance will be observed and should
be surfaced.

To avoid disempowering the team, it 1s suggested to give higher level
feedback, and to allow the time to digest and work out solutions without taking
involvement. Describe the situation that you observed as undesirable, and
explain the reasons you feel this way.

You should use this mechanism sparingly, as its effectiveness is likely to
be reduced the more you lean on it. If you find 1t necessary to follow this
recourse every week or so, it's likely you've got larger root problems that need
to be addressed, or that you're not truly comfortable in allowing the team to be
fully empowered.

This feedback should be given at an arms length, avoiding the temptation
to roll your sleeves up and become a part-time team lead.

Supporting teams from the outside

While a large part of encouraging ownership 1s allowing teams to operate
more autonomously, it's important to also offer an appropriate level of support.

You should keep front of mind that you need to provide this support from
outside of the team to avoid undermining the team's autonomy.

Ideally, you want to encourage a culture where a team will proactively
ask for help or input when they feel they need it. Offering up too much
assistance can have an undermining influence, even when well intended.

Aim to always ask the other person, or the team, how they think to best
handle the situation before offering up your own solution, further nurturing
independent thinking,

The nature of the team and the individual will dictate the best way to
provide support. For some people, carving out a small dedicated amount of
time each week may provide a good forum for supporting, for others, you may
find you naturally have more informal conversations throughout the day.

Next steps

Depending on where your teams currently are on the spectrum of empowerment
dictates how much effort will be needed to give teams full ownership of their
deliveries. As with rolling out any organisational change, we'd recommend to
introduce change progressively and subtly, beginning by exhibiting and
coaching the behaviours yourself.

If you're currently integral to the delivery of software projects,
particularly in cases where you're not truly a part of the full-time team, you
should consciously look for opportunities where you can transfer these
responsibilities to the team.

With teams taking on more autonomy, not only are you likely to reap the
benefits of people feeling more responsible, more valued, and more
productive, you're also building a foundation that allows you to scale
engineering efforts across many autonomous teams.

by Chris Blackburn

Chapter 9: Keeping Quality High

Code quality 1s a term that is often thrown around in the software engineering
industry. Like the art of coding itself, it is very subjective and its true meaning
will differ depending on an individual, or a particular team's beliefs. At its
heart, most engineers and teams would agree that good quality code is easy to
read, well tested, and maintainable in the long term. But how do we achieve
this?

It starts with a feature

Often a client will present what they see as the solution to a problem, guised as
a feature request. However when a team takes their first slice into this feature,
they should not do so blindly.

If there are big questions about functionality, or end-user requirements,
these unknowns should be uncovered. This will enable the team to build a
better solution, with the least amount of code possible. Ultimately, this alone
will increase code quality; less code means a smaller codebase which leads to
a more manageable system in the long term.

From the outset understanding the shape of a feature keeps the team laser
focused, meaning everyone has a clear definition of success for a task.
Although an initial slice may have been defined, teams should not be in fear of
changing it's requirements i1f during the course of an iteration they find a
cleaner approach.

Next we commit

At Made Tech, we use pull requests on all of our projects, meaning we work
on new code in a separate branch and request review before merging it and
releasing 1t. We deliberately keep changesets small, releasing small increments
of the feature early and often. We work this into our version control and code
review workflow in a practice we call "Single Responsibility Pull Requests".

This practice avoids "Big Bang" deployments, where many changes have
been made since the last production deploy, introducing many points of
potential failure, rather than just one. Releasing continuously hopefully means
our pathway to production is always clear. This 1s a fundamental principle
behind continuous delivery.

Furthermore, smaller changesets are easier to digest, so when we request
code review, reviewers are able to do a better job. They have more room to
comment on particular areas, asking questions or suggesting improvements, 1f
they only have to look over 10 lines, rather than 100. We can be sure that they
properly understand the code we've implemented if they only have to look at a
small chunk. Many changes over many files with many concerns can get
confusing. The reviewer doesn't necessarily know what all the parts do and
making sense of the whole thing can be intimidating. Massive cognitive
overload leads to poor reviews. Poor reviews leads to bad code getting into
the codebase, reducing quality.

Make sure you break large features down into smaller slices. Write these
in a way that they can be deployed individually rather than as a massive chunk
whenever possible, and don't block the route to production. Request code
reviews continuously during development to ensure reviewers can understand
the feature throughout, rather than trying to make sense of it at the end, and
always make sure they're satisfied before merging it.

Raising the bar

Keeping code quality high through manual code review 1s great and a really
worthwhile practice, but it 1s often not so good for static code analysis. Static
code analysis is another vital way we at Made Tech keep our code quality
high, and machines are much better at doing this than humans.

Static analysis can be broken down into a number of areas like
complexity, style and security, and there are many tools that deliver this
functionality. For raising the standard of your codebase the primary focus
should be ABC complexity.

ABC complexity 1s counting the number if assignments, branches and
conditions within a method or function. A high ABC metric is a good indicator
that the code 1s doing too much and should be broken down in to smaller,
easier to understand chunks. It's important to stress that keeping ABC
complexity low doesn't always mean you have an easy to understand codebase.
The metric also doesn't reward terse code, instead 1t prefers simple code.

Arguably our most favoured practice at Made Tech is TDD, test driven
development, which is writing tests before writing code. This has broad
benefits across code, but especially code quality. Like having a defined
objective for a task, TDD keeps you focussed on accomplishing it, and ensures
you're not writing perfunctory code. Every line you write 1s necessary to bring
the feature closer to completion. This not only ensures you're writing the
right code, it ensures the code you write is maintainable over time, preventing
regressions down the line. Engineers in future don't need to be afraid when
making changes the codebase if they're confident that it's well tested. They can
trust that if they break anything, the test suite will fail, and they'll be able to fix
it before it gets into a production environment. To accomplish this we include
an accompanying test in every PR.

Keeping it high

We are committed to our projects and maintain them diligently over their
lifetime, so it is in our best interests to invest time in quality. Although ensuring
projects start off properly is paramount, making sure they stay in good shape
and quality remains high is even more important, so we employ a number of
practices and tools to enforce standards over time.

One way we do this is through style linting. Style linting is another form
of static analysis that requires your code to be written in a certain way, as
predefined by either a language, or an opinionated community standard. For
example at Made Tech we use StyleLint, ESLint, and Rubocop among others.

This means over the lifetime of a project the code can only be written in a
certain way, so it will stay consistent. Linters will often suggest better ways of
doing things, progressively upskilling the team in a language. This 1s extremely
helpful when onboarding team members who are less familiar with a language.
It also makes people feel they are delivering high quality code whilst still
learning.

However, style linting should not be seen as a silver bullet, as it doesn't
always lead to high performant code, sometimes aesthetics have to be
sacrificed for efficiency. Additionally, style configuration is highly subjective.
At the end of the day it comes down to an individual's beliefs. People in the
same team may have different ideas about how code should look, and you may
even rely on third party defaults for code style rather than defining your own.
What's important is that code remains consistent.

Forcing developers to run all these code quality tools themselves can be a
drag, but we want to ensure they're always run before code is merged in, so we
automate their inclusion in our workflow. We use PaaS services like CircleCI
to automatically run our test suites, static analysis tools and security testing
against commits and pull requests in Github. This means code reviewers don't
need to worry about these elements, as they have to succeed in order for the PR
to be eligible for merging,

Additionally, running these quality assurances means an engineers
approach to code continuously improves. Spotting failures due to bad code
soon becomes second nature. This then has the benefit that, as they maintain the

project, when they encounter new areas of the project they are able to bring
that code up to scratch, or at least leave it cleaner than they found it.
Essentially, code should not be seen as sacred and while an engineer can be
protective of code they have written they should also not be afraid of deleting
or even replacing code when the time comes.

As with code bases, so should teams be ever changing, since this also
leads to greater code quality. A fresh set of eyes will spot problems an
incumbent engineer will just live with, if they have noticed them at all.

First and foremost, a well tested, easy to read codebase is easy to maintain.
Employ automated quality tools to ensure the code your team writes today and
the code they write next year is excellent. Deliver features one chunk at a time
to ensure code reviews are diligent and comprehensive, without demanding
high cognitive load. Write automated tests and run them on every change to
defend against regressions and let your tests document functionality, rather than
trying to maintain documentation that can go stale.

Engineers often consider code they wrote last month to be the worst in the
world. That will probably never change, because as engineers we're always
learning and improving. However, if quality 1s always kept high, whilst beliefs
may change, we can always be proud of the code we have written.

by Seb Ashton

Chapter 10: Learning From Mistakes

As software engineers, we're faced with new problems and challenges every
day. No matter how well we know a programming language, how many
projects we've worked on throughout our careers or how much time we've
spent creating repeatable solutions to common problems, there will always be
something new that requires critical thought.

Inevitably, then, we will make mistakes. Deadlines will not always be
met, solutions may not always be correct, and critical tasks may be
overlooked. We may even accidentally break the software. These are not Bad
Things.

When we're walking an unfamiliar path, we're bound to make the
occasional wrong turn. What's important 1s that we know that those mistakes
have a lot to teach us, and that we're 1n an environment where it's safe to make
those mistakes.

Creating a safe environment to fail

Avoiding Blame

From an early age, we're taught that when we do something wrong, there are
negative consequences. We learn to associate those consequences with the
action that caused them, and we actively avoid it in future. We're also
encouraged to assign blame when we see others doing something wrong, if
only to again avoid negative consequences directed at us.

This continues into adulthood and our careers, with the assumption being
that your employees work as hard as they do to, in part, avoid making mistakes
and being made an example of. The belief is that without negative
consequences to failure, your employees will be less engaged and less
motivated.

This attitude 1s counterproductive to a healthy working environment.
Giving your team a space in which mistakes and failures can be accepted and
learned from doesn't mean encouraging lower standards, but ensuring your
team and your organisation as a whole can continue to evolve and grow.

It's also 1important to recognise that mistakes and failures are not
necessarily the result of wilfully deviant behaviour. Tolerating mistakes, and
recognising that they are opportunities for everyone to learn rather than for one
person to be blamed, is a skill.

Retrospectives

Your team needs to know that mistakes can be tolerated, and the best way to
convey this 1s to have open discussions about problems that have arisen,
without playing the blame game. Take the time to talk about why a mistake
happened. Once you've discovered the mistake, you need to find out what it can
teach you and how it can help you in the future.

As mentioned in Chapter 5, the Prime Directive of retrospectives
illustrates perfectly the attitude that should be taken when trying to create an
environment that looks at mistakes and failures in a positive light.

Retrospectives happen at the end of a sprint, usually every week or two,
and give everyone a platform on which to highlight things that went well, and
things that didn't go so well. Providing you've built an environment in which
it's safe to be honest about shortcomings and mistakes, retrospectives are a
great way to uncover process failures and to voice concerns about the work
that may lead to avoidable mistakes.

An example we've encountered 1s realising that our mistake was not
getting enough detail on requirements during the planning stage. This led to us
moving down a path of work that we ultimately discovered was incorrect when
we presented it to the customer.

Within the subsequent retrospective, we were able to safely discuss this
as a team, and to admit that there were things we could have done but didn't.
We spent time figuring out why this had happened, and then deciding on
actionable steps we could take to prevent 1t happening again in future. We
came away from the retrospective having realised we needed to spend more
time early on discussing requirements with the customer, and then making sure
that information was disseminated across the entire team.

Embracing mistakes

We're in the discovery business, and the faster we fail, the faster
we’ll succeed.

- Amy Edmondson’

The best way to deal with mistakes and failures is to treat them as
opportunities to learn, both individually and as a team, after all, while it's our
job to design solutions that meet requirements, we're not infallible. When
we're embarking on a new challenge, making mistakes is a crucial part of the
discovery and experimentation process.

Our solutions may fail in unforeseen ways, or we may need to revisit the
task and find that we've made more work for ourselves by creating something
inefficient. Either way, you have the opportunity to reflect on what went wrong,
why, and how you can simplify the process to either reduce or eliminate
mistakes.

Big mistakes are easy to spot and discuss. In software, you know
something's gone wrong if, for example, a build fails, critical data 1s lost or a
website goes offline. Steps are immediately taken to fix those mistakes and
resume normal service. The trick 1s being able to identify and learn from
smaller mistakes, as they're much more easily hidden, both passively and
actively. The earlier these are discovered, the better.

This mindset of actively discussing and learning from mistakes, rather
than blaming anybody for them, doesn't mean you're encouraging your team to
slack off and take shortcuts to the detriment of the project. Even in situations
where a mistake can be attributed to an individual's lack of care or
Inattentiveness, there's the chance to dig deeper and discover what led to that
behaviour, and what you can do to improve the situation for the individual and
your team.

Using mistakes to uncover requirements

In most software teams, strides are taken at the beginning of a cycle of work to

gather as much data and information as possible from the customer to
understand requirements as completely as possible. Nevertheless, it's not
unheard of for a seemingly unimportant detail to be overlooked during this
phase of the project, only to either become a blocking problem midway through
development, or to go completely unnoticed and later be revealed as a key
requirement whilst you're showcasing your work.

Use these situations as opportunities to figure out how you can improve
next time: what information didn't you have that you wish you'd had? How
could you have elicited that information from the customer? Could you have
broken tasks down further to discover hidden requirements? Questions such as
these will help your team improve with each new project, and ultimately you'll
deliver better work and make your customers even happier.

One way to try to discover hidden requirements 1s to carry out research
spikes. On a software team, this would typically involve one engineer
dedicating a small but significant amount of time, such as half a day or a whole
day, to investigating whether a potential solution 1s worth spending more time
on.

It's a long enough period of time that some thorough research can be done,
but short enough that, if it doesn't pan out, the loss of time isn't too much to
bear. The researcher 1s also safe in the knowledge that, should the research
lead nowhere, the team won't consider it a failure.

Using mistakes and mentoring to help teach new sKkills

Less experienced members of the team may struggle with tasks other engineers
find simple. As we've said, engineers at every level are constantly facing new
challenges, and mistakes are bound to happen. However, when you have junior
engineers working alongside senior engineers, the environment you're creating
should allow juniors to feel safe enough to approach their more experienced
peers for guidance. To take it even further, encouraging your senior engineers
to take an active interest in mentoring is a great way to quickly upskill newer
members of the team.

Using mistakes to analyse common problems and automate
them away

Software engineers love to automate all the things, but there'll always be the
occasional process that's still being performed manually and, no matter how
often the process is performed, the more convoluted it is, the more likely it is
that a crucial step 1s overlooked, leading to a failure.

Back in the day, before the advent of source control, something as
fundamental as deploying changes to a production environment was a manual
process, and involved massive amounts of risk. If the deploy broke anything on
production, you had to cross your fingers and hope that someone on the team
had a historical copy of the offending file. That problem was solved with a
combination of solutions such as Git and Jenkins, which give us the ability to
easily deploy and move software through various testing environments all the
way to a production environment at the touch of a button. If anything is broken,
we can then easily roll the latest changes back.

Within your organisation, there are likely several risky and complex
processes that are causing your team frustration. By allowing your team to
identify and discuss these problems, you're giving them the ability to work
together to find a solution that reduces the risk and transforms the process from
one that causes frustration to one that is almost mundane.

Mistakes and failures are not something to be feared, in fact, celebrating them
1s perhaps more appropriate. That statement sounds a little ridiculous but,
when you consider how much a failure can teach you about the work you're
doing, the way you're doing it and how you can help others do it, there's too
much valuable knowledge to be garnered from a mistake to set about
reprimanding someone for making it.

by Scott Mason

Chapter 11: Client Showcases

At Made we host regular client showcases, this 1s an opportunity to sit down
with the client to discuss how the iteration and the project as a whole are
progressing.

Who should be involved with a showcase?

The most important people to be involved in a showcase are the developers
working on the iteration, the key stakeholders on the clients side. A showcase
cannot happen without these people. Additionally, any members of the client's
business whose lives will be improved by the work carried out ought to be
involved. For example, a customer service representative or an e-commerce
manager. These people will have valuable, on the ground, insights into existing
problems it should solve and potential challenges the work may introduce
before its too late.

An alternative showcase can be one made internally, to educate other
teams in your organisation on things you've learned, the project you've been
working on, any reusable software you've built and practices you'd like others
to adopt. It's important to do this formally as a showcase, because it allows
people the opportunity to comment and give feedback. You don't get this kind
of honest technical feedback from clients, so it can be more than a chance to
share, 1t can be invaluable peer review.

Why do good software teams showcase?

A showcase is a prime time to get your work in front of all key stakeholders to
demonstrate how your work is progressing, and how this impacts the project
and their business. It 1s extremely important to have these regularly, to ensure
client and developer expectations are kept in sync. Without this regular contact
point, delivered work may fall short in some areas and over-deliver in other
areas, both of which are a waste of developer time and the clients resources.
By instead ensuring you and your client are on the same page, everybody will
be happy with the delivered iteration, and any potential problems will surface
before 1t's too late, again saving time and money.

Additionally, by involving people in the showcase who will actually
personally benefit from the work being done, this gives you an opportunity to
demonstrate and teach processes and functionality to these end users. We
notice this in particular when building new tools for businesses. Overall it
reduces the time spent up-skilling these people later on, and gives them a good
opportunity to recommend improvements.

Furthermore, a showcase 1s an excellent forum to openly discuss any
feedback the client may have on the past iteration and the shape of the project
in general, and to line up the goals of the next iteration if relevant.

We've found it useful to give internal showcases to people outside of the
project team, so that we can update everyone across the company on what the
team have achieved,, what they've learned, any practices the wider team
should adopt or avoid, and any technical achievements that could be co-op'd
into other projects.

Introducing better showcases into your team

Things which are important to consider when introducing showcases in a
project are structure and frequency. Enforcing good structure in your
showcases will ensure the time is well spent for all parties. Make sure the first
and most important part of the showcase 1s demonstrating what you've been up
to, discussing any problems you faced and solved, any problems you still have,
and not allowing interruptions or tangents to take place until the end. The
benefit of this 1s clients have time to consider, condense and prioritise
feedback, and those leading the showcase are able to make all of their points
undistracted.

Additionally, showcases provide a personal growth opportunity for
developers. We believe showcases should be led by developers. This puts a
certain amount of pressure on them, but we think it's beneficial pressure to
have. This 1s because they are the people with the best understanding of the
work, the people who can most easily gauge and accept feedback and the
people who will have to carry out the rest of the work. Additionally, it
encourages their best work as they know they will have to stand up and be
accountable for it in front of clients. We've found this kind of growth is often
best achieved by pushing people in at the deep end and providing them with a
float, rather than wading them in gently. This sink or swim approach sounds
brutal, but encourages autonomy and personal confidence in the individual.

Preparation

During an 1teration we find it useful to keep note of all the wins and challenges
we've had, on top of the tasks we've completed. This enables us to easily
prepare a run down of the iteration. These run down documents then get stored
inside the project, similar to a changelog to provide a contextual history of a
project.

After the run down has been prepared it is often valuable to run through it
with other members of the project team to ensure smooth delivery, and catch
any shortcomings, complexity, and omissions. This is particularly important
when finishing an iteration where it 1s important to put your best foot forward
and deliver a slick demo.

Additionally, a practiced showcase enables you to efficiently time-box
the demonstration, as an 1deal showcase lasts a maximum of 10-15 minutes. If
you find your showcases are longer than this, consider shortening your iteration
times and focusing on smaller chunks of work. Keeping it concise also means
you also allow time for questions, feedback, and thoughtful discussions about
the work presented.

Mid point showcases

A mid point showcase 1s an opportunity to present work in progress and ensure
the client's expectations are being met before the end of the iteration, where 1t
may be too late to change, and certainly more costly. Having frequent
showcases allows them more opportunity to give feedback and have more of a
say in the way a feature 1s developed. Developers may also discover areas of
improvement over the original specification of the feature, having built and
used it. Features are often not built exactly to specification; UX and UI changes
are made throughout the build and, as web professionals, we're well placed to
make this kind of feedback to our clients.

Secondly, as this 1s work in progress, it's important you make this clear to
the client beforehand, so they're confident you'll be able to work on the fine
details together, and focus on whether the high priority, wider feature is being
completed correctly. For example, frontend tweaks can be made, but the
backend logic is coming together as they wanted. If you do receive any
feedback, it 1s important to keep 1t focused on the demonstrated functionality,
and not inflate the scope of the iteration, and to do your best to only capture top
level information as more detailed discussions should be made with the client
when you come to address it. You want enough to be able to triage it later, but
not so much that the showcase goes on too long or anybody loses focus.

It's also an excellent opportunity to set expectations early if you feel you
won't complete the piece of work by the end of the iteration, and give clear
honest reasons behind this, for example if a "quick win" task which we didn't
expect to take long ended up taking a day. This will prevent the team from
having to break bad news at the end of the iteration when work 1s incomplete,
when the client was expecting fully featured work. Being honest about these
problems builds a better relationship with the client and ensures they
understand that you faced an unforeseen problem, and not that the team were
slacking off. It's positive to build this relationship of trust, and that comes from
openness.

Additionally, bringing up adversity early gives the client an opportunity to
back out early rather than wasting further time. For example, 1f the team was to
discover the work would take twice as long as expected, the client should have

an opportunity to re-evaluate their business priorities if they have other high
priority features that may now be considered more valuable. Furthermore in
this situation they may want to park the other work if they were depending on
the time staying fixed, as they have other time sensitive work upcoming,

End of iteration showcases

The primary purpose of the end of iteration showcase is for the team to present
all the work they've agreed to deliver, excluding any work previously removed
from the scope of the iteration, which should have happened at the mid point
showcase. Not to mention, a perfect time to show off.

During the showcase you should make a point to highlight unseen wins,
for example shining a light on complexity within the iteration where it existed.
This builds your client's confidence in your teams ability to deliver technical
work and solve problems. Also point out areas where the team have gone
above and beyond to deliver unexpected value. You can often find easy
opportunities to improve a feature by chance, that 1s a quick win to implement,
and highlighting these value adds delights the client. This promotes a more
trusting "Adult to Adult" relationship. It will be beneficial to the ongoing
project if you are seen as partners rather than contractors.

If you've taken the time to implement additional functionality to help an
end user, which you believe will save the client time and money in the long
run, you should take the time to point these out as well.

Although ideally the work your team has delivered will be as expected by
the client, often additional requirements fall out of new features, which should
be captured at the end of your showcase. If they are minor tweaks, these new
requirements should be stored in your project backlog and then prioritised by
the client. However you will sometimes begin to pad out the next iteration off
the back of a final showcase.

Post Showcase

The time after a showcase, before the next iteration begins, is a good chance to
reflect on the iteration. It's worth congratulating everybody on a job well done
by highlighting things individuals, and the team as a whole, did well, which
you'd like to see happen more. You should also take the time to evaluate areas
of the delivery and development of the iteration which didn't go so well, which
should be learned from for all future iterations. To name a few examples, 1f the
iteration was slowed by interactions with a third party which could have been
mitigated beforehand by starting conversations earlier, if you began work
before the design was finalised, or 1f you waited too long to get code into a
production environment. These are all lessons we've learned from over the
years.

Furthermore, when celebrating triumphs and learning from shortcomings,
it 1s important to share this with your wider organisation. For example, if
you've solved a recurring or complex technical problem and produced a
reusable solution which other teams could use, or discovered a flaw 1n a
company process which you'd like to evolve together. Keeping these learnings
to yourself can cause fragmentation in the knowledge of different teams, and
prevent you from raising everybody up together.

To reiterate, hosting frequent structured showcases 1s an excellent way to keep
lines of communication open, and ensure client expectations always meet your
own. Having developers run these makes them accountable, promotes
autonomy, and boosts confidence. You should use them to share your work,
capture constructive feedback, and backlog new requirements.

Don't be timid when you encounter adversity, and involve the customer
when you do. This ensures they are able to make informed, timely business
decisions. After your showcase learn from your strides, and miss-steps, and
take the time to spread this knowledge amongst the wider organisation.

A perfect showcase involves a minimal number of people for brevity, but
these need to be the right people. You should invite key stakeholders along,
like the project manager, as well as a relevant end user. Most importantly keep
your client happy, and keep the work flowing!

by Seb Ashton & Richard Foster

Chapter 12: Recruitment

Recruiting the right group of people i1s one of the most important parts of
building a top software delivery team. In this article, we take a look at some
things you should consider whilst recruiting, and a few things that you should
try to avoid.

Create a cohesive culture

A key component of building an effective software delivery team is creating a
cohesive culture. A cohesive culture is achieved when a team feels
empowered to participate, can collaborate effectively and gets recognition for
its successes. To achieve this you need the right leadership, the right mix of
experience, and people with character traits that encourage cohesion.

When recruiting, you should be thinking about how to achieve a cohesive
culture. Often people recruit with specific technical skills in mind, but we've
found that it's just as important to consider softer skills such as:

e s this person a team player?

e Are they able to communicate effectively?

e Do they take responsibility or blame others?

e Do they have a positive outlook?
Although there isn't a 'one size fits all' approach to creating a cohesive culture,
there are certainly signs that you can look out for during an interview process

and, when you see them, question whether the candidate is somebody who will
help encourage cohesion, or fight against it.

Don't hire rockstars, ninjas or self-proclaimed
superstars

Everybody wants to hire incredibly talented people, but never hire anyone who
considers themselves a 'rockstar' engineer. It's a sign of arrogance and an
inflated ego, and they're a sure fire way to create a divided team. Of course,
you want exceptional people on your team, just make sure they're grounded and
able to put their skills to good use, improving the team.

Leverage your network

It's nearly always better to recruit through your existing network. Either through
people you have worked with previously, or through contacts your team have
within the industry.

Your team should understand the needs of the organisation and what it's
like to work there. Their relationship with a candidate will mean they already
know a lot more than can be discovered during an interview process.

These kind of network referrals are the best indication you'll get as to
whether or not a candidate will be successful, so favour them over other
recruitment sources.

Referral bonuses

It has become common for organisations to offer incentives to staff to help
encourage recruitment referrals. In our experience, awesome people will
automatically want to bring their most talented friends and acquaintances
along. Offering incentives can help and may result in a few additional hires,
but it's questionable as to whether carrot and stick motivation ultimately leads
to stronger teams.

Our advice would be to focus on building a great culture, that your team
are proud of, and their network of acquaintances will be eager to join. You can
still thank people for referrals but, hopefully, you'll find that by flipping the
motivation model from extrinsic to intrinsic, you'll end up in a happier place.

Strive for diversity

It’s no secret that many software teams struggle with diversity. While there are
some factors limiting progress, diversity is something that needs to be taken
into account when recruiting. There are steps that you can take, such as:

e Helping people to reduce unconscious bias

e Capturing and reviewing data that highlights diversity challenges within
your organisation

e Scrutinising job advertisements and internal practices to ensure they
don't unintentionally discourage certain demographics.

We've made significant progress in recent years, but our industry has a long
way to go in terms of diversity, and there's a lot we can do to create an
environment that is welcoming of people from any walk of life. Bear this in
mind when recruiting!

Keep it interesting, increase retention

One of the challenges you'll face after you've recruited some good people is
keeping them around. If they are talented and based in a decent location, then
they are likely to have many opportunities open to them.

It's common to see companies offer perks and incentives to help
encourage employees to stick around. In our experience, the most important
factor 1s ensuring they can keep on learning, improving and getting better. This
means having work that is challenging, and is going to push them to improve
every week. If this dries up and day-to-day becomes mundane, you'll often find
people won't stick around.

Above-market salaries

Where possible, you should look to take money off the table and pay above
industry wages. This often helps to attract a higher calibre of individual
(providing you're recruiting well!) and shows your team that you value them.

This approach is particularly relevant in fields which are highly
leveraged and where software delivery is generating a good ROIL. When this 1s
the case, 1t can make sense to pay well above market rates and get above-
average performers, as 1t can be a win for the organisation and a win for the
employee.

Of course, this approach is dependent on an organisation being in a very
strong and stable financial position, which tends to limit the number of
organisations that can do this.

Don't use contractors

The software industry has a large number of people who work on a contract
basis. In our experience, it's inadvisable to build software teams comprised
primarily of contractors.

We have found the most efficient teams to be those who have worked
together for extended periods of time. This typically means full-time staff. We
tend to find contract staff can take a short-term view, and this can mean your
delivery teams are in a constant state of flux.

When you have to use contractors, try to use them sparingly. We've seen
technology teams 100+ strong, comprised of over 90% contractors and
struggling to deliver. We would advise keeping contractor levels to a minimum
at all times.

Firing underperformers

It's human nature to avoid making difficult decisions. Nobody wants to be fired
or to have to tell someone that they no longer have a job. However, when faced
with this scenario, it's vital that you act quickly and let them go as soon as
possible.

It's a sad truth that many organisations end up carrying underperforming
team members for years. This can have a big impact on morale and wider team
performance, so it's important that the situation is dealt with.

Embrace juniors

If you're hiring junior team members, it's important that you factor in some of
the challenges that this can bring. Juniors often require significantly more
support than expected, which can impede the team and 1impact ability to ship
quickly.

Sometimes you need to slow down in order to speed up, and we think this
1s particularly relevant when onboarding junior members into a team.

Make sure your environment provides plenty of support for juniors and
opportunities to learn. Things like mentors, pair programming, regular code
dojos or code katas can all help, and over time the level of support and
guidance required should drop significantly.

Colocate or remote

Nowadays it's common to see companies offering remote roles. We see some
significant benefits to this, such as a much wider talent pool, ability to get more
focused time and a better work-life balance. However, there are trade offs.
One example 1s that it can be far more difficult to achieve a cohesive culture
team when you've got people working remotely.

We've found a good balance is to have people working remotely part-
time, so maybe two or three days per week. This has given us some of the
benefits of remote working, with some of the upsides of colocation and has
worked well.

Onboard effectively

The first few weeks with a new hire is a crucial time. They are going to decide
during those weeks whether the company is actually a good fit and whether
they have made the right choice.

Ensure you set aside ample time to onboard new starters properly. Make
them feel welcome and help them to get to know the team and understand how
things work. Set very clear objectives, so they know what they are working
towards and what criteria you've got for reviewing their performance during
their probation period. Talk with them regularly and provide them with lots of
encouragement and direction around areas they are doing well and could be
doing better.

Retrospecting the interview process

As with any process, it's important to frequently assess performance and find
ways to do things better. Recruitment is no different. Set aside time to talk to
candidates about the recruitment process, to find out what has worked well and
not so well for them.

We've explored running facilitated retrospectives with candidates we've
employed and rejected. This has helped us understand what the next evolution
of an interview process might look like and steps we would need to take to get
there.

Recruiting a strong software delivery team is tough. It requires a huge amount
of effort, starting with finding the right people, then convincing them to join and
moulding them into a cohesive team that works well together. If you can
achieve this, then you've done extremely well, and you are well on your way to
building a high-performance software team.

You'll find that once you've got the first batch of great people onboard, it
should start to get easier. Talented and motivated individuals tend to attract
other talented and motivated individuals. With strong management, your team
should continue to grow and improve for years to come.

by Rory MacDonald

Empowerment

In this section, we look at a number of techniques that you can employ to
increase the levels of empowerment in your team.

Teams with higher levels of empowerment often show increased levels of
satisfaction, and subsequently deliver higher performance. Allowing people
the freedom to structure their workload and workday can be a great first step to
empowerment.

From here, explore a workflow whereby you express higher level
problems or goals to the team, and then have the team themselves work to
1dentify the solutions, and the best way to implement and deliver them.

With empowerment, it's also important to balance accountability. An
empowered team who are tasked with solving higher level problems also need
to have an appropriate level of accountability for delivering these solutions.

As an added bonus to great empowerment, more empowered and
autonomous delivery teams can reduce reliance on the management tier of the
organisation, allowing a greater ability to scale engineering efforts.

Chapter 13: Creating Environments For Safe
Deployment

Developers should be allowed to deploy at any time. Many find this a scary
prospect since it makes traditional release management and QA very hard. We
have found that empowering developers to own the responsibility of
deployment allows you to ship software much faster whilst maintaining or even
improving the safety of releasing changes when compared to more traditional
processes.

As part of our mission to improve software delivery in every organisation
we seek to bring our customers on a journey from deploying once a quarter to a
few times a day.

What do we mean by deploying safely at any time?

Anyone who introduces a new feature, makes an improvement or fixes a bug
should be allowed to push that change into production and should take
responsibility for that change. The engineer will not only make a change to the
code but deploy it, ensure that 1t functions as expected in production and even
be in touch with the stakeholders of the feature whether they be customers or
colleagues to announce the changes. Should anything go wrong, they are
responsible for fixing it.

There are many safe guards that accompany a continuous deployment
practice. We for example have a production-like environment that we test
against before putting changes live. We also have automated testing and code
reviews where other engineers are asked to review work before it's allow to
be released.

Why should everyone deploy their own changes?

Before going into the details of explaining how to create a safe environment it's
probably best we answer the "why" first.

The biggest benefit when empowering teams to deploy more often is that
change becomes less risky. By making more frequent changes they will
naturally be smaller. If our deployments are smaller they will be easier to test
and easier to fix in the case of any 1ssues. Deployments should become
mundane.

Over time your team will become better at testing their own changes and
fixing 1ssues when they arise. When a developer releases a change they will
learn to become responsible for testing and monitoring it. This creates a
proactive culture where developers can quickly react to problems often
allowing them to spot defects before many users encounter them.

Releasing more often also means changes get into the hands of your users
faster. Removing overheads such as QA processes means that we can make
changes quickly, reacting to market changes and the metrics we collect.

Not only do the business and customers benefit from more frequent
releases but we've found empowered developers are happier developers. By
being responsible for a change, from start to finish, developers will feel a
sense of pride and ownership over their work. We've found more traditional
release strategies lead to developers passing responsibility onto QA or the
deployment teams, simply throwing their work over the fence. When
developers own their changes, they will put care into their work.

One common argument that may come up 1s that developers will be
swapping depth of knowledge in a particular field for breadth which spans
many fields. While this is a reasonable concern we have found that this is not
as drastic as it may seem and almost always engineers prefer the responsibility
of owning the whole problem.

How do you provide a safe deployment
environment?

From our experiences we have found the following 6 steps to greatly improve
the way in which software 1s deployed. These can be expanded on but having
these in place will greatly benefit your releases.

e C(Create a safe environment where it 1s ok to fail

e Make deployments easier by automating them

e Ensure the deployment pipeline is fast

e Deploy to a production-like environment for testing before going live

e Getused to deploying small changes

e Tell everyone about your deployments when they happen

e Set up monitoring so you know when you deploy a breaking change

e Use blue green deployments so rolling back is easy

We'll now briefly go into each one of these subjects although each could, and
in some cases do, have entire blog posts about them.

Encourage a culture where it is ok to fail

In order to benefit from deploying faster, you first need a culture where failure
1s ok. It 1s rare in software engineering that changes are perfect first time
round. Optimising for fixing failures quickly provides more value than getting
things right the first time round. This 1s sometimes called optimising for MTTR
(Mean Time To Repair) rather than MTBF (Mean Time Between Failures).

Failure can often lead to blame. Instead of making failure a negative
situation everyone in your team should understand that failure happens and is in
fact a great opportunity to learn from and develop. When failure happens, the
team should stand together, jump on the problem as a team and then discuss
what happened afterwards with the aim of improving things for the future.

When you have a friendly environment for people to work 1n, they will
produce better work. Don't punish failure, reward recovery.

Make deployments easier by automating them

Humans aren't great at repeating processes, and let's face it, repeating yourself
can be boring too. A typical deployment will include building, testing and
releasing the software to the public. Each of these steps are themselves made
up of a series of smaller steps.

Use scripts for each step in your pipeline so each step can be executed
with one command. You can use services like Travis CI, Circle CI and
Codeship, or self-hosted solutions like Jenkins to run scripts automatically for
you. For example when a new change has been peer reviewed and accepted by
merging the change into the main codebase, code hosting platforms like GitHub
can automatically trigger your build and testing scripts for you.

Deployment scripts can be triggered manually or automatically when the
previous steps are completed. Even if an engineer has to click a button to put a
change live, that's a lot less error prone than running scripts, or a sequence of
commands manually.

Ensure the deployment pipeline is fast

When a problem occurs in production, you'll want to fix it as quick as you can.
Once diagnosis of the problem has occurred, and a fix applied locally, you'll
want to ship that change out fast. In order to do this your pipeline needs to be
quick too. Even larger projects should only be taking 10-20 minutes to go
through the pipeline with the 1deal speed being much lower than that.

Being able to react fast can often mean rather than needing to roll back,
you can 1n fact roll forward. In reality this means rather than removing a new
feature when you find an issue you can instead fix it quickly. Of course, if it's a
more serious problem, rolling back or disabling the feature would most likely
be the correct course of action.

Deploy to a production-like environment for testing
before going live

Before putting a change live that has only been run on an developer or two's
laptop, you'll want an environment that you can test it on that mimics
production. Often local development configuration will use different settings
and modes, particularly when 1t comes to what type of databases it uses and
debugging settings. A change in these conditions like when an application
moves from development to production can be a source of errors. You'll want a
production-like setup in order to discover these errors before things go live.
In order to facilitate a production-like environment 1deally everything
from server setup, database configuration, data stored in the database should
be nearly 1dentical to production. One consideration with data is that you may
want to copy data from production into your production-like environment but
you'll want to replace customer emails with example ones otherwise you may
end up sending emails to customers from your production-like environment.

Get used to deploying small changes

When deploys are kept small, to something like 100-200 lines of code or
smaller, risk 1s limited. It's fairly obvious that when your changes only impact
a smaller surface area of a system, when something goes wrong, there will be a
smaller area to search within to find the problem.

Smaller changes will also mean that peer reviewing and testing are a quicker
process. Again a smaller surface area 1s easier to look over, easier to test the
various pathways through it.

To reduce risk, instead of deploying whole features, deploy tens of times
before the feature is complete. You do not need to make the feature publicly
accessible until the last release but by dark launching it into production you
will be uncovering a lot of problems early, avoiding the big bang release and
the problems that come with it.

Tell everyone about your deploys when they happen

If you have automated your deploys, you'll also be able to automate the
broadcasting of this deploy. It is important to let everyone know about change
when it happens so everyone can have a look at the new functionality, be alert
and ready for when any issues occur, and also to celebrate yet another release.

You could consider automatically emailing the team and wider business
when changes go live. If you use chat applications like Slack you could set up
alerts within appropriate channels. You could even start emailing your
customers automatically 1f you're brave.

Set up monitoring so you know when you deploy a
breaking change

You need good monitoring in your application so that when an error occurs, or
page load of a web application slows down, you are alerted to the problem.
After any deploy to production, the developer who pushed it up should keep an
eye on the monitoring to see if any defects had been introduced but should also
be notified automatically of any such issues.

Since the nature of change does carry some risk the goal is to spot
potential defects before the 1ssue affects a greater number of people.

Tools such as NewRelic allow you to set up alerts when certain
performance thresholds are exceeded along with notifying of errors that happen
to applications.

Use blue green deployments so rolling back is easy

If you deploy frequently and monitor the system after each deploy, you should
have a pretty clear picture on which deploy had adverse effects on the system.
If you have a fast pipeline, you'll likely be able to roll forward if the issue 1sn't
too great. But what if you do need to rollback?

Using blue green deployments is a safe way to deploy a new production.
Essentially when you have a new release ready you deploy it to a new server
rather than immediately replacing the old production server. You can then visit
this version of the application, make sure it's okay, then point the domain name
of production at the new server thereby switching web traffic over to the new
version.

Blue green deployments have the benefit that if something goes wrong,
you can point the domain back at the old version again in order to rollback. Of
course it also gives you another opportunity to test your changes before
showing them to the world.

Trust your teams

It all comes down to trust. Developers should be allowed to deploy at any time
1n most cases. We should learn to recover from failure fast, and learn all the
lessons failure can teach us.

by Luke Morton & Emile Swarts

Chapter 14: Giving Teams Freedom To Structure
Their Own Time

It can be scary to devolve a lot of managerial and planning responsibility to
teams but we've found lots of positives in changing the way we approach time
management. Allowing teams the ability to plan their workloads, holidays,
working location and client engagement has resulted in a greater sense of
ownership on projects.

As a result of these changes we've noticed:

Better quality of work through sense of ownership

Better value in engagements for our clients

Better relationships with the clients

A reduction in the overhead around planning for holidays, etc.

It's essential however that management are confident enough in their teams to
place this trust in them.

Communicating with clients

Before a team is about to start development, having introductions with the
client will prove beneficial during the development period.

Traditional approaches have been for there to be a project manager to act
as the go between from developers to clients and vice versa. This has always
added extra time into a project - usually time spent waiting on responses. This
can lead to stop-start interruptions which normally result in developers
downing tools, and starting other work to fill the gaps.

What harm 1s there in empowering the team to communicate directly with
the client and enhance the relationship?

For starters it'll save a bunch of time. When a developer is unsure of
something, rather than risking development time that will potentially need to be
backtracked later, give the client a call or IM them to get faster feedback or
clarification around the work. It's essential that the team and client can create a
fast feedback cycle to reduce the potential for interruptions to the development
process.

Developers will better understand client priorities if they're
communicating directly, rather than being shielded unnecessarily from them. It
helps that a team 1s conscious of these, so that they can make decisions that add
better business value for the client.

When holding standups and meetings with clients the team should keep in
mind what the client's level of technical understanding 1s and make sure not to
just use lots of technical speak. If people walk away from a meeting not
understanding what's happened then that's a big failing in the communication
process. Potentially this can cause misunderstandings where clients and
developers aren't on the same page.

Through i1dentifying the client's priorities, and the constant
communication, the team is well placed to shape the work for each iteration
without outside guidance.

Establishing work process

Early on in building the engagement with the client, the intended work process
should be discussed and explained to the client so that they'll be on the same
page as the developers when they're introduced. Clients need to be sold on the
advantages of devolving management to the team while also knowing they can
reach out to others in the business if they need to.

One of the main advantages gained through this process is the ability for
the team and client to plan short iterations that allow for showcases of the
work throughout development. The team should be able to identify the priority
for each iteration through this close relationship with the client and be able to
depend on the client throughout iterations to provide feedback and guidance
around any ambiguous areas.

On longer running engagements this should mean the stakeholder on the
client side participates in the team's standup and is available via the
communication formats outlined above throughout the day. It's important that
developers can contact them quickly with any queries or concerns. This also
helps foster a closer relationship between the client and the business.

Ideally showcases ought to be run by the development team, extra points
for rotating chair duties, who should focus on the work that was defined as
being part of the iteration following the last showcase. Any feedback that
comes from this showcase should be part of the next iteration rather than being
added to a backlog where possible. If feedback is left open you run the risk of
it getting lost, the client feeling ignored, or the original issue becoming
unusable and not providing any value to the client.

Establishing the business process

Clients are onboard with this new way of working. But is the team? Do they
really have the freedom to do all they need to self-organise? Do they feel
trusted?

We have a handbook that the entire world can see, and allows us to keep
our processes repeatable and transparent.

The handbook outlines how the business expects individuals to organise
things like holidays and remote work (to be discussed later on in more detail)
so that the team can effectively shape their workload.

By making holidays and remote work visible to everyone via shared
calendars, these decisions can be easily made by the team, and also allow the
individual to make a quick judgement call on the viability of a request.

For example while we might let everyone know we want to take a week
off or work from home, we only require our team mates to ok it.

Let team members communicate with one another

It's equally important for team members to be able to communicate amongst
themselves without barriers.

Where a team member is shouldn't increase friction in communicating with the
rest of the team. Our office is spread over three floors, and people are often
spread out over the entirety of it and others are working remotely. Team
communication needs to work for all these scenarios. This is where tooling is
important for it to be a success.

Day-to-day the team need to be able to attend standup no matter where
they are. Them being out of the office shouldn't be a barrier to participation.
After all, a client is going to call into these, so the team needs to too. Test out
the various tools to see what works best for your team and clients and use this
wherever possible.

Remote work

Lots of business are against remote work, as they're worried they can't see
people working but it's important when switching to self-organising teams to
trust your workers to do their jobs without being watched.

When working remotely it's key that team mates and the clients are
unaffected, the individual assumes the responsibility or maintaining the
everyday standard these people are accustomed to. This means both the quality
of work and the actual process, you don't want to be calling your client from a
noisy place where the communication will suffer.

We feel we've got the correct toolset to allow for the entire company to be
remote on a given day. Recently we had to contend with constant construction
noise next to the office and all worked elsewhere for a day or two with no
impact to the clients, workload or our day-to-day process. One of the things we
do to increase people's presence when out of the office is to drop a quick
message into our chat when we're going to be away for a period of time like at
lunch.

Holidays

Beyond what we've outlined above the main thing with holidays 1s ensuring
that enough of the team is still available to maintain momentum. As the team is
scheduling their own holiday, make sure you don't forget to let the client know
too if there are any changes to the team. In some cases other developers can be
brought in to cover.

Holiday time must be taken into consideration when planning iterations so
that they can set realistic goals/targets.

On the flip side, it's as important that the client lets the team know if
they'll be away on holiday. In these cases an alternative stakeholder should be
introduced to the team who'll be a point of contact.

Hackdays & learning days

As with holidays, since these are usually at least a day in length, the client
needs to be made aware of these well in advance and reminded the day before
during standup.

These normally involve the whole company, so whoever organises them
1s conscious that the company as a whole needs quite a bit of advance notice,
at least a month.

We try and balance the frequency of these days. While we see them as
valuable to the company as a whole, we don't want clients to feel like they're
constantly taking a back seat.

Dojos

These are often recurring hourly sessions that happen weekly. These are self
organised each time and if no one has an idea we don't run them as they're
encouraged, but not mandatory.

If there 1s one scheduled, anyone participating is conscious of their
current work load, and will only take part if it's not going to affect any the
work due to be showcased. We also try to avoid scheduling client interactions
when these are taking place to encourage maximum option to participate across
all teams.

Knowledge sharing

It's essential to foster knowledge sharing as a cultural norm when enabling
teams to self-organise. When people go on holiday, are ill or otherwise
unavailable the team need to be able to keep functioning. To promote this we
encourage frequent pairing throughout the company.

The constant switching of roles during pairing greatly facilitates
technical, domain, and business knowledge to be quickly shared between
teammates. It's also a great way to bring a new team member up-to-speed with
an ongoing engagement.

Before a team member goes on holiday they should be sure to handover
anything that only they have had sight of, although try not to let that happen. If
this information isn't recent it's worth looking at how communication is
working across the team.

On the client side, it can be difficult to fully envision and grasp the use
cases without going on site and working alongside the end users and
stakeholders to understand their goals. Teams should feel empowered and
encouraged to go to the client or bring them into the office to facilitate this
transfer of knowledge. At the end of the day our clients know their business
better than we do and that value should be leveraged.

Testing and phasing of processes

Depending on your business, introducing self-organising teams might be quite a
drastic, big change to the business. There is no harm in trialling the
introduction of this to a single team to begin with.

We tested this process with a single team, giving full visibility, control
over holidays, scheduling iterations etc. to see how effectively it worked. This
allowed us to make changes to the process, building confidence in it, before
rolling 1t out across the company.

With processes that have been rolled out company wide, we still
experiment and make changes. We're never afraid to change processes if we
think they can be better.

Don't be against something until you've tried it!

Management

Devolving this power to teams doesn't mean that management can't be there to
assist and guide teams. There is still a lot of valuable knowledge and insight
that the teams can benefit from.

With the teams directly communicating with clients, it's still important for
them to know the long term roadmap of work. It's just nice to know so there are
fewer surprises for developers day-to-day.

If a manager sees that a team is struggling, then this 1s a good time to
assist, not taking control, but offering guidance on how to proceed and
communicating with the client if need be.

Hopefully the points we've covered will help you apply this to your teams.
We've learned it's essential to be open to change, realising what works for you
and what doesn't will be an important part of forming your own processes and
norms around self-organising.

We've found these to be a good basis for Made but don't feel that any of
these are hard rules. As part of empowering your teams, allow them a say in
shaping how best to find what works for them.

by Ryan MacGillivray & David Winter

Chapter 15: Dismantling Silos

A silo exists in an organisation when one group within the organisation has
differing goals to another. In most organisations there are groups of people that,
usually, have an objective to fulfil by an agreed upon date. For example, the
Sales team is set a mandate to increase the number of customers of the
company by 10% every month, whereas the Support team has internal
performance goals, and one of them is to deliver support within a fixed budget.

These teams have the freedom to innovate to achieve their goals. The
Sales team choose to slash the price of their product, and immediately it is
flying off the shelves; the Sales team are celebrating! The Support team
however are now under pressure, and cannot offer a quality service to all their
new customers without new members of staff. Due to the product’s newly
discounted price tag, the company cannot afford this extra operational cost.

Before long, the company gets a reputation for poor customer support.
These two silos, sales and support, have potentially compromised the future of
the enterprise.

What happened here is that this organisation had failed to see the broader
picture. Although this example is fictitious, it is easy to imagine happening in

the real world.

Software teams

At Made Tech, we commonly encounter silos within our client organisations,
so one of our top priorities on a new engagement 1s the alignment of our
customer’s goals. Cutting through these silos is critical to avoiding scenarios
like the one discussed above, and to ensure that our software delivers the
greatest value to the whole business.

In situations where our point of contact has a silo-goal, failure to identify
this quickly means software can be designed and delivered which does not
benefit the wider company aims. Aside from making it difficult to deliver
simple solutions for the organisation in the future, this can also have an impact
on working relationships.

Goal misalignments are usually unintentional, so it is important to mitigate
these behaviours with activities designed to aid delivering great solutions for
the whole business.

Communicating with Stakeholders

To understand an organisation's aims in detail, gathering a list of stakeholders
and understanding their goals and how they fit into the bigger picture 1s often
useful. One technique that we have found works very well 1s the use of regular
client showcases. These showcases ensure that the parties concerned with the
delivery of solutions are kept involved in the evolution of the plan, and feel a
sense of ownership of the direction in which the project is going.

Communicating with Specialists

A common way teams organise themselves 1s to group individuals according to
their specialisms. Within the tech world, this has resulted in teams such as
Backend, Frontend and QA, each of which have different yardsticks by which
to measure success, and are therefore at risk not communicating effectively
with other departments.

A traditional silo 1s that of an IT department, viewed as a cost centre.

Meanwhile, profit-building software delivery teams are depending on this IT
Department for both hardware and software. It 1s not in the best interest of a
company attempting to deploy a new software artefact to production, to be held
up by another department that holds the keys.

Uncovering hidden goals

Hidden goals are those goals which are usually found within silos and not
shared with the broader business. Inadequate communication is often the cause
for these hidden goals, and although it is not reasonable to expect them to all
be discovered early on in the development process, it is worth actively seeking
them out.

We have found that practising Continuous Delivery is a useful tool for
uncovering such goals, given that it allows for a frequent and detailed feedback
loop with stakeholders. We can showcase potential solutions regularly, giving
stakeholders an effective forum to guide the direction of the project.

Despite this, goals can remain hidden even after showcases. When
stakeholders offer feedback on your solution, that feedback may be the product
of'a hidden goal. It 1s therefore important to test assumptions about why these
changes are being made. Be sure to ask questions about any feedback, even if
the answer appears obvious.

Detecting silos

Observation is key to discovering silos, and in most companies, it isn't
immediately obvious where they are. To give you a feel for what type of
activities are indicative of silos we have compiled a list from the trenches to
help you in your endeavours.

Communication go-betweens

Communication go-betweens operating as a proxy between engineering and
customers, can lead to situations where software engineers are unable to get
meaningful feedback on the solutions that they are delivering. Useful and
accurate feedback is critical to shipping well-built and well-designed
software.

Prescribed solutions

Controlling every detail of a solution in a top-down fashion removes freedom
from software delivery teams. Lack of liberty makes it less desirable or
necessary for cross-functional teams to emerge (through interdepartmental
collaboration). Moreover, this freedom 1s key to the production of truly
innovative and simple solutions. Managers should not need to be involved in
every single minutia of a solution, only that the software delivery teams are
solving the most pressing strategic issues.

Passing the buck

When no department can deal with an unexpected critical issue and instead
passes the buck to another, it can indicate that no team or individual holds true
accountability for resolving that issue. The underlying problem is that it shows
that people are not aligned with the goals of the company itself. This conflict
with the business indicates that those departments passing the buck have

formed a silo against the organisation itself.

Lack of robust goal setting

How the evaluation of each team's performance 1s measured can be a reliable
indicator of a silo. In the most extreme case, every department has a balance
sheet. This financially-led approach can promote unhealthy internal
competition and discourage collaboration between teams. The symptom here 1is
that the goals of two organisational units are at odds with each other. This is
compounded if there is no clear process available to staff, through which they
can resolve their differences.

Organisational separation

Allocating departmental budgets, or in extreme cases, spinning out separately
registered companies, can introduce difficult to solve organisational
impediments that make it difficult to deliver on company goals. Collaborating
across balance sheets becomes politically risky, and can result in the onset of
"officially political cultures".

Competitive individual KPIs

When the performance evaluation of individuals prevents or discourages
collaboration and knowledge-sharing there is no incentive to behave
strategically. This friction can create problems internally for a single
department just as much as cross-departmentally. For example, engineers may
decide it is not in their best interest interest to behave collaboratively,
potentially reducing the quality and speed of delivery of solutions.

Hiring

The hiring policy 1s a good indicator of silos within departments; departments
can fight for expansion which can prevent hires elsewhere 1n critical areas of
the business. Hiring without a clear and mutually agreed reason in mind could

lead to hiring in the wrong places or for the wrong reasons. Many companies
encourage departments to compete over recruiting budgets, but this doesn't
solve real business problems. The interview process itself might highlight the
competition between teams, such as when other teams are unaware of the
recruitment but are still expected to work with the new hire.

How to break down silo mentality

Now that you have a better understanding of how to spot a silo, it's possible to
begin breaking them down by doing the following;

e Establish shared goals to ensure that departmental goals have
organisational alignment.

e Ensure the organisation has high-level goals, above all departments
to which departmental goals help meet.

e Ensure organisational goals are directly related to the vision.

Once this framework is 1n place, it becomes trivial for anyone within an
organisation to set highly aligned personal, project, or product goals that
directly impact the business achieving its targets.

It 1s important to get departments to speak to each other on important
matters, such as how they will attain their goals collaboratively. For example,
a digital design department should meet regularly with a software engineering
department to determine how they will ship an online software product
together.

Departments should not communicate solely through hierarchies; a junior
software engineer could and should be in direct contact with designers.

As this evolves, 1t becomes clearer that it 1s more efficient to have
departments working alongside each other to deliver a product. When people
with different skillsets need to collaborate with the same goal, they should
attend the same meetings, be aware of the same problems, and have a clear
sense of shared direction and purpose.

Requiring formality or involving convoluted chains of command at this
stage will only hinder collaboration. At this point, management shifts to a
broader view of the company rather than micromanaging all daily details.
Instead, the freedom granted to the team allows them to deliver continuously
and ship products more quickly. Tighter collaboration between skillsets leads
to better product quality thanks to a better understanding of the issues. Formal
long meetings can be a symptom of having too much bureaucracy around

collaboration, which can make it less desirable for employees to break down
silos.

The really innovative companies are creating shared offices where teams
with diverse skillsets (potentially cross-departmental) can collaborate. A
psychological silo can manifest itself into a physical one with real walls and
closed spaces inside the company. An analysis on how the office space is laid
out can help to uncover potential silos.

Leaders should encourage everybody to work with anybody to solve
company problems. Employees should be able to move freely to another team
if needed for the current objectives, and the decision to attend a meeting should
be made by anyone who believes 1t will achieve progress towards the higher
company goals.

Silos create organisational bottlenecks. In any organisation, this can feel like
arbitrary red tape, slowing progress for no real reason. For software teams, an
individual having exclusive domain knowledge means the team's ability to
develop and release software 1s hampered when said individual 1s
unavailable. Look for ways to ensure such knowledge is shared amongst the
whole team by making everyone aware of the goals your organisation has, and
the role the software they're building plays in pursuit of those goals.

by Craig Bass, Luke Benellick and Alex Minette

About Made Tech

Founded 1n 2010 and based in London, we're a team of software engineers, and
our mission is to improve software delivery in every organisation.

We know that software plays an increasingly critical role in many
organisations, and that effective and timely delivery of software is as just as
important as the development of said software.

To that end, we work to build strong relationships with our customers in
order to better understand their business goals. Using that knowledge, we're
then able to ensure that the application we're building furthers those goals.

Find us at www.madetech.com

! https://lizkeogh.com/2014/06/06/goals-vs-capabilities/

2 http://c2.com/cgi/wiki?PairProgrammingPingPongPattern

3 https://hbr.org/2011/04/strategies-for-learning-from-failure

