


Progress in Drug Research

Volume 67

Founding Editor of the Series
Ernst Jucker

Series Editors
Prof. Dr. Paul L. Herrling
Novartis International AG, 4002 Basel,
Switzerland

Alex Matter, M.D., CEO
Experimental Therapeutics Center,
31 Biopolis Way, #03-01 Nanos, Singapore 138669,
Singapore

For further volumes:

http://www.springer.com/series/4857



.



Susan M. Gasser l En Li
Editors

Epigenetics and Disease

Pharmaceutical Opportunities



Editors
Dr. Susan M. Gasser
Friedrich Miescher Institute for
Biomedical Research
Part of the Novartis Research Foundation
Maulbeerstrasse 66
4058 Basel
Switzerland
susan.gasser@fmi.ch

Dr. En Li
China Novartis Institutes for BioMedical
Research Co., Ltd.
Lane 898 Halei Road
201203 Shanghai
Zhangjiang Hi-Tech Park
Pudong New Area
People’s Republic of China
en.li@novartis.com

ISBN 978-3-7643-8988-8 e-ISBN 978-3-7643-8989-5
DOI 10.1007/978-3-7643-8989-5

Library of Congress Control Number: 2010937861

# Springer Basel AG 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of
use, permission of the copyright owner must be obtained.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
Product liability: The publishers cannot guarantee the accuracy of any information about dosage and
application contained in this book. In every individual case the user must check such information by
consulting the relevant literature.

Cover design: deblik Berlin, Germany

Printed on acid-free paper

Springer Basel AG is part of Springer ScienceþBusiness Media (www.springer.com)



Preface

The field of epigenetics seeks to explain how cell-type specific controls over gene

expression are maintained during self renewal and differentiation and are altered by

environmental events. The field covers the biochemistry of genome organization,

its expression, inheritance, as well as controls over translation, message stability,

and the relationship of all these with external signals. Epigenetics is now at an

exciting stage, one comparable to the field of genetics before the elucidation of the

structure of DNA and the genetic code. We know most of the players, but are still

unclear as to how they work together to maintain gene expression states faithfully.

As our understanding of epigenetic inheritance expands, the field intersects increas-

ingly with fields focused on human health and disease. The topics most directly

addressed are control over stem cell status and modulation of cell differentiation,

which are at the heart of degenerative disease and cancer. Finally, from the study of

chromatin and miRNAmodifications, we can expect to identify targets, biomarkers,

and diagnostic tools relevant for biomedical application.

What new medical opportunities are opened by the field of epigenetics? We note

that pharmaceutical developments have in the past avoided targets that control

mammalian gene expression, because controls were thought to arise from combi-

natorial protein–DNA and protein–protein interactions that are difficult to interfere

with. Advances in epigenetics have identified enzymes that modify histones, DNA,

and other proteins, that collectively control the compaction and organization of

chromatin domains, to regulate gene expression. They influence events ranging

from transcription, splicing, and mRNA stability to translation. The definition of

these molecular modifications and the enzymatic machinery that controls them

render gene regulation “targetable” in ways that were not possible in the past.

Given that these epigenetic targets guide gene expression both during development

and in adult tissues, they become of particular biomedical relevance to a broad

range of diseases, including developmental disorders, aging, cancer and tissue

degeneration. They are expected to impact the discovery and development of

novel treatments.
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The field is still exploring what are reasonable goals for an “epigenetics”

program in relation to novel medications or developments that promote human

health. Below we list a few of the reasonable targets and goals that justify epige-

netic studies within the medical world.

1. Relevant and “druggable” enzymes. These include new targets such as histone

deacetylases, histone acetyltransferases, histone methyltransferases, DNA

methyltransferases, demethlyating enzymes that act on either DNA or protein,

ubiquitinylating E3 ligases, deubiquination enzymes, Sumoylating and Neddy-

lating enzymes, helicases, nucleosome remodelers, as well as subdomains of

histone modifying enzymes, such as SET domains. Moreover, there are enzymes

that signal and control these enzymes, sending signals to chromatin and the

translational apparatus. Many of these have been shown to be reasonable and

effective targets in cancer cells, for they are upregulated in and essential to

tumor cell growth.

2. Diseases arising from loss or alteration of epigenetic marks. Examples include

Rett syndrome, Prader–Willi/Angelman Syndrome, Fragile X Syndrome,

Beckwith–Wiedermann, ATRX, Hutchison–Gilford progeria, schizophrenia

and several leukemias. These diseases are useful as models for proof of concept

for drugs targeting more general defects. Mouse models of such diseases are

particularly useful for understanding human disease and age-related degenerative

phenotypes.

3. Diagnostics and biomarkers. This arises from genome-wide profiling of mod-

ifications, independent of transcription, but correlated with a disease state or

response to stress or oncogenic transformation. By monitoring DNA methyla-

tion on promoters, or histone modifications generally, we are able to predict the

differentiation state of cells, be it in degenerative disease or cancer. This

provides a powerful read-out for toxicity, for changes in cellular state, as well

as for patient stratification in clinical trials (see below).

4. Patient stratification. Epigenomic profiling is a means to select patients and help

identify tumor type, prior to clinical trials. The same read-outs are useful to test

drug toxicity on both normal and diseased tissues, or as diagnostics of response

spectra.

5. Regenerative medicine. Cell differentiation correlates precisely with epigenetic

changes on the genome-wide level. These can be monitored with high through-

put sequencing and Chromatin-IP-sequencing techniques. Small molecules that

alter the differentiation state and potential of cells are being discovered. The

restoration of a differentiated or pluripotent status to otherwise normal cells may

help treat both degenerative disease and cancer. The goal of reprogramming cell

fate is within reach, as is intervention to prevent aberrant responses that might

alter gene expression profiles in a heritable manner.

We note that particularly cancer and neurological disorders can be traced to

misregulation of epigenetic marks. Examples are as shown in Table 1 (adapted with

permission from Rodenhiser, D and Mann, M. (2006) CMAJ 174(3), pp 341–348).
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The current book aims to explore novel ideas about diagnostics, treatments, and

the power of exploiting regenerative medicine for diseases that have long been

inaccessible to medicine. We do not aim at being comprehensive, but rather

Table 1 Associations between epigenetic modifications and human diseases and conditions

Disease/

condition

Gene Biological process Disease/condition Gene Biological process

Cancer Neurologic

Bladder Multiple

genes

Hypermethylation Schizophrenia RELN Hypermethylation

Brain

(glioma)

RASSF1A Hypermethylation Bipolar disorder 11p? Unknown

Brain

(glioblast)

MGMT Hypermethylation Memory formation Multiple

genes

Hypo-,

hypermethylation

Breast BRCA1 Hypermethylation Lupus Retroviral

DNA

Hypomethylation

Breast Multiple

genes

Hypermethylation Cardiovascular

Cervix P16 Hypermethylation Atherosclerosis Multiple

genes

Hypo-,

hypermethylation

Colon Multiple

genes

Hypermethylation Homocysteinemia Multiple

genes

Hypomethylation

Colorectal L1 repeats Hypomethylation Vascular

endothelium

eNOS Hypomethylation

Esophagus CDH1 Hypermethylation Imprinting and pediatric syndromes

Head/neck p16, MGMT Hypermethylation PWS or AS 15q11-q13 Imprinting

Kidney TIMP-3 Hypermethylation BWS 11p15 Imprinting

Leukemia p15 Hypermethylation SRS Chromosome

7

Imprinting

Liver Multiple

genes

Hypermethylation UPD14 14q23-q32 Imprinting

Lung p16, p73 Hypermethylation PHP, AHO, MAS 20q13.2 Imprinting

Lymphoma DAPK Hypermethlation Rett syndrome MECP2 Mutation

Myeloma DAPK Hypermethylation ICF syndrome DNMT3B Mutation

Ovary BRCA1 Hypermethylation ATRX ATRX Chromation structure

Ovary Sat2 Hypomethylation FraX Triplet repeat Silencing

Pancreas APC Hypermethylation FSHD 3.3 kb repeat Chromatin structure

Pancreas Multiple

genes

Hypomethylation Reproductive

Prostate BRCA2 Hypermethylation Ovarian teratoma No paternal

genome

Imprinting

Rhabdomyosarcoma PAX3 Hypermethylation

CHM No maternal

genome

Imprinting

Stomach Cyclin D2 Hypomethylation BiCHM Maternal

genome

Imprinting

Thymus POMC Hypomethylation Aging Chromatin Hypo-,

hypermethylation

Urothelial Satellite

DNA

Hypomethylation

Uterus hMLH1 Hypermethylation

Note: PWS Prader–Willi syndrome; AS Angelman syndrome; BWS Beckwith–Weidemann

syndrome; SRS Silver–Russell syndrome; UPD14 uniparental disomy 14; PHP pseudohypopar-

athyroidism; AHO Albright hereditary osteodystrophy; MAS McCune–Albright syndrome; ICF
immunodeficiency, centromeric instability, and facial anomalies; ATRX a-thalassemia/mental

retardation syndrome, X-linked; FraX Fragile X syndrome; FSHD facioscapulohumeral muscular

dystrophy, CHM complete hydatidiform mole, BiCHM familial biparental CHM
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forward looking and innovative as we explore the current questions facing biomed-

ical epigenetic research. The goal of this edition is to help define the field of

epigenetics in relation to human disease, in order to benefit the medical world,

the pharmaceutical industry, and the academic research scientist. Indeed, there are

only a few cases in which small molecule inhibitors of epigenetic enzymes have

made it to clinical trials. These are the start of a dynamic interaction of epigenetics

and drug discovery and will be presented here.

We thank the contributors to this volume for their readiness to submit their

visions of the field at short notice. We thank our collaborators who have helped

review and discuss the many aspects of epigenetics and disease, and SG wishes to

thank her assistant, Nicole Jascur for exceptional support in this project.

Basel, Switzerland Susan M. Gasser

Shanghai, People’s Republic of China En Li

July 2010
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DNA Methylation and Cancer

Phillippa C. Taberlay and Peter A. Jones

Abstract DNA methylation acts in concert with other epigenetic mechanisms to

regulate normal gene expression and facilitate chromatin organization within cells.

Aberrant DNA methylation patterns are acquired during carcinogenic transforma-

tion; such events are often accompanied by alterations in chromatin structure at

gene regulatory regions. The expression pattern of any given gene is achieved by

interacting epigenetic mechanisms. First, the insertion of nucleosomes at transcrip-

tional start sites prevents the binding of the transcriptional machinery and addi-

tional cofactors that initiate gene expression. Second, nucleosomes anchor all of the

DNMT3A and DNMT3B methyltransferase proteins in the cell, which suggests a

role for histone octamers in the establishment of DNA methylation patterns. During

carcinogenesis, epigenetic switching and 5-methylcytosine reprogramming result

in the aberrant hypermethylation of CpG islands, reducing epigenetic plasticity of

critical developmental and tumor suppressor genes, rendering them unresponsive to

normal stimuli. Here, we will discuss the importance of both established and novel

molecular concepts that may underlie the role of DNA methylation in cancer.

1 Overview

The eukaryotic genome is complex and has evolved to enable large amounts of DNA

to be contained within the boundary of the nucleus. The structural organization of

DNA into chromatin involves several orders of compaction and creates an environ-

ment that is generally repressive for gene transcription. However, chromatin is a

highly dynamic structure that must be modified to accommodate the transcriptional

P.C. Taberlay and P.A. Jones

Department of Urology, Biochemistry and Molecular Biology, USC/Norris Comprehensive Can-

cer Center, Keck School of Medicine, University of Southern California, Los Angeles, California

90033, USA
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machinery when gene expression is required, to facilitate DNA repair mechanisms,

or to allowDNA replication [1]. Epigenetic regulation of these processes is typically

driven in a cell type-dependent manner during and following differentiation from

totipotency. It has also been established that epigenetic mechanisms, such as DNA

methylation, govern many aspects of embryonic growth from conception and are

necessary for the survival of mammals. Since several enzymatic systems coordinate

epigenetic modifications, a high level of combinatorial control must be maintained

to ensure the correct chromatin conformation and identity of each cell. To this end, it

is now apparent that alterations to normal epigenetic processes deregulate biological

signaling pathways, contributing to carcinogenesis and disease. Here wewill discuss

mechanisms that may be involved in establishing aberrant DNA methylation pat-

terns in carcinogenesis.

2 Mechanisms of Silencing by DNA Methylation

The biology of DNA methylation events in cancer is currently the best character-

ized epigenetic aberration in disease [2]. DNA methylation is a relatively stable

modification that occurs in the context of CpG dinucleotides in mammalian cells.

The presence of CpG sites within the genome is irregular, with some regions

containing a high frequency of CpG dinucleotides (CpG islands) in contrast to

areas where this dinucleotide is underrepresented. The distribution of CpG sites

throughout the genome has implications for cellular gene expression profiles. First,

CpG rich regions are often situated in promoters that are proximal to the transcrip-

tion start sites of many genes while the remainder of the genome is relatively CpG

poor, including sites of viral integration as well as intergenic and intronic regions

[3]. Second, not all CpG sites in the genome are methylated. CpG islands are

resistant to de novo methylation in normal cells [4, 5], while CpG poor regions

are predisposed to this process [6].

Distinct methylation patterns are established during embryonic development and

are mitotically heritable through many cellular divisions. The faithful maintenance

of normal DNA methylation patterns is disrupted in cancer, where CpG islands

become susceptible to methyltransferase activity and CpG poor regions undergo

hypomethylation during transformation. Consistent with this, the overall level of

genomic 5-methylcytosine is decreased in cancer cells [7, 8]. Hypomethylation of

bulk cellular DNA might result in genomic and chromosomal instability [9, 10] and

is perhaps suggestive of a global switch mechanism that directs changes in chroma-

tin structure concomitant with aberrations in DNA methylation patterns. The

change in DNA methylation patterns is considered to be common in most cancers

[11], with significant effects on gene expression patterns, cellular growth, and

selective advantage. These changes can be the result of silencing of tumor suppres-

sor genes and alterations to associated downstream pathways [2, 12], such as

repression of the p53 tumor suppressor pathway [13]. It is important to emphasize

2 P.C. Taberlay and P.A. Jones



that epigenetic mechanisms act in concert to coordinate normal gene regulatory

processes and that cellular deregulation in disease involves many systems.

DNA methylation is a mediator of long-term silencing [6] and contributes to the

regulatory mechanisms of tissue-specific gene expression in normal cells. The

covalent addition of a methyl group to DNA can influence gene transcription [14]

by varying the binding of transcription factors [15, 16] or through the recruitment of

methyl-binding proteins [17, 18] and chromatin modifiers such as histone deacety-

lases [14, 19]. These studies provided some of the first evidence that there was

interplay between different epigenetic modifications. Despite this evidence, the

exact mechanism for gene silencing by DNAmethylation is still debated. Foremost,

while covalent histone modifications are sufficient to repress gene expression, they

are considered to be a less stable and reversible process [3, 20]. Therefore, it is

likely that there are additional determinants that specify the establishment of

permanently silenced and hypermethylated CpG islands in cancer.

CpG islands remain unmethylated in normal cells and are frequently sites of

DNase hypersensitivity on a global scale [21–23]. DNase hypersensitivity has been

used as a marker for genomic regions that are free of nucleosomes, suggesting that

the extent of nucleosome occupancy may be correlated with gene silencing and

expression. Given these data, it has been hypothesized for many years that inactive

genes exhibit a closed, compact chromatin structure in contrast to active gene

promoters that are less condensed to allow for the binding of transcriptional

machinery. Technological advances have confirmed and extended these data, and

it is now clear that the role of nucleosome positioning in gene silencing through

DNA methylation is critical for gene control.

DNA accessibility is a requirement for transcription [1, 24] and can be consid-

ered to be either a constitutive state [25, 26] or one that is generated following

extensive chromatin remodeling, as demonstrated for the PHO5 promoter in yeast

[27]. Genome-wide screens in several organisms have shown that the regions

upstream of many transcriptional start sites are devoid of nucleosomes [28–32],

indicative of the specific gene expression patterns in these eukaryotes. In support of

a model whereby nucleosomes are central to gene control, it has been shown that a

nucleosome depleted yeast PHO5 promoter is maintained through DNA replication

[33]. The inheritance of a nucleosome depleted state was shown to be independent

of coactivator complexes, and transcription of PHO5 was not required to maintain

the nucleosome depleted region [33]. Despite such striking associations, the signif-

icance of these findings was not directly correlated with events of gene silencing

during carcinogenesis until recently [24].

Extensive analyses of theMLH1 promoter, which is frequently hypermethylated

in cancers, reveal that the formation of a nucleosome depleted region is required

for gene expression [24]. The precise positioning of nucleosomes can be deter-

mined at individual promoters by using a high-resolution single-molecule assay

called methyltransferase-based single-promoter analysis (M-SPA) [34]. The M-SPA

assay has also been utilized to confirm the requirement for a nucleosome depleted

region at the GRP78 [35] and BRCA1 [24] promoters. By extension, a nucleosome

depleted region is likely to be characteristic of expressing genes containing a CpG

DNA Methylation and Cancer 3



island promoter. A nucleosome is inserted immediately upstream of the transcrip-

tional start site of an inactive MLH1 promoter, which becomes permanently

silenced by DNA methylation in cancer cell lines [24]. These data suggest that

changes in nucleosome occupancy contribute to the epigenetic silencing of CpG

islands during transformation (Fig. 1). The mechanisms that then ensure that CpG

islands remain permanently silenced are unclear, but it is feasible that this process

involves protein complexes that facilitate the addition and removal of other epige-

netic marks.

3 DNA Methylation, Covalent Histone Modifications,

and Histone Variants

3.1 Histone Variants

Beyond the physical positioning of nucleosomes, the composition and posttransla-

tional modification of these core particles must also be considered. Histone var-

iants, including H2A.Z and H3.3 (Fig. 2a), have altered amino acid sequences

compared with the canonical histone proteins [36] and have been shown to have

profound effects on gene expression [32, 37, 38] as well as being associated with

distinct chromosomal regions [39, 40]. Importantly, H2A.Z is enriched at transcrip-

tional start sites of both active and inactive genes [41], suggesting that H2A.Z also

has roles that are independent of transcription. One such function may be to

maintain genes in a poised state [42] and to prevent the permanent silencing of

these loci by DNA methylation in cancer [40, 43]. Alternatively, H2A.Z may

contribute to the over-expression of oncogenes or cell cycle regulators during

transformation. It has recently been demonstrated that the over-expression of

H2A.Z is linked to the progression of estrogen-responsive breast cancers [44]. In

this study, c-MYC was shown to bind to the H2A.Z promoter in response to

estrogen, increasing H2A.Z protein expression [44]. This observation correlated

with altered proliferation properties of MCF7 cells [44]. Despite this, a conclusive

mechanistic link between H2A.Z and cancer progression remains to be established.

DNA methylation and H2A.Z are mutually exclusive epigenetic marks in plants

[40]. Altered DNA methylation patterns are mirrored by changes in H2A.Z locali-

zation and vice versa [40], suggesting a high level of interaction between the

mechanisms underlying these two epigenetic modifications. Specifically, genomic

regions that exhibit a loss of DNA methylation become enriched for H2A.Z [40],

which is proposed to be a direct effect of DNA hypomethylation events rather than

changes in the levels of transcription [40]. The insertion of H2A.Z into nucleo-

somes is reliant on the Snf-2-related CREB-binding protein activator (SRCAP)

chromatin remodeling complex in humans [45, 46]. A mutation in plants of the

equivalent complex, PIE1, results in genome-wide DNA hypermethylation in

Arabidopsis thaliana [40]. While the distribution of DNA methylation patterns

4 P.C. Taberlay and P.A. Jones



Fig. 1 Nucleosomes contribute to the epigenetic silencing of genes in concert with DNA

methylation in cancer cells. In normal cells (above), active promoters are depleted of nucleosomes

immediately upstream of the transcriptional start site. Nucleosome-depleted regions are flanked by

nucleosomes that are enriched for active marks and are permissive for transcription, such as

H3K4me3. In addition, these nucleosomes contain histone variants shown to correlate with

transcription, such as H2A.Z. During the silencing process (below), a nucleosome is inserted

into the nucleosome depleted region, physically interfering with the process of gene expression.

DNAmethylation and the acquisition of repressive histone marks, such as H3K9me3, permanently

silence genes in cancer cells. DNMT3A and DNMT3B are anchored to nucleosomes associated

with methylated DNA. Removal of DNA methylation leads to the eviction nucleosomes from

reactivated loci after treatment of cancer cells with DNMT inhibitors such as 5-Aza-CdR (not

shown; [24]) agent.

Small white circle unmethylated CpG site; small black circle methylated CpG site; large circle
nucleosome; X silenced transcriptional start site; 4 trimethylation of histone H3 at lysine 4

(H3K4me3); 9 trimethylation of histone H3 at lysine 9 (H3K9me3); DNMT DNA methyltransfer-

ase; 5-Aza-CdR 5-Aza-20-deoxycytidine demethylating agent

DNA Methylation and Cancer 5



remained similar, an increase in the total level of DNA methylation was observed

[40]. Increased DNA methylation correlated with loss of H2A.Z from these loci

[40], further suggesting that nucleosome composition contributes to the DNA

methylation process.

3.2 Posttranslational Histone Modifications

In addition to composition of the nucleosome, histone proteins may be posttransla-

tionally modified, acquiring active or repressive marks (Fig. 2b). A combination of

up to 17 modifications, including previously characterized marks such as the

trimethylation of lysine 4 on Histone 3 (H3K4me3) [47], has been proposed to

correlate with highly expressed genes [48]. The H3K4me3 modification marks the

50 regions of genes [37, 49] and is anticorrelated with DNA methylation [50]. The

Fig. 2 Histone composition and posttranslational histone modifications correlate with transcrip-

tional competence and nucleosome stability. (a) Nucleosomes consist of an octamer of core

histone proteins and may contain variants such as H2A.Z and H3.3, which are often localized to

the transcriptional start sites of active genes. H2A.Z is anticorrelated with DNA methylation.

(b) Histone tail residues can be posttranslationally modified (right). An array of active and

repressive histone modifications determine the expression status of various genes. The modifica-

tions illustrated in the figure depict some of the possible modifications that can occur on each

histone tail. The exact combination of modifications present in the active, repressed, and silenced

states is not known.

Small white circle unmethylated CpG site; large circle nucleosome; H2A Histone 2A; H2B
Histone 2B; H3.3 Histone variant 3.3; H2A.Z Histone variant H2A.Z; H4 Histone 4; 4ac acetlyla-
tion of lysine 4 on histone 2A; 7ac acetylation of lysine 7 on Histone 2A; 5ac Acetylation of lysine
5 on Histone 2B or 4; 120ub ubiquitylation of lysine 120 on Histone 2B; 9ac acetylation of lysine 9
on Histone 3; 27 trimethylation of histone H3 at lysine 27 (H3K27me3)

6 P.C. Taberlay and P.A. Jones



trimethylation of Histone 3 at lysine 27 (H3K27me3) is mediated by the Polycomb

Repressive Complex 2 (PRC2) and is associated with gene repression [51, 52].

Interestingly, H3K27me3 enrichment is also anticorrelated with DNA methylation

[53, 54]. It is possible that the presence of PRC2 prevents the binding of DNA

methyltransferase enzymes (DNMTs), similar to the mechanism by which DNMT

3-Like (DNMT3L) is inhibited by H3K4me3 in germ cells [55]. Perhaps

H3K27me3 colocalizes with another histone modification or histone variant and

prevents the aberrant hypermethylation of PRC2 target genes in normal cells.

After cellular transformation there are several characteristic marks and protein

complexes that accompany DNA methylation. Accessory proteins, such as hetero-

chromatin protein 1 (HP1) [17, 56], are proposed to contribute to the permanent

silencing of DNA methylated genes since they are also associated with heterochro-

matic regions of the genome [57, 58]. The enrichment of H3K9me2 [59] and

H3K9me3 [57, 58] is associated with genes silenced by DNA methylation in

cancer. Interestingly, H3K9me2 can create a binding site for HP1 [60, 61] and is

removed from promoters that have been demethylated and reactivated in cancer

cells [59].

Taken together, these data indicate that DNA methylation patterning can be

dependent on nucleosome placement and composition, particularly near the 50-
regions of genes that may encompass CpG islands. DNA methylation can result in,

or be the result of, the exclusion of histone variant containing nucleosomes near

transcriptional start sites. Therefore, a lack of epigenetic marks that specify tran-

scriptional competence, or alternatively a permissive but repressed state, may result

in a feedback mechanism that progressively silences CpG island promoters by DNA

methylation in cancer.

4 Epigenetic Switching in the Cancer Genome

CpG island promoters often become hypermethylated during cancer progression,

while the remainder of the genome exhibits a reduction in DNA methylation [7, 8].

Genes containing CpG islands that were PRC2 targets in embryonic stem cells

appear to be predisposed for hypermethylation [62–66]. These genes are critical for

development and are normally repressed by PRC2 following differentiation from

pluripotency.

DNA methylation and PRC2 occupancy at gene promoters are typically consid-

ered to be mutually exclusive events [53, 54]. This may be explained partially from

the results of embryonic stem cell studies, which suggest that PRC2 and DNA

methylation have the potential to regulate different subsets of genes [67]. However,

it is also evident that PRC2 occupied gene promoters are preferentially methylated

during the transformation of somatic cells [53, 62, 63, 65, 66], suggesting that there

are genes that may be regulated by both PRC2 and DNA methylation.

Genome-wide comparisons of normal prostate epithelium with a prostate cancer

cell line revealed that there are three distinct subsets of genes that are silenced or

DNA Methylation and Cancer 7



repressed by epigenetic processes as a consequence of oncogenesis [53] (Fig. 3).

First, there are genes that are expressed in normal tissue, but are silenced by DNA

methylation in cancer due to a process termed 5-methylcytosine reprogramming. A

second group of genes are expressed in normal prostate epithelium and become

repressed by PRC2 in cancer [53, 68]. This type of event is termed PRC reprogram-

ming. Finally, there are those developmentally important genes that are repressed

by PRC2 in normal cells, but are hypermethylated in cancer [53]. This type of

change is termed “epigenetic switching,” but does not result in gene expression

changes. Epigenetic switching may reduce the capacity of PRC2 regulated promo-

ters to respond to signals that may otherwise reactivate these genes.

The mechanisms responsible for epigenetic switching are not yet clear. One

hypothesis suggests that DNMTs are actively recruited to PRC2 occupied gene

promoters during the carcinogenic process [69, 70]. The concept of active DNMT

recruitment contradicts evidence that DNA methylation and PRC2 occupancy are

typically mutually exclusive epigenetic marks [53, 54]. A model whereby DNMTs

Fig. 3 A model of epigenetic switching of PRC2 target genes in cancer cells. In normal cells,

genes contained within CpG islands are usually unmethylated and can be active (left) or repressed
by PRC2, which mediates the addition of a trimethyl group to lysine 27 of histone 3 through EZH2

(27me3; right). Following cellular transformation, an active gene may undergo 5-methylcytosine

reprogramming or PRC2 reprogramming. In addition, genes regulated by PRC2 in embryonic stem

cells appear to be predisposed to become DNA hypermethylated in cancer and can undergo

epigenetic switching upon transformation (dashed box).
Small white circle unmethylated CpG site; small black circle methylated CpG site; large circle
nucleosome; 4 trimethylation of histone H3 at lysine 4 (H3K4me3); 9 trimethylation of histone H3

at lysine 9 (H3K9me3); 27 trimethylation of histone H3 at lysine 27 (H3K27me3); X silenced

transcriptional start site; DNMT DNA methyltransferase; EZH2 Enhancer of Zeste 2
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are actively recruited to gene regulatory regions is therefore insufficient to explain

why the majority of embryonic PCR2 targets become hypermethylated in cancer.

Alternatively, the process of epigenetic switching could encompass a series of

passive events that gradually result in the hypermethylation of CpG islands in

cancer. Could a change in histone composition, such as the removal of variants

associated with transcriptional activation from gene promoters, mediate some of the

alterations that we observe in the cancer epigenome? Ultimately, DNA methylation

may be a cause or consequence of changes in nucleosome occupancy, both of which

occur during transcriptional silencing and the “locking” of the genome by acquisi-

tion of specific histone methylations (such as H3K9me2). Several unique events are

likely to be intricately involved in epigenetic switching, resulting in reduced

epigenetic plasticity and the silencing of tumor suppressor genes in cancer. The

dissection of such events may be possible using newly available high-resolution

genome-wide DNA methylation assays [71].

5 Mechanisms of DNA Methylation Inheritance

DNA methylation is a mitotically heritable epigenetic modification. The classical

model for the maintenance of DNA methylation patterns has recently been

reviewed [72]. A revised model has now been proposed, which encompasses new

data and addresses unexplained and previously inconsistent observations regarding

DNA methylation inheritance [72]. There are two key characteristics of DNA

methylation that partially explain the mechanisms through which it could be

inherited. First, patterns of DNA methylation exist, and second, these patterns are

distinguishable in somatic cell types [73, 74]. These observations, together with

accumulating data, gradually led to the conclusion that mammalian cells had two

classes of enzymes, de novo and maintenance methyltransferases, that use DNA as

a substrate for methylation.

The DNMT family has now been well characterized. DNMT1, DNMT3A, and

DNMT3B are the only enzymes to be shown to have indispensable roles in DNA

methylation in somatic cells [75, 76]. DNMT3A/3B are required for de novo

methyltransferase activity [76], both having an equal preference for hemi-methy-

lated and unmethylated DNA in vitro [77]. In normal somatic cells, the expression

of DNMT3A/3B is reduced compared with embryonic stem cells. Complete abro-

gation of DNMT3A results in viable litters; however, these mice die approximately

4 weeks after birth [76]. DNMT3B�/� mice are not viable and do not survive

embryogenesis [76]. DNMT3L (DNMT3-Like) is a regulatory protein that acts to

enhance the activity of DNMT3A/3B. DNMT3L is expressed primarily in gameto-

genesis to establish parental origin methylation patterns [78, 79]. DNMT3L mice

are viable [80], suggestive of its complementary role in establishing DNA methyl-

ation patterns. In contrast to DNMT3A/3B, DNMT1 is the “maintenance methyl-

transferase,” though it also exhibits de novo methyltransferase activity [81].

DNMT1 is preferentially targeted to hemi-methylated DNA [82] and determines
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the steady-state level of methylation [83]. DNMT1 is localized to the replication

fork during DNA synthesis through interactions with PCNA, a p21-dependent

nuclear antigen involved in DNA replication and repair [84] and UHRF1, a DNA

repair protein that also has a role in cell cycle progression [85, 86]. Once tethered to

the replication fork, the patterns of methylation that were established by DNMT3A/

3B are faithfully copied to the newly synthesized daughter strand of DNA by

DNMT1 [87]. Like the de novo methyltransferases, abolishment of DNMT1 results

in embryonic lethality [88]. It is interesting to note that DNMT1 is also required for

cancer cell survival [89, 90], suggesting that this protein has essential roles in both

early development and in cancer.

6 Nucleosomes and DNA Methylation Patterns in Cancer

What is the significance of the nucleosome in maintaining accurate DNA methyla-

tion patterns and how are these altered in cancer? The classical model of DNA

methylation events involves DNMT3A/3B as de novo methyltransferases, together

with DNMT1 as the maintenance enzyme. However, several experimental observa-

tions do not completely fit with this model of DNA methylation maintainance [72].

Of importance to our understanding of how DNA methylation patterns are inherited

is the structure of chromatin, which was largely ignored in the classical model of

DNA methylation maintenance [72]. As discussed previously, nucleosomes are

absent from the transcriptional start sites of active genes whose promoters are

located in CpG islands (Fig. 1). The physical placement of the nucleosome is

sufficient to impede transcriptional initiation and correlates strongly with DNA

methylation of CpG islands [24] (Fig. 1). Several lines of evidence suggest that

chromatin structures contribute to DNA methylation establishment and mainte-

nance. DNMT3 proteins have been shown to associate with heterochromatin [91,

92], which has a higher density of nucleosomes than euchromatic regions. Indeed,

DNMT3A has been shown to generate a structure with DNMT3L that could

physically encompass a nucleosome [55], and DNMT3A/3B are known to interact

strongly with nucleosomes within methylated CpG islands and repeat sequences

[93]. However, it is excluded from this interaction by the active H3K4me3 mark.

These data strongly suggest that the physical anchoring of DNMT3A/3B to nucleo-

somes is necessary for the maintenance of DNA methylation patterns (Fig. 1).

It has been suggested that a component of PRC2 recruits DNMT3A to gene

regulatory regions, yet this occurs without subsequent de novo methylation [69],

indicating that this process may not be a widespread mechanism for the mistarget-

ing of DNMTs and the resultant methylation of CpG island loci in cancer.

The expression of variant DNMT3 isoforms is increased during oncogenesis,

resulting in more random patterns of DNA methylation. Altered expression of

wildtype DNMT proteins, together with delta DNMT3 isoforms (DDNMT3) and

catalytically inactive forms of DNMT3, is expressed in a tissue-specific manner

[94] and is linked to several types of cancer [48, 95–97]). The DDNMT3 isoforms
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are a family of seven transcriptional variants that are generated by alternative

splicing [98]. Truncated and inactive DNMT3 isoforms can compete with wildtype

proteins to alter DNA methylation patterns [99] in a promoter-dependent manner

[100].

Increasing the expression of altered DNMT3 isoforms is one way that aberrant

DNA methylation patterns could be established in a cancer cell. Alternatively, both

wildtype and DDNMT3 isoforms could be mistargeted to chromatin during cellular

transformation. Chromatin structure is integral to the mechanisms underlying the

process of DNA methylation, and the anchoring of wildtype DNMT3A/3B proteins

to nucleosomes is dependent on the N-terminal regulatory region of the proteins

[93]. This might ensure that unbound DNMT3A/3B does not cause aberrant hyper-

methylation. Some DDNMT3 variants are not anchored to nucleosomes because

they lack the N-terminal domain [93]. Therefore, it is possible that the unbound

mutant DNMT3 proteins contribute to the establishment of aberrant DNA methyla-

tion pattern at CpG islands, irrespective of nucleosome occupancy. Another possibil-

ity is that the insertion of the nucleosome into the previously depleted region

upstream of transcriptional start sites (Fig. 1) redirects wildtype DNMT3A/3B to

CpG islands during oncogenesis. These two possibilities are not likely to be mutually

exclusive.

7 Epigenetic Regulation of miRNAs

Small, noncoding microRNAs (miRNAs) have the potential to regulate gene

expression by modulating mRNA stability or translation [101–103]. The activity

of miRNAs occurs in a cell type-dependent manner [104], contributing to crucial

cellular processes such as proliferation and differentiation [105, 106], and it is not

surprising then that miRNA expression is altered in cancer cells [107, 108]. The

genome-wide profiling of miRNAs has now been conducted for several cancers

[109], revealing that most of these ~22 nt noncoding RNA molecules function as

tumor suppressors in somatic cells. It has been noted that miRNAs may also be used

as biomarkers for various types of cancers [110], predicting outcome and treatment

options for patients. This has been correlated with variable miRNA expression

within cancer subtypes at different stages of the disease [109].

miRNAs have the potential to act as epigenetic modifiers. A mechanism for the

widespread effects of miRNAs in carcinogenesis may therefore be partly explained

by their abilities to regulate the translation of DNMTs through epigenetic modifi-

cation. For example, a reduction in DNMT3A/3B mRNA is observed concomitant

with decreased expression of the miRNA-290 cluster [111]. Similarly, overexpres-

sion of the miRNA-29 family, which occurs frequently in lung cancer, correlates

with reduced transcription of DNMT3A/3B [112]. Aberrant miRNA expression or

activity may therefore specify a mechanism by which DNMTs are deregulated in

cancer.
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In a similar manner, miRNAs have been shown to alter other epigenetic pathways

that are disrupted in cancer, such as PRC2 [113, 114]. As mentioned previously,

many genes that were PRC2 targets in embryonic stem cells become hypermethy-

lated in cancer due to epigenetic switching [53]. A second group of genes are not de

novo target genes of PRC2, yet became repressed in prostate cancer cell lines due to

PRC2 reprogramming [53]. Indeed, Enhancer of Zeste 2 (EZH2), the catalytic

component of PRC2, is overexpressed in prostate [115], breast [116], and bladder

cancers [117]. The overexpression of EZH2 has now been linked to reduced expres-

sion of miRNA-101 in cancer cells [113, 114]. Exemplifying the role of miRNAs in

regulating epigenetic pathways, it was demonstrated that the restoration of miRNA-

101 expression resulted in the reexpression of genes that had been repressed by

EZH2 in cancer cells [113]. Further, reduced H3K27me3 levels are observed at

known target gene promoters, FAM84 and DDIT4 [113] as well as RUNX3 and

WNT1 [114] after EZH2 knockdown in cancer cells. These data indicate that

complex networks are involved in epigenetic switching, 5-methylcytosine repro-

gramming, and PRC reprogramming. Moreover, it is clear from these results that the

deregulation of key epigenetic pathways can be mediated by miRNAs.

In addition to acting as epigenetic modifiers, miRNAs themselves can be

epigenetically regulated [118]. miRNA-127, located in a CpG island, is silenced

by DNA methylation in tumors [118]. A widespread reduction in histone acetyla-

tion of miRNA-127 was also detected in these tumors [118], suggesting that both

DNA methylation and posttranslational histone modifications play a role in epige-

netically regulating miRNAs. The epigenetic deregulation of miRNAs in additional

cancers has now been described, such as the hypermethylation of miRNA-34b/c in

colorectal cancer [119]. Thus, the hypermethylation of CpG islands can contribute

to carcinogenesis not only by silencing tumor suppressor genes, but also by

silencing miRNAs.

8 DNA Methylation at CpG Poor Regions

The focus in the field thus far has been on hypermethylation of CpG island

promoters in cancers. As stated previously, CpG islands constitute approximately

2% of the genome, while the remainder is CpG poor. Some promoters with

intermediate CpG dinucleotide content exhibit tissue-specific patterns of expres-

sion, which can be associated with the DNA methylation status of these regulatory

regions [120]. There are also examples whereby a single methylation site can

influence gene activity at non-CpG islands. For example, repression of the CpG

poor Interferon-b promoter has been correlated with the methylation of one CpG

site, due to inhibitory effects on transcription factor binding [16].

CpG poor regions are generally methylated in normal tissue [121]. During the

initiation and progression of cancer, the DNA methylation landscape is altered such

that the genome-wide hypomethylation of CpG poor regions accompanies the

hypermethylation events at CpG islands [2]. Such profound changes in DNA
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methylation have now been linked to increased chromosomal rearrangements

[122], leading to genomic instability and changes in nucleosome positioning

throughout bulk chromatin. These events have been correlated with an increase in

the incidence of tumors [123] and constitute potential gain of function epigenetic

effects by increasing the access of transcription factors and coactivator complexes

to DNA [124]. Of particular interest is the resultant reactivation of proto-oncogenes,

such as c-Myc [125]. Activation of signaling pathways is also commonly reported,

including Wnt/b-catenin [126], several components of which are linked to many

types of cancers [127]. Effects on cellular behavior due to the activation of onco-

genes and their associated signaling pathways include disruptions to the cell cycle,

DNA repair mechanisms, and altered gene expression profiles, to name a few.

The genome-wide hypomethylation of a cancer cell has additional implications.

Since retrotransposons and repetitive elements constitute much of the genome,

demethylation of these can result in an increased frequency of chromosomal

rearrangements and insertional mutagenesis [128], in addition to chromatin insta-

bility. Sense and antisense transcripts may also occur, which directly interfere with

transcription of proximal genes [124].

Similar to hypermethylation of tumor suppressor genes, the hypomethylation

of CpG poor gene promoters and CpG rich repetitive sequences, such as Alu or

LINE-1 elements [129], can be correlated with patient prognosis. For example, the

long-term survival of patients with ovarian cancer can be linked to hypomethylation

of the MAL gene [130]. Interestingly, this is also indicative of resistance to current

standard of care treatment with platinum reagents [130]. It could be speculated from

these data that the hypomethylation of genes may determine cellular responsiveness

to drugs, including epigenetic therapies.

9 Epigenetic Therapy

DNA methylation is integral to the epigenetic silencing process, and aberrations in

this process occur at high frequency across a range of cancer types. DNA methyla-

tion is an attractive target from a therapeutic standpoint, particularly because CpG

island promoters are seldom regulated by DNAmethylation in normal cells. Several

potent nucleoside analogs have been derived and have been the subject of thorough

investigation, including two that have now been approved for clinical use by the

Food and Drug Administration, 5-Azacytidine (5-Aza-CR) and 5-Aza-20-deoxycy-
tidine (5-Aza-CdR) [131]. Of the remainder, 5-Fluro-20-deoxycytidine (FCdR) is

currently undergoing clinical trials [132]. Zebularine is a highly stable inhibitor of

DNA methylation [133] and is effective when administered orally. Treatment can

result in the reactivation of p16 in bladder cancer xenografts in nude mice [134] and

long-term enteral administration of zebularine to cancer prone mice prevented

intestinal tumors, having minimal side effects [133].

Interference of the DNA methylation process in cancer cells can promote gene

reactivation, together with cellular differentiation [135], similar to observations
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first made using immortalized mouse embryonic stem cells [136]. While cancer

cells respond to treatment with DNMT inhibitors such as 5-Aza-CdR, it has been

demonstrated that normal cells are more resistant to the effects of these compounds

[134, 137, 138]. This observation is critical for the therapeutic potential of these

agents because it suggests that cancer cells can be selectively targeted.

Clinical trials have demonstrated that 5-Aza-CR and 5-Aza-CdR are effective in

the treatment of myelodysplastic syndrome and myelogenous leukemias. However,

the administered dosage is critical and must be within a low, narrow range in order

for epigenetic effects to be apparent because the drugs become cytotoxic at high

concentrations [136, 139]. It was this characteristic that prompted low-dose clinical

trials in elderly patients with myelodysplastic syndrome [140]. A low-dose regimen

of 5-Aza-CR has approximately 50% efficacy, increasing long-term survival,

remission rates, and a general improvement in quality of life [141]. These studies

were the first of many demonstrating that an epigenetic agent could delay disease

progression [142], although it has been noted that 5-Azanucleosides are particularly

unstable and must be given as part of a chronic treatment program to avoid reversal

of DNA methylation patterns.

In addition to their instability, nucleoside analogs, such as 5-Aza-CdR, may not

be ideal candidates for epigenetic therapy since they become incorporated into

DNA and are thus cytotoxic. It has been speculated that the use of nucleoside

analogs may result in the formation of secondary tumors that arise due to chromo-

somal instability after drastic changes in DNA methylation [123, 143]. These

hypotheses were drawn from studies in genetically manipulated mice that devel-

oped a higher number of tumors following genome-wide DNA hypomethylation

[123, 143]. However, the mice in question were born with genetic aberrations in

DNMT1, exhibiting phenotypic changes at birth [123, 143]. Moreover, the studies

mentioned here did not specifically address problems arising from use of DNMT

inhibitors in these animal models [123, 143]. To address this, an investigation into

the cytotoxic actions of nucleoside inhibitors was undertaken in leukemic patients

[144]. Secondary tumors were not detected in any patient undertaking a nucleoside

analog treatment program, though it was not ruled out that they could possibly

occur. Alternative DNMT inhibitors are also being investigated and developed

[145]. SGI-1027, RG108, and MG98 are small molecule inhibitors that are pro-

posed to decrease DNA methylation by impairing binding sites for cofactors,

inhibiting the catalytic activity of DNMTs or acting much like miRNA sequences

that inhibit mRNA translation [146, 147].

For the most part, it is assumed that DNA methylation itself specifically results

in gene silencing. In agreement with this tenet, many genes are reexpressed in

cancer cell lines after treatment with 5-Aza-CdR, including MLH1 in the RKO

colorectal carcinoma cell line [24]. However, it must be emphasized that the

reactivation of MLH1 is dependent on the eviction of a nucleosome from the

promoter. Using the high-resolution MSPA technique, it was noted that approxi-

mately 50% of individual DNA molecules became demethylated after 5-Aza-CdR

treatment [24]. Of the demethylated molecules, 50% exhibited a nucleosome

depleted region immediately upstream of the transcriptional start site [24]. The
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remaining promoters, still occupied by a nucleosome in the promoter region, are

likely to represent the molecules that are demethylated but transcriptionally

repressed [24]. These data illustrate the importance of the nucleosome in the

process of transcriptional reactivation after demethylation and suggest that the

nucleosome may serve as a mechanism for the epigenetic inheritance of DNA

methylation patterns in cancer.

10 Conclusions and Future Directions

The importance of DNA methylation in cancer establishment is clear, though the

specific order of events that result in transformation remains to be conclusively

established. The advent of sophisticated epigenetic studies has allowed us to

integrate our knowledge and study the interplay between histone modifications

and nucleosome positioning together with DNA methylation. All of these processes

are integral to normal cellular stability, and the initiation of cancer is likely to

involve disruptions to each simultaneously. We are now in a position to fully

understand the roles of aberrant DNA methylation in cancer establishment and

progression. There are exciting new links between stem cell behavior and cancer

cells, and perhaps thorough investigation of developmental epigenetics will direct

us to the key events that are deregulated in carcinogenesis. Increased information

about these mechanisms will allow us to yield novel and specific epigenetic

therapies that will ensure lower toxicity and better patient outcomes.
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Genome-Wide Epigenetic Modifications

in Cancer

Yoon Jung Park, Rainer Claus, Dieter Weichenhan, and Christoph Plass

Abstract Epigenetic alterations in cancer include changes in DNA methylation

and associated histone modifications that influence the chromatin states and impact

gene expression patterns. Due to recent technological advantages, the scientific

community is now obtaining a better picture of the genome-wide epigenetic

changes that occur in a cancer genome. These epigenetic alterations are associated

with chromosomal instability and changes in transcriptional control which influ-

ence the overall gene expression differences seen in many human malignancies. In

this review, we will briefly summarize our current knowledge of the epigenetic

patterns and mechanisms of gene regulation in healthy tissues and relate this to

what is known for cancer genomes. Our focus will be on DNAmethylation. We will

review the current standing of technologies that have been developed over recent

years. This field is experiencing a revolution in the strategies used to measure

epigenetic alterations, which includes the incorporation of next generation sequenc-

ing tools. We also will review strategies that utilize epigenetic information for

translational purposes, with a special emphasis on the potential use of DNA

methylation marks for early disease detection and prognosis. The review will

close with an outlook on challenges that this field is facing.

1 Epigenetic Modifications in Healthy Tissue

1.1 Epigenetic Patterns in the Human Genome

The development of an organism relies on gene expression patterns that are

regulated in a spatial and time-dependent manner. This is accomplished, in part,
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by altering the DNA and associated proteins without changing the DNA sequence;

these alterations are collectively termed “epigenetic modifications.” Heritable

information is carried by chemical modifications of both DNA and chromatin-

associated proteins within the genomes of eukaryotes. Epigenetic modifications

have profound influences on gene expression by modulating chromatin structure

and DNA accessibility. Together, these epigenetic modifications on a genome-wide

scale are referred to as the “epigenome”. Examination of the epigenome suggests

that epigenetic phenomena contribute to global, cell-specific patterns of gene

expression. The epigenome is highly dynamic depending on the tissue type and

developmental stage within an organism. The biological and biomedical signifi-

cance of epigenetic modifications becomes particularly evident in mouse models

where alterations of genes responsible for the addition or removal of epigenetic

modifications lead to embryonic lethality (e.g., [1–4]).

Epigenetic modifications mainly fall into two categories, DNA methylation and

histone modifications. In mammals, DNA can be modified by addition of a methyl

group to cytosine residues, typically in a CpG context. This is mediated by DNA

methyltransferases, such as the de novo DNA methyltransferases DNMT3a and

DNMT3b, and/or DNMT1, which reestablishes DNA methylation at newly synthe-

sized sequences after replication (reviewed in [5]). Conversely, it is not fully

understood how DNA methylation is removed from the mammalian genome,

although several proteins, including DNA methyl binding domain-containing pro-

teins, nucleotide excision repair factors, and DNA methyltransferases, have been

suggested to be part of the demethylation process (reviewed in [6]). Intriguingly,

hydroxmethylcytosine was recently reported as an additional modification to cyto-

sine residues in mouse brain and ES cells [7, 8]. Data indicated that it was generated

from 5-methylcytosine by TET1 activity, which may be a key step for the demeth-

ylation process of 5-methylcytosine.

Unlike plants or invertebrates, most of which have mosaic methylation patterns,

mammalian genomes have “ubiquitous” DNA methylation patterns (reviewed in

[9]). CpG dinucleotides are predominantly methylated, except for those in CpG

islands (CGIs). CGIs are defined as GC-rich regions that retain a higher than

expected frequency of CpG dinucleotides. They frequently colocalize with pro-

moter regions of genes (reviewed in [10]). Unmethylated CGIs account for only

1–2% of the whole genome. A small yet significant portion of them are heavily

methylated and are involved in directing tissue-specific patterns of gene expression,

genomic imprinting, and X chromosome inactivation.

In addition to cytosine residues of DNA, N-terminal tails of histone proteins are

subject to modifications, including methylation, acetylation, phosphorylation, ribo-

sylation, and ubiquitination. Genome-wide analysis of histone modifications revea-

led that acetylation around transcriptional start sites is correlatedwith transcriptional

activation and chromatin accessibility [11]. The impact of lysine (K) methylation on

gene expression varies depending on which Lys residue is modified and how many

methyl groups it carries. For example, trimethylated K9 of histone H3 and K20 of

histone H4 are enriched in constitutive heterochromatin, while trimethylated K27

and K9 of histone H3 are enriched in the inactive X chromosome [12]. These histone
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modifications are silencing marks of gene expression. In contrast, trimethylation at

H3K4 and H3K36 is associated with active chromatin [13]. High levels of mono-

methylation and low trimethylation at H3K4 are frequently observed in enhancer

elements; such modifications have become a useful tool to identify potential enhan-

cers together with cell type-specific expression patterns [14]. The discovery of

interdependent relationships between DNA methylation and specific histone mod-

ifications has just begun. DNA methylation can provide a template to maintain

certain histone modifications after replication. Conversely, specific histone methyl-

ation can guide the establishment of DNA methylation patterns (reviewed in [15]).

1.2 DNA Methylation and Patterns of Gene Expression

The conventional view ascribes a repressive role for DNA methylation on gene

expression. Promoters of transcriptionally active genes are usually unmethylated,

but become silenced once targeted by DNA methylation. DNA methylation-asso-

ciated gene silencing is mediated either by recruiting methyl binding domain

proteins and repressive factors such as histone deacetylases or by blocking recruit-

ment of transcriptional factors (reviewed in [16, 17]). In contrast to DNA methyla-

tion in promoters, methylation within gene bodies is observed in transcriptionally

active genes. It is not known, however, whether methylation reflects the default

state in the genome or is targeted in a sequence- or locus-specific manner (reviewed

in [18, 19]). DNA methylation-dependent transcriptional activation has been shown

at some imprinted loci by preventing interactions with enhancer blocking factors

[20, 21]. Whether or not this mechanism directly applies to the function of genome-

wide gene body methylation remains unclear.

Genome-wide DNA methylation analysis in various human tissues has revealed

the presence of tissue-specific differentially methylated regions [19, 22], which

may play a role in cellular memory and tissue-specific genome function. Tissue-

specific DNA methylation patterns are less frequently observed in the middle of

CpG islands, instead differences have been suggested to occur in sequences of

intermediate CpG density up to 2kb away, referred to as CpG island shores [23].

Distinct epigenetic patterns are also observed in genome-wide maps of ES cells vs.

differentiated cells in mice [24, 25]. A bivalent chromatin state consisting of

H3K27me3 and H3K4me3 at the same genetic location was observed in embryonic

stem (ES) cells [24]. This state keeps genes in ES cells silenced but poised for either

continued silencing or activation upon ES cell differentiation. Stable repression of

genes associated with the pluripotent state also requires DNA methylation, which

complements other regulatory mechanisms such as histone modifications or recruit-

ment of transcription factors [26]. Recent findings in induced pluripotent stem cells

emphasize the importance of proper patterning of DNA methylation, in conjunction

with the presence of specific transcription factors, to define pluripotency [27].
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1.3 DNA Methylation in Genomic Imprinting
and X Inactivation

In addition to transcriptional regulation during development, epigenetic regulation

is required for proper patterns of genomic imprinting and X chromosome inactiva-

tion during germ cell development and early embryogenesis (reviewed in [5, 28]).

Imprinted genes are a subset of genes that show allele-specific expression defined

by the allele’s parent-of-origin and are controlled by epigenetic mechanisms.

Allele-specific DNA methylation at imprinting control regions (ICRs) has long

been known to be the main force behind imprinted gene expression [29].

DNA methylation is established during gametogenesis in a sex-dependent manner,

resulting in allelic differences after fertilization. DNA methylation in ICRs con-

tributes to allele-specific expression patterns either by inhibiting transcription of

regulatory noncoding RNAs or by blocking DNA binding factors such as CTCF

[30]. The parentally imprinted methylation is completely erased and is reestab-

lished during primordial germ cell development. Epigenetic regulators of histone

modifications such as G9a and the PRC2 complex have also been shown to be

involved in maintenance of placental imprinting patterns [31, 32]. These imprinted

modifications are faithfully maintained throughout development. Disruptions of the

imprinting patterns are associated with human diseases, most notably cancer

(reviewed in [33]).

Compared with the single active X chromosome in male somatic cells, inactiva-

tion of one of the X chromosomes in female mammalian somatic cells is necessary

for dosage compensation of X chromosomal gene expression. X chromosome

inactivation is regulated by imprinted and random patterns in extraembryonic and

embryonic tissues, respectively. Similar to imprinted genes, epigenetic marks

initiate and maintain inactivation of the X chromosome and undergo dynamic

reprogramming during germ cell development and early embryogenesis. Embry-

onic random X inactivation utilizes DNA methylation to prevent Tsix expression, a
noncoding RNA that blocks Xist expression, and allows for Xist transcription. There
is, however, no consensus whether differential methylation in the control regions of

Xist, Tsix, and Xite leads to imprinted X inactivation during early embryogenesis

(reviewed in [34]). In addition to the primary role in random inactivation, DNA

methylation also provides additional levels of repression for long-term inactivation

across the whole X chromosome, together with the spreading of trimethylated

H3K27 [35].

1.4 DNA Methylation and Genome Stability

In the human genome, DNAmethylation resides predominantly in repetitive genomic

regions, which include satellite DNA and retrotransposons such as LINEs, SINEs, and

LTRs. Satellite DNA,mainly located in centromeric and telomeric regions, consists of
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tandem repeats and forms heterochromatin characterized by DNA methylation and

trimethylation of H3K9. About 40–50% of the mammalian genome consists of

transposable elements. Their transcriptional repression by DNA methylation is

likely to function as a host defense mechanism to maintain genomic integrity and

stability [36]. DNA methylation in retrotransposons undergoes dynamic reprogram-

ming during early embryogenesis and germ line development. Some repetitive

elements, such as intracisternal A particles (IAPs), are resistant to demethylation in

both the primordial germ cells (PGCs) and the zygote, possibly a critical necessity for

genome stability [37]. Accordingly, establishment and maintenance of DNA methyl-

ation in transposable elements after reprogramming appear to be essential to prevent

transpositions. Moreover, mutations in Dnmt3L, a DNA methyltransferase family

member expressed during germ line development, cause loss of methylation and

de-repression of transcripts in transposable elements, leading to meiotic defects and

male infertility [38, 39]). Argonaute family proteins, MILI and MIWI1/2, are also

indispensible for maintenance of DNA methylation in retrotransposons during germ

cell development [40]. Togetherwith genome instability, the loss ofDNAmethylation

in retrotransposons is a hallmark of various cancers.

Altogether, epigenetic modifications are key regulators of tissue-specific gene

expression, genomic imprinting, X inactivation, and repression of retrotransposons

during development. Understanding the epigenetic patterns in normal tissue and

how they are disrupted in cancer will provide insights how to tackle pathogenesis.

2 Genome-Wide Epigenetic Alterations in Cancer

2.1 Hypermethylation of Candidate Genes

Epigenetic alterations in cancer have initially been investigated in candidate gene

approaches. Following the hypothesis that epigenetic alterations have the ability to

silence gene transcription, tumor suppressor genes were tested for epigenetic

changes in their promoter regions. These tests were mainly building on the identifi-

cation of aberrant DNAmethylation as a marker for epigenetic alterations. The base

5-methylcytosine is a stable mark of the DNA sequence, and hence, can readily be

traced even in archived materials. DNA methylation assays were developed that

allowed rapid testing for changes in DNA methylation in comparisons of normal

and tumor tissue DNA. PCR-based assays following conversion of the DNA by

sodium bisulfite treatment [41] proved sensitive, quantitative, and scalable to high

throughput applications (reviewed in [42]). Initial results quickly demonstrated that

numerous GC-rich promoter regions in virtually every human malignancy are

targets for epigenetic alterations and gene silencing. In these studies, known

tumor suppressor genes, such as MLH1 in colon cancer [43, 44], BRCA1 in breast

cancer [45, 46], DAPK1 in chronic lymphocytic leukemia (CLL) [47], or p16INK4a

in head and neck cancer [48, 49] and lung cancer [50], were found to be epigeneti-

cally repressed.
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2.2 DNA Hypomethylation of Cancer Genomes

Early studies, in which the 5-methylcytosine content of cancer genomes was

measured, indicated that global levels in a tumor genome are reduced as compared

with those in normal tissues [51]. It quickly became clear that loss of 5-methylcy-

tosine occurs in sequences spread throughout the genome that are usually methy-

lated in normal cells. These sequences included centromeric repeats and alpha

satellite sequences located in centromeric regions, but also interspersed repetitive

elements such as LINE1 sequences. The consequence of hypomethylation at these

repeat sequences is genomic instability caused by an opening of the chromatin and

subsequent chromosomal breakage. This may explain the numerous chromosomal

aberrations found as one of the hallmarks in cancer genomes. Numerically, hypo-

methylation events exceed the number of hypermethylation events by far if one

considers the abundance of methylated CpG dinucleotides in GC-rich repetitive

sequences (>80% of the total genomic CpG content) relative to the number of

unmethylated CpG dinucleotides in CpG island sequences (1–2%).

2.3 Epigenetic Changes in Imprinted Regions

Sequences that display both hypo- and hypermethylation include the ICRs. Both the

gain and loss of methylation in these differentially methylated regions result in loss

of genomic imprinting and dysregulation of genes controlled by protein complexes

that detect the unmethylated ICR but not the methylated. Examples include loss of

imprinting due to the hypermethylation of the ICR of the IGF2/H19 locus, resulting

in overexpression of growth-activating IGF2 [52, 53].

2.4 Lessons Learned from Genome-Wide Approaches

Candidate gene approaches are not sufficient to evaluate the amount of epigenetic

alterations in a cancer genome (Fig. 1). However, for a long time, assays to evaluate

the DNA methylation status of all 28 � 106 CpG dinucleotides simultaneously in a

human genome were not available (see also below, Methylome analysis). Thus,

most first generation scanning assays focused on a representation of the genome

rather than attempting to cover the entire genome. Assays that focused specifically

on CpG island sequences included Differential Methylation Hybridization (DMH)

[54] and Restriction Landmark Genomic Scanning (RLGS) [55]. Both assays were

designed to allow the calculation of overall CpG island methylation frequency.

DMH was initially developed to identify methylated sequences in a cancer genome

in a screen of CpG island clones (or later arrayed oligonucleotides) representing

CpG island sequences. In this assay, DNAs were divided into two pools after MseI
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restriction digest and linker-ligation. The control pool was amplified without

further treatment whereas the test pool was digested with the methylation-sensitive

restriction enzyme BstUI prior to amplification. Subsequent to this procedure, both

pools were labeled with different dyes and cohybridized to arrayed CpG island

sequences. RLGS, on the other hand, was built on the restriction digest of genomic

DNA with a methylation-sensitive restriction enzyme that preferentially cuts in

CpG island sequences (e.g., NotI or AscI). Restriction ends were radioactively

labeled. Subsequent to a second restriction digest with a more frequently cutting

restriction enzyme, the DNAs were separated in a tube-like agarose gel followed by

in-gel digestion with a third restriction enzyme and final separation in an acrylam-

ide gel. The gels were dried and exposed to an X-ray film which displayed up to

2000 RLGS fragments that represented unmethylated NotI or AscI restriction sites.

While DMH and RLGS allow for the evaluation of overall levels of CpG island

hypermethylation, other assays were designed specifically to identify hyper- or

hypomethylated sequences from cancer genomes without providing data on the

overall frequency of CpG island methylation in a tumor genome. For example,

methylated CpG island amplification (MCA) was used as screening tool for the

identification of novel methylated sequences in colon cancer [56]: MCA identified

cancer-specific methylation events and a panel of sequences that characterizes the

CpG island-methylator phenotype (CIMP). The CIMP is present in the majority of

Fig. 1 Schematic outline of steps in an epigenetic screen (see text for more information)
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sporadic colorectal cancers displaying microsatellite instability and being most

frequently associated with MLH1 hypermethylation. A surprise resulting from the

data of the first genome scans performed by RLGS was the number of aberrantly

methylated CpG islands. Leukemias, for example, demonstrated mean levels of

CpG island methylation of 4.8% (chronic lymphocytic leukemia, CLL) and 1.9%

(in acute myeloid leukemia, AML) [57, 58]. Similar numbers were found in solid

tumors with mean levels of CpG island methylation of 5.3% in lung cancer [59], 1%

in primary head and neck cancer [60], and 4.6% in ovarian cancer [61]. These

numbers exceed by far the estimated number of tumor suppressor genes. The

frequency of CpG island methylation raises questions: which are the initial epige-

netic silencing events? And what events are accumulating during tumorigenesis,

perhaps due to a loss of DNA repair or accelerated growth? Lacking in this context

is also the information on DNA methylation changes in regions outside of CpG

islands. These regions might exhibit changes that are of relevance in tumorigenesis.

There is hope that novel genome-wide scans will provide this information in a

comprehensive manner.

An additional surprising finding in these studies was that DNA methylation

events are tumor-type specific [62]. Tumors and tumor subtypes display specific

patterns of aberrant CpG island methylation indicating specific, yet, unknown

mechanisms that lead to the silencing of specific groups of genes within a tumor.

Here, either direct targeting of genes by oncogene-encoded proteins, onco-fusion

proteins, or a selection process are discussed as possible mechanisms (see [63] for a

detailed discussion).

2.5 Genetic vs. Epigenetic Alterations

While candidate gene approaches detected epigenetic effects in genes that had

previously been identified as target genes for genetic (mutational) events, the

epigenetic screens identified novel genes and gene families that were predomi-

nantly or even exclusively silenced by epigenetic mechanisms. The importance of

these types of genes in normal development and their silencing in tumorigenesis is

under investigation in many laboratories. One example is DAPK1, a gene fre-

quently silenced in many tumor types by epigenetic alterations. However, there

are no reports on genetic mutations in the coding region of DAPK1 [64]. An

additional example is CTNNA1, a gene silenced by both epigenetic and genetic

mechanisms in myelodysplastic syndrome (MDS) and AML cases with chromo-

some 5q deletions [65]. The possibility of concordant genetic and epigenetic events

in the inactivation of tumor suppressor genes is now being used to identify novel

tumor suppressor genes in regions of chromosomal loss where searches for mutated

genes have failed to pinpoint candidate cancer genes [66]. The underlying assump-

tion for this approach is that the two hits, postulated by Knudsen’s “Two-Hit

Hypothesis” [67], can be a combination of genetic and epigenetic events.
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It is now becoming clear that DNA methylation changes are closely linked to

alterations of other epigenetic modifications, especially histone tail modifications.

An intriguing observation was the finding that many of the epigenetic target genes

are targets for the polycomb repressor complex and are marked by the repressive

histone tail modification H3K27me3, which is mediated by EZH2 a member of the

polycomb group complex [68–70]. Furthermore, cancer cells show a loss of mono-

acetylated and trimethylated forms of histone H4K16 and K20 residues of histone

H4. These changes occur predominantly in hypomethylated, repetitive DNA

sequences of the cancer genome [71].

3 Second Generation Methodologies for Epigenome-Wide

Scans

Microarray and novel sequencing techniques have facilitated the comprehensive

analyses of whole transcriptomes and complex genomic sequences. These techni-

ques also paved the way for the genome-wide scanning of DNA methylation states

(methylome profiling). Methylome profiling covers the whole genome, yet histori-

cally concentrates on the methylation states in CpG islands because of their

frequent overlap with/or their close vicinity to promoter sequences (see above).

Here, we will concentrate on a few examples of recent technical achievements in

whole genome profiling (second generation methylome profiling) rather than dis-

cuss approaches targeting single candidate genes. Basically, methylome profiling

can be separated into two successive processes: sequence enrichment for potentially

methylated CpG sites and sequence-based analysis (Table 1).

3.1 Enrichment for Methylated CpG Sites

The rationale for sequence enrichment is the reduction of genome complexity and

sequence load in later analysis. Three technical alternatives are currently in use:

Table 1 Novel methods for methylome profiling

Method/Acronym Enrichment Analysis References

HELP, MIAMI,

RRBS

Restriction enzyme digestion

with methylation-sensitive

and -resistant isoschizomers

Microarray

hybridization, NGS

[72, 73,

75, 76]

meDIP, MIRA,

MCIp

Protein affinity purification Microarray

hybridization, NGS

[77–79, 83]

Sequence capture Hybridization of bisulfite-treated

DNA to oligonucleotides

NGS [80–82]
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1. Cutting with methylation-sensitive and methylation-resistant restriction isoschi-

zomers followed by linker-mediated PCR amplification (developed in the late

1990th, still often employed in combination with modern analysis technology)

2. Affinity purification using antibodies or recombinant proteins with high affinity

for methylated DNA

3. Sequence capture by hybridization to complementary oligonucleotides

A variety of enzymatic options are available to distinguish between methylated

and nonmethylated states at CpG sites. In two approaches, abbreviated MIAMI [72]

and HELP [73], genomic DNA is cut with the methylation-sensitive restriction

enzyme HpaII and, as internal control, the methylation-insensitive MspI; both

enzymes recognize the sequence CCGG. This tetranucleotide occurs ~2.3 million

times in the human genome, ~22% of them residing in CpG islands [74]. After

cutting genomic DNA to completion with either enzyme, linkers for final PCR

amplification are ligated to the 50 G-overhangs of size fractionated (e.g., 200–2,000 bp)
restriction fragments. In the later analysis, methylated CpG sites are recognized by

their absence in the HpaII- and their presence in the MspI-treated sample. Recent

technical improvement of the HELP approach considerably extended the represen-

tation of the addressed sequence regions [75].

Bisulfite treatment enables to discriminate between different methylation states

by the conversion of unmethylated cytosine to uracil while methylated cytosine

remains unconverted. In MspI reduced representation bisulfite sequencing (RRBS,

[76]), genomic DNA is cut only withMspI, subsequently ligated to linkers contain-
ing only methylated but no unmethylated cytosines, and then bisulfite treated. PCR

amplification then leads to a change from cytosine to thymine for every unmethy-

lated cytosine while methylated cytosines are preserved as cytosines.

Affinity purification of randomly fragmented DNA (200–1,000 bp) employs

antibodies or proteins with high affinity for methylated CpGs [77–79]. The cur-

rently most widespread approach is meDIP [77] using antibodies against single-

stranded methylated DNA. Alternatives apply recombinant human proteins MBD2

(MCIp, [78]) or complex MBD2/MBD3L1 (MIRA, [79]), which bind with high

affinity to double-stranded methylated DNA. After binding, the methylated DNA

fraction is eluted from the antibodies/proteins by a high-salt buffer or a gradient of

buffers with increasing salt concentrations. The gradient discriminates between

states of low, intermediate, and high methylation. For microarray analysis, eluted

DNA can be directly labeled in a linear amplification reaction. The labeling

products reflect more reliably the relative abundance of enriched fragments than

products of exponential PCR amplification. Another advantage of the affinity

compared with the enzyme-based enrichment approaches is their independence of

specific recognition sites, allowing, at least theoretically, examination of all poten-

tially methylated sequence stretches. However, fragments with high methylation

density are favored compared with those with low or moderate methylation density.

Moreover, since affinity purification offers no direct proof for the presence of

methylated CpGs, identified candidate genes need validation by a confirmatory

method.
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Sequence capture of bisulfite-treated DNA employs oligonucleotide capture

probes, which are complementary to specific target sequences. In two of three

presented strategies, padlock probes were used. These probes are usually ~100

bases long and anneal via their end sequences to a target sequence, thereby forming

a padlock- or horseshoe-like structure. In the first strategy, padlock probes were

designed to target nonrepetitive sequences covering ten bases with a 50 CpG which

are flanked by at least 20 bases on each side free of CpGs [80]. After annealing to the

genomic sequence, the probes prime DNA synthesis of the targeted ten bases.

Subsequent ligation leads to the formation of single-stranded DNA circles. Using

primers derived from the common backbone of the probes, all synthesis products can

be amplified in a single PCR. In the second strategy, padlock probes were designed to

target longer sequence stretches of up to 225 bases. Moreover, capturing arms were

allowed to contain CpGs. Consequently, multiple probes were designed considering

all possible sequence combinations after bisulfite treatment [81]. The third strategy

employed 60-mer probes immobilized on a microarray [82]. Similar to the second

strategy, these probes were also allowed to contain CpGs (up to 15). However, only a

binary probe design with respect to possible methylation states was applied: fully

unmethylated or fully methylated, referring to reports that efficient hybridization

tolerates polymorphic sites and even up to six distributed mismatches. Similar to

enzyme-based enrichment, the presented sequence capture methods addressed spe-

cific target sequences rather than enabled to profile the whole methylome. All three

capture methods are bioinformatically demanding and, therefore, require special

expertise. However, coverage of substantial parts of the methylome in all three

studies leads to the expectation that comprehensive capture addressing the unique

sequences of the human methylome may be feasible in the near future.

3.2 Methylome Analysis

Methylome analysis after sequence enrichment is either performed by hybridization

on high-density oligonucleotide tiling microarrays or by next generation sequenc-

ing (NGS). Different commercial tiling microarray platforms are currently in use,

offering the flexibility of custom-designed arrays or standard arrays covering, for

example, promoter or CpG island sequences of the human genome. Tiling probes

are usually 45–60 bps in length and cover the regions of interest like CpG islands in

close spacing or even with overlaps. DNA samples are labeled with a fluorescent

dye such as Cy3 or Cy5 and cohybridized with a control sample, labeled with the

complementary dye, to the microarray. Control samples, like DNA from healthy

tissue, are usually enriched in the same way as the test sample or they may consist

of the nonenriched test DNA. After hybridization, scanning of the array generates

an image file displaying the different signal intensities of the two DNA samples on

the oligonucleotide probes. Different types of feature extraction software evaluate the

image file and provide both signal intensity ratios and a set of quality control values.

Additional corrections by normalizing unequal distributions of bulk fluorescence
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intensity values may be necessary prior to final statistical data evaluation. Since

microarray data provides no direct proof for the methylation state of CpG sites,

validation by other methods involving bisulfite DNA treatment is mandatory.

Recently, algorithms have been proposed that allow correlations of quantitative

array data with DNA methylation levels [83, 84].

NGS offers an attractive alternative to microarray analysis and has already been

combined with the enrichment strategies described above. The power of NGS

became particularly evident when applied on enriched bisulfite treated DNA sam-

ples. In three sequence capture studies [80–82], the Illumina Genome Analyzer was

used which can provide hundreds of millions of short read sequences (~30–35

bases) in a single run. Prior to sequencing, a library of short (~100–300 bp) DNA

fragments has to be prepared by ligation-mediated PCR. Use of different linkers for

PCR priming allows sample multiplexing.

The huge output of a single run requires enormous data storage capacity and

powerful software for proper quality check-up and final mapping of sequences on

the human reference genome. Bisulfite treatment of DNA leads to the reduction of

sequence complexity and to ambiguities at CpG sites, necessitating novel mapping

algorithms. Repetitive sequences, such as the transposon-like repeats which are

highly methylated in the human genome [74], are excluded in silico from further

evaluation using masking algorithms (e.g., Repeatmasker) because they cannot be

mapped back to the reference genome.

All capture studies reported encouraging experimental performance with respect

to both specificity (discovery of false positives) and sensitivity (likelihood for

detecting rare positives). In one study, ~3 million reads were mapped to ~7,700

of ~10,000 targets (~77%) [80], while in another study ~5.5 million reads could be

mapped to 10,364 of 10,582 targets (98% sensitivity) [81]. In the latter study, the

abundance of different captured fragments ranged from 1 to ~10,000-fold. This

variation could be traced back to a combination of parameters including the size of

the target sequence and the GC-content. Knowing these parameters and their

influence should enable a more reliable sequence representation in NGS methylome

profiling projects.

4 Epigenetic Biomarkers

4.1 Epigenomic Profiles as Markers for Cancer Tissues

Biomarkers are biological parameters that can be objectively measured and evaluated

as indicators of biological processes. Over the last years, biomarkers have gained an

enormous impact on diagnosis and treatment of cancer and cancer-related diseases.

They can be used as diagnostic tools and as prognostic factors that predict the outcome

of individual patients in terms of a specific clinical endpoint. In addition, they

may serve as predictive factors for the effect of a specific treatment and as surrogate

36 Y.J. Park et al.



endpoints that replace a clinical endpoint of interest. Recently, the term biomarker has

become a synonym for “molecular biomarker,” which can be measured by molecular

techniques in biological samples. Molecular biomarkers include changes in nucleic

acid sequences such as mutations or polymorphisms and gene expression alterations,

peptides, proteins, lipid metabolites, and other small molecules.

Human malignancies can be characterized by distinct epigenomic profiles as

markers of the malignant cell clone (see above). Increased DNA methylation at

CpG islands is prevalent in basically every human cancer, and different types of

cancer can be reliably distinguished by their unique DNA hypermethylation pattern

[62]. The list of the affected loci (genes) is rapidly growing and exerting its impact

on clinical decisions (Table 2). Hypermethylation at distinct genomic loci has

several properties that predispose for use as an attractive potential biomarker in

disease. First of all, DNA hypermethylation of many distinct genes is characteristic

for neoplastic cells. It is found to a significantly lower extent in healthy individuals.

Early onset of DNA methylation changes is evident in the pathogenesis of many

cancer types. This makes hypermethylation signatures an attractive tool in early

detection and screening, particularly in patients who exhibit increased risk. Second,

5-methylcytosine is a chemically stable covalent mark that can be reliably detected

in a variety of tissue sources. In contrast to RNA-based signatures, DNA methyla-

tion patterns are less prone to storage- or handling-dependent variations which

could confound measurements and consecutive interpretations. Analyses can be

performed on fresh tissues, archived frozen material, or paraffin-embedded tissues.

Samples can be long-term stored for intra- and interindividual references. Detection

is possible not only in tumor tissue, but also on tumor-derived DNA, which may be

present in body fluids (such as peripheral blood or serum). In addition, the detection

of epimutations (epigenetic modifications that can be passed down from parents to

offspring) which may be present in unaffected tissues becomes a promising

approach for a biomarker based on DNAmethylation [85]. However, in assessment,

evaluation, and interpretation of DNAmethylation analyses of clinical samples, it is

important to consider potential cytological heterogeneity as possible confounder.

Third, the technology of DNA methylation measurement has greatly improved over

the last years (see above). Sensitivity, reproducibility, and applicability for clinical

settings have significantly improved. The ability of quantitative measurements at

single CpG dinucleotide resolution enables tight correlations with clinical end-

points, precise identification, and separation of subgroups revealing previously

unidentified differences. This gains particular importance considering several

reports that indicate superior prognostic or predictive significance of single CpG

dinucleotides within CpG-rich areas.

A major challenge in utilizing DNA hypermethylation events for sensitive and

specific diagnostic and prognostic markers is the selection of candidate genes

(schematically depicted in Fig. 1). For many entities, candidate gene selection

using, for example, differential regulation or supposed function (“informed best-

guess”) led to identification of successful DNAmethylation markers. However, this

approach relies on restricted observations and assumptions and might not consider

independent potential markers. With the development of genome-wide tools and

Genome-Wide Epigenetic Modifications in Cancer 37



T
a
b
le

2
S
el
ec
ti
o
n
o
f
p
ro
m
in
en
t
ex
am

p
le
s
fo
r
es
ta
b
li
sh
ed

an
d
p
o
te
n
ti
al

ep
ig
en
et
ic

b
io
m
ar
k
er
s

M
et
h
y
la
te
d

g
en
es

S
p
ec
im

en
L
es
io
n
ty
p
e

(P
o
te
n
ti
al
)
C
li
n
ic
al

u
se

R
ef
er
en
ce

G
S
T
P
I

T
u
m
o
r
ti
ss
u
e

P
ro
st
at
e
ca
n
ce
r

D
ia
g
n
o
si
s
an
d
ri
sk

as
se
ss
m
en
t

[1
1
0
]

U
ri
n
e

P
ro
st
at
e
ca
n
ce
r

S
cr
ee
n
in
g
,
d
et
ec
ti
o
n

[1
1
1
]

S
er
u
m

P
ro
st
at
e
ca
n
ce
r

S
cr
ee
n
in
g
,
d
et
ec
ti
o
n

[1
1
2
]

h
M
L
H
1

T
u
m
o
r
ti
ss
u
e

C
o
lo
n
ca
n
ce
r,
g
as
tr
ic

ca
n
ce
r,
en
d
o
m
et
ri
al

ca
n
ce
r

C
la
ss
ifi
ca
ti
o
n
an
d
ri
sk

as
se
ss
m
en
t

[1
1
3
]

E
n
d
o
m
et
ri
al

ti
ss
u
e

A
ty
p
ic
al

en
d
o
m
et
ri
al

h
y
p
er
p
la
si
a
(e
n
d
o
m
et
ri
al

ca
n
ce
r)

S
cr
ee
n
in
g
an
d
ri
sk

as
se
ss
m
en
t

[8
9
]

T
u
m
o
r
ti
ss
u
e

V
ar
io
u
s
tu
m
o
rs

R
es
p
o
n
se

to
tr
ea
tm

en
t

[1
0
3
]

T
u
m
o
r
ti
ss
u
e

D
if
fu
se

la
rg
e
B
ce
ll
ly
m
p
h
o
m
a
(D

L
B
C
L
)

P
ro
g
n
o
si
s

[1
1
4
]

S
er
u
m

O
v
ar
ia
n
ca
n
ce
r

C
h
em

o
se
n
si
ti
v
it
y

[1
0
2
]

p1
6I
N
K
4
a

E
so
p
h
ag
ea
l
ti
ss
u
e

B
ar
re
tt
’s

es
o
p
h
ag
u
s
(e
so
p
h
ag
ea
l
ca
rc
in
o
m
a)

S
cr
ee
n
in
g
an
d
ri
sk

as
se
ss
m
en
t

[8
8
]

S
er
u
m

E
so
p
h
ag
ea
l
ca
n
ce
r

S
cr
ee
n
in
g
,
d
et
ec
ti
o
n

[1
1
5
]

C
er
v
ic
al

cy
to
lo
g
ic

sp
ec
im

en
s

C
er
v
ic
al

n
eo
p
la
si
a

S
cr
ee
n
in
g
an
d
ri
sk

as
se
ss
m
en
t

[1
1
6
]

T
u
m
o
r
ti
ss
u
e,
ly
m
p
h
n
o
d
es

N
o
n
sm

al
l
ce
ll
lu
n
g
ca
n
ce
r
(N

S
C
L
C
)

P
ro
g
n
o
si
s
(e
ar
ly

re
cu
rr
en
ce
)

[1
1
7
]

S
p
u
tu
m

L
u
n
g
ca
n
ce
r

S
cr
ee
n
in
g
,
d
et
ec
ti
o
n
,
ri
sk

as
se
ss
m
en
t

[1
1
8
]

S
er
u
m

H
ep
at
o
ce
ll
u
la
r
ca
rc
in
o
m
a

S
cr
ee
n
in
g
an
d
d
et
ec
ti
o
n

[1
1
9
]

M
G
M
T

C
o
lo
n
m
u
co
sa

C
o
lo
re
ct
al

ad
en
o
m
a
(c
o
lo
re
ct
al

ca
n
ce
r)

S
cr
ee
n
in
g
an
d
ri
sk

as
se
ss
m
en
t

[8
7
]

T
u
m
o
r
ti
ss
u
e

G
li
o
m
a/
G
li
o
b
la
st
o
m
a

T
re
at
m
en
t
re
sp
o
n
se

in
G
li
o
m
a

[1
0
0
,
1
2
0
]

S
F
R
P
1

P
an
cr
ea
ti
c
ex
cr
et
io
n

P
an
cr
ea
ti
ti
s
v
s.
p
an
cr
ea
s
ca
rc
in
o
m
a

S
cr
ee
n
in
g
an
d
ri
sk

as
se
ss
m
en
t

[1
2
1
]

T
u
m
o
r
ti
ss
u
e

B
re
as
t
ca
n
ce
r

P
ro
g
n
o
si
s

[9
7
]

e-
ca
d
h
er
in

T
u
m
o
r
ti
ss
u
e

B
la
d
d
er

ca
n
ce
r

P
ro
g
n
o
si
s

R
ev
ie
w
ed

in

[1
2
2
]

T
u
m
o
r
ti
ss
u
e

B
re
as
t
ca
n
ce
r

P
ro
g
n
o
si
s,
p
ro
g
re
ss
io
n

[1
2
3
]

T
u
m
o
r
ti
ss
u
e

S
k
in

ca
n
ce
r

P
ro
g
n
o
si
s,
st
ag
in
g

[1
2
4
]

A
P
C

T
u
m
o
r
ti
ss
u
e

P
ro
st
at
e
ca
n
ce
r

P
ro
g
n
o
si
s,
m
ar
k
er

fo
r
p
ro
g
re
ss
io
n

[9
0
,
1
2
5
]

C
o
lo
n
(t
u
m
o
r)
ti
ss
u
e

C
o
lo
re
ct
al

ca
n
ce
r

D
et
ec
ti
o
n

B
re
as
t
ti
ss
u
e

B
re
as
t
ca
n
ce
r

D
et
ec
ti
o
n

P
1
5

B
lo
o
d
/m

y
el
o
b
la
st
s

A
M
L

P
ro
g
n
o
si
s,
tr
ea
tm

en
t
re
sp
o
n
se

[1
0
5
]

38 Y.J. Park et al.



the tremendous effort of initiatives trying to decipher nonmalignant and cancer

methylomes, the exciting perspective of highly sensitive and specific DNA methyl-

ation signatures for various cancers and their respective subtypes becomes increas-

ingly available. This might be of particular interest for distinction of tumors and

nontumor diseases with similar behavior, e.g., chronic inflammations. Moreover,

precise discrimination between tumor subtypes by DNA methylation signatures

might help to strengthen diagnostic efforts and to conduct improved disease- and

stage-specific therapy decisions. In a large number of cases, diagnosis is based on

biopsies from undifferentiated metastatic tissue that makes it difficult for conven-

tional histological and immunocytochemical approaches to determine the tumor

origin (e.g., “CUP syndrome”). Since particular therapeutic options may vary

greatly between different tumor types, defined methylation signatures could signifi-

cantly contribute to the management of such cases.

4.2 Epigenetic Markers for (Early) Detection of Cancer Cells
and Screening

Evidence from various mouse models (e.g., TCL1-transgenic mouse model for CLL

pathogenesis) shows that DNA methylation events occur early during pathogenesis

at particular genomic loci. They can already be detected in premalignant lesions

[86]. Thus, DNA hypermethylation of distinct loci/genes can frequently be assessed

even before the histological onset of the disease. In humans, this could convincingly

be shown for CpG island hypermethylation in p16INK4a, p14ARF, and O6-methyl-

guanine-DNA methyltransferase (MGMT) in colorectal adenomas [87], p16INK4a,
RUNX3, and HPP1 in Barrett’s esophagus [88], MLH1 in atypical endometrial

hyperplasia [89], GSTPI in prostate cancer [90], p16INK4a and/or MGMT in squa-

mous cell lung carcinoma [91], and many more. These data strongly underline that

the analysis of the DNA methylation signature plays an important role in screening

and early detection of different malignancies. Particularly, in predisposed patients

with either infectious or inflammatory conditions, DNA methylation signatures

may be useful as markers of increased cancer risk. Individuals with family history

of cancer can notably benefit from successful early cancer detection by such

innovative sensitive screenings. This was impressively affirmed by studies in

colorectal cancer where DNA methylation patterns of familiar cases exhibited

striking similarity to those of sporadic cases [92]. With respect to practical feasi-

bility, the presence of DNA in body fluids offers easy, noninvasive accessibility to

material for numerous cancer types. A large case-control study recently demon-

strated that hypomethylation measured in peripheral blood lymphocytes was

strongly associated with increased risk of bladder cancer [93]. Indeed, hypomethy-

lation of L1 LINE sequence elements in bladder cancer tissue had already been

reported several years ago [94].

In reviewing the identification of new epigenetically altered candidate genes and

the rapid development of technologies over the last few years, the challenging goal
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is now to set up panels for reliable early detection markers especially in high risk

patients. At the same time, early detection using methylation signatures opens up

novel treatment options that include epigenetic therapeutic strategies. In addition,

sensitive epigenetic screening panels may not only allow effective identification of

early cancer stages but may also be used as instruments for disease monitoring and

detection of relapses. Continued sequential analyses of DNA methylation signa-

tures can be indicative for recurring disease at stages where clinical symptoms are

still absent and conventional diagnostic tools do not offer sufficient sensitivity. First

promising results come from a small prospective study demonstrating methylation

of a gene panel in saliva for the early detection of relapses in head and neck

squamous cell carcinomas [95].

4.3 DNA Methylation Profiles as Marker for Risk Assessment,
Tumor Progression, and Prognosis

Usually, detection of cancer is directly followed by assessments of stage and risk of

the malignant disease. As DNA methylation signatures fulfill requirements for

prognostic biomarkers (the baseline value of the biomarker, or changes in the

biomarker over time, should be correlated with the clinical endpoint in untreated

or in treated patients), they can be used to supplement conventional staging. Several

studies have demonstrated that DNA hypermethylation of distinct genes can be

correlated with clinical parameters or even substitute for them. This implies that

DNA methylation signatures can significantly contribute to risk stratification in

malignant diseases and may furthermore define new prognostic subgroups. Striking

examples come from colorectal and lung cancer where methylation of p16INK4a is
accompanied by particularly poor prognosis [96]. In breast cancer, SFRP1 promoter

hypermethylation is associated with unfavorable prognosis and poor overall sur-

vival in patients in early stages of the disease [97]. Some studies extend the

prognostic ability of epigenetic biomarkers from clinical endpoints like overall

survival to distinct properties of the disease course. This has been demonstrated for

the increased metastatic potential in cervical cancer assessed by hypermethylation

in MYOD1 CpG island [98]. In CLL, methylation of single CpGs separates the

disease into major prognostic subgroups in addition to established prognostic

parameters like IgVH mutation status or ZAP70 protein expression [99]. Precise

and significant prognosis estimates are not only highly informative about the course

of the disease but they allow more risk-adapted treatment decisions.

4.4 Predicting Therapy Response by Epigenomic Profiles

Treatment decisions in oncology are based on risk-adapted procedures. However,

the efficiency of a particular therapy and the sensitivity of an individual cancer are

difficult to predict. The exciting possibility of treatment response prediction may be
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the most challenging and promising task for potential biomarkers. DNA methyla-

tion signatures have been demonstrated to serve as predictive markers, as their

baseline value or their changes over time have been correlated with the effect of

treatment. The most prominent example is MGMT hypermethylation in glioblas-

toma patients. Expression of MGMT leads to reduced toxicity of alkylating agents

such as temozolomide due to rapid reversal of DNA adduct formation. DNA

methylation of MGMT (and its methylation-associated silencing) is the best inde-

pendent predictor for treatment response in glioblastoma [100]. Further evidence

for predictive DNA methylation signatures comes from hypermethylation of

hMLH1, a DNA mismatch repair gene. hMLH1 hypermethylation frequently occurs

in various tumors and is associated with increased resistance to chemotherapeutics

like cisplatin [101]. In ovarian cancer, acquired hMLH1 methylation in peripheral

blood predicts for adverse response to chemotherapy [102]. Interestingly, in human

tumor xenograft models, demethylation of the hMLH1 promoter resulted in sensiti-

zation to cisplatin [103].

4.5 Monitoring Epigenetic Therapies

Despite some advances in our understanding of the mechanisms underlying epige-

netic therapies, we still do not understand completely how these drugs work.

Epigenetic therapies have tremendously evolved over the last few years. The

increasing number of studies that report the significance of epigenetic alterations

in cancerogenesis and distinct tumor cell properties build a strong rationale for the

use of epigenetically modifying drugs in cancer treatment. In addition, frequent

reports of epigenetic biomarkers and identification of hypermethylated genes sets

that contribute to alteration of chemosensitivity support the rationale for reversal of

DNA methylation patterns as an effective therapeutic approach. The DNA methyl-

transferase (DNMT) inhibitors 5-aza-20-deoxycytidine/decitabine (Dacogen) and

5-azacytidine (Vidaza) have recently been approved by the U.S. Food and Drug

Administration (FDA) for treatment of MDS. Therapeutic principles have been

attributed to reversal of hypermethylation and reactivation of tumor suppressor

genes (e.g., p15INK4b). However, recent studies reported on particular DNA repair

mechanisms and others to be involved in response to therapy. Several studies have

used methylation signatures of single genes or gene combinations to monitor

therapeutic effects of demethylating agents. Clinical trials in AML and MDS

have shown decrease of DNA methylation at genome-wide levels (assessed by L1

LINE methylation) and at the p15INK4b promoter upon therapy [104, 105]. Quanti-

tative measurements of DNA methylation allow precise monitoring of even minor

demethylation effects, which are possibly indicative for effective therapy. Fetal

hemoglobin (HbF) has been reported to be reactivated in patients upon treatment

with demethylating agents [106]. It appears reasonable to further investigate HbF as

an in vivo marker for the application, efficacy, and the assessment of treatment

response. Markers for epigenetic therapy might be particularly important when
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considering an extended use of demethylating agents in solid tumors in the future,

where early treatment response is often more difficult to assess than in patients with

hematologic neoplasia.

Taken together, DNA methylation changes at single sites, single genes, or panels

of genes can serve as promising potent biomarkers that facilitate detection and

clinical management of various cancer types.

5 Future Directions in Cancer Epigenetics

5.1 Understanding the Underlying Mechanisms of Epigenetic
Regulation

Despite significant advances in the field, there are many open questions and

challenges that remain in the understanding of the methylome and utilizing this

information in basic and translational research. We still do not understand the

underlying mechanisms that lead to epigenetic alterations. Major efforts should

be made to precisely characterize epigenomic patterns during development and to

understand aberrant epigenetic processes, with the ultimate goal to perturb them in

cancer development. Mouse models for cancer may be helpful tools that recapitu-

late epigenetic defects [86, 107, 108]. These mice might allow us to dissect the

cascade of events that leads to a global genome-wide epigenetic defect and to

develop strategies that might help to prevent these alterations and subsequently

cancer development.

5.2 Third Generation DNA Methylome Profiling

Although major advances have been made just recently in the development of novel

scanning protocols, it can already be foreseen that further improvements will lead to

a more detailed characterization of epigenetic patterns. Still ongoing improvements

in probe density and design as well as relative simplicity in both performance and

evaluation will assure that microarray technology will retain a share in methylome

profiling studies during the next few years. In comparison, NGS is still reserved to

only a few laboratories able to cope with the relatively high equipment costs and

technological and bioinformatical requirements. It can be envisaged, however, that

overall costs for both equipment and consumables will considerably drop soon,

making NGS available to a much broader scientific community. In-depth methy-

lome profiling of tumor samples, particularly in early stages, is often complicated or

even prohibited by limited amounts of DNA, necessitating considerable improve-

ment in target-sequence enrichment and assay sensitivity. This has been already

addressed by some of the cited studies (e.g., [75]), and a novel development of
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ultra-sensitive quantum-dot technology in profiling single candidate genes in large

patient sample sets has just been published [109]. Both technical and financial

reasons make it presently more likely that only a limited set of candidate genes or

sequences rather than the whole methylome will be analyzed in the clinical routine.

It remains to be seen whether such a candidate approach will be sufficient for proper

molecular diagnostics, staging, and prognosis of a malignant disease.

5.3 Integration of Epigenetic Markers in Clinical Settings

Epigenetic alterations, in particular DNA methylation, have become promising new

tools for cancer screening and diagnosis, risk assessment and prognosis estimation,

as well as therapeutic management. However, more systematic evaluation in large,

well-characterized patient cohorts is strongly desirable. As an important part of

translational investigations, putative epigenetic biomarkers should be frequently

incorporated in clinical trials enabling prospective sampling and more comprehen-

sive evaluations. Especially, the development of predictive markers (foremost

markers for prediction of therapy responses) is an important and urgent request

for many cancer entities. Therapy response predictors (as described above for

MGMT in glioblastoma) might lead to more patient-, risk-, and disease stage-

adapted therapeutic strategies that directly translate into clinical benefit for the

patient.

It is obvious that epigenetics markers have started to move from bench to

bedside. They are entering the clinical field and becoming essential factors in the

clinical management of cancer patients.
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DNA Repair and the Control of DNA

Methylation

Primo Sch€ar and Olivier Fritsch

Abstract The successful establishment and stable maintenance of cell identity are

critical for organismal development and tissue homeostasis. Cell identity is

provided by epigenetic mechanisms that facilitate a selective readout of the

genome. Operating at the level of chromatin, they establish defined gene expression

programs during cell differentiation. Among the epigenetic modifications in mam-

malian chromatin, the 50-methylation of cytosine in CpG dinucleotides is unique in

that it affects the DNA rather than histones and the biochemistry of the DNA

methylating enzymes offers a mechanistic explanation for stable inheritance. Yet,

DNA methylation states appear to be more dynamic and their maintenance more

complex than existing models predict. Also, methylation patterns are by far not

always faithfully inherited, as best exemplified by human cancers. Often, these

show widespread hypo- or hypermethylation across their genomes, reflecting an

underlying epigenetic instability that may have contributed to carcinogenesis. The

phenotype of unstable methylation in cancer illustrates the importance of quality

control in the DNA methylation system and implies the existence of proof-reading

mechanisms that enforce fidelity to DNA methylation in healthy tissue. Fidelity

seems particularly important in islands of unmethylated CpG-rich sequences where

an accurate maintenance of un- or differentially methylated states is critical for

stable expression of nearby genes. Methylation proof-reading in such sequences

requires a system capable of recognition and active demethylation of erroneously

methylated CpGs. Active demethylation of 5-methylcytosine has been known to

occur for long, but the underlying mechanisms have remained enigmatic and

controversial. However, recent progress in this direction substantiates a role of

DNA repair in such processes. This review will address general aspects of cytosine

methylation stability in mammalian DNA and explore a putative role of DNA

repair in methylation control.
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1 Dynamic Stability of the “DNA Methylation Code”

DNA Methylation: The methylation of the 50-position of cytosine (5-mC) in DNA,

together with a variety of histone modifications, plays a central role in directing

stable cell type-specific gene expression and suppressing transcriptional noise as

well as transposon activity [1]. In mammals, this epigenetic DNA modification

mainly concerns cytosine in the symmetrical CpG dinucleotide sequence, affecting

approximately 60–90% of such sites. Isolated DNA islands with a higher than

average content of CpG dinucleotides, so-called CpG islands (CGIs), are often

present at the transcription start site of mammalian genes. Generally, such promoter

CGIs are protected from cytosine methylation, although differential methylation

can occur in a cell- or tissue-dependent manner (e.g., [2, 3]). CGI methylation

correlates with the transcriptional activity of nearby genes, and aberrant hyper-

methylation is a frequent cause of improper gene silencing in human cancers [4].

DNA methylation patterns in mammalian genomes are thought to be established

during early development and cell differentiation by the action of the de novo
methyltransferases DNMT3A or DNMT3B (reviewed in [5, 6]). Assisted by

DNMT3L, a methyltransferase-like protein, these enzymes interact with un- or

hemimethylated CpGs to catalyze the methyl-transfer to cytosine, using S-Adenosyl

L-methionine (SAM) as a methyl donor (reviewed in [7]). It is essential for

embryonic development that this de novo methylation system discriminates

between CpG sites that must be modified and sites that must not [8], but exactly

how this is achieved is unknown. It seems increasingly clear though that the

establishment of methylation patterns is linked with gene regulatory processes

and may be instructed by histone marks (e.g., [9–12]). Histone modifications

have been associated in various ways with DNA methylation and vice versa,

but the hierarchical relationship between the two types of epigenetic modifications

is complex and remains to be resolved. Both systems seem to be interlocked

in a feedback loop that reinforces the maintenance of chromatin states (reviewed

in [13]).

Once established, the mitotic inheritance of methylation patterns is assured by a

maintenance system that copies the methylation signature from parental to daughter

DNA strands during DNA replication and/or repair. Key to this system is the

so-called maintenance methyltransferase, DNMT1, which shows a higher specific-

ity for hemimethylated than for unmethylated DNA (reviewed in [7]). From a

biochemical point of view, the establishment and the faithful inheritance of DNA

methylation could thus be explained by a simple model based on the sequential

action of DNMTs with de novo and maintenance methylation properties. However,

the effect of DNMT defects on methylation patterns in mammalian cells indicates

that the system is more complex and involves specific targeting of and cooperation

between DNMTs (discussed in [6]). A newly emerging concept is therefore that,

depending on the CpG density and chromatin state of a genomic region, CpG

methylation may be maintained by both, a templated process involving DNMT1

and a stochastic process involving de novo methylation by DNMT3 enzymes.
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In x this scenario, DNMT1 may be targeted to newly synthesized, hemimethylated

DNA by interactions with PCNA [14, 15] and/or the SRA protein UHRF1/NP95

[16], whereas DNMT3 may associate more selectively with certain genomic

regions through interactions with transcriptional silencers, such as EZH2 [10], or

G9a [17] and HP1 [18].

1.1 Fidelity of the Methylation System

The fidelity of the methylation system is difficult to assess because of an unknown

contribution of natural epigenetic plasticity in cell populations derived from tissue

or grown in culture. A system involving DNMT1 and DNMT3, however, would

predict that fidelity can be provided at two distinct levels. Faithful copying at

hemimethylated CpGs would preserve sequence-specific patterns of methylation,

whereas de novo methylation instructed by chromatin modifications would be

suited to maintain methylation states across genomic regions. Indeed, data available

on methylation fidelity indicate that the methylation status of individual CpGs is

regulated dynamically and, to some extent, stochastically by both maintenance and

de novo methylation systems in a cell type-, tissue- or chromosomal location-

dependent manner [19–22]. As regards errors of maintenance methylation, an

assessment of methylation instability in clonal populations of human cells indicated

that maintenance errors occur with a higher rate in unmethylated than in methylated

regions, and that unmethylated CGIs associated with gene promoters are protected

more effectively from de novo methylation than unmethylated CGIs outside pro-

moter regions [22]. These observations suggest that methylation errors are mainly

due to de novo methylation in unmethylated DNA and that gene promoter-specific

protection mechanism(s) may operate to protect CGIs from erroneous de novo

methylation.

1.2 Dynamics of Methylation States

To what extent CpG methylation is a dynamic, i.e., reversible, epigenetic modifi-

cation has been a matter of debate. In this regard, the widespread erasure of

genomic DNA methylation observed under two developmental conditions in

mouse, i.e., in differentiating primordial germ cells (PGCs) and in fertilized

oocytes, may represent a paradigm. In PGCs, methylation clearance includes the

CGIs of imprinted genes and therefore serves to reset maternal or paternal imprint-

ing marks in the germ line. In fertilized oocytes, imprinted gene loci are unaffected

but demethylation elsewhere is necessary for the reactivation of pluripotency genes

that are silenced in germ cells but needed in the early stages of development.

Genome wide demethylation in both situations also assures that a newly emerging

organism develops without carry over of epigenetic traits from the previous generation.
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Both active and passive mechanisms have been proposed to explain the kinetics of

methylation clearance under these conditions, but the molecular pathways have

remained obscure (reviewed in [23]).

Locally restricted changes in CpG methylation have also been observed, mostly

upon nuclear- or hormone-receptor activation of gene promoters (e.g., [24–28, 29 ]),

but here as well, the underlying mechanisms are just about to reveal themselves.

Recently, two studies reported strand- and site-specific methylation–demethylation

to occur in two estrogen responsive gene promoters (pS2/TFF1, Wisp-2) within

minutes of exposure of human breast cancer cells to estradiol [30, 31]. With similar

dynamics, cyclic methylation–demethylation was also observed at four estrogen-

independent gene promoters following reactivation of doxorubicin-inhibited tran-

scription [31]. Moreover, rapid methylation and demethylation was shown to

accompany vitamin D receptor and parathyroid hormone-mediated repression and

derepression of the CYP27B1 gene, respectively [32]. Remarkably, whereas

the methylation activity was associated with DNMT1 and DNMT3 in all these

cases, the demethylation steps were linked with an active process involving DNA

repair (Fig. 1). Reproducibility provided the discovery of dynamic methylation–

demethylation processes may lead to a paradigm-shift in how the establishment and

the maintenance of CpG methylation have to be conceived. CpG methylation levels

and patterns even within individual cells may turn out to reflect a steady-state much

more than a stable condition.

2 Manifestation and Origin of DNA Methylation Instability

CpG methylation is established during early development and cell differentiation

not only to direct cell lineage-specific gene expression and provide cell identity

(reviewed in [33]), but also to suppress transposon- and recombinational activities.

Hence, the faithful maintenance of methylation patterns is critical for tissue

homeostasis and chromosomal stability (reviewed in [23, 34]). Aberrations in

DNA methylation can be observed but they are usually associated with biological

malfunctions in human diseases, such as cancer or imprinting disorders [35]. In

many ways, cancers reflect a condition of inaccurate establishment or loss of cell

identity [36–38] and, thus, illustrate best features and functional consequences of

epigenetic instability, much like they do for genetic instability.

Aberrant CpG Methylation and Cancer: Alterations in the distribution and levels

of 5-mC can be found in most, if not all cancers. Aberrations consist of both

increases and decreases in the density of CpG methylation in distinct genomic

regions [34, 39]. They are not only found in cancers but also in benign precursor

lesions, suggesting that methylation errors arise early in tumorigenesis [40, 41].

Once occurred, such errors will be stabilized by the maintenance methylation

system and eventually give rise to clonally inheritable changes in chromatin and

gene expression states. This way, hypermethylation of promoter CGIs in cancers
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was shown to stably silence factors that control critical aspects of carcinogenesis,

such as genomic stability (e.g., MLH1,MGMT, BRCA1), cell cycle control (e.g., Rb,

p16), apoptosis (e.g., Caspase 8), and tumor cell invasion capacity (e.g., E-cadherin),

Fig. 1 DNA repair-mediated active DNA demethylation. Known processes of active cytosine

demethylation involve either the MBD4 (a) or TDG (b) DNA glycosylases and BER as indicated

in the center. (a) Active demethylation involving AID (left) is initiated by enzymatic deamination

of 5-mC to T, generating a G�T mismatch. T is then excised by DNA glycosylases and repaired by

BER to restore unmethylated G�C. This appears to be happening during global demethylation in

zebrafish embryos, involving coupling of deamination (AID) and base excision (MDB4) through

GADD45 [75]. GADD45 has also been associated with DNA repair-mediated demethylation in

mammals [78, 79], although there are discrepant observations [80]. AID has also been implicated

in global active demethylation in primordial germ cells [76] and during somatic cell reprogram-

ming towards pluripotency [77]. During de-repression of the CYP27B1 gene by parathyroid

hormone (right) [32], a complex containing DNMT1, DNMT3B and MBD4 binds to its promoter,

which then undergoes MBD4-dependent active demethylation. The hormonal treatment induces

phosphorylation of MBD4, then able to efficiently incise 5-mC. (b) Estradiol (E2) induced

activation of estrogen-receptor target genes (TTF1/pS2, ERa) was shown to be accompanied by

cyclic methylation–demethylation of promoter CpGs. Demethylation was proposed to result from

primary deamination of 5-mC by DNMT3A/B [30, 31], both interacting physically with TDG [68,

69, 93]. The resulting G�T mismatch would then be processed by TDG (or MBD4) and repaired to

unmethylated G�C establishing a transcriptionally active state. Alternatively, TDG may gain the

ability to efficiently excise 5-mC through covalent modifications as MBD4 (center). Dashed-line
outlines indicate uncertainty about the presence of the factor. DNA methylation status: white,
unmethylated C; red, 5-mC; pink, deaminated 5-mC (T)
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just to mention a few (reviewed in [42]). Hypomethylation, i.e., a decrease in DNA

methylation density mostly in CpG-poor regions, seems even more prevalent in

cancers. In promoter sequences, hypomethylation can lead to aberrant (over)expres-

sion of genes and therefore directly affect gene function [34]. DNA hypomethyla-

tion, however, is more often observed in repetitive DNA as well as in the vicinity of

telomeres. There, the widespread loss of 5-mC may affect chromatin structure in a

way that favors gross genomic instability [43] and/or interferes with telomere

homeostasis and chromosome segregation (e.g., [44, 45]).

Biology of Aberrant Methylation: Little is known about the biological processes

underlying the instability of DNA methylation in somatic tissue. Whereas in

humans some promoter associated CGIs appear to undergo methylation as a

function of age, others were found to do so exclusively in neoplastic tissue [46].

Whether these seemingly age- and cancer-specific processes reflect distinct path-

ways or a common underlying epigenetic instability that hits CGIs at random

remains to be clarified. The finding of concurrent de novo methylation of multiple

gene loci in a subset of colorectal cancers suggested that cells can acquire a “CpG

island methylator phenotype” (CIMP), i.e., a condition characterized by an

increased rate of CpG methylation errors [47–49]. Although the underlying molec-

ular defects of CGI hypermethylation or CIMP are still obscure, it seems clear that

in one way or another the integrity of the maintenance methylation system must be

affected. This may concern the DNMTs themselves as in the case of the human ICF

syndrome, which is caused by germline mutations in DNMT3B [50], or in mouse

models with defects in DNMT genes (e.g., [8, 51]). Likewise, expression, RNA

splicing, or targeting of DNMTs can be lost or imbalanced and the metabolic

pathways providing the methyl donor SAM can be deregulated, all of which has

been observed in cancer cells (e.g., [52–54]). Interestingly, however, a significant

number of gene promoters known to be silenced by hypermethylation in cancers

were shown to be controlled by the polycomb system in embryonic stem and tissue

progenitor cells [36, 55, 56]. Polycomb repressive complexes (PRCs) establish

long-term silencing of developmental genes, assuring stem cell maintenance and

proper lineage commitment [57]. Key to polycomb-mediated silencing is the

trimethylation of K27 in histone 3 (H3K27me3) catalyzed by the PRC2 component

EZH1/2. Addition of this repressive mark on top of the activating mark H3K4me2/3

establishes a bivalent chromatin state that keeps the promoter silent but poised for

reactivation, i.e., free of CpG methylation. Thus considered, it is remarkable that

EZH2 also recruits DNMTs to PRC controlled promoters [10]. Although it is not

clear whether this is a peculiarity of cancer cells only [56], the observation indicates

that aberrant CGI methylation may reflect an inability of cells to correctly interpret

histone modifications, i.e., to control DNMTs that happen to be recruited to CGI

that are not supposed to be methylated.

Irrespective of the underlying mechanisms, cancer cells document that the

fidelity of DNA methylation can be highly variable in both directions, toward

gain and loss of methylation, and this implies a need for fidelity enforcing pathways

in normal cells.
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3 Enforcing Stability to DNA Methylation

DNA methylation turns out to be considerably more dynamic than originally

thought and, yet, methylation patterns are relatively stably inherited. Faithful

inheritance cannot be explained solely by the biochemistry of the DNMTs and is

likely to require quality control mechanisms that enforce fidelity to their action.

Methylation Control: DNA replication needs proof-reading because DNA poly-

merases make errors. This ensures faithful inheritance of the “genetic code.” The

stable maintenance of the “epigenetic DNA code” is likely to involve some form of

proof-reading as well, although the level of fidelity required may vary across

different parts of the genome. In methylated regions, where chromatin is compact

and little gene regulation occurs, the maintenance of a generally methylated state

may be sufficient and patterns may be less important. Maintenance errors in such

sequences would result in the occasional loss of a methylated site, which may be

compensated for by ongoing de novo methylation elsewhere (Fig. 2a). In other

regions, however, such as in promoter associated CGIs where methylation patterns

confer biological function, the maintenance of un- or differentially methylated

states at individual CpGs may be more critical. It seems unlikely that such patterns

can be faithfully inherited purely on the basis of the biochemical properties of the

DNMTs and their targeting factors, i.e., the selectivity of DNMT1/UHRF1 for

hemimethylated CpGs [16, 58], or the site-specific recruitment and/or positioning

of DNMT3 by histone modifications (e.g., [59]). As for errors of methyltransferases

in unmethylated sequences, they would generate de novomethylated CpGs, and the

restoration of the originally unmethylated state would require a system capable of

actively demethylating DNA (Fig. 2b).

Active DNA Demethylation: Active demethylation has been known to occur for

long, but the enzymatic processes involved in have remained enigmatic. Various

mechanisms have been proposed, ranging from a direct enzymatic removal of the

methyl group from 5-mC to the excision and replacement of the entire nucleotide.

Direct removal of the methyl group would indeed represent a most straightforward

mechanism, but evidence for such an activity of the MBD2 protein [60] could not

be corroborated. Issues of reproducibility but also the lack of a plausible chemistry

for such an enzymatic reaction have cast doubts over the concept.

The main body of current evidence points at a more complex scenario involving

DNA excision repair. This appears most safely established in plants, where genetic

and biochemical data consistently support a function of the DNA glycosylases

ROS1 and DEMETER in the base excision repair (BER) of 5-mC [61, 62]. In

vertebrates, the evidence is less clear, although two DNA glycosylases, TDG and

MBD4, have been implicated in similar processes. DNA glycosylases are small

DNA repair proteins capable of detecting and excising chemically modified DNA

bases [63], thereby inducing a BER process that leads to the replacement of the

modified with an unmodified base [64]. Thus, DNA glycosylases seem optimally

suited to recognize erroneously methylated CpGs and to trigger their replacement

with an unmethylated cytosine. Both TDG and MBD4 were originally identified as
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mismatch-specific DNA glycosylases removing thymine and uracil from G�T and

G�U mismatches, respectively [65–67]. Remarkably, both were also shown to

complex with DNMTs in cells [32, 68, 69] and to excise 5-mC from DNA, albeit

with very poor efficiency [32, 70, 71] (Fig. 1). Recent work, showing that MDB4

Fig. 2 Protection against DNA methylation instability. DNA methylation instability is a concern

in both methylated (a) and unmethylated (b) regions. (a) Methylated regions need to maintain their

methylated state across rounds of replication and spontaneous deamination events. Although the

bulk of methylation is maintained by DNMT1 during replication, errors may occur, leaving many

CpGs in a hemimethylated state. Hemimethylated CpGs may also arise upon hydroxylation of

5-mC to 5-hmC [82, 83], which will only poorly be recognized by DNMT1 [96].

Consequently, observations that DNMT3A/B are recruited to methylated DNA [56, 97] provide a

context for the maintenance of methylation levels in such regions, rather than exact patterns,

through ongoing de novo methylation. DNMT1 may contribute to proof-reading in this context as

well, most likely guided by UHRF1 [58, 98, 99]. (b) Unmethylated CpGs in CGIs must be

protected against unwanted methylation. We consider here promoter CGIs of polycomb target

genes bound by EZH2 in a PRC2/3 context. Such targets, initially in a bivalent silent state (H3K4

and H3K27 methylated) as in ES cells, need to remain free of DNA methylation, but are prone to

acquire stochastic DNMT3-mediated CpG methylation. CGIs in bivalent chromatin are bound by

TDG as long as they are unmethylated and an activating histone mark (H3K4me) is present, and

the loss of TDG is associated with increased aberrant de novo methylation at such sites (P. Sch€ar,
unpublished observations). We therefore propose that TDG, in cooperation with a 5-mC deami-

nase activity (DNMT, AID/Apobec), removes such erroneous methylation through BER, thereby

maintaining an unmethylated state. The glycosylase may be targeted to such sites through its

physical interactions with transcription factors (TF) or DNMTs
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gains robust 5-mC glycosylase activity upon phosphorylation by protein-kinase-C

[32] (Fig. 1a, right), however, indicated that the lack of appropriate posttransla-

tional modifications may have impeded the reproducible measurement of such

activity.

Nonetheless, another and perhaps more plausible scenario for an engagement of

G�T glycosylases in DNA demethylation is through prior deamination of 5-mC to T,

which generates a G�T substrate in DNA. For TDG, such a pathway has been

proposed to explain its contribution to cyclic methylation/demethylation following

estrogen stimulated gene activation (Fig. 1b) [30]. In this case, the conversion of

5-mC to T was associated with the DNMT activity itself, which, under conditions of

limiting supply of the methyl-donor SAM, appeared to turn into a deaminase, as

previously reported for bacterial DNA methyltransferases [72, 73]. A similar

pathway was proposed to explain active DNA demethylation by MBD4 in zebrafish

embryos. There, however, cytidine deaminases of the AID/Apobec-type [74] were

implicated in the deamination step and the “growth arrest and DNA-damage-

inducible protein 45alpha” (Gadd45a) as a factor coordinating deamination with

MBD4-mediated base excision (Fig. 1a, left) [75]. Consistently, AID was also

shown to contribute to genome-wide erasure of DNA methylation in mouse PGCs

[76] and to rapid promoter demethylation during reprogramming toward pluripo-

tency of somatic cell nuclei [77]. Gadd45a, on the other hand, had previously been

associated with a DNA repair process mediating demethylation of 5-mC in Xenopus
laevis oocytes and mammalian cells [78, 79], although the circumstances under

which this pathway is active remain to be clarified [80, 81].

Finally, the recent discovery of 5-hydroxymethylcytosine (5-hmC) as a promi-

nent sixth base in the DNA of mammalian cells [82] suggested yet another potential

pathway for active demethylation. 2-oxoglutarate- and Fe(II)-dependent hydroxy-

lases like TET1, a member of the TET oncogene family, may convert 5-mC into

5-hmC [83] to generate a substrate for an as yet unspecified 5-hmC DNA glycosy-

lase [84]. As described for the deamination pathways (Fig. 1), this glycosylase may

then excise the modified base and initiate BER to insert an unmethylated C. Thus,

although more firmly established in plants, the concept of DNA repair-mediated

cytosine demethylation finds increasing support in experimental evidence also for

vertebrate systems (Table 1).

DNA Repair-Mediated Methylation Proof-Reading: Given the capacity of cells

to actively excise 5-mC from DNA, the question arises to what extent such

mechanisms contribute to the fidelity of the methylation system. Newly emerging

experimental evidence leads us to speculate that DNA repair systems may not only

counteract genetic instability but also epigenetic instability by proof-reading meth-

ylation marks and correcting occasional DNMT errors (Fig. 2b). Methylation proof-

reading may be particularly important during DNA replication and repair where

DNMT1 maintains patterns at sites of DNA synthesis, as well as in the context of

gene regulation and/or cell differentiation where DNMT3s seem to induce dynamic

methylation changes in gene promoters (Fig. 1). Common to both these situations

is that DNMTs are likely to associate with CpG-rich sequences that are not sup-

posed to be methylated and therefore need to be protected. Numerous interactions
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between BER proteins and the methylation system have been reported, arguing for

a functional link between the two processes (Table 1), and recent work with TDG-

deficient cell lines and mice in our laboratory seems to corroborate a role for DNA

repair in methylation control and provide insight into a possible pathway.

Unlike other DNA glycosylases [64], TDG turned out be essential for mouse

embryonic development (P. Sch€ar, unpublished observations). Given the physical

and functional interactions of TDG with nuclear receptors, DNMTs, and histone

acetyl transferases, this developmental phenotype is more likely related to a defect

in gene regulation than in DNA repair [68, 69, 85, 86]. Indeed, gene-expression

profiling revealed dramatic differences between TDG proficient and deficient

mouse embryonic fibroblasts (MEFs). Developmental factors (e.g., HoxA and

HoxD genes) were significantly enriched amongst the differentially expressed

genes, most of them having CGIs in their promoters and being targets of the

polycomb repressive system at a certain developmental state. We also found

TDG to bind with high preference to the promoter CGIs of such genes as long as

they remain unmethylated and carry the activating histone mark H3K4me2. The

loss of TDG was associated with increased aberrant de novo methylation of

promoter CGIs in differentiated cells (MEFs), while global DNA methylation was

largely unaffected, and this correlated with an increase of repressive histone

methylation (H3K27me3 and H3K9me2/3) and a loss of H3K4 methylation.

Whether TDG primarily controls histone or the DNA modification states remains

to be clarified. Its biochemical properties, however, and the observation that

XRCC1, an essential component of the BER system, localizes to the same CGIs in

a TDG-dependent manner support the hypothesis that TDG-dependent BER operates

to maintain CGIs in an unmethylated state (P. Sch€ar, unpublished observations).

How can this be envisaged mechanistically? TDG has been associated in various

ways with active demethylation [30, 31, 87], and it was repeatedly shown to be

targeted to gene regulatory sequences through interactions with transcription fac-

tors [85, 86, 88–90]. Gene regulatory sequences also bind DNMT3A/B, either as

part of transcription factor complexes [69, 91, 92] or upon recruitment to bivalent

chromatin through interaction with the PRC2 component EZH2 [10]. Hence, there

seem to be conditions where de novo methyltransferases associate with gene

regulatory sequences that must not be methylated, such as promoter CGIs in a

bivalent chromatin state, and TDG may be present to control their activity [68, 69,

93]. Figure 2b illustrates the situation of a CGI associated with a promoter of a

developmental gene. The promoter is kept silent by the polycomb repressive system

but must be protected from de novo DNA methylation to assure reactivation at a

later stage in development. In this situation, DNMT3 can bind to the PRC2

component EZH2 and accidentally methylate a CpG. TDG may then recognize

the erroneous 5-mC and initiate excision repair that restores the unmethylated state.

It may do so on its own, provided some form of posttranslational modification or

allosteric activation stimulates its latent 5-mC glycosylase activity, as reported for

MBD4. More likely, though, TDG may act in concert with a 5-mC deaminase, such

as DNMT3 itself, or an AID/Apobec-type of activity as discussed before (Fig. 1).

While such a mechanism for methylation proof-reading at CGIs is consistent with
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the phenotype of TDG deficient cells, it remains hypothetical until important details

like the targeting of TDG to CGIs and the biochemistry of 5-mC processing will be

clarified.

MBD4 has enzymatic properties comparable to those of TDG [67] and could

contribute in a similar way to methylation proof-reading (Fig. 1a). Unlike TDG,

however, MBD4 appears to be dispensable for epigenetic programming during cell

differentiation and development. MBD4 knockout mice do not show a develop-

mental phenotype or other signs of DNA methylation instability [94]. Nevertheless,

MBD4 has been associated with active demethylation in at least two situations

[32, 75]. Both concern initially methylated rather than unmethylated sequences, to

which MBD4 may be targeted through its methylated DNA-binding domain [95].

By contrast, we found TDG to be targeted preferentially to unmethylated CGIs,

presumably through its interaction with transcription factor complexes (P. Sch€ar,
unpublished observations). This considered, it is tempting to speculate that the two

G�T glycosylases serve complementary epigenetic purposes. While TDG appears to

preserve the unmethylated state of CGIs, MBD4 may function in demethylation of

methylated sequences, mainly in the context of promoter derepression. Hence,

TDG- and MBD4-dependent pathways would operate in different genomic con-

texts, the first to maintain and the second to alter methylation patterns.

4 Concluding Remark

Considering the devastating consequences of DNA methylation instability for

mammalian development and tissue homeostasis, it seems likely that proof-

reading mechanisms exist to ensure faithful inheritance of the epigenetic DNA

code. Such a function may be important mainly in regions where defined methyl-

ation patterns fulfill biological function, such as in CGIs that modulate gene

promoter activity and are often unmethylated. The maintenance of unmethylated

states would require a system capable of recognizing and actively demethylating

erroneously methylated CpGs. Active 5-mC demethylation in mammals has been

controversial but an increasingly robust body of experimental evidence implicates

DNA repair in such a process. Given their ability to recognize and excise small

base alterations, DNA glycosylases seem to be destined as proof-readers of

methylation errors, and BER would be optimally suited to restore unmethylated

CpGs. Protection from de novo methylation appears to be particularly important

during the transition of epigenetic states associated with cell differentiation,

which may explain the developmental defect of TDG deficient embryos. It is

thus plausible that BER not only provides genetic stability but also contributes to

epigenetic stability. Although speculative at this point, the predictions of such a

model are clear and warrant careful investigation.
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Errors in Erasure: Links Between Histone

Lysine Methylation Removal and Disease

Elizabeth M. Duncan and C. David Allis

Abstract Many studies have demonstrated that covalent histone modifications are

dynamically regulated to cause both chemical and physical changes to the chroma-

tin template. Such changes in the chromatin template lead to biologically significant

consequences, including differential gene expression. Histone lysine methylation,

in particular, has been shown to correlate with gene expression both positively and

negatively, depending on the specific site and degree (i.e., mono-, di-, or tri-)

of methylation within the histone sequence. Although genetic alterations in the

proteins that establish, or “write,” methyl modifications and their effect in various

human pathologies have been documented, connections between the misregulation

of proteins that remove, or “erase,” histone methylation and disease have emerged

more recently. Here we discuss three mechanisms through which histone methyla-

tion can be removed from the chromatin template. We describe how these “erasure”

mechanisms are linked to pathways that are known to be misregulated in diseases,

such as cancer. We further describe how errors in the removal of histone methylation

can and do lead to human pathologies, both directly and indirectly.

1 Introduction

In vivo, the genome of a cell is packaged into a three-dimensional structure known

as chromatin: DNA wraps around a core of histone proteins to form a chain of

repeating units or “beads on a string” [1]. This association of genomic DNA with

histone proteins provides a framework for “epigenetic” phenotypes, which are

defined as heritable phenotypes that are not caused by differences in DNA sequence

[2]. Although histone proteins were long regarded as an inert scaffold for the
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genome, a wealth of more recent studies shows that they are dynamically regulated,

both chemically and physically, in ways that lead to functional change. These

pathways of chromatin regulation establish, maintain, and propagate different

patterns of gene expression during normal tissue development and differentiation

[2]; it then follows that errors made in the regulation of the “epigenome” can lead to

pathological situations, such as tumorigenesis.

One of the fundamental mechanisms used to regulate the accessibility of the

chromatin template is the posttranslational modification of histone proteins, such as

histone methylation [3–7]. This covalent modification has been mapped to both

lysine and arginine residues within all histone species; predictably, most sites of

methylation are found within the histone tails (as compared with the less accessible

histone core region). The downstream functions of lysine methylation can vary

widely depending on the sequence context in which the modification occurs and are

often mediated by the binding of “effector” proteins and/or their associated protein

complexes. For example, trimethylation of lysine 4 of histone H3 (H3K4me3) is

enriched at the promotor regions of genomic loci that are competent for transcrip-

tion, whereas H3K27me3 largely correlates with gene repression [8]. The

H3K4me3-binding protein BPTF, the largest subunit of the NUcleosome Remodel-

ing Factor (NURF) complex, and the H3K27me3-associated complex Polycomb

Repressive Compex 1 (PRC1) have been shown to mediate functions of these

marks, respectively [4, 9]. The fact that each of these methyl marks has a distinct

relationship with transcription indicates that robust regulatory mechanisms exist to

establish and maintain specific modification states, as well as those that remove or

alter them specifically in response to cellular change (e.g., during differentiation

and development).

Methyl marks on lysine residues in histone tails are added, or “written,” by

enzymes that usually contain the evolutionarily conserved SET domain (named

after three lysine methyltransferases, or KMTs, that contain it: Su(var)3-9,

Enhancer of Zeste, Trithorax); SET domain proteins are often chromatin associated,

and many have been shown to have critical roles in development [10]. As suggested

by the distinct functions of their methylated histone substrates, KMTs are very

specific to the site of histone lysine methylation that they catalyze; many KMTs

have been shown to methylate only a single lysine residue within the histone

proteins [8]. KMTs are also known to methylate nonhistone substrates, and these

modifications have been shown to have downstream biological consequences as

well [11, 12]. It follows that mutation and/or misregulation of such KMTs would

correlate with abnormal animal development as well as some human disease states,

such as cancer; indeed, this connection has been demonstrated in numerous elegant

studies, which have been reviewed previously [13].

Logically, histone methylation must also be removed, or “erased,” from the

chromatin template in order for it to serve as a dynamic regulator of gene expres-

sion. Here we will discuss three potential mechanisms for its erasure: (I) enzymatic

demethylation, (II) replacement/exchange of the methylated histone protein, and

(III) regulated proteolysis of the histone tail (Fig. 1). These three removal
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mechanisms have been reviewed previously [14]; however, experimental evidence

for two of them was largely nonexistent at the time. Moreover, since both enzy-

matic demethylation and proteolysis of histone tails have been described more

recently, the field is only beginning to uncover connections between these mechan-

isms of modification “erasure” and the pathologies of human disease. Below we

will review the evidence linking these mechanisms to human disease and also

propose potential models through which misregulation of histone methylation

removal might lead to abnormal pathologies.

KMT

KDM

protease

"

I.

II.

III.

chaperone/
exchange

?

N

N

N

N

N

N

KMT KDM

?

"
Fig. 1 Schematic representation of three mechanisms that lead to the removal of posttranslational

modifications from the chromatin template. For clarity, this review focuses specifically on the

removal of methylation on histone H3 (also see [14]). I. One mechanism by which demethylation

is achieved is the enzymatic demethylation by a lysine (K) or arginine demethylase (not shown).

Before such enzymes were shown to exist and function in vivo, methylation was hypothesized to

be a “permanent” posttranslational modification. Lysine demethylases (KDMs) “erase” the marks

that are “written” by lysine methyltransferases (KMT). II. A second mechanism by which methyl

marks can be removed from the chromatin template is through the regulated replacement of the

entire histone protein by a chaperone protein (or protein complex). III. A third mechanism of

modification removal is through the proteolytic cleavage of the histone tail. Such proteolysis leads

to the production of both a C-terminal peptide, which remains incorporated in the chromatin

template until it is replaced (possibly by mechanism II, as represented by the dashed arrow), and
an N-terminal peptide, which may have a subsequent, independent function once liberated
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2 Lysine Demethylases Are Directly and Indirectly Associated

with Both Oncogenic and Tumor-Suppressing Proteins

For many years, it was hypothesized that histone methylation was a stable, irre-

versible covalent modification and that its permanence made methylation a true

“epigenetic” mark [15]. However, this view was invalidated by the identification of

the first lysine-specific histone demethylase, LSD1 [16]. Previous studies had

demonstrated that the peptidylarginine deiminase (PAD) family of enzymes is

capable of converting methylated arginine residues to citrulline [17], but LSD1

was the first enzyme shown to be a bona fide lysine demethylase (KDM) in that it

both removes mono or di-methyl groups from a lysine residue and concomitantly

returns it to its unmodified state. Shi et al. further demonstrated that there is a

functional relationship between LSD1 and H3K4 dimethylation occupancy at gene

promoters, and that altering this occupancy using RNAi affects gene expression.

The discovery that LSD1, an amine oxidase, demethylates histones was proceeded

quickly by the identification of another family of KDMs, the Jumonji family

[18–21]. The Jumonji family of KDMs differs from the amine oxidases LSD1

and AOF1 [22] in that they are able to demethylate tri-methylated histones.

Together, these findings affirm that histone methylation, in all states, is a dynamic,

reversible mark and that its enzymatic erasure is an important element of chromatin

regulatory mechanisms.

As mentioned above, the mutation or misregulation of methylation “writers” is

often detrimental to a given cell and/or organism. It follows that mutation or

misregulation of methyl-histone “erasers” would also lead to improper gene expres-

sion and disordered biological outcomes. In fact, despite the relative newness of the

identification of histone KDMs, there is both concrete and suggestive evidence that

many of them are indeed linked to human diseases, such as cancer. Below we

discuss a few notable examples.

LSD1. Interestingly, there is evidence showing that LSD1 is strongly expressed

in aggressive prostate cancer cells [23]; however, its expression is decreased in

breast cancer cells [24]. One explanation for this discrepancy is that LSD1

demethylates H3K9me1/2, rather than H3K4me1/2, upon interaction with the

androgen receptor (AR) (Fig. 2), which then leads to the derepression of AR target

genes such as the prostate-specific antigen (PSA) gene [25]. Given that prostate

carcinomas have been shown to express high levels of AR and their proliferation is

dependent on its expression [23], these data strongly suggest that LSD1 over-

expression can lead to erroneous gene expression in AR-expressing cells. In the

breast cancer model, on the other hand, LSD1 maintains its conventional specificity

for H3K4me, a marker of active genes, and therefore must be down-regulated to

promote gene expression. Wang et al. further showed that LSD1 is a subunit of the

nucleosome remodeling and deacetylase (NuRD) complex, an association that

not only combines two activities that induce gene repression (demethylation and

deacetylation) but also forms a functional link between LSD1 and the chromatin

template in breast cancer cells [24]. In addition, they demonstrate that this interaction
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Fig. 2 Many lysine demethylases directly and/or indirectly possess oncogenic and/or tumor-

suppressing activity. LSD1 demethylates H3K4 methylation, which leads to gene repression and

tumor suppression via interaction with the NuRD complex (a complex that binds nonmethylated

histone H3 tails). When in complex with the androgen receptor (AR), LSD1 demethylates H3K9

methylation, which leads to gene activation and cell proliferation. LSD1 has also been shown to

demethylate methylated p53, which prevents it from binding DNA and leads to inactivation of p53

target genes. JMJD2C behaves similarly. JMJD2A demethylates H3K9 as well as H3K36 methyl-

ation; it is also known to interact with the tumor-suppressor pRB and enhance its tumor-suppressing

gene repression. Such repression could be reinforced by simultaneous demethylation of the

activating mark H3K36 by JMJD2A, although this mechanism is hypothetical. JARID1 family

proteins demethylate H3K4 and have been shown to interact with both the tumor suppressor pRB

and the oncoprotein Myc. JMJD3 and UTX both demethylate K27; UTX has been shown to have

tumor-suppressing activity, balancing the oncogenic activity of the Polycomb Group (PcG)

proteins, specifically Polycomb Repressive Complex 1 (PRC1). Double-headed arrows represent
known physical associations between proteins (dashed arrow indicated association has been

suggested but not published). Protein activities are shaded according to the key (bottom left).
Select lysines are shown in the histone H3 tail (not drawn to scale), represented by the solid blue
line (horizontal); DNA is represented by the solid black line (vertical). Genes encoded in the DNA
sequence (black) are represented by orange boxes
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is necessary for the proper silencing of downstream target genes, including genes

that are linked to cancer and metastasis. In a separate study, Huang et al. also

provide evidence that LSD1 has oncogenic activity in both osteosarcoma (U2OS)

and breast cancer (MCF7) cell lines, although in this case such activity is mediated

through the demethylation of p53 rather than histone H3 [26]. Together, these data

suggest that LSD1 can have both oncogenic and tumor-suppressing activities,

depending on the cellular context.

JMJD2C. The Jumonji-domain containing lysine demethylase JMJD2C (also

known as Gene Amplified in Squamous cell Carcinoma 1, GASC1) is also able to

demethylate histone H3K9 methylation [19]. Similar to the H3K9 demethylase

complex LSD1/AR in prostate cancer, JMJD2C is overexpressed in esophageal

squamous cell carcinoma, lung sarcomatoid carcinoma, and desmoplastic medullo-

blastoma [27–31] and appears to have oncogenic activity: inhibition of JMJD2C

decreases cell proliferation and its ectopic expression leads to the delocalization of

heterochromatin protein 1 (HP1) in vivo [19]. Unlike the LSD1/AR complex, which

demethylates H3K9me1/2, JMJD2C can demethylate di- and tri-methylated H3K9

(H3K9me2/3). Notably, Wissmann et al. observe that these two demethylases

interact physically and mechanistically with each other to promote the activation

of AR target loci, in both normal human embryonic kidney cells (HEK-293) and

prostate tumor cells (LNCaP) [32]. Supporting the idea that JMJD2C, and possibly

other JMJD2 family members, has oncogenic activity, RNAi knockdown of the

C. elegans JMJD2 orthologue (CeJMJD2) results in DNA damage and p53-depen-

dent apoptosis in the germline [21]. In contrast, a related Jumonji-family member

with H3K9 and H3K36 lysine demethylase activity, JMJD2A, has been shown to

interact with the tumor-suppressor protein pRB to enhance its effect in silencing

E2F responsive promotors [33]. These observations suggest that, much like LSD1,

the oncogenic or tumor-supressing activity of the JMJ2D family is also dependent

on the context in which it associates with the chromatin template.

JARID1 family. There are four JARID (Jumonji, AT-rich interactive domain)

family proteins in mammalian cells: JARID1A, B, C, and D. Mutations in JAR-

ID1C (SMCX) associate with X-linked mental retardation, including several muta-

tions that decrease its H3K4 demethylase activity [34–37]. JARID1D (SMCY) is

also located on a sex chromosome (the male Y chromosome vs. the X for JARID1C/

SMCX) and is also known to have H3K4 demethylase activity, although its in vivo
function is not known [38].

JARID1A and B are highly similar to one another and both have been suggested

to play a role in cancer [39]. The function of JARID1A (RBP2) in either normal or

disease pathologies is still unclear. JARID1A knockout mice are both viable and

fertile; its function is presumably at least partially redundant with another JARID

family protein, although JARID1A �/� mice show derepression of a number of

target loci and decreased apoptosis of hematopoetic progenitor compartments,

perhaps suggesting a role in cell cycle regulation [40]. It is also possible, however,

that JARID1A plays a yet uncovered role in tumorigenesis, given that it was

originally identified as a pRB-binding protein [41]. Interestingly, Benevolenskaya

et al. show that the interaction between JARID1A and pRB prevents JARID1A
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from repressing its target genes and that this derepression promotes differentiation,

suggesting the possibility that its mutation and/or misregulation could lead to

hyperproliferation in certain contexts [42]. Moreover, their data show that the

tumor-suppressing activity of pRB may be enhanced through its interaction with

JARID1A.

JARID1B (PLU-1), on the other hand, has been more clearly linked to breast

cancer [43, 44]. Prior to its identification as an H3K4 demethylase, Lu et al. showed

that JARID1B is up-regulated in breast cancer cells compared with normal tissue

(in which its expression is restricted to the testis) or colon cancer cell lines [43].

Yamane et al. later demonstrated that JARID1B demethylates H3K4me (di- and tri-)

both in vitro and in vivo [44]. They further showed that knockdown of JARID1B

leads to decreased proliferation of the breast cancer cell line MCF-7 and interferes

with tumor growth in the murine breast cancer cell line 4T1, suggesting that

JARID1B exhibits oncogenic activity in breast cancer cells, although it is not

clear that this activity is directly related to its demethylase activity. In support of

these findings, the Drosophila homologue of the JARID1 family, Lid, has been

shown to interact both physically and genetically with the oncoprotein Myc [45].

Moreover, this interaction appears to enhance the oncogenic activity of Myc in that

it leads to greater Myc-induced cell growth. Interestingly, this effect is not syner-

gistic with the H3K4 demethylase activity of Lid since it was shown to be

enzymatically inactive when bound to Myc [45]. The interaction between Lid and

Myc may be conserved in mammals as JARID1A (RBP2) also interacts with Myc

in vitro [45]. Given that the JARID1 family proteins contain the chromatin-binding

PHD finger and ARID domains, there are many possible mechanisms through

which Myc-bound JARID1 could be recruited to chromatin in order to regulate

(or misregulate, as in over-expressing cancer cells) gene expression.

JMJD3 and UTX. Both the Jumonji domain-containing protein D3 (JMJD3) and

the ubiquitously transcribed X-chromosome tetratricopeptide repeat protein (UTX)

have been shown to demethylate histone H3 at K27 [46–49]. Predictably, both

reverse the silencing effect of H3K27 methylation mediated by the Polycomb

Group (PcG) protein EZH2. Importantly, demethylation of H3K27 by both UTX

and JMJD3 leads to the derepression of Hox genes, which are key developmental

regulators; as a result, the inhibition of UTX in zebrafish and JMJD3 in C. elegans
leads to impaired posterior trunk and gonadal development, respectively [47, 49].

Although these H3K27 demethylases were identified only recently, two studies

provide some evidence that they may play a role in human cancers. Xiang et al.

show that JMJD3 is up-regulated in prostate cancer cells, particularly those that are

thought to be more metastatic [50]. UTX, on the other hand, has been shown to have

inactivating somatic mutations in several different types of cancers, including

multiple myeloma, esophageal squamous cell carcinomas, and renal carcinomas,

suggesting that it has tumor-suppressing, rather than oncogenic, activity [51]. van

Haaften et al. also show that rescue with wild-type UTX in these mutated cancer

cells slows their proliferation, strengthening this hypothesis. The notion that the

H3K27me “eraser” UTX suppresses cellular proliferation is not unexpected; oppos-

ing “writers” and “readers” of H3K27 methylation are known to have oncogenic
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activity, specifically the Polycomb Repressive Complex 1 (PRC1) proteins Bmi1

and CBX7 [52, 53]. Nevertheless, further studies will be needed to dissect exactly

how these “writers,” “readers,” and “erasers” interact mechanistically at specific

loci, such as p16INK4A-ARF, and how mutations and/or misregulation of them

lead to human disease.

Other KDMs and disease. One possible universal connection between lysine

demethylases and disease pathways is their role in the inflammatory response. Both

lysine demethylases and their counterpart methyltransferases have been linked to

the inflammatory response and its key regulator, NF-kappaB, including enzymes

discussed above (LSD1 [54], JMJD3 [48]) and others (FBXL11 [55], SET7/9 [56]).

Their link to the inflammatory response expands the role of lysine demethylases,

such as LSD1 and JMJD3, to include diseases such as diabetes and other vascular

pathologies, in addition to their roles in cancer. Moreover, these examples broaden

the potential roles of all lysine demethylases, including those not mentioned here,

and the pathways through which they affect disease pathologies.

3 Proteins Required for Histone Deposition Are Linked

to Development and Disease

The bulk of histone deposition occurs during S-phase as DNA is replicated.

However, long-standing evidence indicated that regulated histone replacement/

exchange occurred outside of S-phase: studies in rat neurons [57], mammalian

tissues [58], and Tetrahymena [59] suggested that variant isoforms of core histone

proteins are incorporated into the chromatin fiber independent of replication (Fig. 1,
mechanism II.). Using the Drosophila model, Ahmad and Henikoff then demon-

strated that histone variant H3.3 is deposited into chromatin outside of S-phase and

that it is specifically targeted to active loci, despite the fact that it differs from the

canonical H3 in only four amino acids [60].

Although these studies in Drosophila established that regulated histone replace-

ment/exchange exists in vivo, the exact mechanism by which it occurs is still

unclear. A major contribution to our understanding of this process was made

when Tagami et al. identified proteins responsible for the distinct H3.1 and H3.3

deposition pathways by purifying two separate chaperone complexes from mam-

malian cells with epitope-tagged H3.1 (i.e., canonical H3) vs. H3.3 [61]. Below we

discuss one of these proteins, HIRA, and its link to human disease; we also describe

the potential roles of another protein family, the CHD family, and its connections to

similar disorders (see Table 1). In addition, we highlight new findings from our

laboratory that implicate a third protein, alpha thalassemia/mental retardation

syndrome X-linked (ATRX), in proper H3 localization.

HIRA. Prior to the discovery of its role in nucleosome assembly [62] and, more

specifically, histone variant H3.3 deposition [61], human HIRA had been identified

as one of the genes potentially responsible for the developmental disorder known as
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DiGeorge syndrome [63]. DiGeorge syndrome, as well as other similar syndromes,

is associated with a deletion in the long arm of human chromosome 22 (22q11) and

phenotypically characterized by multiple malformations including the absence or

hypoplasia of the thymus and parathyroid glands, cardiac defects, cleft palate, and

other craniofacial abnormalities [64]. Human HIRA maps within the smallest

critical region for these syndromes and is so named because of its homology with

the S. cerevisiae HIR1 and HIR2 genes [63]. There are several genes within the

22q11 locus (including the Tbx1 gene that has been linked to DiGeorge-like heart

defects in mice [65, 66]) and considerable variation in phenotype among those

people affected by its deletion, making it difficult to pinpoint the responsible gene

(or genes) causing these syndromes. Interestingly, 22q11 deletion syndromes are

examples of haploinsufficiency disorders, i.e., their phenotypes are caused by

deletion of only one copy of the locus. However, while Tbx1 haploinsufficiency

in mice causes heart defects that are similar to those seen in patients with 22q11

haploinsufficiency [65, 66], mice heterozygous for a null mutation in the HIRA

gene have not been reported to mimic the human 22q11 deletion phenotype and

homozygous HIRA null mice die during early embryogenesis, before the relevant

structures have developed [67]. Nevertheless, given the complexity of 22q11

syndrome phenotypes and the difficulty in proving causation by a single gene, it

remains possible that HIRA haploinsufficiency contributes to these disorders.

Although homozygosity for a HIRA null mutation causes embryonic lethality in

mice, similar mutations in Drosophila produce adult flies [68, 69]. Although this

difference in viability suggests that HIRA (or perhaps its substrate, H3.3) may have

different roles in Drosophila and mammals, it also makes Drosophila a good model

for studying HIRA and H3.3 function. To this end, both the HIRA mutation sésame
(Hirassm, a R225K point mutation) and a loss-of-function mutation generated by

homologous recombination (HiraHR1) result in female sterility, in which females

produce eggs that do not hatch [68, 69]. Although this sterility is a maternal effect,

Table 1 Histone replacement proteins and their mutant phenotypes

Protein Mutation Organism Phenotype

H3.3 Homozygous null

(both A & B genes)

Drosophila Male and female sterility

[67, 68]

HIRA Homozygous null Drosophila Female sterility [65, 66]

Homozygous null Mouse Embryonic lethality [64]

Heterozygous 22q11

deletion

Human Neurocristophathy (DiGeorge/

VCFS syndrome [60, 61])

CHD1 Homozygous null Drosophila Male and female sterility [72]

CHD5 Syntenic 1q36.3

deletion & shRNA kd

Mouse Increased proliferation &

tumorigenesis [78]

1q36.3 deletion Human Multiple cancers [78–84]

CHD7 Multiple heterozygous

mutations

Human Neurocristopathy (CHARGE

syndrome [85–87])

shRNA kd hESCs Inability to differentiate into

hNCLCs [88]

Morpholino kd Xenopus CHARGE-like features [88]
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it is mediated through the failure to properly remodel the male germline: the DNA

of sperm nuclei is packaged with sperm nuclear basic proteins (SNBPs), rather than

the four core histones, which are then replaced with maternal histones upon fertili-

zation. This replacement does not occur in the fertilized eggs of female Hiramutant

flies, leading to the formation of a fatally abnormal male pronucleus in these

embryos [68, 69]. Notably, normal flies appear to preferentially deposit the variant

H3.3 into the chromatin of the male pronucleus, even when the canonical H3 is

expressed using the regulatory sequence of the H3.3A gene and present in roughly

equal amounts in the egg cytoplasm [69], suggesting that the role of HIRA in the

male pronucleus is mediated though H3.3-specific deposition. These data are

supported by further studies in Drosophila that show null mutations in both H3.3

genes (A and B) also lead to sterility, in this case in both male and female flies [70,

71]. The sterility of both male and female flies in the H3.3 mutants suggests that

H3.3 plays a role in the proper formation of the germ line in male flies as well as in

the remodeling of paternal chromatin in female flies. Moreover, the fact that male

sterility is not seen in the HIRA mutants suggests that H3.3 can function indepen-

dently of HIRA. Importantly, although mice null for HIRA and H3.3 are nonviable

and unavailable, respectively, observational data suggest the roles of HIRA and

H3.3 in remodeling paternal chromatin and the role of H3.3 in remodeling the male

germ line may be conserved in mammals [72–74].

CHD family proteins. As discussed above, the fact that Drosophila mutations in

both H3.3 genes produce sterility in both male and female flies while Hira null

mutations only affect the viability of embryos via a maternal effect suggests that

HIRA is not required for H3.3 deposition in the germ line of Drosophila males.

Furthermore, Bonnefoy et al. suggest that H3.3 deposition is unaffected in Hira
mutant flies, outside of male pronucleus remodeling, since they see comparable

epitope-tagged H3.3 incorporation in both wild type and HiraHR1 mutants [68].

Although this is an interesting and likely conclusion (see below), it is important to

note that it is based on the global localization of H3.3 by immunofluorescence; it is

possible that mutations in HIRA affect H3.3 deposition at specific loci, as could be

determined by Chromatin ImmunoPrecipitation followed by DNA sequencing

(ChIP-seq). Nevertheless, these data draw attention to the fact that there are likely

HIRA-independent mechanisms for H3.3 deposition and histone H3 replacement.

One protein that is likely responsible for HIRA-independent H3 replacement, at

least for some loci and developmental stages, is the motor protein CHD1. In a study

that nicely builds upon the Hira mutant data described above, Konev et al. showed

that CHD1 is also required for H3.3 deposition into chromatin in Drosophila [75].

Importantly, they show that mutating CHD1 causes sterility in both male and

female flies [75], which phenocopies the effect of mutating both H3.3 genes [70,

71]; this effect is different from that found in Hira mutants, of which only the

females are sterile [68, 69]. Although their data mostly focus on demonstrating the

effect of the null CHD1 mutation on the male pronucleus in the eggs of mutant

females, the fact that male flies are sterile as well suggests that CHD1 has an

additional role in the chromatin remodeling of the male germ line. In addition,

Konev et al. also suggest that H3.3 deposition is impaired at later stages of embryonic
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development, since they see poor localization of epitope-tagged H3.3 with DNA in

CHD1 mutants as compared with wild-type embryos at a similar developmental

stage [75]. These authors conclude that this effect is independent of both the haploid

state of the embryo (the result of an abnormal male pronucleus) and HIRA, since

previous studies in haploid Hira mutant embryos did not appear to have defects in

global H3.3 incorporation [68, 69]. Although their conclusion that CHD1 may play

a global, HIRA-independent role in H3.3 deposition is intriguing, and perhaps

likely, more quantitative studies will be needed to confirm the differences in

localization of H3.3 in wild-type, CHD1 mutant and Hira mutant embryos.

Together, the data described above not only suggest that there is likely one or more

HIRA-independent mechanisms of H3.3 deposition and H3 replacement, but also that

CHD1, and perhaps other CHD family proteins, may play a role in such alternative

mechanisms. Although the functional experiments described above were done in

Drosophila, these studies may have revealed an interesting and important role for a

family of proteins that are implicated in both development and disease.

CHD stands for chromatin helicase DNA-binding and its family members are

characterized by a tandem chromodomain motif in the N-terminus and a SNF2-like

ATPase domain in the structural center [76]. Several of the CHD proteins also

contain DNA-binding domains and/or PHD finger motifs that, along with the heli-

case and chromodomains, are thought to mediate interactions with chromatin. Of

the nine proteins in the CHD family (1–9), at least four of them are associated with

human disease [76]. Both CHD3 and CHD4 have been linked specifically to

dermatomyositis, a disease in which patients suffer from inflammation of the skin

and muscle tissue [77–79]; autoantibodies to CHD3 and CHD4 (or Mi-2, as they

were originally named after the Drosophila homologue) are detected specifically in

patients with dermatomyositis, but not in patients with a related disease [77]. CHD3

and CHD4 are also both components of the NuRD complex (which interacts with

the demethylase LSD1, see Sect. 1). In addition, CHD3 has been shown to physi-

cally interact with the protein Ki1/57, a marker for cancer cells in patients with

Hodgkin’s lymphoma [80], perhaps linking CHD3 itself to the disease.

CHD5 has also been linked to human disease and, moreover, has been shown to

be a tumor suppressor [81]. It bears the characteristic tandem chromodomains and

ATPase domain of the CHD family and is predicted to have two PHD finger motifs

(similar to CHD3 and CHD4) as well [76, 82]. CHD5 is one of the genes that map to

a region of human chromosome 1p36.3 that is commonly deleted in neuroblastoma

[82]. Thompson et al. not only identified CHD5 as one of the genes located in the

1p36.3 neuroblastoma deletion, but also demonstrated that its mRNA is more

highly expressed in the nervous system and that this expression is significantly

decreased in neuroblastomas from patients with poor outcomes [82]. Importantly,

1p36.3 is also deleted in several other types of cancer, including both hematopoietic

[83, 84] and epithelial malignancies [85–87]. To this end, Bagchi et al. have shown

that CHD5 acts as a tumor suppressor in vivo in mice [81], strongly implicating this

gene in the human cancers with the 1p36.3 deletion.

The most direct connection between a CHD family protein and human disease

is that between CHD7 and CHARGE syndrome; approximately two out of three

Errors in Erasure: Links Between Histone Lysine Methylation Removal and Disease 79



affected patients have heterozygous mutations in CHD7 [88, 89]. CHARGE stands

for Coloboma of the eye, Heart malformation, Atresia of chonae, Retardation of

growth and development, Genital hypoplasia, and Ear defects and is one of the most

common classifications of congenital anomalies [90]. Although the connection

between CHD7 and CHARGE syndrome is well established, data on the potential

mechanism by which CHD7 haploinsufficiency leads to the disease phenotype have

been published only recently [91]. Although it had been hypothesized previously

that CHARGE syndrome may be due to improper specification and/or development

of the neural crest [92], Bajpai et al. are the first to test this theory experimentally

and connect it directly to a CHD7-dependent mechanism of gene expression

regulation. In a separate study, Scnetz et al. use chromatin immunoprecipitation

(ChIP) to show that CHD7 maps to sites of H3K4 methylation, with the strongest

correlation to H3K4 monomethylation. Separately, these authors demonstrate

that its chromodomains bind directly and specifically to methylated H3K4,

although they do not appear to discriminate between the mono-, di-, and trimethy-

lated states in their assay [93]. Together these data suggest that the binding of

CHD7 to H3K4 methylation may localize and/or stabilize it at particular genes.

Interestingly, both CHD7 and HIRA are implicated in syndromes that may originate

from the improper development of the neural crest (i.e., neurocristopathies). HIRA

is expressed in the neural crest of both chick [94] and mouse embryos [95], and

patients with a 22q11 deletion that includes the human HIRA gene suffer from

DiGeorge syndrome, which is characterized by defects in many of the same

structures as those affected in patients with CHARGE syndrome. However, further

studies will be needed to determine whether there is a mechanistic connection

between these two proteins.

ATRX. Recent work from our laboratory [96] has revealed that another protein

is critical for histone H3 localization: ATRX. Using a genome-wide approach,

Goldberg et al. show that histone H3.3 localizes to specific regions of the

genome in mouse embryonic stem cells and neuronal precursor cells, including

genes, regulatory regions, and telomeres. Furthermore, they demonstrate that

distinct factors are responsible for H3.3 localization at these specific regions.

H3.3 chaperone HIRA is required for H3.3 localization to genes and particular

regulatory regions, but ATRX is required for telomeric localization of H3.3.

Goldberg et al. also show that ATRX is required for the repression of telomeric

RNA in mouse embryonic stem cells and that H3.3 biochemically associates with

ATRX, independent of its interaction with HIRA. Interestingly, patients

with mutations in ATRX (leading to the namesake disorder) show misexpression

of their alpha-globin genes, which are located extremely near the telomere of

human chromosome 16 [97]. It is possible that the proximity of alpha-globin

genes to the telomere may explain their misregulation in ATRX patients: the

inability of mutant ATRX to properly localize histone H3.3 at this locus could

lead to errors in the regulation of nearby genes. Goldberg et al. are the first to

document that ATRX plays a role at telomeres; further studies will dissect the

exact mechanism of H3.3 deposition/replacement by ATRX and its interacting

partners.
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4 Mislocalization of Cathepsin Proteases

Is a Marker of Cancer

Although histone cleavage as a mechanism for removing histone methylation

(Fig. I, mechanism III.) had been proposed previously [14] and the cleavage of

histone H3 tails had been demonstrated previously in the literature [98, 99],

evidence of endogenous H3 cleavage in mammalian cells was documented only

recently [100]. This study was also the first to identify a protease responsible for the

observed H3 cleavage: Cathepsin L was shown to create the pattern of H3 cleavage

that is generated in vivo during mouse embryonic stem cell (ESC) differentiation. A

subsequent study in S. cerevisiae demonstrated that an identical cleavage site is

created in the histone H3 of yeast, suggesting that this H3 proteolysis mechanism

may be conserved [101]. The fact that H3 proteolysis was observed during a narrow

window of ESC differentiation and that the cleavage activity of both Cathepsin L

and the yeast H3 protease is affected by histone modifications on the H3 tail itself

suggests that histone proteolysis is a highly regulated event that occurs at a

particular stage of development, differentiation, and/or cell cycle progression.

The finding that Cathepsin L localizes to the nucleus and associates with chro-

matin was surprising, given that it is a well-known lysosomal protein [102]. Never-

theless, its nuclear localization was not novel: Hiwasa and Sakiyama showed that

Cathepsin L (or MEP, for major excreted protein [103]) was enriched in the nuclear

fraction of ras and erbB2-transformed mouse fibroblasts (NIH3T3) compared with

nontransformed or v-mos-transformed controls [104]; Goulet et al. demonstrated

that Cathepsin L localizes to the nucleus during S-phase in NIH3T3 cells [105];

Boudreau et al. not only showed that Cathepsin L is in the nuclear fraction of

intestinal epithelial cells, but also that its expression increases upon differentiation

[106]. Interestingly, these studies not only provide supporting evidence for the

nuclear localization of Cathepsin L, but also suggest that such alternate localization

may be an instigator and/or an indicator of cancer cell transformation.

The connection between Cathepsin L, as well as other cathepsin enzymes, and

cancer had been established previously [107, 108]; however, those studies mainly

focused on the link between the secretion of cathepsin enzymes and malignancy.

Although the study by Hiwasa and Sakiyama did not determine whether the nuclear

localization of Cathepsin L was a cause or an effect of the malignant transformation

by ras or erbB2 [104], that by Goulet et al. demonstrated that a shorter form of

nuclear Cathepsin L (lacking its N-terminal signal peptide) cleaves the CDP/Cux

transcription factor and that one of the products of this proteolysis, p110, accel-

erates the G1/S transition of the cell cycle [105]. Goulet et al. then show that ras
transformation of human cells increases both the production of the signal-less form

of Cathepsin L and the processing of its substrate, CDP/Cux [109]. Boudreau et al.

also show that inhibition of intracellular Cathepsin L, but not extracellular enzyme,

impairs the polarization and differentiation of epithelial cells, and that mice with

inactive Cathepsin L ( furless) show increased intestinal neoplasia and intestinal

polyps (when crossed with ApcMin mice) [106]. However, although the authors
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attribute these effects to intracellular Cathepsin L, it is unclear whether or not they

are mediated by its activity in the nucleus or another intracellular compartment.

The studies described above suggest a link between nuclear Cathepsin L and

both differentiation and transformation; however, the question remains as to

whether its proteolysis of H3 correlates with or causes such events. Although

there is no direct, in vivo evidence indicating that mammalian differentiation or

transformation is mediated through cleavage of the H3 tail (and it is difficult to test

since Cathepsin L has at least one other nuclear substrate, CDP/Cux, and the many

copies of mammalian H3 make it impractical to create a noncleavable mutant),

there are many ways in which histone proteolysis might regulate the gene expres-

sion programs responsible for these transitions (see Fig. 3): the removal of the N-

terminal tail and its modifications, the creation of a new N-terminus, the regulated

replacement of the cleaved histone in the chromatin fiber, and the liberation of the

cleaved N-terminal tail peptide. Although these four modes of gene regulation are
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Fig. 3 Potential ways that gene expression might be regulated as a result of the N-terminal

cleavage of histone H3. Loss of the N-terminal tail leads to loss of any modifications found there as

well as their downstream effector proteins (e.g., the NURF complex subunit BPTF, which binds to

H3K4me3) from the chromatin fiber. Loss of key N-terminal residues also leads to reduced

binding by the H3K27me3-associated protein Polycomb. It is possible, however, that the new

N-terminus produced by this cleavage (represented by the star) could recruit novel binding

proteins (labeled with question mark). The C-terminal peptide may also be actively and specifically

replaced by chaperone proteins. There are also many possible fates for the released N-terminal

peptide: degradation by the proteasome, signaling to other cells, and/or inhibition of mRNA

translation
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somewhat speculative, we propose that they may be both important and conserved

among organisms.

The removal of the N-terminal tail of H3 has been shown to regulate gene

expression directly in yeast [101]; in vitro binding studies also indicate that the

loss of the H3 tail impacts Polycomb binding [100], which could lead to significant

downstream effects in the context of both normal development and cancer. Simi-

larly, the creation of a new N-terminus, and a new context for the remaining

modifications, could allow for the binding of proteins that were previously unable

to engage with the H3 tail. Such proteins might even include chaperones that could

purposefully replace the cleaved histone with a new molecule. Interestingly, this

type of cleavage-replacement mechanism appears to exist in sea urchins during

male pronucleus remodeling [110, 111]: inhibition of a sperm histone (SpH)-

specific cysteine protease prevents their degradation and, subsequently, inhibits

male chromatin decondensation and proper embryo development [111]. Moreover,

this SpH protease is highly homologous to the Cathepsin L family of proteases and

is inhibited by Cathepsin L inhibitor I [112]. The effect of SpH protease inhibition

is strikingly similar to that of HIRA, CHD1, and H3.3 mutant flies (described

above), although it is important to note that the sea urchin SpH protease is not

specific to H3. Nevertheless, it would be interesting to test whether such a cleavage-

replacement mechanism has been conserved and adapted in higher organisms,

during both postfertilization sex chromatin remodeling and in more general chro-

matin remodeling that occurs throughout differentiation and development.

Finally, the liberation of the N-terminal tail peptide of H3 may also contribute to

the regulation of gene expression following H3 proteolysis. For example, a recent

study by Lee et al. suggests that an N-terminal H3 peptide, such as that released by

Cathepsin L cleavage, could bind its own mRNA and therefore regulate its own

translation [113]. Although the H3 peptide used in this study was synthesized

in vitro, its effect on translation reveals a possible mechanism through which

the nonchromatin-bound postcleavage peptide might influence the expression

of protein within the cell. Notably, an endogenous peptide that is identical to the

C-terminus of histone H4 was purified from medium conditioned with cultured

regenerating rat bone marrow and identified as a factor that can induce osteogenic

growth [114, 115]. Although this peptide (named OGP for osteogenic growth

peptide) appears to originate from an internal, suboptimal translation start codon

in the H4 gene [116, 117], the finding that (secreted) histone H4 peptide mediates

signal transduction between cells and induces osteogenic growth raises the question

as to whether the release of the N-terminal peptide of H3 after cleavage might also

have a proliferative effect.

5 Conclusion

The removal of covalent histone modifications, such as lysine methylation, is a

highly regulated process. The three mechanisms described above are influenced by

a variety of factors, all of which contribute to the fine-tuning of gene expression

Errors in Erasure: Links Between Histone Lysine Methylation Removal and Disease 83



programs that drive differentiation and development. Mutations in one or more

parts of this machinery can lead to the misregulation of gene expression and,

ultimately, disease. Here, we aimed to review both established links between

mechanisms of histone modification removal and disease as well as several

emerging links that are more speculative. We look forward to reviewing further

studies that test such hypotheses and uncover more details about how the mechan-

isms that erase histone modifications influence both normal and pathological

cellular states.
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Histone Modifications in Cancer Biology

and Prognosis

Siavash K. Kurdistani

Abstract Cancer is a disease of genome sequence alterations as well as epigenetic

changes. Epigenetics refers in part to the mechanisms by which histones affect

various DNA-based processes, such as gene regulation. Histones are proteins around

which the DNAwraps itself to form chromatin – the physiologically relevant form of

the human genome. Histones are modified extensively by posttranslational modifi-

cations that alter chromatin structure and serve to recruit to or exclude protein

complexes from DNA. Aberrations in histone modifications occur frequently in

cancer including changes in their levels and distribution at gene promoters, gene

coding regions, repetitive DNA sequences, and other genomic elements. Locus-

specific alterations in histone modifications may have adverse effects on expression

of nearby genes but so far have not been shown to have clinical utility. Cancer cells

also exhibit alterations in global levels of specific histone modifications, generating

an additional layer of epigenetic heterogeneity at the cellular level in tumor tissues.

Unlike locus-specific changes, the cellular epigenetic heterogeneity can be used to

define previously unrecognized subsets of cancer patients with distinct clinical

outcomes. In general, increased prevalence of cells with lower global levels of

histone modifications is prognostic of poorer clinical outcome such as increased

risk of tumor recurrence and/or decreased survival probability. Prognostic utility of

histone modifications has been demonstrated independently for multiple cancers

including those of prostate, lung, kidney, breast, ovary, and pancreas, suggesting a

fundamental association between global histone modification levels and tumor

aggressiveness, regardless of cancer tissue of origin. Cellular levels of histone

modifications may also predict response to certain chemotherapeutic agents, serving

as predictive biomarkers that could inform clinical decisions on choice and course of

therapy. The challenge before us is to understand how global levels of histone
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modifications are established and maintained and what their mechanistic links are to

the cancer clinical behavior.

1 Introduction

Cancer epigenetics has become a vibrant and multilayered field of scientific

inquiry, providing important insights into the basic biology of cancer as well as

presenting novel clinical tools and approaches for development and application of

more effective therapeutics [1, 2]. Epigenetics, in its original sense, is the study of

inherited phenotypes that are not directly encoded by the DNA sequence. As it

relates to chromatin, epigenetics commonly refers to DNA methylation, histone

modifications, nucleosome positioning and composition, noncoding RNAs, and

other chromatin elements that can regulate DNA-based processes including gene

expression. However, in most cases the heritability of these elements has not been

demonstrated [3, 4]. The field of cancer epigenetics has been largely focused on the

roles of DNA methylation in gene regulation, especially on how promoter hyper-

methylation leads to repression of genes with tumor suppression functions. In the

past few years, other epigenetic processes have been increasingly studied for their

contributions to the cancer phenotype. For example, flurries of findings have linked

microRNAs to several aspects of cancer biology including growth and metastasis

[5, 6]. With the identification of most histone modifying enzymes, studies of

histone modifications in cancer have also risen to prominence, spurring generation

of an international task force, Alliance for the Human Epigenome and Disease

(AHEAD), “to decode the human epigenome” which, among other things, aims to

determine the distribution of selected histone modifications across the genome of

several cell types including cancer cells [3]. Although the value of such large scale

effort has been questioned [7], similar to the Human Genome Project, AHEAD

hopes to provide in essence a “reference epigenome” that may be of great value in

both basic and applied research.

In this section, I focus mainly on the roles of histone modifications in cancer.

The major emphasis will be on the clinical utility of histone modifications, but I will

also provide a brief account of how they may lead to cancer initiation.

2 Histone Modifications in Cancer Initiation

Epigenetic alterations that may precede and contribute to the onset of cancer

initiation are not well understood. The majority of studies compare already cancer-

ous cells to their normal counterparts, making it impossible to determine which

epigenetic alterations are causative or upstream of cancer initiation. In the case

of DNA methylation, limited studies of mouse models have suggested that aberrant

promoter DNA methylation patterns can increase the risk of future genetic
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mutationsby deregulating expression of genes involved in control of cellular growth

[8]. In the case of histone modifications, the contributions to cancer initiation are

essentially unknown because the complexity of the genetics and molecular biology of

histone modifications makes it difficult to generate proper animal models. Mamma-

lian cells contain many copies of each histone gene, making genetic manipulations of

histone genes very difficult, if not impossible, given the current technologies. In

addition, histone modifications, especially histone acetylation, exhibit redundant

functions and can be deposited by more than one enzyme, precluding single genetic

changes as a way of assigning unambiguous function.

A model system for the study of early epigenetic alterations required for

cellular transformation is viral-induced oncogenesis [9, 10]. DNA tumor viruses,

such as the human papilloma virus (HPV), simian virus 40 (SV40) and adeno-

virus, often infect host animals by infecting cells that are fully differentiated and

nondividing and therefore nonconducive for viral replication. Consequently,

many of these viruses have evolved proteins that are expressed immediately

after infection and exploit the cellular machinery to force the host cell to reenter

the cell cycle and divide so that progeny virions are produced. These viral

“oncoproteins,” such as HPV E6/E7, SV40 large T antigen, and adenovirus small

e1a (a splice variant of large E1A), have become invaluable tools for uncovering

fundamental molecular processes that regulate cell proliferation. For instance,

studies of e1a-induced transformation of normal cells have helped elucidate the

functions of retinoblastoma (RB) tumor suppressor, and its family members p130

and p107, in controlling the cell cycle, and the importance of p53 inactivation in

tumorigenesis [9, 10]. Interestingly, e1a also interacts with a number of histone

and chromatin modifiers such as p300, CBP, Gcn5, p400, some of which are

essential for the ability of e1a to induce quiescent, nondividing cells to enter S

phase [11]. Some of these epigenetic modifiers that interact with viral oncopro-

teins are mutated in nonviral, primary human cancer, suggesting that deregulated

function of chromatin modifiers may be important for carcinogenesis [12, 13]. If

we can understand how and when e1a or other viral oncoproteins utilize chroma-

tin modifying enzymes in the course of cellular transformation, we could generate

testable hypotheses as to how the same chromatin modifiers function to promote

primary cancer.

We have recently used an adenoviral-induced cell transformation system to

understand specifically the consequences of e1a interactions with p300 and its

close homologue CBP, histone acetyltransferases (HAT). The p300 protein was

first identified as an e1a-interacting protein and shown to be required for the

oncogenic properties of e1a [9]. We discovered that e1a-p300/CBP interaction

causes an ~70% reduction of histone H3 lysine 18 acetylation (H3K18ac) but has

no effect on global levels of several other histone modifications [14]. The remaining

H3K18ac is redistributed to the regulatory regions of genes involved in cell cycle

progression, which are upregulated in the e1a-infected cells [15]. The reduction and

redistribution of H3K18ac is associated with an orchestrated and precise rearrange-

ment of multiple regulators of gene expression including p300/CBP and other pro-

teins with epigenetic activities. This e1a-induced reprogramming results in S-phase
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induction in cells that should remain in a resting state [15]. The inappropriate entry

into S-phase is in fact a fundamental feature of virtually all cancers [16].

Although the exact role of H3K18ac remains to be determined, the unique effect

of e1a on acetylation levels of this residue has underscored H3K18 as a distinct and

important site of histone modification implicated in cell transformation. Such

insight would have been hidden in other standard assays such as genome-wide

mapping experiments. Therefore, the cellular transformation by viral oncoproteins

could prove to be a powerful system to study the epigenetic changes that occur

during an oncogenic process. This system is reproducible and amenable to manipu-

lation and temporal measurements with proven relevance to primary human cancer.

Considering the rich history of DNA tumor viruses, the oncogenic reprogramming

by e1a provides a unique opportunity to understand how utilization of epigenetic

modifiers leads to cellular transformation.

3 Histone Modifications as Clinical Tools

Cancer is a heterogeneous disease, resulting in different clinical outcomes even for

individuals with the same affected tissue such as prostate or breast cancer. Clinical

outcome may be measured as, but is not limited to, risk of tumor recurrence after

removal of the primary tumor, risk of metastasis, survival probability, and/or degree

of response to therapeutic agents. The ability to assess or predict the clinical

behavior of cancers is critical for clinicians to determine the most appropriate

treatments including type, intensity, and duration of therapies [17].

For most cancers, clinical outcome prediction is based on tumor stage, which is a

measure of disease burden (e.g., tumor size) and degree of spread from the site of

primary tumor. Additional predictive information may be provided by tumor grade

(i.e., degree of differentiation), histological type, and patient demographics. In

general, lower stage and/or grade cancers have better prognosis. However, each

stage or grade category still contains large groups of patients who, although as a

group behave similarly compared with patients in other stage and grade categories,

still display significant differences in the course and outcome of disease. Therefore,

subdividing patients into smaller groups with more cohesive clinical behavior is

useful for the development of targeted and more effective therapies and eventually

for personalization of patient care. This need is more pressing for patients with

lower stage or grade tumors for which the choice of therapy and its intensity is not

necessarily evident. In this regard, there has been much effort to discover molecular

biomarkers that can stratify cancer patients with distinct clinical outcomes to

expand our prognostic capabilities.

The molecular biomarkers include single nucleotide polymorphisms, chromo-

somal translocations, gene mutations, expression patterns of groups of genes,

methylation status of specific gene promoters, or secreted proteins. In most cases,

the relevant prognosticator biomarker is different for different cancers, since the

genetic mutations or gene expression patterns reflect the cancer’s tissue of origin.
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Interestingly, while the number of potential biomarkers in the literature is steadily

increasing, the number of FDA-approved biomarkers per year is not increasing but

rather decreases [17]. This is because approval for clinical use requires that

extensive statistical and clinical criteria are met. But the majority of biomarkers

identified in initial studies eventually do not meet these criteria. Nonetheless it is

clear that cancer biomarkers will play increasingly important roles in cancer

treatment in the coming years.

3.1 Alterations of Histone Modifications in Cancer

Altered patterns of histone modifications are commonly observed in cancer. Pro-

moter regions contain important regulatory sequences for transcription control of

nearby genes. As a result, the vast majority of alterations in histone modifications

have been identified through examination of one or more gene promoters. Deregu-

lation of histone modifications at an individual promoter is intimately linked to

misexpression of the downstream gene, which may have critical consequences for

the cancer phenotype. However, to my knowledge, none of the promoter-specific

changes in histone modifications has so far been related correlatively or causally to

clinical outcome. This is perhaps due to the fact that changes have been mapped for

only a few histone modifications at a relatively small number of loci. These are

likely to be inadequate for clinical outcome predictions.

An additional level of variability in distribution patterns of histone modifications

is their differences in global levels between individual cells within a given tissue.

Immunohistochemical examination of histone modifications in primary tissues

using site-specific antibodies has revealed dissimilar global levels of histone mod-

ifications in individual cells (Fig. 1a). There is a great deal of heterogeneity in the

percentage of cells that are positively stained and in the intensity of staining (brown

nuclei in Fig. 1a), not only between patients but within a single patient as well. At

the global level, the cells that do not stain for histone modifications (blue nuclei in

Fig. 1a) may still contain the histone modifications at few genomic loci, but their

levels are below the detection limits of immunohistochemistry (IHC). The dissimi-

lar levels of specific histone modifications in different cells generate a diversity of

epigenetic patterns within cell populations that can nonetheless be readily quanti-

fied by pathologists as “percent cell staining.” Other measures that take the intensity

of staining into account can also be applied. Remarkably, this cellular epigenetic

heterogeneity is predictive of cancer clinical behavior and may also correlate with

the degree of response to certain chemotherapeutics.

3.2 Histone Modifications as Prostate Cancer Prognostic Markers

In the initial study that linked global patterns of histone modifications to clinical

outcome, the global levels H3K4me2, H3K9ac, H3K18ac, H4R3me2, and H4K12ac
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were examined by IHC in primary prostate cancer tissues [18]. The choice of these

modifications was based on their known biological roles in gene regulation, but also

on the abilities of their respective antibodies to work on suitably fixed, paraffin-

embedded tissues. The prostate cancer tissues were collected from patients who had

undergone radical prostatectomy. Importantly, the tissues were associated with

follow-up clinical and pathological data, enabling retrospective studies.

All five modifications showed cellular heterogeneity, with some fraction of cells

(0–100%) staining positively in each tissue. While no single modification was

predictive on its own, unbiased clustering of patients, based on the global histone

modification patterns, defined two groups of patients with high or low levels of

histone modifications with significantly different clinical outcomes. Surprisingly,

Histone Modification Levels

a

b

Good Prognosis
5-FU sensitive

Poor Prognosis
5-FU resistant

Fig. 1 Histone modifications as cancer prognostic markers. (a) A primary cancer tissue immu-

nostained with anti-H3K18ac antibody shows cellular heterogeneity in global levels of

H3K18ac. The arrows point to neighboring cancer cell nuclei that have high (brown) and low

(blue) levels of H3K18ac. (b) Global levels of histone modifications predict prognosis in

multiple cancers. Generally, lower levels of histone modifications are predictive of poorer

prognosis. Lower levels of histone modifications also predict poorer response to 5-FU therapy

in pancreatic cancer. Treatment of cancers with low levels of histone modifications and poor

prognosis with histone deacetylase (HDAC) and demethylase (HDM) inhibitors may shift the

global patterns of histone modifications to a more favorable prognosis. In certain cancers such as

pancreas adenocarcinoma, the assessment of global histone modification levels as shown may

inform the choice of therapy
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patients with lower global levels of histone modifications (i.e., decreased percent

cell staining) had poorer prognosis with increased risk of tumor recurrence after

removal of the primary tumor. This predictive power was independent of all

clinicopathological variables tested, indicating that histone modifications provide

additional prognostic information that would otherwise not be revealed by what we

already know. A second independent set of patient tissues validated the result of the

primary study, confirming the statistical significance of low global levels of mod-

ifications predicting poorer clinical outcome [18].

The fraction of histones that must be modified for an antibody to generate a

detectable IHC signal is unclear, but certainly varies for different antibodies, since

each will have different affinity for its antigen. Notwithstanding these differences,

the histone modification levels (i.e., percent cell staining) correlated positively

among different antibodies across all tissue specimens. Tissues with increased (or

decreased) percentage of positively stained cells for a given modification were

likely to have high (or low) percentages of other modifications [18]. This is

somewhat surprising because the examined modifications, although they are all

associated with activated gene expression, have different distributions throughout

the genome and may be enriched at different sets of genes. Note that the low

cellular levels of histone modifications are unlikely to represent a complete absence

of these marks at the molecular level from the genome. Nonetheless on a global

level, some cancers do show gain or loss of all five modifications. This suggests that

the global levels of different histone modifications may be regulated through the

same or related pathways (see below).

3.3 Histone Modifications as General Prognostic Markers
for Adenocarcinomas

Is the identified prognostic histone modification pattern specific to prostate cancer?

In the initial study, the focus on prostate cancer was based on the availability of a

tissue cohort with follow-up clinical data. Since histones and their modifications are

highly conserved and ubiquitously present, the data from prostate cancer suggested

that cellular histone modification patterns could be informative of prognosis in

other cancers as well. This is indeed the case for H3K4me2 and H3K18ac, the two

modifications that were most informative about prostate cancer. These two mod-

ifications, in a pattern similar to that identified in prostate cancer, predict two

disease subtypes with significantly distinct survival probabilities in lung and kidney

cancers [19]. In all cancers, the predictions are independent of relevant clinico-

pathological variables, indicating that histone modifications provide unique prog-

nostic information. Generally, patients who have higher percentage of cancer cells

that stain positively for H3K4me2 and H3K18ac have better prognosis than those

with lower percentages (Fig. 1b). So, the increased prevalence of malignant cells

with little or no detectable H3K4me2 and H3K18ac is associated with poorer

Histone Modifications in Cancer Biology and Prognosis 97



outcome in cancers with distinct tissues of origin. It is remarkable that despite the

genetic and gene expression differences between these three different cancers, the

epigenetic changes at the cellular level are similar. The broad applicability of

histone modifications as prognostic markers in these adenocarcinomas is unique

among cancer biomarkers.

H3K4me2 and H3K18ac, as well as the other three modifications examined in

prostate cancer, are all associated with gene activity at the molecular level. It was

conceivable that modifications that correlate with gene repression may have inverse

correlations with clinical outcome, i.e., high levels, poor prognosis, as compared

with the active modifications. However, this is not the case. Surprisingly, levels of

H3K9me2, a modification that is associated with gene repression, revealed similar

associations with clinical outcome as other modifications. Low levels of H3K9me2

were associated with poorer outcome in both prostate (increased risk of recurrence)

and kidney (decreased survival) cancers [19]. Thus, loss of modifications irrespec-

tive of their effect on gene transcription is associated with an aggressive cancer

phenotype. It should be noted that all aforementioned cancers are adenocarcinomas

derived from glandular epithelium. The predictive patterns of histone modifications

may differ among tumors of different histological derivation (see below). Nonethe-

less, the overall similarity in cancer-associated epigenetic patterns in different

cancers suggests the existence of a common molecular process that regulates the

epigenetic state of cancers.

The tumor suppressor p53 is mutated in a large fraction of all cancers, and p53

mutation is generally associated with poorer outcome. Surprisingly, in both lung

and kidney cancers, the poorer prognostic patterns of histone modifications (i.e.,

lower global levels) correlated with wild-type p53 status, suggesting that the

decrease in global levels of histone modifications is independent of misregulation

of p53-mediated pathways [19]. The significance of this observation remains to be

determined.

Due to inherent biases in clinical datasets (e.g., small sample size or bias in

tissue collection), it is critical that findings from one dataset be replicated and

validated by others with independent tissue cohorts. The prognostic power of global

histone modification levels has now been validated in several laboratories, includ-

ing cancers of breast [20], pancreas [21, 22], prostate [18, 19, 23], ovary [22], lung

[19, 24, 25], and squamous cell carcinoma of esophagus [26]. Table 1 lists the

published studies that have examined the prognostic power of histone modifications

in different cancers to date.

The study by Elsheikh et al. not only confirmed the prognostic value of histone

modification in breast cancer, but also discovered interesting associations with

histological subtypes [20]. This analysis of >800 breast cancers and seven mod-

ifications represents the largest study to date examining the association of histone

modifications with clinical parameters of cancer. The authors found three clusters

of patients with high, intermediate, and low levels of histone modification, which

correlated progressively with outcome: as global levels of modifications decreased,

outcome worsened. Interestingly, the high modification group was enriched for

luminal type breast cancer whereas the low modification group comprised basal

98 S.K. Kurdistani



type and HER2 (Human Epidermal growth factor Receptor 2) positive breast

cancers. The luminal and basal subtypes refer to the cellular origin of cancer cells

and have different gene expression patterns; the prognosis is better for luminal vs.

basal subtype. HER2 is a receptor tyrosine kinase, which when over-expressed

confers a poorer prognosis in breast cancer. So, lower levels of histone modifica-

tions were associated with more aggressive subtypes of cancer. Nonetheless, the

modifications showed distinct clinic-pathological associations, suggesting some

specificity to their functions. For instance, H3K18ac appeared to be an independent

prognosticator, identifying patients with different survival times, while low levels

of H4R3me2, H3K9ac, and H4K16ac were associated with large tumor size, high

levels of H4R3me2 and H3K9ac with low lymph node stage, and low levels of

H4K16ac with vascular invasion. Notably, levels of H4K16ac were low in the

majority of tumors, prompting the authors to suggest that “loss of H4K16ac may be

an early event in the pathogenesis of invasive breast cancer [20].” Loss of H4K16ac

(and H4K20me3) also occurred early in the development of a mouse model of

multistage skin carcinogenesis [27]. These data indicate that while loss of histone

modifications is generally associated with poorer outcome, individual modifications

may still contribute differentially to cancer progression. For this reason, more

detailed mapping of specific modifications may be needed for complementary

prognostic information.

A limited number of studies have shown the opposite relationship between

histone modifications and clinical outcome. Park et al. [28] showed that in gastric

adenocarcinoma, higher levels of H3K9me3 were associated with decreased

Table 1 Global histone modification patterns predict prognosis in multiple cancers

Study Cancer

type

Histone modifications

Barlesi et al. 2009 Lung H2AK5ac, H2BK12ac, H3K4me2, H3K9ac, H4K8ac

Ellinger et al. 2009 Prostate H3K4mel, me2, me3, H3K9me1, me2, me3, H3ac,

H4ac

Elsheikh et al. 2009 Breast H3K4me2, H3K9ac, H3K18ac, H4R3me2, H4K12ac,

H4K16ac, H4K20me3

Manuyakorn et al. 2009a Pancreas H3K4me2, H3K9me2, H3K18ac

Park et al. 2008 Stomach H3K9me3, H4K16ac, H3K20me3

Seligson et al. 2005 Prostate H3K4me2, H3K9ac, H3K18ac, H4R3me2, H4K12ac

Seligson et al. 2009 Lung H3K4me2, H3K18ac

Kidney H3K4me2, H3K18ac, H3K9me2

Prostate H3K9me2

Tzao et al. 2009 Esophagus H3K4me2, H3K18ac, H3K27me3, H4R3me2,

H4K12ac

Van Den Broeck et al. 2008 Lung H4K5ac, H4K8ac, H4K12ac, H4K16ac, H4K20me3

Wei at al. 2008 Breast H3K27me3

Ovary H3K27me3

Pancreas H3K27me3
aThis study also examined the ability of global histone modification patterns to predict response to

chemotherapeutics

A list of publications, cancer types and histone modifications examined to date are indicated
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survival. They also found that a large majority of gastric caners stain positively for

H4K16ac. Tzao et al. [26] found that better survival in patients with squamous cell

carcinoma of the esophagus is associated with low levels of H3K18ac or

H3K27me3. If the results of Park et al. and Tzao et al. [26, 28] can be independently

validated, they may indicate that the relationship of histone modification levels and

clinical outcome in some cancers may be opposite that found in cancers of prostate,

breast, pancreas, lung, and ovary.

3.4 Histone Modifications as Therapeutic Response Markers

Predictive prognostic markers for the aggressivity of cancer suggest implicitly that

differential treatment may be beneficial for patients. However, until it is shown

directly that such information can be used to deliver effective therapies with

measurable benefits for patients, the prognostic information may be of limited

clinical interest. Another important area in which biomarkers can be useful is

prediction of response to chemotherapeutics. A recent study has provided the initial

evidence that histone modifications can be useful in this area as well [21].

Manuyakorn et al. [21] examined the ability of three histone modifications,

H3K4me2, H3K9me2, and H3K18ac, to predict response of patients with pancre-

atic cancer to 5-fluorouracil (5-FU) and gemcitabine. 5-FU is an inhibitor of

thymidylate synthase, which converts uridine to thymidine for DNA synthesis;

5-FU is therefore a nucleotide synthesis inhibitor. Gemcitabine is a nucleoside

analog and inhibits DNA synthesis by incorporating in the replicating DNA chain.

Gemcitabine is also a ribonucleotide reductase (RNR) inhibitor, depleting cells of

deoxyribonucleotides required for DNA replication. The pancreatic cancer tissues

were collected as part of a phase III randomized postoperative adjuvant treatment

trial comparing 5-FU to gemcitabine before and after chemoradiation (RTOG

9704). As in other cancers, histone modification levels were highly significant

and independent prognostic factors in pancreatic cancer, with lower levels predict-

ing poorer survival probability. More important, low cellular levels of histone

modifications predicted worse survival outcome for patients receiving adjuvant

5-FU chemotherapy, but not for those receiving gemcitabine. These data suggest

that cellular levels of histone modifications define previously unrecognized subsets

of pancreatic adenocarcinoma patients with distinct response to 5-FU (Fig. 1b).

The clinical value of predicting response to therapeutics has implications for

single or combinatorial therapies. For instance, 5-FU is also used in treatment of

other malignancies including cancers of breast, colon, rectum, esophagus, and

gallbladder. Histone modification levels could possibly serve as predictive biomar-

kers for adjuvant 5-FU therapy, perhaps in combination with other 5-FU predictive

markers such as thymidylate synthase, which has also been associated with resis-

tance to 5-FU chemotherapy [29]. Given that low global histone acetylation is

associated with worse response to 5-FU, it is not surprising to note that histone

deacetylase inhibitors (HDACi), which increase global histone acetylation levels,
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function in synergy with 5-FU. HDAC inhibitors enhance 5-FU’s cytotoxic and

growth inhibitory effects in cancer cell lines [30, 31], raising the possibility of

synergistic effects between certain chemotherapeutics and drugs that target epige-

netic modifiers.

While still speculative, an analysis of histone modifications at the global level

may inform the choice and regimen of various “epigenetic drugs” against HDACs

or histone demethylases. Patients with low levels of histone modifications could

perhaps benefit more from HDACis or require a different regimen than those with

high levels of histone modification. The current HDACis in clinical trials inhibit

multiple HDACs, although in vivo each HDAC has distinct specificities for histones

and lysine residues. IHC analysis of histone modifications in primary cancer tissues

may help guide the development of HDAC-specific inhibitors and their use in a

more targeted approach to histone modification.

Inhibition of HDACs results in pleiotropic effects on cancer cells including

growth arrest, apoptosis, and differentiation [32]. It is unclear whether these effects

are linked to transcriptional reactivation of certain genes with tumor suppressor

functions and/or simply shift the global patterns of histone modifications to the

more favorable prognostic category (Fig. 1b). Whatever the case may be, the

simplicity and robustness of IHC analysis of histone modifications should facilitate

the development of standard and effective assays for patient stratification.

4 Regulatory Mechanisms of Global Histone Modification

Levels

Why are there global alterations in the level of histone modifications? Histone

modifications are maintained dynamically through enzymes with opposing activities,

such as histone acetyltransferases-deacetylases and methyltransferases-demethylases

(HMTs/HDMs). The steady-state global levels of histone modifications thus result

from a balance between enzymes that add and those that remove a modification.

Histone modifying enzymes commonly reside in multiprotein complexes which can

be recruited by distinct transcription factors to different classes of genes where they

function as transcriptional coactivators or corepressors. Thus, global modulation of

histone modifications includes promoter-specific recruitment of histone-modifying

enzymes by transcription factors.

However, the global decrease in histone modifications that is observed by IHC is

unlikely to arise from changes at a few gene promoters. This was examined in two

prostate cancer cell lines, PC3 and LNCaPs. PC3 cells have ~50% less H3K9me2

levels than LNCaPs [19]. Chromatin immunoprecipitation combined with micro-

arrays (ChIP-chip) failed to detect consistent differences in ~17,000 promoters that

could account for the differences in global H3K9me2 levels. However, analysis of

histones associated with several DNA repetitive elements showed consistently lower

H3K9me2 levels in PC3 vs. LNCaP cells [19]. Lower global levels of H4K16ac and
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H4K29me3 in hematological malignancies could also be mapped to DNA repeat

elements [27]. Considering that such repetitive elements make up the bulk of DNA

in human cells, it is likely that global levels of histone modifications detected by

IHC reflect their molecular levels at DNA repetitive elements. These elements also

often show loss of DNA methylation in cancer cells. So, the DNA repetitive

elements in cancer cells are generally “de-modified” both on DNA and their

associated histones, potentially conferring a more aggressive phenotype to the

cancer cell.

What mechanism(s) lead to loss of histone modifications? Obviously either

loss of enzyme expression or aberrant recruitment of histone modifying enzymes

to DNA repetitive elements could account for loss of modifications at these

regions. Whereas mutations and changes in expression of histone modifying

enzymes have been reported in cancer, it is difficult to envision a scenario in

which different histone modifying enzymes are all affected similarly. Indeed,

high expression of various HDACs has been correlated both with improved and

poor prognosis [33]. One study that examined histone modification levels and

HDAC expression in the same breast cancer tissues found that loss of histone

modifications was associated surprisingly with reductions in expression of

HDACs 1, 2, and 6 [34]. This counterintuitive finding suggests a more complex

connection between histone modifying enzymes and histone modifications them-

selves. The number and diversity of histone modifying enzymes (i.e., 18 HDACs

in humans) with overlapping and redundant substrate specificities pose significant

challenges for understanding how these enzymes combine to generate specific

histone modification patterns.

Altered allocation of acetyl coenzyme A (AcCoA) and S-adenosyl methionine

(SAM), which are required by HATs and HMTs to modify histones, could also

explain the loss of histone modifications in more aggressive cancers. AcCoA and

SAM lie at the center of metabolic pathways required for cell growth and division.

AcCoA is generated through breakdown of glucose, fatty acids, and amino acids

and used for anaplerotic pathways such as the Krebs (TCA) cycle. Many anabolic

pathways such as the de novo synthesis of fatty acids require AcCoA. SAM is the

“one-carbon” currency of the cell and is used by a variety of methyltransferases for

transfer of single methyl groups to DNA, RNA, and proteins. AcCoA and SAM

reside in different pools within the cell that are not freely interchangeable, restrict-

ing their use for certain purposes. In fact, regulated transport mechanisms exist to

ensure transfer of these compounds between different pools. An example is the

citrate shuttle which results in the net transfer of one AcCoA molecule out of

mitochondria and into the cytosol. In the case of histone acetylation, the enzymes in

the metabolism of AcCoA are required for maintenance of proper levels of histone

acetylation. For instance, ATP-citrate lyase (ACL) converts the citrate that

is transported out of the mitochondria to AcCoA in the cytoplasm. This ACL-

generated AcCoA is required for histone acetylation but not acetylation of other

proteins such as p53 [35]. Similar pathways could also preferentially affect histone

methylation.
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Cancer cells do exhibit extensively altered metabolism, which is required to

support their deregulated division [36]. They increase glucose uptake and break-

down significantly to generate high levels of ATP and intermediates for other

pathways such as nucleotide synthesis [36]. Cancer cells also rely mainly on de

novo synthesis of nucleotides, as opposed to the salvage pathways, for DNA

replication. Because cancer cells proliferate rapidly, they have a continuous need

for macromolecular biosynthesis which puts a premium on AcCoA, SAM, and

other metabolites for anabolism. It is conceivable that in cancers with low levels of

histone acetylation and methylation, AcCoA and SAM are partially diverted away

from histones to more vital pathways. Limited availability of these compounds for

HAT or HMT reactions would result in global loss of most, if not all, histone

modifications. This may extend to DNA methylation as well: Global decreases in

DNA methylation of cancer cells may also be tracked back to a limited availability

of SAM to DNA methyltransferases. If rerouting of AcCoA and SAM to pathways

critical for growth and division enhances cancer cell aggressivity, then it may be of

interest to ensure that histone acetylation and methylation are maintained in a

genome. This hypothesis suggests that HDACi therapy may be inappropriate for

cancers with low levels of histone acetylation, because the problem may rather be a

shortage of AcCoA for histone acetylation. The “limited cofactor availability”

hypothesis needs to be tested and requires a better understanding of metabolic

rewiring by cancer cells.

While changes in histone modifications at promoter regions may predictably

alter gene expression, the consequences of global decrease in the levels of

multiple histone modifications are more difficult to foresee as the altered histone

modifications are associated with both transcriptional activation (e.g., H3K4me2

and H3K18ac) and repression (H3K27me3, H3K9me2). A reduction of global

histone modification levels may result in increased heterochromatin formation

and silencing of large regions of the genome or may provide cells a protective

measure against genotoxic stress by limiting DNA exposure. Another possibility

is that global reductions in histone modifications, similar to global DNA hypo-

methylation, lead to genomic instability. In support of this hypothesis, reduction

in H3K9me2 levels by knockdown of the histone methyltransferase G9a results in

chromosomal instability in cancer cell lines [37]. The suggested possibilities are

not mutually exclusive and may each partially explain the observed reduced

global levels of histone modifications in subsets of more clinically aggressive

cancers.

5 Beyond Biomarkers: Future Outlook

Cancer patients display varied clinical behavior, ranging from indolent, slow

growing tumors to highly aggressive, metastatic disease. Accumulating data from

several patient cohorts indicate that global histone modification patterns are cor-

related with aggressiveness of cancers and can be used as prognostic markers.
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Global histone modifications may also directly inform therapeutic options by

predicting response to certain drugs. However, considering the critical roles of

histone modifications in regulating the genetic information, it becomes tempting to

speculate that the heterogeneity in histone modifications may partly cause the

clinical heterogeneity that is seen within cancer patients. To determine if this is

the case, several questions need to be answered. Do cancer cells with low levels of

histone modifications have a clonal origin and eventually out-compete other cells in

the clinically aggressive subset of cancers? Or do histone modifications change

differentially in different cells in response to signals or selective pressures from the

local microenvironment milieu? Are global histone modification patterns asso-

ciated with specific genetic mutations and/or metabolic states? Could we find

ways to reversibly induce global changes in levels of histone modifications in

cancer cell lines or model systems?

Histone modifications have become the Ulysses in the library of epigenetics,

compositionally complex but carefully structured with broad implications for

human biology and disease.
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Dynamics of Histone Lysine Methylation:

Structures of Methyl Writers and Erasers

Anup K. Upadhyay and Xiaodong Cheng

Abstract In Eukarya, the packaging of DNA into chromatin provides a barrier that

allows for regulation of access to the genome. Chromatin is refractory to processes

acting on DNA. ATP-dependent chromatin remodeling machines and histone-

modifying complexes can overcome this barrier (or strengthen it in silencing

processes). Both components of chromatin (DNA and histones) are subject to

postsynthetic covalent modifications, including methylation of lysines (the focus

of this chapter). These lysine marks are generated by a host of histone lysine

methyltransferases (writers) and can be removed by histone lysine demethylases

(erasers). Importantly, epigenetic modifications impact chromatin structure directly

or can be read by effector regulatory modules. Here, we summarize current

knowledge on structural and functional properties of various histone lysine methyl-

transfereases and demethylases, with emphasis on their importance as druggable

targets.

1 Introduction

Unlike lysine acetylation, methylation of lysines does not alter the effective charge,

but the hydrophobic and steric properties. The degree of lysine methylation can be

mono-, di-, or tri-methylated depending on the specific functional properties of the

associated methyltransferase [1–3]. These different lysine methylation marks serve

as the binding site for different effector proteins with cognate recognition domains

specific to different methylated lysine residues. For example, plant homeodomain

(PHD) of bromodomain-PHD-transcription-factor (BPTF) binds tri- or di-methy-

lated lysine 4 of histone H3 (H3K4me3/me2) and recruits the nucleosome
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remodeling factor (NURF) complex to the target gene leading to gene activation [4,

5]. In an opposite mechanism, the chromodomain of heterochromatin protein 1

(HP1) binds tri-methylated lysine 9 of histone H3 (H3K9me3) mark, which initiates

heterochromatin formation and gene silencing [6, 7].

Recent evidences have indicated that specific recognition domains, either pres-

ent in a protein complex or in the same polypeptide, combinatorially recognize

different histone modifications through a crosstalk mechanism leading to the

propagation of active or repressive state of the chromatin. One such example

includes the polycomb repressive complex 2 (PRC2) in maintaining and propagat-

ing repressive tri-methylated lysine 27 of histone H3 (H3K27me3) through alloste-

ric interaction between EZH2 and EED subunits [8]. Similar examples also include

histone lysine methylating enzymes like mammalian G9a and G9a-like protein

(GLP) (for H3K9me2/me1) and yeast Clr4 (for H3K9me3), containing both a

catalytic SET domain and methyl-lysine recognition module (ankyrin repeats or

chromodomain) within the same polypeptide [9, 10]. Therefore, methylation of

specific lysines on histones regulates the recruitment of various downstream DNA

processing proteins onto the chromatin, which in turn regulate a multitude of

biological processes including heterochromatin formation, X-chromosome inacti-

vation, DNA methylation, and gene silencing [11, 12].

The extensively studied histone lysine methylation marks include lysines 4, 9,

27, 36, and 79 of histone H3 and lysine 20 of histone H4. In general, H3K4, H3K36,

and H3K79 methylation have been associated with transcriptionally active euchro-

matin, whereas H3K9, H3K27, and H4K20 methylations are associated with tran-

scriptional inactive heterochromatin [2, 11]. Aberrant methylation of histone

lysines has been implicated in various disease etiologies including cancer and X-

linked mental retardation [3, 12–15]. Therefore, a proper understanding of the

structural and functional regulations of the enzymes responsible for reversible

modifications of histone lysines is of immense importance in developing future

therapeutics for many of these diseases. Following is a summary of our understand-

ing on the structural properties of known enzymes responsible for catalyzing

specific lysine methylation and enzymes responsible for selective removal of

these methylation marks.

2 Histone Lysine (K) Methyltransferases (HKMTs)

With the exception of Dot1 [16–18], all known HKMTs contain an evolutionarily

conserved SET domain comprised of 130 amino acids [19–23]. The SET domain

was first identified as a shared sequence motif in three Drosophila proteins,

suppressor of variegation [Su(var)3-9], enhancer of zeste [E(z)], and homeobox

gene regulator trithorax [Trx] [24]. Mammalian homologues of Drosophila Su(var)
3-9 protein, SUV39H1 in human and Suv39h in mouse, were the first characterized

HKMTs involved in H3K9 methylation [24]. Since then, more than 50 SET
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domain-containing proteins with proven or predicted enzymatic role in carrying out

lysine methylation on histone tail have been identified in human [19, 25].

With a few exceptions (e.g., Set8), the majority of the SET-containing HKMTs

contain at least one additional protein module in their protein sequence. Based on

the sequence homology within and around the catalytic SET domain, as well as

based on other protein modules and their architectures, SET-containing HKMTs are

grouped into six different subfamilies: SET1, SET2, SUV39, EZH, SMYD, and

PRDM [19, 20, 25]. A number of SET-containing HKMTs, however, do not fall

into the above six subfamilies, due to lacking sequences (and conservation) flanking

their SET domains. Examples of such proteins include Set8/PR_Set7 (mono-

methylates H4K20), SUV4-20H1 and SUV4-20H2 (di- and tri-methylates

H4K20), Set7/9 (mono-methylates H3K4 and many other nonhistone substrates),

as well as MLL5, SetD5 (KIAA1757), and SetD6 (FLJ21148) with currently

unknown role in histone lysine methylation.

3 Structures of SET Domains

Structures of many SET domains from different subfamilies have been solved in

various combinations with bound substrate peptide and methyl donor (S-adenosyl-

l-methionine, AdoMet) or reaction product (S-adenosyl-l-homocysteine, AdoHcy)

(Table 1). Representative structures of the SET-domain are displayed in Fig. 1. The

SET domain adopts a unique structural design formed by a series of b-strands
folded into three sheets surrounding a knot-like structure (Fig. 1). The knot-like

structure is formed by the C-terminal segment of the SET domain, which passes

through a loop formed by the preceding stretch of sequences. Formation of this

Table 1 List of HKMTs with known structures (PDB ID)

Position HKMT PDB ID

H3K4 MLL1 2W5Y, 2W5Z

SET7/9 (including nonhistone

substrates)

3CBO, 3CBM, 3CBP, 2F69, 1XQH,

1O9S, 1N6C,

1N6A, 1H3I, 1MUF, 1MT6

H3K9 SUV39H2 2R3A

G9a (EHMT2) 2O8J, 3K5K

GLP (EHMT1) 2RFI, 3FPD, 3HNA, 2IGQ,

RIZ1 (PRDM2) 2JV0, 2QPW

DIM-5 1PEG, 1ML9

Clr4 1MVX, 1MVH

H3K36 SET2 3H6L

H3K79 DOT1L 1NW3, 1U2Z

H4K20 PR-SET7 (SET8) 3F9W, 3F9X, 3F9Y, 3F9Z,

2BQZ, 1ZKK

Others PRDM10 3IHX

PRDM12 3EP0

PRDM1 3DAL

SETMER 3BO5
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knot-like structure brings two conserved sequence motifs of the SET domain,

consisting of RFINHxCxPN and ELx(F/Y)DY, in close proximity to the AdoMet-

binding region and peptide-binding channel (Fig. 2a–b). Interestingly, biochemical

studies performed with F/Y mutants of the conserved ELx(F/Y)DY motif in DIM-5

(F281Y), G9a (F1205Y), Set8 (Y334F), Set7/9 (Y305F), and Set1 (Y1052F)

suggest that the F/Y switch regulates the product specificity (mono-, di-, or tri-

methylation) of SET-containing HKMTs [26–29].

4 Structural Properties of Pre-SET and Post-SET Modules

Available crystal structures of the SUV39 subfamily (DIM-5, Clr4, GLP/EHMT1,

G9a/EHMT2, and SUV39H2 – all H3K9 HKMTs) show the presence of two closely

packed cysteine rich-modules in the pre-SET and post-SET (before and after the

SET domain) (Fig. 1a). These two modules are important in maintaining structural

stability (pre-SET) and forming part of the active site lysine channel (post-SET)

[26, 30]. The pre-SET module of SUV39 subfamily contains nine conserved

cysteines (Fig. 2c), which coordinate three Zn2+ atoms in a triangular geometry

(Fig. 2d). The post-SET module of SUV39 as well as Set1 (Fig. 1b) and Set2

subfamilies contains three conserved cysteines, which along with a cysteine from

the conserved RFINHxCxPN motif of the SET domain tetrahedrally coordinate one
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Fig. 1 Examples of SET domain structures. Ribbon diagram of (a) Neurospora DIM-5 [26], (b)

human MLL1 [102], (c) human SET7/9 [31], and (d) human SET8 [103] (or PR-SET7 [104])
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Zn2+ atom near the active site (Fig. 2e). Binding of this Zn2+ at the active site is

essential for the activity of SUV39 subfamily and therefore is a promising site for

drug targeting [26].

The pre-SET and post-SET sequences in Set7/9 do not contain any cysteine-rich

region. Instead, pre-SET in Set7/9 is occupied with a b-sheet structure comprised of

12 antiparallel b-strands, while the post-SET is occupied with a small a-helix [31]

(Fig. 1c). Packing of the post-SET helix into the catalytic SET domain is important

to form the substrate-binding groove in Set7/9. Similar variations in the sequences

flanking the SET domain have also been observed in other subfamilies of HKMTs

and suggest a convergent evolution of SET-containing HKMTs. This variation may

also explain the differences in substrate specificities among the SET-containing

HKMTs.

C306

C308

C313 C244

motif III

c

d e

SETPre-SET Post-SET

CXCX5CX4CXC-XN-CX3CXCX3C GxG  YxG    RFINHxCxPN ELxFDY CXCX4C

SET sequence motifs:
I   II              III   IV

b

pseudo knot

III

IV

Motif I (GxG)

Motif II (YxG)

H3K9 Motif IV
(FDY)

Post-SET

a

F281
Y178

AdoHcy

Fig. 2 Structural features of Neurospora DIM-5 [26, 30]. (a–b) Ribbon diagram of the pseudo

knot formed by motifs III and IV. (c) DIM-5 contains four segments: a weakly conserved amino-

terminal region, a pre-SET domain containing nine invariant cysteines, the SET region containing

four signature motifs, and the post-SET domain containing three invariant cysteines. (d) Illustra-

tion of pre-SET Zn3Cys9 triangular zinc cluster and (e) post-SET zinc center
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Structural and biochemical studies suggested that consensus substrate recognition

sequences for G9a and Set7/9 contain only two to three residues: RK (G9a) and (R/K)

(S/T)K (Set7/9) [32, 33]. The short recognition sequences enable these two enzymes

to methylate many nonhistone substrates, including Set7/9-mediated methylation of

p53 [34], components of the TBP complex, TAF10 [35] and TAF7 [33], estrogen

receptor a [36], DNA methyltransferase 1 [37], and G9a-mediated methylation of

chromodomain Y-like protein (CDYL1) and widely interspaced zinc finger motifs

protein (WIZ) [32], CCAAT/enhancer-binding protein-b (C/EBPb) [38], as well as
G9a auto-methylation [39]. It appears that the dynamic lysine methylation of nonhis-

tone proteins is a rapidly developing new field [40].

5 Structure of Inhibitor Bound G9a and GLP SET Domains

Methylation of H3K9 occurs in heterochromatin, which requires trimethylation of

histone H3 at lysine 9 (H3K9me3) by Suv39h [41, 42], and in euchromatin, which

requires mono- and di-methylation of H3K9 (H3K9me1/me2) mostly by G9a and

GLP [43, 44]. H3K9me1/me2 are the only silencing marks that are lost when tumor

suppressor genes, e.g., in colorectal cancer cells [45] and in breast cancer cells [46],

are reactivated following treatment with 5-aza-20-deoxycytidine, a DNA demethyl-

ation drug [47]. Thus, the enzymes that produce H3K9me1/me2 are appealing

targets for inhibition.

A small molecule, BIX-01294 (a diazepin-quinazolin-amine derivative), was

originally identified as a G9a inhibitor during a chemical library screen of small

molecules [48]. The compound inhibits G9a and GLP activities (IC50 in low mM
range) [48, 49] and reduces the methylation levels of H3K9 at several G9a target

genes [48, 50]. BIX-01294 was used in combination with genetic factors to improve

the efficiency of generation of induced pluripotent stem cells [51–53]. This is

consistent with the observation that repressive H3K9 methylation by G9a is asso-

ciated with the inactivation of Oct3/4, one of the four Yamanaka genetic factors

required for included pluripotency [54], during differentiation [55].

BIX-01294 was crystallized with the catalytic SET domain of GLP in the

presence of AdoHcy [49]. The inhibitor is bound in the acidic substrate peptide

groove at the location where the histone H3 residues N-terminal to the target lysine

lie. The inhibitor resembles the bound conformation of histone H3K4 to H3R8 and

is positioned by residues specific for G9a and GLP through specific interactions.

Most importantly, the inhibitor-bound SET domain structure provides avenues for

improving the potency of the inhibitor. One of suggested improvements is by

extending the branch of O7-methoxy-CH3 into the target lysine-binding channel,

which should provide additional binding energy by increasing the surface area of

binding [49]. Indeed, a recent report of chemical exploration of BIX-01294 identi-

fied a derivative (UNC0224) as a potent and selective G9a inhibitor [56]. UNC0224

contains an extended N-dimethylamino-propoxy arm occupying the target lysine-

binding channel.
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6 Histone Lysine Specific Demethylase (LSD1)

The discovery of lysine specific demethylase 1 (LSD1) [57] established that protein

lysine methylation is a reversible posttranslational modification. LSD1 is a flavin-

dependent amine oxidase, which demethylates H3K4me2/me1 [57], H3K9me2/

me1 (in an androgen receptor-mediated pathway) [58], and p53 [59]. The closely

related LSD2 demethylates H3K4me2/me1 [60] and has been linked with imprint-

ing of the maternal genome [61]. Both LSD1 and LSD2 demethylate methyl-lysine

by forming of an imine intermediate, which undergoes hydrolysis in aqueous buffer

(Fig. 3a) to complete the demethylation process. Mechanistic requirements for a

protonated amine in this demethylation pathway do not permit either LSD1 or

LSD2 to demethylate trimethylated lysines [62].

LSD1 is found in histone modification complexes that control cell-specific gene

expression [57]. Within these complexes, REST (RE1-silencing transcription fac-

tor) corepressor CoREST enables LSD1 to demethylate nucleosomes [63, 64],

a

CH 3

b

Oxidase domainSWIRM Oxidase domain TowerN-terminal domainLSD1

1 852

Tower

CoREST

Peptide
H3

Oxidase
domain

FAD

Fig. 3 Demethylation by oxidation. (a) Scheme of the demethylation reaction catalyzed by LSD1.

(b) Schematic representation of human LSD1 domain organization. The oxidase domain contains

an atypical insertion of the Tower domain not found in other oxidases. The solution NMR structure

of the SIWRM domain of LSD1 is shown in red [65]. Crystal structure of LSD1 (residues 171–836
in blue)-CoREST (residues 308–440 in red) in complex with H3 peptide (residues 1–16 in green),
and the FAD cofactor is shown as a yellow ball-and-stick [71]
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while BHC80 (BRAF–HDAC complex) inhibits LSD1 activity [63]. The LSD1

polypeptide chain can be divided into several structural/functional regions

(Fig. 3b): the N-terminal putative nuclear localization signal, followed by a

SWIRM (Swi3p, Rsc8p, and Moira) domain [65] – found in several nucleosome-

interacting proteins – and a monoamine oxidase domain – capable of demethylating

lysines in a flavin-dependent manner [66]. Thus far, crystal structures of LSD1

alone [67, 68], LSD1 in complex with CoREST [69], and LSD1-CoREST in

complex with H3 peptide [70, 71] have been determined. Using a 21-residue

peptide bearing a methionine in place of target methyl-K4 – a 30-fold increase in

binding affinity making the mutant peptide a strong inhibitor and an ideal candidate

for structural work – Forneris et al. (2007) were able to resolve the first 16 residues

of the H3 peptide, in perfect agreement with their previous biochemical data that

LSD1 is active on peptide substrates longer than 16 amino acids [66]. This study is

the first in which a long, structured histone tail has been visualized in histone-

modifying enzymes and protein domains that recognize (decode) methyl-lysine

signals. In comparison, a similar study of LSD1-histone peptide, using the approach

of covalent tethering of peptide substrate to cofactor FAD, observed the first 7

residues (out of 21 residues used) of H3 peptide [70].

7 Jumonji-Containing Lysine Demethylases

In search of enzymes capable of reversing methylated lysines, Trwick et al. [72]

hypothesized that Jumonji domain containing Fe2+- and a-ketoglutarate-dependent
dioxygenases can reverse lysine methylation via a similar mechanism as followed

by bacterial AlkB family of DNA repair enzymes (Fig. 4a). This hypothesis was

quickly verified with the discovery of JHDM1 as the Jumonji domain-containing

histone demethylase 1 [73]. Jumonji-containing proteins are members of the cupin

superfamily with functional roles in various biological processes including DNA/

RNA repair through the demethylation of N-methylated nucleic acids (e.g., 3-

methylcytosine, 1-methyladenine) [74, 75], hydroxylation of protein and lipid

side chains [76], protein lysyl-5-hydroxylation [77], as well as recently character-

ized role in oxidizing 5-methylcytosine to 5-hydroxymethylcytosine [78]. Demeth-

ylation reactions catalyzed by Jumonji enzymes follow a hydroxylation pathway,

which can demethylate mono-, di-, or tri-methylated lysines (Fig. 4a) [79, 80].

Currently, there are nearly 30 Jumonji-containing proteins identified in human

proteome, 20 of which have known function in histone demethylation [2]. The

majority of Jumonji-containing demethylases contains at least one additional struc-

tural domain in their sequence. Based on the phylogenetic relationships and domain

architectures, these proteins are divided into seven subfamilies [2]. Additional

structural motifs (other than the Jumonji domain) present in these proteins are

thought to be important in substrate recognition or facilitating protein–protein

interactions. For example, the H3K4 demethylase RBP2 contains a DNA-binding

domain, the AT-rich interaction domain (ARID). ARID binds DNA sequence motif
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(CCGCCC) and is required for RBP2 demethylase activity in cells and that DNA

recognition is essential to regulate transcription [81].

Thirteen crystal structures for the Jumonji domain of JMJD2A in various con-

figurations are currently available (Table 2) [67, 82–85]. In addition, one structure

is available for JMJD2D, two for JHDM1A [86], and two for PHF8 Jumonji domain

(Table 2). Like in other cupin family members, the Jumonji domain adopts the
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CO2O2

Fig. 4 Demethylation by hydroxylation. (a) Mechanisms of demethylation of 3-methylcytosine

by AlkB (top) and of methyl-lysine by Jumonji-domain proteins (bottom). (b) Coordinations of Fe2+

(sphere), a-ketoglutarate in JMJD2A (in gray), and KIAA1718 (in green). (c) Schematic repre-

sentation of JMJD2A domain organization, including the structures of the N-terminal Jumonji

(ribbons) [85] and the C-terminal double Tudor domain (surface representation) [87]

Table 2 List of histone lysine demethylases with known structures (PDB ID)

Position HDM PDB ID

H3K4 LSD1 2IW5, 2HKO, 2V1D, 2UXN, 2UXX, 2DW4,

2Z3Y, 2EJR, 2Z5U

H3K9 PHF8 3K3O, 3K3N

JMJD2A 2VD7, 2Q8C, 2Q8D, 2Q8E, 2P5B, 2PXJ, 2OQ6,

2OQ7, 2OS2, 2OT7, 2OXO, 2GP3, 2GP5

JMJD2D 3DXT

H3K36 JHDM1A (FBXL11) 2YU1, 2YU2
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conserved double-stranded-b-helix or jelly-roll structure formed by eight antipar-

allel b-strands, which harbors the Fe2+ (coordinated by two histones and one

aspartate or glutamate) and a-ketoglutarate in a conserved coordination environ-

ment (Fig. 4b). The co-substrate a-ketoglutarate is coordinated to the Fe2+ center

through C1-carboxylate and C2-keto group. The C5-carboxylate of a-ketoglutarate
forms hydrogen-bonding interactions with Jumonji domain.

8 JMJD2A

JMJD2A contains an N-terminal Jumonji domain and C-terminal PHD and Tudor

domains (Fig. 4c). The JMJD2A Jumonji domain alone is capable of demethylating

tri- and di-methylated H3K9 (H3K9me3/2) and H3K36 (H3K36me3/2), though

with a very low turnover rate [84]. Structural studies revealed that the JMJD2A

Jumonji domain predominantly recognizes the backbone of the histone peptides

(unusual for a sequence-specific enzyme), allowing the enzyme to demethylate both

H3K9me3/2 and H3K36me3/2 [83–85]. On the other hand, JMJD2A Tudor domain

binds two different histone sequences (H3K4me3 and H4K20me3) via radically

different approaches [87, 88]. The functional connection between the methyl mark

reader and eraser in JMJD2A is not clear.

9 PHF8 and KIAA1718

PHF8 and KIAA1718 belong to a small family of Jumonji proteins with three

members in mice and human (PHF2, PHF8, and KIAA1718) [2]. These proteins

harbor two domains in the N-terminal half (Fig. 5a): a PHD domain that binds

H3K4me3 and a Jumonji domain that demethylates H3K9me2, H3K27me2, as well

as H3K36me2 [89]. However, the presence of H3K4me3 on the same peptide as

H3K9me2 makes the doubly methylated peptide a significantly better substrate of

PHF8 [90]. In contrast, the presence of H3K4me3 has the opposite effect in that it

diminishes the H3K9me2 demethylase activity of KIAA1718 with no adverse

effect on its H3K27me2 activity. Differences in substrate specificity between the

two enzymes are explained by a bent conformation of PHF8, allowing each of its

domains to engage their respective targets, and an extended conformation of

KIAA1718, which prevents its access to H3K9me2 by its Jumonji domain when

its PHD domain engages H3K4me3 (Fig. 5a). This study concludes that the

structural linkage between the PHD domain binding to H3K4me3 and the place-

ment of the catalytic Jumonji domains relative to this “on” epigenetic mark

determines which repressive marks are removed in both demethylases. Taken

together, we suggest that the PHF8 and KIAA1718 Jumonji domains on their

own are promiscuous enzymes; it is the associated PHD domains and linker – a

determinant for the relative positioning of the two domains – that are mainly

responsible for substrate specificity.
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Using domain cooperativity to enhance an enzyme’s activity and its substrate

specificity may be a general mechanism for Jumonji-containing protein lysine

demethylases. For example, JHDM2A-mediated histone H3K9me1/2 demethyla-

tion requires a zinc finger N-terminal to the Jumonji domain for its enzymatic

activity [91]. JARID Jumonji family proteins (including Lid2 in S. pombe) contain a
Jumonji domain that demethylates H3K4me3 surrounded by several PHD domains

and at least one of them binds H3K9me3 [92, 93] (Fig. 5b). Mutation or deletion of

this PHD domain impairs the demethylase activity on H3K4me3 [92, 93]. We

speculate that the ideal substrate for JARID family is H3 trimethylated at both

K4 and K9, allowing the enzyme to remove any local activating methyl groups of

H3K4me3 by the Jumonji in a repressing environment with H3K9me3 bound by the

PHD (Fig. 5b). We further speculate that a similar situation might occur for JMJD2A

where each of the two demethylase activities (H3K9me3/2 and H3K36me3/2)

correlates with one of the methyl marks (H3K4me3 and H4K20me3) recognized

by the Tudor domain (Fig. 4c).

H3K4me3       H3K9me3

Lid2 in S. pombe
(SMCX/JARID1C)

b

1 97 114 488 941

KIAA1718 PHD linker Jumonji NLS

33

A

1 65 79 447 1024

PHF8 PHD linker Jumonji NLS

PHF8-H3

Apo-KIAA1718

a H3K4me3       H3K9me2

H3K4me3       H3K27me2

Fig. 5 Crosstalk between Jumonji and PHD within the same polypeptide. (a) Schematic repre-

sentations of PHF8 and KIAA1718. Superimposition of PHF8 (colored) and KIAA1718 (gray) in
their respective Jumonji domains indicates that the PHF8 PHD domain adopts a bent conformation

toward the Jumonji domain in the presence of H3 substrate binding, whereas the PHD and Jumonji

domains of KIAA1718 adopt an extended conformation in its apo-structure [90]. (b) Schematic

representation of Lid2 in S. pombe [93] (SMCX/JARID1C [92])
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10 Perspective

The histone code hypothesis suggests that multiple covalent histone modifications

can be read combinatorially through effectors that are recruited to these marks and

subsequently act on the local chromatin structure or transcriptional machinery via

crosstalk among histone modifications [94–97]. Several histone-methylating

enzymes contain components (domains) that both synthesize and bind a specific

histone mark, such as mammalian G9a/GLP (for H3K9me1/me2) [9] and S. pombe
Clr4 (for H3K9me3) [10]. They contain modules, within the same polypeptide, for

both making (via the SET domain) and recognizing (via the ankyrin repeats or

chromodomain) a given methyl mark – allowing for a mechanism of crosstalk to

propagate a given methyl mark. PHF8 and KIAA1718 (Fig. 5a), and perhaps

JARID/Lid2 (Fig. 5b) and JMJD2A (Fig. 4c), contain modules, within the same

polypeptide, for both recognizing (via the PHD or Tudor) and removing (via the

Jumonji domain) two opposing methyl marks – a mechanism of crosstalk removes

an “off” methyl mark based on an existing “on” methyl mark. Understanding the

function and crosstalk of individual letters (one methyl mark, two methyl marks,

and so on) may allow us eventually decipher the complex language of the histone

code [94, 98].

The availability of human and other model research organism genome

sequences, proteomics, and transcriptomics has provided answers to a wide range

of questions that in some cases we did not even previously know to ask. Global

analyses of genomic DNA methylation and histone modifications [99–101] are

playing a similar role, yielding powerful insights into normal development and

diseases, such as cancer and diabetes. The experimental characterization of indi-

vidual modifying enzymes (writers) and demodifying enzymes (erasers) of the

histone code is providing a growing and convergent picture of the kinetic mechan-

isms, binding partners, chromatin recognition, and in some cases structures of these

proteins. However, it is clear that the activities of writers, erasers, and readers of the

histone code are regulated in multicomponent complexes that have yet to be fully

defined and characterized.
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Epigenetic Mechanisms of Mental Retardation

Anne Schaefer, Alexander Tarakhovsky and Paul Greengard

Abstract Mental retardation is a common form of cognitive impairment affecting

~3% of the population in industrialized countries. The mental retardation syndrome

incorporates a highly diverse group of mental disorders characterized by the

combination of cognitive impairment and defective adaptive behavior. The genetic

basis of the disease is strongly supported by identification of the genetic lesions

associated with impaired cognition, learning, and social adaptation in many mental

retardation syndromes. Several of the impaired genes encode epigenetic regulators

of gene expression. These regulators exert their function through genome-wide

posttranslational modification of histones or by mediating and/or recognizing DNA

methylation. In this chapter, we review the most recent advances in the field of

epigenetic mechanisms of mental retardation. In particular, we focus on animal

models of the human diseases and the mechanism of transcriptional deregulation

associated with changes in the cell epigenome.

1 Introduction

Recent efforts to elucidate the cellular and molecular bases of brain function using

the brain–computer interface (BCI) approach showed that even the simplest brain

circuit generates several gigabytes of information per second [1–4]. While this

information is encrypted in electric impulses produced by neurons, the foundation

for neuronal activity lies in the coordinated function of neuron-expressed gene
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networks. Similar to other cells in the organism, differentiated neurons maintain

stable patterns of gene expression [5, 6]. Such patterns define the neuron’s identity

as well as its functional specificity. The activity of numerous neuronal genes, on

the other hand, fluctuates significantly in response to environmental signals [7–15].

In order to respond adequately to the rapidly changing environment, it is essential

for differentiated neurons to maintain a certain degree of flexibility. Finally, the

genetic nature of memory [16, 17] implies the existence of mechanisms that hard-

wire external signals into genetic changes that account for retrievable patterns of

neuronal activity.
It is relatively straightforward to draw a parallel between the coding capacity of

the brain and the coding capacity of chromatin. A single unit of chromatin, which is

represented by a single nucleosome, possesses an immense coding power embedded

within four pairs of structurally distinct histone proteins and the DNA wrapped

around them. The N-terminal portions of histones are subjected to numerous post-

translational modifications, including methylation, acetylation, and phosphorylation

[18–22]. Given the reversible nature of these modifications, it is very likely that at

any given moment in time, each nucleosome posseses a unique pattern of histone

modifications. This, in turn, should lead to highly dynamic, individual nucleosome-

specific recruitment of the histone binding proteins that recognize individual histone

modifications. The recognition of the modified histones is achieved with the help of

specific protein domains such as the PHD or bromo domains, which recognize

methylated or acetylated lysines within the N-terminal portions of the histone pro-

teins, respectively [19, 23–25]. Some of the histone binding proteins carry multiple

recognition domains that may enable, in a neuronal network-like fashion, the estab-

lishment of connections not only between various modifications within the individual

histone proteins, but between histones within an individual nucleosome or even

between individual nucleosomes [26]. Finally, proteins that bind to histones may

facilitate looping of large segments of DNA, thus establishing connections between

genes located on various chromosomes. All of these epigenetic processes are likely

to yield a unique epigenetic signature of individual neurons. This epigenetic diver-

sity is likely to contribute to the distinct features of individual neurons and to the

enormous functional plasticity of the neuronal circuitry.

Epigeneticmodifications are introduced by histone-modifying orDNA-methylating

enzymes, such as acetyltransferases, methyltransferases, and kinases (“writers” by

David Allis’s definition) [19, 22, 23, 27]. These modifications can be removed by

another class of specific enzymes (“erasers”), including deacetlyases, demethylases,

and phosphatases [21, 28–35]. Therefore, one might predict that defects in the individ-

ual epigenetic “writers” or “erasers”, as well as in proteins that specifically recognize

the individual histonemarks (“readers”),may compromise the central role of chromatin

inmaintenance of neuronal identity and plasticity. Such reduction in neuronal diversity

and/or plasticity might lead, in turn, to a reduction in higher brain function in affected

individuals.

In support of the important role of epigenetic regulation in normal brain func-

tion, about 7% of the genes known to be associated with mental retardation in

humans encode various epigenetic regulators (Table 1) (reviewed in [36–44]).
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Many of the key symptoms of mental retardation, such as cognitive impairment and

deficits in environmental adaptation, are also hallmarks of other neurological diseases

such as depression and autism-spectrum disorders. Furthermore, several recent

studies have linked abnormal epigenetic regulation to development of various neuro-

logical and psychiatric diseases, including Alzheimer’s disease, Huntington’s dis-

ease, drug addiction, depression, autism-spectrum disorders, and schizophrenia

(reviewed in [17, 42, 44–51]).

In the following sections, we will discuss some compelling cases for an epigenetic

basis of mental retardation. In particular, we will focus on the role of specific histone

modifications and DNA methylation in regulation of gene expression. The mech-

anisms of dysregulation of gene expression in these diseases remain poorly under-

stood. Their understanding will require the elucidation of the nature of genes that are

targeted by the specific modifications. This task is greatly complicated by the

necessity to identify mRNA and noncoding RNA expression in neuron subpopula-

tions that, in some cases, represent a minor fraction of the extremely heterogeneous

brain tissue. Therefore, in the final section, we shall discuss recent methodological

advances that may facilitate the understanding of epigenetic mechanisms of regula-

tion of gene expression in individual classes of neurons in vivo.

1.1 Mental Retardation and Suppressive Histone Lysine
Methylation

Methylation of histones on individual lysine residues is associated with distinct

functional outcomes. The di- or tri-methylation of histone H3 on lysine 9

(H3K9me2, H3K9me3), tri-methylation of lysine 27 (H3K27me3), as well as

mono-methylation of lysine 20 of histone H4 (H4K20me1) have been linked to

suppression of genes [52]. Contrary to these modifications, tri-methylation of lysine

4 of histone H3 (H3K4me3) is a hallmark of transcriptional activation [53–56]. The

tri-methylation of lysine 36 of histone H3 (H3K36me3) contributes to the elonga-

tion of the mRNA transcripts [57–63], while methylation of lysine 79 of histone H3

(H3K79me) has been implicated in DNA repair [64]. These, as well as other less

characterized lysine methylation marks, are introduced with the help of highly

specific histone methyltransferases (HMTases) that target specific lysine residues

and catalyze their mono-, di-, or tri-methylation (reviewed in [22]).

Several lines of evidence support a key role for H3K9me2 in regulation of

normal brain function. H3K9me2 is catalyzed by a ubiquitously expressed multi-

protein HMTase complex, the catalytic core of which is comprised of the HMTases

G9a and GLP [65–71]. Genetic ablation of either of these enzymes results in loss of

euchromatic H3K9me2 [65, 67–71]. It has been demonstrated that aberrant function

of G9a in nonneuronal cells leads to derepression of neuronal genes outside of the

nervous system [72–74]. Furthermore, deficiency in Mediator 12, one of the GLP/

G9a binding partners and a possible causal factor of human mental retardation
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associated with the Lujan–Fryns and the Opitz–Kaveggia syndromes (Table 1) [75],

causes aberrant neuronal gene expression in non-neuronal cells [74]. Conversely, in

neuronal cells, postnatal ablation of the histone methyltransferases GLP/G9a in

mouse forebrain leads to derepression of non-neuronal and early neuronal progeni-

tor genes in various brain areas [76].

Aberrant expression of non-neuronal genes in GLP/G9a deficient neurons is

associated with the development of behavioral abnormalities and impaired cogni-

tion and learning [76]. Mice with a postnatal forebrain-specific ablation of GLP or

G9a show a diminished exploratory behavior in response to a new environment.

This behavioral abnormality is not attributable either to motor dysfunction or to

increased anxiety. On the contrary, these mice display a general loss of curiosity

and interest in their surroundings, which seems to leave them unaware of the

potential danger of the environment [76]. Furthermore, postnatal ablation of GLP/

G9a leads to severe deficits in motivation and is associated with the development of

obesity in mice and humans [76–80].

The cognitive and behavioral defects, caused by ablation of GLP/G9a in postna-

tal mouse neurons [76], are remarkably similar to symptoms of a human mental

retardation syndrome associated with deletion of the subtelomeric region of chro-

mosome 9q34, which contains the GLP/EHMT1 gene (Table 1) [80, 81]. In addition
to major defects in cognition and learning, the human 9q34 syndrome is characteri-

zed by obesity, childhood hypotonia, and a gradual, age-dependent development of

severe apathetic behavior, reduced motor activity, and loss of goal-directed activi-

ties [43, 77, 80–82]. The suggested causal role of the GLP/EHMT1 gene alterations
in the human 9q34 mental retardation syndrome has been underscored by the

identification of various intragenicGLP/EHMT1mutations in patients with a mental

retardation syndrome clinically indistinguishable from the 9q34 deletion syndrome

[43, 80]. One of the identified mutations in the GLP/EHMT1 gene leads to an amino

acid substitution that is predicted to affect the conformation and hence the activity of

the highly conserved, histone methyltransferase encoding SET domain of the GLP/

EHMT1 protein [80]. It is not yet known whether defective expression of GLP in

humans results in a dysregulation of gene expression as has been seen in mice [76].

Should this indeed be the case, then it is plausible that ectopic expression of non-

neuronal genes in adult neurons might contribute to the cognitive and behavioral

defects in mice and humans with impaired GLP or G9a expression or function.

Expression of proteins that are normally not expressed in adult neurons may

wreak havoc on the otherwise tightly controlled signaling and transcriptional net-

works in these cells. Thus, the GLP/G9a deficient mouse neurons ectopically express

a collection of potent signaling proteins involved in calcium and cAMP signaling

(Bank1, Annexin-10, ArhGAP15, CaBP5, MuSK, Plce1), as well as cytoskeletal

function (Myosin-1, Myosin-7, Myomesin-2, Titin, Tnnt2) [76]. Expression of these

proteins may interfere significantly with the function of the firmly regulated intra-

cellular signaling networks in the brain. Additionally, proteins of the laminin family

like Lama2, Lama3, and Lamb3, which become upregulated in the absence of GLP/

G9a, are known to control cell-to-cell communication [83] and may, therefore,

interfere with neuronal connectivity in the brain. Finally, several of the upregulated
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proteins, includingAlpha-fetoprotein, Afamin, Carboxylesterase 7, Beta-defensin 1,

Gastrokine-1, Olfactomedin-4, Serpin B1b, and Serpin B5, have been described as

potent secreted regulators of various cell functions [84–89]. Production of these

proteins by neurons could induce secondary changes in neighboring neurons or non-

neuronal cells.

The important role of H3K9me2 in maintenance of normal cognition is further

supported by the mental retardation syndrome seen in patients with defective

function of the PHD finger protein 8 (PHF8) [90], a ubiquitously expressed enzyme

that specifically demethylates H3K9me2 [91]. Mutations within the catalytic JmjC

(Jumonji-like C terminus) domain of the PHF8 gene are associated with the deve-

lopment of the Siderius type X-linked mental retardation syndrome, which is

characterized by mild to severe mental retardation and cleft lip and palate [90, 92,

93]. In addition to its JmjC demethylase domain, the PHF8 protein harbors two

functional PHD domains that are implicated in transcriptional regulation and chro-

matin remodeling [90]. Further studies will be needed to explore whether PHF8 and

G9a/GLP represent functionally opposing enzymatic forces that control the expres-

sion of neuron and non-neuron specific genes through regulation of H3K9me2

levels.

1.2 Mental Retardation and Activating Histone Lysine
Methylation

In contrast to H3K9 di- or tri-methylation, the H3K4me3 is associated with actively

transcribed genes or genes that are primed for transcription [22, 54–56]. Accor-

dingly, demethylation of H3K4me3 is associated with decreased transcriptional

activity [21, 28–30, 32–35]. The level of H3K4me3 is determined by the balance

between the gene locus-specific recruitment and activity of H3K4 HMTases, such

as MLL1-5, Set1, Set7/9, Ash1, and H3K4 demethylases [22]. One of the H3K4-

specific demethylases that reverses H3K4 tri-methylation to di- and mono-methy-

lated products is JARID1C [73, 94]. Mutations in the JARID1C gene have been

linked to the development of nonsyndromic-X-linked mental retardation and epi-

lepsia in humans (Table 1) [73, 94–97]. The patterns of mutations within the

JARID1C gene that have been associated with XLMR suggest the loss of JAR-

ID1C-mediated control of gene expression as the potential causal mechanism for

the development of the disease. Patients carrying point mutations within the exons

that encode the catalytic domain of JARID1C have been identified [94–97]. These

mutations reduce the activity of the enzyme. Notably, the degree of reduced

H3K4me3 demethylase activity caused by the specific mutations in various patients

correlated with the severity of the associated mental retardation, indicating a dose-

dependent effect of H3K4me3 levels in regulation of cognitive function [73].

Additionally, the XLMR syndrome has been associated with mutations that specifi-

cally target the PHD domain of JARID1C, which is required for recruiting JAR-

ID1C to the neighboring H3K9me3 [94]. It is likely that recruitment of JARID1C to
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H3K9me3 is part of the suppressive mechanism that combines H3K9me3 and,

dependent on it, JARID1C-mediated demethylation of H3K4me3.

Given the ubiquitous pattern of JARID1C expression [94], mutations in this gene

are likely to suppress the activity of genes in various cell types. The association

shown between JARID1C, G9a, and the transcriptional repressor REST in a human

kidney cell line suggests the possibility of a common pattern of genes targeted by

G9a and JARID1C [73]. Furthermore, loss of JARID1C activity in this cell line

leads to derepression of several REST-targeted neuronal genes [73]. Although

nothing is known about the nature of JARID1C-regulated genes in mouse or

human brain, one might expect that impaired JARID1C function could lead to

derepression of G9a targeted genes in neuronal and non-neuronal cells.

In actively transcribed gene loci, H3K4me3 is frequently associated with methy-

lation of lysine 36 of histone H3 [98,99]. This modification correlates with tran-

scriptional elongation, although the exact mechanism of this process is not fully

understood. There are several HMTases that methylate H3K36 in vitro, and several

of these HMTases, including the Nuclear receptor Set Domain containing proteins 1

and 2 (NSD1, NSD2), have been shown to catalyze tri-methylation of H3K36 in vivo

[100–102]. Mutations in the NSD1 gene are associated with mental retardation that

hallmarks the human Sotos and the related Weaver syndrome [103–105], whereas

mutations in the NSD2 gene are associated with the Wolf Hirschhorn mental

retardation syndrome (Table 1) [102]. In addition to the Set domain that is asso-

ciated with the “writing” of the histone methyl mark, NSD1 also contains several

PHD finger domains that specifically “read” the methylation status of the histone

lysine residues. Mutations in each of the five PHD finger domains of the NSD1 gene

have been described in patients suffering from the disease [40, 104, 105]. Given the

known ability of the PHD domains to bind to methylated lysines [26, 56], it is likely

that NSD1 recruitment to methylated H3K4 potentiates the transcriptional effi-

ciency of the loci that play a key role in the development and/or function of mature

neurons. Early embryonic death of the NSD1 deficient mice precludes the assess-

ment of the role of NSD1 in neuronal gene expression and brain function [100].

However, the presence of various Wolf–Hirschhorn syndrome-like midline defects

in haploinsufficient NSD2 mice [102] suggests the possibility of using haploinsuffi-

cient NSD1 mice to address the mechanism of NDS1 involvement in regulation of

brain function and the development of the human disease. Gene expression analysis

of NSD2-deficient, embryonic heart tissue suggests that the observed pathophysiol-

ogy might be associated with NSD2-mediated suppression of inappropriate gene

transcripts in the mammalian heart [102]. However, the nature of NSD2-specific

gene targets in the mammalian brain has not yet been addressed.

1.3 Mental Retardation and Histone Lysine Acetylation

The first report describing histone acetylation and its dynamics in developing and

adult brain tissue goes back to 1970 [106]. Since then, dynamic acetylation of
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individual lysine residues within the N-terminal portion of histone proteins has been

identified as a pivotal epigenetic switch in the developmental and temporal control

of gene expression [21, 23, 107, 108]. The essential role of histone acetylation in

learning and memory was initially suggested by the demonstration of the positive

role of histone H4K8 acetylation in the formation of long-term synaptic plasticity in

Aplysia [109]. These studies showed that learning and memory may be improved

through increased histone H4 acetylation. Accordingly, an overall increase in

histone acetylation following sytemic in vivo administration of histone deacetylase

(HDAC) inhibitors facilitates learning and memory in wild-type mice [110–113].

In agreement with the central role of histone lysine acetylation in memory and

learning, reduced expression of histone acetlytransfereses (HAT) leads to severe

impairment of brain function. In humans, loss of function mutations in genes

encoding either HAT CBP (CREB binding protein) [114–117] or HAT EP300

[118] lead to mental retardation in patients with Rubinstein–Taybi syndrome

(RSTS) (Table 1) (reviewed in [119]). Loss of HAT activity of the CBP or p300

protein seems to be sufficient to account for most of the clinical manifestation of the

disease [115,120]. The key role of CBP and p300 in RSTS has been underscored by

findings that show development of the RSTS-like syndrome in mice heterozygous

for null mutations in the CBP or p300 genes [111,121–125]. More specifically, mice

that are haplodeficient for CBP exhibit deficits in hippocampus dependent long-

term memory tasks and electrophysiological learning and memory paradigms such

as late phase L-LTP [111,126,127]. Similar to observations in human patients, the

HAT activity of CBP proves to be critically important in regulating memory

formation in mice [110,111,128]. These findings suggest that learning and memory

in mice and humans depends on the balance between CBP/p300-mediated acetyla-

tion and deacetylation, suggesting that learning and memory is controlled by a

specific group of HATs and, possibly, specific HDACs. The existence of HDACs

that contribute selectively to learning and memory has been suggested by findings

that show enhanced memory formation and synaptic plasticity in mice deficient for

HDAC2, but not HDAC1 [129].

The mechanism by which the overall or locus-specific increase in histone

acetylation contributes positively to memory and synaptic plasticity remains poorly

understood. It is possible that long-lasting histone acetylation achieved by pharma-

cological or genetic HDAC inactivation establishes a surplus of positive regulators

of neuronal function without affecting the expression of negative regulators. This

scenario is possible only under conditions where the access of HATs to genes

encoding negative regulators of memory and learning is limited by the selective

lysine methylation of these loci via suppressive lysine methyltransferases. In

addition, histone acetylation can favor establishment of memory and learning

through direct control of epigenetic suppressors of gene expression. Thus, CBP

suppresses the expression of ESET/Setdb1 [130], a H3K9-specific histone methyl-

transferase that can trigger transcriptional repression and heterochromatin forma-

tion [131–133]. Consistent with these observations, deficiency of CBP leads to an

increase of H3K9 methylation in mammalian neurons and presumable suppression

of gene expression [130].
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1.4 Mental Retardation and Histone Phosphorylation

Serine 10 of histone H3 (H3S10ph) is the most thoroughly characterized site of

histone phosphorylation [134,135]. Phosphorylation of H3S10 is associated with

activation of gene transcription [22,136,137]. This function of H3S10ph could be

due to the specific recognition of phosphorylated chromatin by the phospho-binding

“reader” proteins 14-3-3, which function as transcriptional activators [138]. Con-

comitantly, with the recruitment of the 14-3-3 and potentially other transcriptional

activators, phosphorylation of H3S10 hinders interaction of the transcriptional

suppressor HP1 with the neighboring H3K9me2. The latter event facilitates dere-

pression of gene loci associated with H3S10ph [134,139,140].

In mammals, phosphorylation of H3S10 is catalyzed by the kinases MSK1/2 and

RSK2 [141–143]. The latter has been implicated in a clinically distinct mental

retardation syndrome, the Coffin–Lowry syndrome (CLS) (Table 1), which is

characterized by severe mental retardation in combination with skeletal and cardiac

abnormalities, kyphoscoliosis, as well as auditory and visual abnormalities

(reviewed in [144]). CLS is associated with mutations in the RPS6KA3 gene,

which encodes the RSK2 protein [145]. Notably, deletion of another member

of the RSK family, RSK4, is linked to mental retardation in patients suffering

from X-linked deafness (Table 1) [146]. Mutations in two members of the RSK

family, both leading to mental retardation, emphasize the important role of this

kinase family in neuronal function and memory formation. In support of the

important role of RSK2 in mental health, the RSK2 deficient mice display

impairment of spatial working memory, delayed acquisition of a spatial reference

memory task, and long-term spatial memory deficits [147,148].

Several mechanisms may account for the involvement of RSK2 in mental health.

The RSK2-mediated H3S10 phosphorylation can activate genes that control cogni-

tion and memory. However, the exact gene targets of H3S10 phosphorylation in

neurons are not fully characterized. In addition to its direct function on gene

transcription activation via phosphorylation of histone H3, it is likely that RSK2

can regulate gene expression through binding and phosphorylation of the transcrip-

tional activators CBP and Creb1, respectively [149–151]. Psychostimulant-induced

H3S10 phosphorylation in striatal neurons leads to the transcriptional activation of

c-Fos and Jun and other immediate early genes that orchestrate the dopamine-

induced behavioral response in these mice [152,153]. This function of H3S10ph

may contribute to the impaired brain function of patients with reduced activity in

the H3S10 phosphorylating kinases.

1.5 Mental Retardation and DNA Methylation

Methylation of DNA is the most stable form of epigenetic modification that

contributes to suppression of gene expression [154]. Methylated CpG nucleotides,
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like modified histones, regulate gene expression either by recruiting transcriptional

repressors or by hindering binding of transcriptional activators [154–159]. The

DNA methylation is catalyzed by structurally and functionally distinct DNA

methyltransferases (DNMTs) [27,154,160]. Recent studies from the laboratories

of Nathaniel Heintz and Anjana Rao suggested the possibility of DNA demethyla-

tion via the generation of 50hydroxymethylcytosine [161,162]. The generation of

this mark is catalyzed by enzymes of the Tet protein family [161]. However, at this

point it is not clear whether 50hydroxymethylcytosine represents a novel stable form

of DNA modification or the intermediate product of DNA demethylation [160].

Furthermore, nothing is known about the functional impact of this mark on regula-

tion of gene expression.

The importance of DNA methylation for brain function is supported by the

demonstration that DNMT gene expression is upregulated in the adult rat hippo-

campus following learning and memory paradigms and that DNMT inhibition

blocks memory formation [163, 164]. Furthermore, association between several

mental retardation syndromes and disabling mutation in DNMTases or proteins that

recognize methylated DNA [37, 43, 51, 165] demonstrates that DNA methylation is

a crucial step in regulation of cognition.

One of these mental retardation syndromes is Immunodeficiency, Centromere

instability and Facial anomalies (ICF) syndrome (Table 1), which is caused by a

mutation in the DNA-methyltransferase-3b (Dnmt3b) [166,167]. The most frequent

symptoms of the syndrome are facial dysmorphism, mental retardation, and vari-

able immune deficiency [168,169]. Judging from the analysis of gene expression in

cell lines derived from ICF patients, mutations in DNMT3b cause ectopic expres-

sion of genes critical for immune function, development, and neurogenesis

[170,171]. A fraction of the ectopically upregulated genes display low levels of

DNA methylation due to the impaired function of DNMT3b [170,171]. It is likely

that, similar to G9a or GLP deficient neurons, the function of neurons expressing

the mutant DNMT3b is affected by erroneous expression of proteins that are

normally silenced by DNA methylation.

Rett syndrome (RTT) is a postnatal, progressive disorder that affects girls in

early childhood after a period of 6–18 months of normal development (Table 1)

(reviewed in [165]). The onset of the disease is characterized by developmental

stagnation, followed by a rapid regression and loss of all acquired skills such as

speech, social interaction, and motor coordination. RTT is caused by sporadic

mutations in the X-chromosome localized gene encoding the transcriptional regu-

lator methyl-CpG-binding protein 2 (MeCP2) [172]. The analysis of the MeCP2

containing protein complexes suggested an ability of MeCP2 to coordinate the

assembly of potent repressor protein complexes at the sites of methylated DNA.

MeCP2 was found to be associated with corepressors such as Sin3a, the histone

deacetylases HDAC1 and HDAC2, DNA methyltransferase 1 (Dnmt1), the histone

methyltransferase SuvH1, corepressors c-Ski and N-Cor, the transcription factor

TFIIB, the SWI/SNF-related chromatin-remodeling protein Brama, and the SWI2/

SFN2 DNA helicase/ATPase [173–180]. Mutations in the latter gene are respon-

sible for causing the alpha-thalassemia/mental retardation syndrome X-linked
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(ATR-X) (Table 1) [181]. Given the general role of MeCP2 in regulation of gene

expression, it is likely that MeCP2 can trigger a chain of transcriptional changes

that will distort neuronal function. Therefore, it is not surprising that not only

deficiency but also upregulation of MeCP2 function, due to duplication of the

MeCP2 gene, can cause severe mental retardation in humans [165,182].

The causal role of MeCP2 deficiency or overexpression in mental retardation is

supported by the development of a Rett sydrome-like disease in mice with germline

or neuron-specific deficiency or upregulation of MeCP2 [183–187]. Ablation of

MeCP2 in embryonic brain is sufficient to cause the disease in mice, and even

postnatal forebrain-specific deletion leads to similar, albeit slightly less severe,

abnormalities [183,187]. The critical role of MeCP2 in mature neurons is further

supported by the fact that either postnatal and/or postnatal neuron-specific MeCP2

expression in MeCP2 deficient mice can partly rescue the neurological phenotypes

[188–190]. These studies indicate that neuronal MeCP2 dysfunction in postmitotic

neurons is partly responsible for the neurological abnormalities, and that the

changes causing the neurological abnormalities in these mice remain reversible.

Similar to the situation with humans, overexpression of MeCP2 in mice results in

neurological abnormalities that correlate positively with levels of MeCP2 over-

expression [186].

1.6 Overcoming Difficulties Associated with Neuronal
Heterogeneity

Epigenetic regulators have the potential to control a large variety of different genes.

Elucidation of the nature of the genes that are regulated by specific modifications of

histones and DNA is essential for an understanding of the specific physiological

functions of these modifications. Interestingly, the analysis of mRNA expression

changes in mouse and human tissues deficient for individual histone or DNA

modifying enzymes has revealed a relatively high degree of selectivity for genes

controlled by distinct epigenetic regulators. These results suggest that it may be

possible to identify genes and/or corresponding pathways responsible for the

defective cognition, memory, and social adaptation observed in genetically engi-

neered mice that model human mental retardation syndromes. Furthermore, a

comparison of the target genes controlled by individual epigenetic regulators may

help to elucidate their specific and/or overlapping functions. It is possible that

mutations in different epigenetic regulators are associated with the disruption of

large regulatory complexes leading to changes in a common subset of target genes.

The task of precise characterization of gene expression in the brain is greatly

complicated by the morphological and functional heterogeneity of neuronal and

non-neuronal subpopulations. Recent technological advances have made it possible

to characterize mRNA expression patterns in small and functionally distinct cell

populations [191,192]. This technology, called TRAP (Translating Ribosome
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Affinity Purification), utilizes cell type-specific tagging of the large ribosomal

subunit protein L10 with the enhanced green fluorescent protein (eGFP). Expres-

sion of an eGFP tagged ribosomal protein selectively in neurons of interest is

followed by immunoaffinity purification and extraction of the polyribosome

bound, cell type-specific mRNAs from crude brain extracts [191,192]. Currently,

the neuronal cell type specificity of ribosomal tagging is achieved by using Bac-

terial Artificial Chromosome (BAC) transgenes to express the eGFP-tagged ribo-

somal protein in specific cell types. Cell type-specific expression of the tagged

ribosomes is achieved by using a cell type-specific promotor, which, in most cases,

reproduces faithfully the expression pattern of the endogenous genes [191,192].

However, one can envision modifications of this technology that may involve virus-

mediated expression of eGFP-tagged ribosomes specifically in small groups of

neurons in distinct brain regions or the generation of knock-in mice expressing

the eGFP-tagged ribosomal proteins under the control of endogenous neuronal gene

promoters. Regardless of the details of the tagging approach, extraction of mRNA

from eGFP-labeled polyribosomes allows the identification of translated mRNAs at

any time point in any given cell type of interest in response to any environmental,

genetic, or pharmacological perturbation.

Unlike traditional approaches, the TRAP methodology has the advantage of

combining the detection of translated mRNAs with cell type specificity. The

methodology also avoids lengthy and frequently inefficient cell separation proce-

dures, which besides severing the mRNA containing axons and dendrites also

promotes RNA degradation and cell death. The use of established bacTRAP

mouse lines ensures that the mRNA translational profiles can be reproducibly

obtained and directly compared from the same neuronal cell population in experi-

mental and control mice. In conclusion, the TRAP technology should largely

overcome the obstacles presented by neuronal heterogeneity in the study of the

genetic basis of various neurological and psychiatric disorders.

2 Prospectus

Epigenetic control of brain function is an emerging field of neuroscience. With each

neuron being potentially different from all others, and with the constant flow of

information through the brain, the epigenetic regulators are likely to play a central

role in transmitting information about the environment to the chromatin. Epigenetic

lesions associated with mental retardation offer a glimpse into the mechanisms

underlying gene regulation by histone- and DNA-modifying enzymes as well as the

proteins that recognize these modifications. The epigenetic targets and signal

transduction mechanisms that control gene target specificity remain largely

unknown. Recent studies suggest a significant role for noncoding RNAs in regula-

tion of gene function. These long noncoding RNAs may control targeting of the

epigenetic regulators to specific gene loci. In addition, it is plausible that many

epigenetic regulators control the expression of miRNAs, which play a major role in
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regulation of protein expression in neurons. In this respect, it is possible that some

of the genes involved in mental retardation may contribute to the epigenetic control

of brain function through production of specific ncRNAs or miRNAs. The deve-

lopment of the ultra-sensitive techniques of RNA sequencing, which could be

combined with the TRAP method or similar technologies, may allow a single cell

analysis of the neuronal transcriptome. This, in turn, may facilitate the identifica-

tion of critical genetic and neuronal circuitry junctions that play a key role in

cognition, learning, and memory.
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Histone and DNA Modifications in Mental

Retardation

Shigeki Iwase and Yang Shi

Abstract Mental retardation (MR), which affects 1–3% of the total population,

refers to a pathological condition whereby the affected individuals suffer from

cognitive impairment, which is diagnosed by a low intelligence quotient (IQ)

(<70). Over the years, human genetic studies identified a plethora of candidate

genes causing MR, but mechanisms by which these candidates regulate cognitive

function remain poorly understood. While the functions of MR genes range from

cell signaling and gene expression to synaptic plasticity, there is growing evidence

supporting a critical role for epigenetic and chromatin regulatory proteins in MR.

Excitingly, recent molecular and genetic studies suggest the possibility of impro-

ving cognitive functions via modulation of epigenetic regulators, highlighting a

potentially new avenue for therapeutic intervention. In this review, we discuss

recent studies on epigenetic regulation in MR and explore the concept of epigenetic

therapy for MR.

1 Introduction

Mental retardation (MR) is a developmental disability characterized by “significant

limitation both in intellectual functioning and in adaptive behavior as expressed in

conceptual, social, and practical adaptive skills with onset before the age of 18
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years” [1, 2]. MR is one of the main symptoms for referrals seeking pediatric,

neurological, and genetics services and represents 5–10% of health care spending

in some developed countries [2]. Causative genetic mutations include both autosomal

and X-linked genes (X-linked mental retardation or XLMR). Defects of X-linked

genes have long been considered to be important causes of MR, based on the clinical

understanding that MR is significantly more common in males than in females [3]. To

date, mutations in 82 X-linked genes have been reported to give rise to MR [4].

Among the 82 XLMR genes, 20 of them (24%) encode synaptic proteins, which may

play a direct role in synaptogenesis and/or synaptic plasticity, suggesting that abnor-

mal synaptic function leads to deficits in cognitive functions [4]. Importantly, 27

XLMR genes (33%) encode either known or predicted nuclear proteins [4], sug-

gesting an important role for nuclear events including epigenetic regulation in MR.

Epigenetics refers to stable and heritable gene expression changes that do not

involve alterations in DNA sequences. Chromatin regulation represents one of the

important epigenetic regulatory mechanisms. While the role of DNAmethylation in

mammalian epigenetic regulation has been well established, the roles of the various

covalent modifications on histones are less clear. However, histone methylation has

been linked to DNA methylation and therefore is likely to play an epigenetic role,

even if indirectly [5–7]. Importantly, recent studies have shown that a number of

MR genes encode proteins and enzymes that regulate DNA CpG methylation and

histone methylation [5], supporting the emerging relationship of epigenetic regula-

tion and MR (Fig. 1).

In this review, we discuss the roles and mechanisms of action of MR genes that

regulate chromatin via covalent modifications on DNA and histones, as well as

noncovalent modifications of nucleosomes through ATP-dependent nucleosome

remodelers. Section 2 focuses on factors involved in regulation of the core of the

epigenetic mechanism, i.e., DNA methylation, including DNA methyl transferases

and methyl CpG binding proteins. In Sect. 3, we discuss how covalent modifica-

tions on histones, including acetylation and methylation, contribute to cognitive

functions. Sect. 4 is devoted to discussions of the involvement of ATP-dependent

remodeling proteins play a role in MR, possibly by regulating the higher-order

structures of chromatin in neurons. Utilizing the conceptual framework of epi-

genetic regulation in MR laid out in the preceding sections, we explore potential

strategies to ameliorate MR in Sect. 5.

2 DNA CpG Methylation in MR

In mammalian cells, CpG pairs can be covalently modified by the addition of a

methyl group to the C5 position of the cytosine ring by a number of DNA

methyltransferases [6–8]. Methyl CpGs in general coincide with repressive geno-

mic loci, including the centromeric/pericentrometic heterochromatin, the inactive

X-chromosome, the silenced alleles of the imprinted genes, transposable elements

as well as silenced promoters. Interestingly, the level of methylated cytidine is
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higher in the brain than in other tissues, suggesting its potential importance in

neuronal function [9–11]. The methylated CpG is recognized by a subset of proteins

via a conserved sequence motif termed MBD (Methyl CpG Binding Domain,

Fig. 1) [12, 13]. Importantly, five methyl-CpG-related factors have been implicated

in MR and CNS function (Fig. 1). One of the best-understood MR genes is the

methyl-CpG binder, MeCP2, whose mutations are considered to be the primary

cause of the most common female MR, Rett syndrome [14], which is discussed

below.

2.1 The Roles of DNA Methyltransferases in MR

Notably, two human congenital diseases accompanied with MR are caused by

mutations of DNA methyltransferases. The de novo DNA methyltransferase

Fig. 1 Schematic representation of domain architecture of 19 MR-implicated nuclear factors. The

associated neurological disorders are denoted in red. XLMR X-linked Mental Retardation.

(1) Histone acetyltransferase/Histone deacetylase. CBP is responsible for Rubinstein–Taybi syn-

drome (RTS) [66]. CBP possesses a HAT domain (green tube) which governs histone acetylation.
CBP also carries two types of zinc fingers: ZnF TAZ (purple trapezoid) and ZnF ZZ (light blue
triangle), a bromodomain (purple pentagon), and a PHD finger (light blue pentagon). HDAC2 has
an HDAC domain responsible for enzymatic activity. (2) DNA-methyl-transferases/Methyl-CpG

binding/DNA demethylation. DNMT1 and DNMT3b carry the DNMT domain (red hexagon)
catalyzing DNA methylation. MBD1 and MeCP2 carry a MBD domain (blue oval), which binds

methylated CpG. DNMT3B and MeCP2 are causative for ICF syndrome [15] and Rett syndrome

[14], respectively. DNMT1 also carries a CxxC-type ZnF (green trapezoid) and 2 BAH domain

(blue tubes). DNMT3B harbors a PWWP domain (green octagon) and an ADD domain (red
triangle). AT-hook in MeCP2 is represented by a thin green oval. GADD45b has a conserved,

Ribosomal L7 Ae motif (truncated blue oval). (3) Histone methyl-transferases/demethylases.

NSD1 and EHMT1 are implicated in the Sotos syndrome [87] or 9q subtelomeric deletion

syndrome [97], respectively. SMCX [159] and PHF8 [160] are both responsible for XLMR and

catalyze histone demethylation via their JmjC domain (deep blue pentagon). NSD1, MLL, and

EHMT1 are all histone methyl transferases catalyzing methylation reactions via their SET domain

(purple hexagon). All five proteins carry PHD fingers (light blue pentagon). NSD1 has two

PWWPs (green octagon), one ring finger (red triangle), and an AWS domain (truncated blue
hexagon). Ankyrin repeats in EHMT1 are denoted by green oval. The potential DNA binding

motif, BRIGHT in SMCX, is represented by purple hexagon. (4) ATP-dependent chromatin

remodelers. Both CHD7 and ATRX carry ATP-dependent remodeling motifs, DEXDc (orange
diamond) and HELICc (pink rectangle). CHD7 mutations give rise to CHARGE syndrome [155],

and ATRX is mutated in Alpha-thalassemia mental retardation syndrome, X-linked [152]. CHD7

carries a double chromodomain (skewed orange rectangles), a potential histone binding domain

SANT (orange hexagon), and two BRK motifs (truncated blue hexagon). ATRX has a potential

histone binding motif ADD in its N-terminus (red triangle). (5) Histone binding factors (“read-

ers”). WSTF is deleted in the Williams syndrome [117]. Three conserved motifs are found, DDT

(orange oval), PHD finger (light blue pentagon), and bromodomain (purple pentagon). EED and

BRWD3 have potential histone binding repeats WD40 (green triangle). BRWD3 is implicated in

XLMR [128]. PHF6 and BCOR are causative for the Börjeson–Forssman–Lehmann syndrome

[161] and Oculofaciocardiodental syndrome [130], respectively. Ankyrin repeats are found in the

BCOR C-terminus (green oval)
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DNMT3B has been found to be mutated in immunodeficiency, centromeric insta-

bility, and facial anomalies (ICF) syndrome [15]. ICF syndrome individuals show

immunodeficiency, including the absence or a severe reduction of the immunoglo-

bulin and a reduced number of T cells, making these individuals prone to infection

and death before adulthood [16]. Centromeric instability is believed to be attri-

butable to CpG demethylation of the satellite DNA adjacent to the centromeric

regions of some chromosomes [16]. Most individuals also exhibit growth and MR

and facial dysmorphism [16]. Global gene expression analysis using patient lym-

phocytes identified misregulation of a number of neurogenesis/neural function-

related genes, implying that DNMT3B might serve as a transcriptional regulator

in neurons via its de novo methylation activity [17]. Since a majority of the studies

on DNMT3B have been focused on its mechanism of CpG methylation and

pathogenesis of immunodeficiency, the function of DNMT3B in the nervous system

remains to be fully elucidated.

In contrast, the maintenance DNA methyltransferase, DNMT1, has been impli-

cated both in chromosomal integrity during neurogeneration and in neuronal

survival [18]. Conditional depletion of DNMT1 in the CNS precursor cells results

in a reduced survival of postnatal differentiating/differentiated neurons, without

detectable proliferation defects in the precursor cells. DNMT1-deficient precursors

showed hypomethylation at the centromeric repeat sequences and retroviral DNA

Intra-cisternal A particles (IAPs) [18]. Since a conditional knockout of the Dnmt1

gene in postmitotic neurons had no impact on neuronal survival, it seems likely that

hypomethylation of genomic DNA in the precursors may somehow have affected

neuronal survival after the neurons exit from the cell cycle [18]. Given that

maintenance methylation by DNMT1 needs de novo methylation by DNMT3A/

3B to begin with, and that DNMT3B deficiency causes centromeric abnormality

and the ICF syndrome, it is conceivable that DNMT3B and DNMT1 may collabo-

rate to maintain centromere integrity in the dividing neuroprecursors (Fig. 2a).

Thus, one of the important roles of CpG methylation is protecting genomic integrity

in dividing neuroprecursors, and a compromise in such a mechanism impacts the

survival of postmitotic neurons.

2.2 Reversibility of CpG Methylation

The removal of methyl groups from DNA can be accomplished by either a passive

or active process. Passive demethylation occurs during DNA replication. However,

increasing evidence points to the importance of active DNA demethylation in

several cellular processes during development, such as rapid demethylation of the

male pronucleus in the mammalian zygote. Several possible mechanisms have been

proposed to account for active demethylation, which include excision of the

methylated nucleotides followed by DNA repair (reviewed in [19]). Recent studies

also identified enzymes that convert methyl C to hydroxymethyl C [20, 21],

revealing yet another potential mechanism for the regulation of DNA methylation
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Fig. 2 CpG methylation in MR-related neuronal functions. (a) Proposed function of DNMT1/3B

and MBD in neurogeneration and differentiation. Centromeric DNA (upper left) repeats and

retroviral IAP (lower left) genes are methylated by DNMT1. The de novo methylase DNMT3B

may also be involved in this process. MBD1 suppresses IAP gene expression (lower left). CpG
methylation-mediated silencing of centromeric repeats and viral genes protect genomic integrity,

which in turn facilitates faithful proliferation and differentiation of neuroprecursor cells (right).
(b) Multiple facets of MeCP2 action. MeCP2 activates MR and autism-related genes, such as

A2BP1 and gamt, in concert with CREB (left). MeCP2 regulates genomic imprinting at the Dlx5/6

locus likely through the recognition of CpG methylation in the intergenic regions and forming

repressive chromatin loop (right). MeCP2 plays key roles in the refinement of connectivity
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in vivo. However, it remains unclear whether bona fide DNA demethylases exist to

directly remove the methyl groups without involving base or nucleotide excision

and repair.

Nonetheless, active DNA demethylation in postmitotic neuron has been

observed in several studies [22, 23], and dynamic regulation of DNA methylation

has been shown to be important for learning and memory [24]. For instance, forced

membrane depolarization of cultured cortical neurons by potassium chloride (KCl)

induces transcription of neuronal synaptic plasticity-related genes, such as BDNF

[25, 26]. Importantly, a membrane depolarization-responsive promoter of the

BDNF gene has been found to be demethylated upon KCl treatment [22, 23]. In

addition to BDNF, the promoter of Reelin, a positive regulator of memory forma-

tion, is demethylated in the rat hippocampus during the learning process in the fear-

conditioning test [24]. Finally, it was reported that Gadd45, an integral component

of the deamination coupled G/T mismatch repair-mediated demethylation [27],

promotes demethylation of plasticity-related gene promoters including BDNF,

thereby activating their transcription and inducing activity-dependent dendritic

growth [28]. These observations suggest that reversal of DNA methylation is

engaged in synaptic plasticity and in turn long-term memory formation, which

requires de novo synthesis of mRNA/protein [22–24] (Fig. 2c). Taken together,

balancing the level of DNA methylation in vivo is important for a variety of

important biological processes.

2.3 Methyl CpG “Readers”

Rett Syndrome is caused by mutations of the MeCP2 gene, which encodes a methyl

CpG binding protein [14]. Rett Syndrome patients appear to develop normally from

birth until about 6–18 months of age, and then start showing regression in speech

and purposeful hand movements. These patients also exhibit severe MR, autistic

features, ataxia, apraxia, and hyperventilation [29]. Neuropathological studies

suggested that loss of MeCP2 causes disruption of critical postnatal synaptic

refinements but not gross change of brain architecture [30, 31]. Mecp2 null male

mice display no phenotype early in development, but by 3–8 weeks of age, they

develop a stiff, uncoordinated gait, reduced spontaneous activity, irregular breath-

ing with most animals dying at 10 weeks of age [32, 33]. Mecp2 heterozygous

females start exhibiting irregular breathing around 9 months old [32]. These

phenotypes are reminiscent of Rett syndrome symptoms. MeCP2 expression in

�

Fig. 2 (Continued) maturating/mature neuronal circuitry (lower left). (c) Active DNA demethyla-

tion of BDNF gene promoter. Stimulation of neurons evokes transcription of a subset of genes

involved in dendritic growth and synaptic plasticity such as BDNF (top). In this process, a

deamination coupled G/T mismatch repair-mediated demethylation complex including Gadd45

protein, remove methyl group from DNA (top). Gadd45 is required for the activity-dependent

dendritic growth (bottom)
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neurons increases progressively with maturation throughout the CNS [34–36],

suggesting a role in maturating neurons. In agreement with this observation, loss

of MeCP2 causes an accumulation of neurons stalled at a transitional stage, judged

by the expression of proteins associated with both immature and mature neurons,

suggesting delayed maturation [37–39]. In addition to a role in terminal differen-

tiation, MeCP2 also has well documented synaptic functions. Mecp2-deficient mice

show impaired dendritic outgrowth [33, 34], basal synaptic transmission [40–42],

balance between excitatory and inhibitory circuit [43], and hippocampal- and

amygdalar-mediated learning [41, 44]. Taken together, MeCP2 plays important

roles in the refinement of connectivity maturating/mature neuronal circuitry

(Fig. 2b). Importantly, postnatal expression of wild-type Mecp2 in MeCP2-defi-

cient mice restores many symptoms, including longevity, irregular breathing, and

synaptic transmission, suggesting that the damage caused by the loss of MeCP2 is

not irreversible. Given the important roles of MeCP2 in neuronal wiring, ameliora-

tion of Rett-like symptoms revealed surprising plasticity of postnatal neuronal

connectivity. Moreover, these data suggest that human Rett-syndrome individuals

might not have irrevocable alterations in their neurons, raising the hope for thera-

peutic intervention through restoration of MeCP2 functioning [45, 46].

How does MeCP2 carry out the biological functions discussed above? Based on

its ability to bind methylated CpG and to recruit HDAC-containing corepressors, it

was speculated that MeCP2 acts as a global transcriptional silencer [47]. However,

recent global gene expression analyses uncovered an unexpected feature of Mecp2,

which is an ability to act as a transcriptional activator, as well as a repressor [48].

Specifically, MeCP2 functions as a transcriptional activator through its physical

interaction with the sequence-specific DNA-binding transcription factor CREB

[48]. Genes that are activated by MeCP2 include A2BP1 and Gamt, which have

been implicated inMR and autism, andmay therefore account for some facets of Rett

phenotypes [48]. Interestingly, the genes directly activated by MeCP2 lack methy-

lated CpG in their promoters, suggesting that the activation function is independent

of CpG methylation [48] (Fig. 2b, left). Its interaction with CREB suggests that

MeCP2 is recruited by CREB to gene promoters for activation. However, at present it

is unclear how MeCP2 contributes to transcriptional activation.

Mecp2 appears to regulate genomic imprinting as well. MeCP2 has been shown

to occupy an imprinted gene cluster harboring Dlx5 and Dlx6 at mouse chromo-

some 6, and loss of Mecp2 resulted in biallelic expression of both genes, possibly

due to disruption of specific three-dimensional chromatin loops [49]. It is note-

worthy that the Dlx genes are implicated in GABA synthesis whose misregulation

can cause the Angelman Syndrome, which is a Rett-like neurodevelopmental

disorder [50]. Genome-wide MeCP2 localization analysis utilizing ChIP-Chip

revealed that 59.4% of MeCP2 binding sites were intergenic, and of these, 58.4%

were >10 kb away from the transcriptional start or transcriptional termination sites

[51]. The imprinted gene regulation and this periodic occupation of intergenic

regions suggest that organization of chromatin loops is perhaps one of the major

mechanisms of MeCP2 function.
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Amore recent study supports the notion that MeCP2 does not function as a gene-

specific regulator but rather globally suppresses transcriptional noise, such as

transcription of repetitive sequences, in a methylation-dependent manner [52]. In

sum, recent evidences have argued that the classical role of MeCP2, CpG methyla-

tion-dependent, gene-specific transcriptional repressor may not be how it regulates

biological processes important for brain function. Since there appears to be some

correlation between CpG methylation and MeCP2 occupancy in the intergenic

regions [51], effects on long-range chromosomal organization, such as the forma-

tion of chromatin loops, may be the most relevant hypothesis for how CpG

methylation contributes to MR (Fig. 2b, right).

In contrast to MeCP2 function in mature neurons, MBD1-deficient mice have

lower neuron density and exhibited reduced survival of the adult neural stem cells

(ANCs) during neuronal differentiation in the hippocampus [53]. MBD1-deficient

ANCs have higher probabilities of aneuploidy, mainly gaining of chromosome

numbers, and de-repression of the IAP retroviral genes. Furthermore, LTP in

hippocampus of MBD1 KO mice was significantly attenuated, and mice showed

leaning deficits in the Morris water maze trials [53]. Thus, DNMT1 and MBD1

suggest a possible role of CpG methylation as a guardian of genomic stability in

postmitotic neuronal survival and cognitive function (Fig. 2a), but the exact mech-

anism still remains to be understood.

Taken together, it appears that DNA methylation regulators exert two major

roles in CNS. One is protection of genome stability of neuroprecursors in turn

assuring neuronal survival in development. Another role is gene regulation in

mature neurons represented by MeCP2 and Gadd45. With respect to the gene

regulatory role, it is noteworthy that DNA methylation is not irreversible in

neurons. This dynamic nature CpG methylation may be the key to achieve synaptic

plasticity. We anticipate that continued investigation of dynamic regulation of CpG

methylation will provide significant new insights into molecular mechanisms

underlying learning and memory, and their connections with MR.

3 Covalent Histone Modifications and MR

3.1 Histone Acetyl Transferases/Histone Deacetylase

Acetylation is one of the first histone posttranslational modifications to be dis-

covered to impact gene transcription [54, 55]. Acetylation of the histone tails of all

four core histones is generally correlated with open chromatin and active transcrip-

tion [56], which is consistent with the molecular function ascribed to the majority

of histone acetyltransferases (HATs), i.e., transcriptional coactivators. Various

mechanisms can account for the effect of acetylation on chromatin structure and

gene expression. Acetylation of lysine residues leads to a reduction of posi-

tive charge, which can weaken histone-DNA [54] or nucleosome–nucleosome
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interaction, but might also alter specific contacts between nucleosomes and regu-

latory proteins [57–59]. Any such changes can lead to changes in higher-order

chromatin folding. Importantly, the histone acetyltransferase CBP (CREB-binding

protein) [60] has been genetically defined as an MR gene, whose mutations are

correlated with the Rubinstein–Taybi Syndrome (RTS).

CBP was originally identified as a coactivator of CREB (cAMP responsive

element binding protein) [61]. Importantly, CREB had been characterized as a key

player for long-term memory [62], which is one of the cognitive deficits observed in

MR patients. Several decades ago, neuroscientists became aware of the fact that

unlike short-term memory, long-term memory requires synthesis of new mRNAs and

proteins [63]. The behavioral and anatomical studies of the sea slugAplysia suggested
that the formation of long-term memory and learning results from changes in the

strength or effectiveness of preexisting interconnected cells [64]. This flexible nature

of synaptic strength is termed synaptic plasticity and is now proven to be conserved

among species. In this context, CREB induces transcription of genes necessary for

long-term memory formation, in response to cAMP signaling caused by neuronal

stimulation [62, 64], and this in turn increases the efficacy of synapses [65].

Consistent with a cofactor role of CBP for CREB, a genetic study identified

heterozygous deletions of the CBP gene in the human cognitive disorder RTS. RTS

patients are characterized by growth and psychomotor development delay, skeletal

abnormality, and severe MR [66]. Genetic manipulations have generated several

RTS model mice. Heterozygous deletion of the CBP gene results in long-term

memory deficits, assessed by behavioral tests, as well as defective long-term

potentiation in the late phase (L-LTP) in the hippocampus through electrophysio-

logical studies [67]. Analysis of this mouse model supports the idea that haploin-

sufficiency of the CBP gene causes cognitive deficits in the RTS patients [67].

Another mouse model harboring an inducible expression system of a catalytically

inactive CBP mutant revealed the importance of HAT activity for synaptic plasti-

city in vivo [68]. These authors suggested the idea that local changes of chromatin

structure by histone acetylation allow a prolonged elevation of CREB target gene

transcription, although CREB activation by neuronal stimulation is transient in

nature [68]. These studies support a role of epigenetic regulation in cognitive

functions including learning and memory.

Histone acetylation is dynamically regulated by both HATs and histone deace-

tylases (HDACs). HDACs are commonly found in corepressor complexes [69] that

antagonize the transcriptional activation function of HATs [70–74]. Using the RTS

mouse model discussed above, investigators found that administration of HDAC

inhibitors ameliorated long-term memory formation deficits in the heterozygous

CBP mutant [67]. Similarly, an earlier study of Aplysia showed that inhibition of

HDACs by the general HDAC inhibitor Trichostatin A (TSA) facilitated long-term

memory formation by blocking long-term depression, a manifestation of negative

synaptic plasticity [75]. Recently, a mouse genetic study unveiled negative regula-

tion of synaptic plasticity by HDAC2 [76]. Specifically, over-expression of HDAC2

in neurons led to impaired memory formation, while targeted disruption of the

HDAC2 gene, which was correlated with increased H3 and H4 acetylation,
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facilitated memory formation [76]. Consistently, HDAC2 has been shown to bind

regulatory regions of memory-related genes in the brain, including some CREB

targets. These results provide a conceptual framework that memory formation is

under the regulation of opposing epigenetic forces, such as acetylation and deace-

tylation, and suggest that a proper balance between the actions of the opposing

epigenetic regulators is critical for memory formation (Fig. 3). This raises the

possibility that restoring the altered epigenetic balance by modulating the opposing

regulators (by small molecules, for instance) may provide therapeutic benefits.

3.2 Histone Lysine Methyltransferases

In addition to acetylation, histones are methylated on both lysine (K) and arginine

(R) residues. Six lysine residues, K4, K9, K27, K36 and K79 on histone H3, and

K20 on histone H4, are known to be important for gene regulation, heterochromatin

formation, and DNA damage response [77, 78]. Importantly, the same lysine

residue can be differentially methylated to mono-, di-, or tri-methylated states and

increasing evidence suggests that the different degrees of methylation on the same

lysine residue may also play differential roles [79–81]. Given that histone methyla-

tion has a slower turnover rate than acetylation, methylation is more likely to be

involved in longer-term regulatory events even with respect to neuronal function.

While histone methylation is catalyzed by histone methyltransferases (HMTs)

[82], removal of the methyl group is carried out by two histone demethylase

(HDMs) families of proteins including LSD1/LSD2 as well as multiple members

of the JmjC family [83–86]. Importantly, a number of HMTs and HDMs have been

implicated in MR and neuronal functions. For instance, haploinsufficiency of the

HMT NSD1 has been implicated in the Sotos Syndrome, a neurological disorder

characterized by overgrowth from the prenatal stage through childhood, advanced

bone age, large skull, acromegalic features, occasional brain anomalies and sei-

zures, and MR [87, 88]. There are no defined mouse models as yet for Sotos

Syndrome, since homozygous deletion of NSD1 in mice caused gastrulation failure

and a high incidence of apoptosis [89], and no remarkable morphological abnorm-

alities were manifest in heterozygous mice [89]. However, more careful analysis

may yet reveal neurological disorders in heterozygous mice, given that Sotos

Syndrome is semidominant in man.

There are conflicting data with respect to NSD1 substrates, but a recent study

demonstrated that NSD1 predominantly methylates H3K36 to the dimethyl state

(H3K36me2) in vitro when the more physiologically relevant, nucleosomal sub-

strates were presented for the methylation reaction [90]. A role for H3K36 methyl-

ation is the suppression of inappropriate initiation from cryptic start sites within the

coding region [91–93]. Although the exact function of NSD1 in the Sotos Syn-

drome remains unclear, the demonstration that NSD1 is a HMT that methylates

H3K36 suggests that it may play a positive role in gene expression by suppressing

spurious gene transcription. It may be particularly interesting to investigate NSD1
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in the context of retinoic acid signaling (where NSD1 was initially identified [94]),

since retinoic acid appears to facilitate neurogeneration in both embryonic CNS

development and adult brain plasticity [95, 96].

In addition to NSD1, the euchromatic histone-lysine N-methyltransferase 1

(EHMT1; also known as GLP[97]), which mediates H3K9 dimethylation [98,

99], is implicated in the chromosome 9q subtelomere deletion syndrome

(9qSTDS). Haploinsufficiency of GLP causes patients to suffer from severe hypo-

tonia, speech and motor delay, a compromised facial feature, epilepsy, and behav-

ioral disturbances including antisocial/autistic behavior and aggressive outbursts

[97, 100]. Targeted disruption of Ehmt1 in mice causes embryonic lethality,

indicating a crucial role in early development [99]. Recent behavioral analysis

using the heterozygous Ehmt1/Glp mice recapitulated hypoactivity and the autis-

tic-like features of 9qSTDS [101]. However, similar to NSD1, little is known about

the cellular and molecular functions of EHMT1/GLP relevant to the neurological

abnormality observed in these patients. Importantly, HMT1/GLP is primarily

responsible for generating H3K9me2 in euchromatin [98, 99]. Thus, EHMT1/

GLP is likely to be involved in gene regulatory mechanisms rather than mainte-

nance of chromosome integrity via regulation of the centromeric/telomeric hetero-

chromatin. Consistently, EHMT1/GLP has been implicated in the transcriptional

repression mediated by E2F6 [98], although the neuronal functions of EHMT1/GLP

and the underlying molecular mechanisms remain to be elucidated.

The third HMT implicated in cognitive function is MLL, which catalyzes

H3K4me0 to H3K4me3, a mark that is enriched at the transcription start sites

(TSS) of active (or poised) genes[102]. Recent studies showed that hippocampal

LTP is significantly attenuated in the Mll heterozygous mice, suggesting a positive

role for MLL and H3K4 methylation in memory formation [103]. In contrast,

heterozygous deficiency of Eed, which encodes a component of the PRC2 complex

that mediates H3K27 trimethylation [104], resulted in a robust enhancement of LTP

[103]. Interestingly, mice bearing heterozygous deletions for both Mll and Eed

�

Fig. 3 Balancing epigenetic forces in cognitive function. (a) Balancing histone acetylation. CBP

acetylates histones and activates synaptic genes, which facilitate long-term potentiation (LTP).

HDAC2 negatively regulates learning and memory. HDAC2 occupies CREB-regulated gene

promoter in mouse brain and represses their transcription via histone deacetylation. (b) Balancing

in histone methylation. MLL is a histone H3K4 methyltransferase that positively regulates LTP.

Eed, an integral component of the Polycomb complex, negatively regulates LTP and transcription.

The polycomb complex contains the repressive H3K27 methyltransferase EZH2, thus EZH2 and

Eed may work in concert. Given the opposing phenotype of MLL and Eed-deficiency in LTP, they

may counteract on the regulatory regions of the same target genes. (c) Loss of function of SMCX

results in MR, suggesting that SMCX is a positive regulator of cognitive function. SMCX and

MLL may cooperatively activate common target genes at different regulatory regions such as

enhancers and promoters. (d) Alternatively, MLL and SMCX may regulate different sets of genes.

While MLL likely methylates H3K4 at promoters to activate a set of genes (group A target genes,

on top), SMCX may demethylate H3K4 at enhancers and thereby activate another set of

genes (group B target genes, in middle). When SMCX works on promoter, the enzymatic activity

is predicted to negatively regulate target gene transcription (group C target genes, bottom)
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showed normal LTP [103], suggesting an antagonistic relationship between

H3K4me3 and H3K27me3 in the regulation of memory formation, reminiscent of

the relationship between CBP and HDAC discussed above. Detailed behavioral

studies of the Mll and Eed mutant mice will provide novel insights into how a

proper balance between K4 and K27 methylation on histone H3 contributes to

cognitive function (Fig. 3).

3.3 Histone Lysine Demethylases

Similar to the other posttranslational modifications, histone methylation is also

dynamically regulated by both HMTs and HDMs [84–86]. Recent studies showed

that two XLMR genes, SMCX/JARID1C [105, 106] and PHF8 [107], encode

HDMs. Importantly, patient mutations significantly compromise the demethylase

activities of SMCX and PHF8, thus linking histone methylation regulation to MR.

XLMR-associated point mutations in SMCX/JARID1C compromise nuclear local-

ization, chromatin binding, and enzymatic activity, suggesting multiple effects of

these mutations on the functions of SMCX [105, 106]. Loss of SMCX results in

increased apoptosis in the zebrafish brain during development and significantly

compromised dendritic growth in the rat cerebellar granule neurons, respectively.

These findings suggest that SMCX plays both a developmental role in regulating

neuronal survival as well as in postmitotic neurons where it is essential for dendritic

development [106]. The role of SMCX in dendritic development is particularly

intriguing and warrants further investigation given that dendritic spine development

is believed to be important for cognitive function and therefore highly relevant to

MR [108, 109].

What might be the molecular mechanism that underlies SMCX’s involvement in

cognitive function regulation? A recent study shows that SMCX represses neuron-

specific gene repression in nonneuronal cells, in concert with REST/NRSF, a zinc-

finger containing DNA binding factor [105]. REST is mainly expressed in

nonneuronal cells [110, 111], but is also found at a low level in neurons. It remains

to be investigated whether SMCX also works with REST in neurons to repress gene

expression and how this may impact cognitive function. More recently, a second

XLMR gene, PHF8, has been shown to also encode a demethylase [107] (Qi and Shi

unpublished). Missense mutations associated with XLMR abolish catalytic activity,

suggesting the importance of catalysis in neuronal development/functioning. How-

ever, the cellular/molecular functions of PHF8 are largely unknown.

In summary, both histone acetyltransferases/deacetylases and HMTs/HDMs have

been shown to play a role in regulating brain function, but the underlyingmechanisms

are far from clear. In some cases, the biochemically opposing enzymes (such as CBP

and HDAC2) also have opposite biological functions, suggesting that balancing

histone acetylation is important for brain function. In other cases, defects in the

antagonistic methyltransferases and demethylases (such as the H3K4 methylase

MLL vs. the H3K4 demethylase SMCX) both lead to malfunction of the brain. In
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the latter case, it is possible that MLL and SMCX collaborate to regulate cognitive

functions via regulation of either the same sets of target genes when they are

positioned at different regulatory regions (Fig. 3c), such as enhancers vs. promoters,

or distinct sets of genes (Fig. 3d). Thus, determination of direct target genes by

genome-wide localization study and gene expression analysis using the relevant cell

types, including hippocampal and cortical neurons, will be necessary to understand

the molecular etiology of XLMR caused by HMTase/HDMase mutations.

3.4 Histone Binding Factors (“Readers”)

Modified histone tails are proposed to serve as recruitment signals for various

molecular and biochemical activities (such as ATP-dependent remodeling proteins

discussed below). Consistent with this idea, a large number of proteins have been

identified to carry distinct protein modules dedicated to the recognitions of various

histone modifications (“reader modules”) [112, 113]. Interestingly, multiple MR

genes appear to encode proteins carrying those reader modules, indicating the

importance of the ability to recognize histone modifications in human diseases.

For instance, the XLMR gene products SMCX and PHF8 both contain PHD

domains (plant homeo domain), which play a role in recognizing H3K9me and

H3K4me, respectively [106, 114]. The ATRX protein has the ADD domain, which

also serves to bind histone H3 tail (Iwase and Shi unpublished). It is believed that

histone binding via these modules is important for the proper genomic localization

of the corresponding enzymes [115, 116]. Other potential histone modification

readers implicated in MR are discussed below.

WSTF is one of several candidate genes for the Williams syndrome, which is a

complex developmental disorder including vascular and heart malfunction, dys-

morphic facial features, growth, and MR [117, 118]. The WSTF protein is found in

at least two functionally distinct multiprotein complexes, WINAC [119] and WICH

[120], both of which contain ATP-dependent chromatin remodeling factors, Brg1/

Brm and SNF2h, respectively. However, WSTF itself does not have remodeling

activity, but instead functions as both a histone tyrosine kinase and a reader of

specific histone modifications [119–121].

WSTF carries two potential reader modules, a PHD finger and a bromodomain,

which has an intrinsic affinity for acetylated lysines [122]. The WSTF bromodo-

main seems to have an important role in VDR (Vitamin D receptor)-mediated trans-

activation through its association with acetylated histones [123]. Although many

PHD fingers have been shown to recognize methylated or unmethylated histone

tails [124–127], the substrate for the WSTF PHD finger is unknown. Another

bromodomain-containing XLMR gene is BRWD3, which was found to be mutated

in two XLMR families where patients show macrocephaly, noted in infancy, and

prominent ears [128]. Notably, both mutations cause frame-shift and result in the

loss of the bromodomain [128]. However, once again the molecular and cellular

roles of BRWD3 are unknown and await analysis.
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A final case is the Börjeson–Forssman–Lehmann syndrome (BFLS), which is

characterized by moderate to severe MR, epilepsy, hypogonadism, hypometabo-

lism, obesity with marked gynecomastia, swelling of subcutaneous tissue of the

face, narrow palpebral fissure, and large but not deformed ears [129]. Mutations in

PHF6, which encodes a protein carrying two tandemly arranged PHD fingers, are

considered causal for BFLS [129]. Consistent with the role for PHF6 in MR, Mouse

Phf6 was most highly expressed in the embryonic central nervous system (CNS)

and at lower levels in other tissues. However, only low levels of Phf6 transcripts

were detected in the adult brain, suggesting that it is involved in neurogenesis [129].

In one patient, a missense mutation is located in the first PHD finger, suggesting a

role for this putative histone-binding module, yet the substrates for either PHD

finger are not known.

Finally, dominant mutations of BCOR (BLC6 corepressor) in females have been

found in the Oculofaciocardiodental (OFCD) syndrome, a congenital disorder

involving cataracts, microphthalmia, cardiac, dental and digital anomalies, and

MR [130]. BCOR is a transcriptional corepressor originally identified by its ability

to interact with the transcriptional repressor BCL6, which plays critical roles in

specific immunological processes [131]. Inhibition of BCOR expression in zebra-

fish results in colobomatous eye defects and perturbations in somite and skeletal

anomalies, reminiscent of the human OFCD symptoms [130]. BCOR morpholinos

also severely affect CNS development, causing disruption and irregularities of the

cerebellum, optic tectum, and the boundaries of the fourth ventricle [130], suggest-

ing that defects in neural development may cause the MR.

Recent studies provided insights into the mechanism of BCOR-mediated

transcriptional repression. BCOR forms a multisubunit complex with the PcG

proteins including RING1, RYBP, NSPC1, RNF2, and the HDM FBXL10/

JHDM1B [132]. RNF2 is a mono-ubiquitin ligase of histone H2A [133, 134],

which serves as a repressive histone mark [134, 135]. FBXL10/JHDM1B is

capable of removing mono- and di-methylation on H3K36, modifications that

are correlated with transcriptional elongation and suppression of intragenic tran-

scription [136]. Thus, BCOR seems to function as a platform to recruit a reper-

toire of histone modifying enzymes onto specific genomic loci. Consistently,

decreased occupation by FBXL10/JHDM1B and increased K36me2 have been

observed in a particular gene promoter in the mesenchymal stem cells upon the

loss of BCOR [137]. The C-terminus of BCOR contains the conserved ankyrin

repeats (Fig. 1) and is required for the association of BCOR with NSPC1 and

FBXL10/JHDM1B [132]. Strikingly, most patient mutations are nonsense, result-

ing in the generation of premature stop codons before the ankyrin repeats [130].

Interestingly, the ankyrin repeats of G9a and EHMT/GLP have recently been

shown to recognize mono- and dimethylated histone H3K9 (H3K9me1/2) [138,

139]. It is tempting to speculate that the BCOR ankyrin repeats bind methylated

histones and play a role in the coordination of the various histone-modifying

enzymes in regulating gene expression. Once again, identification of relevant

BCOR target genes in neuronal lineage development will allow further investiga-

tion of this corepressor in CNS development associated with human MR.
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Understanding the role of “reader” proteins in MR is still at an early stage, as

their involvement in MR has only been suggested by human genetic studies.

Biochemical screenings aimed at identifying their binding substrates will provide

insights into their mechanism of action, while their functions in the nervous system

will have to be investigated by cellular and animal models. These efforts to clarify

the roles of “readers” will provide the platform of understanding how epigenetic

signals are translated into functional outcomes in neurons.

4 Noncovalent, ATP-Dependent Chromatin Remodeling in MR

In addition to covalent DNA and histone modifications, chromatin can also be

regulated by noncovalent mechanisms such as ATP-dependent remodeling events

mediated by ATP-dependent remodeling proteins (ATPases) that alter higher-order

chromatin structure and transcriptional regulation (reviewed in [140–142]). In vitro
activities of these enzymes include nucleosome sliding, eviction/deposition, and

DNA-translocation, and their activities in vivo are often coordinated with enzymes

that mediate covalent modifications, such as HATs and HDACs [141, 142]. To date,

two ATP-dependent chromatin remodelers have been implicated in MR-associated

human diseases. a-Thalassemia/mental retardation X-linked (ATRX syndrome) is a

rare congenital disorder that inflicts severe MR, anemia, facial hypomorphism,

and genital abnormality primarily on males [143, 144]. Unlike in conventional

a-thalassemia, the a-globin genes are not mutated in these patients; instead, the

a-globin mRNA level is significantly down-regulated, implicating the involvement

of transcriptional or posttranscriptional mechanisms. The causative mutation resides

in a gene encoding an SNF2 (Sucrose Non Fermentation)-like ATP-dependent

remodeler, ATRX [145]. The majority of the missense mutations (55 out of 66)

were found either in the N-terminal ADD (ATRX-DNMT3-DNMT3L) domain or

the C-terminal enzymatic domain, indicating functional importance of both

domains. However, essentially nothing is known about the function of either the

ADD or the catalytic domain.

ATRX is known to be localized in the pericentromeric heterochromatin (PCH)

[146], acrocentric chromosome where rDNA repeats reside [146] and the inactive

X chromosome in female [147], suggesting a general function for ATRX in

heterochromatin. Loss of ATRX results in sister chromatid cohesion and conden-

sation defects, which in turn lead to chromosomal mis-segregation in neuropre-

cursors, as well as increased apoptosis and hypocellularity in the mouse forebrain

[148]. This is consistent with the fact that the integrity of the PCH is crucial for

sister chromatid cohesion and faithful chromosome segregation [149, 150]. These

findings form the basis for the current model where ATRX syndrome is associated

with reduced number of neurons due to apoptosis caused by the cohesion/conden-

sation defect.

Interestingly, there may be a functional connection between ATRX and DNA

CpG methylation via MeCP2, whose mutation causes Rett Syndrome, as discussed
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above. It has been reported that ATRX physically interacts with MeCP2 [151] and

that there is an alteration of CpG methylation level in certain area of the ATRX

patient genome [152]. Specifically, patient lymphocytes showed either hypomethy-

lation or hypermethylation at the rDNA loci and Y chromosome-specific repeat

(DYZ2), respectively, suggesting a potential regulatory role of ATRX in CpG

methylation [152]. Importantly, MeCP2 appears to be necessary for ATRX PCH

localization [151], suggesting CpG methylation-dependent recruitment of ATRX to

heterochromatin. These findings suggest reciprocal regulation between ATRX and

DNA CpGmethylation and MeCP2, representing one of the few examples where an

interplay between two MR gene products is documented. Finally, a recent study

identified ATRX as a chaperone for histone H3.3, and demonstrated that ATRX is

important for the deposition of H3.3 in the telomeric regions [153]. Taken together,

ATRX may play a role in heterochromatin-specific nucleosomal organization in

concert with DNA methylation and deposition of specific histone variants.

Mutations in the second ATP-dependent remodeling protein, CHD7 (Chromo-

domain Helicase DNA binding), cause an MR-related disorder, CHARGE syn-

drome (Coloboma of the eye, heart defects, atresia of choanae, severe retardation of

growth and development, genital and ear abnormalities) [154, 155]. CHARGE

syndrome is a rare, usually sporadic dominant autosomal disorder and MR is

found in more than 70% of the CHARGE cases where patients show low adaptive

behavior skills and motor impairments [156]. Several mouse models recapitulate

some of the patient phenotypes such as defects in inner ear and heart ultrastructure

[157]. There is a broad and abundant expression of CHD7 in the developing CNS,

including the neopallial (future frontal) cortex, tectum, and the ventricular zone of

the medulla, yet the MR-relevant phenotypes of CHD7 mutation have not yet been

examined.

Recent genome-wide mapping efforts of CHD7-bound loci revealed that CHD7

predominantly localizes distal to the TSS (Transcription Start Site), and in a smaller

number of cases, to TSS. CHD7 localization most often coincides with H3K4me1/

2 or H3K4me3 at the distal sites and TSS, respectively, where genes nearby are

expressed at relatively high levels. Based on this observation together with other

studies demonstrating the H3K4me1 is a hallmark modification of enhancers [80,

81], it has been suggested that CHD7 activates genes by facilitating long-range

communications between enhancers and promoters [158]. However, important

questions still remain; what are the MR-relevant target genes for CHD7? What is

the impact of CHD7 loss on the regulation of these genes? What is the role of the

ATP-dependent remodeling activity of CHD7 in gene regulation and in the

CHARGE syndrome? To address these issues, further studies using the in vivo
mouse models and in vitro enzymatic assay will be required.

There is very limited knowledge regarding how higher-order structure of chro-

matin is regulated that affects neuronal functions. Unlike histone modifying

enzymes, ATP-dependent motors directly impact chromatin structure, which influ-

ences gene transcription and maintenance of genome integrity. Thus, ATRX and

CHD7 are attractive models that provide opportunities to investigate how chro-

matin structure contributes to proper brain development and functioning.
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5 Potential Therapeutic Implications

The demonstration that MeCP2 expression in the mouse Rett syndrome model can

resurrect many of the cognitive function raised the hope of therapeutic intervention

by targeting epigenetic regulators [45, 46]. As discussed above, a number of MR

gene products, such as SMCX and PHF8, are epigenetic enzymes whose activities

are compromised by the disease-causing genetic mutations. Thus, it is conceivable

to develop small molecules that enhance and restore the enzymatic activities of the

mutant enzymes, which in turn may have a beneficial effect on MR patients

carrying these mutations. Alternatively, given the importance of proper epigenetic

mechanism in learning and memory discussed above (Fig. 3), another therapeutic

strategy would be to restore the balance in patients by small molecules that are

designed to inhibit the negative regulators in cognitive functions. Furthermore,

MR-associated mutations compromise not only enzymatic activity but also histone-

binding ability of epigenetic regulators. For instance, missense mutations in the

ADD domain of ATRX severely decrease its affinity to histone (Iwase and Shi

unpublished). Thus, it is possible that small molecules can be found that will restore

the ability of the mutant ADD domain to bind histone tails.

6 Concluding Remarks

In this review, we discussed evidence that supports an emerging role for epigenetic

regulation in CNS functions that are relevant to MR. The developmental defects

in these patients are often attributable to compromised neuronal differentiation and

survival, as in the cases of DNMT1, MBD1, and ATRX. Other types of MR are

accounted for by attenuated functions of postmitotic neurons, shown most clearly in

Rett syndrome caused by MeCP2 deletion. Developmental defects likely involve

the inheritance of disease-associated epigenetic modifications through successive

cell divisions. In addition to the developmental roles, in mature, postmitotic

neurons, epigenetic mechanisms may play a role in neuronal plasticity regulation

relevant to learning and memory. In this regard, we noted the importance of

balancing histone modifications via the opposing activities of the epigenetic reg-

ulators (CBP vs. HDAC2, and MLL vs. EED) in regulating LTP. These modifica-

tions are reversible due to the antagonistic actions of both the forward and the

reverse enzymes (DNMT vs. the Gadd45 complex, HATs vs. HDACs, and

HMTases vs. HDMases). Thus, the regulation of dynamic and reversible nature

of DNA and histone modifications may be a key mechanism that underlies the

unique nature of neurons; i.e., plasticity, which give rise to higher-order cognitive

functioning. We have also described examples of histone modification “reader”

proteins and their roles as integral components of the histone modifying enzymes

in regulating neuronal functions, possibly functioning to guide the histone modi-

fying enzymes and ATP-dependent remodelers to their respective genomic sites of
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action. From the point of view of a molecular biologist, future challenges will

include understanding the relationship, if any, of these various epigenetic regulators

in MR, the biological basis for their involvement, and the molecular mechanism by

which they regulate cognitive function. One attractive model is that there may be an

intrinsic connection among various MR genes. For instance, the epigenetic regula-

tors described here may be direct regulators of transcription of other MR genes

whose products are directly involved in the regulation of synaptic plasticity, while

MR genes encoding signaling molecules may play regulatory roles of either the

epigenetic regulators and/or the gene products at the synapses. To decipher the

principles of epigenetic regulation in neuronal and cognitive function, it will be

necessary to employ an interdisciplinary effort involving animal models, electro-

physiology, and behavior studies, as well as biochemical, molecular, structural, and

chemical biology approaches.
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HDAC Inhibitors and Cancer Therapy

Peter W. Atadja

Abstract Maintenance of normal cell growth and differentiation is highly depen-

dent on coordinated and tight transcriptional regulation of genes. In cancer, genes

encoding growth regulators are abnormally expressed. Particularly, silencing of

tumor suppressor genes under the control of chromatin modifications is a major

underlying cause of unregulated cellular proliferation and transformation. Thus

mechanisms, which regulate chromatin structure and gene expression, have become

attractive targets for anticancer therapy. Histone deacetylases are enzymes that

modify chromatin structure and contribute to aberrant gene expression in cancer.

Research over the past decade has led to the development of histone deacetylase

inhibitors as anticancer agents. In addition to their effect on chromatin and epige-

netic mechanisms, HDAC inhibitors also modify the acetylation state of a large

number of cellular proteins involved in oncogenic processes, resulting in antitumor

effects. The current monograph will review the role of histone deacetylases in

protumorigenic mechanisms and the current developmental status and prospects for

their inhibitors in cancer therapy.

1 Introduction

Aberrant expression of genes, such as increased expression of cellular growth and

survival genes and/or silencing of tumor suppressor genes, constitutes a major

molecular hallmark of cancer. Therefore, targeting the gene expression machinery

to restore normal cellular gene expression promises to be a useful anticancer

therapeutic strategy (see recent reviews in [1] and [2]).
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Due to the protein–protein interactions and multiprotein complexes required to

regulate transcription, attempts to target the transcriptional machinery with small

molecules with reasonable potency and specificity had been challenging and mostly

unsuccessful. Recent studies have unveiled another level of transcriptional regula-

tion through enzymatic modification of chromatin structure, a mechanism that is

providing more successful opportunities to modulate gene expression with small

molecule inhibitors for therapeutic purposes [2]. This chapter reviews current

information on inhibition of one such chromatin modifying enzyme class, histone

deacetylases (HDACs) as an anticancer therapeutic strategy.

HDACs are a class of enzymes that regulate protein function through the

removal of acetyl groups from lysine residues. As the name indicates, histones

are the major substrate class for HDACs, and by deacetylating the lysine tails of

core histones, they modify chromatin structure. Such chromatin modifications

result in changes to gene transcription and expression [3]. Although acetylated

histones were the earliest substrates identified for HDACs, a large number of

additional nuclear and cytoplasmic proteins mediating diverse biological processes

have been identified, whose structure and function could be regulated through

acetylation [4, 5]. Thus, as in other posttranslational protein modifications, acetyla-

tion is emerging as a major mechanism of regulating protein and cell function.

2 Opposing Activities of Histone Acetylation

and Deacetylation

Histones are a fundamental component of nucleosomes, the basic packaging unit of

nuclear DNA. Each nucleosome contains an octamer of histones H2a, H2b, H3, and

H4 variants forming a globular core around which about 146 base pairs of DNA are

wrapped. Internucleosomal interactions further package nuclear DNA into the

chromatin fiber. Accessibility of the DNA for gene transcription is regulated by

changes in chromatin structure. Condensed chromatin, in which the nucleosomes

are tightly compacted, may not be as easily accessible to the transcriptional

machinery as chromatin in which the histones and the DNA are not as tightly

packed. Thus, the histone component of chromatin functions to organize the DNA

as well as provide mechanisms for regulating transcription factor accessibility and

gene expression [1].

Chromatin condensation and packing is promoted by the ionic interaction between

positively charged histones and a negatively charged DNA backbone. Posttransla-

tional modifications, such as acetylation, neutralize the positive charge of histone tails

and decrease the strength of interaction with the DNA backbone, leading to a more

open chromatin structure. Conversely, when acetyl groups are removed from histones

by HDACs, chromatin is more tightly packed leading to gene silencing [6]. In this

way, gene expression is regulated in part by the opposing activities of histone

acetylation and histone deacetylation through dynamic chromatin changes.

176 P.W. Atadja



3 Classification of HDACs and Networks of Protein Regulation

by Acetylation and Deacetylation

There are four identified classes of HDACs (Classes I–IV). Class I, II, and IV

HDACs are all dependent upon Zn2+ cations for catalytic activity (Table 1). Class I

HDACs include HDACs 1, 2, 3, and 8 and are found primarily in the nuclei of cells.

The principal target substrates for Class I HDACs are histones. Class II HDACs act

on histone and nonhistone proteins and are of two types. The Class IIa HDACs

(HDACs 4, 5, 7, and 9) can shuttle between the nucleus and cytoplasm, and Class

IIb HDACs (HDACs 6 and 7) are located primarily in the cytoplasm [7, 8].

HDAC11 is the sole member of Class IV, as it shares attributes of both Class I

and II HDACs [9, 10]. A third class of HDACs (Class III) is comprised of a family

of structurally distinct, NAD+-dependent enzymes known as sirtuins, which are not

Zn2+ dependent and will not be discussed in this chapter.

The diverse effects of HATs and HDACs on cellular function and behavior have

long suggested that acetylation plays fundamental roles in contexts other than

histone and DNA-dependent processes. HDACs have been found to possess general

deacetylase activity against a broad spectrum of histone and nonhistone protein

substrates. An increasing number of nonhistone proteins have been identified and

functionally characterized. These include transcription factors, nuclear hormone

receptors, and other factors that have significant downstream effects in pathways

relating to tumor development and survival [8, 11]. The developing concept of the

“acetylome” represents a growing list of proteins dynamically regulated by acetyla-

tion and deacetylation [5, 8, 12]. A diverse array of cellular functions is thus affected

by the balance betweenHAT andHDAC activities acting upon proteins that make up

the “acetylome.” With continued research into the scope of the “acetylome,”

numerous proteins have been identified as being acetylated in human cells and for

many, the effects and regulation of their acetylation status remain unknown. The

specific effects of acetylation and deacetylation on proteins may vary on an individ-

ual basis with effects on cellular function and behavior [4, 11].

Table 1 Representative HDAC inhibitors and some areas of clinical development

Compound Type Cellular

potency

Isoform

selectivity

Clinical

phase

Some major clinical studies

ongoing

Phenyl

butyrate

Carboxylic

acid

mM Pan I/II Heme malignancies, prostate,

endometrial

SAHA Hydroxamate mM Pan Approved

for

CTCL

CTCL, lung, prostate,

mesothelioma, breast, AML

Panobinostat Hydroxamate nM Pan I/II Multiple myeloma, Hodgkins

lymphoma, CTCL, prostate,

breast, AML

PXD101 Hydroxamate nM Pan I/II Breast, prostate

SNDX275 Benzamide nM Class 1 I/II Hematological malignancies

MGCD0103 Benzamide nM Class I I/II Hodgkins lymphoma, AML

Rhomidepsin Depsipeptide nM Class I I/II CTCL, PCTL, Melanoma
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4 Rationale for Targeting HDACs for Anticancer Therapy

Deregulation of HDAC levels and their functions have been discovered in cancer

and in the process of tumorigenesis [2, 7, 13]. Abnormal HDAC activities have

been shown to play major roles in mechanisms regulating a number of the hall-

marks of cancer, including tumor suppressor silencing, aberrant cell-cycle control

and growth signaling, differentiation, angiogenesis, cell adhesion, tissue evasion,

and metastasis [14]. These discoveries have formed the basis of a vigorous investi-

gation and use of HDAC inhibitors in anticancer therapy.

Although nomajor cancer-linked mutations of HDACs have so far been identified,

over-expression ofHDACprotein has been identified inmultiple cancers. In one study

by Zhu et al. [15], increased HDAC2 expression was found in the majority of human

colon cancer explants, as well as in intestinal mucosa and polyps of APC-deficient
mice. They compared 57 samples of mostly moderately differentiated colon tumors

vs. patient-matched normal tissues with respect to alterations in HDAC2, and elevated

HDAC2 expression was observed in 47 samples (82%), as compared with normal

adjacent tissues. As an example of a cross-talk with other tumorigenic pathway,

HDAC2 and b-catenin appeared to be regulated in the same way in the vast majority

of the tumor samples, suggesting that both are, in most cases, related events in the

development of colon cancer [15]. Similar increases of HDAC expression were

described in other tumor types, including prostate, gastric, and breast cancers.

4.1 Role of HDACs in Tumor Suppressor Silencing

Aberrant recruitment of HDACs has been correlated with decreased levels of

acetylated histones at specific genes associated with the control of cell growth

[4]. Particular genes involved in tumor suppression and cell growth regulation that

are known to be silenced through HDAC-mediated epigenetic mechanisms include

p21, p27, p16, p19, among many others (Fig. 1). Using chromatin precipitation

assays, Gui and colleagues [16] showed that the class 1 HDACs 1 and 2 are directly

bound to the p21 promoter and undergo changes in promoter occupancy with

HDAC inhibitors treatment [16].

The link between cancer and HDACs is best characterized in leukemias, in which

chromosomal translocations that promote oncogenesis are associated with increased

recruitment of HDAC to gene promoters. In acute promyelocytic leukemias (APL),

the chromosomal translocations t(15;17) and t(11;17) result in the fusion proteins

RARa-PML and RARa-PLZF, respectively. These oncogenic fusion proteins form

complexes with HDACs to repress transcription of RAR-targeted genes required for

normal myeloid differentiation (reviewed in [17]). The very first clinical antitumor

activity associated with an HDAC inhibitor was when butyric acid was combined

with retinoic acid to achieve remission in a patient with refractory APL [18].

Other examples of HDAC-associated translocations in leukemiogenesis include

AML1-ETO t(8;21) and CBFb-MYH11 containing chromosome inversion 16 [17,
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19]. In both cases, the fusion proteins combine the DNA binding activities of critical

regulators of hematopoiesis with the HDAC-recruiting capabilities of corepressors

resulting in the silencing of genes involved in myeloid differentiation [17, 19]. In yet

another example, the proliferation and survival of malignant B-cells in non-Hodg-

kin’s lymphoma (NHL) was shown to be driven by HDAC-containing complexes of

the Bcl-6 oncoprotein [17, 19, 20].

HDACs may also regulate transcription of growth regulatory genes through their

effect on the acetylation state of transcription factors. This has been demonstrated

for the transcriptional activity of the tumor suppressor p53. In studies by Gu and

colleagues [21–23], they demonstrated that direct p53 acetylation, specifically in

the c-terminal domain enhanced its sequence-specific DNA binding in vitro and

that endogenous p53 can be fully acetylated in response to DNA damage when

HDAC is inhibited. These investigators further demonstrated that the activity of the

p53 tumor suppressor is modulated by protein stabilization and posttranslational

modifications including acetylation in response to DNA damage. Interestingly, they

showed that both acetylation and ubiquitination modified the same lysine residues

at the C terminus of p53, and that this lysine residue is the target for ubiquitination

by the anti-p53 oncogene mdm2 [21, 24]. In another example, the non-Hodgkin

lymphoma-associated transcription factor BCL6 is also reported to be inactivated

through direct acetylation of the protein [19].

4.2 Role for HDACs in Deregulated Cell Growth
and Survival Pathways

HDAC activity has been shown to be required for cell-cycle progression, as well as

many other cellular functions required for cell proliferation and survival. The

Fig. 1 A model of transcriptional control of growth regulatory genes by acetylation and deace-

tylation. The possible effect of HDAC inhibitors on gene expression is depicted
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earliest noticeable effect of HDAC inhibition on cell proliferation is the arrest of the

cell cycle at both the G1/S and G2/M phases. An important axis of control for the

G1 phase of the mammalian cell cycle involves the interactions of the E2F family

of DNA binding proteins with the tumor suppressor retinoblastoma (Rb) and

Rb-related “pocket protein” (p107 and p130) family of tumor proteins and not

surprisingly, alterations in this pathway are present in a large number of human

malignancies [25]. Although the exact mechanism of Rb-mediated cell-cycle

deregulation in cancer is not fully understood, in vitro studies have identified

HDACs in E2F and Rb complexes. Since hyperphosphorylation of Rb by cyclin-

dependent kinases (cdks) is associated with and might be required for exit through

the G1/S restriction point, HDAC-mediated silencing of cdk inhibitors, such as p21,

p27, and p16, may allow uncontrolled Rb phosphorylation and cell proliferation.

Interestingly, some studies have also shown that HDACs may be required for

Rb-mediated gene repression, and whether this activity of HDACs is involved in

Rb’s tumor suppressor function is not clear [25].

HDAC1 has been shown to be required for cell proliferation. In a study by

Lagger et al. [26], targeted disruption of both HDAC1 alleles in mice resulted in

embryonic lethality before E10.5 due to severe proliferation and developmental

defects. Proliferation rates of HDAC1-deficient embryonic stem cells were slower

than HDAC1 wild-type cells and correlated with decreased cyclin-associated

kinase activities and elevated levels of the cdk inhibitors p21(WAF1/CIP1)

and p27(KIP1) [26]. This study provided the evidence that a HDAC may be

essential for cell proliferation, disregulation of which may play a role in the process

of tumorigenesis.

A high proportion of growth signals in tumor cells are transduced through

amplified or mutant oncoproteins. Molecular chaperones, such as hsp90, are needed

to help the correct folding and stability of such oncoproteins. Recent evidence

shows that HDAC inhibitors increase the acetylation status of hsp90 where the

chaperone activity of the acetylated form is inactivated, leading to increased

degradation of its client proteins including Her-2/neu, AKT, c-Raf-1, mutant p53,

and Bcr-Abl [27–29]. Studies by Nimmanapalli et al. reveal increased acetylation

of Hsp90 by HDAC inhibitor treatment of CML cells and proteasomal degradation

of wild-type Bcr-Abl as well as imatinib refractory mutant Bcr-Abl. Degradation of

Bcr-Abl and c-Raf-1, Src, as well as activated AKT promoted CMC-BL cell

apoptosis [28]. Furthermore, in studies involving breast cancer, exposure of cells

to HDAC inhibitors increased acetylated Hsp90 leading to inefficient binding of

ATP. This event also caused increased degradation of the Her2/neu oncoprotein

leading to reduced growth and apoptosis [29].

Resistance to death is another hallmark of tumor cells, and HDACs have been

implicated in cell survival pathways. In studies to elucidate the mechanism of

action of HDAC inhibitors, both the trail-mediated external and mitochondrial

apoptosis pathways have been implicated in HDAC inhibitor-mediated apoptosis.

Guo and colleagues exposed leukemia cells to HDAC inhibitors and showed

that mRNA and protein expression of the proapoptotic death receptors DR5

and/or DR4 increased, but the mRNA and protein of the antiapoptotic protein
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c-FLIP was greatly reduced [30]. When they compared treatment HDAC inhibitor

and TRAIL or HDAC inhibitor alone, they observed increased assembly of

Fas-associated death domain and caspase-8, but not of c-FLIP, into the Apo-2L/

TRAIL-induced death-inducing signaling complex. This increased the processing

of caspase-8 and BID augmented cytosolic accumulation of the prodeath mole-

cules such as cytochrome-c, Smac, and Omi and led to increased activity of

caspase-3 and apoptosis [30]. Additional studies have shown that HDAC inhibi-

tors induce the expression of TRAIL (Apo2L, TNFSF10) by directly activating

the TNFSF10 promoter leading to tumor-selective death signaling in acute mye-

loid leukemia (AML) cells and the blasts of individuals with AML [31, 32].

Furthermore, RNA interference revealed that the induction of p21, TRAIL, and

differentiation are separable activities of HDAC inhibitors. In other studies, Ellis

and colleagues using the Em-myc models demonstrated that death receptor path-

way, but not the mitochondrial pathway, was dispensable in apoptosis induced by

HDAC inhibitors in lymphoma cells. Ectopic expression of antiapoptotic proteins

Bcl2 and BclXL prevented apoptosis induced by HDAC inhibitors in Em-myc

lymphoma models [2]. Thus, it appears that HDAC inhibitors might operate

through both external and mitochondrial pathways together or independently in

a cell-type or context-dependent manner.

Protein acetylation/deacetylation processes have also been implicated in cell

motility and invasion. A major target of HDACs is acetylated alpha-tubulin. Rever-

sible acetylation of alpha-tubulin is involved in regulating microtubule stability and

function. In a bid to identify the HDAC isoform (s) that regulate microtubule

function, yeast two hybrid and biochemical techniques were applied to identify

HDAC6 as the major tubulin deacetylase [33, 34]. Further studies showed that

overexpression of HDAC6 promoted chemotactic cell movement, suggesting a

potential involvement in cellular motility, invasion, and metastasis [35].

4.3 A Role for HDACs in Angiogenesis

Studies done by Pili and his colleagues have demonstrated antiangiogenic proper-

ties of HDAC inhibitors through effects on HIF-1a and VEGF [36–38]. The

proangiogenic vascular endothelial growth factor (VEGF) is a transcriptional target

of the hypoxic inducible factor-1 alpha (HIF-1alpha) whose expression is in turn

increased by the hypoxic conditions associated with tumor angiogenesis. Direct

posttranslational modifications including acetylation/deacetylation of the HIF-a
protein have been shown to regulate the stability of this angiogenesis factor. To

elucidate the mechanism of antiangiogenic effects of HDAC inhibitors, coimmu-

noprecipitation techniques were employed to demonstrate that class II HDAC4

and HDAC6 were associated with the HIF-1 alpha protein [38]. Furthermore,

knockdown of HDAC4 and HDAC6 levels by RNA interference resulted in reduced

HIF-1 alpha protein expression and transcriptional activity [38]. Additionally, the

expression of proangiogenic factors, angiopoietins 1 and 2, was also shown to be
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reduced by HDAC inhibitors. In light of the potential role played by HDACs in

angiogenesis, synergistic antitumor activities were achieved by combining HDAC

inhibitors and antiangiogenic agents in experimental therapy [39].

5 HDAC Inhibitors

Crystallographic studies have shown that the catalytic site of HDACs contains a zinc

ion that is responsible for the transfer of the acetyl group. The lysine groups of

histones reach this catalytic site through a long hydrophobic tunnel. The amino acid

sequence of different isoforms of HDAC shares high homology at the active site and

the lysine tunnel. Immediately adjacent to the tunnel is a shallow hydrophobic

pocket; it is generally believed that this pocket is quite distinct among different

classes of HDAC enzymes. Based on their chemical structure, HDAC inhibitors can

be categorized into four subtypes: (1) short chain fatty acid; (2) hydroxamic acid; (3)

benzamides; and (4) cyclic peptides. Despite their structural distinctiveness, HDAC

inhibitors are generally considered to share common pharmacophore that include

three key motifs, a “war-head” such as hydroxamic acid that interacts with the Zinc

ion in the active site, which is necessary for the histone deacetylation activity [40], a

hydrophobic cap that covers the entrance to the active site, and a hydrophobic spacer

about 10 Å long that links the cap and the war-head (See examples in Fig. 2).

Sodium butyrate was one of the first HDAC inhibitors discovered when it

increased histone acetylation in HELA and Friend erythroleukemia cells following

treatment. Subsequent studies revealed suppression of histone deacetylation

in vivo and in vitro by this compound [41]. Other short chain fatty acids, such as

phenylbutyrate and valproic acid, have been reported as HDAC inhibitors with

antitumor effects. Phenyl butyrate, although clinically approved for treating certain

hematological disorders, has poor potency as an HDAC inhibitor and a short plasma

half-life. Its development as an anticancer agent was hampered due to numerous

side effects and poor pharmaceutical properties [42, 43].

The hydroxamic acid-based inhibitors are the most potent reported to date. Their

high potency can be attributed to the strong chelating affinity of the hydroxamic

acid to the zinc cation in the active site. In addition, it is proposed that the

hydroxamic acid can form hydrogen bonds with active site hydrophilic residues

such as tyrosine and histidine (Fig. 3). Through chemical manipulations of HDAC

inhibitors, some degree of selectivity can be achieved against other zinc containing

enzyme such as matrix metalloproteases. The discovery of the natural product

trichostatin A (TSA), a nanomolar HDAC inhibitor, has stimulated great efforts

in identifying hydroxamic acid-based inhibitors with better pharmacological prope-

rties. As a result, a broad set of inhibitors with potent HDAC activities has been

reported, including suberoylanilide hydroxamic acid (SAHA), NVP-LAQ824,

NVP-LBH589, pyroxamide, oxamflatin, and PXD-101. The hydroxamic acids

such as TSA, NVP-LAQ824, NVP-LBH589, and SAHA inhibit HDAC isoforms
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in a nonselective manner at nanomolar concentrations and have been shown to

produce potent antitumor activity in vitro and in vivo.
A number of natural product cyclic tetrapeptides have also been identified as

HDAC inhibitors. Examples include trapoxin, HC-toxin, chlamydocin, FK-228,

and apidicin. The cyclic tetrapeptides are also potent nanomolar inhibitors of

HDACs and possess in vitro antiproliferative activity. However, there is insufficient
in vivo antitumor efficacy data, most likely resulting from metabolic instability of

these molecules [44]. Interestingly, the cyclic tetrapeptides appear to have some

isoform selectivity. Trapoxin and apicidin selectively inhibit class I HDACs, but

are inactive against some class II HDACs such as HDAC6. The cyclic depsipeptide,

FK-228, is a nanomolar HDAC inhibitor with selectivity against class I enzymes

[45]. The mechanism of action of HDAC inhibition for FK228 is thought to involve

intracellular reduction of the disulfide bond resulting in a thiol that interacts with

the zinc cation at the active site. Contrary to the other cyclic peptides, FK-228 has

shown in vivo antitumor efficacy both in animal models and in clinical trials.

A third class of HDAC inhibitors have a benzamide group, and of this group

SNDX-275 (formally known as MS-275) and MGCD003 are class 1 selective HDAC

inhibitors. The mechanism of HDAC inhibition is thought to involve interaction of

the two substituted amides with the zinc cation at the active site of the enzyme.

Despite the relative in vitro low potency of HDAC inhibition by some of the

benzamide derivatives such as SNDX-275 compared with the hydroxamates and

the cyclic peptides, they have produced marked in vivo tumor efficacy in animal

models [46].

6 Molecular Antitumor Effects of HDAC Inhibitors

As compounds which directly affect transcription of genes, it was originally feared

that HDAC inhibitors would produce pleiotropic and global effects on gene expres-

sion. However, microarray experiments showed that treatment of cells with HDAC

inhibitors modulated the expression of only about 1% of the total genes [47, 48].

These results suggested that only specific gene promoters are regulated by HDACs

Fig. 3 X-ray structure of trichostatin and HDAC8 complex
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and these may be selectively modulated by HDAC inhibitors. In additional gene

expression profiling experiments where different cell lines were treated with struc-

turally different HDAC inhibitors, a core set of genes that can be classified by

function emerged as HDAC inhibitor-modulated genes. Products of the HDAC-

modulated genes play various cell growth and regulatory roles, including cell cycle,

apoptosis, signal transduction, metabolism, transcription, cytoskeletal structure,

and cell adhesion (Fig. 4).

The recent characterization of the cellular acetylome resulting in the discovery

of nonhistone acetylated proteins has generated great interest and has added an

additional level of complexity to protein regulation. Transcription factors constitute

a major class of nonhistone acetylated proteins. These include p53, E2F1, TCF,

GATA1, NF-kB, HIF-1a whose functions are modulated through one or more of

the following ways: binding to DNA, protein–protein interaction, cellular localiza-

tion, and proteasomal degradation [22, 27, 49–52].

Recent evidence shows that HDAC inhibitors increase the acetylation status of

nonnuclear proteins as well which leads to effects in growth signaling pathways.

For example, treatment of tumor cells leads to increased acetylation and inactiva-

tion of the molecular chaperone hsp90, resulting in the destabilization of its client

proteins, including Her-2/neu, AKT, c-Raf-1, mutant p53, and Bcr-Abl [27–29].

Studies by Bhalla and colleagues indicate that treatment of CML cells with the

HDAC inhibitor NVP-LAQ824 increases acetylation of Hsp90 and directs protea-

somal degradation of wild-type Bcr-Abl as well as imatinib refractory mutant

Bcr-Abl. This Hsp90-mediated proteasomal degradation of Bcr-Abl in conjunction

with degradation of c-Raf-1, Src, and AKT appears to promote CMC-BL cell

Fig. 4 Multipronged effects of HDAC inhibitors on the molecular mechanisms of cancer
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apoptosis. Similar studies in Her2+ breast cancer cells have led to the degradation

of the Her2/neu oncoprotein [29]. These results have led to clinical trials of HDAC

inhibitors as single agents or in combination in CML and Her2+ breast cancer,

respectively.

7 Clinical Experience with HDAC Inhibitors

HDAC inhibitors belonging to different structural classes have entered clinical

development and a number have demonstrated efficacy in at least one tumor type

at tolerable doses. Since no mutant versions of HDACs have been associated with

the molecular epidemiology of any particular tumor types, most of the early clinical

trials with HDAC inhibitors have been “all comer” types. Early clinical results

indicate that HDAC inhibitors are well tolerated in the clinic and some anticancer

activity has been observed.

8 Activities of HDAC Inhibitors in Hematological

Malignancies

The first clinical efficacy with a HDAC inhibitor was observed when an acute

promyelocytic leukemia patient who had experienced multiple relapses was treated

with retinoic acid combination with phenylbutyrate. In this study, the APL patient

had proved clinically resistant to all-trans retinoic acid (ATRA) as a single agent

but a combination of ATRA with phenylbutyrate produced a complete clinical and

cytogenetic remission [18]. HDAC inhibitors are proving effective against a num-

ber of hematological malignancies in the clinic as described below.

8.1 Cutaneous T-Cell Lymphoma

The first such HDAC inhibitor-sensitive tumor type to emerge from clinical trials

was cutaneous T-cell lymphoma (CTCL). In one of the earliest phase 1 trials,

three patients with CTCL who had failed all other therapy were found to exhibit

dramatic responses to the depsipeptide HDAC inhibitor FK-228 [53]. Subse-

quently, the phase 1 trials of hydroxamate HDAC inhibitors SAHA (Vorinostat)

and LBH589 (panobinostat) also demonstrated high response rates (>50%) in

CTCL [54, 55]. Based on the promising early results, additional phase II results

were conducted with all three compounds in larger numbers of patients and the

phase further confirmed the phase 1 results. Based on these phase II data, SAHA

(Vorinostat) was approved by the US Food and Drug Administration for the
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treatment of the cutaneous manifestations of CTCL in 2008 [56]. In 2009, the

FDA also approved the depsipetide FK-227 (Rhomidepsin) for the tratment of

CTCL. The mechanism by which HDAC inhibitors induce antitumor activity in

CTCL is currently unknown. However, a number of studies have shown that

apoptosis in CTCL cells is associated with the mitochondrial death pathway [57].

In one study, LBH589 was shown to inhibit the mRNA and protein levels of

HDAC7 and induces expression and translocation of Nur77 to the mitochondria

where Nur77 converts death resistance protein Bcl-2 into a killer protein, pro-

moting cell death of cultured and patient-derived human CTCL cells [58].

Additionally, the JAK/STAT pathway has been associated with resistance of

CTCL cells to SAHA [59]. Interestingly, previous, independent studies have

implicated the Jak/STAT pathway in CTCL. Mention that also romidepsin has

been recently FDA-approved for CTCL treatment.

8.2 Hodgkins Lymphoma

Two structurally different HDAC inhibitors have shown very promising antitumor

clinical efficacy in Hodgkins lymphoma. In a phase IA/II multicenter clinical study,

13 Hodgkins lymphoma patients who had failed up to six previous therapies,

including bone marrow transplantation, were treated with escalating doses of

panobinostat and followed by metabolic (PET) or computer tomographic (CT)

scanning. In that study, complete and partial responses were obtained in close to

60% of this refractory population. In another phase II study, where Hodgkins

lymphoma patients were treated with the class I selective benzamide HDAC

inhibitor MGCD103, 8 out of 22 patients enrolled showed objective responses

[60]. The mechanism underlying such single agent antitumor activity in Hodgkins

lymphoma is not known. However, our unpublished data indicate that the inhibitors

might be interfering with the JAK/STAT pathway in this disease also.

8.3 AML/MDS and Other Acute Hemeatological Malignancies

Following encouraging responses seen with some HDAC inhibitors and the ratio-

nale based on a possible role in AML1/ETO and other acute leukemias, a number of

phase I/II clinical studies were undertaken in a number of acute hematological

malignancies [61–63]. In a study with panobinostat reported by Ottmann et al.

(2008), where patients with various hematological malignancies were enrolled,

dose-dependent efficacy was observed in patients with advanced refractory AML.

No antileukemic activity was observed in patients treated below 30 mg 3x/wk oral

dose; however, a number of partial and complete responses were observed in

patients treated with 40 mg 3x/wk and above. A yet inexplicable phenomenon
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where reduction in bone marrow blasts continued months after cessation of drug

treatment was observed in some patients [62]. Other HDAC inhibitors have also

demonstrated activity in acute leukemias. For example, in a phase 1 study with

vorinostat to evaluate the safety and activity in patients with relapsed or refractory

leukemias or myelodysplastic syndromes (MDS), 7 of 41 patients had hematologic

improvement responses, including two complete responses and two complete

responses with incomplete blood count recovery [63].

The mechanism of action of HDAC inhibitors in acute leukemias is not known.

However, preclinical studies are yielding some clues. Bali et al. [64] reported that

mutant FLT3 kinase, known to be a leukemic oncogene, is a client protein of hsp90

that is degraded in leukemia cells by HDAC inhibitor treatment. Other studies have

also implicated mechanisms involving the Ezh2 polycomp complex and HOXA9

and MEIS1 oncogenic factors [65].

8.4 Multiple Myeloma

Based on high sensitivity of myeloma cells to HDAC inhibitors, a number of

multiple myeloma patients have been treated. However, with the exception of

panobinostat where one durable response was seen with single agent treatment in

a patient highly refractory to previous multiple treatments, none of the other HDAC

inhibitors have demonstrated single agent activity in multiple myeloma. Since

myeloma cells are very sensitive to HDAC inhibitors in vitro, the apparent lack

of single agent activity in this indication might be due to decreased bone marrow

exposure or resistance of myeloma cells in the bone marrow microenvironment. In

combination with standard therapy however, greater success was achieved with

HDAC inhibitors in multiple myeloma. In a phase I/II clinical study to investigate

the safety and efficacy of various combination doses of panobinostat and the current

proteasome inhibitor standard of care bortezomib, 26 responses were observed in

36 evaluable patients (4 complete responses, 2 very good partial responses, 16

partial responses, and 4 minor responses) [66]. Patients enrolled in this combination

therapy had received up to six prior lines of therapy, including patients not having

responded to or who are insensitive to bortezomib at study entry (8 of 13 patients

responded in this bortezomib population). Similar results obtained with vorinostat

and rhomidepsin further strengthen the potential of combining HDA inhibitors with

proteasome inhibitors in myeloma therapy. In a phase 1 vorinostat + bortezomib

combination trial in myeloma patients who have received a median of seven prior

regimens, an overall response rate of 42% was obtained. These included three

partial responses among nine bortezomib refractory patients [67]. Based on these

promising early results with HDAC inhibitor and proteasome inhibitor combina-

tions in multiple myeloma, a number of phase II and phase III studies have been

initiated with this combination (clinicaltrials.gov). Although the exact mechanism

accounting for the enhanced efficacy of HDAC and proteasome inhibitor combina-

tions is not clear, recent preclinical findings indicate that alternative protein
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processing mechanisms, such as the aggresomes, are upregulated in myeloma cells

that have become refractory to HDAC inhibitors [68]. Since myeloma cells make

extremely high levels of proteins, efficient functioning of the protein processing

machinery that prevents accumulation of cytotoxic misfolded proteins may be

required for cell survival. This phenomenon may account for the efficacy of

proteasome inhibitors in myeloma and the upregulation of possible compensatory

protein processing mechanisms such as the aggresomes in relapsed/refractory

cells. Recent reports indicate that HDAC6 is required for the proper formation

and functioning of aggresomes [69]. Thus, combining HDAC inhibitors with

proteasome inhibitors may be a two-pronged attack on two protein processing

mechanisms necessary for myeloma cell survival.

9 Activity of HDAC Inhibitors in Solid Tumors

Although preclinical efficacy has been achieved with HDAC inhibitors in a number

of solid tumor xenograft models, clinical efficacy as single agents has been less

promising. In early phase 1 trials, one or two partial responses in different tumor

types were achieved. The most promising single agent activity achieved with an

HDAC inhibitor was in mesothelioma. In a phase 1 study with vorinostat where a

number of previously treated mesothelioma patients were enrolled, among other

tumor types, some partial responses were achieved [70]. These encouraging results

led to a currently ongoing phase III randomized, double-blind, placebo-controlled

trial of oral SAHA in patients with advanced malignant pleural mesothelioma

previously treated with systemic chemotherapy. This study is still enrolling

patients.

The more common antitumor response seen in solid tumor patients with single

agent HDAC inhibitor treatment is tumor stabilization. Solid tumor types where

stabilization of disease has been reported include mesothelioma, head and neck

cancer, NSCLC (Pivanex, vorinostat) and melanoma (MS-27-275), breast cancer,

renal cell carcinoma, and prostate cancer (panobinostat). Since HDAC inhibitors

clearly exhibit dose-dependent apoptotis in tumor cell lines in vitro and in tumor

xenografts, whether or not it is the inability to achieve enough intratumoral

exposure to the drugs that accounts for the general lack of clinical regression of

solid tumors is currently a matter of investigation. There is, however, a great

potential for combination therapy with HDAC inhibitors in solid tumors. For

example, HDAC inhibitors have been shown to synergize with numerous standard

chemotherapeutic or targeted therapies, including antimetabolites, antibiotics,

alkylating agents, plant alkyloids, topoisomerase inhibitors, immunomodulators,

corticosteroids, and radiation therapy, tyrosine kinase inhibitors, or nuclear receptor

antagonists in preclinical experiements ([7, 71] and references therein). Current

understanding of the basis for such synergy revolves around the effect of HDAC

inhibition on inducing DNA damage responses in cells that lack mechanisms

to manage them, inhibition of antiapoptotic and survival mechanisms induced in
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tumor cells to resist chemotherapy, or combinatorial effects of targeting multiple

aspects of the hallmarks of cancer in combination therapy [72–75].

Combination of HDAC inhibitors in the clinical setting in solid tumors has

begun to show some initial promising results. Notably, a phase 1 study combining

vorinostat with paclitaxel and carboplatin in patients with advanced solid tumors

resulted in partial responses in 11 of 25 patients, 10 of whom are with nonsmall

cell lung cancer [76]. With the reported increased acetylation and destabilization

of HIF1-a leading to decreased angiogenesis, vorinostat also demonstrated

promising activities in combination with paclitaxel and bevacizumab in patients

with renal cell carcinoma (53% overall response rate), a tumor type that has

shown good sensitivity to antiangiogenic agents in the clinic. Panobinostat has

also demonstrated promising activity in combination with standard agents. In a

phase I dose-finding trial of intravenous (i.v.) panobinostat with docetaxel in

patients (pts) with castration-resistant prostate cancer (CRPC), 4 of 38 patients

achieved partial responses and 4 of 7 patients showed a >90% PSA decrease

from baseline by cycle 4 [77]. Encouraging results are also being obtained

with panobinostat in combination with herceptin or with vorinostat and tamoxifen

in breast cancer [78]. HDAC inhibitors have been shown to cause degradation of

the androgen receptor, a major target in prostate cancer, estrogen, and Her2/neu

breast cancer targets for tamoxifen and herceptin respectively, as well as

cause increased acetylation and stabilization of microtubules, the target of doce-

taxel. How all these effects might combine to induce therapeutic synergy in the

relevant tumor types is currently being investigated. Similarly, a sequence-specific

combination of the HDAC inhibitor Valproic acid and the topoisomerase II inhibi-

tor epirubicin, patients with advanced solid tumors resulted in partial responses in 9

of 41 patients and stable disease in a further 16 of the 41 patients. In light of the

encouraging results being obtained with HDAC inhibitors in combination therapy

in solid tumors, a number of phase II studies are currently in progress in a variety

of tumor types to further confirm and expand the early results. Table 1 is a list of

the different HDAC inhibitors currently under development for cancer therapy.

10 Challenges in Developing HDAC Inhibitors for Anticancer

Therapy and Future Outlook

Although encouraging data are emerging preclinically and clinically with HDAC

inhibitors as antitumor therapy, several challenges remain in their development.

One major challenge regards that little is known about the mechanism of action of

these drugs. It is not known which of the 11 HDAC isoforms or which subsets are

the most relevant for the activity of the inhibitors in antitumor therapy. Neither is it

known which HDAC substrates play the most critical roles in the tumors being

treated. Thus, a lot of the clinical trials with HDAC inhibitors are relying on trial

and error and serendipity in selecting indications and patients. Similarly, as no
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mutations or aberrations of specific HDAC isoforms have been associated with

particular tumor types, there are very little clues for stratifying patients to deepen

the therapeutic effect of these drugs. Because of the aforementioned issues, it is also

not clear whether isoform selective inhibitors or pan-deacetylase inhibitors will be

most beneficial for antitumor therapy. Although HDAC inhibitors are fairly well

tolerated in cancer therapy, thrombocytopenia and fatigue remain the most common

adverse events associated with their use. Other toxicities that have been reported

include nausea, vomiting, anorexia, diarrhea, and neutropenia. All these adverse

events have been seen with both pan-deacetylase and isoform-selective inhibitors.

Thus, it is not known which class of inhibitors will produce the most beneficial risk-

benefit profile. Another challenge facing the development of HDAC inhibitors is

the lack of a reliable efficacy biomarker that could be used to calibrate PK/PD

relationship to identify the most beneficial dosing levels and schedules. Also, since

the most proximal and principal substrate of HDAC inhibitors happen to be

histones, increased histone acetylation has been used as a marker of cell exposure

to these drugs. However, the relationship between histone acetylation and antitumor

efficacy has eluded any calibration. The foregoing challenges notwithstanding,

HDAC inhibitors offer a major hope for anticancer therapy due to their multi-

pronged attack on multiple mechanisms underlying the hallmarks of cancer as

described in this chapter. Tackling these developmental challenges will further

enable them fulfill their tremendous therapeutic promise.
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Epigenetic Mechanisms in Acute Myeloid

Leukemia

Antoine H.F.M. Peters and Juerg Schwaller

Abstract Acute leukemia is characterized by clonal expansion of hematopoietic

stem and progenitor cells with blocked differentiation. Clinical and experimental

evidences suggest that acute myeloid leukemia (AML) is the product of several

functionally cooperating genetic alterations including chromosomal translocations

leading to expression of leukemogenic fusion proteins. Several AML-associated

lesions target chromatin regulators like histone methyltransferases or histone acet-

yltransferases, including mixed-lineage leukemia 1 (MLL1) or CREB bindung

protein/p300. Molecular and biochemical studies start to provide useful insights

into the mechanisms of targeting and mode-of-action of such leukemogenic fusion

proteins resulting in aberrant gene expression programs and AML. Chromatin

modulating mechanisms are also mediating the transforming activity of key drivers

of leukemogenesis by aberrant recruitment of corepressors. Recent large-scale

screening efforts demonstrated that both aberrant DNA promoter methylation and

aberrantly expressed microRNAs play an important role in the pathogenesis of

AML as well. Current efforts to therapeutically exploit the potential reversibility of

epigenetic mechanisms are focused on small molecules that inhibit DNA methyl-

transferases or histone deacetylases. Several phase I/II clinical trials using such

compounds have reported promising, but mostly transient, clinical responses. This

underscores the need to further dissect the molecular players of epigenetic mech-

anisms driving induction, maintenance, and potential reversibility of leukemic state

to develop efficient and long-lasting targeted therapeutic strategies.
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1 Introduction

Acute leukemia is characterized by clonal expansion of hematopoietic stem and

progenitor cells with blocked differentiation. Clinical and experimental evidences

suggest that acute myeloid leukemia (AML) is the product of several functionally

cooperating genetic alterations [1]. Best-studied examples are fusion proteins

(mostly resulting from balanced chromosomal translocations) and point mutations

in protein tyrosine kinases or classical cellular signaling mediators such as FLT3 or

RAS that support proliferation and survival of hematopoietic cells. For example,

expression of mutations like FLT3-ITD in murine hematopoiesis induces a lethal

disorder characterized by extensive myelo-proliferation with normal maturation.

The genetic translocations in AML often affect transcriptional regulators that are

key players in normal hematopoiesis. Well-known examples involve the core-

binding factor (CBF), mixed-lineage leukemia (MLL), or the retinoid acid receptor

(RARa), and the expression of translocation-generated fusion proteins like PML-

RARa, MLL-fusions, or CBF-fusions in mouse bone marrow cells generally results

in aberrant self-renewal capacity and blocked differentiation in vitro. This is

associated with a clonal AML-like disease in vivo after prolonged latency. Studies

of these molecular epigenetic regulators have provided convincing evidence that a

significant number of driver leukemogenic mutations mediate their oncogenic

potential directly or indirectly through chromatin or epigenetic modifications.

Finally, about a third of AML cases do not harbor cytogenetically detectable

chromosomal alterations. Interestingly, large-scale molecular screening efforts

suggest that mechanisms such as DNA promoter methylation or microRNA expres-

sion might be key to the pathobiology of these AML cases. Here we review the

role of epigenetic mechanisms focusing on histone modifying activities for the

pathogenesis of AML that might result in novel targeted therapeutic approaches in

the near future.

2 Epigenetic Regulation by Histone Methyltransferases

2.1 Mixed-Lineage Leukemia 1

Several AML-associated chromosomal translocations result in disruption of genes

encoding histone modifiers. The best-studied example is the mixed-lineage leuke-

mia 1 (MLL1) gene on 11q23 for which over 60 different fusion partners have been

identified. Partial tandem duplications (PTDs) and gene amplifications have also

been found in AML blasts [2, 3]. The most common MLL fusions in human acute

leukemia are MLL/AF4, MLL/AF9, and MLL/ENL resulting from t(4;11), t(9;11),

and t(11;19) translocations that are associated with acute lymphoblastic, myeloid,

or mixed-lineage acute leukemia, respectively. Several studies demonstrated that

expression of human or mouse MLL-fusion genes during murine hematopoiesis
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transforms hematopoietic stem and progenitor cells by enabling aberrant self-

renewal and blocking differentiation, resulting in the development of a lethal

hematological disease that closely mimicks the leukemic phenotype observed in

human patients [4, 5]. Comparative gene expression profiling studies revealed

extensive overlap in target genes of MLL-fusion proteins in murine and human

hematopoiesis, making the mouse a perfect system to study the molecular mech-

anisms of MLL-mediated leukemogenesis [6].

MLL, also known as ALL1 or KMT2A, is a SET domain containing histone

lysine methyltransferase (HKMT). Together with WDR5, RbBP5, and ASH2L, it

catalyzes mono-, di, and tri-methylation on lysine 4 of histone H3 (H3K4) around

transcriptional start sites of genes [7, 8]. The protein is a member of a multiprotein

family and is structurally and functionally conserved among flies and mammals [9].

Like the D. melanogaster TRITHORAX protein, MLL1 protein is a key develop-

mental regulator [10]. Loss of Mll1 function in the mouse results in altered

expression of homeobox (HOX) genes and causes embryonic lethality [11]. In the

hematopoietic system, Mll1 is an essential regulator of self-renewal of hemato-

poietic stem cells [12, 13].

2.2 Targeting of MLL-Fusion Complexes

Importantly, the C-terminal SET domain is absent in all leukemic MLL-fusion

proteins. Instead, the fusions retain the N-terminal fragment of MLL1, containing

three AT-hook DNA-binding motifs and a CxxC DNA-binding domain. Further-

more, the N-terminal end interacts with MENIN, the gene product of multiple

endocrine neoplasia type 1 gene (MEN1) [14], and with Lens-epithelial growth

factor (LEDGF) and Myb. These interactions seem not only to be critical for MLL’s

normal function but also for the leukemogenic activity of MLL-fusion proteins

[14–16]. Interestingly, LEDGF contains a PWWP domain, a motif belonging to

Tudor domain “Royal Family” [17], that is thought to mediate binding to chromatin

[18]. The integrity of the PWWP domain of LEDGF is required for leukemogenesis

[16]. Furthermore, direct fusion of LEDGF’s PWWP domain to MLL1, a configu-

ration naturally existing in MLL1 orthologs in plants [19], rescues the leukemo-

genic potential of MLL-fusion proteins lacking the MENIN and LEDGF interaction

domains [16]. This observation suggested that MENIN’s predominant role in MLL-

fusion leukemia is to recruit MLL-fusions to chromatin by promoting the interac-

tion between MLL and LEDGF [16]. The exact nature of chromatin bound by

LEDGF’s PWWP motif is unknown. In contrast to the AT-hooks, oncogenic

MLL1-fusions require the CxxC domain for transformation. Similar to those of

MLL2 and CFP1, the CxxC domain of MLL1 binds to CpG-rich unmethylated

DNA [20–22]. Although closely related, MLL2-based translocations have never

been identified in human AMLs. Domain swapping experiments showed that the

presence of the CxxC domain of MLL1 in the backbone of MLL2 protein is

sufficient for leukemogenesis [20]. Interestingly, by impairing the DNA-binding
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ability of MLL1’s CxxC domain through the introduction of one specific point

mutation, the leukemogenic potential of the MLL/AF9 fusion on bone marrow

progenitor cells was fully abrogated. This observation coincided with reduced

expression ofHoxa9. In non hematopoietic cells, this mutation resulted in increased

levels of DNA methylation at specific CpG nucleotides of the Hoxa9 promoter

and of repressive histone H3 lysine 9 trimethylation [23]. Promoter occupancy of

MLL/AF9 fusion protein was, however, largely unaltered, arguing that the CxxC

domain may play a critical role in the regulation of chromatin states and gene

expression levels of MLL-fusion target genes while the PWWP domain of LEDGF

would direct binding of the oncogenic fusion to chromatin.

2.3 Enhancing Transcriptional Elongation

In most human and mouse MLL-fusion-based leukemias, a number of direct

target genes are commonly upregulated. Prime examples are HOXA7, HOXA9,

HOXA10, and MEIS1 [6, 24–28]. Elevated expression of the HOXA cluster genes

is necessary for maintenance of the transformed state mediated by a MLL fusion

[29]. HOX and MEIS1 proteins function as heterodimers to activate downstream

genes [30]. Accordingly, overexpression of HOXA9 and MEIS1 is sufficient to

induce an aggressive AML phenotype in vivo [31]. Surprisingly, transformation

potential is not limited to HOXA9, with the exception of HOXA2 and HOXA5,

overexpression of any HOXA gene immortalized murine granulocytic–monocytic

progenitor cells in vitro [32].

Nonetheless, despite sharing common targets, it is currently unknown why

different MLL-fusions cause leukemias in different hematopoietic lineages [33,

34]. An answer may lie in the cellular and biochemical properties of the particular

fusion partners. Biochemical studies have shown that MLL-fusion partners like

AF4, ENL, and AF9 form multiprotein complexes that serve a role in transcrip-

tional elongation [35–40]. The AF4 and ENL/AF9 protein families account for

two-thirds of MLL-associated leukemias [41]. The AF4 family comprises four

paralogous proteins including AF4, AF5q31, LAF4, and FMR2. The paralogous

ENL and AF9 proteins show homology to the yeast Anc1 protein, which is

implicated in transcriptional regulation. All but FMR2 have been identified as

MLL-fusion partners in leukemia. Recent work by Yokoyama and colleagues

[40] showed that AF4 and AF5q31 preferentially form heterodimers (over homo-

dimers) that interact with ENL as well as with the CDK9 and cyclinT1 subunits of

pTEFb, the Positive Transcription Elongation Factor b, which phosphorylates the

carboxy-terminal domain (CTD) of RNA polymerase II to facilitate transcriptional

elongation [42, 43]. Furthermore, they showed that ENL interacts with AF4 (or

AF5q31) and with DOT1L, the H3 lysine 79-specific methyltransferase, although in

a mutually exclusive manner.

These data establish an order of action of the different protein complexes

involved in transcriptional elongation, with the AF4–ENL–pTEFb (AEP) complex
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functioning upstream of the ENL–DOT1L complex. Furthermore, it provides a

rationale of how MLL-fusions enhance expression of target genes by bypassing

the quality control of recruitment of elongation complexes during the course of

transcription. Consistent with this model, target genes of MLL-fusions are exten-

sively marked by the elongation chromatin marker H3K79me2 along their

gene bodies, and DOT1L is required for leukemogenesis [26, 27, 44]. Nevertheless,

initiation of transcription of MLL-fusion target genes requires the function of the

second nonmutated Mll1 allele, arguing that MLL-fusion enhanced transcriptional

elongation is still controlled at the level of transcriptional initiation [45]. Since all

major MLL-fusion partners function in the transcriptional elongation process, the

development of a lymphoid, mixed, or myeloid-specific leukemia may result from

the ability of the different MLL-fusion partners to interact with distinct proteins in

a lineage-specific manner during hematopoiesis, thereby potentially regulating

different target genes.

2.4 A Role for PHD Fingers in Leukemia

Characterization of a complex cytogenetic abnormality in cells from a patient with

AML harboring a t(11;12)(p15;p13) revealed a novel fusion between nucleoporin-

98 (NUP98) and the lysine-specific demethylase 5A (KDM5A), also known as

JARID1A or retinoblastoma binding protein 2 (RBP2) [46]. JARID1A belongs to a

family of histone demethylases including PLU1 (KDM5B) and SMCX (KDM5C)

that harbor di- and tri-demethylation activity toward H3K4 [47, 48]. In D. melano-
gaster, the ortholog LID controls homeotic gene expression during development

[49]. In mouse ES cells, Jarid1A interacts with members of the Polycomb Repres-

sive Complex 2 (PRC2) and colocalizes to a large number of PRC2 target genes in a

largely PRC2-dependent manner. Jarid1A is thought to contribute to PRC2-

mediated silencing by counteracting the transcriptional promoting role of H3K4

methyltransferases like those of the MLL family [50, 51]. Surprisingly, Jarid1a
deficient mice are viable and showed no major phenotypes [48].

Expression of the NUP98/JARID1A fusion blocked differentiation of murine

bone marrow cells in vitro and induced an AML-like phenotype in vivo [52].

Besides the enzymatic JmjC domain, Jarid1A contains three PhD fingers [53].

Interestingly, whereas the first N-terminal PHD finger has affinity toward unmethy-

lated H3K4, the third C-terminally located PHD finger binds to di- and tri-methy-

lated H3K4 [52]. In the leukemic NUP98/JARID1A fusion, only a nuclear

localization signal and the third PHD finger of JARID1A are fused to the transacti-

vating phenylalanine-gylcine (FG)-repeats of NUP98. Expression of this fusion

protein in hematopoietic progenitor cells caused up-regulation of expression of a

number of developmental regulators like Hoxa5/a7/a9/a10, Gata3, Meis1, and
Pbx1 that are repressed by Polycomb group proteins in ES cells. Likewise,

NUP98-JARID1A expression resulted in decreased H3K27me3 and increased
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H3K4me3 levels throughout the Hoxa cluster. Importantly, the H3K4me2/3-binding

affinity of the PHD finger was required for binding of the NUP98-JARID1A fusion to

classical MLL-fusion targets like Hoxa7 and Hoxa9 and for in vitro transformation.

Oncogenic transformation potential was retained when JARID1’s third PHD finger

was replaced by H3K4me2/3-specific PHD fingers from other proteins but not when

replaced by PHD fingers recognizing unmethylated H3K4. Mechanistically,

NUP98/PHD fusions are proposed to act as “chromatin boundary factors” counter-

acting PcG-mediated repression to “lock-in” critical loci into an active chromatin

state [52]. In this model, the PHD finger would act as a molecular glue to direct

NUP98’s transactivation function to target genes (see below), presumably in a

positive feedback loop involving H3K4 methylation. Interestingly, MLL1 harbors

a number of PHD fingers adjacent to its CxxC domain. Inclusion of the third PHD

finger into MLL-fusions abrogates their leukemogenic potential [54, 55], arguing

that the targeting and activity of transactivating fusion proteins is primarily deter-

mined by having the right combination of DNA and chromatin-binding modules.

3 NSD-Fusions Target Histone Methyltransferase Activity

Another family of histone methyltransferases that are targets of genetic alterations

in hematologic malignancies are the Nuclear receptor binding SET Domain (NSD)

proteins composed by three members, NSD1 to NSD3. NSD1 was discovered in a

screen for interacting partners of nuclear hormone receptors, acting as corepressor

or coactivator depending on the cellular context [56]. NSD1 harbors intrinsic

histone methyltransferase activity with specificity for H3K36 and H4K20 and is

an important regulator of early postimplantation development [57]. NSD1 and

NSD3 are both involved in genetic alterations like t(5;11)(q35;p15), cryptic inser-

tions add(11)(p15) or t(8;11)(p11;p15) leading to expression of NUP98/NSD1 or

NUP98/NSD3 fusion genes, respectively [58–60]. The resulting fusions contain the

FG-repeats of NUP98 fused to the PHD fingers, PWWP, SET, and C5HCH domains

of NSD1 and NSD3, respectively. NUP98/NSD1 was demonstrated to be a potent

oncoprotein that efficiently transforms murine bone marrow cells in vitro and

induces an AML-like phenotype in a transplant model in vivo [61]. Interestingly,

transformation of the NUP98/NSD1 fusion was associated with its H3K36 methy-

lation activity and HOXA gene cluster binding and activation. Structure functional

analysis revealed that a region containing the fifth PHD finger and the adjacent

C5HCH domain was essential for binding to the Hoxa9 promoter and for the

transforming activity of NUP98/NSD1. The region containing the first four PHD

fingers and the PWWP domain was not required for Hoxa9 promoter binding nor

transactivation of Hoxa7 in vitro. In contrast to JARID1’s third PHD finger, none

of NSD1’s PHD fingers seem to have the critical H3K4-interacting residues,

suggesting that NUP98/NSD1 may interact with chromatin through another histone

modification [62, 63]. Deletion analysis showed that the NUP98 domain is not

required for Hoxa9 promoter binding; instead it controls transcriptional activation
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by targeting p300/CBP and regulating H3 acetylation and is thereby essential for

myeloid progenitor immortalization. It will be important to determine whether the

NUP98 domain is sufficient for transactivation by NUP98/NSD1 or whether

the catalytic activity of the SET domain is required as well.

Interestingly, germline missense mutations of the SET, PWWP, PHD, and

cysteine/histidine-rich C5HCH domains are also found in SOTOS and Weaver

syndromes, two childhood overgrowth syndromes characterized by facial dys-

morphism, advanced bone age, seizures, and mental retardation [64, 65]. Mutations

associated with overgrowth syndromes seem to cluster toward the fifth PHD

and the adjacent C5HCH motif, suggesting at least in part overlaps in targeting

mechanisms. Interestingly, epidemiological data recently suggested a link between

male gender and elevated risk for the development of hematological malignancies

of SOTOS patients [66].

The role of NSD proteins in human cancer is not limited to AML, as NSD2

(also called MMSET) is found in a chromosomal translocation t(4;14)(p16;q23)

associated with a significant fraction of patients with multiple myeloma [67]. NSD2

is also known as Wolf–Hirschhorn candidate 1 (WHSC1), as the gene maps to a

165 kb critical region on chromosomal 4 that is targeted by a hemizygous deletion

in this malformation syndrome [68]. Accordingly, mice deficient for Nsd2 display

phenotypes reminiscent of the human disease [69]. There is increasing evidence

that alterations of NSD1 and NSD3 could be involved in the pathogenesis of diverse

forms of human cancers like neuroblastoma, glioma, colon carcinoma, or breast

cancer. Convincing functional evidence is, however, lacking [70, 71].

4 Epigenetic Regulation by Histone Acetyltransferases

The second class of chromatin modifying enzymes involved in leukemia-associated

genetic alterations are histone acetyltransferases (HATs). Based on their catalytic

domains, HATs are classified into three classes composed of (1) GCN5 N-acetyl-

transferases, (2) p300 and CBP (cAMP response element binding (CREB) protein),

and (3) MYSTs including MOZ, MORF, Ybf2, Sas2, and Tip60 members. Several

chromosomal translocations affecting class 2 and 3 HATs have been identified in

AML blasts [72].

Both the transcriptional coactivator CBP and its paralogue p300 are involved in

cellular fate decisions in hematopoiesis. Whereas self-renewal of hematopoietic

stem cells is dependent on CBP, p300 is crucial for proper hematopoietic differen-

tiation [73,74]. p300 but not CBP regulates hematopoiesis through its KIX domain,

a known protein/protein interaction interface for c-Myb and CREB [75]. By inter-

acting with p300, c-Myb controls proliferation and differentiation of hematopoietic

stem and progenitor cells [76]. Two translocations (t(11,16)(q23, p13) and t(11;22)

(q23;q13)) mostly associated with secondary therapy-related AML result in fusions

of the CBP or p300 to MLL [77, 78]. Transforming activity of MLL/CBP has

been demonstrated in vitro and in bone marrow transplantation assays as well as by
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generation of a conditional knock-in allele in mice [11, 79]. Furthermore, knock-

down of MLL/CBP expression in the SN-1 cell line carrying this translocation

resulted in cellular differentiation. Interestingly, the fusion-mediated block in

differentiation can be overcome with RXR agonists or a clinical more applicable

combination of all-trans retinoic acid (ATRA) and histone deacetylase (HDAC)

inhibitors (see below) [80].

The monocytic leukemia zinc finger (MOZ; also called MYST1) and the

monocytic leukemia zinc finger-related factor (MORF; also called MYST4) are

both involved in rare translocations t(8;16)(p11;p13) and t(10;16)(q22;p13) lead-

ing to expression of MOZ-CBP and MORF-CBP, respectively [81, 82]. MOZ,

but not the MOZ-CBP fusion, is a coactivator of AML1 (a subunit of the core

binding factor) and is essential for the establishment of definitive hematopoiesis

[83]. MOZ deficient mice die around embryonic day 15 with a severely reduced

number of hematopoietic stem and progenitor cells that are incapable of recon-

stituting hematopoiesis upon transplantation [84, 85]. There is growing evidence

that these fusion might induce the leukemic phenotype not only through inter-

ference with AML1 but also by blocking p53-mediated transcription upon DNA

damage and by blocking apoptosis through NF-kB regulation [86, 87]. Interest-

ingly, gene expression profiling of AML harboring a MOZ/CBP fusion revealed a

distinct signature characterized by up-regulation of HOXA9, HOXA10, MEIS1,

and FLT3 resembling in part expression programs found in AML with MLL

rearrangements [88].

Inv(8)(p11;q13) associated with AML leads to fusion of MOZ to the transcrip-

tional intermediary factor 2 (TIF2). This fusion couples the HAT domain of MOZ

to the trans-activation and CBP-interaction domain of TIF2 [89, 90]. Expression of

MOZ/TIF2 in murine hematopoietic stem and progenitor cells in vitro provided

aberrant self-renewal capacity with a block in normal differentiation and caused

AML in a murine bone marrow transplant assay. Interestingly, whereas the HAT

domain of MOZ was dispensable for leukemia induction, interaction of MOZ/TIF2

with CBP was essential for transformation [91, 92]. Functionally, MOZ/TIF2 seems

to act as a dominant inhibitor of CBP-dependent activators such as nuclear recep-

tors or p53 and to alter cofactor recruitment and histone modification at the retinoid

acid receptor beta 2 (RARb2) [93, 94]. In summary, both direct and indirect

mistargeting of CBP or p300 via various fusion proteins are associated with AML

in humans and mouse.

5 Indirect Epigenetic Deregulation

Chromosomal translocations involving the core binding factor (CBF) such as

t(8;21)(q22;q22) or inv16(p13q22) resulting in the AML1/ETO and CBFb/
MYH11 fusion protein, respectively, are the most prevalent cytogenetic alterations

in human AML. Gene knockout studies in mice have shown that the CBF subunits
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AML1 and CBFb are both essential regulators of definitive hematopoiesis. Whereas

AML1 acts primarily as a transcriptional activator, leukemia-associated fusion

proteins are dominant-negative silencers of genes essential for normal myeloid

differentiation, acting through direct cooperation with nuclear corepressors includ-

ing N-COR1/2, SIN3A, as well as HDACs [95]. In addition, they also recruit DNA

methyltransferase 1 (DNMT1), suggesting that aberrant repression might also be

mediated by promoter hypermethylation [96, 97].

Similar molecular mechanisms seem to underlie malignant transformation by

translocations involving the retinoid acid receptor alpha (RARa), comprising the

second most frequent genetic alteration that is almost exclusively associated with

AML M3, also called acute promyelocytic leukemia (APL). Whereas wild-type

RARa acts as transcriptional activator, X-RARa fusions (with PML-RARa being

by far the most prevalent fusion) function as transcriptional repressors, also through

recruitment of chromatin modifiers like HDACs, N-COR1/2, DNMT1/3a, and the

H3K9 HMT SUV39H1[98].

PML/RARa recruits PRC2 to the promoter of the RARb2 target gene [87].

siRNA-mediated knockdown of the PRC2 component SUZ12 released in part the

PML/RARa-mediated differentiation block in APL cells. Importantly, the PML/

RARa-mediated differentiation block can be overcome by ATRA. In contrast,

blocked differentiation and leukemogenesis by the PLZF-RARa variant are insen-

sitive to ATRA treatment. This may be due to direct interaction of the PLZF-RARa
variant with the Polycomb group protein Bmi1 resulting in the recruitment of the

repressive PRC1 complex to RA-responsive elements [99].

The importance of DNA methylation, H3K9 and H3K27 tri-methylation in

PML/RARa-mediated gene silencing has recently, however, been challenged

by an extensive genome-wide localization study of PML/RARa, RXR, RNA

polymerase II and various histone modifications and DNA methylation in PML/

RARa expressing cell lines as well as in primary APL cells [100]. The authors

identified over 2,700 sites co-occupied by the fusion and RXR. Importantly,

levels of H3K9me3, H3K27me3, and DNA methylation were generally low at

PML/RARa-RXR binding sites. Moreover, the level of these modifications

did not change upon treatment with pharmacological doses of ATRA, whereas

acetylation at H3K9 and H3K14 dramatically increased. Upon ATRA treatment,

H3K9K14ac levels increased at many PML/RARa-RXR targets, yet the increase

was stronger for genes that were induced rather than repressed [100]. Another

ChIP-chip study reported an inverse correlation between PML-RARa occupancy

and H3 acetylation, yet observed a positive correlation for H3K9me3 and PML-

RARa [101]. Finally, Wang and colleagues [102] identified through genome-wide

chromatin and computational analyses that the PU.1 transcription factor binds to

promoters of genes occupied and repressed by PML-RARa. While the crucial

changes in transcription remain unclear, it is through such genome-wide studies

that we will be able to evaluate the importance of different transcription

and chromatin factors during leukemic oncogenesis. Furthermore, these recent

studies underscore the importance of HDAC inhibitors as a potential therapeutic

approach for PML/RARa leukemias.
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6 Aberrant Promoter DNA Methylation

Methylation at position carbon 5 of the cytidine ring in the context of a CpG

dinucleotide is mediated by DNA methyltransferases (DNMTs) including

DNMT1, 3a and 3b. Whereas DNMT3a/b act as de novo methylases binding to

both unmethylated and hemimethylated CpGs, DNMT1 is responsible for main-

taining DNA methylation patterns and preferentially binds to hemimethylated

DNA. In mammalian genomes, hypomethylated CpG dinucleotides are generally

located in higher frequencies around promoters of more than half of genes (in so-

called CpG-islands). DNA methylation is essential for development, as demon-

strated by embryonic lethality of mice deficient for Dnmt1 and Dnmt3b [103,104].

Conditional disruption in the hematopoietic system revealed an essential role of

Dnmt1 in regulating HSC self-renewal, niche retention, and early multilineage

differentation [105]. Interestingly, the dosage of DNA methylation seems also to be

important to protect HSC multipotency from myeloerythroid restriction [106]. Con-

ditional ablation of Dnmt3a, Dnmt3b, or both in Kitþ/Sca1þ/Cd34low/lineage-

negative hematopoietic cells revealed an essential role in HSC self-renewal [107].

Aberrant DNA methylation is a hallmark of many human cancers including

AML, which are typically characterized by hypermethylation of CpG islands in

promoter regions of many tumor suppressor genes, such as CDKN2B (p15), HIC1,

and CTNNA1, while being associated with overall DNA hypomethylation

[108–110]. Interestingly, AML blast cells with methylated p15(INK4B) tended to

express higher levels of DNMT1 and DNMT3B [111]. Aberrant DNA methylation

seems to be a dominant mechanism for silencing of tumor suppressors during clonal

progression of myelodysplastic syndromes (MDS) to AML [112]. Quantitative

screening of DNA methylation by mass spectrometry of almost 100 genomic

regions in cells from over 200 patients revealed a novel outcome predictor for

AML [113]. Similarly, large-scale DNA methylation profiling of tumor samples of

344 AML patients using the HELP assay (HpaII tiny fragment Enrichment by

Ligation-mediated PCR) in combination with high-density microarray hybridiza-

tion revealed DNA methylation signatures for biologically distinct AML subtypes

with genetic alterations in e.g., CEPBA, NPM1, CBF, or RARa alterations [114].

In infant acute leukemia, specific promoter DNAmethylation patterns correlated

with the underlying MLL rearrangement. MLL translocations t(4;11) and t(11;19)

showed extensive hypermethylation, whereas leukemias with the t(9;11) transloca-

tion or carrying wild-type MLL lacked aberrant DNA methylation. Again,

the degree of hypermethylation appeared to influence relapse-free survival, further-

more demonstrating the prognostic impact [115]. Another study using a different

screening platform observed global hypermethylation in MLL-rearranged infant

leukemia compared with both normals and common childhood ALL [116]. In both

studies, treatment with demethylating agents reversed aberrant DNA methylation

and induced apoptosis in leukemic cell lines carrying MLL rearrangments, sug-

gesting that inhibition of aberrant DNA methylation might provide a functional

therapeutic strategy [115, 116].
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Cloning of the translocation t(10;11)(q22;q23) associated with several cases of

AML revealed a novel fusion of MLL1 to TET1 (Ten-Eleven Translocation; also

known as Leukemia-associated protein with a CXXC domain, LCX) [117,118].

TET1 is the prototype of a larger family of so-called kinetoplastid base J binding

proteins (JBP) that are able to catalyze in situ hydroxylation of bases in nucleic

acids [119]. TET1 has been identified as a 2-oxoglutarate (2OG)-and Fe(II)-depen-

dent enzyme that is able to convert 5-methylcytosine into 5-hydroxymethylcytosine

(5-hmC) in vitro. In mouse embryonic stem cells, 5-hmC levels decreased upon

differentiation or by TET1 depletion suggested that this novel enzyme might

function as an epigenetic regulator [120]. Cloning of candidate tumor suppressor

genes common in a large cohort of patients with myeloid cancers revealed point

mutations and deletions in TET2 in 15% of patients including 5 out of 21 secondary

AML cases developed from chronic myeloproliferative disorders (MPD) [121].

TET2 mutations were also found in 12/119 patients with AML without any corre-

lation to specific cytogenetic alterations or history of antecedent MPD or MDS,

but with a decreased overall survival compared with TET2 wild-type patients. The

same study did not find any alterations of TET1 or TET3 in 96 patients with

myeloproliferative neoplasia [122]. Functional contribution and the underlying

molecular mechanisms of alterations of the TET gene family for induction and

maintenance of leukemic disorders remain to be elucidated.

7 MicroRNAs in AML

Regulatory noncoding RNAs including microRNAs (miRNAs), small interfering

RNAs, Piwi-interacting RNAs, and various types of long noncoding RNAs regulate

gene expression at the transcriptional and posttranscriptional level (reviewed in

[123]). An avalanche of recent reports has provided convincing evidence that

aberrant miRNA expression controls the development and maintenance of various

human disorders including cancer (reviewed in [124]). Since the expression of

miRNAs is highly regulated during normal hematopoiesis, it is not surprising that

deregulated miRNA expression contributes to leukemogenesis. The role of aber-

rantly expressed miRNAs as potential oncogenes or tumor suppressor genes in

human leukemia was the subject of recent reviews [125, 126]; therefore, we high-

light here only the most recent findings that underscore the role of miRNAS in AML.

Specific subsets of aberrantly expressed miRNAs have been identified in AML

cases harboring distinct cytogenetic aberrations such as t(15;17) leading to

PML/RARa, CBF alterations resulting from inv(16) or t(8;21), or balanced trans-

locations of 11q23 mostly composed of MLL-fusions [127]. Transformation

by MLL fusion genes was associated with overexpression of miR-196 and the

miR-17-92 cluster. Interestingly, treatment with specific antagomirs abrogated the

self-renewal capacity of MLL-fusion expressing bone marrow cells, suggesting

an active role for aberrant miRNA expression in leukemic transformation by MLL

fusions [128]. Expression of the miR-17-92 cluster functionally cooperated with
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MLL fusions increasing clonogenic growth of murine bone marrow cells.

Expression profiling of miR-17-92 expressing cells resulted in over 300 potential

targets that were significantly enriched in regulators of cellular differentiation,

hematopoiesis, cell cycle, and apoptosis [129]. MiR-128b and 221 were found

to be downregulated in MLL-rearranged ALL. Reexpression of these miRNAs

cooperatively sensitized two MLL/AF4 positive cell lines to glucocorticoid

response. Interestingly, mutations targeting miR-128b have been identified in a

MLL/AF4 cell line and in primary cells. One mutation seems to significantly reduce

the processing of miR-128b contributing to glucocorticoid resistance [130, 131].

Leukemia-associated chromosomal translocation can also directly lead to

aberrant miRNA expression and transformation of hematopoietic cells. Cloning

of a recurrent translocation t(2;11)(p21;q23) associated with MDS and AML

revealed that this translocation resulted in significant upregulation of miR-125b-1

located near the breakpoint on chromosome 11. Expression of miR-125b-1 in

primary human CD34þ cell and leukemic cell lines resulted in impaired cellular

differentiation, suggesting that aberrant expression of miR-125b-1 might contribute

to malignant transformation [132]. Likewise, miR-29a that is highly expressed in

HSCs and downregulated during progenitor differentiation was also overexpressed

in blasts from AML patients. Ectopic expression of miR-29a in mouse bone marrow

stem and progenitor cells resulted in aberrant self-renewal in vitro and the develop-
ment of a myeloproliferative disorder that progressed into AML in vivo [133].

Another miRNA with potential active contribution to leukemogenesis is

miR-125b-2 located on chromosome 21, which is overexpressed in acute mega-

karyoblastic leukemia associated with trisomy 21/Down syndrome (DS-AMKL).

Overexpression of miR-125b-2 increased proliferation and self-renewal of human

and mouse megakaryocytic and megakaryocytic/erythroid progenitor cells, with

accentuation in presence of the GATA1s mutation associated with trisomy 21.

Transcriptome analysis revealed several potential targets that were downregulated

in DS-AMKL highly expressing miR-125b, suggesting that miR-125b-2 might act

as potential oncomir in DS-AMKL [134].

In summary, these studies assign an important role to miRNAs in AML. To what

extent functional interference with aberrantly expressed miRNAs could be of

therapeutic benefit in MLL leukemia remains to be determined.

8 Epigenetic Therapy of AML

Aberrant genetic programs mediated by epigenetic mechanisms, such as promoter

hypermethylation and histone deacetylation, can be theoretically reverted by phar-

macological inhibitors. The prototype of successful epigenetic therapy is reversion

of the PML/RARa-induced myeloid differentiation block in APL by all-trans

retinoid acid (ATRA) and/or arsenic trioxide (AsO3) [135]. It is currently unclear

why non-APL AML only poorly responds to ATRA given the importance of the

RAR/RXR signaling pathway in myelomonocytic differentiation [136], although
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the nature of cooperating genetic lesions in non-APL AML could be responsible for

failure of ATRA in these cases. In addition, non-APL AML cells often express low

levels of RARa [137]. The product of t(8;21) the AML1/ETO fusion seem to

epigenetically modify RAR/RXR signaling by inducing aberrant DNA methylation

of the promoter of the ATRA target gene RARb2 [138]. AML-associated fusions

like AML1/ETO or MN1/TEL directly block RAR/RXR-mediated transcription.

Meningioma1 (MN1) overexpression often observed in AML with inv(16) seems to

abrogate ATRA-induced transcription and is able to induce a leukemic phenotype

in mice alone and in cooperation with leukemogenic oncogenes like CBFb/MYH11

or MLL/ENL [139,140]. More research is needed to evaluate the molecular clues

defining the ATRA responsiveness of non-APL AML.

Current epigenetic therapeutic approaches are based on targeting aberrant

DNA methylation and inhibition of HDACs. As outlined above, leukemic blasts

(and cancer cells in general) often show aberrant promoter hypermethylation

resulting in silencing of a significant number of potential tumor suppressor genes.

Hypomethylation of these promoters may restore expression of genes, thereby

impairing growth and survival and/or promoting cellular differentiation. Two

nucleoside analogs, 5-azacitidine (VIDAZA) and 5-Aza-20-deoxycytidine
(Decitabine, DACOGEN), are currently being evaluated for their antileukemic

potential in several clinical trials. Both of these compounds are incorporated into

DNA and form a covalent complex with the DNMT enzyme that results in trapping

and progressive loss of DNMT activity. Hematological response rates with clinical

benefits were reported in up to 40% of patients with MDS (including some patients

with signs of progression toward AML) in trials using aza-nucleoside as single

agents (reviewed in [141]). Phase III trials comparing aza-nucleosides to supportive

care in MDS patients reported encouraging overall response rates of 30–47% with

complete response rates of less than 10% [142, 143]. Several studies using decita-

bine have also provided promising results for AML therapy [144–146]. A recent

phase II clinical trial with single agent decitabine therapy in older patients (>60y)

with previously untreated AML showed high activity with a complete remission

rate of 47% after a median of three cycles [147]. However, the effects of these

drugs on DNA methylation are not permanent and chronic application is required.

Whether the observed clinical activity of aza-nucleoside is purely based on

reversion of epigenetic silencing is currently not clear given the ability of these

compounds to induce a DNA damage response [148, 149].

As outlined above, HDACs are epigenetic key elements in mediating the func-

tion of different fusion proteins (like PML/RARa, AML1/ETO, or CBFb/SMMHC)

derived from chromosomal translocations associated with acute leukemia.

However, little is known about the role of the 11 individual HDACs for the

development of a leukemic phenotype. Conditional isoform-specific knockout

mice will be useful tools to further dissect the role of HDACs in normal and

leukemic hematopoiesis. The use of HDAC inhibitors for the therapy of leukemia

was driven by the idea that such compounds would relieve HDAC-mediated

transcriptional repression resulting in differentiation and/or death of leukemic

blasts. There is accumulating evidence that most currently used HDAC inhibitors
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have pleiotropic effects in leukemic cells, beyond the block of repression associated

with the fusion. Notably these involve induction of key apoptosis regulators and

proteasomal degradation of oncogenic fusion proteins leading to differentiation and

subsequent death of the leukemic blasts [150–152].

Despite the lack of a complete understanding of their activities, several small

molecule HDAC inhibitors have been evaluated in clinical trials for AML therapy

with encouraging results. HDAC inhibitors in clinical trials are often classified

based on their structure and on the proposed activity profile, including hydroxamic

acid-based compounds like SAHA (Vorinostat), PXD101 (Belinostat), and LBH-

589 (Panbinostat); synthetic benzamide derivates like MS275 (Entinostat) and

MGCD0103 (Mocetinostat); 2-propylpentanoic acid (Valproate) or cyclic peptides

like FK228 (Istodax) [153]. A phase I study with MGCD0103 for monotherapy of

AML or MDS demonstrated some clinical activity inducing complete remissions in

3 out of 21 patients [154]. Transient antileukemic activities of monotherapies with

HDAC inhibitors initiated several trials exploring the combinations of HDAC

inhibitors with chemotherapy and/or demethylating agents. Indeed, preclinical

studies demonstrated synergistic anticancer activity of HDAC inhibitors with

DNMT inhibitors resulting in reexpression of genes silenced in cancer [155].

However, various combinations of these compounds have been associated with

increased toxicity, and no definitive clinical benefit over monotherapies was

observed [144, 156].

To overcome the current limitations of epigenetic cancer therapy, it will be

essential to dissect the critical epigenetic mechanisms and molecular players that

maintain a potentially reversible leukemic state. Further molecular and structural

analyses of key enzymatic players, their interaction partners, and their modes of

chromatin binding will lead to novel and more specific small molecules that will

hopefully revolutionize leukemia therapy following the success of small molecule

kinase inhibitors.
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The Liver-Specific MicroRNA miR-122:

Biology and Therapeutic Potential

Witold Filipowicz and Helge Großhans

Abstract MicroRNAs (miRNAs) are small noncoding RNAs that regulate the expres-

sion of a large fraction of genes in animals, plants, and protozoa. miRNA-mediated

gene repression occurs posttranscriptionally, generally by base-pairing to the 30-untrans-
lated regions of target mRNAs, which inhibits protein synthesis and destabilizes the

mRNA. In this chapter, we discuss the biological functions of miR-122, a highly

abundant, liver-specific miRNA. We will review how studies of miR-122 helped to

establish important new paradigms of miRNA-mediated regulation, as well as identify-

ing miR-122 as a factor implicated in important human diseases, including cancer

and hepatitis C. We discuss antisense strategies targeting miR-122 as a potential

therapeutic approach to treat hepatitis C and possibly other diseases.

1 Introduction

1.1 History of miRNAs: What Are miRNAs
and How Were They Found

MicroRNAs are a large class of genomically encoded, regulatory RNAs of ~22

nucleotides (nt). The first miRNA, lin-4, was identified in the nematode Caeno-
rhabditis elegans through a mutation that caused specific alterations in developmen-

tal cell fates [1]. At the time, no homologues of lin-4 could be identified in other

organisms, suggesting the possibility of a worm-specific function. However, the

subsequent discovery of another C. elegans miRNA, let-7 [2], renewed interest in

these small RNAs, particularly when orthologues of let-7 were found in other

animals including humans [3]. Extensive searches for additional miRNAs, using
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both bioinformatic strategies and cloning and sequencing approaches, quickly

identified dozens of additional miRNAs in C. elegans, but also humans and flies

[4–6]. Today, we know thousands of miRNAs from various animals and plants,

including unicellular algae and anemones. In humans, 721 miRNAs have been

validated (miRBase 14.0; [7]), with others presumably still awaiting discovery.

Among hundreds of miRNAs identified in metazoan animals, there are many that

are expressed in a tissue- or a developmental stage-specific manner [8]. Individual

miRNAs also vary substantially in their expression levels. Some are present at the

level of 100 or fewer molecules but expression of others can exceed tens of

thousands molecules per cell [9]. Vertebrate miR-122, the subject of this chapter,

belongs to the most abundant known tissue-specific miRNAs. It is expressed almost

exclusively in liver cells (hepatocytes) at over 50,000 copies per cell [10, 11]. As

each miRNA silences dozens or even hundreds of different target mRNAs [12], this

abundance of miRNAs permits regulation of various developmental and cellular

processes [13]. Accordingly, miRNA dysregulation has also been implicated in

various diseases, particularly cancers [14].

1.2 The Multistep Process of miRNA Biogenesis

Before a mature miRNA can silence target genes in the cytoplasm, it has to proceed

along a complex biogenesis pathway [15]. Initially, a capped and polyadenylated

primary miRNA (pri-miRNA) of hundreds or even thousands of nucleotides is

transcribed by RNA polymerase II. In vertebrates, many miRNAs are located in

the introns of protein-coding “host genes,” whereas others are independent “inter-

genic” transcripts, but production of either type may be transcriptionally regulated

by diverse transcription factors. The pri-miRNA is cleaved by the RNase Drosha

and its cofactor Pasha/DGCR8 (“DiGeorge syndrome critical region gene 8”) to

release the precursor-miRNA (pre-miRNA). This 60–70 nucleotide long RNA,

characterized by a stem-loop structure, is subsequently exported into the cytoplasm

by exportin-5, where it is processed by the RNase Dicer. Dicer, along with its

cofactors TRBP2 or PACT, excises a ~22 nt duplex RNA from the pre-miRNA,

from which one strand will subsequently be selected as the mature miRNA and

incorporated into an Argonaute (AGO) protein. The resulting miRNA-induced

silencing complex (miRISC) additionally contains a protein of the GW182/

TNRC6 family as an essential effector of mRNA silencing.

1.3 miRNAs Silence Target mRNAs Through an Antisense
Mechanism

MicroRNAs in miRISC repress gene expression posttranscriptionally by binding to

complementary sequences in the 30 untranslated regions (UTRs) of their target

mRNAs. Although miRNAs that are incorporated into mammalian AGO2 have the
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capacity to direct endonucleolytic target cleavage (“slicing”), this requires perfect

complementarity between the miRNA and its target, which is highly unusual in

animals. Almost exclusively, animal miRNAs exhibit only partial complementarity

to their targets and, regardless of the AGO with which they are associated, cause

target gene repression through mechanisms distinct from slicing [16, 17]. In

animals, the most stringent requirement for association with mRNA targets is

frequently a contiguous and perfect Watson–Crick base-pairing of the miRNA 50

nucleotides 2–8 [12]. These nucleotides represent the so-called “seed” region,

which nucleates the miRNA–mRNA interaction. Complementarity of the miRNA

30 half is quite relaxed although it stabilizes the interaction, particularly when the

seed matching is suboptimal.

The details of miRNAs function in repressing protein synthesis are not well

understood. Although it is now well established that miRNAs can cause repression

of translation and/or deadenylation and subsequent degradation of target mRNA

in vivo, in cells grown in culture, and in cell-free systems, mechanistic details

remain largely unknown [16, 17]. In addition, the results from studies conducted in

different systems and different laboratories have often been contradictory, particu-

larly regarding the mechanism of translational inhibition [16–18]. Likewise, much

remains to be learned about cellular localization of the repressive events. Compo-

nents of miRISC and repressed mRNAs are enriched in different cytoplasmic

structures such as processing bodies (P-bodies, also known as GW-bodies), stress

granules (SGs), or multivesicular bodies (MVBs), but the precise role these cellular

compartments play in mediating miRNA function is not well established [19].

Animal miRNA target sites appear to be most abundant in the 30UTRs of target
genes, but can also be in exons or even 50UTRs [12]. However, the limited degree of

complementarity between miRNAs and their targets (see above) means that target

prediction algorithms are far from perfect, yielding both large numbers of false

positive and false negative hits, with usually little overlap among results from

different algorithms [20]. Experimental target validation is thus essential, and

reporter assays are commonly used as a first step in the validation process.

A diagnostic feature of a true miRNA target in these assays is that fusing its

30UTR to a constitutively expressed reporter confers repression to the reporter.

Thus, reporter repression is enhanced when miRNA levels are elevated, but

impaired when miRNA levels are decreased and when the predicted target sites

are mutated. If the endogenous protein levels of the target similarly change in

response to modulated miRNA levels, the target can be considered validated,

although functional assays will still be needed to demonstrate physiological

(or pathophysiological) relevance of the interaction.

1.4 miRNA-Mediated Gene Silencing Is Reversible

miR-122, the miRNA that is the subject of this chapter, is not only important for liver

physiology and pathology, but has also been instrumental in investigating the miRNA
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mechanism, and in particular, the reversibility of miRNA-mediated repression. Until

very recently, miRNAs have been primarily identified as negative regulators of

expression of cellular mRNAs, and it remained unknown whether the inhibition of a

specific mRNA can be effectively reversed. Clearly, the ability to disengage miRNPs

from the repressed mRNA, or render them inactive, would make miRNA regulation

much more dynamic and also more responsive to specific cellular needs.

One of the targets of miR-122 in liver cells is the mRNA encoding the high-

affinity cationic amino acid transporter 1, CAT-1, which facilitates uptake of

arginine and lysine in mammalian cells. Both human and mouse CAT-1

mRNAs contain in their 30UTR several target sites for miR-122, and assays

involving either chimeric mRNA reporters or endogenous human CAT-1 mRNA

indicated that these sites mediate the repressive effect of miR-122 on protein

synthesis [11, 21]. Repression of CAT-1 in liver cells is important to avoid

hydrolysis of the plasma arginine by arginase, which is highly expressed in

hepatocytes. However, under certain conditions, e.g., when urea cycle enzymes

are downregulated or during liver regeneration after partial hepatectomy, CAT-1

expression is induced, most likely to sustain the import of cationic amino acids

required for protein synthesis in hepatocytes [22]. Consistent with the above

considerations, CAT-1 is expressed fairly ubiquitously but its levels vary signifi-

cantly in different cells and tissues and are subject to extensive regulation at both

transcriptional and posttranscriptional levels (reviewed in [23]). For example, in

rat C6 glioma cells, transcription of the CAT-1 gene and stability and translation

of the mRNA are strongly upregulated in response to different types of cellular

stress, including amino acid deprivation [23].

Experiments carried out in human hepatoma Huh7 cells revealed that endogenous

CAT-1 mRNA and reporters bearing its 30UTR can be relieved from miR-122

repression by subjecting the cells to different stress conditions, i.e., amino acid

starvation, oxidative, and endoplasmic reticulum stress [21]. The derepression was

accompanied by the release of CAT-1 mRNA from P-bodies, cytoplasmic aggregates

known to function in storage of translationally repressed mRNAs [24]. The CAT-1

mRNA was preferentially recruited to large polysomes, consistent with miR-122

inhibition occurring at the level of translational initiation [21]. Investigation of the

mechanism of the stress-induced relief from miR-122 repression pointed to a role

of the ELAV family RNA binding protein HuR in this process. In response to

different types of cellular stress, HuR is known to be mobilized from the nucleus to

the cytosol, where it modulates translation and/or stability of different mRNAs by

binding to AU-rich elements in the 30UTR [25]. It appears that HuR, by binding to the

AU-rich sequences positioned in the 30UTR even far away from the miR-122

recognition sites in the CAT-1 mRNA, either prevents the repressive function of

miRISC or displaces it from the CAT-1 mRNA. More recently, other examples

of proteins binding to mRNA 30UTRs and modulating activity of miRNAs have

been described [26–28]. Hence, it appears that regulation of miRNA repression by

RNA binding proteins is probably a widespread phenomenon. It is also likely that,

conversely, miRISC will influence the activity of tRNA binding proteins that bind

to the 30UTR and regulate mRNA stability or localization.
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2 miR-122 and Cancer

2.1 Prelude: The hcr RNA and Hepatocellular Carcinoma
in Woodchucks

Twenty years ago, an unusual RNA was discovered through its association with

liver cancer or hepatocellular carcinoma (HCC) in woodchucks that suffered from

chronic infection with the woodchuck hepatitis virus. In some of the tumors, the

MYC proto-oncogene was overexpressed, and in one case, this was due to a DNA

rearrangement that had translocated c-MYC into the hepatocellular carcinoma-
related (hcr) locus [29, 30]. The normal function of hcr remained mysterious, as

it produced two long RNAs of 4.5 and 4.7 kilobasepairs (kb), respectively, which

seemed to have little protein-coding potential [31]. Whereas the 4.7 kb transcript

was of low abundance and polyadenylated, the smaller transcript was truncated

at the 30 end, lacking the poly(A) tail, yet much more abundant. Both transcripts

were specifically and abundantly expressed in liver, but not in other tissues such as

spleen, kidney, lung, heart, or intestine [31].

It was only 13 years later that a function of the hcr transcript emerged, when

Tuschl and colleagues cloned miRNAs from different mouse tissues. One of the

newly identified miRNAs was miR-122, which accounted for some 70% of cloned

liver miRNAs, and which mapped to the conserved hcr locus [10]. Intriguingly,

miR-122 mapped to the 30 end of the transcript, the sequence that is present in the

4.7 kb but not the 4.5 kb transcript [11]. It thus appears that one of these transcripts

is the pri-miR-122, the other a processing product, from which the pre-miR-122 has

been released, and which is stable for unknown reasons. Consistent with the liver-

specific expression of hcr in woodchucks, mature miR-122 was found to accumu-

late almost exclusively, and abundantly, in the livers of humans, mouse [10, 11],

and zebrafish [32]. miR-122 targets hundreds of mRNAs expressed in liver cells

[33, 34], including a large fraction of genes that accumulate in a circadian fashion

[35]. Accordingly, transcription of the miR-122 gene is also under circadian

regulation, although the functional relevance of this observation is not completely

clear, as accumulation of the mature miRNAs appears to be stable over the 24-h

period that makes up a day [35]. Nonetheless, it appears that miR-122 is of primary

importance for maintaining liver homeostasis.

2.2 Misexpression of miR-122 in HCC

Although the connection to woodchuck HCC had implicated miR-122 in liver

carcinogenesis, there was little evidence for a misexpression of (pri-) miR-122 in

these tumors, and it appears that woodchuck HCC is a consequence of overexpres-

sion of MYC from a strong, liver-specific promoter rather than reduced miR-122

levels [11, 31].
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More recently, however, several lines of research have provided support for a

function of miR-122 in HCC in humans and mice, with most reports suggesting a

role for miR-122 as a tumor suppressor [36–43]. Specifically, reduced expression of

miR-122 has been observed at high frequency in HCC primary tumors relative to

cirrhotic liver [40], and in HCC primary tumors relative to normal adjacent liver

tissue [36, 37, 41]. Tsai et al. further distinguished advanced (Tumor node metasta-

sis stage 3, T3; intrahepatic metastasis) from less advanced (T1 stage) liver tumors

and found that miR-122 was only reduced in the more advanced tumors [36].

A general heterogeneity of miR-122 expression in primary tumors was also

reported by others [38, 41], and Coulouarn et al. demonstrated the expression of

miR-122 to be prognostic for tumor invasiveness; time to recurrence; and overall

patient survival, with high miR-122 levels signaling a better prognosis [38]. Low

miR-122 levels in primary tumors also predicted reduced time to recurrence in an

independent study, although in that case overall patient survival was not affected in

a statistically significant manner [43]. Finally, miR-122 is also part of a larger

miRNA prognostic signature, comprising 20 miRNAs, that was found to predict

patient survival and metastasis [44]. Indeed, in most of the studies profiling miRNA

expression in HCC, larger panels of miRNAs were found to be deregulated;

however, only miR-122 appeared to be deregulated consistently across studies,

whereas levels of other miRNAs appeared much more variable.

Jointly, the expression studies and the clinical data strongly suggest that miR-

122 could have a tumor-suppressive function in HCC. However, one report

observed that in Hepatitis C Virus (HCV)-derived HCCs, miR-122 levels tended

to be upregulated when fixed tissue samples were queried [42]. As this report

specifically investigated HCV-induced HCC, an intriguing possibility is that altera-

tions in miR-122 levels in HCC might depend on tumor etiology. Supporting this

view, Coulouarn et al. observed in their study [38] that reduced miR-122 levels

were a specific property of HCC arising in HBV, but not in HCV-infected livers,

where they saw neither a decrease nor an increase. Such differences are particularly

intriguing when viewed in the context of miR-122’s function in HCV replication,

which we discuss below.

When considering the data of Varnholt et al. [42] together with the other studies,

it would appear that some HCCs can evade the tumor-suppressing function of miR-

122, or, more intriguingly, that miR-122 might be Janus-faced, acting as tumor

suppressor in some settings, but as “oncomiR” in others. A distinction between

these possibilities will require more extended analysis of HCCs of different etio-

logies and, importantly, functional and clinical data linking elevated miR-122

levels in HCV-derived HCCs to clinical outcomes.

Although miR-122 levels seem to be reduced in many HCCs, the cause(s)

remain generally unknown. Integrity of the miR-122 genomic locus in HCC has

not been investigated so that loss of an miR-122 allele remains possible. However,

given the complexity of miRNA biogenesis, other, posttransciptional defects are

just as likely. Indeed, recent work in mouse has shown that miR-122 undergoes

posttranscriptional modification, with the cytoplasmic poly(A) polymerase mGLD2

adding one or few adenosines specifically to the 30 end of mature miR-122 [45].
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Deletion of mGLD2 leads to a marked reduction in mature miR-122 levels and

activity. It would thus be of interest to determine whether mGLD2 knockout mice,

with reduced levels of functional miR-122, are particularly susceptible to HCC and,

conversely, whether human GLD2 is mutated in HCC, specifically in those where

miR-122 levels are reduced.

At this point, it is also not clear when during HCC development miR-122

expression starts to be deregulated. A study of rats put at risk for HCC through an

appropriate diet revealed that miR-122 expression was still normal in preneoplas-

tic nodules, but decreased in the tumors, indicating miR-122 misregulation as a

later event in tumorigenesis [41]. Nonetheless, in NASH (nonalcoholic steatohe-

patitis), a risk factor and potential precursor to HCC, miR-122 levels are reduced

relative to controls, both in mouse [46] and humans [47]. However, in the case of

humans, both NASH patients and controls suffered from metabolic syndrome, so

that it is less clear how the observation relates to healthy people, with healthy

livers.

2.3 miR-122 as a Tumor Suppressor: Evidence from In Vitro
and In Vivo Mechanistic Studies

To identify the mechanisms by which miR-122 affects HCC formation, its

function has been studied extensively in vitro and in vivo. Different hepatic cell

lines were found to differ remarkably in their levels of miR-122 accumulation,

with most cell lines such as Hep G2, SK-Hep1, Mahlavu, and others exhibiting

low or undetectable expression but Huh-1, -6, -7, and Hep40 exhibiting high

expression levels [11, 38]. Beyond comparing the cell lines, it is thus possible to

modulate miR-122 expression by repressing its function using antisense oligonu-

cleotide in Huh-7 or other highly expressing cells, or by elevating its levels

through transfection into poorly expressing cell lines. Such studies have been

performed in several laboratories, and the consistent result was that elevated

levels of miR-122 reduce migration and invasiveness in vitro, whereas reduced

levels promote these properties [36–38, 43]. Moreover, this association also holds

in vivo, at least with ectopically and orthotopically transplanted tumors, which

are more locally invasive and grow faster when miR-122 levels are low [36, 37].

It is less clear whether miR-122 directly affects cell proliferation, as in vitro

results have been split on this issue [36, 37], perhaps owing to different miR-122

concentrations achieved in these experiments. Beyond any potential direct func-

tion on cell replication, reduction in tumor size in vivo appears to be mediated at

least in part through modulation of angiogenesis, which is decreased with ele-

vated miR-122 levels [36, 37].

What are the targets through which miR-122 achieves its functions? As for any

miRNA, target identification has been difficult so that many relevant targets may

yet await discovery. However, a number of interesting candidates are known, in

particular cyclin G1 [40], a cyclin of little known function that appears to regulate
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transcription of the p53 tumor suppressor gene [43]; Serum Response Factor SRF,

IGF1 receptor tyrosin kinase Igf1R, and A Disintegrin and A Metalloproteinase

protein (ADAM) 10 [37]; and ADAM-17 (also known as TACE, TNFa-converting
enzyme) [36]. Expression of these proteins is inversely correlated with miR-122

levels, reporter genes carrying their 30UTRs are repressed by miR-122, suggesting

direct regulation, and, most importantly, overexpression of these proteins can copy

aspects of reduced miR-122 expression, whereas their decrease can suppress some

of the miR-122 phenotypes in vitro and in vivo. Given the potential metastasis-

inhibiting function of miR-122, ADAM proteins are interesting for their role in cell

adhesion, although functional data for an involvement of these proteins in cancer

are still sparse [48]. Apoptosis inhibitor Bcl-w is another apparent target, but has so

far only been validated in vitro, where its modulation through miR-122 does indeed

appear to alter cell survival and apoptosis [49].

3 miR-122 and HCV

3.1 miR-122 Has Stimulatory Effects on Accumulation
and Translation of HCV RNA

As discussed above, some evidence suggests that miR-122 levels might be

differently affected in tumors arising from HBV and HCV infection. Intrigu-

ingly then, Jopling et al. discovered that miR-122 is essential for accumulation

of HCV RNA in cultured human hepatoma Huh7 cells expressing an HCV

replicon [50]. HCV is a positive strand single-stranded RNA virus belonging to

Flaviviridae family. Its 9.6-kb genomic RNA is translated to a single long

polyprotein, which is subsequently processed to about ten viral polypeptides by

cellular and viral proteases. HCV contains a 50-noncoding region (50-NCR) of

320 nt, part of which functions as an Internal Ribosome Entry Site (IRES),

responsible for the cap-independent initiation of translation of HCV RNA in

infected cells. Although in cellular mRNAs most of the functional miRNA-

binding sites are present in 30-noncoding regions, HCV RNA contains two

conserved hexamer sequences complementary to the seed region of miR-122 in

the 50-NCR, close to the 50 end of HCV RNA. Jopling et al. demonstrated that

simultaneous recognition of these sites by miR-122 is essential for viral RNA

accumulation as demonstrated by mutational analysis (including rescue of the

HCV RNA mutations by compensatory mutations in miR-122) and experiments

involving sequestration of miR-122 with antisense oligonucleotides [50, 51].

The two miR-122 HCV sites are separated from each other by a highly

conserved 14-nt-long spacer, and both the length of this spacer and its

sequence were also found to be important for accumulation of HCV RNA.

Additional evidence of the stimulatory effect of miR-122 on HCV RNA yields

was provided by experiments performed with human embryonic kidney epithelial
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(HEK293) cells, which normally do not express this miRNA. Exogenously

supplied miR-122 strongly increased accumulation of HCV RNA in HEK293

cells expressing the HCV replicon [52]. Importantly, miR-122 was also found to

have a stimulatory effect on HCV replication and infectious virus production in

Huh7 cells infected with a J6/JFH-1 chimeric HCV, which produces the full

replication cycle in cultured cells [53]. In this system, Randall et al. also

established that RNAi-mediated knockdown of genes encoding factors involved

in miRNA biogenesis and function such as Dicer, Drosha, and Ago proteins

markedly decreased HCV replication [53], providing additional, although indi-

rect, support for the role of miR-122 in HCV replication. The mechanism through

which the interaction of HCV RNA with miR-122 leads to the increased viral

RNA level remains unknown. It is unlikely to be due to the effect of miR-122 on

HVC RNA translation or stability ([50, 52]; but see below). In addition, miR-122

sequestration was recently found to have only moderate effect on the rate of HCV

RNA synthesis in Huh7 cells [54]. Possibly, miR-122 modulates the structure of

HCV RNA, making it a better template for replication, or it helps to localize the

RNA to a specific cellular compartment that promotes replication or some

posttranscriptional regulatory steps.

Since miRNAs generally repress protein synthesis by binding to the 30UTRs of
their targets (see above), the observation that miR-122 stimulates HCV replica-

tion when interacting with the 50-end-proximal sequences in HCV RNA was

surprising and raised questions regarding the position-dependence of miRNA

effects. Two groups have investigated the effect of miR-122 target site placement

on the translation of reporter mRNAs. Their findings indicated that placement of

miR-122 sites in the 30UTR of a reporter resulted in marked, miR-122-dependent,

inhibition of translation, both for sites corresponding to a short artificial sequence

complementary to the miR-122 seed region and an HCV 50-NCR fragment

encompassing one or both authentic miR-122 sites [51, 55]. In contrast, transla-

tion of reporters containing the HCV 50-NCR sequence (which includes the miR-

122 sites and the IRES region) in their 50UTRs was either not affected [51] or

stimulated [55] by miR-122. More detailed analysis of the stimulatory effect of

the 50-proximal placement of miR-122 sites indicated that miR-122 stimulation

was not confined to Huh7 endogenously expressing miR-122 but also occurred in

HeLa cells and rabbit reticulocyte lysates supplemented with exogenous miR-

122; in addition, translational stimulation was also observed in the context of a

full-length HCV genome expressed in Huh7 cells. In reticulocyte lysates, miR-

122 appeared to stimulate 48S complex formation, an early step of the initiation

reaction [55]. Interestingly, the stimulation of HCV RNA accumulation reported

by Jopling et al. [51] and the enhancing effect on translation reported by Henke

et al. [55] required the presence of both miR-122 sites conserved in the HCV

50-NCR. This contrasts with the situation at the 30UTR where either miR-122 site

was found to be active in translational repression, independently of the other.

This distinction underscores a rather specialized role of the HCV 50-NCR
miR-122 sites. It will be interesting to elucidate a precise molecular mechanism

of their function. Recently, stimulatory effects on translation of other miRNAs
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acting at either at the 50UTR or 30UTR of cellular mRNAs have been reported,

but as in the case of miR-122 the mechanism of their stimulatory function is not

known [56–58].

3.2 Silencing of miR-122 in the Liver of Rodents
and Nonhuman Primates

The demonstration that miR-122 is required for replication of HCV RNA in

cultured cells either expressing an HCV replicon or infected with HCV virus raised

much interest in a potential use of antisense oligonucleotides (often referred to as

anti-miRs or antagomirs) to target miR-122 in liver cells, as potential therapeutic

agents against HCV infection. The fact that anti-miRs can effectively inhibit

specific miRNAs when transfected into cells grown in culture or injected into

mice in vivo has been documented in many studies [33, 34, 59–61]. Generally,

oligonucleotides used as anti-miRs contain modified nucleotides such as LNA

(locked nucleic acid) derivatives or 20-O-methyl or 20-O-methoxyethyl ribonucleo-

tides to both strengthen the base paring of oligonucleotides with target miRNAs and

to decrease their sensitivity to cellular and serum nucleases. For the administration

in vivo, antagomirs can be conjugated to lipophilic compounds such as cholesterol

to facilitate cellular uptake.

The first successful studies demonstrating a potent activity of antagomirs in vivo

were performed with oligonucleotides targeting miR-122, which were administered

to mice by intravenous or intraperitoneal injection. Injection of either cholesterol-

conjugated 20-O-methyl phosphorothioate-containing [33] or nonconjugated 20-O-
methoxyethyl phosphorothioate-modified [34] anti-miR-122 oligonucleotides

resulted in efficient and specific elimination or blocking of miR-122 in liver. The

effect of the injected anti-miRs lasted several weeks and was not associated with

changes in body weight and liver morphology or in elevation of serum markers (the

transaminases ALT and AST) indicative of liver toxicity. Profiling of mRNAs

isolated from livers of anti-miR-122-treated animals demonstrated a 1.4–4-fold

elevation in the level of several hundreds of mRNAs, many of them containing

hexamer or heptamer sequences complementary to the miR-122 seed region [33,

34]. Hence, these mRNA likely represent primary targets of miR-122 in liver cells,

and this has been confirmed for selected upregulated mRNAs by performing

reporter assays in cultured cells [33].

Interestingly, a similar number of mRNAs (~300) was downregulated upon anti-

miR-122-treatment. These mRNAs thus likely represent secondary targets, expres-

sion of which may depend on activity of primary miR-122 targets, such as specific

inhibitors or transcription factors which are under direct control of miR-122.

Several enzymes of the mevalonate pathway, involved in cholesterol biosynthesis,

were identified among the secondary targets of miR-122. Consistently, antagomir-

122-treated animals were found to have plasma cholesterol levels reduced by

30–40% when compared with control animals.
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Inhibition of miR-122 with antagomir had also a beneficial effect on hepatic fatty

acid metabolism, improving liver steatosis (lipid droplet accumulation in liver cells)

and decreasing triglyceride accumulation in high-fat-diet animals [34]. More

recently, similar results were obtained with unconjugated LNA-modified anti-miRs

systematically administered to mice [59]. In summary, these findings not only

provided a proof of concept for the feasibility of antagomir-based miRNA inhibition

in vivo, but also extended potential therapeutic applications of these compounds

beyond the treatment of hepatitis C, to conditions such as cholesterolemia or obesity.

The HCV virus does not infect mouse cells and there is no rodent model

available for studies of hepatitis C. However, effects of anti-miR122 antagomirs

were more recently investigated in nonhuman primates, i.e., African green monkeys

[62] and chimpanzees [63], with the latter being susceptible to chronic infection

with HCV. Systemic administration of unconjugated LNA-modified anti-miR-122

by repeated intravenous infusions (three infusions over 5 days) to African green

monkeys resulted in dose-dependent, up to 40% decrease in plasma cholesterol

level [62]. This effect lasted for 7 weeks and afterwards the level of cholesterol

gradually returned to normal over a period of 3 months, with parallel normalization of

the miR-122 level. As in mice, administration of LNA-modified anti-miR-122 was

not associated with any liver or other organ toxicity or histopathological changes.

Yet more relevant findings were obtained with chimpanzees [63]. Intravenous

administration into animals chronically infected with HCV of an LNA anti-miR-122

(5 mg kg�1 body weight per dose) for 12 weeks at weekly intervals led to marked

suppression of viral RNA levels in both serum and liver biopsy material. The

maximum decrease, 2.6 and 2.3 orders of magnitude for serum and liver respec-

tively, was observed 2 weeks after the end of treatment. Importantly, no resistance

to the therapy emerged during the study period as evidenced by absence of a

rebound of viremia during the treatment and of viral RNA with mutations in

miR-122 sites through the end of the follow-up period. These observations are

consistent with the conservation, and thus presumably importance for viral fitness,

of both miR-122 complementary sites in all HCV genotypes and subtypes [63]. The

high barrier to developing resistance seen with the LNA anti-miR-122 therapy

contrasts with treatment of infected chimpanzees with other drugs, directly targeting

viral enzymes, such as inhibitors of HCV RNA polymerase [64].

Like in mice and African green monkeys, administration of anti-miR-122 to

chimpanzees led to 30–40% decrease in serum cholesterol [63]. Also similar to

other animal systems, the treatment was not associated with appreciable toxic

effects. Clearly, the studies with nonhuman primates point to the feasibility and

safety of using LNA, and perhaps other formulations of anti-miR oligonucleotides,

to antagonize specific miRNAs in vivo with the aim to treat hepatitis C and other

diseases, to which miRNAs may contribute.

3.3 miR-122 Status in Patients with Chronic Hepatitis C

HCV infection and Chronic Hepatitis C (CHC) are major causes of liver cirrhosis

and liver cancer. Approximately 170 million people world-wide are chronically
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infected with HCV but current therapy, involving combination of pegylated inter-

feron-a (IFN-a) and ribavirin (a nucleoside analog), is successful in only ~50%

patients and strongly depends on the genotype of the infecting virus [65].

Since the therapy requires administration of IFN-a and ribavirin over many

months and is associated with strong side effects, efforts were undertaken in recent

years to identify factors, in addition to HCV genotype, that could help to predict the

therapy outcome and distinguish responders from nonresponders prior to the initia-

tion of therapy. Profiling of gene expression in liver biopsies collected before the

therapy revealed that patients found later to be nonresponders had increased

expression of IFN stimulated genes (ISGs) already prior to the administration of

exogenous IFN-a ([66], and references therein). In a most recent study of this type,

expression of ISGs was analyzed in paired liver biopsies collected from

CHC patients before treatment and 4 h after the first injection of pegylated

IFN-a. Analysis of 16 patients, among them 10 representing future rapid responders

(>2 log10 decrease in serum HCV level at week 4) and 6 showing no rapid response

to therapy, demonstrated that nonresponders had a preactivated IFN system in the

liver prior to the treatment and showed no significant changes in expression of ISGs

in liver upon pegIFN-a administration [66]. In contrast, future responders generally

lacked significant preactivation of the IFN system and responded to pegIFN-a
administration with increased activity of ISGs. Taken together, these results

indicate that patients who do not benefit from the therapy have their IFN system

turned on even in the absence of exogenous IFN administration but, due to some

downstream defects in the IFN defense pathway, they cannot effectively combat the

viral infection.

Profiling of mRNAs in biopsies collected prior to therapy made it also possible

to identify sets of genes, the expression of which is predictive, with a relatively high

confidence, of the therapy outcome. For example, one of the studies identified 29

genes, 76% of which represent ISGs, which predict responsiveness to the therapy

with an error rate of 4.3% [66]. Analysis of larger cohorts of CHC patients may

eventually lead to the development of predictive tests which in the future could be

used for directing the pegIFN-a therapy only to patients who will benefit from it.

What are the levels of miR-122 in CHC patients that do or do not respond to the

pegIFN-a therapy? Is there a correlation between miR-122 levels and HCV RNA

titer in the liver and serum of CHC patients? Availability of liver biopsies from

CHC patients, including paired biopsies collected before and after the first injection

of pegylated IFN-a, made it possible to measure miR-122 levels in patients’ liver

and correlate them with responsiveness to therapy. The measurements provided

also an opportunity to assess the effect of IFN on expression of miR-122 in human

liver. This was important since Pedersen et al. have recently reported that treatment

of human Huh7 cells and mouse primary hepatocytes with IFN markedly down-

regulates miR-122 levels, and that miR-122 down-regulation may represent one of

the mechanisms underlying the anti-HCV effect of IFN [67].

Since miR-122 is important for effective HCV replication, intuitively one would

expect lower levels of miR-122 in CHC patients responding to the therapy and

higher levels in nonresponders. Surprisingly, the opposite was found to be true [68].
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Patients who did not respond to therapy (no decrease in viral load of more than

2 log10 at week 12) had several fold lower miR-122 levels than patients with a

strong response to IFN-a (no detectable HCV-RNA at week 12). The difference in

miR-122 levels between responders and nonresponders was also apparent

when only patients infected with difficult-to-treat HCV genotypes 1 and 4 were

examined, indicating that the difference is not due to the biased distribution of

HCV genotypes between the two response groups. Moreover, measurements of

HCV-RNA in liver and serum of patients showed no positive correlation between

miR-122 and viral load [68]. Since miR-122 is important for HCV replication in

Huh7 cells and in the chimpanzee liver, the finding of low miR-122 levels in

patients not responding to therapy and a lack of correlation between miR-122

expression and viral load is rather unexpected. It is possible that even the low

miR-122 levels found in nonresponders are sufficient to support HCV replication.

Alternatively, measurements of total miR-122 in the biopsy extracts may not reflect

the miR-122 levels in the fraction of hepatocytes (generally considered to be small)

that are infected with HCV.

Measurements of miR-122 in paired liver biopsies collected prior to and 4 h after

administration of pegIFN-a revealed no IFN-induced decrease of the miR-122 level

in both responding or nonresponding groups of patients. In addition, no pronounced

decrease of the miR-122 level was found in livers of mice even after 4 days

following multiple injections with mouse IFN-a [68]. Hence, miR-122 is not an

early IFN-responsive gene in vivo and it is unlikely that the antiviral effects of IFN

during CHC therapy can be explained by changes in the level of miR-122 or other

miRNAs [68]. However, it cannot be excluded that prolonged activation of the IFN

system in patients not responding to the therapy contributes to the miR-122 down-

regulation observed in these patients. The finding that miR-122 is significantly

lower in nonresponders than in responders makes it a convenient marker, together

with preactivated ISGs, for predicting the outcome of IFN therapy. If miR-122

is indeed required for HCV persistence in CHC patients, its low levels in non-

responders to IFN therapy might yet turn into a therapeutic benefit in the future,

providing these patient with a “head-start” in potential interventions involving the

use of miR-122 antagomirs.

4 Outlook

The recent demonstration that inhibition of miR-122 in chimpanzees chronically

infected with HCV leads to significant suppression of HCV RNA levels without

apparent toxicity or emergence of resistant viral RNA mutants indicates that this

approach has the potential to replace or enhance other therapies, particularly for

treatment of patients infected with a difficult-to-treat genotype 1 HCV. The anti-

miR might be combined with a classical pegIFN-a/ribovirin therapy or inhibitors of
viral proteases or RNA polymerases currently undergoing clinical trials. It will be

important to establish how well the anti-miR-122 oligonucleotides are tolerated in
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humans. Currently ongoing Phase 1 clinical trials with healthy volunteers should

soon provide an answer to this question (http://www.santaris.com). Likewise, it will

be important to further investigate the potential of anti-miR-122 oligonucleotides to

treat disorders associated with lipid metabolism. Measurements of levels of miR-

122, and possibly also other miRNAs, could also be used, in combination with

mRNA profiling, for predicting patients’ response to IFN therapy. A recent demon-

stration that measurements of miR-122 in plasma represent a very sensitive and

specific readout for liver injury are promising in this regard [69].

Clinical and experimental data from both in vitro and in vivo systems further

provide support for a role of miR-122 as a tumor suppressor in the liver. In a next

step, it would now be interesting to study its function in miR-122 knockout mice, or

perhaps miR-122 heterozygotes, asking in particular whether these mice would be

more susceptible to development of autochthonous liver cancers than wild-type

animals. Interestingly, mice with a liver-specific knockout of the pre-miRNA

processing enzyme dicer are indeed more susceptible to HCC development [70].

If further studies support a tumor-suppressive function of miR-122, it might

become a valid target for miRNA replacement studies. However, given that miR-
122 overexpression carries its own issues with regard to lipid metabolism and,

possibly, HCV susceptibility, this would have to be approached very carefully.

Determining the causes of pathologically reduced miR-122 levels in HCC, and

reverting them specifically by curing the underlying mechanism, might then be a

more palatable alternative. Indeed, since increases in miR-122 levels sensitize

cancer cells to the known chemotherapeutics sorafenib [37] and doxorubicin [43],

less than complete restoration of miR-122 levels to wild-type amounts might suffice

for therapeutic gain.
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Transcriptional Regulatory Networks

in Embryonic Stem Cells

Yun Shen Chan, Lin Yang, and Huck-Hui Ng

Abstract Transcriptional regulation is one of the most fundamental processes in

biology, governing the morphology, function, and behavior of cells and thus the

survival of organisms. The embryonic stem cell (ESC) provides a good model for

the understanding of transcriptional regulation in vertebrate systems. Recent efforts

have led to the identification of molecular events, which confer upon these cells the

unique properties of pluripotency and self renewal. The core regulatory network

maintaining the ESC identity involves three master regulators: Oct4, Sox2, and

Nanog. Large-scale mapping studies interrogating the binding sites of these and

other transcription factors showed co-occupancy of distinct sets of transcription

factors. The assembly of multitranscription factor complexes could serve as a

mechanism for providing specificity in regulating ESC-specific gene expression.

These studies are also beginning to unravel the transcriptional regulatory networks

that govern the ESC identity. Loss-of-function RNAi screens also identified novel

regulatory molecules involved in the stable propagation of the ESC state. This

argues for an ESC transcriptional regulation program in which interconnected

transcriptional regulatory networks involving large numbers of transcription factors

and epigenetic modifiers work in concert on ESC- and differentiation-specific genes

to achieve cell state stability. This chapter traces the major efforts made over the

past decade in dissecting the transcriptional regulatory network governing ESC

identity and offers perspectives on the future directions of the field.
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1 Transcriptional Regulation

1.1 The Transcriptome and Cell State

The multicellular organism is made up of a diverse array of cell types that play

unique roles in ensuring the survival and propagation of the organism. Despite vast

differences in morphology, intracellular biochemical processes and functions

across cells of various types, the set of genetic information packaged within each

nucleus is almost identical. The ability of cells to become highly specialized despite

similarities at the genomic level is facilitated by the unique complement of mRNA

molecules, known as the transcriptome, synthesized by individual cells. Each cell’s

transcriptome reflects the set of actively transcribed genes and is governed by a

unique class of DNA binding proteins known as transcription factors.

Transcriptional regulation is a complex and dynamic process. While transcrip-

tion factors can autoregulate their expression levels by binding to their own

promoters, the interactions between transcription factors and genes are seldom

restricted to one-to-one correspondences. Studies of transcriptional circuitry in

model organisms, such as Saccharomyces cerevisiae, revealed that clusters of

transcription factors work in unison to regulate gene expression [1]. It is common

for transcription factors to closely associate (e.g., through the formation of dimers

or larger complexes) with several different proteins (transcription factors or other-

wise) in various combinations and thus coregulate the expression of target genes

common to them. In addition, these regulatory molecules also form modules in

which one or a set of factors control the transcription of a group of genes with

similar binding patterns. Such interactions have been extensively documented and

mapped into what is known as transcriptional regulatory networks [1]. These net-

works have been dissected to reveal recurring network motifs, such as feed-forward

and multicomponent loops that are the basic building blocks of large transcriptional

networks. The intricate web of protein–protein and protein–DNA interactions

creates regulatory responses that extend beyond that of the simple linear relation-

ships between transcription factors and the genes they regulate into nonlinear and

temporal behaviors. This interplay between the components of the transcriptional

regulatory circuitry is crucial for achieving stable cell states and maintaining cell

identities.

1.2 Dissecting Transcriptional Regulation

The chromatin immunoprecipitation (ChIP) assay has been widely used in tran-

scriptional regulatory network studies to characterize the in vivo binding activities

of transcription factors (Fig. 1). This method uses formaldehyde-mediated cross-

links to provide a snapshot of direct interactions between proteins and DNA in

specific cell states. Subsequent nuclease treatment or sonication shears chromatin
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into small fragments. The chromatin is probed with antibodies to enrich for DNA

bound to the transcription factor of interest. Quantitative methods are employed to

define the abundance of DNA fragments obtained; these vary between applications

and range from the simple quantitative polymerase chain reaction (qPCR), which

focuses on specific genomic loci, to high throughput hybridization arrays and

sequencing platforms which map binding sites across the entire genome. Data

from genome-wide ChIP assays unravel the transcription factor-DNA interactomes

and provide new insights into the architecture of gene control networks.

1.3 From Model Organisms to Complex Vertebrates

Early studies of cellular processes in eukaryotes were undertaken with S. cerevisiae
as a model organism. With a small genome and unicellular organization, yeast

presents an ideal starting point for establishing the fundamental principles govern-

ing metabolism, proliferation, and differentiation in eukaryotes. Subsequent dis-

coveries that certain metabolic pathways and transcription network motifs in yeast

were conserved in higher vertebrates prompted further research into such regulatory

processes in yeast [2]. However, in comparison to unicellular yeast, the develop-

mental processes of multicellular eukaryotes are much more complex. Initial efforts

to dissect gene regulatory networks controlling development were pursued in

model organisms such as the sea urchin [3]. The complexity of the gene regulation

ChIP-enriched DNA

Locus-specific
PCR

Genome-wide
analyses

Microarray
platform

High-throughput
sequencing

Fig. 1 The use of ChIP to

map transcriptional

regulatory network.

Transcription factors
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program in this organism served as a reminder of the even greater breadth and depth

of information that remain to be gathered and analyzed for analogous studies in

more complex vertebrates such as mammals. A full understanding of cellular

processes in higher vertebrates required the complete decoding, dissecting, and

mapping of biochemical interactions and transcriptional regulatory networks in

diverse cell types – a formidable challenge, given currently available technologies.

Importantly, projects of such scales call for large quantities of homogenous cells,

which may not be readily available.

Embryonic stem cells (ESCs) provide a feasible alternative model system in this

case. ESCs are isolated from the inner cell mass (ICM) of the early embryo and

have the ability to self renew indefinitely in vitro. These cells retain the memory of

an in vivo pluripotent state as they retain the ability to differentiate into all lineages
of the adult organism. These unique characteristics make ESCs ideal systems for

the study of transcriptional networks in vertebrates.

2 Unraveling the Transcriptional Regulatory

Networks in ESCs

2.1 Master Regulators in ESC

The core regulatory network governing ESC pluripotency is based on the key

transcription factors Oct4, Sox2, and Nanog [4–8]. These factors are preferentially

expressed in the pluripotent cells of the ICM and epiblast, as well as in primordial

germ cells. They play crucial roles in developmental processes by promoting and

maintaining pluripotency in the early embryo. Oct4, encoded by the Pou5f1 gene, is
a homeodomain transcription factor belonging to the POU family. Oct4-null mouse

embryos do not survive beyond implantation due to the inability to form pluripotent

ICM [9]. Instead, the cells spontaneously differentiate into the trophoblast lineage.

In ESCs, the level of Oct4 is critical for maintenance of the undifferentiated state.

Depletion of Oct4 in ESCs leads to differentiation into trophoblast cells, while the

overexpression of Oct4 induces preferential differentiation of ESCs into the primi-

tive endoderm and mesoderm [10]. The consequences of perturbations in Oct4

expression levels on ESC fates highlight the critical role played by Oct4 in the ESC

transcription program.

Similar to Oct4, the HMG-box transcription factor Sox2 is also essential for

early embryonic development in mice [5]. Sox2 was originally implicated in

pluripotency when it was discovered to interact synergistically with Oct4 to regu-

late the pluripotency-related gene Fgf4 [11]. Subsequent genome-wide mapping

studies revealed the presence of Oct-Sox binding motifs in enhancer regions of

many ESC-specific genes, suggesting that Sox2 works cooperatively with Oct4 to

preserve the ESC identity.
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Nanog was identified in a screen for novel pluripotency regulators functioning

independently of the LIF/STAT3 pathway [8]. The Nanog protein is critical for the

formation of the epiblast in vivo [7, 12] but is dispensable in the maintenance of

pluripotency in cultured ESCs [13]. It has thus been proposed that Nanog is the

gateway to the pluripotent ground state – crucial for the establishment of pluripo-

tency but not for its maintenance. Importantly, the overexpression of Nanog can

sustain mouse ESCs in their pluripotent states without the need for leukemia

inhibitory factor (LIF) [8] and allows human ESCs to bypass the need for both

FGF and TGFb signaling [14]. This suggests that Nanog establishes the pluripotent

cell state via transcriptional regulatory pathways independently of external signals.

2.2 Mapping the Core Transcriptional Regulatory
Network in ESCs

With the identification of master regulators of ESC pluripotency, mapping studies

have been undertaken in both human and mouse ESCs to locate genome-wide

binding sites for these factors. Coupling ChIP with whole genome promoter array

(ChIP-on-chip) analysis, Boyer et al. identified high confidence binding sites for

Oct4, Sox2, and Nanog in human ESCs [15]. Of the 17,917 human genes studied,

623, 1,271, and 1,687 genes were bound by Oct4, Sox2, and Nanog, respectively.

More importantly, data from the ChIP-chip assay revealed that Oct4, Sox2, and

Nanog co-occupied the promoters of at least 353 genes in human ESCs. In particu-

lar, Nanog bound to the regulatory sequences of more than 90% of the genes bound

by the Oct4–Sox2 heterodimer. In comparing the ESC expression profiles with 158

published expression data representing 79 different tissues and cell types, the pool

of genes regulated by some or all of the three factors could be grouped into two

major classes: those preferentially expressed in ESCs and those expressed in

specific lineages. These observations support a model for ESC transcriptional

regulation in which the core regulators worked in a concerted and context-specific

manner (i.e., either activating or repressing) to bring about stable propagation of the

ESC state.

Besides regulating the transcription of downstream genes, Oct4, Sox2, and

Nanog also bind to their own and each other’s promoters to establish autoregula-

tory, feed-forward, and feedback loops. Such transcription network motifs set up a

tripartite system in which the levels of Oct4, Sox2, and Nanog are monitored and

adjusted by the three factors themselves to achieve homeostasis (Fig. 2). This

adaptive control at the top of the transcription factor pyramid creates a sensitive,

responsive, and self-stabilizing molecular circuitry, which ensures accurate regula-

tion of subsequent downstream pluripotency genes.

Using ChIP-PET technology, Loh et al. characterized the genome-wide binding

profiles of Oct4 and Nanog in mouse ESCs [16]. ChIP-PET involves the extraction

of 50 and 30 ends of ChIP enriched fragments to form pair-end ditags (PETs), which
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were then cloned into vectors for subsequent sequencing. This method identified

1,083 and 3,006 high confidence binding sites of Oct4 and Nanog, respectively. As

in the case of human ESCs, self-regulatory and interregulatory loops were identified

as mechanisms governing murine Oct4 and Nanog expression. In addition, the

mouse study revealed divergences in the downstream target genes of Oct4 and

Nanog regulatory networks in mouse and human systems. This was to be expected,

since external signals which regulate human and mouse ESC pluripotency are

fundamentally different. For instance, mouse ESCs depend on growth factors

such as LIF and BMP while human ESCs require FGF and TGFb for propagation.

The difference between human and mouse ESCs may be due to different

developmental stage from which cells were derived. In addition, technical differ-

ences between the two mapping platforms, such as the wider genome coverage

offered by ChIP-PET, may also account for the discrepancy.

A number of genes commonly targeted by both Oct4 and Nanog are implicated

in the regulation of pluripotency. One candidate gene was the orphan nuclear

receptor Esrrb. Depletion of Esrrb in ESCs using RNA interference (RNAi) induced

spontaneous ESC differentiation, indicating that Esrrb is crucial for the mainte-

nance of the ESC state. More significantly, Esrrb could, together with Oct4 and

Sox2, confer pluripotency to mouse embryonic fibroblasts (MEFs) via direct

reprogramming [17]. These two lines of evidence indicate that Esrrb plays an

important role to promote and maintain ESC identity. As such, dissecting the

core transcriptional regulatory network not only unravels the machinery that drives

ESC pluripotency but also identifies other factors which may wield key roles in

driving the establishment of the pluripotent cell state.

2.3 Expanding the ESC Transcriptional Regulatory Networks

Data from genome-wide mappings of the master regulators described above have

revealed that a significant percentage of downstream targets of Oct4, Sox2, and

Oct4

Nanog

Sox2

Fig. 2 Regulatory

interactions between the

transcription factor trio (Oct4,

Sox2, and Nanog). The

master regulators form

intrinsic self regulatory, feed-

forward, and feed-back loops

that ensure high expression

levels and provide self-

stabilizing system of the

factors for the maintenance of

pluripotency in mouse and

human ESCs

244 Y.S. Chan et al.



Nanog encode for transcription factors. It is highly likely that there exist other

factors within the transcriptional regulation program of ESCs which could either

take on supporting roles to maintain master regulator expression levels at a stable

equilibrium or directly target and control the expression of certain downstream

gene clusters.

Kim et al. further expanded the pluripotency network of ESCs with genome-

wide mapping studies of factors previously found to associate with Nanog [18].

Employing the ChIP-on-chip platform with promoter arrays, nine pluripotency-

associated factors were studied [19]: Oct4, Sox2, c-Myc, Klf4, Nanog, Dax1, Nac1,

Rex1, and Zpf281. In agreement with previous mapping studies of the master

regulators, this study showed that 50% of the 6,632 target genes were bound by

more than one transcription factor. The activities of target genes were shown to

correlate with the number of transcription factors bound to the gene promoters.

Genes whose promoters were bound by multiple factors tended to be preferentially

expressed in ESCs, while those with single transcription factor binding were

transcriptionally silent. While the binding profiles of Oct4, Sox2, Nanog, Klf4,

Dax1, Nac1, and Zpf281 showed degrees of overlap, c-Myc and Rex1 binding sites

formed a separate gene cluster. c-Myc and Rex1 target genes were implicated more

frequently in protein metabolism than in developmental processes. Downstream

genes bound by c-Myc were predominantly marked with the activating H3K4me3

histone modification, which accounted for their high expression levels. It was

hypothesized that c-Myc and Rex1 maintain the expressions of housekeeping

genes, which play key roles in sustaining the high proliferative capacities of

ESCs. The extended pluripotency map emphasized a specialized and segregated

network in which regulatory factors take on different responsibilities to support the

ESC state.

2.4 Wiring Components of Signaling Pathways to the Core
Transcriptional Regulatory Network

Chen et al. further investigated the transcriptional regulatory network for 13

transcription factors (Oct4, Sox2, Nanog, STAT3, Smad1, Zfx, c-Myc, n-Myc,

Klf4, Esrrb, Tcfcp2l1, E2f1, and CTCF) through comprehensive unbiased mapping

of transcription factor binding sites [20]. Using the Solexa/Illumina sequencing

platform, the group was able to acquire mapping data with high specificity and

sensitivity and quantify ChIP enrichment with greater sequencing depth. This

represented an improvement over techniques such as ChIP-SAGE [21] or ChIP-

PET [16], which require ChIP fragments to be modified before quantification.

This study demonstrated that known components of the external signaling pathways

such as Smad1 and STAT3, the downstream effectors of the BMP4 and LIF
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pathways, respectively, are connected with and integrated into the core transcrip-

tional regulatory network.

Another signaling pathway implicated in the maintenance of pluripotency in

both human and mouse ESCs is the Wnt pathway [22]. Work by Cole et al.

examined the binding profile of the Wnt downstream effector Tcf3 in mouse

ESCs and found that Tcf3 co-occupied with Oct4 and Nanog at a significant number

of ESC-specific and differentiation-associated genes [23]. This study proposed that

the role of Tcf3 in mouse ESCs is context-specific: active Wnt signaling induces

Tcf3 to partner with beta-catenin for activation of pluripotency genes, while the

absence of beta-catenin promotes its association with groucho to repress the

expression of differentiation genes in ESCs.

Such binding studies present the evidence for the integration of downstream

targets of signaling pathways into the core transcription network of ESCs (Fig. 3).

Further studies are needed to fully appreciate the implications of such interactions

on the establishment and propagation of the ESC state.
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Fig. 3 Integration of the signaling pathways with the core ES cell transcriptional regulatory

network. Signaling pathways shown to play a role in the maintenance of ESC include the BMP/

Smad, LIF/ STAT, and Wnt/TCF pathways. Downstream effectors of the cell signaling cascades

translocate to the nucleus and bind to the genome to mediate transcriptional regulation. Smad1,

STAT3, and Tcf3 genome-wide binding site profiles reveal extensive overlap of these factors with

the master regulators, suggesting that the communication between external signals and the core

regulators is crucial in maintaining the ESC state. The maintenance of pluripotent state involves

specific up-regulation of “stemness” genes and repression of lineage-specific genes
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2.5 Enhanceosomes in ESCs

The study by Chen et al. also revealed that the transcription factors studied could be

divided into two clusters [20]. Oct4, Sox2, Nanog, Smad1, and STAT3 were found

to co-occupy genomic loci frequently, while n-Myc, c-Myc, Zfx, and E2f1 clus-

tered together, away from the former group. An examination of the binding site

locations of factors in the Oct4-centric cluster relative to regulated genes revealed

that the majority of these sites fell within enhancers and not proximal promoter

regions. Furthermore, a high degree of overlap was detected between the binding

sites of the Oct4-centric cluster and the histone acetyltransferase p300, a chromatin

regulator known to be widely recruited to gene enhancer sites to promote transacti-

vation. Depletion of Oct4, Sox2, or Nanog using RNAi led to a significant reduction

in p300 binding at these sites, indicating that p300 is recruited by the three

transcription factors to gene enhancers. More importantly, the genomic loci from

the Oct4-centric cluster show ESC-specific enhancer activity, indicating that these

loci may be involved in the positive regulation of gene expression [20]. The

discovery of short genomic segments densely packed with Oct4, Sox2, Nanog,

and other transcription factor binding sites suggests that ESC transcriptional regu-

lation involves ESC-specific enhanceosomes. These are short enhancer sequences

in the genome that are bound either directly or indirectly at higher-than-normal

frequencies by transcriptional regulators. Enhanceosomes could potentially contain

gene regulatory codes essential for the maintenance of ESCs, and they provide the

platforms for imparting specificity for ESC-specific gene expression.

2.6 Identification of Novel Nodes in the ESC Transcriptional
Regulatory Networks

Ronin was identified as a novel key regulator of ESC identity in a screen for

proteins downregulated by caspases during ESC differentiation. Ronin deficiency

results in preimplantation lethality due to defects in the ICM. Conditional knockout

of Ronin in ESCs also leads to growth arrest [24]. Ronin is neither LIF-dependent

nor regulated by the three master regulators. A THAP domain-containing repressor,

Ronin interacts with the transcription regulator HCF-1 and is thought to be involved

in the epigenetic silencing of lineage-specific genes in ES cells. The genome-wide

binding profile of Ronin remains to be elucidated. It would be of interest to

determine whether the Ronin network functions in parallel or interactively with

that of the other three master regulators. The discovery of Ronin indicates that more

regulators of the ESC remain to be uncovered.

To obtain a more comprehensive model of the ESC transcriptional program,

extensive efforts have been undertaken to expand the list of regulators governing

ESC pluripotency and self renewal through RNAi screens. An initial screen con-

ducted by Ivanova et al. on 65 transcription factors/DNA-binding proteins identified
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three molecules that regulate ESC self-renewal: Tcl1, Tbx3, and Esrrb [25]. A

comparison of the changes in global expression profiles of ESCs after shRNA-

induced depletion of each transcription factor demonstrated that the responses of

downstream genes to Oct4, Sox2, Nanog, Esrrb, Tbx3, and Tcl1 knockdowns were

dichotomous. One gene cluster was sensitive to changes in Oct4, Sox2, and Nanog

levels and indifferent to that of Esrrb, Tbx3, and Tcl1, while the other cluster

responded only to fluctuations in Esrrb, Tbx3, and Tcl1 levels. This further supports

the hypothesis that multiple distinct transcription networks exist in ESCs tomaintain

cell identity. It is thought that Oct4, Sox2, and Nanog simultaneously promote

pluripotency and suppress differentiation, while the Tbx3, Tcl1, and Esrrb network

contributes to the ESC state mainly via the suppression of differentiation into

epiblast-derived lineages [26]. The loss-of-function approach not only identified

crucial factors which could be manipulated to induce differentiation along specific

lineages but also mapped out two interconnected global pathways that could poten-

tially be responsible for the maintenance of the ESC state. In a similar RNAi screen,

Gaspar-Maia et al. discovered a new chromatin regulator Chd1 responsible for

maintaining the open chromatin state of ESCs [27]. Chd1 knockdown resulted in a

loss of pluripotency and induced preferential differentiation of ESCs into the

neural lineage. Chd1 has also been implicated in somatic reprogramming whereby

significant decreases in reprogramming efficiency were observed following Chd1

depletion via RNAi. Apart from Chd1, other chromatin regulators have also

been implicated in ESC pluripotency. Using endoribonuclease-prepared siRNAs

(esiRNAs) targeting 1,008 transcripts encoding for chromatin proteins, Fazzio et al.

identified several subunits of the Tip60-p400 chromatin remodeling complex to

play a role in maintaining ESC identity [28].

The search for novel ESC regulators has, in recent years, expanded to genome-

wide RNAi screens. Through the construction of Oct4 reporter lines, candidate

genes of interest were evaluated for their ability to directly or indirectly modulate

Oct4 activity and therefore promote the ESC identity. Using an extensive esiRNA

library, Ding et al. identified an initial pool of 296 ESC regulators [29]. The top

hits were further narrowed down to 16 potential regulators, 14 of which were

known transcription factors or chromatin remodelers. Ctr9 and RTF1, components

of the Paf1 complex, were shown to be important in the activation of promoters

of key ESC regulators. In an independent study using a siRNA library, Hu et al.

identified 148 genes, which may have roles in maintaining the ESC state [30].

Focusing on the top hits, the group illustrated that Cnot3 and Trim28 were

essential transcriptional regulators of ESC self renewal. Cnot3 and Trim28

genome-wide binding sites overlapped significantly with that of the c-Myc and

Zfx self-renewal modules but not with binding sites of Oct4 or Nanog. These

genome-wide studies highlighted that the complexity of the ES transcription

program could only be achieved through the concerted efforts of large numbers

of regulatory molecules. In the context of ESC transcriptional regulatory network,

key nodes specified by transcription factors and chromatin regulators are being

identified.

248 Y.S. Chan et al.



3 From Pluripotent Stem Cell to Induced Pluripotent

Stem Cell Networks

3.1 Transcription Factor-Mediated Reversion of Terminal
Cell Fate

Before the demonstration of factor-mediated direct reprogramming, somatic cell fate

had always been deemed irreversible. The reversal of cell fate was difficult to achieve

and required drastic measures such as cell fusion or somatic nuclear transfer into

enucleated oocytes [31]. In 2006, a groundbreaking work by Takahashi and Yama-

naka demonstrated that somatic cell fate in mouse embryonic and adult fibroblasts

could easily be reversed via the viral delivery of four transcription factors, commonly

known as the Yamanaka factors: Oct4, Sox2, Klf4, and c-Myc [32]. This technique

was rapidly adapted to the human system [33]. Rapid progress has been made on

using different factors or chemicals to induce reprogramming of mouse and human

somatic cells [34, 35]. Induced pluripotent stem cells (iPSCs) not only resembled

ESCs in morphology, but they also adopted ESC-like epigenetic landscapes and were

able to differentiate into all three germ lineages both in vitro and in vivo. Importantly,

iPSCs were proven to be truly pluripotent: they were germline transmissible and

could give rise to an entire organism via tetraploid complementation [36]. iPSC

technology thus proves to be a promising source of patient-specific stem cells. At the

same time, direct reprogramming also provides a new platform for dissecting the

mechanism of cell fate decision.

3.2 Dissecting the Mechanism of Factor-Mediated
Reprogramming

In a bid to understand how the Yamanaka factors induced pluripotency in somatic

cells, Sridharan et al. examined the promoter occupancy of these factors at different

stages of the reprogramming process [37]. Through the characterization and com-

parison of Oct4, Sox2, Klf4, and c-Myc binding profiles in ESCs, fibroblast-derived

iPSCs and partially reprogrammed somatic cells (pre-iPSCs), molecular barriers

(and therefore key requisites) in the establishment of the pluripotent cell state

were identified. The gene expression profiles in pre-iPSCs were found to deviate

significantly from that of ESCs. In particular, the occupancies of Oct4, Sox2, and

cMyc at ESC specific genes in pre-iPSCs were much lower than that in iPSCs.

Many ESC-specific genes which lacked Oct4, Sox2, and Klf4 binding in pre-iPSCs

were identified to be target genes of Nanog. Since pre-iPSCs cannot activate

endogenous Nanog expression, it is highly probable that the binding of the three

factors to these target genes was Nanog-dependent. This observation further
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supports the hypothesis that Nanog is required for the establishment of pluripotency

[12].

This study also found that the virus-induced expression of reprogramming

factors in MEFs was three- to fivefold higher than their levels in ESCs. This

increases the probability of factors binding to non-ESC-specific genes with con-

served binding motifs at their promoters. As such, genes detrimental to the mainte-

nance of the ESC state may also be activated during the course of reprogramming.

Both Klf4 and Sox2 are known to take on cell specification roles in certain cell

types, and the inappropriate binding of these factors could create additional repro-

gramming barriers.

3.3 iPSC Transcriptome Highlights Potential Difference
in Pluripotency Status

In a separate study, Chin et al. reported that the iPSCs and ESCs differed in their

defining gene signatures [38]. The global expression profiles of early passage iPSCs

showed greater deviations from that of ESCs as compared with late passage iPSCs,

suggesting a gradual adaptation of the cells to selection pressure during in vitro
culture. However, even with this adaptive process, the transcriptome of late passage

iPSCs shows some distinctions from that in ESCs. Furthermore, marked deviations

exist in the histone methylation patterns at the promoters of ESC-specific genes in

iPSCs. Hence, while there is a clear preference for the use of iPSCs rather than

nondonor-specific human ESCs in bids to avoid graft rejection and ethical compli-

cations, there is still much work to be done before iPSC technology can attain the

level of safety and reliability needed to make its clinical application a reality.

4 Conclusions

ESCs provide a limitless source of pluripotent cells for regenerative therapy and

offer opportunities for dissecting transcriptional regulation in vertebrates. Recent

studies have made much headway in understanding the combinatorial nature of

ESC transcriptional regulation through the identification and characterization

of binding profiles of regulatory molecules. These insights into the modus operandi

of ESC transcriptional regulation, coupled with the possibilities of iPSC technol-

ogy, will benefit the development of safe and reliable clinical applications from

ESCs for use in regenerative medicine.
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Small Molecules in Cellular Reprogramming

and Differentiation

Xu Yuan, Wenlin Li, and Sheng Ding

Abstract Recent advances in somatic cell reprogramming and directed differenti-

ation make it possible to generate patient-specific pluripotent cells and further

derive functional tissue-specific cells for biomedical research and future therapies.

Chemical compounds targeting enzymes or signaling proteins are powerful tools to

regulate and reveal complex cellular processes and have been identified and applied

to controlling cell fate and function, including stem cell maintenance, differentia-

tion, and reprogramming. Not only are small molecules useful in generating desired

cell types in vitro for various applications, but also such small molecules could be

further developed as conventional therapeutics to target patient’s own cells residing

in different tissues/organs for treating degenerative diseases, injuries, and cancer.

Here, we will review recent studies of small molecules in controlling cell fate.

1 Introduction

Pluripotent stem cells can replicate indefinitely through symmetric cell divisions

and are able to give rise to all the cell types of the three germ layers in vitro and

in vivo. They can be typically derived from several different cell sources, including

inner cell mass (ICM) of preimplantation blastocyst, late epiblast of postimplanta-

tion embryos, germline stem cells, and somatic cells through reprogramming. As

stem cells hold significant potentials in biomedical research and regenerative

medicine, they have been attracting increased interests in recent years. Chemical

compounds targeting enzymes or signaling proteins are powerful tools to regulate

and reveal complex cellular processes and have been identified and applied to

controlling cell fate and function, including maintaining pluripotency of murine
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embryonic stem (mES) cells in the absence of growth factors and cytokines [1, 2],

promoting survival of dissociated human embryonic stem (hES) cells [3], facilitat-

ing directed differentiation of ES cells into different cell types, e.g., cardiomyocytes

and neural cells, and enhancing the somatic cell reprogramming. In this review, we

will discuss the recent progresses of using small molecules in cellular reprogram-

ming and directed differentiation.

2 Small Molecules in Inducing Pluripotency

Cellular differentiation from less specialized cells to more functional cells with

more restricted developmental potential is characterized molecularly by specific

changes in epigenome. Once regarded irreversible, differentiation status (e.g.,

corresponding epigenetic changes of cells) can be reversed with cells repro-

grammed to an earlier developmental state, such as totipotent or pluripotent state

as demonstrated by somatic cell nuclear transfer (SCNT), or fusion of somatic cells

with pluripotent cells; or changed to different lineages via genetic manipulation of

master gene expression in various cell types. Recent breakthrough has established a

more convenient and defined reprogramming condition to generate induced plurip-

otent stem (iPS) cells from mammalian somatic cells by ectopic expression of Oct4,

Sox2, Klf4, and c-Myc (or Nanog and Lin28 instead of Klf4 and c-Myc) via viral

infection [4–10].

Although the iPS cell technique may reduce certain ethical concerns and techni-

cal challenges of generating patient-specific pluripotent stem cells from adults, it

has several critical limitations, e.g., genome modifications of target cells by exoge-

nous oncogenes or other sequences, as well as more subtle genetic and epigenetic

changes in the target cells generated and possibly preferentially selected during the

nonspecific reprogramming process. To date, a number of approaches have been

developed to address those challenges associated with the conventional iPS cell

method, including using less transcription factors and taking the advantage of

endogenous gene expression in specific cell types [7, 11–19], delivering transcrip-

tion factors with various nonintegrating and removable systems [20–26], direct

delivery of four recombinant proteins (Oct4, Sox2, Klf4, and c-Myc) [27, 28], and

use of small molecules to facilitate the reprogramming process (Table 1).

2.1 Epigenetic Modifiers in Inducing Pluripotent Cells

In a simple view, as the reprogramming process in generating iPS cells fundamen-

tally entails epigenetic changes, small molecules that directly modulate the epige-

netic enzymes or mechanisms (e.g., DNA or histone modifications) may have an

effect on facilitating reprogramming.
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As a proof of concept, a small molecule inhibitor of histone methyltransferase

(HMTase) G9a, BIX-01294 (BIX) [34], was first identified to significantly enhance

the reprogramming efficiency of mouse neural progenitor cells (NPCs) and fibro-

blasts that were transduced with only two reprogramming transcription factors

(Oct4 and Klf4) [11, 12]. The studies also demonstrated that BIX can functionally

replace Sox2 and c-Myc in generating iPS cells from somatic cells. More interest-

ingly and significantly, the BIX treatment combined with the viral transduction of

Table 1 Small molecules facilitating transcription factor-induced somatic cell reprogramming

Category Small molecules Working conditions and effects

HMTase G9a inhibitor BIX-01294 Enhances reprogramming efficiency of

K/O infected NPCs and MEFs

[11, 12]; enables K/S/M induced

reprogramming of NPCs [12]

LSD1 inhibitor Parnate Induces reprogramming of K/O infected

human keratinocytes together with

CHIR99021 [29]

DNMT inhibitor 5-aza Increases the reprogramming efficiency of

4-factor-infected MEFs [30]

RG108 In combination with BIX to improve

K/O induced MEF reprogramming

[11]

HDAC inhibitor TSA, SAHA, VPA Improve iPSC generation from 4 factor-

infected MEFs [30]

VPA Enhances K/S/O induced reprogramming

and induces iPSC from O/S infected

human fibroblasts [15, 30]

GSK3 inhibitor CHIR99021 Induces iPSC from K/O infected MEFs

[29]; combined with PD0325901 to

facilitate maturation of mouse iPSC

[16]

Kenpaullone Facilitates MEF reprogramming in the

presence of O/S/M [31]

TGFb receptor

inhibitor

A-83-01 Combined with MEK and Rock inhibitors

to improve human fibroblast

reprogramming [32]

E-616451 Induces iPSC from K/M/O infected MEFs

in the presence of VPA [33]

E-616452 (RepSox) Functionally substitutes ecotopic

expression of Sox2 and c-Myc in MEF

reprogramming [33]

MEK inhibitor PD0325901 Promotes transitioning to mature iPSC

[12, 16]; cooperates with TGFb
inhibition to generate human iPSC

[32]

L-calcium channel

agonist

BayK8644 Synergizes with BIX in K/O induced MEF

reprogramming [11]

Src kinase inhibitor EI-275 Cooperates with VPA in K/M/O induced

MEF reprogramming [33]

iPSC Induced pluripotent stem cell; K Klf4; O Oct4; M c-Myc; S Sox2
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Klf4/Sox2/c-Myc could enable generation of iPS cells from NPCs in the absence of

Oct4, the only gene (of the four reprogramming genes) not expressed in any somatic

cells [12]. Methylation of H3K9 by G9a is implicated in silencing of target genes,

including Oct4 [35]. It is conceivable that G9a inhibition by BIX may facilitate

relieving the repression of endogenous Oct4 during reprogramming and therefore

bypassed the need of exogenous Oct4. More recently, a small molecule inhibitor of

LSD1 (a H3K4 demethylase), parnate, was shown to enhance reprogramming of

human somatic cells that were transduced with only Oct4 and Klf4 [29]. Those

studies highlight the important roles of dynamic histone methylation and demeth-

ylation processes in epigenetic reprogramming and the utility of small molecule

modifiers of histone methylation.

DNA methylation is another common epigenetic mechanism involved in gene

silencing. As pluripotent stem cells have a distinct DNA methylation signature in

comparison to somatic cells, remodeling of DNA methylation during reprogram-

ming is likely to be an important epigenetic barrier. In addition, pluripotent cells are

globally less methylated at the DNA level. Therefore, inhibition of DNA methyl-

transferases (DNMTs), which establish and maintain DNA methylation, would

have a positive impact on reprogramming. Consistently, 5-azacytidine (5-aza), a

DNMT inhibitor, could promote the overall efficiency in the 4-factor-induced

reprogramming of MEFs [30] and induce a rapid and stable transition of certain

intermediate/partially reprogrammed cells to a fully reprogrammed state [36].

However, 5-aza may have undesirable side-effects, as it incorporates into DNA to

covalently trap the enzyme, as well as it can demethylate centromeric satellite

elements, which could result in chromosomal instability. In our studies, RG108, a

more potent and noncovalent DNMT inhibitor [37], was shown to enhance the

reprogramming efficiency of MEFs transduced with Oct4/Klf4 and treated with

BIX [11]. Compared with 5-aza, RG108 may have a more specific demethylation

effect as it does not appear to demethylate centromeric satellite elements.

Similarly, small molecules that modulate histone acetylation, another epigenetic

mechanism in regulating gene expression, would be predicted to have an impact on

reprogramming process. In previous SCNT studies, inhibition of histone deacety-

lases (HDACs) by Trichostatin A (TSA) was shown to have a modest effect on the

reprogramming efficiency [38, 39]. More recently, various HDAC inhibitors,

including TSA, suberoylanilide hydroxamic acid (SAHA), and valproic acid

(VPA), were shown to improve the transcription factor-induced reprogramming

[15, 30]. It is suggested that the global histone hyperacetylation resulted from

HDAC inhibition may create a more relaxed chromatin state for binding of exoge-

nous/endogenous transcription factors and therefore benefit the reprogramming.

Particularly, VPA significantly improved induction of mouse and human iPS cells

in the absence of c-Myc and further enabled human fibroblasts to be reprogrammed

with only two factors (Oct4 and Sox2) [15, 30]. Zhou et al. reported that VPA

also facilitated the generation of recombinant protein-induced pluripotent stem

(piPS) cells from MEFs without the use of any genetic material and genetic

manipulation [28]. As VPA is a nonspecific HDAC inhibitor and may have other

effects, it would be useful to genetically dissect out which HDAC(s) inhibition has
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major contribution to reprogramming, therefore allowing design and use of more

specific HDAC inhibitors.

Although small molecule epigenetic modifiers have been shown to improve the

reprogramming efficiency, the precise molecular mechanisms underlying their

effects remain elusive. They are presumed to facilitate shifting epigenetic balances

among different states during the nonspecific reprogramming process that involves

random events. Because those small molecules relatively nonspecifically affect the

epigenome of target cells, they have limitations in orchestrating a more directed

reprogramming process. Small molecules modulating specific signaling pathways

to facilitate/direct reprogramming may complement those epigenetic modifiers.

Furthermore, identifying such molecules may allow better elucidating the molecular

mechanisms of reprogramming.

2.2 Signaling Modulators in Reprogramming

Several signaling pathways, includingWnt-b-catenin, MEK-ERK, Calcium-cAMP,

TGFb, Rho-Rock pathways, have been identified to impact on the reprogramming

process, as demonstrated by the effects of pathway modulating small molecules in

generation of iPS cells [12, 16, 29, 32, 33, 40, 41]. Activation of Wnt signaling

pathway by Wnt3a protein can promote iPS cell generation from 3-factor trans-

ducedMEFs in the absence of c-Myc [40]. In addition, a glycogen synthase kinase-3b
(GSK-3b) inhibitor CHIR99021, which strongly activates the b-catenin pathway,

was shown to be particularly useful in enhancing generation of mouse and human

iPS cells in the absence of exogenous Sox2 and c-Myc [29]. Via a high throughput

screen, another GSK-3 inhibitor, kenpaullone, which also inhibits cyclin-dependent

kinase (CDK) and other kinases, was found able to reprogram MEFs transduced

with Oct4/Sox2/c-Myc but in the absence of Klf4 [31]. Interestingly, neither a more

specific GSK3 inhibitor (such as CHIR99021) nor a CDK inhibitor was able to

replace Klf4 in the same context, indicating the involvement of other mechanisms

independent of GSK-3 or CDK inhibition by kenpaullone [31].

MEK-ERK pathway inhibition by small molecules, such as pluripotin (inhibiting

ERK and RasGap) and PD0325901 (inhibiting MEK), has been shown to promote

self-renewal of mES cells [1, 2]. Interestingly, MEK inhibition by reversine was

shown to be critical in reprogramming muscle lineage restricted cells back to more

primitive, mesenchymal precursor-like cells [42]. It appears that the mechanism of

MEK inhibition in muscle lineage reprogramming is also shared in iPS cell

generation. Recently, we have shown that PD0325901 can enhance reprogramming

of mouse NPCs to iPS cells by transitioning early iPS cells to fully reprogrammed

mature iPS cells and promoting/stabilizing their growth [12], as well as has a

synergistic effect with TGFb pathway inhibition in promoting generation of

human iPS cells [32]. Furthermore, it was shown that combination of PD0325901

and CHIR99021 can facilitate transitioning certain late-stage incompletely repro-

grammed cells to the pluripotent state with stable endogenous Oct4 expression [16].
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A role of TGFb signaling in reprogramming was first revealed by our study of

generating chimerism-competent rat iPS cells. The inhibition of the TGFb pathway

using the small molecule A-83-01 was critical for the ultimate reprogramming and

maintenance of stable rat iPS cell clones in conjunction with the MEK and GSK-3

inhibitors [43]. More recently, studies have further demonstrated the importance of

TGFb signaling inhibition in generating mouse and human iPS cells [32, 33, 41].

Inhibiting TGFb pathway cooperated with the four transcription factors in repro-

gramming of mouse fibroblasts [41] and functionally substituted ecotopic expres-

sion of Sox2 or c-Myc [33, 41]. Further studies revealed that TGFb pathway

inhibition ultimately facilitated induction of endogenous pluripotency gene expres-

sion, including Nanog [33], and drove complete conversion of partially repro-

grammed cells to iPS cells [33, 41]. More importantly, we have shown that TGFb
pathway inhibition by small molecules, alone or in conjunction with MEK and

Rock inhibitors, can dramatically increase reprogramming efficiency and accelerate

reprogramming kinetics of human fibroblasts [32]. The process of reprogramming

from fibroblasts to iPS cells represents an ultimate mesenchymal to epithelial

transition (MET), during which the mesenchymal type fibroblasts undergo dramatic

morphological changes that result in iPS cells with distinct cell polarity, bound-

aries, cell–cell interactions, and high E-cadherin expression. TGFb is a prototypical

cytokine for induction of epithelial to mesenchymal transition (EMT) and mainte-

nance of the mesenchymal state. Conversely inhibition of TGFb signaling can

result in derepression of epithelial fate and would benefit the reprogramming

process. The demonstration that TGFb and MAPK pathway inhibition improves

efficiency and kinetics of fibroblast reprogramming highlights critical roles of MET

mechanisms and its players in the process.

Small molecules modulating signaling pathways can also synergize with direct

epigenetic modifiers in reprogramming. For example, BayK8644, an L-calcium

channel agonist [44], significantly increased the number and size of iPS cell

colonies derived from Oct4/Klf4 transduced MEFs in the presence of G9a inhibitor

[11]. Src kinase inhibitor EI-275 and TGFb receptor inhibitor E-616451 were

reported to cooperate with VPA in Oct4/Klf4/cMyc induced reprogramming of

mouse fibroblasts [33]. It is conceivable that a precise combinatorial action of

signaling and epigenetic modifiers may direct a more specific and efficient repro-

gramming process in vitro or in vivo.

3 Small Molecules in Directed Differentiation

To model/study development and diseases or to generate functional cell types for

replacing lost and damaged cells to treat degenerative diseases and tissue injuries, a

corresponding specific and efficient differentiation process of stem cells is essential.

Conventional stem cell differentiation (e.g., spontaneous differentiation of ES cells

via embryoid body/EB formation) is typically nonselective and inefficient and
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would require selection of cell types of interest from a heterogeneous cell popula-

tion. Recent advances in understanding of development and high throughput small

molecule screens in stem cell differentiation have allowed construction and further

improvement of more specific and robust differentiation process.

Various small molecules have been identified and characterized to direct or

enhance stem cell differentiation. For example, TWS119 (a GSK3 inhibitor),

Hedgehog pathway agonist Hh-Ag1.3, neuropathiazol, phosphoserine (P-Ser),

HDAC inhibitor VPA, and a Ca2+-triggering small molecule isoxazole were iden-

tified to promote neuronal differentiation of ES cells or neural precursor cells

[45–50]. In screening for cardiogenic molecules, ascorbic acid, cardiogenol, and

an isoxazolyl-serine-based PPAR agonist were found to promote cardiac marker

gene expression and enhance differentiation of ES cells to cardiac myocytes

[51–53]. These small molecules were discussed in previous reviews [54–56]. It is

worth to mention that some small molecules, such as VPA, GSK3 inhibitor, and

TGFb receptor inhibitor, are functioning in both reprogramming and differentia-

tion. Depending on their working contexts (the presence of growth factors and

transcription factors), these small molecules facilitate cell fate determinations. In

the following, we will focus on the recent discovery of small molecules in cardiac,

pancreatic, and neural lineage specifications of ES cells.

3.1 Small Molecules for Cardiac Induction

Generation of functional cardiomyocytes from ES cells typically involves sequen-

tial inductions of mesendoderm, cardiogenic mesoderm, cardiovascular precursor

cells, cardiomyocyte differentiation, and maturation. While the TGFb family

member Nodal was shown to efficiently induce mesoderm differentiation from

ES cells, Wnt/b-catenin signaling (e.g., Wnt3a or GSK3 inhibitors) played

biphasic roles in cardiogenesis depending on the specific developmental stage

[57, 58]: canonical Wnt signaling induced mesoderm specification of ES cells at

the early stage, but inhibited cardiomyocyte differentiation from cardiovascular

precursor cells at later stage. Consistently, activation of Wnt using GSK3 inhibi-

tor allowed expansion of multipotent cardiovascular precursor cells derived from

ES cells or isolated from adult hearts, representing an alternative strategy for

cardiac regenerative medicine [59]. Another key regulator of cardiogenic differ-

entiation is Notch signaling: inactivation of Notch favors cardiomyocyte differ-

entiation of ES cells [60, 61].

Nkx2.5 is an early cardiac master gene expressed in cardiovascular precursor cells.

In a screen for chemical activators of Nkx2.5, Sadek et al. identified a class of small

molecules called sulfonyl-hydrazones (Shz), which induced Nkx2.5 expression and

additional cardiac markers including myocardin and sarcomeric a-tropomyosin

(SaTM) in P19CL6 cells and mES cells [62]. Interestingly, human adult pro-

genitor cells (M-PBMCs) treated with Shz could express cardiac genes and showed
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improved cardiac function after engraftment in a rat myocardial cryoinjury model.

Shz functioned independent of BMP, FGF, and Wnt pathways, suggesting a poten-

tially novel mechanism to regulate cardiac differentiation in stem cells [62].

In addition, some other signaling modulating small molecules, including p38

MAPK inhibitor (SB203580), an L-type Ca2+ channel blocker (Verapamil), and

Cyclosporin, were identified to promote cardiac differentiation of murine or human

ES cells [63, 64]. Further mechanistic characterizations of those compounds may

provide better understanding and devising of in vitro and in vivo cardiogenesis.

3.2 Small Molecules for Endoderm Induction

Type I diabetes is caused by the autoimmune destruction of insulin-producing

pancreatic b cells. Deriving insulin-producing cells or developing renewable pan-

creatic progenitors from ES cells represents an alternative strategy for cell-replace-

ment therapy for type I diabetes. Application of developmental principles to stem

cell biology has allowed construction of a directed stepwise differentiation process

from ES cells to insulin-producing cells through sequential inductions of mesendo-

derm and definitive endoderm mainly by Activin A and Wnt treatment of ES cells,

followed by a series of cytokine and small molecule treatments, including FGF10,

Hedgehog antagonists (i.e., cyclopamine), retinoic acids, Notch inhibitors (i.e.,

DAPT), nicotinamide, directing cells through stages resembling posterior foregut,

pancreatic endoderm, and endocrine precursors, and ultimately to endocrine cells

that secrete hormones [65, 66]. While such a protocol is labor intensive and still

inefficient, it provides a basis for identifying additional modulators (especially

small molecule enhancers) for each step to improve pancreatic induction.

In a screen for small molecules that can induce Sox17 expression (an endoderm-

specific marker) from mES cells using a Sox17-GFP reporter mES cell line in the

presence of low serum but absence of Activin A, Borowiak et al. identified IDE1

and IDE2 from 4,000 compounds and further confirmed their effects on inducing

definitive endoderm from both hES and mES cells in monolayer cultures [67].

While the molecular targets and precise mechanisms of action of IDE1 and IDE2

remain unknown, they were shown to at least partially function through activating

TGFb signaling pathway and inducing Smad2 phosphorylation in mES cells,

mimicking the function of Activin A. The IDE-induced definitive endoderm cells

appeared to have developmental potentials similar to their in vivo counterparts

and could be further induced to pancreatic precursor cells by another small mole-

cule (-)-indolactam V (ILV) [68]. ILV was identified in a separate screen for small

molecules that could induce Pdx1-expressing cells from hES cells-derived defini-

tive endoderm [68]. Pdx1 is a master regulator of pancreatic development

and begins to express since the pancreatic precursor stage. It was shown that the

ILV-induced Pdx1 positive cells were able to further differentiate into multiple

pancreatic lineages including insulin-producing b cells. Further mechanistic studies

suggested that ILV functions at least partially through activation of PKC signaling
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to induce gut tube endoderm into pancreatic precursors [68]. Consistently, another

two PKC agonists could mimic the effect of ILV on pancreatic induction, and

inhibiting PKC signaling with antagonists blocked ILV’s effects and decreased the

percentage of Pdx1 expressing cells.

In another small molecule screen for definitive endoderm differentiation of

ES cells in the presence of low concentration of Activin A, Zhu et al. identified

a staurosporine analog, named stauprimide, which can synergize with Activin A

and potentiate definitive endoderm differentiation from murine and human ES

cells [69]. With stauprimide treatment, more efficient endodermal differentiation

could be achieved using less Activin A and in the absence of serum. Interest-

ingly, it was shown that Activin A was necessary for the differentiation and

stauprimide alone was not able to promote the specific endodermal differentia-

tion. Further analysis revealed that stauprimide functioned to prime ES cells in

conjunction with specific differentiation cues (such as Activin A or BMP) for the

corresponding lineage specification. A putative target of stauprimide was identi-

fied through affinity pull-down as NME2, which mediates c-Myc activity. The

inhibition of NME2 by stauprimide resulted in a rapid down-regulation of c-Myc

and destabilization of the pluripotency of ES cells and consequently promoted

their differentiation.

3.3 Small Molecules for Neural Induction

Chemically defined media (e.g., N2 and B27 supplements) and specific small

molecule modulators of developmental pathways (e.g., Hedgehog pathway ago-

nists or antagonists, RA) have been incredibly useful in neural specification and

patterning of ES cells [50, 70–72]. A particular challenge for neural induction of

hES cells is the heterogeneity and slow kinetics of the differentiation even under

monolayer and chemically defined medium conditions. To address this, a method

of applying the combination of BMP and TGFb pathway inhibition using Noggin

(a secreted protein that binds to and inhibits BMP4) and SB431542 (TGFb
receptor inhibitor) was developed [73]. This is based on the previous findings

that Noggin treatment could enhance the differentiation from ES cells to neural

precursor cells, and SB431542 treatment increased neural induction in EB-mediated

differentiation of hES cells [74–76]. Chamber et al. found that the dual inhibition

of TGFb and BMP receptors led to a rapid and more complete neural conversion

[73]. In their study, TGFb pathway inhibition resulted in rapid loss of pluripotency

gene Nanog expression in hES cells associated with an up-regulation of CDX2, a

marker for trophoblast differentiation. Meanwhile, Noggin played key roles in sup-

pressing trophoblast and primitive endoderm differentiation mainly driven by the

BMP signaling [73]. The derived transient neural progeny could be further pat-

terned into motor neurons and dopamine neurons after exposing to corresponding

differentiation cues [73].
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4 Perspectives

Recent advances in somatic cell reprogramming and directed differentiation make

it possible to generate patient-specific pluripotent cells and further derive functional

tissue-specific cells for biomedical research and future therapies. As reviewed

above, small molecules have played increasingly important roles in those processes,

including stem cell maintenance, differentiation, and reprogramming. Not only are

small molecules useful in generating desired cell types in vitro for various applica-

tions, but also such small molecules could be further developed as conventional

therapeutics to target patients’ own cells residing in different tissues/organs for

treating degenerative diseases, injuries, and cancer. Clearly, identification, charac-

terization, and further development of additional small molecules for various

targets/mechanisms controlling cell fate and function with improved activity,

specificity, and desirable in vivo tissue distribution/availability represent a fertile

area for stem cell research and regenerative medicine.
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