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Statistical methodology is an essential component of clinical (and biological) re-
search. Therefore it is not surprising that many textbooks aiming at “explaining”
statistical methods to researchers have been published and continue to appear
in print. The complexity of the basic issue, that of communication between stat-
isticians and researchers, is illustrated and discussed very well by the authors of
this book in their Introduction. Thus it would be of no benefit to dwell further
on this theme and on the difficulty of producing truly effective material. 

I prefer to start from a personal episode. Way back in 1959, a freshman of the
faculty of Statistical Sciences, I found by chance on a stand, the book “Metodi
statistici ad uso dei ricercatori”, which was the Italian translation of the famous
book by RA Fisher. The textbook for the first course of statistics used that year
at of our University had left me perplexed. A student like myself, with a good
high school scientific education, was fascinated by the wealth of real life exam-
ples, but was unable to reconstruct the thread of logical-mathematical reason-
ing, especially the inductive one. The unexpected access to Fisher’s  legendary
book raised my hopes that I could finally get to the heart of the matter. Howev-
er, after several attempts at reading it, I reached the conclusion that experi-
mental statistics required first and foremost a spirit of obedience: one was to
use formulae which were incomprehensible, but justified by some higher au-
thority. Especially mysterious was the frequently appearing concept of “degrees
of freedom”, a number which seemed to be reachable only through vague ana-
logical reasoning. Fortunately, my conclusion was a temporary one, because,
while still a student, I had the fortune of being exposed to much more con-
structive critical approaches. But what could be the reaction of the researcher,
in principle the target of the book? Most likely that of accepting statistics as a
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price to pay to make his/her research publishable, definitely not as an important
conceptual tool to understand problems and define useful strategies for the
gaining of knowledge. RA Fisher’s forward reads: “The author was impressed

with the practical importance of many recent mathematical advances,

which to others seemed to be merely academic refinements. He felt sure,

too, that workers with research experience would appreciate a book which,

without entering into the mathematical theory of statistical methods,

should embody the latest results of that theory, presenting them in the form

of practical procedures appropriate to those types of data with which re-

search workers are actually concerned. The practical application of gener-

al theorems is a different art from their establishment by mathematical

proof. It requires fully as deep an understanding of their meaning, and is,

moreover, useful to many to whom the other is unnecessary”. In other
words: the recent developments in mathematics, which are truly revolutionary
as they allow experimental results to be looked at in a totally new way, are the
theoretical results obtained by Fisher himself. The methods derived from them
should be used by researchers without worrying too much as to their meaning.
I do want to emphasize that I am fully convinced of RA Fisher’s scientific great-
ness, but I do find it essential that the above mentioned “results” (which basi-
cally are the use of the sample distribution and the theory of pure significance)
be accompanied by a crisp explanation of the general context, as the one pre-
sented in the following book “Statistical Methods and Scientific Inference”
(1956) in which the meaning and the use of the likelihood function are master-
fully explained and the limits of the theory of significance are at least partially
described. A curious detail is that the second book is reasonably clear and does
not hide anything relevant to the reader, whilst leaving several problems open,
including some interpretative ones. However it is not meant for researchers…

The pedagogic idea underlying the book “Statistical Methods for Research
Workers” is certainly extreme, whereas recent didactic literature usually seeks
a compromise. It cannot be denied, however, that sometimes the suggestion to
operate without wasting time to give thought to the useless theory does reap-
pear, in the most diverse contexts. This theme could also be discussed with ref-
erence to the possible interpretations of recent reforms of the Italian university
system, but then we would definitely wander from the subject. 

I can now get to the point. The basic idea behind this book is happily at the
opposite pole. The Authors, deliberately, intend to explain everything. In par-
ticular, they try to prevent bio-medical researchers from accepting and applying
statistical procedures without understanding their meaning and therefore with-
out applying a critical control, made possible by the subject matter knowledge
which typically the statistician does not have. Obviously, the theoretical discus-
sions have to be limited, but everything essential from a logical point of view can
indeed be explained and, with some effort, understood, even using only high
school level mathematics. In this respect, and also in that of trying to avoid any
jargon of obscure logical roots, the book that I have the pleasure of presenting is
a proposal of great interest and usefulness. Also, it must be stressed that this
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book goes well beyond the typical presentations of statistical methods (although
this is the aspect on which I am more inclined to comment). The practice of ap-
plied research is analyzed and discussed in its complexity, including of course
ethical aspects, as well as financial, organizational ones, and so on.

My involvement in clinical research is related to my interest in applications of
statistical methods of so called “Bayesian” approach, which are still not fully ac-
cepted as standards. So, such methods pose a double challenge: for a compari-
son between methodologies to have a true meaning, the logic behind both must
be clear to the reader, otherwise all one achieves is to propose to replace one
blind obedience with another blind obedience. The careful reader of this book
will not feel pushed toward the Bayesian approach. Instead, the reader is given
the tools to reason and, after an appropriate comparative discussion, is in a po-
sition to give his/her “informed consent” to one or the other “school” (or to rec-
ognize the merits of both). In fact, the important thing is to understand the gen-
eral sense of the issue, without giving the illusion (never favoured by the Au-
thors) that statistical methodology is established once and for all. Only with
such an open attitude, in my view, can statistical education play a constructive
role and not become a boring ritual.

Therefore, I do hope that this book will have the fortune it deserves and that
it will stimulate many bright minds to reflect further on important aspects of the
methodology of research.

Ludovico Piccinato
La Sapienza University, Rome 

Foreword IX



Writing this book has taken us several years of early mornings (GDC), late
nights (AB) and weekends (GDC and AB). We are indebted to all those to
whom we denied our time. 

A special thank you from both of us goes to:
• Alfredo Ardia for guiding us through the first steps in this profession, teaching

us creativity in reasoning and staying our friend for all these years.
• Adelchi Azzalini, Paolo Bruzzi and Ludovico Piccinato for pushing us in the

adventure of writing this book, supporting us, and finding the time and ener-
gy to comment our draft. Many of their suggestions set us on the right path.
Some we ignored. The heavy responsibility of such choices we accept.

• Lidia Merli and Silva Tommasini, for their help with the graphs.
• Our friends, especially those of the “Associazione Laboratorio Nuovo Alfa-

beto” for supporting us in our effort at intellectual honesty, reminding us how
important this is in every “public act”, even the very small one of writing a
book on the methodology of clinical research.
A special thank you from AB goes to:
Marco Corsi, who has always supported my academic activities and has taught

me a great deal on how to build constructive peer-relationships between statis-
ticians and physicians

Finally, a special thank you from GDC goes to: 
• Stephen Senn, who has shown me that rigorous thinking and discipline can

coexist with fun and a sense of humor.
• James Shannon, who, over the years, with little talk and much example, has

taught me many things essential to the practice of clinical research: focus on
the essential, calm under pressure, logical thinking and much more.

Acknowledgements



English is a language of multiple layers of complexity. The task of translating
a book like this was daunting. We are deeply grateful to Elaine Hopper for giving
us many hours of her time before and after work to review the translation. Any
remaining errors are, of course, ours. 

Septemper 2006
The authors

XII Acknowledgements



Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIX

1. Variability of Biological Phenomena and Measurement Errors 1

1.1. Phenotypic Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Temporal Variability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Measurement-Related Variability . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1. The Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2. Measurement Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. Variability of Diagnostic Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. Distinctive Aspects of a Biomedical Study. Observational 

and Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1. Distinctive Features of Biomedical Studies . . . . . . . . . . . . . . . . . 14
2.2. The Study Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3. Observational Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4. Experimental Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Contents



3. Observational Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1. Basic Designs of  Observational Studies . . . . . . . . . . . . . . . . . . . . 29
3.1.1. Prospective or Cohort Studies. . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2. Retrospective Studies or Control Cases . . . . . . . . . . . . . . . 36
3.1.3. Sample Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2. Bias and Confounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1. Control of Bias in Epidemiology . . . . . . . . . . . . . . . . . . . . . 44
3.2.2. Control of the Phenomenon of Confounding . . . . . . . . . . . 49

3.3. Advantages and Disadvantages of the Different Types 
of Observational Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4. Defining the Treatment Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1. From the Single Measurement to the Signal . . . . . . . . . . . . . . . . 58
4.2. Identification and Quantification of the End-Points 

(Individual Subject Level) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1. Methodological Characteristics of the End-Point . . . . . . 64
4.2.2 Discriminating between Primary and Secondary 

End-Points and between Efficacy and Safety/Tolerability 
End-Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3. Identification and Quantification of the Signals (Group Level) . 69
4.4. Statistical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5. Practical, Regulatory, Marketing and Pharmaco-Economic 

Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6. Selection and Characterization of the Primary End-Point 

and Signal: an Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6.1. Stage One: Define the Main Therapeutic Level . . . . . . . . 75
4.6.2. Stage Two: Define the Primary End-Point 

(Individual Patient Level) . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6.3. Stages Three and Four: Define the Group Indicator, 

the Signal, and the Threshold of Clinical Relevance 
(Treatment Group and Study Levels) . . . . . . . . . . . . . . . 79

4.7. More Than One Question in the Same Study: the Problem 
of Multiple Statistical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8. Validation of Measurement Scales . . . . . . . . . . . . . . . . . . . . . . . . 84
4.9. Special Types of End-Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5. Probability, Inference and Decision Making . . . . . . . . . . . . . . . . . . 90

5.1. Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1.1  Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1.2. Probability Distribution and Probability Density Function 92
5.1.3. Normal or Gaussian Distribution. . . . . . . . . . . . . . . . . . . . . 99

XIV Contents



5.2. Basic Concepts of Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.1. Hypothesis Testing and Statistical Formulation of the 
Medical Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.2. Statistical Estimation as the Tool for Evaluation 
of Clinical Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3. Statistical Inference in the Frequentist and the Bayesian 
Approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4. Two Digressions: Measures of Variability and Likelihood 
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.1. Measures of Variability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.2. Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5. Frequentist (Classical) Analysis of a Clinical Trial . . . . . . . . . . . 119
5.5.1.  Hypothesis Testing: the Frequentist Solution. . . . . . . . . . 120
5.5.2.  Estimation of the Effect: the Frequentist Solution. . . . . . 135

5.6.    Bayesian Analysis of a Clinical Trial . . . . . . . . . . . . . . . . . . . . . . . 138
5.6.1. Hypothesis Testing: the Bayesian Solution . . . . . . . . . . . . 138
5.6.2. Estimation of the Effect: the Bayesian Solution. . . . . . . . . 144

5.7. Some Additional Considerations on the Frequentist 
and Bayesian Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.8. Parametric and Non-Parametric Inference. . . . . . . . . . . . . . . . . . 149
5.9. Statistical Decision Making in the Medical Field . . . . . . . . . . . . . 150

5.10. Evidence-Based Medicine . . . . . . . . . . . . . . . . . . . . . . . . . 152
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6. The Choice of the Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.1. Which Subjects Should Form the Sample? . . . . . . . . . . . . . . . . . 157
6.1.1. Characteristics of the Patients to be Enrolled in the Study 157
6.1.2. Mechanism of Subject Selection . . . . . . . . . . . . . . . . . . . . . 163

6.2. How Many Subjects Should Form the Sample? . . . . . . . . . . . . . . 164
6.2.1. Statistical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.2.2. Medical and Practical Aspects. . . . . . . . . . . . . . . . . . . . . . . 169

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7. The Choice of Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.1. Study Treatments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.1.1.  How Many Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.1.2.  What Treatments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.1.3. Blinding of the Study Treatments . . . . . . . . . . . . . . . . . . . . 178
7.1.4. Packaging and Logistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.2. Concomitant Treatments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Contents XV



8. Experimental Design: Fallacy of “Before-After” Comparisons 

in Uncontrolled Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.1. Experimental Design: Introductory Concepts . . . . . . . . . . . . . . . 183
8.2. Before-After Comparison in a Single Group of Subjects . . . . . . . 185
8.3. Temporal Variations of the Disease . . . . . . . . . . . . . . . . . . . . . . . 186
8.4. Temporal Variations of Staff, Equipment and Environment . . . . 188
8.5 Statistical Regression Toward the Mean. . . . . . . . . . . . . . . . . . . . 189

8.5.1. The Basic Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.5.2. Areas of Biomedical Experiments Affected by 
Regression Toward the Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.5.3. How to Minimize the Effect of Regression Toward 
the Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.6. Learning Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.7. Psychological Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.8. The Before-After Design Without Control Group in Oncology . . 197
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9. Experimental Design: the Randomized Blinded Study 

as an Instrument to Reduce Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
9.2. Randomization as Antidote Against Selection Bias . . . . . . . . . . . 203

9.2.1. Definition and Conceptual Framework. . . . . . . . . . . . . . . . 203
9.2.2. Types of Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9.2.3. Other Methods for Assigning Patients to Treatments . . . . 215

9.3. Blinding of  Treatments as Antidote Against Assessment Bias . . 216
9.4. A Priori Definition of the Statistical Methods and 

Populations as Antidote Against the Analysis Bias . . . . . . . . . . . 221
9.4.1. Methods of Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . 221
9.4.2. Analysis Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

9.5. Comparison Between an Observational and an Experimental 
Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

10. Experimental Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
10.2. Parallel Group Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

10.2.1. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
10.2.2.  Advantages and Disadvantages . . . . . . . . . . . . . . . . . . . . 233
10.2.3.  Conditions of Applicability . . . . . . . . . . . . . . . . . . . . . . . . 234

10.3. Variants of the Parallel Group Design. . . . . . . . . . . . . . . . . . . . . . 234
10.3.1. Completely Randomized Parallel Group Design. . . . . . . . 234
10.3.2. Stratified Parallel Group Design . . . . . . . . . . . . . . . . . . . . 235
10.3.3. Parallel Group Randomized Block Design . . . . . . . . . . . . 239
10.3.4. Balanced Incomplete Block Design. . . . . . . . . . . . . . . . . . 242

XVI Contents



10.4. Other Designs with Comparison Between Subjects: 
Dose-Escalation and Dose-Titration . . . . . . . . . . . . . . . . . . . . . . . 244
10.4.1. Dose-Escalation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
10.4.2. Dose-Titration Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

10.5. Complete Cross-Over Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
10.5.1. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
10.5.2. Advantages and Disadvantages . . . . . . . . . . . . . . . . . . . . . 252
10.5.3. Conditions of Applicability . . . . . . . . . . . . . . . . . . . . . . . . 255

10.6. Variants of the Cross-Over Design . . . . . . . . . . . . . . . . . . . . . . . . 256
10.6.1.Variants Based on the Type of Randomization . . . . . . . . . 256
10.6.2. Incomplete Cross-Over Designs . . . . . . . . . . . . . . . . . . . . 257

10.7. Other Designs with Within-Subject Comparisons: 
Simultaneous Treatments and Single Patient Designs . . . . . . . . 261
10.7.1. Simultaneous Treatments Design . . . . . . . . . . . . . . . . . . . 261
10.7.2. Cross-Over Design on a Single Patient 
(or “N of 1” Design) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

10.8. Factorial Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
10.8.1. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
10.8.2. Advantages and Disadvantages . . . . . . . . . . . . . . . . . . . . . 268
10.8.3. Conditions of Applicability . . . . . . . . . . . . . . . . . . . . . . . . 270

10.9. Split-Plot Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
10.9.1. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
10.9.2. Conditions of Applicability . . . . . . . . . . . . . . . . . . . . . . . . 273

10.10. Non-Controlled Designs in Phase II Oncology Studies . . . . . . . . 273
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

11. Study Variants Applicable to More than One Type of Design: 

Equivalence Studies, Interim Analyses, Adaptive Plans 

and Repeated Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

11.1. Equivalence and Non-Inferiority Studies . . . . . . . . . . . . . . . . . . . 277
11.1.1. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
11.1.2. The Statistical Analysis of an Equivalence Study . . . . . . 280
11.1.3. Planning and Implementation Problems. . . . . . . . . . . . . . 281
11.1.4. Analysis and Interpretation Problems . . . . . . . . . . . . . . . 285

11.2. Studies with Interim Analyses and Sequential Designs . . . . . . . . 287
11.2.1. Definitions and Classification . . . . . . . . . . . . . . . . . . . . . . 288
11.2.2. Conditions of Applicability . . . . . . . . . . . . . . . . . . . . . . . . 290
11.2.3. Choice of the End-Points. . . . . . . . . . . . . . . . . . . . . . . . . . 292
11.2.4. Data Management Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 293
11.2.5. Statistical Issues and Decision Making Criteria . . . . . . . . 294
11.2.6. Conflict of Interest and Confidentiality Issues . . . . . . . . . 298

11.3. Adaptive (Flexible) Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
11.4. Studies with Repeated Measurements . . . . . . . . . . . . . . . . . . . . . 301
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Contents XVII



12.The Drug Development Process and the Phases of Clinical sx

Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

12.1. Overview of the Preclinical Development Process. . . . . . . . . . . . 304
12.2. The Phases of Clinical Development. . . . . . . . . . . . . . . . . . . . . . . 308

12.2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
12.2.2. Phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
12.2.3. Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
12.2.4. Phase III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
12.2.5. Registration Dossier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
12.2.6. Phase IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
12.2.7. Project Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

12.3. The Phases of Clinical Development for Oncology Compounds . 322
12.3.1. Phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
12.3.2. Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
12.3.3. Phase III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

12.4. Accelerating Clinical Development . . . . . . . . . . . . . . . . . . . . . . . . 325
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Appendix: Areas under the Curve of the Standard Normal Distribution. . . 329

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Analytical Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

XVIII Contents



In recent years many introductory textbooks on clinical trial methodology
have been published, some of which are excellent, in addition to a very exten-
sive specialist literature. Nevertheless, we decided to embark on the adventure
of writing together a new book on methods and issues in clinical research. The
objectives we set for ourselves, which we hope will justify our effort, can be
summarized in three points.

1. Integrate medical and statistical components of clinical research.

This is the primary objective of the book. The authors are a statistician (AB)
and a physician (GDC) with years of experience in multidisciplinary project
teams. In a clinical study (and any biomedical experiment) collaboration be-
tween representatives of the “biological” disciplines (physician, biologist, phar-
macologist, etc.) and representatives of the “mathematical” disciplines (statisti-
cian, data management specialist, etc.) must be continuous and include ab-
solutely all aspects of the planning and implementation of the study and of the
analysis, interpretation and publication of results. The more troublesome this
collaboration, the more at risk are the ultimate goals of our work as researchers,
i.e. to ask relevant questions and provide scientifically sound answers. Unfortu-
nately, however, there is often a complex communication problem between dis-
ciplines of biological and mathematical orientation, which can express itself at
different levels.

A first, and in our opinion crucial, level of miscommunication is one of lan-
guage. It is striking to note how frequently many of us make use of jargon, be-
hind which we usually hide relatively simple and accessible concepts. This cod-
ed language is often an insurmountable wall for colleagues from different back-
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grounds. What depths of mathematical reasoning lie behind the term “statistical
model”? In fact, the term is often generically used to mean “approach”. What
complex medical concept is hidden in the expression “differential hematological
count”?  It quite simply means type and number of cells in the blood. 

A second level concerns the necessity to “divulge” (etymologically, to “make
accessible to the people”). In order to communicate between different disci-
plines, it is necessary to simplify and, to some extent, trivialize concepts which
are complex and rich with nuance (and fascinating to us for these very reasons).
Specialists often have an inborn aversion toward divulging specialist knowledge.
We subconsciously perceive it as a form of humiliation, as giving up the depth of
knowledge and insight we acquired from years of study and experience. A gen-
uine attitude toward disclosure and simplification is a welcome but rare quality,
which requires profound knowledge combined with didactic intuition and em-
pathy with the audience. We strongly believe that such an attitude is absolutely
indispensable in order to accomplish interdisciplinary collaboration. We are
convinced that the main reason for the limited success of some techniques and
methods lie in the impossibility (rarely) or incapability (frequently) of making
them accessible to a public of non-specialists. The Bayesian statistical methods
are a case in point. 

A third level that complicates communication between different disciplines is
somewhat philosophical in nature and concerns the very way individuals from
different backgrounds think.  What is essential for one person may be trivial for
another. The statistician often considers the “mechanistic obsession” of the bio-
medical researcher ridiculous: any result gets immediately fitted (or forced) in-
to a plausible biological explanation, and so does any result reaching opposite
conclusions. On the other hand, the statistician’s attention to the assumptions
behind a certain method is often considered pedantic by the physician/biologist.
Understandably, but mistakenly, we tend to think that “our” discipline is slight-
ly closer to the “truth” than any other. 

We hope that, through this book, we have made a small step in the right di-
rection.  Each and every medical term and concept had to pass the test of a non-
physician. Likewise, each formula, statistical term and argument had to be un-
derstood and accepted by a non-statistician with only basic mathematical
knowledge. Most importantly, the logical flow of each chapter had to make
sense to both authors.  This was achieved through endless debates and multiple
rewrites of almost all chapters (some of which have been completely undone
and redone four or five times). The logic behind the methods used in clinical re-
search is the center of this book, not computational procedures or mathematical
demonstrations, nor specialist medical or biological issues. Such logic must be
equally accessible, through a common language, to the physician/biologist and
to the statistician/data manager.

2. Do justice to the operational and practical requirements of clini-

cal research. The decisions on the sample size, the choice of the dose(s) to be
used in large phase III studies, the type and number of outcome variables, the
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degree of blinding of treatments, are just a few examples where operational and
practical requirements are of such importance as to prevail at times over the
methodological ones.

How often do non-statistical considerations, such as the prevalence of the
disease, the geographical distribution of researchers or financial constraints in-
fluence the sample size of a study? Isn’t it true that in these situations we tend
to give a “statistical” justification to a sample size selected on practical grounds?
To this end, we initiate a sterile retrospective process and screen the literature
for any paper which could help us to justify our magic number; we inflate or de-
flate the magnitude of the “clinically significant difference” with the same aim,
etcetera. Wouldn’t it be better to acknowledge the practical limitations and to
estimate the power of the study for a range of differences, given the achievable
number of patients? 

The choice of the highest dose to be used in dose-response studies is fre-
quently dictated not by pharmacological or toxicological considerations, but by
limitations in pharmaceutical formulation technology or by the outcome of mar-
ket research. 

When choosing the number of measurements and end-points of a clinical
study, a statistically pure, extremely restrictive approach to the problem of mul-
tiple comparisons fails to take into account the practical consideration that large
clinical trials take years to complete, cost a fortune and very often represent
unique opportunities to obtain essential information. 

It is a common occurrence that scientifically impeccable protocols demand the
impossible of patients and research staff: very frequent visit schedules, meas-
urements taking many hours, repeated invasive procedures, “double-dummy”
blinding solutions with dangerously complex dosing regimens. How many re-
searchers seriously stop to consider whether all this truly contributes to improv-
ing the quality of data? 

A competent researcher must not belittle “non-scientific” issues to the level of
bothersome hurdles that get in the way of the perfect experiment, to be dele-
gated to others (the “operational” staff). The real skill of a bio-medical re-
searcher resides in designing a methodologically valid study that gives due con-
sideration to real life and its many limitations. In this book we endeavored to el-
evate the operational aspects of clinical research to the level of importance they
deserve.

3. Give space to the ethical implications of methodological issues in

clinical research. Considerable progress has been made in the field of clinical
research ethics in recent years. The dignity and rights of patients undergoing
experimental procedures are sanctioned and regulated by international as well
as national guidelines and regulations (e.g. the Declaration of Helsinki [106]).
Ethics Committees (also known as Institutional Review Boards) are now oper-
ating almost everywhere. Fraud in research is a recognized problem that is po-
liced both by the institutions where research is conducted (universities, hospi-
tals, pharmaceutical industry) and by the institutions where research is evalu-
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ated and regulated (FDA, other National Health Authorities, EMEA). However,
a more insidious dimension of the ethical problem exists, which is very close to
every researcher: the devious use of techniques and methods. Although this
component of the ethical problem is well known to Health Authorities, re-
searchers often ignore it. Whereas the fabrication of data is abhorred by the
great majority of researchers, the fabrication of results from real data through
incorrect use of methodological and statistical techniques is often considered no
big deal and is unfortunately common practice. “After the fact” (“post hoc”) se-
lection of objectives based on results, poor use and interpretation of signifi-
cance testing, subgroup analyses that prevail over the primary ones, statistical
analyses that do not take into account the distribution of data nor attempt to
verify the basic assumptions, preferential publication of “positive” data over
“negative” ones. These are just some of the many ways in which results may be
fabricated from real data. Is there such a big difference between fabrication of
data and fabrication of results through incorrect methods? We are convinced
that the answer is no. Inappropriate use of techniques and methods is immoral,
as immoral as the fabrication of data and mistreatment of patients. The damage
is just slower in manifesting itself, more difficult to identify and easier to justify
with convoluted argumentation. Throughout this book we try to do justice to
the ethical implications of poor research methodology. Clearly, the ethics of
clinical research is a much larger subject, which goes far beyond the boundaries
of our book.

On several occasions, we make reference to the thorny problem of conflicts of
interest. Conflicts of interest are everywhere and we must acknowledge this
fact. Researchers in academia must publish to obtain grants and to progress in
their careers. Scientific journals benefit from new, surprising and unexpected
results more than from results confirming previous research or “negative” re-
sults. The pharmaceutical industry is centered on financial profit and each com-
pany tries to “demonstrate” the advantages of its drugs and the disadvantages of
the drugs of others. The large universities and teaching hospitals are most like-
ly to support projects of great public awareness, not necessarily on scientific
grounds (obviously to the disadvantage of other projects), in order to attract
students and patients. How can research bear scientifically valid fruit in this jun-
gle of conflicting interests? We believe there is no single answer or solution. A
large component of the answer lies in the conscience and conscientiousness of
researchers. However, much of the answer also lies in the mutual control, critical
examination of publications, and repetition of experiments by different groups in
diverse professional, cultural and social contexts, and in the use of methodolog-
ically correct techniques in the context of a truly interdisciplinary collaboration
between researchers of different backgrounds and complementary skills.

At the end of this introduction, we wish to quote one of the reviewers of the
English edition of our book, who, in our view, has captured very well its overall
strengths and limits. “The authors have a great deal of practical experience and
this experience gives the book an authority that is sadly lacking in some other
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texts. […] However, a weakness is that, however much experience the authors
may have in writing and publishing articles on the results of clinical research,
they have not really contributed to the methodological literature themselves.
[…] This means that what one has, in my opinion, is a series of well-meditated
reflections grounded in experience on methodological arguments and positions
that have been expounded or developed by others”. The assessment is spot on
and we gratefully accept it.

General Outline of the Book

The scope of clinical research is to evaluate the effect of a treatment on the evo-
lution of a disease in the human species.

The treatment can be pharmacological, surgical, psychological/behavioral or
organizational/logistic. The disease, intended as an impairment of a state of
well-being or a condition capable of provoking such impairment over time, can
be universally accepted as such (e.g. a cancer or a bone fracture) or perceived
as such only by limited groups of individuals in a given cultural context (e.g. hair
loss or weight gain). The course of the disease that one wishes to change can be
the one with no intervention or, more frequently, the one observed with the
available treatment. 

The evaluation of the effect of a treatment on the course of a disease is a
lengthy process, which progresses in increasingly complex stages.

As we will see in chapter 12, the clinical development of a pharmacological
agent is conventionally broken down into four phases. Phase I (typically lasting
six months to 1 year), generally carried out on healthy volunteers, has as its
main goals the evaluation of the tolerability of increasing doses of the com-
pound and the definition of its pharmacokinetic profile. The main goals of phase
II (duration: ~1-2 years), carried out on selected groups of patients, are the
proof of the pharmacodynamic activity and the selection of the dose(s) to test
in the following phase. Phase III (duration: ~2-5 years), carried out on hun-
dreds or even thousands of patients who (as a group) are to be as representa-
tive as possible of the general patient population, comprises the so-called piv-
otal studies, which are designed to demonstrate the therapeutic efficacy, toler-
ability, safety and at times also the socio-economic value of the compound. Fi-
nally, phase IV encompasses all the studies conducted after regulatory approval
and marketing of the compound, within the approved indication(s). For non-
pharmacological treatments the sequence of phases is generally less standard-
ized.

The assessment of the effect of a treatment is a conceptually and method-
ologically complex process. It is useful to begin this book by asking ourselves
why this may be the case. Why isn’t it enough to administer the treatment to
one subject and then document the outcome?

The basis of this complexity resides in the ever-present variability of all bio-
logical phenomena, at times partially predictable, but often totally unpre-
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dictable. It represents the “background noise” that must be overcome to recog-
nize and measure the “signal” resulting from the treatment. In fact, clinical re-
search can also be defined as a series of techniques and procedures aimed at
separating the signal from the background noise, in order to decide if a change
observed after a treatment belongs to the latter or to the former. The sources of
biological and measurement-related variability are covered in chapter 1.

In order to separate the signal from the background noise, the clinical re-
searcher can decide to conduct an experiment. What is an experiment? What
are its characterizing elements that distinguish it from other forms of scientific
investigation? Chapter 2 is dedicated to the characteristics that define a clinical
experiment and to the fundamental distinction between observational and ex-
perimental studies (the latter typically referred to as clinical trials or clinical
studies). Chapter 3 provides a brief introduction to observational studies. This
chapter stands somewhat alone compared to the rest of the book. Nevertheless,
we decided to include it for completeness and in order to better illustrate to the
reader the differences between clinical and observational studies.

A key aspect of any experiment is that it must be carefully planned. The plan-
ning process must be complete before the experiment begins. Changes after the
start of the experiment are indeed sometimes necessary, but must be the ex-
ception, not the rule, because they are complex to implement, have statistical
consequences requiring careful consideration, and may have an impact on the
credibility of results, as it is difficult to prove that a change has not been made
to favor the results hoped for by researchers. The study plan must be docu-
mented in detail in the so-called study protocol, a document that requires many
months to complete. First and foremost, a clear objective must be defined.
Thereafter, a useful approach is to organize the planning of the experiment
(and the writing of the study protocol) into six “blocks”. 
• Definition and quantification of the treatment effect(s): what measurements

should be carried out and how many; how to summarize them within each
study subject (end-point); how to summarize the end-point within each treat-
ment group (group indicator); how to express the overall effect in compara-
tive terms between groups (signal); what is the minimum magnitude of the
signal that must be shown to declare success of one treatment over another.

• Definition of the group of subjects on which the experiment is to be conduct-
ed: what features should they have and how many should they be.

• Definition of the experimental and concomitant treatments.
• Definition of the experimental design.
• Definition of the procedures for assessing results (statistical analysis and de-

cision-making rules).
• Definition of logistic, administrative and legal issues.

Chapters 4, 5, 6 and 7 are dedicated to the definition and quantification of the
treatment effects being studied, to the logical foundations of the statistical
analysis, to the study sample and to the study treatments, respectively. Chap-
ters 8, 9, 10 and 11 give an overview of the most common experimental designs,
with emphasis on common methodological errors. 
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A detailed coverage of the logistic, administrative and legal aspects of clinical
research is outside the scope of this book. However, throughout the book we
keep reminding the reader of these aspects because, as already mentioned, we
firmly believe they have a crucial role in determining the success of a study. The
history of clinical research is paved with relics of studies started with great
pomp, riding great ideas and great hopes, which drowned miserably because of
inadequate logistical preparation. In our experience, the excessive complexity
of a clinical trial is the single most frequent cause of failure: the study is perfect
on paper, but impossible to implement by patients and staff alike. The distance
between the principal investigators and the reality of clinical research in its day-
to-day practice is often the main cause of such disasters. We warmly encourage
everyone involved in clinical research to get involved in the logistics of a study,
learning from colleagues responsible for its practical conduct (clinical research
associates, data managers, etc.) and to take part, in person, in the practical im-
plementation of a trial before attempting to design a study protocol.

The book ends with chapter 12, devoted to a brief description of the drug de-
velopment process and to the phases of clinical development. 

The Authors’ views expressed in this book do not necessarly reflect those of
their employers.

Linguistic and Editorial Conventions 

Each term included in the analytical index is highlighted in bold in the chapter
where it is most extensively covered (in the index all terms appear as singular
and, when necessary, have in parenthesis explanatory words which do not ap-
pear in the text). Sentences in bold and italics font are used to separate the
longer sections into sub-sections. In formulae, the sign “x” is used to indicate
multiplication, but omitted when it is obvious that a multiplication is being car-
ried out.
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1
Viability of Biological Phenomena
and Measurement Errors

The variability of biological phenomena, as we perceive them, can be divided
into three main components: phenotypic, temporal and measurement-related.
Measurement-related variability includes every source of variation that occurs
as a consequence of measurements and interpretation of results. 

Phenotypic and temporal variability refer to true differences, whereas vari-
ability associated with measurements refers to errors. The term error in this
context is not synonymous with “mistake”, but has a technical meaning that we
will explain in section 2.1. Measurement errors are an integral part of the vari-
ability of biological phenomena, as we perceive them.

1.1. Phenotypic Variability

If we select a group of individuals at random and evaluate a given characteristic
(phenotype), almost inevitably we will observe heterogeneity for the charac-
teristic examined. This is due partly to differences in the genetic profile (geno-

type) of the individuals and partly to the influence of environmental factors. Let
us consider height as an example. It is a fact that some individuals are “tall” and
others are “short” (relative to a hypothetical height considered “typical” by the
observer, see below). The height of an individual depends on age, sex, race,
height of parents and ancestors, nutritional state, medical history and so on.
However, it is also influenced by other unknown factors. In fact, even if we were
to select our group of individuals, not at random, but from a single family with
parents and ancestors of the same race, and if we were to restrict further our
choice within that family to the adult males with no relevant disease (current or



past), still the individuals included in our sample would have different heights.
It is likely that their heights would be more homogenous compared to those of a
group selected at random, but differences would persist. Moreover, it would
not be unusual for one individual to be phenotypically atypical, that is, much
taller or much shorter than the rest of the group, for reasons completely un-
known. The same phenotypic variability applies to diseases. As an example, let
us consider Parkinson’s disease, a neurological disorder characterized by diffi-
culty of movements and tremor. First of all, in any group of individuals at a giv-
en moment, some will be affected by the disease and some will not. Further-
more, among those affected, we will find heterogeneity with regard to disease
severity, age of onset, and the spectrum of symptoms displayed. Again, only
part of the observed phenotypic variability is explainable based on our knowl-
edge of the condition, while the remaining part, erratic and unpredictable, is of
unknown origin.

1.2. Temporal Variability

In the previous section we considered biological variability at a given moment in
time. In fact, biological phenomena have a temporal course: a beginning, a se-
quence of intermediate stages and an end. Sometimes the sequence is repeti-
tive, i.e. cyclical. The variability of the temporal course, which we refer to as
temporal variability, represents the second major component of biological vari-
ability. It can be further divided into two components: one linked to biological
rhythms, the other unrelated to them.

Biological rhythms. Many biological phenomena follow an ordered temporal
course, that is, change over time in steps that are always the same in their se-
quence and characteristics. For example, in the human species, height generally
increases slowly in childhood, faster during puberty, stops increasing around 18-
20 years of age and eventually decreases with advanced age. Biological

rhythms are often cyclical, i.e. follow a repetitive sequence. The duration of a
cycle can be of the order of seconds or fractions of a second (for example, the
phases of the cardiac muscle’s contraction as shown by the electrocardiogram, or
the inspiration-expiration cycle), minutes/hours (e.g. the sleeping-waking cycle
or the secretion of some hormones), weeks/months (e.g. the menstrual cycle),
seasons (e.g. flares of allergic rhinitis during the pollen season). Biological
rhythms are relatively constant, both qualitatively and quantitatively. Yet, su-
perimposed on these patterns, a physiological variability, both qualitative and
quantitative, always exists that is compatible with the normal functioning of a
given organ or body system. Going back to the electrocardiogram, the QT inter-
val, for example, is approximately 0.45 seconds, but values between 0.43 and
0.47 seconds are perfectly compatible with the normal functioning of the heart.
Disease is associated with a departure of biological rhythms from the limits com-
patible with normal function, or with a disruption of physiological rhythms, re-
placed by rhythms characteristic of a diseased organ or system.
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Temporal variability beyond biological rhythms. It is common knowl-
edge that many phenomena are subject to temporal changes that are complete-
ly unpredictable. A sudden increase in emergency room admittance (perhaps
related to road construction at a dangerous crossing), the abrupt appearance or
worsening of depression in the absence of obvious triggers, the sudden im-
provement of advanced cancer are just a few examples.

1.3. Measurement-Related Variability 

External phenomena exist for us only to the extent they are detected by our
senses and understood by our intellect. To understand an external phenomenon
we first need to recognize it, and then “measure” it.

1.3.1. The Measurement

The phenomenon or object to be measured, for example blood pressure, is
called “variable”. Actually, this is the terminology used by statisticians, whereas
physicians, biologists and other life scientists are generally erroneously inclined
to use the term “parameter” (see below). 

A variable is any kind of observation that can assume different values for dif-
ferent subjects, times, places, etc. For example, height is a variable, as it can as-
sume a different value for each individual observed. The opposite of the variable
is the mathematical constant, a quantity that always assumes the same value.
“Greek p” (π), which expresses the ratio between the circumference and the di-
ameter of a circle, is an example of a constant, as it is always equal to 3.1415926.
A parameter is a value that defines one mathematical curve within a specific
family of curves. Usually, a change in the parameter determines changes in the
shape, and/or width and/or position of a curve within a specific family of curves.
For example (see Figure 1.1), if we consider the family of “normal” curves, the
mean (μ) and the variance (σ2) are its parameters, as their values fully deter-
mine a specific curve within the family: the mean determines its position, the
variance its width. In practice, parameters are unknown quantities and the aim
of the researcher is to estimate them. In this book we will use the terms param-
eter and variable according to the definitions given above.

A measurement can be defined as the assignment of numbers or symbols to
the phenomenon or object being measured (the variable), according to a set of
predefined rules. Each set of rules describes a measurement scale [30]. There
are various types of measurement scales, as summarized in Table 1.1. These can
be classified hierarchically based on the amount of information they convey. At
the bottom of the hierarchy is the scale that coveys the least amount of infor-
mation, the nominal categorical scale, generally referred to as the nominal

scale. This scale classifies the observations in non-orderable categories which
are mutually exclusive (that is, if an observation belongs to category A, it cannot
also belong to category B) and exhaustive (that is, all observations must belong
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to one of the possible categories). A variable measured on this scale is called a
nominal variable and is of the qualitative type. Examples of this kind of vari-
able are race, marital status (married/not married/divorced), employment status
(employed/unemployed/retired), and the codes derived from the coding dic-
tionaries of medical terms, such as COSTART or MedDRA.
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Figure 1.1. Normal curves, defined by parameters μ (mean) and σ (standard deviation) 
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Table 1.1. Measurement scales

Scale Type of variable Definition Example

Nominal

Ordinal

Interval

Ratio

When the observations are classifiable in mutually exclusive and exhaustive
categories, and the categories can be ordered using pre-defined criteria, it is
said that the observations are measurable on an ordinal categorical scale or,
simply, an ordinal scale. A variable that can be measured on this scale is called
an ordinal variable. Examples are improved/stationary/worsened, below aver-
age/on average/above average, very negative/negative/normal/positive/very pos-
itive. In this kind of scale, all members of a given category are considered equal
to one another, but different (better or worse) compared to members of other
categories. However, it is not possible to quantify the magnitude of the differ-
ence between one category and another. For example, the difference between
stationary and improved is probably not the same as that between worsened
and stationary. Even though it is common to represent such ordinate categories
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Nominal or quali-
tative

Ordinal or semi-
quantitative (in-
cludes dichoto-
mous variables)

Quantitative

Quantitative

Nominal or qualitative.

Mutually exclusive and exhaustive
categories for which it is possible to
set an order, but it is not possible to
determine the magnitude of differ-
ences among the categories.

Characterized by the presence of a
unit of measurement and the ab-
sence of a true zero point (defined
as the absence of the quantity being
measured). Because of the absence
of a true zero point, the magnitude
of differences between pairs of
measurements does not change
with the measurement scale, where-
as the magnitude of ratios between
pairs of measurements does change
with the measurement scale. 

Characterized by the presence of
both a unit of measurement and a
true zero point. Thus any value can
be seen as a multiple of the unit of
measurement (i.e. equal to x times
the unit of measurement). Because
of the presence of a true zero point,
both the magnitude of differences
and the magnitude of ratios be-
tween pairs of measurements do
not change with the measurement
scale.

Employed/
unemployed/retired

Improved/stat ion-
ary/worsened
Dichotomous scale:
positive/ negative

Temperature in Cel-
sius or Fahrenheit
degrees

Blood pressure in
millimeters of mercu-
ry (mmHg), weight in
kilograms or pounds



with consecutive numbers, for example, worsened = -1, stationary = 0, im-
proved = 1, these are not properly quantitative variables: in fact, because of the
lack of a unit of measurement, the numbers assigned to each category do not
represent quantities but only positions in a sequence. Since we cannot state that
the distance between the categories 1 and 0 (which numerically is 1) is the
same as the one between 0 and –1 (which numerically is also 1), indicators of
central tendency such as the mean have no arithmetic meaning for these vari-
ables. Sometimes these variables are defined as semi-quantitative. Question-
naires, including those of quality of life, generally generate ordinal variables. A
special case of ordinal variable is the dichotomous one, a variable that can on-
ly take one of two values, for example yes/no, successful/unsuccessful.

In the interval scale, it is not only possible to order the observations ac-
cording to pre-defined criteria but also to establish the magnitude of the differ-
ences between any pair of measurements. The use of this scale implies the use
of a unit distance, called unit of measurement, and of a zero point, both of
which are arbitrary. The zero point is not a true zero, since it does not really in-
dicate the absence of the measured quantity. Because of the lack of a true zero
point, it is possible to quantify, independently of the measurement scale, the dif-
ferences, but not the ratios between pairs of measurements (see example be-
low). Typical examples of interval scales are the Celsius and Fahrenheit scales
for measuring temperature. In these scales the unit of measurement is the Cel-
sius or Fahrenheit degree and the zero point is arbitrary, since it does not indi-
cate absence of heat.

Finally, at the top of the hierarchy is the ratio scale. In addition to the unit of
measurement, the defining feature of this scale is the existence of a true zero

point, which indicates the absence of the measured quantity. This scale is char-
acterized by the fact that both differences and ratios between pairs of measure-
ments are quantifiable independently of the measurement scale, i.e. it is possi-
ble to establish whether two differences or two ratios between pairs of meas-
urements are different or not in a way which is independent of the scale of
measurement. A typical ratio scale is the one for measuring weight. The state-
ment that a person weighs 71 kg means that this person weighs 71 times the
unit of measurement accepted by convention, in this case the kilogram. Fur-
thermore a weight equal to zero means absence of weight.

To better understand the difference between an interval scale and a ratio
scale, let us consider the Celsius (°C) and Fahrenheit (°F) scales for measuring
temperature as examples of interval scales, and the scales for measuring weight
in kilograms (kg) and pounds (lb) as examples of ratio scales. Equality of dif-
ferences between pairs of values is independent of the measurement scale for
both weight and temperature. For example, let us consider the statement “the
difference between 30°C and 20°C is equal to the difference between 45°C and
35°C”. This is still valid if the values are converted into °F: the first pair of values
becomes 86°F-68°F and the second pair becomes 113°F-95°F and both differ-
ences equal 18°F. Conversely, whereas equality of ratios between pairs of values
does not depend on the measurement scale for weight, it does for temperature.
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For example, the equality between the ratios 40 kg/20 kg and 60 kg/30 kg is 
still true even after converting the weights into pounds: the first ratio becomes
88.18 lb/44.09 lb, the second becomes 132.27 lb/66.135 lb and they both still
equal 2. On the contrary, whereas the ratio between 20°C and 10°C is the same
as the ratio between 30°C and 15°C (ratio =2), the ratios between these pairs of
temperatures expressed in °F are different: the first pair of values becomes
68°F and 50°F (ratio =1.36); the second pair becomes 86°F and 59°F (ratio
=1.46). Therefore, while it is correct to state that a person of 80 kg weighs twice
as much as a person of 40 kg, it is not correct to state that 20°C is twice as warm
as 10°C. This is because there is a true zero point for weight but not for tem-
perature.

Interval scales and ratio scales are quantitative: what makes a scale quanti-
tative is the presence of a unit of measurement. Measurements made by instru-
ments use interval scales or ratio scales and produce quantitative variables.
A quantitative variable can be discrete or continuous. A discrete variable is
characterized by interruptions in the values it can assume. Typical discrete vari-
ables result from counting and therefore assume values that are integer num-
bers. Examples of discrete variables are the number of heart beats in a given
time interval, the number of cells in a given surface area and the number of
events of a disease in a given population at a given time. A variable is contin-

uous if its values are represented by a continuum limited only by the level of ac-
curacy of the measuring instrument. Blood pressure, cholesterol level, weight
are examples of continuous variables.

It should be noted that, strictly speaking, the variable age can be both contin-
uous and discrete. The exact age at a precise moment is a continuous variable;
for a given individual it could be 42 years, 137 days 7 hours 3 minutes 22 sec-
onds. The age at the last birthday or the age rounded to the closest integer num-
ber are discrete variables. The same concept is valid for weight (exact weight
vs. weight rounded to the nearest kg) and for all continuous variables. 

The different types of scales generate different types of variables, which in
turn require the use of different methods of statistical analysis. The methods
used for the analysis of variables measured on interval scales or ratio scales are
the same, but differ from those used for the other types of variables (nominal
and ordinal). Furthermore, often the methods for the analysis of discrete vari-
ables differ from those for the analysis of continuous variables, mainly because
their probability distributions have different shapes. An in-depth discussion of
these topics is beyond the scope of this book.

1.3.2. Measurement Errors

Errors occurring in the process of measuring, though not part of the intrinsic
variability of phenomena, contribute to the variability of phenomena as we know
them.

First of all, it is crucial to understand the difference between random errors
and systematic errors. These concepts will be useful throughout the book.
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The true or real value of the phenomenon to be measured is the value we
would obtain if the measuring instrument were perfect.

An error is defined as random if, in the course of repeated measurements, it
produces departures from the true value that do not have a reproducible trend
[27]. Rounding off decimals from two to one digit is a typical example of a ran-

dom error: we underestimate the true value when the second decimal digit is a
number between 0 and 4 and we leave the first digit unchanged; we overesti-
mate it when the second decimal digit is a number between 5 and 9 and we in-
crease the first digit by 1. It is impossible to predict which of the two options will
apply to the next measurement.

An error is defined as systematic if, in the course of repeated measurements,
it tends to produce results differing from the true value always in the same di-
rection. The systematic error is also called distortion or bias. In this book
we will generally adopt the term “bias” for systematic errors. If we measure
weight with a scale that is not correctly calibrated, we make a typical systemat-
ic error because we always tend to underestimate or overestimate the true
weight.

Both random and systematic errors have an impact on results; however, their
effect is different. Increasing the number of measurements tends to decrease
the impact of random errors on the indicators of central tendency, such as the
mean or the median, because errors in opposite directions tend to compensate
each other. Vice versa, systematic errors have the same direction on every
measurement; thus, increasing the number of measurements does not attenuate
their effect on the indicators of central tendency. This does not mean that ran-
dom errors do not influence the result of measurements: they do increase the
variability, i.e. the dispersion of the measurements around the true value. Ran-
dom and systematic errors can have different importance, depending on the
kind of measurement scale we use.

The smaller the measurement error, the greater the validity (i.e. the overall
quality) of the measurement. The validity of a measurement can be described
by two concepts: accuracy and precision. It is important to note that there is
considerable confusion in terminology in the biomedical literature: the terms va-
lidity, precision, accuracy, reproducibility, etc. are frequently used with differ-
ent meanings in different contexts. To add to the confusion, the same terms are
also used with different meanings in the field of psychological and quality of life
measurements. Here we offer two simple “technical” definitions, originally in-
troduced by Cox [27] and Cochran and Cox [24], with no ambition of complete-
ness or semantic correctness.

The accuracy of a measurement is the distance between the measured value
and the true value (this implies knowledge of the true value or the assumption
of such a value). The closer the measured value is to the true value, the more
accurate the measurement is and vice versa. Let us assume we know that a giv-
en road section is 100 meters long (for example, on the basis of measurements
conducted by a construction company working in the area) and that we accept
this information as “true”. Let us then imagine that we ask a student to measure
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that road section with two different measurement instruments,  first with a
stick, and then with a tape, both two meters long and both subdivided in cen-
timeters. The student accepts our request and performs the two measurements,
with the following results:
• stick 100.9 m;
• tape 102.8 m.

The measurement made with the stick turned out to be closer to the true val-
ue (100 meters) than the one made with the tape. Therefore, the first measure-
ment was more accurate than the second one. Accuracy is a concept that can be
applied to measurements performed with any kind of scale. With a quantitative
scale, when numerous measurements are made under the same conditions, ac-
curacy can be “estimated”(see chapter 5) by using an indicator of the central
tendency of these measurements, such as the mean: accuracy is estimated by
the difference between the value of this indicator and the true value.

Precision concerns the reproducibility of a measurement, i.e. the ability to
obtain similar values when a measurement is repeated under the same condi-
tions. Like accuracy, precision is a concept that applies to any kind of scale.
With a quantitative scale, given a long series of measurements performed under
the same conditions, precision indicates the dispersion of measurements around
their mean. Variance and standard deviation around the mean (see section 5.4)
are the measurements of dispersion most commonly used in the biomedical
field. Precision is the opposite of dispersion. Let us imagine that we ask four stu-
dents to measure the same road section with the stick and with the tape (four
measurements do not really qualify as a long series, but keep the math simple,
which helps in explaining concepts). The students accept and come back with
the following results:
• stick 99.0 m, 99.5, 101.4 m, 100.5 m.

mean: 100.1 m;
• tape  104.0 m, 102.5 m, 103.5 m, 100.0 m.

mean: 102.5 m.
As stated above, the mean values can be used to estimate accuracy: they con-

firm that the stick is more accurate than the tape (100.1 m is closer to the true
value than 102.5 m). Furthermore, the four values obtained with the stick are
closer to each other compared to the four values obtained with the tape, i.e. the
former have less variability around their mean than the latter. In other words,
the stick achieved greater precision compared to the tape. In our case, the stan-
dard deviation of the measurements is 1.07 m with the stick, and 1.78 m with
the tape. In conclusion, under the conditions of the test (that is, with those stu-
dents, that environmental situation, those measurement instruments, etc.), the
stick achieves measurements both more accurate and more precise (i.e. less
variable, more reproducible) compared to the tape.

Accuracy and precision are not independent concepts. The relationship be-
tween these two concepts is complex. For example, if an instrument has poor
accuracy, but good precision (that is, all measurements are systematically far
from their true value, but with little dispersion), further increase in precision
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will not improve accuracy. On the contrary, if the instrument has good accura-
cy, increasing precision will result in increased accuracy under the same condi-
tions. Finally, if there is no bias, i.e. accuracy is very high, precision and accura-
cy coincide. We will return to these concepts later, when we discuss strategies
for increasing the accuracy and precision of an experiment (see chapters 8, 9
and 10).

A detailed discussion of the factors that influence precision and accuracy of a
measurement is beyond the aim of this book. Briefly, they include the technical
characteristics of the instrument, how well it works, the operator’s ability to use
it, the characteristics of the object (or subject) to be measured, and the envi-
ronmental context (for example, wind, rain, light, etc.). Generally speaking, we
can say that measurements on an ordinal or nominal scale are less accurate and
less precise than measurements on a quantitative scale because they are influ-
enced more by subjective factors. 

1.4. Variability of Diagnostic Tests

The final step in “understanding” a phenomenon is generally that of evaluating,
i.e. “judging” the measurement. In the medical field this often corresponds to
making a diagnosis.

The evaluation of a measurement consists of comparing it to a reference enti-
ty, which is seen as “normal”. When we state that our friend Barbara died young
at the age of 40, we are evaluating Barbara’s life span, measured in years, by
comparing it to the life span that we consider normal and have chosen as the
reference or term of comparison (say, 80 years). In this process the subjective
factor can be very relevant. Often, the comparison with the reference occurs at
a subconscious level and translates into a subjective evaluation. Subjectivity in
the choice of the term of comparison is a huge source of variability. In the ex-
ample above, if our social and cultural context were different and characterized
by a shorter life expectancy (say, 35 years), our reference in the evaluation of
Barbara’s life span would also have been different and we would have conclud-
ed that Barbara died at an advanced age. The world of science is full of generic
quantitative statements that refer to unspecified terms of comparison. 

A procedure similar to the one described above, although somewhat less sub-
jective, is used in the biomedical field when the quantitative result of a diagnos-
tic test is transformed into a dichotomous result (for example, positive/negative,
see above) for the purpose of making a diagnosis on a specific condition. This
transformation occurs by means of a more or less arbitrary selection of a thresh-
old value: if the measurement provides a result above the threshold value, the
test is defined as positive, indicating the presence of the condition; if, instead,
the result is below the threshold value, the test is defined as negative, indicating
the absence of the condition. For example, if we choose a fasting blood glucose
threshold value of 120 mg/ml for the diagnosis of hyperglycemia, a value of 119
mg/ml translates into a negative result, indicating absence of hyperglycemia,
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while a value of 121 mg/ml will translate into a positive result, indicating the
presence of hyperglycemia. The transformation is typically carried out auto-
matically by the measuring instrument itself.

A diagnostic test with a dichotomous result (positive/negative) can lead to
two types of wrong conclusion:
• The result of the test is negative, but the subject actually does have the dis-

ease (false-negative).
• The outcome of the test is positive, but the subject actually does not have the

disease (false-positive).

Table 1.2. Sensitivity and specificity of a diagnostic test in the population 

Disease

Test
Yes No

Positive A B
(true-positive) (false-positive)

Negative C D
(false-negative) (true-negative)

Total A+C B+D
(subjects with the disease)
(subjects without the disease)

Sensitivity, [A/(A+C)] x 100 = [true-positive subjects / all subjects with disease] x 100;
Specificity, [D/(B+D)] x 100 = [true-negative subjects / all subjects without the disease]
x 100

The probabilities of a test yielding false-negative and false-positive results are
generally expressed in terms of sensitivity and specificity, respectively. Let us
assume we perform the test of interest on all subjects of the population. We can
summarize the results as in Table 1.2. The sensitivity of the test is the per-
centage of subjects with a positive test result among those affected by the dis-
ease, i.e. the probability of testing positive when suffering from the disease. The
specificity of the test is the percentage of subjects with a negative test result
among those not suffering from the disease, i.e. the probability of testing nega-
tive when not suffering from the disease. Taken together, sensitivity and speci-
ficity express the diagnostic accuracy of a test, that is, how closely the test pre-
dicts the actual frequency of the disease it is meant to diagnose.

Let us assume we use blood urea nitrogen (BUN) to make a diagnosis of renal
failure and adopt the recommendation of a well known text of internal medicine,
Harrison’s Principles of Internal Medicine (Appendix: Laboratory Values of Clin-
ical Importance), according to which the “normal” values of BUN are between
3.6 and 7.1 mmol/L. Let us also assume we adopt a threshold value of 8.5
mmol/L to make a diagnosis of renal failure. The diagnostic validity of the test
with the above set threshold value can be “estimated” (see chapter 5) by meas-
uring the BUN in two groups (samples) of subjects, one with and one without
proven renal failure (“proof” based on a different diagnostic method). The out-
come of the test is shown in Table 1.3 (fictitious data). The table shows few
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false-positives and therefore a high specificity, which means that the test is
good at identifying the subjects without renal failure (more than 90% of the sub-
jects not affected by renal failure are identified as such by the test). However,
there are many false-negatives and therefore sensitivity is low, i.e. the test is
poor at identifying subjects with the disease (in fact, only 70% of the subjects
with renal failure are identified as such by the test).

Specificity and sensitivity (diagnostic validity) of a test depend on two orders
of factors:
• The accuracy and precision of the measurement (see above);
• The chosen threshold value.

Table 1.3. Estimate of the sensitivity and specificity of BUN with a threshold value of 8.5
mmol/L as diagnostic test for renal failure using two samples (subjects with and without
renal failure, respectively) 

Renal failure

BUN
Yes No

≥8.5 mmol/L (positive test) A=35 B=4
<8.5 mmol/L (negative test) C=15 D=46  
Total A+C=50 B+D=50  

Sensitivity, [35/50] x 100 = 70%; Specificity, [46/50] x 100 = 92%

The role of the threshold value in determining the diagnostic accuracy of a
test is often ignored. It plays the role of the reference mentioned in the begin-
ning of this section. Let us apply a threshold value of 7.2 mmol/L to the same da-
ta used to generate Table 1.3. The situation changes dramatically, as shown in
Table 1.4. Using a threshold value close to the normal range, the test has a very
high sensitivity (almost 95% of the subjects with renal failure are identified by a
positive test) but a very low specificity (only slightly more than half of the sub-
jects without renal failure have a negative test).

Generalizing, the closer the threshold value is to the normal range, the higher
the sensitivity and the lower the specificity, i.e. there will be few false-negatives
and many false-positives. Conversely, the farther the threshold value is from the
normal range, the higher the specificity and the lower the sensitivity, i.e. there
will be few false-positives and many false-negatives. The choice of the threshold
value for a given test depends on the disease under assessment.

It is important to make a final consideration before we move on. Even the
most accurate of diagnostic tests will give a certain number of false-positives
and false-negatives. Researchers and laboratory technicians are satisfied with a
percentage of 1-2% for these kinds of error, but if the test is performed on a
large population, this will result in a high number of incorrect diagnoses. For
this reason, a single test is rarely sufficient for the conclusive diagnosis of a dis-
ease. This reasoning also applies to biomedical studies. If we select the subjects
for a study on the basis of a single diagnostic test, an undefined (possibly high)
percentage of enrolled subjects will not have the disease being studied. This will
increase the variability of results. Thus, in biomedical studies, the diagnosis of

12 1. Variability of Biological Phenomena and Measurement Errors



the condition being studied should be very accurate. This is typically achieved
by using more than one diagnostic criterion in a rigorous and standardized way.

Table 1.4. Evaluation of the sensitivity and specificity of BUN with a threshold value of
7.2 mmol/L as a diagnostic test for renal failure, using the same samples of Table 1.3

Renal failure

BUN
Yes No

≥7.2 mmol/L (positive test) A=47 B=20  
<7.2 mmol/L (negative test) C=3 D=30  
Total A+C=50 B+D=50  

Sensitivity, [47/50] x 100 = 94%; Specificity, [30/50] x 100 = 60%

Summary

All biological phenomena, as we perceive them, are affected by variability. Vari-
ability can be divided into three main components: phenotypic (i.e. due to dif-
ferences between individuals), temporal (i.e. due to changes over time, which
can be cyclical – biological rhythms – or unpredictable) and measurement-re-
lated (i.e. due to the use of measurement instruments). Errors made in the
process of measuring can be of two types: random errors, which generate meas-
urements that oscillate unpredictably about the true value, and systematic er-
rors (bias), which generate measurements that differ from the true value always
in one direction. Two concepts, accuracy and precision, are useful for the eval-
uation of measurements. Accuracy refers to the distance of the measured value
from the true value. Precision refers to the dispersion about the true value of
measurements repeated under the same conditions.

A large part of the theory behind the planning of biomedical studies is devot-
ed to optimizing the accuracy and precision of results.
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2
Distinctive Aspects of a Biomedical
Study
Observational and Experimental 
Studies

The aims of this chapter are, firstly, to introduce aspects which are common
to all biomedical studies, and, secondly, to discuss the features that distinguish
observational from experimental studies, the two fundamental categories of bio-
medical studies.

In this book, we use the expressions observational study and epidemiological
study interchangeably; likewise, we use the expressions experimental study and
clinical study interchangeably. We should stress, however, that the convention
we have adopted, although useful for didactic purposes, is a simplification which
is not always valid. Observational studies will be discussed in the next chapter.

2.1. Distinctive Features of Biomedical Studies

The aim of the researcher is to detect, against the background of biological vari-
ability, the effect of an attribute or behavior, which we refer to collectively as
“characteristic” (e.g. age, smoking), or of a treatment (e.g. drug, surgical pro-
cedure), on a disease (e.g. myocardial infarction) or on a condition predisposing
to a disease (e.g. high blood cholesterol). Researchers perform medical studies,
i.e. studies on human subjects, to determine if and to what extent a cause-effect
relationship exists between the characteristic or treatment and the disease or
condition.

Medical studies are part of the broader field of biomedical research which, in
addition to studies on human subjects, includes studies performed on animals
and plants, as well as studies conducted on isolated organs and cell systems. All
such studies are characterized by the presence of biological variability. We will



focus our attention on medical studies. However, it is important to note that
many considerations which apply to human studies can be extended to all bio-
medical studies. Biomedical studies as a whole are very different from deter-
ministic studies, in which there is insignificant or no variability (studies in
physics, engineering etc.).

All biomedical studies have (or should have) some common distinctive
“methodological pillars”. These features are discussed below.

The first fundamental feature is that conclusions are extended from the

sample to the population. To simplify, for now, let us call “sample” the group
of subjects under study (we will give a more technical definition in chapter 6).
The set of procedures through which the conclusions drawn on the sample can
be extended to the population from which it was taken is called inference. The
branch of statistics concerned with the conditions under which such “passage”
from sample to population is valid is known as inferential or inductive statistics,
as opposed to descriptive or deductive statistics, which is concerned with de-
scribing a given sample  without drawing  conclusions about the population. The
definition of inference will be discussed in detail in chapter 5.

The second fundamental feature is that the data, i.e. the measurements

performed on the subjects, are interpreted in the context of a statisti-

cal-probabilistic model. The need to interpret data with a probabilistic key is
the immediate consequence of what was discussed in the previous chapter. If
there were no variability, we could determine the effect of a treatment (or of a
characteristic, such as cigarette smoking) by simply observing and documenting
the outcome on a single subject undergoing the treatment (or having the char-
acteristic) of interest. The outcome would be of the deterministic type. Thus,
repeating the study with the same treatment (or characteristic) under the same
conditions, would always yield the same result, which could be immediately ex-
tended from that single subject to the entire population. Because variability ex-
ists, it is not possible to interpret biomedical data in a deterministic way: as soon
as we add a second subject to the study, we will inevitably find that the result is
different from the one given by the first subject; furthermore, the results ob-
served on one group of subjects today will differ from those observed in the
same group tomorrow. To be able to interpret data in a context affected by
variability, we need a statistical model, and not just any model, but one “tai-
lored” exactly to the problem, i.e. one that is adequate to represent reality. This
model should allow the linkage between the phenomenon under study (the
questions we want to answer) and the statistical-mathematical scheme that
serves as the basis for the statistical analysis. 

From this consideration derives the third common feature of biomedical stud-
ies. Studies must undergo detailed and documented planning before

starting and must then be performed with strict adherence to that

plan. Planning a study means building the link between the phenomenon under

2.1. Distinctive Features of Biomedical Studies 15



study and the results of the statistical analysis before the study is actually per-
formed. This means defining the complex system of rules and assumptions that
will form the frame of reference for performing the study, conducting the sta-
tistical analysis and interpreting the results. The document in which the plan-
ning of the study is described in detail and carefully justified is called the study
protocol. The next section is dedicated to this topic. To better clarify what was
stated above, let us consider the state lottery. This game is based on an under-
lying probabilistic model providing a series of rules which, a priori (before the
game starts) link the stake to the possible outcomes of the game, and which a
posteriori (after the game is over), when the winning numbers are revealed,
determine the amount of the prize if the outcome is favorable. In the context of
a biomedical study, this model can be translated as follows: the number chosen
by the better is the hypothesis, which is formulated before the start of the
study; the amount of the stake placed corresponds to the investment in the
study in terms of sample size, precision and accuracy of the measurements,
control of the sources of variability, etc.; the possible outcomes of the lottery are
the possible outcomes of the study (possible a priori); at the end of the study
the amount won (or lost) represents the degree of certainty with which we can
accept (or reject) the hypothesis being studied. In both contexts, a priori the
hypotheses are linked to the possible outcomes by means of probabilistic laws;
a posteriori, the fairness of the relationship between payment and prize, or be-
tween investment into the study and strength of the data supporting the hy-
pothesis, is ensured by applying the pre-defined probabilistic set of rules. In any
betting game, if the rules are changed after the stakes have been laid, for exam-
ple by adding new numbers, the fairness of the relationship between payment
and prize is lost; likewise, when conducting a study, if this is not performed ac-
cording to the pre-established plan, the underlying probabilistic model is al-
tered; consequently, it is no longer possible to interpret the results because it is
no longer possible to establish to what extent the results support the hypothe-
ses. Thus, it is essential for the study to be performed according to the pre-es-
tablished plan. Nevertheless, sometimes changes are unavoidable during the
course of the study. When this happens, it is extremely important for the statis-
tician to evaluate the impact of the changes on the probabilistic model used for
the study. Study designs exist which allow changes based on the data collected
during the study, but then the allowed changes are themselves part of the study
plan. In other words, the rules governing the choice of one of several possible
scenarios are pre-defined, as are the consequences in terms of analysis and in-
terpretation of the data. Sequential and flexible plans belong to this category of
study design (see chapter 11).

The fourth defining feature common to all biomedical studies is that reason-

ing, methods and conclusions are based on comparisons between

groups. The comparison is made between one group of subjects receiving a giv-
en treatment or having a given characteristic, and another group of subjects not
receiving that treatment or not having that characteristic. Depending on the
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type of study, the first group is defined as the treatment group, active

group, case group or exposed group. The second is the control group.
When the object of the study is a treatment, the control group may not receive
any treatment, or may receive a placebo, i.e. a treatment which is missing the
active substance, but is otherwise indistinguishable from the one under evalua-
tion, or an active control, i.e. an alternative treatment, for which efficacy and
safety are established. Within the same study there can be more than one treat-
ment group (for example, more than one dose of the same drug) and more than
one control group (for example, placebo and active control).

The fifth defining feature is that the groups being compared should be

as homogeneous as possible during the entire course of the study,
from the enrolment phase throughout all phases of evaluation. Ideally, the
groups would only differ with regard to the treatment or characteristic under
study, but otherwise be identical with regard to the distribution of all other
characteristics that are not under study such as age, sex, race, area of birth, so-
cio-economic status, concomitant treatments, etc. This ideal cannot be
achieved. Indeed, one of the main objectives of biomedical research is to ensure
that, through appropriate techniques, the groups being compared are as similar
as possible and that any residual differences are random and not systematic.
The reason is that a random error can be “eliminated” by taking an average of
multiple measurements, while this is not possible for a systematic error, as dis-
cussed in the previous chapter. The expression normally used is that compar-
isons must be “bias-free” (i.e. free from distortion). This concept will be ex-
plained in detail in the following chapters; in particular, chapter 9 is dedicated
to the major sources of bias.

The sixth and last defining feature is that data from a biomedical study

must be analyzed by appropriate statistical methods, defined in the

planning stage. The basic question is, “How likely is it that the difference ob-
served between the groups under study occurred by chance?” As we will see in
chapter 5, the answer to this question is not always straightforward. Generaliz-
ing, we can say that the role of the statistical analysis is to quantify the level of
uncertainty of the conclusions made on a treatment or characteristic. The way
in which the uncertainty (or the evidence) is measured depends on the statis-
tical approach adopted. The frequentist approach is the most common one in
the medical field and is based on  the famous “p-value”. With this approach, the
answer to the basic question is indirect. The p-value represents the probabili-
ty that differences between groups greater than or equal to the ones observed
in the study could be produced by chance. The reasoning is as follows: if it is
very unlikely that differences greater than or equal to the ones observed can
happen by chance (i.e. if the p-value is smaller than a pre-set threshold) and
there are no systematic differences between groups, then we accept that the
observed difference is due to the treatment or the characteristic under investi-
gation. This statistical approach is not the only one possible: for example, an al-
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ternative is the Bayesian approach. Chapter 5 is dedicated to these concepts.
If everything happens as described, it is possible to extend the results obtained

from the sample to the entire population with characteristics similar to the sample
examined. It is obvious that the validity of such conclusions is probabilistic in na-
ture, i.e., it assumes the acceptance of a certain level of uncertainty.

As soon as the researcher has decided to conduct a study, he/she is immediate-
ly faced with a fundamental methodological choice. Two different approaches are
possible, the observational one and the experimental one (see Figure 2.1).

These two types of study will be introduced in section 2.3 and 2.4 respectively.

2.2. The Study Protocol 

In the previous section we stressed the importance of planning biomedical stud-
ies and stated that all elements of the study plan are collected in a document
known as the protocol. The study protocol has multiple functions. It is at the
same time:
• A scientific document, because it describes all medical and statistical aspects

of the study.
• An instruction manual, because it describes in detail how the study should be

performed.
• A legal document, because it obliges the investigators to follow the proce-

dures as described, which are to be officially approved by the authors (by
signing the document) and by the competent independent authorities, i.e.
the Ethics Committees, also known as Institutional Review Boards (IRB), and,
at times, health authorities. In this sense, the protocol also serves the purpose
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of protecting patients from procedures that are not properly evaluated and
approved and therefore potentially dangerous.
Writing a protocol is a complex procedure that should not be underestimated.

It is (or it should be) the result of long months of study and discussion among
professionals with diverse expertise in the field of biomedical research, includ-
ing the clinical personnel in direct contact with the study subjects, the pharma-
ceutical physician, the statistician, the data management expert, the drug sup-
ply manager, the operations personnel (responsible for selecting centers, con-
trolling expenses, collecting data, and numerous other administrative and logis-
tic functions), the legal and financial experts. Particularly important in building
the protocol is the collaboration between the physician and the statistician. It
would be diminishing and risky to assign the statistician to only the role of writ-
ing the section on statistical analysis because, as stated above, there is an un-
breakable bond between objectives, design, end-points, probabilistic model,
analysis and interpretation of results. Likewise, it would be diminishing and
risky to preclude the physician from the possibility of commenting on the sta-
tistical analysis plan on the basis that he/she lacks the mathematical back-
ground: although this is generally true, there are many methodological aspects
of the analysis plan that can benefit enormously from specialist medical knowl-
edge.

Any study protocol must always cover the following fundamental areas:
• The rationale of the study.
• The objectives, i.e. the questions that it is expected to answer, asked in terms

of medical-statistical hypothesis (chapters 4 and 5).
• The design, including the definition and justification of the sample size (chap-

ter 6), the techniques to reduce systematic errors and to control variability
(chapters 9, 10 and 11).

• The treatments under investigation and the concomitant treatments (chapter
7).

• The criteria for the selection (inclusion and exclusion) of subjects (chapter 6).
• The procedures for data management, quality control, and statistical analysis;
• Logistic, legal, and administrative aspects.

A good protocol is essential for the successful outcome of a study, be it clini-
cal or epidemiological. Conceptually, the elements of a protocol can be classified
into three groups:
• Medical and ethical aspects.
• Statistical aspects.
• Operational aspects.

With regard to the medical and ethical aspects, the fundamental task is to de-
fine the rationale and objectives, which must be relevant for advancing knowl-
edge in the field, at the same time respecting every individual’s right to receive
the best possible therapy. Other key tasks include the definition of the target
population (that is, the population to which we would like to extend the con-
clusions of the study) and the diagnostic tools for patient selection, the choice
of the control treatment(s), the description of what constitutes a response to
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treatment, the context in which the study should take place. In clinical re-
search, as in clinical practice, protecting the patient (or healthy volunteer) is of
the utmost importance. And, just as occurs in clinical practice, there are many
circumstances in which the ethical acceptability of a procedure is not universal-
ly acknowledged or a conflict exists between ethical and methodological needs.
As an example, let us consider the chance assignment of patients to study treat-
ments through randomization or the use of a placebo (see chapters 7 and 9).
The ethics of clinical research, as well as the ethics of experiments performed
on animals, is a complex matter that goes beyond the limits of this book, though
some ethical issues will be discussed briefly. It is always appropriate for the re-
searcher to read the protocol, putting him/herself in the patient’s shoes (or in
those of a parent or a son). Would the researcher hesitate to enter the study?
Would he/she enroll a daughter or mother? If there is any hesitation or reluc-
tance, it is necessary to dig deeper. Sometimes one can convince oneself (or be
convinced by others) of the ethical acceptability of the procedures adopted in
the study (the debate on the use of placebo is an interesting case in point). But
other times it will be necessary to change them.

When looking at the statistical aspects, the fundamental task is to define the
probabilistic model mentioned in the previous section. More specifically, this
implies: translating the medical objectives into statistical hypotheses; adopting
a set of probabilistic laws (each with an inevitable set of assumptions) based on
the number and type of hypotheses and end-points; choosing a sample that is
both qualitatively representative of the target population and quantitatively
large enough to give the conclusions a sufficient degree of certainty; contribut-
ing to defining the design of the study so that it is appropriate to control bias
and variability; defining the statistical analysis plan, such that it is pertinent
both to the hypotheses and the design of the study.

The medical and statistical aspects of protocol development are closely inter-
related.  For example, consider how the “translation” of the medical objectives
into statistical hypotheses requires very close interaction between these two ar-
eas of expertise.

Finally, the operational aspects of a study protocol should not be overlooked.
These include the logistical aspects (procedures, drug supply management, case
report forms collection, data management, etc.), the administrative aspects and
legal ones. Close attention should always be given to the feasibility of the proto-
col. A balance between practical feasibility and methodological rigour is not easy
to achieve and requires a great deal of experience. On the one hand, oversimpli-
fication of a study can make it difficult to answer the questions being posed. On
the other hand, an excessively complex study is in our view the single most fre-
quent cause of failure: the study looks perfect on paper, but is impossible for the
patients and the staff to execute. If the study is too complex, sooner or later it
will metaphorically implode. A growing number of things start going wrong at the
same time. The study personnel experience an increasing amount of stress and
frustration. The enrolled subjects do not receive the attention they deserve. The
researchers start losing interest. At this point, keeping the study running re-
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quires a titanic effort and at times the only solution is to step back and decide to
end the study prematurely. The discontinuation of a study before its completion
for logistical reasons is probably the most frustrating experience in the career of
a researcher, much more so than obtaining negative results. In fact, in the con-
text of a well performed study, negative results are almost always of great scien-
tific and practical relevance. A good researcher, no matter how enthusiastic
he/she is about the hypothesis behind a study, should always be ready to accept
negative results, or results that differ from those expected. It is in these circum-
stances that experience, scientific and moral rigour, and the ability to think lat-
erally can yield an unexpected harvest: new research pathways and new hy-
potheses. On the contrary, prematurely ending an unfeasible study represents a
total failure that has no value from any point of view, except perhaps that of
teaching one not to make the same mistake again.

Once the protocol is written, it must be approved by an Ethics Committee
which evaluates its ethical acceptability and scientific relevance. Changes to
the protocol while a study is ongoing, formally known as protocol amendments,
are necessary at times, but should be rare, motivated by strong reasons, and
documented in detail. It is very important to evaluate the impact of such
changes on the statistical model underlying the study. In fact, as we mentioned
in the previous section, altering the probabilistic setting can threaten the possi-
bility of reaching solid conclusions and, sometimes, may jeopardize the credibil-
ity of the results.

Many of the aspects described in this section may seem simple and obvious,
but, in reality, are complex obstacles. We will return to each of these aspects lat-
er in the book, though not necessarily in the order defined above.

2.3. Observational Studies

In an observational study, also referred to as epidemiological study, the
aim of the researcher is to study the relationship between a characteristic and
an event without manipulating in any way the conditions under which the
study is performed. The role of the researcher is limited to selecting the 
sample and thereafter “observing”. The purpose of the observation is to deter-
mine the strength of the association between the characteristic and the event,
and the circumstances under which the association is observed. In the pres-
ence of a strong association and plausible circumstances, a cause-effect rela-
tionship will be suspected. The stronger the association, the stronger the sus-
picion.

The characteristic under investigation can be a treatment (pharmacological
or of a different nature), a demographic factor (e.g. age, sex, race), a behavioral
characteristic (e.g. the number of cigarettes smoked per day or the number of
calories taken daily in the diet), an environmental factor (e.g. exposure to
pollen or to a specific industrial pollutant), a laboratory measurement (e.g. cho-
lesterol levels in the blood), a genetic marker, and so on. The event can be the
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onset (or the diagnosis) of the disease under study, its recurrence or recrude-
sce, or death.

A characteristic capable of influencing the onset or progression of a disease in
a predictable and reproducible way is called a prognostic factor. Strictly
speaking, prognosis refers to disease progression and not to disease onset, but
the term “prognostic” is often used in a more general sense embracing both on-
set and progression. Here we adopt the wider meaning. A prognostic factor can
have either a negative or a positive influence on the disease. In the former case
it is called risk factor. Cigarette smoking, for example, is a risk factor for lung
cancer, because it is predictably and reproducibly associated with lung cancer.
In fact, both the incidence and the prevalence (see section 3.1.1.) of lung cancer
are always higher in smokers than in non-smokers and the probability of devel-
oping such a disease increases with increasing number of cigarettes smoked
per day, as well as with the length of the smoking history of the subject. This has
been repeatedly verified in many different populations. A prognostic factor ca-
pable of modifying favorably the onset or the progression of a disease in a pre-
dictable and reproducible way is called a protective factor. Examples of pro-
tective factors are the blood level of very low density lipoproteins (VLDL) and
the level of physical activity in the natural history of hypertension. 

Once again, what defines a prognostic factor (whether it is a risk or protective
factor) is its ability to influence a disease in a predictable and reproducible way
within a population. There are many other factors associated with the outcome
of a disease but in a manner that is not predictable and reproducible. These are
not prognostic factors. An example of such a factor is the study center in a mul-
ti-center observational study. Similar concepts also apply to experimental stud-
ies, even though the terminology is somewhat different (see section 2.4).

Generally, the level of certainty of the cause-effect link between the charac-
teristic and the event is lower in an observational study compared to an experi-
mental study with the same objectives (see chapter 9). As we will see, however,
it is not always possible to use the experimental approach.

In summary, an observational study is characterized by the fact that the re-
searcher does not intervene to influence or control the conditions of the study.
Research of the factors that can modify the onset or progression of diseases by
means of observational methods is at the heart of the discipline called epi-

demiology. Here we report the definition by Lilienfeld and Lilienfeld [67]: “Epi-
demiology is concerned with the patterns of disease occurrence in human pop-
ulations and of the factors that influence these patterns. The epidemiologist is
primarily interested in the occurrence of diseases by time, place, and persons.
He tries to determine whether there has been an increase or decrease of the
disease over the years; whether one geographical area has a higher frequency of
the disease than another; and whether the characteristics of persons with a par-
ticular disease or condition distinguish them from those without it.”

Pharmaco-epidemiology is the branch of epidemiology that studies the as-
sociation between drugs (or other prophylactic or therapeutic procedures) and
events (positive or negative) in the population by means of the observational
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methodology. Whereas in an experimental study the clinical researcher con-
trols the administration of the treatment to the subject (deciding how, how
much and when, see below), in an observational study the pharmaco-epidemi-
ologist identifies and observes the subjects who are undergoing the treatment in
question without exerting any such control.

Observational methods are only marginally discussed in this book. In chapter
3 we will discuss the classification of observational studies into prospective and
retrospective studies, and look at the main characteristics of each.

2.4. Experimental Studies

The main feature of an experimental study is that the researcher controls the
conditions under which the study is performed. Compared to the observational
approach, the experimental approach generally allows a higher level of certain-
ty in the evaluation of the cause-effect relationship between a characteristic and
an event.

The characteristic under study, which in the context of an experimental study
is often referred to as the experimental factor, is not simply “observed” in the
population, as in the case of an observational study, but it is actually “assigned”
by the researcher to the subjects. The range of interventions will obviously be
restricted to those that are thought to influence favorably the course of the
condition under study, generically referred to as “treatments” in the context of
experimental studies (corresponding to the “protective factors” of observation-
al studies). Going back to the example of cigarette smoking, it would not be ac-
ceptable if the researcher were to intentionally force some subjects to smoke
and others not to. Therefore, the range of possible objectives of experimental
studies in humans is more restricted than that of observational studies.

The assignment of treatments can be done by groups of study subjects or in-
dividually, subject by subject. An experimental study in which the treatments
are assigned to groups of subjects is called a community study, while a study in
which the treatments are assigned on a subject by subject basis is called a clin-
ical study. In the language of experimental clinical studies, the term trial is of-
ten used interchangeably with the term study.

One of the first examples of a community study or community trial, re-
ported in Lilienfeld and Lilienfeld’s textbook [67], concerned the addition of flu-
orine to drinking water with the aim of reducing the onset of dental cavities [5].
Two cities of the state of New York, Newburgh and Kingston, were used as sam-
ples. Sodium fluorine was added to the drinking water of Newburgh starting
May 1945, while the drinking water of Kingston was not treated. For 10 years
(up to 1955) data were collected on the onset of dental cavities in a sample of
children. Analysis of the results demonstrated a dramatic reduction in the inci-
dence of dental cavities in Newburgh (exposed to fluorine in drinking water)
compared to Kingston (not exposed), with a difference oscillating between 48%
and 58%, depending on the age of the children. Children belonging to the first
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age range, who were between 6 and 9 years old at the last follow-up visit, were
not born when the study began in 1945 and therefore were exposed to fluorine
from birth. Results demonstrated that this was the age range that showed the
most dramatic difference between the two cities, with approximately 60% less
dental cavities in Newburgh than in Kingston. This “internal consistency” gave
more strength to the conclusions of the study.

The second kind of experimental study, the clinical study or clinical trial,
is the main topic of this book. This type of study is also referred to as clinical

experiment.
In a clinical study the researcher achieves the maximum degree of control

over the experimental conditions.
The most rigorous control is exercised on the experimental factor, which, in

this context, corresponds to the treatments being compared in the study [80].
Typically, one clinical trial has one experimental factor, with the treatments
under comparison being the so-called “levels” of this experimental factor. There
are, however, study designs in which there is more than one experimental fac-
tor, each with its own set of levels, represented by treatments under compari-
son. In such study designs, the experimental factors are studied both individu-
ally and in combination (see chapter 10). A short diversion on terminology is
needed at this point. Strictly speaking, all of the treatments being compared in
a study, that is both the treatment(s) we are truly interested in and the control
treatment(s), active or inactive, should be defined experimental because they
are the levels of the experimental factor(s). This “purist” definition is very use-
ful to distinguish between experimental and sub-experimental factors (see be-
low). In practice, however, the term “experimental” is commonly used in refer-
ring to the novel treatment under study (rarely more than one in the same
study), for which efficacy and safety are still to be demonstrated, and which is
the reason for conducting the trial. Control treatments have already been “ex-
perimented” on (which is why they are chosen as controls) and we include
them in the study only in order to “experiment” on the new treatment(s). In the
rest of the book, we will use the expression experimental treatment(s) to indi-
cate the new treatment(s), not yet tested or partially tested, while we will use
the expression study treatments to indicate all treatments being compared,
both the new treatment(s) and the control(s).

In a clinical trial, study treatments are controlled at two levels, the first being
the most important.
• First, subjects are assigned individually to the study treatments, with each

subject receiving a single treatment or a single sequence of treatments (it
should be kept in mind that a single treatment may be a combination of drugs
and/or other therapeutic interventions). In the terminology of experimental
studies, the expression experimental unit is used to indicate each subject
undergoing a given study treatment (or sequence of treatments) [24, 27]. The
entire set of experimental units represents the sample of the clinical study.
Generally, the researcher assigns subjects to study treatments by means of a
method of chance assignment called randomization. The methodological rea-
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sons justifying this approach will be clarified in chapter 9. Randomization is
often associated with “blinding” (also referred to as “masking”), which con-
sists of making the study treatments indistinguishable from one another to
both researchers and patients (“double-blind” study) or to patients only (“sin-
gle-blind” study). Randomization and blinding, to which most of chapter 9 is
devoted, have crucial importance in the methodology of clinical research.

• The second level of control consists of the set of rules, to be described in de-
tail in the protocol, that defines how the study treatments are to be adminis-
tered. At a minimum, the protocol must describe precisely the route of ad-
ministration, the schedule including the days of the week (or month) and the
time of the day at which the treatments should be given (and the degree of
flexibility allowed), the relationship to meals and to liquid intake, the order in
which the different components of the study treatment are to be taken (for
example, different colored pills for different medications), and, finally, the du-
ration of the treatment. In the case of more complex treatments, the protocol
should give more details on the mode of administration.
In addition to the study treatments (the experimental factor), there are many

other factors that are not directly under study, but that can influence the results
(i.e. influence the effects of the experimental factor on the subjects). We will
call such factors sub-experimental factors, following the terminology intro-
duced by Pompilj [80]. We should warn the reader that this definition is not uni-
versally accepted. We do believe, however, that it is useful to understand some
key methodological concepts. Examples of sub-experimental factors are:
• Demographic and anamnestic characteristics of the subjects included in the

sample (age, sex, race, socio-economical status, clinical history, etc.).
• Previous and concomitant treatments, the latter being therapeutic interven-

tions allowed by the study protocol, but not in themselves objects of the ex-
periment.

• The institution (center) where visits and measurements take place (in a mul-
ti-center study).

• The type and stage of the disease under study (for example the stage of a can-
cer).
Sub-experimental factors that can influence the course of a disease in a pre-

dictable and reproducible way are defined prognostic factors, as already men-
tioned when discussing epidemiological studies. For example, age is a prognos-
tic factor for many diseases, both acute and chronic, because it can influence
the course of the disease in a predictable and reproducible way (in many dis-
eases, the prognosis is worse with increasing age; for some cancers the opposite
may be true). Vice versa, the center is definitely a sub-experimental factor as it
may influence, at times heavily, the outcome of the treatment, but it cannot be
defined a prognostic factor because its influence is neither predictable nor re-
producible, either qualitatively (sometimes it is there, some time it is not), or
quantitatively (a given center may sometimes favor and other times hinder the
effect of the treatment).

The control that the researcher has on the sub-experimental factors is only in-
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direct because study subjects are not directly assigned to these factors by the
researcher. However, an indirect control on sub-experimental factors can be ex-
ercised in three ways.
• Through the set of rules and procedures predefined in the protocol. For ex-

ample, the inclusion and exclusion criteria used to select the subjects for the
study will determine the presence or absence in all subjects of a certain sub-
experimental factor, considered very important for the study. Other sections
of the protocol also regulate, often very precisely, the acceptability of some
sub-experimental factors.

• Through randomization, which, as we will see in chapter 9, has the effect of
balancing the groups under comparison with respect to both known and un-
known sub-experimental and prognostic factors.

• Through a series of techniques, defined as “grouping” of the experimental
units. Among these techniques are stratification, assignment in blocks, and
pairing. We will come back to these concepts in chapters 9 and 10, dedicated
to randomization and to experimental designs, respectively. 
As Pompilj and Dall’Aglio remind us [80], “once we have identified the exper-

imental factors and some of the most important sub-experimental ones, includ-
ing some prognostic factors, we cannot conclude that we know all of the factors
that can influence our experiment, because we should not forget that in the uni-
verse where the experiment takes place (where every phenomenon influences
and is influenced by every other phenomenon), all other phenomena also influ-
ence the results of the experiment”. Very often, these phenomena “totally es-
cape our control; for this reason we tend to combine them into a single factor
(assumed not interacting with others) to which we give the comfortable name of
‘chance’.” The effect of chance is called random error (see section 1.3.2), which
is an error that does not systematically favor any of the treatments under com-
parison, because it is indeed the outcome of a combination of unknown factors
(or factors which are known but not explicitly controlled). However, to be enti-
tled to refer legitimately to chance and random error, the researcher must as-
sign experimental units to treatments in a truly random fashion through the ran-
domization process. In fact, as already discussed briefly, randomization not on-
ly allows a balanced distribution of patients among study treatments, but also
ensures that any sub-experimental factor not explicitly controlled by the proto-
col, or even totally unknown, be distributed homogeneously among the groups
under comparison.

There are two main advantages to controlling the experimental conditions:
• Reduction of bias, i.e. systematic distortion, which, as we said, is an error that

systematically favors or hinders only one or some of the treatments being
compared.

• Reduction of the “background noise”, i.e. of the overall variability (real and
measurement-related) and consequent increase of the probability of detect-
ing a true signal (see chapter 4) when it exists, and of excluding it, when it
does not exist.
These advantages render experimental studies generally more suitable than
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observational ones for establishing a causal link between a factor (characteristic
or treatment) and an event.

Summary

Medical studies are part of the broader category of biomedical studies, charac-
terized by the presence of biological and accidental variability. Medical studies
can be grouped into two types: observational and experimental. In the former,
the researcher simply observes the phenomenon under study; in the latter, the
researcher directly controls the factor under study (the treatments).

These two types of study have, or should have, some common elements that
are distinctive characteristics of all biomedical studies:
• Conclusions are extended from the sample to the population.
• Data are interpreted in the frame of a statistical-probabilistic model. 
• The study is planned in advance and all the procedures are documented and

justified in writing in the protocol before the start of the study; the protocol is
to be followed rigorously throughout the course of the study and analysis of
the results.

• The reasoning, the methods and the conclusions are based on comparisons
between groups.

• The groups being compared are formed in a manner that prevents interfer-
ence by systematic errors (i.e. are bias-free).

• The statistical analyses, decided upon during the planning stage, serve the
purpose of measuring the degree of uncertainty of the conclusions.
Observational and experimental studies differ in many ways, due to the dif-

ferent degree of control that the researcher has over the conditions under
which the study is performed. The consequences of such differences will be
clarified later in the book.
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3
Observational Studies

In this chapter we give a brief overview of observational studies, also referred
to as epidemiological studies (as mentioned above, we use these terms inter-
changeably). The rest of the book is dedicated to clinical trials, which belong to
the category of experimental studies (see chapter 2). We decided to devote
some space to observational studies for three reasons: first, data from epidemi-
ological studies are often required to plan and interpret clinical trials; second, to
better understand the basic principles of experimental studies it is useful to un-
derstand those of observational studies; third, some of the methods of data
analysis are common to both types of study. We will present a comparison be-
tween observational and experimental studies later in the book, once we have
discussed experimental studies in detail (chapter 9). The reader who has a spe-
cific interest in epidemiology will find only general concepts in this chapter.
For more on this topic we recommend the textbooks by Hennekens and Buring
[57], Lilienfeld and Lilienfeld [67] and Miettinen [71] among many others.

In writing this chapter, we have two debts to acknowledge: one to Hennekens
and Buring [57] from whose textbook we took numerous ideas and examples,
and the other to Dr. Paolo Bruzzi, of the National Institute of Cancer Research,
Genoa, Italy, who compensated for our lack of competence in the field by pa-
tiently reviewing our drafts and giving us valuable suggestions.



3.1. Basic Designs of Observational Studies

Based on the sampling method employed, observational studies can be of two
types: prospective and retrospective. In prospective studies subjects are se-
lected based on the presence or absence of a characteristic, whereas in retro-

spective studies subjects are selected based on the presence or absence of an
event. Each type of study can be divided into different sub-types on the basis of
the temporal relationship between the characteristic and the event: prospective
studies can be classified into concurrent, non-concurrent and cross-sectional;
retrospective studies into true retrospective, i.e. retrospective in the strict sense,
and cross-sectional. This classification is presented in Figure 3.1.

The definitions “prospective cross-sectional” and “retrospective cross-sec-
tional” may seem a contradiction in terms. In fact, considering the chronology of
the studies, these can be prospective (the researcher observes the characteris-
tic at the present time and waits for the event to occur later in time), retro-
spective (the researcher observes the event at the present time and goes back
in time to look for the characteristic), or cross-sectional (the researcher ob-
serves both the characteristic and the event at the present time). Therefore, ac-
cording to this classification, it would be correct to define the two types of
cross-sectional studies as “cross-sectional with sampling based on exposure
(exposed and non-exposed)” and “cross-sectional with sampling based on event
(subjects with and without the event, called cases and non-cases)”. However,
the terms prospective and retrospective are commonly used not only with a
chronological meaning but also with a logical one, i.e. the selection criterion of
the subjects (selection of exposed/non-exposed in the former case, of
cases/non-cases in the latter). The definitions in Figure 3.1 allow for this dual
meaning and are used for the sake of brevity and also to stress that the prospec-
tive or retrospective logic applies also to cross-sectional designs.

Allowing for two types of cross-sectional studies is somewhat controversial:
for example, in Lilienfeld and Lilienfeld’s book [67] cross-sectional studies are
described as a special category of retrospective studies, while in Miettinen’s
book [71] they are associated with prospective studies. Here we classify them in
one category or the other depending on whether the starting point is the char-
acteristic (risk or protective factor) or the event/disease. For example, let us
suppose that we are interested in studying the relationship between obesity
(potential risk factor) and depression (disease), and that we select the sample
among patients who are being discharged from a given hospital. If we select pa-
tients based on the presence/absence of obesity (e.g. the exposed subjects
come from the metabolic disease department, the non-exposed ones come from
another department) and thereafter we evaluate the presence of depression,
the study will be prospective cross-sectional. Vice versa, if we select patients on
the basis of the presence or absence of depression (e.g. the cases come from the
psychiatric department, the non-cases come from another department) and we
then weigh each patient to determine the presence of obesity, the study is ret-
rospective cross-sectional.
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In some cases it is difficult or irrelevant to classify a cross-sectional study as
prospective or retrospective. For example, if we extract the whole sample from
one population at exactly the same time and evaluate each individual for the
presence of both the characteristic and the event at that point in time, it is both
difficult and useless to classify the study in one or the other category.

3.1.1. Prospective or Cohort Studies

Concurrent prospective study. In a concurrent prospective study, the re-
searcher first selects two groups of subjects, one with and one without the char-
acteristic under study (for example cigarette smoking), but otherwise as ho-
mogenous as possible in every other respect, then observes them for a given pe-
riod of time and documents if, when and how the event (for example lung can-
cer) develops. The aim is to determine whether the characteristic under study
is a risk or protective factor for the event. Subjects who have the characteristic
are often referred to as exposed, while those who do not have it are referred to
as non-exposed.

Concurrent prospective studies are also referred to by many other names, for
example, cohort studies, incidence studies, longitudinal studies, follow-

Figure  3.1. Classification of observational studies
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up studies, of which cohort study is the most commonly used. The word “co-
hort” was used in the ancient Roman army to indicate a subdivision of the le-
gion. Just as the soldiers of the military cohort marched together, the members
of a study cohort (the exposed and the non-exposed) live and age “together”
(from a chronological point of view) and are therefore exposed to the same en-
vironmental factors, which are capable of influencing the onset and/or the pro-
gression of the disease under study. Some of these factors are known or at least
suspected (pollution, working environment, etc.), but most are unknown.

A typical concurrent prospective, or cohort, study is shown in Figure 3.2. To
conduct a concurrent prospective study the researcher proceeds as follows.

Ideally, two populations are identified, one comprising subjects exposed to a
certain characteristic,  the other, similar to the first, but comprising subjects not
exposed to the characteristic. Both these populations may be obtained from the
same database, for example the demographic registry of the Canadian state of
Saskatchewan, which includes demographic and health data of most of the res-
idents, or can come from different databases. 

One cohort of exposed subjects and one of non-exposed subjects are selected
at random from these populations, ensuring that each sample is representative
of the underlying population. If the two populations belong to the same data-
base, subjects to be included in the sample are extracted first, and later it is ver-
ified whether they belong to the exposed or non-exposed group. If each popu-
lation has its own database, the extraction of exposed and non-exposed is di-
rect.

In practice, it is not always possible to extract samples in a truly random fash-
ion (e.g. it is rare to have a complete list of subjects exposed and non-exposed
to the characteristic of interest); thus, the selection of cohorts of exposed and
non-exposed subjects is often based on subject availability. For example, it is
common for an epidemiological study to be performed within a certain hospital
or in a restricted geographical area. In this case, the issue of the representa-
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tiveness of the sample becomes problematic: what population should the sample
represent? When representativeness of the underlying populations is in doubt,
the risk of biased comparison is increased. In such cases, the emphasis is shift-
ed from the principle of random sampling to the principle of comparability be-
tween groups, the aim being to make the cohorts under comparison as similar as
possible to one another, by selecting them through procedures that do not in-
troduce bias to the comparison (see below). In any case, it should be clear that
by forgoing a truly random selection of subjects, the risk of bias is not trivial and
there are problems in generalizing the results (see sections 3.2, 3.2.1 and 9.5).

Once the cohorts have been selected, they are followed for a sufficiently long
period of time, during which all events of interest are recorded.

Finally, the incidences of the events of interest in the two cohorts are com-
pared (see below). 

Table 3.1. Data collected in a prospective study with characteristic and event of a bina-
ry nature and the same duration of follow-up for all subjects

Subjects selected based on exposure

Exposure Exposure Total

present absent

(exposed) (non-exposed)

Subjects followed Event present a b (a+b)
to detect Event absent c d (c+d)
the event Total (a+c) (b+d) (a+b+c+d)

Let us give an example. We are interested in determining the link between
cigarette smoking and lung cancer. The samples are selected on the basis of the
characteristic under study, cigarette smoking: one cohort of smokers (exposed)
and one of non-smokers (non-exposed). The two groups could be obtained by
randomly sampling (if possible) the residents of a given town and recording, at
the time of enrolment, whether each subject is a smoker or a non-smoker (see
section 3.2.1). The researcher then follows the two groups for a period of time
that is long enough for the event, the diagnosis of lung cancer, to occur (an ap-
propriate time in this case could be ten years).

The concurrent prospective study is similar to the experimental clinical trial,
the main difference between the two studies being that in the former the expo-
sure to the characteristic is not assigned by randomization. This is a disadvan-
tage from a methodological point of view, but it is an advantage from the practi-
cal one because it allows the effects of potentially damaging agents (the risk fac-
tors), to which  subjects cannot be ‘assigned’, to be studied (this issue will be
more extensively discussed later).

Let us start from the simplest situation, the one in which both exposure and
event can be evaluated in terms of presence/absence, the duration of the follow-
up is similar (theoretically identical) for all subjects and the risk of the event
occurring is constant over the entire observation time. When the event of inter-
est can occur multiple times in the same subject (for example, angina attacks,
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asthma episodes, etc), only the first occurrence will be considered. In this situ-
ation, the data from the prospective study can be illustrated in a two-way con-
tingency table, as in Table 3.1.

Our goal is to verify whether the incidence of the event in the exposed, esti-
mated by the ratio a/(a+c), is statistically and clinically different from the inci-
dence in the non-exposed, estimated by the ratio b/(b+d). We remind the read-
er that incidence is the ratio between the number of new cases of the event
(disease) occurring in a given population in a given time period and the number
of individuals exposed to the risk of developing the event (disease) during that
time period. It is clear that, given the assumptions just made, the denominators
correspond to the total group of the exposed subjects (a+c) and the total group
of the non-exposed ones (b+d). This type of incidence is properly called the in-
cidence rate. Sometimes it is referred to as the cumulative incidence rate to
stress that it depends on the observation period considered: for example, if the
event of interest is death, it is easy to see that, if we wait long enough, the mor-
tality rate will eventually reach 100%. In presenting the incidence rate, it is es-
sential to report the time period to which it refers. Generally, incidence is ex-
pressed as number of cases per 1,000 individuals per year (or 10,000 or 100,000
depending on how frequent or rare the event is in the population). It is an esti-
mate of the risk of developing the event in the time window considered. Inci-
dences are often compared by calculating their ratio, called incidence ratio or
relative risk, indicated with the abbreviation RR. Since RR is the ratio be-
tween the incidence of the exposed and the incidence of the non-exposed,
RR=1 indicates that the two incidences are equal; RR>1 indicates that the ex-
posed subjects have a higher incidence than the non-exposed ones; RR<1 indi-
cates the opposite. Given the assumptions described above, the relative risk is
estimated by RRestimate=[a/(a+c)]/[b/(b+d)]: if the result is “significantly” differ-
ent from 1 (see chapter 5), we can conclude that there is an association be-
tween the characteristic under study and the event of interest.

In real life, most studies have non-binary characteristics and events, have
variable follow-up periods from subject to subject and the risk of the event oc-
curring is variable over the observation time. In the example of smoking and
lung cancer, the characteristic could be classified into multiple categories,
based on the number of cigarettes smoked; the event could also be subdivided
into multiple classes, based on the histological type of the tumor. Almost cer-
tainly the duration of follow-up would differ from subject to subject: some will
abandon the study before its end, others will die before developing lung cancer;
in some studies subjects are permitted to enter the study while it is already in
progress. Also, the risk of developing cancer might change over time, for exam-
ple it might increase. Under these conditions, the statistical analysis is clearly
more complex.

With variable durations of follow-up it does not make sense to use the total
number of subjects as the denominator to calculate the incidence, since this
number varies over time. Therefore, the measure of incidence should be “ad-
justed“ to account for the different exposure time of each subject.
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Three methods are often used to calculate incidence in these cases.
The first method consists of calculating the total observation time for the co-

hort as a whole by adding up the observation times of all its subjects. The ob-
servation time of each subject is the time interval from the moment the subject
enters the study to the moment one of the following occurs: the event happens,
the subject leaves the study, the study comes to an end. The observation time is
expressed in the appropriate time unit: person-years, person-months, person-
days, etc. One hundred person-years could correspond to a hundred persons
followed for one year, fifty followed for two years, ten followed for ten years and
so on. The incidence is then calculated as the ratio between the number of new
cases of the event (disease) that occur during the course of the study and the
total observation time of the cohort, expressed in the chosen time unit. Again,
for subjects showing more than one event, only the first one is considered. For
example, expressing time as person-years and having observed 50 new cases in
370 person-years, the incidence rate of the event is 50/370 = 0.135, expressed
as 13.5 events per 100 person-years of observation. This method gives an esti-
mate of the mean incidence during the entire period covered by the study, and
therefore makes sense only when it is reasonable to assume that the risk of an
event occurring per unit of time is constant for the entire observation period.

The second method for calculating incidence, called actuarial, is based on the
so-called survival tables. Briefly, one divides the observation time into intervals
and assumes that the subjects who are in the study at the midpoint of each in-
terval are exposed for the entire interval. Therefore, for each interval we are
back to the simpler condition described above: a fixed number of subjects, all
monitored for the same time period. Consequently, the incidence can be calcu-
lated as illustrated above. In reality, the situation is more complex. First, to ap-
ply this method, the entire cohort of subjects must enter the study at the same
time; if this is not the case, for each subject, the calendar time must be replaced
by a time scale in which the study start coincides with the time the patient en-
tered the study. Second, it should be kept in mind that some of the subjects who
are lost to follow-up before developing the event could have later developed it.
It is not possible to discuss such complex aspects in this brief overview: we re-
fer the reader to Colton’s textbook [26] for an introduction to survival tables and
to the book by Marubini and Valsecchi [69] for an exhaustive coverage of the
topic. The actuarial method assumes that the risk is constant within each inter-
val and that the interval risks are independent of calendar time.

The third method does not require the assumption that the events of interest
occur at a constant rate in the different time intervals. This method consists of
calculating the “incidence density”, which can be seen as an extreme case of the
actuarial method. The observation time is divided into intervals of an infinitesi-
mal length (a situation similar to the one we will find in section 5.1.2 when dis-
cussing the probability density function). The incidence density can be calcu-
lated in several ways, for example by applying the Kaplan-Meier method, also
known as the product-limit technique. For more details on this topic we refer to
the above-mentioned book by Marubini and Valsecchi [69]. Both the actuarial
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and the product-limit methods require large samples: for this reason they can
rarely be used for sub-groups of subjects selected based on sex, age, etc.

The considerations on incidence introduced in this section are also useful for
the analysis of events in clinical trials, often adverse events.

Non-concurrent prospective study. The second kind of prospective study
is the non-concurrent one. Figure 3.3 helps to clarify the difference between
concurrent and non-concurrent studies.

In concurrent prospective studies, exposed and non-exposed subjects are se-
lected at the present time, i.e. at the start of the study (in 2005 in the figure) and
are followed in the future until the end of the study (2015 in the figure). In non-

concurrent prospective studies, the researcher goes back in time (to 1995 in
the figure), selects the exposed and non-exposed subjects and then tries to find
all the relevant information on these subjects, up to the present time.

The methodological characteristics of the two types of study are identical.
However, in practice, there are two major differences:
• Non-concurrent studies have much shorter execution times and much lower

costs.
• In non-concurrent studies, it can be more difficult to retrieve information, es-

pecially that about exposure, but also information related to the occurrence of
the event. Often, such information can only be obtained if well-designed and
complete databases are available because the memory of interviewed sub-
jects is an unreliable source, especially if the study goes far back in time.

Cross-sectional prospective study. The third type of prospective study is
the cross-sectional prospective or transversal prospective study. As for
all prospective studies, subjects are selected on the basis of the presence/ab-
sence of the characteristic of interest. What is specific to the cross-sectional
type is that the event is searched at the present time. For example, one could
select two groups of subjects, one obese and one non-obese and evaluate on the
same day the frequency of exertion angina by submitting all subjects to a stan-
dardized stress test (e.g. treadmill or cycling).

The differentiation between cross-sectional prospective studies on the one
side and concurrent and non-concurrent prospective studies on the other is
based on the duration of the process connecting the event to the potential
risk/protective factor. An example from Miettinen [71] is enlightening. Let us
consider a study in which over a 24 hour period both the diet and a potential ef-
fect are monitored: if the effect of interest (event) is high level of blood glucose
at the end of the 24 hours, the study is concurrent (or non-concurrent) prospec-
tive; if instead the effect of interest is obesity, then the study is cross-sectional
prospective.

Compared to the concurrent and non-concurrent prospective studies, the
cross-sectional prospective study has the one major disadvantage that the re-
searcher does not know for certain if the characteristic (for example obesity)
was acquired before or after the event (for example exertion angina).
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Cross-sectional prospective studies are also called prevalence studies be-
cause they allow calculation of prevalence rates (also referred to simply as
prevalence) of the event of interest among the exposed and the non-exposed.
We remind the reader that the prevalence is the ratio between the total number
of subjects with the event (disease) in a given population at a given moment in
time and the total number of subjects constituting that population at that same
time. These studies are not suitable for calculating incidence because incidence
refers to a time interval, while prevalence refers to a single point in time.

3.1.2. Retrospective Studies or Control Cases

True retrospective study. In the true retrospective studies (which, from
now on, we will simply call retrospective), the researcher selects two groups of
subjects, respectively with and without the event of interest at the time the se-
lection is made (“today”) and searches the past of each subject for a given
length of time for information on the exposure to the characteristic under study.
The subjects affected by the event are called cases; those not affected by the
event are the controls (the “non-cases”). Whereas in the prospective study the
sample selection is based on the characteristic of interest, in the retrospective
study it is based on the event of interest. However, the aim is the same, namely
to verify whether exposure to the characteristic under study has an impact on
the event, that is, whether it is a risk or protective factor.

Because in retrospective studies the comparison is made between subjects
with the disease (affected by the event) and subjects without the disease (not
affected by the event) and because the subjects with the disease are called cas-
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es and those without are called controls, retrospective studies are also known as
case-control studies.

A typical retrospective or case-control study is presented in Figure 3.4.
To conduct a retrospective study one proceeds as follows. 
Ideally, a population of subjects with the disease of interest (cases) and one of

similar subjects but without the disease (controls) are identified. These popula-
tions may come from the same database or from different databases. Thereafter,
two representative samples are randomly extracted from these populations. As
with prospective studies, this is often not possible; therefore, one forgoes rep-
resentativeness and concentrates on building groups of cases and controls that
are as similar as possible to each other (see below).

The selected groups of cases and controls are then studied retrospectively to
verify whether or not, from a given time in the past up to the present, there has
been exposure to the characteristic under study.

Finally, the measures of association between exposure and event obtained in
the two groups are compared (this phase presents some complications, which
will be illustrated later).

In the example on the association between cigarette smoking and lung cancer,
the cases are subjects with diagnosis of lung cancer, while controls are lung can-
cer-free subjects. The sample of cases could be obtained by selecting a group of
hospitals and enrolling all lung cancer patients (or a random selection thereof)
from the oncology departments, while the sample of controls could include all
patients (or a random selection thereof) from non-oncological departments of
the same hospitals. Once comparable (unbiased) groups are obtained, the re-
searcher documents for each subject whether the characteristic under study is
or has been present, i.e. whether the subject is or has been a smoker. It is often
useful to also collect quantitative data on the characteristic, for example, how
many cigarettes the subject smokes or smoked per day.
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Adopting the same simplification used for prospective designs, data from a
retrospective study, in which both the event and the exposure are classified as
present/absent and the observation times are similar (theoretically identical) for
all subjects, can be illustrated in a two-way contingency table, similar to table 3.2.

Again, the final objective is that of verifying whether the incidence of the
event among the exposed is statistically and clinically different from that among
the non-exposed. However, in retrospective studies, a/(a+c) and b/(b+d) do
not estimate these incidences because the denominators (a+c) and (b+d) do
not really represent the total number of exposed and non-exposed subjects who
experienced a events and b events respectively. In other words, in retrospective
studies the cumulative incidence rates cannot be calculated. Consequently the
relative risk of exposed versus non-exposed cannot be estimated. Nevertheless,
in retrospective studies a measure of the association between exposure and
event, i.e. an indirect estimate of the relative risk, can be obtained by calculat-
ing the odds-ratio (OR).

The odds of an event are defined as the ratio between the probability of the
event occurring and that of it not occurring. This term was originally used in
horserace betting, where it indicated the reciprocal of the bet value set by the
odds maker: a horse given 2 to 1 winning (odds = 1/2) means that for this horse the
probability of the event “victory” is half that of the event “defeat” (consequently,
by betting 1 dollar on victory, one would win 2 dollars if the horse wins). Under
the assumptions of binary event and characteristic, fixed duration of follow-up
and  constant risk, in a retrospective study the odds of the event occurring among
the cases can be estimated with the formula [a/(a+b)]/[b/(a+b)], while the odds of
the event occurring among the controls can be estimated with the formula
[c/(c+d)]/[d/(c+d)]. Then, the ratio between these odds can be calculated as
equal to ad/bc, as can be demonstrated by simple algebraic passages. Under 
the same assumptions, in a prospective study (see Table 3.1), the odds of the
event occurring among the exposed can be estimated with the formula
[a/(a+c)]/[c/(a+c)], while the odds of the event occurring among the non-exposed
with the formula [b/(b+d)]/[d/(b+d)]. The ratio between these quantities is again
equal to ad/bc. In conclusion, for both the prospective and the retrospective stud-
ies, an estimate of the OR is given by the ratio between the cross-products of the
frequencies in the two-way table.

Table 3.2. Data collected in a retrospective study with binary characteristic, binary
event and same duration of follow-up for all subjects

Subjects selected based on exposure

Exposure Exposure Total

present absent

Subjects selected Event present (cases) a b (a+b)
based on Event absent (controls) c d (c+d)
event Total (a+c)* (b+d)* (a+b+c+d)

* these totals do not represent the totals of exposed and non-exposed in whom a events
and b events respectively occurred
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The meaning of OR is similar to that of relative risk: if OR=1, we can conclude
that the exposure is not associated with the event; if OR>1, the exposure is pos-
itively associated with the event (it is a risk factor); if OR<1, the exposure is
negatively associated with the event (it is a protective factor) (see [57] or [67]).

It should be noted that, under the hypothesized conditions, OR estimates RR
only if the event/disease of interest is rare (as can be demonstrated by simple al-
gebraic passages). However such limitation to rare events can be circumvented
in many cases, in particular when:
• The population under study is dynamic, so that, if the incidences could be di-

rectly calculated, person-time instead of number of subjects would be used as
denominator.

• A special form of case-control study, proposed by Miettinen, is used, in which
the cases, instead of being compared to the non-cases, are compared to a
sample of subjects extracted from the general population (consisting of cases
and non-cases). 
We refer the reader to Miettinen’s book [71] for a more comprehensive dis-

cussion of these topics.
In retrospective studies, as in prospective studies, characteristics and events

are often not binary and subjects are often lost to follow-up, so that it is not pos-
sible to establish whether they were exposed or not to the characteristic of in-
terest in the past. Under these conditions statistical analysis becomes more
complex.

Cross-sectional retrospective studies. While in true retrospective studies
the exposure to the characteristic is sought in the past, which can also extend to
the present, in cross-sectional retrospective or transversal retrospective

studies the exposure to the characteristic is sought only in the present, for ex-
ample subjects smoking at the time of occurrence of the event (see Figure 3.1).

The distinction between cross-sectional retrospective and true retrospective
studies is made based on the duration of the process connecting the event to
the potential risk/protection factor. For example, let us consider a study per-
formed over a 24 hour period on patients with hyperglycemia (the event): if the
risk factor of interest is the diet during the 24 hours before testing blood glucose
levels, we have a true retrospective study; if instead the risk factor of interest is
obesity, we have a cross-sectional retrospective study.

In the cross-sectional retrospective study the researcher does not know for
certain whether the characteristic (for example heroin use) is acquired before
or after the occurrence of the event (for example depression). Therefore, the
cause-effect relationship is more difficult to establish. In all other methodologi-
cal aspects cross-sectional retrospective studies are identical to true retrospec-
tive studies.
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3.1.3 Sample Size

In the previous sections we stated that the objective of an observational study is
to show that the groups under comparison have incidences of the event which
are different in clinical and statistical terms, i.e. that there is a clinically and sta-
tistically meaningful association between exposure and event. This requires that
the magnitude of the difference considered clinically meaningful be pre-estab-
lished and that the size of the sample be such that we may be ‘reasonably’ sure
to achieve a statistically significant result if that clinically meaningful difference
(or one even greater) really exists. To meet this objective in observational stud-
ies, concepts similar to those introduced in chapters 5 and 6 for clinical trials
apply, although the specific techniques are different. These techniques are not
presented in this book.

3.2. Bias and Confounding

We have already stated that an epidemiological study, unlike an experimental
study, does not have the advantage of the chance assignment (through ran-
domization, see chapter 9) of subjects to exposure or non-exposure to the risk
factor of interest, nor has the advantage of the control over the experimental
conditions.

For these reasons it is less easy to obtain homogeneous groups in observa-
tional studies than in experimental studies. At the end of the study, any differ-
ence between the groups being compared could of course be due to chance, but
could also be due to bias. Furthermore, differences between groups can also
contribute to generating a phenomenon known as confounding. Therefore, the
researcher confronted with a result indicating an association between the ex-
posure to a characteristic and a disease should always ask him/herself:
1.Could the result be due to chance?
2.Could it be due to bias?
3.Could it be due to confounding?

Question 1: chance and statistical analysis. The statistical analysis al-
lows the first question to be answered. As was mentioned in the previous chap-
ter, and will be discussed in detail in chapter 5, the purpose of the statistical test
is to quantify the probability that a result is due to chance. If this probability is
small enough, one accepts that there is a real difference between the groups.

Question 2: bias or distortion. Bias, also referred to as distortion, is any
systematic error (see section 1.3), which in epidemiology causes an incorrect
estimate of the association between exposure and event. Bias is caused prima-
rily by the researcher and/or by the subjects under study and can occur at any
phase, from the selection of subjects (selection bias) to their evaluation (obser-
vation bias, often determined by the subjects’ poor recollection of past events).
Bias cannot be evaluated through the statistical analysis (see below). A selec-
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tion bias occurs when the systematic error is introduced during the selection
of subjects to be included in the study. This may concern the mechanism used
for the selection of subjects (different from group to group), or the mechanism
by which a subject is assigned to one group or another. An example of the first
type of selection bias is when cases are selected from a hospital in one region
and controls from a hospital in another region, the two regions having different
socio-economic and cultural backgrounds. The second type of selection bias, al-
so called classification bias, may occur when in a case-control study the knowl-
edge of the exposure influences the assignment of uncertain cases to the dis-
eased or non-diseased groups. Let us suppose that the hypothesis under study
is the existence of a link between cigarette smoking and cancer. The researcher
confronted with opaque spots on the chest x-ray of a heavy smoker could assign
him hastily into the diseased group, without requesting the further investigation
required for a definitive diagnosis. A cohort study can also be affected by classi-
fication bias when knowledge of the presence or absence of the event influ-
ences the assignment of subjects to the exposed or not exposed group.

The observation bias includes the forms described below.
• Recollection bias: the ability to remember is different between subjects with

and without the disease, which may influence the assessment of exposure.
• Interviewer bias: occurs when questions are asked in a different manner, de-

pending on the group to which the subject belongs, possibly influencing the
answers.

• Bias caused by subjects who are lost to follow-up: occurs when subjects who
are lost to follow-up differ systematically from the ones remaining in the study.

• Response bias: occurs when the subjects who answer to the questions differ
systematically from those who do not.

In case-control studies, the most dangerous forms of bias are selection and rec-
ollection bias, while in cohort studies, one should be most concerned with the
bias caused by subjects who are lost to follow-up, although selection bias is also
dangerous.

In section 3.2.1 we will discuss the most important methods for controlling
bias in observational studies. 

Question 3: the phenomenon of confounding. The term confounding

takes several different meanings in the biomedical field. Without going into def-
initions that are too technical (see Armitage and Colton’s encyclopaedia [4]), we
will discuss here the two most common forms of confounding, namely the bio-
logical and experimental ones. The common root of all manifestations of con-
founding is that “the effects of some factors are mixed”. In the epidemiological
field, confounding refers to the contamination of the effect of interest, i.e. the
effect of the characteristic/exposure on the event, by factors external to it. In
the experimental field, confounding refers to the inseparability of certain effects
(see chapter 10) in a given design. Whereas in the former case confounding is
considered a “problem” which leads to a wrong conclusion (biased estimates),
in the latter it is an intentional characteristic of the design, that is, the informa-
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tion on some effects is intentionally “sacrificed” (i.e. one accepts less precise es-
timates of these effects) with the purpose of estimating other effects with
greater precision. In this section we will discuss confounding in epidemiology,
while we refer the reader to section 10.9 of this book for an example of a clini-
cal trial design with confounding, and to Cox [27], Cochran and Cox [24] and
Fleiss [39] for a deeper discussion of this concept in the experimental field. 

Even within the epidemiological field there is little agreement among re-
searchers on confounding. Among the various definitions found in the literature,
we have chosen the one given by Hennekens and Buring [57] because, in our
opinion, it is rigorous and at the same time operationally useful, in the sense
that it can help the researcher to address the problem (see section 3.2.2).

There is confounding when the magnitude and, sometimes, even the direction
of the estimate of an association between a characteristic/exposure and an
event/disease is modified by the presence of a third factor with specific features
(the confounding factor, see below). Confounding, as well as bias, lead to the
over- or under-estimation of the true association between exposure and disease
and can even change the direction of the observed effect. 

For a factor to be confounding, the following three conditions enter into play:
• It must be associated with the characteristic/exposure.
• It must be a risk or protective factor for the disease under study, independ-

ently of the characteristic/exposure; 
• It must be distributed in an unbalanced manner between the groups under

comparison.
Fulfilment of the first two conditions qualifies a factor as potentially con-

founding. To better clarify the meaning of such a factor, let us refer to figure
3.5. In case A the “third factor” is potentially confounding because it is associ-
ated with the exposure and, independent of this, it affects the event/disease. If,
however, as illustrated in case B, the exposure expresses its effect on the event
by affecting the “third factor”, which in turn modifies the risk of the event, then
this third factor is not a potentially confounding factor but rather an intermedi-
ate step in the causal chain between exposure and event.

We provide four examples to illustrate Figure 3.5. The first two illustrate case
A (a potentially confounding factor). Let us suppose that a study reached the
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Figure 3.5. Potentially confounding factor (case A) and not potentially confounding fac-
tor (case B). (Reprinted from: Epidemiology, Hennekens CH and Buring JE,  1987. Copy-
right Little Brown and Co, Boston-Toronto. Reproduced with permission)



conclusion that an association exists between increase in physical exercise and
reduction of the risk of myocardial infarction. A potentially confounding factor
is age, as young people tend to exercise more and, independent of exercise,
they tend to have a lower risk of myocardial infarction. Let us then suppose we
are interested in studying the association between smoking and pancreatic can-
cer. A potential confounding factor in this case is alcohol: the propensity to
smoke is more frequent in drinkers than in non-drinkers; furthermore alcohol,
independent of smoking, is a risk factor for pancreatic cancer.

The next two examples illustrate case B (not a potentially confounding fac-
tor). In the case of the association between physical exercise and myocardial in-
farction, daily fluid intake is not a potentially confounding factor: even though it
is associated with physical exercise (the more one exercises the more one
drinks), there is no known independent association between fluid intake and
risk of myocardial infarction in people who do not exercise. Let us then suppose
that a study has demonstrated a negative association between moderate alcohol
consumption and the risk of infarction (moderate consumption reduces risk). A
factor that could be erroneously considered potentially confounding is the level
of high density lipoproteins (HDL) in the blood. In fact, some studies have
shown that alcohol increases the level of HDL and that high levels of this class of
lipoproteins are associated with a reduction in the risk of myocardial infarction.
However, it has also been demonstrated that the effect of alcohol on myocardial
infarction is due, at least in part, to the fact that it increases the level of HDL.
Therefore, the level of HDL cannot be considered a potentially confounding fac-
tor because one of the mechanisms of action of alcohol on the risk of myocardial
infarction is indeed an increase of HDL.

So far, we have always talked of potentially confounding factors. For a poten-
tially confounding factor to actually confound a study, that is to really behave as
a confounding factor, it must be distributed unequally between the groups.
The association existing between a potentially confounding factor and a risk fac-
tor makes the occurrence of this imbalance probable. However, if for whatever
reason such imbalance does not materialize, the potentially confounding factor
remains “innocuous”. Let us return to the example on smoking, alcohol con-
sumption and pancreatic cancer. It is likely that in a study comparing smokers
and non-smokers, the percentage of drinkers will differ between the groups
(because of the association between the propensity to smoke and the propensi-
ty to consume alcohol). However, if in the actual study the imbalance with re-
gard to alcohol consumption between the two groups under comparison does
not occur, this factor does not cause confounding, i.e. it cannot lead to overes-
timation of the risk of pancreatic cancer induced by smoking.

The effect of confounding can be positive or negative: in the first case, the
confounding factor increases the magnitude of the observed association relative
to the true one; in the second, it reduces it. Therefore, the terms “positive” and
“negative” in this context refer to the effect of the confounding factor on the
magnitude of the estimate of the effect of the exposure on the event, compared
to the real one. 
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Sometimes the terms confounding and bias are used interchangeably. This is
incorrect. We have a bias when the systematic imbalance between the groups
under comparison is introduced by the design or the procedures of the study,
whereas we have a confounding when the systematic imbalance is intrinsic to
the problem being studied, because of the association between the potentially
confounding factor and the exposure. As we will see, confounding can be con-
trolled at least in part through the statistical analysis, whilst bias cannot. Fur-
thermore, in a given study, confounding can occur without bias, and vice versa.
For example, in a study in which a selection bias for a prognostic factor has oc-
curred, there will be no confounding if this factor is part of the causal chain be-
tween the characteristic under study and the event (see figure 3.5, case B).

In experimental randomized studies (see chapter 9), the random assignment
of the subjects to the treatments is such that the concept of potentially con-
founding factors does not apply, whereas the possibility of bias, to which a large
part of this book is dedicated, remains. 

Finally, the reader should keep in mind that, at times, the term confounding is
used interchangeably with the term spurious association. Like many other
terms in our field, this one is also used with multiple meanings: sometimes,
mostly by physicians, it is used to indicate “false association”, and at other
times, mostly by statisticians, to indicate an association observed between two
factors which is actually caused by a third factor. In both cases, the definition of
spurious association is more generic than that of confounding.

In section 3.2.2 we will cover the most important methods for controlling the
phenomenon of confounding in observational studies. 

3.2.1. Control of Bias in Epidemiology

Bias cannot be evaluated quantitatively a posteriori by means of the statistical
test for the between-group comparisons. Statistical techniques that can some-
what “purify” the results from the influence of bias do exist, but are explorato-
ry in nature (see section 9.1). In fact, bias can be prevented or reduced only
through careful planning of the design and correct implementation of the study.
Special attention must be paid to the following aspects:
• Choice of the population.
• Method of data collection.
• Sources of information on exposure and disease. 

Choice of the population. There are many ways to reduce bias through the
choice of the population. The random selection of subjects from the population
they are intended to represent dramatically reduces bias but, as stated previ-
ously, this is rarely possible in epidemiology in the way it is possible in clinical
trials. However, to obtain unbiased estimates of the association between expo-
sure and event, a comparable distribution of baseline characteristics (e.g. de-
mographics, socio-economic factors, etc) between the samples of cases and
controls or of exposed and not exposed is more important than the samples rep-
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resentativeness of the underlying populations. Fortunately, only the latter re-
quires chance extraction of the sample from the population. Therefore, it is cru-
cial that the process by which subjects are selected be the same for all groups,
so that selection bias, if any, will occur to a similar degree in all groups.

In retrospective or case-control studies, these considerations are very impor-
tant for the selection of the group(s) of controls. For diseases requiring hospi-
talization, hospital controls are often used. On the one hand, in a case-control
study the selection of hospital controls (i.e. controls selected from the same
hospital(s) from which the cases are selected) can increase the comparability
between cases and controls in terms of desire to participate, factors influencing
the choice of a particular hospital, and ability to recollect information related to
the event and the exposure. In this way, the probability of three types of bias,
i.e. non-response, selection, and selective memory, is reduced. On the other
hand, when cases and controls are selected from a hospital population, one
could easily run into one of the following two problems:
• The hospital controls do not have the same degree of exposure to the risk fac-

tor under study as the general population of controls, i.e. they do not accu-
rately reflect the population that is free from the disease of interest.

• The hospitalization rates are different between cases and controls.
As an example of the first problem, let us assume that we are interested in

studying the association between cigarette smoking and lung cancer and want
to select the cases and the controls for this study from the same hospital. The
population of cases could be that of the patients hospitalized for lung cancer
(the sample of cases for the study is randomly chosen from this population),
while that of the controls could be patients of similar sex and age who are hos-
pitalized in another department, say the neurology department (the sample of
controls for the study is randomly chosen from this population). If the propen-
sity to smoke in the population of patients in the neurology department differs
from that of the general population of subjects without lung cancer (e.g. it is
higher, given the correlation between smoking and some neurological diseases)
and we, unaware of this difference, perform the analyses as if the sample were
representative of the general population for smoking habits, the association be-
tween cigarette smoking and lung cancer would be estimated in a distorted way
(underestimated, in this example).

Concerning the second problem, let us refer to the example given in Table
3.3., which illustrates (lower section) data from a hypothetical case-control
study which investigates the association between transient ischemic attack
(TIA) and congestive heart failure (CHF), by using patients with colon cancer
as controls. The idea for this example was taken from lecture notes by Bruce S
Shoemberg (National Institute of Health, Bethesda, USA). In the example, CHF
is the potential risk factor, while TIA is the event of interest. In the upper left
section of the table, a hypothetical population of 1000 patients with TIA and one
of 1000 patients without TIA are presented, while in the upper right section, the
hypothetical hospitalization rates for TIA, colon cancer and CHF are presented
(note for cardiologists and oncologists: the numbers are invented!). By applying
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these hospitalization rates to the above-mentioned populations, we obtain the
corresponding populations of hospitalized patients, as illustrated in the central
section of the table. Finally, let us hypothesize that we are performing a case-
control study with the objective described above. To this end, we randomly se-
lect 100 cases and 100 controls from the hospitalized populations. The data for
the two samples are reported in the lower section of the table. While in the pop-
ulation there is no association between TIA and CHF (OR=1), in the case-con-
trol study CHF appears to be associated with TIA; more precisely, CHF appears
to be a risk factor for TIA (estimated OR=3.45, which means that the occur-
rence  of TIA is about three and a half times more frequent in patients with CHF
than in controls). This happens exclusively as a consequence of the different
hospitalization rates between patients with TIA and patients with colon cancer.

Because of such problems, more than one control group is often used in ret-
rospective studies.

In prospective (cohort) studies the choice of control groups must take into
account one of the most dangerous forms of bias for these studies, namely the
loss of subjects to follow-up, which may cause a difference between the groups
under comparison in the ability to obtain information on all the subjects of the
sample. To reduce the risk of such a bias, epidemiologists often restrict the
population to the members of a particular institution, for example to subjects
using the same health care provider or insurance company, etc. This approach
makes the loss of subjects to follow-up less likely; furthermore, sometimes it al-
so allows access to centralized databases specific to that institution. Another
method for limiting such bias is to choose a population with an above-average
risk of developing the event: subjects belonging to high risk populations are of-
ten more motivated to participate in studies compared to subjects with average
or low risk.

Method of data collection. The main objective is to guarantee that data
collection is similar in all groups under comparison. Two elements can con-
tribute to reducing bias: the construction of a specific instrument for data col-
lection (e.g. questionnaire, interview, physical examination) and the appropri-
ate use of this instrument by the study personnel.

Closed questions must be used, i.e. answers must be chosen from a pre-de-
termined list. Furthermore, questions must be very specific; for example, any
reference to time must be precise. Measurements must be conducted by prop-
erly trained personnel and follow a standardized protocol. When different treat-
ments are compared, their masking (i.e. blinding, see chapter 9) is to be main-
tained to the maximum level possible, which implies that the personnel involved
in data collection should, as far as possible, not be aware of which group each
study subject belongs to. It is also useful to ensure that the study subjects are
unaware of the hypothesis being tested. For example, in a case-control study on
the relationship between alcohol consumption and myocardial infarction, the
study could be presented to the subjects as a survey on the dietary habits of pa-
tients. For this purpose, instead of focusing only on alcohol consumption, the
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Table 3.3. Retrospective study investigating the association between Transient Ischemic
Attack (TIA) and Congestive Heart Failure (CHF) *

TIA Hospitalization rates

Population Present Absent

(Patients with colon cancer) Disease %

CHF

Present 100 100 TIA 10%
Absent 900 900 Colon cancer 50%

Total 1000 1000 CHF 40%

OR (100 x 900) / (100 x 900) = 1.00 

TIA

Hospitalized Present Absent

Population (Patients with colon cancer)

CHF

Present 46 (#) 70 (##)
Absent 90 (###) 450 (####)

Total 136 520

TIA

Case-control Present Absent

Study (Cases) (Controls with colon cancer) Method of patient 

selection

CHF

Present 34 13 100 cases and 100 
Absent 66 87 controls are randomly      

Total 100 100 selected from the 
hospitalized (presence/

OR Estimate (34 x 87) / (13 x 66) = 3.45 absence of  CHF is
proportional to that
of the corresponding 
populations )

* Fictitious data have been chosen to illustrate the problem caused by different hospital-
ization rates between cases and controls. (#) =  sum of patients hospitalized for TIA 
(→ 100 x 0.1 =10) and patients hospitalized for CHF (→ 90 x 0.4 = 36, where 90 results
from 100-10); (##) = sum of patients hospitalized for colon cancer (100 x 0.5 = 50) and
patients hospitalized for CHF (50 x 0.4 = 20, where 50 results from 100-50); (###) = 900
x 0.1; (####) = 900 x 0.5
CHF = Congestive Heart Failure, TIA = Transient Ischemic Attack, OR = Odds Ratio



questionnaire should take into account a variety of other factors.
It is clear that one cannot always pursue the blinding of observers with re-

spect to the group to which the subjects belong and the blinding of subjects
with respect to the study objectives. However, “dummy” questions can be in-
cluded in the data collection instruments to serve as an alarm system for the
epidemiologist, with the aim of getting a general sense of the likelihood of bias
having occurred during the evaluation phase. For example, in a case-control
study investigating the regular use of aspirin as a protective factor for myocar-
dial infarction, questions concerning the use of other drugs not associated with
the risk of myocardial infarction can be added to the questionnaire. If the
groups do not differ with respect to the frequency of the use of these drugs, the
epidemiologist is reassured that observation bias was unlikely to have occurred;
vice versa, if such differences do occur, the presence of various forms of bias,
such as recollection bias, may be suspected. In addition, questions concerning
factors for which association with myocardial infarction is well known could be
added. If this association is confirmed, the hypothesis that no bias has occurred
is substantiated; the opposite outcome will give way to the opposite suspicion.

Another method is to build a questionnaire that contains multiple questions
aimed at obtaining the same information in different ways: consistency in the
answers to these questions is checked. To control the bias that may be intro-
duced by the examiner, information on the duration of the interview or exam
can be collected. Finally, one could ask the examiner to judge the reliability of
the answers obtained from each subject examined: data analysis could be con-
ducted both including and excluding results from subjects considered unreli-
able.

Sources of information on exposure and disease. Pre-existing data-
bases or archives are the sources least likely to be affected by bias, since the in-
formation is collected before the occurrence of the event of interest. However,
this type of information may be incomplete and the frequency of missing data
may vary from group to group.

It is useful, although not always feasible, to use multiple sources that allow
cross-checks. For example, in archive-based studies one could use both the hos-
pital records and the records of the physicians caring for the study subjects out-
side the hospital; in studies based on questionnaires, confirmation of selected
data could be sought by examining the physicians’ archives; data from death
certificates could be compared with those from hospital records, and so on.

Exposure and event of interest must be meticulously defined and the defini-
tions must be based as much as possible on standard criteria (e.g. diagnostic cri-
teria established by international guidelines) in order to limit liberal interpreta-
tion by the study personnel. 
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3.2.2. Control of the Phenomenon of Confounding

In the planning phase of a study, the best method for controlling the phenome-
non of confounding would be the random assignment of the study subjects to
the exposure. However, this cannot be done in epidemiological studies. There-
fore, in such studies, confounding is controlled through the following tech-
niques:
• Restriction (used only in the planning phase).
• Stratification and matching (used both in the planning and analysis phases).
• Adjustment (used only in the analysis phase). 

Restriction. The phenomenon of confounding occurs only if the potentially
confounding factor is unbalanced, i.e. it appears with different frequency in dif-
ferent groups being compared. One way to prevent this is to apply the method
of restriction: the inclusion/exclusion criteria in the study are restricted in such
a way that only specific categories of the potentially confounding factor can be
included. In some instances, through restriction, the risk of confounding for a
given factor can be completely eliminated: for example, if the confounding fac-
tor is sex, one can enroll only males or only females. In other instances, it can be
minimized: for example, if the potentially confounding factor is age, one can en-
roll only subjects within a very restricted age range. 

Restriction is easy to use but has some inconveniences:
1. It is not always applicable, because often the potentially confounding factor is

unknown.
2. It reduces the number of subjects who can participate in the study.
3. It does not always eliminate the problem, because confounding may still occur

within the restricted category.
4. It does not allow assessment of whether the association between exposure and

disease is different at different levels of the potentially confounding factor.
5. It reduces the ability to generalize results.

Stratification and matching. To reduce imbalance with respect to poten-
tially confounding factors, stratification and matching techniques can be ap-
plied. Stratification is achieved by dividing cases and controls or exposed and
non-exposed into subgroups (strata), based on the level of the factor of interest
or, in case of multiple factors, on the combination of levels. For example, if we
want to stratify by sex and presence of diabetes, we have to consider four sub-
groups (combination of the two levels of each factor) and then make sure that
the proportion of subjects belonging to each stratum is similar in cases and con-
trols or exposed and non-exposed. Matching is achieved by pairing each case
with a similar control (or multiple controls) with respect to one or more pre-es-
tablished factors of interest. For example two subjects are matched if they are
of the same sex, race, age range, socio-economic level, etc.

These two techniques force the distribution of potential confounding factors
to be similar in the groups under comparison. 
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With reference to applicability of these methods, stratification does not pres-
ent major inconveniences, except that it makes the study design more compli-
cated, increasing the probability of making mistakes. Matching, on the other
hand, is used frequently in epidemiological studies, but presents many limita-
tions.
• It is difficult to apply and requires much time. For example, in a study with

two groups, if we divide age in five categories, sex in two and race in three
categories, there are 30 (5x2x3) possible combinations to be considered in
matching the subjects. Because of its complexity, matching is not used fre-
quently in large cohort studies, but it is often used in case-control studies,
which tend to be smaller.

• It is not possible to evaluate the effect of the potentially confounding factor on
the result observed in the study because the distribution of this factor has
been forced by design to be similar in cases and controls.

• It may be more difficult to control other potentially confounding factors that
were not used for matching (for example, when matching is applied to one
factor, the stratified analysis of other factors may be more complex).
In spite of these limitations, a “parsimonious” application of matching is often

useful.
To be effective, the two techniques described above must be considered both

in the planning and analysis phases. More precisely, when matching has been
used in the design, it should be explicitly taken into account by the statistical
analysis, that is, forced similarities between subjects of the same block must be
taken into account (pairs, triplets and so on, depending on the number of
groups under comparison). This is achieved by using specific statistical meth-
ods. If matching is not accounted for in the analysis, the true association be-
tween exposure and event/disease of interest is underestimated (see for exam-
ple [57]).

If stratification is used in the design, the analysis must evaluate the associa-
tion between exposure and event/disease within each stratum of the potential-
ly confounding factor. If, for example, sex is a potentially confounding factor,
the association between exposure and disease should be calculated separately
for males and females. If, in addition to sex, race is also a potentially confound-
ing factor (e.g. with three categories: whites, blacks, other), the association
should be calculated separately for the following six strata: white females, black
females, females of other races, white males, black males, males of other races.
The estimates within a stratum are called stratum-specific. By design, stra-
tum-specific estimates are not influenced by the potentially confounding factor
used to build the strata since there is no variability with respect to this factor
within a stratum. 

Sometimes a study is not designed with stratification, but the analysis is per-
formed in a stratified manner, i.e. the strata are defined in the analysis phase. In
these cases, we speak of a posteriori stratification to distinguish it from the
one defined in the planning phase, known as prospective stratification. The
latter is to be preferred because the former can be influenced by knowledge of
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the results. In addition, with an a posteriori stratification, one must face data-re-
lated issues such as incomplete or inadequate data concerning the potentially
confounding factors, or strata very unbalanced in size (because not planned).
Such issues, by design, are avoided by a prospective stratification.

Adjustment. Once the stratum-specific estimates of the association of in-
terest between exposure and disease are obtained, it can be useful to calculate
an overall estimate of the association, based on the stratum-specific estimates.
Generally these estimates are referred to as adjusted with respect to the fac-
tor (or factors) considered, while those calculated without considering stratifi-
cation are known as non-adjusted or crude. Different methods exist to com-
bine stratum-specific estimates into a single adjusted estimate. These methods
are based on the calculation of weighted means of the stratum-specific esti-
mates. Methods vary depending on the type of weighting that is used in calcu-
lating the weighted means (see for example [57]).

A method for verifying if a potentially confounding factor is really confound-
ing, i.e. if confounding did occur, is that of comparing the raw estimate of the
exposure-disease association with the estimate adjusted for the factor under ex-
amination. If the two estimates differ, the potentially confounding factor is real-
ly confounding. We should point out that this method is only valid if the meas-
urement of the effect of the risk factor is made in terms of difference between
risks or ratio of risks (relative risk), while it is not valid if it is measured in
terms of odds ratio, unless the conditions are met under which the odds ratio
can be interpreted as relative risk (see section 3.1.2). In the Encyclopaedia of
Biostatistics edited by Armitage and Colton [4], under “confounding”, an exam-
ple is reported in which, when the odds ratio is used to measure the association,
the crude and the adjusted estimates are not the same, despite confounding not
being present. 

Finally, it is important to point out that the adjustment for a factor that falls
under case B of Figure 3.5, i.e. an intermediate step in the causal chain linking
the exposure to the event, is to be avoided, since it causes an underestimation
of the association between exposure and event of interest. 

How to choose the potentially confounding factors. The choice of can-
didate factors to be considered as potentially confounding factors is difficult. In
the previous section we saw that these can be truly identified only at the time of
the statistical analysis. But selection of the potentially confounding factors must
be done in the planning phase if we are to properly collect the data necessary to
assess whether the suspected factors are truly confounding or not. 

It is obvious that it is not possible to collect data on all factors for which a con-
founding role cannot be excluded a priori. A selection must be made based on
the knowledge of the disease and on information collected in other studies.
Lacking any indication on potential confounding factors, as a minimum, infor-
mation must be collected on factors such as sex, age, race, that do have the role
of risk or protective factors for many diseases. It is important for the data to be
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collected in a complete way. For example, smoking can be a risk factor for many
diseases, but often it is not sufficient to collect such data as smoker/former
smoker/never smoked because some diseases are linked to how much the sub-
jects smoke (or have smoked). 

When the potentially confounding factors are many, the stratification and ad-
justment methods presented above cannot be used to study the effect of all
these factors simultaneously. For example, let us suppose that in the study of
the association between myocardial infarction and physical activity there are
four potential confounding factors: sex, age (strata: <50; 50-59; 60-69; ≥70),
cigarette smoking (strata: never smoked, former smoker, smoker) and body
mass index, defined as the ratio between weight and height (strata: <0.4; 0.4 -
<0.6; 0.6 - <0.8; ≥0.8). These variables would require a total of 2×4×3×4=96 stra-
ta to cover all the possible combinations of sex, age, smoking and body mass in-
dex levels. Even if the sample were large, it is likely that many strata would be
empty or scarcely populated.

Bias, confounding and biological plausibility. In an observational
study there are two considerations that may at times clarify doubts on whether
or not an observed association represents a true cause-effect relationship: the
biological plausibility of the outcome, and the confirmation of the result under
different circumstances. If an observed association between a characteristic and
an event has a solid biological basis, it is less likely to be caused by bias and/or
confounding than one that lacks such a basis. In the case of lung cancer and
smoking, many cell biology studies have proven the carcinogenicity (i.e. the
ability to modify cells in a cancer-causing way) of tobacco combustion products,
and many animal studies have linked chronic exposure to cigarette smoke with
the onset of various cancers, among which is lung cancer. Vice versa, if an epi-
demiological study concluded in favour of a strong association between drivers
wearing red clothing and deaths in automobile accidents, the lack of a solid bio-
logical plausibility would raise the suspicion of bias and/or confounding. The
second consideration, that of replicating a result under different circumstances,
probably has even more value in excluding bias and confounding.

Two comments should be added on biological plausibility. The first one is that
biological plausibility used to justify a result should itself be evaluated in a crit-
ical manner: physicians and biologists are capable of “creating” a biological plau-
sibility even for the most absurd association, in order to justify the results of a
study (generally due to excessive “closeness” to the study, occasionally for au-
thentic dishonesty). The second comment goes in the opposite direction: the
fact that an association is unexpected and lacks a solid biological basis does not
necessarily mean that it is untrue. The history of epidemiology is rich in results
initially considered implausible for not meeting the expectations of the re-
searchers or the prevailing opinion of the scientific community, but which later
were found to be true through other epidemiological, clinical and/or pre-clinical
studies. We will mention three examples to emphasize the point: the association
between fluoride treatment and increased incidence of bone fractures (fluorine
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increases bone density, therefore a reduction in fractures was expected) [84];
the association between treatment with fenoterol and increased lethal asthma
attacks (fenoterol is a powerful bronchodilator, therefore a reduction in serious
asthma attacks was expected) [28]; the association between the reduction of the
incidence of some infections, including tuberculosis, and the increase of the in-
cidence of asthma (the opposite was expected) [94]. 

Finally, investigation of the possible causes of bias and confounding is in itself
a powerful generator of hypotheses to be verified in subsequent studies. Re-
turning to the apparently absurd relationship between the colour of the drivers’
clothing and death from car crashes, this observation could actually be due to
the fact that subjects who prefer the colour red tend to have certain personali-
ty traits such as aggressiveness, which could predispose them to car accidents.
The hypothesis that aggressiveness predisposes one to car accidents can itself
be made the objective of a later study.

3.3. Advantages and Disadvantages of the Different
Types of Observational Studies

As always, each type of study presents advantages and disadvantages and the
advantages of one type of study are often the disadvantages of another. 

This section focuses mainly on the comparison between concurrent prospec-
tive studies and true retrospective studies. Many of the conclusions, however,
can be extended also to non-concurrent prospective studies and cross-section-
al prospective studies on one side, and to cross-sectional retrospective studies
on the other. In the final part of this section, some specific considerations on
these types of studies are provided. 

From a methodological point of view, concurrent prospective studies are bet-
ter overall than retrospective studies for two main reasons: 
• They generate data susceptible to forms of bias that are more easily con-

trolled (for example, the loss of subjects to follow-up can be limited by trying
to motivate the subjects participating in the study) and therefore allow more
reliable comparisons between groups. 

• They allow the incidence rates of the exposed and non-exposed to be esti-
mated.
On the down side, however, these studies are more complex, expensive and

lengthy. If the disease under study is rare, the sample size required to conduct
a prospective study and the time required for the disease or event to appear
could be prohibitive, to the point that the study is totally unfeasible. 

The great advantage of retrospective studies is that they are much faster and
less expensive. The event has already occurred and the characteristic of interest
can be searched for in the personal and clinical history of each study subject rel-
atively rapidly and economically. Instead, in concurrent prospective studies,
one must wait for the event to occur, often for many years: the duration of the
study may outlast the duration of the career of the researcher. 
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The biggest disadvantage of retrospective studies is the lower reliability of the
information, and consequently of the conclusions, compared to prospective
studies. As stated previously, in retrospective studies, the documentation on the
characteristic of interest is obtained by enquiring into the clinical records and
the memory of the subjects under study (and/or of relatives or health care
providers). Unfortunately, both sources are generally incomplete and inaccu-
rate. Let us suppose that the risk factor under study is cigarette smoking. Sub-
jects, in recalling their smoking history, may consciously or subconsciously re-
duce the number of cigarettes smoked per day (or, in some circumstances, in-
crease that number), they may not remember having been smokers, or have
preconceived ideas about what constitutes smoking (“smoking less than 10 cig-
arettes per day is not really smoking”), etc. Unfortunately, such errors in detec-
tion of the characteristic of interest tend not to occur with the same frequency
in cases and controls, because the presence or absence of the event tends to in-
fluence the degree of accuracy in detecting the characteristic. Going back to our
example, it is likely that cases in whom lung cancer has been diagnosed tend to
minimize their smoking history more than controls without a diagnosis of lung
cancer. In this way bias is introduced, inevitably distorting the conclusions of
the study. In concurrent prospective studies, major errors in the detection of
the characteristic of interest are less likely because often it can be directly ob-
served. Furthermore, since the characteristic is documented before the onset of
the event, the tendency for errors to systematically go in the same direction is
less likely. It is for this reason that generally the reliability of the evidence gen-
erated in prospective studies is greater than that generated in retrospective
studies. The other major disadvantage of retrospective studies is that they do
not allow an estimate of the incidence of the event in the groups with and with-
out the characteristic under study and therefore do not allow a direct estimate
of the relative risk. However, we have shown that often an indirect estimate of
the relative risk of exposed to non-exposed can be obtained using the odds ra-
tio (see section 3.1.2). 

Tables 3.4 and 3.5 list the advantages and disadvantages of concurrent
prospective and true retrospective designs. 

A final remark on the comparison between concurrent prospective and retro-
spective studies is that the former are advantageous for studying the relation-
ship between rare characteristics/exposures and relatively frequent events,
whereas the latter are advantageous for studying the relationship between rare
diseases and frequent characteristics/exposures. The advantage is represented
mainly by a smaller sample size compared to the alternative design. In addition,
the former are generally well suited for studying multiple effects of a given ex-
posure, while the latter are indicated for studying multiple risk factors for a giv-
en disease. 

A few brief considerations on non-concurrent and cross-sectional prospective
designs and cross-sectional retrospective designs will conclude this section. As
discussed previously, in general the advantages and disadvantages of these de-
signs are the same as those of concurrent prospective designs and true retro-
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spective designs, respectively. Two specific considerations apply however. 
Non-concurrent prospective studies, like retrospective ones, do not require

that the researcher wait for the event to occur (often a very long time). In addi-
tion, from a methodological point of view, they have the same advantages as
concurrent prospective designs. Therefore, they would appear to be the ideal
choice. Unfortunately, from a practical point of view, conducting non-concur-
rent prospective studies is often limited by difficulties in finding the needed in-
formation. Retrospective searching for data on the exposure is more difficult
than on the event for several reasons, especially because many databases are set
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Table 3.4. Concurrent prospective studies

Advantages Disadvantages

• The natural temporal sequence is fol-
lowed, by starting from the exposure
and going on to assess the event. This
allows for less bias in collecting the in-
formation

• The estimate of the incidence of the
event is possible and the estimate of the
relative risk is direct

• Classification errors are relatively infre-
quent

• It is possible to obtain information on
subjects who no longer have the charac-
teristic under study

• The latency between the start of expo-
sure and the event, and that between
the end of exposure and the reduction
of its effect can both be measured

• The risk of other diseases related to the
characteristic/exposure under study
can be studied

• Indispensable for rare exposures

• The costs are high (e.g. it is necessary to
monitor subjects periodically over time)

• The study duration is long (especially if
the disease under study is rare and/or
the latency time between exposure and
disease/event is long)

• The occurrence of events may be influ-
enced by the study itself

• A selective loss of subjects to follow-up
(i.e. more in one group than in the oth-
er) may occur

• A limited number of hypotheses may be
studied

• Hypotheses generated after the start of
the study cannot be added to its objec-
tives

Table 3.5. Retrospective studies

Advantages Disadvantages

• The costs are relatively low
• The study duration is relatively short
• Multiple risk/protection factors can be

examined
• Indispensable for rare diseases

• The reverse temporal sequence is fol-
lowed, by starting from the event and
going back to assess the exposure. This
increases the likelihood of some forms of
bias, such as recollection and evaluation
bias (if one knows that the subject is a
case, the search for the exposure could
be more careful, and findings more fre-
quent, than if one knows that the sub-
ject is a control) 

• Only approximated relative risks can be
calculated through odds ratios

• The accuracy and completeness of infor-
mation can be unsatisfactory



up to be searched for event, not for exposure and because subjects generally re-
member better the onset of a given disease/event than exposure to a given risk
factor. In addition, it can be difficult to reconstruct the incidence of the event of
interest, since it is difficult to find information on subjects who have moved to
other areas or died. For these reasons, non-concurrent prospective designs are
used where databases (paper-based or electronic) exist, which allow a compre-
hensive follow-up of cohorts over time in a relatively easy and complete way. A
field in which non-concurrent prospective studies have yielded very important
results is that of investigation of adverse effects, mainly carcinogenic, of occu-
pational exposures, such as the association between exposure to asbestos and
the onset of mesothelioma of the lung. Where a suspicion of this kind is raised,
it is not acceptable for the worker to continue to be exposed to a potential haz-
ard while waiting for the result of a concurrent prospective study. On the other
hand, in these cases it is almost always possible to reconstruct a cohort of work-
ers exposed in the past to the suspected risk factor and to evaluate the risk of
disease or death after the exposure. This is typically accomplished through local
registry offices, which are often very reliable sources for diseases such as can-
cers.

In cross-sectional studies, characteristics and events are searched for only in
the present, therefore the possibility of bias is lower compared to other types of
prospective or retrospective studies, even though not eliminated (for example,
in a retrospective cross-sectional study cases may tend to “lie” consciously or
subconsciously about their current smoking status more frequently than con-
trols).

Cross-sectional studies, both prospective and retrospective, have the disad-
vantage that the researcher does not know if the characteristic (for example,
being a smoker) was acquired before or after the onset of the event. In the lat-
ter case, smoking cannot be considered a potential risk factor for cancer devel-
opment. Therefore, the cause-effect relationship is more difficult to establish in
cross-sectional studies than in other types of prospective and retrospective
studies.

Summary

Observational studies can be of two types: 
• Prospective (also known as follow-up, longitudinal or cohort studies).
• Retrospective (also known as case-control studies).

In prospective studies, the researcher selects two groups of subjects, referred
to as the exposed, i.e. those with the characteristic under study, and the non-
exposed, i.e. those without that characteristic (for example smokers and non-
smokers), but otherwise as homogenous as possible. The researcher then “ob-
serves” each subject for a given period of time and documents if, when, and how
the event of interest (for example lung cancer) occurs. In retrospective studies,
the researcher selects two groups of subjects, referred to as cases and controls,
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with and without the event of interest respectively and for every subject search-
es for information on exposure to the characteristic under study. 

Prospective studies can be classified in three types, based on the chronologi-
cal relationship between the study, the event and the characteristic: concurrent
(the exposed and non-exposed subjects are selected at the beginning of the
study and are followed prospectively into the future, up to the end of the
study); non-concurrent (the researcher goes back in time, selects exposed and
non-exposed subjects and then tries to trace the information relative to the
event of interest, up to the present); cross-sectional (the subjects are chosen
based on the presence/absence of the characteristic of interest in the present,
and the event is also searched for in the present). 

Retrospective studies can be classified in two types based on when informa-
tion on the exposure is sought: if the research goes back in time, the study is
truly retrospective, while if it is limited to the present, the study is cross-sec-
tional.

Since in epidemiological studies one cannot use randomization to assign sub-
jects to exposure or non-exposure to the characteristic of interest, it is more dif-
ficult to obtain unbiased groups (that is, groups that are homogenous for multi-
ple factors and differ only by chance), compared to experimental studies. The
non-randomized assignment of subjects increases the likelihood of a systematic
error, referred to as bias or distortion, as well as that of a phenomenon known as
confounding, where an association is established between a characteristic of in-
terest and an event, which in fact is determined by a third factor. The con-
founding factor has three features: 1) it is associated with the characteristic of
interest; 2) it has an effect on the event independent of the effect of the char-
acteristic of interest; 3) it is unevenly distributed between the groups under
comparison.

Both prospective studies (concurrent, non-concurrent and cross-sectional)
and retrospective studies (true and cross-sectional) are susceptible to different
forms of bias and to confounding. However, the prospective are generally more
accurate than the retrospective, but are more complex and expensive.
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4
Defining the Treatment Effect 

4.1. From the Single Measurement to the Signal

In this book we will use the term “signal” to define the summary variable
which, at a group level and in comparative terms, is used to formulate the hy-
pothesis to be tested, in order to evaluate the effect of the experimental treat-
ment under study. It should be noted that in clinical research the term signal is
often used with a different meaning, to indicate an increased frequency of a giv-
en adverse event in the experimental treatment group over the control group, to
the extent that the adverse event is suspected to be causally related to the ex-
perimental treatment. In this book we will use this term in the literal sense of “a
sign to convey a command, direction, or warning” (Webster’s New World Dic-
tionary, [103]).

Generally, multiple signals are defined and evaluated in one study. The defi-
nition of each signal requires a detailed description of the expected effect of the
experimental treatment in qualitative, quantitative and comparative terms. To
this end, the researcher must proceed through a logical sequence of steps, some
at the level of the individual patient, others at the level of the treatment groups
under comparison.

In this section we will provide a brief outline of such steps, which we have
grouped in four stages (Figure 4.1).



Stage one. Disease level

1st step: define the main therapeutic level. First of all, we must define the
“therapeutic levels” and, for each therapeutic level, the aspects of the disease
on which our treatment is supposed to act. We call “therapeutic level” the lev-
el of therapeutic benefit, from transient improvement of some symptoms to
complete cure, that we expect to achieve with the experimental treatment. Fre-
quently, multiple therapeutic levels must be studied to assess adequately the ef-
fect of a treatment on a disease, and, for each therapeutic level, multiple aspects
must be examined. However, it is crucial to define the main therapeutic level
and aspect to which we want to link the primary end-point/signal (see below). 

Stage two. Individual patient level

2nd step: define the measurement procedures. At an individual patient
level, it must be decided how to best measure each therapeutic level and aspect
selected for the study. From a statistical point of view, this corresponds to iden-
tifying the variables. The decisions concern the type of measurement (scale and
instrument), the measurement technique (instructions on how to perform the
measurement), the number of measurements (one or more can be envisaged for
each patient) and their chronology (i.e. the timing and sequence of the meas-
urements).

3rd step: define the end-points. Each set of measurements, as defined in
step 2, must be combined into a single “summary” variable for the individual pa-
tient. These are the outcome variables commonly referred to as end-points.
Obviously, if only one measurement is chosen for a given aspect of the disease,
it will coincide with the end-point. 
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Figure 4.1. Logical sequence of steps to define and quantify the signal
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We will illustrate the steps we have described so far with a brief example (a
more detailed example is provided in section 4.6). Hypertension is the disease
of interest. We want to study the effect of a treatment on arterial blood pressure
(the therapeutic level). To this end, we choose two variables, the systolic blood
pressure (SBP) and the diastolic blood pressure (DBP), which detect two dif-
ferent aspects of the selected therapeutic level. SBP and DBP are measured
with an instrument called sphygmomanometer. We decide to perform the meas-
urements always on the patient’s right arm, with the patient in a seated position,
in the morning, just before beginning the treatment (the so-called “baseline”
time-point) and at the end of the treatment, say, after 8 weeks. We chose the in-
strument and train the users. Furthermore, we decide that the differences be-
tween values at baseline and week-8 for SBP and DBP, respectively, are the
end-points of the study. Thus, the end-points are the changes in SBP and DBP
from baseline to the end of the 8th week of treatment. Clearly, we could have
taken alternative approaches: for example, we could have decided to measure
SBP and DBP at the end of each week of treatment until the end of the study
and to use as end-points the mean of all SBP and the mean of all DBP measure-
ments. In this case, the end-points are the mean SBP and DBP levels during
treatment. The choice of the end-point should take into account statistical con-
siderations (see section 4.4), but must be ultimately guided by a clinical ration-
ale: in the first scenario our main interest is the final effect of the treatment (af-
ter 8 weeks), while in the second our main interest is the ability to control blood
pressure in a stable manner over time. 

Stage three. Treatment group level

4th step: define the group indicators. Next, we must decide how to “syn-
thesize” each end-point at a treatment group level. This means that, for each
end-point, the values obtained from all patients constituting a treatment group
must be summarized into a single indicator of the effect of the treatment on a
given aspect of the disease of interest (for example, the arithmetic mean, the
geometric mean, the median, the proportion, the count, etc.). The choice of this
indicator, which we will call group indicator, depends on both the type of
end-point and its distribution (see chapter 5). Unlike the previous step, here the
choice is mainly statistical (see section 4.4). 

Stage four. Study level

5th step: define the signals. For each group indicator we must define the
way in which the treatment groups are mathematically compared. If the indica-
tor is a mean, we might compare the groups by using the difference of means; if
the indicator is a proportion we might use the ratio of proportions. We have fi-
nally defined the indicator of the overall effect of the treatment in comparative
terms. This is the signal.
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6th step: classify hierarchically the end-points and signals into pri-

mary and secondary. The process is not over yet, because almost inevitably
we will have selected numerous end-points and corresponding signals. If this is
the case, a hierarchical ordering must be established by identifying the primary
ones (possibly just one, see below). The others will be secondary. 

7th step: define the threshold of clinical relevance/non-relevance. At
this point, the approach changes depending on whether we have decided to
perform a study aimed at showing superiority,  equivalence or non-inferiority.
Superiority studies have the objective of demonstrating that the experimen-
tal treatment is superior to the control; equivalence studies, that of demon-
strating that the treatments under comparison are equal; non-inferiority stud-
ies, that of demonstrating that the experimental treatment is not inferior to the
control. For superiority studies, for each primary signal, we must decide by how
much the effect of the experimental treatment must be superior to that of the
control treatment in order to declare the difference clinically (or biologically)
relevant. Frequently, this process is referred to as the definition of the threshold
of clinical relevance or clinical significance of the signal. We will use the ex-
pression threshold of clinical relevance, since we prefer to reserve the term
“significance” for statistical differences. This threshold must not be defined at
the level of the single patient, but at the level of the signal. The threshold of clin-
ical relevance is essential for defining the hypothesis system to be subjected to
statistical verification (see chapter 5) and for defining the sample size of the
study (see chapter 6). For equivalence or non-inferiority studies, for each pri-
mary signal, we must define the “delta of clinical non-relevance” or margin of

equivalence. This is the maximum tolerable difference between the treatment
groups that is still consistent with the statement  that they are similar (in the
case of equivalence studies) or that the experimental group is not inferior to the
control (in the case of non-inferiority studies). Again, the definition of this
threshold is essential for setting up the system of statistical hypotheses and for
deciding the sample size of the study. Finally, when we have multiple primary
end-points/signals, it is necessary to decide the type of approach to adopt for
the complex question of multiple comparisons (see below). 

We now return to the example of the hypertension study in which two treat-
ments are compared to illustrate the final four steps. We now choose the di-
chotomous variable response/non-response for SBP as the only primary end-
point. Response refers to a single patient (“responder”): let us assume that a
patient is a responder when the mean of his/her SBP measurements performed
in the final four weeks of treatment (which we call “final mean SBP”) is less
than 90 mmHg, while a patient is a non-responder when his/her final mean SBP
is equal to or greater than 90 mmHg. Next, we move from the single patient to
the treatment group and choose, as the group indicator, the proportion of re-
sponders in the treatment group (given by the ratio between the number of re-
sponders and the total number of subjects in that group). We then move to the
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signal, i.e. to defining the overall effect in comparative terms between treatment
groups: we choose as the signal the ratio between the proportion of responders
in the two treatment groups. Finally, let us assume that we want to perform a
superiority study. As a final step, we must establish the threshold of clinical rel-
evance for the primary signal. We decide that this threshold is 50%, i.e. we con-
sider the difference between groups relevant from a clinical point of view when
the experimental treatment group has a number of responders equal to one and
a half times that of the control group, or more. Any smaller difference is not
clinically meaningful.

From this overview it should be clear that the definition of the treatment ef-
fect we want to study is a conceptually complex process that starts with defin-
ing the aspects of interest of the disease under exam and progresses from the
individual patient to the treatment group and from the individual treatment
group to differences between groups. 

We should point out that there is considerable confusion in the terminology in
this field and the term “end-point” is used to indicate any one of the above men-
tioned steps, both in lay terms and in the scientific literature. 

It is also important to note that in the study protocol the individual compo-
nents contributing to the definition of the signal do not appear one after another
in the logical order described above. For example, the end-points are described
in different sections, including the ones on measurement methods and on statis-
tical methods; the signals are usually defined in the section on objectives and
then covered in depth in the statistical methods section; the group indicators are
generally mentioned only in the statistical section. Nevertheless, the logical
process linking the measurement performed on the single patient to the objec-
tive of the study follows the sequence described above.

Table 4.1 illustrates schematically the use of these elements in the planning of
a superiority clinical trial. 

The ultimate objective is to decide whether, in statistical terms, the estimat-
ed value of the signal stands above the background noise of variability (biologi-
cal and measurement-related), i.e. whether or not it is the expression of a real
effect of the experimental treatment. If we do conclude that the effect is real,
we must still ask ourselves if it is also clinically relevant. To this end, we use the
pre-defined threshold of clinical relevance as a term of reference. 

For an equivalence or non-inferiority study, Table 4.1 must be modified. For
these types of study, the sample size is determined based on the threshold of
clinical non-relevance through techniques that differ from those used for supe-
riority studies. The statistical methods are also different (generally, based on
confidence intervals). In this book we concentrate on superiority studies, unless
specifically indicated otherwise. A brief introduction to the problem of equiva-
lence studies is presented in section 11.1. 

The concepts of the internal validity and external relevance of the trial should
be considered in defining the end-points and signals and in quantifying the sig-
nals. By internal validity, we mean the ability to draw valid comparative con-
clusions, and to derive from these valid conclusions on the causal relationship
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between the treatment and the effect. By external relevance, we mean the
ability to achieve the practical goals that the researchers set for themselves,
such as using the study to achieve regulatory approval of a new treatment, or to
differentiate the profile of the new treatment from that of existing treatments,
to demonstrate health economic value of the new treatment justifying a target
market price, etc.

In section 4.2, we will discuss in greater depth the steps at the level of the sin-
gle patient, which have the goal of defining the end-point. In section 4.3 we will
do the same for the steps at the treatment group level, which have the goal of
defining the signal. Sections 4.4 and 4.5 will be dedicated to statistical consid-
erations (which have a key role in determining the internal validity of the study)
and to marketing and regulatory considerations (which have an important role
in determining the external relevance of the study), respectively. In section 4.6
we will provide another example, more detailed than the one reported above,
which will be useful to illustrate in practical terms some of the concepts intro-
duced at a theoretical level in Section 4.1. In sections 4.7 to 4.9 we will address
some important problems related to the definition of end-points and signals.
The statistical analysis of the end-points and the determination of the sample
size (see Table 4.1) will be discussed further in chapters 5 and 6, respectively.
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Table 4.1. Use of the primary end-point, signal and threshold of clinical relevance in a
superiority clinical trial

Planning phase

End-point Signal Threshold of clinical 

relevance

- 1 - - 2 - - 3 -

The statistical analysis is
planned on the basis of
the end-point. The plan
requires defining the
group indicator, the
method by which groups
are compared (the sig-
nal) and the tests for ver-
ifying its statistical signif-
icance.

Analysis phase

The statistical analysis is carried out on the data obtained from the sample, as described
in -1-. Then the estimate of the signal  as defined in -2- is obtained. 
• If the estimate of the signal stands above the variability in statistical terms, we con-

clude that there is a real effect of the treatment (assuming absence of bias).
• If this estimate is equal to or above the threshold defined in -3-, we conclude that the

effect is clinically relevant.

The signal expresses the ef-
fect of the treatment in
comparative terms. It is typ-
ically defined as the com-
parison between group indi-
cators and is treated as an
unknown entity to be esti-
mated.

The threshold of clinical rel-
evance is necessary for the
construction of the system
of statistical hypotheses as
one of the key components
for the determination of the
size of the study (other cru-
cial elements are the design
of the study and the esti-
mate of the variability of the
end-point). Furthermore, it
serves as  point of reference
for judging the clinical rele-
vance of the result. 



4.2. Identification and Quantification of the 
End-Points (Individual Subject Level)

We will use the terms end-point and outcome variable interchangeably. In the
previous section, we learned that a detailed definition and description of the
measurements to be used for evaluating one or more aspects of the disease of
interest are necessary steps, but not sufficient to define the end-point. This
concept will be illustrated by an example in section 4.6.

4.2.1. Methodological Characteristics of the End-Point

To be methodologically valid, the end-points of a study should be:
• Appropriate to answer the questions set out in the objectives of the study.
• Precisely defined and measurable.
• Hierarchically classified into primary and secondary.
• Statistically analyzable.
• Selected and defined a priori.

Each of these methodological characteristics requires some comment. 

1.First of all, total clarity on the objectives of the study is crucial. The end-

points must “serve” the objectives. The lack of a logical relationship be-
tween objectives and end-points is among the most frequent methodological
weaknesses in research protocols. This can be due to the fact that the design
of protocols involves months of discussion, divergent opinions of experts (re-
al or supposed), and multiple small changes. As a consequence, both objec-
tives and end-points can undergo a slow process of transformation, which can
make them very different from what was initially intended.

2.The end-points must be defined with meticulous precision. An exam-
ple of what this implies is illustrated in section 4.6. They should also be meas-
urable by means of a pre-specified measurement scale. As discussed in sec-
tion 1.3.1, depending on the type of scale used, different variables are ob-
tained, ranging from the nominal categorical (lowest level) to the properly
quantitative (highest level). Any measurement instrument, whether a psy-
chological questionnaire or a psycho-social or quality of life one, an electron-
ic instrument or a mechanical one, must be properly validated before it is
used in a clinical study (see section 4.8).

3.It is essential to hierarchically classify the end-points into primary

(few, possibly only one) and secondary. The selection of the primary

end-points is a methodological imperative. The conclusions from a study
should be drawn from the results of the primary end-points. The results of the
secondary end-points can strengthen or weaken the conclusions and gen-
erate new hypotheses, but never reverse the conclusions. The reasons for
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such categorical statements will be illustrated later in this chapter (section
4.7). Very briefly, the problem is  that with increasing numbers of end-points
and statistical comparisons in the same study, the risk of obtaining false-pos-
itive results increases. In other words, there is an increasing risk of obtaining
results that are statistically significant purely by chance. The selection of a re-
stricted number of primary end-points (ideally only one) and the use of ap-
propriate statistical techniques, reduces such risk to “acceptable levels” (ac-
cording to convention). Having seen the results of the study, under no cir-
cumstance should one give in to the temptation of transforming secondary ob-
jectives and related end-points into primary (and vice versa). Unfortunately,
in our experience, such “exchanges” are not rare, especially in the academic
and pre-clinical environments. This happens not because clinical researchers
in the pharmaceutical industry are more skilled or more honest than their ac-
ademic and pre-clinical colleagues, but because clinical research sponsored
by industry is controlled more rigorously by regulatory authorities. The ethi-
cal and practical implications of such “exchanges” (if made consciously) are
identical to those of the fabrication of data. The a priori definition of the study
objectives and of the hierarchy of the end-points in the study protocols re-
duces the magnitude of this problem.

4.The evaluation of the effect of the treatment on the end-point must

be carried out by means of the statistical analysis. The physician/bi-
ologist and the statistician must work together to obtain from the literature
and from previous studies information concerning the distribution (see chap-
ter 5) of all end-points. This information is necessary in order to design a cor-
rect and complete analysis plan for each of the study end-points. Most impor-
tantly, the statistician must have information on the characteristics and vari-
ability of the distribution of the primary end-point (or end-points if more than
one has been pre-selected as primary) in order to define the sample size, i.e.
how many subjects are required to obtain statistically significant conclusions,
when the experimental treatment is efficacious in the circumstances and un-
der the assumptions defined by the protocol (see chapters 5 and 6). The more
unreliable and fragmentary this information, the more incomplete the analysis
plan and uncertain the conclusion of the study. A variable with unknown dis-
tribution in a population which is at least similar to the study population
should not be used as a primary end-point of a study. This is crucial if the
study is pivotal (see section 4.2.2).

5. All the end-point related aspects described above must be defined a

priori (i.e. before starting the study) and justified and described in the pro-
tocol. A study in which this occurs a posteriori, i.e. after generating the re-
sults, loses its legitimacy, especially if results are “positive”. Clearly, the rea-
son for this is that the researchers must not adjust the end-points to fit the re-
sults. This does not mean that it is wrong to perform unplanned analyses on
data collected in a study. Quite to the contrary, in our opinion, unplanned
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analyses (called post-hoc) are legitimate, as long as they have a purely ex-
ploratory purpose, i.e. the purpose of generating hypotheses, not to confirm
them, and as long as the post-hoc nature of the analysis is clearly declared at
the time of presenting and publishing the results. 

4.2.2 Discriminating between Primary and Secondary 

End-Points and between Efficacy and Safety/Tolerability

End-Points
Must all end-points of all studies have all of the characteristics described above?

Before answering this question let us clarify further the meaning of the terms
“primary” and “secondary” and introduce the terms “confirmatory” and “ex-
ploratory”, often used to qualify the end-points and the objectives of clinical
studies.

We refer to objectives as primary or confirmatory when their aim is to an-
swer conclusively one or more questions. The end-points (possibly only one)
built to verify these objectives are themselves primary or confirmatory. Ob-

jectives are secondary or exploratory when their goal is either to help to in-
terpret the primary objectives or to generate new hypotheses. The end-points

linked to these objectives are themselves secondary or exploratory. In some
circles, the objectives/end-points supporting the primary ones are called sec-
ondary, and those linked to other hypotheses are called exploratory. We will use
the terms secondary and exploratory interchangeably, to indicate all of the non-
primary objectives and end-points.

Often, the terms confirmatory and exploratory are also used to qualify different
types of study. With reference to the phases of clinical research (mentioned in
passing in chapter 1 and properly discussed in chapter 12), phase III studies are
often referred to as confirmatory, whereas phase II studies are referred to as ex-
ploratory. This does not mean that all end-points in phase II are exploratory and
all in phase III are confirmatory. Here the terms confirmatory and exploratory are
used with a different meaning, i.e. to indicate the role of the study in the clinical
development process. In fact, the two phases have different aims, each with con-
firmatory and exploratory objectives and end-points (see chapter 12). 

The aim of phase II studies is to establish the biological activity of the new
treatment and, if pertinent to the treatment, the dose (or doses) to be studied
in phase III, while the aim of phase III studies is to establish the clinical efficacy
and safety. Therefore, the former are generally confirmatory with respect to
end-points derived from laboratory, imaging or instrumental measurements,
while the latter are generally confirmatory with respect to clinical end-points. In
phase II studies, examples of end-points with a confirmatory objective are: the
reduction of tumor volume between the first and last day of treatment (or oth-
er pre-defined evaluation time points) in cancer patients; the mean viral load in
the last month of treatment in HIV patients; diastolic pressure at the final meas-
urement in patients with hypertension; change in the concentration of high-
density lipoproteins (HDL) between the baseline measurement and the mean of
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the last two measurements in patients with heart failure, and so on. In phase III
studies, on the other hand, the confirmatory end-points must reflect a tangible
clinical benefit to the patient, such as survival time and quality of life (see also
section 12.2.4). These kinds of end-points are generally missing or exploratory
in phase II studies. It should be noted that, for some diseases, the end-points of
phase III studies can be the same as those of phase II studies (see also section
4.9). For example, in the development program of a bronchodilator, a valid end-
point both for phase II and phase III studies can be a measurement of the respi-
ratory function such as the area under the time-response curve for forced expi-
ratory volume in 1 second (FEV1) obtained in the last day of treatment and “ad-
justed” (by difference or analysis of co-variance) for the value of the same curve
obtained at baseline. This is possible when the end-point in question is a vali-
dated surrogate (see section 4.9) of a clinically meaningful outcome. Generally,
in these cases, the phase II primary end-point is evaluated over a shorter dura-
tion of time as compared to the same end-point in phase III. For example, in
phase II clinical trials in asthma, FEV1 is evaluated after up to two weeks of
treatment, whereas in phase III trials, it is evalulated at the end of a three to six
month treatment period. Only pilot studies are generally completely ex-
ploratory: they are performed in the early stages of the clinical development
process, when there is not yet enough information to plan a study that leads to
valid conclusions. 

To avoid confusion, we will not refer to a phase III study as confirmatory, but
will use the term pivotal to indicate a study with the purpose of conclusively
answering one or more questions regarding clinical efficacy. The terms confir-
matory and exploratory will be reserved for end-points (as opposed to entire
studies) to indicate the goal of conclusively answering a question and that of
generating hypotheses (i.e. new questions), respectively. Both phase II and
phase III studies can have confirmatory and exploratory end-points.

Let us now return to the question asked at the beginning of the section: must
all end-points of all studies have all of the characteristics described in section
4.2.1? In theory, the answer should be yes. Indeed, all of the end-points must be
appropriate to address at least one of the objectives of the study, all must be hi-
erarchically classified as either primary or secondary; all must be meticulously
defined a priori and analyzable. The only concession made to secondary end-
points (including those of safety and tolerability, see below) concerns the sam-
ple size. Typically, the calculation of the number of subjects to include in a
study (i.e. the sample size) is based only on the primary end-points. It is the
very fact that the sample size is based on the primary end-points that makes
them confirmatory. Because the sample size calculation is not based on the sec-
ondary end-points, the amount of information on their distribution, variability,
etc., to be obtained in the planning phase, can generally be less than that re-
quired for primary end-points.

Nevertheless, one should resist the temptation of defining the end-points in
an approximate way, and of introducing an excessive number of end-points,
even when they are exploratory. It is true that with exploratory end-points the
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consequences of wrong conclusions (i.e. false-positives and false-negatives) are
less serious than for confirmatory ones, since any hypothesis generated by a
positive result must be confirmed by further studies in which the end-point in
question is elevated to primary. But it is also true that no researcher would
want to embark on studies to verify hypotheses that have no foundation (false-
positive), or to discard hypotheses that could be true (false-negative). In addi-
tion, the proliferation of end-points increases the operational complexity of the
study and the likelihood of overall failure (see below). 

The other important distinction to make is that between an efficacy end-

point, and a safety or tolerability end-point. The distinction between the
terms “safety” and “tolerability” is not always straightforward. Broadly speaking,
safety refers to outcomes that may be a true danger for the patient’s health,
whereas tolerability refers to outcomes that are bothersome, but not dangerous.
For example, itching is generally considered a tolerability end-point because, al-
though potentially extremely bothersome for the patient, in itself it is not life
threatening, nor puts the patient at risk of permanent disability. Clearly, there is
a considerable element of subjectivity in this disctintion. Furthermore, in many
situations safety and tolerability are used interchangeably. In every clinical
study the safety and tolerability of the treatments under comparison must be
carefully assessed. Therefore, a number of safety and tolerability end-points are
added to the efficacy ones. 

Safety and tolerability end-points do not tend to be classified as exploratory
or secondary, but in practice are treated as if they were: they generally satisfy
all of the characteristics defined in section 4.2.1, with the exception of the one
illustrated in point 4 (i.e. it is not required to know all of the statistical charac-
teristics necessary for the sample size calculation, since the sample size is not
based on these end-points). Safety/tolerability end-points (few, ideally only
one) are considered primary end-points only if the primary objective of the
study concerns the safety or tolerability of the experimental treatment. 

In our opinion there are three reasons that legitimize treating the safety/tol-
erability end-points as secondary, even if from a clinical point of view they are
not.
1.The first is a practical one: it would be impossible to size the study to account

for all of the safety and tolerability end-points.
The other two reasons are statistical in nature: they are the basis of an ap-
proach to safety and tolerability end-points which is more conservative for the
experimental treatment than for the comparator(s), i.e. tends to favor the lat-
ter. Generally, such is the preferred approach for safety and tolerability end-
points.

2.Whereas for efficacy end-points, false-positives (made more likely by multiple
comparisons) tend to favor the experimental treatment, for safety/tolerability
end-points, these same false-positive results tend to damage it. 

3.For safety/tolerability end-points, the overall goal is generally to demonstrate
that the treatments being compared have similar effects, not that one treat-
ment is superior to the others. This reminds us of the above-mentioned equiv-
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alence and non-inferiority studies. For such studies, the common statistical
analyses are not appropriate, for reasons that can only be clarified later in the
book. Therefore, since the standard statistical test does not apply, the multi-
ple comparison issue does not apply either. An introduction to equivalence
studies, which includes a few specific points on safety/tolerability end-points,
will be presented in chapter 11.

4.3. Identification and Quantification of the Signals 
(Group Level)

We saw in section 4.1 how the final goal of the process is the definition of the
signal for each end-point of the study. In addition, for each end-point selected
as confirmatory or primary (ideally only one, see section 4.7), the difference in
effect between the experimental and control treatment groups that must be ob-
served to declare the result clinically relevant (in a superiority study) or com-
patible with equivalence (in an equivalence study) must be expressed in quan-
titative terms. 

When the measurement scale is quantitative, defining the group indicator and
then the signal can be relatively easy: typically, the so-called measures of cen-
tral tendency, such as the mean, mode, and median are used. For example, if
the measurement is diastolic blood pressure (DPB) expressed in millimeters of
mercury (mm Hg) and the end-point is the difference between DPB measured
at the end of the study and that measured on the same subject at baseline, the
group indicator can be the mean or the median of the DPB differences between
baseline and end-of-study for all subjects in the group, and the signal can be the
difference between the mean or the median of the two groups under compari-
son. Note that with more treatment groups, the transition from group indicator
to signal can become complicated. For instance, if we have more than one ex-
perimental treatment (typically, different doses or formulations of the same ac-
tive principle) and more than one control, we may want to compare a “mathe-
matical elaboration” (for example, the mean) of the means of all experimental
treatments versus the same elaboration of all control groups.

When the measurement scale is qualitative (nominal scale) or semi-quantita-
tive (ordinal scale), the definition of the signal can be more complex. For ex-
ample, let us assume that the measurement scale is “worsened/unchanged/im-
proved” and that the end-point is “responder/non-responder”, having defined as
“responder” a patient that scored “improved” or “unchanged” in each of the last
three visits of the study. The group indicator could be the proportion of respon-
ders and the signal could be the difference between the proportions of respon-
ders in one treatment group and that in the other treatment group. However,
under some circumstances, it is not appropriate or convenient to convert a cat-
egorical variable into a dichotomous one, as we have just done. As an alterna-
tive, we could keep the original 3-category measurement scale of the end-point
(worsened/unchanged/ improved) and change the group indicator to a table of
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frequencies (or percentages), also called contingency table, in which the per-
centage of patients in each category within each treatment is reported (with
100% representing all patients assigned to that treatment). The signal could
then be the difference between the percentages of the groups under compari-
son, category by category.

As stated previously, the signal must be predefined for all the end-points of
the study.

Let us first consider superiority studies. The final step is that of quantifying the
threshold of clinical relevance for each primary signal. Typically, this is done in
terms of the difference between indicators of central tendency (mean, median,
mode). Therefore, variability is not explicitly included in this definition. Never-
theless, in order to be able to discriminate relevant from irrelevant differences,
the researcher must have knowledge of the variability of the end-point. Let us
suppose that the signal is defined as the difference between the mean walking
distances (on a treadmill) at the end of treatment of the two groups under com-
parison. A 50 meter difference will have a completely different meaning if the
variability of the end-point, expressed for example in terms of standard deviation,
is of the order of 100 meters or 1000 meters! Intuitively, the threshold of clinical
relevance for an end-point with high variability must be higher than for one with
low variability. A frequently used pragmatic approach is to define the threshold of
clinical relevance in terms of multiples or submultiples of the standard deviation.
For example, a difference between groups of the order of one half of the standard
deviation is usually accepted as relevant from a clinical point of view.  However,
this can vary enormously from disease to disease.

When the signal is expressed as a difference between frequencies or percent-
ages in a contingency table, the threshold of clinical relevance could be ex-
pressed as a fixed difference, equal in all categories, or as a difference changing
from category to category, always pre-specified in the planning stage.

Equivalence and non-inferiority studies are planned starting from a differ-
ence judged a priori as clinically not relevant. The researcher must therefore es-
tablish this margin of equivalence. The approach is similar to that taken in defin-
ing the threshold of clinical relevance in superiority studies, even though, for
reasons that will be clarified later, the definition of the margin of clinical equiv-
alence for equivalence and non-inferiority studies is more convoluted and com-
plex than that of the threshold of clinical relevance for superiority studies (see
section 11.1). 

4.4. Statistical Considerations 

Statistical considerations do not fall into one specific step in the definition of
end-points and signals: they should accompany biological and medical consid-
erations throughout the entire process, as they are crucial to the internal valid-
ity of the trial. 

Statistical considerations should not take the highest priority, whilst forget-
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ting that the problems addressed are of biological and/or medical nature. For
example, if we choose an end-point only so that we can use a new statistical
method, recently published in a prestigious journal, the choice will probably be
wrong.

However, the opposite attitude is much more frequent and just as wrong. Of-
ten, a primary end-point is chosen of which little or nothing is known in terms of
distribution and variability. When this happens, it would be best to reconsider
the choice made, because many aspects of the design and analysis of the study
will be complicated, difficult to plan and justify correctly. As a consequence, re-
sults will be unreliable. If the chosen variable cannot be changed (for example,
because the alternatives are no better), it will be necessary to make assump-
tions and to establish the threshold of clinical relevance based on the number of
patients that it is reasonable to enroll in the study (see chapter 6). However, no
matter how complicated and frustrating, we must seriously ask ourselves
whether it would not be better to start the process of selecting the signal all
over again, approaching it from a different angle.

The right approach is that of seeing statistics as an indispensable tool for an-
swering the researcher’s questions. The questions are biological and medical in
nature. The statistician helps the physician/biologist to formulate them in a way
that is statistically “manageable”, since the answers are not interpretable with-
out the correct statistical approach. 

With regard to the choice of primary end-point(s), the contribution of the
statistician is two fold: to assess their accuracy and precision (see 1.3.2) and to
define the most appropriate methods of analysis. For example, when the meas-
urement scale is quantitative and the pre-treatment measurements are highly
correlated with the post-treatment ones, an end-point based on the difference
between pre- and post-treatment measurements is more precise, i.e. less vari-
able, than an end-point based on a single measurement taken post-treatment.
Let’s assume that in a study on an antihypertensive agent we measure DBP be-
fore and after the treatment: we must choose whether to base the primary com-
parison on the absolute values of the post-treatment measurements (end-point:
“DBP level after X days of treatment”) or on the difference between pre- and
post-treatment measurements (end-point: “change in DBP after X days of treat-
ment”). Not only medical considerations, but also statistical ones, should guide
the choice between these two end-points. If from previous studies we could es-
timate the correlation between the pre- and post-treatment measurements in a
population similar to that of our study, we would use this information to choose
our end-point: if the correlation is low (for example, less than or equal to 0.5),
we would be inclined to use “DBP level after X days of treatment”; vice versa, if
the correlation is high (for example, greater than 0.5), we would prefer “change
in DBP after X days of treatment” (see for example [39]). This choice is justified
because in the first case the variability of “DBP level after X days of treatment”
is less than that of “change in DBP after X days of treatment”, while the oppo-
site is true in the second case. The inspection of a simple scatter plot of post- vs.
pre-treatment measurements can reveal the degree of correlation between the

4.4. Statistical Considerations 71



two measurements and, therefore, can help to choose the right end-point. When
the measurement scale is categorical, the response can have a non-linear rela-
tionship with the baseline value and, in such cases, the analysis of the changes
from baseline can be problematic. 

Another choice, not always easy, is that between change and percentage
change from baseline. As before, from a statistical point of view, one should
choose the end-point that shows less dependency from pre-treatment meas-
urements. Inspection of scatter plots of change and of percentage changes vs.
pre-treatment values is often sufficient to make this choice. The use of the
wrong end-point may have a negative impact on both accuracy and precision.

A frequently encountered situation in which the statistician has a crucial role
is when the end-point is related to events. How do we transform the “raw” count
of events into the end-point? Should we use the event rate, calculated as the to-
tal number of events divided by the total number of person-years of observation
(e.g. a patient observed for two years is equal to two patient-years)? Or would it
be better to use the total number of events occurring in a given period of time,
grouped in pre-specified classes? Or would the responder status be best, the pa-
tient qualifying as responder if experiencing at least one event? Or would it be
preferable to focus on the time interval from the start of treatment to the first
occurrence of the event? Assuming that in the circumstances of the experiment
all of these potential end-points are clinically meaningful, statistical considera-
tions will help in making the choice. These will be influenced by whether it is
best to hypothesize a constant or variable rate for the observation period,
whether the event of interest is rare or frequent, whether or not the events oc-
cur in an independent and random fashion, and so on. This information is cru-
cial to allow the statistician to recommend the most appropriate end-point, be it
dichotomous or categorical, a numerical count or related to survival. 

If we decide to change from a continuous end-point to a dichotomous one, for
instance from the continuous variable “reduction of LDL (low density lipopro-
tein) cholesterol” to the dichotomous variable “LDL reduction above or below a
given threshold”, we must realize that the power of the statistical test to be used
in the latter case may be reduced  (see chapters 5 and 6).

The statistician guides the definition of the group indicator because it de-
pends to a large extent on the type and shape of the distribution of the end-
point (see chapter 5). However, in this case, too, the collaboration between
statistician and physician/biologist is precious, since the latter must always
check that the statistical approach is intelligible. If the choice of the group indi-
cator is perfect from the point of view of statistical properties, but is not under-
stood by the majority of non-statisticians, what good is it? 

Finally, the statistician must help the physician/biologist to define the signal.
Generally, the contribution of the statistician is that of recommending the defi-
nition that maximizes the power and precision of the study, i.e. its ability to dis-
tinguish the signal from the background noise. Sometimes the statistical model
behind the “best” signal may be very complex. In this case, the statistician must
make sure that the signal (and the estimate that will be obtained for it) is easy

72 4. Defining the Treatment Effect



to interpret by the health professional who is not statistically inclined. Obvious-
ly, in all of this, the statistician must constantly pay attention to the numerical
aspects of the study. For example, in studies with dichotomous end-points
(such as success/failure), the statistician must remind the physician/biologist
that the relative risk, i.e. the ratio between the absolute risks, is preferable to
the difference between absolute risks when the true proportions of successes in
the groups under comparison are very small. On the contrary, the odds ratio
(see section 3.1.2), which is often appealing to the statistician for its mathe-
matical features, suffers sometimes in interpretability on the side of the physi-
cian/biologist.

4.5. Practical, Regulatory, Marketing 
and Pharmaco-Economic Considerations

As stated above, statistical considerations are fundamental to choosing end-
points and signals because they guarantee the internal validity of a clinical
study. However, practical considerations are also very important and should
never be forgotten. A sure recipe for failure is over-complicating the protocol of
a study. This can happen in many ways, for example by including too many
end-points, imposing complex and invasive measurements which require an ex-
cessive effort on the part of the patients and staff, defining abstruse signals not
easily interpretable by those who will assess the final results, and so on. In our
search for the optimal design, we must always strive for the greatest possible
level of simplification. 

It is evident that the external relevance of the study should be kept in mind
when choosing end-points and signals. In this context, external relevance means
that the conclusions of our study must be relevant to the “external world”. For
example, they must be useful for achieving the approval of the product by reg-
ulatory authorities, a reasonable price and/or reimbursement by payers, a good
positioning versus competitors, etc. In real life, regulatory, marketing and phar-
maco-economic considerations receive great attention, especially if the study is
sponsored by a pharmaceutical company. What is the benefit of performing a
methodologically “perfect” study with a primary end-point that is not accepted
by the regulatory authorities, and therefore does not contribute to the registra-
tion of the treatment? What is the point of performing a study that contributes
to the registration of an unmarketable drug? Obviously, these considerations
play a role not only in the choice of end-points and signals, but in all aspects of
the trial that contribute to defining the target product profile

We will start with the regulatory aspects. General methodological guide-
lines exist, many released by the International Conference of Harmonization
(ICH). In addition, several  regulatory authorities, especially the US Food and
Drug Administration (FDA) and the European Medicines Agency (EMEA) have
released a number of therapeutic area-specific guidelines. The interested read-
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er can consult the web-sites www.fda.gov and www.emea.eu.int. Let us sup-
pose, for example, that we are planning a pivotal phase III study in patients with
mild Alzheimer’s disease and that we select symptomatic improvement as the
therapeutic level of our experimental treatment (i.e. we have no ambition of
curing or modifying the natural course of the disease). A guideline released in
July 1997 by the Efficacy Working Party of the EMEA [35] provides the mini-
mum regulatory requirements for a symptomatic treatment to be considered ef-
ficacious in Alzheimer’s disease: each of two independent studies must show a
statistically significant difference for two pre-defined primary end-points, one
measuring the cognitive ability of the patient and the other reflecting the clini-
cal relevance of the cognitive improvement, in terms of ability to function (ac-
tivities of daily life), or overall status  (overall clinical evaluation). The require-
ment of statistical significance for both end-points eliminates the problem of
statistical multiplicity (see section 4.7). The guideline neither specifies how the
signals should be defined, nor indicates the threshold of clinical relevance. If the
“activities of daily life” end-point is chosen as co-primary, together with cogni-
tive ability, the “overall clinical evaluation” end-point can be included among the
secondary ones, together with individual symptoms, and vice-versa. However,
the guideline warns that, in order to claim efficacy for any individual symptom,
an additional pivotal study in which the chosen end-point is declared as primary
must be performed. The guideline does not impose the use of specific measure-
ment instruments, but does highlight some features that must be taken into ac-
count in choosing these instruments (validation, sensitivity, precision, relation-
ship between complexity of administration and type of patients under study,
etc.) and does mention some suitable assessment scales, such as the ADAS
(Alzheimer’s Disease Assessment Scale) for the cognitive domain and the CDR
(Clinical Dementia Rating) scale for the overall clinical evaluation.

Generally the regulatory guidelines reflect the current level of knowledge of
the scientific community (they are often developed following a “Consensus Con-
ference”). Therefore, it is unlikely that the physician and statistician, having ac-
curately studied the literature and addressed in depth the basic questions both
medically and statistically, reach conclusions contrary to the content of these
documents. In fact, it is often convenient to start the literature search from the
references reported in the regulatory guidelines. If in doubt, it is good practice
to discuss with the regulatory authority directly. 

The importance of the marketing aspects for a pharmaceutical company is
self-evident. Marketing decisions require not only an in-depth knowledge of the
therapeutic state of the art, but also insight on future trends in the area and on
activities of competitors. Let us suppose we are developing an antihypertensive
drug to be administered daily. Two pivotal studies are ongoing with the aim of
confirming a mean reduction of 10 mmHg at the end of 10 days of treatment.
While the studies are underway, we discover that another company is develop-
ing a similar compound, also administered daily, for which the predicted effect
is a mean reduction of 20 mmHg in 10 days. What do we do? Do we throw every-
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thing away? Pretend we do not know and continue as planned? It is intuitive
that solutions to this kind of situation are not easy and that there is no cook-
book formula to give to the reader. Situations like this require a 360-degree
analysis of the problem, which is to involve experts in many fields and to include
a reassessment of the therapeutic level that our compound could potentially tar-
get. It could be that our treatment, in addition to reducing the mean blood pres-
sure, could also reduce sudden pressure peaks and prevent the complications
that arise from them. If data support this hypothesis, it could be appropriate to
start a new study in which the primary end-point measures this aspect, for ex-
ample the number of times (in a predefined number of measurements) DBP is
below a certain threshold (clearly, measurements must be as frequent as possi-
ble in order to detect transient events). Alternatively, it could be logical to di-
rectly measure the most severe complications, such as those requiring hospital-
ization: the primary end-points of the new study could be the number of hospi-
talizations and their mean duration. A different approach could be to study the
safety profiles of the two treatments, if we believe that the competitor’s product
has problems that our product does not have. If so, an additional study with a
safety primary end-point could be a reasonable approach. 

Pharmaco-economic end-points (see section 4.9) are often included in
phase III pivotal studies, even though they are generally not primary. Their use
has been increasingly frequent in recent years, as the requirements for pricing
and reimbursement of pharmaceuticals have become more and more stringent.
These days, most pricing and reimbursement authorities explicitly request
pharmaco-economic data.

4.6. Selection and Characterization of the Primary 
End-Point and Signal: an Example

In this section we will illustrate the process of selection and characterization of
the primary end-point and corresponding signal through an example taken from
the field of respiratory medicine. We will follow the sequence of steps (grouped
in stages) introduced in section 4.1. 

We are responsible for the development of a new inhaled corticosteroid and
wish to evaluate its efficacy in the treatment of asthma. To simplify matters, we
shall ignore the evaluation of safety and tolerability.

4.6.1. Stage One: Define the Main Therapeutic Level

The first and fundamental step is that of choosing the main therapeutic lev-
el that the treatment will target. Do we want to cure asthma, i.e. completely
eliminate the disease, as is the case of antibiotics with some infections? Or do
we want to reduce the frequency of severe asthma attacks, which are so dan-
gerous for the patient and often require hospitalization? Or do we want to sim-
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ply improve the symptoms of the patient? These three examples represent
three different therapeutic levels at which the treatment could theoretically
aim.

Therapeutic levels frequently used in clinical research include the following:
prevention, cure, mortality, survival time, remission time, frequency and/or du-
ration of exacerbations, frequency and/or duration of hospitalizations, clinical
symptoms and signs (symptomatic treatment), quality of life, direct and/or in-
direct costs. The main therapeutic level for which we want to demonstrate effi-
cacy is only occasionally obvious, as in the case of a generic copy of an existing
drug. Instead, in most cases this fundamental choice is far from obvious and re-
quires an in depth evaluation encompassing the pharmacological properties (if
the treatment is a drug), the complexity of the treatment, the unmet therapeu-
tic needs of the disease and the risk one is willing to take (in both scientific and
financial terms). For pharmaceutical companies (who develop the vast majority
of drugs), the expected financial return plays a very important role in the choice
of the therapeutic area and of the main therapeutic level. Key determinants of
the return on investments are: the prevalence of the disease (market size), the
market price and level of reimbursement likely to be granted by payers (private
insurance companies and public health care systems), the profit margin (which
in turn is determined by many factors, including the cost of goods and the ex-
penses for development and marketing). The fact that the drug development
has one foot in science and the other in marketing is ethically challenging for
many researchers, young and not so young (including the authors of this book). 

Returning to our new corticosteroid, we know that the inhaled steroids avail-
able on the market (beclomethasone, budesonide, fluticasone, etc.) are effec-
tive in reducing asthma symptoms as well as the frequency of the exacerbations
in the majority of patients. However, we also know that a small but meaningful
percentage of asthma patients (5-10%) responds poorly to inhaled corticos-
teroids. These patients are prone to serious, sometimes lethal, attacks which are
responsible for the majority of hospitalizations and direct and indirect costs
caused by this disease. Let us suppose that the results of in vitro and in vivo ex-
periments performed before starting clinical trials indicate that the action of our
compound on airway inflammation is stronger than that of fluticasone, and that
recently completed clinical studies show a trend towards reduction of severe
exacerbations. We may have a drug that meets a real medical need (steroid-re-
sistant asthma) with important socio-economic implications. The market inter-
est for a drug that is effective in this population is high and the company is
ready to invest in a study with the aim of confirming the potential of this new
corticosteroid on severe exacerbations. These practical and scientific consider-
ations compel us to choose the reduction of severe exacerbations as the primary
therapeutic level of the study. Naturally, we will also be interested in exploring
the potential of our drug at other therapeutic levels, both “higher” (for example,
mortality) and “lower” (for example daily symptoms). However, it is absolutely
essential to decide on one principal therapeutic level, from which the primary
end-points and signals (ideally only one) will be derived. The primary thera-
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peutic level will also influence in a decisive way the design of the study (patient
selection, duration, control treatments, etc.). Furthermore, it is necessary to
consider the problem of multiple comparisons (see section 4.7) from the very
beginning of the planning process. 

4.6.2. Stage Two: Define the Primary End-Point 

(Individual Patient Level)

The choice of the main therapeutic level represents a first and decisive step to-
wards the definition of the overall response to be submitted to hypothesis test-
ing, i.e. the signal. In our case, prevention of severe asthma attacks is the level
at which we want to attack the disease. Next, we must define precisely  the pri-
mary end-points, which must allow measurement of the efficacy of the treat-
ment at the chosen therapeutic level in the individual patient. For reasons that
will be discussed in section 4.7, it is imperative to minimize the number of pri-
mary end-points, typically to one or two at most. Let’s assume we agree to have
only one primary end-point. 

Before continuing with this example, we would like to emphasize once more
the importance of referring to guidelines which are accepted by the scientific
and regulatory community, resisting the temptation of “doing it ourselves”. In
the case of asthma, the guideline of the Global INitiative for Asthma (GINA,
www.ginasthma.com) is an obligatory reference. 

First of all, the measurement procedures must be defined (2nd step). What
constitutes a “severe attack”? How is it measured? We decide to use respiratory
function to define the onset and severity of an asthma attack. Among the many
possible measurements, we choose the Peak Expiratory Flow Rate (PEFR) for
the following reasons: 
1.PEFR is a frequently used variable in clinical practice and clinical research;

therefore, data on its distribution and variability in asthma patients are avail-
able.

2.There is a clear correlation between the level of PEFR (generally expressed
as a percentage of the “normal” value in healthy subjects of the same race, age
and sex, or as a percentage of the “optimal” value for the patient) and the
severity of clinical symptoms.

3.The instrument for measuring PEFR (peak flow meter) is portable and easy to
use, so that the patient him/herself can measure PEFR one or more times a
day at home or work, this being indispensable for detecting the onset of an at-
tack.

4.The peak flow meter is inexpensive.
As illustrated in this example, clinical, statistical and practical considerations

come into play in choosing the primary end-point. It is extremely important to
consider each of these components. The practical ones are especially prone to
be overlooked by researchers in the planning phase. Practical difficulties later
can turn into a nightmare. Had we chosen for measuring respiratory function
the spirometer, a more expensive and complex instrument than the peak flow
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meter, would we have been able to provide one to each patient? And would the
patients have been able to use it? 

Having chosen PEFR as the measurement, we must decide how it should be
used to detect a severe attack. Based on the literature (especially the national
and international guidelines) and on experience (in the absence of a standard
criterion), we decide to define an asthma attack (exacerbation) as “severe”
when PEFR measured in the morning by the patient decreases below 60% of
the patient’s optimal value for two or more consecutive days (the optimal value
is to be established for each patient in the early phase of the study, before treat-
ment begins). A new attack will have to be separated from the previous one by
at least three days with morning PEFR values greater than or equal to 60% of
optimal value; consequently episodes separated by less than three days will be
considered part of the same attack. The example illustrates another important
concept: when the phenomenon to be measured is an event, it is critical to es-
tablish the criteria defining its beginning and end, since both the number of
events and their duration depend on these criteria. If during the course of one
week a patient has a morning PEFR below 60% of optimal value on Monday,
Tuesday, Thursday, and Friday, how many severe attacks should be assigned to
that patient? Four? Two? One? Using our definition, the patient will have had
only one severe asthma attack, since the two pairs of consecutive days with
morning PEFR below 60% are separated by less than three days. 

At this point we must move from the measurement to the end-point, which, as
we have learned, is the single summary variable which expresses the response
to the treatment for one patient (3rd step). We could express the end-point in
terms of “responder”/ ”non-responder” (patient with or without severe attacks
for the entire course of the study, respectively), or as the mean number of at-
tacks per patient per month or year (rate), or as the yearly rate of attacks ad-
justed by the number of days in which the patient is at risk, etcetera. In our ex-
ample, the researcher chooses this last option. To clarify, let us suppose that a
patient experiences three severe attacks during the 90-day course of the study
and that the total number of days with severe attacks is 10. The end-point for
this patient will be obtained by the ratio between 3 and 80, 80 being the differ-
ence between the duration of the study and the number of days in which the pa-
tient has severe attacks (i.e. 80 is the number of days in which the patient is at
risk of developing an attack), the result multiplied by 365.6 (to annualize the
rate). The value of the end-point for this patient will then be equal to 13.7 se-
vere attacks per year at risk. 

In summary, the primary end-point chosen for our study is the yearly rate of
severe asthma attacks adjusted for the days in which the patient is at risk (for
brevity, we will refer to our primary end-point as the “annualized rate of severe
attacks”), where a severe attack is defined by morning PEFR values less than
60% of the patient’s optimal value for two or more consecutive days. A new at-
tack must be separated from the previous one by three or more days with morn-
ing PEFR values greater than or equal to 60% of the optimal value. 

78 4. Defining the Treatment Effect



4.6.3. Stages Three and Four: Define the Group Indicator, 

the Signal, and the Threshold of Clinical Relevance 

(Treatment Group and Study Levels)

At this point we should move from the single patient to the treatment group and
then from the single treatment group to the comparison between treatment
groups. How will we “synthesize” the end-point in each of the treatment groups
(group indicator, 4th step)? How will we express this quantity in comparative
terms between two treatment groups (the signal, 5th step)? One approach
could be to synthesize the end-point in each treatment group by calculating the
mean of all individual values in the group and express the signal as the differ-
ence between the group means. Another approach could be to choose the me-
dian as the group indicator and express the signal as the difference between
group medians. In our example, we decide to use the mean as group indicator
and to express the signal as the ratio of group means (mean annualized rate of
the group treated with the new corticosteroid divided by the mean annualized
rate of the control group). A result equal to 1 would indicate that the treatments
are equivalent; a result below 1 would indicate the superiority of the group re-
ceiving the experimental treatment; a result above 1 would indicate that the
control group is superior.

The 6th step is to order hierarchically the end-points and respective signals,
identifying the primary one(s), which in our example we have already done (we
are assuming that the study has several other end-points which we treat as sec-
ondary). Having decided to show superiority of our new steroid over fluticas-
one, the 7th and final step is to decide the threshold of clinical relevance for
the primary end-point, i.e. how large must the difference be between the re-
sponse to the new treatment and that of the control treatment, to be considered
clinically relevant. As pointed out in section 4.3, this threshold must be ex-
pressed in quantitative terms. Let us return to our example. If our new corti-
costeroid were to reduce the mean annualized rate of severe asthma attacks by
0.1% compared to the standard treatment (i.e. prevent 1 attack in 1000), would
we be satisfied as researchers? If we were the health authority, would we ap-
prove the drug? If we were the reimbursement authority, would we be willing to
recommend it for reimbursement? And if we were patients, would we be willing
to buy it, paying a price higher than that of the drug that we are usually taking?
The answer to all of these questions would probably be “no”.  What if the re-
duction was 1%? 5%? Clearly this choice is important and difficult. Knowledge
of the variability of the end-point in the absence of treatment (and/or in the
presence of the standard treatment) can be very useful in establishing the
threshold of clinical relevance: if the literature suggests that fluctuations of 3-
4% in the yearly rate of severe attacks are common, it would be reasonable to
choose as our threshold of clinical relevance a difference between the treat-
ments under comparison of at least 5%. However, other considerations must en-
ter into play, most importantly the severity of the disease and the therapeutic
level that the treatment aims to achieve. A much lower threshold of clinical rel-
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evance will be acceptable for a treatment aiming at curing AIDS compared to
one aiming at treating symptoms of allergic rhinitis! Finally, as usual, practical
considerations are of great importance. 

As we will see in chapter 6, all other considerations being equal, the smaller the
threshold of clinical relevance, the greater the sample size must be, i.e. the num-
ber of patients to be included in the study. Choosing a threshold of clinical rele-
vance that is too small can be a disastrous error, resulting in a study of little clin-
ical interest that is very complex and costly, and ultimately unethical!

For our new corticosteroid, after careful evaluation we decide that the
threshold of clinical relevance is 10%, i.e., in order to declare the success, the
new steroid group must reduce the annualized rate of severe asthma attacks by
at least 10% compared to the control group. In other words, the signal must be
less than or equal to 0.9.

Let us assume that the results of the study show that the mean annualized rate
of severe attacks is 19.2 in the group treated with the new corticosteroid and 27.4
in the control group. Thus, the effect of the experimental treatment is 0.7, indi-
cating a 30% reduction in the number of severe asthma attacks in the group
treated with the new corticosteroid compared to the group treated with fluticas-
one (control treatment). This is below (i.e. better than) the predefined threshold
of clinical relevance. In conclusion, our data lead us to believe that our new treat-
ment is promising compared to the standard one (which we have used as con-
trol). Therefore, we decide to continue the development of the new compound. 

Finally, if we decide to use more than one primary end-point in the same
study (this does not apply to our example), the complex question of multiple
comparisons, which will be presented in section 4.7, must be faced. 

It should be noted that the same process must be followed for each of the
secondary end-points and signals that we decide to include in the study, with
the possible exception of the definition of the threshold of clinical relevance
(but some would argue for predefined thresholds of clinical relevance for sec-
ondary end-points as well).

This example illustrates how much attention must be paid to defining the
end-points of a study and the corresponding signals. Unfortunately, however,
the study protocol often provides only a “shopping list” of measurements. No ef-
fort is made in the protocol to define how the measurements are transformed in-
to end-points and the end-points into signals, or to identify one or more end-
points as primary, or to define how to evaluate the treatment with respect to the
chosen end-points. 

4.7. More Than One Question in the Same Study: 
the Problem of Multiple Statistical Tests

The scientific and logistical complexity of clinical research, the very high costs,
and the long duration are such that many clinical studies are unique events, un-
likely to be repeated. It is therefore typical and completely understandable that
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a long list of questions (each representing a potential objective) and end-points
is put forward when the planning of a study begins and grows even longer as the
planning continues. It is equally typical (and equally understandable) that the in-
vestigators do not want to limit themselves to comparing one experimental treat-
ment with only one control, but would rather have more (for example, a placebo
and an active control, or 3-4 different doses of the experimental drug). Returning
to the example of the previous section, even if we consider only the comparison
between the experimental treatment and one active control, and only the pri-
mary objective (severe asthma attacks), it would be very interesting to examine
severe attacks, not only in terms of changes in lung function (PEFR in our case),
but also in terms of hospitalizations. We would then have two primary endpoints: 
1.Annualized rate of episodes, as defined by a predefined reduction of PEFR.
2.Annualized rate of episodes, as defined by an admission to hospital. 

Furthermore, as mentioned at the beginning of section 4.6, we would proba-
bly also be interested in evaluating other dimensions of the effect of our new
corticosteroid (different therapeutic levels and/or different aspects of the same
therapeutic level), such as the effect on nocturnal symptoms, quality of life, tol-
erability, etc. Clearly, each of the selected dimensions can in turn be explored
through multiple end-points. In addition, in a study of long duration, many vari-
ables are measured more than once. 

As a consequence, it is very common for a single study to envisage dozens of
questions (objectives) and end-points and hundreds of measurements for each
patient.

The problem of multiple end-points and resulting multiple statistical tests

is one of the most critical and complex in the field of clinical research method-
ology. In summary, multiple statistical tests can derive from the combination, in
the same study, of three “multipliers”:
1.Multiple objectives, from which multiple end-points and signals are derived.
2.Multiple measurements of the same variable analyzed individually (i.e. not

combined into a single summary variable for each patient), resulting in multi-
ple end-points for the same type of measurement.

3.More than two treatments, resulting in multiple signals for the same end-
point.
An in-depth discussion of the problems underlying multiple comparisons is

beyond the aims of this book. Therefore, we will provide only a brief overview.
The problem can be deconstructed into three main components: statistical

methodology, clinical interpretation and practical feasibility.

Statistical methodology. The inclusion in a single study of multiple end-
points (and corresponding signals) of equal importance carries a “price to pay”
in order to reduce the danger of false-positives, i.e. of statistically significant re-
sults favoring the experimental treatment when in fact no true difference from
the control exists (results due to chance). This problem occurs when the pre-
defined decision rule allows success to be claimed when even only one (or
some) of the multiple comparisons yields a significant result. Instead, if the de-
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cision rule requires that all of the comparisons must be significant to declare
success, there is no additional price to pay: in this case, the probability of false-
positives will not increase (in fact it decreases). These concepts will be better
understood after reading chapter 5, in which the logic of the statistical testing is
discussed. Here we provide a few rules, which for the moment the reader must
accept “in faith”. 
• All other conditions being equal, the threshold of statistical significance of

each test must decrease, as the number of primary comparisons (and there-
fore of statistical tests) increases, unless a statistically significant result is re-
quired for all of them (see above). The threshold of statistical significance is
typically 0.05 (i.e. 5%). In order to claim that a treatment “wins” over anoth-
er in statistical terms, the outcome of the statistical test must not exceed the
threshold of statistical significance. Thus, reducing this threshold makes sta-
tistical “success” more difficult. This is the “price to pay” mentioned above,
defined in statistical terms as adjustment for multiplicity. A reduction of
the threshold of statistical significance for each test will either cause a de-
crease of the probability of success of the study, if the sample size is main-
tained unchanged, or an increase in the sample size, if the probability of suc-
cess is to remain unchanged.

• As a consequence, assuming that the other conditions remain unchanged, the
number of subjects to be included in the study must increase as the number
of comparisons to be submitted to statistical testing increases (see chapter 6).

• The statistical methods needed to overcome these problems are often quite
complex. This fact should not be underestimated, because the communication
between statistical and biomedical disciplines becomes more difficult and of-
ten the quality of the final product (i.e. the correct interpretation of the re-
sults) suffers. 
The above reasons explain why a hierarchical classification of end-points into

primary and secondary is imperative in the planning of clinical trials. 
It should be noted that in practice the problem of multiple comparisons is re-

stricted to the primary end-points. Conceptually, secondary end-points cannot
be used to confirm hypotheses and therefore lie outside the problem of multiple
comparisons. Nevertheless, when results from many tests are interpreted, even
if only for the purpose of generating hypotheses, it is always a good idea to
keep the problem of multiplicity in mind.

The ideal situation from a methodological point of view is that of only one
primary end-point, translated into one signal and one statistical comparison be-
tween treatments. In our experience this “methodological purity” is not always
achieved (often for very good reasons, see above). The farther we are from the
ideal situation, i.e. the more end-points and comparisons we use for confirma-
tory purposes, the more serious are the methodological issues that must be ad-
dressed.

Clinical interpretation. The greater the number of end-points, the harder
the overall interpretation of the results will be, unless we obtain homogeneous
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results for all of the end-points (a rare event!). Returning to our example, let us
suppose that we give in to the insistence of our colleagues and elevate the an-
nual hospitalization rate to the status of primary end-point (we have two now),
without defining a decision-making rule to establish the success of the study.
The corresponding primary signal will be, for example, the ratio between the
mean values of this rate in the two groups under comparison (of course we will
need to define precisely the threshold of clinical relevance, as for the other pri-
mary end point). Let us suppose that, at the end of the study, we find that our
new corticosteroid is superior to the control treatment based on one primary
end-point (severe asthma attacks defined by PEFR) but not on the other (se-
vere asthma attacks defined by hospitalization). What is our conclusion? Does
the new drug work or not? It is clear that it is necessary to define in advance the
decision-making rules, allowing for all possible combinations of results. In the
example, we could decide that both end-points must be significant, or that at
least one of them must be significant and the other not show a conflicting trend,
etc. Each of these solutions leads to a different sample size of the study. As
should be clear by now, things are difficult enough with two primary end-points;
with more than two, predefining the criteria for success becomes extremely
complex.

Practical feasibility. The quality of any experiment depends on the quali-
ty of the data collected. There is no defense against data of poor quality (miss-
ing data, transcription errors, systematic measurement errors, etc.). The oper-
ational, logistic, and data management issues of a clinical study are beyond the
purpose of this book. However, we must remind the reader that these issues are
complex, requiring sophisticated specialist competencies and experience, and
that their importance is often underestimated, if not ignored completely, by
physicians, biologists and clinical scientists in general. A study with dozens of
end-points, many of which are measured repeatedly, requires burdensome case
record forms and generates an enormous amount of data. All data must be en-
tered into the database by manual typing or electronic transfer. Thereafter, the
data must be “cleaned”, a somewhat unsophisticated term, but one that de-
scribes the process very well: the data manager must find missing data, correct
obvious errors, ask the investigator to correct mistakes and reconcile conflicting
entries, etc. Each of these steps is prone to errors and there will always be a
breaking point, beyond which the errors will be so numerous as to compromise
the quality of the study. When this happens, the inclusion of numerous second-
ary end-points, which originally had the aim of widening our knowledge by mak-
ing the best use of the study, ends up reducing (or destroying) the reliability of
the results, including those of the primary end-points, with the final outcome of
making the worst possible use of the study.
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4.8. Validation of Measurement Scales

The term validation is often abused or used with an ill-defined meaning. In
fact, this term has  precise technical meanings which, however, may differ in dif-
ferent disciplines. When applied to processes (computerized or not), validation
indicates “a documented program which provides a high degree of assurance
that a specific process will consistently produce a product meeting its prede-
termined specification and quality attributes” [17]. When applied to analytical
methods (for example, the assay measuring the concentration of a compound in
biological fluids), validation must demonstrate that the procedure under evalu-
ation is able to predict accurately and precisely the concentration of the com-
pound. Therefore, validation indicates “a documented program which provides
a high degree of assurance that the analytical method will consistently result in
a recovery and precision within predetermined specifications and limits” [17].
The “documented program” is also standardized, as the main elements it must
comprise are precisely defined. 

When considering measurement scales, the definition of validation is less
standardized. If the reader were to perform a literature search on validation of
measurement scales, he/she would find a very heterogeneous series of papers,
which recommend different types of information to support the validation of a
measurement scale. As we cannot cover this topic in any reasonable detail, we
will briefly touch upon the minimum requirements to validate a measurement
scale.

Any measurement scale must be validated through dedicated studies, per-
formed on a well-defined patient population, following a pre-specified protocol.
These studies have three key objectives:
• Obtain information on the types of mistakes made with a given measurement

scale.
• Obtain information on the behavior of the scale when repeated measurements

are taken in the absence of any change in the subject’s health status (preci-
sion and reproducibility).

• Evaluate the ability of the scale to detect clinically relevant changes of the
subject’s health status (responsiveness).
As for all other biomedical studies, a comparative logic is applied in validation

studies. The new measurement scale is compared with the one considered the
best, because of scientific merit or (more often) because it is the one most com-
monly used (the reference scale is sometimes referred to as the “gold stan-
dard”).

The first objective is met through the following assessments: 
• Sensitivity and specificity of the scale, if pertinent (see section 1.4).
• Internal consistency, when the scale is a questionnaire with multiple ques-

tions, for example, using an index  known as Cronbach alpha coefficient [4].
• Distribution of the new scale in the population of interest (shape and basic

parameters, see section 5).
• Degree of agreement between the new scale and the gold standard. On this
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topic we refer to a paper by Bland and Altman [14], where the authors ele-
gantly explain why the correlation coefficient should not be used to measure
the degree of agreement between two measurements and present a more ap-
propriate approach for obtaining this type of information.
Moving on to the second objective, the best way to obtain information on the
reproducibility of a scale is to plan for multiple measurements on each sub-
ject, taken close enough in time that changes in health status are unlikely.
Two types of information should generally be acquired: the intra-observer

reproducibility (measurements repeated on the same subject by the same
observer) and the inter-observer reproducibility (measurements repeated
on the same subject by different observers). Clearly, a scale that allows high
reproducibility (i.e. low variability) of repeated measurements is desirable.
The level of reproducibility of the scale also influences the degree of agree-

ment between the new scale and the reference scale (the gold standard): if a
scale has low reproducibility, i.e. if repeated measurements obtained with this
scale have high variability, the degree of agreement between the two methods of
measurement will also be low [14]. 

Finally, to meet the third objective, we must obtain a measure of the associa-
tion between the changes over time of the scale being studied and the changes
over time of other indicators of the subjects’ health status (e.g. clinical tests, the
gold standard scale). Therefore, the study must be planned so that the meas-
urements of interest are repeated over a time frame sufficient to detect changes
in the subjects’ health status. 

4.9. Special Types of End-Points

Before concluding this chapter, it is important to discuss briefly the following
special types of end-points: surrogate, composite, quality of life, and pharmaco-
economic.

The so-called surrogate end-points are indicators of biological activity
(“biomarkers”) capable of replacing a clinical end-point.

We report the definition of biomarker, clinical end-point and surrogate end-
point given by the “Biomarkers Definition Working Group” of the US National
Institute of Health (NIH) [13], together with some examples.
1.A biomarker is defined as “a characteristic that is objectively measured and

evaluated as an indicator of normal biological processes, pathogenic process-
es, or pharmacologic responses to a therapeutic intervention”. For example,
the plasma concentration of the enzymes angiotensin I, angiotensin II, renin,
and the hormone aldosterone are biomarkers of one of the pathological
processes leading to arterial hypertension. The blood levels (number/mL) of
CD4+ lymphocytes and of the HIV virus (HIV viral load) are biomarkers of the
progression of the HIV infection.

2.A clinical end-point is “a characteristic or variable that reflects how a pa-
tient feels, functions, or survives”. In patients with hypertension, examples of
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clinical end-points are mortality from myocardial infarction, from all cardio-
vascular accidents and from all causes. In patients with HIV infection, clinical
end-points are the length of time between conversion to HIV positive serum
and diagnosis of full-blown AIDS or death, mortality from opportunistic infec-
tion and mortality from all causes. 

3.A surrogate marker (or end-point) is “a biomarker that is intended to sub-
stitute for a clinical end-point. A surrogate end-point is expected to predict
clinical benefit or harm (or lack of benefit or harm)”. Arterial blood pressure
is a surrogate end-point (partial, see below) of mortality from cardiovascular
accidents, while blood levels of CD4+ lymphocytes is a surrogate end-point
(again partial, see below) of the overall mortality in HIV/AIDS patients.
The interest in surrogate end-points in clinical research stems from the fact

that sometimes they allow conclusions to be reached about the efficacy (or tol-
erability) of a treatment more rapidly than would be possible using the corre-
sponding clinical end-point. This is especially important when a new treatment
targets diseases with no cure and high mortality. Naturally, the validity of the
conclusions based on a surrogate end-point depends on the validity of the sur-
rogate.  The “perfect” surrogate end-point has two fundamental characteristics
[4, 83]: 
1. It is highly correlated with the corresponding clinical end-point.
2. It is capable of capturing completely the “net effect” of a treatment on the

corresponding clinical end-point, where “net effect” indicates the overall ef-
fect resulting from all mechanisms of action of the treatment. 
While there are many biomarkers that can satisfy the first criterion, none can

really satisfy the second one, i.e. so far no biomarker has proven capable of
completely capturing the “net effect” of a treatment on a clinical end-point. Col-
burn, in a paper of 2003 [25], states that “as more than 100,000 proteins are in
the human body and most, if not all, act on a variety of biological processes, why
should a single protein biomarker provide that kind of insight?” Returning to the
example of the blood levels of CD4+ lymphocytes in HIV/AIDS, this biomarker is
a weak surrogate of survival time in HIV infection: in fact, it can explain no
more than 30% of the net effect of the antiretroviral treatments on survival [25].
Strictly speaking, therefore, CD4+ lymphocyte blood level is not a surrogate
end-point.

In some cases, the effect of the mechanism of action captured by a biomarker
is so partial with respect to the multiplicity of mechanisms of action of the
treatment that it points in a direction which is opposite to the net effect of the
treatment on the clinical end-point. For example, sodium fluoride increases
bone density (biomarker), but it also increases the risk of bone fractures (clini-
cal end-point) in postmenopausal women with osteoporosis, instead of decreas-
ing it as one might expect. This occurs because the mechanism of action cap-
tured by the biomarker (increase in bone density), which should increase the
mechanical resistance of bone, is not only antagonized, but reversed by other
mechanisms of action of the treatment which are not captured by this biomark-
er and act more powerfully in the opposite direction.  In the example, it was
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demonstrated that fluoride not only increases bone density, but also modifies
the bone architecture in a manner that reduces its resistance. 

Acknowledging the impossibility of reaching the perfect surrogate, in clinical
practice a less rigorous definition of surrogate end-point is accepted, in the
sense that a biomarker that captures even partially the net effect of the treat-
ment on the clinical end-point is elevated to the rank of surrogate end-point.
The proportion of the net effect that must be captured by a biomarker to con-
sider it a surrogate end-point is an arbitrary decision. For example, according to
the FDA, the blood level of CD4+ lymphocytes cannot be considered a surro-
gate. Generally, it is only through clusters of partial surrogate end-points that
the perfect surrogate is approached. These clusters are examples of composite
end-points, which we will touch upon later in this section. The combination of
blood levels of CD4+ lymphocytes and of viral load appears to capture approxi-
mately 70% of the net effect of antiviral drugs on the survival time. It is for this
reason that the FDA accepted such a cluster of biomarkers as a surrogate end-
point of survival time in pivotal studies in HIV infection/AIDS [25]. 

Composite end-points are variables built by combining different end-points
with the purpose of obtaining a single summary end-point. It is obvious that this
combination cannot be just a simple numerical exercise, but it must have a clin-
ical meaning. This technique is frequently applied to evaluations of the quality
of life (see below), and when the end-points are events. For example, in a car-
diovascular study the individual end-points could be death, myocardial infarc-
tion and other cardiac events requiring hospitalization; in such a study the com-
posite end-point could be the onset of any one of these events. The main ad-
vantage of using composite end-points is the increase in the statistical power of
the study (see chapter 5), for two reasons. First, when each individual end-
point has a low incidence, the composite end-point will have a higher incidence:
in these circumstances, the treatment difference that can be considered of clin-
ical relevance is bigger than in the case of low expected incidences. Second, the
problem of multiple comparisons is reduced (or eliminated). The main disad-
vantage is the difficulty in interpreting the results of the composite end-point
when the effect of the treatment is not homogeneous in all of the individual end-
points that contribute to the composite one. 

In the last 20 years, there has been a tendency in clinical research to pay more
attention to the patient’s perception of quality of life. Quality of life is by def-
inition a multidimensional concept, which encompasses clinical symptoms,
mood, level of physical, intellectual, social activity, etc. A typical instrument for
evaluating quality of life, therefore, includes different sections, called domains
or dimensions, each intended to measure a specific aspect through a series of
questions. A scale is associated with each question, typically a score ranging be-
tween two extremes, where one extreme represents the worst condition (for
example, disfiguring lesions and stigmatization, making social interaction al-
most impossible), while the other extreme represents the best condition (for
example, no impact of the disease on social interaction). Generally, the scores
of the individual questions constituting each domain are summed; domains are
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then combined (sometimes by simple sums, other times by using a weighing
system) to obtain a global score, a typical example of a composite end-point. It
is crucial to use validated quality of life questionnaires (see section 4.8). Quali-
ty of life questionnaires are generally classified as generic or specific for the dis-
ease under study. Frequently used questionnaires belonging to the first catego-
ry are the SF-36 [102], the Sickness Impact Profile [10] and the Nottingham
Health Profile [58]. These questionnaires are very useful when it is not known
on what dimension the treatment under study acts and when comparisons
across different diseases are to be made, as health policy makers often must do.
However, because these instruments are relatively poor in capturing changes in
the health status of the patient, disease-specific questionnaires are often used.
A vast literature on quality of life in clinical trials exists: among the many excel-
lent papers, we recommend the one by Fletcher et al [41].

Finally, we shall briefly touch upon the so-called pharmaco-economic end-

points. These end-points allow the evaluation of direct and indirect costs (for
example, linked to introduction of a new treatment on the market) and the as-
sessment of efficacy vs. costs or more broadly of benefits vs. risks, taking into
account not only clinical efficacy and safety, but also economic and organiza-
tional aspects. There is no consensus as to which are the most relevant phar-
maco-economic end-points. Among the most commonly used are the following:
frequency and duration of hospitalizations, frequency and duration of absence
from work, gain in years of life adjusted for quality of life (Quality-Adjusted Life
Years, QALY), time with neither symptoms from the disease nor toxicity from
treatments, again adjusted for quality of life (Quality adjustment to Time With-
out Symptoms of disease and Toxicity, Q-TWIST). The last two indexes com-
bine the concepts of quality of life with that of survival. On this topic we recom-
mend the article by Powe and Griffiths [82].

Summary

The definition of the effect of a treatment is a conceptually complex process
that starts with defining the aspects of interest of the disease and then proceeds
in progressive steps to define, for each aspect of interest, the measurements to
be performed on each patient, the variable that summarizes the measurements
in the individual patient (the end-point), the group indicator and, finally, the
overall effect expressed in comparative terms between two treatment groups
(the signal).

The confirmatory (primary) end-points must have all of the characteristics
defined in section 4.2.1. Primary end-points are generally related to efficacy.
The exploratory (secondary) end-points must have the same characteristics,
except the one concerning the sample size, as the size of a study is not based on
secondary end-points. The more the end-points depart from these characteris-
tics, the more cautious one must be in interpreting the results, even when they
serve only to generate new hypotheses.
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In practice, safety and tolerability end-points are treated as secondary, even
though, from a clinical point of view, they are not. The reason why this is gen-
erally considered acceptable is because the potential error made by not order-
ing the safety/tolerability end-points hierarchically is of a conservative type,
that is to say, it works against the experimental treatment. 

The process of defining the end-points and signals has several leading actors:
the physician/biologist, the statistician, regulatory, marketing and pharmaco-
economic experts.

Measurement scales must be validated prior to be used in clinical studies.
Validation requires that information be collected on the errors that can occur in
a single measurement (for example through analysis of the sensitivity and speci-
ficity of the scale and the characterization of the distribution of results in the
population of interest), as well as in repeated measurements on the same sub-
ject. In addition, the scale should be assessed for its ability to capture clinically
relevant changes in the health status of the patient and for the degree of agree-
ment with a previously validated reference scale (gold standard).

Surrogate end-points, used frequently in clinical practice, are instrumental or
laboratory measurements used as substitutes for clinically relevant end-points,
i.e. end-points that measure directly how the patient feels, functions, survives.
The validity of surrogate end-points must be evaluated carefully before using
them in clinical trials. Composite end-points and quality of life questionnaires
are other frequently used types of end-points. Pharmaco-economic end-points
are increasingly used in clinical trials; these end-points have the goal of assess-
ing the relationship between costs and benefits of treatments and ultimately of
evaluating the sustainability of a newly marketed treatment by a given health
care system.
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5
Probability, Inference and 
Decision Making 

In writing this chapter we have three special debts of gratitude to acknowledge.
One is to Professor Theodore Colton for the frequentist approach, outlined with
simplicity and rigor in his textbook on clinical trials [26]. The second is to
Professor Ludovico Piccinato, of the University of Rome, since our outline of the
Bayesian approach is based on one of his books [76] and on a presentation he
and one of the authors gave to a medical audience on the comparison between
the Bayesian and frequentist approaches. The third is to Professor Adelchi
Azzalini, of the University of Padua, for his precious suggestions and advice.

We will start this chapter with an example. The result of a clinical study on
patients with intermittent claudication demonstrated that the mean walking
distance on a treadmill was 472 meters for patients who received treatment A
and 405 meters for patients who received treatment B. Having documented a
mean difference of 67 meters in favor of treatment A, can we conclude that
treatment A is superior to treatment B under the conditions of the study?
Furthermore, if we do conclude that treatment A is better than treatment B,
should every doctor prescribe treatment A to his/her next patient with inter-
mittent claudication?

The first is a typical question of inference: what conclusions can we draw on
the overall population from the results of our study?

The second question concerns decision making: what treatment should we
choose for our next patient, based on the information obtained from the pres-
ent study and from previous studies on the same topic?

The feature common to the two questions is that the answers are given with
a degree of uncertainty. The level of uncertainty will be different in different
circumstances, but very rarely will it be absent. If the level of uncertainty is low,



the conclusions will be strong. Thus any decision based on such conclusions or
“evidence” will be reliable. Vice versa, if the level of uncertainty is high, the con-
clusions will be weak, at times impossible to reach. Thus any decision based on
such conclusions will be questionable, because it will not be based on evidence,
but on experience, instinct, faith, or quite simply on chance.

From what was stated above, we can understand how important is it to meas-
ure the degree of uncertainty. The probability theory provides us with tools and
methods to make these kinds of measurements. Any detailed discussion of this
theory is beyond the boundaries of this book. In this chapter we will only intro-
duce some key concepts on probability, inference and decision making. In sum-
marizing numerous concepts in the relatively short span of this chapter, we will
touch upon many of them in a superficial manner, with emphasis on the logical
rather than the mathematical aspects. The reader interested in delving deeper
into the topics covered in this chapter and in the practical aspects of conduct-
ing statistical analyses should refer to the above mentioned textbook by Colton
and to that by Armitage and Berry [3] for the frequentist approach, to the book
by Berry [12] and an article by Parmar et al [74] for the Bayesian approach. A
comprehensive overview of Bayesian methods applied to clinical and epidemi-
ological studies is offered by the recent book by Spiegelhalter, Abrams and
Myles [97]. For Bayesian applications in oncology, we recommend Tan et al [98]
and for applications to rare diseases Spiegelhalter et al [96]. 

This chapter ends with a section on the so-called “Evidence-Based Medicine”,
which gives special importance to the methodological aspects of decision mak-
ing under conditions of uncertainty. 

5.1. Probability

5.1.1. Definitions

What do we mean by probability? Although we all have an intuitive sense of
what probability is, it is very difficult to define it properly. In giving a definition,
we must ensure that it reflects our intuitive understanding of the concept, but
also that it is operationally useful, i.e. it allows the necessary mathematical pro-
cedures.

Many definitions have been given, none of which are completely satisfactory.
Here we will present two of them, the “frequentist” and the “subjective”. We
will build the definitions around a specific event, namely a complete recovery
from a disease after treatment.

In the frequentist approach, the probability of an event is defined as the rela-
tive frequency at which the event occurs in an infinite (or very long) series of
tests repeated under identical (or very similar) conditions. The relative fre-
quency is the ratio between the number of tests where the event occurs and the
total number of tests performed. This frequency approximates the probability as
the number of tests performed under similar conditions increases. In our exam-
ple, a single test consists of treating one patient and recording whether he/she
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recovers (the event happens) or not (the event does not happen). The relative
frequency of recovery is the ratio between the number of patients who recover
and the total number of patients studied. The probability is the relative fre-
quency we would obtain if we could hypothetically evaluate the results from an
infinite number of tests performed under identical conditions. Based on this def-
inition, the probability can take numerical values between 0 and 1. Often it is
expressed as a percentage, with values between 0 and 100%.

In the second approach, the “subjective” one, probability is defined as “the
level of trust that a person has that an event will occur”. This definition is much
broader than the previous one (it also applies to events for which it is very diffi-
cult to perform repeated tests, even conceptually), but it has the shortcomings
of being neither operational nor adaptable to real life. One way to remedy these
shortcomings is to adapt the definition to the betting world. With this approach,
the probability of an event is defined as “the sum of money one is willing to bet
to receive 1 if the event happens and 0 if it does not. The probabilities of events
should be assigned so that it is not possible, in a set of bets, to surely win or sure-
ly loose” [29]. If we apply this definition to our example, the probability of recov-
ery is no longer seen as an objective documentation of a fact, but as a subjective
evaluation of the value of the treatment, based on all available information. This
evaluation is expressed in terms of the amount of risk one is willing to run in a
hypothetical fair bet on whether or not the event “recovery” will occur.

Table 5.1. Laws (or axioms) of probability forming the basis of probability theory

• For each event, the probability of it happening is equal to or greater than 0.

• If the event is certain, the probability of it happening is 1.

• Given two non-compatible events (that is, they cannot happen at the same time), the
probability that at least one of them will happen is represented by the sum of the prob-
abilities of each event happening.

Assuming the laws described in Table 5.1, both definitions have an opera-
tional content that allows to construct the entire mathematical system under-
lying the probability theory.

To the non-expert reader it may seem incredible that the whole mathematical
system behind the probability theory, which allows to address the most diverse
and complex probabilistic situations, is based on the simple rules reported in Table
5.1! This is indeed the case, but we will make no attempt to elaborate further.

5.1.2. Probability Distribution and Probability Density
Function

Let us return to variables affected by uncertainty. First, we shall try to link
the concept of probability with these variables, by using clinical research ter-
minology and examples.

Let us consider a generic end-point (outcome variable), which we will indi-
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cate as X. As a remainder, the concept of end-point is covered in detail in chap-
ter 4: briefly, it is a precisely defined indicator of the health status of a single
patient, affected by a specific disease and undergoing a specific treatment. For
example, in hypertension, X could be the change from baseline to the end of the
treatment of the patient’s diastolic blood pressure, measured with a sphygmo-
manometer under preestablished conditions. In rheumatoid arthritis, X could
be the mean of a predetermined number of pain scores, measured on a prede-
termined scale and obtained at predetermined intervals during the treatment.
In peripheral arterial disease or intermittent claudication, X could be the walk-
ing distance, measured at the end of the study on a treadmill (of a specific
model, with defined characteristics, etc.). 

We mentioned in section 1.1.3 that, in the jargon of statistics, X is called a
variable. More precisely it is defined as a random variable, where the term
random indicates the uncertainty relatively to the specific value that the vari-
able will take in a given patient, in a given experiment, at a given time, etc.
Conventionally, the random variable is represented by a capital letter, while its
specific values are represented by the same letter, but in low case. In this chap-
ter the terms random variable, outcome variable and end-point will be used
interchangeably, however we will try to use the first one when discussing
methodology, and the other two when dealing with applications.

The random variable X will take different values x1, x2… in the different units
of the population. A population is defined as the totality of subjects (units) who
have a predefined set of characteristics. For example, the totality of patients in
the world who have high blood pressure constitutes the “population of patients
with hypertension”; all patients with diastolic blood pressure above 110 mmHg
(the accepted limit for severe hypertension) make up the “population of patients
with severe diastolic hypertension”. Usually it is not possible to observe an entire
population, which therefore is a theoretical concept. However, this does not
mean that the concept of population is not useful. On the contrary, it serves the
important purpose of providing the logical frame of reference in which we can
place and give meaning to the individual measurements. 

In order to express and quantify the uncertainty with which the random vari-
able X takes its specific values, it is given a probability distribution. A probabil-
ity distribution can be visualized as the ordered sequence, from smallest to
greatest, of all of the values that the variable can hypothetically take, each value
being assigned the probability of it occurring.

Before developing this concept further, we should mention that it is very use-
ful to be able to summarize probability distributions with a mathematical
expression or formula, capable of linking every x value of X to its probability of
occurring. This mathematical expression is called a function and it is general-
ly indicated by f(x). Once the mathematical expression is known, it is possible
to illustrate the function graphically by placing the x values that the variable X
can take on the horizontal axis (abscissa), and the corresponding f(x) values on
the vertical axis (ordinate). By graphically representing all pairs of values (x,

f(x)), the curve is obtained.
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If we take the frequentist approach and assume we can observe the entire
population, the probability of each of the values that a random variable can take
in this population is equal to the relative frequency of this value. Depending on
whether the random variable is discrete or continuous (see section 1.3.1), its
probability distribution will also be discrete or continuous. By convention, the
probability distributions of categorical or discrete variables are generally indi-
cated with the letter p, while those of continuous variables, with the letter f.

To introduce discrete distributions we shall start with a very simple exper-
iment consisting of three coin tosses. We define the end-point (X) of this exper-
iment as the total number of heads in three independent throws of a coin,
assuming that the coin is not loaded, i.e. head and tail have the same probabil-
ity of occurring, equal to 0.5. This is a discrete variable, because its values are
whole numbers. Figure 5.1 illustrates all of the different values that the variable
X can take, the probability of each value (given by the ratio between the num-
ber of cases favorable to the event “head” and the total number of cases), and
the graphic representation of the two sets of data.

All possible results Probability of Values that X Probability

of 3 tosses each result  can take distribution of X

1.  T,T,T 1/8

2.  T,T,H 1/8

3.  T,H,T 1/8 0 (result # 1.) 1/8

4.  H,T,T 1/8 1 (results # 2.,3.,4.) 3/8

5.  T,H,H 1/8 2 (results # 5., 6.,7.) 3/8

6.  H,T,H 1/8 3 (result # 8.) 1/8

7.  H,H,T 1/8

8   H,H,H 1/8
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3/8

2/8
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0 1 2 3 x

Figure 5.1. Probability distribution of the random discrete variable “number of heads in
three independent tosses of a coin”



The graphic representation is obtained by placing the ordered values of X
(from smallest to greatest) on the horizontal axis, and the relative frequency
with which each value occurs in the population on the vertical axis (note: in this
case the population is represented by the 8 possible outcomes). The result is a
bar diagram, graphically representing the probability distribution of the vari-
able X in the population. The variable used in the example is a particular case
of the random variable X= number of successes in N independent tests,
where N can take whole values 1,2, … and the probability of success is π. By
setting N=3 and π=0.5 we obtain the case used in the example above. The dis-

tribution of this variable is called binomial and can be represented with
graphs similar to the one in Figure 5.1, the shape depending on the values of N
and π. This kind of distribution varies between 0 and N, where N can be any
positive whole number.

It is important to stress that in discrete distributions, the ordinate of each
value represents the probability of that value. 

To introduce continuous distributions we will consider the random vari-
able X = diastolic blood pressure (DBP) in the population. This variable is
continuous because the values it can take are a continuum without any restric-
tion. In constructing its probability distribution let us proceed step by step. We
shall apply an empirical method, starting with a small group. We measure DBP
in a group of 100 individuals, then order the 100 values from the smallest to the
greatest and finally group them in intervals of 5 mmHg. We can represent the
probability distribution of DBP for this group of individuals with a histogram in
which the 5 mmHg intervals are on the horizontal axis and each interval is asso-
ciated with a rectangle, the basis of which is the interval itself and the area of
which is the relative frequency of the interval, as shown in Figure 5.2, part a. 

We shall now expand the sample from 100 to 1000 individuals and group the
DBP values in smaller intervals, for example of 2 mmHg width. Repeating the
procedure described above, we obtain the histogram shown in Figure 5.2, part b.

If we were to repeat the same procedure many times, each time in a larger
group of individuals and using smaller intervals, the histogram would have nar-
rower and narrower “steps”, progressively approximating a continuous curve.
The final stage, that of a curve without “steps”, indeed a continuous curve, is
the probability distribution of the variable DBP in the population (see Figure
5.2, part c), called probability density distribution or probability densi-

ty function.
An example of this distribution is the normal or Gaussian distribution,

previously mentioned in section 1.3.1 and shown in Figure 1.1. This distribution
varies between – ∞ and + ∞ (where the symbol ∞ stands for infinite).

It is important to note that the probability distribution (discrete case) and the
probability density function (continuous case) are theoretical. They refer to
hypothetical populations, which cannot be actually observed.

In the example above, we started with empirical probability distributions, cal-
culated on larger and larger samples. We then had to make a conceptual leap,
and to imagine an infinitely large sample and infinitely small intervals in order
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(continued) The height of each 
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Figure 5.2. Probability density function of the continuous random variable diastolic
blood pressure (DBP) in the population



to get to the concept of probability density function. Empirical distributions are
approximations of theoretical distributions: the larger the sample, the closer
the approximation. 

The set of probability distributions or density functions defined by a given
function are called a family. For example, the curves shown in Figure 1.1 are
characterized by the same mathematical expression,

thus belong to the family of normal distributions.

Note: in this expression π represents a mathematical constant approxima-

tely equal to 3.14 and the expression is approximately equal to

. Also note that in the arithmetical notation the formula ab

means a multiplied by b, i.e. the multiplication sign is omitted. 

To characterize a particular distribution within a family, the so-called param-
eters are needed. Parameters are quantities which, by taking different values,
determine variations of the shape, the width and/or the position of the specific
curve within the family. If we take the family of normal distributions as an exam-
ple, there are two parameters: the mean, indicated by μ, and the variance, indi-
cated by σ2. By varying these, we can obtain the entire family of normal distri-
butions. Likewise, to identify a specific distribution we only need to specify the
values of μ and σ2: μ defines the center of the distribution, therefore determines
the position of the bell-shaped curve, while σ2 defines the spread of the obser-
vations around the center, therefore determines the width of the bell. These
concepts are shown in Figure 1.1. The normal distribution characterized by the
pair of parameters μ=0 and σ2=1 is called standard normal distribution and

its mathematical expression is . 

The family of binomial distributions also has two parameters: the number of
tests, N, and the probability of a successful result, indicated by π. By changing
these, we can obtain the entire family of binomial distributions, while to identi-
fy a specific distribution we need to specify the values of N and π.1
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1. The binomial distribution has the following expression: 

where,                                                                        , the so-called binomial coefficient, repre-

sents the number of different cases in which x successes can occur in N tests, that is, the num-
ber of groups of x successful outcomes that can be formed with N elements, so that each
group differs from the other by at least one element. It is a distribution used in the medical field
when dealing with dichotomous end-points (see section 5.4.2).
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Whereas in the case of a discrete distribution, the probability of each value is
represented by its level on the ordinate, in the case of a continuous distribu-
tion, the probability of each single value is always equal to zero. The ordinates
of the probability density function are not probabilities, but probability densi-
ties. It is possible, though, to calculate the probability of sets of values includ-
ed in a given interval, for example all of the values included between a given
lower extreme, xinf (inf = inferior) and upper extreme, xsup (sup = superior).
These probabilities are represented by the corresponding “area under the
curve”, delimited at the base by the section of the abscissa between xinf and xsup,
at the sides by two vertical lines intersecting xinf and xsup and at the top by the
segment of the probability curve included between the two vertical lines. In
mathematics, the measure of this area is called an integral. For example, con-
sidering the standard normal curve shown in Figure 5.3, the area under the
curve of the section between xinf = -1.96 and xsup = +1.96 is 0.95. This area rep-
resents the probability of the values included in the base of the area, namely of
the values between –1.96 and +1.96.

In order to get an intuitive idea of why, in continuous distributions, the prob-
abilities of the single values are zero, while those of the areas are measurable
and different from zero, the reader can think of a density measurement in the
medical field, for example the number of malignant cells per unit of tissue area.
If the unit of tissue area considered is infinitesimal, the number of cells is zero;
however, as soon as the unit of tissue area becomes different from zero, even if
still very small, the number of cells counted can be different from zero.
Something very similar happens with probability density.

Both for discrete and continuous distributions, the total area under the curve
is 1, because the probability of the variable X assuming a value included in the
interval of all of its possible values is 1 (100% of the probabilities).

For both kinds of probability distribution, knowledge of the mathematical
expression of the curve makes it possible to calculate the areas of specific sec-
tions of the curve. As we will see later, this is of fundamental importance to per-
forming statistical tests. In practice, instead of the mathematical expression of
the curve, probability tables are often used containing pre-calculated areas for
sections of interest. The probability table for the standard normal curve is
enclosed in the appendix as an example. This table reports the areas included
between the values of xinf =0 and xsup= any positive value up to 3.99. Using this
table, we can find the areas included between any two values by taking advan-
tage of the symmetry of the curve with respect to the zero value (because of
this property, the area of half of the curve is 0.5 and any area between xinf =0
and xsup =+z is equal to the area between xinf =-z and xsup =0). For example, if
we want to use this table to calculate the area included between the values of
xinf = -1.96 and xsup = +1.96, we first find the value 1.96 by taking together the
value 1.9 in the first column and the value 6 (the second decimal of interest) in
the header. At the intersection of these two values, we find 0.475, which is the
area included between xinf =0 and xsup = +1.96. The area that we are interested
in can then be obtained by multiplying 0.475 by two (because of the symmetry
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of the normal curve, the area between xinf = -1.96 and xsup =0 is equal to that
between xinf =0 and xsup = +1.96): the result is an area equal to 0.95. 

Figure 5.3. Normal distribution with a mean of 0 and a standard deviation of 1 (stan-
dard normal curve)

For simplicity we will use the term probability distribution for both discrete
and continuous distributions, except when doing so would cause confusion.

5.1.3. Normal or Gaussian Distribution

The reason why we have given so much attention to the normal distribution is
that it is frequently used in the biomedical field. The reasons can be summa-
rized as follows.
• Empirically, the distribution of many outcome variables in the biomedical

field approximates the shape of this theoretical distribution. Examples of
such variables include the levels of many substances in the blood (choles-
terol, uric acid, etc.), systolic and diastolic blood pressure in the general pop-
ulation, body weight, walking distance on a treadmill with variable slope, and
many more.

• In many other cases, even if the shape of the empirical distribution is not
normal, it is possible to “normalize” it, that is to make it approximately nor-
mal, with simple transformations of the data, for example by applying a loga-
rithmic transformation. Examples of such values are pain measured with a
visual analog scale (VAS), walking distance assessed on a treadmill with fixed
slope, etc.

• Finally, the theorem of central limit ensures that for large samples, whatever
the distribution of the variable X, the distribution of the sample mean X� (and
consequently of the difference between the means of two independent sam-
ples) will tend to approximate the normal distribution, the more so the big-
ger the sample size.
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The statistician should be the one to answer questions like “how large should
a sample be to reasonably assume that the variable X or the sample mean X�
have a normal distribution?”, because, unfortunately, there is no straightfor-
ward recipe one can apply. When the original variable X is not normally dis-
tributed, samples well over 100 may be required for the distribution of X� to
approximate a normal distribution.

Usually, the normal distribution is used to describe continuous variables with
a symmetrical distribution, bell shaped, i.e. in which the observations have the
same probability of being above or below the mean and a higher probability of
being close to the mean than far from it.

It is important to point out that the normal distribution has a central role in
statistics, in the sense that many techniques are based on this distribution.
However, this does not mean that all methods of statistical analysis are based
on the normal distribution. On the contrary, statistical analyses can be per-
formed with many other kinds of distribution, although often more complex cal-
culations are required.

5.2. Basic Concepts of Inference

Inference is a very broad area of statistics on which thousands of books and
articles have been written. In section 2.1, we briefly defined it as the set of
operations allowing conclusions made on a sample to be extended to the entire
population from which the sample was taken.

The branch of statistics concerning the conditions under which this “jump”
from sample to population is valid is called inferential or inductive statis-

tics, as opposed to descriptive statistics which focuses on describing or
summarizing a given group, without drawing conclusions on the underlying
population.

We will start with an experiment in only one sample, a single group of
patients to whom the experimental treatment is administered. Generally, this
kind of experiment is performed to assess the treatment effect expressed as a
difference between before and after treatment (in chapter 8 we will discuss the
limitations of such a choice). To simplify matters, we will use only two meas-
urements to evaluate the effect of a compound on a hypothetical population
affected by intermittent claudication: each patient will have the walking dis-
tance measured in a standardized way on a treadmill with variable slope, before
the start and immediately after the end of treatment. The end-point is the dif-
ference between the measurement at the end of treatment and that at baseline.
We shall indicate this end-point with X and assume that an appropriate group
indicator for this end-point is the mean (see chapter 4). We indicate with μ the
mean calculated on the whole hypothetical population of patients undergoing
the treatment of interest. In the terminology of statistical inference, μ is a
parameter. Since we cannot measure every unit constituting the population, we
cannot truly “calculate” this mean. What we can do is “estimate” it, using a sam-
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ple taken from the population. We are not interested in this sample as such. We
are only interested in it insofar it allows us to estimate the result we would
obtain if it were possible to perform the same experiment on the entire popu-
lation.

To be able to extend the results observed on the sample to the underlying
population, the former must be representative of the latter, that is, every type
of subject (experimental unit) composing the population must be proportional-
ly represented in the sample. The method generally used to obtain a represen-
tative sample is that of choosing the experimental units of the sample random-
ly from the population. This method ensures that any difference between the
units included in the sample and those not included will only be due to chance;
thus there will be no “systematic” difference between the two groups  (see sec-
tion 1.3.2) with respect to known and unknown factors, that could potentially
be correlated with the object of the study, in our case the treadmill walking dis-
tance. One might wonder why it is necessary to randomly extract the experi-
mental units from the population. If we were to proceed systematically, rather
than randomly, we could make sure that every type of subject represented in
the population is properly represented in the sample. The problem is that, to do
so, we would need to know the composition of the population. But, since in
most cases we do not know it, we cannot develop a rational method to ensure
representativeness. Thus we delegate the task to chance, which is the best tool
when there are unknown factors (we will come back to this topic in chapter 9,
when we discuss randomization). Besides the sampling method, it is intuitive
that the size of the sample must also play an important role. All other conditions
being the same, the larger the sample relative to the population, the more like-
ly it is that the units included in the sample are representative of all the units
of the population. 

It is equally intuitive that even in a very large and representative sample, we
cannot expect to get exactly the same result for the chosen end-point that we
would get in the whole population, if it were possible to evaluate all its units.
Statistical inference must take into account this element of variability. In the
example above, we estimate μ, the mean of the end-point X (where X = differ-
ence between walking distance at the end of the treatment and that at baseline)
in the population of subjects treated with the compound of interest, by using
the mean of the same end-point in the sample, which we indicated with X�. We
cannot expect that in every sample X� is identical to μ.

Before continuing, we must introduce the case of two or more samples.

Inference problems with two or more samples are in fact much more frequent in
clinical research than those with just one sample. In this context, inference prob-
lems often consist of verifying whether it is legitimate to extend to the underly-
ing populations the difference in response observed between two or more groups
(samples) of experimental units (patients or healthy volunteers), each undergo-
ing a different treatment (in each group the response must be summarized by an
appropriate group indicator such as the mean, the median, etc.).

Let us imagine that we want to compare k treatments, where k is greater than
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or equal to 2. If k identical populations affected by the disease of interest were
available and we could treat all of the units in each of these populations with
one of the k treatments, we would not need statistical inference. Having treat-
ed the k populations with the different treatments, we could measure the
response in all of the units, summarize the observed results for each population
with an appropriate statistical indicator, for example the mean of the response
(if it is quantitative) or the proportion of a certain type of event (if the response
is dichotomous) and finally numerically compare the values of these indicators.
Assuming that the best response is the greatest one (as is the case with walk-
ing distance), the best treatment would be the one for which the value of the
indicator is greater. 

It is obvious however that, in the vast majority of cases, we cannot treat all of
the units of the k populations. What we can do is to extract from each popula-
tion a sample of units and observe the results at the end of the treatment. What
is done, in practice, is to extract a sample from the overall population affected
by the disease of interest and randomly assign (through randomization, see
chapter 9) its units (subjects) to the k treatments of interest. From a method-
ological point of view, this is equivalent to considering k populations, each
hypothetically treated with one of the treatments, and extracting from each one
a sample for the study. 

For simplicity, we will assume that there are only two groups to be compared
and that the two treatments are an active compound (which we will indicate
with A) and a placebo (which we will indicate with P). We will also assume that
the end-point X is the walking distance measured at the end of the study, with
mean equal to μA in the population treated with A and mean equal to μP in the
population treated with P. We would like to be able to calculate μA and μP and
ultimately the difference δμ = μA – μP, but since we cannot treat and measure the
whole populations treatable with A and P, we measure the end-point X in each
unit of the two samples and calculate the means of these measurements in each
group. We indicate with X�A and X�P the means of the samples A and P respec-
tively, and with them we attempt to estimate μA and μP.

As with one group it was unreasonable to expect that μ = X� in every sample,
with two groups it is unreasonable to expect that μA = X�A and μP = X�P (or, equiv-
alently, that μA – μP = X�A – X�P) for every pair of samples.

Using the terminology of statistical inference, the difference between the two
population means (δμ = μA – μP), which expresses the true treatment effect, is
the unknown quantity we must estimate. The difference between the sample
means (dμ = X�A – X�P) is the estimator or statistic (in fact, it is one of the pos-
sible estimators of δμ). In clinical terms, we defined δμ as the signal (see chap-
ter 4). The single value for dμ observed in the sample, indicated with dobs, is
called the sample value of the statistic or the estimate of δμ.

In summary, parameters are indicated with Greek letters, estimators with
lower-case letters (with the exception of the sample mean which is indicated
with X�), while subscripts are used as an aid to the reader: for example, the sym-
bol δμ reminds one that the population difference in question relates to means
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(i.e. μA – μP), while the symbol dobs reminds that the difference is between
“observed” values. Finally, by convention, the estimate of a parameter is indi-
cated with the sign ∧ above the letter indicating that parameter, therefore, in
our case, we could use the symbol δ̂μ to indicate the estimate of δμ. Therefore,
using these conventions we have δ̂μ = dobs.

To verify whether the observed difference in response between the two sam-
ples, each receiving a different treatment, can be extended to the underlying
populations, we must answer the following questions:
1. Is the observed difference due to chance (seen as a set of accidental factors)?
2. If we accept that the difference is not due to chance, is it really caused by the

treatments?
3. If we accept that the difference is caused by the treatments, is it clinically rel-

evant?
One must refer to the theory of hypothesis testing to answer question 1

and to the estimation theory to answer question 3, whereas question 2 can-
not be answered using statistical methods. Indeed, the possibility exists that
the observed difference, even if not due to chance, is not due to the treatments,
but to a bias, i.e. to a repeated, systematic error which always occurs in the
same direction and consequently always favors the same group, independently
of the treatment (see chapter 1). Statistical methods can only give some indi-
cation regarding the presence of bias, but cannot answer question 2 in a defin-
itive way (see also section 9.1). A more complete and reliable answer to this
question can only be given through a correct planning and conduct of the study:
only in this way can one be reasonably certain that the observed result is not
affected by bias. 

Statistical inference encompasses both the problem of hypothesis verification
and that of estimation, and it cannot be separated from the planning of the study. 

5.2.1. Hypothesis Testing and Statistical Formulation 

of the Medical Question

The traditional instrument for hypothesis testing is the statistical test. 
The reasoning behind hypothesis testing starts with the formulation of the so-

called null hypothesis on the difference between the two treatments under
study. Typically, the null hypothesis represents the opposite of what we are
hoping to demonstrate with the experiment. The reason for this will be clarified
later (see section 5.5.1). Going back to the example of walking distance, where
we hope to demonstrate that μA is greater than μP (i.e. that the active com-
pound induces an improvement in walking distance compared to placebo), the
null hypothesis (identified with H0) is: 

H0 : μA = μP

or, expressed in terms of the difference between μA and μP (that is, in terms of
δμ):

H0 : δμ = 0
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In other words, the null hypothesis states that there is no difference between
the mean effect of A and that of P on the walking distance measured at the end
of the treatment, that is to say that A is an ineffective treatment. 

The so-called alternative hypothesis (H1) is formulated to complement the
null hypothesis, so that if one is not true, the other must be. 

The alternative hypothesis can be one of two types. If one assumes that the
presumed active treatment can be either better or worse than the placebo, both
possibilities must be considered in the alternative hypothesis. In this case the
alternative hypothesis is:

H1 : δμ ≠ 0
This hypothesis is called bidirectional.
If instead, one does not admit that the presumed active treatment could be

worse than the placebo, the alternative hypothesis in our example becomes:
H1 : δμ > 0

This hypothesis is called unidirectional. Note that in this case the entire
part of the scale which includes values less than or equal to zero favors the null
hypothesis and goes against the alternative hypothesis. 

Naturally, in a different situation superiority of the active treatment over
placebo can be translated into a mean value for the active treatment that is less
than that of the placebo (for example, blood pressure for an antihypertension
treatment must decrease). In this case the alternative hypothesis becomes:

H1 : δμ < 0
In clinical trials, even when the comparison is made with a placebo, it is gen-

erally necessary to allow not only for the possibility that the new treatment is
efficacious (that is, better than the placebo), but also for the possibility that the
new treatment causes more harm than good (that is, it is actually worse than
the placebo). Therefore, in general, the alternative hypothesis must be bidirec-
tional. This approach is almost always required by the regulatory authorities for
phase III pivotal studies (see chapter 12). The need for a bidirectional alterna-
tive hypothesis is intuitive when both treatments under comparison are pre-
sumed to be active, less so when the control group is treated with a placebo.
For example, let’s assume that the experimental treatment is a new antibiotic
against urinary tract infections and the end-point of the study is the number of
bacteria per mL of urine in a sample obtained at the end of the treatment. It is
certainly unlikely that the new antibiotic will increase the concentration of bac-
teria compared to placebo. Therefore one would be inclined to consider the uni-
directional hypothesis acceptable. However, the possibility that the experimen-
tal treatment turns out to be worse than placebo does exist. The experimental
treatment could create conditions that favor bacterial growth, for example, by
reducing bladder motility and consequently inducing urine retention, which in
turn could enhance bacterial growth. Therefore, even in this case, the bidirec-
tional alternative hypothesis seems to be the more prudent approach. 

We have dwelled on this issue because it has many practical repercussions.
As will be discussed in chapter 6, the test for a bidirectional alternative hypoth-
esis is more conservative in statistical terms than the test for the corresponding
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unidirectional hypothesis, assuming all other conditions are equivalent. Very
briefly, “more conservative” means either that more patients are needed if we
want to have the same degree of certainty of being able to demonstrate a dif-
ference between the treatments when it exists, or that, with the same number
of patients, we must accept a lower degree of certainty. It is for this reason that
the researcher, almost inevitably convinced of the superiority of one of the
treatments under comparison, is often strongly tempted to use a unidirection-
al alternative hypothesis. Unfortunately, we must say it once more, surprises in
the field of clinical research are frequent. Therefore, it is almost always prefer-
able, no matter how inconvenient, to perform tests with bidirectional alterna-
tive hypotheses. 

In summary, a typical system of bidirectional hypotheses in clinical trials is
the following: 

H0 : δμ = 0 (null hypothesis)
(5.1)

H1 : δμ ≠ 0 (alternative hypothesis).
To simplify our example, we will use the unidirectional alternative hypothe-

ses system:
H0 : δμ = 0 (null hypothesis)

(5.2)
H1 : δμ > 0 (alternative hypothesis).

In this case, the entire part of the scale which includes values less than or
equal to zero favors the null hypothesis and is against the alternative hypothe-
sis. This is equivalent to saying that we consider H0 : δμ ≤ 0. However, for oper-
ational purposes it is sufficient to consider that the null hypotheses is δμ = 0.

We will see in sections 5.5.1 and 5.6.1 how to test these hypotheses with the
frequentist and the Bayesian approaches, respectively.

5.2.2. Statistical Estimation as the Tool for Evaluation 

of Clinical Relevance

As was stated above, the conclusion that a difference between treatments is not
due to chance (as determined by the statistical test) and that it is due truly to
the treatments (i.e. not to bias) does not necessarily imply that such difference
is clinically relevant. Indeed it is possible that the result of a study is judged as
not due to chance, thanks to an appropriate statistical test (answer “no” to
question 1 of section 5.2) and as truly due to the experimental treatment,
thanks to a sound design and conduct of the study (answer “yes” to question
2), but nevertheless such result is judged as clinically irrelevant (answer ”no”
to question 3). In chapter 4, we have seen that it is necessary to define, during
the planning phase of the study, the threshold of clinical relevance, that is, the
minimum difference between treatments that can be considered clinically rele-
vant. As we will see in chapter 6, this value is used to calculate the minimum
number of subjects required to reject the null hypothesis in the presence of a
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difference between treatments equal to or greater than the threshold of clinical
relevance.

Once we have demonstrated at the end of the study that the observed differ-
ence between the treatments is not due to chance, how do we know if the dif-
ference is clinically relevant or not? The answer to this question is in two steps:
first, one needs to determine how large the observed difference between the
treatments is, and then judge whether this is relevant. 

The estimation theory is instrumental in addressing the first step: “how
large is the observed difference between the treatments?” It is a matter of esti-
mating δμ = μA – μP.

As we said, the value of dμ = X�A – X�P in the observed sample is called estimate
of δμ or, more precisely, point estimate of δμ, meaning that it is the “best sug-
gestion” for the value of the unknown quantity δμ that we wish to estimate. To
complement to the point estimate, of great interest is the interval estimate,
which gives us a range of possible values for the quantity to be estimated. It is
intuitive that such interval includes the corresponding point estimate and that
the narrower the interval around the point estimate, the better (i.e. it can
replace the interval estimate). In other words, the width of the interval is relat-
ed with the precision of the estimate (see section 1.3.2).

Once the difference is estimated, we must decide if it is clinically relevant.
The one approach we must not take is the following: conduct a simple numeri-
cal comparison between the point estimate obtained in the study and the pre-
defined minimum clinically relevant difference; then reject the efficacy of the
new treatment if the former is numerically worse than the latter (in our exam-
ple of walking distance, worse equals shorter distance walked) (see [20] and
[75]). The reason why such an approach is wrong is that it does not take into
account the variability of the point estimate. In fact, the issue is quite contro-
versial, going beyond the purpose of this book. The most frequently used
approach is that of basing the decisions concerning clinical relevance on the
interval estimate. 

In sections 5.5.2 and 5.6.2 we will see how the estimates of the treatment
effect are obtained with the frequentist and Bayesian approaches respectively.

5.3. Statistical Inference in the Frequentist 
and the Bayesian Approaches

In statistics, two main inference methods exist: the frequentist one, based on
the frequentist definition of probability and the Bayesian one based on the sub-
jective definition of probability (see section 5.1). It should be noted that in both
camps a variety of approaches exist, ranging from the purist stand to positions
bordering on the opposite side. Therefore, the reader must be aware that what
we are presenting here is a hyper-simplification of the two approaches.

In the frequentist approach the inspiring principle is that of repeated sam-
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pling, which assumes that the experiment is repeated an infinite number of
times under identical conditions. The statistical procedures are evaluated with
reference to this hypothetical series of repetitions of each experiment, during
which it is assumed that the conditions are unchanged, including the effect of
the treatment under study. This treatment effect is the unknown parameter
(see section 1.3.1) to be estimated, which is considered a fixed quantity (math-
ematical constant) throughout the hypothetical repetition of the experiment. 

With this approach, the results from the sample, which once observed are
fixed, are summarized into a suitable estimator. The value that this estimator
takes in the sample we studied is treated as one of the possible results that
could be obtained in the hypothetical, infinite repetition of experiments, all
identical to the one actually performed. Therefore, the estimator used to sum-
marize the observed sample results is given a probability distribution (called
sample distribution of the estimator - see section 5.5.1), expressing the uncer-
tainty relative to the values that the estimator can assume with different sam-
ples. Vice versa, the unknown parameter, even though uncertain (because
unknown), is not given a probability distribution, since its true value, although
unknown, is considered fixed.

Going back to the hypothesis systems (5.1) and (5.2), in the frequentist
approach, δμ represents the “true” difference between the two treatments,
which is the unknown parameter of interest, seen as a fixed quantity, while dμ

represents the estimator of the true effect and is seen as a quantity that varies
with each different sample, i.e. a random variable with its own probability dis-
tribution.

Example. Let us return to the example of the distance walked by patients
with intermittent claudication to illustrate the frequentist reasoning described
above. The researcher randomly extracts a sample of nA patients from the pop-
ulation of patients treated with A and a sample of nP patients from the popula-
tion of patients treated with P (or randomly extracts a sample of nA + nP sub-
jects from the population of untreated patients with intermittent claudication
and then randomly assigns them to A or P - the two procedures are analogous
from a probabilistic point of view).

Once the sample is obtained (we shall call it sample number 1), the
researcher measures the walking distance in each of the patients treated with
A and with P, each time rigorously adhering to the conditions of the experi-
ment. These values are metaphorically extracted from the (theoretical) under-
lying populations of walking distances of all patients with intermittent claudi-
cation treated with A and of all those treated with P.

From sample 1 the researcher obtains a mean X�obs_A_1 for the group A and a
mean X�obs_P_1 for the group P, with a difference dobs_1. This result is seen as one
of the possible outcomes of the variable dμ, namely the outcome obtained in
experiment 1. The result is treated in the theoretical context in which the
experiment is repeated an infinite number of times, that is, imagining that at
the end of the first experiment, a second experiment (on sample number 2) is
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performed under identical conditions, with identical sample size, obtaining as a
result the difference between X�obs_A_2 and X�obs_P_2, equal to dobs_2. Proceeding in
the same way, one can imagine obtaining a series of values dobs_3, dobs_4, dobs_5…
that continues in a hypothetical series of identical experiments until a very
large number - which can be approximated to infinite - of differences dobs

between X�A and X�B is reached (all of the possible outcomes of dμ). Each of these
differences dobs is an estimate of δμ and, in general, will differ from the other
estimates. However, all the possible estimates will be distributed around the
value of the true mean difference dμ, which could be calculated if it were pos-
sible to observe the entire population.

All of the hypothetical results obtained for dμ can therefore be “described” by
its probability distribution, also referred to as “sample distribution” of dμ

(because it is generated from the variation of the hypothetical samples), which
has mean δμ  (we will return to this topic in section 5.5.1). 

In our example, we started from the difference of means and then we
obtained the sample distribution of the difference of means. Naturally, we can
also build a sample distribution of the differences of medians, modes, etcetera.
The challenge is to find the mathematical expression (function) describing this
probability distribution. A very important probabilistic property is that, when
the distribution of the end-point is normal, the sample distribution of the dif-
ference of means is also normal and has properties that are crucial for per-
forming statistical tests with the frequentist approach (see Table 5.7 and sec-
tion 5.1). 

The inspiring principle of the Bayesian approach is that all unknown quan-
tities can be assigned a probability. In other words, every type of uncertainty
can be represented in probabilistic terms. In this approach, probability is not an
objective property of the events (simply stated, it is not obtained from their rel-
ative frequency) as for the frequentist approach, rather it is the expression of
an evaluation of the event made by the researcher on the basis of the informa-
tion available to him/her. 

In the Bayesian approach there are two phases in each experiment: the pre-
experimental one (a priori), where the results have not yet been obtained, and
the post-experimental one (a posteriori), where the results are available. In
the pre-experimental phase, the inference method based on the Bayesian
approach requires that both the unknown parameter (i.e. the true effect of the
treatment) and the set of all possible sample results, unknown a priori, be
treated as random variables and therefore be given their own probability distri-
bution. The probability distribution of the parameter is called “a priori distri-
bution”. In the post-experimental phase, the sample result, summarized by an
appropriate group indicator, is not considered the outcome of a random vari-
able, since there are no more elements of uncertainty associated with it (in the
Bayesian approach there is no such thing as repeated sampling). Instead, the
unknown parameter, for the very reason it is unknown, continues to be consid-
ered a random variable, with its own probability distribution. This will be dif-
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ferent from the a priori one, since it will have been modified by the informa-
tion obtained from the experiment just performed. It is called “a posteriori dis-
tribution” of the parameter (see section 5.6.1). Bayesian scientists use this dis-
tribution to test the hypothesis under study and to estimate the unknown
parameters.

Returning again to the hypothesis systems (5.1) and (5.2), in the Bayesian
approach, δμ expresses, as in the frequentist one, the “true” difference between
the two treatments. However, since δμ is unknown, it is also uncertain and
therefore, differently from the frequentists, it is considered a random variable.
Vice versa, the sample estimator dμ is a known quantity once the results of the
samples are observed, and therefore is fixed.

Example. We are back to the example of the walking distance covered by
patients with intermittent claudication. The parameter δμ is the (unknown) dif-
ference between the mean walking distances in the populations treated with A
and P, respectively. Before performing the experiment, the researcher defines
the a priori probability distribution of δμ, which expresses the degree of uncer-
tainty about this parameter in the pre-experimental phase, taking into account
all of the knowledge available up to that moment on δμ. Then, the researcher
performs the experiment and obtains a sample result, that is, a set of nA + nP

observations, with mean X�obs_A in the group treated with A and mean X�obs_P in the
group treated with P, and with difference dobs between these means. The sam-
ple result is considered known, while what is still unknown, therefore uncer-
tain, is the parameter δμ. However, this uncertainty is modified by the result of
the experiment compared to what was known a priori and it is expressed by a
new probability distribution, the a posteriori one.

Historically, in the field of biomedical research the frequentist approach has
taken a much stronger foothold than the Bayesian approach. Only recently
has the Bayesian approach started to appear in medical publications, offering
a solution to specific problems of applied methodology that had no convincing
solution within the frequentist approach. Nevertheless, the Bayesian methods
are today mostly limited to the analysis of phase I and phase II studies (see
chapter 12), because they are generally not accepted by the regulatory
authorities for the analysis of phase III pivotal studies. However, there are
many signs suggesting that health authorities will be more open to Bayesian
methods in confirmatory studies in the future (see for example FDA Draft
Guidance for the use of Bayesian Statistics in Medical Device Clinical Trials,
in www.fda.gov).

Because of the pragmatic approach of this book, in most cases we base our
discussion on the frequentist approach.
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5.4. Two Digressions: Measures of Variability 
and Likelihood Function

5.4.1. Measures of Variability

As repeatedly stated, the root problem of biomedical research is that observa-
tions are affected by variability. As a consequence, conclusions must be drawn
under conditions of uncertainty. Even though variability has a central role in
the planning, analysis and interpretation of the results of biomedical studies, in
this chapter we are rather vague about the statistical methods for dealing with
it, both in hypothesis testing and in estimation. We have taken this approach to
simplify the discussion, since we have chosen to favor logical aspects over com-
putational ones. 

Nevertheless, some clarification on the most common measures of variability
is essential, not least because medical publications are often confusing in this
area.

The variability of the observations can be expressed by different indicators,
depending on the shape of the probability distribution of the end-point of inter-
est.
• For distributions symmetrical with respect to the mean, including the normal

distribution, the most frequently used indicators are the variance and the
standard deviation (SD).

• For distributions asymmetrical with respect to the mean, the distance

between percentiles is generally used, for example that between the 25th

percentile (also called the first quartile) and the 75th one (also called the
third quartile). 
As we will see below, the standard error (SE) does not quantify the vari-

ability of the observations. However, it is often erroneously used for this pur-
pose.

These measures of variability can be applied to the population and to the
sample. Table 5.2 illustrates the formulas for calculating these indicators and
for each gives a brief explanation. 

Experimental data are often summarized by a pair of values: a measure of the
central tendency (for example, mean, median, mode) and a measure of variabil-
ity (for example, standard deviation, distance between percentiles). When data
come from a symmetrical distribution, they are generally summarized in terms of
mean ± SD (SD has the same order of magnitude of the observations, while σ2

has an order of magnitude equal to the square of the observations).
Unfortunately these data are often erroneously summarized in terms of mean ±
SE (see below). When the data come from an asymmetrical distribution, they are
generally summarized in terms of median and distance between the 25th and 75th

percentile. In this case, the median is often preferred to the mean because the
median is not affected by extreme values, which in asymmetrical distributions
tend to predominate in one of the two tails. In other words, for asymmetrical dis-
tributions, the median is a better measure of central tendency than the mean. 
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Table 5.2. Indicators of variability of a random variable (the sign ∧ indicates sample es-
timate)

Indicator Population Sample size= n Explanation

size = N, (subjects extracted

where N from the N

can be ∞ subjects of the

population)
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Variance

Standard

Deviation

Distance

between the

25th and 75th

percentile

Standard

Error of the

sample mean

Discrete

Variables:

(where xi, which
takes a different val-
ue with each value
of  the subscript i,
indicates the N val-
ues of X in the popu-
lation)

Continuous Vari-

ables: the calcula-
tion uses the integral
and is based on the
density function

(where xi, which takes a
different value with
each value of the sub-
script i, indicates the n
values of the sample)

The variance of a discrete random
variable is calculated starting from
the sum of the squares of the differ-
ences between each observation and
the mean. This sum is then divided
by the number of units (N) in the
case of the population or by the
number of unit minus one (n-1) in
the case of the sample. The denomi-
nator (n-1) is used instead of n to
obtain an estimator with better sta-
tistical properties. 
The variance of a continuous ran-
dom variable in the population has
the same meaning as that of a dis-
crete random variable but it is cal-
culated with the integral, based on
the density function of the variable
of interest.

The standard deviation is the square
root of the variance. The standard
deviation of the sample is often indi-
cated with S, instead of σ̂.

The percentiles are the values di-
viding the ordered sequence of val-
ues of a random variable from the
smallest (extreme left of the hori-
zontal axis) to the largest (extreme
right of the horizontal axis) into 100
equal parts. Therefore, for example,
the 25th percentile is the value that
has 25% of the ordered values to its
left.

is the standard deviation
of the probability distribution of the
sample mean, calculated on an infi-
nite number of repeated samples,
each of n observations. It is not an
indicator of the population,  there-
fore it has been omitted from the
second column.

2 =
(xi )2

i =1

N

N

  2 =
(xi X )2

i =1

n

(n 1)

2 =
2 =

P75 P25 P75 P25
ˆ ˆ

  

n

SE = nˆ

ˆ ˆ

ˆ



With regard to the standard deviation, when the observations have an
approximately normal distribution, about 68% of the observations are included
in the interval mean ± 1 SD and about 95% are included in the interval mean

± 2 SD. For example, if we have a normally distributed variable from which we
extract a sample of n=16 subjects and obtain μ̂ = X� = 100 and SD̂ = 50, about
95% of the observations are included in the interval 0 to 200. 

The standard error of the sample mean (SE) does not quantify the variabili-
ty of the observations but rather the precision with which the sample mean esti-
mates the true mean of the population. SE is in fact the standard deviation of
the probability distribution of the sample mean. Therefore, assuming that the
sample distribution of the mean is normal, the expression mean ± 1 SE tells us
that there is about a 68% probability that the real mean of the population from
which the sample was extracted will fall within this interval, and this probabil-
ity increases to about 95% for the interval mean ± 2 SE. As we will see in sec-
tion 5.5.2, the intervals mean ± 1 SE, mean ± 2 SE, … are called confidence
intervals of the mean, at different confidence levels. In the previous example,

. Therefore the 95% confidence interval of the mean is 75 –
125, often written as (75; 125) (see section 5.5.2). 

In conclusion, SD must be used to summarize the observed data, not SE. SE

is used more frequently than SD because it is much smaller, thus it makes the
data look less variable. Clearly this approach is misleading and exploits the fact
that many scientists confuse SD with SE.

To avoid confusion, we suggest that data be summarized by indicating mean,

SD or mean (SD). The ± sign should not be used in this context, rather it should
be reserved for the confidence interval of the mean (see again section 5.5.2).

We need to make one more step before the end of this digression. So far, we
have only considered the case of one population and one sample, whereas in
the rest of the chapter we discuss the case of difference between means, which
implies two populations and two samples. What was stated above concerning
SD and SE is also valid in the case of two samples from two populations, but
obviously the formulas must be modified. These modifications are shown in
Table 5.3, in which it is assumed that the two random variables have the same
variance. The assumption of equal variance in the underlying populations is
called homoscedasticity. It is commonly assumed in statistical tests, mainly
by the frequentists. 

In clinical experiments, the interest of the researcher almost always focuses
on the treatment effect, quantified in terms of mean, median, mode or other
parameter of central tendency. In this context variability is a disturbance or a
nuisance parameter in the sense that the conclusion on the parameter of
interest is hindered by the presence of this second unknown parameter.
However, this parameter is necessary for the statistical formulation of the prob-
lem to reflect reality. 

SÊ = 50 / 16 = 12.5
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Table 5.3. Indicators of variability of the difference between two independent random
variables with identical variance σ2 (the symbol ∧ indicates sample estimate)

Indicator Two Two samples A and P (*) Explanation

populations (sample sizes nA and nP)

A and P (*)

Variance

Standard

deviation

Distance

between

the 25th

and 75th

percentile

Standard

error of

difference

between

two sample

means

P75 – P25

where:

where:

P̂75 – P̂25

where:

Given two independent random
variables, their difference is itself a
random variable, with variance
equal to the sum of the variances
of the two initial variables, i.e.
equal to 2σ2 if these variables have
equal variance. Under this as-
sumption, each of the two samples
generates an estimate of σ2 and
the best estimate of this parame-
ter is the weighted mean of the
two estimates, where the weights
are the respective sample sizes mi-
nus 1 (see table 5.2).

The standard deviation is the
square root of the variance.

The percentiles are the values di-
viding the sequence of ordered
differences between the two ran-
dom variables into 100 equal parts.
To obtain the sample estimate, the
differences between all possible
pairs of values observed in the two
treatments must be calculated and
then ordered from the smallest to
the greatest. The percentiles are
calculated on these ordered differ-
ences.

is the standard

deviation of the probability distri-
bution of the difference between
two sample means, calculated on
pairs of independent samples,
each of nA and nP observations,
coming from two populations. It is
not an indicator of the difference
of two populations, therefore it
has been omitted from the second
column.

(*) From a methodological point of view, extracting a sample from the untreated population and ran-
domly assigning its units to two treatments A and P is equivalent to considering two independent po-
pulations, each hypothetically treated with A or with P and extracting from each population a sample
for the study. Therefore the difference between two random variables can be referred to both one po-
pulation and two populations.

2 2 2 2ˆ

2 =
(nA 1) A

2 + (nP 1) P

2

(nA + nP 2)

2 2 = 2 2 2 = 2ˆ

ˆ

ˆ

=
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2 + (nP 1) P

2

(nA + nP 2)

ˆ ˆ

2
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+
2

nP

=
(nA + nP )
nA nP

=
(nA 1) A

2 + (nP 1) P

2

(nA + nP 2)

SE =
2

nA

+
2

nP

ˆ

ˆ
ˆ ˆ

ˆ ˆ

ˆ
ˆ ˆ



5.4.2. Likelihood Function

The likelihood function is an inferential instrument used by both frequentists
and Bayesians. In this book, we will only use it for the Bayesian approach.
However, we decided to introduce it at this point to avoid it being considered
as an instrument used exclusively by the Bayesians. 

We shall start with the easier case of a discrete end-point. Let us consider a
given end-point having a given probability distribution. Before the study is car-
ried out, the results for the units of the sample are unknown, i.e. random vari-
ables and, therefore, each of them has a probability distribution, which is the
probability distribution of the end-point. If we consider the entire sample as
the set of n random variables, it will also have its own probability distribution.
Before the study is carried out, the probability distribution of the end-point is
a function of both the unknown parameter and the possible a priori results for
the sample. Once the study is conducted and the results (i.e. the values of
each unit of the sample) are known, the probability distribution of the end-
point remains a function of the unknown parameter only. This function, called
likelihood function, often indicated with L(parameter), is not a true prob-
ability distribution but it is similar to one. It expresses the probability that
existed a priori (i.e. before carrying out the study) of selecting the sample
values that were actually observed in the study: depending on the unknown
value of the parameter, there is a different probability of actually observing in
the study the same given set of values. The concept can also be expressed in
reversed terms: the likelihood function expresses the likelihood of the differ-
ent values of the parameter, given the result obtained in the experiment.
Hence the name likelihood function. The values that it can assume can be
interpreted as a system of weights, expressing the degree of agreement
between each possible value of the parameter and the empirical observation.
Since these are weights, what counts are the ratios, not the absolute values.
Assuming we want to attribute a relative preference to two values of the
unknown parameter, say ν1 and ν2, this preference is determined by the ratio
of the likelihoods L(ν1)/Lν2) (we shall assume that the denominator is not
equal to zero). 

Since the likelihood ratio does not change if both terms are multiplied by the
same constant, assuming the constant is positive and independent of the
parameter, what matters in comparing different values of the parameter is the
likelihood function, whatever the multiplicative constant. It should be noted
that, even if every value of L(parameter) is characterized by a probability dis-
tribution, the likelihood function itself is not a probability distribution, because
it does not change with changes of this multiplicative constant, which is inde-
pendent on the parameter (i.e. the area under the curve of the likelihood func-
tion is not necessarily equal to 1).

Let us try to clarify this concept with an example. A new treatment can have a
positive effect (success) or a negative effect (failure). The end-point X in this
case is a dichotomous variable. We shall assign the value 1 to each success and
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the value 0 to each failure. The probability of the treatment being a success in
a single patient, which we will indicate with π, is the unknown parameter on
which the interest of the researcher is focused. It can be seen as the proportion
of successes in the hypothetical population of all patients receiving the new
treatment. If the probability of a success is π, then the probability of a failure is
(1–π). To estimate π, this treatment is tested on n patients. For simplicity let us
assume n=4 (such a small sample is used just to simplify the example: it is obvi-
ously an under-sized experiment!). With this assumption, the sample result is
given by the set of four values (x1, x2, x3, x4), each of which can be 1 (success)
or 0 (failure). To indicate the total number of successes in the four subjects of

the sample we can use the notation (where the symbol means

sum), which can take values 0, 1, 2, 3, 4. The number of failures will be given by

4 − . The probability of obtaining successes in four tests, i.e. in

the four subjects, is given by:

This is the binomial probability distribution, introduced in section 5.1.2 (see
note 1)

In Table 5.4 all of the possible results of our experiment on four patients are
listed, while only some of the possible values of π (each representing a hypoth-
esis) are indicated, namely π = 0.25, π = 0.50 and π = 0.75.

The probabilities reported in Table 5.4 have been calculated assuming that
the probability of a success is π and that of a failure is (1 – π), and that the
tests on the subjects are independent of one another. With these assumptions,

the probability of obtaining successes and 4 − failures is obtained 

by multiplying their respective probabilities2 (the formula
was used). 
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4
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2. Given two independent events E1 and E2  (i.e. the knowledge of the event E1 does not
change the probability of the event E2, and vice versa), the probability of both events occurring
is given by the product of the probabilities of each event occurring.



Table 5.4. All possible experimental results and some possible values of π for an exper-
iment with a binary end-point on n = 4 patients

All possible Number Probability of the result if:

results of successes

(x1, x2, x3, x4) π = 0.25 π = 0.50 π = 0.75

0 0 0 0
0 0 0 1
0 0 1 0 
0 1 0 0
1 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0 
1 1 0 0
0 1 1 1 
1 0 1 1
1 1 0 1
1 1 1 0
1 1 1 1

Total

These data can be summarized as shown in Table 5.5 by grouping the results
leading to the same number of successes and summing the corresponding prob-
abilities3.

In summary, Table 5.5 (and likewise table 5.4) illustrates how the binomial
probability distribution described above changes with all possible a priori

results and some values of π (as said, for simplicity only few are presented).
We have now completed the experiment. The values of x1, x2, x3, x4 become

known, therefore constant. Therefore, the distribution illustrated in Tables 5.4
and 5.5 is a function of the parameter π only. In other words, once the experi-
ment is performed, one row in the table is “chosen” i.e. becomes fixed and the
function represented in it can vary only relative to the columns, that is, relative
to π. What we obtained is the likelihood function for our experiment. Let us
indicate it with L(π) to highlight that it is a function of the parameter π.
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0
1
1
1
1
2
2
2
2
2
2
3
3
3
3
4

1.0000

0.3164
0.1055
0.1055
0.1055
0.1055
0.0352
0.0352
0.0352
0.0352
0.0352
0.0352
0.0117
0.0117
0.0117
0.0117
0.0039

1.0000

0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625

1.0000

0.0039
0.0117
0.0117
0.0117
0.0117
0.0352
0.0352
0.0352
0.0352
0.0352
0.0352
0.1055
0.1055
0.1055
0.1055
0.3164

1.0000

xi
i =1

4

3. The probabilities listed in table 5.5 can be obtained directly by using the entire ex-

pression of the binomial distribution. The binomial coefficient           represents the number

of different ways in which successes can occur in four tests. For example, with four

tests there are six different ways to obtain the result “2 successes” and the binomial coefficient

is                             .
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Table 5.5. Summary version of Table 5.4 obtained by grouping the results with the same
number of successes (*)

Number of successes Probability of the result if:

π = 0.25 π = 0.50 π = 0.75

0
1
2
3
4

Total

(*) See also note 3. The apparent inconsistencies between this table and Table 5.4 are
due to rounding 

Assuming, for example that we have performed the experiment and obtained
the result (1, 0, 0, 1), that is, two successes and two failures, the likelihood
function is:

The values of this function (illustrated in the row of Table 5.5 corresponding
to the result “2 successes”) can be interpreted as follows: 0.2109 is the likeli-
hood of the value 0.25 of the parameter, indicating that, if the value of the
parameter was 0.25, before starting the experiment we would have had a prob-
ability of about 20% (precisely 0.2109) of obtaining the result we actually
obtained. The other values can be interpreted in the same way. 

We now move on to estimating π. Common sense would tell us to estimate the
proportion of successes in the population with the proportion of successes ob-

served in the sample, that is with , which in our experiment is

2/4=0.5. Let us forget this solution for a moment and use the likelihood func-
tion as an instrument to estimate π.

A “reasonable” value of π appears to be the one for which the likelihood func-
tion is greatest. Indeed, choosing the value of π̂ for which L(π) is maximum to
estimate π is the same as choosing the hypothetical value of the population
which, in the pre-experimental phase, would have generated the observed sam-
ple with the highest probability. The value π̂ for which L(π) is maximum is
called the maximum likelihood estimate of π. This estimate is obtained with
a mathematical procedure for the maximization of functions (the mathematical
calculus is carried out through the so-called derivatives). Applying this method
to our experiment, we obtain π̂ = 0.50. Note that the maximum likelihood esti-
mate of π is the observed frequency of successes, that is, it coincides with the
solution suggested by common sense (that of estimating a parameter with the
corresponding sample indicator). Such correspondence between the maximum
likelihood estimate and the estimate of common sense occurs often, but not
always.

p = xi / 4
i =1

4

L( )=
4

2
2(1 )2
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0.3164
0.4219
0.2109
0.0469
0.0039

1.0000

0.0625
0.2500
0.3750
0.2500
0.0625

1.0000

0.0039
0.0469
0.2109
0.4219
0.3164

1.0000



So far the frequentist and Bayesian approaches do not differ. However, the
manner in which the frequentists and Bayesians employ the likelihood function
to conduct the inferential analysis is different. It is clear that the inferential
analysis cannot finish in this way: the estimate π̂ will never be identical to the
true value of π; therefore it is necessary to accompany π̂ with an interval esti-
mate. Furthermore, once a value for π (or an interval of values) has been
hypothesized, it is necessary to proceed with the hypothesis testing, which
allows us to find out whether the difference between the estimated value and
the hypothesized value can be explained by chance or not. The likelihood func-
tion is used to this end differently in the two approaches. 

Bayesians, when faced with the result (1,0,0,1), will consider only the corre-
sponding  row of Table 5.5 (or 5.4). Thus, they will only use the likelihood func-
tion for the observed sample to perform all of the inferences on the parameter.
The Bayesian approach is a so-called conditional approach, because the
inferential reasoning is conditioned to the result of the experiment.

On the contrary, frequentists base their approach on the principle of repeat-

ed sampling, i.e. they see the estimates as outcomes of random variables,
which vary with every possible result a priori. When faced with the same result
(1,0,0,1,) and once the maximum likelihood estimate π̂ = 0.50 is obtained, the
frequentists ask themselves how this estimate changes as the possible samples
change. It is clear that different sample results would have led to different like-
lihood functions. Therefore, the likelihood function is considered a function not
only of π but also of X. Once this function is maximized with respect to π, the
maximum likelihood estimate remains a function of X only. In the example, the

likelihood function is . If we maximize it

with respect to π, we obtain π̂ , i.e. the estimator of maximum like-

lihood, considered a random variable which will be different with every one of
the possible samples. It is as if in Table 5.5 (or 5.4) the frequentists, once the
maximum likelihood estimate π̂ = 0.50 is obtained, considered only the column
corresponding to this estimate, i.e. a different likelihood for each sample result.
In reality, the frequentists go back to using the sample distribution of the esti-
mator to complete the inferential analysis. 

In the introduction of this section we said that, since the values of the likeli-
hood function can be interpreted as weights, nothing would change if we mul-
tiply all of them by any positive, parameter-independent constant. In light of
this observation, we can rewrite the likelihood function for our experiment as: 

L(π) = const π2 (1 – π)2

where the term “const” encompasses all of the components in which the param-
eter does not appear, that is, it indicates any positive constant. For example,
the values of the row (1,0,0,1) of Table 5.4, which are values of L(π) with const
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= 1 (each row represents only one of the possible results) and the values of the
row “2 successes” of Table 5.5, which are values of L(π) with const = 6 (the
possible ways in which 2 successes can be obtained in 4 attempts), express the
same likelihood function. It is easy to verify that the ratio between the likeli-
hoods corresponding to any pair of values of π is the same in the two tables
(aside from rounding off of values). 

So far we have considered an experimental setting characterized by a
dichotomous end-point (an example of a discrete variable), one sample and a
very small sample size. It is simple to extend the reasoning to any sample size
n, and relatively simple to extend the reasoning to the comparison between two
samples. We will not do so because we do not believe it would help to grasp the
basic concepts any better and because this chapter is already too long!. 

However we will briefly touch upon continuous variables. What was said con-
cerning the likelihood function for discrete variables is also valid for continuous
variables. However, it is  necessary to include a small modification, due to the
fact that the continuous variable does not have a probability distribution but a
probability density function. In the case of a continuous variable, the likelihood
function derives from the probability density function of the end-point.
Assuming, for example, a normally distributed density function with parame-
ters μ and σ for the end-point of interest and a sample of n subjects, each
observation of the sample (i.e. each x)  is an expression of the same normal
density function. Since all of the sample observations are independent of one
another, the likelihood function is based on the product of n normal density
functions, all having the same parameters μ and σ. Once the sample is obtained,
this product will be a function only of the parameters, that is, it will be the like-
lihood function. In this case, such a function represents the density of proba-
bility which existed a priori (i.e. before conducting the experiment) of observ-
ing the values of the sample that were actually observed as the outcome of the
experiment. In section 5.6.1 we will introduce the likelihood function for two
independent samples extracted from normal populations. 

An approach to inferential statistics based on the concept of likelihood and
on the methods related to it can be found in a book by Azzalini [7], which how-
ever requires a sound basis of mathematical analysis and probability theory. 

5.5. Frequentist (Classical) Analysis of a Clinical 
Trial

Throughout this section, we always make the assumption that the groups under
comparison are not affected by bias, thanks to a good planning and execution
of the study. 
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5.5.1. Hypothesis Testing: the Frequentist Solution

Having completed a study on a pre-selected sample and obtained the values
x1_A, x2_A,...., xnA_A, for the group treated with A, and the values x1_P, x2_P,....,
xnP_P, for that treated with P, we wish to verify the unidirectional hypothesis
system (5.2).

Table 5.6. Symbols used in this section

Symbol Meaning

δμ = μA – μP Difference between the (true) means of the populations treated with A
and P

dμ = X�A – X�P Difference between the sample means, i.e. sample estimator of δμ 

doss = δ̂μ Value observed for the estimator dμ in the specific sample, i.e. estimate
of δμ 

d*
μ Test statistic for the comparison of means

d*
oss Value observed for the test statistic d*

μ in the specific sample

Since in our example the inference concerns the mean, we calculate the two
sample means, X�obs_A (for the group treated with A) and X�obs_P (for the group
treated with P), with a difference dobs = δ̂μ.

In this section we will use a series of symbols, in part introduced previously,
in part described later. For the reader’s convenience, we have summarized
them in Table 5.6. 

The frequentist inferential reasoning. The inferential reasoning in the
frequentist approach starts from the initial assumption that the null hypothesis
is true, that is, in our example, that there is no difference, at the population
level, between the presumed active treatment and the placebo. 

If the null hypothesis is true, any difference between the two sample means
observed in the study can only be due to “chance”, a term with which we indi-
cate the complex of fluctuations due to biological variability and to variability
in measurement, which we cannot control and are independent of the treat-
ment (see chapter 1 and section 2.4).

On the basis of these considerations we ask the fundamental question of the
frequentist inference:

“If the null hypothesis is true (that is, there is no difference between treat-
ments in the populations from which the samples are extracted), what is the
probability of obtaining by chance a difference between the treatment groups
equal to or greater than the one we have observed in our study?”

If this probability is “sufficiently small”, we reject the null hypothesis and
accept the alternative hypothesis that there is a difference between the treat-
ments. If instead this probability is not “sufficiently small”, we accept the null
hypothesis and conclude that there is not enough evidence to claim a difference
between the treatments. According to some statisticians, the expression “to
accept the null hypothesis” is not correct, since we can only “not reject the null
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hypothesis”, that is, we can only conclude that we do not have enough evidence
to reject it. According to others, the two expressions are equivalent. We will not
make any attempt to go to the heart of the matter, but for the sake of simplici-
ty we will talk about “acceptance” of the null hypothesis. 

This type of reasoning will appear very strange indeed to those that are new
to scientific logic. In fact, it is identical to the reasoning of the “reductio ad
absurdum” (Latin for “reduction to the absurd”), typical of the demonstration
of geometry theorems: one proposes a hypothesis, then demonstrates that such
hypothesis is impossible (in our case it is very improbable), and consequently
accepts the alternative hypothesis. The fact that the null hypothesis is opposite
to our interests is the result of a conservative mindset, typical of scientific
investigation: the conceptual starting point is the “truth of today”, as we know
it before the experiment. In the case of a study of a new treatment versus place-
bo, the starting point is that the new treatment does not exist; therefore, the
“truth of today” is that there is no difference between it and placebo. To accept
the “alternative truth” that the new treatment exists, that is to say, that it is bet-
ter than the placebo, it is necessary to firmly disprove the “truth of today” (the
null hypothesis). This approach is common to other types of investigation. For
example, in many judiciary systems, the suspect is considered innocent until
proven guilty. 

A threshold value remains to be established to quantify a probability as “suf-
ficiently small”. Based on this value, commonly called threshold of statisti-

cal significance, the null hypothesis will be rejected or accepted. Its choice is
absolutely arbitrary, even though two values have been consecrated by their
continual use over time: 0.05 (5%) used in the majority of cases and 0.01 (1%)
used less frequently, when one wishes to be more conservative. 

If we adopt 0.05 as the threshold of statistical significance, the inferential rea-
soning takes the following form. If the probability of obtaining the difference
between the groups observed in the study or an even greater one totally by
chance (i.e. in the absence of any treatment effect) is 0.05 (5%) or less (i.e. this
outcome occurs once in every 20 hypothetical experiments identical to the one
just performed, or even less frequently), then we conclude that such probabil-
ity is “sufficiently small” to rule out chance. In other words, we conclude that
the observed difference cannot be explained by a chance effect. Thus some-
thing else must be responsible for the effect: this something else can be either
the treatment or some form of bias. As we are assuming that bias can be rea-
sonably ruled out in our experiment (see above), the observed difference must
be due to treatment. Therefore, we reject the null hypothesis and accept the
alternative one. The probability we are talking about is the famous “p-value”,
which will be discussed below (we hope the reader will easily link the reason-
ing described here to the operational mechanism of the test, described later). 

In choosing 0.05 as the threshold of statistical significance, we accept the risk
of erroneously rejecting the null hypothesis when it is in fact true once in 20
times. If we use a significance threshold of 0.01, the risk of such an error will be
lower, namely once in 100 experiments; still it will exist. To erroneously reject
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the null hypothesis, that is, to claim that there is a difference between the treat-
ments when in truth there is none, is defined as a type I error. In other words,
a type I error is a false-positive result. The probability of making such an error
is usually indicated with α. In the planning phase of the experiment, a value of
α is arbitrarily established, representing the risk one is willing to run of obtain-
ing a false-positive result. This value is indeed the threshold of significance
introduced above. 

If instead the probability of obtaining by chance a difference equal to or
greater than that observed in the experiment is higher than 0.05, then we con-
clude that chance remains a plausible explanation. Therefore, we accept the
null hypothesis.

Also in this case, there is the risk of making a mistake. Here the potential
error is of erroneously accepting the null hypothesis, that is, of declaring that
there is no difference between the treatments when in fact there is one . This
is defined as a type II error. In other words, a type II error is a false-nega-

tive result. The probability of making such an error is usually indicated with β.
In the planning phase of the experiment, just as we do for α, we chose an arbi-
trary value for β, that we consider an acceptable risk of false-negative result. A
commonly accepted value of β is 0.2 (20%), which means that we accept that
such an error will be made once every five hypothetical experiments identical
to the one just performed. Generally, β is set at a higher (i.e. less conservative)
level compared to α, because the consequence of erroneously rejecting an
effective treatment is considered less dangerous than that of erroneously
accepting a treatment that is not effective. However, there are situations where
the opposite is true, a false-negative having worse consequences than a false-
positive. In these cases it is appropriate to be more conservative with β than
with α (we will see shortly why, given a fixed sample size, it is not possible to
be conservative with α and β at the same time). We urge the reader to ponder
the reasoning behind certain assumptions and not to accept dogmatically the
“standard” choices. 

The quantity 1 – β is commonly referred to as the power of the test. It rep-
resents the probability of claiming, based on the results observed in the study,
that there is a difference between treatments, when there actually is one in the
population. Therefore, the power is the probability of drawing the correct con-
clusion. In the presence of a type II error equal to 0.2 (20%), the power of the
study is 0.8 (80%). This means that, assuming we can repeat the study a great
number of times under identical conditions, we will be able to demonstrate a
difference between the treatments, when it really exists, eight times out of 10.
On the other hand, in two out of 10 repetitions, the study will conclude in favor
of the null hypothesis, even when a difference between the treatments actual-
ly exists in the underlying populations. 

The choice of the values of α and of β comes at a cost. The cost is in the num-
ber of subjects required to perform the experiment. As we will see in chapter
6, all other conditions being equal, the smaller the values we set for α and β, the
larger is the sample required to detect a given difference between treatment
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groups. Furthermore, for a fixed sample size, α and β are linked: if α decreas-
es, β increases and vice versa (see chapter 6). This linkage makes it practical-
ly impossible to simultaneously protect the study from both types of error, by
choosing very small values for both α and β, as this would cause an unrealistic
increase in the sample size of the study.

The mechanism of the frequentist test. Let us now move on to the mech-
anism for calculating the probability at the heart of the basic question of fre-
quentist inference: the probability of obtaining by chance a difference between
the treatments equal to or greater than the one obtained in the study, when the
null hypothesis is true.

Many types of statistical tests exist. The choice of the best statistical test
from an operational point of view depends on:
• The type of end-point (see chapter 4).
• The type of distribution of this end-point in the population of interest (see

section 5.1.2).
• The design chosen for the study (see chapters 10 and 11).

In this section, we will make no attempt to be specific on the different tests.
Instead, we will focus the discussion on the “ingredients” and on the general
operational mechanism of the statistical test conducted with the frequentist
approach. We will use the example of a continuous end-point, with normal dis-
tribution, for which we are interested in the comparison of two means. 

The basic ingredients of the frequentist statistical test are:
1.The α significance level (β is taken into consideration only in the planning

phase of the trial, in the context of the calculation of the sample size – see
chapter 6).

2.A so-called “test statistic”. 
3. Its “sample distribution”.
4.The “region of rejection” of the null hypothesis.

To follow more easily what will be a somewhat long and complex reasoning,
it is useful to have a general frame of reference, in which we can then place the
details. Here it is. The test statistic tells us how big the treatment effect is com-
pared to the variability of the phenomenon. If we know the sample distribution
of the test statistic, we can identify the region of rejection of the null hypothe-
sis, which also depends on the pre-selected hypothesis system (unidirectional
or bidirectional). Once we identify this region, we can calculate the p-value. If
the calculated p-value is equal to or less than the pre-selected  level of signifi-
cance, we reject the null hypothesis, otherwise we accept it. 

“Ingredient” 1: significance level. We have already discussed the signif-
icance level. 

“Ingredient” 2: test statistic. The test statistic is generally a mathe-
matical elaboration of the sample estimator of the treatment effect used in the
study. Very often it is the ratio between the sample estimator of the treatment
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effect and its variability. In figurative terms, it is the ratio between an estimate
of the signal and an estimate of the background noise. The test statistic, being
a function of the end-point, is a random variable as well as the estimator, and
therefore it has a probability distribution.

In our example, the test statistic is a function of the estimator dμ (which, we
remind the reader, is the difference between the sample means, X�A – X�P). More
precisely, it is the ratio between dμ and its variability in the hypothetical suc-
cession of identical experiments. This variability is the standard error, which we

know from Table 5.3 is equal to . Let us indicate this ratio with d*
μ.

Therefore, the test statistic is:

(5.3)

d*
μ is a random variable, as is dμ and, therefore, has a probability distribution

(see “ingredient” 3 below). 
The test statistic, intended as the ratio between a difference and its variabil-

ity, has an intuitive conceptual meaning, and is also operationally useful.
From a conceptual point of view, it is intuitive that, when we compare two

quantities, in our example two means, we can establish if their difference is
large or small only against a “yardstick” represented by the variability of the
phenomenon. A difference of 100 yards has a completely different meaning if
the variability is 100 or 1000! The test statistic puts the difference between
treatments in the context of its variability.

From an operational point of view, the test statistic obtained with the ratio
described above, has a probability distribution that no longer depends on one
of the unknown parameters, namely the measure of variability (see below).

“Ingredient” 3: sample distribution of the test statistic. The third
ingredient is the sample distribution of the test statistic, which is the
probability distribution of this statistic. So far, it has not been necessary to
make any assumption on the probability distribution of the end-point. However,
generally (although not always – see section 5.8) we do need this information
in order to know the probability distribution of the test statistic, which in turn
is necessary to calculate the area of any region of this distribution. Each area is
the probability of the values at the base of the corrisponding region (see sec-
tion 5.1). In particular, the regions we are interested in are the tails of the prob-
ability distribution of the test statistic, which represent the probability of
obtaining values of the test statistic equal to or more extreme (smaller or
greater) than the one observed on the sample. This is the famous p-value

which allows us to draw the frequentist test to a conclusion, as illustrated at the
beginning of this section.

In our example, we assume that the probability distribution of the end-point

d
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is normal (but the reasoning is conceptually valid also for other types of
assumptions). The assumption of normality of the end-point allows us to con-
clude that the distribution of d*

μ is itself normal, with mean δμ and standard
deviation 1. We reach this conclusion by applying the probability laws on dis-
tributions summarized in Table 5.7 below and the laws on variability summa-
rized earlier in this chapter in Table 5.3.

The laws of probability of Table 5.7 can be demonstrated mathematically, but
this goes beyond the purpose of this book. To have a graphic idea of these laws,
the reader can turn to Figure 5.4. 

As shown in this figure, the only unknown parameter in the distribution of d*
μ

is δμ = μA – μP. However, under the null hypothesis H0 this parameter is also
known, being equal to zero. Therefore, the sample distribution of the test sta-
tistic d*

μ, under the null hypothesis, is completely known: it is the standard nor-
mal distribution. As this curve is completely known, we can calculate the area
under any region of the curve. This area gives us the probability of the interval
of values at its base. Therefore, we can calculate the p-value. As stated in sec-
tion 5.1.2, when a distribution is completely known, we have access to its math-
ematical expression and to its probability tables. Both allow the computation of
the areas (i.e. the probabilities) of interest, which in our case are the tails of the
distribution. To know if we must calculate the area of the left tail, the right tail
or both tails of the distribution of the test statistic under H0, we must localize
the region of rejection of the null hypothesis (see “ingredient” 4).

“Ingredient” 4: region of rejection of the null hypothesis. The fourth
and last ingredient is the region of rejection of the null hypothesis. It is the
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Table 5.7. Probability laws for a normally distributed random variable

a. When the probability distributions of two independent random variables XA and XP

are normal, with means μA and μP, respectively, and identical standard deviations σ,
the probability distribution of their difference XA – XP is itself normal, with mean

δμ = μA – μP and standard deviation . 

b. When the probability distribution of a random variable X is normal, with mean μ and
standard deviation σ, the mean X�, calculated on n units extracted from X, is itself a
random variable (in the frequentist approach) with normal distribution, with mean μ

and . 

c. Combining the laws a. and b., it follows that, when the probability distributions of two
independent random variables XA and XP are normal, with parameters described in a.,
the distribution of the difference of two means X�A – X�P, calculated on nA and nP

units extracted from XA and XP respectively, is still normal, with mean δμ = μA – μP

and .

d. If, instead of the random variable dμ = X�A – X�P, we consider the variable d*
μ described

in (5.3), this has a normal distribution with mean δμ = μA – μP and standard deviation .
SD = 1.

SD =

2

nA

+

2

nP

SD =

2

n

SD = 2 2



region of the values of the test statistic for which the null hypothesis is rejected.
The localization of this region depends on three factors: the type of alternative
hypothesis, i.e. whether it is unidirectional or bidirectional (for the former, the
direction must also be specified), the type of test statistic and the level of signif-
icance. In our example, if we adopt the unidirectional system (5.2) with the alter-
native hypothesis H1: μA > μP, then under the null hypothesis H0, the region of
rejection is located only in one tail of the probability distribution of the test sta-
tistic, namely in the right tail, since high values of the test statistic lead to the
rejection of the null hypothesis. In this case, assuming that we perform a test with
a 5% significance level, the region of rejection of the null hypothesis is given by
the right tail of the distribution of d*

μ under H0, which has an area of 0.05, while
the p-value to be calculated is the area of the tail of the same distribution to the
right of d*

obs. If instead we adopt the hypothesis system (5.1) with alternative
hypothesis H1: μA ≠ μP, the region of rejection is located in both tails (see below). 

In the medical literature it is an established convention to call two-tailed

test the test performed with a bidirectional alternative hypothesis, and one-

tailed test the test performed with a unidirectional alternative hypothesis4.

Having defined the “ingredients” of the test, we can now carry it out. Let us
suppose we decide to perform a test for the unidirectional hypothesis system
(5.2). Since d*

μ has a standard normal distribution, having obtained from the
study its sample value d*

obs, we can apply a process similar to the one described
in section 5.1 to find the p-value, with d*

obs in place of xinf. For example, assum-
ing the value of d*

μ is 1.77, the corresponding p-value is the area between xinf =
1.77 and xsup = +∝. We can use the table for the standard normal distribution
reported in the appendix to obtain the area between xinf = 0 and xsup = +1.77,
which is equal to 0.4616. We can then calculate the p-value by subtracting this
value from 0.5, which is the area of half of the distribution. The result is 0.0384. 

Unfortunately there is another complication. For the sake of simplicity, our
discussion of “ingredients” 2 and 3 above has been somewhat too superficial. At
this stage, the reader can recognize that σ2 is yet another unknown parameter.
Therefore, if it is true that d*

μ no longer depends on σ2 (“ingredient 2”), it is also
true that we are unable to calculate d*

μ because we do not know σ2.
Consequently, it is not true that the distribution of d*

μ is completely known
under the null hypothesis, nor is it true that it is a standard normal distribution
(“ingredient” 3). To solve these problems it is necessary to estimate σ2 as well
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4. Strictly speaking, statistical tests are defined as one- or two-tailed depending on where
the region of rejection of the test is located. In other words, it is not necessarily guaranteed
that a unidirectional alternative hypothesis will generate a one-tailed test and a bidirectional al-
ternative hypothesis a two-tailed test. Whereas in the case of the test discussed here, such cor-
respondence exists, in other cases, such as the so-called F test (which is carried out in the
analysis of variance, not treated in this book), it does not exist: the F test for a bidirectional al-
ternative hypothesis is a one-tailed test. However, in medical statistics it is customary conven-
tion to define the test as one- or two-tailed depending on whether the alternative hypothesis is
unidirectional or bidirectional.
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Figure 5.4. Relationship among different normal distributions (for the example in the
graph: μA = 10; μP = 5; σ = 3; nA = nP = 30)
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from the data obtained from the sample. In addressing inferential problems, the
frequentists generally assume that the two samples under comparison have the
same variance, i.e. σ2

A = σ2
P = σ2, an assumption we have made from the start

(see Table 5.3). The reader will guess that this assumption of equal variance
(called homoscedasticity) can sometimes be problematic. This issue, even
though important, goes beyond the limits that we have set for this book. Under
the condition of homoscedasticity, both samples can give an estimate of σ2. This
estimate is used to calculate d*

μ (see again Table 5.3). Once σ2 is estimated, what
was stated above for “ingredients” 2 and 3 is again true. The only difference is
that, because we have estimated σ2 from the data of the sample, the distribution
of d*

μ is no longer normal, as stated above, but it is of the Student’s t type. Here
we ask the reader to make a leap of faith, because a deeper discussion of this
distribution requires knowledge of probability calculus exceeding the level
assumed for this book. However, the key point here is not that of describing the
mathematical expression of the sample distribution of the test statistic, but is
that of understanding that the test statistic is completely known under the null
hypothesis. Probability tables also exist for the Student’s t distribution, concep-
tually similar to the one for the standard normal distribution, but more laborious
to use, because, in order to find the p-value of interest, the sample value of the
test statistic is not sufficient. It is necessary to calculate another parameter, the
so-called degrees of freedom, which depends on the size of the sample5. For
large samples, as mentioned in section 5.1.3, the Student’s t distribution approx-
imates the normal distribution. 

Execution of the frequentist test. To have a graphic idea of the opera-
tional procedure, the reader can refer to Figure 5.5, which illustrates the per-
formance of the test for the unidirectional hypotheses system (5.2), assuming
that the end-point (in the example, the walking distance measured at the end
of the treatment) has a normal distribution. 
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5. The shape of the Student’s t distribution is similar to that of the normal distribution. How-
ever, for small samples it shows more dispersion around the mean, since the use of σ̂ in place
of σ introduces a higher degree of uncertainty. As the sample size increases, the Student’s t
distribution approximates more and more the normal distribution. Therefore, the shape of the
Student’s t distribution depends not only on the mean and the standard deviation, but also on
the size of the sample. However, the dependency  of the Student’s t distribution on the sample
size is indirect, via the so-called degrees of freedom, which are the number of observations free
to vary in the sample. These are equal to the difference between the number of observations
and the number of constraints or relations among them. For example, if we extract a sample of
3 units so that x1 + x2 + x3 = 3x�, we will have 2 degrees of freedom because only 2 of the 3 vari-
ables can assume any value (the third value must be such that, when added to the other two,
gives 3x�). Likewise, going back to our example, this notion can be explained as follows: at the
start  we have nA observations in the group A and nP in the group P; however, in each of the
two samples we loose one degree of freedom when we calculate the mean, so that (nA – 1) and
(nP – 1) degrees of freedom remain, in the two groups respectively ((nA + nP – 2) in total), to
estimate the standard deviation.



Figure 5.5 shows the sample distribution of the test statistic d*
μ, which we

know by now has a Student’s t probability distribution (but this detail is not cru-
cial). In particular, the curve on the left side of the figure is the sample distri-
bution of d*

μ assuming the null hypothesis is true (i.e. that δμ  = 0). The curve on
the right side represents one of the possible distributions of d*

μ under the alter-
native hypothesis (the selected one corresponds to the smallest difference con-
sidered clinically relevant – see chapter 6). Once the experiment is carried out
and the data are obtained, we calculate first the value dobs (that is, the value
taken by dμ in our sample) and then the ratio between this and the estimate of
the standard deviation of its sample distribution (the standard error), that is,
d*

obs. As shown in Figure 5.5, the probability of obtaining a value equal to or
greater than d*

obs under the null hypothesis is the area of the tail located at the
right of d*

obs under the left curve of the figure (the one assuming that the null
hypothesis is true). This probability is the p-value.

If the p-value is less than or equal to the significance threshold α (typically
0.05), the result is declared statistically significant. This means that it is
considered unlikely that differences between treatments equal to or greater
than the difference observed in the study could be due to chance. Therefore,
the difference observed in the study is judged not due to chance. Vice versa, if
the p-value is greater than the significance threshold, the result is not statisti-
cally significant. 

At this point, the frequentist test is completed. In Figure 5.5 we have illus-
trated a case in which the test ends with the rejection of the null hypothesis.

We now return to the example at the beginning of the chapter. At the end of
the study, the group treated with A achieved a mean walking distance equal to
471.6 meters, while the group treated with P achieved a mean walking distance
equal to 404.5 meters. Let us also assume that:
• The alternative hypothesis is H1 : μA > μP and the test is performed at the 5%

significance level (one-tailed).
• The walking distance is measured with a treadmill having variable inclination,

therefore its distribution is normal.
• The two samples have sizes nA = 54 and nP = 62.
• There is homoscedasticy and the estimate of σ in the two groups treated with

A and P is respectively σ̂ A = 232.65 and σ̂ P = 204.15.
With these assumptions, the formulas presented in table 5.3 give us: 

σ̂ A = 217.86

62 + 54SÊ = 217.86 ×��� = 40.55
3348

The test statistic  takes the value: 

(471.6 – 404.5) 
d*

obs = = 1.65
40.55
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Using the Student’s t distribution tables (not provided), for the one-tailed
test, we obtain a p-value of 0.051 (the reader wishing to verify this calculation
will need to refer to some other text or software and consider that the number
of degrees of freedom for our example is equal to 54 + 62 – 2  = 114). An
approximate p-value can also be calculated by using the normal distribution
tables. Since the p-value is greater than 0.05, strictly speaking, the test ends
without rejecting the null hypothesis. However, if the unidirectional alternative
hypothesis is considered acceptable, a researcher faced with this result (the
observed p-value is very close to the threshold of significance) would justifiably
have a strong suspicion that treatment A is in truth superior to placebo. As we
said, the significance level of 5% is a convention, therefore the difference
between the observed p-value (0.051) and the nearest significant p-value
(0.05) is negligible. In these “borderline” cases, the researcher’s overall con-
clusion should not be determined by whether our p-value is slightly to the left
or to the right of the arbitrary threshold, but rather on a set of considerations,
among which are the following:
• What are the characteristics of the confidence interval on the mean differ-

ence between treatments? Important are its width and the location of the
threshold of clinical relevance inside it (see section 5.5.2).

• How does the result change if we change the assumptions? For example, it
would be useful to perform a non-parametric test as well, which does not
require assumptions on the distribution of the end-point (see section 5.8).

• How do the secondary end-points behave? It is important to evaluate if they
overall confirm or not the efficacy of the treatment under evaluation. 
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• What results do similar studies give? 
It should be noted that similar considerations must be made also in the case

of a clearly statistically significant result. 

Link between p-value, estimator and test statistic. As a final step, we
shall delve deeper into the link connecting the p-value to the values of the test
statistic d*

μ and of the estimator dμ. We will continue to refer to Figure 5.5 and
in particular to the distribution of d*

μ under H0. From that figure it can be seen
that as the p-values (i.e. the  areas of the right tail) get smaller, the values of
the test statistic d*

μ get bigger and vice versa. The same relationship exists
between the p-values and the values of the estimator dμ. Consequently, the
question we ask when performing a test can also be formulated as follows: “Is
the difference observed between the sample means sufficiently great, com-
pared to its variability, to indicate a real (non-random) difference between the
means of the corresponding populations?” If we keep in mind that d*

μ is the ratio
between dμ and its variability, we should now understand better the statement
made in chapter 4, that the object of the statistical test in a clinical trial is that
of differentiating the signal (effect of the treatment) from the background noise
(effect of chance). 

From Figure 5.5, we can also see that a specific value C corresponds to the
significance threshold α. This value is called the critical value of the test,
because to its right we find the region of rejection of the null hypothesis. An
alternative way of performing the test is that of calculating d*

obs and C. If the
value of d*

obs is to the right of C, i.e. is equal to or greater than C, it falls in the
region of rejection of the null hypothesis; consequently the difference between
the groups under comparison is statistically significant. This means (we repeat
it one more time) that the difference between the sample means is so large
that, in the hypothetical repetition of the experiment under the same condi-
tions, such a difference, or an even greater one, would occur in 5% or less of
the outcomes, if the two groups were selected from populations with identical
means (therefore assuming that the null hypothesis is true). 

In the example described above the critical value of the one-tailed test cor-
responding to a 5% significance level is C = 1.66. Since the value of d*

obs is small-
er than C (1.65 < 1.66), the test is concluded without being able to reject the
null hypothesis, but leaving strong suspicion that A is superior to  placebo. 

In summary, the statistical test for the unidirectional hypothesis system (5.2)
can be performed in one of two equivalent ways: 
• Using the significance threshold, calculating the p-value and applying the fol-

lowing decisional rule: 
• H0 is rejected if p-value ≤ α;

• H0 is accepted if p-value > α.
(5.4)

• Using the critical value C (known once α is chosen), calculating the test sta-
tistic and applying the following decisional rule: 
• H0 is rejected if d*

obs ≥ C;
• H0 is accepted if d*

obs < C.
(5.5)
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Unidirectional and bidirectional hypothesis testing. What has been
discussed up to this point applies to the unidirectional hypothesis system in
(5.2) with H1 : δμ > 0. However, it is simple to extend the reasoning both to the
other unidirectional hypothesis system, in which the alternative hypothesis
goes in the opposite direction, and to the bidirectional hypothesis system. 

When the hypothesis system is unidirectional with H1: δμ < 0, we can still use
the decision rule in (5.4) but we have to keep in mind that the p-value refers
to the area of the tail opposite to the one to be used for the hypothesis system
with H1: δμ > 0. Alternatively, we need invert the inequality signs and replace C

with –C in the decision rule in (5.5), i.e. the rule becomes: H0 is rejected if 
d*

obs ≤ –C and is accepted if d*
obs > –C. A useful exercise for the reader would

be to build a figure similar to Figure 5.5, in which the sample distribution under
the hypothesis H1 is to the left of that under H0. The test is still one-tailed in
this case. 

When the hypothesis system is bidirectional with H1 : δμ ≠ 0, as in (5.1),
Figure 5.6 must replace Figure 5.5. In Figure 5.6 there are two probability dis-
tributions of the test statistic under the hypothesis H1, one to the left and one
to the right of the probability distribution under the hypothesis H0.
Furthermore, the decisional rules (5.4) and (5.5) must be modified to take into
account that, with the hypothesis system (5.1), a result “far” from 0 (that is,
“far” from the null hypothesis of no difference between the population means)
in either direction favors the alternative hypothesis. For a test at the 5% signif-
icance level (α = 0.05), since in this case the region of rejection of the null
hypothesis is located in both tails of the distribution of the test statistic d*

μ

under the null hypothesis H0, each of these tails has an area equal to α/2 =
0.025. The test is two-tailed (see note 4).

Considering the decisional rule (5.4), first we calculate the value of d*
obs; next

we calculate the area of the tail of the distribution of d*
μ under H0 to the right of 

�d*
obs� (�d*

obs� is the value of d*
obs always with a positive sign) by taking advantage

of the symmetry of the sample distribution of d*
μ (under H0 the area to the right

of d*
obs is equal to the area to the left of – d*

obs). Therefore: 
• H0 is rejected if p-value ≤ α/2.
• H0 is accepted if p-value > α/2.

(5.6)

The decisional rule (5.5) can also be adapted to this case. For a significance
level equal to α, two critical levels C1 and C2 must be considered, where C1 is
the point which leaves to its left a surface area of α/2 and C2 is the point which
leaves to its right a surface area of α/2. Taking advantage again of the symme-
try of the distribution of the test statistic d*

μ, we see that, under H0, C1 = –C and
C2 = +C . Therefore, the decisional rule becomes:

• H0 is rejected if �d*
obs� ≥ C.

• H0 is accepted if �d*
obs� < C.

(5.7)

The decision rule (5.7) states that H0 is rejected if the computed value of the
test statistic is either ≥ C or ≤ –C; otherwise H0 is not rejected.
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In the example illustrated in Figure 5.6 the test ends without rejecting the
null hypothesis.

Let us return once more to the example discussed above and repeat the test
with a bidirectional alternative hypothesis, again at the 0.05 significance level.
Indeed, the bidirectional hypothesis is the appropriate one for our example. The
result is p-value > α/2: in fact, 0.051 > 0.025. Therefore, the test ends again
without rejecting the null hypothesis. In this case however, the outcome is more
clear-cut compared to the unidirectional case. Obviously, we get the same result
by applying the decisional rule (5.7), where the critical value C obtained from
the Student’s t distribution table is 1.98. Had we used the normal distribution
table, C would have been 1.96, which is a good approximation of the value 1.98. 

We feel the need to remind the reader one more time that attaining statisti-
cal significance only allows the exclusion with reasonable certainty that chance
alone can explain the result. Statistical significance does not allow the exclu-
sion of bias and does not allow to conclude that the result is clinically relevant.
The effect of the treatment and that of bias cannot be separated from each
other through the statistical test described in this section. Statistical tech-
niques helpful in uncovering bias do exist, but their outcomes are always of an
exploratory nature. The danger of bias can be minimized only in the planning
phase of a study. We will return to the concept of bias and the importance of
planning in chapter 9. 

We have already talked about the clinical relevance of the result in section
5.2.2. In the next section of this chapter we will discuss the frequentist meth-
ods for statistical estimation, which allow assessment of the clinical relevance
of a result.
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Assumptions for the application of the Student’s t test. In concluding
this long section, we must point out that the statistical comparison between two
treatment groups cannot always be conducted by means of the Student’s t test,
as some non-statisticians seem to believe!

The correct application of such test requires the following assumptions to be
verified:
1.The end-point of interest must be quantitative and normally distributed.
2.The two groups under comparison must have the same variance (homoschedas-

ticity).
If the end-point of interest is not quantitative, it cannot be appropriately

summarized by the mean and if the other requirements above described are not
fulfilled, the test statistic d*

μ does not have a Student’s t distribution. 
A logical reasoning similar to the one developed in this section can still be

applied. However, other test statistics, different from d*
μ, must be chosen and/or

other probability distributions, different from the Student’s t distribution, must
be used. 

Concerning the assumptions at point 1, the reader is referred to sections
1.3.1 and 5.1.3. 

In case of violations of the assumption at point 2, different solutions exist in
the literature which, for lack of space, we will not introduce (see for example
[24]). It should be noted however that the Student’s t test is robust to violations
of the assumption of normality, especially when the distribution of the end-
point is not clearly asymmetrical and when the sample size is “reasonably” large
(see 5.1.3) and to violations of the assumption of homoscedasticity, especially
when the sample sizes of the two groups under comparison are similar. A test

is defined as robust with respect to a particular assumption when the violation
of the assumption, within limits, does not result in a loss of validity of the
methodology used and consequently does not result in a loss of reliability of the
results. In other words, the Student’s t test remains valid, within limits, when
the variances of the two groups are different. 

A very common procedure, when one is not sure whether the assumption of
homoscedasticity is appropriate, is that of verifying the equality of the vari-
ances using an appropriate statistical test (Fisher’s F test). If the result of the
test is not significant, the two variances are considered equal and the Student’s
t test is applied for the comparison of the means. This procedure is commonly
used, even if it is not without problems: first of all, there is no guarantee that it
will have enough power to detect the difference between the variances under
comparison; second, the application of more than one type of test in sequence
(in the example, a F-test followed by a t-test) increases the total level of sig-
nificance (due to a mechanism similar to the one described in section 4.7),
which calls for caution in interpreting the overall outcome, without an adequate
adjustment for multiplicity.
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5.5.2. Estimation of the Effect: the Frequentist Solution

When analyzing data from clinical trials, one must always report, next to the p-
value, the estimate of the treatment effect. This is because statistical significance
and clinical relevance are two different concepts. This message is so important
and so often ignored by the medical literature that we feel it is useful to stress it
one more time: statistical significance, which tells us whether the observed dif-
ference is due to chance or not, is linked to the statistical test; clinical relevance,
which tells us whether the observed difference is relevant or not for the patient,
is linked to the estimate of the treatment effect. An interpretation of the results
based on only one of the two aspects would be incomplete and would make it
impossible to draw reliable conclusions on the experimental treatment.

A first method for estimating the unknown parameter, that is, the magnitude
of the effect of the treatment (the signal), is the point estimate, by which the
unknown parameter in the population is estimated with the corresponding sam-
ple statistic. This is the method we have used so far, which we will call method

of analogy. For example, the population mean is estimated with the mean cal-
culated on the sample, the population variance with the sample variance, and
so on. A choice of this type seems to satisfy common sense: it is logical and it
uses all of the sample observations. 

The point estimate by analogy is not the only method to obtain point esti-
mates used by the frequentists. In section 5.4.2 for example, we talked about
the maximum likelihood estimates. We refer the reader interested in the topic
to other textbooks (for example, [105]). In our example, both the method of
analogy and that of maximum likelihood give δ̂μ = 67.1.

Regardless of the method used to obtain the point estimate of the parameter
of interest, its validity is assessed based on a series of properties desirable for
the estimator that generated it. As we know well by now, in the frequentist
approach statistical procedures are evaluated with reference to a hypothetical
repetition of experiments, performed under the same conditions. It is exactly
in these terms that the properties of the different estimators are evaluated. The
limits of this book prevent us from discussing further these properties.
However, it is important for the reader to remember that not all estimators are
equally “valid”. 

In the frequentist approach, to compliment the point estimate, the confi-

dence interval is calculated, generally at 95% level (corresponding to a test
with a significance level of 5%), or at 99% level (corresponding to a test with a
significance level of 1%). This is a method for estimating the magnitude of the
unknown parameter (the effect of the treatment) through an interval, instead
of a point. 

In the previous section we saw that, if X is a normally distributed random vari-
able, the estimator dμ is also normally distributed, with mean μA – μP and standard

deviation (under the assumption of homoschedasticity). 2 / nA +
2 / nP
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Therefore the quantity:

.

has a standard normal distribution with mean = 0 and standard deviation = 1. 
We also know that the probability of a variable with standard normal distri-

bution falling between the critical values –C and C, where C = 1.96, is equal to
0.95, i.e. these two values are such that 95% of the standard normal distribu-
tion is included between them, while 2.5% of this area is included in each of the
remaining tails (see Figure 5.6, middle curve). To be precise, the interval
included between –1.96 and 1.96 is the smallest interval defining an area equiv-
alent to 0.95 on the standard normal distribution. 

Expressed in a formula this becomes:

With a few algebraic transformations, this expression can be rewritten as fol-
lows:

This is equivalent to:

.

Once the sample is extracted, in place of dμ we have dobs (the point estimate
of δμ ). Since we are no longer dealing with a random variable, the probabilistic
relationship reported above can no longer be interpreted in the strict sense. In
other words, when dobs is substituted for dμ, strictly  speaking, we can no longer
see this relationship as an event which has a 95% probability of occurring. It is
for this reason that we speak of a 95% confidence interval for δμ which can be
expressed in one of the following two equivalent ways:

or:

.

Here, again, we face the problem of having to estimate σ2 from the sample
data. Therefore, if the sample is not large, the value 1.96, which is taken from
the normal distribution under the assumption that σ2 is known, must be
replaced by the critical C value obtained from the Student’s t distribution tables
(with a number of degrees of freedom equal to (nA + nP – 2)).

In the example discussed in the previous section, the 95% confidence inter-

(dobs ± 1.96 2 / nA +
2 / nP )

(dobs 1.96 2 / nA +
2 / nP ; dobs + 1.96 2 / nA +

2 / nP )

Pr (d 1.96 2 / nA +
2 / nP )< < (d + 1.96 2 / nA +

2 / nP ){ } = 0.95

+ 1.96 2 / nA +
2 / nP )} = 0.95

Pr ( X A X P ) 1.96 2 / nA +
2 / nP )< ( A P )< (X A X P )+{

Pr 1.96 <
(X A X P ) ( A P )

2 / nA +
2 / nP

< 1.96 = 0.95

(X X ) ( A P )

2 / nA +
2 / nP

A P
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val for δμ is (67.1 ± 1.98 × 40.55) meters, often written as (-13.2; 147.4) meters,
in favour of treatment A. 

The procedure described in this section guarantees that, repeating the cal-
culation of the interval on an infinite number of samples, the confidence inter-
val obtained will include the true value of the parameter in 95% of the cases. In
other words, we have applied a technique that, in the long run, gives us correct
interval estimates 19 times out of 20, that is, with a probability of 95%. For con-
venience, the property of this procedure is extended to the single interval and
therefore this is interpreted by stating that it includes the true and unknown
value of the parameter with a 95% probability. Actually, however, the single
interval either includes or does not include the true value of δμ i.e. it is “cer-
tainly right” or “certainly wrong” and there is no way to know which of the two
situations we are in. 

The confidence interval introduced above is a bidirectional interval. It is nat-
urally possible to build unidirectional intervals. These intervals are limited only
on one side. Assuming again a normal distribution, the unidirectional confidence
interval at 95%, suitable for the hypothesis system (5.2), has only the lower lim-

it, which is equal to . In this case:

• the critical value C is equal to 1.645, instead of 1.96, because here we are
interested in an expression of the type:

• –C = -1.645 because the probability that a variable with standard normal dis-
tribution falls to the right of this value is 0.95. 
Strictly speaking, also in this case we should consider the critical value C ob-

tained from the Student’s t distribution. For our example, the critical value C is
equal to 1.66 and the unidirectional interval at 95% is given by the set of values
> -0.2 meters in favor of treatment A. 

The width of the confidence interval depends on the precision of the esti-
mate: the higher the precision (that is, the lower the variability of dμ), the nar-
rower the width of the interval and vice versa (see also section 5.4.1). 

It is important to note that there is a link between a test performed at the 5%
significance level to verify a difference between two means and the confidence
interval at 95% built on this difference: if the test is statistically significant, the
confidence interval does not contain the 0 value and vice versa. Therefore, if we
know the confidence interval, we also know whether the result of the test is sta-
tistically significant or not (at the level (100-level of confidence of the inter-
val)%), even without actually performing the test. In our example, in the case
of the bidirectional hypothesis (5.1), once we know that the 95% confidence
interval has limits –13.2 and 147.4 meters, we know that the corresponding two-
tailed test at the 5% significance level is not significant. In the case of the uni-
directional hypothesis (5.2), once we know that the 95% confidence interval

Pr C <
(X A X P ) ( A P )

2 / nA +
2 / nP

= 0.95

(dobs 1.645 2 / nA +
2 / nP )
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has a lower limit equal to –0.2 meters, we also know that the corresponding one-
tailed test is not significant, although it is very close to the limit of significance.

The reader must pay attention to the definition of the confidence interval.
Unfortunately, it does not imply that δμ has a 95% probability of taking a value
included between the extremes of the confidence interval. Such information, of
course, would be of much more interest for the researcher. This is due to the
fact that in the frequentist approach δμ is not a random variable, but a constant
value of the population. The confidence interval expresses a probabilistic rela-
tionship with respect to the only random variable, which is dμ. We will return to
this point in section 5.7.

5.6. Bayesian Analysis of a Clinical Trial

In this section, as in section 5.5.1, we will make the assumption that the groups
under comparison are not affected by bias. 

5.6.1. Hypothesis Testing: the Bayesian Solution 

As we did in section 5.5.1, we shall start by testing the unidirectional hypothe-
sis system (5.2). We have completed a study on a pre-selected sample and
obtained the values x1_A, x2_A,....xnA_A, for the group treated with A and the val-
ues x1_P, x2_P,....xnP_P, for the group treated with P. The Bayesian inference, like
the frequentist inference, requires knowledge of the probability distribution of
the end-point of interest. For our example, we will assume that this distribution
is normal. 

For the reader’s convenience, in Table 5.8 we report and explain the symbols
appearing in this section.

The Bayesian inferential reasoning. The Bayesian inferential reasoning
unfolds in three key points:
1.The unknown value, i.e. the parameter, is considered variable because uncer-

tain. Therefore, the parameter is assigned a probability distribution, referred
to as the a priori probability distribution. It  reflects the knowledge the
researcher has of the parameter of interest before the start of  the study. In
our example, the parameter of interest is the difference between the means
of the two populations, δμ = μA – μP.

2.The results of the experiment are synthesized by the likelihood function,
which, as seen in section 5.4.2, expresses the likelihood of different values of
the unknown parameter in light of the results obtained, or in other words, the
support that the observed results provide to the different hypotheses on δμ.
Before the experiment is started, the likelihood function is a function of both
the values of the sample and the values of the unknown parameter. Once the
experiment is performed, the values of the sample are known, i.e. become con-
stants. Thus, the likelihood function remains a function only of the parameter.
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3.Combining the initial (a priori) probability distribution with the likelihood
function, the final probability distribution is obtained, referred to as the a
posteriori probability distribution. The combination of the initial proba-
bility distribution with the likelihood function, to obtain the final probability
distribution, is achieved through the Bayes’ theorem. We shall introduce
this theorem by using our example, wherein the end-point is the walking dis-
tance indicated with X and the unknown parameter is the difference between
two means, δμ = μA – μP. If we use the symbols reported in Table 5.8, the the-
orem of Bayes can be expressed with the following formula: 

pposteriori (δμ) = const × ppriori (δμ) × L(δμ) (5.8)

where “const”, once again, stands for constant, i.e. a value which does not
depend on the unknown parameter (it stays the same whatever the value of the
parameter).

Table 5.8. Symbols used in this section and their meanings

Symbol Meaning

δμ = μA – μP Difference between the (true) means of the populations treated with A

and P
ppriori(δμ) Distribution of the initial probabilities of δμ (a priori probability

distribution)
L(δμ) Likelihood function
pposteriori(δμ) Distribution of the final probabilities of δμ (a posteriori probability

distribution)

δ̂μ Estimate of δμ

We shall now go a bit deeper into each of the three points listed above. 

Point 1: a priori probability distribution. We said that the a priori

probability distribution of the parameter, in our example δμ , represents the
expression of a certain level of information on the unknown parameter. When
informative results on the parameter of interest from previous experiments
exist, the a priori probability distribution will be based on them, provided that
they are considered reliable by the researcher. For example, let’s assume we
want to plan a study to compare two treatments for intermittent claudication,
with walking distance as the primary end-point. We have recently completed a
study with the same treatments in which walking distance was a secondary
end-point. Walking distance results gave a bell-shaped a posteriori distribution
of the mean difference δμ , with mean = 40 meters and standard deviation = 50
meters. With the above information we are entitled to assume as a priori prob-
ability distribution for our new study a normal distribution with mean = 40
meters and SD =  50 meters. 

In the absence of informative data or as a complement to these, assessments
not based on previous experiments, but other sources, such as for example expe-
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rience, are used to determine the a priori probability distribution. It is in this
context that we understand why the use of the a priori distribution presumes
the adoption of a different concept of probability, which in section 5.1 we called
“subjective”. When there is no information on the parameter of interest, an alter-
native approach to the “subjective” determination of the a priori probability dis-
tribution also exists: the use of a special type of probability distribution, called
non-informative distribution, that does not alter the information coming from
the observation of the sample results. The idea is to use distributions which
assign the same probability to all of the possible values of the parameter. In 
our example, for the unknown parameter δμ, we could adopt the distribution

as a non-informative a priori distribution. If a non-informa-

tive distribution is chosen as an a priori distribution, the a posteriori distri-
bution has the same shape as the likelihood function. This can be derived from
the formula (5.8), imagining that the constant (the term “const” in the formu-
la) and the value ppriori(δμ) cancel each other out.

Point 2: likelihood function. The likelihood function, as illustrated in sec-
tion 5.4.2, is built from the probability distribution of the end-point. In our
example, having assumed a normal distribution as the probability law for each
X of the sample, the likelihood function is given by the product of normal dis-
tributions. Here we will not assume homoscedasticity, because contrary to the
frequentists,  the Bayesians generally do not make this assumption. Table 5.9
gives some essentials on the calculation of this function. 

Table 5.9. Laws of probability for the calculation of the likelihood function in our exam-
ple

a. Given two independent events E1 and E2 (that is, knowledge of E1 does not change
the probability of E2 and vice versa), the probability of both events occurring is given
by the product of the probability of each of them occurring. 

b. All of the nA + nP observations of the sample are independent from one another. The
nA observations on the patients treated with A are determinations of a random vari-
able with a normal probability distribution with mean μA and standard deviation σA,
while the nP observations on patients treated with P are determinations of a variable
with normal probability distribution with mean μP and standard deviation σP.

c. If we put together the considerations in points a and b, we realize that, to obtain the
likelihood function L(δμ) of the entire sample (seen as the combination of two sam-
ples, treated with A and P respectively), we must calculate the product of nA + nP

normal probability distributions, of which nA have mean μA and standard deviation σA

and nP have mean μP and standard deviation σP. In reality, some transformations are
needed  to express the likelihood as a function of δμ; furthermore, the likelihood
function is not just a function of the parameter of interest δμ but also of the distur-
bance parameters σA and σP (*).

(*) Mathematical methods aimed at eliminating the disturbance parameters exist: one of
these consists in maximizing the likelihood function with respect to the disturbance
parameter

ppriori ( )
1

const
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Point 3: a posteriori probability distribution. We now have all the ele-
ments we need to apply the Bayes’ theorem and obtain the a posteriori prob-
ability distribution. 

So far we have approached the problem as if there were only one parameter,
δμ, in order to simplify the outline of the basic concepts. But, at this point, we
must recognize that the standard deviations σA and σP are other unknown
parameters (in our case disturbance parameters) that are still present in the
likelihood function, even after the sample results have been obtained. The
Bayesian approach offers various methods to address the problem of the dis-
turbance parameters and, as mentioned above, in general it does not require
the assumption of homoscedasticity. These methods are beyond the scope of
this book. The reader must make another leap of faith and accept that, while
the likelihood function is dependent on more than one unknown parameter,
there are methods to eliminate the problem of the ones that are of no interest
(disturbance parameters); nevertheless a priori probability distributions are
needed for all of the parameters involved in the formulation of the problem. 

The problem encountered when comparing two means from normally dis-
tributed end-points is known in the literature as the Behrens-Fisher problem.
An a priori distribution of reference for this problem is based on the assump-
tion that the parameters μA, μP, σA and σP have uniform (i.e. non-informative)
distributions and are independent. The a posteriori probability distribution
obtained with this choice, known as the Behrens-Fisher distribution, cannot be
expressed in terms of tabulated functions. However, as described by Box and
Tiao [18], it is possible to use the approximation proposed by Patil to obtain a
probability distribution (more precisely, a probability density function) of
known shape6.

Obviously it is not possible to go into the details of the calculation here. By
applying this method to the walking distance example introduced in section
5.5.1, the a posteriori probability distribution illustrated in Figure 5.7 is
obtained.

Before moving to the a posteriori probability distribution, it is important we
understand the role of the constant in the formula (5.8). It is needed to ensure
that the result obtained from the Bayes’ theorem be a probability distribution,
i.e. have a total area equal to 1. For this reason, such a constant is called a nor-
malization constant.

The a posteriori probability distribution represents the synthesis of all of the
information, available before and after the experiment, on the unknown param-
eter. It is to the Bayesians what the sample distribution of the test statistics is
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to the frequentists, the instrument through which all inferential processes are
carried out: hypothesis testing, point estimation and estimation by interval. It is
clear that, in order to carry out any form of inference, we must know the a pos-

teriori distribution, which means that either we know the mathematical
expression or have access to the relevant probability tables. When this is not
possible, we must rely on an approximate evaluation, based on simulation tech-
niques.

While the sample distribution of the test statistic varies with the variation of
the possible sample results in the hypothetical succession of identical experi-
ments, the a posteriori distribution varies with the variation of the possible val-
ues of the parameter. This difference is not trivial. It enables the a posteriori

probability distribution to directly answer questions such as: “What is the prob-
ability that the value of the parameter is greater than a given value, or that it is
included between two values v1 and v2?”. The sample distribution of the test
statistic cannot directly answer this type of questions because the areas of the
sections under its curve do not express the probabilities of the different values
of the parameter. They express  instead the probability of the various sample
results.

It is evident from (5.8) that the a posteriori probability distribution depends
not only on the experimental result, but also on the a priori probability distri-
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tance (it is the t distribution with mean = 67.11; variance = 1708.015; degrees of freedom
= 83.96)
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bution chosen (in the case of more than one parameter, it depends on each of
the respective a priori distributions).
• If there is no a priori information on the effect of the new treatment, a non-

informative a priori distribution is chosen; therefore, the a posteriori dis-
tribution will have the same shape as the likelihood function, that is to say, it
will be determined by the experimental results. This is what was done in the
example illustrated in Figure 5.7.

• If a priori the new treatment is considered “probably inefficacious”, the a
priori distribution will be concentrated around a value of δμ close to zero. If
the information is scarce, the a priori distribution will be poorly informative,
i.e. very dispersed around the zero value. In this case, only very positive
experimental results in favor of the new treatment will generate an a poste-

riori distribution supporting the hypothesis favoring efficacy, i.e. will be able
to make us change our minds.

• If, on the contrary, a priori the new treatment is considered “probably effi-
cacious”, the a priori distribution will concentrate around a value of δμ close
to the value of clinical relevance for the difference between treatments. If the
evidence in favor of the treatment is strong, it will be very concentrated
around this value. In this case a reasoning opposite to the previous one will
apply, because only experimental results highly unfavorable to the new treat-
ment will generate an a posteriori distribution supporting the hypothesis
favoring lack of efficacy.

Conduction of the Bayesian test. From the discussion so far, it should be
clear that the a posteriori distribution is already, to a large extent, the answer
to the hypothesis being studied. However, formal tests can also be conducted
in the context of the Bayesian approach. To mirror section 5.5.1, we shall sub-
mit to statistical testing the unidirectional hypothesis (5.2) for our walking dis-
tance example (illustrated in Figure 5.7). We will show how the a posteriori

probability distribution can be used to this end. 
We must calculate the a posteriori probabilities of the two sets of values

included in the null hypothesis and in the alternative hypothesis, respectively:
in the first case it is a matter of calculating the area under the curve corre-
sponding to values of δμ less than or equal to 0; in the second case it is a mat-
ter of calculating the area (under the same distribution) corresponding to val-
ues of δμ greater than 0. For the final step of the formal hypothesis testing, the
Bayesians use the so-called loss function, which expresses the losses associ-
ated with the decision of accepting H0 or of accepting H1 when one or the other
hypothesis is true.7

Generally, the correct decisions are those that are associated with small or no
losses. The concept of loss can be interpreted in monetary terms or more gen-
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erally as a loss of usefulness (based on subjective considerations). Losses with
a negative sign are interpreted as gains. 

This function plays a role somewhat similar to that of α and β for the fre-
quentists. However, whereas the frequentists make implicit reference to con-
siderations related to losses and subjective beliefs in choosing α and β, the
Bayesians make such considerations explicitly by using the loss function. 

To carry out the test, the Bayesian calculate the mean expected losses linked
to the decision to accept H0 or H1 (this is done by calculating the weighted
means of the losses linked to the choice of H0 and H1 multiplied by the rispec-
tive a posteriori probabilities of H0 and H1) and choose the hypothesis corre-
sponding to the smallest mean loss. 

The discussion of this theory is definitely beyond our goals. We refer the
reader to the book by Wonnacott and Wonnacott [105] for an introduction to
the topic and to the previously cited work by Berry [12] and by Spiegelhalter,
Abrams and Myles [97] for a complete discussion. Here we will only point out
that, assuming a constant loss function, the experiment leads us to choose the
hypothesis associated with the highest a posteriori probability. In our example
on walking distance, we obtain the following: area under the curve correspon-
ding to the values δμ ≤ 0 equal to 0.054; area under the curve corresponding to
the values of δμ > 0 equal to 0.946. 

The a posteriori distribution of δμ allows us to directly calculate the proba-
bility of the alternative hypothesis, corresponding to the smallest difference
considered clinically relevant. Therefore, it helps us to directly answer the
question concerning the clinical relevance of the results. Let us suppose we
have decided that δμ = 50 meters is the smallest difference in mean walking dis-
tance between the two treatment groups that still is of clinical relevance. Using
the a posteriori distribution, we can calculate the probability of δμ ≥50. In
Figure 5.7 this probability is represented by the area under the curve to the
right of δμ = 50 meters. If this area is sufficiently large (for example 0.9, i.e. 90%
of the entire probability distribution), we can accept the hypothesis that δμ is
at least 50 meters, therefore that the difference between treatments is clinical-
ly relevant. In our example, the probability of δμ ≥50 is approximately 66%, thus
it is not “sufficiently” large to accept the alternative hypothesis. 

In concluding this section we should point out that the assumption of
homoscedasticity would have simplified the calculations. However, as we said,
generally Bayesians prefer not to make this type of assumption. 

5.6.2. Estimation of the Effect: the Bayesian Solution

What is the best point estimate of the parameter δμ? Most would agree intu-
itively that a “good” estimate of δμ is given by the mean of the a posteriori

probability distribution (or another statistic capable of summarizing its position
or “central tendency”, such as the mode or the median). In our example, the
mean of the a posteriori distribution is 67.1 meters.

With the Bayesian approach, as with the frequentist one, numerous types of
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estimation methods exist and the validity of the estimates is assessed based on
a series of desirable properties, generally different from those used by the fre-
quentists (see [76]). 

In our example, the Bayesian point estimate of δμ coincides with the fre-
quentist one, i.e. it is the difference between the two treatment sample means,
if non-informative a priori probability distributions are used, as we have done.
This concurrence of results does not always occur, even when non-informative
a priori distributions are used. When a priori distributions other than the
non-informative ones are used, the frequentist and Bayesian estimates always
differ.

Moving to the interval estimate of δμ, the Bayesians build the credibility or
credible interval (the term confidence interval belongs to the frequentist
approach). This is defined as the smallest set of values of δμ having an a poste-

riori probability greater than or equal to a certain desired value. For example,
if we wish to build a bidirectional 95% credibility interval, we must find the
smallest interval of values of δμ which has a total a posteriori probability of
95%. To obtain this interval, we could take the set of values of δμ for which 
pposteriori(δμ) > h and then choose h so that this set has a total area of 95%. With
reference to Figure 5.8, we need to choose the value h so that the set of values
included between δ̂ Inf and δ̂Sup, identified by the two vertical lines passing
through the two intersections between the horizontal line crossing h and the
pposteriori(δμ) curve, is equal to 0.95. 

The width of the credibility interval depends on the variability of the a pos-

teriori distribution: the less variable (i.e. more narrow) the distribution, the
more precise (i.e. smaller) the credibility interval and vice versa. 

In our example comparing two walking distances, the bilateral 95% credibili-
ty interval for δμ, based on the a posteriori distribution illustrated in Figure 5.7,
is (-14.7; 148.9) meters in favor of treatment A. With an analogous procedure,
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the unilateral credibility interval can be calculated. 
In conclusion, in our example the 95% confidence interval and the 95% cred-

ibility interval give approximately the same result (but it should be considered
that with the Bayesian approach, we made no assumption of homoscedasticity).
Again, this does not always occur. In any case, whether the results coincide or
not, the interpretation of the two types of interval is different. 

For  the comparison of two means: 
• The frequentists’ 95% confidence interval is the smallest set of values of the

statistic dμ which includes 95% of its sample distribution, i.e. it is the small-
est set of values which includes 95% of the sample estimates of the parame-
ter that we would obtain in hypothetical future studies, all similar to the one
actually performed.

• The Bayesians’ 95% credibility interval is the smallest set of values of δμ

which has an overall probability of  95%, i.e. it is the smallest set of values
which includes the true value of the parameter with a probability of 95%.
Only by somewhat forcing the concept, we can say that the frequentists’

interval includes the true value of the parameter with a probability of 95%.

5.7. Some Additional Considerations 
on the Frequentist and Bayesian Approaches

At this point, no matter which approach is chosen, the role of statistics should
be clearer to the reader. It is a set of techniques for the evaluation of the degree
of uncertainty, which: 
• In the planning phase of the experiment, allows evaluation of the risks asso-

ciated with a number of necessary choices, such as, for example, the choice
of the sample size (in turn linked to many other factors – see chapter 6). 

• In the assessment phase of the experiment, it allows the appropriate analysis
and interpretation of results. 
Also, the reader should remember that the clear-cut separation between the

frequentist and Bayesian approach we maintained throughout this chapter was
an intentional exaggeration, with the goal of simplifying the presentation. In
fact, intermediate approaches exist and there are many statisticians who are
open to adopting either approach, depending on the nature of the specific prob-
lem.

We can now attempt a comparison between the two approaches. There are
two main criticisms of the Bayesian approach: the first is that it is a subjective
method where results depend on the arbitrary choice of the a priori probabil-
ity distribution; the second is that it often requires very complex calculations
that are difficult to verify. The most common criticism of the frequentist
approach is that it follows a twisted logic.

Concerning subjectivity, we must recognize that this is present in both
approaches. It plays a big role in the frequentist approach as well, although it
is, so to speak, more hidden. For example, as already mentioned, the choice of
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the 5% threshold of statistical significance is totally arbitrary and exclusively
codified by use and by convention. The same can be said of the choice of the
acceptable level for the type II error. Likewise, the choice of the threshold of
clinical relevance is almost always highly subjective (see chapter 6).
Nevertheless, the frequentist approach profiles itself as an objective method in
which elements of subjectivity are perceived as “undesirable”. 

On the contrary, in the Bayesian approach, subjectivity, intended as a broad-
er concept of probability than the one based on frequencies derived from long
series of tests, is the very essence of the method. In this approach, the acquisi-
tion of knowledge is considered an interlocutory process that, by its own nature,
includes elements that are openly subjective, especially in the initial phases. It is
true that subjectivity should not be intended as a license to use non-sensical a
priori distributions; on the contrary, the initial probabilities must have an
acceptable basis. It is true that this choice becomes progressively less subjective,
as more knowledge on the unknown parameter is acquired. It is also true that
the impact of the choice of the a priori probability can be verified, within lim-
its, by studying the variation of the estimate of the parameter with the variation
of the a priori distributions. Finally, it is true that some kind of “reference
threshold” can be built from non-informative a priori distributions, when cal-
culating the a posteriori probability distribution. However, the fact remains that
the subjective elements can never be completely eliminated. The acceptance of
subjectivity, as matter of fact inseparable from the cognitive process, is what
characterizes the Bayesian approach. From this point of view, the solution of
limiting subjectivity by restricting the use of Bayesian methods to non-informa-
tive a priori distributions, seems to betray the foundation of the approach. 

The complexity of calculations is definitely greater in the Bayesian approach.
This limitation was practically impossible to overcome before the computer
became a widely accessible commodity. Later, an almost equally insurmount-
able limitation was the lack of software allowing scientists without advanced
expertise in computer programming to use the Bayesian methods. Today the
situation has changed dramatically, so much so that the complexity of calcula-
tions is almost no longer an obstacle. If anything, the one thing that remains dif-
ficult is the verification of results by others, since the a posteriori distributions
often cannot be treated with analytical methods. Therefore, simulation meth-
ods (“Monte Carlo”, “bootstrap”, “jackknife” and others) must be used to esti-
mate empirically or approximately these distributions and to calculate the rel-
evant areas, intervals, etcetera. 

Let us now move to the criticism of the frequentist approach. In our view, it
is difficult to deny that the reasoning behind it is not very straightforward. For
example, when we perform a statistical test, what we really would want to know
is whether the observed difference is due to chance or not. With the Bayesian
approach we can answer this question directly. Instead, with the frequentist
approach we can only manage to get this information indirectly. 

If the test is statistically significant, the probability of getting a result equal to
the one obtained in the study or one more extreme, under the hypothesis H0 of
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absence of differences (i.e. by chance), is lower than the threshold of statisti-
cal significance (almost always 5%). This probability is considered sufficiently
small to conclude that the observed difference did not result from chance. If the
test is not statistically significant, then through analogous reasoning, the fre-
quentists conclude that the observed difference is due to chance. The reader
must pay attention to the roundabout way one gets to the final verdict, due to
the fact that the p-value does not directly express the probability that the
observed difference is due to chance. 

The same consideration can be made for the confidence interval. In section
5.5.2 we saw that with the frequentist approach it is difficult to answer the
question: “does the confidence interval include the true value of δμ?”, which is
what the researcher is really interested in. When we obtain a 95% confidence
interval in a study, this interval either includes the true value of δμ or does not
include it, and there is no way to know which situation we are in. What we can
say is that we are applying a procedure that works (that is to say, includes the
true value of δμ ) with a probability of 95%. This is the relative frequency of the
intervals including the true value of the parameter in a long sequence of inter-
vals, stemming from a long sequence of hypothetical identical experiments.
This property of the procedure is then extended to the single interval some-
what stretching the logical argument. 

In our opinion, the main reason why the Bayesian approach is less common
than the frequentist one in the field of clinical research is that it does not easi-
ly lend itself to a rigid decision making system. We do not mean to say that the
frequentists necessarily use rigid decision making schemes, only that the fre-
quentist approach is more suited to a final judgment of the ”true/false” type.
The Bayesian approach seems to us to be intrinsically contrary to this type of
oversimplification: it represents well the cognitive process, the way it develops
in time, that is, a gradual process of getting closer to the “truth”, through vari-
ous shades of gray. This explains why this approach is rarely accepted by the
regulatory authorities (especially as a method of analysis of phase III pivotal tri-
als), who must necessarily draw black or white conclusions and, consequently,
why it is not used much by researchers nor appears much in applied scientific
publications. Another reason is that the frequentist approach became widely
used long before the computer did, at a time when the Bayesian approach was
really difficult to apply. To gain back lost ground the Bayesian approach must
prove itself against a widely used and accepted method. 

Before bringing this section to an end, we need to stress another difference
between the two approaches: the different attitude toward the multiple tests,
which we discussed in section 4.7. The issue is very important and warrants a
closer examination, since it influences many experimental situations, spanning
from the use of more than one primary end-point to the comparison of more
than two groups, to the interim analyses and so on. The conceptual model
behind the frequentist approach, that of repeated sampling, entails the problem
of statistical multiplicity, while this is not a problem in the conceptual model
used by the Bayesians.
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The frequentists define as statistically significant those differences between
the sample means that are so extreme that they would occur in less than 5% of
the tests, if the two groups were selected from populations having identical
means (we saw that, in general, the scientific community considers that the risk
of making this error is sufficiently small if less than 5%). When we perform
many statistical tests, the probability of making at least one type I error increas-
es compared to when we perform only one test. We remind the reader that for
a comparison between two means, a type I error is the erroneous conclusion
that μA and μP are different. This occurs when the results of the study give by
chance an extremely high or low difference X�A – X�P. This observed difference
leads to the wrong conclusion that there is a difference between the two popu-
lation means μA and μP, when in reality there is none. When many statistical
tests are performed, the probability of obtaining by chance at least one such
extreme result rapidly increases with the number of tests performed. 

These problems are not encountered with the Bayesian approach, since the
logical process occurs in the context of the data obtained from the one experi-
ment truly conducted, not in the prospective of an infinite repetition of the
experiment. The probabilities that are calculated from the a posteriori proba-
bility distribution directly express the probability of the unknown parameter
being equal to or greater than a certain value of interest. Therefore, no adjust-
ments for multiplicity are required. However, what we just stated must be inter-
preted with caution. It does not mean that for the Bayesians it is acceptable to
perform studies with many end-points of the same importance (i.e. many pri-
mary objectives), planned as if there were only a single end-point. First of all,
the rule of not performing studies addressing too many questions at the same
time is a principle of good clinical practice valid for everyone, including the
Bayesians. The biggest problem of  these studies remains that of interpreting
conflicting results from different end-points. Second, if one wants to have mul-
tiple end-points of equal importance in the same study, in order to use correctly
the Bayesian approach, one must face the problem of reconstructing the com-
plex links among the end-points, and consequently among the respective prob-
ability distributions. 

5.8. Parametric and Non-Parametric Inference

In this section we introduce the distinction between parametric and non-para-
metric inference, terms that are very often encountered in applied clinical
research. This is not an easy task because in this book we have not touched
upon all of the concepts required to explain this distinction. As a consequence,
we can only provide rough definitions. 

Parametric methods are those in which both of the following requirements
are met:
• The researcher is interested in submitting hypotheses on one or more param-

eters of the population to statistical testing, or in estimating such parameters.

5.8. Parametric and Non-Parametric Inference 149



• The researcher knows the distribution of the end-point of interest in the pop-
ulation on which the inference will be made.
Methods for which both of these requirements are not met are called non-

parametric.
Let us consider again the example that we have used all along in this chapter.

We said that the end-point of interest, the walking distance, has a distribution
of known shape, which we have assumed is normal. This distribution is com-
pletely characterized by two parameters, the mean μ and the standard deviation
σ, as illustrated in Figure 1.1. For the probability theory (see Table 5.7), the dif-
ference between the walking distances of two independent populations A and P
also has a normal distribution, with mean (μA – μP) and standard deviation

(assuming ).

At this point it is clear that the example falls in the parametric inference
because both of the requirements stated above are satisfied. 

It is important to stress that the results of the parametric analysis, both in the
frequentist and Bayesian approaches, depend on the assumptions made on the
distribution of the primary end-point. If these assumptions change, for example
the distribution is assumed of a different shape, the results also change. For this
reason it is of paramount importance to always perform a statistical verification
of the assumptions whenever a parametric analysis is carried out.

Let us now imagine that the end-point walking distance has a distribution the
shape of which is unknown. As usual, we are interested in testing the efficacy
of a new treatment (A) and wish to perform a clinical study in which this treat-
ment is compared to placebo (P). We extract a sample of subjects (units) from
the population of patients with intermittent claudication; then we randomly
assign the subjects to the two treatments under comparison so as to form two
independent groups; finally, having treated the patients for an appropriate peri-
od of time, we observe the results in each group. At this point, we summarize
the results appropriately, for example using the mean, median, or another esti-
mator of central tendency. The object of the inference remains the same, that
is, the extension of information obtained on the samples to the underlying pop-
ulations, but there is no link between the distribution of the population and the
sample distribution of the estimator. In this context we would perform a non-
parametric inference.

5.9. Statistical Decision Making in the Medical Field

In statistical decision making, a statistical-probabilistic model for decision
making is formally linked to one or more experimental models. In this context,
the data collected in the experiment (or experiments) are analyzed with the
explicit objective of making an optimal choice.

In the medical field, a typical decision making problem is when the doctor has
to decide how to treat his/her next patient, on the basis of the knowledge of the

A

2 = P

2 = 22 2

150 5. Probability, Inference and Decision Making



results of clinical trials available up to that moment. This problem belongs to
the category of the so-called predictive problems: we have a past experiment
(the clinical trial) giving information pertinent to the outcome of a future
experiment (the treatment of future patients), both experiments having the
same inferential structure. For example, let us suppose we have performed an
experiment in which the end-point walking distance is measured in nA patients
treated with compound A and nB patients with compound B. The doctor having
to choose whether to treat his/her next patient with A or B (assuming A and B
are both active) would find it very useful to be able to predict the walking dis-
tance of that individual patient after A and after B. 

Both the frequentist and Bayesian approaches offer statistical methods to
allow such a prediction. We have no intention in this book to discuss these
methods, not even superficially, because of their complexity. We refer the read-
er interested in the topic to the books by Piccinato [76] and by Berry [12], which
however require good knowledge of mathematical analysis and probability cal-
culus.

Our objective is to show the reader that the true essence of clinical practice
is making decisions under conditions of uncertainty. When the doctor sees a
patient for the first time, he/she needs to adopt a strategy to guide the plan of
investigations. To begin with, the doctor must move towards a specific diagno-
sis (or a restricted group of options), based on a multiplicity of information
obtained from different sources: the medical history of the patient, the symp-
toms and the signs detected during the visit, epidemiological, etio-pathogenic-
ity and clinical knowledge of the disease, etc. To reach a sufficient degree of
diagnostic certainty and to exclude alternative diagnoses (the so-called differ-
ential diagnosis), the doctor can add to the history and physical examination of
the patient a set of laboratory and/or instrumental investigations. To do so, the
doctor must have information, as up to date as possible, on the validity of the
available diagnostic tests. Once the diagnosis is established, the attention of the
doctor turns to treatment and prognosis. The question that the doctor asks
him/herself is: what is the evidence supporting the different available treat-
ments? In choosing, the doctor must also consider the potential side effects and
cost implications of the different options. If a new treatment is started, the doc-
tor must also decide what tests the patient will need to perform to monitor
progress and how frequently. Depending on how the clinical picture evolves,
the doctor will need to make other decisions. If the patient’s problem is not
solved, is it worth continuing the treatment? If the problem is solved, is it rea-
sonable to perform further tests and/or visits? At each phase of the diagnosis
and treatment process, the doctor must make decisions in a context of uncer-
tainty.

We must admit that the decision process followed by the doctor in the prac-
tice of medicine is close to the Bayesian approach, in the sense that the a pri-

ori probabilities of a given diagnosis are constantly updated by new observa-
tions, new results of laboratory and instrumental investigations, etcetera.
Obviously, the doctor does not formally apply the Bayes’ theorem, but uses the
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same logic and would be helped if he/she were aware of the principles behind
it. It is a fact that, whereas in the inferential field the frequentist methods are
applied much more commonly, in the field of decision making problems, it is the
Bayesian approach to be more frequently used . 

5.10. Evidence-Based Medicine

In this last part of the chapter we will give an introduction on the so-called
Evidence-Based Medicine (EBM), which has the primary objective of help-
ing the doctor to make the best possible choices in the treatment of individual
patients. As we will see, this approach gives an explicit recognition to statistics
as a fundamental tool for drawing conclusions in clinical as well as in epidemi-
ological studies, and for helping doctors to make appropriate decisions in the
treatment of patients.

EBM is a discipline both relatively young and, so to say, fashionable. It is one
of the many disciplines born from clinical epidemiology. However, more and
more emphasis has been put on clinical research, intended as the group of dis-
ciplines assessing the effect of treatments, and on diagnostic research, intend-
ed as the group of disciplines assessing the accuracy and precision (i.e. the
validity) of tests to diagnose and evaluate progression of diseases.

One must admit that the expression EBM is somewhat weird, in that it seems
to imply that there is an alternative medical practice based on non-evidence!
Unfortunately this is indeed the case, even though few physicians would be will-
ing to admit it. Clinical practice is full of decisions based on an “ideological”
approach, on sympathy, fascination, personal interest, etcetera, all of which are
foreign to evidence.

EBM as a discipline was born from an idea originated by Professor Sackett
and some of his colleagues at the McMaster University in Canada [89, 90]. EBM
is defined as the “conscientious, explicit and judicious use of current best evi-
dence in making decisions about the care of individual patients”. This definition
integrates two components of equal dignity: the personal clinical experience of
the physician and the ability to critically evaluate the results of medical
research, both epidemiological and clinical. It is important to stress again that
the two components have equally important roles. 

The success of EBM had various positive effects.
• The first and most important one is that of helping doctors to care better for

their patients.
• Another important contribution is that EBM has drawn attention on the

importance of scrutinizing quality of the medical information available to the
public from databases, scientific journals, the web and other sources. The
admonition that quality of medical literature is often poor is not new and cer-
tainly pre-dates EBM: on this issue see, for example, the articles by Altman
[2], Brown [19] and Pocock, et al [78]. However, EBM made a strong contri-
bution to this awareness. First, by highlighting the shortcomings of many high
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profile studies and relative publications. Second, by giving impetus to the cre-
ation of groups aimed at performing systematic reviews of the literature and
at defining and divulging criteria to discriminate reliable from unreliable
research. Among these groups, the Cochran Collaboration Center [11] is par-
ticularly active. It is an international organization, established in 1992, which
has the primary aim of facilitating informed decision making on medical and
health care matters, by preparing, updating and divulging the so-called sys-
tematic reviews or meta-analyses (see chapter 12) of clinical and epidemio-
logical studies, in practically all areas of medicine. This organization is well
known for its database (Cochran Database of Systematic Reviews in the
Cochran Library), regularly updated by the member groups.

• Furthermore, EBM has contributed to the definitive affirmation of the funda-
mental role of methodology and statistics in medical research, both experi-
mental and epidemiological. In reality, for many years it has been clear that
an understanding of methodological and statistical principles is indispensable
for critically evaluating the results of both clinical and epidemiological
research (see for example the two guidelines ICH [60] and [61]). However,
such awareness has traditionally been limited to a relatively restricted num-
ber of “insiders”. The broad public of “beneficiaries” of biomedical research,
doctors, biologists, pharmacologists who read scientific magazines, without
being directly involved in research, for a long time have been typically
unaware of the methodological bases of research, which prevented them from
critically evaluating it. Unfortunately, many still are. However, EBM had the
great merit of bringing a broader public closer to the debate on what repre-
sents methodological rigor and statistical evidence. At the same time, EBM
solicited the recognition that knowledge of methodological and statistical
principles is indispensable also to doctor day to day care of individual
patients.
As a rule, any experimental result should be considered as affected by acci-

dental variability, and the statistical analysis has the aim of evaluating the dis-
turbance resulting from it. To fully understand the contribution that statistics
can give, one must be aware of the value and limitations of any statistical pro-
cedure. The measurement of evidence and the techniques to evaluate it pro-
posed by frequentist and Bayesian statistics are different, as we attempted to
explain in this chapter. The debate on the role of these approaches in the med-
ical field, which appeared to be definitely closed in favor of the frequentists, has
recently gained new impetus, and the Bayesian approach is today often seen as
a more natural and conceptually easier approach to measure the statistical evi-
dence. An interesting dissertation on the statistical concept of evidence, with
applied comparisons between the two approaches, can be found in a paper by
Piccinato [77], while a more practical discussion on the concept of evidence of
efficacy and safety required for the regulatory approval of a pharmacological
treatment can be found in a paper by Gould [52].

Many articles have been written, both in the statistical and medical literature,
on the issue of statistical training of doctors: a very useful reference is an entire

5.10. Evidence-Based Medicine 153



volume (volume 21) of Statistics in Medicine, published in 2002. As we said,
EBM explicitly recognizes the need for all doctors, including those not involved
in research, to understand the basic concepts of epidemiological and experi-
mental methodology and of statistics. The doctor needs this knowledge to inter-
pret and assess the information coming from clinical and epidemiological stud-
ies published in the literature, and to  apply this information to the diagnosis
and treatment of the individual patient. It is interesting to note that the UK
General Medical Council has included the following requirements for all gener-
al practitioners (see again [4]):
• Ability to formulate the problems in a clear way, to implement an appropri-

ate strategy to solve them and to critically evaluate the data collected to
establish the efficacy of this strategy.

• Ability to understand the contribution of the different research methods, and
to apply and interpret correctly the results of studies performed in the spe-
cific area of competence.

Summary

What characterizes the questions of inference and decision making, which are
the foundations of clinical research, is that the answers are given under condi-
tions of uncertainty. If the level of uncertainty is low, the conclusions are
strong; if the level of uncertainty is high, the conclusions are weak. The proba-
bility theory provides the tools and methods to perform this kind of assess-
ments. Several approaches to defining probability exist. In the “frequentist”
approach, probability is the relative frequency of an event, calculated in an infi-
nite sequence of experiments all performed under the same conditions. In the
“subjective” approach, probability can be defined as the price that one is will-
ing to pay to get 1 if the event occurs and 0 if the event does not occur.

A variable is called random when its value is uncertain and for this reason it
is given a probability distribution. A probability distribution can be seen as the
ordering (from the smallest to the greatest) of all the values or groups of val-
ues that the variable X can hypothetically assume, each quantified by the prob-
ability of it occurring (a point on the ordinate axis for a discrete variable, or an
area under a specific section of the curve for a continuous variable). Each prob-
ability distribution, to be usable operationally, must be described by a mathe-
matical expression, linking each value x of the variable X to its probability. 

Statistical inference is the set of procedures through which conclusions
obtained on the sample are extended to the underlying population. The need
for statistical inference stems from the recognition that the result of a single
experiment (a sample result) does not coincide with the true effect of the treat-
ment, since each result is affected by accidental factors (chance), to an extent
that is different with every repetition of the experiment and unpredictable.

In statistics there are several inference methods, each based on a different
probabilistic approach. The best known are the frequentist approach (by far the
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most commonly used in the clinical field), based on the frequentist definition of
probability, and the Bayesian approach, based on the subjective definition of
probability. Both approaches can be used to test hypotheses and to estimate
parameters, i.e. the effects or signals of interest.

In the frequentist approach, the inspiring principle is that of repeated sam-
pling, which assumes that the experiment is performed an infinite number of
times under identical conditions. The statistical procedures (both for estima-
tion and for hypothesis testing) are evaluated with reference to this hypothet-
ical series of repetitions of each experiment, throughout which it is assumed
that all experimental conditions, including the effect of the treatment(s) under
investigation, remain unchanged. The treatment effect is the unknown param-
eter to be estimated. It is considered to be a fixed quantity, while the statistic
summarizing the experimental results is considered variable during the hypo-
thetical repetition of the experiments. When the statistical analysis carried out
with this approach shows that the result is statistically significant, the conclu-
sion is formulated as follows: “It is very unlikely (typically with probability equal
to or lower than 5%) that a difference equal to or more extreme than the one
observed is due to chance”. The meaning of “extreme” must be interpreted dif-
ferently, depending on whether the alternative hypothesis is unidirectional or
bidirectional.

In the Bayesian approach, for every experiment two phases are considered:
the pre-experimental one, where the results have yet to be obtained, and the
post-experimental one, where the results are available. In the pre-experimental
phase both the unknown parameter (that is, the real effect of the treatment)
and the set of results which are possible before performing the experiment (a

priori) are treated as random variables, each having its own probability distri-
bution. In the post-experimental phase, the result of the experiment is no
longer a random variable, because there is no more uncertainty about it, while
the parameter is still treated as a random variable. The conclusion we draw
through the statistical analysis performed with this approach is summarized in
the a posteriori distribution of the parameter, from which we can directly
obtain the probability that the unknown parameter has of being equal to or
greater than any value of interest.

The inference methods are divided into parametric and non-parametric.
Methods satisfying both the following requirements are called parametric: 
1.The researcher is interested in submitting to statistical testing hypotheses on

one or more parameters of the population, or in estimating such parameters.
2.The researcher knows the distribution of the end-point of interest in the pop-

ulation on which the inference will be made.
The methods not satisfying both these requirements are called non-parametric.
In recent years, a new discipline, called Evidence-Based Medicine (EBM),

has acquired growing standing within the medical community. This discipline
has been defined by Armitage and Colton as the “conscientious, explicit and
judicious use of current best evidence in making decisions about the care of
individual patients”. EBM facilitates the integration of two components of equal
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dignity in the medical decision making process: the personal clinical experience
and the ability to critically evaluate results obtained from epidemiological and
clinical research. To reach the latter objective it is crucial for the medical com-
munity to understand and embrace the basic principles of methodology. EBM
played a very important role in elevating methodological and statistical knowl-
edge to the prominence of a basic discipline for any doctor, even if not directly
involved in research.
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6
The Choice of the Sample

The sample is the group of subjects on which the study is performed. Two
aspects, one qualitative and the other quantitative, must be considered when
choosing the sample.

6.1. Which Subjects Should Form the Sample?

The qualitative aspect of the sample selection consists of:
• Defining the key characteristics of the subjects to be enrolled.
• Defining the mechanism for selecting the subjects from the population, which

must be such that a sample representative of the underlying population is
obtained.

6.1.1. Characteristics of the Patients to be Enrolled 

in the Study

Some characteristics will be considered indispensable for the subject to be
included in the study (inclusion criteria), while others will be considered
incompatible with the study (exclusion criteria).

First of all, depending on the type of clinical study, the sample can be of
healthy volunteers or of patients affected by a given condition. Healthy vol-

unteers are generally involved in the initial phases of the clinical drug devel-
opment process (phase I, see chapter 12). The criteria qualifying a person as
“healthy” are far from obvious. At one end of the spectrum, we can consider
healthy any person who does not have clinically overt diseases at the time of



entering the study. Most would consider such an approach problematic,
because it does not account for undiagnosed diseases, nor for diseases at a sub-
clinical stage (because mild or initial), nor for risk factors. At the other end of
the spectrum, we could decide to consider healthy only the subjects showing
“normal” values in a very large set of instrumental and laboratory tests. The lat-
ter approach is just as problematic as the former, if not more so, because there
is practically no limit to the number of tests one can undergo and because,
when many tests are performed, it is practically certain that some results will
be outside the normal range, even in the absence of disease and risk factors. If
such a diagnostic “furor” is used, any volunteer would violate at least one cri-
terion for perfect health and be classified as diseased.

Clearly, the status of healthy volunteer presumes the absence of clinically rel-
evant diseases. Routine investigations of the cardiovascular function (e.g. stan-
dard electrocardiogram), liver function (e.g. transaminases, bilirubin), renal
function (e.g. creatinine clearance, electrolytes), and of the hematological pro-
file must be assessed as normal in the context of a thorough clinical examina-
tion. This should be a true integration of information from different sources, not
a mechanical screening of the test results against the respective “normal
ranges”. Once major organ and system impairment has been ruled out, a subject
must fulfill additional criteria to qualify as “healthy”, depending on the type of
treatment and disease under study. Furthermore, the cultural context in which
a study is performed plays a key role in defining “good health”. Is a subject with
a common cold healthy or not? What if he/she is anxious? If a subject is para-
plegic, because of a car accident, but otherwise perfectly healthy (perhaps an
elite athlete), is he/she healthy or diseased? Is an over-weight, but not obese,
person healthy or diseased? Obviously, there are no absolute answers. It should
be noted that the inclusion of female healthy volunteers into an early study
implies that the drug being studied has already passed fertility and teratogenic-
ity tests in animals (these tests evaluate the influence of exposure to the drug
during conception and pregnancy on malformations and survival of the off-
spring). Sometimes these studies are not yet completed when clinical develop-
ment begins; therefore, phase I studies must be restricted to male volunteers.

Except for phase I studies on healthy volunteers, clinical research is per-
formed on patients affected by a specific disease or condition. In fact, in many
therapeutic areas, including oncology, even phase I studies are increasingly
conducted on patients instead of healthy volunteers. When patients are the
object of a study, the first step in the sample selection must be an accurate def-
inition of the diagnostic criteria. For many diseases diagnostic guidelines exist,
published by national and international specialist bodies (such as the American
Heart Association, the European Respiratory Society, etc.). In planning a study,
it is generally advisable to use recognized guidelines, resisting the temptation
(often very strong) of modifying them for the purpose of the study. The adop-
tion of modified guidelines generally enhances the credibility of the study only
in the eyes of the researcher who made the modifications, but diminishes it in
the eyes of the rest of the scientific community. 
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Another very important selection criterion concerns the severity of the dis-
ease: the most severe forms of many diseases are somewhat independent enti-
ties, characterized by a special pathogenesis and clinical picture. The
researcher must decide whether or not to include in the study the patients at
the extreme end of the severity spectrum. In fact, sometimes it is appropriate
to focus exclusively on this group of extreme patients, because that is where
the therapeutic need and most of the human and financial costs are. Going back
to the example used in chapter 4, asthma is generally a disease manageable
with relatively simple treatments and compatible with an almost normal life.
However, steroid-resistant asthma, affecting 5 to 10% of asthma patients, is
very difficult to treat, causes a dramatic reduction in the quality of life (to
which the side effects of the available drugs contribute), has a quite high mor-
tality and is responsible for a disproportionate fraction of the direct and indi-
rect costs caused by this disease.

Once the diagnostic criteria of the disease are defined and the range of sever-
ity to be included in the study is decided, the researcher must face the complex
problem of the other selection criteria. The nature of the problem is similar to
the one described above for the choice of healthy volunteers. Around the cen-
tral criterion, the condition under study, a virtually endless constellation of fac-
tors exists, which could affect the efficacy of the treatment, its safety, or both.
These criteria certainly deserve to be considered, starting with the demo-
graphic characteristics. Elderly subjects could be more prone to potential side
effects than younger ones. Women in their fertile years are at risk of becoming
pregnant during the course of the study (see below). And then there is the
issue of children: is it ethically acceptable to experiment the new drug in chil-
dren (see below)? A second group of criteria concerns the concomitant dis-
eases: which ones will we accept in the study? And what will we do about the
patients with abnormal laboratory values? A third group of criteria concerns the
behavioral, occupational and life style factors, some of which carry legal impli-
cations. Should we enroll cigarette smokers? If yes, must we set a limit to the
number of cigarettes smoked per day? And what about subjects taking drugs or
who have done so in the past? Should we exclude some professions, for exam-
ple train or bus conductors? Is it necessary to impose the HIV test? The list of
categories and examples could go on for the rest of this book. 

The dilemma faced by the researcher is the following: the stricter the inclu-
sion and exclusion criteria for the study, the smaller the background noise of
biological variability. Therefore, it will be easier to detect a response to the treat-
ment. Furthermore, the risk of unexpected adverse events will be lower. On the
other hand, the stricter the inclusion and exclusion criteria, the more abstract
and far from the clinical reality the sample will be. The risk is to end up with an
enrollment plan restricted to subjects affected by the disease under study, but
otherwise super-human for physical health, psychological balance and absence
of risk factors. In our career as protocol reviewers, we have seen this frequent-
ly. Apart from the practical difficulty of finding such subjects, who may only
exist in the researcher’s mind, what is at risk is the legitimacy of generalizing the
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results. The results of our study may only apply to a theoretical population that,
at best, represents a minute fraction of the real population of patients.

As a general rule, it is acceptable to be more restrictive in the early phases of
the clinical development (phase IIa- see chapter 12), where the principal aim of
the study is to prove the biological hypothesis behind the treatment (the so-
called “proof of concept studies”). When it comes to the dose-response studies
(phase IIb) aimed at selecting the dose (or doses) for phase III pivotal studies,
it is necessary that the selected sample be representative of the majority of the
patients to whom the treatment is targeted. Since experience with a new treat-
ment is generally still very limited in phase II, more selective inclusion and
exclusion criteria in phase II dose-response studies compared to those of phase
III pivotal studies, can still be accepted. However, a mistake to avoid at all costs
is that of having drastically different patient selection criteria between the dose-
finding studies and the pivotal phase III studies, as the dose(s) chosen for
phase III could be painfully wrong.

Special groups of patients. Patients with kidney or liver impairment are
generally studied separately (when such patients are relevant for the disease
under investigation), under strictly controlled conditions. An alternative
approach, which is relatively new and used more and more, is that of studying
sub-groups of patients in large integrated databases of multiple studies. At the
end of phase III, an integrated database generally includes thousands of patients.
This number is even higher if, after drug approval, the database is updated with
post-registration studies (phase IV - see chapter 12). Let us suppose we are
interested in knowing the tolerability profile of a corticosteroid in patients with
myopia, i.e. shortsightedness (corticosteroids can cause or worsen various ocu-
lar conditions including glaucoma and cataracts). Rather than performing a ded-
icated study in such patients, one can extract from the integrated database all
of the patients for whom myopia has been reported in the physical examination
performed at the beginning of the study (naturally, this implies that myopia was
not an exclusion criterion in the main studies). Some of the myopic patients
extracted from the database will have been treated with the experimental treat-
ment, others with the placebo, still others with active controls. Adverse events
and laboratory data can then be summarized and compared between the treat-
ment groups. The great advantage of this approach is that it makes good use of
the great amount of data generated during clinical development, and is far more
rapid and cost-effective than an ad hoc study on a special population.

On the other hand, the reader should keep in mind that results of analyses of
subgroups from integrated databases should be interpreted with caution. This
is for several reasons, above all the imbalance, with respect to known and
unknown prognostic factors, that can potentially be introduced in the compar-
ison between treatments in a subgroup (when one extracts subgroups from a
larger group, some experimental units are excluded from the statistical com-
parison, and consequently, the balancing effects of randomization may be jeop-
ardized). Other reasons that suggest caution in interpreting these analyses are:
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• The problem of multiple comparisons (see below).
• The problem of a post-hoc selection of subgroups, i.e. after having examined

the data, which allows the “fine tuning” of selection criteria so that the results
will confirm the desired hypothesis (“data driven selection”). Going back to the
example of myopia, the careful examination of the integrated database could
suggest that there is no difference between corticosteroid and placebo in the
frequency of glaucoma and cataract when considering the subjects with more
than 2 diopters (a measure of the degree of myopia), while there appears to be
a higher frequency of such events in the corticosteroid group when consider-
ing subjects with 1 to 2 diopters. This knowledge could induce the researcher
interested in demonstrating that corticosteroids are safe to define the sub-
group of myopic subjects as “subjects with more than 2 diopters”.
Some of these problems are mitigated by the fact that the special populations

we are talking about are often standardized, i.e. predefined quite precisely (in
which case they do not lend themselves easily to “data driven selection”). In
addition, statistical methodologies exist for the subgroup analyses (interaction
tests) which reduce some of the above mentioned problems [64]. Finally, the
alternative of performing dedicated studies in the special populations of inter-
est has its own share of problems, which are equally complex or even more so.
Such studies are extremely difficult to conduct, long and expensive and,
because of the complexity of finding patients, major issues related to the rep-
resentativeness of the sample may arise. 

We will conclude this section on the qualitative characteristics of sample
selection by dealing briefly with three special aspects: studies on pregnant
women, studies on children and informed consent.

Studies on pregnant women. Generally, before entering a clinical study,
women in their fertile years must perform a pregnancy test and, once enrolled,
must agree to use birth control methods for the entire duration of the study (to
note that pharmacological methods such as oral contraceptives may be forbid-
den, because of the risk of interaction with the treatments under study). This
is because a pregnancy starting during a study is generally a dreaded event to
be avoided, even if doing so involves complex ethical and practical issues, for
example when dealing with a teenager accompanied by her parents, and with
cultural contexts where contraception can be very problematic. The reason for
this extreme caution is obvious, especially in the presence of a completely new
pharmacological entity. However, the consequence is that information on the
efficacy and tolerability of a new treatment on pregnant women (and on the
unborn) is almost never available when the treatment is approved and made
available to doctors and patients. Unavoidably, the package insert will carry a
warning against the use of the drug in pregnancy. Clearly, it would be very
important to fill this big gap as soon as possible. After a few years on the mar-
ket, when there is more confidence in the efficacy and tolerability profile of the
treatment, formal studies would need to be performed in pregnant women. But
this almost never happens, at least not in the structured and highly regulated
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form that must be followed to obtain the initial approval of the drug. In prac-
tice, in this very delicate area, the scientific community (health authority, phar-
maceutical industry and academia) tends to completely shirk responsibility: ini-
tially, it relies on the uncontrolled and accidental use of the drug in pregnancy
to gain experience. Later, only exceptionally will it formalize this experience
with appropriate clinical studies. Naturally, there are some exceptions, but
these are rare and generally occur too late.

Studies on children. It is a commonly held opinion, both in the general
public and in the scientific community, that, for ethical reasons, clinical exper-
imentation on children should be performed only much later than that on
adults. Unfortunately, in general, experimentation on children either starts
many years after studies on adults have concluded, or it is not performed at all.
Thus, the pediatrician is left with the difficult task of empirically adapting to
their little patients drugs and other treatments that really were only tested on
adults. In our opinion, and in agreement with many experts in the field, this
approach is neither scientifically nor ethically justified. From the scientific
point of view, children are not “little adults”: the efficacy of a drug can be high-
er or lower in a pediatric population compared to an adult one. Furthermore,
children are neither necessarily more prone to side effects, nor do they neces-
sarily require lower doses compared to adults. From the ethical point of view,
it is the lack or the excessive delay of experimentation on children that is unac-
ceptable. The pharmaceutical companies and the scientific community must be
encouraged to start appropriate clinical studies in children as soon as possible,
often very early in the clinical development program, for example, immediate-
ly after completing phase I or phases I and IIa (see chapter 12) in the adults. In
this regard, it is interesting to recognize that for drugs of pediatric interest that
were not voluntarily tested in children, the US Food and Drug Administration
(FDA) often formally requests that the sponsor perform an appropriate clinical
development program in pediatric populations, offering, as an incentive, an
extension of the duration of the patent protection for that drug.

Informed consent. The informed consent to participate in a clinical study
(as a healthy subject or patient), to be given by the subject him/herself, if capa-
ble of giving it, by a legal guardian when the subject is not, or by both when the
subject is less then eighteen years old, is now a cornerstone of clinical research.
The right of the patient to an informed consent is stipulated in the Declaration
of Helsinki, already included in its original version of June 1964 by the World
Medical Association and later amended several times (for the latest version see
[106]). The problems related to the informed consent will not be discussed in
this book. However, we do want to stress the importance and the complexity of
the problem. Subjects who are asked to consent to enter a study, the “experi-
mental units” to clinical researchers and statisticians, are real people who are
generally suffering physically and psychologically, often caught at the peak of
very dramatic situations. They may not be highly educated and may feel intim-
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idated by the medical personnel asking them to give their consent. It is hard to
tell what is informed consent under such conditions. What does the parent who
just took his/her child to the emergency room, or the patient who has just been
diagnosed with cancer, truly give consent to? How “informed” can the consent
be of a semi-literate farmer intimidated by the white coats in an academic med-
ical center? The problem is very difficult and there are no solutions that are
valid for all situations. However, it is essential that researchers, who are not in
direct contact with patients, keep in mind the procedures and risks for which
consent is asked, and ponder whether they themselves would enroll in such a
study or would enroll a loved one.

6.1.2. Mechanism of Subject Selection

As previously discussed (see chapters 2 and 5), to be able to extend results
from the sample to the population it comes from, the former must be repre-

sentative of the latter, i.e. all types of subjects (experimental units) included
in the population must be proportionally represented in the sample. 

The method generally used for selecting a representative sample is that of
choosing the experimental units randomly from the population. This method
insures that the units included in the sample differ only by chance from those
not included. This makes it likely that the group of subjects included in the
sample will not differ in any systematic and relevant way from the group of sub-
jects not included in the sample with respect to known and unknown prognos-
tic factors (including demographic and baseline characteristics). 

The further we move from random selection, the more problematic it is to
generalize the result obtained on the sample to the underlying population.

In real life clinical research, however, we do not achieve truly random sam-
ples of patients; rather, we select the sample from the cohort of patients who
seek treatment at the center(s) where the study is performed. Such patients
may be more or less representative of the population. 

The drawback of not having truly random samples from the population is
compensated by randomly assigning the patients to the treatments, a process
called randomization. In reality, this solves only part of the problem. In this way
the groups are not systematically different from each other, therefore, the study
has internal validity, according to the definition given in chapter 4 (ability to
draw comparatively valid conclusions). However, randomization cannot com-
pensate for a distorted selection of the whole sample as far as generalization of
the result is concerned. If, for example, our sample includes predominantly
patients from one particular social status, because the majority of the subjects
who refer to the study center belong to that social status, it will be difficult to
extend results to patients of all social levels of the population. We will return to
this topic in chapter 9. For the moment let us be satisfied with the internal valid-
ity of the study and suffice it to say that randomly assigning the subjects to
treatments, through the process of randomization, puts us practically in the
same condition as randomly extracting samples from the population.
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6.2. How Many Subjects Should Form the Sample?

One cannot expect to get from the sample the exact same result that one would
get if it were possible to evaluate all units of the population. We need to con-
sider this element of variability when deciding on the size of the sample.

The number of subjects to be included in a study (the so-called sample size)
is generally the result of statistical, medical and practical considerations.

6.2.1. Statistical Considerations

In this section, we will briefly discuss the statistical criteria that contribute to
determining the sample size of a study and explain some of the mechanisms
used in the frequentist approach. This section applies only to studies aiming at
demonstrating the superiority of a treatment over another. Other methods,
which will not be considered in this book, are used to determine the sample size
for equivalence and non-inferiority studies.

It will be useful for the reader to refer to Figure 6.1, similar to Figure 5.5.
Both refer to a unidirectional test for the comparison between means, assum-
ing an end-point with normal distribution and homoschedasticity. However,
instead of illustrating the sample distribution of the test statistic d*

μ, Figure 6.1
illustrates the sample distribution of the statistic dμ, both under the null
hypothesis (H0:δμ=0) and under the alternative unidirectional hypothesis
(H1:δμ>0). We remind the reader that, under the conditions considered, the
sample distribution of dμ is normal, has mean δμ=0 under the null hypothesis, 

and δμ>0 under the alternative hypothesis andhas variance under 

both hypotheses. In this figure the areas corresponding to α, β, and 1-β
(= power) for the unidirectional test of interest are shown. Furthermore, the
standard deviation of the two sample distributions isreported, equal to the 

square root of the variance (i.e. ), which we know from Figure 1.1

determines the width of the normal distributions. Before carrying on, the read-
er should make sure these concepts are clear, in light of what was presented in
chapter 5.

In evaluating a statistical test, the concept of power is essential. The power
of a test is the probability that the test will draw the correct conclusions when
the treatment has a real effect. Remember that the power is calculated by sub-
tracting the probability of obtaining a false-negative (i.e. of concluding that
there is no difference between treatments when a difference does exist) from
the number 1 (which indicates absolute certainty of detecting a difference
when it really exists). Generally, the power is expressed as a percentage, there-
fore, if the probability of a false-negative is 20%, the power of the test is 80%;
if the former is 10%, the latter is 90%, and so on.
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A power of less than 80% is generally considered unacceptable in the context
of clinical trials.

As we will see later, all of the components of the statistical test are linked. As
a starting point, let us consider the relationship between power and sample
size. This is a relationship of direct proportionality, that is, as the sample size
increases, so does the power, and vice versa. The concept that, if we increase
the number of patients we study, we also increase the probability of reaching
the right conclusion is intuitive at a common sense level, but not obvious from
a mathematical perspective. We will illustrate this concept by making reference
to Figure 6.1. The sizes of the two groups under comparison, nA and nP, can be
found in the denominator of the formula for the standard deviation of the two
sample distributions, therefore, whenever they get bigger, the standard devia-
tion gets smaller. If the standard deviation gets smaller, the two curves become
narrower (see also Figure 1.1). For these curves to stay centered respectively
on the value 0 and on the value of δμ considered in the hypothesis H1, the over-
lapping area between the two curves must necessarily shrink. This causes, for
a given value of α, a reduction of β and an increase in the power (= 1-β). Since
the power and the sample size increase or decrease in a directly proportional
way, if we change any of the other elements involved in the test in a way that
reduces its power, we must increase the size of the sample to bring the power
back to the desired level. 

We will now briefly touch upon the individual components contributing to the
calculation of the sample size. It is important to stress that the statements made
below for each component of the test are valid under the assumption that all
other remain unchanged. 
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1.Threshold of clinical relevance of the signal. The smaller the clinically
relevant difference between treatments, the bigger the number of subjects
required to detect it, that is, to separate it from the background noise and,
therefore, declare it statistically significant. Figure 6.1 should help to better
understand the reason for this. If we maintain unchanged all other conditions,
but choose a threshold of clinical relevance smaller than the one illustrated
in the figure, the distribution under the alternative hypothesis (H1) must
move to the left (because it is centered on a smaller value of δμ). Thus,
assuming that α is kept unchanged, β will increase and therefore the power
of the test will decrease. To leave the power unchanged, the sample size must
be increased. 

2.Variability of the primary end-point. The greater the variability of the
end-point (intrinsic or induced by the measurement process), the more sub-
jects are required to detect a given threshold of clinical relevance. Returning
to Figure 6.1, if we consider a greater variance σ than the one shown in the
figure, the two distributions will be larger and flatter. For the two curves to
remain centered on 0 and on the value of δμ respectively, the area of overlap
between the curves must necessarily get bigger. This in turn creates an effect
similar to the previous one, i.e. it eventually leads to a reduction in power,
that can only be balanced by increasing the sample size.

3.Acceptable risk of obtaining a false-positive result (α). As discussed
in chapter 5, the highest probability of a false-positive result (i.e. the erro-
neous conclusion that there is a difference between the groups, type I error)
that one is willing to accept is the threshold of statistical significance, indi-
cated with α. The smaller the value of α we adopt for the study, the bigger
the size of the sample. Returning to Figure 6.1, if we decrease α (for exam-
ple, from 0.05 to 0.01), because we want to be more conservative, β will
increase, therefore, once again, the power of the test decreases, unless we
increase the sample size.

4.Acceptable risk of obtaining a false-negative result (β). As discussed
in chapter 5, the highest probability of a false-negative result (i.e. the erro-
neous conclusion that there is no difference between the groups, type II
error) that one is willing to accept, indicated with β, determines the power of
the study (1-β). The smaller the value of β we adopt for the study, the bigger
the sample size must be. In this case, the statement is obvious, considering
that the power is equal to 1-β.

5.Unidirectional or bidirectional alternative hypotheses (one- or two-

tailed test). In the previous chapter we stated that the two-tailed test is
more conservative than the one-tailed test, that is, if all other conditions are
the same, the two-tailed test requires more subjects. Again, Figure 6.1 is
helpful. If we perform a two-tailed test, we will have to consider another sam-
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ple distribution of dμ, to the left of the null hypothesis, as in Figure 5.6. Under
these circumstances, Figure 6.1 represents only one part of the test (the one
to be considered when δμ > 0) and the tail of area α must be reduced to α/2.
This automatically determines an increase of β and therefore a reduction in
power, to be balanced with an increase in sample size (the same reasoning
applies when δμ <0, clearly focusing on the other distribution of dμ).

6.The type of test statistic. If we change the type of test statistic we have
used so far in our example, the size of the study will change: in fact, Figure
6.1 will no longer be valid. However, the intricate net of relationships exist-
ing among the various elements of the test remains the same. In general,
parametric tests require less patients (i.e. have more power) than the corre-
sponding non-parametric tests. Choosing one type of test over another
depends on the nature of the end-point (for a definition of parametric and
non-parametric analyses see section 5.8).

7.Design of the study. The way in which the subjects are assigned to the
treatments and are evaluated (see chapters 10 and 11) influence the sample
size in that they can modify the variability of the end-point (see point 2 above)
and also the type of statistic required to conduct the statistical test (see point
6 above). For example, provided that all other conditions remain unchanged,
a parallel group design requires more patients than the corresponding cross-
over design, because in the former, but not in the latter, the total number of
patients is obtained by multiplying the number of patients needed for one
treatment group by the number of treatments and also because in the cross-
over design the variability term used in the statistical test is usually smaller
(see chapter 10). The stratified design or the randomized block design, both
of which control some of the sub-experimental factors, generally require less
subjects compared to completely randomized designs (see chapter 10). With
some designs, increasing the number of measurements on each subject (rep-
etition of measurements) has an effect similar to increasing the sample size
(see section 11.4). In a particular case of experimental design, called N of 1
(described in chapter 10), the sample is only one subject. Above and beyond
the design per se (intended as the mechanism of assignment of the subjects
to the treatments and the plan on when to measure the end-points), many
other aspects of the research protocol, such as the way patients are selected,
measurements are performed, end-points and signals are defined, etc., influ-
ence the variability of the response and therefore the sample size.

8.Frequency of premature discontinuations (drop-outs). In any clinical
experiment it is unavoidable that some subjects leave the study before it is
finished. This can occur for a variety of reasons, including dissatisfaction with
the treatment, occurrence of an undesired event, loss of interest in the study,
change of address, etcetera. These subjects are called drop-outs. In gener-
al, all subjects contributing to the primary end-point, even if only to a mini-
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mal extent (i.e., all subjects who have at least one evaluation for the primary
end-point after the beginning of the treatment), are inserted into the statis-
tical analysis. This approach is called “intention-to-treat” (see chapter 9).
However, the true contribution of a patient to the detection of the signal gen-
erally diminishes as the actual duration of treatment, compared to the
intended duration, decreases. Therefore, if the number of drop-outs is high,
the variability of the response will increase and the effect of the treatment
will be, on average, attenuated. Furthermore, some patients will end the
study before they can give any information about the primary end-point.
These patients will not contribute at all to the statistical test. It is necessary
to consider all of these elements at the time of planning the number of sub-
jects to enroll in the study. The higher the probability that patients will leave
the study prematurely, especially before contributing to the primary end-
point(s), the higher the number of patients to be enrolled.

9.Number of primary end-points and corresponding statistical tests.

When there is more than one primary end-point, the calculation of the sam-
ple size must be repeated for every one of them. If, in order to declare a treat-
ment efficacious, we require that statistical significance be reached for all the
comparisons (tests) performed, the size of the sample will have to be the
largest among the ones calculated for the individual end-points. If, instead,
we are ready to declare a treatment efficacious when only some of the com-
parisons reach statistical significance, this rule is not sufficient because, as
mentioned in section 4.7, the implications of multiple comparisons must be
taken into consideration. One of the solutions to this problem is the use of an
α value that is smaller than that which would be used if only one test were
performed. As a consequence of this choice (see again Figure 6.1), β increas-
es and therefore the power decreases: to keep the power at the desired level,
the size of the sample must increase.

In this section we have only considered one aspect of inference, the hypoth-
esis testing. In particular, we have described how the power of the test changes
with the change of any of the other elements contributing to the statistical test.
However, it should not be forgotten that the size of the sample has a similar
impact on the other aspect of inference, the estimation. The precision of an
estimate, i.e. its reproducibility in other experiments conducted under similar
conditions, increases as the sample size increases (see section 1.3.2). If the
sample size is maintained constant, the precision of the estimate and the power
of the test mirror each other in the way they change with changes of the other
elements described in this section. Precision, in turn, determines the width of
the interval estimate (the confidence interval for the frequentists), which will
therefore become progressively narrower as the sample size increases. 

As anticipated in section 5.7, the role of statistics in the process of determin-
ing the sample size is that of performing an evaluation of the risks (of false-pos-
itive or false-negative results) associated with different choices. Therefore, the
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outcome of a sample size assessment generally is not one single number, but a
range of numbers, each representing the outcome of a different scenario. This
information is important in deciding whether or not to perform the study as
planned, both from an ethical and a financial point of view. Performing an
under-sized or an over-sized study is unethical, apart from special cases in rare
diseases. From a financial perspective, the risks of performing type I and II
errors translate into risks for the investment made. For example, if the
researcher decides on a β of 0.3, instead of the standard value of 0.2, the money
needed to conduct the study will be lower because the study will be smaller, but
the financial risk for the investment will be higher, because of the increased
probability of concluding the study with a false-negative result.

6.2.2. Medical and Practical Aspects

The first medical contribution to the definition of the sample size of a study is
to clearly define, together with the statistician, the objective of the study and
the threshold of clinical relevance of the signal(s) of interest. 

Once these key aspects of the protocol are defined, the most correct
approach to determining the sample size is to perform a preliminary statistical
calculation to get an idea of the order of magnitude of the number of subjects
required to detect the selected signal or signals. At this point the task of estab-
lishing the practical feasibility of the study should start. To this end, the fol-
lowing points must be considered.

1.Expected enrollment rate. The researchers responsible for planning a
study must try hard to estimate the number of eligible patients that each
study center will provide each month of recruitment (or year or other appro-
priate time unit). One should keep in mind that the estimates given by the
centers in the planning stage are almost always too optimistic. Pocock [79]
suggests halving the initial estimates obtained from the centers, to have a
more realistic idea of the enrolment rate that will actually occur when the
study is underway. Our experience suggests that in many cases even
Pocock’s approach is too optimistic.

2.Time required for enrolment. The total number of patients required for
the study must be divided by the projected enrolment rate, considering all of
the centers involved in the study. The resulting enrolment time will have to
be compared with the acceptable duration of the study. 

3.Acceptable duration of the study. The acceptable duration of a study
varies dramatically depending on the disease under investigation and the cir-
cumstances of the study. However, some simple rules are always valid. 

• The investigators are more motivated in the initial stages. If the study lasts
too long, the motivation tends to decrease and the quality of the study tends
to worsen.

6.2. How Many Subjects Should Form the Sample? 169



• The pharmaceutical company (if any) sponsoring the study generally needs
it to be completed within a given time, in order to be able to meet the time-
lines of the clinical development program.
If the estimated sample size of the study is at least roughly compatible with

the acceptable duration of recruitment, the researchers can move on to a more
comprehensive statistical assessment, which should provide sample sizes for a
range of different scenarios. For example, the choices of α and β are in many
ways arbitrary; therefore the consequences on the sample size of more or less
conservative choices of α and β can be considered. With regard to variability,
sometimes it is possible to adopt experimental designs which “control” vari-
ability in a more efficient way (see chapter 10) than others. This, of course, will
impact the sample size. Sometimes, different sample size options can be pro-
posed based on different thresholds of clinical relevance. Alternatively, if the
treatment under study is considered very promising, e.g. because in previous
studies it demonstrated far better effects than the threshold of clinical rele-
vance, the size of the study can be based on the expected effect, rather than on
a threshold of clinical relevance. This would obviously result in a smaller sam-
ple size. However, at the same time, the researcher must accept the danger of
declaring the treatment inefficacious even if it shows a clinically relevant effect
(in other words, must accept a higher than necessary risk of a false-negative
conclusions).

If the estimated sample size is completely incompatible with the acceptable
duration of the study, one could attempt to increase the overall recruitment
rate, for example, by increasing the number of participating centers, or by
changing the patient selection criteria of the protocol. Another approach could
theoretically be that of modifying the specifications used for the statistical cal-
culations, in a manner similar to that described above. However, if this is done
with the sole purpose of justifying, on financial or practical grounds, a sample
size much smaller than the one originally considered necessary, such an exer-
cise can easily become ridiculous. It is indeed ridiculous when the specifica-
tions for the statistical calculations are changed over and over again, until the
“acceptable” sample size decided in advance finally pops up and is considered
“justified”.

It is clear that costs play a crucial role in determining the size of a study. The
cost per patient changes from study to study, depending on its duration, loca-
tion, number of visits and on the complexity of the required medical investiga-
tions. Sometimes, when the projected costs exceed the available budget, it is
reasonable to consider a simpler and cheaper experimental design. However,
this may not be possible without sacrificing the main objectives of the study.
Pocock [79] supports the idea that, if it is not possible to conduct the study in
such a way that a clinically meaningful difference can be detected with a “rea-
sonable” degree of certainty, it is better to forgo the study. Many other
researchers, including the authors of this book, share this opinion, unless the
disease under study is rare. The opinion of the supporters of the so-called meta-
analyses may be different (see chapter 12). Some of them recommend that
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studies should be performed even if under-powered, as long as well designed
and properly performed, in light of the possibility of combining the individual
studies through meta-analyses. 

Finally, it should be noted that the sample size of pilot studies, which have
the purpose of estimating the order of magnitude of the parameters of the phe-
nomenon of interest, is generally determined empirically i.e. without the sup-
port of formal statistical procedures.

Summary

The sample is the group of subjects on which the study is performed. The
choice of the sample requires qualitative and quantitative considerations.
Among the qualitative aspects of the sample selection, crucial is the need to
ensure that the sample is representative of the population to which one wants
to extend the conclusions of the study. Among the quantitative ones, crucial is
the need to quantify the concept of “sufficiently large sample”, i.e. of a sample
large enough to allow the detection of the treatment effect, separating it from
the variability of the phenomenon, with an acceptable degree of certainty. This
is achieved through statistical methods. The size of the sample required for a
given study depends on the magnitude of the signal, the risks we are willing to
accept of making type I and type II errors, the type and variability of the end-
point(s), the design of the study, and the number of treatments and primary
end-points. Once the information on the size of the sample required for a given
study is obtained, it is essential to evaluate the feasibility of the study, based on
practical considerations, such as the number of patients we are likely to obtain
from the participating centers, the study duration considered acceptable and
the projected costs. If the study is not feasible, sometimes changes in the
design will allow the researcher to conform to the limits set by the above-men-
tioned practical considerations. However, in other cases, it is best to give up.
This is much less frustrating than proceeding with a study which is bound to
fail.
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7
The Choice of Treatments

aIn line with the terminology introduced in section 2.4, in this chapter we shall
use the term “experimental treatment” when referring to the main object of a
clinical trial (often a novel treatment), and the term “study treatments” when
referring to both experimental and control treatments.

In a clinical study, in addition to the study treatments, there may also be con-
comitant treatments. Both categories of treatments must be described in detail
in the research protocol. 

7.1. Study Treatments

Experimental treatments are the intervention of interest that one wants to
study in a given disease or condition. As discussed previously, they are evalu-
ated in comparison to other treatments, called control treatments. The experi-
mental and control treatments constitute the study treatments, to be distin-
guished from the concomitant treatments. The latter can be taken during the
study, but are not the object of the experimentation.

As mentioned in chapter 1, the experimental treatment can be of different
types, as summarized below.
• Pharmacological, for example, a novel inhibitor of cyclo-oxygenase isoen-

zyme-2 (COX2 inhibitor) against arthritis pain. 
• Surgical, for example, a new form of partial gastrectomy (that is, partial

removal of the stomach) against multiple or recurrent gastric ulcers. 
• Psychotherapeutic/behavioral, for example, a specific form of psychotherapy

against anxiety.



• Logistical/organizational, for example, normal hospital wards instead of
intensive care units for selected patients with myocardial infarction.
The general principles of clinical research methodology are identical, what-

ever  the nature of the experimental treatment, even if some procedural, logis-
tical and ethical aspects may differ. Unfortunately, the experience of the
authors of this book is limited to pharmacological treatments. Therefore this
book is inevitably unbalanced towards such treatments. However, we want to
stress that in non-pharmacological therapeutic areas the need for rigorously
performed clinical experimentation is equally great, but there are relatively few
researchers capable of applying the general principles of research methodolo-
gy to their respective disciplines. 

Control treatments should represent the state of the art therapy for the con-
dition under study at the time the trial is performed. If no treatment of proven
efficacy and/or acceptable safety/tolerability exists, the control treatment
should be a placebo. A placebo can be defined as an inactive treatment, iden-
tical to the experimental treatment in every aspect, except for the presumed
active ingredient(s) or intervention. The placebo is used as a control treatment
with the aim of separating the intrinsic effect of the experimental treatment
from other effects, often more powerful, linked not to the treatment itself, but
to the process of treating the patient, including the expectations, psychological
influences, nursing support, duration of hospitalization, etc. To this end, it is
very useful that the study treatments be administered in a blinded (or
masked) fashion, that is, such that neither the patient nor the research staff
know which study treatment is administered to which patient. The method-
ological reasons and practical implications of the use of placebo and of the
blinding of study treatments will be discussed in depth in chapter 9. 

If the experimental treatment is a capsule, the matching blinded placebo will
also be a capsule, as close as possible to the former in shape, size, color, appear-
ance, flavor and smell. If the experimental treatment is a partial gastrectomy for
multiple and recurrent ulcer, the corresponding blinded placebo (at least in
theory) would be a surgical intervention with the same anesthetic procedures,
skin incision, duration, suture and post-surgical procedures, but without the
actual gastrectomy (it is obvious that there are ethical problems here - see
below). In a study evaluating the efficacy of a given form of psychotherapy for
treating anxiety, the blinded placebo would be a set of “mock” psychotherapy
sessions identical in context and duration to the “real” ones, but in which the
psychologist administers to the patients a generic form of support instead of
the specific psychotherapy under study. Finally, when logistical measures are
evaluated, the blinded placebo can be obtained by standardizing the logistical
context in which the study is conducted. In the above mentioned example,
comparing the efficacy of intensive care to that of traditional hospital stay, the
patients assigned to the latter may be placed in the intensive care ward, but
receive a normal level of care (i.e. with all of the bedside monitors turned on
but not used), so that neither the patients nor their relatives realize that the
care level administered is really that of a “normal” hospital ward. 
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As with many other topics in this book, it is not possible to cover the topic of
placebo to the extent it would deserve. All we will do here is to briefly address
some of the issues resulting from the use of this methodological artifice.

The use of a placebo in a clinical study causes many ethical problems. First
of all, the basic question arises as to whether the use of placebo is in itself ever
ethical: is it ethically acceptable to administer a treatment we know to be inac-
tive? Furthermore, even admitting that the practice as such is acceptable, is it
ethical to use a placebo that involves invasive procedures, such as the sham
gastrectomy operation mentioned above? Many articles have been written on
this topic, in support of very diverse positions. In our opinion, in the great
majority of cases, the use of a placebo as a control treatment is more than
acceptable ethically, it is an ethical imperative, whenever the available treat-
ments (which may be used as controls in the study) have not been conclusive-
ly proven as safe and effective in methodologically sound confirmatory studies.
The only exception may be that of advanced stages of serious diseases, charac-
terized by very poor quality of life, almost no chance of remission, and/or very
short life expectancy (in other words, situations unlikely to be worsened by the
hypothetical toxicity of a non-effective  treatment). Many forms of terminal
cancers belong to this category. The patient may unfortunately have little to
lose, but it must be the patient him/herself, or his/her guardian, to decide this,
not the researcher! In such cases, the most ethical behavior is probably to
accept the risks of the experimental treatment and administer it to the whole
study sample in the hope that it will show some efficacy. However, we want to
emphasize that the conditions belonging to this category are few. Even for dis-
eases with fatal outcome, if the quality of life is reasonably good (for example
because not in an advanced stage), the use of the placebo is recommended in
the absence of an active control of proven efficacy. From these short com-
ments, it is evident that in extreme situations the choice concerning the use of
a placebo is very subjective and may be quite dramatic (as are many other med-
ical choices in such situations) and there are no easy rules. In any case, the will
of the patient (or guardian if the patient is incapable of understanding the sit-
uation and expressing his/her will) is paramount: it must be actively solicited
through an appropriate explanation of the problem, and must be respected.

The ethical implications of the use of a placebo reach well beyond the basic
principle. Even those who consider ethically acceptable the use of placebo, as
we do,  justify its use only in the absence of an active treatment of document-
ed and adequate efficacy and safety. The problem is that there is no consensus
on the clinical value of many treatments commonly used in clinical practice. For
example, inhaled corticosteroids in the treatment of chronic obstructive pul-
monary disease (COPD) are considered efficacious by many specialists and
largely used in clinical practice. However, various studies and authoritative
experts consider the continuous use of these drugs in COPD ineffective, if not
harmful. Is the use of placebo as the control treatment justified in a study eval-
uating a new drug in COPD? To complicate matters further, many regulatory
authorities including the FDA in the United States, typically impose the use of
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a placebo in confirmatory clinical trials, even in diseases for which the majori-
ty of experts in the scientific community agree that an active treatment of ade-
quate efficacy and safety does exist. 

The issues concerning the use of placebo are not only ethical, but also
methodological and practical. 
• There are situations where a placebo matching the experimental treatment

to ensure blinding is either impossible to make or not compatible with the
objectives of the study. For example, if one wants to evaluate the impact on
quality of life of a given therapeutic regimen (as opposed to the efficacy of
the pharmacological principle), one needs to compare the experimental
treatment regimen (e.g. once a day) to a control treatment regimen (e.g.
twice a day), which is not compatible with the use of a placebo. 

• The manufacturing of a placebo requires considerable technical and econom-
ical resources. Underestimating the complexity of this process is a dangerous
mistake that can delay the start of the study by many months.
Returning to the choice of the study treatments, numerous are the decisions

the researcher must make and describe in detail in the protocol before starting
the study. The most important ones are summarized in sections from 7.1.1 to
7.1.4.

7.1.1. How Many Treatments

It is intuitive that the more study treatments one wants to compare in the same
clinical trial, the more complex the trial will be. As the number of study treat-
ments increases, so do the many other aspects of the study: the number of
patients, the methodological and statistical complexity of multiple compar-
isons, the logistical complexity of the production, blinding, packaging and dis-
tribution of the treatments, the amount of data generated and the consequent
complexity of data management (see section 2.2. for a discussion of the conse-
quences of an excessive complexity of the study). Among the many ways in
which a study can become excessively complex, the ambition of evaluating
many treatments in the same study is one of the most common. There is no
general rule concerning the acceptable number of experimental and control
treatments in the same trial. In dose-response studies, where the study drug is
administered as single dose or for short periods of time and the end-points are
instrumental measurements, a relatively high number of treatments can be fea-
sible. The statistical analysis of these trials may benefit from numerous treat-
ment arms, if based on regression techniques, comparing the trends of the
dose-response curves (see [86]). Conversely, for studies with treatments of
long duration, end-points based on clinical outcomes or measurements (which
typically require large sample sizes), and objectives of confirmatory nature,
that is aimed at deciding on the best treatment among those being compared,
it is generally dangerous in our experience to go beyond three, maximum four,
treatments per study, whatever the experimental design (see also [85]).
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7.1.2. What Treatments

In addition to choosing how many treatments one wishes to study, it is also
necessary to choose which ones to study (it is obvious that in practice, these
two aspects are not sequential, but concurrent). One or more experimental
treatments will naturally be among the study treatments. The choice of dose(s)
and frequency of administration of an experimental treatment is all but easy,
especially in the early stages of the clinical development process. Clearly, in
dose-response studies more than one dose will be chosen. But which ones?
What should the lowest dose be? What should the highest one be? How many
intermediate doses? Based on what criteria should the doses be chosen?
Sometimes, even in phase III, more than one dose of the experimental treat-
ment is tested (this occurs, for example, when phase II studies were not able to
fully define the profile of two adjacent doses). The frequency of administration
often determines the success of a drug on the market. Among the leukotriene
antagonists, a relatively new class of drugs used in the treatment of asthma, the
once daily montelukast has been more successful than other drugs of the same
class that reached the market earlier, such as pranlukast, as the latter must be
administered three or four times a day. Unfortunately, pharmacokinetic data
alone are not always sufficient to predict the optimal frequency of administra-
tion of a drug; therefore, it can be very useful to test more than one dosing reg-
imen before starting large phase III studies.

If the choices concerning the experimental treatment are not easy, those con-
cerning the comparator treatment or treatments are often even more complex.
We have already discussed the placebo. When it comes to active controls (or
comparators), it is a matter of choosing a treatment of proven efficacy (and
adequate safety) that is considered the “standard of care”. The problem is that
often many different treatments are used in clinical practice, with numerous
national and even regional differences in preference. For example, the thera-
peutic armamentarium for hypertension offers many classes of widely used
drugs (beta-blockers, diuretics, ACE inhibitors, angiotensin II inhibitors, etc.),
each class including many drugs of common use. Antihistamines are frequent-
ly used in the treatment of bronchial asthma in Japan, but are hardly used in
this condition in Europe and the United States. To make things even more com-
plex, fixed combinations of drugs, often very commonly used in clinical prac-
tice, add to the list of available options (e.g. the fixed association of diuretic and
ACE inhibitors in hypertension, or of β2-agonist and corticosteroid in asthma).
And this is not all: in many therapeutic areas, including the above mentioned
hypertension and bronchial asthma, the pharmacological treatments can be
integrated with (or substituted by) dietetic treatments and physical therapies,
not to mention the so-called complementary treatments, such as massage,
homeopathic agents, etc. What should a researcher wishing to test a novel anti-
hypertensive or antiasthmatics treatment compare it to, given the methodolog-
ical and practical limitations described above? As always, the final choice will
be a mixture of considerations of scientific, regulatory, practical and commer-
cial nature, combined with personal preference. 
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From a methodological point of view, it is important to decide from the very
beginning if the objective of the trial is to establish the superiority or non-infe-
riority of the experimental treatment compared to the active control. For non-
inferiority studies, the choice of the control drug (including its dose and dosing
regimen) is even more critical than for superiority studies (see ICH guideline
[61]). In fact, in a superiority study, a statistically and clinically significant
result favoring the experimental treatment can be taken as evidence of effica-
cy, even if the active control has an uncertain efficacy or is not used at its opti-
mal dosage. It is obvious, however, that for the purpose of concluding “real
superiority” of the experimental treatment over the active control, it is essen-
tial that the latter be administered with the optimal dose and dosing regimen
(see ICH guideline [62]). On the other hand, in a non-inferiority study, a posi-
tive result leads to the conclusion that the experimental treatment and the
active control are both efficacious. This conclusion will be all together wrong if
the control is not truly active, because intrinsically ineffective or because it has
been given at the wrong dose and/or with the wrong regimen. Even though it is
a common belief that experiments with active controls have less ethical prob-
lems than those with placebo (because all patients receive an “active” treat-
ment), this is not always true. It should not be forgotten that patients receiving
the experimental treatment do not receive the standard therapy of proven effi-
cacy (at least in the parallel group designs - see chapter 10). 

Regulatory and practical concerns may well be the ones that prevail in the
end. For example, if a study is conducted for registration, that is, its goal is to
provide confirmatory evidence for the regulatory authorities to approve a new
treatment, it will often be necessary (or highly advisable) to follow specific
guidelines providing essential information on how to design such studies [62].
As mentioned above, placebo very often appears in registration studies for this
very reason. Sometimes the regulatory guidelines also indicate what treatment
is to be used as active control. From a practical point of view, if one intends to
blind the study treatments (see below), it is useful to choose an active com-
parator that is easy to manufacture (if not protected by a patent) or to modify
into a “blinded” galenical form (see below).

Finally, sometimes commercial considerations have great importance, since
the pharmaceutical company sponsoring the study can, depending on the
study, “strongly recommend” or “strongly discourage” the selection of specific
treatments as active comparisons. For example, remaining in the field of hyper-
tension, an article in the Journal of the American Medical Association (JAMA)
has recently been published on results of a clinical trial comparing a diuretic, a
calcium channel blocker, and an angiotensin converting enzyme (ACE)
inhibitor [1]. The conclusion of this study was that diuretics have an effect very
similar to that of the other two treatments in reducing the incidence of coro-
nary heart disease and of other cardiovascular diseases. Considering these data,
and in light of the fact that diuretics are very cheap and generally well tolerat-
ed, one would think that a company developing a new treatment for hyperten-
sion should plan at least one clinical study with a diuretic as the active control.
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In fact, most likely, if such a study were to succeed in demonstrating the supe-
riority of the new treatment over diuretics, its results would be “valuable” in
supporting a premium price of the new treatment once it reaches the market.
Sometimes commercial rationales like the one mentioned are legitimate, but at
other times they are not. The researcher must be able to make his/her own
mind up and must have the strength to refuse to collaborate with companies
that force (or deny) the choice of active controls (as well as of other key
aspects of the experimental design), based on reasons that in his/her opinion
are not legitimate. 

To conclude this section, the so-called “add-on” studies deserve mention.
The classic design of this type of study has two treatment groups: the experi-
mental treatment group receives the new treatment in combination with the
standard treatment (which can itself be a combination of several treatments),
while the control group receives only the standard treatment. Therefore, the
experimental treatment is “added-on” to the standard treatment. In this partic-
ular case, the experimental treatment is the combination of the new treatment
and the standard therapy, since in this experiment one can only verify the effi-
cacy and safety of the combination. To establish the efficacy of the new treat-
ment alone it is necessary to administer it in mono-therapy to patients in a third
treatment group. 

7.1.3. Blinding of the Study Treatments 

Having chosen the number and nature of the study treatments, we are only half
way done. At this point we need to decide whether or not we want to “blind”
them and, if so, the level of blinding desired. Blinding is a very important aspect
of the methodology of clinical research, both conceptually, as an instrument for
avoiding some very frequent forms of bias, and practically, for the challenge of
pharmaceutical development and manufacturing of blinded treatments. Section
9.3 is dedicated to a more detailed discussion of these issues, while here we will
only remind the reader that the manufacturing of blinded placebos and active
controls can require many months and, if underestimated, can delay the start
of the study. It is not rare that the company responsible for the production of
blinded placebos and active controls requires more than one year of advance
notice before delivery. 

7.1.4. Packaging and Logistics

Once the study treatments are obtained, they must be properly packaged. Each
package will contain the study treatment for a single patient. Sometimes it will
also contain one or more concomitant treatments, such as rescue medications
(see below) or drugs used as background therapy in add-on studies (see sec-
tion 7.1.2). 

In some cases, it is possible to include the entire treatment destined to a sin-
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gle patient in one “patient pack” and prepare all of the patient packs from the
same production batch. However, in many other cases this is not possible. The
reason for this is that all pharmacological and dietary treatments (including
placebos) have expiration dates, after which they cannot be used. Therefore, in
studies with long enrolment and/or long treatment duration, one or more study
or concomitant treatments may expire before the projected end of the trial.
This implies a very complex process of staggered packaging, which must take
into account the expiration date of each of the study treatments, as well as that
of the concomitant treatments, if packaged together with the study treatments,
the duration of enrolment of the study subjects, and the length of the treat-
ment.

Furthermore, an “adequate” label must be attached to each patient pack. The
labeling of the patient pack, far from being a simple administrative act, is an
important, complicated and treacherous process, for several reasons, not least
because it is full of legal implications. The label must contain many types of
information. First, it must be identified by a unique identification code (numer-
ical or alphanumerical). In randomized clinical trials, this code is the only link
between the treatment contained in the pack and the randomization list.
Consequently, mistakes in coding the labels generate confusion over the assign-
ment of treatments. A mistake of this type (or even the suspicion that one has
occurred) can destroy the credibility of a study, to the point of preventing its
use for registration purposes. The process of randomization was introduced in
chapter 2 and will be discussed in depth in chapter 9. In non randomized stud-
ies, the code in the label will coincide with the treatment number assigned
sequentially to each treated patient (note that the treatment number may be
different from the enrolment number since some patients who enter the
screening process may never receive the study treatment for a variety of  rea-
sons).

In addition to the randomization code (or the treatment number for non-ran-
domized studies), the labels must contain a considerable amount of informa-
tion, including the medication batch number, the country of production, the
expiration date, a warning that the content of the pack is (or may be) an exper-
imental treatment. Some of this information is required by law in the country in
which the study is performed, and must be in the local language. When multi-
center studies are performed in multiple countries, another level of logistical
complexity is added: an accurate estimate of the number of patients to be
enrolled in each participating country is needed, since, once the patient packs
have been delivered, it will not be easy to transfer them from one country to
another. Multilingual labels sometimes represent a partial solution to this prob-
lem.

Finally, the patient packs, properly labeled, must be shipped to the study
centers. Once again, this process conceals numerous risks. Many drugs require
special couriers to avoid breakage and/or to ensure proper transport conditions
(for example, refrigeration). In some countries, there are long waits at customs
(sometimes for “quarantines” imposed by local laws, other times for inefficien-
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cy and slowness). More than once we have had treatments become unusable
due to problems occurring in this final stage.

In clinical studies, there are many other issues related to the production and
logistics of the study treatments, so many, in fact, that we cannot even begin to
mention them here. However, we hope that through this short overview we
managed to give an idea of the complexity of the process, which requires high-
ly qualified specialists who are an integral part of the research staff. The expe-
rienced clinical researcher will always have a special regard for the advice from
colleagues in charge of treatment logistics, because often they will be the first
to realize the excessive complexity of the study. For trials conducted as collab-
orations between a pharmaceutical company and the clinical centers, it is gen-
erally the industry that is responsible for treatment logistics (entire depart-
ments are dedicated to these tasks). For trials performed independently from
industry, we recommend that the issue of treatment logistics be addressed in
the very beginning of the planning process. If the study is carried out in one or
few centers, sometimes an experienced pharmacy of one of the participating
centers can take responsibility for this task. However, in most cases, we strong-
ly recommend that treatment logistics be delegated to a company specializing
in this area.

7.2. Concomitant Treatments

Concomitant treatments are all the treatments allowed during the study
without being the object of the experimentation. For example, if in a study aim-
ing to evaluate the pain killing effect of a novel COX2 inhibitor in rheumatoid
arthritis, the patient takes an aspirin for a headache (adverse event), aspirin
represents a concomitant treatment. Concomitant treatments are not neces-
sarily pharmacological. For example, physiotherapy for headache caused by
cervical spine problems, if allowed during a study, would be a non-pharmaco-
logical concomitant treatment.

It is not possible to exclude with certainty the possibility of a concomitant
treatment interfering with the desired and/or undesired effects of one or more
of the study treatments. In some cases, these interferences are completely
unpredictable; in other cases they can be predicted or at least suspected on the
basis of the mechanisms of action of the concomitant and study treatments. In
the above example, we know that aspirin can influence both the efficacy and
the safety/tolerability profile of COX2 inhibitors. Aspirin will positively affect
efficacy, as it is proven to be efficacious against pain in rheumatoid arthritis, in
addition to being active against headache. Vice versa, safety and tolerability will
be negatively influenced, since aspirin damages the gastric mucosa, with con-
sequences ranging from gastritis to ulcer to hemorrhage. Such a negative effect
is especially damaging in the context of our example, since the class of COX2
inhibitors has been specifically developed to reduce the gastric side-effects of
the other non-steroidal anti-inflammatory drugs (including aspirin).
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Therefore, it is clear that the use of concomitant treatments must be careful-
ly regulated by the protocol of a clinical study. This does not mean the solution
is simplistically that of prohibiting all concomitant treatments. This approach
(which unfortunately we see with some frequency) is almost never useful. Even
in the early studies on healthy volunteers (phase I), the complete elimination
of all concomitant treatments dramatically reduces the number of subjects that
can be enrolled in a study and the number of subjects completing the study
without violating the protocol. 

Generalizing, the earlier the phase of the clinical development of an experi-
mental treatment, the more restrictive one must be concerning concomitant
treatments, since it is necessary to assess the “intrinsic” efficacy (or activity)
and tolerability of the new treatment at an early stage. However, in our view,
even in these early phases it is appropriate to make concessions for some com-
monly used concomitant treatments, unless there are obvious reasons to sus-
pect interactions with the study treatments. Pain killers, oral contraceptives
and vaccines can be included in the category of concomitant treatments for
which a concession should be considered even in the early phases of clinical
development.

When one reaches the stage of large, phase III pivotal studies, in our opinion,
it is very important to be as liberal as possible with concomitant treatments. If
we are evaluating a corticosteroid in COPD, as in one of the previous examples,
we know that the population under study will have a large proportion of sub-
jects who are elderly and suffering from cardiovascular diseases (cigarette
smoking predisposes to both COPD and cardiovascular conditions). What value
would there be in evaluating the efficacy and safety/tolerability of the experi-
mental treatment when all of the drugs used in the therapy of angina, heart fail-
ure, arrhythmias, etc. are excluded? Naturally, if there is a reason to believe
that specific concomitant treatments may worsen the side effects of the exper-
imental treatment or reduce its benefits, these must be excluded also from
phase III studies. However, the researcher must be aware of the consequences
of such an exclusion, which will necessarily translate into a contraindication or
warning in the “package insert” once the experimental treatment eventually
reaches the market. If the excluded concomitant treatment is truly important,
special studies aimed at investigating potential interactions at the pharmacoki-
netic, pharmacodynamic and therapeutic level will need to be planned. 

In practice, some level of restriction on concomitant treatments must also be
applied in phase III studies. In the post-registration phase (the so-called phase
IV), these restrictions can be eliminated for the most part.

Finally, it should be noted that concomitant treatments can be used as mark-
ers of the efficacy and/or tolerability of the study treatments. For example, the
efficacy of a new COX2 inhibitor in the treatment of pain from tooth extraction
can be evaluated by measuring the time between the extraction and the first
“rescue” intake of a pain killer or by counting the number of rescue doses taken
in the first six or twelve hours after the operation. Likewise, the efficacy of an
inhaled corticosteroid in the COPD can be evaluated by calculating the mean
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number of daily inhalations of rescue albuterol (also known as salbutamol, a
reliever of shortness of breath with fast onset and short duration of action) over
a sufficiently long period of time (1-3 months). The intake of concomitant treat-
ments functions well as an end-point in many therapeutic areas, since it is
clearly linked to the level of control of the disease under study and is general-
ly easy to quantify.

Summary

In a clinical trial one should carefully define both the study treatments, i.e. the
experimental and control treatments, and the concomitant treatments. The
experimental treatments are the main objects of the experimentation and are
evaluated in comparison with the control treatments. The experimental and
control treatments, which include the placebo (an inactive treatment, identical
to the experimental treatment in every aspect except for the presumed active
substance), as a whole, constitute the study treatments. The concomitant treat-
ments are drugs or other forms of treatment that are allowed during the study,
but are not the object of experimentation. For each type of treatment, the
researcher must make many choices, from the selection of the treatments, to
their mode of administration, to the method of blinding the experimental and
control treatments. These choices must be described in detail in the study pro-
tocol, as most of them directly influence both the conduct and analysis of the
study.
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8
Experimental Design: Fallacy of
“Before-After” Comparisons in
Uncontrolled Studies

The design of an experiment is defined as the method by which subjects
(experimental units) are assigned to treatments. The chosen method of assign-
ment in turn determines the way in which the data collected in the study are
analyzed.

It is important for the reader to keep in mind that, although we use this tech-
nically rigorous definition [24, 27], often the expression ”experimental design”
is used with a broader meaning, to indicate all the methods and procedures
used in a study: these include, in addition to the method of assignment of sub-
jects to treatments, the criteria for the choice of control group(s), masking of
treatments, study subjects and sample size, as well as the number and
sequence of visits, the measurement modalities, the statistical analysis plan,
etcetera. These aspects will be covered in other chapters of the book.

8.1. Experimental Design: Introductory Concepts

In this field, even at the most basic level, there are differences in terminology
between physicians and statisticians. One is, in our opinion, revealing: whereas
the physician refers to the assignment of treatments to patients, the statistician
refers to the assignment of patients to treatments. This distinction may appear
pedantic, and in practice it is, but conceptually it alludes to the different way of
“seeing the world” that permeates so many aspects of the collaboration
between the two professions and contributes to the difficulties in communica-
tion: the physician has an anthropocentric perspective (treatments are things,
patients are persons and it is obvious that things are assigned to persons); the



statistician has a methodological perspective (treatments, once decided, are
fixed, whereas patients are variable, i.e. individual patients are not known a
priori; thus patients, as they enter the study, are assigned to the predefined
treatments). On this aspect we will adopt the statistician’s vision and will talk
of assignment of patients to treatments. 

By controlling the assignment of patients to treatments, the researcher con-
trols the experimental factors and some of the most important sub-experimen-
tal factors (see chapter 2), with two main objectives:
• Minimize the bias between the groups being compared, thus allowing accu-

rate comparisons.
• Minimize the “unexplainable” variability of observations, i.e. the component

which cannot be attributed to known factors. The expression “explain the
variability” has a technical meaning, which will be clarified in chapter 10.
Also, see chapter 5 for an introduction to the measurement of variability. As
discussed, variability impacts the precision of the estimate and the power of
the statistical test: the greater the former, the smaller the latter two (see
paragraph 6.2.1). Therefore, for a given sample size, if one minimizes the vari-
ability of observations, one also maximizes the precision of the estimates and
the power of the statistical tests.
Furthermore, in choosing the experimental design, the researcher must

always keep in mind the need for reasonably simple study procedures which
must be feasible in real life situations. The importance of not complicating
things too much has already been emphasized several times in previous chap-
ters. This need must be prominent in the design selection, to some extent even
at the expense of the accuracy and precision of comparisons (estimates and
tests).

The theory of experimental design is dedicated to reaching these objectives.
An important preliminary remark is that the experimental design must be

appropriate for the characteristics of the disease, end-points and treatments and
not vice versa. Unfortunately the “vice versa” is often chosen: the experimental
design is decided a priori, based on tradition in a given therapeutic area, on the
experience of a given research team or, more often, on a preconceived idea that
a standard of perfection exists in a single design (e.g. the randomized, double-
blind, parallel group design, see paragraph 10.2). We want to warn the reader
against this simplistic approach, which can be the source of many mistakes and
complications.

We shall start our coverage of experimental designs with the simplest one:
the before-after comparison in a single group of subjects. The illustration of this
design will be followed by the description of its many limitations, the majority
of which can be solved through the use of an adequate control group (see chap-
ter 9). The most common experimental designs will be presented in chapter 10.
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8.2. Before-After Comparison in a Single Group 
of Subjects

Let us go back to the example of the analgesic (pain killer) effect of a new
COX2 inhibitor (COX is an acronym for the enzyme cyclo-oxygenase type 2) in
rheumatoid arthritis patients with chronic pain. Why not treat all patients in our
sample with the experimental medication and compare the intensity of pain
before treatment with the intensity of pain after treatment? This design is
called before-after comparison or within-patient comparison in a single
group of subjects. In this experimental design the comparative nature of the
experiment is respected: the group receiving the control treatment is repre-
sented by the whole sample before the start of treatment with the COX2
inhibitor, whereas the group receiving the experimental treatment is repre-
sented by the same group during and/or after treatment with the COX2
inhibitor.

The before-after comparison has several features that make it attractive. First
of all, this approach is frequently used in real life situations ranging from adver-
tisement campaigns for washing powders and slimming products to the assess-
ment of a patient’s evolution by his/her family doctor; as a consequence it is
easy to explain, for example, to patients when seeking their informed consent
to a study. Second, since the group undergoing the control treatment and that
undergoing the experimental treatment are identical (or almost, if we concede
that some subjects will discontinue the study prematurely), one would intu-
itively assume that the biological variability is minimized and thus the likelihood
of showing a response to treatment (if it exists) is maximized. As a conse-
quence, all other conditions being equal, the sample size will be smaller com-
pared to alternative experimental designs, i.e. we will need fewer patients to
reach the same objective. In reality, as anticipated in section 4.4, this is not
always true, because the convenience of within-patient compared to between-
patients comparisons is dependent on the degree of correlation between pre-
and post-treatment measurements on each patient: if high, within-patient com-
parisons are convenient, otherwise they are not.

Unfortunately, in addition to these advantages, the before-after comparison
suffers from the huge disadvantage of not offering any protection against the
main enemy of an experiment: bias. As repeatedly mentioned in previous
chapters, in clinical research a bias or distortion is an error that systemati-
cally favours one treatment over another. The fact that the error always goes
in the same direction is what distinguishes bias from random error and what
makes bias so dangerous in the context of clinical trials. An error that favours
at random sometimes one treatment and other times the other treatment
increases the variability of the response and thus makes it more difficult to
separate the signal from the background noise (see chapter 5); however, this
variability is manageable (within limits) through an adequate sizing of the sam-
ple (see chapter 6). Instead, a systematic error is a very serious one because
it cannot be managed in any definitive way, neither by increasing the sample
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size, nor by changing the statistical analysis. There are techniques of statisti-
cal analysis which may suggest the existence of bias and give “adjusted” esti-
mates of the treatment effect, somewhat “purifying” results from the influence
of bias. However, such analyses are of exploratory nature and their outcomes
cannot confirm or reject in any definitive way the study hypothesis (see also
section 9.1).

The only way to convincingly “manage” bias is to prevent it in the planning
stage of the experiment by choosing an appropriate experimental design.

There are many potential sources of bias in a before-after comparison, five of
which are of special importance:
1. The temporal variations of the disease.
2. The temporal variations of staff, equipment and environment.
3. The “regression toward the mean” phenomenon.
4. The learning effect.
5. The psychological effect.

Because minimization of bias is the main objective of the methodology of
experimental designs, its main causes deserve to be discussed in some detail:
these will be covered in sections 8.3 to 8.7. The last paragraph takes into con-
sideration a special situation, namely the oncology therapeutic area, where
before-after designs are heavily used.

From now on, for the sake of brevity, we will use the terms “before” and
“after” to indicate all evaluations conducted before and after treatment, respec-
tively. Although items # 1, 2, 4 and 5 can favour both “before” and “after”,
almost always in a before-after comparison in a single group of subjects, it is the
“after” that is favoured. As a consequence, the vast majority of experimental
treatments assessed in this way tend to appear effective, only to fail later on,
when tested in other experimental designs offering greater protection against
bias. In our view, the high proportion of “positive” outcomes is the main reason
for the continuing popularity of the before-after design among researchers.

8.3. Temporal Variations of the Disease 

Let’s assume we are responsible for a new antihistamine compound targeted
against allergic rhinitis. In a typical before-after comparison, we start a group of
30 children with overt symptoms on the new treatment. Our patient sample is
recruited over a two-week period during the second half of April in the region
of Umea, in the northern part of Sweden. Let’s assume that the treatment lasts
for two months and that patients undergo a visit at baseline and after two, four
and eight weeks of treatment. At the final visit we notice with joy that 28 chil-
dren out of 30 show a dramatic improvement compared to the baseline visit. We
conclude that the new antihistaminic agent is very promising, potentially supe-
rior to those currently available on the market. In our final report we make a
recommendation to the management of our institute to proceed as soon as pos-
sible with a full clinical development aimed toward registration and commer-
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cialization of the drug. In the meanwhile, we are busy preparing a quality man-
uscript for submission to a prestigious medical journal. 

Unfortunately, the conclusions we reached are not supported by the experi-
ment we conducted. In attributing the whole merit of the improvement
observed in the young patients to the new treatment we forgot, first and fore-
most, the temporal evolution of the condition being studied. Allergic rhinitis has
typical seasonal recrudescence which coincides with an increased concentra-
tion in the air of specific pollens and other allergens. In our case it is likely that
the majority of patients were allergic to the pollen of birch, a very common tree
in Sweden, which reaches its blossoming peak in April-May. At the start of our
study, in April, birch was in full bloom and all patients were highly sympto-
matic, whereas at the end of the study, in August, the pollen season is general-
ly coming to an end. In other words, patients allergic to birch pollen would have
improved anyway, with or without our treatment. The question that must be
asked in a clinical trial is not “how are patients doing after treatment compared
to before treatment”, but “how are patients doing after treatment compared to
a situation identical under all respects, except for the treatment itself.” Our
new antihistaminic agent may well be truly effective, i.e. reduce symptoms and
accelerate their disappearance; on the other hand, it may be totally ineffective
or even detrimental for patients, by making their symptoms worse and delaying
their disappearance. Unfortunately, our before-after design in a single group of
patients does not help in any way to clarify the situation. 

Many diseases have a well-known temporal evolution toward improvement
(e.g. healing of a bone fracture or of a wound, common cold, influenza) or
toward deterioration (e.g. most cancers, amyotrophic lateral sclerosis, chronic
obstructive pulmonary disease, Alzheimer’s disease) or in the form of season-

al cycles (e.g. many allergic conditions, Raynaud syndrome). A special form of
cyclic variation is the so-called circadian rhythm, where the duration of each
cycle is roughly 24 hours. Numerous symptoms, signs, and laboratory measure-
ments fluctuate with a circadian rhythm. For example, it is well known that
asthmatics tend to be at their worse during the early hours of the morning
(“morning dip”): a before-after comparison in which “before” is the evening and
“after” is the following morning almost inevitably will suggest a negative effect
of treatment, whereas the opposite sequence will suggest a positive effect. 

Only in very rare cases in which a treatment is associated with a massive
departure from a well-known temporal evolution of a disease, will a before-after
comparison in a single experimental group provide useful information. But
these are exceptions. Instead, in the vast majority of cases a well-crafted
before-after comparison lends itself perfectly to confirming what we want to
believe, i.e. the efficacy of a new treatment. To complicate matters further,
temporal fluctuations of a disease often do not follow a known pattern, as in the
examples mentioned above, but are totally unpredictable (see chapter 1).
Unpredictable fluctuations may overlap with the “normal” evolution of the dis-
ease being studied, thus making impossible any rationalization of results of a
before-after study (which may be at least attempted if the temporal evolution
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is predictable). A pollen season with very low counts in a region typically char-
acterized by very high counts; food poisoning due to a highly virulent strain of
salmonella; a cancer with rapidly fatal evolution which “miraculously” disap-
pears; a measles epidemics which causes high mortality in an aboriginal popu-
lation. Temporal variations that are unexpected and different from the known
pattern are not the exception but the rule. The researcher must expect them
and address them by means of an adequate experimental design rather than be
taken by surprise.

8.4. Temporal Variations of Staff, Equipment 
and Environment

The disease or condition being studied is not the only factor capable of influ-
encing the results of a clinical trial because of temporal variations. Any change
of personnel, directly or indirectly involved in the study, can have exactly the
same effect. Let’s assume that during a study requiring endoscopic evaluation
of the gastric mucosa, a young colleague who is involved for the first time in a
clinical trial replaces the senior endoscopist. It is very likely that the two
researchers will reach different, even very different, conclusions, because of an
unavoidable difference in approach, experience and enthusiasm. Clearly, dif-
ferences in their technical ability in the execution of measurements can cause
the after-treatment assessment to be radically different from the before-treat-
ment one, even in the absence of any effect of the treatment itself. But this is
not the only factor. The quality of the relationship between the medical and
nursing staff and patients is of paramount importance, as it often influences not
only the symptoms or even the natural history of the disease (see below), but
also numerous other aspects, just as important in determining the outcome of
a clinical study. For example, as time goes by, especially in a long-term study,
a relationship of mutual liking may grow between patients and study personnel.
If this happens, patients will tend to miss fewer visits, fill-in their daily diaries
(used in many studies to collect various types of information) more accurately,
cooperate better in diagnostic procedures, etcetera. The overall outcome will
be that the data collected at the end of the study will be better than those col-
lected at the beginning. Obviously, the opposite will happen if a deterioration of
the relationship develops over time. Changes over time in the administrative
setting of a study are also key: if a study, initially characterized by an efficient
scheduling of patient visits and management of case report forms and by a
pleasant assistance to patients, with time becomes sub-optimal in such areas,
either for lack of funds or for “drying up” of enthusiasm, changes in results over
time are to be expected, independently of any effect of the experimental treat-
ment.

Furthermore, it is intuitive that changes in hardware and software used to
measure the end-points of a study can radically influence results.

Changes in personnel, equipment and environment, capable of influencing
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the results of a study, are by no means limited to the study centre: the same
considerations apply to groups responsible for data collection and data man-
agement and monitoring of the study. 

In conclusion, temporal variations of disease, personnel, equipment and the
environment of a study are important sources of bias, i.e. of systematic error.
Although in theory the bias caused by these factors can be in favor or against
the experimental treatment, in a before-after design in a single group of sub-
jects, it generally tends to favor the “after”, i.e. the experimental treatment,
compared to the “before”, i.e. the “non-treatment”, used as control. The reason
is that the treatment is known (there is no blinding of treatment, see chapter
9), thus all the hopes and interests for a “positive” result can exercise, unchal-
lenged, their powerful influence. 

8.5. Statistical Regression Toward the Mean

8.5.1 The Basic Principle

Hypercholesterolemia (elevated levels of cholesterol in plasma) is an important
risk factor for cardiovascular diseases. For this reason numerous drugs capable
of reducing the levels of plasma cholesterol (cholesterol lowering agents) have
been developed and introduced onto the market in recent years.

In a large prospective study conducted in the United Kingdom and known
with the acronym of UKPDS, a group of approximately 2000 patients with dia-
betes mellitus was followed for five years and submitted to yearly measure-
ments of plasma cholesterol, among many other tests [107]. Over the five-year
duration of the study no temporal trend was observed for cholesterol levels. A
subgroup was extracted from the total study sample based on high cholesterol
levels, namely greater than 6.5 millimoles per liter (mmol/L). Approximately
200 patients were eligible for this subgroup, with a mean cholesterol at screen-
ing of 7.2 mmol/L. One year into the study, whereas the whole patient sample
did not show any reduction in mean cholesterol, the subgroup showed a
decrease from 7.2 to 6.6 mmol/L, equal to a non-trivial reduction of mean cho-
lesterol of about 9% ((7.2-6.6)/6.6=0.09). The interesting aspect of this story is
that, in this study, no cholesterol-lowering drug (proven or putative) was being
tested. The reduction of 0.6 mmol/L in mean cholesterol observed in the sub-
group between the initial measurement at screening and that taken one year
later is due not to a biological phenomenon, but to a statistical one, known as
statistical regression toward the mean.

The expression statistical regression toward the mean (from now on for
brevity referred to as regression toward the mean) refers to a phenomenon
by which, when a variable takes on an extreme value in the first measurement
(i.e. much greater or much smaller than the mean of its distribution in the pop-
ulation), in successive measurements it will tend to take on values closer to the
mean of its distribution, i.e. less extreme values. This phenomenon will occur
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every time a group of subjects is selected based on “extreme” (high or low) val-
ues of a variable, when that same variable is measured again in the same sub-
jects. Again, the mean of the values obtained in the second measurement will
tend to be less extreme compared to the mean of the values obtained in the first
measurement (lower if the initial mean was high and higher if it was low), thus
it will be closer to the population mean. This explains the term “regression”, i.e
“turning back” to the mean. This phenomenon will occur in the absence of any
treatment effect. Of course, as it is always the case with probabilistic phenom-
ena, there will always be exceptions, but these are rare: regression toward the
mean is increasingly likely when increasingly extreme threshold values are cho-
sen for the initial selection of subjects (and consequently the mean value of the
first measurements becomes more extreme compared to the population mean).

If the variable used for the selection of patients is also used as an end-point
in the study (in our case cholesterolemia was used as the end-point in patients
selected based on high cholesterol levels), in a simple before-after comparison,
the effect of treatment (wanted, but uncertain) will be confounded by the
effect of regression toward the mean (unwanted, but almost certain); thus it
will be very difficult, if not impossible, to separate one from the other. Methods
exist to reduce or estimate regression toward the mean (see paragraph 8.5.3),
however such methods are approximate, relatively complex and at times impos-
sible to put into practice. 

In real life, the researcher who observes the improvement he/she hoped for
will tend to ignore (or forget) the effect of regression toward the mean and to
attribute the improvement to the treatment. Attributing an effect due to regres-
sion toward the mean to the experimental treatment is one of the main reasons
why studies based on a before-after comparison in a single group of subjects
frequently give “positive” results.

We will now go back to the study on high cholesterol in order to explain on an
intuitive level why the regression toward the mean phenomenon occurs. Each
patient has a “true” value of plasma cholesterol level, which could be approxi-
mated by the mean value of the daily measurements taken at the same time of
the day for one year. The intent of researchers is to select patients with “true”
values above the threshold of normality of 6.5 mmol/L. In reality, however, the
“true” value of cholesterolemia of any individual patient is unknown; thus a sur-
rogate will have to be used, generally represented by a single value of plasma
cholesterol measured before entry into the study (screening or baseline value).
However, such measurement is subject to spontaneous fluctuations both real
(e.g. due to diet) and due to measurement errors (e.g. mistakes in blood draw-
ing, blood handling, use of reagents, functioning of analytical equipment, identi-
ty exchanges, transcription errors, etc.). As a consequence, the value of the sin-
gle measurement will almost inevitably be higher or lower than the “true” value.
Two situations are of interest to explain regression toward the mean: the first is
when patients with “true” values below or equal to 6.5 mmol/L show by chance
a screening value above that threshold; the second situation is the opposite of
the first: when patients with “true” values above 6.5 mmol/L get by chance a
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screening value equal to or below the threshold. When a second measurement is
taken, it is unlikely that the same combination of accidental circumstances that
caused the initial departure of screening values from “true” values will occur
again. Therefore, when a second measurement is taken, a patient in the first cat-
egory will likely show a lower value of plasma cholesterol, whereas a patient in
the second category will show a higher value. Since the fluctuations occur at ran-
dom in both directions, the mean cholesterol level of the whole population will
not be impacted much. However, because of the selection criterion used in the
study, only patients of the first kind will have been entered into the study.
Patients of the second kind will have been excluded. Therefore, downward
changes will be much more frequent than upwards changes and consequently
the mean value of plasma cholesterol in the group of patients with high screen-
ing values will tend to decrease at the second measurement.

Regression toward the mean can be demonstrated mathematically. For a
clear illustration of this phenomenon in numerical terms we refer to a paper by
Bland and Altman [16], which is part of a simple and exhaustive pair of papers
on this topic published by the British Medical Journal in 1994 [15, 16]. We rec-
ommend these papers, together with the above mentioned paper by Yudkin and
Stratton [107].

8.5.2. Areas of Biomedical Experiments Affected 

by Regression Toward the Mean

Once the basic concept is understood, one realizes that regression toward the
mean is present in many areas of biomedical research. Referring once more to
Bland and Altman [16], we will briefly describe three of the most important
areas affected by this phenomenon. 

1. Study of a treatment aimed at reducing high values (or at

increasing low values) of an outcome variable. This is the case we have
considered so far, the most common and important one. There are many exam-
ples where subjects with a given disease or risk factor are selected for enrol-
ment in a clinical trial based on a threshold baseline value of a variable linked
to the condition being studied, that same variable being the actual end-point of
the study: diastolic blood pressure in the study of hypertension and hypoten-
sion; body weight in obesity and chachexia (pathologically low body weight);
body height in gigantism and dwarfism; blood glucose in diabetes mellitus;
forced expiratory volume in the first second of forced expiration (FEV1) in
asthma and COPD; walking distance in intermittent claudication, etcetera. As
discussed above, every time a group of subjects is selected from the population
based on a measurement value above or below a given threshold, regression
toward the mean will occur to simulate or amplify a treatment effect. 

2. Study of the relationship between the initial value of a measure-

ment and the magnitude of its change over time. We are often interest-
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ed in finding out if the change of an outcome variable is related to its initial
value. For instance, with a bronchodilator drug it is reasonable to assume that
the greater the degree of airway obstruction (i.e. the lower the pre-treatment
baseline FEV1 value), the greater the efficacy. Although the underlying biolog-
ic hypothesis is absolutely plausible, to verify it one cannot simply group
patients in several classes based on baseline FEV1 values and then compare the
magnitude of post-treatment improvement between these classes. The reason
why this approach is erroneous is that regression toward the mean will not be
the same for all groups. Indeed it will be proportional to the degree of baseline
anomaly: it will be greatest in the group with most extreme baseline FEV1 val-
ues and will grow smaller and smaller in the groups with baseline values closer
to the “norm”: thus the greatest improvement in the average FEV1 value is to
be expected in the group with worse (i.e. lowest) screening values, even in the
absence of any beneficial effect of the treatment.

3. Comparison between two methods of measurement. This section
may be somewhat obscure to the reader who is not familiar with regression
analysis. For an introduction to regression analysis the reader may consult
(among others) Wonnacott and Wonnacott [105].

The degree of agreement between two methods used to measure the same
quantity is often assessed by means of linear regression analysis between two
series of measurements, each generated by one of the two methods. The under-
lying assumption is that, if the two methods are in perfect agreement, the
regression line coincides with the bisector line, (i.e. has equation y=x, where y
and x indicate the measurements generated by the two methods – see Figure
8.1). The slope or regression coefficient of this line will therefore be equal to 1.

Such an approach is problematic because regression toward the mean will
always make the slope smaller than 1 even in presence of a perfect agreement
between the two measurement methods, independently of which measurement
method corresponds to variable X and which to Y. In subjects with an extreme
first measurement, repeated measurements will tend to be less extreme and
vice versa, in subjects with an extreme second measurement the first measure-
ment will tend to have less extreme values: this will simulate or amplify a “dis-
agreement” between the two methods. Let’s assume we wish to establish if
body weight as reported by the patient (“referred weight”) accurately reflects
body weight as measured by the doctor with a well calibrated scale (“measured
weight”). We ask each subject of our sample to declare his/her weight and then
measure it on the scale. Let’s assume we carry out a linear regression analysis
using the measured weight as the predictive variable (X) and the referred
weight as the outcome variable (Y). The regression coefficient will be smaller
than 1: from this result we conclude that body weight as referred by the patient
does not accurately reflect the weight as measured with the scale, namely, fat
subjects declare a weight which is lower than the corresponding measured
weight, whereas thin subjects declare a weight which is greater than the corre-
sponding measured weight. This result is perfectly acceptable and consistent
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with common sense. Unfortunately, however, it is not supported by the data
because a regression coefficient <1 is to be expected in any case due to the
effect of regression toward the mean, even if the two measurement methods
were in perfect agreement. Indeed, if we carry out the regression analysis again,
but this time using the referred weight as the predictive variable (X) and the
measured weight as the outcome variable (Y), we will once again obtain a
regression coefficient which is smaller than 1. Thus the same data would sug-
gest the opposite conclusion, namely that fat subjects tend to overestimate
their weight and thin subjects to underestimate it. Bland and Altman, from
whose paper the above-mentioned example was taken, propose adequate meth-
ods to evaluate the degree of agreement between two measurement methods
[15].

8.5.3. How to Minimize the Effect of Regression Toward 

the Mean

What can we do against such a potent confounding element? In the context of
clinical trials, the best way to remove the effect of regression toward the mean
is to include a control treatment in the study, with randomized assignment of
subjects to the treatments, as will be discussed in chapter 9. In this way, the
effect of regression toward the mean is likely to be equally distributed between
treatment groups and will therefore disappear when the responses of the treat-
ment groups are compared by subtraction. Of course, regression toward the
mean will still affect the response in each treatment group, thus the absolute
value of the response to each treatment will remain unknown. Methods exist to
minimize the problem of regression toward the mean in a simple before-after
comparison (see, for example [107]). These approaches are also useful in a ran-
domized study to estimate more accurately the absolute value of the effects of
individual treatments.
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1. Estimate the magnitude of the effect of regression toward the

mean and subtract it from the overall effect. It is possible to estimate the
magnitude of regression toward the mean using mathematical formulas and the
following information: the distribution of the outcome variable in the popula-
tion, the mean, the standard deviation and the correlation among repeated
measures (known or approximated, e.g. from the literature or from screening
measurements on the whole study sample), as well as the threshold value used
for the selection of subjects. As an alternative to formulas, the magnitude of the
regression toward the mean can be estimated through simulation. This requires
a software capable of generating series of random extractions from two normal
distributions (one for pre- and one for post-treatment measurements), each
with a known distribution, mean and standard deviation and linked to each
other by a known correlation coefficient. These methods are outside the bound-
aries of this book; however a simple introduction can be found in the above
mentioned paper by Yudkin and Stratton. The effect of the regression toward
the mean, once estimated, can be subtracted from the overall effect (obtained
as a difference between pre- and post-treatment measurements), to get a more
realistic idea of the true treatment effect. Clearly, all the other problems of the
before-after comparison in a single group of subjects, as discussed in this sec-
tion, will remain unchanged. 

2. Conduct two or more screening measurements and use their mean

as baseline value. The more accurate (i.e. less erratic) the baseline measure-
ment is compared to the “true” value, the smaller the regression toward the
mean will be. The baseline value can be “stabilized” by using the mean of multi-
ple screening measurements instead of a single measurement. For example,
going back to the UKPDS study, Ludkin and Stratton have demonstrated that,
whereas the reduction in plasma cholesterol at year 2 was 9% compared to the
initial screening value, the reduction of plasma cholesterol at year 5 was about
3% compared to the mean of the previous four years, indicating that regression
toward the mean decreased by approximately three fold when the mean of four
measurements was used as the baseline value instead of a single measurement.
It should be noted that increasing the number of baseline measurements above
4 would not be of much use to further reduce the effect of regression toward the
mean, therefore it can be reduced but not eliminated in this way.

3. Conduct two screening measurements and use the first to select

patients and the second as baseline value to assess the response to

treatment. The idea, proposed by Ederer [32], is that regression toward the
mean can be greatly reduced if two baseline measurements are taken before
treatment is started: the first is used as criterion for inclusion of patients into
the study, the second as baseline value, i.e. as reference value to evaluate the
treatment effect. Regression toward the mean will have occurred between the
first and the second measurement; therefore, any further change between the
second baseline measurement and a third measurement conducted during or
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after treatment can be attributed to the treatment itself and not to regression
toward the mean. Such a simple approach is very appealing. However, the
effect of regression toward the mean will be eliminated only if the correlation
between the first and the second measurement is identical to that between the
second and third measurement, which is not necessarily true, and in any case
is impossible to demonstrate in the presence of treatment.

8.6. Learning Effect

Let’s assume we wish to assess the effect of a new statin (a class of cholesterol
lowering medications) in improving the walking ability of patients with periph-
eral arterial disease. We chose as primary end-point the distance covered by the
patient on a treadmill under standardized conditions. The treadmill test is con-
ducted before the start of treatment and thereafter every two months for the
six-month duration of treatment. Let’s assume we allocate all patients in our
sample to the study treatment in a typical before-after comparison. Patient
number 058, a 65 year old farmer, enters the cardiovascular physiology center
for his first test: machines everywhere, cables, electrodes, monitors, an intense
smell of disinfectant, white coats dashing in all directions. The patient listens to
the instructions from the study nurse but is somewhat intimidated. The test
starts: our patient is above all afraid of falling and the nurse’s instructions are
all but forgotten; the only thing on his mind is to get back home as soon as pos-
sible.

Approximately six months later the fourth and last test is reached. Our
patient by now has gotten to know the nurses and technicians and finds that
they are good kids. Even the doctor is not too bad after all. A friendly relation-
ship has developed with several fellow patients and jokes are made on the dis-
tance covered during the treadmill test. The machines and the treadmill are no
longer intimidating to our patient and the test day represents a pleasant diver-
sion from the routine work at the farm.

When do you believe the patient has performed best, at the first or the fourth
test? Naturally at the fourth, and this result will be totally independent of, and
confounded with, any effect of the statin on peripheral arterial disease. The
patient has learned how to conduct the test, how to use the machines and how
to interact with the environment. 

This is the so-called learning effect (in fact, in the example there may be a
mixture of learning effect and placebo effect described in the next paragraph:
the two are often concomitant and interdependent). The learning effect does
not affect only patients, but all involved in the study: investigators, nurses, lab
technicians, clinical research associates, data managers, etcetera.

The learning effect, i.e. the effect linked to the progressive familiarization
with the procedures and context of a study, merges with the treatment effect:
in a before-after comparison in a single group of patients it will be impossible to
distinguish one from the other.
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8.7. Psychological Effect

The last of the factors capable of confounding (amplifying or reducing) the
effect of an experimental treatment is the psychological effect. A psycholog-
ical component is certainly embedded in the learning effect, as shown in the
previous section. However, the psychological effect is much further reaching
and is one of the most potent contributors to the magnitude of the treatment
effect. It can both augment and diminish the magnitude of the response to
treatment, depending on the circumstances.

The psychological effect affects everyone involved in a study, from patients
to researchers to support staff.  It has two main components: the influence of
the investigator (or other health care provider) and the placebo effect.

Influence of the investigator. A patient who recently suffered a myocar-
dial infarction receives a phone call. To her great surprise on the line is the
head of the cardiology department in person, who is very well known in town
for his scientific as well as philanthropic merits. The professor congratulates
the patient, as she is among the lucky few selected for an important multina-
tional study, which has the goal of discovering the effect of a new medication
on survival after a myocardial infarction. “This study -explains the professor - is
the culmination of 10 years of research and, although obviously the outcome
cannot be guaranteed, we are very optimistic as to the chances of the new drug
to revolutionize the prognosis of myocardial infarction”. “With your consent -
concludes the professor - we will use the data we already have on you as the
starting point (baseline) in order to evaluate the effect of the treatment on you.
All you need to do is to come tomorrow to our clinic to receive the medication,
take it without fail once a day for one month and report back at the end of the
treatment period for a final evaluation”. Our patient cannot believe her luck and
of course accepts. She is enrolled in the study after signing the informed con-
sent. At the end of treatment, she declares she feels wonderful and indeed she
looks like a different person: she has gained weight, is in a good mood, ener-
getic and optimistic on what life holds for her in the future. The truth is that
our patient had already improved at the end of the phone conversation with the
professor, before the start of treatment. It is clear that the circumstances have
influenced her psychologically in a positive way and this, in turn, had a benefi-
cial influence on her overall clinical condition. Obviously the doctor (or other
health care provider) can have a negative influence as well when the patient
does not trust him/her. The only way to dramatically reduce this cause of bias
is to conduct the experiment in a blinded fashion (see chapter 9).

Placebo effect. The act of taking a treatment contributes to the psycholog-
ical effect independently of and in addition to the influence of health care
providers: it has been repeatedly proven that an inactive treatment which
resembles an active one, namely a placebo, can have the same effect as the
active treatment. This results from a combination of behavioural factors, includ-
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ing changes in life style due to the consciousness of being treated, and from
self-suggestion.

The power of the placebo effect is considerable and well documented, not
only on subjective end-points, such as mood or motivation, but also on objec-
tive end-points such as remission time or mortality [9, 66]. Naturally the place-
bo effect can also be negative, when there is a general distrust in drugs, lack of
motivation, etcetera.  However, it is well documented that, much more often, it
has a positive influence, i.e. tends to favor the effect of a new treatment. The
only way to minimize the bias caused by the placebo effect is to introduce a
control group and blind the treatments being compared; if no active compara-
tor is available, the control group should receive a treatment that is identical to
the one under study, but lacking the substance presumed active, indeed a
placebo.

8.8. The Before-After Design Without Control 
Group in Oncology

In oncology, despite all the limits described in this chapter, the before-after
design in a single group of patients is frequently used in the early development
stage of new compounds: the two-phase design described by Simon [95] and
that described by Gehan [47] are two of several examples. 

In oncology, the use of placebo (see chapter 9) poses major ethical problems:
given the seriousness of the disease, how can some patients be denied standard
treatment (which, although far from solving the problem, does show some effi-
cacy) and be assigned instead to an experimental treatment, the efficacy of
which still remains to be verified? Clearly, for the same reasons, it would be
even less acceptable to deny all patients the standard treatment and to treat
them all with the experimental one. In order to overcome this ethical obstacle,
oncology compounds in general are initially tested in patients who did not
respond to available standard treatments, the so-called non-responders, or
patients for whom disease progression is no longer controllable. For these
patients there is no remaining therapeutic option. One could consider a ran-
domized, controlled comparison between experimental treatment and placebo
in a non-responder population. But, once more, the problem is ethical in nature:
since the prognosis for these patients is almost invariably unfavourable and the
experimental treatment may offer some benefit, is it acceptable to deny patients
this last chance? For this reason, in the early stages of development, new oncol-
ogy compounds are tested on non-responder populations by means of before-
after designs without a control group. In addition, again for ethical reasons,
these designs include multiple steps, most frequently two (two-stage designs):
the objective of the first stage is to reduce as much as possible the exposure to
the experimental treatment if this does not show any sign of activity. 

Clearly, as for all before-after designs in one group of subjects, the observed
results could be due not to the treatment, but to one (or more) of the phenom-
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ena described in this chapter. The influence of these phenomena is however mit-
igated by the nature of the experimental conditions, as briefly described below.

The temporal variations of the disease are predictable within acceptable lim-
its (although exceptions are always possible). For instance, if the response to
treatment is defined as a “reduction of at least 50% of the tumor mass”, the per-
centage of patients with tumors poorly responsive to available treatment
expected to achieve a response is basically nil. If in a clinical trial conducted
with a before-after design in this kind of patients, the percentage of subjects
with positive response is different from 0, the study is considered a success.
Obviously, depending on the type of tumor being studied, the expected result
without treatment could be that 10 or 20% of patients respond; in this case it
would be necessary to observe responses in at least 20 or 30% of patients to
hypothesize the success of the new compound. The basic point is that the
expected outcome is known with reasonable certainty. Temporal variations in
personnel, equipment and the context of early phase II oncology studies can be
kept under control, because typically these studies are small in sample size and
short in duration. Regression toward the mean has a negligible effect compared
to the natural progression of the disease. Psychological effects, including the
placebo effect, certainly play a role, but this is limited by “objective” end-points.

Notwithstanding what we just said, we want to stress that, in oncology,
before-after studies in a single group are used only as a screening instrument
for new compounds: if an experimental treatment gives good results in these
early studies, then the development plan is continued. In oncology, as in any
other therapeutic area, the before-after studies without a control group cannot
replace, in any way, controlled studies, which are absolutely necessary to con-
firm efficacy and safety of new treatments.

The before-after designs most commonly used in oncology are illustrated in
greater detail in section 10.9. The use of these designs could apply to other dis-
eases that, just like some cancers, have an “inexorable” evolution that is well
known in terms of time and dynamics.

Summary

By means of the experimental design the researcher controls the experimental
factors and some of the most important sub-experimental factors, with two
principal objectives: 
1.Minimize the bias between the groups being compared.
2.Minimize variability.

In choosing the study design, the researcher must always keep simplicity in
mind (studies which are too complex are not feasible).

The most elementary experimental design is based on the before-after com-
parison in a single group of subjects, i.e. without a separate control group
(“before” and “after” refer to the beginning and the end of treatment, respec-
tively). There are numerous sources of bias in this design:
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• Temporal variations of the disease.
• Temporal variations of personnel, equipment and the context of a study.
• Statistical regression toward the mean, a phenomenon by which a variable

having an extreme value (very high or very low) in the first measurement will
tend to be closer to the population mean in subsequent measurements.

• Learning effect.
• Psychological effect, basically caused by the physician and/or by the aware-

ness of being treated. 
Despite these limitations, before-after comparisons without a control group

are used extensively in oncology in the early stages of the development of new
compounds, mainly for ethical reasons. 
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9
Experimental Design: 
the Randomized Blinded Study
as an Instrument to Reduce Bias 

9.1. Introduction

From the previous chapter it should be clear that in most cases the before-after
comparison in a single group of patients is an inadequate experimental design,
as it fails to achieve comparisons free from bias. “Before” is not a good control
for “after”, since the effects of many factors are mixed with the effect of the
treatment, introducing all kinds of systematic errors. Generally, in this type of
experimental design, bias has the effect of simulating or exaggerating the effect
of the treatment.

At first glance, the so-called historical control seems an attractive and
cost-effective alternative. In this kind of study, the control group is a group of
patients with the disease of interest and documented selection criteria and end-
points, who were however diagnosed and treated in the past, i.e. before the
beginning of the study (hence the term “historical”). Unfortunately, many of
the sources of bias discussed for the before-after comparisons also apply to
comparisons with a historical control. In particular, it is likely that the tempo-
ral, learning and psychological effects influence the two groups in a quite dif-
ferent way. Often, the historical control does not come from a clinical trial and
this enhances the differences from the experimental group. Furthermore, the
quality and quantity of health care available to the historical group (nursing
support, organization of the hospital, psychological support, etcetera) can be
very different from that available to the group prospectively followed in the
study. As for the before-after comparison, the historical control design also
tends to exaggerate the effect of the treatment.

In order to reduce the probability of bias distorting the results of a study, it



is therefore necessary to divide the sample into two or more groups to be treat-
ed and followed prospectively and simultaneously: the so-called concomitant

or concurrent controls. A treatment or a sequence of treatments is assigned
to each group. The former case is referred to as a parallel group design, the lat-
ter as a cross-over design. Let us suppose we have three study treatments (A,
B, C), each lasting one week. In the parallel group design the sample is divided
in three groups, each receiving one of the study treatment: the first group is
assigned to A, the second to B, and the third to C. The three groups, sometimes
called arms of the study, are treated and followed up in parallel (hence the
name of this design) for the duration of the treatment (one week in our exam-
ple). Since each group corresponds to one treatment, conclusions are drawn by
comparing the groups. In the cross-over design, each group receives a different
sequence of treatments, instead of a different treatment. With three treatments
six sequences are possible (A-B-C, B-A-C, C-B-A, B-C-A, A-C-B, C-A-B).
Therefore, in the simplest form of cross-over design with three treatments, the
sample is divided into six groups: the first group receives a week of treatment
A, followed by a week of B and finally a week of C; the second group receives a
week of B followed by A, followed by C; the third group receives C, followed by
B, followed by A, and so on (the term cross-over refers to crossing over from
one treatment to another, within the same group). Since each group receives a
sequence of treatments, conclusions on individual treatments are made by
comparing treatments within subjects even though, as we will see in chapter 10,
the concept of comparing groups (i.e. sequences) is maintained. We will come
back to these two fundamental types of experimental design in chapter 10.

At the end of the study we summarize the results obtained for each treatment
using a measure of central tendency (for example the mean) and a measure of
variability (for example the standard deviation). Unavoidably, there will be dif-
ferences between the treatments. For simplicity, let us consider only two treat-
ments: A (experimental treatment) and B (control treatment). Let us suppose
that A and B are two treatments against obesity and that the primary end-point
is the weight of the patient, measured at the end of one month of treatment. To
further simplify matters, we shall ignore the standard deviation (assuming that
it is similar in the two groups). At the end of the study, results are as follows:
the post-treatment mean weight is 104 kg after A and 114 kg after B. We are
naturally tempted to attribute the 10 kg mean difference entirely to the treat-
ments, concluding that A is more efficacious than B in reducing weight in obese
patients. Unfortunately, things are not this easy. Various causes, of which treat-
ment is only one, can contribute to the observed 10 kg mean difference. As dis-
cussed in section 2.4, one possible cause is chance, the combined effect of non-
systematic, unpredictable and unknown phenomena, escaping every control.
This effect is not reproducible by definition (see section 1.3.2). The influence
of chance is evaluated through the statistical analysis, as discussed in chapter
5. All other possible causes, other than the treatment itself, are sources of bias.
Sackett [88] described many types of bias, which can be summarized in three
main categories:
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1.Selection bias, defined as a non-random imbalance among treatment groups
of the distribution of factors capable of influencing the end-points, that is, of
sub-experimental factors (including prognostic factors) discussed in sections
2.3 and 2.4 [26].

2.Assessment bias, defined as a non-random imbalance among treatment groups
in the way subjects are followed and assessed during the course of the study
[26]. This category includes all forms of bias discussed in chapter 8.

3.Analysis bias, defined as a distortion in favor of one of the treatments, inter-
vening during the data analysis.
For the observed difference to reflect a true difference between treatments,

it is necessary that the design and procedures of the study remove (or render
negligible) the three categories of bias mentioned above.

An appropriate statistical analysis allows the exclusion of chance (in proba-
bilistic terms), but does not allow one to definitively establish if the observed dif-
ference is due to the treatments or to one or more types of bias. Statistical meth-
ods for the detection of selection and assessment bias do exist but, because of
their intrinsic weaknesses (see below), are to be considered exploratory.

As far as selection bias is concerned, the statistical analysis can detect the
presence of imbalances between treatment groups occurring at baseline (i.e.
before the start of study treatment administration) for a limited number of
known sub-experimental/prognostic factors. When these imbalances are
detected it is possible to “adjust” the results. “Adjustment” in this context
means that, on the basis of an appropriate statistical model (suitable for the
data being analyzed), the result is “enhanced” in the group with a baseline dis-
advantage and “reduced” in the group with a baseline advantage. The magni-
tude of the adjustment is established by the statistical model and by the mag-
nitude of the baseline imbalance. Unfortunately, such adjustments are ques-
tionable for three reasons:
• They can only be applied to known sub-experimental/prognostic factors,

whereas the majority of such factors, causing bias, are unknown. 
• They are performed “post hoc”, that is, are decided upon and applied with

the full knowledge of the results for each treatment.
• They dependent heavily on the selected statistical model and, because of this,

are partially arbitrary.
For all of these reasons, the results of such adjusted analyses have an

exploratory value and are in general not usable for confirmatory purposes.
With regard to assessment bias, some statistical techniques, mostly descrip-

tive, can either confirm or alleviate doubts on the bias-free conduct of the
assessments. For example, consistency in the correlations among study end-
points can be verified by comparing different centers or different evaluators, or
even different studies. These techniques are also exploratory and do not offer
solutions if the suspicion of assessment bias is confirmed.

In conclusion, the statistical methods cannot definitively confirm or rule out
selection bias or assessment bias. It is crucial for researchers to understand this
concept. The only way to avoid the risk of attributing to a treatment what is in
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fact the effect of bias is to perform bias-free comparisons (see section 2.1). The
only way to ensure that the comparisons are bias-free is to design and execute
the study properly. In reality, the risk of bias can never be totally eliminated;
therefore, the expression “bias-free” refers to situations in which the probabil-
ity of bias is sufficiently remote to allow us to ignore it in drawing our conclu-
sions.

The logical sequence in the reasoning  is as follows:
• The study is planned and executed so that comparisons are likely to be bias-

free; therefore a difference between groups, if any, can be attributed either
to the treatment or to chance.

• The statistical test is performed to exclude the effect of chance.
• If the test is statistically significant one concludes that the effect is not due

to chance, i.e. it is due to the treatment.
In this chapter, we will deal with two fundamental procedures typical of

experimental studies that are used to minimize selection and assessment bias:
randomization (against selection bias) and blinding of study treatments
(against assessment bias). The next two sections (9.2 and 9.3) are dedicated to
these procedures. Furthermore, as mentioned above, the statistical analysis can
itself be the cause of various types of bias, collectively indicated as analysis
bias. Section 9.4 is dedicated to this topic. The chapter ends with a comparison
between observational and experimental studies, mainly concerning the relia-
bility and generalizability of the conclusions (section 9.5).

9.2. Randomization as Antidote Against 
Selection Bias

9.2.1. Definition and Conceptual Framework

Randomization is the assignment of subjects to treatments (or sequences of
treatments, in the case of cross-over designs) with a predefined probability and
by chance. This implies that each individual assignment cannot be predicted
based on the previous assignments. In this chapter we refer to treatments, but
what we state is also applicable to sequences of treatments in cross-over designs.

The word randomization is derived from “random”, meaning chance assign-

ment. In its simplest form, at each assignment, each subject has the same prob-
ability of being assigned to each treatment: this probability is 50% in a study
with two treatments, 33.3% in a study with three treatments, 25% in one with
four treatments, and so on. However, as we will see, there are forms of ran-
domization, so-called unequal or unbalanced, in which the probabilities of
assignment to each treatment are not equal. Therefore, once the randomization
is completed, the sample is unevenly divided between treatments, generally
with more subjects assigned to the experimental treatment than to the control
(or controls). Whatever the probability of a subject being assigned to a given
treatment, the essence of randomization is the chance nature of the assign-
ment, so that the outcome of an assignment cannot be predicted on the basis
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of the previous ones. There are some partial exceptions to this fundamental
rule (see for example the randomization in blocks in section 9.2.2). However,
for the process of assigning the subjects to the treatments to be called ran-
domization, it is imperative that the fundamental characteristic of chance
assignment be maintained in essence.

It is important to distinguish between random assignment, i.e. randomization,
and haphazard assignment. Random assignment follows the precise rules just
described, while haphazard assignment does not really follow any rule.
Therefore, in the latter assignment the preferences, conscious or unconscious,
of the person in charge of the assignment may influence the outcome.

Alternatives to randomization have been sought. To this end various forms of
so-called systematic assignment have been proposed. One could assign
patients seen on odd numbered days to one study treatment and patients seen
on even numbered days to the comparator treatment, or patients hospitalized
in rooms on the left side of the ward to one treatment and patients in rooms on
the right to the other, or patients with last names from A to L to one treatment
and the remaining to the other treatment, and so on. These procedures are to
be avoided, because they are susceptible to both conscious manipulation and
unconscious mistakes, and in any case lend themselves to suspicion and accu-
sations of manipulation when results are critically assessed and interpreted.
For example, the above mentioned criterion based on last names easily creates
a racial bias between the groups under comparison, because each ethnic group
tends to have a small number of very common last names. Furthermore, such
procedures are often more complicated than the true randomization. However,
there are “hybrid” forms of assignment, with a systematic and a random com-
ponent, that are acceptable in special situations. These will be introduced in
section 9.2.3.

Randomization has two main justifications.

The first justification of randomization is that it eliminates selec-

tion bias for both known and unknown sub-experimental factors

capable of influencing the response to treatments (see section 2.4). Let
us consider a study with the objective of comparing the effect of a new throm-
bolytic agent to that of tPA (tissue Plasminogen Activator) on the survival of
patients with myocardial infarction. We shall assume that 90% of the patients
assigned to tPA were more than 70 years old, against 30% of the patients
assigned to the experimental treatment. It is easy to realize that age influences
the mean survival time: older patients generally have less time ahead of them
compared to younger ones, irrespective of myocardial infarction; furthermore,
older patients tend to respond less to many drugs and have an overall worse
prognosis following angioplastic procedures, which sometimes follow treatment
with thrombolytics. An imbalance in mean age between treatment groups is a
classic example of selection bias that, in our case, will almost unavoidably
determine a longer survival time in the group assigned to the new thrombolyt-
ic agent compared to that assigned to tPA, independently of the efficacy of the
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two drugs. If a treatment effect does exist, it will be contaminated by the effect
of the selection bias. Age is a known prognostic factor. In fact, the imbalance of
known sub-experimental and prognostic factors is only the most obvious and
least problematic aspect of the selection bias problem. If it were the only prob-
lem, “matching” techniques, that control the distribution of these factors in the
groups under comparison, would contribute to creating comparable groups
even better than randomization, although the practical feasibility of matching
decreases with increasing numbers of factors to be matched, becoming unreal-
istic if there are too many of them. Furthermore, imbalances of known sub-
experimental factors can be compensated (within limits) through appropriate
statistical procedures, as mentioned earlier in this chapter. The true problem
lies with the unknown sub-experimental factors, which may not even be record-
ed or measured, for the very reason they are unknown, and for which balanc-
ing through matching and statistical “adjustments” is obviously impossible.

It should be emphasized that randomization does not always create balanced
(homogenous) groups for known and unknown sub-experimental factors. The
outcome of a random assignment of subjects to treatments may well be that of
unbalanced groups (see below). The fundamental point however is that any
imbalances are by definition due to chance. 

The second justification of randomization is that it legitimizes the

frequentist approach to statistical inference. The foundation of the fre-
quentist approach to statistical inference is the assumption that the sample is
extracted randomly from the population. As mentioned in chapter 6, strictly
speaking this does not happen in clinical studies, because the study sample is
not selected in a truly random fashion from the overall population of patients
affected by the disease of interest. For this reason, the sample may not be rep-
resentative of the underlying population. For example, the sample may consist
mostly of subjects living close to the hospital, or belonging to the same socio-
economic level, or frequently needing hospitalization. Patients of different
nationality, ethnic background, socio-economic level or who are treated in dif-
ferent centers (with unavoidable differences in the quality of  patient care and
of the procedures needed for the study) may not respond to the treatments in
the same way. As mentioned in section 6.1, if the sample does not represent the
population, the legitimacy of generalizing results from that sample to the over-
all underlying population is questionable. To what population can we truly
extend the result obtained on the sample? Randomization cannot eliminate this
problem (see section 9.5). However, it compensates for another very important
implication of the lack of a random extraction of the sample from the popula-
tion: without the random element, the frequentist approach cannot be applied,
because the conceptual foundation of repeated sampling (repetition of the
experiment under the same conditions) would be missing. Randomization, by
reintroducing the random element in the assignment of the “extracted” sub-
jects  (i.e. the sample) to the different treatments, ensures the applicability of
the statistical significance test. The reader interested in an illuminating  exam-
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ple can refer to chapter 10 of Colton’s textbook of medical statistics [26]. This
is an important concept often underestimated, which brings into question the
application of any frequentist method of statistical inference to non-random-
ized experiments. From the Bayesian perspective (see chapter 5), randomiza-
tion is important only as an instrument to eliminate bias, while it is not seen as
the basis for the application of statistical methods, since the Bayesian approach
does not use the concept of repeated sampling.

We have stated above that randomization does not in itself ensure homoge-
nous groups, which is somewhat intuitive, especially if the sample size is small.
The fact that we have obtained unbalanced groups only as a result of chance is
not necessarily reassuring, especially if an imbalance observed at baseline con-
cerns a known prognostic factor and is quantitatively relevant. For example, if
the imbalance between the groups concerns a quantitative selection criterion,
which is also used as an end-point (for example, an imbalance between the
groups in the mean  cholesterol levels at baseline, in a study on a cholesterol low-
ering drug), there will be an uneven effect of the statistical regression toward
the mean, which will be greater in the group with the more extreme mean base-
line value (see chapter 8). As mentioned already, the smaller the sample size,
the greater the likelihood of a relevant imbalance due to chance. For example, if
a sample of 1000 patients is randomized to two study treatments, it is very
unlikely that one group will have twice the number of females than the other. On
the other hand, if the sample is of only 10 patients, such an outcome is not rare
at all. Randomization techniques exist that are useful not only to eliminate bias,
but also to reduce the probability of relevant imbalances between the groups
due to chance. These techniques will be presented later in this chapter.

9.2.2. Types of Randomization

Randomization is carried out through lists of random numbers, which can be
taken from published tables or generated ad hoc using special computer algo-
rithms. A list of random numbers is a sequence of numbers (for example from
0 to 9, from 0 to 25, etc) which follow one another without any discernible order
or trend, i.e. each number has the same probability of appearing at any position
of the list. By assigning each study treatment (or sequence of treatments) to
one or more numbers, the random succession of numbers is transformed into a
random succession of treatments (or of treatment sequences) called random-
ization list. Straight from chapter 5 of the Pocock’s textbook on clinical trials
[79] (in our opinion one of the best introductory texts on clinical research
methodology) we report the first 30 positions of a list of random numbers,
which uses numbers from 0 to 9:

0-5-2-7-8-4-3-7-4-1-6-8-3-8-5-1-5-6-9-6-8-1-8-0-5-7-8-8-7-4.

Simple randomization. In the so-called simple randomization, each
patient has the same probability of receiving each of the study treatments (or
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sequence of treatments). For simplicity, we will limit the examples to the paral-
lel design, but the reasoning is identical for the cross-over design, where the
patients are randomized to sequences of treatments instead of single treat-
ments.

When there are two study treatments (A and B), a simple randomization list
can be generated by assigning A to the numbers 0, 1, 2, 3, 4 and B to the num-
bers 5, 6, 7, 8, 9 and then by appropriately replacing the numbers with the let-
ters A and B.  The following randomization list is obtained:

A-B-A-B-B-A-A-B-A-A-B-B-A-B-B-A-B-B-B-B-B-A-B-A-B-B-B-B-B-A.

In a study with three treatments (A, B and C), A can be assigned to the num-
bers 0, 1 and 2, B to 3, 4 and 5, and C to 6, 7 and 8 (the number 9 is ignored,
with no treatment assigned to it). In this way the following randomization list is
obtained:

A-B-A-C-C-B-A-C-B-A-C-C-B-C-B-A-B-C-C-C-A-C-A-B-C-C-C-C-B.

In a study with four treatments (A, B, C and D), A can be assigned to the
numbers 0 and 1, B to 2 and 3, C to 4 and 5, and D to 6 and 7 (numbers 8 and
9 are ignored). The following randomization list is generated:

A-C-B-D-C-B-D-C-A-D-B-C-A-C-D-D-A-A-C-D-D-C.

In the simple randomization, a single list prepared in this way is used. Taking
for example the four treatment list, the first patient entering the study will be
assigned to A, the second to C, the third to B the fourth to D and so on, until
the total number of patients required by the protocol has been randomized. 

When the treatments are blinded (see section 9.3), it is necessary to transform
the sequence of treatments of the randomization list (A-B-A-B-B, etc.) into a
sequence of unique codes, each corresponding to a patient pack (for example,
CX2224, CX2225, CX2226, CX2227, etc.). The researcher will know only which
patient pack he/she must give to each subject, and will have no knowledge as to
which treatment each code corresponds to. The list linking patient pack codes
to treatments will be kept by personnel not involved in the study in a sealed
envelope under lock and key or in an electronically protected file.

It must be possible to trace, justify and document any access to the random-
ization list, from the moment it is generated, to the moment it is formally
“opened” at the end of the study. If the randomization process is managed
through a computerized system, the randomization list must be located in a
protected area throughout the study and subject to “audit trail”, i.e. every
access must result in the automatic registration of user, date, time and reason
for access. 

Once the randomization list and the corresponding list of unique patient pack
codes have been generated, the actual randomization, that is the assignment of

9.2. Randomization as Antidote Against Selection Bias 207



individual patients to the study treatments, can be directly executed by the
researcher, by following a list specific to his/her center containing the order of
assignment of the patient pack codes. The list is to be followed rigorously: the
first pack code must be assigned to the first eligible patient, the second pack
code to the second patient, and so on.

Alternatively, randomization can occur through a centralized service, to
which  investigators can request patient pack codes by phone, e-mail or fax.
Each investigator receives a certain number of patient packs of each study
treatment. The link between the randomization list and the patient pack codes
is not pre-fixed but determined by the centralized allocation system, using the
sequential order as the matching criterion: this means that each new request is
given the first patient pack code available at the center corresponding to the
first available treatment of the centralized randomization list. This method is
called centralized randomization and it is especially useful in large, multi-
center studies, to reduce logistical complexity and avoid waste of study med-
ication.

Randomization in random permuted blocks. When the sample of a
study is large (say, more than 100 subjects per treatment or sequence of treat-
ments), simple randomization will most likely achieve a similar number of sub-
jects in each treatment group, through the effect of chance alone, just as when
one tosses a coin hundreds or thousands of times, the heads and tails tend to
occur with a similar frequency. The number of subjects assigned to each treat-
ment or sequence will obviously almost never be identical, but the differences
will be small, and will not affect the statistical analysis or the interpretation of
the results.

However, the picture can be completely different in small studies. A coin
tossed only 10 times could easily give eight heads and two tails or even nine
heads and only one tail, even though head and tail have the same probability of
occurring. The same is true for a sequence of random numbers: if a short list is
used, it is not rare that, by chance, it will generate an imbalance in the size of
the groups under study. The shorter the list, i.e. the smaller the sample size, the
more marked the imbalance can be. For example, if we were to use the last 14
positions of the sequence of random numbers reported above to generate a ran-
domization list with two treatments (0-1-2-3-4=A, 5-6-7-8-9=B), we would end
up with 11 subjects assigned to B and 3 assigned to A; if we were to use the last
10 positions, the split would be 8 units assigned to B and 2 to A. To avoid
extreme inequalities in the size of the groups under comparison, when dealing
with small samples, a special form of randomization, called randomization in

random permuted blocks or simply randomization in blocks, is used.
Let us suppose we have two treatments, A and B, to be assigned to 32

patients. With simple randomization, the 32 patients are assigned to the study
treatments based on a random sequence of 32 extractions of one of the two
treatments, without any other condition.

With the randomization in blocks, the assignment occurs in subgroups, called
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blocks. Each block must have a number of units equal to the number of treat-
ments under study or to a multiple of this number. Furthermore, within each
block, each treatment must appear the same number of times. The randomiza-
tion in blocks serves two purposes:
• To obtain numerically balanced groups (i.e. of equal or approximately equal

size).
• To obtain a constantly balanced recruitment, that is, a similar size of the

treatment groups throughout the enrolment process, from beginning to end.
We shall illustrate a method for creating a randomization list in blocks,

assuming  two study treatments (A and B) and a block of four units. This
method uses the so-called permutations, defined as groups that include all of
the elements under study and differ from each other only in the order in which
the elements appear. In our example we must consider permutations of four
elements, two of which are repeated twice (permutations with repetition).
There are six possible permutations: AABB, BBAA, ABBA, BAAB, ABAB and
BABA. The succession of the permutations is dictated by a list of random num-
bers. Considering the random list of numbers from 0 to 9 described above, we
could assign each of the six permutations to a number from 1 to 6, in the order
they appear above, and ignore the numbers 0, 7, 8 and 9. The list of random-
ization in blocks of four will be as follows:

[A-B-A-B]-[B-B-A-A]-[B-A-A-B]-[A-B-B-A]-[B-A-A-B]-[A-A-B-B]-[B-A-B-A]-[A-B-B-A]-[A-B-A-B]

5              2             4              3              4               1              6             3               5

It is easy to verify that randomization in blocks results in a balance between
the two treatment groups, both during enrolment (in the example, with every
four randomized subjects there will be exact parity), and at the end of enroll-
ment (if exactly 32 subjects are randomized, 16 will receive A and 16 B; if more
or less than 32 subjects are randomized, the difference in the number of sub-
jects assigned to each treatment will never be more than two units).

Groups of equal size often facilitate the statistical analysis. A balance main-
tained throughout recruitment (the smaller the block, the more constant the
balance) can be useful for balancing sub-experimental factors linked to time
(including seasonality). The use of randomization in blocks for this purpose will
be clarified in chapter 10.

Strictly speaking, randomization in blocks is not true randomization, because
it is not always true that a single assignment cannot be predicted based on the
previous ones. Going back to our example, if we know the size of the block and
we know the first three assignments of the block, we can predict the fourth. If
we know that the first two assignments are to the same treatment, we also
know the remaining two. However, the blinding of study treatments described
in the next section generally makes the “decoding” of the blocks very unlikely,
and therefore makes the process of assignment in blocks close to a true ran-
domization. If relatively large blocks are used and their size is not revealed to
the researchers conducting the experiment, the probability of decoding the
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blocks is so low it can be ignored. Instead, the situation is problematic if the
study treatments are only partially blinded, and even more if they are not blind-
ed at all, in the so-called open label studies (see below). So far we have
assumed fixed size blocks, in the example the size being four. If we wish to
make it more difficult to decode the treatments, we may use variable size

blocks, with the size of the blocks used in generating the list changing ran-
domly from block to block.

Randomization in blocks, seen as a tool to obtain groups of equal size, in addi-
tion to being useful for samples of small size, can also be advantageous in three
other situations.
• In multi-center studies. These are often very large studies, for which sim-

ple randomization would be completely appropriate. However, to enroll all
patients in an acceptable amount of time, many centers are used, each
enrolling a small part of the sample. Often the centers are in different coun-
tries, with very different cultures and socio-economic backgrounds. For these
reasons the center itself is one of the most powerful sub-experimental fac-
tors. Therefore, to avoid selection bias and also to ensure that each center
has all of the study treatments, stratified randomization in blocks is typically
used, with each center treated as a stratum (see below) and given a number
of blocks compatible with the number of patients it expects to enroll. It is to
be noted that in a multi-center study, at the end of the study there will be
many incomplete blocks (the last block of each center). Therefore, the over-
all balance between the treatments will never be as good as that achievable
when randomization in blocks is performed for a single center study. 

• In studies with a sequential design (treated in chapter 11). As we will see,
such studies have variable size and are stopped as soon as the preestablished
objective is achieved. Therefore, at no time during the study should there be
an excessive imbalance in the number of subjects assigned to each treatment.

• Randomization in blocks is at the heart of the so-called randomized block
design. In this kind of design, assuming k study treatments, randomization
lists in blocks of k patients are used. Each block is a set of k patients, similar
in respect of certain predefined characteristics. The patients of each block
are randomly subdivided among the k study treatments. We will return to this
topic in chapter 10.
Randomization in blocks does also present some disadvantages, not to be

underestimated. If the blocks are small, the researcher may be able to guess the
sequence, even in the presence of blinded treatments (see below), in which
case all of the advantages of both blinding and randomization are lost. This can
happen when the nature of the treatments under study makes the blinding
incomplete. For example, let us suppose we are conducting a study comparing
the β2-antagonist drug salmeterol to placebo in asthmatic patients. In addition,
let’s assume that the treatments are blinded, that is, salmeterol and placebo are
indistinguishable to the researcher, who therefore does not know to which
treatment each individual patient is assigned. Finally, let’s assume that the
researcher knows from the study protocol that randomization in blocks with a

210 9. Experimental Design



block size of four has been applied. The first two patients are randomized and,
shortly after the administration of the treatment, they both show tremor, a typ-
ical side effect of the class of drugs to which salmeterol belongs. At this point,
the investigator knows (or strongly suspects) that the following two patients
will receive placebo, and may consciously or unconsciously select the two fol-
lowing patients based on his/her personal opinion of salmeterol. The investiga-
tor may also monitor the two following patients in a “special” way (e.g. less
closely than the rest). Thus, both a selection bias and an assessment bias are
introduced. We can reduce this risk by avoiding very small blocks. However, the
blocks cannot be too big either, otherwise any advantage of this kind of ran-
domization is lost (unless all we only want is a very rough balance between
groups). In addition, if very large blocks are used, a numeric balance is achieved
only at long intervals during the course of the study. In any case, it is appropri-
ate never to report the size of the blocks in the protocol, nor any other detail of
the randomization list.

Stratified randomization. The so-called stratified randomization

takes into account the prognostic/sub-experimental factors considered most
significant. It allows for such factors to be evenly distributed among the treat-
ment groups. The stratified randomization requires that each pre-selected fac-
tor be subdivided into categories or classes, referred to as levels. The levels
must be exhaustive (i.e. they must include all of the values the factor can take)
and mutually exclusive (i.e. a given value can only belong to one level). We
want to compare, in a parallel group study, a new antiviral with zidovudine in
the treatment of HIV infection, with mortality as the primary end-point. We
know that a low number of CD4+ lymphocytes (<100/mm 3) and opportunistic
infections reported in the patient’s clinical history are important negative prog-
nostic factors. We want to make sure that these two prognostic factors are bal-
anced in the groups under comparison. To this end, we divide each of the two
factors into two levels (presence/absence of low CD4 counts, presence/absence
of opportunistic infection in the patient’s history). To ensure a balance between
treatment groups for the two pre-selected prognostic factors, we assign the
patients to one of the following four categories or strata:
1.Absence of low CD4 counts + absence of history of opportunistic infections.
2.Presence of low CD4 counts + absence of history of opportunistic infections.
3.Absence of low CD4 counts + presence of history of opportunistic infections.
4.Presence of low CD4 counts + presence of history of opportunistic infections.

Each stratum is made of one level for each factor, therefore the total number
of strata is obtained by multiplying the number of levels of each factor (in this
case 2 x 2).

To obtain a stratified randomization, an independent randomization list must
be generated for each stratum. In our example, each patient entering the study
is first assigned to one of the four strata on the basis of his/her CD4 count and
history of opportunistic infections. Then, the patient is assigned to either the
new antiviral or to zidovudine by following the randomization list of the stratum
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to which he/she belongs. Through this procedure, at the end of the randomiza-
tion, we can be sure that no major treatment imbalance for the two selected
prognostic factors will be present. 

Often the study center, which is a sub-experimental factor of potentially
great influence (even though not a proper prognostic factor - see section 2.4),
is treated as a stratification factor. As mentioned above, in multi-center studies
the randomization procedure is often not only stratified, but also in blocks (that
is, for each stratum a randomization list in blocks is prepared). The reason for
this is that in each individual center at least one of the strata is likely to end up
with few patients. The blocks will make sure that no large imbalance between
treatment groups occurs, especially in the scarcely populated strata. This
approach is useful for any study with stratified randomization in which it is
expected that one or more strata will have few patients.

The stratified randomization can be used with two primary objectives:
• Obtain balanced groups for important prognostic factors or other important

sub-experimental factors such as the center, even though the interest is on
the overall effect of the treatments on all strata combined.

• Perform subgroup analyses, especially study the interaction between the
effect of the study treatments and that of the stratification factors. 
Stratified randomization has the great disadvantage of complexity. Let us

consider prognostic factors with two levels. For two such factors there will be
four strata, as in our example. Three factors will generate eight strata, requir-
ing eight randomization lists. If the factors have more than two levels, the num-
ber of strata increases very rapidly. Considering, for example, three factors with
three levels each, 27 strata will be obtained, which is already far beyond a rea-
sonable threshold of feasibility. More than three factors are generally not to be
considered for many reasons, the most obvious being that, with many strata,
some of them will certainly be scarcely populated and the final effect will be a
serious treatment imbalance. Stratification is generally useful when limited to
one or two sub-experimental factors (prognostic or not - see section 2.4) of
documented importance, especially in studies with a small sample size. 

Sometimes in multi-center studies, when the number of stratification factors
is high, the centers are not treated as additional strata. This is done in order to
reduce the overall number of strata and is justified when the center effect is
deemed less important than the effect of the factors selected for stratification.
In these circumstances, the use of a centralized randomization (see above) is
mandatory. In fact, if non-centralized randomization were used, each center
would be provided with sets of pre-coded patient packs, one set for each stra-
tum, which implies that each center is treated as an additional stratum.

Unbalanced or unequal randomization. There are situations where an
imbalance in the size of the groups under study is an advantage and facilitates
achievement of the objective of the study. Let us suppose that we are responsi-
ble for the clinical development of a new monoclonal antibody directed against
the immunoglobulin E (anti-IgE antibody), a biotechnological product, resulting
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from complex genetic engineering processes, belonging to a new therapeutic
class. It is clear that, in such a situation, gaining experience concerning the safe-
ty and tolerability of the new product is of paramount importance. Therefore, in
the clinical trials it would be an advantage to assign more patients to the anti-
IgE agent than to the placebo (or active comparator). Another reason justifying
the use of unequal randomization is of practical/commercial nature, mainly per-
tinent to phase IV studies, where it is considered important to give the chance
to experience a new treatment to as many doctors and centers as possible.

Unbalanced or unequal randomization can be obtained through random-
ization lists built in such a way that not a 1:1 allocation, but an unequal alloca-
tion (3:2, 2:1, 3:1, etc.) between the groups is achieved. Let us suppose we want
to build a list in blocks with a 2:1 allocation, so that each subject entering the
study has twice the probability of being assigned to one study treatment than
to the other. In building such a list, we could, for example, consider a block of
size 3, in which two positions are assigned to A and one to B. The possible per-
mutations are: AAB, ABA, BAA. We could assign the first block to the numbers
0, 1, 2; the second to 3, 4, 5; the third to 6, 7, 8 and not consider the number 9.
If we use the sequence of random numbers presented at the beginning of this
section, we will generate the following list: 

[A-A-B]-[A-B-A]-[A-A-B]-[B-A-A]-[B-A-A]
0           5           2          7           8

This list assigns to A twice as many subjects than to B, balancing the 2:1
assignment every three subjects.

The advantage of unequal randomization, that of exposing more patients to
the new treatment, has a price. A study with unequal randomization will have
reduced power compared to a study with a 1:1 randomization of identical
design and size. Consequently, if all other conditions are the same, a study with
unequal randomization will need a higher total number of patients, compared
to an otherwise identical study with a 1:1 randomization, in order to obtain the
same power (see section 6.2). For small imbalances in the allocation ratio
between the groups, the loss of power (or the increase in patient numbers
required to maintain the same power) is relatively limited. However, with
increasing imbalances in the allocation ratio, the power diminishes considerably
(or, likewise, the sample size must increase considerably to maintain the same
power). For example, if a study with two treatments and a 1:1 randomization
has a 95% power for the primary end-point at a pre-fixed significant level, the
same study with a 3:2 unequal randomization (that is, with 60% of the patients
randomized to the experimental treatment and 40% randomized to the control)
will have a power of approximately 92.5%. With a 2:1 allocation ratio (that is,
with 66.7% of the patients randomized to the experimental treatment and
33.3% to the control), the study will have a power of approximately 90%. With
a 4:1 allocation ratio (that is, with 80% of the patients randomized to the exper-
imental treatment and 20% to the control), the power will be around 80% and
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with a 9:1 unequal randomization (that is, with 90% of the patients randomized
to the experimental treatment and 10% to the control) the power will be
around 60.5%. A useful graph relating the extent of the imbalance between the
group sizes and the resulting power (from which we took the above example)
can be found in chapter 5 of Pocock’s textbook [79]. Of course, if the initial
power with a 1:1 randomization is less than 95% (as often occurs), the reduc-
tion in power with increasing imbalance between the group sizes will reach val-
ues below 80% well before the 4:1 allocation ratio, as in the example above.

In spite of the above mentioned limit, unequal randomization is very useful to
maximize the information on safety and tolerability of a new treatment, while
keeping intact the methodological rigor of a study, and also to give as many
researchers as possible the chance to work with the new treatment. It can be
very useful in dose ranging studies with many groups (each assigned to one
dose), where the primary objective is a comparison between a combination of
doses and a single control group (for example, a placebo or the lowest dose).
In this case, it is convenient (from the point of view of the statistical power of
the test) to have a control group of a size greater than that of the other treat-
ment groups. 

An introduction to the logistics of randomization. The process of ran-
domization is not only of crucial importance, but often also of considerable com-
plexity. A proper discussion of its logistics is beyond the limits we set for this
book, but a few broad strokes may help the reader to have an idea of what it
implies. For example, a stratified randomization in blocks for a study with four
treatments, to be conducted in 200 centers, located in 20 countries, is anything
but easy to set up. The randomization lists must be kept sealed until the final
database of the study is declared complete, that is, ready for the analysis and
“locked” (“frozen”) to any further change. On the other hand, in case of need
(generally a serious adverse event) the researcher must be in a position to open
the code of any patient (that is, to find out which treatment or sequence of
treatments the patient has been assigned to) without jeopardizing the random-
ization and the blinding of the entire study. Mistakes related to the randomiza-
tion process are disastrous, since they irreversibly destroy the credibility of the
study. It is essential that the process be regulated by standard operating pro-

cedures (SOPs), be planned down to the smallest details under the guidance of
experts and be documented exhaustively. It is important for regulatory purpos-
es to show that the randomization list was truly obtained from a list of random
numbers, through appropriate tables or specific software. In both cases, the doc-
umentation (to be kept in a sealed envelope or “locked” electronic file for the
duration of the study) must include the so-called “seed”, the starting point of the
list, which is essential to show that it is reproducible. The procedure generating
the randomization lists, if computerized, must be validated. Finally, as discussed
at the beginning of this section, access to the list must be documented by an
audit-trail.
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9.2.3. Other Methods for Assigning Patients to Treatments

There are methods that allow the allocation of patients to the treatments based
on information collected during the study. These methods can be divided in two
broad categories:
1.Methods where the assignment to the treatments is decided based on the dis-

tribution among treatment groups of preestablished prognostic factors at the
time a new patient is ready for treatment allocation (the assignment that gen-
erates the least imbalance between groups is made).

2.Methods where the assignment is determined by the results for a pre-estab-
lished end-point, generally the primary one, at the time a new patient is ready
for treatment allocation  (the patient is assigned to the group showing the
best result).
The methods of the first category are sometimes referred to as “dynamic

assignment”, while those of the second category are referred to as “adaptive

assignment”. It should be noted that in this area the terminology is confusing;
therefore, to identify a given method, one should pay more attention to how it
works than to how it is called.

Historically, these methods were born as non-random (with deterministic or
systematic assignments, i.e. based on a predetermined set of rules). Only later,
because of the problems surrounding the methods of systematic assignment
(described in section 9.2.1), a random component was introduced. This
involves the patient being assigned to the selected group not with certainty (i.e.
with probability of 1), but with a greater probability compared to that of being
assigned to one of the other groups. This mechanism of assignment is general-
ly called “biased coin” assignment. 

The goal of the dynamic assignment methods is to obtain balanced treatment
groups with respect to a set of baseline characteristics (typically prognostic fac-
tors). Such methods are therefore an alternative to stratification and blocking.
They are to be preferred to stratification and blocking only when the sample
size is small, but it is still necessary to consider many strata or blocks, that is,
in the situation in which stratification and blocking become inefficient. A
detailed overview of the dynamic assignment methods can be found in Kalish
and Begg [63].

The goal of the adaptive assignment methods is ethical in nature, i.e. to min-
imize the exposure of patients to the less promising treatments. The most pop-
ular in the context of clinical trials is the so-called “play-the-winner” method
(see [104] for the randomized version). Given m patients enrolled in the study,
the method requires the knowledge of the results for these patients before
enrolling in the study patient  (m + 1). Therefore, it is only applicable to very
special situations. 

A highly debated point is the validity of the traditional (frequentist) statisti-
cal tests when these methods of patient assignment to treatments are applied.
Since the different sequences of assignment are not equally probable (as when
randomization is used), the distributions of the test statistics are not the same
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as with randomization. Therefore, when these methods are applied, it is neces-
sary to introduce some corrections to the traditional tests, possible in theory,
but not easy to implement.

9.3. Blinding of Treatments as Antidote 
Against Assessment Bias

Blinding is an essential procedure for minimizing the assessment bias. This term
embraces a multiplicity of situations in which the researcher systematically
favors the patients belonging to one treatment group over another, when carry-
ing out the procedures linked (directly or indirectly) to the assessment of the
response to treatments. The assessment bias is very similar to the observation
bias discussed in section 3.2 for the epidemiological studies. In a clinical trial,
blinding of study treatments (also referred to as “masking”) consists of making
the treatments under comparison indistinguishable from one another. Commonly
a study is defined as double-blind when neither the research staff, nor the
patients can tell which study treatment is administered to an individual patient.
When instead, only the patients are unaware of the study treatment, the study is
defined as single-blind. A study in which there is no blinding is defined as open-

label. Even though such a distinction into three categories is useful, in reality
there is a gradient, a continuum of blinding levels ranging from a totally open
label study to a study in which nobody, neither patients, nor researchers, nor
support staff, can even suspect which treatment is given to an individual patient.
For example, even in the context of a double-blind trial, there can be tiny differ-
ences in the appearance of the study medications that cannot be avoided for
technical reasons. A typical example is that of the placebos matching aerosol
inhalers that some times have a slightly different valve or a canister of slightly dif-
ferent diameter compared to the inhaler containing active substance.
Furthermore, the administration of a treatment may reveal its nature. In such
cases, in order to keep the study blinded, the study treatments must be admin-
istered by someone not involved in the measurements (see below). In some sit-
uations an experienced researcher can strongly suspect the nature of the treat-
ment under study in the presence of a known positive or negative pharmacody-
namic effect: the example of the tremor in studies with β2-agonist drugs has
already been mentioned. The appropriate level of blinding for a study is the
result of the interaction of many factors, including the complexity of the phar-
maceutical formulation and production, the therapeutic regimens, the mode of
administration, the costs, the therapeutic area and the importance of the study. 

It is important to keep in mind that when we talk of blinded researchers, we
refer not only to those directly in contact with the study subjects, but also to all
the researchers who deal with the study treatments and with the data, includ-
ing those responsible for the packaging and shipment of the study treatments,
for the collection, review and correction of the case report forms, for the entry
of data into the database, for resolving discrepancies and errors in the database,
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and for conducting the statistical analysis. In the blinding process the control of
the randomization list is clearly of paramount importance. It would be ridicu-
lous to embark on the complex process of blinding a study when, for example,
the personnel who prepared the patient packs (who must have access to the
randomization list) are also involved in other aspects of the study, or when the
randomization list is kept in a drawer accessible to everybody. 

The blinding of a study includes both the drugs (when used) and the proce-
dures. It should be noted that the terms “drug” and “medication” imply a rec-
ognized therapeutic effect, thus, strictly speaking, would not apply to experi-
mental compounds. However, in this section we need to distinguish pharmaco-
logical treatments from other forms of  treatments, therefore, for simplicity we
will use the term drug or medication when referring to a substance introduced
into the body for therapeutic purposes, even when the actual therapeutic value
has not been demonstrated.

Blinding of drugs. The ideal situation is when it is possible to obtain drugs
differing in active component(s), but otherwise identical with regard to shape,
dimension, color, taste, viscosity, excipients (substances other than the active
component(s) that are used in the pharmaceutical formulation) and any other
feature that would allow to distinguish the study drugs from one another. As
mentioned already, an inactive drug identical to an active one (or presumed
active) is called a placebo. Even in the simplest blinding situations, generally
with oral drugs, the production of placebo and blinded active drugs requires a
considerable pharmaceutical development effort, not to be underestimated. In
addition, there are often important legal and commercial implications. The rig-
orous laws and regulations on the production, quality control, transportation
and storage of marketed drugs also apply to the placebos, to the active controls
and the experimental drugs used in clinical studies. Furthermore, a long series
of additional regulations specifically targeted to experimental drugs must be
adhered to. Finally, if the active substance of a study drug (used as active con-
trol) is patented, it cannot be manufactured without the permission of the
patent holder, who may not necessarily be interested that the study be per-
formed (on the contrary, often the interest is that the study not be performed).
In some cases it is possible to bypass the problem by purchasing the active con-
trol on the market and “over-encapsulating” it to match the experimental drug. 

For drugs with a route of administration other than the oral one, e.g. par-
enteral, inhalatory, transdermal, etc., the situation is often even more compli-
cated. Firstly, the physicochemical characteristics of the compound take on
decisive importance for the blinding. For example, if two drugs administered
parenterally have identical appearance,  but different viscosity, they will be dis-
tinguished immediately by both the patient and the investigator at the time of
administration; aerosol metered dose inhalers (MDI) generating different
“clouds” can be easily distinguished by spraying a dose against a sheet of paper.
Secondly, local reactions become very important as they can “give away” the
nature of a study treatment despite perfect visual blinding. Examples are a
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burning sensation after an injection, a sensation of “cold” in the back of the
mouth after a puff from an aerosol MDI, local irritation at the site of application
of a transdermal delivery system (patch). Thirdly, the device used for the
administration of the study drugs, such as syringe, inhaler, patch, etc., deserves
careful consideration. Devices are often technologically complex and difficult to
manufacture. As an example, just consider the patches for transdermal admin-
istration of estrogens and progestinic hormones: fare from being simple plas-
ters, these drug delivery devices are complex structures with multiple mem-
branes. Furthermore, the devices themselves are usually covered by patents
and so cannot be copied. Finally, it is not possible to transfer a compound from
one device to another without altering (often profoundly) its pharmacodynam-
ic and therapeutic properties, even when the two devices are very similar or
even when it is the same device made by a different manufacturer. In conclu-
sion, there are many situations in which the manufacture of perfectly blinded
study drugs is practically impossible. In these cases, blinding can still be
obtained through the so-called “double-dummy” technique or by having differ-
ent investigators dealing with different aspects of the study (see below). 

Blinding of procedures. To begin with, the frequency of dosing must be
identical. When drugs with different duration of action are compared (for
example, formoterol, a β2-agonist active for at least 12 hours and salbutamol, a
“classic” β2-agonist active for 4-6 hours), all blinding efforts would be in vain
due to the differences in administration frequency. In this case, the “double-
dummy” technique can sometimes be a solution (see below). The blinding of
procedures is crucial when the treatments under comparison are not drugs,
but, for example surgical procedures. In the case of a study in which a surgical
intervention is compared to a placebo, the procedures to be simulated include
preparation of the operating theater and personnel, anesthesia (local or gener-
al), incision and sutures. In many situations there are a series of ancillary pro-
cedures that must also be simulated to ensure that the treatments are blinded,
such as for example the sampling of blood for measuring drug levels.

From this brief overview on blinding, it is clear that neither the study drugs
nor the related procedures can always be made identical. In these cases two
approaches can come to the rescue: the “double-dummy” form of blinding and
the separation of tasks between the person who administers the study treat-
ments and the person who carries out the measurements.

Blinding through “double-dummy”. Let’s go back to the example of the
comparison between the β2-agonists formoterol and salbutamol, and assume
that the purpose of the study is to compare formoterol powder, administered by
a specific inhaler twice per day (upon awakening and at dinner) with salbutamol
aerosol, administered by an aerosol MDI four times per day (upon awakening, at
lunch, dinner and bedtime), and with a placebo. As mentioned above, it is nei-
ther possible (for legal and commercial reasons), nor useful (for pharmacologi-
cal reasons) to transfer the three drugs to the same inhaler; furthermore, the dif-
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ferent frequencies of administration would make any effort to blind the drugs
futile. What can be done instead is to manufacture one placebo identical to the
formoterol dry powder inhaler and another placebo identical to the salbutamol
aerosol metered dose inhaler. The result is a “double-dummy”. Each patient
will receive a dry powder inhaler, say, blue, and two aerosol inhalers of different
colors, say, one green and one red. Each patient will be instructed to take the
treatments four times per day, always with the scheme: blue + green upon awak-
ening, red at lunch time, blue + green at dinner, red at bedtime. Therefore, all
patients will have exactly the same therapeutic regimen. What changes in the
three groups is the content of the different inhalers, as shown in table 9.1.

In this way the treatments are completely masked, even though they require
different devices and frequencies of administration. 

Clearly, the double-dummy technique requires the production of different
placebos for the different study treatments, which is not always possible.
Furthermore, the therapeutic regimens required to execute a double-dummy
blinding can become very complex for the patients and, beyond a certain limit,
counterproductive: the risk is that one problem is solved (potential assessment
bias) at the cost of introducing another equally serious problem (mistakes in
the intake of study medication and/or poor compliance to the therapeutic regi-
men). For example, we have used many times the above mentioned three-
inhaler system in pivotal studies lasting up to six months. However, with such
a regimen we believe that we are at the limit of feasibility, in terms of both dura-
tion and complexity, of the double-dummy approach. 

Table 9.1. Content of inhalers for the double-dummy blinding of three study treat-
ments (salbutamol, formoterol and placebo)

Study treatment Blue inhaler Green inhaler Red inhaler 

(for powder) (for aerosol) (for aerosol)

Salbutamol Placebo Salbutamol Salbutamol
Formoterol Formoterol Placebo Placebo
Placebo Placebo Placebo Placebo

Blinding through assigning different tasks to different researchers.

This option is feasible if the study treatment can be administered directly by
the researchers, for example when the patient is hospitalized or when the treat-
ment can be given during the study visits. In these cases, it is possible to
achieve blinding by delegating the administration of the study treatments to a
researcher who is otherwise not involved in the study.  He/she should not have
any contact with those who examine the patients and carry out the measure-
ments. Such a procedure is relatively simple and efficient. However, it ensures
a “lower level” of blindness, because it is impossible to reassure a third party
(such as the reviewer of the regulatory authority or the reader of a scientific
paper) that there has not been communication, direct or indirect, between the
treatment administrator and the staff examining the patients and carrying out
the measurements. In spite of such limits, there are situations in which this
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form of blinding is the best obtainable and, under well-justified circumstances,
it is accepted by the regulatory authorities in pivotal studies for registration.
Naturally, since this approach requires the administration of the treatment
directly by the researchers, it is not feasible if it must be taken by non-hospi-
talized patients daily, or on days different from those of regular visits.

Advantages and disadvantages of blinding. The great advantage of
blinding, especially when associated with randomization, is that it protects the
study from the assessment bias. As stated above, this term embraces a multi-
plicity of situations in which the post-treatment measurements systematically
favor one treatment group over the other(s). This can occur directly or indi-
rectly, consciously or unconsciously. For example, if a researcher is convinced
of the efficacy of a new treatment, or is financially interested in its success in
reaching the market, he/she could round upwards the measurements on
patients assigned to the new treatments and round downwards the measure-
ments on patients assigned to the control treatments, or could be much less
strict in searching and evaluating signals of adverse events in the patients
assigned to the new treatment, or could assign these patients to the best rooms
and the most skilful and pleasant staff, and so on. 

As another example, if the patient knows which treatment he/she is receiv-
ing, he/she can be strongly influenced in the response to the treatment, based
on previous experience, the opinion of other physicians and friends, or simply
prejudice. Finally, blinding renders the use of placebo possible. Few patients
would knowingly take a placebo and, anyway, the use of placebo would be
meaningless in such circumstances, because the psychological component of
taking a treatment would be lost.

But, as always, the advantages should always be weighed against the disad-
vantages. In the case of treatment blinding, there are two main issues: logisti-
cal complexity and ethical complexity.

Logistical complexity. From the previous discussion, it should be clear
that the manufacturing of blinded placebos and active controls is no easy task.
Even in large pharmaceutical companies, it can take many months, and be very
expensive. As we saw, the logistical complexity can also apply to the patients
when the double-dummy technique must be used, and to the researchers when
the separation between those who administer the treatments and those who
examine the patients is necessary. At this point, we feel the need to take a
stand against dogmatism. A perfect blinding is worthless if it reduces the qual-
ity of the experiment for other reasons, or, even worse, makes the experiment
practically impossible to execute. The level of blinding must always be assessed
in the context of the specific study. Sometimes, a lower level of blinding will be
the best decision to ensure the overall quality of the study. The important thing
is that the researchers accurately describe the procedures they followed in the
final study report and the corresponding paper, without hiding behind standard
labels such as “double-blind randomized study”, which are often not very

220 9. Experimental Design



informative, if not misleading, on the level of masking actually obtained in a
study. When an open-label or single-blind approach is chosen, it is indispensa-
ble to “protect” the randomization process by making sure that it occurs in a
blinded fashion. In small studies, this can be obtained by delegating random-
ization to personnel otherwise not involved in the study, for example, to one of
the hospital pharmacists. In large, multi-center studies, the toll-free number for
centralized randomization (which we mentioned previously) is the best
approach. Each researcher calls a dedicated toll free number every time a new
patient is to be assigned to a treatment. In addition, in these cases it is appro-
priate to avoid randomization in blocks, whenever possible. If this must be used
for some reason, the blocks should be of variable sizes.

Ethical complexity. If we go out in the street and approach any group of lay
people asking, without further explanation, what they think about the adminis-
tration of a fake drug to a sick patient in order to perform an experiment, most
will express dissent and will look at us with suspicion. If we then ask what they
think about an experiment involving fake surgery including anesthesia, incision
and suture, they may well consider us raving mad and call the police. The point
we want to make is that the blinding of treatments, when it implies the use of
placebos, has obvious ethical implications, from which it is impossible to escape.
First, the researchers must themselves be convinced of what they are doing, and
second, once they convince themselves, they must metaphorically go out in the
street and convince their patients and the patients’ families. Some of the con-
troversies regarding the use of placebo are discussed in chapter 7.

9.4. A Priori Definition of the Statistical Methods 
and Populations as Antidote Against 
the Analysis Bias

At the end of a study, during the so-called “data cleaning” and the subsequent
statistical analysis, very serious forms of bias can be introduced that favor or
undermine one of the treatments. To limit these forms of bias it is necessary that
all methods and populations to be used in the statistical analysis be predefined. 

9.4.1. Methods of Statistical Analysis

First of all, situations in which the data are consciously manipulated must be
mentioned. The range of these manipulations is very broad, going from the true
fabrication of entire sets of data to a series of small “corrective” actions, such
as the elimination of “inconvenient” values, the adjustment for factors appar-
ently irrelevant but that actually favor the preferred treatment, the use of inad-
equate methods of statistical analysis. All have the overall effect of “creating”
the desired result. The systematic use of such small “corrections” has the same
moral implication and practical consequences of data fabrication.
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Apart from the conscious manipulation of data and of analyses, one can uncon-
sciously put the experimental treatment in a position of advantage (or disad-
vantage) over the control treatment. For example, the final decision on the
assumptions for the applicability of a given method of statistical analysis always
encompasses a degree of subjectivity. Thus the statistician, in deciding whether
that method is applicable or not, may unknowingly influence the result. 

For this reason, all of the decisions related to the statistical analysis must be
made before starting the study, if the study is open-label, or before opening the
randomization code, if the study is blind. These decisions concern the methods
of analysis to be applied and a number of related details. In practice, in double-
blind studies, all important planning decisions are generally made before the trial
is started, while the more detailed, operational ones are made before the ran-
domization code is broken. The former are included in the study protocol and, if
truly necessary, may be modified through formal amendments (see section 2.2);
the latter are documented in the so-called Statistical Analysis Plan (SAP), an
operational document which is finalized before breaking the randomization code. 

The decisions to be inserted in the protocol include:
• Methods of statistical analysis for the primary and secondary end-points.
• Verifications to be performed on the data and criteria for deciding the appli-

cability of the proposed methods of analysis.
• Alternative statistical methods, to be used in case the data are distributed dif-

ferently from what was anticipated, to the point that methods originally pro-
posed are no longer applicable.

• Definition of the primary and secondary populations to be analyzed (see sec-
tion 9.4.2).

• Definition of the threshold of statistical significance and power of the statis-
tical tests (see chapter 5).
Examples of operational procedures to be included in the SAP are:

• Verification of the assumptions of applicability of the statistical methods. 
• Options for pooling of strata (if too small to be analyzed individually in a strat-

ified test).
• Detailed definition of the analysis populations, with detailed description of

the inclusion criteria for each population, based on study protocol.
In open-label studies and in studies with low levels of treatment blinding, all

the details related to the statistical analysis, even the smallest ones, must be
defined before starting the study and documented in the protocol. The only
partial exception may be when the statistical analyses are performed by inde-
pendent groups (both from the researchers in contact with patients and from
those in contact with the data), who are blinded to treatments and far removed
from the study.

9.4.2. Analysis Populations

The set of patients on which a statistical analysis is performed is defined as the
analysis population. Since it is very easy to introduce bias at this level, we
have dedicated a separate section to this topic.
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Generally, in a clinical trial more than one analysis population is defined, each
with a different goal. Three are the most frequently used analysis populations:
“safety”, “intention-to-treat” and “per-protocol”, the first for safety and tolera-
bility end-points, the other two for efficacy end-points.

The “safety” population is generally defined as the set of all patients tak-
ing at least one dose of the study treatment. The analyses conducted on this
population must answer the question: “ what is the safety/tolerability of the
treatment, taken under any condition and for any reason?”

The “intention-to-treat” population is defined as the set of all random-
ized patients, including those who prematurely discontinued the study (i.e.
have missing evaluations and received shorter study treatment administration
or even none at all) and those who were enrolled in violation of one or more
selection criteria (i.e. should not have entered the study). The analysis per-
formed on this population answers the question: “what is the effect of the treat-
ment under condition close to real life?”

The “per-protocol” population generally includes only the patients who
met the main selection criteria (inclusion and exclusion) and underwent the
main procedures as instructed in the protocol: for example, patients who took
the study treatment for the planned duration at the right dose, did not take pro-
hibited concomitant medications, attended every visit (or at least the visit(s)
crucial for the primary evaluation), etc. Clearly, the criteria for considering a
patient sufficiently compliant to be included in the “per-protocol” analysis must
be defined a priori in the protocol itself. The analysis performed on this pop-
ulation answers the question: “What is the effect of the treatment under the
best experimental conditions?”

By definition, only the analysis based on the intention-to-treat principle does
not alter the effects of randomization and therefore guarantees comparisons
free from selection and assessment bias. For this reason, this analysis is con-
sidered most important in any context, including the regulatory one.

Vice versa, the analysis based on the per-protocol population does not guar-
antee bias-free comparisons. For example, by including in the analysis only
patients who have completed the study, we could be selecting the patients
responding better to the experimental treatment, thus introducing a serious
bias in the comparison between groups. The result obtained on this population
is the best obtainable by the experimental treatment (i.e. this result is the clos-
est to the underlying scientific model as outlined in the protocol), but it is not
attributable with certainty to the treatment.

The analysis conducted on the intention-to-treat population not only does
not alter the effect of randomization, but also allows evaluation of the experi-
mental treatment under conditions closest to those that will eventually occur in
reality, when the treatment is in clinical practice. Many departures will occur in
real life from the ideal situation, as described in the package insert, in terms of
the type of disease and of patient suitability for the treatment, compliance to
dosing instructions, treatment duration shorter or longer than prescribed (or
even none at all), concomitant intake of non-recommended drugs, etc. These

9.4. A Priori Definition of the Statistical Methods and Populations 223



and many other forms of deviations from the instructions of the package insert
will be the rule, not the exception, once the drug is available to the public.
Therefore, the effect of the treatment observed in the intention-to-treat popu-
lation will certainly be closer to the real one compared to the one observed in
the per-protocol population.

Historically, the medical community has struggled to accept the intention-to-
treat principle. Today, apart from few exceptions, it is universally recognized
that the  judgment on the efficacy of a new treatment must be based on this
population. In other words, the primary population of pivotal clinical trials must
always be the one based on the intention-to-treat principle.

In addition to the strict definition of intention-to-treat, which includes all ran-
domized patients, a number of variants have been introduced in practice, such
as the exclusion of patients who did not even receive a single dose of the study
drug and/or those without any post-baseline evaluation. These variants may be
used, as long as  the patients included in the analysis represent almost all of the
randomized patients (as a rule of thumb, patients excluded must not be more
than 5% of patients randomized).

From a practical point of view, the biggest problem in performing an inten-
tion–to-treat analysis is how to evaluate those patients who miss the key meas-
urement(s) at the end of the study or at the visit(s) where the primary evalua-
tion is scheduled. The most widely used methods for this purpose are the use
of the last available measurement for the primary evaluation (the so-called
“last-observation-carried-forward” or LOCF method) and the use of
preestablished rules, which link the missing outcome to the reason for the
patient’s premature discontinuation from the study. For example, if the end-
point is based on a score system, the worst possible score is assigned to a
patient leaving the study because of unsatisfactory therapeutic effect, or a seri-
ous adverse event; the mean score of the group to which the patient belongs is
assigned to a patient leaving the study for a reason unrelated to the study treat-
ment; the best possible score is assigned to a patient leaving the study because
the symptoms have disappeared. Among the many articles dedicated to this
important subject, we recommend, in addition to the ICH guidelines [61], those
by Gillings and Kock [48], Gould [50] and Lange [65]. 

9.5. Comparison Between an Observational 
and an Experimental Study

As discussed in chapter 2, the crucial distinction between an observational and
an experimental study is that in the latter the researcher controls the assign-
ment of the experimental units (patients or healthy volunteers) to the study
treatments, while in the former the researcher is an observer and has no con-
trol over which study treatment each subject will take. It should be clear by now
that control over the study treatments (experimental factors) by the
researcher does not mean that he/she actually decides what treatment each
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subject should take. That assignment is in fact delegated to the randomization,
the instrument through which the researcher controls the assignment of the
experimental units to the study treatments.

At this point in the book, we hope that the reader has gained sufficient knowl-
edge to appreciate the implications of the difference described above. It is for
this reason that we have postponed the comparison between observational and
experimental studies to this chapter. 

This comparison will focus on the following aspects:
• The range of applicability.
• The reliability of conclusions on the cause-effect relationship.
• The generalizability of conclusions.

The fact that in experimental studies treatments are chosen by the
researcher, restricts the range of applicability of such studies to interven-
tions that one hopes can positively influence the evolution of the disease being
studied. It is hard to imagine that a researcher would intentionally expose sub-
jects to potentially harmful interventions. Vice versa, in observational studies,
interventions (or characteristics) that are both potentially positive, such as a
pharmacological treatment, or potentially negative, such as cigarette smoke or
an inappropriate diet, can be studied. Therefore, experimental studies con-
ducted in the human species can address a narrower spectrum of questions
compared to observational studies.

With the expression conclusions on the cause-effect relationship we
mean the ability to establish a causal link between the characteristic and the
event in an epidemiological study and between the treatment and the response
(signal) in a clinical study.

We know that experimental studies are generally more appropriate for draw-
ing this kind of conclusion. Let us see why. When confronted with a statistical-
ly significant association between a characteristic and an event in an epidemi-
ological study, or with a statistically significant difference in the responses to
the different treatments in a clinical study, one tends to conclude that the char-
acteristic/treatment is linked to the event/response by a cause-effect relation-
ship. In reality, such a conclusion is not necessarily true. As we have repeated-
ly stated throughout this book, statistical significance can be due to a bias
favoring or penalizing one of the groups under comparison. For example, an
imbalance between groups can occur with respect to a prognostic factor
impacting the event/signal. Thus, the cause-effect relationship between the
event/signal and the characteristic/treatment is not direct, but mediated by this
factor. In epidemiology, the phenomenon of “confounding” must also be con-
sidered: we know that when an association between a characteristic and an
event is not due to a direct cause-effect relationship but to the presence of a
third factor, associated with the characteristic and having an effect on the event
independent from that of the characteristic, it is said that a confounding phe-
nomenon has occurred (in clinical research this problem is avoided through
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randomization). Finally, the problem of the multiplicity of statistical tests must
always be kept in mind. If hundreds of risk factors and/or hundreds of end-
points are considered and a threshold of 5% is used to discriminate the true
associations/differences from the false ones, a substantial number of false asso-
ciations/differences will be considered true, on the basis of their being statisti-
cally significant. If then the investigator “smartly” chooses to publish only the
statistically significant associations/differences, the result will be a very inter-
esting article (likely to carry professional and financial benefits) and a great lie. 

The occurrence of bias, confounding and problems linked to statistical multi-
plicity can never be completely overcome, neither in an observational nor in a
clinical study. However, in a clinical study the probability of running into the
first two problems is reduced mainly through randomization, which cannot be
applied in observational studies. Instead, the probability of running into the
third type of problems is the same, being linked to the “smartness” of the
researcher. On the topic of bias, confounding and “data dredging” we recom-
mend an excellent editorial by Davey Smith and Ebrahim published in the
British Medical Journal in December 2002 [31]. 

The above statements are generally valid, but should not be interpreted dog-
matically. The conclusions of a randomized clinical trial are not always more reli-
able than the ones of an observational study. One must consider firstly the qual-
ity of the study, secondly its aim. It goes without saying that a badly planned and
badly performed clinical trial does not allow firm conclusions, whereas a well
planned and well performed observational study can give very reliable results.

The different approach of clinical and epidemiological studies has an effect
also on the generalizability of the conclusions. Generalizability is the
degree to which the conclusions made on the sample can be extended to the
underlying population. On this front, the comparison between the experimen-
tal and the observational studies does not end with an obvious winner.
Assuming that a clinical trial was properly planned, performed and analyzed,
the conclusions made on the units constituting the sample can be extended,
under the particular conditions of the study, to the units of the population hav-
ing the same characteristics. However, there are at least two problems under-
mining generalizability in clinical trials. The first stems from the fact that the
sample is not extracted from the population in true random fashion (see sec-
tion 6.1.1 and 9.2.1). The second stems from the fact that, by definition, a clin-
ical trial is performed under “controlled conditions”. If these are too “artificial”,
i.e. too far from reality, one wonders if a population exists at all to which the
conclusions of the study can be extended. The epidemiological studies, per-
formed under real life, “not manipulated” conditions, give results which are eas-
ier to generalize, although also in these studies the sample is often not random
(see chapter 3). On the other hand, the generalizability of results is not inde-
pendent from their validity, which, as we said, is greater in clinical trials. This
complicates the comparison between the two types of studies in terms of gen-
eralizability of conclusions.
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Putting aside the complex judgment on generalizability of conclusions, and
assuming a good quality of study planning, conduct and analysis, we can con-
clude that the experimental study has a narrower range of application (only
positive interventions) but a greater likelihood of drawing valid comparative
conclusions, from which valid conclusions on the causal relationship between
treatment and effect derive (internal validity). Therefore, in situations in which
the intervention under study has therapeutic aims, the experimental approach
is usually “the best”.

Summary

In a comparative study, the observed difference between treatments can be due
to three possible causes (that can occur concomitantly and to a different
extent):
1.Chance.
2.Bias, the various forms of which can be grouped in three categories: selection,

assessment and analysis.
3.Treatment.

The influence of chance is evaluated through the statistical analysis, while
the influence of bias must be prevented in the planning phase of the study.
Three key procedures are used to minimize bias in experimental studies: ran-
domization (against selection bias), blinding (against assessment bias) and a
priori definition of the statistical analysis, i.e. before results are known
(against the analysis bias). 

The randomized, double-blind clinical trial, with concomitant controls is the
type of study that is most likely to achieve bias-free results, minimizing the
impact of errors systematically favoring or penalizing one treatment with
respect to another.

Non-randomized and non-blinded designs cannot achieve a similar degree of
methodological strength. However, one should not be dogmatic: a before-after
comparison in a single group can be the best way to start experimentation of a
new treatment on a cancer with rapid and predictable outcome; an open-label
randomized design can be stronger than a double blind study, if the latter
results in poor compliance to study medication by patients, because too com-
plex. The experienced clinical researcher will try to get as close as possible to
the standard of the randomized, double-blind design with high level blinding of
the study treatments. However, he/she will also give due consideration to the
practical, logistic, technical and economic aspects in making the final decision.
Finally, he/she will make a transparent report on the methods followed and on
the reasons for the choices made at the time of presenting the results.

The observational study can be more extensively applied than an experimen-
tal one, because it is not limited to favorable interventions. However, the obser-
vational study does not guarantee the same degree of reliability in establishing
cause-effect relationships. 
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10
Experimental Designs

10.1. Introduction

A preliminary remark for those readers who master some statistics: this chap-
ter is limited to the linear model, which anyway is a sufficiently broad platform
to cover most of the clinical applications.

The choice of the experimental design has two main objectives:
• Minimize bias, with the aim of obtaining bias-free comparisons.
• Minimize the variability of observations, with the aim of obtaining powerful

statistical tests and precise estimates.
We discussed extensively the various forms of bias in chapters 8 and 9. It

remains to be clarified how the design can help minimize variability. To this
end, we must return to the topic of the statistical test discussed in chapter 5.
For simplicity, we will limit the discussion to the frequentist approach.

In general terms, we defined the statistical test as a ratio between the esti-
mate of an effect of the treatment and the estimate of the variability of this
effect, which is unexplained and therefore considered to result from accidental
factors, i.e. chance (the background noise). How can this variability due to acci-
dental factors be measured? The answer to this question depends on the design
used for the study. Since we still have to introduce the different types of design,
here we present only the basic concept. We will return later to this topic, with
specific examples, when discussing the individual experimental designs.

A first and basic classification of experimental designs is in two large cate-
gories:
• Designs based on between-subjects comparisons.

• Designs based on within-subject comparisons.



The first category encompasses designs in which each experimental unit
(subject) receives just one of the study treatments (or a combination, tested as
a single study treatment). The second encompasses designs in which each
experimental unit receives more than one study treatment. In the designs of
the first category, the between-subjects variability is used in the test statistic,
whereas in the designs of the second category, the within-subject variability,
i.e. the variability of measurements repeated on the same subject, is used.

In general, for a given end-point, the variability of measurements carried out
on the same subject is smaller than the variability of measurements carried out
on different subjects. As a consequence, assuming that the other conditions are
the same (the threshold of clinical significance, the acceptable thresholds of
false-positives and false-negatives, etcetera - see chapters 5 and 6), the designs
based on within-subject comparisons, generally require a smaller sample com-
pared to those based on between-subjects comparisons.

A second major classification of designs is again in two categories: those
explicitly taking into consideration (in jargon, “controlling for”) only the exper-
imental factor (i.e. the treatment) and those also controlling for one or more
sub-experimental factors (which, as discussed in section 2.4, include prognos-
tic factors). Through the statistical analysis, we can attribute part of the total
variability of the end-point to the factor or factors “controlled for” in the design.
This attribution, as mentioned in section 8.1, is defined in statistical terms as
“explaining the variability”. Let’s assume we decide to use the variance as the
measure of variability (see section 5.4.1). We know from chapter 5 that the
standard error used as denominator of the test statistic d*

μ is a function of the
variance of the end-point in the population (see (5.3) in section 5.5.1). If the
design of the study only controls for the treatment, we can break down the total
variance as follows:

total variance = variance explained by the treatment + 
residual (unexplained) variance (10.1)

The break down (10.1) is valid both for the population, i.e. for the true vari-
ance of the phenomenon, and for the sample, i.e. for the estimate of such vari-
ance. Since we can attribute a component of the total variance to the treatment,
the unexplained variance (background noise) to be used in the statistical test
is reduced to the residual variance, given by the difference between the total
variance and the variance explained by the treatment. In other words, the
residual variance is the part of variance that we cannot explain through the
study design, and therefore must attribute to accidental factors, collectively
referred to as chance.

If the design controls not only for the treatment, but also for one or more sub-
experimental factors (typically prognostic factors, and/or non prognostic fac-
tors potentially of great impact on the result, such as the study center), we can
break down the total variance as follows:

total variance = variance explained by the treatment + variance explained 
by the sub-experimental factor + residual (unexplained) variance (10.2)
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It should be noted that, in the break down (10.2), only one sub-experimental
factor of interest is considered, with no interaction between this factor and the
treatment (see section 10.3.2). If an interaction cannot be excluded, another
component must be added to the break down, namely the variance explained
by the interaction.

Again, the variance to be used in the test is the residual one. As shown in
(10.2), in this type of design, it is given by the difference between the total vari-
ance, the variance explained by the treatment and the variance explained by
the sub-experimental factor (or by the combination of sub-experimental fac-
tors, if more than one). Therefore, unless this last term is equal to zero, the
residual variance in designs controlling for experimental and sub-experimental
factors is smaller than that in designs controlling for the experimental factor
(the treatment) only. Consequently, the background noise, which we cannot
explain, and thus ascribe to chance (because we are unable to ascribe it to the
treatment, or to other factors), is smaller.

In the design controlling for the treatment only, the estimate of the residual
variance is obtained by “averaging” the sample variances calculated within each
treatment group (see section 10.3.1). This was the approach taken for the test
discussed in section 5.5.1, which implied a design of this kind (although this
was not specified). 

In the design controlling for other factors in addition to the treatment, the
estimate of the residual variance is obtained by “averaging” the sample vari-
ances calculated within each of the groups that result from combining each
treatment with each of the levels of these factors (see section 10.3.2). For
example, let us assume we want to compare two treatments, A and P, and that
gender is the prognostic factor we decide to “control for”. Four groups will
result from combining each treatment with each gender: females treated with
A, females treated with P, males treated with A, and males treated with P. It is
intuitive that, if gender really has an effect on the end-point, the variability of
the observations within each of the four “treatment by gender” groups will be
smaller compared to the variability within each of the two treatment groups
(which combine the two genders), since the subjects belonging to each of the
four groups are more homogeneous, that is, more similar to one another. When
treatments and sub-experimental factors are included in the design, the statis-
tical test is performed with a procedure similar (from a logical but not from a
mathematical perspective) to that described in section 5.5.1, but using a small-
er residual variance. Therefore, all other conditions being equal, the test has a
greater power, i.e. a higher probability of being statistically significant when
there is a true difference between the treatment groups (see chapters 5 and 6).

The distinction between designs controlling just for the treatment and those
controlling also for the sub-experimental factors (prognostic or not), can be
applied both to designs based on between-subjects comparisons and to those
based on within-subject comparisons. The completely randomized parallel
group design (see section 10.3.1) falls in the category of designs controlling just
for the treatment, while the stratified parallel group design (see section 10.3.2)
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and the design with randomization in blocks (see section 10.3.3) fall into the
category of designs controlling also for other factors. 

We must admit to the reader that in the discussion above we have been quite
simplistic. For example, in reality, the within-subject variability is not always
smaller than that between subjects. Furthermore, the inclusion of a prognostic
factor in the design does not always guarantee a gain in power of the statistical
test. We have opted for this simplification to better illustrate a basic concept: if
appropriate designs capable of explaining meaningful parts of the total vari-
ability are adopted, the resulting statistical test will have a greater power. With
regard to the statistical test, it is important to stress that, in the parametric con-
text (see section 5.8), all test statistics, including those for designs more com-
plex than the completely randomized parallel group one, are derived through
the same logical process used in section 5.5.1 to get to d*

μ, that is, we have to
compute a ratio between the estimate of an effect and the standard error of this
estimate. However, the formulas appropriate for the test statistics for more
complex designs cannot be easily derived from (5.3), and the resulting sample
distribution is not necessarily a Student’s t distribution. 

A fundamental assumption which underlies this chapter is that the effects of
the different factors are additive. Because of this assumption, the measurement
obtained for an individual subject is given by:

(a quantity depending on the treatment) + (a quantity depending only on the subject).

If the design “controls” for other factors, sub-experimental or prognostic,
beyond the treatment, for example gender, the measurement obtained for an
individual subject belonging to a specific treatment-by-factor group, is given by:

(a quantity depending on the treatment) + (a quantity depending on the other factor
considered) + (a quantity depending only on the subject).

In the example above we have assumed only one sub-experimental factor of
interest, which does not interact with the treatment. If an interaction cannot be
excluded, another component, i.e. the one relative to the effect of the interac-
tion, must be added.

We will add no more on the assumption of additivity, other than reiterating
that the components are added (instead of being for example multiplied) and
that the effects of the treatment and of any other factor included in the design
are considered constant. For a more in depth discussion of these topics, we
refer the reader to the book by Cox [27], which does not require advanced
mathematical skills. 

The first and most important consequence of the law of additivity is that the
differences between the effects of the factors included in the design can be esti-
mated in terms of differences between means, proportions or other appropriate
group indicators. This applies to the treatment, as well as to the other factors
included in the design: for example, the effect of the factor “gender” can be
expressed as the difference between the mean effect in males and the mean
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effect in females (or vice versa). The second consequence is that the total vari-
ance of the observations can be factorized as illustrated above.

In the discussion of the different designs, the reader should keep in mind that
the control for factors other than the treatment (e.g. gender) implies the inclu-
sion of other unknown parameters (to be estimated) in the so-called statistical
model underlying the design. These parameters are the effects of the factors,
taken independently and jointly (see main effects and interaction effects
below) in the population, that is, the true but unknown effects. So as not to
overly complicate the discussion, we will only refer to the sample estimates of
these effects, without explicitly introducing the parameters representing the
same effects in the population. It is obvious that, since these estimates are cal-
culated on samples, to be fully interpreted they must be accompanied by the
appropriate standard error giving a measure of the variability of their distribu-
tion in the sample. The formulas for calculating the standard errors of the esti-
mates of these effects are not reported in this book. In order to perform statis-
tical tests on these factors (for example, to verify if there is a difference
between males and females), the estimate of each of these effects (considered
in comparative terms) must be related to the estimate of the corresponding
standard error: this ratio represents the test statistic for that factor (gender in
our example).

Going back to the initial distinction between designs based on between-sub-
jects comparisons and those based on within-subject comparisons, the most
“representative” design of the first category is the parallel group one, while the
most “representative” design of the second category is the cross-over one.
There are other representatives for each category (for example, in the first, the
dose escalating design - see section 10.4; in the second, the design in which two
treatments are tested at the same time on two matching organs of the same
patient, and the single patient design - see section 10.6). However, the parallel
group and the cross-over designs are by far the most used in clinical research,
to the point that, from now on, we will use the definitions “parallel group” and
“between-subjects comparison” designs interchangeably and we will do the
same for the definitions of “cross-over ” and “within-subject comparison”
designs.

We will compare the different designs for their ability to generate bias-free
comparisons (accuracy), powerful tests and precise estimates (precision,
sometimes referred to as efficiency in the jargon of experimental designs). We
will also compare the designs for their ability to ensure simplicity of the stud-
ies in terms of planning, conduct and analysis. Finally, we will evaluate the con-
ditions under which the various designs are applicable. 
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10.2. Parallel Group Design

10.2.1. Characteristics 

Leukotriene antagonists are a class of anti-asthma drugs. Let us suppose we are
responsible for a new drug of this class, fortelukast (the name is fictitious) and
that we want to evaluate its effect on lung function during a two-week course
of treatment. The optimal dose for fortelukast, an oral drug, has been estab-
lished as 5 mg once a day. The primary end-point of our choice is the mean of
the pre-medication morning values of expiratory flow rate (PEFR), measured
daily throughout the two weeks of treatment.

We decide for a randomized, parallel group, placebo controlled design. As
already discussed, in the parallel group design there are as many groups as
study treatments under comparison (two in our example, fortelukast 5 mg and
placebo) and each patient is assigned to only one of the treatment groups
through randomization. All treatment groups are treated and evaluated simul-
taneously (hence the name of the design). Therefore, each patient receives just
one treatment, that assigned to the group to which he/she is randomly assigned,
for the duration dictated by the protocol (in our case, two weeks).

In section 10.3 we will examine the different types of parallel group designs,
which differ from one another based on the type of randomization applied, and
assess their strengths and weaknesses. For now, we will assess the advantages
and disadvantages of between-subjects comparisons (parallel groups) with
respect to within-subject comparisons (cross-over).

10.2.2. Advantages and Disadvantages 

The parallel group design has two great advantages over the cross-over design:
• All other conditions being the same, the duration of the study is shorter and

the visits fewer, which results in a study less burdensome for the patient. 
• The statistical analysis requires fewer assumptions, which, if not verified,

would reduce the reliability of the conclusions. 
In summary, the parallel group design is to be preferred to the cross-over one

because it’s simpler and because it makes bias-free comparisons easier to
obtain.

The weakness of the parallel group design is that, all other conditions being
the same, it requires a larger sample size compared to the matching cross-over
design, as we anticipated in section 10.1. Or, for the same sample size, it allows
for less powerful tests and provides less accurate estimates. It must be noted
that the sample size advantage of designs based on within-subject comparisons
is not guaranteed, since it occurs only when the measurements repeated on the
same subject are well correlated to one another. This condition, which guaran-
tees that the within-subject variability is lower than that between subjects [39],
is indeed met for the majority of the instrumental end-points. However, for
other end-points, such as for example the scales for evaluating pain, it should
not be taken for granted. 
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10.2.3. Conditions of Applicability

The parallel group design is applicable in a very broad range of experimental
conditions. For this reason and for its simplicity, it represents the “gold-stan-
dard” of clinical research, especially in phase III (see chapter 12).

However, there are specific cases in which a true parallel group design can-
not be applied. One example of inapplicability of a parallel group design is when
the treatments under comparison are different doses of the same active com-
pound and, for safety reasons, it is unacceptable to randomize patients to the
different doses (see section 10.4). Another example is when it is necessary to
ask the patient to express a preference between two or more study treatments. 

Overall, the situations in which the parallel group design cannot be applied
are in fact very few. However, when it comes to feasibility and convenience the
matter becomes more complex, as we will see later in this chapter. 

10.3. Variants of the Parallel Group Design

There are three main variants of the parallel group design:
• The one with simple randomization, called completely randomized design.
• The one with stratified randomization, called stratified design.
• The one with randomization in blocks, called randomized block design.

10.3.1. Completely Randomized Parallel Group Design

The completely randomized parallel group design is performed by apply-
ing the logic of the parallel group design with a simple randomization (see sec-
tion 9.2.2). It is the simplest among the randomized controlled designs. 

The completely randomized design is called balanced if the treatment
groups have equal (in practice, approximately equal) size, otherwise it is called
unbalanced. Generally, for reasons of statistical convenience (greater power of
the test for the same overall sample size), the assignment of the experimental
units to the treatment groups is made such that groups of approximately equal
size are obtained.

In the completely randomized parallel group design, only the effect of the
treatment can be studied, because no other factor is taken into account in the
design.

If two treatments are compared, for example one active and one placebo, the
data from a study of this design can be summarized as illustrated in Table 10.1.
In the table, the numbers in parentheses represent the appropriate group indi-
cators for the corresponding cells. For simplicity, assume that the appropriate
indicator is the mean. The treatment effect (A-Placebo) is estimated by the
difference between the two means calculated within each treatment group.

The advantage of the completely randomized parallel group design is basically
the simplicity with which the study can be performed and the results analyzed.
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The disadvantage is the limited power of the tests and the limited precision
of the estimates. In fact, as touched upon briefly in section 10.1, in the com-
pletely randomized design, the residual variability of each treatment group, to
be used in the statistical test on the treatment effect, is the highest with respect
to every other experimental design. In practice, σ 2

A (variance of the subjects
treated with A) and σ 2

P (variance of the subjects treated with P) are estimated
with the formula shown in Table 5.2 (formula for σ 2ˆ ). Then, the “weighted”
mean of σ 2ˆA and σ̂ 2

P, where the weights are the size of the groups, is calculated
with the formula shown in Table 5.3. Finally, the standard error of the differ-
ence between two sample means is calculated (see again Table 5.3).

Table 10.1. Completely randomized parallel group study with two treatments

Treatment A Subjects assigned to treatment A
(1)

Placebo treatment Subjects assigned to placebo
(2)

The difference between the group indicator for treatment A and that for placebo esti-
mates the effect of treatment A. Using the numbers in parenthesis for the group indica-
tors of the corresponding cells, the treatment effect (A-placebo) is estimated by [(1)-(2)]

Another potential disadvantage of the completely randomized design is that,
by chance, the distribution of important baseline features may not be homoge-
neous across the treatment groups. The smaller the sample size, the more like-
ly it is that a meaningful imbalance will occur. For example, in a small trial with
two treatments (say with 30 patients in total), we can easily end up with one
treatment group consisting of subjects on average younger than the other
group. If younger patients have a different response to the treatment compared
to the older ones, when the two groups are compared, the effect of the treat-
ment will be “confounded” with the effect of age. In other words, it would be
difficult to establish how much of the difference observed between the treat-
ment groups in the chosen end-points is actually due to the treatments and how
much is instead due to the difference in age between the groups.

When it is possible to identify in the planning phase of the study one or more
characteristics of the experimental units that are likely to influence the
response to the treatment (that is, sub-experimental/prognostic factors), it is
possible to reduce the risk of obtaining non-homogenous groups, and at the
same time reduce the residual variability, by explicitly accounting for these
characteristics in the design of the study. Stratified designs and designs with
randomization in blocks are typically used for this purpose.

10.3.2. Stratified Parallel Group Design 

The stratified design is performed by applying the logic of the parallel group
design with a stratified randomization (see section 9.2.2). The sub-experimen-
tal factors considered in this type of design (generally prognostic factors) are
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either categorical variables or continuous variables that are divided in classes
or levels. For example, let us suppose we want to compare two treatments in
HIV infection. The time elapsed between the initial diagnosis and the study
start and the viral load at study start are two important prognostic factors for
this condition. We decide to categorize each factor into three classes, thus
obtaining nine strata, by intersecting each level of one factor with each level of
the other (3x3). A separate and independent randomization list is used for each
stratum for the assignment of the subjects to the treatments (see section
9.2.2). In our example, the stratified parallel group design requires the genera-
tion of nine separate randomization lists. In this way, within each stratum, the
subjects are distributed in equal numbers among the treatment groups. For the
analysis, we pool all strata for each treatment group. Therefore, the treatment
groups will have a homogenous distribution of the two prognostic factors con-
sidered: this is, in fact, the main goal of stratification.

The stratified design is called balanced if all of the strata are of equal size
(in practice of approximately equal size). In this section, we will base the dis-
cussion on the balanced design and briefly cover the imbalanced designs
towards the end.

In a parallel group design, stratified for the levels of a given factor, the fol-
lowing effects can be studied:
• The main effect of the treatment.
• The main effect of the stratification factor, i.e. of the sub-experimental/prog-

nostic factor.
• The effect of the interaction between the treatment and the stratification fac-

tor.
The main effect of the treatment is the treatment effect without consid-

ering the stratification factor, as it would be in a completely randomized design
where the patients are assigned to the different treatments through simple ran-
domization.

The main effect of the stratification factor is the effect of this factor
without considering the treatment, as it would be in a completely randomized
design where the patients are assigned to the different levels of the stratifica-
tion factor through simple randomization. If randomization is not possible, the
analogy is with a design where the patients are divided into groups correspon-
ding to the different levels of this factor. 

Let us suppose we want to compare two treatments, one active (A) and one
placebo, using gender as the stratification factor. Data from this type of study can
be summarized as shown in Table 10.2. We shall assume that the appropriate
group indicator is the mean. In the balanced design, referring to Table 10.2, the
main effect of the treatment is estimated by {[(1)-(3)]+[(2)-(4)]}/2 (because the
strata have equal sizes) which is equivalent to [(5)-(6)] and the main effect of the
stratification factor is estimated by {[(1)-(2)]+[(3)-(4)]}/2 which is equivalent to
[(7)-(8)].

The interaction effect between the treatment and the stratification factor
addresses the question: “what happens to the treatment effect at different levels

236 10. Experimental Designs



of the stratification factor?” or “what happens to the effect of the stratification
factor with different treatments, i.e. at different levels of the treatment factor?” 

Referring to Table 10.2, there is an interaction effect between treatment and
gender (also referred to as treatment by gender interaction) when the differ-
ence between the mean responses to the two treatments is not the same for the
two levels of the gender factor, that is, the treatment effect is not equal in males
and females. Generalizing, there is an interaction between two factors when the
difference in mean response between two levels of the first factor varies for dif-
ferent levels of the second factor and vice versa. Referring once more to Table
10.2, the interaction effect is estimated either by [(1)-(3)]-[(2)-(4)] or by [(1)-
(2)]-[(3)-(4)], which are algebraically equal. Since we have only one estimate of
the interaction effect, we do not divide the result by 2, as we do when calcu-
lating the main effects. 

In the absence of interaction, it is sufficient to present the main treatment
effect, while in the presence of interaction, the treatment effect must also be
reported separately within each stratum (the treatment effect at the stratum
level is sometimes called “simple effect”). The implications of the interaction
effect are further discussed in section 10.8 on factorial designs.

Naturally, when more than one stratification factor is considered, there is an
increase in the number of effects that can be evaluated and their interpretation
becomes more complex. For example, with one treatment factor and two strati-
fication factors, in addition to the main effects of the three factors, we should con-
sider the three two-factor interaction effects, i.e. the interactions between
pairs of factors. The three effects are obtained by intersecting each treatment
with each level of the first and, separately, of the second stratification factor, and
finally each level of the first stratification factor with each level of the second one.
Furthermore, we must consider the three-factor interaction effect, i.e. the
interaction among all three factors considered simultaneously. This effect is
obtained by simultaneously intersecting the levels of the treatment factor with
the levels of the first and the second stratification factors, in all possible combi-
nations.

If the stratification factors are gender (male/female) and age (adult
(<65)/elderly (≥ 65)), an example of interaction between two factors would be
a different mean effect of the treatment in males versus females, or in adults
versus elderly. An example of an interaction among three factors is a different
treatment by gender interaction effect between adults and elderly, i.e. the dif-
ference in the treatment effect between males and females changes when con-
sidering the adult and the elderly age groups.

In the case of imbalanced designs, the estimates of the main treatment effect
and the interaction effect are more complex. In the absence of the main effect
of the stratification factor and of interaction, the main treatment effect is esti-
mated by the difference between the mean of treatment A and the mean of
placebo, without taking into account the stratification factor (referring to Table
10.2: [(5)-(6)]). In the presence of a main effect of the stratification factor, but
in the absence of interaction, the main treatment effect is estimated by the
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Table 10.2. Parallel group study with two treatments and one stratification factor
(gender) with two levels

Level 1 of the Level 2 of the Total

stratification stratification 

factor: females factor: males

Level 1 of the 

treatment

factor:

treatment A

Level 2 of the 

treatment factor:

placebo

Total

Assuming a balanced design and using the number in parenthesis for the group indicator
of the corresponding cell, the following applies:
1. The difference between the cell indicators (1) and (3) estimates the effect of the treat-

ment (A-placebo) in females; likewise, the difference between the cell indicators (2)
and (4) estimates the effect of the treatment in males.

2. The mean of the two differences [(1)-(3)] and [(2)-(4)] estimates the main effect of the
treatment and the mean of the two differences [(1)-(2)] and [(3)-(4)] estimates the
main effect of the stratification factor. These correspond to [(5)-(6)] and [(7)-(8)], re-
spectively.

3. The difference between the two differences [(1)-(3)] and [(2)-(4)] (or analogously
[(1)-(2)] and [(3)-(4)] estimates the effect of the interaction between the treatment
and the stratification factor. 

When there is interaction, to quantify the treatment effect, it is mandatory to present the
estimate reported at point 1 in addition to the one reported at point 2

Females treated
with A

(1)

Females treated
with placebo

(3)

Females treated
with any treatment

(7)
The group indicator
of this cell estimates
the overall effect of
being female on pa-
tients treated with
either A or placebo

Males treated 
with A

(2)

Males treated with
placebo

(4)

Males treated with
any treatment

(8)
The group indicator
of this cell estimates
the overall effect of
being male on pa-
tients treated with
either A or placebo

Females and males
treated with A

(5)
The group indicator
of this cell esti-
mates the overall
effect of treatment
A on males and fe-
males

Females and males
treated
with placebo

(6)
The group indicator
of this cell esti-
mates the overall
effect of placebo on
males and females



“weighted” mean of the treatment effects in the different strata, using the sam-
ple sizes of the strata as weights (referring to Table 10.2: {[(1)-(3)] w1+[(2)-
(4)]w2}/(w1+w2), where w1 and w2 are calculated from the sample sizes of the
treatment groups). In the presence of an interaction effect, the main treatment
effect is estimated by the arithmetic mean of the treatment effects in the dif-
ferent strata (referring to Table 10.2: {[(1)-(2)]+[(3)-(4)]}/2). In addition, the
estimates of the treatment effect must be provided for each stratum (referring
to Table 10.2: [(1)-(3)] for females; [(2)-(4)] for males). The statistical justifi-
cations for this approach can be found in [39]. 

In the balanced designs all types of estimate of the main treatment effect dis-
cussed above coincide. 

In the stratified parallel group design there is usually little interest in the main
effect of the stratification factor (or factors): in fact, since stratification is applied
to factors known (or strongly suspected) to influence the end-point of the study,
a difference in response between the different levels of these factors is expected.

Vice versa, the evaluation of the interaction effect (or effects) is generally of
interest, though rarely the primary objective of the trial (which is normally the
treatment effect). The reason for such an interest is that the existence of an
interaction effect has an impact on how the treatment effect is to be estimated
(see above) and interpreted.

Usually, the stratified design is used, not because there is interest in studying
the individual strata, but because, under the same conditions, it is more effi-

cient than the completely randomized design, requiring fewer patients to detect
a given difference between treatments (see section 10.1). Referring to Table
10.2, the residual variance, used for the statistical test, is estimated within each
of the four cells, because the variability among the units belonging to the same
cell cannot be explained by the factors considered in the design. The estimate
of the residual variance can be seen as a weighted mean of these four estimates.
Since subjects belonging to the same stratum are homogeneous with respect to
the stratification factor, by design, the variability within each cell is expected to
be lower than the variability we would find in treatment groups without further
subdivision. However, in order to have a real gain in efficiency, we should only
consider those stratification factors that have a relevant impact on the response,
and that can therefore explain relevant parts of the variability. 

Only rarely are the strata of primary interest in the experiment, i.e. the objec-
tive of the study is to compare the responses to the treatment in the different
strata. These are called interaction studies (the interaction is between the
stratification factor, i.e. the prognostic factor, and the treatment). In these
studies, in determining the sample size, one must explicitly take into consider-
ation this objective.

10.3.3. Parallel Group Randomized Block Design

Another method for reducing variability based on the grouping of subjects with
common characteristics is the so-called “blocking”, also known as “matching”.
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The design deriving from it, called parallel group design with randomization in
blocks or randomized block design, is performed by applying the logic of the
parallel group design with randomization in permuted blocks (see section 9.2.2).

This design is frequently used in agricultural and in preclinical research. In
clinical experiments, it is primarily used to reduce time-related imbalances
between the treatment groups. The advantage of this design is that temporal
changes are balanced between the treatment groups at regular intervals, the
smaller the block, the shorter the intervals. This is useful when the recruitment
time is long, especially if the size of the study is small. Two cases can be dis-
tinguished:
• The first is when time is a sub-experimental factor but not a prognostic one,

for example unpredictable changes in study personnel, or concomitant med-
ications, or investigator’s commitment to the study, etcetera.

• The second is when time is a prognostic factor, that is to say its effect is pre-
dictable and reproducible, which is the case of diseases with a seasonal trend,
such as some forms of asthma and rhinitis, many infectious diseases, Raynaud
syndrome, etc.
An example of an application in which time is a sub-experimental but not a

prognostic factor is described by Fleiss in [39]. It concerns a study that is
approaching completion of enrolment, but may miss the pre-planned deadline.
There is growing pressure from the sponsor that the agreed deadline be met.
Because of this pressure, there is the risk that the inclusion/exclusion criteria
be “interpreted” more flexibly toward the end of the study than at the begin-
ning. Consequently, patients enrolled in the first part of the study could have
different characteristics, including prognosis, compared to the ones enrolled in
the second part. Randomization in permuted blocks allows this problem to be
overcome, because it balances such differences among the treatments under
comparison.

An example of an application in which time is a prognostic factor, although
not the only one, is the following. Suppose we want to compare three treat-
ments, fortelukast (our new leukotriene antagonist), montelukast (the gold
standard for this class of drugs) and placebo, on patients with seasonal asthma,
i.e. asthma with seasonal recurrences. We decide to use the mean value of
morning PEFR measurements carried out in the last week of treatment as the
primary end-point. Clearly, the time of enrolment is a key prognostic factor
(some seasons are worse than others for this type of asthma). In addition, gen-
der and age (young/adult/elderly) also represent two important prognostic fac-
tors. If we were to take both factors into account in our study, we would have
the following six combinations:
• Combination 1: male, young.
• Combination 2: male, adult.
• Combination 3: male, elderly.
• Combination 4: female, young.
• Combination 5: female, adult.
• Combination 6: female, elderly.
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Since the time of enrolment is a key prognostic factor, we need to enroll
blocks of three patients belonging to the same combination within a short peri-
od of time, and randomly assign one patient to each of the three study treat-
ments. It is not important to fill every combination, but for every combination
that does get filled, it is important to enroll simultaneously (or almost) a num-
ber of patients (i.e. a block) equal to the number of treatments. This will allow
a balanced randomization. With k treatments, each block of k patients enrolled
simultaneously (or almost) and matched with respect to the other predefined
characteristics, is randomly subdivided among the k treatments. For example,
three young males (combination 1) are simultaneously enrolled in the study,
and randomized, one to each of the three study treatments.

If only two treatments are compared in the study, only two subjects are to be
enrolled simultaneously for each combination of factors considered (block of
size 2). This special case is referred to as the matched-paired design (this
technique was mentioned in chapter 3 with reference to observational studies,
clearly without randomization). 

What are the differences between the randomized block design and the strat-
ified design?

The stratified design does not control for the factor “time of enrolment”, while
the design with randomization in blocks does. In the previous example, had time
of enrolment not been important, we could have used a stratified design: the six
combinations of factors would have been six strata. We would have constructed
a randomization list for each stratum, assigning patients to the treatments with-
in each stratum. In a given stratum, a patient could easily have been assigned to
a treatment many months after the other patients of the same stratum had been
assigned to the other treatments. Furthermore, the randomized block design
generates a completely balanced scheme of assignment to the treatments (i.e.
each treatment group gets the same number of patients), while the stratified
design does not. This has an effect on the statistical analysis.

The statistical analysis of the randomized block design is different from that
of the completely randomized design and that of the stratified design. However,
when time is a sub-experimental factor and it is the only factor for which ran-
domization in permuted blocks has been applied (i.e. the only purpose is to
achieve numerical balance of the treatment groups at close intervals through-
out the study and overall), the statistical analysis does not take the block into
consideration and the study is analyzed as if it were a completely randomized
parallel group design. In fact, when time is a sub-experimental factor, but not a
prognostic one, the estimate of the time effect is not of interest, because it can-
not be interpreted from a clinical point of view and because it is difficult to pre-
dict whether “controlling” for this factor causes a decrease or an increase of the
residual variability. In this case, by far the most common, the only effect that
can be studied is that of the treatment. On the other hand, when time is a prog-
nostic factor, the block has meaning in itself and it is appropriate to explicitly
consider it in the statistical analysis. In this case both the main effects and the
interaction effects can be studied, as in the stratified design.
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The randomized block design is very difficult to use if many factors must be
considered in “matching” the units. For this reason it is not recommended
when, in addition to time, more than two prognostic factors are to be consid-
ered. The stratified design is easier to apply, though it is a good rule not to have
too many stratification factors and resulting strata.

10.3.4. Balanced Incomplete Block Design

This type of design is used when one wants to compare more than two (k, with
k>2) treatments, using the blocking technique to control for the time factor
(alone or in combination with other factors), but it is not possible to obtain each
block of size k in a short enough time window. Therefore, the size of the block
(g) will be smaller than k.

Suppose we want to compare five doses of a treatment meant to reduce the
symptoms of Raynaud syndrome. In this disease, the weather (a time-related
factor) is an extremely important factor, since cold is the trigger for most of the
symptoms (paraesthesias and pain to fingers and toes and, in the most severe
cases, ulcers and gangrene). Under these conditions, it would necessary to
enroll each block of 5 patients within a very tight time window, say within a
week, in order to avoid that changes in weather “distort” the comparisons
among the treatments. Suppose however that it is realistic to enroll only three
patients per week, so that the size of the block (3) would have to be smaller
than the number of treatments. Under these circumstances, the balanced

incomplete block design (BIBD) can be used. In our example it has the
structure illustrated in Table 10.3, which has been constructed following the
rules provided by fleiss in [39], section 11.1. The three patients forming the first
incomplete block are randomly assigned to doses 1, 2 and 3; the three patients
of the second block to doses 1, 2 and 4; the three of the third block to doses 1,
2 and 5, and so on. 
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Table 10.3. A balanced incomplete block design in a study with 5 doses of the same
treatment and 10 incomplete blocks of size 3

Incomplete
Treatment

Block

Dose 1 Dose 2 Dose 3 Dose 4 Dose 5

1 � � �
2 � � �
3 � � �
4 � � �
5 � � �
6 � � �
7 � � �
8 � � �
9 � � �
10 � � �



This design is characterized by a fundamental property: in total, each pair of
treatments (in our example, each pair of doses of the same treatment) appears
the same number of times. This property facilitates the statistical analysis.

The application of this design to an experimental situation in which, in addi-
tion to time, other factors must be considered, creates a complex scheme of
treatment assignment. Let us go back to the example of seasonal asthma dis-
cussed in the previous section. In order to compare the three treatments
(fortelukast, montelukast and placebo), we established that patients must be
enrolled in blocks of 3, that each block must be made of patients belonging to
the same combination of gender and age level (from a total of six possible com-
binations), and that each block must be enrolled in a short time. Given the
nature and the circumstances of our trial, we conclude that one month is the
longest acceptable time window for one block to be enrolled, but it is possible
to enroll only two patients belonging to the same block each month. Since the
size of the block (2) is smaller than the number of treatments (3), we decide to
apply the balanced incomplete block design, which for this example has the
structure illustrated in Table 10.4.

Therefore, for each of the six combinations, based on gender and age level,
three incomplete blocks of two patients each must be considered.

Since these designs are not applied frequently in clinical research, we will
stop the discussion here. We refer the interested reader to the above men-
tioned book by Fleiss [39], illustrating balanced incomplete block designs for up
to six treatments and, for a more extensive, but more technical discussion, to
the book by Cochran and Cox [24].
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Table 10.4. Balanced incomplete block design with 3 treatments and two stratification
factors, gender and age, using 3 incomplete blocks of size 2

Combination #1
Treatment

(male, young)

1 2 3

1 � �
2 � �
3 � �

...

Combination #6

(female, elderly)

1 2 3

1 � �
2 � �
3 � �



10.4. Other Designs with Comparison Between 
Subjects: Dose-Escalation and Dose-Titration

10.4.1. Dose-Escalation Design

A special form of parallel group design is represented by the controlled dose-

escalation design, which is used in phase I trials to study the safety of spe-
cific dose intervals of new compounds, often with the goal of finding the high-
est tolerated doses. Generally, as will be discussed in section 12.2.2., data from
pre-clinical pharmacology and toxicology studies are used to choose the dose
range for such studies.

For our new drug fortelukast, we select the following four doses: 0.1 mg, 1
mg, 5 mg, and 10 mg. The defining feature of this type of study is that we can-
not simply randomize the subjects to one of the four doses (or to a random
sequence of doses). This is because, at this stage of the development process,
we have no experience on the tolerability of the drug in man. Therefore, we can
administer a higher dose only after having documented the tolerability of the
lower one(s). On the other hand, we want to avoid the bias resulting from a
simple non-randomized study in which increasing doses of fortelukast are
administered in sequence. In the controlled dose-escalation design, the sample,
say 60 healthy volunteers or patients, is divided into four groups of 15 subjects
(one group for each dose level). The subjects of the first group are randomized
to fortelukast 0.1 mg or placebo with a simple randomized parallel group
design, but with uneven randomization, for example with a 4:1 (fortelukast :
placebo) ratio, that is to say 12 subjects receive fortelukast and 3 placebo (see
section 9.2.2). Naturally, the highest possible level of blinding is applied. The
tolerability of the first dose is determined by a comparison between active and
placebo, when the 15 subjects of the group have completed the study. If the
tolerability profile shown by fortelukast 0.1 mg is acceptable compared to
placebo, we can move to the second group of 15 subjects, who are randomized,
again with a 4:1 ratio, to fortelukast 1 mg or placebo. If the tolerability is again
acceptable, we move to the third group of 15 subjects who receive the third
dose of fortelukast or placebo, and so on, until an unacceptable tolerability pro-
file is reached for the active drug, or the highest dose envisaged in the study
plan is reached (see Figure 10.1). The decision as to whether or not to move
from one dose to the next is not easy and requires a great deal of experience.

This is a parallel group (concurrent) design only when considering each dose
and its corresponding placebo, whereas the different doses are studied in
sequential groups (therefore with a non-concurrent design), each made up of
different subjects. 

In this design, the dose effect is confounded with the period effect, generat-
ed by changes of the experimental conditions over time. Two types of dose
comparisons are possible: one between the groups at the end of the study, pool-
ing together all placebo treated patients; the other between the dose effects
that are, in turn, estimated by comparing each dose with its own placebo. The
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former analysis ignores the period effect and therefore produces biased esti-
mates of the dose effects if the period effect is not null. The latter analysis pro-
duces dose estimates that are “adjusted” for the period effect and therefore
unbiased. Unfortunately, this gain in accuracy is at the cost of precision, that is
the latter estimates are less precise than the former. 

The choice between the two types of analysis must be made in the planning
phase because it has an impact on sample size. In general, for each dose, an
uneven randomization is used, with a smaller number of patients being assigned
to the placebo. However, the choice to have groups of equal size at the end of
the study is optimal only if we can assume absence of the period effect and,
therefore, plan direct treatment comparisons without adjustment for this
effect. Our example, where, if all four doses are tested, we obtain five groups of
equal size (12 patients) at the end of the study, implies an analysis without
adjustment for the period effect. When the period effect cannot be excluded,
the calculation of the sample size must take into account the fact that variabil-
ity of the comparisons between each dose and its own placebo is increased with
an excessively unbalanced allocation at each dose level (for more details see:
Senn S (1997), Statistical Issues in Drug Development, John Wiley & Sons,
Chichester).

In the example above, we used the simple randomization scheme, but we
could also have used, in principle, a stratified randomization, if we were aware
of sub-experimental/prognostic factors with a relevant impact on the safety
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Figure. 10.1. Dose-escalation, placebo controlled design 

Group # 1: 15 subjects 
12: fortelukast 0.1 m 
3: placebo

Group # 2: 15 subjects 
12: fortelukast 1 mg 
3: placebo

Group # 3: 15 subjects 
12: fortelukast 5 mg 
3: placebo 

Group # 4: 15 subjects 
12: fortelukast 10 mg 
3: placebo 

LEGEND:

Tolerability  issues:  the 
study stops 

No tolerability issue; the
study continues 

STOP

STOP

STOP



evaluations. However, in making these choices, it is essential to keep the sam-
ple size in mind, as stratification carried out on a sample that is too small (in
our case 15 subjects, with an unbalanced randomization) can be counterpro-
ductive.

In controlled dose-escalation designs, the sample size is generally chosen
empirically, based on the availability of volunteers and the number of doses to
test, rather than on the typical sample size calculation procedures.
Consequently, in this kind of study, only adverse events occurring very fre-
quently can be detected statistically. Therefore, the background noise of ran-
dom events can play an important role, simulating both positive and negative
results, which in fact are only due to chance. Nevertheless, since the purpose
of these phase I studies is to eliminate doses that are clearly unacceptable for
the patient, that is, to find a “dose ceiling” for later studies, an empirical
approach like the one described is generally acceptable. Occasionally such
designs are also used in early phase II before the definitive dose finding study.

10.4.2. Dose-Titration Design

A useful design for collecting preliminary data on the dose-response curve of a
treatment is the so-called “dose-titration design”. In this design each subject
receives a sequence of increasing doses of a same treatment, generally starting
from a very low dose. A higher dose is given if the lower one appears to be well
tolerated. This design requires a control group, generally placebo. Patients are
assigned through randomization to one of the study treatments. In each group
the dose is progressively increased (if the control group receives placebo, this
will obviously be a simulation).

The primary comparison is between the dose-response curves of the treat-
ment groups being tested. Therefore, this design belongs to the class of designs
with between-subject comparison, even if the different doses are experiment-
ed on the same group of subjects. However, it differs from the parallel group
design, because it does not fulfill the definition given in section 10.2, according
to which in a parallel group design there are as many groups as treatments
under comparison and each patient is assigned through randomization to one
(and only one) of the treatment groups.

This design can be conducted in two main variants: in the first, called forced

dose-titration, the dose, if well tolerated, is increased in all patients at
preestablished times and regardless of their response to the treatment in terms
of efficacy; in the second variant, called conditional or optimized dose-titra-

tion, the dose, if well tolerated, is modified at preestablished times but with
guidance from the efficacy response observed in the single patient (for exam-
ple the dose is increased only if the patient does not obtain a response at least
equal to a predetermined threshold).

The dose-titration design has two main advantages:
• It is safer than the dose-ranging designs in which patients are randomized

concurrently to the different doses or sequences of doses, with the underly-
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ing assumption that a patient can immediately be exposed to the highest
dose; consequently, the dose-titration can be applied at a very early phase of
the clinical development process.

• The total number of patients required is smaller than in a parallel group
design testing the same number of doses.
Along with the above-mentioned advantages, there are several disadvantages:

• These studies are long and complex, because every subject must take sever-
al doses, each for a time long enough for the activity of the treatment to man-
ifest itself; as a consequence, more premature discontinuations are to be
expected compared to other designs.

• If the response improves with increasing doses, it is impossible to know if this
is due to the dose level itself, to the longer exposure to the treatment, or to
a cumulative effect of different doses (this disadvantage is especially evident
when the response to the treatment is delayed).

• The dose titration design gives little information on the safety of the individ-
ual doses, since many adverse events depend on the overall time of exposure
to the treatment.

• If used in the conditional dose-titration variant, this design tends to create
dose-response curves in the shape of an inverted U, because all patients not
responding to the study treatment will be titrated to the higher doses, if no
unacceptable toxicity is observed; therefore, at the end of the study most
non-responders will end up in the highest dose group. In order to correct this
problem, sophisticated statistical analyses are required.
The dose-titration design is generally used for the initial assessment of the

activity of new compounds and for the selection of the doses to be used in sub-
sequent trials. It can give a first approximation of the dose-response curve, in
terms of both mean curve and distribution of individual curves. Because of the
problems mentioned above, the results must be confirmed by studies with a
more appropriate design (for example parallel group dose-ranging studies).

We cannot delve any further into this subject, but refer the interested read-
er to the ICH guideline [59].

10.5. Complete Cross-Over Design

10.5.1. Characteristics

The cross-over design is characterized by the fact that each study subject
receives more than one study treatment. In the complete cross-over design

each subject receives, one after the other, all of the study treatments. What
changes from subject to subject, is the succession of treatments: each subject
is randomized to one of the possible successions of treatments, called
sequences, and all possible sequences are used. In the simplest situation of
just two treatments (A and B), there are two possible sequences (AB and BA).
For example, let us consider again a study with fortelukast 5mg/day versus
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placebo for two weeks, this time in patients with chronic asthma (i.e. with no
obvious seasonal pattern). Each patient is randomized to one of the two possi-
ble sequences: placebo followed by fortelukast, or fortelukast followed by
placebo. With three treatments (A, B and C), there are six possible sequences
(ABC, ACB, BAC, BCA, CAB, CBA). With more than three treatments, the pos-
sible number of sequences increases according to the formula (10.3) reported
in section 10.6. Cross-over designs with many treatments have special problems
that will be discussed in section 10.6.2 (incomplete cross-over designs).

Each of the time intervals in which one of the study treatments is adminis-
tered is called a period. Therefore, in the cross-over design with two treatments
there are two periods: period 1, in which the group of patients randomized to the
sequence AB receives A and the one randomized to the sequence BA receives B;
and period 2, in which the first group receives B and the second A. Such design
is often referred to as 2×2 cross-over (two treatments and two periods).

It is often not appropriate to start the next treatment immediately after the
end of the previous one. For example in the sequence fortelukast/placebo, the
effects of the last doses of fortelukast could overlap with the first measure-
ments of the placebo period, distorting the result. The continuation of the
effect of one treatment into the following period of a cross-over design is often
referred to as “carry-over” effect. In order to eliminate the carry-over effect, it
is necessary to introduce an appropriate interval between the end of a treat-
ment and the beginning of the next, called “wash-out”. Generally, the duration
of the wash-out interval is determined by the pharmacokinetic and pharmaco-
dynamic characteristics of the treatments under study (see section 12.1).
Obviously, the wash-out has the effect of increasing the duration and complex-
ity of the study for each patient.

The following effects can be studied in a cross-over design:
• Main treatment effect.
• Main period effect.
• Carry-over effect.
• Interaction effect between period and treatment.
• Sequence effect.
• Subject effect.

In this book we will restrict the discussion to a brief explanation of the mean-
ing of these effects, considering a balanced 2×2 cross-over design, which is
a cross-over design with an equal number of patients (in practice, approxi-
mately equal) in each of the two sequences. In the unbalanced design, the esti-
mate of the effects listed above must include adjustments for the different size
of the groups. For a more detailed discussion of these topics, we refer to the
textbooks by Fleiss [39] and Senn [93], the latter entirely dedicated to cross-
over designs.

The data of a 2×2 cross-over study can be summarized as illustrated in Table
10.5. In the discussion below we shall assume that the appropriate group indi-
cator is the mean.
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Main treatment effect or simply treatment effect. From Table 10.5,
relating to a 2×2 cross-over design, one can infer that, within the first sequence,
the difference between the group indicators (e.g. mean responses) of period 1
and period 2 measures the difference [A + period 1 - (placebo + period 2)],
while the same difference in the second sequence measures the difference
[placebo + period 1 - (A + period 2)]. The difference between these two differ-
ences gives: 2 A – 2 placebo. Therefore, half of this quantity estimates the effect
of treatment A - placebo. This effect is referred to as the treatment effect
adjusted by the period effect, meaning that it is not influenced by the period
effect (see below). This is because the differences within each sequence are
affected to the same extent by the period effect, if any. Therefore, the differ-
ence between these differences cannot be influenced by it. This estimate is
unbiased only in the absence of a carry-over effect (see below).

Main period effect or simply period effect. We shall start with a question:
why is it necessary to assign the patients to both sequences AB and BA? Really,
there is no interest in the sequence itself. The interest, as usual, is in the dif-
ference between the treatments. The reason why we must consider both
sequences is that we must know the response to each treatment, both when it
is administered as the first and as the second in the sequence, because the
response could change due to the period effect. This effect is estimated by the
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Table 10.5. Cross-over study with two treatments and two periods

Period 1 Wash-out Period 2

Sequence: Subjects receive No treatment Subjects receive
A → placebo treatment A placebo 

(1) (2)

Sequence: Subjects receive No treatment Subjects receive
Placebo → A placebo  treatment A 

(3) (4)

Assuming a balanced design and using the number in parenthesis for the group indicator
of the corresponding cell, the following applies.
• In the absence of a carry-over effect, within each sequence, the difference between the

group indicators of the two periods gives a measure of the treatment effect. Half of the
difference between these differences calculated in the two sequences, that is {[(1)-
(2)]-[(3)-(4)]}/2, estimates the effect of the treatment (A-placebo) adjusted by the pe-
riod effect. In the presence of a carry-over effect, this estimate is biased.

• In the absence of a carry-over effect, within each period, the mean of the group indica-
tors of the two treatments gives a measure of the response of the patients in that peri-
od. The difference between these means calculated in the two periods, that is
[(1)+(3)]/2-[(2)+(4)]/2={[(1)+(3)]-[(2)+(4)]}/2, estimates the period effect. In the
presence of a carry-over effect, this estimate is biased.

• Within each sequence, the sum of the group indicators calculated in the two periods
gives a measure of the response of the patients in that sequence (to both treatments, in
both periods). The difference between these sums calculated in the two sequences,
that is [(1)+(2)]-[(3)+(4)], estimates the carry-over effect.



difference between the mean of the responses obtained in one period (for
example, the first one) and the mean of the responses obtained in the other
period (for example, the second one), pooling the treatments in each period.
This estimate is unbiased only in the absence of a carry-over effect (see below).
The period effect can be due to the progressive improvement or worsening of
the disease under study, to a seasonal or cyclic fluctuation of the disease sever-
ity, and to a number of other time related changes, such as changes in the staff
conducting the study, the introduction of new concomitant treatments, of new
diagnostic instruments, and so on. Such changes are by no means exclusive to
the cross-over design and can equally influence the treatment effect in a study
with parallel group design, since the patient enrolment often takes a long time
to complete. However, in a parallel group design, the influence of these factors
is randomly distributed across the treatment groups and can even be eliminat-
ed through the randomization in permuted blocks. In the cross-over design,
instead, if there were no randomization of the subjects to the different
sequences, the influence of any time-related factor would be systematically
greater on one treatment than on the other, i.e. would generate a systematic
distortion, or bias in the comparison between treatments. 

A period effect of low to moderate magnitude is often present. In itself, it does
not represent a problem, thanks to the randomization of the subjects to the
sequences, which, in turn, allows adjustment of the effect of the treatment for the
effect of the period (see above). Suppose that both study treatments A and B are
completely ineffective and that they are evaluated in a cross-over design on a dis-
ease with slowly progressive deterioration. In the sequence AB the mean effect of
A, which happens to be administered in the first period, will tend to be better than
the mean effect of B, which happens to be administered in the second period. In
the sequence BA, B will be the one showing the best effect, since it happens to be
used in the first period. Obviously, in the presence of diseases with progressive
improvement, the opposite will occur. In other words, thanks to the randomiza-
tion of the subjects to the sequences, the period effect does not introduce bias in
the comparison between treatments. Returning to the comparison between
fortelukast and placebo for the treatment of chronic asthma, let us suppose that
the entire study lasts two months: two weeks for patient recruitment, two for the
first treatment (first period), two for the wash-out and two for the second treat-
ment (second period); let us also suppose that the end of the first month of the
study coincides with the end of the pollen season. The small spontaneous
improvement experienced by many asthmatic patients at the end of the pollen
season causes a typical period effect. However, the randomization of the patients
to the two sequences placebo-fortelukast or fortelukast-placebo ensures that for
each of the two treatments about half of the patients are treated in the first peri-
od (pollen season ongoing) and the other half in the second period (pollen sea-
son over). Therefore in the overall evaluation of the difference between the two
treatments, the influence of the period is null or greatly mitigated. 

However, when the period effect is extreme, a much bigger problem arises,
as illustrated in section 10.5.2.
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Carry-over effect. In the cross-over design, in addition to the treatment and
the period effects, other effects can potentially occur, among which the carry-
over effect and the period by treatment interaction effect (see below). In the
2×2 cross-over design, these two effects cannot be separated (the explanation
of why this is the case is outside the boundaries we have set for this book).
Commonly, in this design one chooses to estimate the carry-over effect,
assuming that the interaction effect is nil. The reason for this choice is that the
former, as we will see later, is much more problematic than the latter. At the
beginning of this section, we defined the carry-over as the continuation of the
effect of a treatment into the period following its administration. If the effect of
both study treatments were to extend equally into the next period, this phe-
nomenon would not create bias in the estimate of the treatment effect, because
both treatments would be equally affected by the persisting effect of the other
treatment. However, the possibility of a carry-over which is identical between
the two study treatments is extremely unlikely; therefore, the extension of the
effect of at least one of the study treatments beyond its administration period,
is practically always a problem for the application of the cross-over design. In
conclusion, when referring to the carry-over effect, we imply an unequal carry-
over across the treatments under comparison. Referring to Table 10.5 relative
to the 2×2 cross-over design, one can see that any difference between the sum
of the group indicators of the two periods in the first sequence and that in the
second sequence cannot be due to the treatments, since all patients took both
study treatments. It cannot depend on the period either, since all patients have
gone through both periods. However, if the effect of the treatments persists
beyond the duration of the period, patients assigned to the first sequence will
have a residual effect of treatment A into the second period, while patients
assigned to the second sequence will have a residual effect of the placebo into
the second period (probably equal to zero). Therefore, any difference between
the sums that we are considering will estimate the carry-over effect. As men-
tioned already, in the presence of this effect, the estimates of the treatment and
the period effects are distorted. Therefore, the analysis of a cross-over design
starts with the test for the carry-over effect: if the outcome is not statistically
significant, treatment and period can be estimated as described above, other-
wise the interpretation of these effects becomes very problematic (see below).

Interaction effect between period and treatment. In cross-over designs
it is said that there is an interaction effect between the period and the treat-
ment when the effect of the treatment is different in different periods. This
effect can be studied by treating the cross-over design as a parallel group strat-
ified design, in which the sequences are the groups to which subjects are ran-
domized and the periods are the strata. For simplicity, we describe the period
by treatment interaction effect referring to the 2×2 design illustrated in Table
10.5, even if, as said, this effect is never estimated under these circumstances,
because it is “sacrificed” to the carry-over effect. Let the disease under study
be an intestinal malabsorption syndrome and the primary end-point the fre-

10.5. Complete Cross-Over Design 251



quency of diarrhea episodes. The two study treatments, to be compared
through a 2×2 cross-over design, are two enzyme mixtures administered for one
month. One study treatment must be stored at room temperature, while the
other must be kept refrigerated. The first period takes place in the month of
November and the second in the month of December. Unfortunately, during the
whole month of November, violent storms cause repeated power black-outs,
obviously affecting the refrigeration system. Because of the inappropriate
refrigeration, the quality and therapeutic efficacy of the treatment to be stored
at low temperature are affected. This is an example of period by treatment
interaction: the period has a different impact on the end-point depending on
the treatment administered. In fact, the first period (November) has a negative
influence on the end-point only for the refrigerated treatment. As for the peri-
od effect, the possibility of an interaction effect between period and treatment
should not be of particular concern in the planning of a cross-over design.

Sequence effect. The sequence effect is defined as the effect of the entire
sequence of study treatments on the end-point. It can be studied by treating
the cross-over design as a completely randomized parallel group design, where
the sequences are the groups to be compared (see Table 10.1) and the end-
point, for example, is the mean of the measurements performed at the end of
each treatment within each sequence. However, as stated above, the sequence
itself is almost never of interest. 

Subject effect. The subject effect is due to the peculiar characteristics of
each individual, influencing the end-point above and beyond any other effect.
We will conclude that the subject effect is strong, when all measurements per-
formed on the same subject are similar (correlated) to one another. The esti-
mate of this effect is generally of no interest. It should be noted that the cross-
over design stems from the recognition of this effect: in fact, it is in the pres-
ence of a relevant subject effect that one has the maximum convenience (in
terms of reduced variability) by using a cross-over design.

Generally, in the classical statistical analysis of a 2×2 cross-over design, the
treatment, the period, and the carry-over effects are considered. Furthermore,
the subject effect is taken into account with specific assumptions to facilitate
testing of the carry-over effect.

10.5.2. Advantages and Disadvantages

As mentioned in section 10.1, the advantage of the cross-over approach lies in
the smaller sample size that it generally requires compared to the correspon-
ding parallel group design of the same power. The smaller sample size can be
explained in part by the fact that in a cross-over design each patient con-
tributes to the sample of more than one treatment and in part by the fact that,
generally, the variability of within-subject measurements is lower than that of
between-subjects measurements. Making a rough but useful approximation,
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provided that the other conditions are the same, the sample size of a two treat-
ment cross-over design is about four times smaller than the one of the corre-
sponding parallel group design (the first halving of the sample size is explain-
able mathematically, the second halving occurs, roughly speaking, if the repeat-
ed measurements are highly correlated within each subject).

Since access to patients is often a limiting factor in the performance of clini-
cal trials, both from a practical/logistical and from a financial perspective, a
design such as the cross-over, which “promises to save patients” is extremely
attractive. Furthermore, in our experience, the concept of each patient being
“his/her own control” is popular among medical researchers and is often con-
sidered a “higher quality design”. The reasons for such preference are not com-
pletely logical, but may have something to do with the fact that a within-patient
comparison is conceptually close to what is done in clinical practice.

Unfortunately, in reality, the cross-over design is logistically more complex
and methodologically more problematic than the parallel group design. 

Logistical aspects. From a logistical point of view, each patient must repeat
all of the procedures and measurements dictated by the protocol, as many times
as there are treatments to be studied. If, for example, the protocol of the study
comparing 5 mg fortelukast and placebo required measurements of PEFR every
hour over 12 hours after the first and the last dose of study treatment, in a cross-
over design each patient would be asked to spend the entire day at the center
four times, against the two times required by the equivalent parallel group
design. If there were three treatments, such a request would extend to six whole
days. It is clear that one will soon reach a threshold that even the most motivat-
ed patient would consider unacceptable. Even more problematic is the fact that
the complexity of the procedures of the cross-over design increases the likeli-
hood that a patient will initially accept to enter the study and then abandon it
prematurely. Premature discontinuations have more serious methodological
consequences in a cross-over design than in a parallel group one (see below).

Of course, a cross-over study is not only more complex, but also longer for
the individual patient than the equivalent parallel group study. For example, in
the comparison between 5 mg fortelukast and placebo, even if the treatments
were administered in direct succession without any interruption between the
end of one treatment and the beginning of the next, the duration of the study
after randomization would be four weeks for each patient, compared to two
weeks for the equivalent design in parallel groups. In reality, as already men-
tioned, a wash-out interval between the treatments is very often included. By
introducing a one-week pause between fortelukast and placebo (or vice versa),
the duration of a cross-over study for the individual patient would increase to
five weeks. An alternative to the wash-out is to eliminate from the analysis the
results of measurements performed during the first days of all treatment peri-
ods other than the first. In some cases this is an excellent solution, while in oth-
ers it is useless or impossible. Useless, for example, when the remaining days of
treatment are insufficient for an appropriate evaluation of the treatment effect.
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The solution would have to be an extension of the duration of each treatment,
but this would negate the advantage gained by eliminating the wash-out.
Impossible, for example, when it is imperative to perform measurements imme-
diately after the beginning of the treatment to find out if tachyphylaxis has
occurred (tachyphylaxis is a rapid reduction of the magnitude of the treatment
effect after the first doses, a common phenomenon for many drugs acting on
receptors).

Methodological aspects. From a methodological point of view, we can
point out the following major complications in the cross-over design: premature
discontinuations, “extreme” period effect and carry-over effect.

• Premature discontinuations. Whatever the experimental design, some
patients will decide or be forced to abandon the study before completing it
(drop-outs). This phenomenon is problematic and must be addressed at the
planning stage, mainly by avoiding excessively complex procedures, by
increasing the number of patients randomized to account for the predicted
drop-out rate and by determining how to evaluate the patients in the inten-
tion-to-treat analysis. A much greater number of premature discontinuations
than predicted is always a problem, whatever the experimental design.
However, as already mentioned, the problem is more serious in the cross-over
design than in the parallel group one. In a cross-over design, a patient aban-
doning the study before completing the last treatment of the sequence, either
must be completely removed from the analysis, or must have all missing
measurements “filled in” (imputed) for the entire sequence. If the latter
approach is not feasible, the patient is lost. It should be noted that one such
drop-out in the cross-over design is equivalent to multiple drop-outs in the
parallel group design, as many as the number of study treatments. If replace-
ment of missing values is deemed feasible, the “rescue operation”, for exam-
ple through the “last observation carried forward” procedure (see section
9.4.2), can be both complicated and questionable. In fact, in the cross-over
design, it can easily happen that a patient prematurely discontinues from the
study before having contributed even one measurement for each study treat-
ment (including the baseline ones). How can we replace the missing values
for treatments for which the patient did not achieve a single measurement?

• Extreme period effect. By extreme period effect, we mean a situation in
which the disease changes so radically during the study that, at some point
after the first period, one or more patient eligibility criteria are substantially
violated. Whereas a non-extreme period effect is compatible with the cross-
over design, thanks to the randomization of patients to the sequences, an
extreme period effect renders the cross-over design unfeasible. If, for exam-
ple, we are evaluating fortelukast versus placebo with the design described
above, but in the symptomatic treatment of seasonal allergic rhinitis (SAR)
instead of asthma, at the end of the pollen season the majority of patients
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return to an asymptomatic state, therefore violating the eligibility criteria,
which required symptoms of rhinitis. The evaluation of the treatment effects
in the second period on asymptomatic patients is clearly useless from a clin-
ical perspective. Worse, it is counterproductive from the perspective of the
statistical analysis: in fact, when the two periods are combined in the analy-
sis of the study, any difference between study treatments observed in the
first period is “diluted” by the absence of a difference in the second period.
An extreme period effect involving a deterioration of the condition (instead
of an improvement, as in the example above) will cause the same problem.
Even if we do not consider the extreme situations in which the majority of the
patients have either recovered or deceased by the second period of a cross-
over study (situations that are actually possible or even likely for some con-
ditions), whenever the clinical features of the disease change so much that
the eligibility criteria are violated, the following can occur:
1.Many drugs, even those efficacious on “typical” forms of the disease, have

little or no efficacy on very mild or very advanced forms; therefore, the dif-
ference between the treatments in the second period is bound to be trivial.

2.Whatever the effect of the treatments, the population under study in the sec-
ond period is no longer the target population as established in the protocol.

• Carry-over effect. The presence of a carry-over effect makes data collected
in the periods following the first one useless (or very difficult to interpret).
Sometimes, when at the end of a cross-over study, a high drop-out rate or a sta-
tistically significant carry-over effect are revealed, only the first period of the
study is used and analyzed as if it were a parallel group design. However, even
this solution presents many problems. The biggest one is that, almost unavoid-
ably, the sample size becomes insufficient, because the power of a study,
planned as a cross-over and then analyzed as parallel group, is reduced to unac-
ceptable levels. Therefore, under such conditions, the study can, at the most,
generate hypotheses that will need to be confirmed by other studies.

In summary, the cross-over design, in appearance simple and extremely advan-
tageous, is in reality logistically and methodologically complex, and may present
underlying methodological problems that can weaken or invalidate its use.

10.5.3. Conditions of Applicability

In spite of all the limitations discussed in the previous section, the cross-over
design is an excellent solution in many situations. It can be used when the fol-
lowing conditions are satisfied:
• The effect of the study treatments manifests early, hence the duration of the

treatments can be short.
• The study treatments have reversible effects, that is, they do not modify the

clinical picture permanently or for a long time in relation to the duration of
the study.
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• The disease/condition of interest is relatively stable in the time interval cov-
ered by the study, that is, it does not meaningfully improve or worsen spon-
taneously.

• The study treatments have effects that do not extend to the period following
the one during which they are administered. As discussed above, sometimes
the carry-over effect can be eliminated by introducing wash-out intervals
between the treatment periods. However, the wash-out intervals cannot be
too long, especially when the study treatments are many. In some cases, an
alternative to the wash-out can be to restrict the evaluation of the effect to
just the final measurements for each treatment (see section 10.5.2).
We must remind the reader that the cross-over design has a true advantage

with respect to sample size over the parallel group design when the measure-
ments within a subject are highly correlated. Although this requirement is fre-
quently met, this is not always the case: a typical example of within-subject
measurements with low correlation are diseases with “poissez” symptoms,
i.e. symptoms manifesting themselves with intermittent and unpredictable
chronology.

Nevertheless, there are numerous classes of drugs for which the above-men-
tioned requirements are often met, making the use of the cross-over design
generally appropriate. These include, among others, pain killers in chronic pain,
bronchodilators in obstructive diseases of the airways, and pressure-lowering
drugs in hypertension.

The cross-over design is often very useful in phase II studies using pharma-
co-dynamic end-points, as opposed to therapeutic end-points used in phase III,
which typically require prolonged observation periods (see chapter 12). This
design is especially useful in phase II dose-response studies. In such studies, all
doses are lower than the maximum tolerated dose, determined in previous
studies (see dose-escalation studies, section 10.4.1). Therefore, patients can be
randomized to any sequence of doses in a cross-over design. However, since
dose-response studies often require many doses (in addition to a placebo and,
not infrequently, to an active control), incomplete cross-over designs, covered
in the next section, are commonly used. Finally, the cross-over design is indis-
pensable in studies in which the patient is asked to express a preference
between two or more treatments or therapeutic regimens, since the patient can
express a preference only when he/she has received all of the treatments under
comparison.

10.6. Variants of the Cross-Over Design

10.6.1. Variants Based on the Type of Randomization 

Simple randomization, randomization in blocks and stratified randomization can
all be used in a cross-over design. The more frequently used options are the sim-
ple randomization (patients are assigned to the sequences based on a single sim-
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ple randomization list) and the randomization in blocks (patients are assigned to
the different sequences based on a single randomization list in blocks).

Stratification can be used with the limited purpose of balancing the
sequences with respect to predefined stratification factors, or with the aim of
increasing the efficiency of the design, or when there is an interest in the result
in each single stratum. However, it should be noted that the inclusion of strat-
ification factors complicates the statistical analysis.

10.6.2. Incomplete Cross-Over Designs

When two or three treatments are compared (rarely more, see below), it is gen-
erally possible to use a complete cross-over design, provided that the require-
ments illustrated in section 10.5.3 are satisfied. All possible sequences are used
and each patient receives, through randomization, one sequence containing all
of the treatments under study.

However, there are many situations in which one wants to study more than
three treatments, especially in the case of dose-response designs. Cross-over
studies with many treatments present two types of methodological problems.
1.As the number of study treatments increases, so do the complexity and dura-

tion of the study for each patient. The patients’ motivation and ability to
adhere to the requirements of the protocol (the so-called compliance) must
be extreme in a cross-over study with many treatments. Therefore, the risk
of premature discontinuations is high. Furthermore, as the number of study
treatments increases, so do the risk of period effects, period by treatment
interactions and relevant carry-over effects. For studies with a single treat-
ment administration, the authors managed to test as many as six treatments
per patient (naturally, using only some of the possible sequences, see below),
whereas for studies with repeated treatment administrations we have rarely
gone beyond three treaments.

2.Assuming each treatment is administered only in one period, the number of
possible sequences increases with the number of treatments according to the
following formula:

ns = nt × (nt – 1) × (nt – 2) × … × 2 × 1 (10.3)

where ns is the number of possible sequences and nt the number of study
treatments. The logical explanation of the formula is the following: assuming
that each patient is to receive each treatment in the sequence only once, with
nt treatments, there are nt options for the first treatment, (nt-1) for the sec-
ond treatment, and so on, until only one treatment remains to be taken.
Therefore, if with two treatments there are only two possible sequences, with
three there are six, (ns = 3 × 2), and with four treatments there are already 24
possible sequences (ns = 4 × 3 × 2). With six treatments, the possible
sequences become 720! 

When there are many treatments, it is possible to use the incomplete variants
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of the cross-over design. There are two main variants of the incomplete cross-

over design, as described below.
1.Not all of the possible sequences are used, but each patient receives all of the

study treatments. In this case, the sequences are complete but not all of them
are present.

2.Each patient does not receive all of the study treatments. 

First variant of the incomplete cross-over designs (the sequences

are complete, but not all are used). If the researcher is reasonably sure
that the period effect is irrelevant and that the carry-over effect can be exclud-
ed, he/she can simply assign each patient to one of the possible sequences.
Under such conditions, there is no need to exercise control on the sequences
that are included in the study.

If, on the contrary, the researcher cannot exclude the possibility of a period
effect, then he/she must ensure a certain level of balance among the sequences
used in the experiment. One way of obtaining such balance is through the
Latin square design. The distinctive feature of this design is that every treat-
ment appears only once in each row (representing the sequence) and only once
in each column (representing the period).

Let us suppose we have three treatments A, B and C. There are two possible
Latin square designs that can be obtained with three treatments, as shown in
Table 10.6.

The period factor is totally balanced because, in each of the two designs, each
treatment is administered only once in each period. To be able to use one of
these two designs, we must have a number of patients that is a multiple of
three. If we wish to apply both allocation schemes illustrated in Table 10.6 in
the same study, the total number of patients must be a multiple of 6.

It should be noted that the Latin square design does not necessarily have to
have the time factor (the period) as one of the classification factors. In fact, the
Latin square design has a much broader spectrum of applications than the ones
for which it has been introduced in this book. This design, useful when dealing
with one experimental and two sub-experimental factors, is frequently used in
agriculture (the land is divided in a grid pattern, as in a chessboard, with rows
and columns representing, for example, different levels of exposure to light and
water, respectively) and in laboratory experiments (where the row factor can
be for example the litter, and the column the weight of the individual pup). In
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Table 10.6. Possible Latin square designs with three treatments (A, B, C) and three pe-
riods

Period

123 123

Sequence 1 ABC ACB
2 BCA BAC
3 CAB CBA



both cases, the experimental factor must have three levels, for example three
different seed concentrations per square meter of land or three pharmacologi-
cal treatments.

With four treatments (A, B, C, and D), 24 Latin squares are possible, that is,
24 sets of four sequences, each forming a Latin square. They are illustrated in
Table 10.7.

The six Latin squares marked with * in the figure are called Williams

squares. These squares have the property that every treatment follows every
other treatment only once. In some situations, the designs using the Williams
squares can be advantageous, for example in dose-response studies, when it is
unknown whether any of the doses has a residual effect at the time of adminis-
tering the next dose. For example, the β2-agonist bronchodilators are ideal for
cross-over designs, since their action on lung function has a fast onset and is
completely reversible. For this type of treatment, the cross-over design is used
routinely for dose selection. It is quite common that the study treatments
(doses) are administered every third day in order to prevent the carry-over
effect, since currently available β2-agonists have durations of action ranging
from 4-6 hours (salbutamol/ albuterol, terbutaline) to 12-15 hours (formoterol,
salmeterol), even at very high doses. However, with a new member of this class,
it would not be possible to exclude a priori an unusual behavior at higher
doses, with a carry-over effect much longer than expected. To minimize the
impact of such an event, a cross-over design using the Williams Latin squares is
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Table 10.7. Possible Latin square designs with four treatments (A, B, C, D) and four pe-
riods (from [93], Table 5.1)

Period

1234 1234 1234 1234 1234 1234

Sequence

* Williams squares. (From: Cross-Over Trials in Clinical Research, Senn S, 1993.
Copyright John Wiley & Sons Limited. Reproduced with permission.)

ABCD
BADC
CDAB
DCBA

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

ABDC
BACD
CDBA
DCAB

ACBD
BDAC
CADB
DBCA

ADBC
BCAD
CBDA
DACB

ACDB
BDCA
CABD
DBAC

ADCB
BCDA
CBAD
DABA

ABCD
BADC
CDBA
DCAB

ABDC
BACD
CDAB
DCBA

ACBD
BDAC
CBDA
DACB

ADBC
BCAD
CADB
DBCA

ACDB  *
BDCA
CBAD
DABC

ADCB  *
BCDA
CADB
DBAC

ABCD
BCDA
CDAB
DABC

ABDC  *
BCAD
CDBA
DACB

ACBD
BDCA
CADB
DBAC

ADBC  *
BACD
CBDA
DCAB

ACDB
BDAC
CABD
DBCA

ADCB
BADC
CBAD
DCBA

ABCD  *
BDAC
CADB
DCBA

ABDC
BDCA
CABD
DACAB

ACBD  *
BADC
CDAB
DBCA

ADBC
BCDA
CBAD
DACB

ACDB
BACD
CDBA
DBAC

#ADCB
BCAD
CBDA
DABC



advisable. Incidentally, new β2-agonists with very long duration of action actu-
ally emerged while this book was being written and are currently in clinical
development.

Generally, there is no reason to choose one Latin square over another; there-
fore, the choice can be made randomly. It is not even required to perform a
study based on a single Latin square: the only advantage of using a single Latin
square is practical, as the preparation of the study treatment is simpler.

We will not discuss in this book the effects that can be estimated through
these designs. We refer the reader interested in this topic to the excellent book
on cross-over designs by Stephen Senn [93].

Second variant of the incomplete cross-over designs (incomplete

sequences). This type of design is called incomplete block cross-over

design. In the terminology of cross-over designs, the defining feature of incom-
plete block designs is the use of incomplete sequences (the single patient does
not receive all study treatments), that is to say, the inclusion in the design of
more treatments than periods. For example, such a design is applied when one
wants to study three treatments, while allowing for two periods only (i.e. each
patient is to receive just two of the study treatments) or to study four treat-
ments, but in just three periods (each patient receives only three of the four
study treatments). It should be noted that here the expression “blocks” is used
as a synonym of “sequences” and therefore has nothing to do with the blocks of
the randomization in blocks (such confusion in terminology are unfortunately
not rare).

One way of building a cross-over design with four treatments in three periods
is to start from any one Latin square block among those reported in Table 10.7
and to eliminate one column. For example, if we consider the first block and
eliminate the first column, we obtain the following design:

BCD
ADC
DAB
CBA

Of course, the patients are assigned to the incomplete sequences through
randomization. This design maintains some level of balance: each treatment
appears in the same number of sequences (in the example, three times), and
so does each pair of treatments (in the example, twice); finally, each treatment
appears once in each period.

The price to pay for the reduction in the number of treatments per patient is
an increase in the number of patients needed to achieve the same power. The
smaller the number of treatments per patient with respect to the total number
of study treatments, the greater the number of patients needed to achieve the
same power, compared to the corresponding complete cross-over design. For
more details, we refer again the reader to Senn’s textbook [93]. Here it is
enough to mention that quite soon the number of patients needed for an incom-
plete block cross-over design will approach that required for the corresponding
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parallel group design, which is shorter and simpler for the patients. For exam-
ple, with six study treatments, an incomplete block cross-over design with
sequences of four or five treatments is still advantageous, but one with
sequences of three treatments is not.

A vast literature exists on incomplete block designs. We recommend the pre-
viously mentioned book by Senn [93] for an approach rich in examples and the
books by Cox [27] and Fleiss [39] for a more detailed methodological discussion.

In our experience, the incomplete cross-over design is very useful in many
situations, especially in dose-response studies. If used with rigor and common
sense, these designs can reduce considerably the sample size compared to the
corresponding parallel group design, and at the same time reduce the com-
plexity of the study (and consequently the risk of drop-outs) compared to the
corresponding complete cross-over design on the other.

10.7. Other Designs with Within-Subject Comparisons:
Simultaneous Treatments and Single Patient 
Designs

10.7.1. Simultaneous Treatments Design

In ophthalmology, it is often possible to simultaneously apply one treatment to
one eye and another treatment to the other eye of each patient (simultaneous

treatments design), and to analyze the study as a matched-paired design (see
section 10.3.3). In dermatology, one can go even further and simultaneously
administer to each patient more than two treatments, each applied to a differ-
ent area of the skin surface and analyze the study as a randomized block design
(see again section 10.3.3). For such design to be usable, it is necessary to be
sure that all of the study treatments have only local effects. In the presence of
a systemic effect (partial or total), each treatment will influence the target area
of the other treatments (the other eye or the other skin areas), making the
results difficult to interpret. The same applies to the tolerability profile: only
the local adverse events can be properly studied with this type of design.

10.7.2. Cross-Over Design on a Single Patient 

(Or “N of 1” Design)

A very interesting variant of a design with within-subject comparisons is the so-
called “N of 1” design, in which two or more treatments are repeatedly
administered to a single patient, with a random sequence.

Here we report an example of such a design from an article by McLeold et al,
published in the Lancet in 1986 [70].

A young patient suffering from a severe form of ulcerative colitis underwent
total proctectomy with ileostomy (that is, removal of terminal section of the
intestine, followed by suture of the end stump to an surgical opening in the
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abdominal wall). About four months after surgery, the patient started to suffer
from severe episodes of malaise, with fever and loss of appetite, abdominal
pain, flatulence and diarrhea. Such symptoms were attributed to an inflamma-
tion of the ileostomy and were treated with 250 mg/day of the antibiotic
metronidazole. The antibiotic therapy turned out very efficacious according to
the patient and repeated attempts to suspend it were always followed by recur-
rence of the symptoms. However, multiple endoscopic observations with biop-
sy of the ileostomy, carried out one week after discontinuation of metronida-
zole, never revealed any sign of acute inflammation. Therefore, the suspicion
arose that the beneficial effect of metronidazole was generic in nature, i.e. was
a placebo effect. If this was the case, the continuous use of such drug would
have been hard to justify in terms of risk/benefit ratio, given the reports of
potential carcinogenicity (i.e. cancer-inducing effect) associated with chronic
use of metronidazole.

In agreement with the patient, the doctors decided to address the question of
the efficacy of metronidazole through an “N of 1” design.

The patient underwent 10 treatment cycles of 2 weeks each, five with 250
mg/day metronidazole (M) and five with placebo (P) in a double-blind fashion.
The order of the treatments was randomized with a balanced randomization in
blocks of 10, giving the following sequence: P-M-M-P-M-P-P-M-P-M. The end-
points of the study were discussed with the patient, and those that she consid-
ered most important in determining the impact of the disease on her life were
chosen. For simplicity, here we concentrate only on one of the end-points of the
study, abdominal pain. Once daily the patient assessed the degree of abdomi-
nal pain through a visual analogue scale (VAS) of 100 mm, with 0=no pain and
100=unbearable pain. The total score for the last week of each treatment cycle
(range from 0 to 700) was selected as the primary end-point. The scores for
each treatment are listed in Table 10.8.
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Table 10.8. “N of 1” design in a patient with ileostomy treated with 10 cycles of double-
blind treatment (five cycles of placebo and five of metronidazole), with randomized se-
quence: total VAS score for abdominal pain in the last week of each treatment cycle (ex-
tracted from the table in [70])

Period

1 2 3 4 5 6 7 8 9 10

Treatment

P M M P M P P M P M

VAS score for 

abdominal

pain 214 0 0 285 0 231 483 0 212 0

P, placebo; M, metronidazole.
Abdominal pain was measured daily through VAS (Visual Analogue Scale): min = 0, 
max = 100 for each day; min = 0, max = 700 for the entire week. (Reprinted from the
Lancet, vol 327, McLeod RS et al, Single-patient randomised clinical trial. Use in deter-
mining optimum treatment for patient with inflammation of Kock continent ileostomy
reservoir, pages 726-728, 1986, with permission from Elservier.)



From Table 10.8 it is clear that every time metronidazole was administered,
the score was 0, whereas every time placebo was administered, the score was
higher than 0. In agreement with what any observer would intuitively conclude,
an appropriate analysis of these data (see [54] and [70]) allows us to conclude
that it is extremely unlikely that the matching between the treatment sequence
and the observed sequence of scores could be due to chance.

Based on this study, the researchers concluded that the effect of metronida-
zole on the patient was real and that its long-term administration was justified,
since the real advantages brought by the drug were greater than the potential
danger of carcinogenicity.

The restrictions of the “N of 1” design are the same as those of any cross-over
design. The “N of 1” design has also several advantages that, in our opinion,
should make it more popular in clinical research. These include the following:
• Recruitment is not an issue; therefore such a design is especially suitable for

rare diseases, for which the classic rules for sample size calculation are total-
ly useless, since there are not enough patients.

• Unlike any other kind of experimental design, such a design allows conclu-
sions to be drawn for an individual patient: the study treatments, the number
of cycles, the duration of each cycle and especially the end-points of the
study can all be “tailored” to suit the patient. 

10.8. Factorial Designs

10.8.1. Characteristics

The so-called factorial design is a very interesting form of experimental
design, which allows the effect of more than one experimental factor to be stud-
ied simultaneously. When applied to clinical trials, this design allows the indi-
vidual effects of two or more treatments, as well as the effects of their combi-
nations, to be investigated in the same trial, using a relatively small number of
subjects. In the terminology of factorial designs it is common to refer to the
study treatments as experimental factors and to their different “modalities”
(e.g. presence/absence, different doses, administration schemes, formulations)
as levels.

The term factorial design was coined by R.A. Fisher. Surprisingly, there are
few articles on the methodology of these designs applied to biomedical
research, as opposed to other experimental fields, such as agriculture or indus-
trial production cycles. However, an article by Byar and Piantadosi, published
in 1985 in an oncology journal [23], is remarkable for its clarity and simplicity.
In writing this section, we have drawn heavily on this article and refer the inter-
ested reader to it. Other sources we used are books by Fleiss [39] and by
Cochran and Cox [24] and an article by Green et al [53].

In theory, the factorial design can consider any number of experimental fac-
tors, each with various levels. However, in clinical applications, it is discouraged
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to test more than three treatments in the same trial (and, in fact, it rarely hap-
pens). We will discuss three variants: one with two treatments, each having two
levels, called 2×2 or 22, one with two treatments, each of three levels, called 3x3
or 32, and one with three treatments, each of two levels, called 2×2×2 or 23. We
will apply all of these variants to the parallel group design, while for cross-over
designs we will only consider the 22 variant. Naturally, in factorial designs, place-
bo and the double-dummy technique can be used to blind study treatments.

Parallel group factorial designs. We will start with the easiest factorial
design, the 22 parallel group factorial design. We want to study the effect of
aspirin (A) and a statin (S) in the prevention of myocardial infarction. Each
study treatment (factor) has two levels: “Yes” (present) and “No” (absent).
Patients are randomized to one of four treatment groups: only aspirin (i.e.
aspirin Yes, statin No), only statin (aspirin No, statin Yes), aspirin and statin
together (aspirin Yes, statin Yes), placebo that is, neither aspirin nor statin
(aspirin No, statin No - we indicate this group with Ø).

If the two factors have more than two levels, for example if aspirin is tested
at three dose levels, namely 0, 350, and 700 mg and likewise statin at 0, 100,
and 200 mg, the factorial design has a more complex assignment scheme. In
this case we have a 32 factorial design (that is, two factors, each with three lev-
els), in which the patients are randomized to one of nine groups: only aspirin
350 (A1), only aspirin 700 (A2), only statin 100 (S1), only statin 200 (S2),
aspirin 350 and statin 100 (A1S1), aspirin 700 and statin 100 (A2S1), aspirin
350 and statin 200 (A1S2), aspirin 700 and statin 200 (A2S2), placebo, that is,
neither aspirin, nor statin (Ø).

Let us turn now to the 23 parallel group factorial design. Suppose we add in
our prevention study on myocardial infarction a third treatment, carnitine (C),
to aspirin (A) and statin (S). With three study treatments, each with two lev-
els, the patients are randomized to one of the following eight groups: only
aspirin (A), only statin (S), only carnitine (C), aspirin and statin (AS), aspirin
and carnitine (AC), statin and carnitine (SC), all three drugs together (ASC),
placebo, i.e. none of the three drugs (Ø).

It should be kept in mind that it is not necessary for all factors to have the
same number of levels, although we will not give examples of such cases.

In our example, the end-point is expressed in terms of annual infarction rate
(i.e. the annual proportion of myocardial infarctions adjusted by the number of
days in which the patient is at risk - see chapter 4), indicated with P� . The data
can be summarized as illustrated in Table 10.9 for the 22, 32 and 23 factorial
designs, respectively.

The parallel group factorial design allows two types of questions to be
addressed:
1.What is the effect of each treatment?
1.What is the combined effect of the treatments, or more precisely, is the effect

of one treatment modified by the presence of the other treatment (or treat-
ments)?
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Table 10.10. 22 factorial design with two treatments (aspirin and statin), each with two
levels (present or absent)

Ø (placebo) S (statin)

Ø (placebo) Patients treated with placebo Patients treated with statin
(1) (2)

A (aspirin) Patients treated with aspirin Patients treated with aspirin and statin
(3) (4)

Assuming a balanced design and indicating with the number in brackets the group indi-
cator of the corresponding cell, the following applies.
Simple effects: - for A, two simple effects can be estimated, one by [(3)-(1)], when A

is administered alone and the other by [(4)-(2)], when A is adminis-
tered together with S;
- for S, the two simple effects are estimated by [(2)-(1)], when S is
administered alone, and by [(4)-(3)], when S is administered togeth-
er with A.

Main effects: - for A is estimated by {[(3)-(1)]+[(4)-(2)]}/2
- for S is estimated by {[(2)-(1)]+[(4)-(3)]}/2

Interaction effect: is estimated by [(4)-(3)]-[(2)-(1)]/2 or by [(3)-(1)]-[(4)-(2)]/2, both
expression corresponding to [(4)-(3)-(2)+(1)].

Table 10.9. Typical presentation of data for 22, 32 and 23 parallel group factorial designs

2×2 o 22 factorial design 

Ø (placebo) S

Ø (placebo) P�Ø P�S

A P�A P�AS

3×3 o 32 factorial design 

Ø (placebo) S1 S2

Ø (placebo) P�Ø P�S1 P�S2

A1 P�A1 P�A1S1 P�A1S2

A2 P�A2 P�A2S1 P�A2S2

2×2×2 o 23 factorial design 

Ø (placebo) S

C=absent

Ø (placebo) P�Ø P�S

A P�A P�AS

C=present

Ø (placebo) P�C P�SC

A P�AC P�ASC

The symbols P� with subscript indicate the annualized rates of myocardial infarction of the
corresponding treatment group. For example, P�ASC indicates the annualized rate of my-
ocardial infarction in the group treated with the combination of aspirin (A), statin (S) and
carnitine (C)



For simplicity, let us consider the 22 design and suppose we have an approx-
imately equal number of patients in each group (balanced factorial design).
Please refer to Table 10.10 as an example of how data from such a design are
typically summarized. 

The first question can be answered in two different ways. One is by consid-
ering the so-called simple treatment effects. For treatment A, two simple
effects are to be considered: that of A administered without S, obtained by cal-
culating the difference between the groups A and Ø (the differences are
between group indicators) and that of A administered together with S, obtained
by calculating the difference between the groups AS and S. The same reason-
ing applies to treatment S (i.e. differences between groups S and Ø, and
between AS and A, respectively). The second way to answer the question is by
considering the so-called main treatment effects. This approach makes
sense when the treatments are independent, that is to say the effect of one
treatment is the same whether the other is administered or not. This occurs
when the answer to the second question is negative, i.e. there is no interac-

tion effect between the two treatments. Under these circumstances, consid-
ering for example treatment A, each of the two simple effects described above
is an estimate of the true effect of A, and therefore it is legitimate to calculate
the mean of the two simple effects, which is indeed the main effect (given by
[(AS-S) + (A- Ø)]/2). The main effect, being the mean of the two simple effects,
is a more precise estimate, which means that it has a smaller variability.
Therefore, when there is no interaction, it is convenient to describe the effects
of the treatments in terms of their main effects, because they are at the same
time more concise and more precise (thus requiring fewer patients, all other
conditions being equal, since the variability is smaller). On the other hand,
when there is an interaction, the main effects have no meaning in the factorial
design (see below). 

Referring again to the 22 factorial design, the interaction effect can be esti-
mated by the difference between the simple effects of the two factors, that is,
the difference between (AS-S) and (A-Ø) or the difference between (AS-A)
and (S-Ø). The reader can easily verify that the two differences are alge-
braically equal (both are equal to AS-A-S+Ø). Since we have only one estimate
of the interaction, we do not divide the result by two, as we do when calculat-
ing the main effects. Therefore, although we use all of the data, the variance of
the estimate of the interaction effect is four times greater than that of the esti-
mate of the main effects (it can be shown algebraically that, if σ2 is the variance
of X, the variance of 2X is 4σ2). Consequently, a sample size that is sufficient to
reveal statistically a given main effect will not be sufficient to reveal an inter-
action effect of equal magnitude.

The reader will have noticed that main effects and interaction effects are
found in both the factorial and the stratified designs. Even if formally similar,
they have different meanings and implications in the two designs. The differ-
ence arises from the fact that in the factorial design we consider the interaction
between two or more experimental factors (treatments), whereas in the strat-
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ified design we consider the interaction between one or more experimental fac-
tors (treatments) and one or more sub-experimental factors. In both designs,
the presence of an interaction indicates that the simple effect of one factor is
different at different levels (modalities) of another factor. Returning to the 22

factorial design with aspirin and statin, let’s assume we obtained a significant
interaction between the two factors, more precisely, that the effect of A is
greater when A is taken together with S compared to A taken alone. Under
these circumstances, and assuming the effect is beneficial, any physician would
administer AS rather than A alone. Therefore, the researcher, who has control
of both factors, will choose to summarize the results of the experiment using
the estimates of the simple effects of A and of the interaction between A and S,
rather than the estimate of the main effect of A. In a matching stratified design,
let’s assume the two factors are the treatment (levels: aspirin, placebo) and the
study center (a sub-experimental factor with levels: center 1, center 2). Again,
we obtain a significant interaction between the two factors, the effect of A (A-
placebo) being greater in center 1 than in center 2. In this case, the researcher
has no control over the sub-experimental factor (i.e. cannot choose to use
treatment A only in center 1) and therefore will choose to summarize the
results in terms of the main effect of A (the mean of the effects of A calculated
on the two different centers). Such a mean makes sense also in the presence of
an interaction, because it reflects the different types of centers contributing to
the study population.

Cross-over factorial designs. Factorial designs with treatments assigned
in cross-over schemes are used infrequently. An example of a cross-over 22

factorial design can be found in a paper by Brusasco and colleagues [21]. In
this study on asthmatic patients, two factors are considered: a “provocation”
factor, i.e. an inhaled allergen capable of inducing bronchoconstriction (the so-
called late asthmatic reaction) and a “protection” factor, i.e. the inhaled bron-
chodilator agent formoterol. Both factors have two levels: true allergen and
saline solution (placebo allergen) for the first (equivalent to presence or
absence of provocation), formoterol and placebo for the second (equivalent to
presence or absence of protection). 

The four possible combinations are:
• A: provocation with saline solution and protection with placebo.
• B: provocation with saline solution and protection with formoterol.
• C: provocation with allergen and protection with placebo.
• D: provocation with allergen and protection with formoterol.

The primary end-point is the lowest FEV1 (forced expiratory volume in 1 sec-
ond) value measured between 3 and 8 hours after provocation. Secondary end-
points are the FEV1 value measured every hour up to 15 hours and at 24 hours
after provocation. There are four study visits and the patients are assigned in a
random sequence to one of the four combinations. The visits are separated by
an appropriate wash-out period. Since the authors chose not to balance the
sequences, they implicitly assumed that there was no meaningful period effect.
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On the contrary, had the period effect been considered important, it would
have been necessary to ensure some degree of balancing of the sequences, by
applying one or more Latin squares (see section 10.6.2). For example, select-
ing the first Latin square of Table 10.7, a multiple of 4 patients could have been
assigned to the following four sequences: 

ABCD
BADC
CDAB
DCBA

where A, B, C and D represent the four combinations described above, each
to be administered on one of the four visits. Within each group of four patients
enrolled in the study, each patient would have been assigned to one of the four
sequences.

Whether or not the sequences are balanced, in such a design, the effects typ-
ical of a cross-over design can be studied (treatment, period, subject, etcetera-
see section 10.5.1) in addition to those typical of a factorial design (individual
effects of the experimental factors and interaction effect).

Another example of within-patient factorial design is described in chapter 7
of Senn’s book [93].

10.8.2. Advantages and Disadvantages 

The factorial design can be useful in two situations: 
1.When a primary question concerns the interaction between treatments, in

addition to their individual effects.
2.When there is sufficient confidence that the study treatments are independ-

ent, that is, have no interaction with one another.
In the first case, the advantage is obvious, but there is a cost to be paid in

terms of sample size of the study: this must be such that the interaction effect
can be detected statistically, which requires approximately four times more
patients than what is required to detect main effects of equal magnitude (see
above).

In the second case, the advantage of a single study with a factorial design
assessing multiple treatments over separate studies (one for each treatment of
interest) is a smaller sample size. This is because all of the patients are utilized
to evaluate each of the treatments of interest. The cost is that one can only par-
tially verify the assumption of no interaction. In fact, the small sample size
allows to reveal statistically the presence of an interaction only if such interac-
tion is very big, much bigger than the threshold of clinical relevance used for
the effects of the individual treatments. To make things worse, in the presence
of a small interaction (i.e. not big enough to be detected statistically, given the
sample size), the researchers would not only conclude mistakenly that there is
no interaction, but would also obtain main treatment effects which are diluted,
i.e. smaller than what they really are for some levels of the other experimental
factors (see below).
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As always, there are complications and open issues not to be underestimat-
ed. Three of these are discussed in the above mentioned articles by Byar and
Piantadosi [23] and Green, et al. [53].

Multiple comparisons. The “raison d’être” of the factorial design is that of
evaluating the effect of two or three treatments at the same time, using a lim-
ited number of patients. In the context of the frequentist approach, while for
non-factorial designs multiple comparisons require a “penalty” in terms of sam-
ple size (see section 4.7), for factorial designs such a penalty is usually not paid.
Byar and Piantadosi, in their discussion, do not seem to worry much about this
aspect. However, from our point of view, a double standard is being used
(favoring the factorial design), and the question remains open.

Potential reduction of the individual treatment effects in the pres-

ence of interaction. As discussed above, if a factorial study reveals a statisti-
cally significant interaction effect, the results are summarized by reporting the
interaction and the simple effects of the individual treatments (as opposed to
the main effects). Unfortunately, when the treatment effects are analyzed as
simple effects, there is a loss of power, because not all study patients are used,
as for the main effects. When the interaction, even though present, is not
revealed in the study, i.e. does not reach statistical significance, the problem of
the loss of power is more treacherous, because in this case the data are sum-
marized by reporting the result of the interaction test and the main effects of
the individual treatments. Under these circumstances, the overall dilution of
the main effects, due to the interaction (present but not recognized), remains
hidden.

The concepts of statistical and biological interaction between treat-

ments are interconnected but not identical. Statistical interaction is a
mathematical phenomenon. Going back once more to our example of the 22 fac-
torial study, stating that there is no interaction between A and S is equivalent
to stating that, if A improves the effect obtained in the placebo group by the
amount Δ then the combination AS improves the effect obtained in the group S
by the same amount Δ. Δ can be expressed both in terms of absolute or relative
difference. The problem is that the absence of interaction in terms of absolute
difference does not necessarily imply the absence of interaction in terms of rel-
ative difference and vice versa. For example, let’s assume that the rate of
myocardial infarction is 0.5 in the placebo group, 0.3 in group A, 0.3 in group S
and 0.1 in group AS. Comparing A with placebo and AS with S, one will infer
that the same absolute reductions have occurred (because 0.3-0.5 = 0.1-0.3).
However, the relative reductions of the rates of myocardial infarction are not
the same (because 0.3/0.5 ≠ 0.1/0.3). It is evident that the presence or absence
of a statistical interaction depends on the mathematical formulation of the
problem. Therefore, statistical interaction cannot coincide with biological inter-
action. In other words, even if it is likely that a strong biological interaction
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implies a strong statistical interaction, the lack of biological interaction does not
necessarily imply the lack of statistical interaction. 

10.8.3. Conditions of Applicability

In addition to the methodological problems reported in the previous section,
the factorial design can pose feasibility problems, due to the complications in
the conduct and analysis of the study. As discussed by Fleiss [39], when many
treatments are tested, the number of eligibility criteria for a patient to enter the
study is likely to increase, the rules for dose adjustments become more com-
plex, the adverse events expected from the treatments increase and dealing
with such events becomes unavoidably more complex, and so on.

The above mentioned paper by Green and colleagues, reports examples of tri-
als in which the factorial approach worked well, together with examples in
which it generated results that were difficult to interpret.

One area in which the factorial design can be very useful is the study of fixed
combinations, which are used with increasing frequency in many therapeutic
areas. When studying a fixed combination of treatments, one is often interested
in both the individual effects and the interactions between the components of
the combination. The use of factorial designs for the assessment of fixed-dose
combinations is endorsed by the ICH guidelines [59, 62]. In fact these authorita-
tive guidelines recommend a greater use of this design for combinations, beyond
the field of antihypertensive agents, where this approach is common. The guide-
lines also provide useful guidance as to the advantages and limitations of the use
of factorial designs in evaluating fixed-dose combinations. Factorial designs are
particularly useful to evaluate effectiveness when both agents affect the same
variable and to evaluate safety and tolerability when one agent is intended to
mitigate the side effects of the other [59]. One dose of each agent can be stud-
ied, if the doses are known. In addition, the factorial design is well suited to test
multiple doses of each component of a combination. When the factorial design is
used to this end, the sample size need not be large enough to distinguish single
cells from each other in pair-wise comparisons, because all of the data can be
used to derive dose-response relationships for the single agents and the combi-
nations, i.e. a dose-response surface [59]. Interestingly, the guidelines acknowl-
edge that the doses that will eventually be approved for marketing need not be
the ones actually tested in the study, but, based on the dose-response surface,
may be dose levels in between those studied [59]. The low and high end of the
dose spectrum tested in a factorial design require special attention. With regard
to the low end, if the tested dose is lower than the recognized effective dose, it
is important to have evidence that there is a separation from placebo. The guide-
lines suggest that this can be accomplished both within the factorial study, by
increasing the sample size of the low dose and of the placebo cells to allow a pair-
wise comparison(s), or through a separate study of the low dose combination.
For the high end of the dose spectrum, it may be necessary to confirm that both
components of the combination contribute to the overall effect [59].
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10.9. Split-Plot Design

10.9.1. Characteristics

The split-plot technique is frequently used in agricultural, industrial and labo-
ratory experiments, while it is rarely applied to clinical trials. Therefore, we will
only briefly introduce the design based on this technique.

The split-plot design is potentially useful in two cases. The first is when one
would want to use the randomized block design (see section 10.3.3), but the
number of treatments (and therefore the size of each block) is too large with
respect to the number of experimental units available. The second is when one
wishes to randomize groups of units to the different levels of one experimental
factor, and then to randomize the individual units of each of these groups to the
levels of the other experimental factor, which is administered on top of the for-
mer. An example of the first case, applied to the clinical field, will be discussed
shortly. An example of the second case could be an experiment on fruit trees,
where the effects of different pesticide sprays (first experimental factor) and
pruning techniques (second experimental factor) are to be studied: it could be
reasonable to treat groups of adjacent plants with the same pesticide and ran-
domize the individual trees of each group to the different pruning techniques.

In the split-plot design, there are two experimental factors: one is called the
“sub-plot” treatment (this nomenclature is clearly referred to agricultural
experiments; applied to clinical trials, we would use the term sub-group) and is
administered to the single experimental units, as defined in chapter 2; the other
is called “whole-plot” treatment (in our case, whole group) and is administered
to sets of experimental units. 

In clinical applications, a modified form is generally used in which the whole-
plot factor is not an experimental factor, i.e. a treatment, but rather a sub-
experimental factor. To illustrate this design, we shall use an example taken
from Fleiss [39]. We want to study the effect of three treatments on the con-
centration of sodium in the urine, in both males and females. However, there
are only 10 subjects available, 5 males and 5 females; therefore, the randomized
block design is not applicable (we would need blocks of three males and three
females, to whom the three treatments would be administered). As proposed
by Fleiss, one feasible option could be to use the design illustrated in Table
10.11. All three experimental treatments are given to each of the 10 subjects,
using an independent random sequence for each subject. In this design, the
treatment is considered the sub-plot factor, since it is administered to every
subject, while gender is considered the whole-plot factor, since it is “applied” to
sets of subjects (that is, the level male is “applied” to 5 of the 10 units and the
level female to the remaining 5). 

This design can be considered the combination of two randomized block
designs, one applied to males and one to females. A block is represented by a
subject receiving all three treatments.

We assume that each treatment is administered only once and that the study
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is rigorously planned, in particular, that a wash-out interval of appropriate
length is applied at each treatment switch.

The comparisons concerning the whole-plot factor (in our example, the com-
parison between males and females) are less precise and the corresponding sta-
tistical tests less powerful than those concerning the sub-plot factor (in our
example, the comparisons among the treatments A, B and C). What causes this
increase in variability when testing the whole-plot factor as compared to the
sub-plot factor? We shall use the type of reasoning introduced in section 10.1.
The residual variance for comparing males and females, i.e. for carrying out a
statistical test on the main effect of the whole-plot factor, is based on the vari-
ability around the two means of the end-point for males and females, in turn
based on the dispersion of the units belonging to all treatment and gender
groups around these means. The residual variance for comparing the treat-
ments at the level of the entire experiment, i.e. for carrying out a statistical test
on the main effect of the sub-plot factor, is based on the variability around the
means of the end-point for the treatments. Since these are computed within
each level of the gender factor, the variability around them is obtained as a
mean of two separate terms, each computed considering only the units belong-
ing to one level of the gender factor. It is intuitive that the variability term used
for the gender comparison is bigger than the variability term used for the treat-
ment comparison, because the latter is computed among units of the same gen-
der, while the former is computed among all units considered together. 

The interaction between gender and treatment, i.e. between whole-plot and
sub-plot factors, depends on how the differences between the levels of one fac-
tor change in the different levels of the other. Since the differences between
the levels of the sub-plot factor (treatment) can be calculated within each
whole-plot (gender) level, the inference on the interaction is also based on the
variation between the means of the levels of the sub-plot factor (treatments),
separately for each level of the whole-plot factor (males and females).
Therefore, this inference has a precision comparable to that of the main effect
of the sub-plot factor. 
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Table 10.11. Split-plot design with three treatments 

Males Females

(1° level of “whole-plot” factor) (2° level of “whole-plot” factor)

Subjects Tr. 1 Tr. 2 Tr. 3 Subjects Tr. 1 Tr. 2 Tr. 3 

1 A C B 6 C A B
2 B A C 7 B C A
3 C B A 8 A C B
4 A C B 9 A B C
5 C A B 10 B A C

Tr = treatment. The treatment is the “sub-plot” factor (with three levels)



10.9.2. Conditions of Applicability

The split-plot design should be considered only when one of the following two
conditions is met [27]:
• When dealing with a factor that is suitable to be “sacrificed”, in the sense that

its main effect is not of interest and, therefore, estimates with low precision
are acceptable; this factor is included in the design because its interaction
with the other factor is of interest (as stated above, such interaction can be
precisely estimated).

• When, for practical reasons, it is convenient that one of the factors remains
constant inside each block; this situation arises frequently in agriculture.
The split-plot is an example of a design with confounding. In jargon, the

whole-plot factor is called “confounded”. While in epidemiology the term con-
founding indicates a problem, which causes biased estimates (see section 3.2),
in the experimental setting the term confounding indicates an intentional char-
acteristic of the study. This consists of “sacrificing” the comparisons among the
levels of the confounded factor (in fact, accepting less precise estimates for this
factor) at the advantage of the other factor (in fact, obtaining more precise esti-
mates for this non-confounded factor). There are designs in which the con-
founded factor is the interaction effect, but these designs are only rarely useful
in clinical research. 

For a more detailed discussion of the topics introduced in this section we
refer the reader to [24], [27] and [39].

10.10. Non-Controlled Designs in Phase II 
Oncology Studies

As discussed in chapter 12, the clinical development of pharmacological treat-
ments in oncology has some peculiarities, due, on one side, to the seriousness of
the disease and, on the other, to the high level of toxicity of many of the experi-
mental compounds (especially the so-called cytotoxic chemotherapic agents).

In this section, we briefly discuss the non-controlled designs, typical of the
early phase II development of these compounds. The justification for the use of
non-controlled designs has been given in section 8.8.

Non-controlled designs can be:
• Single-stage.
• Multi-stage (two or more stages).

In both variants, the end-point is typically a binary variable, for which success
(response) is defined as a reduction of the tumor mass greater than a prefixed
percentage of the pre-treatment size. The criteria used to measure the tumor
mass, its change over time and the percent reduction qualifying as a response
must be recognized by the scientific community (see for example, the so-called
RECIST criteria [101]). The end-point (success/failure) has a binomial distri-
bution (see for example [26] or [105]).
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In the single-arm single-stage design, the simplest, there is only one group
of patients treated with the compound under study. We will use the following
symbols:
• π = true probability of response (unknown and therefore to be estimated). 
• p = statistic for making inference on π.
• pobs = probability (frequency) of response observed in the study, also indi-

cated with π̂(that is, pobs = π̂ is the point estimate of π).
• π0 = probability of response to the standard therapy or, lacking a standard

therapy, a response level considered uninteresting.
• π1 = probability level representing a clinically significant improvement com-

pared to π0.
The sample size n of the study is determined so that the statistical test used

to verify the hypothesis that π is greater than or equal to π1, against the null
hypothesis that π is less than or equal to π0, has the desired risk of making a
type I error (acceptable risk = α) and type II error (acceptable risk = β) (see
chapter 5). Keeping in mind that the primary objective of a phase II study is to
select compounds to bring into phase III, in choosing α and β one must consid-
er that the consequence of a type I error is that a phase III trial will be per-
formed on a compound that has no clinical interest, while the consequence of
a type II error is that a promising compound will be discarded. The statistical
test is performed following the logic discussed in chapter 5 for the unidirec-
tional hypothesis system; therefore, the result of the test is determined by a
cutoff, s, with the null hypothesis rejected if the total number of successes is
greater than or equal to s and the alternative hypothesis rejected if the total
number of successes is smaller than s.

Often, as an alternative to the approach described above, but with a com-
pletely equivalent result (see chapter 5), n is chosen so that the confidence
interval on π at a given 1-α confidence level (for example 95%) has a prede-
fined width (for example, its lower limit is higher than π0).

The greatest limit of the single-stage design is that it does not permit the trial
to be stopped early if the response rate becomes unacceptably low. This is a
serious limit, since the compounds used in oncology are generally very toxic. It
is overcome by using single-arm multi-stage designs. Schultz et al [92] and
Fleming [40] describe a general method for constructing such designs.

At the end of each stage (generically indicated with j) of a multi-stage study,
one of three decisions can be made:
1.Terminate the study because of failure (that is, the alternative hypothesis

that π is greater than or equal to π1 is rejected), if the overall number of suc-
cesses observed on all patients studied up to that point is less than or equal
to a pre-established threshold, sj1.

2.Terminate the study because of success (that is, the null hypothesis that π is
smaller than or equal to π0 is rejected), if the overall number of successes is
greater than or equal to another preestablished threshold, sj2.

3.Continue the study if the overall number of successes is between sj1 and sj2

(note that sj1 < sj2).
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If the trial continues to the final stage, say k, then one of the two hypotheses
must be rejected, hence sk1 = sk2 -1.

These designs use the sequential approach that will be covered in the next
chapter (section 11.2). Briefly, the sample size and the thresholds of each stage
are determined in such a way that the overall probabilities αstudy and βstudy for the
entire study are the desired ones. It is important to note that in multi-stage
designs multiple tests are performed and, therefore, the problem of multiplicity
of statistical tests, which we have mentioned many times (see in particular sec-
tion 4.7), is encountered. Thus, if we were to perform each test at each stage at
a given level of α, the overall probability of making a type I error in the whole
study would be higher than α. Furthermore, in multi-stage designs, there is the
additional complexity that the tests are correlated, because they are partially
performed on the same data. Therefore, some ad hoc adjustment must be made
to maintain the type I error of the whole study at the desired level of αstudy (see
section 11.2). This issue must be kept in mind also when calculating the confi-
dence intervals on the probability of response: those constructed for a single-
stage design are not valid for a multi-stage one and require an adjustment. The
interested reader can consult the article by Atkinson and Brown [6] on this topic.

Two types of design, both in two stages, are widely used: the design proposed
by Gehan in 1961 [47] and the one proposed more recently by Simon [95]. In both
designs, the study can be terminated in the first stage only in case of failure.

There is a vast literature on these designs, from which we single out the fol-
lowing articles: for a design explicitly considering toxicity, we recommend an
article by Bryant and Day [22]; for a three-stage design, one by Ensign et al [34];
for a Bayesian design, those by Thall and Simon [99] and by Thall et al [100];
finally, we recommend the critical revision on phase II designs in oncology by
Mariani and Marubini [68].

As outlined in section 8.8, the non-controlled design used in oncology belongs
to the before-after treatment family of designs and suffers from all its limita-
tions. For this reason, it is used only for screening purposes (see section
12.3.2).

Summary

There are two main categories of designs for clinical trials: the parallel group
design, in which each group receives only one of the study treatments, all
groups being treated simultaneously, and the cross-over design, in which each
group receives more than one treatment in sequence, but only one of the pos-
sible sequences of study treatments.

The experimental designs differ with respect to:
• The level of bias of the estimates.
• The precision of the estimates, i.e. the power of the statistical tests.
• The simplicity of study conduct, data analysis and interpretation of the

results.

Summary 275



Two methods can be used to reduce variability without increasing the sample
size:
• Grouping of subjects (units) with respect to common characteristics (in stra-

ta or blocks).
• Replication of measurements on each subject. 

However, the use of these strategies produces the undesired effect of
increasing the complexity of the study, at both a practical/operational level and
at a conceptual/methodological level. In particular, the use of within-patient
comparisons requires that the patients accept a burden of visits and procedures
which is often quite heavy, and, from a methodological one, that the
researchers accept a considerable increase in the number of assumptions,
which may be more or less verifiable. To justify the use of these strategies,
these inconveniences must be balanced by relevant “gains” in terms of preci-
sion/efficiency and accuracy of the estimates.

Variants of the more frequently used designs exist, which are useful in spe-
cial situations. A few examples are as follows. In phase I, the controlled dose-
escalation designs are frequently used. These designs, in which each patient
receives only one dose level, allow the evaluation of higher doses, only once suf-
ficient evidence on the safety of the lower doses has been obtained. Sometimes,
for the first assessment of the dose-response curve of a new compound, the
dose-titration design is used, in which increasing doses (if well tolerated) are
administered to each patient, both in the active and in the control groups, and
the entire dose-response curves are compared between groups. In the “N of 1”
design, two or more treatments are repeatedly administered to a single patient:
this approach is particularly useful in the study of symptomatic treatments of
rare diseases or rare variants, for which the common approaches cannot be
applied, simply because it is impossible to find the necessary number of
patients. The factorial design can be useful for studying two or more treatments
simultaneously, when there is interest in both the individual effects and the
combined ones.

Some therapeutic areas, such as oncology, present ethical problems of such
magnitude that the trial designs must address these concerns first and fore-
most. Only once these are addressed, the classical methodological criteria for
design selection can be used. The multi-stage designs without control group are
frequently used in early phase II of the clinical development of such com-
pounds.
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11
Study Variants Applicable 
to More than One Type of Design:
Equivalence Studies, Interim 
Analyses, Adaptive Plans 
and Repeated Measurements

In this chapter we will cover study variants that can be applied both to
designs based on between-subject comparisons and to those based on within-
subject comparisons.

We will cover:
• Equivalence and non-inferiority studies.
• Studies with intermediate analyses, referred to as “interim analyses”.
• Studies with adaptive (flexible) plans.
• Studies with repeated measurements.

These are not proper experimental designs, that is, are not ways of assigning
patients to treatments (see chapters 9 and 10), but study variants that can be
applied to different types of design, in order to deal with special types of objec-
tives, end-points and analyses.

11.1. Equivalence and Non-Inferiority Studies

11.1.1. Characteristics

The efficacy and safety of a new treatment can be studied by comparing it with
one or more established treatments, where such treatments exist. These com-
parisons, if rigorously performed, are very useful to position a new treatment in
the context of the current best practice. What are its advantages, if any, over
the therapeutic standard? Is it worthwhile including it in the hospital formula-
ries? If so, at what level of reimbursement? These are but a few of the funda-
mental questions that will determine the success or failure of a new treatment
on the market. If the scientists in charge of the clinical development of a new



treatment do not address such questions through well designed studies, the
health care system will in any case return its verdict, which, for several reasons
(need to contain costs, attachment to treatments that have gained acceptance
through use and time, fear of the unknown) will tend to favor existing treat-
ments. Furthermore, for the more serious diseases, comparisons to active treat-
ments (or presumed active) are frequently preferred, even when the active
comparator is not universally acknowledged as a standard by the scientific com-
munity. This is because of the considerable ethical problems caused by the use
of placebo in serious and life threatening conditions. 

The comparison between active treatments can be performed with two dif-
ferent objectives:
• Demonstrate the superiority of the new treatment over the standard (i.e. the

one acknowledged as the best by doctors and patients).
• Demonstrate the equivalence or, more frequently, the “non-inferiority” of the

new treatment compared to the standard.
Clinical trials with the former objective are called superiority studies. These

studies are the object of Chapters 4, 5 and 6. Trials with the latter objective are
called equivalence or non-inferiority studies. The difference between equiv-
alence and non-inferiority is that in equivalence studies the aim is to demonstrate
that the new treatment is neither inferior nor superior to the standard one, while
in non-inferiority studies the aim is only to demonstrate that the new treatment is
not inferior to the standard one (if it is better, it is still not inferior). When the
comparison between treatments concerns clinical end-points, non-inferiority
studies are most often used, because both equivalence and superiority are typi-
cally considered “success”. Instead, when the comparison concerns pharmacoki-
netic or pharmacodynamic end-points (for example, the “area under the curve” of
the plasma concentration of the active compound), equivalence studies are often
required, since the “superiority” of the new treatment compared to the standard
one can be as problematic as its “inferiority”. This is especially important in the
development of the generic drugs (identical copies of marketed drugs, no longer
protected by a patent), and of new formulations, therapeutic regimens and routes
of administration. In all of these cases, the active principle is the same and the
clinical development process is greatly facilitated if one can demonstrate that the
key pharmacokinetic and/or pharmacodynamic variables of the new treatment are
equivalent, i.e. neither superior, nor inferior, to the standard one. 

Although the statistical analysis of equivalence studies differs slightly from
that of non-inferiority studies, the methodological and practical issues are very
similar in the two types of study. Therefore, from now on, for simplicity we will
use the term equivalence to indicate both equivalence and non-inferiority,
unless a distinction between the two kinds of study is required. The terms supe-
riority, equivalence and non-inferiority will be used in relation to a single end-
point, typically the primary one. The active comparator will be referred to as
“reference” or “standard” treatment. As discussed in Section 2.4, the new treat-
ment (or, if not new, the one which is the main focus of the study) will be
referred to as “experimental” treatment. 
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In clinical research, equivalence studies are performed in the following situa-
tions:
• When it is sufficient to demonstrate equivalence in terms of efficacy between

the experimental and the reference treatments, having already demonstrat-
ed (or having the intention to do so) that the new treatment has other advan-
tages over the standard one, for example that it has a better safety/tolerabil-
ity profile, it is easier to administer, it is less expensive to manufacture.

• When one wants to develop a therapeutic alternative to the available treat-
ment(s), based on a different active principle and/or a different mechanism
of action. It may be an advantage to have several therapeutic options, even if
their efficacy and safety are on average about the same. Indeed, the average
response may not apply to the individual subject. Some patients may respond
better to one treatment than to another; some may be allergic to a particular
treatment; some may develop tolerance to one specific compound and so on.
Oncology and infectious diseases are therapeutic areas where it is especially
useful to have access to multiple products with similar therapeutic value, as
this helps to fight the development of resistance.
When considering the option of an equivalence study, three important ques-

tions must be asked. 
The first question is whether the use of placebo is ethically acceptable.

Generally, the answer is negative for serious diseases for which one or more ref-
erence treatments have shown efficacy consistently across all major clinical tri-
als. On the other hand, the use of a placebo may be acceptable in non-serious
diseases and in those areas where the available therapy shows inconsistent
results across major trials. When a placebo is acceptable, the three-arm study,
with placebo, experimental and reference treatments, is recommended (the
reasons will be discussed below).

The second question concerns the treatment to be chosen as active control.
As discussed in Chapter 7, in many therapeutic areas more than one active
treatment is available, but no one can unequivocally be considered the stan-
dard. Which treatment should be used as the reference in these cases? We refer
the reader to chapter 7 and to the specific ICH guideline [62] for a more in
depth discussion of this topic.

The third question concerns the main reason for performing an equivalence
study. Such a study may have two different objectives:
• Show indirectly superiority over placebo, i.e. use an active comparator

because placebo is not acceptable. 
• Show that the experimental treatment has no important loss of efficacy com-

pared to the reference active comparator. 
For the reasons highlighted at the beginning of this section, many real life

clinical trials have the latter objective. 
The choices one makes in addressing these three questions have an impact in

terms of study design, sample size and methods for the statistical analysis, as
outlined in the next sections.
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11.1.2. The Statistical Analysis of an Equivalence Study 

The choice between the objective of demonstrating superiority and that of
demonstrating equivalence has a major impact on the planning of the study,
especially when defining the threshold of clinical significance (see section 4.1),
calculating the sample size and planning the statistical analysis. A study
planned for one objective can hardly be used for the other. We refer the read-
er to an interesting document on this topic, issued by the Committee for
Proprietary Medicinal Products (CPMP) of the European Community [36].

A common mistake made when conducting equivalence studies is that of plan-
ning and analyzing them as if they were superiority studies. The mistake resides
in the fact that the outcome of the statistical test for superiority is irrelevant for
assessing equivalence, whether it is statistically significant or not. A non-signifi-
cant outcome neither allows the rejection of the null hypothesis of equality
between study treatments in the superiority setting, nor allows the acceptance
of the same null hypothesis in the equivalence setting because it may not have
enough power to detect differences that are outside the threshold of equiva-
lence. On the other side, a statistically significant outcome of such a test does
not necessarily imply that the treatments are not equivalent, because the differ-
ence between the treatments, even if statistically significant, could be clinically
irrelevant and therefore fall within the threshold of equivalence.

In order to verify equivalence between study treatments correctly, it is neces-
sary to set up a system of hypotheses in which the null hypothesis is that the
treatments are not equivalent, while the alternative hypothesis is that the treat-
ments are equivalent. In other words, in equivalence studies, the system of
hypotheses is inverted compared to superiority studies. The statistical analysis
and the sample size calculation must be based on the right system of hypotheses. 

Let’s assume we are conducting an equivalence study, using means as the
group indicators and the absolute difference between treatment means as the
signal for an efficacy end-point. The concepts can be extended to relative
effects (i.e. the ratio between treatment effects) with only minor changes.
Furthermore, let’s assume that the experimental and the reference treatments
are in reality identical in terms of efficacy. Still, we cannot expect that the study
will give a point estimate of this difference equal to zero. In fact, there is a 50%
chance that the point estimate will be positive and a 50% chance that it will be
negative. Therefore, the point estimate alone does not suffice to show equiva-
lence.

The starting point when planning an equivalence study is the definition of the
“delta of clinical non-relevance” or “margin of equivalence” (referred to as Δ,
see section 4): this is the greatest difference between the study treatments, in
terms of the chosen group indicator, judged not clinically relevant (see section
4.1) and, therefore, compatible with the conclusion of equivalence. Since we
are using the difference between treatment means as the signal, the analysis is
performed by computing a (1-α)% confidence interval on the observed mean
treatment difference. Equivalence between the treatments is demonstrated if
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such confidence interval is entirely included between -Δ and +Δ. (not touching
the limits). To grasp the sense of this rule, it helps to recall that the confidence
interval at the (1- α)% level (for example, at the 95% level) is defined as the
set of values of the statistic which includes the true value of the unknown
parameter (i.e. the true treatment effect) with a probability equal to (1-α)%.
Therefore, when the observed confidence interval on the mean treatment dif-
ference is entirely included between -Δ and +Δ, there is a high probability (in
fact equal to (1- α)%) that the true value of the parameter (true mean treat-
ment difference) is a clinically irrelevant difference between the treatments.

From this discussion, it should be clear that an equivalence trial aims to
demonstrate that the experimental and the reference treatments do not differ
by more than a pre-specified small amount (i.e. Δ).

If the trial is a non-inferiority one, the two-sided (1- α)% confidence interval
must be replaced with the one-sided (1- α/2)% interval. The limit that matters
depends on the direction of the treatment difference. Assuming that the differ-
ence is experimental treatment minus reference treatment, when a bigger dif-
ference reflects a better outcome for the experimental treatment, we will have
to verify that the lower limit of the one-sided (1-α/2)% confidence interval (for
example 97.5%) computed on this difference is not touching the -Δ non-inferi-
ority margin. Of course, the opposite applies when the smaller the difference
the better the outcome.

If the results of the study are such that the whole confidence interval is locat-
ed between -Δ and 0 in the former case, or between 0 and +Δ in the latter, with-
out touching the limits, we have shown that the reference treatment is statisti-
cally superior to the experimental one (see chapter 5 for the connection between
statistical test and confidence interval). However, assuming the Δ has been cho-
sen correctly, this result would not negate the conclusion of non-inferiority of the
experimental vs. the reference treatment because, as stated above, the very aim
of a non-inferiority trial is that of demonstrating that the experimental treatment
is not inferior to the reference one by an amount equal to Δ or bigger.

If it is not possible to accept any degree of inferiority of the experimental
treatment as compared to the reference one, the use of a non-inferiority trial
may become questionable [38].

11.1.3. Planning and Implementation Problems

Equivalence studies have specific statistical and practical problems compared
to superiority studies, which make them difficult to implement, analyze and
interpret. In this section and in the next one we will give a brief overview of
such problems.

Choice of the equivalence margin. As described above, once the appro-
priate indicator summarizing the response at a treatment group level and the
corrisponding signal have been defined, the planning of an equivalence study
begins with the selection of a treatment difference for the chosen signal that is
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judged a priori as clinically irrelevant (see section 4.1). If it is difficult to
define a priori the smallest clinically relevant difference for a superiority
study, due to the considerable subjective component of the choice, then it is
even more difficult to define the largest non-clinically relevant difference (i.e.
the equivalence margin) for an equivalence study. For a long time there has
been no consensus in the scientific and regulatory community in defining the
equivalence margin. Recently (January 2006), a guidance document on this
topic, under the patronage of the CPMP, has come into effect [38]. The release
of this document has been delayed several times because of the complexity of
the topic. Clearly, the equivalence margin must be smaller than the difference
between the standard treatment and placebo, as observed in previous studies.
The problem is to define how much smaller it must be. The new guideline clear-
ly states that “it is not appropriate to define the non-inferiority (equivalence)
margin as a [fixed] proportion of the difference between comparator and place-
bo”. The choice of a fixed proportion, say 30%, of the difference between ref-
erence treatment and placebo is misleading when the reference has either a
large advantage over placebo or a marginal one. In the former case, 30% of the
difference between reference and placebo could still be clinically relevant, thus
resulting in a too large equivalence margin. In the latter case, since the differ-
ence between reference and placebo is barely above the threshold of clinical
relevance, 30% of this difference would be too small for an equivalence margin,
as it would translate into an enormous sample size that would render impossi-
ble the conduction of the equivalence study. 

The guideline recognizes the two kinds of objectives for non-inferiority stud-
ies reported in the previous section (see last two bullet points of section 11.1.1).
In both cases, a systematic review of the literature should be conducted to iden-
tify the studies relevant to the comparison of the reference treatment with
placebo in the condition being studied. 

With regard to the first objective, i.e. to show indirectly superiority over place-
bo, the guideline reads as follows. “The historical confidence interval compares
the reference product with placebo (r – p). The planned trial comparing the test
and reference products will also produce a confidence interval (t – r). If these
intervals are combined, an indirect confidence interval comparing the test prod-
uct and placebo can be obtained (t – p). Δ (i.e. the equivalence margin) can be
defined as the lower bound of (t – r) that ensures that the lower bound of the
indirect confidence interval (t – p) will be above zero. As the comparison is indi-
rect, it might be wise to be conservative and select some value smaller than that
suggested by this indirect calculation”. Note: the guideline uses the expression
“test product” for what we indicate as experimental treatment [38]. 

As for the second objective, i.e. to show that the experimental treatment has
no important loss of efficacy compared to the reference active comparator, the
choice of the equivalence margin cannot be based only on historical trials where
the reference treatment was compared to placebo. In this case, we must first
estimate the equivalence margin as outlined above, but then we may have to
reduce it further to ensure that the difference between the two treatments is
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irrelevant. On this point the guideline reads as follows: “to adequately choose
delta, an informed decision must be taken, supported by evidence of what is
considered an unimportant difference (between the test and the reference
products) in the particular disease area” [38].

The choice of the equivalence margin is complicated further by the typical
problems affecting any systematic review of the literature, such as selection
and publication bias, inconsistency of effects and of experimental conditions
over time and across different studies, etcetera. Such problems are particular-
ly acute when the studies available from the literature are few, and/or under-
mined by important design issues, and/or inconsistent in their outcomes. The
reader is referred to section 11.1.4 and to the above mentioned guideline for a
wider discussion of these and other related issues.

Quality of an equivalence study. In superiority studies, the better the
quality of the study (appropriate sample size, variability of results kept under
control, protocol respected in every part, etc.), the greater the likelihood of
detecting a clinically relevant difference between the study treatments, when it
exists. Therefore, the researchers have a clear incentive to conduct the study
in the best possible way. In equivalence studies, the situation is to some extent
reversed, since the goal is to rule out a clinically relevant difference between
the study treatments. Since the poorer the quality of the study, the lower the
likelihood of detecting differences between treatments, even when they do
exist, the researcher has little incentive to conduct the study in the best possi-
ble way. In fact, sloppiness does not necessarily increase the likelihood of show-
ing equivalence, because variability also plays a role: when the quality is low,
the variability may be high and this reduces the possibility of showing equiva-
lence because the confidence interval on the treatment difference is enlarged.
However, the principle that low quality tends to reduce the possibility of catch-
ing real treatment differences, i.e. increases the likelihood of showing equiva-
lence, remains valid. Thus, reassurance on the quality on the study conduct is
an essential requisite for interpreting correctly an equivalence study showing
“positive” results (see also section 11.1.4). Unfortunately, the quality of a trial
can be judged only when it is complete.

Sample size. It is a commonly held view that performing equivalence stud-
ies is convenient, because they require smaller sample sizes compared to their
superiority counterparts (i.e. studies with the same design, objectives and end-
points). Is this true? And why or why not?

To answer these questions, it is helpful to compare the approach to signifi-
cance testing suitable for equivalence study to that suitable for superiority
studies. For this comparison, we will explicitly consider a non-inferiority trial,
because in clinical research the non-inferiority approach is more frequently
used than the equivalence one. Let us suppose that: (i) the treatment compar-
ison is made in terms of mean difference; (ii) for the end-point of interest the
higher the result, the better the patient’s condition; (iii) the non-inferiority
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margin is 10 (for example, 10 meters of walking distance on a treadmill). Under
these circumstances, to prove non-inferiority, the one-sided 97.5% confidence
interval computed on the treatment mean difference (experimental treatment
– reference treatment) should lie entirely above -10. Instead, to prove superi-
ority of the experimental treatment over the reference one, the same confi-
dence interval would have to be placed completely above 0. In fact, we know
from chapter 5 that this is equivalent to obtaining a statistically significant result
at the 2.5% significance level with a one-sided test. Now, let’s assume that the
results of our study give an estimate of the treatment mean difference of 2 (for
example, 2 meters on the treadmill) and a lower limit of the one-sided 97.5%
confidence interval computed on this difference of -5. With such results, we
would be able to show non-inferiority, but not superiority, of the experimental
treatment vs. the reference one. Clearly, given the observed treatment mean dif-
ference of 2, we can find another confidence interval at a lower confidence level
(for example at the 85% level) that is completely placed above 0. In other words,
we can demonstrate superiority at a higher significance level (in the example at
the 15% level) than conventionally required (5%). Therefore, we can equate
running a non-inferiority study to running a superiority study at a less stringent
significance level. This, in turn, implies that the sample size needed for a non-
inferiority study is indeed smaller than the one needed for the corresponding
superiority study. 

The above conclusion, however, only applies when the non-inferiority study
and its superiority counterpart are conducted under identical experimental
conditions, which include a non-inferiority margin in the former study identical
to the threshold of clinical significance (superiority margin) in the latter. But
this cannot be the case. Would it be realistic to plan a superiority study when
expecting a clinically irrelevant treatment difference? Going back to our exam-
ple, would any researcher plan a superiority study, if expecting a treatment dif-
ference as small as 2 meters of walking distance on a treadmill? And if such a
study were conducted, would the scientific community be willing to judge one
of the two treatments superior to the other, given such a small clinical advan-
tage? The experimental conditions under which non-inferiority studies are
planned usually require per se big sample sizes, much bigger than those usual-
ly required under the experimental conditions suitable for conducting superi-
ority studies. The reason can be summarized as follows: all other conditions
being the same, the treatment differences on which the sample size calculation
is based are smaller in a non-inferiority study than in a superiority study. In
fact, by definition, the non-inferiority margin is lower than the threshold of clin-
ical significance and, while in a superiority study we bet on treatment differ-
ences bigger than the threshold of clinical significance, in a non-inferiority
study we bet on treatment differences smaller than the non-inferiority margin.
From chapter 6, we know that, all other conditions being equal, the lower the
expected treatment differences, the bigger the sample size.

In conclusion, the right answer to the questions about sample size is as fol-
lows: it is true that equivalence studies require less patients than superiority
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studies under the same experimental conditions, but the experimental condi-
tions cannot be the same. Indeed, an equivalence study is conducted when no
clinically significant difference is expected between the treatments under com-
parison. In such conditions the sample size of an equivalence study is usually
very large. The corresponding superiority study would be both unfeasible (or
extremely difficult to conduct) and not meaningful.

Superiority for one end-point and non-inferiority for another. Suppose
we have a study in which we wish to prove non-inferiority between the two study
treatments in terms of efficacy, and, at the same time, prove that the experi-
mental treatment is superior to the active control in terms of safety. In such
cases, sample sizes can be calculated by applying the non-inferiority criterion to
the primary efficacy end-point and the superiority criterion to the primary safety
end-point. The actual sample size of the study will be the bigger between the two. 

11.1.4. Analysis and Interpretation Problems

As an introduction to the discussion on the interpretation of results of equiva-
lence studies it is worth introducing the concept of assay sensitivity. This is
“a property of a clinical trial defined as the ability to distinguish an effective
treatment from a less effective or ineffective treatment” [62]. This property is
relevant to both superiority and equivalence trials. However, in the former it
can be measured directly, whereas in the latter it can be detected only indi-
rectly. In fact, if a superiority study lacks assay sensitivity, it will fail to show
superiority of the experimental treatment over the control. Likewise, if a supe-
riority study does show superiority of the experimental treatment over the con-
trol, i.e. efficacy of the experimental treatment, this is a proof that the study
has adequate assay sensitivity. On the contrary, if an equivalence study lacks
assay sensitivity, the two treatments under comparison could still result equiv-
alent because both are ineffective. In these circumstances, the conclusion on
the efficacy of the experimental treatment would be wrong. 

How can one verify the presence of assay sensitivity in equivalence trials and,
therefore, be sure that the absence of a relevant difference between the two
treatments under comparison means that the experimental treatment is effica-
cious? As stated before, this can only be done indirectly, by examining elements
that are external to the trial itself, which in some cases can be assessed only
after study completion. These are:
• Confirm that adequately designed trials conducted in the past on the refer-

ence treatment consistently showed that this was efficacious.
• Show that the equivalence study is similar to the above mentioned confirma-

tory studies on the reference treatment in the way it is planned and imple-
mented (treatment duration, end-points, study population, allowed previous
and concomitant medications, etcetera). 

• Confirm that the trial conduct was of high quality (good compliance, low
drop-out rate, etcetera). 
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In this way, one should theoretically obtain for the active control results sim-
ilar to those obtained in the previous superiority studies vs. placebo and, under
such conditions, one should be able to judge whether the treatments under
comparison in the equivalence study are both efficacious or both non-effica-
cious. Unfortunately, this reasoning is theoretical and has many weak points. 

First of all, what happens when the historical results for the reference treat-
ment differ from study to study, i.e. cannot consistently support the conclusion
that the reference is superior to placebo? If the differences between these
results cannot be explained convincingly by differences in study design or con-
duct, the assay sensitivity cannot be confirmed for the equivalence studies
using the reference treatment in question. Depression, anxiety, dementia, sea-
sonal allergies are examples of diseases where well-conducted clinical trials
have historically given very variable results and it was not possible to relate this
variability to known trial characteristics. Therefore, these are medical condi-
tions in which the use of equivalence studies may be problematic.

Second, it is common in real life that the trials providing confirmatory evi-
dence of the efficacy of the active control have been conducted according to
protocols which would not be considered adequate today, because of progress-
es in the clinical practice and/or clinical trial methodology.

Third, the comparison between the results of the confirmatory superiority
studies vs. placebo and those of the equivalence study has all the weakness of
a comparison with a historical control, which ultimately makes it impossible to
guarantee it is bias-free (see chapter 8).

Because of these problems, whenever possible, it is recommended to include
a placebo arm in equivalence studies, i.e. conduct a three-arm equivalence
study with an experimental treatment, a reference (standard) treatment, and a
placebo. When the placebo arm is included in an equivalence study, most of the
problems discussed in the previous sections disappear: a) the efficacy of the
two treatments presumed active (experimental and reference) can be tested by
direct comparison with placebo; b) the motivation for researchers to produce
good quality data is ensured, since a failure in the demonstration of efficacy in
the comparison with placebo would automatically result in the failure of the
entire study, whether or not equivalence is achieved; c) the choices of the clin-
ical significant difference and the non-inferiority margin would validate each
other. With a placebo arm, the assay sensitivity of the equivalence study can be
measured directly, i.e. the study has its own internal validity, meaning that it
allows valid comparative conclusions to be drawn (see chapter 4). For these
reasons, the three-arm study is considered the “gold standard” design for equiv-
alence studies (see guideline ICH [62]). However, as discussed at the beginning
of this chapter, researchers often resort to equivalence studies vs. active com-
parator because the use of placebo is considered unethical. In these cases, the
“gold standard” design is not applicable. Thus, the indirect demonstration of
the superiority of the experimental treatments over placebo, i.e. the demon-
stration of their efficacy in equivalence studies, may be problematic.

Before closing this section, we would like to make a final remark on the sta-
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tistical analysis of safety and tolerability end-points in placebo-controlled stud-
ies in which the primary objective is to prove superiority of the experimental
treatment over placebo in terms of efficacy. As pointed out in section 4.2.2, com-
parative trials versus placebo typically have the objective of demonstrating
equivalence for safety and tolerability end-points. Because of this, and because
of the issue of multiple comparisons (see section 4.7), significance tests con-
ducted as illustrated in chapter 5 are inappropriate for the analysis of safety and
tolerability end-points. Such analyses should test equivalence between the
groups under comparison, based on confidence intervals. In any case, a study
designed to demonstrate superiority over placebo in terms of efficacy will almost
inevitably be too small for definitive conclusions on safety and tolerability to be
reached.

11.2. Studies with Interim Analyses and Sequential 
Designs

Several months to several years elapse between the time the first patient is
enrolled in a clinical study and the time the researchers gather to examine the
final results (a moment full of excitement and tension!). During this long wait,
many questions concerning the final outcome assail the researchers (at least
those who have the overall responsibility for the study). If the new treatment
were clearly better than the control, it would be reprehensible to deny it for
such a long time to the patients assigned to the placebo or to a less effective
active control (such patients could have died or irreversibly deteriorated before
gaining access to the new treatment). Vice versa, if the new treatment were
harmful, it would be reprehensible to wait until the end of the study before dis-
continuing it from those patients who had the misfortune of receiving it. Finally,
if the new treatment were totally ineffective, it would be just as reprehensible
to wait until the end of the study, if treatments of proven efficacy (even if par-
tially proven) exist. In addition, in all of the situations mentioned above, having
the information and taking action before the end of the study, would translate
into great savings in financial and human resources.

Therefore, it is absolutely natural and legitimate from a medical, ethical and
logistical point of view that the researchers may want to “have a look” at the data
while the study is still ongoing. However, it is imperative that such “looks” be jus-
tified by good reasons (simple curiosity not being one of them) and be rigorous-
ly planned before the start of the study. If this does not happen, as we shall see,
such “looks” will irreparably compromise the study. In fact, unjustified “looks”
render the study methodologically and statistically unreliable and ethically unac-
ceptable, since they do not enhance the protection of patients. Ironically, they
also greatly increase the logistical complexity and the cost of the study.
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11.2.1. Definitions and Classification

An analysis of data while the study is still ongoing is defined interim analysis.

An experimental design allowing for one or more interim analyses on groups of
patients enrolled sequentially is referred to as a group sequential design. In
oncology trials, for example, it is not uncommon to allow for two or three inter-
im analyses, each performed when a predefined proportion of patients reaches
the end-point or the longest treatment (or follow-up) duration allowed by the
protocol.

Suppose we plan to compare a new chemotherapeutic agent with the stan-
dard treatment, using tumor mass reduction after two months of treatment as
the end-point and 90 patients as the sample size for the final analysis. We
decide to use a group sequential design with two interim analyses, to be con-
ducted every time a new group of 30 patients completes the two month treat-
ment (thus, the two analyses are to include 30, and 60 patients, respectively).
If the predefined criteria for early closure of the study for proven efficacy or
proven lack of efficacy are not met in any of the two interim analyses (see
below), the final analysis is performed on all 90 patients constituting the entire
sample.

When a new analysis is performed every time a new patient or pair of patients
(one for each treatment, see below) reaches the primary evaluation time point,
the design is referred to as pure sequential design. The corresponding inter-
mediate analyses are called sequential analyses. Once again, the objective of
each new analysis is to decide whether or not to continue the study, based on
predefined criteria. In the oncology and cardiovascular fields, for example,
these types of designs are often used to monitor the mortality of the treatment
groups being compared. For the sake of simplicity, in this section we will call
both types of studies sequential designs and the corresponding analyses
interim or intermediate analyses.

The potential objectives of interim analyses go beyond that of interrupting
the study because of demonstrated efficacy (better than expected) or lack of
efficacy (worse than expected). We can divide them into two large categories:
“decision making” and “administrative”.

Most of the interim analyses are planned with a decision making intent,
that is, with the aim of deciding whether to interrupt or to modify the study. 

The premature interruption of a study can occur for the following three rea-
sons.
• Safety/tolerability: the study is stopped when safety or tolerability problems

concerning one or more study treatments emerge.
• Efficacy: the study is stopped when it “becomes evident” that one of the

treatments under comparison is more efficacious than the other(s).
• Lack of efficacy: the study is stopped when the possibility of demonstrating,

in the remaining part of the study, that one of the treatments is more effica-
cious than the other(s) “becomes very unlikely”.
Analyses conducted when the study is still ongoing for the purpose of modi-
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fying it, “if needed”, in terms of sample size or design, are the basis of the so-
called adaptive (or flexible) designs, discussed in section 11.3. 

The expressions “becomes evident”, “becomes very unlikely”, “if needed” are
in quotation marks to highlight that, in each case, it is imperative to predefine
the rules that will guide the decision as to whether to stop the study, to modi-
fy it or let it proceed unchanged. The rules will differ from case to case, but, in
all cases, must be predefined. Interim analyses always have a cost in terms of
overall sample size, which will differ depending on the type of objective. We will
come back to this important issue in section 11.2.5.

Administrative interim analyses, constituting the second category of
interim analyses, are not aimed at making decisions on whether to interrupt or
modify the study, but at making decisions external to the study itself, general-
ly concerning safety issues or issues related to the planning of other studies. 

For example, suppose that during the health authority review of the registra-
tion dossier of a new antibiotic, the reviewer notices a slight tendency toward
low levels of serum potassium in the group receiving the antibiotic, but not in
that receiving placebo. In this situation, before deciding whether or not to
include warnings or restrictions in the package insert, the reviewer may be very
interested in knowing if this trend is confirmed in the ongoing clinical studies
(at least in the bigger ones), without having to wait until these studies are fin-
ished.

An interim analysis that does not allow for the possibility of interrupting or
modifying a study is often (inappropriately) called “administrative interim
analysis”. Historically, the term ‘administrative’ implied that there would be no
penalties in terms of sample size on the study on which the analysis was con-
ducted. Recent papers by FDA officials have made clear that this approach is
not acceptable [73, 91]. All interim analyses, including the administrative ones,
will have an impact on the overall sample size, with only one exception: analy-
ses that do not call for any comparative testing of differences between treat-
ments, i.e. do not require unblinding of the study. Whenever an unplanned
administrative analysis requiring unblinding is decided, its rationale and meth-
ods, including those to be used for the assessment and protection of the over-
all type I error, should be documented in a formal protocol amendment.

In summary, an interim analysis is an analysis of the data performed while the
study is still ongoing for one of the two fundamental reasons: first, to decide
whether or not to stop or modify the study based on predefined criteria (deci-
sion making objective); second, to extract information from data accumulated
thus far for reasons external to the study (administrative objective). The vari-
ous types of interim analyses are summarized in Figure 11.1.

The remainder of this section will focus on interim analyses aimed at decid-
ing whether to interrupt an ongoing study; section 11.3 will be dedicated to the
interim analyses aimed at deciding whether to modify an ongoing study.
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11.2.2. Conditions of Applicability

Whatever the objective of an interim analysis, it is important to determine
whether it is possible to conduct such an analysis at all. To this end, two impor-
tant questions should be asked: 
1. Is the duration of the study (recruitment + treatment) compatible with an

interim analysis? Although an interim analysis can be compared to a snapshot
of a specific moment of an ongoing study, the process leading to such snap-
shot is long and elaborate. It requires the preparation of the database, the
analysis of the data and the interpretation of the results (see below). In many
cases, the duration of the above mentioned process is comparable to or even
longer than that of the remainder of the study. This of course negates the
very reason for conducting an interim analysis. It is only in studies with very
long duration of recruitment, compared to the duration of treatment, that
interim analyses can actually be useful in protecting patients, or in avoiding
waste of resources, or even, simply, in obtaining useful information before the
end of the study. An interim analysis that is completed a few weeks before
the end of the study basically leads to nothing else than a considerable waste
of resources. In forecasting the time required for the interim analysis com-
pared to that of the study, the researcher must keep in mind the almost
unavoidable delays due to the complexity of data collection, analysis and
interpretation of the results. 

2.Are the end-points suitable for an interim analysis? In many cases the answer
is “no”. The most typical case is when the primary end-point is the occurence
of an event that, on average, is expected months or years after the beginning
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Figure 11.1. Classification of interim analyses based on their objective

Interim analyses (i.a.): 
analyses of data conducted 
while the study is still ongoing 

Decision making i.a.: decide
whether to stop prematurely or 
modify the study 

Administrative i.a.: obtain
information on the ongoing 
study without stopping or 
modifying it

Study stopped for:
• worse safety/tolerability of one 

treatment vs.  the other(s) 
• better efficacy of one treatment vs.  the 

other(s)
• lack of efficacy 

Study modified
(adaptive or flexible designs) 



of the study. In this case, it is very unlikely that an interim analysis performed
when the majority of patients have only recently entered the study will yield
useful results. When the primary end-point does not lend itself to an interim
analysis, a secondary or surrogate end-point could theoretically be used (see
section 4.9). However, this in turn brings other kinds of problems: these will
be discussed in section 11.2.3.
Even when the conclusion is that it is technically possible to perform an inter-

im analysis, it is still necessary to question whether it is appropriate to carry it
out. Are the benefits of such a procedure actually higher than the costs and risks?
The answer depends on the objectives one wants to pursue with such analysis.

Concerning the possibility of stopping a study prematurely for demon-

strated efficacy, one should keep in mind the context in which the study is
performed and its objective. Ideally, once it is proven that one treatment is
more efficacious than the other(s), the study should be immediately interrupt-
ed and all patients transferred to the best treatment. However, this can only
occur, in a relatively simple and rapid way, if the treatment in question is
already on the market, for example, in the case of a study demonstrating the
superiority of a new cocktail of anticancer or antiviral drugs, already available
individually, in the therapy of Hodgkin’s lymphoma or in HIV infection, respec-
tively, or in the case of a study demonstrating the efficacy of a well known
inhaled corticosteroid, such as budesonide, in mild forms of asthma. However,
the new treatment is often still in the experimental phase, that is, it has not
been approved by the health authority. In such cases, the results of one inter-
im analysis from one study are rarely sufficient to warrant immediate approval.
This may occur, but only under exceptional circumstances. It is more likely,
instead, that a conflict will arise between the health authority on one side,
requesting more studies before approval, and the pharmaceutical industry and
the patients’ associations on the other side, requesting immediate approval.
These kinds of conflicts will often interfere heavily with the timely completion
of the clinical development program. Paradoxically, the premature interruption
of a study, which aims at making the best treatment quickly available to the
small group of patients enrolled in it, ends up delaying the marketing authori-
zation and hence the access to the treatment by all patients. Furthermore,
before registration, if the study treatment is a drug, it is often produced in small
quantities, sufficient to treat only a small number of patients for a limited peri-
od of time. Finally, one should keep in mind that the objective of many clinical
trials does not immediately translate into a therapeutic benefit, but does so only
in the context of a development program consisting of many studies. In fact, the
premature interruption of a study for proven efficacy can prevent reaching rea-
sonable evidence of safety and tolerability, because this may require a longer
observation period and/or a greater number of patients. 

Concerning the possibility of stopping a study prematurely for non-effi-

cacy in order to save resources, one should be realistic about the savings that
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are truly attainable, in terms of both human and financial resources.
“Liberating” patients from the burden and risk (even if small) associated with
their participation in the study is definitely a valid reason to stop the study
when efficacy cannot be demonstrated. However, the time at which the deci-
sion is actually made must be carefully considered, because, if too late in the
study, the advantage for the patients may be more apparent than real. From a
financial point of view, one should consider that payments to investigators are
generally not uniformly distributed over the course of the study and most of the
fees may already have been paid when the study is stopped. Furthermore, in
many contracts, researchers have the right to be paid in full if the study is inter-
rupted for reasons unrelated to their performance. Finally, a study stopped pre-
maturely cannot be “discarded” as if it never happened: the analysis must be
completed and the results reported and published. The savings in terms of cost,
time and energy for the researcher may be relative. 

Despite all of the above, we are not implying that interim analyses should
always be avoided. On the contrary, in many circumstances they are extreme-
ly useful or even imperative from an ethical, medical and practical point of view.
However, as in many other areas of research, it is dangerous to generalize, and
every study must be evaluated in its own context. Among the interim analyses
with decision making objectives, those aimed at stopping a study for safety or
tolerability concerns are the least problematic.

Once it is established that an interim analysis with decision making objectives
is appropriate, it should be planned to the smallest detail, before starting the
study. Planning for such an analysis while the study is ongoing is discouraged,
because it would generally endanger the credibility of results. Nevertheless, if
a study has just started, the inclusion of a decision making interim analysis
through a protocol amendment may still be possible without jeopardizing the
study. However, such a change must be agreed upon with the health authority
and/or ethics committees.

On the other hand, administrative interim analyses may well be unplanned at
the time the protocol is written. The need to perform one or more analyses of
this type may surface after the start of a study, generally due to an unexpect-
ed problem affecting another study or to a specific request from a regulatory
authority. In such cases, the inclusion of an interim analysis in the research plan
after the study has begun is legitimate. Nevertheless, the planning of the analy-
sis must be completed and documented by means of an appropriate protocol
amendment before the randomization code is opened. 

11.2.3. Choice of the End-Points

It is almost never useful to extend the interim analysis to all the end-points of a
study. Instead, one should select a limited number of end-points, based on the
aims of the analysis and their nature (as discussed above, some are not suitable
for interim analyses). A delicate issue arises when a secondary efficacy end-
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point, but not the primary one, is suitable for the interim analysis. This, for
example, is common in oncology, when survival time is the primary end-point
and tumor size a secondary one. As mentioned above, the median survival time
can be so long that it makes an interim analysis impossible, while the tumor mass
reduction tends to occur more rapidly and therefore can be analyzed sooner.
The problem is that the secondary end-point is rarely a good surrogate (see sec-
tion 4.9) of the primary one. In our example, reduction of tumor mass is not a
good surrogate of survival time. If our interim analysis were to demonstrate that
a new anticancer treatment is significantly better than the standard treatment in
reducing tumor mass, would we be willing to stop our study in which the survival
time is the primary end-point? Moreover, if we were to do so, would the regula-
tory authorities be willing to approve the drug based on such a result? If the cor-
relation between tumor mass and survival time were so strong to allow the stop-
page of a survival study based on an early reduction in tumor mass, why did we
embark on such a costly and long type of study in the first place? The use of a
secondary end-point for an interim analysis aimed at deciding whether to inter-
rupt a study on the basis of proven efficacy (or lack of efficacy) is very prob-
lematic and generally unjustified. As always, there could be exceptions, but the
authors can find no supporting examples. The situation is different for adminis-
trative interim analyses: it can be very useful to perform an interim analysis on
a secondary end-point of a study, in order to help the planning of another study
in which one wants to make that end-point the primary one.

11.2.4. Data Management Issues

Before an interim analysis can begin, the database must be completed, validat-
ed and “locked”. To this end, all data must be collected from the centers and
checked for completeness and plausibility. First of all, the database must be
checked for data entry errors (e.g. via a double entry of each individual datum).
Missing and questionable data must be queried with investigators, and “clean”
data loaded in the database. Thereafter, the database must be properly validat-
ed and quality controlled. Such procedures go beyond the aim of this book, but
the reader will appreciate that they require considerable time, personnel, IT
support and money. Electronic data capture systems (see section 12.4) make
things only slightly better.

It is true that data must be collected, checked and loaded into the database
in any case for the final analysis. However, in preparing the database for one or
more interim analyses, times are often shorter compared to those allowed for
the final analysis and some procedures must be repeated at every analysis, for
example the quality control procedures for the database “locking”, those for the
analysis itself and the writing of reports. In addition, it is desirable that data
management for interim analyses be coordinated by groups independent of the
study sponsor (see section 11.2.6). Finally, the fact that all activities related to
the preparation of the database for an interim analysis must be performed while
the study is ongoing should not be underestimated. The time and effort of
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physicians, CRAs (Clinical Research Associates), statisticians and data man-
agers will have to split between the issues related to the ongoing study and
those related to the interim analysis. This creates frequent episodes of internal
conflict that, if not properly managed, end up damaging the interim analysis, as
well as the study as whole. 

A few years ago, a young doctor working with one of us was in the middle of
the “data cleaning” process for an interim analysis when he received a message
indicating that a serious adverse event had occurred the day before. The event
needed immediate attention, both to follow its evolution and to check if similar
events (even if not serious) had occurred in the study or in other studies test-
ing the same experimental treatment. However, arrangements had already
been made for a meeting with external experts to evaluate the results of the
interim analysis and time was tight for the database lock. Somewhat intimidat-
ed by pressure from within the company and by the reputation of some of the
experts, the young doctor favored the interim analysis. Unfortunately, the
health authority, concerned by the adverse event in question, decided to put on
hold, not only the specific study, but also the entire research program, while
awaiting a satisfactory assessment of the potential safety signal. Many months
were needed to restart the program.

11.2.5. Statistical Issues and Decision Making Criteria

When there is one or more interim analyses in a study, the problem of multiple
comparisons arises, intuitively similar to that discussed in section 4.7, but with
the additional complexity that each new test is conducted on a dataset that
includes the datasets used in the previous tests, i.e. there is an obvious corre-
lation among the datasets analyzed sequentially. The statistical methodology of
interim analyses goes beyond the scope of this book. We will only emphasize
the basic concept that the inclusion of multiple “looks” with a decision making
purpose in the study design comes at a “cost” in both logistical and statistical
terms. The magnitude of this “cost” depends on the number and objective of
the “looks” and the type of design. 

Let us first consider the interim analyses conducted with the aim of

prematurely interrupting a study for proven efficacy. In these cases,
the “cost” is the need to lower the threshold of statistical significance for each
analysis, including the final one. The reason for this should be clear by now.

When the data are analyzed repeatedly in search of a statistically significant
difference, the probability of finding one by chance, i.e. in the absence of a real
difference between the treatments, is higher compared to when only one test is
performed at the end of the study. In other words, the overall probability of
making a type I error (erroneously concluding that the experimental treatment
is efficacious) increases as the number of statistical tests increases. We use the
expression nominal significance level to indicate the probability of making a
type I error in a single test, and the expression real significance level to indi-
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cate the overall probability of making this type of error when multiple tests are
performed, each at the established nominal significance level. Suppose we per-
form five interim analyses, each at a nominal significance level of 0.05. The
overall probability that at least one of the tests will show a statistically signifi-
cant difference by chance is no longer 0.05, but 0.14 (i.e. the latter is the real
significance level – see [79]). To keep the real significance level as low as 0.05,
a nominal significance level lower than 0.05 is required for each individual test.
In other words, we must lower the threshold not to be exceeded in each inter-
mediate analysis and in the final analysis, in order to be able to claim that the
corresponding result is statistically significant. 

As stated in section 4.7, the methods for determining the nominal significance
level to be used in each analysis are called α adjustment methods. It is impor-
tant to point out that the α adjustment methods required for the interim analy-
ses, even though conceptually similar to those used for multiple comparisons,
have specific features to account for the fact that the sequential analyses are
repeated on progressively accumulating data, and that are therefore correlated.
For example, the famous Bonferroni’s method, in which the nominal α is set
equal to the real α divided by the number of tests to be performed, cannot be
applied to interim analyses, since it is too conservative. This is because it
requires that the comparisons are independent, an assumption that is definitely
violated in the case of interim analyses. Generally, having decided the alternative
hypothesis, the number of interim analyses and the real α and β levels, the α
adjustment methods for interim analyses provide the “optimal” levels of nominal
significance, which minimize the average number of patients when the alterna-
tive hypothesis is true. This does not mean that, by using designs with interim
analyses, one would necessarily use fewer patients compared to the same
designs allowing for the final analysis only (i.e. designs with a fixed sample). On
the contrary, since the significance level of the single test is lower than 0.05, in
order to maintain a given power of the study, the total sample size must be
greater than that of a study with an identical design, but with only the final analy-
sis to be carried out at a significance level of 0.05. In conclusion, even though one
of the fundamental reasons for applying sequential designs is to reduce sample
size compared to that required by an equivalent design with a fixed sample, in
reality this goal is only achieved when one of the interim analyses yields a signif-
icant result before enrolment is complete. Vice versa, a larger sample is required
when none of the interim analyses produces a statistically significant result.

The simplest α adjustment method is the one described in Pocock’s textbook.
The nominal significance level is kept constant for each interim analysis and for
the final one; all of the sequential groups have the same size. Such method makes
no “optimization” attempt, but is easy to understand and to apply. It should be
noted that, even though the significance level is the same for each interim analy-
sis, the earlier the analysis occurs in the course of the study, the smaller is the
sample size available for it. Thus, in order to be able to stop the study prema-
turely, the earlier the analysis, the bigger the treatment difference and/or the
smaller the variability should be, as compared to what was originally expected. 
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More complex methods “spend” the overall level of significance unevenly
across the different interim analyses. Generally, lower (more stringent) signifi-
cance levels are used in the earlier analyses, whereas a higher significance level,
closer to 0.05, is allowed for the later analyses. With these methods, the likelihood
of closing a study prematurely on the grounds of efficacy in the early interim
analyses is very low (this occurrence requires a truly exceptional result). A well-
known method belonging to this category is that of O’Brien and Fleming [72].

Returning to the simplest method, if we assign the classical value of 0.05 to
the real significance threshold and choose to perform four interim analyses in
addition to the final one, the threshold for declaring each of the five compar-
isons significant (i.e. the nominal significance level) decreases to 0.016 (see
[79]). The implication of this is that, in case none of the intermediate compar-
isons reaches statistical significance at the 0.016 level, a final analysis yielding
for example a p-value of 0.03, which would be statistically significant in the
absence of interim analyses, would have to be declared not statistically signifi-
cant in our example, due to the four interim analyses introduced in the design.
The possibility of these tricky results must be kept in mind when planning
sequential designs and must be accepted if it occurs. If the probabilistic frame-
work behind sequential designs is not fully understood, even the most princi-
pled of researchers will be tempted to forget about the interim analyses when
confronted with such a result.

In pure sequential designs, the adjustment of the significance level is gener-
ally carried out by building the so-called decision making barriers. Pocock
[79] and Armitage and Berry [3] clearly lay out the simplest form of continu-

ous sequential design, referred to as paired preference design. Briefly,
such design is applicable when two treatments are compared and the selected
end-point allows the “winner” between two patients, each receiving one of the
study treatments, to be declared. The patients are enrolled in the study in pairs,
with one patient of each pair randomized to A and the other to B. When a pair
completes the treatment, the researcher must express a preference for A or B,
based on the outcome of the predefined end-point. As the preferences accu-
mulate, they are registered in a graph where the number of patients examined
is reported on the horizontal axis and the number of preferences in favor of A
or B is reported on the vertical axis. The plot, drawn on graph paper, is marked
off with boundaries, one establishing the superiority of A, another the superi-
ority of B and a third determining the end of the study without evidence that
one treatment is better than the other (see Figure 11.2). These designs can be
open (no predefined maximum number of preferences) or closed (maximum
number of preferences predefined). The one illustrated in Figure 11.2 is an
example of a closed design, as it has central boundaries (those leading to stop-
ping the study without a definitive conclusion). 

The boundaries can only be reached at specific points, but are drawn as con-
tinuous lines for simplicity. Their position is calculated based on the character-
istics of the distribution of the end-point (in our case, binomial), the threshold
of clinical significance and the levels for type I and II errors chosen for the
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study. For example, in Figure 11.2, the boundaries are positioned based on the
following statistical specifications:
• The region of rejection of the null hypothesis corresponds to a real α of 5%,

with a bi-directional alternative hypothesis (under the null hypothesis, the
probability of reaching one of the two external barriers is 0.025).

• The probability (power) of statistically detecting a difference between the
treatments, if one of the two is preferred in 75% of cases, is set at 95%.

• The maximum number of preferences is 62.
The starting point is the origin 0 (the crossing of the horizontal and vertical

axes). For each preference in favor of A, one moves one square up and to the
right; for each preference in favor of B one moves one square down and to the
right. Gradually, as new pairs of patients complete the study and new prefer-
ences are expressed, the preference curve grows, approaching one of the
boundaries. The study is interrupted when the preference curve crosses one of
them. The result plotted in Figure 11.2 is from a true study conducted in the
early ‘60s on patients with acute leukemia; A was the experimental treatment
and B was placebo. The sequence of preferences, of which three favor B and 15
favor A, led to the interruption of the study with a statistically significant result
in favor of treatment A (the preferences beyond the superiority boundary rep-
resent pairs of patients who were enrolled before the study was stopped).
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Figure 11.2. Example of a closed sequential continuous design. The bold, dotted line
represents the sequence of preferences. In this example, the study was interrupted be-
cause of superiority of treatment A. (From: Clinical Trials. A practical Approach, Pocock
SJ, 1983. Copyright John Wiley & Sons Limited. Reproduced with permission.)
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Interim analyses carried out with the aim of prematurely inter-

rupting a study for lack of efficacy are based on the so-called condition-

al power, i.e. the probability that, given the results observed so far, superiori-
ty of one of the treatments under comparison will be demonstrated, once the
entire predetermined sample of patients completes the study. The study is ter-
minated if, considering reasonable hypotheses about the difference between
treatments, this power (probability) is lower than a preestablished threshold,
called futility index. If this is not the case, the study is to continue until the
entire sample is completed. The “cost” of the interim analyses is only logistical
in this case, that is, no adjustment of α is required. The interested reader can
consult articles by Halperin et al [55] for the methodology and by Lachin et al
[64] for a practical example. 

Interim analyses conducted with the aim of modifying the design of

a study are the basis of the so-called adaptive designs, which are covered in
section 11.3. 

Three important points remain to be made before closing this section. The
first is that regulatory circumstances must be thoroughly assessed when decid-
ing whether to start a sequential design. In pivotal registration studies, it is
imperative to confirm with the appropriate regulatory authorities that the
study, if stopped prematurely on the grounds of efficacy, would still be accept-
able for registration, in terms of both efficacy and safety/tolerability. If there is
any doubt, it is better not to plan for an interim analysis. The second point is
that, to legitimize the decisions based on a decision making interim analysis, the
analysis plan and the criteria for deciding whether or not to interrupt the study
must be defined before the start of the study (see above). The third point is
that it is advisable to conduct the interim analyses and make decisions without
knowing to which study treatment each group corresponds (the groups are to
be identified as A, B, C, etc). Only once the decision to stop the study has been
made, should one proceed to unmask the treatments. 

11.2.6. Conflict of Interest and Confidentiality Issues

Ideally, the experts performing the interim analysis and deciding whether to
interrupt or continue the study are external to all other procedures related to
the study, including the database preparation. This group of independent
experts is commonly called the data monitoring board. In practice, it is not
always possible to have such a committee completely independent from the
sponsor of the study, for logistical and/or financial reasons. Nevertheless, an
effort must be made to ensure that the separation of roles be maintained at
least for some key figures, such as the person in charge of data management,
the head statistician and the president of the decision making committee (gen-
erally an independent researcher with long standing experience in the thera-
peutic area of the study). In our opinion, when this is not possible, the appro-
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priateness of interim analysis must be reconsidered. 
Once the results of an interim analysis become available, the problem of dis-

closure arises. Clearly, if the decision is made to stop the study, the researchers
must be informed of the reason. However, it is essential that, before the start of
the study, all researchers agree that the decision of the committee charged with
evaluating the interim analysis is final. If, instead, the decision is to continue the
study, in our opinion it is important that the knowledge of results be strictly lim-
ited to the decision making committee. In fact, if the committee’s decision is that
the study is to continue in spite of a clear trend in favor of (or against) the new
treatment, because the outcome is below the predefined statistical or clinical
threshold, a researcher aware of such a trend may be influenced in the selection
of patients, or may even want to transfer all of his/her patients to the “best” treat-
ment, ignoring the decision of the committee. Even more problematic would be
the decision to publish the results of an interim analysis while the study is still
ongoing. If the final results were to contradict those of the interim analysis (by
then in the public domain), the publication of the final results would be much
more difficult, especially if the final results are “worse” than the interim ones. 

In spite of all of the complexities discussed here, there are many cases in
which interim analyses are very useful and must be carried out. However, we
believe that the performance of interim analyses with suboptimal rationale
and/or preparation is still too common in the practice of clinical research. 

11.3. Adaptive (Flexible) Designs 

The so-called adaptive designs or plans are designs which envisage interim
analyses with the aim of modifying the study while it is ongoing. These are also
known as flexible designs.

We warn the reader that the terminology is all but standard, since this is a rel-
atively new area. The broader definition of adaptive or flexible designs includes
designs with the aim of modifying the study without interrupting it, as well as
the sequential designs, i.e. those with the aim of prematurely closing the study
for proven efficacy or, vice versa, because efficacy can no longer be proven. The
stricter definition only includes designs of the first type. The broader definition
is used more and more and recent methods integrate design changes and early
shopping rules. It should be noted that sometimes the term “adaptive plan” is
used with a completely different meaning, i.e. to indicate designs with adaptive
randomization (see section 9.2.3). 

In this section we will focus on adaptive designs with the aim of modifying a
study without interrupting it. 

These designs make sense when, at the time a study is being planned, the
researchers lack some key information, necessary for a “fixed” (i.e. completely
predefined) design. Therefore, the study is planned with the available informa-
tion and, at the same time, interim analyses are planned. Based on the outcome
of the interim analyses, changes to the design are made, where appropriate.
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Changes can concern the most diverse aspects of the study including the fol-
lowing:
• Sample size (for example, the size of all treatment groups is increased even-

ly or unevenly; in the latter case changing the ratio of patient allocation to the
treatments).

• Choice of doses (for example, groups receiving ineffective doses are closed
and/or groups receiving new doses are added).

• Choice of primary and/or secondary end-points.
• Decision making criteria (for example, future interim analyses are added or

removed, or their temporal sequence is modified).
• Objective of the trial (for example, the objective of showing non-inferiority is

changed to that of showing superiority of the experimental treatment over
the reference one).
Obviously, there is a price to pay for this flexibility. If the changes determined

by the interim analyses are not explicitly taken into account when analyzing the
data and interpreting the results, the overall level of the type I and II errors can
be seriously inaccurate and/or the estimates of the effects can be distorted.
Adaptive designs must allow changes to be made without compromising the
levels of the type I and II errors, so as to obtain unbiased estimates of the
effects of interest. 

A unique “recipe” for the application of these designs does not exist: the
methods depend strictly on the type of changes that one wants to make.

The following general guidelines must be followed: 
• The forms of “flexibility” of interest must be specified before beginning the

study (even if the protocol will be “adapted” in stages).
• Many of the problems pointed out for sequential designs extend also to adap-

tive designs, for example, the operational and confidentiality issues are the
same.

• The contribution of statisticians specializing in planning and analyzing these
designs is essential.
Acceptability of adaptive designs for pivotal phase III studies (see chapter

12) is problematic. The biggest stumbling block is that, after the modification
determined by interim analyses, the study is no longer the one initially planned.
Consequently, the pooling of the results of the two phases (the one before and
the one after the modifications) is conceptually similar to the pooling of results
from two separate studies (meta-analysis). This procedure is not acceptable as
definitive proof of efficacy, unless special experimental conditions exist (see
again chapter 12). The adaptive design approach is especially promising for
studies combining different phases of clinical development (for example, phas-
es I and II, or phases II and III – see chapter 12). A practical example can be
found in Zeymer et al [108]. In oncology, adaptive designs are adopted with
increasing frequency for ethical reasons. In the experimental conditions that
are often encountered in this therapeutic area (end stage disease, at times rare,
without therapeutic options), it is easier to accept the drawbacks of these
designs and the attitude of the regulatory authority is more flexible. 
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On the topic of adaptive (flexible) designs, we recommend articles by Bauer
and Kohne [8] and Posh et al [81]. For the application of this approach to flex-
ible determination of the sample size, we recommend articles by Gould [51] and
by Frieder and Kieser [46]. The field of adaptive designs is extremely active and
every year a great deal of new papers appears in the literature.

11.4. Studies with Repeated Measurements 

So far we have focused our interest only on the scenario in which the primary
comparison between the study treatments is made at a single evaluation time
point. However, very often the end-point is measured repeatedly throughout
the treatment period and at the end of it, the objective of the study being to use
the entire set of measurements to compare the study treatments

A typical example is that of studies on pain killers. Suppose we plan to com-
pare two treatments for the symptomatic control of chronic cervical pain due
to arthritis by means of a parallel group study, with one month treatment dura-
tion, and pain assessment at baseline, the end of each week of treatment, and
end of study. Under these conditions, the researchers are not likely to be satis-
fied with a “snapshot” of the situation as seen at a single visit. Instead, it is com-
mon practice to compare the effects of the two treatments on pain level over
the entire course of the study. These kinds of studies are known as studies

with repeated measurements, also known as longitudinal data.

The complexity of such studies lies mainly in the statistical analysis. Indeed,
it is quite common to find in the medical literature studies with repeated meas-
urement analyzed with the wrong statistical approach. There are two major
problems:
• By definition, there are multiple sets of data to compare (in our example, five

sets of data for each treatment at the five evaluation times, ten in total);
therefore, if the comparison between treatments is performed separately at
each time point, a problem of multiple comparisons will arise.

• The data sets are not independent, since evaluations repeated on the same
subject are correlated; this must be kept in mind when trying to combine
evaluations obtained at different time points on the same group of patients. 
One way of dealing with repeated measurements on the same patient is that

of combining them into one summary measurement, which becomes the effica-
cy end-point. An example is the area under the curve (AUC), i.e. the area of
the region which is delimited by the line-plot of the various observations at the
top and by the X axis, from the first to the last visit, at the bottom. This area is
generally calculated by dividing the whole region in many trapezia: each has the
height equal to the interval between two consecutive visits and the two bases
(minor and major) equal to the measurements of the efficacy variable taken at
these two visits. Provided that this end-point has a clinical meaning, from a sta-
tistical point of view it has the advantage of smaller variability, as compared
with the variability of the same variable assessed at a single time point.

11.4. Studies with Repeated Measurements 301



However, by combining the repeated measurements as described above, we
have no information about the trend of the responses over time. If such a time
trend is deemed an important objective of the trial, we should use all the dif-
ferent measurements as a multivariate efficacy end-point. One way of analyzing
parallel group designs with repeated measurements treated as a multivariate
end-point is to consider the design as a split-plot (see section 10.9), where the
plot is the subject, the whole-plot factor is the treatment, the sub-plot factor is
the time, and the visits at which the measurements are made are the levels of
the sub-plot factor. However, the design involving repeated measurements 
differs from the split-plot one in that in the former, the times of observation
must follow, by definition, a strict temporal sequence, while in the latter the
order of the levels of the sub-plot factor is typically random. In general, in tri-
als with longitudinal data, the measurements made at visits close together are
more highly correlated than those further apart. On the contrary, one of the
main assumptions for the analysis of split-plot designs is that all pairs of obser-
vations have the same correlation. An analysis of longitudinal data that ignores
this difference is almost certainly invalid and it is mandatory that the analysis
used for the split-plot designs be adjusted in order to render it appropriate for
the analysis of designs with repeated measurements.

For readers interested in this topic, we recommend references [4] and [39]. 

Summary

In this chapter we considered variants of study designs, classified according to
type of objective, end-point, and modality of analysis. These variants can be
applied both to designs with between-subject comparisons (typically, parallel
group designs) and to those with within-subject comparisons (typically, cross-
over designs).

In equivalence and non-inferiority studies, the objective is to demonstrate
that two or more treatments do not differ in a clinically relevant manner. In
these studies the usual hypothesis testing, aimed at demonstrating the superi-
ority of one treatment over the other by rejecting the null hypothesis of no dif-
ference between treatments, loses its meaning, since the inability to reject such
null hypothesis does not imply equivalence (or non-inferiority), and, likewise,
the rejection of such null hypothesis does not imply the absence of equivalence
(or inferiority). A common mistake is to plan and analyze an equivalence/non-
inferiority study as if it were a superiority one. Instead, specific methods must
be used for defining the delta on which to base the sample size calculation (in
the case of equivalence/non-inferiority studies, this delta is called the margin of
equivalence/non-inferiority), analyzing the data and interpreting the results.

Sequential designs, characterized by one or more interim analyses, have the
objective of obtaining information on the results before the conclusion of the
study. In interim analyses conducted for decision making purposes, such infor-
mation, though obviously incomplete, can lead to the premature interruption of
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the study, if it indicates with a “sufficient degree of certainty” either that the
experimental treatment has unacceptable safety/tolerability problems, or that
it is more efficacious than the control, or that it can no longer be superior to the
control in the final analysis, whatever the response of the remaining patients. 

For the interim analysis to be valid, the decision making criteria must be
defined before the start of the study; likewise, all the analysis procedures must
also be defined a priori, preferably before the start of the study and certainly
before the disclosure of the randomization code. Furthermore, it is highly desir-
able that those responsible for the interim analyses and decision making are not
involved in the study in any other way. One should keep in mind that interim
analyses are complex, costly and lengthy, and that generally several months
elapse from the start of the database preparation to the decision on whether or
not to continue the study. Therefore, interim analyses are to be considered only
for studies of long duration and with appropriate support in terms of staff and
IT. Finally, the regulatory circumstances and availability of the study treatments
must be considered when deciding whether to embark in a sequential design.
When the study in question is intended to provide pivotal evidence for registra-
tion, it is imperative to discuss with the relevant regulatory authorities if the
study will still be considered acceptable for registration in case of early inter-
ruption for achieved efficacy. If there are doubts, it is better not to perform
interim analyses. Regarding the treatments, it is necessary to make sure that it
is feasible to transfer all patients to the best treatment in the case of premature
interruption of the study for proven efficacy. For new treatments in the pre-reg-
istration phase, this is often completely impossible, since they are manufactured
on a very small scale, in which case it is best to avoid efficacy interim analyses.

Interim analyses that are conducted for decision making external to the study
(e.g. planning of a different study) are called administrative analyses. They also
carry a sample size penalty for the study they are conducted on, unless no
unblinding is required.

Adaptive (flexible) designs allow changes to be made to the study plan while
the study is ongoing, without compromising the level of the type I and II errors.
Adaptive designs are particularly attractive when key information required for
the planning of a “fixed” design study is lacking. However, they are generally
difficult to conduct and are only accepted by the regulatory authorities as piv-
otal phase III studies under special conditions. 

In studies with repeated measurements, the objective is that of comparing
the trends between treatments in a pre-specified time interval and not just the
treatment responses at given time points; therefore, the assessment of results
is based on multiple evaluations repeated over time on the same subjects. 

All of these variants have numerous implications that must be kept in mind
when planning and performing the study and when analyzing the results. If
used without considering these implications, serious errors may occur leading
to completely unreliable results. 
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12
The Drug Development Process 
and the Phases of Clinical Research

The reader should be aware of two semantic conventions we adopted in this
chapter: first, the terms “research” and “development” are used interchange-
ably; second, the term “drug”, which technically only applies to compounds
with proven efficacy and effectiveness, is also used to indicate compounds
undergoing the development process, for which, by definition, efficacy and
effectiveness have not be proven.

12.1. Overview of the Preclinical Development 
Process

Clinical experiments begin when a treatment is administered for the first time
to a human being (“first in man”). In the case of pharmacological treatments,
which are the focus of this chapter, the start of clinical research and develop-
ment (R&D) is preceded by many years of preclinical R&D. The preclinical
development process is outside the scope of this book. However, we believe it
is important for the clinical researcher to recognize the great amount of knowl-
edge and work required to bring a drug to the stage of clinical experimentation.
The preclinical development of a drug involves hundreds of people, who bring
with them a wide variety of top level professional skills. 

Broadly speaking, the preclinical development process includes the areas
described in this section, which interact with one another on an ongoing basis.

Screening. Generally, the development of a drug starts with the screening

of thousands of molecules, using one or more biological assays that have a pre-



dictive value on the disease under study. Each molecule undergoing screening
usually represents a small variation of a basic molecular structure. The basic
structures can be completely unknown in their pharmacological potential
(random screening) or can be based on previous knowledge (guided screen-

ing). In the case of guided screening, the starting compound can belong to at
least three categories.
1.A drug of demonstrated efficacy in the specific therapeutic area. For exam-

ple, many benzodiazepines used in the therapy of anxiety were developed
starting from the basic structure of diazepam (Valium®), which was itself dis-
covered through random screening.

2.A drug used in other therapeutic areas for which clinical observations suggest
potential novel uses. Minoxidil, for example, was developed as an antihyper-
tensive. The observation that it often caused hypertrichosis (i.e. excessive
hair growth) prompted the development of a topical formulation against male
and female baldness.

3.A molecular structure guided by the knowledge of the structure and function
of its target, usually a receptor or mediator. For example, omalizumab
(Xolair®) is a “humanized” monoclonal antibody (i.e. an antibody with an
amino acid sequence about 95% human and 5% murine) targeted against
immunoglobulins E (IgE), which has been developed for the treatment of
allergic asthma. Omalizumab has been “designed” based on a very detailed
knowledge of the structure and antigenic properties of the human IgE.
Molecules for mass rapid screening are traditionally generated by chemical

synthesis. However, increasingly common are the so-called biotechnological

products, generated by cell lines modified to produce great quantities of a sin-
gle protein. Monoclonal antibodies, such as omalizumab, are an example of
great therapeutic success.

At the end of the screening process, a small number of compounds are
selected, based on their efficacy in the selected biological assays. Naturally, the
development of good biological assays is of crucial importance for an effective
screening process: the higher the predictive value of a biological assay in a
given therapeutic area, the more effective the screening.

Choice of the “lead compound”. At the end of a screening campaign one
hopes to obtain a certain number of molecules that, at the same time, are sim-
ple to synthesize (in fact or potentially), have physico-chemical characteristics
compatible with the predicted function, and demonstrate pharmacological
activity in the selected biological assays. Unfortunately, this is not always the
case and screening campaigns that do not yield a single acceptable candidate
are not rare. When candidates are obtained, preclinical researchers must
choose a very restricted number of “champions” to promote to more advanced
stages of development. Generally, a lead compound is selected, along with a
small number of back-up compounds (two to five), to be used if the lead com-
pound runs into unexpected problems (as often happens). The choice of the
lead compound always results from a compromise. To draw an analogy from the
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world of sports, the lead compound is comparable to a decathlete: such an ath-
lete must perform satisfactorily in all ten disciplines, rather than be exception-
ally good in some, but totally inadequate in others.

Synthesis and physico-chemical characterization of the lead com-

pound. For a molecule to have the potential to become a drug, not only must
it be pharmacologically active in the chosen biological models, but it must also
lend itself to being produced in large quantities at acceptable costs and have
physico-chemical characteristics compatible with the expected function.
Initially, the synthetic process may be very laborious and require many steps.
However, it is necessary to simplify it as much as possible, both by reducing the
number of steps, and by substituting the more complex steps with simpler ones.
Optimization of the synthesis of the active compound requires years of research
and often continues long after clinical development has begun. In any case,
from the beginning, it is generally possible to estimate the feasibility of an
acceptable simplification of the synthetic pathway and discard molecules that
will be too difficult to synthesize. Furthermore, a detailed characterization of
the physico-chemical properties of the most promising molecules (solubility in
water and lipids, pH, etcetera) makes it possible to discard a priori those that
are incompatible with either interaction with the molecular target or use in liv-
ing organisms.

Pharmaceutical formulation. The confusion between the active com-

pound (drug substance) and the drug product or pharmaceutical product

is a mistake commonly made by “outsiders”. The drug product contains the
active (or presumed active) compound, a series of excipients (pharmacologi-
cally inert substances) such as lactose, fructose, starch, etcetera, and a deliv-

ery system. Examples of delivery systems include capsules for oral adminis-
tration; syringes for intermittent parenteral injection; pumps for continuous
parenteral injection; inhalers for inhalation of powders, solutions or suspen-
sions; patches for transdermal administration, etcetera. An optimal combina-
tion of active compound, excipients and delivery system into a drug product,
i.e. the achievement of an optimal pharmaceutical formulation, is often one
of the most complex steps in the preclinical development of a drug. As with the
synthetic process, the optimization of the pharmaceutical formulation requires
many years of work and, almost always, continues well into the stage of clinical
experimentation. As a consequence, early clinical trials are generally conduct-
ed with the so-called service formulation, i.e. a formulation that is easier to
make compared to the final formulation (for example, a solution to drink
instead of a capsule, or a nebulizer instead of a portable inhaler). However, one
should make sure that the service formulation is not too different from the final
one, since the formulation can dramatically modify the effects of a drug (both
desirable and undesirable). In any case, the phase II dose-response studies and
the phase III pivotal studies (see below) should be performed using the final
drug product, identical to the one that will be commercialized (“final market
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image”). In practice, this does not always happen, because the race against time
and competitors is ferocious, and it does happen that pivotal trials are carried
out with formulations that are similar, but not identical, to the final market
image. Such an approach is generally discouraged. Even when it is acceptable
from a clinical point of view, it is dangerous from the regulatory one (even when
discussed with the authorities in the planning stage). Often further studies will
be required, which will have to show bioequivalence (that is, that different
formulations of the same active compound are equivalent in their pharmacoki-
netic profile, see below), or pharmacodynamic equivalence, or even therapeu-
tic equivalence (see below and chapter 11). These additional studies can take
more time than the time saved by starting the pivotal studies without the final
formulation, and provide no guarantee of a result that supports equivalence
between service and final formulation. The worst potential outcome is that the
pivotal studies must be repeated.

Scale-up of production and quality control. Initially, both the drug sub-
stance and the drug product are produced “manually”. This is obviously extreme-
ly laborious and yields very small quantities, which can be measured, in the case
of the active compound, in the order of grams (or milligrams). As the preclinical
process progresses, and more departments need access to the active compound,
production must be transferred to dedicated laboratories, capable of scaling-up
to much larger quantities, in the order of kilograms (sometimes referred to as
“kilo-labs”). Naturally, we are still far from the amounts required for the market.
Production on the scale needed for the market requires automated processes
with the appropriate infrastructure, often in sterile environments. Even if the
decision regarding the investments for mass production is made later in the
development process, the design and testing of the machinery must start “at
risk” very early. In fact, often, such machines can not simply be purchased off the
shelf, but must undergo more or less radical modifications compared to the com-
mercially available products, in order to meet unique manufacturing require-
ments of a given drug. Not infrequently, nothing suitable is available from the
market and the machinery must be designed and built almost “from scratch”.
Going back to the investment decision for the manufacturing equipment and
facilities, it is an extremely complex and risky one. If the decision is made too
soon, one may end up with entire buildings full of equipment ready for a drug
that will never come. The “recycling” of such investments is possible, but it is
generally partial, causing large financial losses. On the other hand, if the decision
is made too late, one risks not being ready for the market. The drug is approved,
the medical community is ready for it, but the “launch” must be delayed by six
months or one year because supplies are not ready. Both types of mistakes can
potentially bring entire companies to their knees. Finally, we must mention
briefly the quality control procedures, aimed at guaranteeing that the processes,
the analytical methods and the products satisfy the predefined quality standards.
Quality control procedures must be in place right from the beginning of preclin-
ical experimentation. In fact, drug batches of inappropriate quality can invalidate
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the results of experiments in practically every preclinical area, from formulation
development, to pharmacokinetics and toxicology (see below).

Toxicology. The lead compound, once selected, must undergo a long
sequence of toxicology studies in various animal species, starting with single
dose acute toxicology tests and continuing with multiple dose tests, the dura-
tion of which depends on the expected duration of treatment in the clinical set-
ting (drugs to be taken for a lifetime require much longer toxicology investiga-
tions than drugs to be taken for short periods of time). Toxicology includes also
teratogenicity studies (investigating the potential of causing birth defects),
carcinogenicity studies (investigating the potential of causing cancer),  and
fertility studies. The toxicology research program continues well after the
start of clinical trials. However, specific toxicology studies must be completed
before the start of each phase of clinical development. Detailed national and
international guidelines regulate the chronology and duration of toxicology
investigations and their relationship to the phases of clinical development and
to the duration of clinical trials.

Preclinical pharmacology: pharmacokinetics and pharmacody-

namics. The pharmacokinetic and pharmacodynamic characteristics of the
lead compound are studied intensely in animal models before clinical experi-
mentation begins. As a reminder, pharmacokinetics is the branch of phar-
macology that studies what the body does to the drug (absorption, distribution,
metabolism and excretion – ADME), while pharmacodynamics studies what
the drug does to the organs and systems of the body. Preclinical pharmacology
studies can be “ex-vivo”, i.e. conducted on  isolated biological systems such as
cell lines or blood, and “in-vivo”, i.e. conducted on intact, living animals. 

Promotion of a potential drug to clinical research. From this brief
overview one can understand how significant an event the promotion of a
potential drug to clinical experimentation is to the hundreds of preclinical
researchers involved in the process. It is also a rare event. It has been calculat-
ed that the ratio between the number of molecules undergoing initial mass
screening and the number of molecules promoted to clinical experimentation is
on the order of 250,000 to 1 [87]. All other molecules are lost along the way, the
majority during the early phase of screening, but some at advanced stages, after
much work and hope have been invested in them.

12.2. The Phases of Clinical Development

12.2.1. Introduction

The preclinical research “champions” are the “newborns” of clinical research.
They must undergo another cycle of experimentation, just as complex as and
much more expensive than the previous one, this time on the human species.

308 12. The Drug Development Process and the Phases of Clinical Research



The term “clinical” is used to mean “on human subjects”. Clinical experimenta-
tion takes place in phases, from small studies on few subjects, strictly selected
and closely followed, to very large studies in patients with heterogeneous char-
acteristics and in a context similar to clinical practice.  By convention, clinical
drug development is divided into four phases, indicated with roman numerals I
to IV, which will be discussed in the following paragraphs. However, it is impor-
tant to point out that the succession of phases, as well as the content of each
phase, are flexible and change from project to project.

As the clinical experimentation proceeds and the degree of certainty sur-
rounding the therapeutic potential of a new compound increases, experiments
proceed in parallel  in many non-clinical areas, from toxicology to production,
becoming more complex and ambitious, in preparation for the more advanced
clinical phases and eventually for commercialization. 

12.2.2. Phase I

Phase I is the phase of clinical experimentation which starts with the first
administration of the drug to humans. Traditionally it is carried out on healthy
volunteers. The complexity of the meaning of “healthy” was discussed in chap-
ter 6 (section 6.1.1).

Two are the main objectives of phase I: 
• Obtain indications on the safety and tolerability of the drug over a wide range

of doses.
• Study the pharmacokinetic properties of the drug in man.

If the phase I studies are performed on patients, instead of healthy volunteers
(see below), a third objective is added:
• Obtain preliminary pharmacodynamic indications.

In a typical first phase I study (“first in man”), a sequence of increasing sin-
gle doses is used. The selection of the dose range to test in the initial studies in
man is a difficult choice, loaded with downstream consequences on the drug
development process. Generally, the outcome of animal toxicology tests on the
most sensitive species is used as a starting point. Often (although not always),
these experiments allow the so-called maximum tolerated dose or “non-toxic
effect level” (NTEL) to be determined. It is the highest dose that can be admin-
istered to the animal without observing undesired effects considered unac-
ceptable. The maximum tolerated dose in the animal is then converted to a
dose considered equivalent in man, allowing for the different weight and/or
body surface (and sometimes other variables). The highest dose used in phase
I studies is, generally, a fraction of the human dose corresponding to the max-
imum tolerated dose in the most sensitive relevant animal species (relevant in
the sense that the metabolic processes under study are similar to those in
man). Once the highest dose is established, four to five fractions are selected
(with the help of dose-response curves in animals, whenever possible), to com-
plete the dose range to be tested in the first phase I study. The starting dose
(the lowest one) is always much lower than the highest one. The entire dose
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selection process for human trials relies on the predictive value of the maxi-
mum tolerated dose in the chosen animal model. If the projected maximum tol-
erated dose in man is very different from the true (and unknown) one, the
entire range of doses tested in man would be too low or too high. If too low, the
drug will be less efficacious, if too high, more toxic, compared to its true poten-
tial. In both cases, often, it will not progress to phase II. In our experience, bas-
ing the choice of the dose range to test in phase I exclusively on animal data is
often unsatisfactory and establishes a kind of “original sin” that is carried
throughout the clinical development process. In our opinion, in some situations
it would be scientifically and ethically preferable not to rely heavily on animal
data for predicting doses in man, especially when it is known that the available
animal models are not predictive (not an uncommon scenario). In these cases,
one should find the courage to rely almost entirely on the human species. When
the animal model does not work, the risk of testing completely wrong dose
ranges (possibly too high!) in phase I is high. One could instead start with a very
low dose (the order of magnitude of which could still be obtained from limited
animal toxicology experiments), and then very carefully increase it, in numer-
ous steps, the number depending on the compound under development. The
advantage of not having to rely on extrapolations made from other species is
clear.

Once the dose range is selected, each dose is first studied as a single admin-
istration. The subjects are divided into groups and the experimentation starts
with the group assigned to the lowest dose. Often the dose escalation random-
ized design is used, as illustrated in chapter 10 (section 10.4.1). In phase I stud-
ies, the subjects are kept under very close observation, repeatedly questioned
regarding the onset of undesired signs or symptoms and required to undergo
numerous laboratory and instrumental investigations, the nature and chronolo-
gy of which depend on the characteristics of the drug and the target disease.
Furthermore, the volunteers undergo repeated sampling of biological fluids, in
order to build the pharmacokinetic profile of the drug under investigation. If
the researchers are satisfied with the safety and tolerability of the first dose,
they move to the dose immediately above it, then to the third dose and so on.
The study ends when either a dose presenting side effects considered unac-
ceptable, or the highest dose is reached. We wish to point out, once again, that
the decision on whether to move to the next dose, or not, i.e. stop the study, is
only occasionally obvious; more frequently, it is not obvious at all. Such a deci-
sion relies heavily on the subjective judgment and experience of the
researchers.

The doses considered safe and well tolerated in the single dose study are then
tested in one or more multiple-dose studies (i.e. with repeated dosing), the
duration of which depends on both the toxicology data available at the time the
study starts (often the limiting factor) and the type of disease under study. The
same dose-escalation design is used, although often with a narrower range of
doses (a higher starting dose and/or a lower final dose), based on the results of
the previous single dose study.
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If more than one therapeutic regimen is considered (for example, once and
twice daily regimens), phase I may require more than one multiple dose study.
Furthermore, quite frequently, ancillary pharmacokinetic studies are per-
formed, for example, comparing administration in a fasting state with that fol-
lowing a meal, or studies testing the pharmacokinetic interaction of the exper-
imental drug with drugs that are likely to be administered concomitantly.
However, more often, such “special” studies are performed in phase II or III
(see below).

As mentioned at the beginning of this section, generally phase I is performed
on healthy volunteers. The use of healthy volunteers in phase I, instead of
patients suffering from the disease under study, is based on three assumptions.
• Methodological: it is assumed that adverse events are less frequent in healthy

volunteers than in patients, making it easier to establish a causal link between
the drug and the observed adverse events.

• Ethical: it is assumed that in the early stages, the human testing of a drug is
ethically more acceptable in healthy subjects  than in sick subjects. 

• Logistical: it is assumed that for these kinds of studies it is easier and faster
to recruit healthy volunteers than patients.
In our opinion, the only truly valid assumption is the last, the logistical one.

It is indeed very difficult in the relatively restricted pool of patients with a spe-
cific condition, to find those who have the time and the inclination to submit
themselves to the intensive investigations required for a phase I study (even if
the subject is paid). On the contrary, in the much larger pool of the general
“healthy” population, it is relatively easy to find subjects willing to volunteer for
this type of study. On the other hand, the methodological and ethical argu-
ments are both difficult to support. From the methodological point of view,
investigations on subjects treated with placebo have demonstrated that healthy
volunteers suffer from all sorts of adverse events unrelated to study drug, to an
extent similar to placebo-treated patients. From the ethical point of view, one
should remember that, because of the intense monitoring, the risk of serious
adverse events in phase I studies is very low, despite some well known episodes
of catastrophic outcome of phase I studies. Furthermore, in oncology, where
drugs are very toxic, the opposite ethical argument is used, and phase I studies
for anticancer drugs are traditionally performed in terminally ill patients.

12.2.3. Phase II

Phase II is performed on patients affected by the disease under study.
Generally, the patient selection criteria for phase II are more restrictive com-
pared to phase III, in the sense that subjects with serious or atypical forms of
the disease and those with  concomitant diseases or laboratory abnormalities
are generally excluded. Such an approach has advantages and disadvantages:
on the one hand, the drug is tested under the best conditions for demonstrat-
ing a pharmacodynamic effect and a dose-response relationship (see below),
since subjects with serious or atypical form of the disease, or with multiple dis-
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eases are often the most resistant to therapy; on the other hand, the ability of
phase II studies to predict the true therapeutic value of the drug is limited by
this choice.

The main objectives of phase II are the following:
• Prove that the drug is active on relevant pharmacodynamic end-points.
• Select the dose (or doses) and the frequency of administration for phase III.
• Obtain safety and tolerability data.

Sometimes phase II is sub-divided into two “sub-phases”.
• Phase IIa aimed at  proof of concept.
• Phase IIb aimed at dose  selection (referred to as dose-finding or dose-rang-

ing).
The proof of concept studies (phase IIa) are particularly useful when

dealing with an innovative compound. Their aim is to confirm in man the basic
biological and pharmacodynamic concepts concerning the mechanism of action
of the new drug. Such concept, before phase II, is based only on “proofs” on in
vitro and animal models, generally with service formulations. 

In a proof of concept study, the drug is put in the best conditions to show effi-
cacy.
• The sample is rigorously selected, in that only subjects with a “pure”, text

book-like clinical picture are included, while subjects with severe, atypical or
mixed forms, as well as those with concomitant diseases, are excluded.

• The chosen dose is the highest that can be administered based on phase I
results (unless there are reasons to believe that a lower dose might be more
efficacious).

• The chosen pharmacodynamic model is validated and accepted, for example
diastolic blood pressure for antihypertensive drugs or lung function after
metacholine challenge for antiasthma drugs. This third criterion is generally
the most difficult to achieve, sometimes because a valid and recognized phar-
macodynamic model does not exist, but more often because researchers can-
not resist the temptation of using new models, which they believe to be bet-
ter than the established ones. By doing so, the new drug and the new model
are tested at the same time. If the results of the study are disappointing, one
will never know whether to attribute them to the failure of new drug or of the
new model.

• The selected center is highly specialized in performing studies of this kind.
Proof of concept studies are generally small and complex. They are of high

strategic importance, because, if the concept is not proven, the development of
the drug is stopped. Naturally, the criteria to decide whether or not to contin-
ue development must be established before knowing the results. The great
advantage of this approach is that, if a drug does not show a sufficient pharma-
codynamic action, it is possible to discontinue its clinical development when
the investments (in terms of both time and resources) are still relatively limit-
ed, i.e. before entering the long and extremely costly phase IIb and – even more
– phase III studies. The disadvantage is that the future of the drug depends
entirely on a small pharmacodynamic study, especially on the adequacy of the
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pharmacodynamic model and the competence and skills of the investigators.
As for the dose selection, unfortunately, quite often, preclinical results can-

not be easily transferred to the living human and to the formulation of the drug
chosen for the clinical trials (which once again casts serious doubts on the use-
fulness of many animal experiments). Studies for the choice of the dose, com-
monly called dose-finding or dose-ranging (phase IIb), have the main
objective of selecting the dose or the doses and the frequency of administration
to be tested in phase III. Secondary objectives of such studies are to obtain
information on the pharmacodynamic and sometimes therapeutic activity of the
drug. When phase IIa is not carried out, they also serve as the proof of concept.
Such studies have special methodological and practical problems that cannot
be discussed in this book. We refer the interested reader to the ICH guideline
[59] and to the previously cited articles by Ruberg [85, 86].

Traditionally, a number of so-called “special” studies, the objective of which
is to investigate the action of the drug in “special” conditions or subgroups of
patients, are also assigned to phase II. These include: 
• Studies in elderly patients.
• Studies comparing different races.
• Studies in patients with hepatic or renal insufficiency.
• Studies evaluating interactions between the new drug and other drugs of

common use in the disease under study.
• Studies evaluating interactions between the new drug and food and/or water.

These “special” studies are defined phase II studies because the treatment
duration is relatively short and the end-points are of pharmacokinetic and/or
pharmacodynamic nature. However, chronologically they are usually carried out
during phase III, once the “concept” has been validated and the dose selected.

12.2.4. Phase III

Phase III has two key goals:
• To demonstrate the therapeutic efficacy of the drug in a representative sam-

ple of the population at which the treatment is targeted, generally by means
of at least two well designed and adequately performed independent studies
(see section 12.2.5).

• To demonstrate the safety and tolerability of the drug in a sufficiently large
sample of the population at which the drug is targeted, by means of studies
of sufficiently long duration, compared to the intended duration of the treat-
ment in clinical practice.
The “therapeutic” efficacy is different from the “pharmacodynamic” efficacy

demonstrated in phase II. For example, in the treatment of osteoporosis, bone
density is a pharmacodynamic variable from which the end-points commonly
used in phase II are derived. In fact, bone density is a “biomarker” of the
process of bone weakening (see section 4.9). An end-point of therapeutic
importance, in this case, could be the incidence of bone fractures. A drug capa-
ble of increasing density of the femoral or vertebral bone (or of slowing down
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its spontaneous decrease) shows promise with regard to reducing the frequen-
cy of fractures in elderly patients (such fractures are one of the main causes of
morbidity, deterioration of quality of life and mortality in this population). If the
pharmacodynamic end-point were a perfect surrogate (that is, highly correlat-
ed to the clinical end-point and capable of completely capturing the net effect
of a treatment on the same clinical end-point - see again section 4.9), there
would be no need to demonstrate the efficacy of the drug on the clinical end-
point. Unfortunately, this rarely happens. For example, as illustrated in section
4.9, bone density does not capture a sufficient proportion of the net effect of
treatments on the incidence fractures to allow its use as a primary end-point in
phase III (the probability of suffering a fracture also depends on the three-
dimensional microscopic architecture of the bone and on factors that have
nothing to do with bone, such as the subject’s balance and muscular strength).
For this reason, in the majority of cases, phase III studies must use clinical end-
points (see also section 4.2.2).

As usual, there are exceptions. 
• In some cases pharmacodynamic end-points are accepted as clinically rele-

vant in pivotal phase III studies. Diastolic blood pressure for antihypertensive
drugs and forced expiratory volume in 1 second (FEV1) for bronchodilators
are two examples. Such situations are often a combination of science and tra-
dition. Diastolic pressure and FEV1 are surrogates with “acceptable” predic-
tive value for clinical endpoints (a low FEV1 is predictive of shortness of
breath; a high diastolic pressure is predictive of cardio- and cerebrovascular
events), but, most importantly, have been used for registration purposes for
decades.

• There are serious diseases for which no cure is available, where it is appro-
priate to approve a drug and make it available to patients based on efficacy
demonstrated exclusively on pharmacodynamic end-points, instead of wait-
ing for the conclusions of studies on clinical end-points, normally requiring
many years. A typical example is represented by the antiretroviral drugs in
the treatment of AIDS, already mentioned in section 4.9. It is important for
patients and doctors to be aware that unpleasant surprises may occur once
the studies on the clinical end-points are completed. For example, survival
studies with zidovudine (AZT) mono-therapy in AIDS, completed many years
after registration of the drug (based on efficacy demonstrated on a single sur-
rogate end-point), gave relatively disappointing results.
Phase III has a “confirmatory” role not only for efficacy, but also for safety and

tolerability of the treatment. The number of patients treated and the treatment
duration must be such that it can be concluded that the drug is sufficiently safe
and well tolerated to be approved and made available to doctors and patients.
This is another very complex area that will be covered only briefly here.

The duration of the treatment depends on the disease being studied: at one
end of the spectrum are treatments designated to be used only occasionally for
one or few days, for example anesthetics or some antibiotics; at the opposite
end are treatments that must be taken for a lifetime (at times starting from
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childhood), such as inhaled corticosteroids in the treatment of asthma. The
duration of phase III studies for treatments designated to be administered for
many years or for a lifetime, generally ranges from 1 to 3 years. This treatment
duration may seem very brief for therapies lasting 30-40 years or longer (as in
the case of chronic diseases). However, postponing for many years the intro-
duction of an efficacious treatment is just as problematic at multiple levels.
• Methodological: longitudinal studies lasting many years are very difficult, if

not impossible, to perform and, unless one treats a substantial part of the
entire population, a rare adverse event due to the experimental drug will not
be separable from the background noise resulting from biological variability. 

• Ethical: patients would be left without a potentially important therapeutic
option for years, in order to increase the degree of comfort concerning long
term safety and tolerability.

• Commercial: without revenues, there are very few companies or institutions
that can sustain studies of such duration.
With increasing frequency, health authorities deal with this kind of dilemma by

imposing studies to test long-term safety (both experimental and observational),
after the introduction of the drug on the market (i.e. in phase IV, see below).

A typical phase III database includes between 2000 and 5000 patients treat-
ed with the experimental drug, as well as patients treated with placebo and
active controls. Sometimes, however, the numbers are considerably higher.

Finally, more and more frequently, it is required to demonstrate the impact
of the new treatment on health care and social resources. No health care sys-
tem, including those of the richest countries, can sustain an indiscriminate
influx of high cost new treatments. For a new treatment to be “reimbursed” by
public and private health insurance funds, it must bring cost savings in other
areas. For example, a new drug can decrease the duration of hospitalization or
of days in intensive care units, allow home assistance to replace hospitalization,
reduce the amount of social service support needed, decrease the quantity and
number of concomitant drugs, decrease the number of days missed at work or
school, and so on. The science that studies the socio-economic impact of treat-
ments and other health care solutions is called pharmaco-economics. Socio-
economic studies and socio-economic end-points (see section 4.9) included in
clinical studies are now an integral part of clinical development in phases III and
IV. An increasing number of regulatory and reimbursement authorities require
such studies for every new treatment, in order to establish the market price,
determine the level of reimbursement, or even as a condition for obtaining reg-
ulatory approval.

12.2.5. Registration Dossier

The approval of a new drug by regulatory authorities is the main goal, though
not the only one  (see below), of a development program.

The large phase III pivotal studies have the role of providing conclusive proof
of the safety, tolerability and efficacy of the new drug in a given disease and
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population. However, all the data generated on the drug must be summarized
and discussed in a logical and comprehensive way in the registration dossier,
to be submitted to the regulatory authorities as the basis of the request for
approval. The dossier is divided into various sections, each corresponding to a
development area:
• Physico-chemical characteristics and pharmaceutical formulation.
• Delivery device (if applicable).
• Production and quality control.
• Toxicology.
• Pharmacology.
• Pharmacokinetics.
• Clinical evidence.

In its entirety, a registration dossier is an impressively large and complex doc-
ument (hundreds of thousands of pages or the electronic equivalent).

Concerning the clinical evidence, for each registration typically two inde-
pendent phase III studies are needed; each appropriately designed and pow-
ered to prove the primary objectives. There are, however, numerous exceptions
to this rule. For example, when one of the pivotal studies does not provide
straightforward results, it may be necessary to perform one or more additional
pivotal studies. On the other hand, for dossiers that expand the population of
an original dossier, for example to pediatric or geriatric patients, one phase III
pivotal study is generally sufficient. On the topic of a single pivotal study see
also section 12.4.

As mentioned above, not only the pivotal studies, but all available clinical
data, those generated by the company or institution (referred to as the spon-
sor) and those generated by third parties and published in the literature, must
be summarized and discussed in a series of “integrated” documents, the
detailed structure of which is determined by the regulatory authorities such as
the Food and Drug Administration (FDA) in United States, the European

Medicines Agency (EMEA) in the European Community, the Ministry of

Health Labor and Welfare (MHLW) in Japan, and other national authorities.
The last 15 years have seen a large international effort to harmonize the

requirements and standards of many aspects of the development and approval
process and registration documents for both pharmacological and non-pharma-
cological treatments. Such effort became tangible with the joint approval of the
documents of the International Conference on Harmonization (ICH)
(see the ICH web-site: www.ich.org). These are consolidated guidelines that
must be followed in the clinical development process and in the preparation of
the registration dossiers in all the three regions covered by the ICH: Europe,
Japan, United States.

With regard to the registration dossier, the ICH process culminated with the
approval of the “Common Technical Document” (CTD). The CTD is the
common  format of the registration dossier recommended by EMEA, FDA and
MHLW. It is organized in five modules, each composed of several sections. The
structure of the CTD is summarized in Table 12.1.
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The clinical overviews of the CTD replace the integrated documents specific
to  individual regulatory authorities such as:
• FDA’s Integrated Summary of Efficacy and Integrated Summary of Safety. 
• EMEA’s Expert Report and Clinical Data Summary of Results and Statistical

Analysis.
In practice, in spite of the great advancements in the harmonization process,

regional differences abound, both in format and content, particularly for Japan.
Furthermore, it is important to keep in mind that the ICH guidelines are intend-
ed as true guidelines, as opposed to rigid bureaucratic impositions: if there is a
good scientific reason (for example, an uncertain safety profile) or administra-
tive reason, it is absolutely legitimate for a regulatory authority to request a reg-
istration dossier different from that called for by the ICH guidelines.

In order to keep within the boundaries of this book, it is impossible to do jus-
tice to the complex issues raised by the integrated documents. All we can do is
to touch upon four key points.

Pooling of the databases. The integration of the results implies the pool-
ing of the databases of multiple studies into one or more common integrated

databases, from which analyses and evaluations on the entire population stud-
ied or on sub-groups of the population are carried out. This is done in the
assessment of efficacy, for example, for special groups, such as the elderly or
subjects with renal or hepatic failure, and, even more, in the assessment of safe-
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Table 12.1. Structure of the Common Technical Document (CTD)

Module Title

1 Regional administrative information and  overall table of contents
2 Overviews:

2.1 Table of contents
2.2 Introduction
2.3 Overview of quality 

2.3S Active compound
2.3P Pharmaceutical product

2.4 Preclinical overviews
2.5 Clinical overviews

2.5.1 Rationale for the development of the product
2.5.2 Biopharmaceutical overview 
2.5.3 Clinical pharmacology overview
2.5.4 Efficacy overview
2.5.5 Safety overview
2.5.6 Conclusions on benefits and risks
2.5.7 Bibliography

2.6 Written and tabulated preclinical summary
2.7 Clinical summary

3 Quality

4 Non-clinical study reports

5 Clinical study reports



ty and tolerability. In the assesment of safety, data on adverse events and lab-
oratory tests of all available studies, or most of them, must be “pooled” into
integrated databases, on which sub-group analysis by age, sex, dose, etcetera,
are performed. The merger of databases coming from different studies requires
detailed planning at the beginning of the project. The more complete the har-
monization of procedures and programming conventions of the individual stud-
ies constituting the clinical development program, the easier the final pooling.
Vice versa, the lack of such harmonization will necessitate an extenuating ad
hoc programming effort at the end of the development process, which will
inevitably require a number of arbitrary assumptions and coding decisions, in
order to harmonize the data collected in the different studies. In some cases,
this can reduce the reliability of the integrated database. 

Integrated reports. The integrated reports of efficacy and safety must
not be an endless series of summaries – all given the same importance - of the
results from the various studies. Instead, a convincing overview requires strict
prioritization, where more space is given to the results of pivotal studies, as well
as an intense effort of transparency in the critical discussion of results: the 
negative aspects of the pharmacological and clinical profile of the new drug
must be identified and discussed, never minimized or, even worse, hidden.
There is no drug (or treatment of any nature), which does not have negative
aspects in the efficacy profile and potentially serious side effects. The aim of an
integrated report must be to demonstrate that the balance between positive
and negative aspects of the treatment under study (the so-called benefit/risk

ratio) is, all things considered, favorable for the majority of patients and for 
the healthcare system. An integrated report attempting to show that there 
are no problems and that everything is positive becomes a marketing operation,
as naïve as it is counterproductive, which renders the review by and the 
interaction with regulatory authorities much longer, more complex and convo-
luted.

Meta-analysis. It is almost always useful to perform proper meta-analy-

ses, that is, analyses on the integrated databases. Glass [49] gave the original
definition: “the meta-analysis is the statistical analysis of a large collection of
results from individual trials for the purpose of integrating the findings”. In the
clinical-regulatory context, the definition can be found in the above mentioned
ICH guideline [61]: “the formal evaluation of the quantitative evidence from two
or more trials bearing on the same question”. On the efficacy front, a meta-
analysis cannot be considered a substitute for phase III pivotal trials, each of
which must be designed so as to reach its objectives “in its own right” (there
are rare exceptions to this rule – see [37]). Nevertheless, meta-analyses are
generally recognized as a useful instruments for: 
a. Summarizing clinical results (the estimate of the treatment effect made on

large databases, such as the integrated ones, is more precise than that
obtained from individual studies).
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b.Evaluating apparently conflicting results from individual studies. 
c. Performing sub-group analyses. 
d.Evaluating secondary end-points.
e. Evaluating the value of potential surrogate end-points (see section 4.9).

For items c, d and e, in general, individual clinical studies do not have enough
power to reach reliable conclusions. 

Naturally, meta-analyses are more valuable if planned prospectively, that is,
before knowing the results of the studies. On the safety and tolerability front, the
role of meta-analysis is even more crucial. Generally, individual studies are under-
sized in the context of statistically detecting infrequent adverse events (for
example, at an 80% power, approximately 1600 patients are needed to observe at
least one patient reporting an adverse event with 0.1% probability of occur-
rence). A meta-analysis performed on integrated databases is therefore indis-
pensable when formally submitting one or more rare events to statistical analysis.
Clearly, for the meta-analysis to make sense, the integrated studies must have a
certain degree of similarity with regard to design, patient selection, time of expo-
sure to treatment, adverse event definition and detection methods, etcetera. On
the topic of meta-analysis, we recommend the book by Hedges and Olkin [56]. 

Summary of product characteristics. The summaries of the product
characteristics, which are added to each commercial package of the drug, are
probably the most important integrated documents. Great attention must be
paid to them, in both format and content. In these documents, the disease and
the type of patients for which the use of the treatment is permitted are
described, together with the clinical advantages and disadvantages, contraindi-
cations and precautions, the main pharmacokinetic, pharmacodynamic and tox-
icological characteristics, the modality of use and the permitted dosages. In
many countries two versions are required. One, known as the Package Insert

(PI) in the United States and Summary of Product Characteristics (SPC) in
Europe, is addressed to the doctors;  the other, the Patient Information

Sheet is tailored for the patients. The latter uses simpler language and is more
difficult to prepare. These documents have, first and foremost, a crucial medical
value, being the only documents available to both the doctor and the patient as
a guide to the correct use of the treatment. Then, they have legal value, in case
of legal proceedings of any kind. Finally, they determine the limits of the adver-
tising campaigns and, therefore, have an enormous value for the marketing
departments: the addition or omission of just one word in the package insert can
allow or preclude highly efficient advertisement in the campaign against com-
petitors and ultimately determine the commercial success of the new treatment.

12.2.6. Phase IV

Clinical experiments on a new treatment are far from over when it is approved
and introduced onto the market. Despite the marketing authorization by a
health authority, outstanding questions always outnumber the answers. 
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The expression phase IV is used to indicate the set of clinical studies per-
formed after the approval of a new drug within the approved indication(s) and
restrictions imposed by the Summary of Product Characteristics. 

It is important to stress the fact that studies performed after approval, but on
different indications or outside of the restrictions imposed by the SPC (for
example, new dose strengths or regimens, special populations, use with con-
traindicated concomitant medications) are not phase IV studies. They are
phase I to III studies, generally part of a new development process, which
requires new pivotal studies and a new registration dossier, in order to obtain
approval for a broader population or range of concomitant medications, a new
indication or dosage, etcetera. 

Sometimes, a distinction is made between studies performed after submis-
sion of the registration dossier, but before approval by regulatory authorities,
referred to as phase IIIb studies, and studies performed entirely after approval,
the proper phase IV studies. Others use the term phase IV to indicate both of
these categories. In this book, we will adopt the latter definition. 

Phase IV studies can have many different aims, among which are the follow-
ing:
• Comparisons between the new treatment and frequently used current treat-

ments (in phase II and III, a maximum of one or two active controls are test-
ed, if at all, not rarely the only comparison being with the placebo).

• Pharmaco-economic assessments, intended to extend the information
obtained in phase III. 

• Safety assessments via clinical trials and/or pharmaco-vigilance studies;
the latter are large observational studies aimed at evaluating the safety of the
new treatment on samples of patients much larger than those used in phase
III and in a context much closer to the reality of clinical practice. Such stud-
ies are particularly useful for evaluating rare and/or delayed adverse events,
i.e. events appearing only after prolonged exposure to treatment, which gen-
erally cannot be quantified in the preregistration phase; an example is the
assessment of the Churg-Strauss syndrome associated with leukotriene
antagonists.

• Pharmacodynamic assessments.
• Assessments on subgroups of the patient population for which the treatment

has been approved, for example, patients more seriously affected or more at
risk.
Since the drug is available on the market, phase IV studies can be performed

more easily by independent research groups, that is, not linked directly or indi-
rectly to the pharmaceutical company producing the drug (and sponsor of the
entire preregistration development process). This is a very positive situation,
because it allows for independent verification of the efficacy and safety of a new
drug. On the other hand, we must warn against uncritical acceptance of data
generated by independent groups that contrast the conclusions of studies per-
formed by the sponsor. Unfortunately, not rarely, the independent studies are
underpowered and methodologically more problematic compared to those per-
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formed by pharmaceutical sponsors; furthermore, sometimes the so-called
independent studies are only independent in respect of the company sponsor-
ing a given product, but they are not at all independent in respect of other com-
panies or the interests of the organization or research group who conducted the
study. Therefore, we urge the reader to base his/her judgment on the quality of
the study and of the publication, not on the affiliation of the authors or on a
claimed absence of conflicts of interest. 

12.2.7. Project Management

In this section, we wish to emphasize the importance of project management.

In any project of the complexity, duration and cost of a clinical development
program, the presence of one or more project managers of proven experience
is absolutely vital. Among the functions of project management, the following
are of the greatest importance for the success of the project.
• Coordination of the temporal sequence of activities performed in different

departments. For example, a clinical trial cannot start if the preclinical toxi-
cology studies of the required duration have not been completed and if the
drug has not been shipped to the research centers.

• Coordination of the enormous quantity of scientific information generated
over years of preclinical and clinical development. For example, suppose that
in the course of the clinical development of a new beta-agonist, the results of
pharmacology experiments show that the new drug has a smaller effect on
the QT interval of the electrocardiogram compared to established drugs of
the same class. Such an observation can translate into a major clinical and
commercial advantage for the new drug, provided that it is recognized,
brought to the attention of the clinical researchers, and tested in properly
planned clinical trials. 

• Management of unexpected negative events, both scientific and non-scientif-
ic. Over the course of the development process, the occurrence of negative
events, from cost overruns, to the failure of a production cycle of the active
component, to a possible side effect of the drug, is not an exception but an
absolute certainty. Such events must be faced in a calm, transparent and
decisive fashion, without falling into the two extremes of defeatism or denial. 

• Finally, an efficient project manager must be prepared for the difficult task of
recommending the interruption of the development of a drug when neces-
sary, avoiding the mistake of dragging a project with no future into the late
stages of development. The discontinuation of a “doomed” project, before the
start of phase III, translates into a big advantage for the researchers and for
the sponsor company, since it allows the funds and resources to be trans-
ferred to other projects. At any given time, there are always more projects
proposed than are sustainable by the available financial and human
resources.
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12.3. The Phases of Clinical Development 
for Oncology Compounds

The contents of the previous sections reflect the traditional clinical develop-
ment process, which applies to most pharmacological treatments. As already
mentioned (see section 8.8 and 10.10), the development of oncology products
is different, especially for phases I and II. 

In general terms, oncology treatments can be grouped into two categories:
cytotoxic and non-cytotoxic. Compounds of the former group are characterized
by a mechanism of action that “kills” the cells, preferably, but not exclusively,
the cancer cells. Those of the latter group, which includes, among others, cyto-
static drugs, hormones, hormone modulators and vaccines, act by blocking, or
more often delaying, the proliferation of tumor cells. Historically, cytotoxic
compounds were developed first, and, over the course of years, the clinical
development model in oncology has been tailored to such compounds. The
classification in phases is the same for oncology products as for products devel-
oped in other therapeutic areas, but the objectives and designs of the studies
included in each phase have many peculiarities. 

12.3.1. Phase I

The primary objective of phase I in oncology is to identify the dose to be rec-
ommended for phase II studies. The basic assumption is that the higher the
dose, the greater the efficacy. Since cytotoxic compounds typically show toxic-
ity already at therapeutic (or even sub-therapeutic) doses, and almost always
show a dose dependent increase in toxicity, the dose recommended for phase II
is usually the highest dose associated with an acceptable level of toxicity. To
identify this dose, a dose-escalation design is used (see chapter 10). Dose-esca-
lation continues, in subsequent small cohorts of different patients, until an unac-
ceptable toxicity level is reached, i.e. a toxicity so serious and/or severe, as to
preclude any further dose increment. The medical adverse events (and the rel-
evant seriousness/severity criteria) defining the dose limiting toxicity (DLT)
for an individual patient must be defined before the start of the study. The
threshold for an unacceptable percentage of patients with DLT at any given dose
must also be established in the planning stage. A dose reaching this threshold
frequency of patients with DLT will determine the end of the study.  The next
lower dose in the tested sequence is referred to as the maximum tolerated dose
(MTD). The MTD is the dose recommended for phase II. Sometimes, the cohort
receiving the MTD is enlarged, before recommending the MTD for phase II.

Because of the considerable toxicity of cytotoxic compounds, it is paramount
that the risk to and the suffering of the enrolled patients be minimized. Usually
this objective is achieved with phase I studies that:
• Use a very low starting dose, conventionally, about 1/10 or less of the human

dose equivalent to the lethal dose in 10% of animals of the most sensitive ani-
mal species (the so-called LD10).
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• Enroll patients in small cohorts (generally of three subjects).
• Adopt a cautious dose-escalation strategy. The sequence of doses is deter-

mined in different ways: a classic method consists of increasing the doses
with decreasing relative increments. For example, the sequential increments
are 100%, 65%, 50%, 40% and 30-35% of the previous dose (modified
Fibonacci method). Recently, a number of alternative designs has been pro-
posed, mainly with the goal of limiting the exposure of patients to sub-thera-
peutic doses and reaching the recommended dose as quickly as possible. On
this topic the reader can refer to Eisenhauer et al [33].
Phase I studies can test a single compound or combinations of compounds.

Typically, phase I studies enroll patients with different forms of cancer
(although sometimes only with the cancer of interest) and in advanced or ter-
minal stage.

12.3.2. Phase II

There are two principal objectives of phase II studies in oncology: confirm-
ing the pharmacodynamic action (activity) and obtaining a preliminary quan-
tification of the clinical effect (efficacy). Activity is often measured as a yes/no
response, where “yes” is generally defined as the combined frequency of two
types of positive result: partial response (a reduction of the tumor mass of at
least 30% to 50% as compared to the baseline condition) and complete
response (a 100% reduction, i.e. disappearance of the tumor mass). Clearly,
this end-point is appropriate only for solid tumors with measurable mass. It is
conventionally used in phase II for many types of tumor, even if its value as a
surrogate marker of survival is generally limited. Phase II studies are tumor-
specific and frequently use “multi-stage” designs with no control group, of the
type described in section 10.10. The rationale for the use of designs without a
control group is given in section 8.8. 

When the experimental treatment appears sufficiently active according to
preestablished criteria, sometimes it proceeds to phase III but other times it is
further experimented in randomized phase II trials, with or without control
arms. These studies use typical phase II end-points, such as the tumor mass
modification, and may or may not be fully comparative, i.e. they can be per-
formed with sample sizes and early stopping rules that are traditionally used for
non-randomized studies. The reader interested in this topic is referred to a
paper by Simon et al (Simon R, Wittes RE, and Ellenberg SS (1985),
Randomized Phase II Clinical Trials. Cancer Treat Rep 69:1375-1381).

12.3.3. Phase III

As for all other therapeutic areas, one primary objective of phase III in oncol-

ogy is that of demonstrating the clinical efficacy of the new treatment. This is
achieved through randomized trials with active control (the standard treatment
for the disease under study). Generally, the primary end-point is linked to sur-
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vival, often complemented by quality of life and pharmaco-economic data. The
assessment of safety and tolerability is the other key objective of phase III stud-
ies in oncology. Again, this is the same as for other therapeutic areas. However,
in oncology, one generally considers acceptable safety profiles that, as for the
nature of the adverse events, their frequency, seriousness and severity, would
instead be considered unacceptable in other areas. 

Because of the seriousness of the oncologic conditions, and the absence of
therapies capable of modifying their natural course, regulatory agencies often
allow “shortened” development plans in order to facilitate registration. For
example, the FDA allows the so-called “Treatment IND” [44], a set of regula-
tions aimed at making treatments for very serious diseases available to patients
not included in clinical trials before the development of such treatments has
been fully completed, when there are no other therapeutic options. The spon-
sor is of course still required  to carry out  the pivotal trials to prove efficacy
and safety. Another example, again adopted by FDA, is the so-called “Subpart

H” [42], a set of regulations aimed at accelerating the development, evaluation
and commercialization of products for the treatment of patients with life-
threatening or seriously debilitating diseases.

These regulations are not limited to oncology treatments. For example, sev-
eral AIDS treatments have achieved rapid registration in this way. 

If the cancer under study is rare, it is possible to ask for “Orphan Drug

Status” [45]. A compound given this status benefits from both shorter devel-
opment plans, and longer patent protection.

The development of non-cytotoxic compounds is more recent. Sometimes
the same development model used for cytotoxic compounds has been used for
these compounds. Such an approach is limited by the fact that the assumptions
that justify its use are not generally fulfilled.
1.The assumptions that the efficacy is proportional to the dose and that the

dose is proportional to the toxicity are often wrong for non-cytotoxic agents.
Therefore, the oncology phase I approach reported above is not justified,
whereas the classic phase I designs are acceptable (see section 10.4.1), per-
haps without the use of the placebo.

2. It may not be ideal to use the reduction of tumor mass as an end-point,
because the mechanism of action is not that of “killing” the cancer cells; this
makes the application of multi-stage phase II oncology studies very difficult,
as they are based on binary end-points and require relatively short evaluation
times. With non-cytotoxic compounds, end-points such as “time of stable dis-
ease” and “time to progression” are often used, and tested through classical
randomized, controlled clinical trials.
Unfortunately, many non-cytotoxic compounds are still inadequately devel-

oped using the standard oncology development plan. It will be some time before
the technical weaknesses of this approach are broadly recognized, hopefully
leading to new, more appropriate solutions and new guidelines.
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12.4. Accelerating Clinical Development

The time and costs of the clinical development process for new drugs are pro-
hibitive. Therefore, in recent years, a faster, cheaper development has been a
key objective in the pharmaceutical world (not only pharmaceutical companies,
but also regulatory organizations and universities). The mean duration of clini-
cal development has shifted from more than 7 years in 1993-1995 to about 5
years in 1999-2001, with considerable variations from one therapeutic area to
another (Tufts Center for the Study of Drug Development, [2002], Impact
Report 4). However, a reduction of development times is not always mirrored
by a reduction in costs. In fact, in many areas costs are steadily increasing. It is
clear that a reduction of costs is a priority for the future of research. However,
here we will focus on the time factor.

Many methods have been proposed to accelerate clinical development.
Clearly, there is no magic solution and no method is universally applicable. We
shall briefly discuss some of the most promising approaches.
1.Avoid the repetition of studies, especially phase III studies, which are the

longest and most expensive. For this purpose, it is very important to concen-
trate efforts on the initial part of the clinical development program, mainly on
phase II. As mentioned above, this phase aims at validating the basic biologi-
cal concept and at identifying the optimal dose to be used in phase III pivotal
studies. If the dose selection is wrong, the phase III studies will fail and, at
best, will have to be repeated. Useful methods to avoid unpleasant surprises
include meta-analyses (see section 12.2.5) performed on the data that the
sponsor collects over time on the new treatment, and simulations, a set of
statistical techniques aimed at evaluating the consequences of a variety of
assumptions, i.e. at answering “what happens if…?” questions. Typical uses
of simulation include the following: 
• Evaluation of the power or other proprieties of statistical tests on variation

of the assumptions made on the signal, the sample size, the drop-out rate,
etcetera.

• Detection of bias, generated by statistical models not suitable to describe
the experimental conditions of interest, by missing data or by other viola-
tions of the protocol.

• Comparison of alternative study designs. 
• Evaluation of the consequences of different decision making rules in deter-

mining the success or failure of a study or an entire study program. 
An example of an application of simulation can be found in the article by

Green and O’Sullivan [53].
2.Use strategies that combine different phases of development, mainly phase II

and III. One way of reaching this objective is to carry out the studies of dif-
ferent phases in parallel or with partial overlap, rather than in sequence, as
in the traditional development programs. For this purpose it may be helpful
to include interim analyses in the phase II studies, with the objective of
obtaining the information required for the planning of phase III studies (see
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section 11.2). Another strategy is that of adopting adaptive designs (see sec-
tion 11.3). Although generally still reluctant to accept such “shortcuts” for
registration, FDA, EMEA and other regulatory authorities are moving in this
direction, appreciating that an untenable development burden will result in a
loss not only for the pharmaceutical companies, but for public health and
society as a whole. Interesting changes in the development model can be
expected in the next decade or so.

3.Make full use of the special regulatory options made available for the very
purpose of accelerating the clinical development of life saving and essential
drugs. Prominent among these are the “Treatment IND”, the “Subpart H” and
the ”Orphan Drug Status” regulations reported in the section on oncology
studies, which, however, are by no means exclusive to that therapeutic area.
Recently, situations for which it is acceptable to obtain registration with a sin-
gle pivotal study have been contemplated (see below).

4.Adopt technological innovations. For example, “electronic data capture”
(EDC) is a technological platform allowing the entry of data into the central
database directly at the study centers, or from the measurement instruments,
without the intermediate step of the traditional paper case report forms
(CRFs). EDC allows a considerable reduction in the time taken between the
end of the study (“Last Patient Last Visit”, LPLV) and database lock. Another
example is the use of “computerized registration dossiers” (that is,
directly submitted in electronic format), which reduces the revision time
required by regulatory authorities.

5. Improve the professional qualifications and organizational skills of the teams
responsible for planning and performing clinical trials. For example, the sys-
tematic use of project management techniques reduces waste and optimizes
time by facilitating coordination across different functions.
With reference to the use of just one pivotal trial as the basis for requesting

approval of a new drug, two documents must be considered [37, 43], one by
EMEA, the other by FDA. Basically, such a model is viable when the primary end-
point is based on mortality or serious and irreversible morbidity (the treatment
can be aimed at either prevention or cure). In order to be a candidate for the sin-
gle pivotal study option in a registration dossier, the trial must be very large (and
multi-center) and have a well-balanced distribution of the sample across the cen-
ters. Results must be persuasive overall and show excellent internal consistency,
i.e. must be consistent across centers, across end-points and across relevant sub-
groups. Finally, the study should not have “grey areas” in the planning, perform-
ance or analysis. From a statistical point of view, “persuasive result” means that
the p-value (two-sided) must be lower than 0.001, instead of 0.05, as conven-
tionally required. There are three key reasons for moving the significance thresh-
old to 0.001. First, “evidence” obtained in this way can be considered equivalent
to that obtained from two independent studies, each performed at the level 0.05.
Second, the probability of reproducing the results in a subsequent study is high
(around 90%). Third, the confidence interval on the parameter of interest is nar-
row and far from zero (Robert O’Neil, personal communication, 2003).
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As mentioned above, in clinical development, time savings are not necessari-
ly mirrored by cost savings. Indeed, in many areas of clinical research, costs are
becoming increasingly prohibitive, especially for small to middle size companies
and for almost all public research organizations. It is easy to predict that, in the
coming years, much effort will be devoted to further reducing both the time and
the costs of the development of new drugs. Naturally, in cases of clinical and
regulatory success, reduction of the development time will lead to earlier avail-
ability of the new treatment on the market, which, in cases of commercial suc-
cess, will translate into a relevant financial benefit for the sponsor.

Summary

Clinical experiments are preceded by many years of preclinical development. In
broad terms, the preclinical development process can be summarized in a
sequence of seven large areas:
1.Screening of thousands of active compounds by means of biological assays.
2.Choice of the lead compound.
3.Synthesis and physico-chemical characterization of the lead compound.
4.Formulation of the drug product, consisting of the drug substance, excipients

and delivery system.
5.Scale-up of production and quality control.
6.Toxicology.
7.Preclinical pharmacology, composed of pharmacokinetics (which studies

what the body does to the drug: absorption, distribution, metabolism and
excretion – ADME), and pharmacodynamics (which studies what the drug
does to the different organs and body systems).
Conventionally, the clinical development of drugs is divided into four phases.
As the clinical experimentation proceeds and the level of confidence on the

therapeutic potential of a new compound grows, experimentation also proceeds
in many non-clinical areas, from toxicology to production, becoming increas-
ingly complex, in preparation for the more advanced clinical phases and finally
for commercialization. 

Phase I begins with the first administration of the drug to man. The two
objectives of phase I are:
a)To obtain indications on the safety and tolerability of the drug over a wide

range of doses.
b)To study the pharmacokinetics of the drug in man.

If phase I studies are performed on patients, instead of healthy volunteers, a
third objective is added. 
c)To obtain preliminary pharmacodynamic indications.

Phase II is carried out on selected groups of patients suffering from the dis-
ease of interest, although patients with atypical forms and concomitant dis-
eases are excluded. The main objectives of phase II are:
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a)To demonstrate that the drug is active on the relevant pharmacodynamic
end-points.

b)To select the dose (or doses) and frequency of administration for phase III.
c)To obtain safety and tolerability data.

Sometimes phase II is itself divided into two “sub-phases”: IIa, for proof of
concept; IIb, for dose-finding. 

The aim of phase III is to demonstrate the therapeutic efficacy, safety and tol-
erability of the drug in a representative sample of the target population, with
studies of sufficiently long duration relative to the treatment in clinical practice.
The large phase III pivotal studies are to provide decisive proof in the registra-
tion dossier.

All data generated on the drug, from the preclinical stage to phase III (or even
phase IV, when it has already been approved in other countries), must be sum-
marized and discussed in a logical and comprehensive manner in the registra-
tion dossier, which is submitted to health authorities as  the basis for the
request of approval.

Clinical experimentation of a new treatment continues after its approval by
health authorities and launch onto the market. Despite the approval, there are
always many questions awaiting answers. Phase IV studies provide some of the
answers. The expression “phase IV” is used to indicate clinical studies per-
formed after the approval of a new drug and within the approved indications
and restrictions imposed by the summary of product characteristics (also
known as package insert).

The so-called cytotoxic drugs used in oncology have many peculiarities in
their clinical development, mainly concerning phase I and II. These differences
are determined mostly by the toxicity of these compounds, even at therapeutic
or sub-therapeutic doses, combined with the life threatening nature of the dis-
eases in question. 

The search for methods and strategies to reduce the time and costs of clini-
cal development is one of the central themes of methodological research.
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observation  41
selection

(in clinical research)  202
(in epidemiology)  40

Bias-free  17
Biomarker  85
Bioequivalence  307
Block

fixed size  210
variable size  210

Bonferroni: see Method

Case  36
Characteristic  21
Coin

biased  215
Common Technical Document  316
Comparison

before-after  185
between-subjects  228
within-subject  228

Compound
active  306
back-up  305
lead  305

Confounding  41
(split-plot design)  273

Consent
informed  162

Constant
mathematical  3

Control  36
active  176
concomitant  201
concurrent  201
historical  200

CTD  316
Cycle

Analytical Index

Adjustment
α 295
for multiplicity  82

Accuracy  8
Agreement

degree of  84
Amendment  21
Analysis

administrative interim  289
decision making interim 288
interim  288
sequential  288

Analogy
method of  135

Approach
Bayesian  108
conditional  118
frequentist  106
subjective  92

Area under the curve  301
Assignment

adaptive  215
chance  203
dynamic  215
systematic  204

Association
spurious  44

Auc  301

Barrier
decision making  296

Baseline  60
Bayes: see Theorem
Bias  8

analysis  202
assessment  202
(in clinical research)  185
(in epidemiology)  40



seasonal  187

Database
integrated  317

Data
longitudinal  301

Data monitoring board  298
Decision making

statistical  150
Design

adaptive  299
balanced

completely randomized  234
cross-over  248
factorial  266
incomplete block  242
stratified  236

complete cross-over  247
completely randomized parallel
group  234
conditional  dose-titration  246
continuous sequential  296
cross-over  247
cross-over factorial  267
dose-escalation  244
dose-titration  246
efficient  239
factorial  263
flexible  299
forced dose-titration  246
group sequential  288
incomplete cross-over  258
incomplete block cross-over  260
Latin square  258
matched-pair  241
N of 1  261
optimized dose-titration  246
paired preference  296
parallel

group  233
group factorial  264

pure sequential  288
randomized block  240
sequential  288
simultaneous treatment  261

single-arm multi-stage  274
single-arm single-stage  274
split-plot  271
stratified  235
Williams square  259

Distortion: see Bias
Distribution

a posteriori probability  139
a priori probability  138
binomial  95
continuous  95
discrete  94
Gaussian  95
non-informative  140
normal  95
probability density  95
sample, of the test statistic  124
standard normal  97

Dose
maximum tolerated  309

Dossier
computerized registration  326
registration  316

Double-dummy  219
Drop-out  167
Drug

generic  278

EDC  326
Effect

carry-over  251
interaction

(cross-over design) 251
(factorial design)  266
(parallel group design)  236

main, of stratification factor  236
main, of treatment  236
main treatment (factorial design)
266
period  249
placebo  197
psychological  196
sequence  252
simple treatment (factorial design)
266
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subject  252
three-factor interaction  237
two-factor interaction  237
treatment

(cross-over design)  249
(parallel group design)  234

Electronic data capture  326
EMEA  316
End-point  59

clinical  85
composite  87
confirmatory  66
efficacy  68
exploratory  66
multiple  81
pharmaco-economic  88
primary  64
safety  68
secondary  64
surrogate  85
tolerability  68

Epidemiology   22
Error

random  8
systematic 8
standard 110
type I 122
type II 122

Estimate 102
adjusted  51
crude  51
interval  106
maximum likelihood  117
non-adjusted  51
point  106
stratum-specific  50

Estimation  106
Estimator  102
European Medicines Agency  316
Event  21
Evidence-Based Medicine  152
Excipient  306
Experiment

clinical  24
Exposed  30

Ex-vivo 308

Factor
confounding  43
experimental  23
level (of)  211
potentially confounding  42
prognostic

(in clinical research)  25
(in epidemiology)  22

protective  22
risk  22
sub-experimental  25

False-negative
(of diagnostic test)  11
(of statistical test)  122

False-positive
(of diagnostic test)  11
(of statistical test)  122

FDA  316
Food and Drug Administration  316
Formulation

final  306
pharmaceutical  306
service  306

Function 93
family (of)  97
likelihood  114
loss  143
probability density  95

Generalizability  226
Genotype   1

Homoscedasticity  112
Hypothesis

alternative  104
bidirectional  104
null  103
testing  103
unidirectional  104

ICH  316
Incidence  33
IND
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treatment  324
Index

futility  298
Indicator

group  60
Inference  15

non-parametric  150
parametric  149

Insert
package  319

Integral  98
International Conference on 

Harmonization  316
Interval

confidence  135
credibility  145
credible  145

In-vivo 308

Last-observation-carried-forward 224
Level

therapeutic  59

Management
project  321

Margin
of equivalence  61

Marker
surrogate  86

Matching   49
Measurement  3

scale (of)  3
unit of  6

Meta-analysis  318
Method

Bonferroni’s  295
MHLW  316
Ministry of Health Labor and Welfare
(Japan)  316

Non-exposed  30

Objective
confirmatory  66
exploratory  66

primary  66
secondary  66

Odds  38
Odds-ratio  38
Orphan Drug Status  324
Outcome variable: see End-point

Parameter 3
disturbance  112
nuisance  112

Percentile  111
distance between  110

Period  248
Permutation  209
Pharmacodynamics  308
Pharmaco-epidemiology  22
Pharmacokinetics  308
Phase

I  309
I in oncology  322
II  311
II in oncology  323
IIa  312
IIb  313
III  313
III in oncology  323
IV  320

Phenotype  1
Placebo  173 
Play-the-winner  215
Point

true zero  6
Population  93

analysis  222
intent-to-treat  223
per-protocol  223
safety  223

Power  122
conditional  298

Precision  8
Prevalence  36
Problem

predictive  151
Procedure

standard operating  214
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Product
biotechnological  305
drug  306
pharmaceutical 306

Protocol
study  18

p-value  124

Quality of life  87
Quartile  110

Randomization  203
centralized  208
in blocks  208
in random permuted blocks  208
simple  206
stratified  211
unbalanced  213
unequal  213

Ratio
benefit/risk  318

Region of rejection of the null
hypothesis  125
Regression toward the mean  189
Relevance

external  63
Report

integrated  318
Reproducibility

inter-observer  85
intra-observer  85

Responder  61
Responsiveness  84
Rhythm

biological  2
circadian  187

Risk
relative  33

Sample  163
representative  163

Sampling
repeated  118

Scale
dichotomous  6

interval  6
nominal  3
nominal categorical  3
ordinal  5
ordinal categorical  5
quantitative  7
ratio  6

Screening  304
guided  305
random  305

SE  110
Seed  214
Sensitivity  11

assay   285
Sequence  247
SD  110
Sheet

patient information  319
Signal  60
Significance level

nominal  294
real  294

Significant
statistically  129

Simulation  325
Specificity  11
Standard

deviation  110
error  110

Statistic  102
sample distribution of the test  124
test  123

Statistics
descriptive  100
inductive  100
inferential  100

Stratification
a posteriori  50
(in clinical research)  236
(in epidemiology)  49
prospective  50

Stratum  211
Study

add-on  178
bioequivalence  307
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carcinogenicity  308
case-control  37
clinical  24
cohort  30
community  23
concurrent prospective  30
cross-sectional

prospective  35
retrospective  39

dose-finding  313
dose-ranging  313
double-blind  216
epidemiological  21
equivalence  278
experimental  23
fertility  308
follow-up  30
incidence  30
longitudinal  30
multi-center  210
non-concurrent prospective  35
non-inferiority  278
observational  21
open-label  216
pharmaco-vigilance  320
pilot  67
pivotal  67
prevalence  36
proof of concept  312
prospective  29
retrospective  29
single-blind  216
superiority  61
teratogenicity  308
toxicology  308
transversal

prospective  35
retrospective  39

true retrospective  36
with repeated measurements  301

Subpart H  324
Summary of product characteristics
319
Symptoms

poissez  256

System
delivery  306

Table
contingency  70

Test
critical value of  131
multiple  81
one-tailed  126
robust  134
Student’s t  128
two-tailed  126

Testing
hypothesis  103

Theorem
Bayes  139

Theory
estimation  103
of hypothesis testing  103

Threshold
of clinical relevance  61
of statistical significance  121

Toxicity
dose limiting  322

Trail
audit  207

Treatment
blinded  173
concomitant  180
masked  173

Trial (also see Study)  23
clinical  24
community  23

Unit
experimental  24

Validation  84
Validity

internal  62
Value

real  8
true  8

Variable  3
continuous  7
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dichotomous  6
discrete  7
nominal  4
ordinal  5
quantitative  7
random  93

Variance  110
residual  229

Volunteers
healthy  157

Wash-out  248
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