
WORKSHOPS IN COMPUTING

Series edited by C. J. van Rijsbergen

Also in this series

Women Into Computing: Selected Papers
1988-1990
Gillian Lovegrove and Barbara Segal (Eds.)

3rd Refinement Workshop (organised by
BCS-FACS. and sponsored by IBM UK
Laboratories. Hursley Park and the Programming
Research Group. University of Oxford).
Hursley Park. 9-11 January 1990
Carroll Morgan and J. C. P. Woodcock (Eds.)

Designing Correct Circuits, Workshop jointly
organised by the Universities of Oxford and
Glasgow. Oxford. 26-28 September 1990
Geraint Jones and Mary Sheeran (Eds.)

Functional Programming, Glasgow 1990,
Proceedings of the 1990 Glasgow Workshop on
Functional Programming. Ullapool. Scotland.
13-15 August 1990
Simon L. Peyton Jones. Graham Hutton and
Carsten Kehler Holst (Eds.)

4th Refinement Workshop, Proceedings of the
4th Refinement Workshop. organised by BCS­
FACS. Cambridge. 9-11 January 1991
Joseph M. Morris and Roger C. Shaw (Eds.)

AI and Cognitive Science '90, University of
Ulster at Jordanstown. 20-21 September 1990
Michael F. McTear and Norman Creaney (Eds.)

Software Re-use, Utrecht 1989, Proceedings of
the Software Re-use Workshop, Utrecht,
The Netherlands. 23-24 November 1989
Liesbeth Dusink and Patrick Hall (Eds.)

Z User Workshop, 1990, Proceedings of the Fifth
Annual Z User Meeting, Oxford.
17-18 December 1990
J.E. Nicholls (Ed.)

IV Higher Order Workshop, Banff 1990
Proceedings of the IV Higher Order Workshop.
Banff. Albena, Canada. 10-14 September 1990
Graham Binwistle (Ed.)

ALPUK91 Proceedings of the 3rd UK
Annual Conference on Logic Programming.
Edinburgh. 10-12 April 1991
Geraint A.Wiggins. Chris Mellish and
Tim Duncan (Eds.)

Specifications of Database Systems,
1st International Workshop on Specifications of
Database Systems, Glasgow. 3-5 July 1991
David J. Harper and Moira C. Norrie (Eds.)

7th UK Computer and Telecommunications
Performance Engineering Workshop,
Edinburgh. 22-23 July 1991
J. Hillston. P.J.B. King and R.J. Pooley (Eds.)

Logic Program Synthesis and Transformation,
Proceedings of LOPSTR 91. International
Workshop on Logic Program Synthesis and
TransfOlmation. University of Manchester.
4-5 July 1991
T.P. Qement and K.-K. Lau (Eds.)

Declarative Programming, Sasbachwalden 1991
PHOENIX Seminar and Workshop on Declarative
Programming. Sasbachwalden, Black Forest.
Germany. 18-22 November 1991
John Darlington and Roland Dietrich (Eds.)

continued on back page ...

Philip Gray and Roger Took (Eds.)

Building Interactive
Systems:
Architectures and Tools

Published in collaboration with the
British Computer Society

Springer-Verlag London Ltd.

Philip Gray. MSc
Computing Science Department
University of Glasgow
Glasgow GI2 8QQ
Scotland. UK

Roger Took. PhD
Department of Computer Science
University of York
York YOl5DD
UK

ISBN 978-3-540-19736-2 ISBN 978-1-4471-3548-7 (eBook)
DOl 10.1007/978-1-4471-3548-7

British Library Cataloguing in Publication Data
Gray. Philip

Building interactive systems
I. Title ll. Took. Roger

004.019

Library of Congress Cataloging-in-Publication Data
Gray, Philip, 1946-
Building interactive systems: architecture and tools I Philip Gray and Roger Took

p. cm. - (Workshops in computing)

1. Interactive computer systems-Congresses. I. Took, Roger, 1950-
ll. Title. ill. Series
QA76.9.I58G731992
004' .33-dc20

91-43342
CIP

Apart from any fair dealing for the purposes of research or private study, or
criticism or review, as permitted Wlder the Copyright, Designs and Patents Act
1988. this publication may only be reproduced, stored or transmitted, in any form
or by any means, with the prior permission in writing of the publishers, or in the
case of repro graphic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside
those terms should be sent to the publishers.

@Springer-Verlag London 1992
Originally published by British Computer Society in 1992.

The use of registered names, trademarks etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the
relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the
accuracy of the information contained in this book and cannot accept any legal
responsibility or liability for any errors or omissions that may be made.

34/3830-543210 Printed on acid-free paper

Preface

The papers which form this volume are the outcome of two separate day­
long meetings. The first of these meetings, entitled 'Architectures for
Interactive Systems' and sponsored by the DTI HI Club, was held at the
University of York on the 4th of March 1991. The second, 'Object­
Oriented Tools for User Interface Construction', was jointly sponsored
by the BCS Specialist Groups in HCI and Object-Oriented Programming
Systems, and took place at the University of Glasgow on the 5th of April
1991. Although ostensibly covering different topics, both workshops
addressed the problems of constructing modern interactive systems and.
as it transpired. the contents of the presentations in the two meetings
were often complementary or gave different perspectives on the same
problem. It seemed only natural, therefore. to combine the proceedings of
the two meetings in a single volume.

The papers have been organised into two sections, 'Architectures' and
'Tools'. which correspond roughly to the division between the York and
Glasgow meetings. However, in some cases it has proved illuminating to
place a paper from the Glasgow meeting in the 'Architectures' section
and a York paper in the 'Tools' section. Additionally, the editors have
included two further papers which were not presented at the workshops
but which offer useful additional insights into topics dealt with in the
meetings. Some of the papers in this volume are expanded versions of the
rather shorter presentations made in March and April. The editors were
pleased to accept more lengthy versions when they enhanced the coverage
ofthe topic.

Given the divergence of the contents and arrangement of the papers in
this volume from the presentations at the two workshops. the meeting
programmes are given below:

Architectures for Interactive Systems,
York University, 4 March 1991

Peter Rosner - A Generalised Mechanism for the Construction of Input
Models.

David Duce - Logical Input Devices - An Outdated Concept?
Peter Williams - Surface Interaction: A Universal Paradigm for Persistent

Objects.

vi Preface

Alan Burns - Human Interfaces to Real-time Embedded Systems.
Phil Gray - Representing Design Choices in User Interface Management

Systems.
Ernest Edmonds - An Architecture for Integration.

Object-Oriented Tools for User Interface Construction,
University of Glasgow,S April 1991

Steve Draper - The Iconographer System.
Trevor Hopkins - Declarative Objects for User Interface Construction.
Harold Thimbleby - HyperCard: An Object-Oriented Disappointment.
Peter Windsor - Separation, Connection and Specialisation: Issues and

Mechanism for Object-Oriented User Interface Construction.
Alistair George - X-Designer: Abstraction and Visibility in GUI Design.
Cathy Waite - The HyperNeWS System.

The present volume gives the most comprehensive recent account of
UK research into the construction of interactive computer systems. It
addresses concerns both formal and theoretical as well as pragmatic and
practical, academic as well as commercial. The meetings themselves
were lively and stimulating. The editors feel that this collection reflects
the breadth and excitement of the meetings from which it arises, and hope
that it prompts further research into the relationship between architectures
and tools in interactive systems.

November 1991 Philip Gray
University of Glasgow

Roger Took
University of York

Contents

I Architectures .. 1

The Active Medium:A Conceptual and Practical Architecture for
Direct Manipulation
Roger Took .. 6

Surface Interaction: A Paradigm for Object Communication
Peter Williams 23

HyperCard: An Object-Oriented Disappointment
Harold Thimbleby. Andy Cockburn and Steve Jones 35

An Architecture for HCI in Real-time Systems
Alan Burns 56

Logical Input Devices - An Outdated Concept?
D.A. Duce. P.J.W. ten Hagen and R. van Liere 69

A Generalised Event Mechanism for Interactive Systems
Peter Rosner. Mel Slater and Allan Davison 85

Generalising MVC to ERID: Orthogonalising Entities,
Representations, and Input Dispatching to Interaction Classes
Ramzan Mohamed and Stephen W. Draper 104

Constructing front-ends to existing software systems
E.A. Edmonds. I. Reid. S.P. Heggie and D.J. Cornali 115

II Tools ... 129

Correspondence between Specification and Run-Time
Architecture in a Design Support Tool
Philip Gray .. 133

Incorporating an Incremental Learning Model in the Design of
HyperNeWS2.0
Cathy Waite... 151

Declarative Objects for User Interface Construction
Trevor P. Hopkins and Steve K. Wallis ... 168

I Architectures

An architecture is a description or specification of the structural organisation of a

system. Stand-alone, one-off, or once-off (i.e. maintenance-free) systems have little

need of an explicit architecture. It is only when a system is placed in an environment

and is used as a resource that its structural organisation becomes important. In this

situation, a system needs to be designed to take account, on the one hand, of operating

constraints in its environment, for example, time or space limitations which require the

sharing of code or execution. On the other hand, a system used as a resource must also

be responsive to the needs of its clients. For example, the client may require the system

to behave consistently over changes to the operating or device environment. This can

only be ensured by localising such changes in back-end components while preserving

the abstract behaviour in independent, higher-level components. Thus the basic

principle in the design of an architecture is a separation and factoring of concerns, and

the basic mechanisms in its construction are standard software engineering strategies:

modularity, levels of independence, extensibility, and component reuse. As a result, the

architecture is both an implementation structure, and a commitment to a stable

organisation for the benefit of its clients.

We can view an architecture abstractly as consisting of a set of discrete components,

linked by a communication structure by which the components are coordinated. Most

dynamically, the communication structure may consist of messaging channels. In this

case the interpretation of the messages is up to the receiver. This allows flexibility and

extensibility in the construction of the architecture. More tightly, the communication

structure may consist of invocations or applications of procedural or functional

abstractions. This increases the predictability of the system. Most statically, the

communication structure may consist of code dependencies such as inheritance

hierarchies or included library files. Anyone architecture may have a variety of these

types of structure.

A rigid architectural structure, however, is not an assurance of usefulness, or even of

efficient implementation. The components of the architecture must also encapsulate

appropriate abstractions or classifications, given the problem domain. These can be

2

used either internally, by other components, or externally, by the client. Thus the

architecture should also form a high-level rationalisation or design within the problem

domain.

Architectures designed specifically for interactive systems have particular features

which distinguish them from embedded architectures. They must at least take account

of the obvious separation between the user and the computer. A frrst-Ievel architectural

separation in these systems is therefore clearly between software that manages the user

interface, and software that provides the application functionality. Further refinement of

this top-level architecture, however, is by no means so simple, as is illustrated by the

many structures and stratifications of user interface management systems, object­

oriented toolkits, and the input and output languages of the graphics standards from

GKS on.

In fact, interactive systems exemplify in a high degree the problems of architectural

design and construction. Firstly, in terms of design, these problems centre on the

conflict between generality and customisation. There are strong arguments for

preserving generality in the functionality provided to client users - domain or

implementation bias can limit the expressive freedom of the user. There are many

familiar examples of such limitations in user interface systems: rectangular but not

polygonal windows; horizontal but not diagonal text. Yet at the same time there are

equally strong arguments for preserving user interface consistency by customising the

functionality in just such ways. The 'look and feel' of an interface house style is thus

maintained at the expense of flexibility and originality. Secondly, in terms of

construction, architectures for interactive systems must cope with the fundamental

problem that both applications and end users are clients of the user interface

component. These two types of client have radically different modes of access to the

. resources provided by the user interface, and yet often have similar requirements. This

is especially true if the interface supports interactive objects which are intended to form

a medium of communication between the application and the user.

The papers in this section address the problems of architectural design and construction

for interactive systems from a number of points of view. Some are broadly theoretical,

such as Took and Williams; some make constructive proposals, such as Duce et al and

Rosner et al; some describe implemented architecures in more detail, like Mohamed and

Draper and Edmonds et al; and Bums elaborates a principle of design, while Thimbleby

et al gives a principled critique of an existing system. The use of the term architecture

suggests that the structural organisation is itself an object of engineering, and can be

3

abstracted from the content of the current components and applied as an organising
(

principle to other components. This is the premise behind classical, linguistically-based

user interface architectures such as the Seeheim architecture, which divides the user

interface manager into three components: presentation, dialogue control, and application

linkage. Took's paper, 'The Active Medium: A Conceptual and Practical Architecture

for Direct Manipulation', is also based on this premise of architectural abstraction. It

defines a three-component architecture (UMA) in terms of its communication protocols

and channels, but does not presuppose any semantic content for the components

themselves. In UMA, in contrast to Seeheim, the fundamental separation is between

'surface' and 'deep' semantics, but these are not defined except in terms of their control

requirements. That is, surface interaction takes place entirely between the user and the

interactive medium or surface, whereas deep interaction requires the involvement of the

application.

The architecture described in Williams' paper, 'Surface Interaction: A Paradigm for

Object Communication', is also intended to be independent of particular application

semantics. However, whereas UMA is heterogeneous, in the sense that the components

perform distinct roles, Williams' architecture is homogeneous, since different objects

are not distinguished. Rather, Williams paper posits a model that unifies the notions of

object and channel. Both maintain constraints between dependent attributes - in objects

this implements functionality, whereas in channels it implements communication.

Williams borrows the term 'surface' to describe that subset of an object's attributes

which can also form part of a channel and so be communicated to other objects.

Architectures can differ in the degree of separation of their components. In structured

code, the architectural components consist simply of the set of procedures. The

communication structure is the calling hierarchy. The separation here is bridged by

simple addressing. In object-oriented code, in addition to the objects and their

messaging structure, the components also include classes, and the communication

structure includes the inheritance hierarchy. Here the separation is stronger, since

addressing methods may require searching up the hierarchy. In client-server and other

distributed architectures, the separation is between processes, and the architecture is

built on the process communication channels. The separation here is over address

spaces. Finally, in systems providing levels of device independence and ease of

porting, the separation is between physical devices, and the architecture is structured on

front- and back-end software.

4

Thimbleby's paper, 'HyperCard: An Object-Oriented Disappointment', emphasises this

view of an architecture as an organisation of separate components. A programming

language is a generic architecture in the sense that it can be instantiated, by compilation

or interpretation, to provide particular programs. and execution structures. The

abstraction and data manipulation mechanisms of a programming language determine

how well these structures can be organised. The particular language that Thimbleby

examines, HyperCard, is, moreover, expressly designed for the construction and

maintenance of user interfaces. Thimbleby's criticisms show not only how far

HyperCard falls short of this goal, they also highlight how criteria from programming

language theory can be also used to evaluate user interface architectures.

Architectures may also differ in their lifetimes. An architecture may exist only at design

time, as a sketch, for example a schematic layered diagram to guide implementation. It

may persist only until writing time, as a static code structuring. It may persist until

compile time, as a library of primitives or set of classes which are only then bound in to

the code. If objects can be instantiated dynamically from classes, then the architecture

persists until run time. Finally, if instantiated objects can be saved independently of the

process which allowed them to be created (as for example in user interface editors) then

the architectural separation may be preserved permanently.

Burns' paper, 'An Architecture for HCI in Real-time Systems', exploits this temporal

perspective to propose an archite~ture which supports the real-time principles of safety

and re~ability. His system has a persistent architecture which maintains a real-time user

interface database. This database not only generates the user interface and mediates the

communication between the user and the application, it also holds timing requirements

and ensures temporarily correct interaction when the application is safety-critical in real­

time.

The architectures described in Duce et al and Rosner et al make a strong separation

between input and output, concentrating on input structuring as a dynamically

maintained component. Duce et al's paper, 'Logical Input Devices - An Outdated

Concept?' is written from within the historical context of the development of the

standard graphics languages. In this thread of development, input and output have if

anything been poorly integrated. Little support has traditionally been provided for

input-output linkage other than as facilities for interactive picking of graphical

segments. In contrast to the standard flat set of input logical device classes, Duce et al

proposes a set of composable input devices which can be built up into a logical

hierarchy in which higher devices implement more semantically complex interactions.

5

The input device hierarchy can thus support arbitrary application functionality. In this

architecture the communication structure is based on event messages passing up the

hierarchy from triggers and measures in low-level devices to similar processes in

higher, more complex, devices.

By contrast, Rosner et aI's paper, 'A Generalised Event Mechanism for Interactive

Systems', is written from within the bitmapped toolkit tradition in which the input

routing structure is typically shared with the geometric or dependency structure of the

graphical output objects. That is, input events here are usually routed along the

composition paths of the interface objects. Rosner et al's contribution is to separate

these two structures, and to provide general strategies for the routing of input that

decouple input dependencies from output dependencies.

Mohamed and Draper's paper 'Generalising MVC to ERID: Orthogonalising Entities,

Representations, and Input Dispatching to Interactive Classes' makes a similarly

motivated decoupling of the specification of the screen appearance of an interactive

object from the specification of its behaviour. It takes as a starting point Smalltalk's

MVC architecture, in which, while a model may have many views, typically each view

has only a single controller. In the ERID architecture, views may have a number of

controllers, determining separate behaviours dependent, for example, on context or

location. This decoupling of presentation and behaviour (or view and controller) allows

the definition of a small set of generic behaviours which need only be instantiated to

provide control for specific presentation views of application models.

Finally in this section, Edmonds et al's paper. 'Constructing Front Ends to Existing

Software Systems', describes an architecture whose main purpose is not the separation

of concerns, but rather their integration. The FOCUS project is an attempt to produce

an architecture to harness a diverse variety of applications within a generic, knowledge­

based user interface.

The Active Medium: A Conceptual and
Practical Architecture for Direct

Manipulationt

Roger Took

Department of Computer Science,
University of York,

York Y015DD, U.K.

Abstract

This paper presents a precise but general architecture (UMA) which
attempts to resolve two critical and conflicting qualities of graphical user
interfaces: directness and separation. This is achieved by placing cen­
tral emphasis on the medium of interaction, and making this active
through a dedicated user agent. This active medium allows sUrface
interaction - application-independent manipulation of medium objects
by the user. A major strength of UMA is that it is both a conceptual and
an implementation architecture, and therefore is both intuitive to the
user and the application designer, and effective in rationalising the sepa­
rate construction and execution of the user interface and the application.

1 Introduction: Surface Interaction
Breaking down an interactive system into a user interface module and application
modules is a powerful rationalisation of the cost of building interactive applications,
and can enforce consistency over the user interfaces of a range of applications, for
example as a standardised 'look and feel.' Much current user interface research
focuses on static modularisation, in the form of software libraries or classes of
toolkit objects that are bound in to the application code. On the other hand, the
dominant run-time architecture in direct manipulation interactive systems is based
on a separation of relatively low-level window and input management from such
toolkit-extended applications. The X window environment [17] is a prime example
of this.

t This paper is reproduced from the Proceedings of HCI '91: People and Computers VI,

pp 249-264, © Cambridge University Press, 1991, by kind permission of the publishers.

7

This misalignment between the conceptual boundary between user interface
and application, and their architectural boundary imposed by the run-time environ­
ment, leads to application-dominated interaction: most of the possible courses of
interaction have to be planned and managed from the application side. This is a bur­
den on the application programmer, and inevitably restricts the user's independent
control over the objects of interaction. The user, for example, may only have inde­
pendent control over the size and position of the application window.

A number of alternative architectures have been proposed which allow more of
the application to be factored into the interface. The classical UIMS [15] attempts
to manage the dialogue of interaction separately from applications. However, dia­
logue is difficult to abstract from the semantics of the application [23]. On the other
hand, the NeWS environment [14], and the Blit [16] before it, allow user interface
code to be downloaded from the application into a server executing locally to the
user. This results in improved local response, but responsibility for most interaction
still lies within the application.

[23] proposes a new architecture which separates a presentation sUrface com­
mon to all applications. The surface has an objective structure (that is, both
dynamic and encapsulated) which supports all objects of interaction for all applica­
tions. It thus acts as a medium of communication between application and user, as
well as potentially between different users (thus supporting cooperative work) and
between different applications. Critically, the surface is distinguished from window­
managed display spaces by the fact that surface objects have behaviour which can
be accessed directly by the user, without application involvement. This direct inde­
pendent manipulation of surface objects is referred to as sUrface interaction.

The power of surface interaction as a principle of separation lies in the observa­
tion that many manipulations of displayed objects have significance to the user, but
none to the application. Moving a dialogue box to another location in order to uncov­
er some hidden information is a typical example: the position of the dialogue box
may be irrelevant to the application. Interaction can thus be cleanly separated into
sUrface actions like textual and geometric manipulation, and deep actions which
may result in changes to application state and in semantic feedback [10] from there
to the surface. With this separation, an application need be informed only of those
surface actions which it considers meaningful, while the user may have consider­
able freedom to manipulate the application's surface objects in ways that are
irrelevant to their functionality. Furthermore, if an application does place signifi­
cance on a particular surface manipulation, then, even so, the presentation
management of this action can be factored out from the application so long as its
occurrence is reported back.

Surface objects essentially have textual and graphical content, structure, geom­
etry and behaviour. They are not bound to application semantics and are thus
generic over all applications. This logical separation is enhanced by the surface's
objective structure, which is addressed and modified through a well-defined set of

8

. .-.. -. -- - -- -..
~~ ::II c:::II ::::J Q3

Figure 1. Presenter's interactive surface editor, DoubleView [9]

Figure 2. An Ada debugger [1]

commands rather than by static references. The surface can therefore be supponed
by a separate process in the run-time architecture.

A working system, Presenter [22], has been implemented based on surface
separation. Figures 1 to 4 show a number of applications already built using Presen­
ter.

While the notion of surface separation has conceptual appeal, and while Presen­
ter shows that it has practical applicability, there remains a need to account for
exactly how the user and the application can communicate via such a surface and

9

Figure 3. An interactive database management system [2]

Figure 4. An interactive conferencing system r 13]

retain mutual expressive power over surface objects. If this essential communica­
tion architecture between surface and deep components can be formulated precisely

and abstractly it can form the basis for further implementations [23]. The result is
the UMA architecture (User Agent, Medium, Application), which is presented in
this paper.

Two formative requirements were to maximise the separation between surface
and deep components, and yet at the same time to suppon direct manipulation of
application objects at the surface.

10

2 Directness and Separation
There are a number of characterisations of direct manipulation [6, 18, 19, 111. We
use, however, a simple but powerful criterion for directness: that the same object is
the target of both input and output. At the very least, an object that is the target of
input (for example, an icon which is selected by a mouse click) must previously
have been output. In the general case, an object may also be the target of inter­
leaved input and output, in the sense that it can be addressed and updated both by
the user (using a mouse), and the application (using an internal identifier). For
example, a scroll bar may be moved by user input to request a change of document
view, or changed in size by application output as the viewed document changes
size. On the other hand, textual interaction on a glass teletype is not direct in this
sense, since input references to previous output are symbolic. For example, remov­
ing a file from a displayed list of files involves retyping the filename as an argument
to the remove command.

Formal models of interaction [3, 4, 5, 7, 20] often rely on a semantic interpreta­

tion function of type

seq 1 ~ seqD

which defmes the functionality of the application by specifying, for any sequence of
input events I, the sequence of output displays D it produces (ignoring other appli­
cation effects such as hardcopy output or process control). For example, in order to
define an application which allows the user to draw lines using the mouse, one such
interpretation mapping might be:

<press (xo ,yoY, drag (Xl' y/), release> H< >

That is, the particular sequence of input events on the left hand side will generate
the sequence of displays on the right. This formalism is capable of expressing
directness so long as all information on the state of the display is retained within it.
Thus afurther sequence of input:

could result, for example, in direct selection and repositioning of the line that has
already been drawn:

< >

11

Modelling direct manipulation interaction with this type of function is only pos­
sible if the application retains knowledge of the physical locations of its objects, for
example that the line's endpoint is at (xl' Yj)' This makes the application difficult to

separate from its user interface.
In addition, in a multitasking environment, no one application fully controls the

display, as this semantic function requires. This is because the display in this case
is a shared resource, and may also be updated by other applications. Multi-thread­
ed direct manipulation interaction modelled by this type of function, therefore, is
only possible if the application uses a protected display space such as a window,
which can have no interference from other applications.

Thus there is a fundamental conflict between providing directness, which
requires both knowledge and control of the display, and separation, which requires
a level of independence of the display. The resolution adopted here is to create an
intermediate representation, called the medium, which has enough knowledge of
the display to provide directness, but which communicates with the application only
in terms of symbolic references to display objects. Applications thus control output
not by drawing directly on the display, as above, but by sending commands to the
medium to change the state of their medium objects.

By itself, however, the medium cannot supply the required separation of
behaviour.

3 The Functional Architecture
We now describe the functional types of the components of the UMA architecture.

3.1 The Medium
Since to support directness the medium must retain information about the display,
and since the numbers of displayed objects may change dynamically, it is conve­
nient, without at this level being any more specific, to think of the state of the
medium as represented by a set of objects. (We can call this the model for the dis­
play). Consequently, there must be a function which presents any particular set of
objects (0) onto the display:

present: set of 0 ~ D

Conversely, since directness requires that the user can address objects visible
on the display using a pointer like the mouse, there must correspondingly be a func­
tion which picks objects in the model given an input pixel location (a component of
events l) on the display:

pick: I ~ 0

We consider the medium essentially to encapsulate state (the set of model
objects 0 and the display D) and the pick and present functions. These can be hid-

12

DispLay D

present t I pick

~oo o~
'---_____ 0_-0 Model

MEDIUM

Commands C

Figure 5. The Medium

den from the application. However, the application must be able to issue commands
C to create, structure and modify objects in the model. Such a medium is illustrated
in Figure 5.

The type of the medium can be expressed:

M: seq C 4 seq D

That is, it is a mapping between sequences of commands, and sequences of dis­

plays. A typical mapping of this type, which creates a number of objects which can
subsequently be referred to in further commands, might be:

<create (X, size], position]), create (Y, size2' position2)' highlight (X» H

< >

Thus the display is determined by the sequence of commands to the model (in

practice the medium also needs to generate return values for queries and object cre­

ation). Note, however, that the source of the command is immaterial, in the sense

that the medium can handle interleaved commands from any number of applications.
Clearly, the richness of the model will be critical to the power of the medium to

generate displays suitable for a wide variety of applications. In a window manager

the objects may simply be windows, but other systems may preserve graphi­
cal/textual models of greater complexity and granularity, as for example in Presen­

ter.

13

3.2 The Application

If the medium model has sufficient granularity. all an interactive application needs
to know is the current user input i (keypress, mousepush, etc.) and the medium
object 0 upon which the input occurred. Similarly. all the user needs to know from
the application can in principle be conveyed by the effect of its output commands C.
A general application A can therefore be defined as taking sequences of (input.

object) pairs. and generating commands to the medium:

A: seq (/ x 0) -+ seq C

For example. given the state of the medium at the end of the above example,
the application could determine that a user mouse press event on object Y denoted
deletion of that object. and so send a delete command to the medium:

< (press, Y» ~ < ... , delete (Y»

resulting in:

Because the precise display states are hidden from the application, it can
ignore the presence of other application objects on the medium.

3.3 The User Agent

Thus we have refined the abstract interaction function into two components, the
medium M and the application A. This formulation is deficient. however. in two
respects:

• It does not explain from where the application gets (input, object) reports.

• It requires the application to manage all its interaction, from simple echoing to
complex semantic responses.

Although the latter is the case for many window-based applications. one of the
main premises of this architecture is that it is possible to make an effective separa­
tion in the behaviour of objects between that which is caused solely by the user,
and that which is caused by the application. In order to effect this separation of
behaviour we need to abstract some control from the application, and so a third
component in the architecture is necessary: the user agent. This monitors all user
input, and manages

• sUrface interaction by interpreting user actions as direct commands to the
medium. Thus a mouse drag may be interpreted as a move or size command
on a medium object. without involving the application.

14

• deep interaction by constructing (input, object) pairs from user actions and
picks on the medium, and reporting these pairs to the application.

We can thus define the type of the user agent (U):

U: seq I ~ seq (deep « I x 0» I surface « c»)

U takes a sequence of user inputs, and generates either deep or sUrface actions.
The deep actions consist of input reports to the application in the form of (input,
object) pairs, whereas the surface actions consist of commands to the medium.
Together, the medium and the user agent form an active medium, or surface.

Even though the principle of surface separation allows some manipulations of
surface objects to be performed without involving the application, we cannot know
in advance which manipulations will be irrelevant to an application. Each applica­
tion must therefore be able dynamically to determine which input, on which objects,
should be reported to it, and conversely which input should be handled autonomous­
ly within the surface. At the extreme, it must be possible for an application to
request reports of all input, and so take full control of interaction. We therefore
allow the application to encode its interactive requirements dynamically as
attributes of the surface objects themselves. These attributes are interpreted by
the user agent when deciding whether to report input. For example, the application
may require that a move event on an object representing a slider button be reported
to it, but a move event on a dialogue box not be reported although its action may go
ahead through surface interaction.

We have refined the abstract interaction function given in Section 2 into three
essential functional components: a medium M interpreting commands as display
changes, an application A receiving (input, object) reports and generating com­
mands to the medium, and a user agent U interpreting input in the context of the
current display, and either sending input reports to the application, or causing sur­
face interaction by sending commands directly to the medium.

4 The Communication Architecture
The formulation so far tells us simply about the functionality of these components.
It does not describe any necessary communications or synchronisations between
them, for example to ensure that the display against which input is interpreted is
the current display, or that input alternates with output. To do this precisely we use
a different formalism, CSP [8]. Processes in CSP are modelled simply in terms of
the sequences of events (traces) in which they are prepared to engage. Communi­
cation is described by an algebra over the traces.

This description of the mechanics of separation using an active medium or sur­
face is therefore completed by a specification of how the functional components
communicate with each other, and what sequencing and synchronisation con­
straints apply. This UMA architecture is illustrated in Figure 6.

input devices output devices

!
:
:

. i : .. ·· .. · 1 ~ _ _ .. 1 :
I ':' : ,
I : I

! user!
L. _ .. ___ . ._ .. _ ~!! l!:!'.!:.c:. '!: _ .. __ . __ .. ____ j

report app

o
Figure 6. The UMA Architecture

SURFACE
INTERACTION

DEEP
INTERACTION

15

The solid arrows here are channels, and show the directions in which communi­
cation is initiated. Each communication may also have a reply in the opposite
direction, but the synchronisation is such that we do not need an explicit channel for
these. Broadly, the diagram illustrates the potential for both surface interaction

(input -+ user channel -+ output) and deep interaction (input -+ report channel -+

app channel -+ output).

4.1 The Medium M

We start by defining the behaviour of the medium M:

M = user?c -+ r -+ M I app?c -+ r -+ M

This shows that the medium is purely passive, since it just inputs (? in CSP) com­
mands c (of type C)" and then responds with a reply r (of some suitable reply type).
This it does repeatedly (the definition is recursive). It accepts commands either
from the user agent (via the channel user) or from the application (via the channel
app). These may be arbitrarily interleaved. However, M cannot be interrupted,
since it sends out a reply before it will accept the next command.

16

4.2 The Application A

In specifying the application we wish to accommodate either user-driven interac­
tion (for example during direct manipulation), or application-driven interaction (for
example during animation or process monitoring), or a mixture of these interaction
modes:

A = report? (i, 0) -) IlX. (apple -) r -)X n (t, 0') -)A)

I apple -) r-)A

Thus the application A is the process which cycles over two sub-traces:

• it accepts an input report of the form (i, 0) from the user agent (along channel
report). Thereafter it can send (1 in CSP) along channel app as man)' com­
mands to the medium as it likes (X is a nested process), before returning the
(possibly modified) input report (i', 0') to the user agent. When it does this is
not determined by the readiness of the user agent to receive the report (we
see below that the user agent waits for a reply in any case), but by the
semantics of the application itself. The choice to reply to the user agent is

thus non-deterministic (n), and the application can use this to block the

user agent while it makes display changes.

• it spontaneously sends a command e to the medium along channel app.

4.3 The User Agent U

Finally, the user agent U has the most complex behaviour. Its activity is always
driven by an input event i from the user:

U = i -) userl piek(i) -) 0 -)

(userle -) r-) U

n reportl(i, 0) -) (i', 0') -) userle -) r -) U)

[surface]

[deep]

U then sends a piek request to the medium with i as a parameter (we assume that
piek(i) is one of the commands in C, and that the medium replies in this case with
the picked object 0). Depending on the attributes of 0, U can then initiate either sur­
face or deep interaction. Again, the choice between these is not determined by the
readiness of either M or A to receive input, but by the semantics of the user agent,
and thus is non-deterministic. The choice is:

• Surface interaction: the attributes of object 0 determine that input i on it is not
to be reported to the application, so U converts i immediately into an appro­
priate command to the medium.

• Deep interaction: the attributes of object 0 determine that input i on it must
be reported to the application, so U composes an input report (i, 0) and sends
this along the report channel to the application. It then waits for the applica-

17

tion's reply (j', 0'), which might modify either the input or the target object.
Upon receipt, U interprets this as a command to be sent to the medium. (This
specification omits some optimisations. For example, it is unnecessary to
make repeated picks during a sequence of drag events, since the dragged
object presumably remains the same.)

In all these definitions, note that the trace types of the CSP processes U, M,
and A conform with the types of their associated semantic functions (of the same
name) defined in Section 3.

4.4 Behaviour
Communication between these components occurs when they are run in parallel:

UIIMIIA

Surface interaction takes place when the user agent sends commands directly
to the medium. Deep interaction takes place when the user agent reports input and
its picked object to the application. The choice between these is determined by the
attributes of the picked object, as interpreted by the user agent

Application control of the surface can be achieved by three mechanisms (in
order of increasing behavioural separation):

• The application can modify its surface objects by direct commands to the
medium. This it can do either spontaneously, for example to create animation,
or in response to input reports from the user agent.

• The application can modify the actions of the user agent by modifying the
input report it returns. For example, the application can veto user selection of
a menu item by returning a null input report to the user agent.

• The application can simply determine the actions of the user agent in advance
by making suitable attribute settings on its objects. This sort of control has a
declarative nature, implemented by constraints built in to the user agent.

The last mechanism is clearly dependent upon the semantics of the user agent.
[23] describes one set of general textual and graphical operations for this. Howev­
er, the UMA architecture is not prescriptive about the semantics of any component.

4.5 Synchronisation
All internal communications in the architecture are synchronous, that is, the sender
blocks while waiting for a reply. This guarantees the integrity of the internal states
of the user agent and the medium, since neither can be interrupted. This is not as
restrictive as it may sound. Asynchronous events, either from the user or from the
application, can be buffered at the periphery of the architecture. We regard this as
an implementation issue rather than as fundamental. If the application or user
chooses not to wait for a reply, that is their prerogative. If needed, the application
can delegate agents to handle communication queues. On the other hand, the slow-

18

Figure 7. Dragging an Icon to the Dustbin

ness of synchronous communication between the surface and the application, partic­
ularly over a network, is offset by the reduced number of calls that need to be made
(see the following example).

When the architecture is extended to allow multiple applications, then the
scheduling of input to applications is effectively carried out by the user. Input
reports can be routed to the target application by the user agent on the basis of
application ownership of a current object, determined by the position of the mouse
or by some previous user selection. On the other hand, if there are a number of
applications directly communicating to the medium, then their output must be
scheduled by the medium in order to ensure fairness (Le. so that no application
hogs the medium).

5 An Example
As an example of surface interaction on an active medium, consider the case of
dragging a file icon onto a dustbin, where it is deleted (Figure 7.).

Here the only deep action is the deletion of the icon, which may entail deleting
a file, for example. The dragging of the file icon towards the dustbin icon, on the oth­
er hand, is a manipulation that can be carried out entirely at the surface (we
assume the medium supports discrete objects and move operations on them). The
application therefore sets the file icon to be movable, but to report only mouse but­
ton release.

Traces of this interaction are represented in Figure 8. We assume that the file
icon if) starts under the cursor, and that the application already knows the identity
of the dustbin icon (dustbin). The arrows represent communication. Notice that
they form a single linear trace which represents the sequence of events in the inter­
action of the three components.

These traces show surface interaction taking place initially between the user
agent and the medium to highlight and then drag the file icon. The first input report

m
ou

se
 i

np
ut

.-

A
-

r-
--

--
--

--
--

--
--

--
--

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~

!
!

!
U

:
<

pr
es

s(
x,

yJ
,

pi
ck

(x
,Y

J,
f,

 h
ig

hl
ig

ht
(f

J.
 o

k,
 .

..
dr

ag
(x

l,
yl

 J,
m

ov
e(

f,
xl

,
y/

),
 o

k
...

•
re

le
as

e.
 (

re
le

a
se

.n
,

(-,
 -

J>

!
t!

t

!
M

:
<

t
pi

ck
(x

,y
J,

f,

hi
gh

li
gh

l(
j)

,
ok

,
m

ov
e(

/.
xl

.
y/

).
 o

k,

I un
de

r?
(j

).
 d

U
Sl

bi
n

, d
el

el
e(

j)
.

ok
>

t
~

t
~

A
:

<

(r
el

ea
se

.
n

.
un

de
r?

(j
),

du
st

bi
n.

 d
el

et
e(

j)
.

ok
,

(-
.

-J>

-m
;

~,
",

'X
-h

 .
...

 ,~
~ .

...
...

...
.. ~
~

..
..

..
. -4

\..
...

~

'-
-

.-
I

--
v-

-...
....

.r-
Su

rf
ac

e
In

te
ra

ct
io

n
D

ee
p

In
te

ra
ct

io
n

Fi
gu

re
 8

.
S

ur
fa

ce
 a

nd
 D

ee
p

In
te

ra
ct

io
n

in
 a

 T
ra

ce
 o

f
U

M
A

'C
i

20

to the application, (release, f), which initiates deep interaction, is on button release.
The application then enquires what object is under the file icon f using the medium
command under? Since this is the dustbin, the application tak~s the deep decision
to delete the file. This also requires deleting the object f from the surface, which the
application does using a delete command to the medium. Finally the application
returns a null input report (-, -) to unblock the user agent.

6 Conclusions
This paper reconciles the essential requirements of directness and separation with­
in an abstract model of interaction, and thus derives a generic architecture (UMA)
for constructing effectively modularised direct manipulation systems. The architec­
ture is centred on an active medium, which encapsulates a dispiay model, and can
(through a specialised user agent) abstract semantically irrelevant behaviour from
applications. Thus the active medium has its own semantics and control.

UMA is generic in two senses. Firstly, since only the types of the semantic
functions for the components are defined, any particular semantics for these could
be instantiated in the architecture. This is clearly needed in the case of applica­
tions, since we want to accommodate any application semantics. But it also allows
different models for the medium and the user agent to be developed. It also gives
the capability to describe existing user interface systems. For example, a window
manager can be modelled as a medium consisting of windows and operations such
as open and close, and a user agent which routes input either to the desktop or to
the application. A UIMS can be modelled in UMA by extending the semantics of the
user agent to include a dialogue interpreter. Similarly, the medium could be spe­
cialised to include a set of toolkit objects.

Secondly, UMA is generic in its behaviour, since it can accommodate both inter­
nal (application-driven) and external (user- or event-driven) modes of interaction
[21], as well as full concurrency between application and interface [12].

At the same time, UMA is also precise enough to act as a template for imple­
mentation. This is borne out by the existing system Presenter and its many
applications (although Presenter does not conform entirely with UMA). UMA's
modularisation of the behaviour and semantics of the surface into user agent and
medium respectively, and the precision of its communication scheme, make it a use­
ful basis for implementation of a wide range of surface models.

Finally, UMA allows the surface to be supported by a separate process, dis­
tributed from its applications. The surface model can therefore be made persistent,
in the sense that surface objects are not then tied to the lifetime of the application
which creates them. Interactive surface editors like [9], which create interface com­
ponents for application use, are thus easily built. In theory also surface objects can
act as communication tokens between different users and applications. This aspect
of the architecture has yet to be explored.

21

References
[1] A. P. Cobbett & 1. C. Wand, "The Debugging of Large Multi-Task Ada Pro­

grams," Proc Ada UK Conference, University of York (September 1989).
[2] W. Daly, "A Graphical Management System for Semantic Multimedia

Databases" (PhD Thesis), University of York (1989).
[3] A. J. Dix & c. Runciman, "Abstract Models of Interactive Systems," BCS

Conference Proc. "People and Computers: Designing the User Inreiface," P.
Johnson & S. Cook (eds.), Cambridge University Press (1985), 13-22.

[4] A. J. Dix, "Formal Methods and Interactive Systems: Principles and Prac­
tice"(PhD Thesis), University of York, Dept. of Computer Science (1988).

[5] A. Dix, "Abstract, Generic Models of Interactive Systems," People and Com­
puters IV: Proc. HCI '88, D. M. Jones & R. Winder (eds.), Cambridge
(September 1988), 63-77.

[6] S. W. Draper, "Display Managers as the Basis for User-Machine Communi­
cation." User Centered System Design, D. A. Norman & S. W. Draper (eds.),
Lawrence Erlbaum (1986), 339-352

[7] M. Harrison & A. Dix, "A State Model of Direct Manipulation in Interactive
Systems," Formal Methods in Human-Computer Interaction, M. Harrison &
H. Thimbleby (eds.), Cambridge (1990),129-151.

[8] c. A. R. Hoare, "Communicating Sequential Processes", Prentice-Hall Inter­

national (1985).
[9] S. Holmes, "Overview and User Manual For Doubleview," University of York

Dept. of Computer Science, Tech. Rep. No. YCS 109 (1989).
[10] S. E. Hudson, "UIMS Support for Direct Manipulation Interfaces," ACM Com­

puter Graphics 21(2) (April 1987), 120-124.
[11] E. L. Hutchins, J. D. Hollan & D. A. Norman, "Direct Manipulation Inter­

faces," User Centered System Design, D. A. Norman & S. W. Draper (eds.),

Lawrence Erlbaum (1986), 87-124.
[12] K. A. Lantz et aI., "Reference Models, Window Systems, and Concurrency,"

ACM Computer Graphics 21(2) (April 1987) 87-97.

[13] J. M. McCarthy & V. C. Miles, "Elaborating Communication Channels In
Conferencer," Proc IFfP WG8.4 Conference on Multi-User lnteifaces and
Applications (May 1990).

[14] "NeWS Manual", Sun Microsystems (1987).
[15] "User Interface Management Systems," G. E. Pfaff (ed.), Springer-Verlag,

Berlin (1985).
[16] R. Pike, "The Blit: a multiplexed graphics terminal," AT&T Bell Labs techni­

cal Journa/63(8) (October 1984), 1607.
[17] R. W. Scheifler & J. Gettys, "The X Window System," ACM Trans. Graphics

5(2) (April 1986), 79-109.

22

[18] B. Shneiderman, "The Future of Interactive Systems and the Emergence of
Direct Manipulation," Behaviour and Information Technology 1(3) (1982),
237-256.

[19] B. Shneiderman, "Direct Manipulation: A Step Beyond Programming Lan­
guages," IEEE Computer 16(8) (1983), 57-69.

[20] B. Sufrin & J. He, "Specification, Analysis and Refinement of Interactive Pro­
cesses," Formal Methods in Human-Computer Interaction, M. Harrison & H.
Thimbleby (eds.), CUP (1990), 153-200.

[21] J. J. Thomas & G. Hamlin, "Graphical Input Interaction Technique Workshop
Summary," ACM Computer Graphics 17(1) (January 1983),5-30.

[22] R. K. Took, "Surface Interaction: A Paradigm and Model for Separating Appli­
cation and Interface," Proc CHI '90 (April 1990), 35-42.

[23] R. K. Took, "Surface Interaction: Separating Direct Manipulation Interfaces
from their Applications" (PhD Thesis), University of York Dept. of Computer
Science (1990).

Surface Interaction*:
A Paradigm for Object Communication.

Peter Williams
Hewlett-Packard Laboratories

Filton Road, Bristol BS12 6QZ
England

Abstract

When real objects interact, they directly alter each other's stste. In
graphical user interfaces, users "directly" alter the state of objects in an
information system. It is difficult to model "natural" interaction using the
techniques of conventional object-oriented programming and systems. This
paper proposes a model of object interaction which more closely follows
the principles of natural interaction. A uniform treatment of object
interaction offers benefits in the description, design and implementation of
distnDuted, multi-user, graphical applications.

• The term "surface interaction" was coined by Roger Took in [1) to
descn"be a user interface architecture which was one of the inspirations for
this work.

1 Introduction

Object-oriented design and implementation can simplify the construction of

distributed, multi-user office systems. Object behaviour results from user input or

messages from other objects, but since objects and users do not communicate in the

same way, other objects cannot use the same interfaces as users.

In the real world, objects interact by altering each other's state and (perhaps)

inducing a reaction. In object-oriented programming, behaviour is a side effect of one

object calling another, and state changes are always an effect of behaviour, never a

cause. A more "natural" model of object interaction, which treated users as objects,

might simplify object design, and create opportunities for new types of object

communication and integration.

2 The Object Model

Before we can talk: about interactions between objects, we need a consistent notion of

object. The model adopted here is simpler than those generally used in object-

24

oriented programming, but provides a better basis for describing a user as an object.

It borrows heavily from a formal model of objects developed in [2].

In this model an object is a concrete, uniquely identif'table combination of

changeable state and behaviour, with which other objects interact. We can classify

objects by their behaviour, but object classes are not, themselves, objects.

2.1 Object State and Behaviour

Objects have properties by which we identify them, and properties are of two types -

state properties (or attributes) and behavioural properties (or laws). The values of an

object's attributes collectively comprise its state, and are a key determinant of its

future behaviour. The laws of an object defme the states it can be in. An object has

lawful and unlawful states, and for each unlawful state the laws specify an unique

lawful state to which it must change. A set of objects having the same laws is

sometimes called a natural kind in Ontology, and a Class in object oriented

programming and systems. Figure I depicts an object with its attributes constrained

by its laws.

• Attrlbut ..

_ Laws

Figure 1: An Object

2.2 Interaction

Objects interact by changing each other's state. Two objects which interact have an

interface. An interface, like an object, has state and behaviour. Its state is

"borrowed" from the states of the objects being interfaced, and its laws partition that

state into lawful and unlawful states, defming for each unlawful state an unique lawful

state. Interaction occurs when one object's state changes in violation of the interface,

and the laws of the interface require a change to the state of the second object to

25

render the interface lawful again. Figure 2 is a schematic of an object interface,

showing the interface state and the laws of the interface .

.",.-- ...
." ,. Interface

~ ---~- .--- ----:-:-- -:-
~---

.... - ~

Interface Law

Figure 2: Object Interaction

Objects do not reach unlawful states spontaneously, so object behaviour can only

be caused by interaction with other objects. A set of objects closed to interaction will

either reach a lawful state or behave in a cyclic manner.

3 Examples

We now use this model to explain two examples of object interaction. The first is

from the physical world, the second an interaction between objects in an information

system.

3.1 Physical World Example

First, consider a man driving a car about to run over a cat (see figure 3). A man is a

complex object, but a car is relatively simple, as is the interface between a man and a

car. Let us suppose that the sight of the cat in front of the car puts the man in an

unlawful state. The laws of the man require a change to the position of his right foot

to render his state lawful.

26

~ - --

... ... _-_

Figure 3: Real World Object Interaction

The attribute "position of right foot" fonns part of the man's interface with the

car, and the laws of that interface require that the position of the brake pedal and the

man's foot be the same. To obey this law the position of the pedal must change - the

position of the brake pedal being a property of the car.

The laws of the car now come into play. One of them asserts a relationship

between the position of the brake pedal and the pressure on the braking surface. To

obey this law, the pressure on the braking surface increases, stopping the car.

3.2 Information System Example

Now consider a spreadsheet of monthly target expenditure which apportions an annual

figure over 12 months. If the figure for a given month is explicitly asserted, that

month's value is frozen by the spreadsheet, and the remaining budget apportioned to

"floating" months. This spreadsheet is an object with state and fairly concisely

fonnulated behaviour.

Suppose we also have a graph object which plots a year's worth of figures by

month, and further suppose that this graph has an interface to the spreadsheet whose

laws require equality between the monthly figures of the graph and the spreadsheet.

When the spreadsheet, the graph and the interface are all in a lawful state, the graph

plots the figures in the spreadsheet (see figure 4 below.)

Now suppose that a user moves one of the graph points downwards. This is

lawful for the graph, but it renders the interface unlawful, requiring the corresponding

spreadsheet value to change. This violates the spreadsheet laws, requiring the budget

to be re-apportioned. This, in tum, renders the spreadsheet lawful, but changes 11

properties in the interface, making it unlawful. To render the interface lawful, the

corresponding 11 values in the graph change, and the screen display of the graph will

alter to show the current budget.

27

Spreadsheet Graph

Figure 4: Information Systems Interaction.

3.3 Discussion

The same model has been used to describe infonnation system and real world objects.

The model shares some fundamental concepts - such as object, class, instance, state,

behaviour and interlace - with object-oriented programming [3]. Other programming

concepts, such as method, message, and inheritance, do not figure in the model,

though they may well be employed in an implementation.

Both of the examples had simple interlace laws - selected attributes of one object

had their values equated to the values of equivalent attributes in the other. It would

simplify implementations of this model if we could always do this.

In general, and certainly in the real world, more complex interlace laws are

required, but we can build a large class of infonnation systems by limiting interlace

laws to simple equational constraints. When a system requires more complex

interlace behaviour, we can defme interlacing objects which factor a complex

interlace into two simple ones, as shown in Figure 5. The physical worid abounds

with interlace objects - simple machines such as levers and pulleys being obvious

examples.

28

----.. - - - --

~
' --

--, ,
... ...

4 Surfaces

....

Interface Object

Figure 5: Factoring Interfaces.

...

--.~

Every object in this model has a subset of its state devoted to interfaces to other

objects. These are the properties whose values can change and be changed by the

values of the properties of other objects. We call this subset of an object's state its

surface. Objects communicate with their environment by changing, and by

responding to changes to, their own surfaces. We can think of an object as being

"on" the surface of another if there is currently an interface between the two. Figure

6 is a redrawing of figure 2 showing the interface between two objects in terms of

their surfaces.

Figure 6: Object Surfaces

29

5 User Interfaces

The interface between a user and an object equates properties on the user's surface

with properties on the object's surface. A user can now be modelled as an object in

the system, with laws which map its surface values to a display, and transducer events

(keyboard, stylus, and mouse input for example) to surface changes. Thus it is the

user object which converts transducer events to display changes, as well as changing

(the surfaces of) objects to which it is interfaced.

The user object and its interface to an application object are shown in figure 7.

Note that the surface of the user object is abstract. The function of the user object is

to map the physical world of display screens and transducers to and from this abstract

surface.

Object
Interface

User
Interface

Figure 7: User Interaction through Surfaces

In effect, the screen becomes a medium of communication between user and

application objects - other objects do not "see" transducers or displays, they only

process changes to their own surfaces induced by changes to the user's. Changes they

make to their own surfaces will cause changes to the abstract user surface by virtue of

the laws of interface, and hence to the screen by virtue of the laws of the user object.

30

6 Advantages

Apart from offering a different way to model object interaction, why might this

architecture be attractive for user interfacing? There are several reasons:

1. Direct Manipulation and Consistency.

2. Distribution.

3. Multiple users.

4. Rationalisation of Interfaces.

6.1 Direct Manipulation

In a direct manipulation interface, a user controls an object by editing its appearance,

using editing gestures which are independent of the object, until it looks as he wants it

to be. In our model, the set of ge~tures a user can generate are behavioural properties

of the user. The effect of the gestures on their target are detennined by the laws of

the target object.

In an implementation confonning to our model, therefore, the user changes his

own electronic "surface", which induces equivalent changes in objects connected to

the user's surface at the point where it is changed. The state and behaviour of user

objects is defmed by the laws of users, and objects which interface to users must have

surface properties compatible with user surface properties at the point of connection.

This means that the part of an object's surface devoted to its user interface has a

"standard" behaviour, and can be implemented once for all objects.

Other user interface architectures propagate transducer events to the application

and expect the application to generate compatible visual feedback. In effect, the

manipulations a user can perform become properties of the object he is manipulating.

Because the feedback can vary from application to application, an important

characteristic of direct manipulation - the application independence of the gestures - is

at risk. The immediacy of the direct manipulation feedback can also be impaired, an

effect which is particularly pronounced in distributed systems.

6.2 Distribution

The main effect of distribution on user interfaces is latency. Latency over a small

fraction of a second, or worse still variable latency, changes the nature of an

interface. While we may prefer direct manipulation interfaces, they are difficult to

achieve over wide area networks.

31

In a surface interacting system, the user is never remote from his own surface,

so any change he makes to it occurs immediately. With other architectures, the visual

effect of an action is delayed by the communication network. Anyone who has held

down the backspace key to erase a word when editing remotely understands this

problem all too well. To be successful, the user has to imagine an effect he cannot

see, which fundamentally alters the nature of the interface so that it is no longer

"direct." With surface interaction, the visual effect of the changes made by the user

appear immediately.

Technically, the network propagating the surface change is itself an object (or

rather a very large sequence of objects) whose behavioural impact on the propagation

cannot always be ignored. The user changes the surface through which he observes

the object of his attention. That object may, of course, be in a different state than he

perceives, because of delay to the propagation of its latest change.

6.3 Multiple Users

In a distributed system whose user model is object-oriented we will naturally strive to

achieve a measure of "objectivity." If there is an objective world, which is the

pragmatic assumption of most of our behaviour, it is possible for several users to

observe the same object, and they will believe that they see the object in the same

state. For some reason (possibly the technical difficulty of achieving it) this is

regarded as a very special and limited requirement in information systems. This may

change as so-called "naive" users of systems with an object-oriented user model start

to use distributed systems.

Surface interaction isolates the internal behaviour of objects from their

environment. All an object does is change its surface and respond to changes made to

that surface. A single surface can be connected to many other surfaces - including

multiple user surfaces. Surface propagation alone will ensure that all users see a

shared object in the same state at the same time, as shown in figure 8.

32

Figure 8: Multiple User Interaction through Surfaces
Architectures which pass transducer events in one direction and drawing

primitives in the other are difficult to adapt to this sort of operation. Applications

have to keep track of the states of these transducers, and the presumed state of the

screen, to provide a direct manipulation interface. It is quite hard to do this for

several users simultaneously, because of the need to record multiple user state in the

application.

The principles of surface interaction do not deny or avoid the problem of several

users making conflicting change to elements of their surfaces which map to common

elements of a single object's surface. Suitable augmentation of the protocol used for

surface-to-surface propagation only enables such conflicts to be detected. We have

found in tests that users do not see this as a problem provided they have some other

means of communication (such as a simultaneous telephone conversation) by which to

mediate their interactions. This is just as well, since it is not clear that there can be an

application independent solution to this problem.

6.4 Rationalised Interfaces

Surface interaction suggests solutions to some important problems in user interface

design. The model should, however, apply to all forms of object interaction. If so,

then objects other than user objects could connect to those parts of an application's

surface devoted to users. Agent objects, using surface interaction, can literally use

the same interface as users. Cutting and pasting between applications in windowing

environments can be explained in terms of the surface of one object directly changing

the surface of another.

More radical is the idea that an object's surface is all user interface(able) - that

there are no object interfaces in which a user cannot participate. There are difficulties

with this - many, it must be said, to do with adequately simulating current interaction

33

mechanisms using surfaces. The benefit, however, would be enonnous, since the

surface implementation could be done once for all objects, and writing a new object

would be much simpler.

7 Issues and Further Work

If we confme ourselves to user interfaces, surface interaction promises worthwhile

benefits. Ideally, we would like to embed user object code into future window

managers, but user objects can be built using today's graphical infrastructures.

Applying surface interaction to all object interfaces is a more ambitious goal. We

have not yet fully tested the hypothesis that surface interaction is sufficient to model

all useful classes of object interaction. In particular, we have yet to explain the

following phenomena in tenns of a surface interaction model:

1. Navigation - how do new objects become connected

to the user (or any other object's) surface?

2. Perspective - how does the user (or any other object)

connect different parts of a large or complex object

to his surface at different times?

3. Composition - how do the surfaces of composite

objects connect to each other and to the user's

surface?

4. Binding and Unbinding - how are compositions

formed and re-fonned through surface interaction

alone?

5. Creation and Duplication - how are new objects

created through surface interaction?

We have tentative explanations for some of these phenomena, but they continue to

provide an interesting research agenda we are keen to pursue and to share with

interested parties.

34

References

[1]

[2]

[3]

Roger Took, "Surface Interaction: A Paradigm and Model for Separating Application
and Interface" in HU17\ll1l Factors in Computer Systems, CHI '90 Proceedings, ed. Chew
and Whiteside, ACM Press, Seattle, WA. 1990.

Yair Wand, "A Proposal for a Formal Model of Objects" in Object-Oriented Concepts,
DaJahases and ApplicaJUms, ed. Kim and l.ochovsky, Addison-Wesley, Reading, MA.
1988.

Oscar Nierstrasz, "A Survey of Object-Oriented Concepts", ibid.

HyperCard:
An Object-Oriented Disappointment

Harold Thimbleby; Andy Cockburn, Steve Jones
Stirling University,

STIRLING, Scotland, FK9 4LA.

October 16, 1991

Abstract

Although HyperCard is claimed to be easy to use it has many limitations
and curious features. It is further claimed to be 'object oriented.' This
object orientation is also limited and curious. The disappointment is that
HyperCard's arbitrariness and limitations are technically unnecessary,
indeed result in error prone constructions, slower execution, increased
learning effort. Yet HyperCard is successful: we will never know how
much more successful it might have been had its designers employed any
programming language design principles.

1 Introduction

HyperCard is a flexible flat database system with a graphical user interface.
It is user programmable in a proprietary language, HyperTalk, and supports
some object oriented programming possibilities. The purpose of this paper is
to discuss the design of HyperTalk.

For a recent, late 1980s, programming language, HyperTalk is surprisingly
arbitrary, and fails to show any obvious benefit from programming language
design research (see [8] for a tutorial). We can guess: it appears that Hyper­
Talk was implemented by a group of uncoordinated programmers, each being
responsible for his or her own feature, from parsing to implementation. De­
spite the claims made for HyperCard (in particular in its user manuals which
use 'object oriented' as an explanatory hook), technically, there are no obvious
design rationales.

Following some introductory background material, this paper is structured
first by HyperTalk features, and then it briefly examines HyperTalk's position
with respect to object orientation. To have written the paper 'the other way
around'-to start from object orientation-would have nec,essitated too many
exceptions and tedious case by case discussion! The lengthy nature of our
criticisms reflects the lack of structure in HyperTalkj and our written criticisms
are by no means exhaustive of its weak features.

• Author for correspondence.

36

1.1 Background

When HyperCard was introduced in 1987 there was a great deal of publicity
about the multitude of new possibilities that it presented for Macintosh users.
It was ensured a large user-base because it was bundled free of charge with all
new Macintosh computers, and was provided at a nominal fee to existing users.
So HyperCard has become something of a lingua franca among Macintosh users.

HyperCard's roots lie with MacPaint, a painting program, and one of the
very first Macintosh applications. Both were designed by Bill Atkinson, in­
deed HyperCard incorporates the graphical facilities provided by MacPaint,
and more: HyperCard also includes facilities for information storage, structur­
ing and recall, which is where its power lies.

"HyperCard is a new kind of application-a unique information
environment for your Apple Macintosh computer. Use it to look
for and store information-words, charts, pictures, digitized photo­
graphs-about any subject that suits you."

from the HyperCard user's manual

HyperCard's innovation was claimed to be the manner in which information
could be structured associatively, reflecting human thought patterns (well, that
was the idea). The information is presented via a user interface which includes
graphics, text, and sound. Various actions can be invoked via mouse clicks,
pointing at different parts of the pictures or text, or at buttons (which are dis­
cussed at greater length below). But the most powerful idea behind HyperCard
is that it can be programmed in a fairly simple language, HyperTalk, and a
lot of this programming is so simple that the user doesn't think of it as pro­
gramming. Indeed some common operations can be programmed 'by example'
(such as generating the code for a button to link one card to another) and from
simple menu choices. More details of the language can be found in [4] and [5].

Thus, when the user's mariual says

"Any piece of information in HyperCard can connect to any other
piece of information, so you can find out what you want to know in
as much or as little detail as you need."

from the HyperCard user's manual

the "connecting to other pieces of information" is really done by simple
bits of program. If a user doesn't like the connections, they can change it-or
even get HyperCard to playa little tune instead, or do anything else that the
programming language allows.

Interactive systems are notoriously difficult to program well. Casual Mac­
intosh users, therefore, were given the ability to write their own Macintosh
programs without much of the time-consuming toil. One of the features of
HyperTalk is that it is easy to read: this means that an ordinary user can read
other people's working HyperCard programs and very easily convert them to
their own purposes.

There are two important practical features in HyperCard to encourage new
users. First, much 'programming' can be done by pointing and clicking: the
user is 'led' through some programming decisions, and does not need to know

37

the vocabularly and syntax to make simple applications work. More complex
features can be provided by coding in HyperCard's language, HyperTalk. Sec­
ondly, almost any HyperTalk command can be evaluated interactively (in the
message window). It's a separate question why all commands cannot be exe­
cuted interactively!

So, creating a graphical interface to demonstrate "what the real system will
look like" is as easy in HyperCard as it could be using any system. In addi­
tion, interface objects can be made invisible (permanently or under program
control), hence letting painted graphics 'show through,' enabling many styles
of interaction objects to be simulated if they cannot be programmed directly.
We have found that many beginning programmers gain satisfaction from dis­
covering tricks of this sort: in turn, giving HyperCard an enthusiastic following
that closer examination of its design does not bear out (see [6] for an example,
and [7] for a study).

1.2 HyperCard's interface metaphor

HyperCard is built around a user interface metaphor of a stack of cards (as
from a card index). In any stack the cards are the same size, and although real
cards are made of stiff paper, it is better to think of HyperCard's as being made
from a combination of acetate and paper. A HyperCard card, then, contains
picture and text on its transparent 'acetate' layer or foreground and picture
and text on its opaque 'backing paper' layer, its background. The purpose of
having two layers is that a background may be shared between several cards,
for example, to provide a common graphical theme. The paint graphics in
the foreground can be black, white or transparent, so the background can be
obscured selectively for particular card designs.

Unlike a real card index, HyperCard's cards may have active objects at­
tached to them, so-called buttons and fields. In general, an object has as­
sociated program, called its script which consists of methods, in HyperTalk
terms functions or handlers. In addition to scripts, objects have properties, for
example, the coordinates of their position on the card.

Mouse actions, such as clicking the mouse button down or up, generate
messages that are directed first to the object the mouse is positioned over.
This is the primary way in which the user controls a HyperCard system: by
moving the mouse over various objects (typically buttons) and clicking.

The card, background and stack itself are also objects. The card is addi­
tionally sent messages by HyperCard that are not generated by mouse actions,
for example, keystroke messages and general housekeeping messages. Messages
pass through the card to its background and then to the stack, and then through
a list of stacks, finally to the distinguished stack (home) and then to the Hy­
perCard application itself which implements default actions for messages that
have not been otherwise processed.

Fields are used for displaying textual information and have several prede­
fined features such as scrolling, opaque, shadow, visible lines. Buttons are more
specifically used for carrying out actions when the mouse does something on
them (such as being pressed, released, entering their boundaries). As with
fields, buttons come from a fixed repertoire of flavours, including rectangular,
invisible, iconic (that is, pictorial, and user (but not program!) editable). Fields
and buttons can have their size, shape and position manipulated directly with

38

~
Click m@

+
(Click me

® Click me

I:8J Click me

Click me

Click me

)

Text in a field showing
~ious ~ffects.

.T.~.~.t.Jn.~.fi.~lg .. ~hQ.~ng
tDO'InJ ious C'ff~"ts. ~.~... ..· .. ••• uu

Text in a field
sho'WingWJ:rious

Text in a field showing
WJrious ~ff~"1s.

Click me

Figure 1: Example styles: button (left) and field (right). Buttons display
their name or are entirely graphical (second example from top), fields display
arbitary text.

the mouse (in the appropriate editing mode), and if required they can have
an associated program, which specifies the actions to do when particular user
actions are made.

Note that in the various editing and graphics modes, HyperCard does not
send messages, therefore an object cannot know directly that it has been moved
or otherwise modified by the user. Of course a development mode is required
to debug faulty objects, but the flexibility of direct manipulation for moving
objects is intrinsically denied the end user.

Although cards are numbered and arranged sequentially, backgrounds can
be shared between non-contiguous cards. The user has various ways to move
from card to card, optimised for linear operations (first, previous, next, last)
and temporal 'recent' operations, such as 'go back.' Programmers may override
this scheme or add alternative methods.

1.3 "Doing things at once"

HyperCard has the advantage that ideas can be added, bit by bit. There is no
restrictive idea of 'the' program that has to be got completely right before it
can be tried out: the user can change or add bits here-and-there as the fancy
takes them, and try them out as they go along. In particular the presentation
(graphics, object positions), content (text and/or graphics) and application
(programming) can be done in any order, to suit the design process. (Of course
this laisez fa ire approach has disadvantages for serious programming.)

39

A very nice, and distinctive, feature is that everything can be done "at
once" [9] (strictly, interleaved, since the user can only do one thing at a time):
there is no set order in which a HyperCard program must be written. In con­
trast, in a conventional programming system, you first have to get the program
right, provide its data, and-often the hardest part-design what it looks like.
These are three separate and distinct phases of conventional design. Revisions
to the overall design plan, motivated by experience or evaluation at any phase,
may have unfortunate repercussions on earlier decisions. The problem with a
conventional system is that designing what an interactive program should look
like is difficult to do until you have had it working and seen (or got prospective
users to see) how well it works: maybe it should be changed here or there. And
if you do change the program to improve how it looks, this probably upsets
some other part of the program. In a conventional programming language, it's
easiest not to bother. The result is that interactive programs are often nowhere
near as good as they could be. HyperCard, then, provides the opportunity to
design better interfaces in an interactive style. A HyperCard programmer is
generally happy to modify graphics and layout to suit customers' requirements
as they change with experience of use.

1.4 Interaction objects are editable as objects

The amount of time and coding effort required to produce a complete system
is greatly reduced because buttons and fields can be copied (including their
associated program) between HyperCard stacks and then modified if and where
necessary.

There are some example stacks provided with HyperCard and many sources
offree and cheap stacks that are easy to obtain. Useful items (buttons, scripts,
pictures, and so on) can be copied from them, and work the same way (bugs
notwithstanding) in the user's o\vn programs. In these aspects, HyperCard
could have been an ideal vehicle for shareware and cooperative program devel­
opment generally.

2 Syntax

There are many features of HyperTalk which make it attractive for prototyping,
that is, getting experimental programs together quickly and easily. The pseudo­
English style of HyperTalk attracts experimentation, which makes it easily and
quickly mastered; it is vaguely reminiscent of SQL, though less powerful, less
systematic and with imperative semantics. Learning HyperTalk doesn't feel the
same as learning one of the 'hard' programming languages like C. A typical
HyperTalk line might be

put "hello" before the first word of customerlame

On the one hand, the Englishy feel to HyperTalk makes reading scripts
very easy; on the other hand, the inevitable fussiness of the "English" means
that you never quite know how to say what you mean-there are many little
exceptions and idiosyncracies.

You can say number of cards in this background but you can't say
number of cards in this stack (which makes just as much sense). You

40

have to say number of cards, since (for some reason) the qualifier 'in this
stack' which is allowed in other contexts is not accepted.

2.1 Examples of inconsistent 'English'

• You have to write item 1 to 6 not items 1 to 5 as is correct (for En­
glish, that is); 1

• You can refer to the last word of a string s with last word of s, you can
refer to several words with the form word 2 to 3 of s, but you cannot
refer to word 4 to last of s, which instead has to be written as word
4 to number of words in s of s.

• One can say lock screen and unlock screen and equivalently set the
lockscreen to true (or false); but the recent buffer which can also be
locked or unlocked is only controlled by the set form. The potential form
lock recent is not permitted. Similarly for the system message sending
(lockmessages) for which only a set form is provided.

2.2 Examples of inconsistent syntax

Regardless of the claimed 'Englishness' of the syntax, many syntactic forms are
internally inconsistent.

A principle that would have made sense is for any expression that takes
an index (e.g., card i or card field "x" of card 1) could be preceded by
number of and the index (here, i and "x" respectively) omitted to form number
of cards or number of card fields of card 1 respectively; but the latter
is not permitted. In conformance with the flavour of HyperTalk, note that we
would allow an optional English plural (as in cards or fields) to improve
readability.

This is just one example where orthogonality-a basic syntactic principle­
has been lost in favour of ad hoc rules. This makes HyperTalk much harder to
learn than many other languages. There is no way for the user to generalise
his knowledge about the language: each construct for each class of object has
to be learnt individually. One of the advantages of object oriented languages,
polymorphism, is lost even at the syntactic level in HyperTalk.

The operator number has other meanings, and this perhaps explains its con­
fusing and limited syntax (though it invites other design questions). Thus ifx is
an object (rather than an expression) the number of x obtains the number of
that object. Hence number of this card yields a number, being the number
of this card within the stack. Yet number of this card in this background
gives the same value as number of this card, say 2-despite go card 2 and
go card 2 of this background which generally go to different cards! The
issue is that number of an object gives the value of that property (the num­
ber) of that object, which is the same regardless of the expression evaluating
to the object. This example shows there is no way to determine the number
of a card (that is, its numerical offset) within a background, since the number

IThe selector menuitea selects items from menus (since the context is unambiguous, it
could have been item): however constructs of the form menuitem 1 to 5 are not pennitted.

41

property of a card gives its offset in the stack regardless. The opportunity for
a conceptually simplifying identity law has been lost on HyperTalk.

Again, the there is a predicate should be able to work with any object
expression, but it cannot. For example, although go card 10 and go card 10
ot stack x are both correct expressions, only there is a card 10 is accept-
able. .

Dangling else

HyperTalk has 'dangling elses.' There is no need for a modern language to
suffer from this confusing problem! HyperTalk suffers with panache.

The syntax of the HyperTalk it command is defined as follows:

it condition then statement [else statement]

it condition then statement
[else statement]

it condition then
statement-list

[else
statement-list]

end it

it condition then
statement-list

else statement

The reference manual further requires that a nested multiple-line it must
have its own end it. However, this is not a sufficient condition as the following
example (which is accepted by the implemented parser) shows:

it Cl then
it C2 then SI

else S2

This, containing a nested single-line it, has two possible parse trees (one
of which is incomplete). Since by definition HyperTalk disambiguates with the
rule that els8 associates with the nearest preceding it, in this case, depending
on the intended meaning, one is required to write either:

it Cl then
if C2 then

81

end if
else 82

or

if Cl then
if C2 then 81

else
82

end if
end if

Surprisingly the following example is correct despite the else association
rule: a comment (taken from the symbol '--' to the end of the line) contributes
a 'statement,' making the else associate with the first if:

42

if C1 then
if C2 then S1

else S2

The following forms are allowed in practice, as is reasonable, but are not
defined in the manual:

if condition then statement
else

statement-list
end if

2.3 Syntactic sugar

if condition
then statement
else

sta tement-list
end if

The language definition claims to allow the f and f 0 as alternatives, but only
if f is a built-in function (such as time). Yet the long time has no equivalent
using the 0 form! In practice, however, if the user has redefined a built-in
function, say time, then timeO obtains the value of the user's function but
the time still returns the value of the built-in function--so the forms are not
equivalent. Although the user can override built-in functions like time with
their own definitions, they cannot simulate modifiers (like time's long and
Short).

2.4 Abbreviations and synonyms

Most HyperTalk keywords can be abbreviated. Some synonyms permit US or
UK variant spellings, such as hilited and highlighted; on the other hand,
sharedhilite has no English variant.

Thus background can be written bkgnd or bg; card can be abbreviated cd.
There are a large number of abbreviations, and there is no systematic rule for
their derivation. The shortest abbreviation for card is cd; the shortest abbrevi­
ation for background is bg; yet the shortest abbreviations for button and field
are btn and fld respectively. Finally, some words only occur in a (partially)
abbreviated form, such as editBkgnd (but not editbg or editbackground as
might be expected from the abbreviations for background). Button is an abbre­
viation for card button, but field is an abbreviation for background field.
Some words are abbreviated one way, others another (the word abbreviated
itself can be abbreviated as abbr[ev[iated]]).

Some words are alternatives, e.g., in and of are synonyms in some contexts,
for example: llord 5 of x can be written llord 5 in x. The of in function
applications, however, such as number of has no synonym. Or is and = are
synonyms (x = 5 and x is 5 are equivalent); yet though 5 is a number is
correctly interpreted as true, 5 = a number causes an obscure error.

2.5 Object naming

Although fields and buttons are conceptually very similar HyperCard makes a
clear distinction between them, and provides different visual styles for them.

43

Fields can contain (and display) arbitrary text, whereas buttons can only dis­
play their name. A problem for buttons is that their representation to the user
has to be the same as their name; one might want, for example, a button either
showing 'on' or 'off.' Doing this would mean that the name of the button in the
program has to be 'on' or 'off' accordingly, hence encouraging the programmer
to refer to it by other, less direct, means.

Since names of objects can be changed, there are several alternative refer­
ence mechanisms.

A so-called ID (guaranteed to be unique within scope and over time; IDs are
not recycled) can be used, or a number. However, both of these may change as
the structure of the HyperCard system develops (even as a program runs), so
there is in fact no generally reliable way of referring to objects. For example,
card numbers depend on the linear position of a card within a stack, and this
is readily changed by resorting or other such operations. The ID of a card
may change when it is cut-and-pasted (of course, one or other name inevitably
changes when it is copied-and-pasted, since this action creates a new object, a
copy of the card). Although button and field IDs are supposedly unique per
card, the object ID will change when it is pasted to a new card. Curiously, the
manual claims only that IDs change when an object is copied.

Apart from the expressions me and target, then, all object references are
variable-and unreliable. Quality programming in HyperCard requires an un­
usual level of self-imposed programming discipline, either not to change names
(which restricts what can be done) or to change them in carefully prescribed
ways (which anyway won't be very secure)! Where user requirements call for
objects with names that do change (such as the button example mentioned
above), there may be no alternative to risky coding.

To confuse matters further, there is no syntactic distinction between object
names and numbers: the numeric value 3 is indistinguishable from the character
literal "3". Hence card "3" refers to a card named 3 yet card 3 generally refers
to card number 3. Consequently if the name of a card is a numeral, ambiguity
is inevitable. The obvious work-around is to name objects with non-numeric
names, but this can be a problem for some applications (e.g., where a program
naturally subscripts the objects), but a constructed name might be used (e.g.,
X2, which is not a numeral, but can be constructed from an expression such as
"X"h). The problem becomes much more serious when referring to buttons,
since the user interface may require a button to be represented to the user as
1, 2, 3: if such names must be visible there is no sensible solution except ad
hoc simulation using paint graphics.

Clearly both the synta.'C and semantics of object naming represents a major
weakness in HyperCard. .

Is there a reliable way to refer to objects? An object can refer to itself
using me, so long as me occurs lexically in the object's script. If the object is a
card, background or stack, it can refer to itelf using the form this card, this
background or this stack. No other possibilities are reliable.2

Further confusion arises since asking for the name of an object that does
not have a name initialised instead obtains an expression, and indeed one that
cannot be used as a name!

2The target is supposedly the object to which a message is first sent. If a card, however,
receives a message, then sends a message to a button, the target-whether evaluated in the
button or card-incorrectly yields that button.

44

• First, consider the normal case, when a card has a name, x, say. The
expression short name ot this card obtains the value x, and this may
naturally be used in an expression such as card short name ot this
card. (The alternative form name ot this card obtains the expression
card "x".)

• Now, suppose we have just created a new, as yet unnamed, card. The
expression the short name ot this card obtains a value like 'card ID
4523.' Yet as the expression card card ID 4523 fails, one asks why the
name couldn't have been returned as simply ID 4523, or-since there is
a method to obtain an ID-that the short name ot this card should
return an empty string: the card supposedly has no name!

In short, the potential identity: card the short name ot this card ==
this card fails, and, indeed, there is no way to determine whether a card has
a name or not. Things are further confused if an object name happens to be,
say, card ID 123, which would be the outcome of executing set the name ot
this card to the name ot this card, or equivalent.3

3 Semantics

Such HyperTalk confusions are syntactic; there are plenty of semantic confu­
sions too. For example, and not exhaustively,

• put x .t return atter last line ot x loses the return character if x
contains just one line.

• Dividing by zero results in the value INF. For example, put 1/0 into
x puts the value lliF into the variable x. This value may be used fur­
ther, with the expected arithmetic results: put x+1 into x leaves x as
INF. Yet even though x = INF is true directly after executing put INF
into x, executing put x+l into x results in an error (whereas before it
worked)-because the numerical value INF generated by arithmetic can
be operated on as either a number or string, yet the value denoted by the
literal INF is not treated as a number. By similar methods we can arrange
that x = y is true, with x is a number unequal to y is a number. So
much for the equivalence of strings and numerals!

We might also add that the blank characters space and return are
treated as the numeric value 0 and is a number is true of both; yet
tab is not a number.

• Menus are available as a return separated list of menu items. Hence line
3 ot menu "edit" yields 'Cut,' since cut is on the third line of this menu.
Yet a menu is initialised by a command such as put "Undo. -. Cut •... "
into menu "edit"-which uses commas, not returns: the entire menu is
all, apparently, on line I!

30ne would nonnally put the nUle o~ this card into ... a variable which is later used
to set the name o~ the card to ... j the statement shown above simply shows clearly the
obscurity of HyperCard's approach to naming: setting an object's name to be its own name
sometimes changes that name!

45

• When HyperCard was extended into HyperCard2, an additional property
was added to cards, namely a Boolean marked. New commands were
introduced to test and manipulate this property (e.g., mark all cards
and print marked cards). One asks why only a Boolean (why not a
standard variable?), and why only cards?

• It is possible to insert stacks into the inheritance path dynamically. How­
ever, a stack is not sent an initialise message when it is placed in an
inheritance (used) path (so it can't initialise itself).4 All handlers in a
used stack come in scope, so there is no encapsulation: a used stack can­
not contain hidden auxilliary handlers. Although a used stack cannot
initialise itself or anything else (since it does not know when it starts be­
ing used) it does not have access to its own objects, so, apart from menu
entries, there is very little it could initialise!

• It is possible for any object, including a used stack, to send messages
to other handlers (hence programming a limited form of encapsulation).
But the send primitive can only send messages to command abstractions,
it cannot send messages to functions. Hence function calls cannot be
encapsulated.

3.1 Data structures

In general it is not possible to construct data structures, though assuming
certain restrictions (that data contains no spaces, commas or returns) it is
possible to use lines, vords and items to simulate up to three dimensional
values; four dimensional arrays of bytes are possible, under the same restrictions
(using the additional selector, Character). Neither structures with named
fields (as in Pascal) are provided nor are pointers. Items are always comma,­
separated substrings; even though some HyperTalk commands use returns and
slashes for separators, it is not possible to select items separated by alternative
characters. A vord is normally a blank (space, return, tab) separated substring,
unless it contains quote symbols.

Unfortunately, the variables provided by HyperTalk are limited in structure
and accessibility; it often becomes necessary to store record components (fields
in Pascal terminology) in hidden fields-involving a sleight of hand you feel
should not be really necessary. Also, this trick changes the number of fields
and will therefore impact on the meaning of other code. (For example, a script
may want to clear all fields, but if some of these are components serving other
purposes then they should not be cleared.) In short, there is no encapsulation
for data structures.

3.2 Variable names

Unlike programming languages like C and Pascal, HyperTalk does not need you
to declare or even initialise variables. The result is that when you accidentally
miss-type a variable, everything may initially run correctly, but be incorrect.
Indeed, an uninitialised variable has as its value its own name. This is a

~In contrast, stacks are sent messages like: openstaclt or res1llIIestaclt when they are
opened or resumed.

46

HyperTalk feature that might well be exploited by a programmer (to get default
values),5 with obvious consequences. This 'feature' results from the design
decision that quote marks need not always be placed around string literals
(thus "hello" and hello are equivalent, namely the strings hello, unless there
is an initialised variable called hello). Note that this 'feature' also explains
HyperCard's confusion over object names and numbers.

3.3 Generality

Not everything that the user does in HyperCard can be mirrored in Hyper­
Talk. Thus there are occasions when the user will say, "I want to get that
programmed" but won't be able to. Consider dialog boxes-where the Macin­
tosh seizes up until the user does something (clicks on one of the few dialog box
button offered). This user interaction is beyond the scope of HyperTalk even
though in principle it could have been handled automatically. The result is
that a number of facilities are available only to the interactive user and cannot
be controlled from programs.

A specific example of a typical dialog box 'missed' by Hypertalk is the
one that allows a user to interactively change the paint patterns: from within
HyperTalk changed patterns cannot be detected, default patterns cannot be
restored. (A user has to do each interactively.) This oversight means that
program control of graphics is always unreliable. Given that a HyperCard card
can be made to look exactly like a dialog box, a major simplification could have
been achieved if they were treated exactly like cards (perhaps on a 'dialog box'
background). This would have meant that any feature that could be controlled
by the user from a dialog box could have been controlled from HyperTalk in
the usual way (such as typing into fields, clicking buttons).

You can cut-and-paste most things in HyperCard (like pictures, buttons,
text), but you can't cut-and-paste everything. You can't cut-and-paste back­
grounds, for example, and these often contain lots of details that you there­
fore have to cut-and-paste one-by-one tediously. It is almost possible to write
a script that cuts-and-pastes each object on the background: it fails on the
graphics cut-and-paste since an attempt to cut may result in a diagnostic that
there is nothing to copy (sic) and that one should try the background (the di­
agnostic obviously assumes you have tried copying (not cutting) from the card
(not background) image!)

3.4 Error handling

The most severe problem of all is error handling. With some ingenuity arid per­
severance, the interpid programmer can overcome most problems. But errors
still happen! But in HyperTalk, as soon as an error happens, the HyperTalk
programmer has all control taken from him. For example, the HyperTalk pro­
gram wants to copy a picture the user has drawn: but if the user has actually
drawn nothing, this is an error. In HyperTalk, you can neither detect this sit­
uation to stop the error arising nor recover from it when it does happen-the
user is given a dialog box and this takes control away from the program!

!> An example is a repeat loop that tests the value of the variable flag, say, by the expression
flag=":flag" which is true by default until flag is assigned another value.

47

It would have been really easy for the HyperCard designers to arrange for
each error to send a message, error "description of problem" to the object
where the error occurs, to see if there is a method written to handle the error.
With this approach (as used in Smalltalk) only when HyperCard itself catches
the message error should it finally complain to the user. But this was not
done, and the result is that any error causes catastrophe--and it is not always
possible to 'program around' potential error-making traps.

3.5 Second class graphics

HyperCard has a paint model for graphics. But a HyperTalk program cannot
'see' what has been drawn; and generally the limited range of buttons available
is a significant drawback (though a user, not a program, can paint new icons).
Creating the effect of a controlled graphical object is difficult and requires tricks,
for instance, placing the graphics under a button that can be dynamically made
transparent or obscure. Using this method allows a 'one off' graphical button
representation but if we want to move or copy the 'object,' then of course the
separate items fall apart. Allowing graphical buttons or a whole new graphical
object type would solve this major problem.

3.6 A utomatic saving

A difficulty that a user (and particularly teams) must overcome is that of Hy­
perCard's automatic saving of alterations. This feature is undoubtedly useful
for the normal HyperCard user, avoiding the annoyance of an explicit save at
the end of each session but it forces the programmer into the added burden of
maintaining an arbitrary back-up regime.

3.7 Program structure

The main problem with HyperCard is the very thing which made it so popular
with casual users-it is informal. The chatty, natural features of HyperTalk
are not conducive to clear, compact, logically separated code sections and the
problems with unstructured and invisible data stores aggravate the situation.
The lack of rigour and plausible guidelines on where to locate methods (in the
stack, on the background, cards, fields, buttons?) causes erratic, hacked solu­
tions. One ends up with lots of global variables, and the associated difficulties
of losing track of where they are initialised, and where they are used. The
debugging assistance given to the programmer is minimal (and has its own
bugs).

3.8 Variables and persistence

Naturally, data stored in HyperCard fields is persistent, in that it persists from
one run of HyperCard to the next. Without this, of course, HyperCard's stacks
could hardly function as databases! However, since field contents can be made
invisible, they are a way for the programmer to implement persistent variables,
whose values are maintained from one run of an application to the next.

48

HyperTalk provides global variables. Global variables persist during a single
run of HyperCard. Thus, running a new application (stack) within the same
session of HyperCard starts off with whatever global variable bindings were
left by the last stack. Since there is no way for a program to determine what
the names the current of global variables are, it is impossible to protect against
accidental corruption of other stacks' data (stacks can be run concurrently, and
therefore share the global name space).

Additionally HyperCard provides a single LIFO stack used for implicit
transfer of control (we discuss the explicit go command below). The only
operations on this shared data structure are push and pop. Since the LIFO
stack is shared, one HyperCard stack can pop and go to a card pushed by
another stack. It is possible to pop the top of the LIFO stack into a variable
(without the side-effect of a go) to check whether it corresponds to a card in
the current stack, but if it does not, push is not permitted to push a card from
a different stack. Popping another stack's card is an irreversible error. Had
HyperTalk provided a top function, to give the top element of the stack, it
would have been possible to detect the error before taking irreversible steps.6
In short, reliable algorithms cannot be written using push and pop: they can
only make sense to the user, who like HyperCard, has a single view of all stacks
running.

An obvious, conventional, but missed, solution to such extent problems is
that HyperCard variables (including LIFO stacks) should have been instance
variables of appropriate objects, for example individual stacks. (We describe
below a similar situation, with menus, but having a more immediate impact on
the user interface.)

4 HyperCard as a programming environment

HyperCard is an integrated programming environment; external interfaces (so­
called XFCNs and XCMDs) notwithstanding, applications in HyperCard can
be constructed entirely within the environment. HyperCard provides a text
editor for editing object programs and a very simple debugger. It is also possible
to monitor message sending and variable values (incidentally, the only way to
determine the names of global variables).

4.1 HyperCard as a prototyping tool

It is a major selling point for Apple that all applications for the Macintosh
have the same 'look and feel' through a common graphical interface [1]. Hy­
perCard, however, is being used to prototype and create graphical interfaces
for the Macintosh, yet does not support the standard objects that make up the
Macintosh interface. It does not support a Macintosh-like style of interaction,
for example, there is no mouse double-click message.

Experienced HyperCard developers may claim that these problems can eas­
ily be solved by using external commands (XCMDs) and external functions
(XFCNs). These are pieces of code written outside of the HyperCard environ­
ment in another language such as Pascal or C, compiled and then integrated

S All well 811 omitting top, HyperTaik does not provide a predicate to test whether the
LIFO stack is empty.

49

into a HyperCard application (using Resedit). This is the kind of activity that
users wanted to get away from in the first place! If you have to be a 'real'
programmer then nothing has been gained.

4.2 Structuring programs

HyperCard provides no browser; indeed, the basic environment does not provide
facilities for finding or printing entire programs. (Utilities can, with some
difficulty, be written in HyperTalk.) Since objects can be made invisible (for
user interface reasons or to maintain state from one run to another) it is very
easy for programmers to loose track of their systems.

When debugging, viewing hidden fields can be complicated, involving Hy­
perTalk commands passed through the message box. If, for example, you can't
remember the fields' names (or whether they're on the foreground or back­
ground) finding the required field can be very awkward. And hidden fields is
only one of many tricks you get led into, trying to circumvent little restrictions
that, perhaps, at first seemed to make learning more interesting.

4.3 Compilation

It is clear that many design decisions in HyperTalk mitigate against efficient
compilation (e.g., the confusion of literals and names). The very varied syntax
and semantics from command to command suggests that there was no sys­
tematic attempt at organising HyperTalk. It is no surprise, then, to find that
HyperTalk is very slow, even in HyperCard2 which compiles scripts on demand.

4.4 Practical limits

HyperTalk permits recursion, but to a limited depth of only 95 calls (in version
Bl-2.1). There is no tail recursion elimination. Messages sent from handlers,
even when the last thing the handler can do (e.g., using the primitive pass),
are also very limited (24).

Suppose we have a group of cards on a common background, and we want
all cards to go to the next card (perhaps invoking a visual effect, which we don't
discuss here). Since HyperCard sends the message opencard, we can handle
this in the background as follows:

on opencard
-- visual effects, etc. omitted
go to next card

end opencard

Such code may be conceptually simple but it is not reliable! One only needs
about twenty cards before a limit is reached and the code fails catastrophically.
This code, indeed, is tail recursive: there is no technical reason why, regardless
of limited recursion or pending message depth, that it should be so restricted.
Given that stacks can have thousands of cards, imposing such unjustifiable
limits in the programming language implementation is incomprehensible.

It is possible to program around this particular problem. (One approach is
to use global variables to communicate with an icUe handler in the background.

50

Since HyperTalk sends the message idle when it is doing nothing else, it follows
that idle will only be invoked when the recursion and message stacks are
empty.) But why force programmers to be so sophisticated or devious?

5 Object orientation

We have come so far in our criticisms without mentioning object orientation.
The ni5e part of HyperCard's object orientation is that objects (cards, fields,
buttons) can be copied, cut and pasted as units. As such the user can operate on
them with the standard select/cut/copy/paste/clear operations that are used
for text editing. A copied or cut object 'carries' with it its associated program
code and other properties (apart from its number and ID).

Pasting an object will generally change the message hierarchy for that object
(for example, we might paste a copy of a button onto a different card, or
even a different stack), so semantics are rarely preserved following a move.
Furthermore, groups ofrelated objects (for example, radio buttons7) that refer
to each other will be compromised: there is no reliable way to refer to objects
that is also unaffected by cut-and-paste operations: IDs and numbers change,
and names (even if they are not changed under the normal operation of the
objects themselves) may not be unique.

5.1 Graphics

Since HyperCard's graphics model is paint there are no graphical objects as
such. Buttons, which are objects, have associated icons (square bitmaps of
limited size), and they may be moved under program control to provide very
simple animation. However, the graphical design of an icon is not under pro­
gram control (although a program can choose an icon from a given repertoire,
it cannot edit one or confirm it has changed the icon to what it expects).

5.2 Assignment

HyperTalk permits components of objects to be either the source or destination
of assignments (puts). For example: in the command put 'liJord 3 ot x into
'liJord 1 ot x the component 'liJord 3 ot x is the source, and the component
'liJord 1 ot x is the destination. This might lead one to think that if you
can write put name ot this card into x that one could equally write put x
into name ot this card. You can't. Instead, a special syntax has to be used
for certain properties of objects: as in set name ot this card to x. In an
object oriented language one would have expected operations such as setting
the name of an object to have been achieved by sending messages; instead
HyperTalk has a special (non-message) primitive (set) for this purpose. Users,
then, cannot extend or adapt the properties of an object.

T A button may be highlighted when clicked. OC a group oC radio buttons only one may be
highlighted. Hence clicking on any button in a group must reCe~by ID, name or numbe~to
the highlighting oC all other buttons in that group.

51

5.3 Classes

There is no concept of class; there are exactly five kinds of object (stack, back­
ground, card, field, button), not counting menus (see below). The hierarchical
relationship between these objects is fixed.

HyperTalk supports a go operation, with a new twist. It is used to change
the current card, but in doing so also changes the inheritance path to be
through the new card and background (and possibly stack). However, the
current method continues to run-meaning that its name bindings change on
each go.

It is not possible to subclass objects. For example the common need for a
group of mutually exclusive radio buttons has to be programmed explicitly. It
would have been preferable to have a radio button class to instantiate as groups
of related buttons.

5.4 Messages

Objects may send messages to other objects, either along the current inheri­
tance path or explicitly to named objects. Two object names (viz, the object
where the currently executing method resides and the object where the last
system-generated message originated) can be obtained from primitives.

Since it is not possible to define one's own classes the utility of messages is
greatly reduced, and few HyperTalk programs use messages except as procedure
calls. A lost advantage of binding methods with a class of objects is that
sending the same message to various objects can have a suitable effect (the
classic example is sending a print message to, say, an integer or a date). In
HyperTalk, if a method to handle a message is positioned in the hierarchy so
that different sorts of objects inherit from it, then it will require explicit code
to sort out what to do for each sort of object that is the target of the message!
In a conventional object oriented language, the method to handle the message
could be associated with the class of object concerned.

In HyperTalk, this means that if the programmer wants all buttons (buttons
cannot be grouped into subclasses) on a card to respond to a new message
cycle, say, then the method for that message must be placed in the card's
code. Hence all fields also inherit the same message, as does the card itself.
The cycle method must then use code to determine whether it was really
invoked by a button.s Since this requires explicit programming we can hardly
call HyperTalk 'object oriented': we can do similar explicit programming in
other languages with no pretentions to being object oriented. And in our
description of this example we have not mentioned that there are foreground
and background buttons on each card, and the syntax to refer to them differs.
Hence it follows that, once the method has determined to its satisfaction that
it is indeed called from a button, the action it implements in response will have
to be written out twice, once for the foreground and once for the bac~ground
cases.

Such are the more easily explained semantic problems of messages. The
syntax, too, of message passing is also peculiar. Although message handlers
can take parameters containing commas, there is no simple way to send a
message that contains parameters including commas or quotes. Thus, what

8We've already noted that the primitive required for this, the target, is bugged!

52

might have been written as send cycle("a,b,c") to button 2 has to be
written: send "cycle(" I: quote I: "a,b,c" I: quote I: ")" to button 2.
It is not possible to send function messages to other objects: send "put f 0"
to ... evaluates f in the current object regardless.9

Messages can also be attached to menu items, and the same problem occurs
there. We discuss menus next.

5.5 Menus

Conceptually, menus are objects with a carefully prescribed user-behaviour.
The user clicks on a menu and it reveals a list of choices, menuitems. If the
user selections one of the options the corresponding action is invoked.

HyperCard implements this behaviour with two alternative mechanisms.
The default is that a message domenu X. Y is sent to the current card for a
menu selection X from a menu Y. The interpretation of a default menu item
is under the control of the current card, background and stack (in that order).
This has the advantage, perhaps, that the exact meaning of a menu item can
be associated with the current context (i.e., the currently displayed card). On
the other hand, if the menu really needs a fixed meaning (and not one that
can be implemented by a built-in primitive of HyperCard), there is no way to
implement it reliably.

The second method is to bind a menumessage to the menu item. Now,
when the item is selected, HyperTalk will send this arbitrary message along
the same path the domenu message would have been sent. Despite its name,
the menumessage can be a command, in particular a send to send the required
message to any desired target object.

For some reason, menumessages are restricted to a single line: unlike the
code associated with all other objects. Thus it is not possible for a menumessage
to check that the target object of a send exists, and it cannot be certain to
invoke the right handler to check for it! Given that HyperCard permits many
stacks to be run together, each possibly with its own menus, reliable menu
programming is extraordinarily difficult.

In terms of inheritance, buttons and fields are associated with cards or back­
grounds; cards are associated with backgrounds; and all with stacks. Thus, as
the user moves from one card to another, if the background changes, HyperCard
(naturally!) changes the current inheritance path through the new background.
But menus are different. As it were, HyperCard doesn't know about menus,
and the programmer has to control them explicitly. Thus it is not possible
to associate a menuitem with a particular background, say, so that when the
user moves from that background the menuitem disappears (or, better, is sent
a suitable message so that it can decide what to do, perhaps overriding the
default action).

The consequence of this is that menus and individual menuitems must be
controlled explicitly by the programmer. This is a problem of considerable
complexity: other stacks, running concurrently, may also alter menus and they
may not adhere to any useful conventions. Menus are an object oriented dis­
appointment.

9 One problem is that send effectively applies the Cunction value to its parameters, stopping
quoted (verbatim) messages being sent.

53

5.6 Inheritance

If an object intercepts a message it may still want the default action to occur.
HyperTalk provides no way to refer to the immediate inheritor of a message,
that is the object that should implement the default behaviour (though one
could program it in explicitly-which is the option for languages that are not
object oriented!)

The mechanism that HyperTalk provides is pass which sends the original
message on. Thus an object cannot modify the message it handles.

6 HyperCard: an object oriented disappoint­
ment

The previous part of this paper described HyperCard from the point of view
of features, and served to both introduce HyperCard and to indicate various
design criticisms, criticisms with respect to programming language design gen­
erally and object orientation in particular. Having provided an overview of
HyperCard, then, we now briefly discuss it from the point of view of object
oriented design principles.

Uncontentiously following [3], an object oriented system should provide the
following functionality. We place a + before features adequately provided in
HyperCard and a - before features not provided or badly provided:

- Encapsulation. In HyperCard, objects' state are available without restric­
tion. Even the methods of an object may be changed by another object.

+ Dynamic lifetime. Objects can be created and destroyed as HyperCard
executes. (All garbage collection is implicit.)

- Identity. Object naming in HyperCard is a mess; names are not unique.

+ Substitution. With various provisos, HyperCard objects can be substi­
tuted; indeed the cut-and-paste editing takes advantage of this potential.

- Message. Messages are provided, with various restrictions, both syntactic
and semantic.

+ Method. Methods in HyperCard are termed handlers.

+ Receiver and self. HyperCard permits access to the receiver of a message
and the object self, the object whose method is executing. HyperCard
uses the expressions target 0 and me respectively-note that one is a
function, the other a pseud<rvariable, and that (as mentioned earlier)
target 0 is unreliably implemented.

- Class and instance. It is not possible to draw together objects sharing
common behaviour.

- Instance variable. The only variables provided in HyperCard are local
variables (i.e., local to methods), global variables and fields (Le., database
entries). With ingenuity it is possible to use object properties (such as
name) as an instance variable, but with severe restrictions. Instance vari­
ables (e.g., marked for cards) are not inherited.

54

+ Inheritance. Inheritance is provided, and is also used as the 'mechanism' to
support non-HyperTalk extensions to HyperCard (XFCNs and XCMDs).
If a message is not handled by a stack (in the manner described earlier),
it is sent to the stack's resources which include the XFCNs and XCMDs,
then through an ordered list of stacks (which can be dynamically config­
ured) and their resources, then to a final stack ('Home'), to HyperCard's
resources, operating system resources, then ultimately to the HyperCard
system itself.

- Multiple inheritance. Multiple inheritance is simply not provided. A pe­
culiar form of multiple inheritance can be simulated by using go in objects,
since this changes the inheritance path, but at the cost of various side
effects.

7 Summary

To conclude, HyperCard is very widely used as an application development
tool, and this is because of the very real ease with which attractive graphical
interfaces can be created using it. Its popularity has proven the need for such
a prototying tool.

It is interesting that, even though Apple must be aware of this, they have
not developed a tool specifically for this task. Have they missed the chance to
exploit a user need, when at the same time they could have made their machine
far more accessible as a programming platform? Or, thinking more cynically, do
political considerations concerning Apple's investment in Macintosh software
development and links with third party developers have a large part to play in
this issue?

Apple's own HyperCard stack design guidelines [2] perhaps shows their atti­
tude: excellent as they are for making systems look nice, they say nothing about
programming in HyperTalk. And conversely, HyperCard appears designed to
break Apple's own user interface design rules (e.g., not handling double mouse
clicks). HyperCard systems are doomed, it seems, to look nice but feel terrible
when you get down to using them. HyperCard will remain an excellent and
inspiring prototyping tool, but a system that just does not go far enough for
anything like serious development. Few are the HyperCard programs that you
would let anyone else use. Serious HyperTalk programming requires non-trivial
compromises to be made in the user interface.

HyperTalk is depressing: there are so many missed opportunities that it
is impossible to say "HyperTalk fails such-and-such well known principle"­
rather, HyperTalk fails principles wholesale. Tony Hoare once said that Algol 60
was so well designed that it was an improvement over many of its successors.
Following almost three decades of research and practice, HyperTalk failed to
learn anything from the Algol heritage or any other programming language
developments. It would not be unfair to say that HyperTalk is a distinct step
back over all its predecessors. We dispute the view expressed by Greg Kimberly
(of Apple) that "HyperCard's missing features are a feature of HyperCard" [7]­
unless he means no features are provided except by their absence.

Whatever we think of it, HyperCard is a success: it is free and one of the
most widely used programmable systems (beating Lotus-123 and BASIC). As

55

Apple's CEO John Sculley has said, "With HyperCard, virtually anyone can be­
come a software author, producing an information-based application that looks
like a professionally designed Macintosh application." That is why it is suc­
cessful. It is a failure because software authors can produce information-based
applications that look, and only look, like professionally designed Macintosh
applications.

References

[1] Apple Inc., Human Interface Guidelines: The Apple Desktop Interface,
Addison-Wesley, 1987.

[2] Apple Inc., HyperCard Stack Design Guidelines, Addison-Wesley, 1989.

[3] M. C. Atkins & A. W. Brown, "Principles of Object-Oriented Systems,"
Software Engineer's Reference Book, J. A. McDermid, ed., pp39/1-39/13,
Butterworth-Heinemann Ltd., 1991.

[4] Claris Corp., HyperCard Script Language Guide, 2nd. edition, 1990.

[5] G. F. Coulouris & H. W. Thimbleby, HyperProgramming, Addison-Wesley,
in press.

[6] J. Gervich, "How I Learned to Stop Worrying and Love HyperCard," in B.
K. Laurel, ed., The Art of Human-Computer Interface Design, pp131-133,
Addison-Wesley, 1990.

[7] J. Neilsen, I. Frehr & H. O. Nymand, "The Learnability of HyperCard as
an Object-Oriented Programming System," Behaviour and Information
Technology, volume 10, number 2, pp111-120, 1991.

[8] R. D. Tennent, Principles of Programming Languages, Prentice-Hall, 1981.

[9] H. W. Thimbleby, User Interface Design, Addison-Wesley, 1990.

An Architecture for HeI in Real-time Systems

A.Burns

Real-Time Systems Group
Department of Computer Science,

University of York, UK

ABSTRACT

Although a computer system cannot ensure that a user will act in a timely
manner, it is possible to build systems that will guarantee that
information is presented at the correct time, and will act upon user
directions within an imposed deadline. A real-time database model is
presented that is used to structure all interaction between users and the
real-time system. Such a database has absolute and relative temporal
consistencies defined. From such a model it is possible to generate the
timing requirements for a set of tasks that can be guaranteed to retain
temporal consistency in the database. It is shown how the database model
can be used to define an appropriate architecture for HCI in this
application domain.

1 Introduction
Real-time systems are those in which the time at which events occur is as significant as
the events themselves. Failure of these systems can result from a single missed
deadline. This paper is concerned with systems that can lead to catastrophic failure,
and that have human operations involved in at least some of the real-time activities.
Typically the operator has been retained with an active role within the system because a
human must be the final arbiter in issues of safety or economic performance. But as
Sikorski states[l]:

Today, the wide use of automatic systems is radically changing the human
operator's behaviour in industrial process control. Formerly, instrument
monitoring and control operations were his/her main activities. Now,
decision-making and creative problem-solving, especially in emergency
situations, have become primary tasks As a result, despite the automation
and computerization of control rooms, the human operator has recently
become the most unreliable component in industrial processes control.

The design and operation of the HCI component is thus of critical importance.
Dependable systems must address the separate issues of reliability, safety and security.
Burns has recently[2] classified inappropriate operator interaction in these terms:

(a) Failure to take necessary action (reliability)

(b) Unintentionally undertaking an incorrect action (safety)

57

(c) Intentionally undertaking an incorrect action (security)

These issues dictate the use of an architecture that separates the HCI Components from
the subsystems that are delivering the main functionality of the real-time system. This
is a common structure for HCI, but is nonetheless critically important for building
dependable systems. Figure 1 illustrates this simple relationship, which will be
extended later. -

Figure 1: Basic Architectural Structure -

The HCI Component can undertake input data validation and identification and
authorisation of operators. Hence the Application can assume a perfect user[3] and be
designed and implemented in a more straightforward way. A perfect user is one that
inputs correct data when required and without the need of prompts (i.e. they are
reliable, safe and secure). The verified postcondition of operator input becomes the
precondition for the Application.

In this paper we investigate how the perfect user can also be made temporarily
correct. We shall consider in the next section the additional constraints that real-time
behaviour imposes. A (temporal) database model will then be proposed as the basis for
a dependable architecture.

2 Temporal Constraints on HCI
Real-time systems can restrict the time that an operator has to assimilate output and to
produce input. There are a number of factors that will significantly affect operator
behaviour, including

• Working environment (including issues of morale and training).

• Ergonomics of interface equipment.

• Overall system architecture.

In this paper we concentrate on architectural issues. Four significant temporal
interactions will be addressed.

(a) Value ofuserinput (against time).

(b) Time attributes of system output.

(c) Asynchronous mode changes.

(d) Inaccurate or uncertain output.

Each of these issues is considered in turn below.

2.1 Value of user input

In general, events in hard real-time systems have time-utility functions associated with
them. Figure 2 illustrates a typical case. Assume Start-time is the earliest time at
which operator input can be delivered to the Application. The operator (process)
represented in this figure has, in effect, three thresholds. The first (Tl) represents
"maximum utility" i.e. the time for the event to have the maximum (positive) impact on
the system. The second (T2) defines the time period for at least a positive contribution,
whilst the third (T3) signifies the point at which actual damage (negative utility) will be

58

done to the system. This can be interpreted in two (application defined) ways:

• the lack of an input before T3 will cause damage; or

• the existence of an input after T3 will cause damage.

An example of the first property is that of turning on a cooling subsystem after an
overheating warning of some kind. Even if the opemtor is slow to turn on the system it
is still of benefit if they do. The second property is illustmted by a signals opemtor (of
a railway system) that must not change the points while a tmin is over the them; i.e. it
is better not to do the action rather than do it too late.

,

ut~
, , , , -----,--- -- - - - --- - -- - - - - - - - - _.- - -~---..,-- --- - -- - - -

13

Figure 2: A Time-Utility Function

An opemtor's input may be associated with responding to a system output. It is
important therefore to gain the attention of the user as soon as possible and to present
sufficient data for the operators to respond in an appropriate and timely manner. There
are a number of visual and auditory alarm techniques used to inform opemtors that
immediate attention is needed. These must be supplemented by an appropriate
architecture that allows the application software to react responsively to human
instruction.

Many applications will need to take account of situations in which the opemtor
will never respond. To give such fault tolerance, alternative actions (in the event of
human silence) must be implemented. The point in time in which these alternative
actions are sanctioned being derived from comparing their "utility" (and deadline) with
that of the delayed operator input The decision to switch to a default response must, of
course, be communicated to the silent, though not necessarily absent, operator.

2.2 Time attributes of system output

It is generally accepted that system output (from the Application) must be used to
present the operators with a sufficiently accurate mOdel for them to understand the
semantics and real-time behaviour of the application under control. As the model
presented cannot be totally "up-to-date" it is important to unambiguously specify the
"time" attributes of output data. For example during system specification a display may

59

be defined to be no more than five seconds old, or not more than 3% inaccurate.

With multi-operator systems the same data must be presented to all operators. One
must assume that there exists an informal communication channel between the
operators; if they are not observing a consistent state then confusion may ensue. This
could be made worst by a hierarchical management relationship between the operators
(as exists for example between a pilot and co-pilot).

The volume of infonnation presented to the user must also be constrained by the
time period over which it must be communicated to the user. There are a number of
documented incidents (e.g. Three Mile Island[4]) in which the sheer concentration of
critical data presented to the operator inhibits (and at times prohibits) a constructive and
timely response. An unfortunately not untypical scenario is that the controlled system
becomes in some way unsafe. This condition is recognised by a number of different
sensors. Each sensor produces (either directly or indirectly) alarm data for the operator.
The operators' model of the system becomes compromised and a constructive response
cannot be assured.

2.3 Asynchronous mode changes

In the above it was noted that system outputs must at times be constrained and that the
model they present to the user is necessarily out-of-date. Where application (and
therefore model) parameters change in a continuous manner then the use of time or
error attributes are appropriate. There are, however, systems that are subject to
discontinuous and asynchronous mode changes. Typically there are a small number of
static modes in which the application operates. For these systems it is imperative that
the operator is always made aware of the current mode. Moreover, when a mode
change occurs a consistent model must be maintained at the operator interface. The user
must not be able to assess old data from the previous mode simultaneously with more
up-to-date information from the new mode.

Even with the above approach there will inevitably be situations (due to the
asynchronous nature of mode changes) in which an operator instruction that was valid
at the time it was made becomes invalid, because of the mode change, by the time the
application processes it. This eventuality must be catered for at the design stage with
appropriate user feedback being generated. The user must know if the instruction was
acted upon before the mode change, or if the mode change invalidated it. Again with
multi-operator systems a consistent view of mode is critically important.

2.4 Inaccurate or uncertain output

In addition to the inaccuracies that arise from presenting the user with an "old" view of
the application it can also be the case that the data itself, even if timely, may not be
precise. Due to time constraints internal to the application, computations may not have
been fully completed before a timeout occurred; an approach called imprecise
compUlations[5,6]. A similar effect is possible if inconsistent (i.e. non-committed in a
database model) data must be used due to the approach of a hard deadline. There is a
danger in presenting information to the operator in a form that implies accuracy, if
internal to the application it is known that such accuracy has not been achieved. Such
information should always carry attributes of accuracy level, confidence level or
uncertainty value. These attributes must be prominently displayed although care should
be taken to ensure that information overload does not result (see discussion above).

Another situation L;at can lead the operator to mis-read the state of the application
(and its environment) is to have multiple displays of a single information source. If, for

60

example, a single sensor picks up an inappropriate temperature reading then a single
display or alarm routine is an appropriate response. The operator should be able to
judge whether the sensor itself is malfunctioning by considering other independent
displays. But if these other displays are also presenting data from this sensor then the
operator may consider that corroborating information is available when in fact it is not.

3 Meeting Timing Requirements
Most real-time systems use the concept of task (or process) to structure run-time
behaviour. In the development of applications it is thus usual to map system timing
requirements onto task deadlines. The issue of meeting deadlines therefore becomes
one of task scheduling. As scheduling theory has improved it has become possible to
define task-to-priority mappings that will guarantee run-time behaviour and give some
level of flexibility during execution.

A single application will typically consist of many tasks. Each task has a single
thread of control. For execution on a single processor the threads are interleaved. On a
multiprocessor system there is also the issue of thread ·allocation.

Two distinct forms of task structure are identified in the real-time literature[7]:

• Periodic

• Sporadic

Periodic tasks, as their name implied, execute on a regular basis; they are characterised
by their period (T), their deadline (D), and their required execution time (per period)
(C). They would typically be used to refresh HCI displays. Sporadic tasks also have
deadlines and execution time requirements but execute only when some defined event
has occurred. There is a requirement for these events to be limited in their arrival (i.e. a
defined maximum arrival rate). An alarm signal is often structured as a sporadic task.

To prove that a task set will meet all deadlines then it is necessary to show that the
following relationship holds for all real-time tasks in all situations:

C+/+BSD

Where / is the interference time (the total time that other tasks are executing when the
task of interest wishes to); and B is the total blocked time for the task (the time when it
cannot execute because the conditions required for progress are missing). The
interference factor / can be reduced by using static (distinct) priorities. Blocking is
more complicated as it involves waiting for other tasks to generate required data, and
delays caused by HCI issues. Clearly B must be bounded and not too pessimistic if
systems are to be guaranteed. The architecture described below is aimed at ensuring
that sensible blocking values are available.

4 Architectural Considerations
The earlier discussion leads to an architecture in which the HCI Components (see
Figure 1) must model the state and temporal behaviour of the Application. Issues of
consistency require the use of a database model; temporal concerns dictate a real-time
database[8]. In this section we first consider an appropriate database model; this model
is then applied to the HCI Component.

4.1 A real-time database model

Traditionally, databases are used in systems which either do not operate in real time, or

61

where a quick response is desirable but not strictly necessary. Incorporating databases
into real-time systems necessarily imposes stricter timing constraints as the failure to
meet a constraint can have catastrophic consequences. Formally, the correct
functioning of the system depends on timely operation as well as on functionally correct
operation.

A number of algorithms have been proposed and used in order to improve the
performance of conventional databases. Generally, these rely on one of two techniques.

Firstly, the consistency constraints which apply to the database, and to th~ views
of it which can be obtained, may be weakened. Examples include multiversion
serializability[9, 10], where older versions of data objects are maintained for read-only
transactions; semantic atomicity[II], where the semantics of the transactions are
exploited; multilevel atomicity[12], which is a generalisation of semantic atomicity; and
weak correctness[13, 14], where some transactions are allowed to see the intermediate
results of other transactions.

Secondly, schemes exist which take advantage of typical database access patterns,
so that transactions may proceed more speedily than otherwise, on the expectation that
no conflicts with other transactions will arise. If such conflicts do occur, then
transactions may have to be aborted and restarted. Such a scheme is described by Kung
and Robinson[15].

The above methods are characterised by the fact that the performance
improvement is statistical in nature, and cannot be guaranteed.

Given the context of real-time systems it is possible to define a number of
characteristics that are relevant to real-time databases:

• The number of database objects is fixed.

• Each transaction (class) accesses the same fixed subset of database objects.

• Many transactions are invoked on a regular (periodic) basis.

• There are temporal relationships between database objects.

To analyse further the requirements of a real-time database it is necessary to postulate a
general model of the application needs that are satisfied by a real-time database. We are
not concerned with a database that has only a peripheral or archival importance. Rather
we focus on the use of a real-time database as the main structuring component of the
systems architecture.

Consider an embedded (possible distributed) application that has N distinct input
streams from sensors or HCr units; and M output streams to actuators (effectors) or
HCI units. Timing requirements are expressed over these N+M value sets; e.g. an input
must be read every n units of time, or there is an end-to-end timing requirement
between a change in an input value and an associated change in an output value.

In order to calculate the correct values for the output settings, P significant
intermediate values must be computed. By significant we mean a value that is passed
between software components, or which may be checked by an independent
component

The database holds N+M+P primary objects. All software components interact via
this database; i.e. they read a subset of objects and write to a subset. If the application is
distributed then the database may not be centralised. In this case a number of primary
objects will have shadow objects that notionally have the same value. A simple end­
to-end timing requirement may thus involve the reading of a sensor to generate a S
value in the database, the transmission of this value to a shadow S' on a different

62

machine, the calculation of some intermediate value V, the use of V to compute a new
actuator setting A', the transmission of this shadow value to A, the output of this value
to the system's environment, and the input of an acknowledgement flag K back into the
database. An independent activity many then compare K and A (or S) to see if the
system is working correctly in either the value or time domain. This is illustrated in
Figure 3.

S A K

,--------, ,--------, ,- -,
I I

sensor actuator I check I

Figure 3: Database Interactions

The database is a key component of the system architecture not just because it is
the repository of crucial data but it can also be used to define when activities should be
invoked. A value moving outside a defined interval may initiate an error recovery
activity; a real-time database should give similar support to a data object becoming too
old.

4.2 Associating time and temporal consistency with data objects

In order to produce systems which maintain the required timing constraints, it is
necessary to associate time with the value stored in a data object This time will be
referred to as the time stamp of the data object. For data objects that represent an image
of some real-world quantity (the N set defined above), the time stamp represents the
time at which the data object value and the real-world value coincide (within any value
errors resulting from the calculation which generated the database value).

There are two notions related to the time stamp values which can be used in
measures of the temporal consistency of the database. These are absolute and relative
temporal consistency. The term functional consistency will be used to refer to value

63

consistency, as in conventional databases.

When a transaction executes, it reads a set of data objects, perfonns some
calculations, and writes the result to some other data object (or, possibly, set of data
objects). In order for the result to be meaningful, it requires both that the values of the
input data objects have values which are accurate within some error bounds, and that
the time stamps associated with the input objects are sufficiently recent. The former is
effectively the functional consistency of the conventional database, although in such
cases the error bounds are typically zero. The latter is the requirement that the data
value is sufficiently fresh and hence meaningful. This form of consistency will be
referred to as absolute temporal consistency.

If a transaction reads a set of data objects, and uses the values to calculate some
result, then it may be necessary that the objects all have similar time stamps. This type
of consistency will be referred to as relative temporal consistency.

By analogy with correct transactions in a conventional database, a transaction
which meets a set of temporal requirements will be called a temporally correct
transaction. Formally, a temporally correct transaction is one which, given a temporally
consistent database, will result in a modified, but still temporally consistent, database.
Note that while a consistent conventional database will stay consistent if no transactions
are executed, a real-time database may need transactions to execute in order to retain
temporal consistency.

4.3 Reader/writer model

A conventional database has no restriction on the number of readers and writers that
may access any data object. Consistency must then be retained by imposing
concurrency control over the transactions. This is unfonunate for real-time transactions
as the blocking time with protocols such as two-phase locking is, at best, pessimistic,
and at worst, unbounded. In the model presented here it is assumed that each data
object is written by a single task only. This allows cenain simplifications to be made:

• Atomic, non-blocking, access to data objects can be provided using the algorithms
described by Simpson[16,l7]. Briefly, these implement single processor, or
multi-processor with shared. memory, access to data objects, without any need for
mutual exclusion mechanisms. A reading task always reads the most recent (at the
time at which the read commences) completely written version of the data object.

• There is no interaction between multiple writers to a single data object. Hence, the
absolute temporal consistency constraint for a data object can be mapped directly
to the task which writes the data object.

• A task can update a data object, in the sense of reading its current value,
modifying the value, and writing that value back, without needing to lock the
object to prevent conflicting access.

Although this constraint would be extremely restrictive in the context of
conventional databases, it is less so in real-time systems. New objects and transactions
(tasks) can always be added to give the required single writer structure.

5 Applying the Real-Time Database Model to HCI
The HCI Component in Figure 1 is defined to consist of a real-time database plus a set
of tasks that interact with the database (by running transactions) and the Operators (by
changing a visual image or other output device attribute). The Application also runs
tasks that can (and must) interact with the database. To model (and implement) the

64

temporal relationships between the Operators and the Application it is necessary to
define absolute and relative temporal consistencies (ATCs and RTCs) on the data
objects of the database of the HCI component. This will in turn define the periods and
response times of the tasks running in the Application and the HCI Component

The database will contain all the information that could be of use to the Operators
plus the images of any input data generated by the Operators. In general the database
will be too large for all its values to be presented to the users at one time and hence the
data must be organised so that the Operator can effectively move around the application
model.

The real-time requirements imposed on the simple architecture of Figure 1 can be
represented and implemented in a number of ways. The following details the common
structures:

A TC on the application objects

A number of Application tasks will have absolute temporal consistency requirements.
These will dictate the maximum age of certain database objects and hence the
frequency with which the tasks must execute. This frequency will need to be
guaranteed by the schedulability analysis carried out on the full Application code.

Much of the database will consist of data that is refreshed by the Application. The
ATC (and hence the refresh rate) will enable the Operator to obtain a sufficiently up-to­
date picture of the behaviour of the Application. If a database object models a real-time
entity (e.g. a temperature) then the rate of change of that entity will be used (at the
requirements analysis phase) to define the ATC of the object.

Note that the objects with ATC considered here are written by the Application.
There is no requirement for the Operator to see all values of these objects. If the
Operator (or more likely, one of the Operators) does not view that object then this is of
no concern to the Application. All that is being guaranteed here is that if the Operator
views the object its value will be sufficiently fresh.

RTC on the application Objects

This requirement is best described by way of an example. Consider a dual tank fuel
management system. Engines draw fuel from both tanks but the management system
tries to keep the capacity of the two tanks the same by pumping fuel from one tank to
another. The Operator needs to know the total amount of fuel left. Both tanks have a
volume device that will give the current volume of that tank. However it is not
sufficient to merely allow the Operator to view both readings; the readings must be
taken close together so that the movement of fuel will not invalidate the information
presented to the Operator.

The two readings may have a long absolute timing requirement but a short relative
one. Whenever the Operator asks for fuel readings the database must hold values with
both ATC and RTC.

A TC on the operator objects

Some safety critical systems require the Operator to periodically input an I'm alive
signal. This is defined as A TC on an Operator object.

With both Application and Operator objects it is possible to define transactions
that are invoked by the breaking of an ATC. If the Operator fails to sign-in a
transaction that informs the Application will be released. Similarly an action in the HCI

65

Component can be used to infonn the Operator that the Application is failing (at least in
the temporal domain).

Transaction deadlines

In addition to temporal consistencies there are end-ta-end deadlines through the
database that must be guaranteed. Three classes can be identified:

• Operator Invoked

• Application Invoked

• Database Invoked
An Operator will change a database value and require that the Application has acted
upon this value within a specified time (say T1 in Figure 2). Note that if the
Application writes back into that database when it has accomplished this then there is a
relative temporal consistency between the two objects involved.

When defining the task architecture for a system, Operator invoked transactions
can be catered for in two ways. If they occur frequently then a periodic task may be
appropriate. Alternatively if they occur infrequently (or irregularly) but have short
deadlines then it may be better to implement the transaction as a sporadic task that is
invoked by an Operator input

An application invoked transaction will require the Operator to be made aware of
some event within some specified time interval. With a multi-view (or multi-window)
interface the object in question may not be in the current display. Nevertheless, the user
must be infonned by a visual or audible signal that the event has occurred. The
Operator will usually be asked to acknowledge the event and hence there is, again, a
RTC relationship between objects in the database. In other situations the Operator may
need to input some data in response to the event. This may then fonn a further time
dependent transaction.

A database is usually considered a passive entity and so the idea of it invoking
transactions is not usual. The database and its support software in the HCI Component
can however be considered to be a blackboard structure that not only is a data store but
also a transaction invoker. A number of situations exist (some of which have already
been mentioned) that can cause a transaction to execute:

(a) An ATC being broken

(b) A RTC being broken (between component of a transaction)

(c) A data (functional) consistency being broken

The latter allows the database itself to catch invalid data values and to initiate the
appropriate error recovery action. This may involve a transaction in the Application
domain or one in the HCI Component itself (or both).

The Application can therefore still assume a perfect user as long as it can cater for
the scheduling of error recovery transactions.

5.1 A simple example

Some of the requirements discussed above can be visualised in a simple example taken
from an existing system. This example will also illustrate how the database model can
be used as a general system architecture that is easily extended into the HCI component.

The example is taken from the oil industry. A company has implemented a pipe
control system to move different grades of petrol from the "end of production" to
"storage". The distance involved is over half a mile (underwater) and so a single pipe is

66

used for the bulk of the transfer. Ten different grades are accommodated by sets of
tanks, pipes and valves. Grades must not be mixed more than is absolutely necessary as
the result must be considered to be of the lower quality grade. Turbulence in the pipe is
to be minimised to reduce mixing when a switch between grades is being made. There
are also safety issues relating to maximum pressure and the early recognition of pipe
breaks.

The control system is implemented as a distributed computer system with one
main computer that polls remote computers that ·control smart actuators and sensors.
Each remote computer has a small database of local variables (i.e. sensor readings,
actuator settings). The main computer has an image of all the smaller databases. It also
has an interface to the Operator that allows most of this database to be viewed and will
allow some entries to be updated by the Operator. The main computer also executes
"background" tasks that check the consistency of the database - both temporal and
functional.

All routine data is polled on a regular basis and hence the main database contains
data that possesses appropriate A TC. The Operators are in complete control as to what
data to view on their screens. They can also choose between the presentation of
numerical data (i.e. the database values) and a pictorial style showing the active pipes
and rate offtow (via an associated colour scale).

Alarm data has an end-to-end deadline. A remote computer will recognise the
alarm condition and the main computer must inform the Operator within a fixed time.
This is achieved by fixing the polling rate over the network (for normal execution)
which will define a RTC between the remote data object and its corresponding mirror
on the main machine. Once the alarm condition is read a transaction is invoked that
causes a visual and audible signal on the Operator console. The operator must then
choose the appropriate screen and then cancel the alarm. This switch to the relevant
screen can be requested by a single key action.

The main computer runs tasks to:

(a) Poll the network and keep the database temporal consistent.

(b) Execute the necessary control laws to set the actuator values.

(c) Perform all HCI work (i.e. implement the HCI Component).

(d) Undertake background consistency checking.

Much of the HCI work is not real-time but some key actions are - such as screen
switching following an alarm.

Although the main computer has many different tasks to perform it can be
analysed (for schedulability) because the database architecture makes all the task
executions independent of each other. A typical task will read values from the
database, undertake some computations, and write new values into the database. The
database interactions will be non-blocking. Moreover a temporarily consistent 9<itabase
being subject to the timely execution of tasks will result in a temporarily consistent
database. The HCI Component presents no new difficulties, it conforms to the same
model.

6 Conclusion
Although a computer system cannot ensure that a user will act in a timely manner, it is
possible to build systems that will guarantee that information is presented at the correct
time, and will act upon user directions within an imposed deadline. Guarantees follow

67

from applying schedulability analysis that itself restricts the architecture of the
application. The use of a real-time database helps to structure the interactions between
Operators and Application and enables the schedulability analysis to be carried out.

To capture real-time requirements it is necessary to both restrict and extend the
traditional database model. Normal concurrency control methods ensure data
consistency but lead to unsolvable scheduling problems. We have transposed all
consistency requirements to be temporal ones and have then defined absolute temporal
consistency on individual database objects and relative temporal consistency between
database objects. In addition all objects can have at most a single writer task.

The architecture presented may be viewed as too restrictive for normal HCI. It
does however appear to be appropriate for real-time dependable systems.

Acknowledgements

The work presented in this paper is due in large part to the input of colleagues; in
particular P. Allen, N. Audsley, M. Richardson and A.J. Wellings.

References

[1]. M. Sikorski, "Use of Reliability Modelling for the Ergonomic Design of
Industrial Process Control Systems", pp. 194-198 in Contemporary Ergonomics,
ed. E.D. Megaw, Taylor & Francis (1989).

[2]. A. Burns, "The HCI Component of Dependable Real-Time Systems", Software
Engineering Journal (to be published) (1991).

[3]. A. Bums, "Enhanced Input/Output On Pascal", ACM SlGPLAN Notices 18(11),
pp. 24-33 (1983).

[4]. J. Kemeny, Report of the President's Commission on the Accident at Three Mile
Island, Government Printing Office: Washington (1979).

[5]. J.W.S. Liu, K.J. Lin and S. Natarajan, "Scheduling Real-Time Periodic Jobs
Using Imprecise Results", pp. 252-260 in Proceedings 8th IEEE Real-Time
Systems Symposium, San Jose, California (1987).

[6]. K.J. Lin, S. Natarajan, J.W.S. Liu and T. Krauskopf, "Concord: A System of
Imprecise Computations", in Proc.IEEE Compsac, Japan (October 1987).

[7]. A. Burns, "Scheduling Hard Real-Time Systems: A Review", Software
Engineering Journal 6(3), pp. 116-128 (1991).

[8]. A. Burns and M. Richardson, "A Database Model for Hard Real-Time
Systems", YCS.I44, Department of Computer Science, University of York
(1990).

[9]. C.H. Papadimitriou and P.C. Kanellakis, "On Concurrency Control by Multiple
Versions", ACM Trans. on Database Systems (March 1984).

[10]. D. Agrawal and S. Sengupta, "Modular Synchronisation in Multiversion
Databases: Version Control and Concurrency Control", 1989 ACM-SIGMOD
Inti. Con/. (1989).

[11]. W. Cellary, E. Gelenbe and T. Morzy, Concurrency Control in Distributed
Database Systems, 1988.

[12]. N.A. Lynch, "Multi-Level Atomicity - A New Correctness Criterion for
Database Concurrency Control", ACM Transactions on Data Base Systems Vol 8
No 4, pp. 484-502 (Dec 1983).

68

[13]. L. Sha, J.P. Lehoczky and E.D. Jensen, "Modular Concurrency Control and
Failure Recovery", IEEE Transactions on Computers 37(2), pp.146-159
(February 1988).

[14]. L. Sha, R. Rajkumar and J.P. Lehoczky, "Concurrency Control for Distributed
Real-Time Databases", SIGMOD Record, pp.82-96 (Vol, 17, No.1, March
1988).

[15]. H.T. Kung and J.T. Robinson, "On Optimistic Methods of Concurrency
Control", ACM Trans. on Database Systens, pp. 213-226 (June 1981).

[16]. H.R. Simpson, "Four-Slot Fully Asynchronous Communication Mechanism",
lEE Proceedings on Computers and Digital Techniques 137(1), pp. 17-30
(January 1990).

[17]. H.R. Simpson, "Correctness Analysis for a Class of Asynchronous
Communication Mechanisms", BAe Report (1990).

Logical Input Devices· An Outdated Concept?

DA. Ducet. P J.W. len Hagen and R. van Liere;

tRutherford Appleton Laboratory, Chilton, Didcot, Oxon OXII OQX, UK
:j:Center for Mathematics and Computer Science (CW!). Amsterdam. The Netherlands

Abstract

This chapter gives a short history of the concept of logical input
devices and the way in which the concept has evolved and is now
contained in the ISO/IEC standards for computer graphics programming,
GKS, GKS-3D and PRIGS. A formal description of the GKS logical
input device model is given in Hoare's CSP notation. and the chapter
concludes with a discussion of some of the shortcomings of the model
and ways in which it can be extended.

1 Introduction
The notion of logical input devices dates back to around 1968. The early 1970's saw a
flurry of activities laying the foundations for the flrst International Standard for
computer graphics programming, the Graphical Kernel System (GKS). GKS was
published as an International Standard in August 1985.9•17 During the course of the
development of GKS, an input model based on the concept of logical input devices was
developed. This model has formed the basis for the input facilities in subsequently
produced graphics standards (GKS-3D.19 PRIGS20 and CGI,22 the device interface
standard). Section 2 examines how the initial ideas of logical input devices evolved
into the input model now contained in the graphics standards.

Section 3 presents a formal description of the input model expressed in Hoare's
Communicating Sequential Processes notation.8 A brief introduction to the notation is
also given. The following section describes an extension to the input model which
enables input devices to be composed hierarchically. The formal descriptions have
been published previously.

The chapter concludes with some observations on the strengths and weaknesses of
logical input devices, and ways in which the concept might be extended in the future.

2 Development of the GKS input model

2.1 Background
One of the key concerns in GKS is to abstract away from the details of specific
graphical output and input device hardware and present to the application program a
programming interface which is device independent, but which can be configured easily
by the application program to make best use of the characteristics of the available
output and input devices. For graphical output, this is achieved through the use of
workstation dependent lookup tables, called bundle tables, which can be used to control

70

the appearance of output primitives on the workstations on which they are displayed.
Table entries can be set by the application program to make best use of the
characteristics of the output device, for example colour might be used to differentiate
the appearance of primitives of the same kind on a device with a colour capability,
whilst on a monochrome device some other aspect would have to be used. The quest
for equivalent concepts and control for graphical input has been more difficult, and so
far, less successful.

The key idea in the GKS input model is to look at the type of input values returned
by different types of physical input devices, and characterize these in terms of the uses
to which they are put by application programs, for example to obtain a spatial position
in some coordinate system, or to select from a set of possible alternative choices. Such
an approach led to the idea of vinual or logical input devices. The essence of the idea
fIrst appeared in a paper in 1968 by Newman ll and was developed further by Cotton,3
Wallace and Foley 7 and Wallace. IS The idea is that the application program has
available a range of virtual input devices, the only visible aspect of which is the type of
value returned. Five types, or basic classes, were identifIed corresponding to fIve
commonly used functions:

• locator to indicate a position;

• pick to select a displayed entity;

• valuator to input a single real number;

• keyboard to input a character string;

• button to select from a set of displayed choices.

For each basic class, there is a natural type of physical device onto which to map the
class, for example pick maps naturally onto a lightpen, button onto a button box.
However, any of the virtual input devices can be simulated by (almost) any physical
device, thus a graphics system supporting the virtual device idea can be implemented
on just about any combination of available physical input devices. The application
program can be moved from one physical device confIguration to another, supporting
the virtual devices used by the application, without changes to the structure of the
application program. The drawback in this approach is that emulation of virtual devices
by 'unsuitable' physical devices may lead to an interface, which though logically
correct, is extremely unfriendly to use.

The logical input device model was used as the starting point for the development
of GKS as it does effectively address the issue of separating the structure of the
application program from the physical device hardware to be used.

2.2 G KS Version 3
The earliest version of GKS which exists in English translation is GKS Version 3. 16

Five types of logical input device were provided, corresponding to fIve classes of input
values. The classes are essentially those of Foley et al., but with some name changes:

• LOCATOR: providing a position in user coordinates. (Version 3 user coordinates
were roughly equivalent to world coordinates in the International Standard.)

• VALUATOR: providing a real number, restricted to the range [0,1].

• CHOICE: providing integer numbers specifying alternatives.

• PICK: providing names of segments (which identifIed one or more displayed
output primitives).

• TEXT: providing a character string.

71

Input devices were associated with workstations and different workstations could
provide devices of different classes. Input could only be obtained from the active
workstation and in GKS Version 3, only one workstation could be active at a time.
Only one input mode was provided, REQUEST mode. The application could request
input from a specified device; the application was then suspended until the operator
delivered the input.

One input function was provided per class of input devices, for example
REQUEST SET OF LOCATORS, and as the name implies, all the functions returned a
series of input values; rather than a single input value.

No control was provided over prompting and echoing. Low level prompting and
echoing were regarded as device and implementation dependent facilities and high level
prompting and echoing were regarded as the responsibility of the application program.
Thus although applications would be portable between implementations providing the
appropriate combination of logical input devices, the application had no way to tailor
the characteristics of the logical input devices in a particular implementation to best
advantage.

2.3 GSPC Core

At the same time as the GKS proposal was being developed by the German standards
making body, DIN, a proposal for a 3D graphics standard, called Core, was being
developed by the Graphic Standards Planning Committee in the USA. Eventually both
documents were considered by the ISO working group on computer graphics and the
decision was taken to process GKS as an International Standard in the first instance.
The work on Core was far from wasted and has significantly influenced the
development of 3D graphics standards within ISO. The influence of Core and events
leading to the progression of GKS as an International Standard are discussed in some
detail in Arnold and Duce. 1 It is interesting to look at the input facilities provided in
Core as these influenced the later development of the GKS input model and in some
areas go further than GKS in terms of functionality provided.

The Core's input facilities were based on logical input devices. Six classes were
provided, which were divided into two disjoint sets; those which could only cause
events and those which could only be sampled. Four of the six were event devices:

• PICK: identifies a primitive within a segment by a two-level naming structure
consisting of a segment name and pick identifier

• KEYBOARD: provides a character string

• BUTfON: provides a choice between alternatives

• STROKE: provides a series of positions (in normalized device coordinates).

The remaining two classes were sampled devices:

• LOCATOR: provides a position (in normalized device coordinates)

• VALUATOR: provides a scalar value within an application defined range.

Event devices could be used by the operator to asynchronously input values to the
application. Whenever an event device caused an event, an event report was added to a
single first in! first out event queue. The application program could remove events
from the event queue.

READ functions were provided to obtain input from sampled devices. These
functions returned the current value of the device to the application program
immediately.

It was possible to associate sampled devices with event devices, under application

72

program control. When an event occurred, the values of the associated sampled devices
were put into the event report along with the value for the event device. Associations
could be many to many, so that, for example, one particular sample device could be
associated with several event devices.

Functions were provided to initialize and enable individual devices and sets of
devices within a specified device class. Limited control over the form of prompting and
echoing for a device was provided to the application. A small number of predefined
types of prompting and echoing were defined, and the application could select an
appropriate one.

Core also provided synchronous (like OKS REQUEST) input. The functionality
here is interesting, being based on compound input types constructed from the event
devices and predefined combinations of associated sampled devices. The functions
provided were:

AWAIT-PICK
A WAIT-KEYBOARD
AWAIT-ANY-BUTTON
AWAIT-STROKE-2
A WAIT-STROKE-3
AWAIT-ANY -BUTTON-OET-LOCATOR-2
AW AIT-ANY-BUTTON-OET-LOCATOR-3
AWAIT-ANY-BUTTON-OET-VALUATOR

The application was not able to construct more complex input types.

2.4 GKS (1985)

The detailed development of the OKS input model from Version 3 to the International
Standard is documented in Arnold and Ducel and Rosenthal et al.13 The major
innovation during the development arose from the realization that there was no clear,
consistent, underlying input model in the standard. This realization stemmed from the
major criticisms of the input facilities in Version 6.6 of OKS:l

(1) the exact datatypes to be returned by the different device classes;

(2) the different levels of detail at which different kinds of input behaviour were
specified;

(3) the lack of uniformity among the different logical device classes as to the details
of their behaviour;

(4) the lack of a clear distinction between the concepts of:

Simulating a logical device using particular types of hardware;

Prompting an operator for input;

Echoing an operator's actions;

Acknowledging an operator's generation of events;

(5) the difficulty of relating any of these 'output' concepts to logical input devices.

The Abingdon meeting of the ISO working group responsible for OKS in October
1981 produced the input model contained in OKS in more or less its final form. The
model is described in detail in the next section, but the essential features are:

(1) Logical input devices can be divided into classes according to the types of values
they return. Six classes are standardized in OKS.

(2) Any logical input device can operate in any of three standardized operating modes:

73

REQUEST, SAMPLE and EVENT. These differ in respect of which party
(operator or application program) has the initiative for input.

(3) The application program is given control over the initial value of a device, the
prompting and echoing technique to be employed and the region of the display
(echo area) in which echoing is to be presented.

(4) In EVENT mode, simultaneous event reports may be generated by a single
operator action (this is a form of association analogous to that in Core).

There is an important distinction between the generality of the OKS input model
and the restricted form in which it is presented through the functionality of GKS. There
is, for example, nothing in the model to preclude the application having control over
which combinations of devices should generate simultaneous events, however the OKS
functionality does not support this. Similarly there is no reason in the model why the
application should not be able to derme its own prompting and echoing types, however
OKS only allows applications to choose between predefined prompt and echo types.
There are many areas in OKS where good implementations can provide rich and
flexible control over input, but the standard does not mandate such facilities. This
reliance upon implementation dependencies detracts rather from the elegance of the
underlying model. This point has been addressed by an ISO study group on an
Improved Input ModellO and is being further addressed by the Revision of the OKS
Standard which is now underway.2

3 The GKS input model

The GKS input model is described in the International Standard in terms of six
processes:

(1) measure;

(2) trigger;

(3) prompt;

(4) echo;

(5) acknowledgement;

(6) control.

The measure of a logical input device determines the type and value of the data
returned by the logical input device to the application program. The measure process
maps the input values from the physical input devices which realize the logical input
device, onto the values of the data type to be returned to the application. This mapping
is called the measure mapping, and the measure process maintains the current measure
value of the logical input device as the operat~r manipulates the physical input devices.

The trigger detennines when a measure value is returned to the application
program. It is only used in some of the supported input styles. "

Prompt is used to indicate to the operator when the device is available for input.
The echo process gives feedback to the operator of the current measure value, and the
acknowledgement process indicates to the operator that a trigger has fired and a
measure value has been passed to the application program. The control process controls
the overall operation of the device.

OKS provides three operating modes for logical input devices:

(1) REQUEST. The application program requests an input value from a specified
logical input device. The application program is suspended until the input value is
delivered. Whilst the application program is suspended, the operator can

74

manipulate the physical input device to set the desired value of the device's
measure. The device's trigger is flred to indicate when the desired value has been
set.

(2) SAMPLE. When a device is operating in SAMPLE mode, the current measure
value is returned whenever requested by the application program. No triggering is
involved and the application program will continue immediately.

(3) EVENT. When a device is operating in EVENT mode, an event report consisting
of the current measure value of the device and data identifying the device, are
added to a single centralized event queue, each time the trigger for the device is
activated. More than one device may be in EVENT mode at a time, and the event
reports from each of the devices are collected in the queue. The application
program can interrogate the queue to retrieve the events. It is possible for more
than one input device to be coupled to the same trigger so that multiple event
reports can be generated from a single trigger event.

Duce, ten Hagen and van Liere4 have given a formal description of the GKS input
model, using Hoare's CSP notation. Other authors have also presented formal
descriptions of the input model using different notations.6, 12,14 In this section the CSP
description is briefly presented. For fuller details refer to the original paper.4

CSP aims to describe the behaviour patterns of objects with each other and their
environment. The flrst step in a CSP description is to decide what kinds of event or
action will be of interest, and to give a name to each kind. Each event name describes a
class of events, rather than a single occurrence of an event There may be many
occurrences of events in a class, separated in time. The set of names of events which
are used to describe a panicular object are called its alphabet. The choice of alphabet
for an object focuses attention on the properties and actions of the object that are
important and deliberately ignores events of lesser interest. CSP regards occurrences of
events as instantaneous or atomic actions without duration. The exact timing of events
is also ignored in CSP; where timing considerations are important, these are to be
treated separately from the logical correcmess of the design. When simultaneity of a
pair of events is important (as, for example, in synchronization), it is represented as a
single event occurrence; when it is not, potentially simultaneous events are allowed to
be recorded in either order. The behaviour pattern of an object is termed a process.

In the description presented below, prompting and acknowledgement are
deliberately ignored and no corresponding events are included in the speciflcation.

Logical input devices are described in terms of an operator process, OP, a measure
process, M, a trigger process, T, an echo process E and a control process UD. EVENT
mode input requires an additional storage process, S. The communication structure
between each of the processes for each of the operating modes is shown in Figure 1.
The lines joining processes are labelled by the event name or channel name by which
they communicate.

The REQUEST mode processes will be described in some detail.

Operator process, OP
In REQUEST mode, the operator can either input new physical input values from

the possible set of values (denoted by the set P) or can flre the trigger (denoted by the
event name trigger). The CSP description of the process is:

OP = (TI m!p ~ OP) II (trigger ~ STOP uoP)
p:P

The notation:

75

RTIS

denotes a process which behaves like R or like S. The choice between the possible
behaviours is non-detenninistic. The factors that would lead to one choice or the other
are not modelled by the description. For the operator process, we do not model the
factors that would lead to the operator to either set a new physical input value or fire the
trigger. Hence the operator is modelled as a non-deterministic choice between these
two alternative behaviours.

REQUEST SAMPLE

o

sample

OP

EVENT

trigger

Figure 1: Process Model

The notation:

76

(nm!p~OP)
p:P

denotes a process which non-deterministically chooses one of the possible values of
type P and then outputs this value on the channel m (m!p). The process then (~)
behaves like the process OP. Thus the process has a recursive definition. Having
selected an input value, the operator then has the choice of selecting another input value
or firing the trigger.

The notation:

(trigger ~ STOP aOp)

denotes a process which engages in the event trigger and then engages in no further
events in its alphabet (STOP aOp). The alphabet of a process R, aR, is just the set of
possible events in which the process can engage. This part of the definition of the
process OP says that after the operator has fired the trigger, no further interactions with
the device can take place.

Measure process, M
When the operator supplies a new physical input value, the state of the measure

process is updated to contain the new measure value, obtained by applying the measure
mapping (denoted by the function j) to the physical input value. The measure process
recording the current measure value, v, is denoted by Mv' The new measure value is
communicated to the echo process over channel e. When the trigger fires, the current
measure value is communicated to the control process over channel si and the process
engages in no further activity. The process description is:

Mv:v = (m?p ~ e!f(p) ~ Mf(P» 1

(trigger ~ si!v ~ STOP aM)

The choice between the two possible behaviours is a deterministic choice (denoted by
the operator I) and is determined by which of the events m?p and trigger is presented to
the process first by its environment.

Trigger process, T
When the trigger fires, this process engages in no further activity.

T = (trigger ~ STOP aT)

Echo process, E
This process echoes the values communicated on channel e. The form of the echo

is not described. The state of the echo process records the value echoed.

Ev = (e?vl ~ Ev,)

The notation e?vl denotes an event corresponding to the receipt of the value VI from
channel e.

The interaction between the echo and the display system is not described in this
specification. The description of the echo process could be refined to incorporate such
a description.

77

Control process, liD
The application program requests a value from the input device, denoted by the

event read. The process then waits for a logical input value to be communicated on the
channel si. This value is communicated to the application on channel o. The process
then engages in no further actions.

liD = (read ~ si?v ~ o!v ~ STOP oLID)

The overall behaviour of a logical input device in REQUEST mode is described by the
parallel composition of the processes defined:

OP 11M IITIIE II liD

The concurrent composition of processes R and S

RIIS

describes the way in which the two processes evolve and interact with each other.
Events which are in both the alphabets of R and S require their simultaneous
participation. Events in the alphabet of R and not S are of no concern to S and can
occur independently of S whenever R can engage in them. Similarly events in the
alphabet of S and not of R can occur independently of R.

Table 1 summarizes the alphabets of the processes defined.

Process Alphabet
OP m.p trigger
M m.p e.v trigger si.v
T trigger
E e.v
liD read si.v o.v

Table 1: Process Alphabets

It will be seen that the channel event m.p requires the simultaneous participation of
OP and M. Communication of the new logical input value to the echo process requires
participation of M and E, transmission of a logical input value to the control process
(si.v) requires participation of M and liD, and this can only occur after the trigger has
fired (requiring simultaneous participation of OP, M and T).

The process descriptions for SAMPLE and EVENT mode are given in Table 2.
For comparison, the REQUEST mode descriptions are included also.

REQUEST SAMPLE EVEtvr

OP (11m!p~OP) (11 m!p~OP) (11m!p~OP)
p'/' p:P p'P
n (trigger ~ STOP aOp) n (trigger ~ OP)

My (m?p ~ e!f(p) ~Mf(P» (m?p ~ e!f(p) ~ Mf(p» (m?p ~ e!f(p) ~ Mf(p»
I (trigger ~ si!v ~STOP aM) I (sample ~ si!v ~ My) I (trigger ~ si!v ~ My)

T (trigger ~ STOP aT) (trigger ~ T)

E (e?v, ~ E.,,) (e?w ~ E.,) (e?v, ~ E.,,)

liD (read ~ si?v ~ o!v ~ STOP aLlo) (sample ~ si?v ~ olv ~ liD) (trigger ~ si?v ~ solv ~ liD)

Table 2: Process Descriptions

For EVENT mode input, there is an additional process, S, which describes the
operation of the event queue. The event, await-event, denotes the invocation of the
AWAIT EVENT function by the application program. This function returns the first
event in the queue, if the queue is not empty. If the queue is empty, the process is

78

suspended until either an event arrives, or the timeout expires in which case the special
input value NONE is returned to the application program. The process description is:

= (await_event ~ o!s ~ Sq) I (trigger ~ SO?Sl ~ S <Sl>q <s»

= (await_event ~ « time_out ~ o!NONE ~ S <>)
I (trigger ~ so?v ~ o!v ~ S <> »)
I (trigger ~ so?v ~ S <v»

The notation <> denotes the empty queue, q<s> denotes a queue whose first element is
s, and <sI>q<s> denotes a queue with fIrst element s and last element Sl.

In OKS, events are actually retrieved by a two stage process, in the first. the event
at the front of the queue is moved to a current event report and the identification of the
device which generated the event is returned by AWAIT-EVENT. In the second stage,
the application can retrieve the logical input value from the current event report. This
complexity is not an essential feature of the input model, rather it is a reflection of the
constraints likely to be imposed by bindings of the OKS functionality to certain
programming languages (for example, Fortran). Hence this complexity is not modelled
here and in this specification the event report is returned directly by A WAIT EVENT.

The CSP description throws some interesting lights on the OKS input model. It
will be noticed that the type of the logical input value returned is essentially a free
variable in the specification: none of the process descriptions are dependent, in the
sense that their behaviours change, upon the type of values to be returned. Thus other
device types could easily be introduced, the behaviour model is not restricted to the six
types defined in OKS. Steps are being taken in this direction in the OKS Revision
activity which is introducing a composite device class. Measure values of devices of
this class are tuples constructed from the six primitive classes and the construction is
under the control of the application program.

Examination of the process descriptions reveals many similarities between the
operating modes. REQUEST mode allows a single interaction with the device, whilst
the other two modes allow an (infInite) sequence of interactions. We have not
described here the mode-changing operation which terminates an interaction with
devices in SAMPLE and EVENT modes. The choices available to the operator in
REQUEST and EVENT modes are identical apart from the fact that multiple
interactions are possible in EVENT, but not REQUEST mode.

Examination of the measure process behaviour shows that the invocation of the
SAMPLE function by the application program (which corresponds to the event sample)
has the same effect as the operator supplied trigger event, in returning a logical input
value to the application program.

Shortcomings of the OKS realization of the input model have been identified,
including lack of application control over the composition of devices, the form of
prompt/echo/acknowledgement, and inability to couple input and output, for example
by linking input devices directly to control the values of output transformations. These
limitations are limitations in the functionality which realizes the input model in OKS.
They are not intrinsic limitations of the model itself.

4 Extension to hierarchical input devices

The ideas developed in this section originated from a discussion group at the
Eurographics OKS Review Workshop18 in September 1987, which addressed the role
of logical input devices in interactive applications. The model shown in Figure 2
emerged. The idea is that interaction techniques would use some form of composite
devices, built up from logical input devices, which in turn are constructed from

79

measures and triggers which map onto physical devices. Each level in the structure can
have associated prompts, echos and acknowledgements, realized using the facilities
provided by the graphical output part of the graphics system.

The paper by Duce, van Liere and ten HagenS shows how hierarchical input
devices can be described using the process descriptions already given for the basic
logical input device model. An example from that paper is shown in Fi~ure 3.

Interaction Techniques

/~
Composite Device Composite Device

-----I·················· -----
Logical Device Logical Device

/ \
Measures Triggers

Physical Devices

Figure 2

The operator can manipulate the measure and trigger processes of the device at level 1
and the trigger process at level 2. The measure process at level 2 is manipulated by the
level 1 device.

This style of description also turns out to be a useful way of describing some of the
device classes present in OKS. The OKS STROKE device which returns a sequence of
positions in world coordinates, can be modelled as a 2-level device, the fIrst of which
provides individual positions and the second assembles individual positions into a
STROKE measure. The process structure of the device is illustrated in Figure 4. In
OKS, the measure of the STROKE device consists of a sequence of positions in world
coordinates and the number of the normalization transformation used to convert the
corresponding normalized device coordinate (NOC) positions to world coordinates
(WC). All the positions have to lie within the viewport of the same normalization
transformation, so in fact the device is not quite as simple as a sequence of LOCATOR
measures. However, this complication will not be pursued here; the struct\l.rC will
behave exactly as required if the LOCATOR measure process delivers values in NDC
and the STROKE measure process converts the whole STROKE to WC.

The process descriptions are given below. The STROKE device is operating in
EVENT mode; the description of the storage process, S, is as given previously.

80

LID

/~
E M T Level 2

LID

/~
E M T Levell

OP

Figure 3: Example Hierarchical Input Device

OP = (n om!m ~ OP) n (loctrigger ~ OP) n (stroketrigger ~ OP)
m:M

MWCp = (om?m ~ el!plm (m) ~ MLOCplm(m» I (loctrigger ~ ml!p ~ MLOCp)
EWCp = (el?pl ~ ELOCp')
TLOC = (loctrigger ~ TLOC)
LOCATOR = (loctrigger ~ ml?p ~ Im!p ~ LOCATOR)
MSTROKEs = (lm?p ~ es!sm(s,p) ~ MSTROKEsm(s,p»

I (stroketrigger ~ ms!s ~ MSTROKE <»
ESTROKEs = (es?sl ~ ESTROKEs,)
TSTROKE = (stroketrigger ~ TSTROKE)
STROKE = (stroketrigger ~ ms?s ~ sols ~ STROKE)

The types of the variables p and s are NDCPOINT and STROKE respectively.
The function plm is the measure mapping from raw physical input data (type M) to
NDCPOINT, and sm is the measure mapping:

81

Figure 4: GKS STROKE Device

sm : STROKE x NDCPOINT ~ STROKE

which takes an existing STROKE, and a new NDCPOINT and delivers the new
STROKE. The symbol <> denotes the empty STROKE.

The operator uses the LOCATOR trigger to complete the definition of individual
points within a STROKE, and the STROKE trigger to complete the definition of the
entire stroke. The echo processes, ELOC and ESTROKE allow the point currently
being defined and the current stroke measure to be echoed differently to the operator.

The next example is also taken from GKS, the PICK logical input device. The
PICK device can be modelled quite satisfactorily using the GKS input model in its
simple form, with a single measure process taking inputs from the physical device by
which the PICK device is realized, and mapping these to a PICK measure. A PICK
measure consists of a segment name and PICK identifier, which together identify the
output primitive picked. A value NOPICK can also be delivered to indicate that no
primitive has been picked. In the case where a PICK device is realized by a device
providing positional input, it is instructive to look at a deeper decomposition of the
PICK device. The device delivers physical input values which are transformed to
coordinate positions. A coordinate position is matched against the output primitives in
the displayed picture to determine the primitive closest to the position. The segment
name and PICK identifier of this primitive are then returned to the application program
as the measure of the PICK device. The process structure corresponding to this
decomposition is shown in Figure 5.

The LOCATOR process delivers positional values to the PICK measure process
(MPICK) where they are matched agains the current picture and corresponding PICK
logical input values are delivered on channel so. In this description, the PICK logical
input device is operating in EVENT mode. The LOCATOR device is sampled by the
PICK measure process. This shows how devices in different operating modes can be
composed. The process descriptions are given below.

82

Figure 5: PICK Logical Input Device

OP = (II om!m ~ OP) II (pictrigger ~ OP)
m:M

MWCp = (om?m ~ el!plm (m) ~ MLOCplm(m»)
I (sampleloc ~ ml!p ~ MLOCp)

EWCp = (el?p' ~ ELOCp,)
LOCATOR = (sampleloc ~ ml?p ~ Ip!p ~ LOCATOR)
MPICKv = (lp?p ~ ep!pm (P) ~ MPICKpm(p»)

I (pictrigger ~ mp!v ~ MPICKlI)

EPICKv = (ep?v, ~ EPICKlI ,)

TPICK = (pictrigger ~ TPICK)
PICK = (pictrigger ~ mp?v ~ so!v ~ PICK)

The function plm returns the position corresponding to the raw input value m and
pm returns the PICK measure corresponding to the point p. The description includes
two echo processes. ELOC echoes the position of the LOCATOR device, and might
take the fonn of a cursor which moves across the display space as the physical input
device is moved by the operator. EPICK echoes the PICK logical input value. This
might take the fonn of highlighting the primitive currently picked. Separation of the
MWC and MPICK processes also helps to focus attention on precisely where in the

. output pipeline of the graphics system picking is taking place; for example does picking
take place before or after rendering? GKS itself is vague as to where picking takes
place. Separation does not answer the question, but does at least cause it to be asked!

The decomposition of logical input devices into operations at different levels of
abstraction, fits in nicely with the description of input contained in the Computer
Graphics Reference Model, an International Standard. currently at the stage of Draft.21

The paper by Duce et al. 5 contains other examples of hierarchical input devices.

83

5 Conclusions

The logical input device concept provides a separation between the types of input
values with which an application program operates and the physical devices from which
such values originate. In this respect, the concept is an extremely valuable aid to
writing application programs which are independent of the characteristics of the
particular hardware devices used to generate the input values. The main difficulty with
this concept stems from the diverse range of input hardware available and the fact that
whilst a program may be movable from one set of devices to another, it is possible for
one set to provide an extremely good user interface, whilst the second provides a totally
unusable interface.

One approach to this problem is to provide the application program far more
control over the composition of input devices and attributes such as prompt, echo and
acknowledgement type than is done in the current graphics standards. The GKS
Revision activity is exploring some aspects, mainly compositional aspects, of this.

The hierarchical input devices idea can help in this regard by raising the level of
abstraction of the input values used by the application above the basic classes provided
in GKS. If the application wants, say, a position and choice as an atomic value, this can
be achieved by an appropriate hierarchical device. The application is then freed of the
responsibility of constructing the value from its basic components. This ability coupled
with the ability of applications to control which physical devices are used to realize the
hierarchical device, gives a greater degree of independence between the application
structure and device control. There is then much greater opportunity for moving the
application program to a different device environment, without having to change the
program structure. The work of moving the application is relegated to configuring the
available physical devices in the new environment in an appropriate way.

References

1. D.B. Arnold and D.A. Duce, ISO Standards for Computer Graphics - The First
Generation, Butterworths (1990).

2. K.W. Brodlie, D.A. Duce, and F.R.A. Hopgood, "The New Graphical Kernel
System," Computer-Aided Design (1991).

3. I. Cotton, "Network Graphic Attention Handling," Online 72 International
Conference, pp. 465-490, BruneI University, Uxbridge, England (1972).

4. D.A. Duce, P.J.W. ten Hagen, and R. van Liere, "Components, Frameworks and
GKS Input," in Proceedings of Eurographics '89, ed. W. Hansmann, F.R.A.
Hopgood and W. Strasser, North-Holland (1989).

5. D.A. Duce, R. van Liere, and P.J.W. ten Hagen, "An Approach to Hierarchical
Input Devices," Computer Graphics Forum 9(1), pp. 15-26 (1990).

6. G. Faconti and F. Paterno', "Specification and Verification of Graphical I/O
Objects through the Temporal Logic Formalism," CNR-Istituto CNUCE, Pisa,
Italy (1991).

7. J.D. J:oley and V.L. Wallace, "The An of Natural Graphic Man-Machine
Conversation," Proceedings IEEE 62(4), pp. 462-470 (April 1974).

8. C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall International,
London (1985).

9. F. R. A. Hopgood, D. A. Duce, J. R. Gallop, and D. C. Sutcliffe, Introduction to
the Graphical Kernel System (GKS), Academic Press (1986). (Second Edition)

84

10. ISO, "Report of the Improved Graphical Input Model Special Rapporteur
Group," ISO SC24 WGI N342, ISO Central Secretariat (1989).

11. W.M. Newman, "A System for Interactive Graphical Programming," SJCC 1968,
pp. 47-54, Thomson Books, Washington D.C. (1968).

12. J.B. Purvis, "The use of LOTOS for the Specification of Graphics Software,"
B.Sc. Thesis, Department of Computer Science, BruneI University, UK (June
1990).

13. D.S.H. Rosenthal, J.C. Michener, G. Pfaff, R. Kessener, and M. Sabin, "The
Detailed Semantics of Graphics Input Devices," Computer Graphics 16(3), pp.
33-38 (July 1982).

14. D. Soede, F. Arbab, I. Herman, and P.J.W. ten Hagen, "The GKS Input Model
in Manifold," CWI, Amsterdam, the Netherlands (1991).

15. V.L. Wallace, "Tbe Semantics of Graphic Input Devices," Computer Graphics
10(1), pp. 61-65 (April 1976).

16. "Graphical Kernel System (GKS) Functional Description, Version 3," DPS
13/WG5/25 (December 1978).

17. "Information processing systems - Computer graphics - Graphical Kernel Sys­
tem (GKS) functional description," ISO 7942, ISO Central Secretariat (August
1985).

18. "GKS Review Workshop," Computer Graphics Forum 6(4), pp. 367-369 (1987).

19. "Information processing systems - Computer graphics - Graphical Kernel Sys­
tem (GKS) for three dimensions (GKS-3D) functional description," ISO/IEC
8805 (1988).

20. "Information processing systems - Computer graphics - Programmer's Hierar­
chical Interactive Graphics System functional description," ISOIEEC 9592: 1
(1989).

21. "Information processing systems - Computer graphics - Computer Graphics
Reference Model," ISO/IEC DIS 11 072, ISO Central Secretariat Geneva
(1991).

22. "Information processing systems - Computer graphics - Interface techniques
for dialogues with graphical devices," IS 9636, ISO Central Secretariat (1991).
In press.

A Generalised Event Mechanism for
Interactive Systems

Peter Rosner
Mel Slater

Allan Davisonl

Department of Computer Science

Queen Mary and Westfield College, London

Abstract

A new generalised mechanism is described for event distribution in system

architectures involving multiple threads and a hierarchy of graphical or non­

graphical elements. Comparison is made with the mechanisms provided in

existing windowing systems and examples are given of how the new

mechanism would be used in the construction of various applications.

1 Introduction

In this paper we examine the event distribution mechanisms provided by existing

windowing systems and present a more generalised mechanism that provides better

support for distributed architectures in interactive systems. After presenting the

mechanism, we illustrate it with the example of an office document system. We also

indicate how the mechanism could be used to construct windowing systems

themselves.

The work arises from the graphics research activity being carried out at Queen Mary

and Westfield. College London (QMW) under the ESPRIT II funded SPIRIT

Workstation project.

The objective of the SPIRIT project is to design and build a high performance

workstation that can perform a range of computationally demanding activities. It

1 Allan Davison is now at Canon Research Centre Euro~. Guildford

86

includes hardware and software to support advanced systems in such fields as

knowledge engineering, modelling and simulation, computer-aided engineering, image

processing and high performance interactive 2D and 3D graphics. Included in the

SPIRIT architecture is a graphics subsystem which carries out rendering, graphical

object management, and user-input; it is configurable for a range of SPIRIT (and

indeed other) hardware platforms. At QMW we have designed a device-independent

software layer, the GraphiCS Interface Layer (GIL) for graphical output [1] and event

management to enable such device-configurability. The GIL also acts as a platform on

which a variety of graphics and windowing standards, and interactive applications can

be built.

Just like all other GIL facilities, the generalised event mechanism, the GEM, is

configured and activated by the application via a set of function calls. It has been

designed to take advantage of SPIRIT's multi-process and multi-thread architecture,

although it is equally useful within a single-thread framework.

The GEM is based on event distribution through a tree hierarchy of nodes. These nodes

can be associated with concurrent processes enabling event broadcasting amongst them.

This type of architecture with a broadcasting facility is seen as increasingly appropriate

for modern multi-processor and distributed systems [2], [3]. The GEM also provides

extensive control by the application over the distribution space within the hierarchy,

which makes it particularly suitable for use in interactive systems. Application entities

such as windows in a windowing systemor folders/documents in an office system can

be modelled as nodes, and logical containment relationships are represented by parent­

child relationships within the hierarchy ..

In applications built using currently available windowing systems, it is hard to separate

graphical hierarchy from logical hierarchy for the purposes of event distribution, and a

node must correspond to a window. By contrast the GEM enables a separation of these

hierarchies. In the office system example presented in this paper, the logical sub­

hierarchy has nodes representing folders and documents. Represented separately is the

graphical sub-hierarchy for rendering and hit detection. Not only can the logical

hierarchy of application objects be expressed using the GEM, but also nodes can be

inserted into a hierarchy that have no connection at all to an application object. For

example a node for monitoring user-events can be inserted at any point in the hierarchy.

The GEM also offers a richer set of facilities to enable an application to distribute

synthetic events through the node hierarchy than that provided by current windowing

systems, and allows the application to control the set of nodes to which an event is

sent. In fact, the mechanism can be used to construct windowing systems themselves.

87

As we shall see in the examples, the facility of broadcasting an event to all nodes in a

particular sub-hierarchy proves to be useful for operations such as rendering a graphical

hierarchy, hit detection, and setting attributes. Such control over the set of nodes to

which an event is distributed can prevent potential name clashes and inefficiencies

inherent in 'flat' distribution strategies of systems such as Linda [4] or NeWS [5], [7].

2 The event models of windowing systems

The event models of windowing systems such as XII [6], [7] and NeWS [5], [7],

now both included within Sun's Open Windows [7], provide mechanisms rather than

policy for event distribution, but these mechanisms were designed to work in the

context of a graphical output hierarchy. In practice this means that event distribution is

tied to the ordering of rendering and hit-detection.

Applications are structured in 2.5D windows that act as both drawing surfaces and

event-sensitive regions. The set of windows forms a hierarchical tree structure with a

child occupying a space completely inside its parent. Children can overlap and the

stacking order is application-settable. Typically a user event (such as a mouse action)

follows a path, until it is consumed by a window, from the frontmost window in which

it has occurred through its ancestors to the root window which represents the frame

buffer.

Client processes or threads can express interest in a window by providing it with an

event template (or interest) against which matching is to be performed. If the event

matches a template, it is passed to the process or thread which then acts upon it when it

is ready.

Both XII and NeWS provide facilities whereby an event can be intercepted by a

window before it passes through the normal leaf-to-root distribution path. The

technique used is to assign special types of interests to windows. Before carrying out

the leaf-to-root distribution of the event, the system carries out a root-to-Ieaf inspection

of these special types of interest. In XII these are passive grabs which, if satisfied,

cause subsequent events to be directed to the client owning the grabbing window. In

NeWS the special types of interest are items in a pre-interest list for a window.

Both XII and NeWS also allow application-generated events. NeWS allows new event

types to be defined by the application; threads can express interests in such event types

and thus event broadcasting can be carried out.

88

In the development of applications with certain types of user-interface and application

architectures, only high level toolkit components for window management, dialogue

management, option selection and data entry need be used. For such architectures the

limited event models provided by current windowing systems present no real problem.

However as we have indicated for more complex interactive applications, windowing

systems can impose a restrictive iden~tity between logical hierarchy on the one hand, and

graphical rendering/hit detection on the other. They do not support a full enough range

of event distribution strategies within the hierarchy.

Nor do they provide facilities for event broadcasting within a limited sub-hierarchy.

NeWS does support broadcasting, but the event distribution space is flat, with no

means of specifying a subset of threads to which an event is to be broadcast. So event

broadcasting is unnecessarily inefficient, and unique names must be used for event

types.

3 Outline of the GEM

In the GEM we introduce the event-node (or node), a more abstract concept than

'window' or 'graphical object'. Event-nodes are structured hierarchically in the form of

a tree for purposes of event distribution. An event is distributed via a GEM function call

to a specified part of the hierarchy, the distribution path being determined by the type of

function and its parameters. The various types of distribution are:

broadcast-top-down : to all event-nodes in a subtree below a specified event-node,

in a top-down order, used for example in rendering a graphical hierarchy of objects

• broadcast-bottom-up: to all event-nodes in a subtree below a specified event-node,

in bottom-up order, used for example in hit-detection in a graphical hierarchy of

objects

• immediate-children, immediate-children-backwards: to the immediate children of

an event-node, used for example in enabling the contents of a folder in an office

system to be displayed

path-up, path-up-with-propagation-test: to event-nodes in leaf-to-root order, used

for example in a windowing system to implement the passage of an event from the

'hit' window back to the frame buffer

89

path-down: to event-nodes in root-to-leaf order, used for example in a windowing

system to implement the initial passage of an event from from the root window to

the 'hit' window

• single-cast: to a single event-node, used for example to add text to a particular

document in an office system

In addition to specifying the type of distribution it is possible to 'block' or 'unblock'

paths between parent and children. This can further limit the distribution space.

An event-node has an associated set of interests. As in windowing systems, an interest

contains a template against which the event is matched. Each interest can be associated

with

• a queue, on which matching events are placed and picked up later by a thread or

process

or

• an interest-behaviour. The term behaviour denotes a reference to a callback

procedure that is executed immediately the interest is matched.

If an event reaches an interest in its distribution path and the event matches that interest,

it can be placed on the queue (in which case it is processed later by the thread or

process) or else the interest-behaviour can be executed immediately.

Apart from event distribution, the application can invoke the following:

the creation/deletion of an event node

• the creation/deletion of a queue

the creation/deletion of an interest and its association, in a node, with a queue or

behaviour

the positioning of an event-node within the hierarchy

the blocking/unblocking of links between parent and child nodes. A block between

a child and parent limits the distribution space for top-down and bottom-up types

of broadcasting within the hierarchy

90

While the GEM has been designed to operate in SPIRIT's mUlti-process and multi­

thread environment, it can equally operate in a single threaded system, where callback

procedures are executed in response to matched events.

4 Detailed Description of the GEM

4.1 Nodes and interests

Figure 1 shows a sample set of nodes. Components of a node are shown in detail -

each node has contents and links to a set of child nodes.

Node contents include

• the blocked flag which can limit the distribution space for the node and its

descendants (to be described in more detail in the next section)

• the interest-list

• the noPropagateOnMatch indicator

the noPropagateOnFailMatch indicator. These last two indicators control the

propagation of events for the path-up type of distribution.

Before describing how an event is distributed amongst the nodes, we will describe the

interest-list for a node and how matching is performed once an event reaches the node

in its distribution path.

Each interest in the interest-list has

• afield-list of event-fields giving a description of how events are to be matched.

• an exclusive flag which specifies whether or not a matching event is to be

consumed

• an interest-behaviour which is a reference to a callback procedure, or else is null

• a queue which is where matching events are to be placed, or else is null

• a pathDownFlag which determines whether matching against the interest is

attempted for different types of event distribution. If the flag is set to true,

matching against the interest is attempted for the path-down type of event

distribution only; if it is set to false, matching is attempted for all other types of

distribution

91

a priority which detennines the order of matching attempts in relation to those other

interests, within the node, that have the same setting of pathDownFlag.

interest expanded

I field-type

I field-contents

event-field

field-list

I exclusive flag

Ipnonty

I pathDown flag

I interest-behaviour

I queue

'. node expanded
\

" blocked flag '. t... _________ .J

\
\ ,

, , , , , ,

, , ,

\\~
interest

" interest list ,

, , , , , , , , , ,

I noPropagateOnMatch
indicator I

I noPropagateOnFailMatch I
indicator

~
L:J
links to child nodes

,
I ,

...... --.;---..;'

Fig 1 Expanded View of Node Structure

92

An event-field contains

afield-type

• field-contents

An event contains

• a field-list, as in an interest

• (optionally) some data to be used by the application.

If a node is reached in the distribution path of an event, then the event is tested against

interests associated with the node. For the path-down type of distribution, this set

includes interests whose pathDownF lag is set to true. For all other distribution types

the set includes interests whose pathDownFlag is set to false. The testing against

interests proceeds until the subset of interests is exhausted, or else a match is

encountered with an interest whose exclusive flag is set to true.

An event-field in an interest is tested against an event-field with the same field-type, if

one exists, in the event. If no event-field of the same field-type exists in the event then

matching fails. (For example if the interest contains the event-field of type 'mouse­

activity', but no event-field of the 'mouse activity' type exists in the event, then

matching against the interest will fail). Where field types match in the event and the

interest match, further matching of the event-fields takes place as follows.

Where the field-contents of the event-field in the interest has a special wildcard value. it

always successfully matches the event-field in the event. (For example, if a 'mouse­

activity' type of event-field in an interest has field-contents with the wildcard value,

then it 'fill successfully match a 'mouse-activity' type of event-field in an event,

irrespective of the latter's field-contents). Otherwise matching is performed by

executing a matching-behaviour, specific to the field-type. The matching-behaviour is a

boolean function that takes as parameters the field-contents of the two event-fields - the

one in the interest and the one in the event. A table of field-types, with corresponding

matching-behaviours, is maintained. Thus, for example, for the case of field-type

'graphical region', the field-contents of the event-field for the interest would give a

reference to a graphical region, the field-contents of the event-field for the event would

give a reference to a point, and the behaviour for the field-type would be 'is point in

region?'.

93

An event matches an interest if there is a successful match for all event-fields in the

interest. If this is the case and the interest-behaviour is null, the event gets placed on the

queue given in the interest. If an interest matches the event, and the interest-behaviour

is non-null, then the behaviour is executed (the queue part of the interest being

ignored). If parameters denoting both interest-behaviour and queue are null, neither a

behaviour is execut~ nor is an event placed on a queue, even though the interest and

event may match.

The node's noPropagateOnMatch indicator and noPropagateOnFailMatch indicator,

applicable only to the path-Up type of distribution, are both field-lists. After the

processing of the list of interests for a node, a match mayor may not have been found.

If a match has been found and if the noPropagateOnMatch field-list matches the event's

field-list, then the event is not propagated to further nodes in the path-Up distribution

path. If a match has not been found and the noPropagateOnFailMatch field-list matches

the event, propagation is similarly inhibited (this is equivalent to the doNotPropagate

mask in XII). If both of the noPropagate field lists are empty,then providing an event

has not been consumed (by a matching interest with exclusive set) within a node, then it

will always propagate to the next node in the path-up distribution sequence.

4.2 Event Distribution

We now describe the various strategies for the propagation of events. An event is

distributed via a call to one of the event distribution functions. Either the system's input

event handler or an application carries out such a call. In the former case the call is

always the broadcast-top-down type and the event is directed at the highest level node.

Depending on the interests the event encounters at a node, it may get sent on to the next

node in the distribution sequence or else distribution may terminate, in which case the

value returned is the handle of the terminating node.

Each distribution type can either be invoked normally or else with a block-override

parameter signifyin~ that all blocks are to be ignored. However, in the following

description of the possible distribution types we assume that block-override has not

been requested:

a) broadcast-top-down

The event and the root of the required distribution space are supplied as parameters to

the application call. The distribution sequence is illustrated in Figure 2 where the

application or raw event handler issues a broadcast-top-down call with parameters event

94

x and node O. The nodes in the distribution path are shown unshaded and the order of

distribution is given by the numbers in the top right hand comer of each unshaded

node. The order of distribution is (recursively) left-right and top-bottom. Potentially all

descendant nodes are in the event distribution space. However where a link to a child

has the blocked flag set, the child and its descendants are excluded from the distribution

space. Thus node 1 and below and node 32 are excluded. At each node event matching

takes place against those interests whose pathDownFlag is set to false.

broadcast-lOp-OOwn
(evenl x. node 0)

Figure 2 broadcast-top-down distribution type

broadcast -boltOm-up
(event x, node 0)

Figure 3 broadcast-bottom-up disnibution type

pa1h-down Z"
(event x , node O,node 32)

Figure 4 path-down distribution type

95

96

path-up ::z-.
(event x, node 0, node 31)

Figure 5 palh.up distribution types

b) broadcast-bottom-up

As illustrated in Figure 3, the event distribution space of broadcast-bottom-up is the

same as for broadcast-top-down. However the order of distribution is (recursively)

right-left and bottom-top, i.e. exactly the opposite order to broadcast-top-down.

c) path-down

As illustrated in Figure 4, the event and two nodes are supplied as parameters to the

path-down call. These nodes are the root node of the subtree at which the event

distribution is to start and the descendant (usually a leaf node) at which it is to stop.

However if there are blocks in the sequence, the distribution space excludes nodes

below the block closest to the subtree root. So in Figure 4 the event is distributed only

to node 0 followed by node 3. Node 32 is excluded because, despite being specified as

the descendant, its block excludes it from the sequence. At each node in the sequence,

matching of the event is only performed against interests whose pathDownFlag is set to

true.

d) path-up

Figure 5 illustrates cases d) and e). In both cases the event and two nodes representing

subtree root and descendant are again supplied as parameters. Where there are no

blocks in the sequence, event distribution starts at the descendant and proceeds

97

upwards to the subtree root. Where there are blocks, distribution starts at the node

above the block closest to the subtree root and proceeds to the subtree root. At each

node in the sequence, matching is carried out against those interests whose

pathDownFlag is set to false.

e) path-up-with-propagation-test

This is the same as case d) except that propagation to the next node in the sequence

depends upon not only on the fate of the matching at the current node, but also on tests

against the node's noPropagateOnMatch and noPropagateOnFailMatch interests

described earlier.

f) immediate-children

As illustrated in Figure 6, two parameters are supplied: the event and the handle to a

node. Distribution of the event proceeds to all immediate children, without passing to

their descendants. Where a child node is blocked, it is excluded from the distribution.

Matching takes place against interests whose pathDownFlag is set to false.

g) immediate-children-backwards

This is the same as case h) except that the distribution is carried out from the last to the

first of the immediate children.

h) single-cast

As illustrated in Figure 7, two parameters are supplied: the event and a handle to a

node. The event is matched against interests with pathDownFlag set to false, but not

passed on to any other nodes. A block on a node does not prevent an event being

single-cast to it.

98

immediate children ::z-.
(event x, node 0)

Fig 6 immediale-children distribution type

single cast
(event x,node 1)

:z-.

Fig 7 single-cast distribution type

4.3 Redistribution

In addition to the different types of distribution, there is also the facility for an

application to redistribute an event once it has been consumed by matching an interest

whose exclusive flag is set. Redistribution would proceed at the point at which

propagation was last terminated in the distribution sequence. To enable this, an event

99

contains extra fields to store the type of distribution, the node parameters for the

distribution, the latest node and the last interest matched.

5 A direct manipulation office system

Imagine a direct manipulation desk-top document system in which a folder contains

either documents or folders. There is a logical relationship between a folder and the

document or folder it contains. This relationship is dynamic: a document, for example,

may move from one folder to'another. However this relationship should not necessarily

determine or constrain the graphical structure when displayed. For instance the

documents could be stacked, laid out in a grid or spread across different desktops.

This separation of logical and graphical hierarchies can be reflected in the GEM

structure as shown in Figure 8, where the document system hierarchy contains two

sub-hierarchies, one to represent the logical structure and one representing the front-to­

back ordering of the documents and folders on the display. The important difference

between this system and a windowing system is that whilst the logical hierarchy

initially determines the order of rendering and hit detection for the office entities, the

user may alter the rendering and hit detection ordering without altering the logical

hierarchy. Each folder or document, has a single associated node in each of the

hierarchies.

If an entity is not currently being displayed, the blocked flag is set in the link between

the corresponding node in the rendering hierarchy and its parent. Figure 8 shows that

only the top level master document is currently being displayed. For an entity to be

brought to the top of the rendering hierarchy, it is made the first child of rendering

hierarchy.

We describe here a way of using the GEM to carry out various operations within the

office system. These are selecting a document or folder by bringing it to the front of the

display, opening a folder so that its contents also appear on the desktop, and specifying

the security level of a folder and its contents.

100

Figure 8 Document system hierarchy

5.1 Selecting a folder or document

Selecting an office entity involves access to the rendering hierarchy only. All raw input

events are broadcast to the top level document system node. Suppose the user executes

an action (for example a mouse click) to select a folder or document that is currently

partially obscured.

In response to this type of event the document system performs hit detection behaviour

by issuing a broadcast-bottom-up call with two parameters: the event select (with

mouse coordinates), and the node rendering hierarchy. Each child node of rendering

hierarchy has been set up by the application with an interest whose interest-fields

include the select event and a field-behaviour to test for the region occupied by the

101

document or folder. However the event will only be broadcast to nodes corresponding

to visible entities in the rendering hierarchy, since an invisible entity has the links to its

parent blocked.

If a match is found, then the corresponding behaviour at the 'hit' node places that node

as the first child of rendering hierarchy and a broadcast down call is performed with

parameters: the render event and the rendering hierarchy node. The document or folder

will thus appear at the front on the display.

5.2 Opening a folder

Opening a folder involves accessing both the logical hierarchy and the rendering

hierarchy. Suppose the user executes an action (for example a mouse double click) to

indicate the opening of a folder. A behaviour corresponding to this event type at the

document system node issues a broadcast-bottom-up call with parameters: the event

(e.g. double-click) and the node rendering hierarchy.

At the node where a hit is detected, another behaviour causes the event emerge to be

sent to the immediate children of its corresponding node in the logical hierarchy. Thus

for example if the user had indicated the opening of the folder master folder, then the

emerge event would be sent to document 1 and folder 1. Interest-behaviours activated

by successful matching of the event at these nodes then move the corresponding nodes

in the rendering hierarchy to be the first children of the rendering hierarchy node and

their blocks to their parent are removed. The 'hit' node is then placed as the first child

of the rendering hierarchy node. Finally the event render is broadcast-top-down from

the node rendering hierarchy.

As a result the folder and its contents now appear at the front of the display.

5.3 Changing Security Level

Changing security level requires accessing the logical hierarchy only. (The security

level might determine access by different levels of user.) Suppose the user wishes to

alter the security level of all documents that are descendants of a particular folder. This

is achieved by issuing a broadcast-top-down call with parameters: the event

securityLevel (with the new value of the level) and the node for the folder. Only nodes

associated with documents (as opposed to folders) would have an interest in this type

of event and therefore only their associated behaviours would be carried out to change

the security levels.

102

5.4 Adding nodes to carry out monitoring

Suppose that we wish to monitor all raw input events from the user, to be stored for

later replay. This could be done by adding another child, with no block, to the

document system node. Attached to this new node would be an interest that enabled all

types of input event to be detected and a queue which would allow an asynchronous

thread to collect together these raw events and store them.

This is an example of a node that bears no relation at all to entities in the application, yet

nevertheless can be inserted into the node hierarchy. This node could be inserted to

perform input event monitoring in any type of system, with minimum disruption.

6 GEM and the construction of windowing systems

GEM not only supports the construction of interactive applications such as the one

outlined in the last section, it also provides the basic building blocks for the

construction of wIndowing systems themselves.

Because a window is both logically and graphically contained in its parent, only a

single event distribution hierarchy is needed, each node of which corresponds to a

window. In a similar fashion to the office system example, the broadcast-bottom-up

type of distribution of the raw event enables hit detection to be carried out. Once the

'hit' node has been established, the path-up and parh-down distribution types are used

to implement the passage of an event along a single path in the tree as outlined in

section 2 of this paper. Finaily the broadcast-tap-down type of distribution is used to

implement rendering of windows.

7 Further Work

The GEM is currently being developed for the SPIRIT project. We are also looking into

further applications, besides those given in this paper, where the GEM may prove

useful. This includes scene modelling and interaction in 3D graphical applications.

8 Conclusions

We have outlined a generalised event mechanism that supports the construction of

interactive applications which can be modelled using a distribution hierarchy for events.

GEM has greater flexibility than the event models provided by windowing systems in

that it gives the facility for the graphical and logical hierarchies within an application to

103

be separated. It also enables greater control by applications of event distribution and

enables selective distribution to localised parts of the hierarchy. Finally, it can be used

for the construction of windowing systems themselves.

References

[1] Slater M., Miranda E., Davison A., Drake K., Kordakis E.: The Graphics

Subsystem of the Spirit Workstation, Procedings Graphics and Interaction In

ESPRIT Sessions, Eurographics 89, Hamburg FRG

[2] Tanenbaum A.S., Renesse, R. van, Staveren H. van, Sharp G.J., Mullender J.,

Jansen J., Rossum G. van: Experiences with the Amoeba Distributed Operating

System, Communications of the ACM, December, 1990, Vol 33 No 12

[3] Rozier, M. and Martins, L.: The Chorus distributed operating system: some design

issues, Distributed Operating Systems - Theory and Practice (ed Y. Paker et al.),

NATO ASI Series, vol F28, Springer-Verlag, pp 261-87

[4] Carriero N., Gelemter D.: The SINet's Linda Kernel ACM Transactions on

Computer Systems Vol. 4 No.2, May 1986

[5] NeWS 2.1 Programmers Guide, Sun Microsystems

[6] Scheiffler R.W., Gettys J.: The X Window System, ACM Transactions on

Graphics, April 1986, Vol. 5 No 2 pp 79-109

[7] Davison A., Drake K., Roberts W., Slater M.: Distributed Window Systems, a

Practical Guide to XII and Open Windows, 1992, Addison-Wesley

Acknowledgements

We would like to thank Kieron Drake and Eliot Miranda for the initial proposals of the

generalised event mechanism we have described and the early discussions on the topic.

We would also like to thank other members of the Advanced Computing Environment

Laboratory at the Computer Science Department at Queen Mary and Westfield College,

in particular Mark Brown and Morten Ronseth, for useful feedback and comments in

writing this paper.

· Generalising MVC to ERID :
orthogonalising entities, representations, and input

dispatching to interaction classes

Rarnzan Mohamed­
Institute of Educational Technology

Open University

Walton Hall

Milton Keynes MK7 6AA, U.K.

Stephen W. Draper
GIST (Glasgow Interactive Systems cenTre)

University of Glasgow

Glasgow, U.K.

Abstract

Limitations of Smalltalk's Model-View-Conttoller (MVC) paradigm are discussed. A

novel approach to generalising MVC is described. Our approach based on application

Entities, visual Representations and Input Dispatching (ERID) decouples the

conventional interdependence of MVC's View and Controller subclass hierarchies.

Instead we have generalised the user interface capability of visible entities by allowing

each entity to handle its own user interaction through the incorporation of a generic

input dispatcher. The interface is easily configured by the use of a variety of generic

interface conttollers.

1 Introduction

In many ways Smalltalk is currently the best environment for building experimental

programs with a high HCI (human computer interface) component to their design, partly

because of its support for rapidly modifying prototype versions. A large project in which

* Now with Object Designers Limited, Glebe House, Great Hallingbury, Bishop's Stortford,

Hertfordshire U.K. CM227TY

105

we participatedt [1,2] consequently selected Smalltalk-80 as the platform. We built a

program, Direct Manipulation of Mechanics Microworlds (DM3), which presented

simulations of moving objects in order to aid in teaching Newton's laws of motion.

While the outline of the underlying functional requirements (e.g. for the simulation

engine) were clear from fairly early on, many aspects of its presentation to the end users

(school children) went on evolving throughout the project in response to pilot testing on

children. Smalltalk supported most of these changes well, but in one respect we were led

to improve its ability: we often needed to change the interactive response of some screen

object to user input (for instance to make it respond to grabbing). The possible set of

interactive responses was relatively fixed, yet each new combination of screen object and

behaviour required new code to be written as long as only the basic Smalltalk MVC

mechanism was available. We were led to generalise this (into a software model we call

ERlD for Entities, Representations, Input Dispatchers) so that any new combination of

existing behaviours with existing screen objects could be accomplished by sending a

single simple message.

2 Smalltalk MVC

The basic MVC (Model-View-Controller) paradigm [3,4] in Smalltalk allows multiple

visual representations of a single conceptual entity to be coordinated (generally within a

single application window). There is a single underlying application entity ("model") (for

instance, an entire simulation in our case), which holds the variables and domain contents

(e.g. objects, forces and meters). It may be represented in any number of windows

(views); for each such window, it has a corresponding matching controller (figure 1).

The view is responsible for specifying the screen appearance; the controller handles user

input events. Whenever the application entity ("model") changes, all screen

representations ("views") are, typically, automatically notified. User input in any window

may interact via the controller (for that screen representation of that entity instance)

associated with the view; and may result in sending a message to the underlying

application entity; if so, then other screen representations (views) may well be updated

too. This update mechanism is normally via Smalltalk's dependency mechanism (dashed

arrows in figure 1).

t Conceptual Change in Science - a three year ESRC funded multi-disiplinary project comprising R.

Driver. R. Hartley. C. Mallen and D. Twigger (Leeds University); S. Hennessy. T.M.M. O'Shea and

E. Scanlon (Open University); C. O'Malley (Nottingham University) and the authors.

106

The advantages are that screen representations, e.g. icons, may be changed by assigning

a different graphic image to a variable in the "view" (screen representation object

instance); and input behaviour associated with a screen representation may be changed by

installing a different controller class or more infrequently by editing a method in the

"controller" instance associated with the view. This flexibility is enough for the familiar

approach (cf. the Macintosh tool box), where all user interaction is via a few standard

types of objects: buttons, icons, check boxes etc. Here interactive behaviour (e.g.

clicking, dragging) is uniformly associated with a class of screen representation. This

close association between Views and Controllers is reflected in the similarity of the

Smalltalk class hierarchies for the View and Controller classes. The closeness between

views and their associated controller's classes is also illustrated when we realise that the

addition of a totally new type of view is not complete until both the new view and new

controller classes have been created.

Application Entity
Model

........... ", ... " "

~~~,'~'" Visual 
: Representation 

, , 
Controller I View 

\." ............................................................ , ............. , ...... , ........... " ....... , ... ,', .... , ...... , ... ........ " ............. ~ .. .. 

Figure 1 Smalltalk Model-View-Controller Relationships 

However in our project we were interested in a more thorough-going interpretation of 

direct manipulation, inspired by Randall Smith's ARK [5] . Here, user interaction should 

be "directly" associated with all objects, not just a few standardised control objects like 

buttons or sliders. For instance balls not only bounced, but could be grabbed, lifted, 

thrown by users. Consequently we were constantly trying out alternative behaviours and 

combinations of behaviours from a relatively fixed set (pointing, dragging, etc.) on each 

of our simulated objects: balls, skaters, speedboats, cardboard boxes etc. It was 

obviously wasteful to be rewriting controllers manually for each new combination of 

object shape and behaviour (either singly or in combination). 



107 

3 An Alternative Approach 

3.1 User Interactivity 

An examination of the basic nature of human computer interaction reveals that it is 

essentially a combination of two elements, a visual focus and an interaction (e.g. 

Smalltalk controllers). We can see that the visual focus is useful in "guiding" the user to a 

particular area of the screen. In addition, the visual nature of the focus can give the user 

valuable cues as to the interaction style they may encounter there, e.g. labelled (rounded) 

boxes may imply a button style of interaction, while an array of (externally labelled) 

circles may imply a "radio-button" style of interaction. 

The interactive element essentially gathers the user's input, and through the use of 

appropriate feedback mechanisms (e.g. highlighting or key clicks, etc.) registers with the 

user the current state of the interaction. Ultimately the result of a particular interaction is 

communicated back to the underlying application. 

In most conventional user interfaces the link between the visual focus and the interaction 

is a direct one, e.g. when adding a radio button to a dialogue box, the programmer adds 

the button as a single entity, the visual appearance (focus) and interactivity are combined. 

While this linkage is useful in many situations, there are situations where the user 

interface builder would like to decouple the visual appearance from the underlying 

interactivity. It is a useful feature of a flexible user interface system for this direct linkage 

to be broken. 

3.2 ERID 

Our requirement was to be able to write the code to do with each separate behaviour (e.g. 

dragging) just once, via a generic controller for each type of behaviour, but without any 

significant coding to create any combination of screen representation, behaviours, and 

sensitivity to subareas of the screen graphic associated with an object. 

In effect we have generalised the MVC approach to a four component approach we call 

ERID. Slightly different from the MVC, an individual underlying E.nilly corresponds to 

the "model", where its screen Representation is controlled by a Smalltalk object instance 

corresponding to the "view". The "controller" for this entity is in effect split into an InPlll 
Dispatcher and zero or more generic interaction objects (controllers), see figure 2. 

In line with our conclusion in the previous section, we have split the direct link between 

an entity's (screen object) representation and its interactivity. The representation, in the 

present implementation of ERID, is an attribute of the entity and as such may be changed 



108 

throughout the life of the entity. Indeed. entities from the same class (type) may possess 

different representations from their default representations. 

The generic input dispatcher receives user input events from the window controller if the 

mouse is over the active boundary of the screen object (thick rectangle). and consults a 

table specific to that screen object in order to decide how that particular event is to be 

handled. The table consists of triples (implemented as composite objects). one triple per 

behaviour to which that screen object is sensitive. Each triple specifies the type of input 

event. the subarea of the screen representation (e.g. which part of an icon) which is to be 

sensitive. and the generic interaction controller (e.g. dragging or clicking) to which 

control is to be handed. When the interaction is terminated. control is handed back to the 

window controller. 

ERID Ob ject 

aClive area 

figure 2 ERID componenl Relationships 

Figure 2 illustrates a simation where a screen object possesses three different types of 

interactivity (denoted by controllers #1 to #3). wit~ each controller active over a small 

subarea of the screen object's representation (the three fllied rectangles). If an appropriate 

input event matches that of one of the three triples in the input dispatcher's internal table. 

then control will pass from the input dispatcher to that controller. 

In the present implementation the subareas are held in normalised form. with reference to 

their screen object's representational dimensions. This means that if a representation is 

expanded or shrunk. then the active subareas will still occupy the same relative areas of 

the representation. and no repositioning of subareas is needed. 

The present design of the ERID input dispatcher just relies on a combination of event type 

and active subarea to determine whether the associated generic controller will be given 

control. The generic input dispatcher may be made more sophisticated by the inclusion of 



109 

addition constraint parameters. Indeed the design will support a number of different 

"generic" input dispatchers. With our current input dispatcher there is no restriction on 

the number or types of interactions that an entity may possess. The active areas may be 

separate as in figure 2, or they may overlap (figure 3). In the latter case, the first triple in 

the input dispatcher's dispatch table that responds to the event type will be given control -

this heuristic may of course be changed. 

3.3 Interface Customisation 

Making a given screen object sensitive to a new (or another) behaviour now requires only 

the addition of a new entry (triple) to its input dispatcher's dispatch table. Figure 3 shows 

the same ERID input dispatcher as in figure 2, but now with another triple added to its 

dispatch table. The net result is that the ERID entity now possesses another degree of 

interactivity. The ERID approach enables us to customise any screen object's user 

interface to a large degree using our (currently small) set of generic interface controllers, 

event types and visual representations in an orthogonal way. 

ERID Object 

Figure 3 Adding more interactivity 

Adding a new kind of interactive behaviour to the system (e.g. rotating the icon) simply 

requires implementing a new subclass of generic controller specialised to handle this 

particular behaviour. Once added, however, it can be immediately used by any or all 

screen objects, simply by adding an appropriate entry to each screen object's input 

dispatcher table. Figure 4. below, illustrates this by showing how we can use this new 

interactivity to make our example screen object rotatable about diagonally opposite 

comers (controllers #3 and #4). We could easily have made it rotatable about any comer 

by simply adding two more entries into this entity's input dispatcher table with active 

areas over the other two comers. 



110 

ERID Object 

Figure 4 Adding a new interaction style 

3.4 ERID Controllers 

In our current design the generic controllers that support the interactivity of ERill objects 

incorporate forms of both interactive feedback and semantics. Each class of generic 

controller is responsible for providing its own feedback mechanisms, either visual and/or 

acoustic, to the user. The type of feedback used depends entirely on the style of 

interaction of the controller. In DM3, a number of feedback mechanisms were trialled. 

Each trial necessitated some recoding of the controller. 

The semantics of the ERID controllers fall under two groupings, fixed and flexible. The 

majority of controllers have a fixed notion of semantics (e.g. dragging, grabbing, etc.) 

where the interaction has a single meaning in the context of the ERill object 

An example of an ERill controller with flexible semantics is our button controller. This 

generic controller mimics the interactivity of button presses. When the button controller 

takes over, it provides feedback, and initiates the consequences of the user's action 

(pressing a button). However the semantics of the action will vary. We have chosen to 

model this variability by providing the button controller with the ability to handle a list of 

consequent actions rather than limiting it to a single action. These actions are defined in 

terms of Smalltalk message expressions, i.e. we can specify an action by specifying a 

message and the object that will receive that message. In this way we can allow a single 

button to trigger a complex sequence of actions programmed a priori and initiated by the 

user. This scheme has worked well in the context of DM3 to the extent that our colleagues 

were able to synthesise radio buttons by simply allowing each individual button tell its 

neighbouring buttons to disable themselves. The action list associated with each button 



III 

instance can be dynamically configured by an external agent. The actions in the list will 

be perfonned (only) when the user presses the button. 

3.5 Extending ERID across multiple windows 

So far we have discussed ERID within the context of a single application window. As the 

ERID architecture stands it can accommodate the support of ERID objects across multiple 

windows by simply changing a single attribute of the ERID object's input dispatcher that 

describes its environment (window). However the ERID object will appear identical, 

visually and behaviourally, across all windows. 

We have extended the flexibility of the ERID architecture by endowing ERID objects with 

the ability to support a range of representations and input dispatcher tables at one time 

(see figure 5). Applying these two features orthogonally in association with a particular 

window will create an ERID object that possesses a complex mosaic of representations 

and behaviours spanning a multitude of application windows. 

3.6 Summary 

Extended 
ERID 

Object 

Figure 5 ERID Support for Multiple windows 

In this approach there is one generic controller type per interactive behaviour. shared by 

all screen objects that use this style of interaction (e.g. dragging. clicking). It is 

represented by its own subclass, one of a number of generic controller classes. As 

before. each screen representation of an entity (possibly several, each in a different 

window) has its own screen graphic as one of its essential properties. Associated with 

each such screen representation is an input dispatcher. These have individual dispatch 

tables for each representation instance, but usually share a generic mechanism for 



112 

interpreting the tables to dispatch events. Table entries contain references to one of the 

generic controllers specifying a type of interactive behaviour. Underlying application 

entities in effect contain lists of pairs consisting of a screen representation and an input 

dispatcher, one pair per window in which a representation of the object appears. 

Combining visual representation and interactivity independently not only increases the 

reusability of components but also provides a very potent tool for graphical user interface 

experimentation. 

4 Discussion 

User interfaces bring out the need to combine several aspects in one item: underlying 

application semantics, screen appearance, and interactive behaviour. Each of these may 

usefully be drawn from its own inheritance hierarchy. Conceivably multiple inheritance 

might be used for this. However this would still require the creation, by programming, of 

a new subclass for each combination used or tried. More importantly, several instances of 

each kind of thing may be required e.g. several simultaneous screen representations of 

the same entity. This could never be done by an inheritance mechanism alone. The 

obvious approach is to use variables to point to the properties required. The MVC 

approach did this for linking multiple views to one entity, and for changing the graphical 

appearance of one view. The ERID approach extends this to the methods defining 

interactive behaviour, and copes with the need for combining several such behaviours in 

association with a single screen representation. 

A comparable approach is described as part of the Lisp-based Garnet system [6,7,8]. In 

Garnet, generic "interactors" each embody a piece of interactive behaviour. These are 

associated with (visible, screen) objects typically through a scripted specification drawn 

up by the application programmer. The specification is passed to the Jade tool which 

produces a graphical dialogue which can then be tailored by a graphics designer through a 

direct manipulation tool (Lapidary). 

Like ERIO, Garnet possesses a small number of generic interactors and can support 

several interactors per screen object The division of events to the interactors is handled 

by making changes to a number of the interactors' parameters, thus no separate 

dispatcher object is involved. (Thus it might be a little more difficult to review the set of 

behaviours currently applying to a particular instance i.e. screen representation.) In order 

to create a new combination it is just necessary to create a new instance of the appropriate 

interactor and edit its parameters. This approach has the advantage of not requiring 

editing of the interactor's code in order to customise a particular interactor's behaviour. 

Both systems provide similar improvements to the Smalltalk MVC. 



113 

The advantages of decoupling and orthogonalising representations and interactions are 

also described by Shan [9]. Shan's user interface management system, Mode 

Development Environment (MoDE) outwardly resembles the approach taken by ERID. 

MoDE is based around the notion of a mode, an object that possesses three attributes; 

appearance, interaction and semantics. A mode is equivalent to an ERID object, as both 

possess the three attributes stated earlier. 

There are a number of differences in the two approaches. In MoDE, the semantics are 

encapsulated by a separate entity, while in ERID the generic controller is responsible for 

both interactivity and semantics (in the sense of the set of consequent actions: messages 

sent to other objects as a result of the user action). A mode is composed of single 

instances of each type of component (appearance, interaction and semantics), in ERID 

multiple instances of representations and interactions are supported. 

The Iconographer program [10,11] has also achieved this separation. Here generic input 

controllers called "devices" (cf. Garnet's "interactors") can be bound into novel 

combinations with screen representations (created by "icon generators") in "editor 

instances", which are created by a few menu selections in a control panel. The separation 

of screen representations ("icon generators") from application entities is done at the 

"switchboard" that is Iconographer's central feature. However since Iconographer deals 

with sets of objects sharing a common type, an editor instance specifies one of a set of 

interaction methods that apply uniformly to all icon instances of a given type. Thus to 

customise an individual icon's behaviour, as in ERID, it would have to be given a type of 

its own. 

The ERID model could probably be implemented in X windows, but the basic 

architecture does not support the model. For instance X windows dispatch tables have a 

place only for events, not for the subregion of an icon ("widget"). Furthermore, the 

actions in the dispatch tables may not have parameters; thus you must code a new 

procedure per widget even if all it does is call a generic controller with a parameter 

pointing to the specific widget 

5 Conclusion 

ERID provides an effective vehicle for exploring novel user interfaces for visible objects 

in DM3 micro worlds. The decoupling of interface elements has proved crucial to its 

effectiveness. We are sure that ERID's generality will prove useful for interface design in 

other domains. 



114 

6 Acknowledgements 

The research supported here has been funded by the Economic and Social Research 

Council's InTER programme (Grant number X/203/25/2005). 

References 

[1] Driver R., Scanlon E. Conceptual Change in Science. Journal of Computer 

Assisted Learning 1988; 5:25-36. 

[2] Twigger D., Byard M., Draper S., et. al. The 'Conceptual Change In Science' 

Project. Journal of Computer Assisted Learning 1991; 7:144-155. 

[3] Adams SS. MetaMethods: The MVC Paradigm. HOOPLA! 1988; 1(4). 

[4] Krasner GE., Pope TS. A Cookbook for using the Model-View-Controller User 

Interface Paradigm in Smalltalk-80. Journal of Object Oriented Programming 1988; 

1(3): 26-49. 

[5] Smith RB.(1987). The Alternative Reality Kit: an example of the tension between 

literalism and magic. Proceeding of the Conference on Human Factors in 

Computing Systems and GI 1987: 61-67 CACM Press). 

[6] Myers, B.A. (1990) "A new model of handling input" ACM trans. on 

information systems vo1.8 pp.289-320. 

[7] Myers BA. Encapsulating interactive behaviours. Proceeding of the Conference on 

Human Factors in Computing Systems 1989: 319-324. (ACM Press). 

[8] Myers BA., Giuse GA. et. al. Garnet: Comprehensive Support for Graphical, 

Highly Interactive User Interfaces. Computer 1990; 23(11): 71-85. 

[9] Shan Y. MoDE: A UlMS for Smalltalk. Proceeding of ACM Conference on Object­

Oriented Programming, Systems, Languages, and Applications in SIGPlan Notices 

1990; 25(10): 258-268 

[10] Waite, K.W. & Draper, S.W., (1991) "User input to Iconographer" in HCr91 

People and Computers VI: Usability Now! (eds.) D.Diaper & N.Hammond 

pp.187-198 (Cambridge University Press: Cambridge). 

[11] Waite, K.W. Draper, S.W., & Gray, P.O. (199?) "Iconographer: a tool for 

rapidly configuring interactive iconic representations" submitted to ACM trans. on 

information systems 



Constructing front-ends to existing software systems 

E.A. Edmonds*, I. Reid, S.P. Heggie*, D J Cornali 

*LUTCHI Research Centre 

Loughborough University of Technology 

Loughborough 

Leicestershire, LEll 3TU 

UK 

(Telephone: +44 509 263171 - Email: e.a.edmonds/s.p.heggie@uk.ac.lut) 

Numerical Algorithms Group (NAG) Limited 

Wilkinson House 

Jordan Hill Road 

Oxford, 0X2 8DR 

UK 

(Telephone +44 865 511245 - Email: ianr/del@uk.co.nag) 

1 Introduction 

The FOCUS project is concerned with the development of tools and methods to aid in the 

construction of knowledge-based front-ends to existing software systems. The purpose is 

to extend the life and usability of valuable code that could be more widely used. An 

architecture and some associated tools have been developed. Following an evaluation in 

which complete systems were built in industrial environments, the architecture has been 

revised and extended. The extensions will help to cope with the complexities of large 

systems by automating some of the HCI design work and by dealing with some of those 

issuesdynarnically as unpredicted events occur. The lead partner, NAG Ltd, have already 

identified cenain exploitation paths for some of the interim results. 

2 Background 

2.1 The Problem 

The development of libraries of numerical software, which began in earnest in the sixties, 

did much to ease the burden of scientific computer users. Prior to this, it was necessary 



116 

for those users to develop or obtain their own solutions, the many disadvantages of which 

are clear. Well designed libraries encapsulate problem solving algorithms in a portable, 

reliable and reusable form, saving much time and effort for users. However, although 

these software components were welcomed, frustration amongst scientists soon grew 

because of the need to use programming languages rather than abstract scientific concepts. 

The result was a growing gulf between the needs of users and the manner in which 

solutions were presented. 

Early attempts to bridge this gulf centred around software packages aimed at particular 

communities. The statistics community developed several packages aimed at both general 

and specific areas of their field. These packages aimed to provide an environment in which 

the problem solving needs of the user in that particular domain could be met. For example, 

graphical output capabilities were often incorporated, and for the more sophisticated 

packages, graphical interaction. 

This approach is still in use today, but while it frees the user from computer languages, 

most packages have inherent limitations. Amongst the most notable limitations are: having 

to learn a new command language; restrictions on the algorithmic solutions available and 

inter-package incompatibility. 

To compound the problem, the working environment of the scientist is changing rapidly. 

Workstations and pes are in abundance and windowing systems are becoming the norm 

rather than the exception. This speed of change makes the task of the package builder, in 

keeping user-interfaces etc. up to date, almost impossible. 

It is abundantly clear that the software available in libraries and packages is necessary, and 

in some cases still sufficient, to allow the scientists to solve the problems. This software 

has been tried and tested over many years, and the expertise contained therein is so great 

that it would be foolhardy to discard it. However, it is equally clear that scientists should 

not have to struggle with general purpose programming and command languages, often 

needing to learn to use several software systems in order to solve one problem. 

The answer is to provide support for the use of these systems and, where appropriate, to 

develop tailored, bespoke systems for scientists' needs. This often means providing 

knowledge of how to use the system, because much of the specialist software is based on 

deep knowledge. Hence, these specialist systems are only available to an equally 

specialised base of end-users. 



117 

2.2 The Solution: Front-Ends 

User interfaces, or front-ends, which provide knowledge about the system are termed 

intelligent, or knowledge-based, front-ends (KBFEs) and are intended to make this 

specialist software available to a wider community of end-users whilst providing them 

with the routine procedures and guarding them from making elementary mistakes [1]. 

There are obvious advantages from a commercial aspect, since a larger audience generally 

means more sales. In addition, from the stand-point of end-user companies, they can use 

more junior personnel to carry out the expert's more mundane tasks, whilst freeing the 

expert's time to do the more challenging activities. 

Earlier experience with a KBFE for statistical analysis was valuable [10]. In particular, it 

was found that much of the work conducted in pursuit of a separable user interface was 

applicable to this problem [3]. 

It is clearly important that these systems, whether more usable front-ends or full KBFEs, 

be produced in such a way that they can be extended algorithmically. They must also 

allow the user interface to be amended to reflect current standards/trends where 

appropriate. As ever, portability across machine ranges is important, but in addition it is 

also becoming necessary to produce distributed software systems; that is, systems in 

which major software components can be resident on more than one host. In short, a 

generic strategy is needed, providing a methodology and tools capable of providing 

solutions for a large class of real-world applications. 

2.3 The FOCUS Project 

FOCUS is and acronym for Front-ends for Open and Closed User Systems. The 

distinction between open (e.g. libraries) and closed (e.g. packages) user systems is no 

longer thought to be an important one, however, the acronym remains! 

The project began in December 1988 and is due to run for four years. It is budgeted to 

consume 56 person years of effort at a cost of 8 million ECUs, and the consortium for the 

third and fourth years is: 

NAG (prime contractor), Oxford, UK 

InDeCon, Athens, Greece 

Imperial College, London, UK 

LUTClfI, Loughborough, UK 

Solvay, Bruxelles, Belgium 

Universitat Politecnica de Catalunya (UPC), Barcelona, Spain 



118 

Westfiilische Wilhelms Universitat (WWU), Munster, Germany 

FOCUS aims to provide tools, techniques and methodologies for the development of 

front-ends. It is worth noting that the front-ends developed within the project have tended 

to be knowledge-based, and also that the application software, or back-ends, need not be 

numerical. 

The ftrst version of the FOCUS architecture is shown in ftgure 1. It was described in 

Edmonds and McDaid [5]. Briefly, the Seeheim user interface model [6] was extended in 

a number of speciftc ways. The basic Seeheim model is here incorporated within the 

component known as the Harness. 

Surprisingly little attention has been given to the linkage between an interface and the 

functional code [4]. It is a major issue, however, for front-ending. The Back-End 

Manager is the Focus solution to the problem. 

Firstly, the concept of a Back-End Manager was introduced.· This component is 

responsible for handling the details of the interactions between the front-end and each 

back-end system, of which there may be many. Its main tasks are, therefore, to map 

between system-independent speciftcations of the task and ones that can be used in 

practice to run the existing systems and, conversely, to extract the required data from the 

systems' output [9]. 

Secondly, a set of knowledge-based modules are added in order to provide the help and 

support that the user needs. Whereas the back-end manager contains specific information 

about how to run the back ends, a knowledge-based module will contain, for example, 

knowledge about which back-end to run in order to solve which problem. 

This structure enabled a third innovation, which is the use of standard message structures 

for the passing of information between the KBFE components. A major use of the 

messages is for KBM's to create or modify end-user interaction objects. The project is, 

therefore, developing an abstract notation in which to describe logical interactions 

independent of their physical realisation. 

3 The Architecture Evaluated and Extended 

Version 1 of the architecture and the associated prototype tools has been used to build a 

number of knowledge-based front ends with direct industrial value [8]. In evaluating and 



119 

reviewing the architecture a number of new points have become clear. Two specific 

issues are the provision of graphics, which was largely omitted from the first prototype, 

and the need to support knowledge based front end developers in 'programming' the 

Harness. The graphics requirements and the associated implementation issues are 

discussed by Branki et. al. [2]. The need to 'program' the Harness has been a significant 

factor in the development of an architecture for the Front End Harness Version 2. 

The requirement for a Harness programming environment has resulted in an important 

change of emphasis in considering the overall architecture. In the Prototype Harness the 

most critical entity, in terms of end user interaction, has been the 'message'. Message 

types have dermed the functional boundaries of such interaction and the realisation of 

messages as concrete, on-screen interaction objects has been a one-stage process, 

performed by in-line code. If knowledge based front end developers needed to extend the 

function of the Harness they had to change or extend code within the Harness. The 

architecture for Harness Version 2 introduces the new concept of 'abstract interaction 

objects'. An abstract interaction object is defined as a prototype interaction object in 

which the presentation details are not specified. Each available prototype is defined in a 

knowledge base and the definition consists of a logical description of the contents and 

attributes the object may have. In Harness Version 2, abstract interaction object 

prototypes replace messages as the critical entities in end User interaction. They can be 

created and edited by knowledge based front end developers without affecting Harness 

code, and the introduction of a new prototype constitutes an extension of Harness 

functionality in a manner equivalent to the introduction of a new 'message type' to the 

Prototype Harness architecture. This approach provides the basis for a Harness 

programming environment which will support rapid and safe extension of functionality 

without involving changes to Harness code. 

In addition to a harness programming environment, the requirement for two additional 

components has been identified. These are: 

(i) Dynamic Presentation Manager 

(ii) Dynamic Dialogue Manager 

These components handle the dynamically changing needs for interface design and 

control. The Dynamic Presentation Manager deals with presentation design as, for 

example, messages of unforeseen length need to be displayed, rather in the manner of 

Mackinlay [7]. The Dynamic Dialogue Manager makes dialogue control decisions based, 

for example, upon the need to keep the cognitive load on the user within reasonable 

bounds. This is made necessary by the potentially large number of components 

interacting with the user through the Harness. 



120 

A bonus of the evaluation process has been that it has become clear that a number of 

exploitation paths exist for interim results from the FOCUS project. 

4 Version 2 Architecture 

The revised architecture of the Front End Harness component is shown in Figure 2. The 

principal changes from the Prototype Harness architecture involve the introduction of new 

components and the distribution of functions between these components. The syntax of 

communications messages has also been changed to reflect the revised architecture and the 

introduction of Abstract Interaction Objects. 

4.1 Components and Functions 

The principal changes from the version 1 architecture are: 

(i) The refinement of the KBM/application interface through the introduction of the 

Communications Manager. The Communications Manager is responsible for establishing 

and monitoring all logical and physical communications and for message routing. 

(ii) The extension of the concept of the Dialogue Control component to the Dynamic 

Dialogue Manager. The Dynamic Dialogue Manager is responsible for the logical 

management of all communication with the end user, for negotiating conflict resolution at 

the interface and for maintaining the logical link between the state of the KBFE and the 

state of the interface. 

(iii) The division of the Presentation function between the Dynamic Presentation Manager, 

which is independent of any software environment, and the Physical Presentation Layer, 

which may contain material which is specific to an operating system, window manager or 

widget set. The Dynamic Presentation Manager is responsible for the creation, 

modification, destruction and management of interaction objects. The Physical 

Presentation Layer is responsible for directly mapping interaction objects to a particular 

window management system and/or widget set 

(iv) In order to support a Harness Programming Environment which is separate from 

Harness code, information about abstract interaction object prototypes is stored separately 

and declaratively in a Presentation Knowledge Base. This may be modified and/or 

extended via an Interaction Object Editor. 



Each component of the revised architecture is discussed in more detail in the following 

sections. 

4.2 Presentation 

121 

The Presentation function is controlled by the Dynamic Presentation Manager, which is _ 

independent of any operating system, window management software or widget set, and 

the Physical Presentation Layer, which may contain software dependent material. A 

Presentation Knowledge Base contains definitions of all available interaction object 

prototypes, and the Dynamic Presentation Manager instantiates these prototype definitions 

using the contents of messages. The Physical Presentation Layer is responsible for 

directly mapping instantiated interaction objects to a particular window management 

system and/or widget set. 

4.2.1 Dynamic Presentation Manager 

The Dynamic Presentation Manager manages all messages sent to the end user and 

'passed' for realisation by the Dynamic Dialogue Manager. It is responsible for the 

creation, modification, destruction and management of abstract interaction objects. 

A message may also request the destruction of one or more abstract interaction objects. 

The destruction of an abstract interaction object will cause the destruction of all sub­

objects contained within it. 

A message containing the Id of an abstract interaction object which has already been 

realised is automatically treated as an 'update' message. It may: 

(i) Add one or more new sub-objects to an existing object 

(ii) Change the contents of one or more objects 

(iii) Change any of the attributes of an object, including controls 

Return messages to the KBM can be activated in three ways: 

(i) Event: when some pre-specified event occurs - e.g. the user activates a control 

(ii) Request: when a KBM issues a request for the state of an abstract interaction 

object to be returned 

(iii) Sample: when the Harness repeatedly returns the state of an abstract interaction 

object at specified intervals. 

The default mode is 'event', as in version 1. 



122 

4.2.2 Physical Presentation Layer 

The Physical Presentation Layer is responsible for mapping instantiated abstract 

interaction object prototypes to physical interaction objects supported by a particular 

window management system and/or widget set, and for realising the physical objects on 

screen. 

The Physical Presentation Layer also realises any changes to on-screen objects required by 

'update' messages and handles the removal of objects when interaction is complete. 

Since all interaction with the windowing system is handled by the Physical Presentation 

Layer, only this component need be modified in order to use different window managers. 

4.3 Dynamic Dialogue Manager 

The Dynamic Dialogue Manager is responsible for the logical control of all dialogues 

which involve the end user and for conflict resolution in end user interaction. It maintains 

knowledge which includes: 

(i) The number of abstract interaction objects currently active on screen 

(ii) The complexity of new abstract interaction objects, which dictates the cost, in time and 

resources, of realising them 

(iii) The cognitive load on the end user. 

This knowledge may be used to monitor and control an appropriate level of complexity at 

the end user interface and to negotiate with KBMs when necessary. 

The Dynamic Dialogue Manager is informed by the Communications Manager of the 

instigation and termination of all application processes. It informs the Dynamic 

Presentation Manager of process termination in order that any associated on-screen 

interaction objects may be destroyed. 

4.4 Communications Manager 
The Communications Manager is responsible for all communication within the KBFE. 

The Communications Manager supports three categories of application: 

Networked: The KBM or application process runs on a different machine from the 

Harness and is connected to the Harness via a local area network or a packet-switched 

network. The file server for the remote application may not be mounted with the Harness. 



123 

Same Processor: The KBM or application runs on the same machine as the Harness, but 

in a different process. 

Same Process: The KBM or application runs in the same process as the Harness. It is not 

necessarily the case that all of a KBFE's applications would be in this category. 

The category of an application, as well as the underlying communications necessary to 

support that category, is transparent to the application. 

4.5 Interface Model 
The various components of the FOCUS architecture use the Communications Manager to 

pass messages. Messages destined for the end user are passed to the Physical 

presentation Layer via the Dynamic Dialogue Manager and the Dynamic Presentation 

Manager. The basic unit of end user interaction is the abstract interaction object. 

Prototypes of abstract interaction objects are defmed in the Presntation Knowledge Base. 

Each definition specifies the permissible contents and attributes of the object, together 

with information about their mapping to interaction primitives. 

When the Dynamic Dialogue Manager receives a message for the end user, it must decide 

whether or not to pass it on for immediate realisation. If the message is not to be passed 

immediately - ego because the screen is full or the user is already interacting with a 

complex object - it may be queued for later processing or discarded. The originating 

component may specify, within the message, which action should be taken and whether 

or not the originator should be informed. 

The Dynamic Presentation Manger receives the message and checks whether or not the 

abstract interaction objects referenced in it have already been displayed as physical, on­

screen objects. If so, the current state of the objects is modified to reflect the contents of 

the message - ego an attribute may change or the contents of a displayed field may be 

modified. If an abstract interaction object has not already been displayed, the Dynamic 

Presentation Manager extracts the relevant prototype definition from the Presentation 

Knowledge Base. The prototype definition always contains default values for all 

attributes of the object. These are replaced by any values contained within the message -

ie. the message need only specify variations from the default. The prototype definition 

may also specify the contents of an abstract interaction object - ego a frequently used text 

string. In this case, the contents parameter of the calling message may be empty. 

However, if it is not empty then it overrides the contents contained in the prototype 

definition. In general, the contents of an abstract interaction object will not be contained 

within the prototype definition and will be taken from the calling message. 



124 

When the prototype has been completed and/or modified using the contents of the 

message, it is passed to the Physical Presentation Layer for realisation. 

Initial releases of Harness Version 2 provide a small number of 'ready made' abstract 

interaction object prototypes. These include selection, question, query, panel, inform 

and hypertext objects. The range of prototype objects will be extendfed throughout the 

development period, using input from KBFE developers in the project who have built 

new objects for their own purposes. 

5. Conclusion 

The FOCUS project has developed an architecture and a set of prototype tools for the 

construction of KBFE's. A number of systems have been implemented as part of an 

evaluation exercise and, as a result, the architecture has been revised and extended. This 

has led to a number of interesting innovations involving the dynamic management of user­

computer interaction. In addition, the evaluation process has helped the consortium to 

identify preliminary exploitation routes for some interim results. 

Acknowledgements 

The work described was partly funded by the ESPRIT project 2620. An earlier versionof 

this paper was distributed at the ESPRIT Conference 1991 in ESPRIT: Information 

Processing Systems, Results and Progress of Selected Projects. 

References 

1. Bundy, A. (1984) Intelligent front ends. DAI Research Paper 227. Edinburgh 

University, UK. 

2. Branki, N.E., Edmonds, E.A., Dutron, Y., Govearts, B. and Cryer, C. (1991). 

KBFE developers' requirements for graphics. FOCUS Document 

FOCUS/LUTCHI/8/4.3-C. 

3. Edmonds, E.A. (1990) The emergence of the separable user interface. ICL Technical 

Journal. 7,1. pp 54-65. 



125 

4. Edmonds, E.A. and McDaid, E. (1990). An architecture for knowledge-based front 

ends. Knowledge Based Systems. 3,4. pp221-224. 

5. Edmonds, E.A. (editor). (1992). The Separable User Interface. Academic Press. 

6. Green, M. (1985) Report on dialogue specification tools. In Pfaff, G. (ed) User 

Interface Management Systems. Springer Verlag. pp 21-29. 

7 .. Mackinlay, 1. (1986) automating the design of graphical presentations of relational 

information. ACM Transactions on Graphics. 5, 2. pp 110-141. 

8. Murray, B. S., Edmonds, E. A. and Govaerts, B. (1991) An experimental 

knowledge-basedfront end developed using the FOCUS architecture. Internal report. 

LUTCH! Research Centre, Laughborough University of Technology, UK. 

9. Prat, A., Lares, J., Fletcher, P. and Catot, J. M. (1990) The back-end manager: an 

interface between a knowledge based front end and its application subsystems. 

Knowledge Based Systems. 3, 4. pp225-229. 

1O.Wolstenholme, D. E., O'Brien, C. M. and Nelder, J. A. (1988) GLIMPSE: a 

knowledge-based front end for statistical analysis. Knowledge Based Systems. 1,3. 

pp 173-178. 



H
A

R
N

E
S

S
 

P
R

E
S

E
N

T
A

T
IO

N
 

S
w

it
ch

 

r
-
-

-
J 

D
IA

L
O

G
U

E
 C

O
N

T
R

O
L

 

E
N

D
 U

SE
R

 
~
 

~
 

-
j 

In
te

rf
ac

e 

j 

K
N

O
W

L
E

D
G

E
-B

A
SE

D
 M

O
D

U
L

E
S 

F
ig

ur
e 

1.
 T

he
 v

er
si

on
 1

 K
B

FE
 a

rc
hi

te
ct

ur
e 

B
A

C
K

 E
N

D
 

M
A

N
A

G
E

R
 

B
A

C
K

 E
N

D
 

A
PP

L
IC

A
 n

O
N

 
SO

FI
W

A
R

E
 

SY
ST

EM
S 

- ~ 



H
A

R
N

E
S

S
 

P
hy

si
ca

l 
p

y
n

am
ic

 
D

yn
am

ic
 

P
re

se
nt

at
io

n 
P

re
se

nt
at

io
n 

D
ia

lo
gu

e 
L

ay
er

 
M

an
ag

er
 

M
an

ag
er

 

C
om

m
un

ic
at

io
ns

 
M

an
ag

er
 

K
N

O
W

L
E

D
G

E
-B

A
S

E
D

 M
O

D
U

L
E

S
 

F
ig

ur
e 

2.
 T

he
 v

er
si

on
 2

 K
B

FE
 a

rc
hi

te
ct

ur
e 

B
A

C
K

 E
N

D
 

M
A

N
A

G
E

R
 

-~
 

B
A

C
K

 E
N

D
 

A
P

P
L

IC
A

T
IO

N
 

S
O

fT
W

A
R

E
 

SY
ST

E
M

S 

N
 

-.
.J

 



II Tools 

The previous section of this volume was devoted to the abstract, to presenting useful 

software structures for the construction of interactive systems. This section, on the 

other hand, is firmly rooted in the concrete; every paper describes programs - software 

tools - which assist in the process of constructing the user interfaces to interactive 

systems. Apart from this similarity, the tools presented are very different from one 

another and represent a wide range of ways in which the complex tasks involved in 

designing and implementing user interfaces can be computer-assisted. 

The notion of tool used here must be distinguished from that of a user interface toolkit, 

such as the Macintosh Toolbox or the X widget toolkits. The latter are interaction 

libraries offering subroutines which create, configutre and activate a wide variety 

interaction objects such as windows, menus, editable text objects, dialgogue boxes and 

so on. While powerful, such toolkits demand that the user interface constructor be 

familiar with the structure and allowable parameters of these objects, as well as being a 

skilled programmer in some general-purpose programming language, such as C or 

Object Pascal, capable of ordering the subroutine calls correctly, adding the correct 

header files and supplying the necessary arguments in the proper form. Even the most 

trivial change in the interface specification requires changing the source code and hence 

recompiliation, necessitating a lengthy rebuilding process to generate the change in the 

working system. 

The tools described here, however, provide a higher level of assistance to the 

constructor by: 

• minimising the information the constructor must supply, 

lessening the knowledge the constructor must have of the implementation system, 

employing direct manipulation and visual programming techniques for 

specification, and 

allowing changes to be reflected immediately without time-consuming 

recompilation. 



130 

The particular mixture of these features, and the techniques by which they are offered, 

vary from one tool to another, and are dictated by the job the tool is intended to do. At 

one extreme, we may identify tools designed for non-programmers, usually to create 

prototypes for user-based evaluation; such tools are likely to emphasise design-time 

support, in the form of specification by supplying parameters or selecting from sets of 

alternative components or by visual programming, plus dynamic reconfigurability of 

the tool's product. The price for such support is paid for in limited alternatives (i.e., the 

"design space" may be restricted) and in lowered performance of the product system. 

At the other extreme are tools for generating fully-functioning, deliverable interactive 

systems, rather than just prototypes. These are tools designed mainly for programmers 

and no apologies are made for the fact that, at some point, the tool user will have to 

write code in some high-level programming language. The focus is on support for 

implementation, particularly by means of pre-existing collections of re-usable 

interactive object classes which are amenable to specialisation, facilities for defining 

new interactive objects or classes of such objects and for specifying the relationships 

among such objects. Although this distinction between design-heavy and 

implementation-heavy support is useful as a starting point in considering construction 

tools, actual tools seldom fall at either extreme. The tools described in this section all 

have features of both, with some systems like HyperNeWS providing a range of levels 

of support. 

The paper by Gray describes a system called Iconographer which enables a wide 

variety of iconic representations of computer-based data to be created using visual 

programming techniques. Support for the constructor is offered in several ways. First, 

the information required by the Iconographer system is designed to match closely the 

task of describing the representation, thus reducing the transformations necessary from 

a design-oriented to an implementation-oriented specification of the representation. 

Second, alternative representations are selectable from a set of "packaged" alternatives, 

thus focussing the specification on linking, by direct manipulation, of relevant pictorial 

attributes to the attributes of application data which are to be represented. Finally, the 

tool presents a visualisation of the top-level architecture of the run-time system, thus 

presenting the constructional task as one of "visually building the run-time system". 

The Iconographer system is able to reduce radically what the constructor must know 

and do to produce a working system by limiting the range of alternatives to 

combinations from fixed sets. Where the alternatives do not supply what is required, 

new alternatives must be programmed in the base implementation language, Smalltalk. 

The HyperNeWS system, described in the paper by Waite, deals with this trade-off 



131 

between specification freedom and implementational cost by offering a number of levels 

of abstraction, each instantiated in the HyperNeWS system by pre-defined but 

configurable objects. The objects at each level are defined in terms of those at the next 

lower level. A user interface constructor need only work at the lowest level necessary 

for the desired degree of specificational freedom. Objects to be incorporated in the final 

system are copied from pre-existing objects in other HyperNeWS applications and then 

configured by means of built-in interactive tools for modifying the location, size, 

appearance and other presentational and behavioural attributes. Where necessary, 

additional behavioural specialisation may be carried out by modifying or creating code 

in a specially designed scripting language. 

The system discussed by Hopkins and Wallis was designed by enable CBT courseware 

authors to build simulation-based training systems. It avoids the need for conventional 

programming skills by a judicious choice of pre-existing interactive objects called 

gadgets. Like HyperNeWS's objects, gadgets may be added to the target system by 

graphical manipUlation and attributes may be defined via selection from supplied 

alternative functions. The Hopkins and Wallis paper also provides an illuminating 

account of the results of testing a prototype version of the tool. 

XDesigner, like Iconographer and, to some extent, the Hopkins and Wallis system, 

visualises the underlying structure of the target run-time system (in this case an X 

widget-based interface) and uses this visualisation as the locus for specification, rather 

than using the appearance of the target system. Alistair George argues that such an 

architecture-centred specification provides advantages, particularly in terms of easy 

access to otherwise "invisible" aspects of the interface structure. 

The Sirius system described by Windsor is actually a framework for buiding object­

oriented interactive systems. In this case constructor assistance is afforded by the 

flexibility of the framework architecture rather than by any special-purpose 

configuration tools. The issues discussed in the paper address several of the themes in 

the Architectures section of this volume, such as separability of interface and 

application, inter-object communication mechanisms and flexible class hierarchies for 

interactive objects. Nevertheless, the value of the Sirius framework is exemplified in 

the Windsor paper by its use in building prototype interfaces to a demanding and 

distinctive application area, viz., air traffic control displays and consequently provides 

an illustration of the way in which a powerful and flexible architecture may itself be 

viewed as a tool for user interface construction in that the ease of configuration of the 

run-time system offers considerable constructional assistance. It should be noted that 



132 

this paper is considerably longer and more detailed than the other contributions in this 

volume; it was the opinion of the editors that the comprehensive description of the 

Sirius system offers the reader the rare opportunity to examine the fine details of a 

complex, object-oriented interactive system. 



Correspondence between Specification and 
Run-Time Architecture in a Design Support Tool 

Philip Gray 
Department of Computing Science 

University of Glasgow 

Abstract 

The Iconographer system is a tool for rapidly creating a wide variety of 

pictorial representations of computer-based data. It is intended to 

provide an environment in which designers of such representations may 

explore a variety of alternative design solutions. Its architecture, based 

on four basic structured components, may be viewed as corresponding 

to a designer-oriented view of the specification of representations. 

Furthermore, the design tools which Iconographer provides offer a 

visualisation of this architecture by means of which the design-oriented 

specification may be instantiated as a run-time system. These 

correspondences between specification and architecture offer a means of 

reducing the gulf between the designer's conception and the end-product 

which instantiates it. 

1 Introduction 
The Iconographer system, developed by the Innovative Iconic Interfaces Project at the 

University of Glasgow, is a VIsual programming system for the specification and 

instantiation of interactive visual representations of sets of computer-based data. 

Iconographer's users are, by intent, creators - designers - of iconic representations. 

The system has been variously described as an iconic interface prototyping tool [13], a 

data visualisation system [3], and a data modelling tool, but whatever its particular 

application, Iconographer offers its users the ability to build and modify descriptions -

specifications - of visual representations en route to instantiating them. 

Iconographer's architecture (its modularisation into components with specific functional 

roles) is, like the architecture of any system, the result of a diverse collection of system 



134 

requirements, including functionality, usability, and perfonnance. But central to the 

architecture are the demands placed upon the system by the nature of the tasks its users 

will perfonn. Iconographer's architecture corresponds closely to a characterisation of 

the task of describing a representation. For each identifiable part of the specification of 

the design, there exists a component in the architecture which implements it. That is, 

the architecture of the system is homomorphic with a model of design of the products 

of that system. This similarity offers important advantages to a designer of 

representations. First, it minimises the "distance" from the designer's 

conceptualisation, or abstract description, of the artefact to the system-significant 

description required for a specification. Second, each component in the system 

architecture provides a locus of configuration; design-time tools can be developed 

which are associated with each run-time component, allowing a designer to select from 

alternative components or to supply parameters to an existing component. The support 

offered to the designer by such tools is made much simpler to implement by the match 

between subtasks in the design task process and components in the architecture. 

Iconographer is not entirely alone in displaying this relationship between specification 

and architecture. In general, design tools, and the run-time systems which they 

produce, can be measured with respect to the degrees of correspondence which exist 

between the conceptualisations of designers, the specification language as expressed by 

the tools, and the run-time architecture. In Section 2, the correspondence between 

architecture and specification will be examined in more detail. Section 3 presents 

Iconographer's architecture from a designer's point of view, identifying a novel 

component which has been added to the Iconographer architecture for reasons of design 

support. Finally, Section 4 considers the visual programming facilities we have added 

to the components as a further aid to design. 

2 The Gulfs of Design and Implementation 
To discuss the relationship of system architecture to designer support in user interface 

or data visualisation construction tools, there are several features of such systems 

which must be identified. The ultimate product of the use of such tools is definable in 

tenns of system output, viewed in the broadest sense. An Iconographer user aims to 

produce perceivable representations of computer-based data, i.e., perceivable system 

output, perhaps persistent and perhaps changing over time. In the case of user interface 

construction tools, the tool product must also include reference to system behaviour as 

a result of user-generated input. 



135 

Although the product as defined above is abstract, it entails the production of an 

artifact, a run-time system which is capable of generating the product The product may 

be thought of as the primary aim of the tool user, while creating the run-time system is 

the secondary aim. 

For both product and run-time system one can identify descriptions, or specifications, 

which serve as the source and/or justification of actions on the part of the tool user. A 

design-oriented specification is a description of the product; it may be capable of being 

satisfied by a number of different run-time systems. It is often the way the designer 

conceives of the run-time system. The implementational specification consists of the 

information required to be passed to the construction tool(s) in order to produce the 

run-time system; it determines the way the run-time system must be specified in order 

to be implemented. 

design-oriented 
specification ~ ......... __ 

I implementational 

design distance 

I speci1ication 

I ~~ .. - implementation 
distance 

run-time system 

I 

t.. ~ 
_ ~ product 

Figure 1 Design and Implementation Gaps 

The relationship among user aims and types of specification is shown in figure 1. 

Given that a successfully produced run-time system produces the desired product by 

definition, the important issue for a construction tool is the way it lessens 

the gaps between (i) the two types of specification and (ii) the 

implementational specification and the run-time system. These gaps are 

instances of semantic and articulatory distances [5] as applied to system design and 

implementation. The design distance refers to the transformations necessary to change a 

design-oriented specification (e.g., "a pop-up menu with three items arranged 

vertically") into an implementational specification (e.g., "a form widget containing three 

command widgets, with appropriate layout constraints"). The implementation distance 

refers to the user actions necessary to generate the run-time system from the 

implementational specification (e.g., writing some C code using X toolkit functions or 

perhaps using an X widget builder). 



136 

2.1 The Relationship of System Architecture to the Gulf of 
Design 

One way of reducing the design distance is to derive the architecture of the run-time 

system from the structure of the design-oriented specification of the product. The 

architecture of a system is a description of that system in terms of the separate 

components which comprise it. the functions of those components and the relationships 

among them. An implementational specification can be (indeed usually is) 

homomorphic with the system architecture, thus, if there is a similarity between the 

design-oriented specification and the system architecture, the gulf of design will be 

reduced since no structural transformation is needed from the designer's description to 

the implementational specification. 

2.2 Design-Architecture Correspondence in the Seeheim 
Model 

A good example of such a correspondence between design-oriented specification and 

architecture is provided by the Seeheim model of interactive systems [10]. The Seeheim 

model, one of the earliest attempts at an abstract model of interactive system 

architecture, identified three basic user interface components (a fourth component, the 

bypass pipeline, will be discussed below): 

• the presentation system, which handles the capture of input from physical input 

devices and the generation of (graphical) output on physical output devices, 

the dialogue control system, which handles the recognition of system­

significant sequences of user actions (i.e., commands), and 

the application interface model, which provides an abstraction of the application 

functionality in terms of a set of commands and their parameters (or objects and 

actions). 

According to the Seeheim model, these components are connected to allow a single 

(possibly two-way) data-flow as shown in figure 2. 

Presentation 
System 

Bypass Pipeline 

Figure 2 The Seeheim Model 



137 

The Seeheim architecture corresponds to a linguistic model of user-computer interaction 

[2]. According to this model, a user-computer interface can be viewed as a language via 

which users communicate commands to the application and the application 

communicates task-relevant information to the user. It follows that the outcome of a 

user interface design, then, is a language. 

From this view of interaction follows both a structure/or design-oriented specification 

and a logical model 0/ design. The logical design model is a simple design task 

analysis, identifying the categories of design decision which must be taken when 

specifying a user interface and the relationships among and constraints upon those 

decisions. The features of this model of design are based on the methods of design and 

implementation of formal languages already exploited in a number of computing 

domains. According to this model, designers of user interfaces must decide on the 

semantics, syntax and lexical properties of the interface, in that order [8]. Furthermore, 

decisions at one level are taken to be independent of decisions at a lower level. The 

design model establishes the design space in which user interface design takes place 

and provides a structure for that space. 

The close correspondence between the linguistic model of user interfaces, and interface 

design, on the one hand, and the Seeheim UI model on the other, lies in the 

identification of each of the three Seeheim components with one of the three 

components of a (formal) language specifying the interface, and with one of the three 

phases of language design. The run-time system is an interpreter for this language of 

interaction. User interface design tools are then based on language-generation tools, 

such as compiler-compilers for automatic interface construction and syntax diagram 

editors for graphical specification of dialogue control. The success of the Seeheim 

architecture, and its continuing life well beyond its "sell-by date",lies in the power of 

the linguistic model of interaction within its restricted domain of application and the 

existence of well-understood techniques for the design and implementation of formal 

languages.! 

It may be conjectured that the Seeheim model also retains its currency simply because it 

identifies three general categories of design decision which must be taken in specifying an 

interface: appearance, behaviour and application semantics. Viewed in this most general way, 

the Seeheim model is universally applicable, but uninfonnative about how the decisions are 

related or how an architecture can be constructed to support them. 



138 

The main problem, of course, is that while suitable for simple, command language­

based interfaces, the linguistic model does not capture in a simple and intuitive way 

important characteristics of modern highly-interactive graphical user interfaces such as 

the persistent nature of graphical objects (the lexical tokens) and the existence of 

interleaved dialogues and fine-grained semantic feedback [2]. It also fails to 

acknowledge relationships among design decisions which demand a degree of bottom­

up design [1]. Naturally, the Seeheim model has been accused, rightly, of suffering 

from the same (or equivalent) defects [11]. 

As was mentioned above, a fourth component, a data bypass pipeline, existed in early 

descriptions of the model, to allow for the application to communicate directly with the 

presentation system, for example, to allow for real-time updating of the display with 

minimum performance costs. This component has been the source of considerable 

controversy and confusion [4,15]. Often it does not appear explicitly in some versions 

the model at all [6]. Given that its existence is due to performance considerations, it is 

clearly not part of a design-oriented specification and thus is required to be added when 

transforming the design to the implementational specification. It appears likely that the 

added distance between design and implementational specification which it introduces 

has made it, and the architecture which includes it, less acceptable than the simplified 

three-component Seeheim model.2 

It is not my aim to argue for, or against, the linguistic model of interaction or the 

Seeheim architectural model. It is important to note, however, that the defects described 

above do not arise because of a mismatch between the model of design and the 

architecture. As we have noted, the match between design and implementation is quite 

close. For certain classes of interface - command-languages especially as well as certain 

highly sequential menu and form-based interfaces - Seeheim-based user interface 

management systems perform well. The problem lies in the applicability of the model 

and hence the usefulness of the architecture. 

2 A modified four-component model based on the original Seeheim model re-introduces the 

pipeline, but with a different function [4]. This architecture appears not to widen the design 

gulf, but rather increases the usefulness of the basic Seeheim model for a wider class of 

products. 



139 

2.3 The Relationship of System Architecture to the Gulf of 
Implementation 

The implementational specification (see section 2.1) refers to what must be specified in 

order to produce a run-time system. Under this interpretation, an implementational 

specification is to be distinguished from a full description of the run-time system. What 

must be specified depends upon the construction tools being used. Thus, many tools 

supply default values for a number of system properties. Others undertake inferences 

from user-supplied input to generate parts of the specification automatically. 

Thus, although there is likely to be a correspondence between run-time architecture and 

the implementational specification, the nature and degree of the relationship may vary 

considerably from one system and construction tool to another. Tools for building 

early UIMSs [7, 14] often provide a tool or set of tools focused on the specification of 

the dialogue control, with interactive graphical construction of the transition network 

representing dialogue control structure. One architectural component, the dialogue 

control system, is treated as central to the specification, with specification of 

presentation and application functionality treated as part of the task of specifying control 

(viz., labelling arcs with input events and application functions to be called when 

traversing the arc). 

A second specification technique, in which presentation is central, is to work with a 

representation of the product itself, rather than a representation of the run-time system 

architecture. Examples are Hypercard™, NeXTTM Interface Builder, and most X 

Window System widget builders and systems like Garnet which employ rule-based 

inference to generate a specification from examples supplied by the user. Construction 

proceeds by selecting template interactive objects and placing them in the window 

which stands for the product of the final run-time system. Further specification of these 

objects is carried out by supplying parameters for configuring appearance and 

behaviour or even by writing code. Run-time system architecture is visible in these 

systems in that the objects on the tool's display (the objects which the user manipulates) 

stand for components in the run-time system. 

3 A Design-Centred View of Iconographer 
As mentioned above, Iconographer is a visual programming system for the 

specification and instantiation of interactive visual representations of sets of computer­

based data. In this section I shall consider the relationships among design-oriented 

specification of representations, the creation of such representations in Iconographer 

and Iconographer's architecture. 



140 

For a fuller description of the Iconographer system, the reader is referred to [13]. 

3.1 Designing Representations in Iconographer 

An i.conic display in Iconographer may be thought of as the result of a function taking 

as arguments an application universe, an iconic universe and a set of functionally 

defmed links between application attributes and iconic attributes. Thus, creating an 

iconic display consists of specifying: 

• an application universe 

• an iconic universe 

• a set of application attribute - iconic attribute links, and 

• a display medium. 

Figure 3 A typical Iconographer display 

Figure 3 shows a typical Iconographer-generated display, in this case a representation 

of the contents of a file directory. The display has been specified such that: 

• each icon is labelled by the name of the directory or file it represents and 

the size of the icon corresponds to the size of the represented file. 

The display medium in this case is a bitmapped screen. The application universe 

consists of a set of files, each possessing a name attribute and a size attribute, perhaps 

along with other attributes such as read-write permissions, creation date, and so on, not 

currently indicated by the icons. The iconic universe consists of a set of entities each 

possessing a label attribute and a size attribute. The links are quite simple: file names 

are mapped onto the strings defining icon labels and file size is mapped onto icon size 

using a simple arithmetic conversion function. Icons are a privileged set of entities in 

that, when presented to a display surface, they are capable of being rendered on the 



141 

display such that visible properties of the rendered images correspond to the (abstract) 

attributes of the icons. 

From the point of view of a designer using Iconographer, then, the task of creating a 

representation consists of four major subtasks. Specifying an application universe and 

specifying an iconic universe are independent of one another, but both tasks clearly 

must be completed before the inter-universe links can be created. Furthermore, the 

choice of a display surface affects the choices which may be made in the iconic 

universe, since different display media are capable of displaying different types of 

iconic entity. The entire task may be thought of as creating the run-time system which 

generates the representation. 

3.2 Iconographer's Architecture 

Iconographer has a four-component architecture. Each of the components corresponds 

to one of the representation specification subtasks discussed in the previous section. 

Figure 4 shows this overall architecture. 

Iconic Universe 

(g ~ Picture Adaptor 

Figure 4 Overall Iconographer Architecture 

The application universe corresponds to the Seeheim's application interface model and 

presents an abstract description of the application. Presentation and behaviour are 

combined in the iconic universe component, similar to interactive object architectures 

such as the widget architecture of the X window system, although low-level device 

dependencies are separated out into the separate picture adaptor component Finally, the 

switchboard handles inter-universe linkage. 

In the remainder of this !?ection, each component will be examined in greater detail, 

focusing on the method of specification supported. The correspondence between 

designer-oriented specification and architecture is reflected in the nature of an 

implementational specification, thus reducing the gulf of design. 



142 

3.2.1 Specirying the Application Universe 

Application universe specification is perfonned by selecting one of a set of pre-defined 

object adaptors, as shown in figure 5. These produce a representation of the application 

data as a set of tuples of attributes, where each attribute is a named Iconographer data­

type. For example, the flle named 'interact. txt' would be represented by: 

< name='interacttxt', size=76, type=flle, readable?=true, writeable?=true > 

Primitive attributes include textual, discrete (enumerated set) and continuous types. 

Thus, 'name' in the above example is a textual attribute. Further user-defined attributes 

may be defmed from these by the use of compositional operations. 

r 
""' 

t' 
Application Universe 

Switchboard 
application 

<E-entities Object ~ ~ Adaptor 

Figure 5 The Application Universe 

Once selected, an application universe can be modified by additional operations, 

including: 

a fllter (shown in figure 5), which enables objects to be removed from the final 

universe, based on expressions over application attributes, and (not shown in figure 

5) 
a merger, which allows two universes to be combined. and 

a summary operator, which generates a new universe with a single object 

possessing quantitative information about the original universe. 

3.2.2 Specifying the Iconic Universe 

The iconic universe, shown in figure 6, is specified by selecting: 

• an icon type, called an icon generator, 

• a spatial layout policy, called a compositor, and 

one or more relationship handlers. 



143 

Iconic Universe 
• labelloo 

rectang les 
• documents loon 

• faces Generator I' 
• spirals 

~ • animatoo 
rectangles 

Compositor ..... Switchboard 
• grid -• 20 layout 

lJ' • connected 
• simple tree Relationship I 

Handler 

Figure 6 The Iconic Universe 

This triple defines the set of attributes which all icons will possess and, given a display 

medium, determines the effect of attribute values on display generation. A number of 

icon generators and compositors have been produced. Currently implemented icon 

generators include: 

a simple rectangular icon (shown in figure 3) with textual label, height, width, 

internal and border colour attributes and 

a face icon with eye direction, hair colour, lip configuration as attributes 

a stationery icon, in which the internal image stands for the document type, depth 

(thickness) indicates size and colour represents age. 

Compositors available include: 

• a simple gridded layout (used in figure 3), 

• a 20 Cartesian coordinate system, 

• a tree layout 

Of these, the grid layout automatically places icons in a pre-selected position in a tabular 

format on the display, while the 2D layout allows position on the X and/or Y axes to be 

determined by the value of some attribute of a related application entity. 

The task model underlying this structure is one of "select from list". We have found 

this to be suitable for the specification of a wide range of presentations, although it is 

clearly not universal. First, compared to other systems, the primitives (viz., the icon 

generator, the compositor and the relationship handler) offer only coarse control over 

the specification. Second, the assumption of independence of selections cannot be 

sustained. Choosing layout based on containment, for example, will have ramifications 

for the selection of an icon generator, viz., it must be one which supports containment 



144 

However, we have intentionally kept this design task simple (and the component which 

corresponds to that design task) in order to focus on the next (sub )task, that of linking 

the application and iconic universes. 

3.2.3 Creating a Representation: Connecting the Universes 

Finally, links between the two universes are held in a component called a Switchboard. 

These links enable attribute values of icons to be generated as a function of application 

entity attributes. Each link has its own function, which may be supplied by the 

designer, if desired, although a default function is supplied when a link is created. 

Where the application and icon attributes are of different types, type conversion must 

take place; default functions carry out such type coercion automatically. 

3.2.4 Viewing the Display 

Once complete, a representation may be viewed via one of a set of picture adaptors. 

Each of these serves to render the (abstract) set of icons onto the display. The selection 

of a picture adaptor can affect the types of icon available, since some icon types can 

only be displayed by appropriate picture adaptors. 

3.3 The Switchboard: Promoting an Interface to a 
Component 

In other interactive system architectures, the connection between the application (or 

application interface model if one is present) and the rest of the user interface is not a 

separate component. The routines which handle communication of data between the 

components reside in one of the components. This means that to change the mapping 

requires a change to one or the other of the communicating components. Given a 

presentation and/or structure and an application model, the designer cannot change the 

mapping from one to the other without making a change to them. In many cases, this is 

not a problem, but where the mapping itself is (one of) the primary areas of design 

decision, then there is good reason to promote the interface between the two 

components into a separate component. This is the policy taken in the Iconographer 

system. 

In the Seeheim architecture, the feature which corresponds to the switchboard's role is 

the interface between the Application Interface Model and the Dialogue Control 

component, represented in Seeheim as a connecting line (an interface) rather than as a 

box (a component). By promoting this interface to a component, (as shown in figure 7) 

Iconographer acknowledges that the interface between the Application Interface Model 



145 

and the rest of the system must be configurable. One wants a designer to be able to 

attach different views onto the same application model and, indeed, to try out 

representationally similar presentations of different application data. The switchboard 

makes these associations explicit so that they may be described abstractly. 

SwHcl1board 

Application 
Interface 
(Model) 

interface promoted 
to component 

Application 
Interface 
(Model) 

Figure 7 Promoting the Application Model interface to component status 

4 Iconographer: Visualising the Run-Time System 
Iconographer is a fully integrated design and run-time system. That is, the interactive 

tools by which an implementational specification can be input are part of the same 

system which generates the iconic representations which are the ultimate product of the 

system. For each of the four components of the run-time system architecture, there 

exists one or more tools by which those components may be specified. The generative 

principle underlying the design of these tools is that an Iconographer user is building 

the run-time system by means of a visual representation of the architecture. 

The simplest expression of this principle occurs in the specification of the object 

adaptor and the subcomponents of the iconic universe. In all these cases, the user 

selects a pre-exiting component from a menu of available alternatives. The selected 

component becomes part of the run-time system. This technique has worked reasonably 

well for a wide variety of applications and representations. However, research is 

currently underway to expand the degree of freedom the user has in creating these 

components via more flexible visual programming techniques. More novel is the way in 

which Iconographer's architecture is exploited in the top level representation and in the 

switchboard configuration. 



146 

4.1 The Top-Level View 

The fact that the output of a specification task is a component of the architecture means 

that one can represent the specification task visually by means of a diagram of the 

architecture itself. Not only is specifying the system a matter of building the system; 

this interactively specifiable architectural diagram lets one see that it is. 

The top-level view in the Iconographer designer's interface is a window in which the 

run-time system is built. Each architectural component is represented by an icon and 

may be selected from a "warehouse" of components. Once placed in the central 

window, these icons may be connected together via lines which represent the legal 

dataflows in the system. 

Figure 8 An Iconographer Top Level View 

Figure 8 shows a typical result of such building. On the left-hand side of the display is 

an icon representing an object adaptor. It is linked to a filter and to a switchboard. The 

filter component is itself attached to another switchboard. Each switchboard is in turn 

connected to a bitmap display picture adaptor. Links between components are labelled 

with the number of entities, application or iconic, which flow to the destination 

component. Selection of the filter and switchboard icons will open visual programming 

tools which allow the components to be configured. The picture adaptor icon can be 

selected to open up a window in which the iconic representation is displayed. 

Note that there may be multiple instances of the components, allowing multiple views 

onto an application model or even iconic representations of the model at several points 



147 

in its development. Furthennore, the fundamental interaction techniques presented in 

this top-level view - selection and connection - are employed throughout the tools, thus 

providing a consistency of style. 

There are, however, two respects in which this top-level view does not correspond to 

the architectural model presented earlier. First, there is no representation of a single 

application universe component. Given the data flow model of the application, it is 

reasonable to consider the output from any object adaptor, filter or merger as a legal 

application model. There is no single application model (as is typical with many user 

interface management systems) but potentially as many as the designer wishes to 

select/program, each available for viewing by attaching a switchboard onto the output 

of any appropriate component. 

Second, there is no representation at all of the Iconic Universe component. As we shall 

see when examining the switchboard's visual representation, the Iconic Universe 

specification tools are attached to a switchboard. The reasons for this approach are 

discussed in the next section. 

4.2 The Switchboard: Visnalising the Inter-Universe Links 

The switchboard construction tool is the means by which the links from application 

attributes to iconic attributes are specified. Since the switchboard will automatically 

generate a function which maps from the source to the destination attribute, the user's 

basic task is to identify an application attribute to be represented and an iconic attribute 

which will do the representing. The switchboard specification tool visualises this task 

in terms of drawing physical links between representations of the attributes. 

In the switchboard shown in figure 9, the labelled rectangles on the left-hand side stand 

for the attributes of entities in the application universe (in this case information about 

machines in a local area network) while the rectangles on the right-hand side represent 

the attributes of icons (faces have been specified).3 Where the types of attribute on both 

sides of the switchboard are the same, the link is shown as a single uninterrupted line 

and is created by dragging a rubber-band line from an attribute icon to one on the other 

side. Where a type conversion is necessary, Iconographer will automatically add it, 

3 In all diagrams of Iconographer architecture shown up to this point, the application universe is 

shown on the right and the iconic universe on the left. to allow comparison with the Seeheim 

architecture. However. the switchboard visualisation employed in the actual software uses the 

reverse arrangement 



148 

signalling this fact by placing an additional rectangle, labeled with the function name, 

on the attribute link. Function editors are available by which the Iconographer­

generated functions can be modified by the user. Additionally, new attributes may be 

created via an attribute building tool. 

Application 
Universe 

Machine Name. 

Switchboard 
Iconic 

Relate .fr-__ +.-:-:-~~-:---"1.. Universe 

Figure 9 The Visualisation of the Switchboard 

As mentioned in the previous section, the iconic universe is specified by selecting from 

lists of pre-existing icon generators, compositors and relationship handlers, much as 

the object adaptor is specified. However, rather than being performed at the top level, 

these lists are attached as menus to the switchboard window. This asymmetry between 

the way the application universe and the iconic universe are treated has arisen for 

reasons of expediency in design. That is, our first attempt at a visual representation of 

the implementational specification treated choice of iconic universe as part of the same 

overall task of which switchboard configuration was a part. However, an alternative 

approach is being explored which will decouple iconic universe specification from the 

switchboard and treat it symmetrically with application universe specification. 

5 Conclusion 
Iconographer illustrates two ways in which the architecture of the run-time system can 

be related to the specification process. First, the architecture itself corresponds closely 

to the stTUcture4Pf the task of producing a design-oriented description of the final 

product of the system. Second, implementational specification takes place via a 

visualisation of the architecture. I believe this combination of correspondences leads to 

a considerable diminution of the design and specification gulfs. And since the tools are 

fully integrated with the run-time system itself, the result is a representation 



149 

construction tool by which radically different iconic representations can be produced in 

a matter of lIeconds. 

The Iconographer system is still under development. Recently, Iconographer's icons 

have been made sensitive to user input, allowing a user to interact with the end-product 

iconic display in order to communicate with the application [12]. Also, the application 

universe is being modified to allow more expressive application models to be 

incorporated. Both of these developments will necessitate changes to the architecture 

and new visual programming tools to be produced. In both cases, however, the 

specification-architecture-tool correspondences will remain an underlying design 

principle of the system. 

Acknowledgements 

The Innovative Iconic Interfaces Project, which has produced the Iconographer system, 

is funded by SERC grant GRJF 67129. I wish to thank my colleagues in the Innovative 

Iconic Interfaces project, Dr. Kevin Waite and Dr. Steve Draper. Kevin and Steve are 

responsible for many of the design ideas discussed in this paper and Kevin is solely 

responsible for Iconographer's implementation. I also wish to thank Steve, Kevin, Dr. 

David England and Dr. Roger Took for their many many constructive comments on an 

earlier draft of this paper. 

References 

[1] William Buxton. Lexical and Pragmatic Considerations of Input Structures. 

ACM Computer Graphics (January '83). pp. 31-36. 

[2] J. Coutaz. Architectural Models for Interactive Software : Failures and Trends. 

In G. Cockton, ed., Engineering for Human-Computer Interaction, North­

Holland, 1990. pp. 137-151. 

[3] S.W. Draper and K.W. Waite. Iconographer as a visual programming system. 

In D. Diaper and N. Hammond, eds., People and Computers VI, Cambridge 

University Press, 1991. pp. 171-185. 

[4] E. Edmonds and Hagiwara, N. An Experiment in Interactive Architectures. In 

Proceedings ofInteract '90, North-Holland, 1990. pp. 601-606. 



150 

[5] Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. Direct 

Manipulaton Interfaces. In Norman & Draper, eds., User Centered System 

Design, Lawrence Erlbaum, 1986. pp. 87-124. 

[6] Scott Hudson. UlMS Support for Direct Manipulation Interfaces. ACM 

Computer Graphics 21,2 (April '87). pp. 120-124. 

[7] Robert J.K. Jacob. A state transition diagram languagefor visual programming. 

IEEE Computer (August '85), pp. 51-59. 

[8] Tom Moran. The Command Language Grammar: A Representation of the User 

Interface of Interactive Computer Systems. IJMMS 15 (1981), pp. 30-50. 

[9] Brad A. Myers, Dario A. Giuse, Roger B. Cannenberg, Brad Vander Zanden, 

David S. Kosbie, Edward Pervin, Andrew Mickish, and Philippe Marchal. 

Garnet: Comprehensive Support for Graphical, Highly Interactive User 

Interfaces. IEEE Computer (November '90). pp. 71-85. 

[10] Gunther Pfaff, ed. Proc. of the Workshop on User Interface Management 

Systems. Seeheim, Nov. 1983. Springer-Verlag, 1985. 

[11] Roger Took. The Active Medium: A Conceptual and Practical Architecturefor 

Direct Manipulation. In D. Diaper and N. Hammond, eds., People and 

Computers VI, Cambridge University Press, 1991. pp. 249-264. 

[12] Kevin Waite and Stephen Draper. User Input to Iconographer. In D. Diaper and 

N. Hammond, eds., People and Computers VI, Cambridge University Press, 

1991. pp. 187-198. 

[13] K.W. Waite, S.W. Draper and P.D. Gray. Iconographer: A Tool for Rapidly 

Configuring Interactive Iconic Representations. Submitted to ACM 

Transactions on Information Systems, October, 1991. 

[14] Anthony I. Wasserman. Extending State Transition Diagrams for the 

Specification of Human-Computer Interaction. IEEE Trans. Software 

Engineering 11,8 (1985). pp. 699-713. 

[15] Catherine A Wood and Philip D. Gray. User Interface-Application 

Communication in the Chimera UlMS. Software: Practice & Experience, 1992, 

to appear. 



Incorporating an Incremental Learning 
Model in the Design of HyperNeWS2.0 

Cathy Waite 
The Turing Institute 

36 North Hanover Street 
Glasgow, Scotland 

Abstract 

One of the main aims for environments which support the design and 
execution of graphical interfaces is to support the specification of inter­
faces without having to resort to low-level programming. However. it 
is also desirable to be able to support a wide range of interfaces, which 
requires a general, powerful specification technique such as the use of 
programming languages. This paper discusses an attempt to address 
this contradiction in the design of HyperNeWS 2.0, an object-oriented 
environment which supports rapid-proto typing of graphical user inter­
faces. 

1 Introduction 

HyperNeWS is an object-oriented environment which supports interactive rapid 
prototyping of graphical user interfaces. It can be used both for the design and 
implementation of user interfaces, allowing links to applications written in C, 
Lisp, Prolog or PostScript. HyperNeWS runs under OpenWindows on Sun 
workstations using the NeWS server, and is written in PostScript, a powerful 
page description language. Interfaces are designed within HyperNeWS by copy­
ing existing objects, and then specialising their presentation and behaviours by 
changing pre-defined attributes, or adding new ones by defining small programs 
called scripts. 

As part of a collaborative research project with Sun Microsystems, Hyper­
NeWS is currently being redesigned. The design for HyperNeWS 2.0 is almost 
complete, and has been partly implemented. An important goal of the new 
design was to provide an incremental learning model, that would ease users into 
employing the full power of HyperNeWS. To achieve this, and to improve the 
structure of interfaces designed using HyperNeWS, the architecture of objects 
within HyperNeWS had to be re-structured. This paper will discuss how, 
by focusing on the implementation and presentation of objects within Hyper­
NeWS, many improvements have been made to the architecture of HyperNeWS 
- generalising the control structures, and thus increasing the range of interfaces 
possible - while at the same time improving the interface to HyperNeWS itself, 
thereby making it easier to use. 



152 

1.1 Requirements of the Design 

A preliminary design document set out the requirements for HyperNeWS 2.0 
[13]. These requirements are summarised below. The first aim was to maintain 
the essential features of HyperNeWS 1.4 [7, 8], these were identified as: 

• reduce the learning curve, 

• support a wide range of interfaces, and 

- the integration of graphics into the user interface by the provision 
of an on-line graphical editor; 

- direct manipulation of user interface components; 

- separation of the user interface and application; 

- persistence of user interface; 

- the ability to program the dialogue. 

In addition, HyperNeWS 2.0 has been extended to support: 

• OPENLOOK compliant user interfaces [5, 6] by integration with the Sun's 
NeWS toolkit that provides OPENLOOK components (TNT); 

• a generalised container hierarchy, providing improved control structures; 

• dynamic control over object attributes through the use of scope variables; 

• use of a C-like scripting language, PdB. 

The two requirements, reducing the learning curve and supporting a wide 
range of interfaces, could be seen as being contradictory. Attempts to reduce 
the learning curve for interface specification usually result in a high level spec­
ification technique being adopted, which although is easier to use, generally 
results in a smaller ranger of interfaces (or design space) which can be specified 
using that technique. In an attempt to address this contradiction, the design for 
HyperNeWS 2.0 1 incorporated several specification techniques, ranging from 
high-level direct manipulation to low-level programming. Although the design 
space at the higher levels is restricted, the lower levels provide for a diversity 
of interfaces. The result is an easy to use interface design environment, which 
provides the flexibility to construct a wide range of interfaces. This paper will 
briefly cover the structure of the objects, and then will concentrate on the 
learning model such a structure affords. 

2 The Structure of HyperNeWS Objects 

Interfaces constructed using HyperNeWS are built from communicating ob­
jects. The representation of these objects defines what the interface looks like, 
whilst their behaviour defines the dynamic aspects of the interface. A full dis­
cussion of HyperNeWS objects can be found in Niblett [9]. Every object within 
HyperNeWS is a kind of container. A container is an object which may contain 

1 From now on all references in this paper to HyperNeWS will refer to HyperNeWS 2.0 



153 

Figure 1: An Example HyperNeWS 2.0 Interface 

other objects, its members. As each container can also be a member of another 
container (its parent), a container hierarchy is formed, which determines the 
run-time structure of HyperNeWS interfaces. Although powerful, the container 
model is very abstract, and thus difficult for new users to understand and use 
effectively. To provide a more concrete model, several specialised containers 
have been provided which can be used to simulate the stack/background/card 
model used by earlier versions of HyperNeWS and also by HyperCard [1]. Using 
these pre-defined containers it is also possible to create OPEN LOOK complaint 
interfaces (see Figure 1). These pre-defined containers are provided as concrete 
examples only; using them as templates it is possible to implement a wide va­
riety of interfaces, perhaps conforming to other interface standards, such as 
Motif [10]. 

The pre-defined containers include windows (which will always be at the 
root of the container hierarchy) which have layouts as their members. Lay­
outs are analogous to cards. Only one layout is visible at a time, with the 
window controlling which one it is. There is also a special layout called the 
window layout. This is always visible behind the other layouts (analogous to 
backgrounds), and is used to hold controls which must always be visible, such 
as Quit buttons. The pre-defined class hierarchy is shown in Figure 2. 

The layouts can have groups or controls as their members. Controls are 
the main objects with which the user interacts and include buttons, sliders, 
textfields, scrollable choices, menus etc. The groups can be used to display 
related components together, using placement policies to dictate how the mem­
bers should be arranged within the group (e.g. left-to-right, or top-to-bottom). 

These placement policies ensure that if the group is resized (or if the group's 
parent is resized), the members of the group will maintain the correct relative 
position. Groups can also be used to form a focus of control over related objects 
by adding new behaviour to the group which controls the members of the group. 
For example, to implement radio buttons, a group would be created with the 



154 

Figure 2: The HyperNeWS Template Class Hierarchy 

radio buttons themselves as the members of the group. The behaviour of the 
group would then be specialised to control the radio buttons, ensuring only one 
radio button is selected at a time. This specialisation results in a new class, a 
radio button group class. 

The interface in Figure 1 has been expanded to show its container hierarchy 
in Figure 3. Previous versions of HyperNeWS (together with other common 
user interface design environments) had a fixed run-time hierarchy, the basic 
groups being stacks, backgrounds, cards. This means that all controls (i.e. 
buttons, textfields), have to be members of a card or a background. There 
is no grouping of related objects. If the text editor example (Figure 1) was 
implemented in a fixed, two level hierarchy (like HyperNeWS 1.4), then its 
structure would look like Figure 4. This is obviously a poorer control structure 
as there is no way of grouping objects together and ensuring they stay together, 
or imposing some locus of control over a set of objects (such as a group of radio 
buttons). A flat structure results, with all behaviour written into the card. If 
a second group or radio-buttons were to be added, the same behaviour would 
need to be written into the card a second time, rather than just add another 
instance of the radio-button group class. 

2.1 Message Passing 

The container hierarchy also defines the way messages are passed between ob­
jects in an interface. It is possible to send messages to explicitly named objects. 
However, if a message is sent to an object such as a button, and the button can­
not handle it , the message is passed on to the button's parent in the container 
hierarchy, who may in turn pass the message on to its parent (see Figure 5). 
Thus by inserting groups in the hierarchy it is possible to change the perceived 
behaviour of members of the groups, by intercepting messages as they pass up 
the hierarchy. 

HyperNeWS supports the notion of unreliable messages. When an unreliable 
message is used, if the message is not handled, no error is raised. This allows 
for a form of incomplete specification. An object may send messages to another 
object not yet implemented, and these messages will be ignored. The message 
passing in HyperNeWS affords a degree of anonymity. Objects do not know 



155 

who eventually handles the messages they send. 
This anonymity allows for flexibility when prototyping applications, as IS 

discussed below. 

2.2 Interface-Application Communication and Separation 

An optional client, or application, can be inserted at any point in the message 
hierarchy. 

As well as sending messages between HyperNeWS objects, it is possible 

~ - - --------------- -

(Fil·e· ..... ") 

(~;) 

f.~) 

('Fiiid·· · ·i· ~ 
.. f 

TIilItU'lR!*ot,_ ~ 
lUI hili. III no! a wry goocI ~ 
_lIltld_b"tIII : 

-'~--' I (·s···· l 
18 ' 

10 I 
I 12 : 

IfEl 
i 18 1 24 

136 i 
48 i 

! 72 1 

Figure 3: The Container Hierarchy for Figure 1 

i ltXl~ 
i lUCI~.'-eo.o 
: ltXl~nS-1Q11C 
: ltXl~s·eo.OIU.IIC 
i ~Ive'lca 
! (~~!~!!.9.':.IIC!II! ........... i 
: ~lve'l«IllOIJque 
: Palauno·ROINn 
: PaiUno-5OI0 
~ n"",s·ROOWI ! n"",S·BOIcl 



156 

::~ ..... -................ ---- -~~~~~.~ .... -................... -.. . 

" : ...................... ..... : . 
:~:: .dI"'~OI .. a_ .. : 
:&: : .. , ... n."".""goad : :: ......a\W ........ .,.,.. 
: '1 : : ~rJlhsCW!I(NnllCtl 

'- - : : 

!~ !' "':": f,; ;" 6"-'; " 
I : : 
'0 : 
'2 : 

rf:m 
II: 
24 : 
36 : 
48 : 12: 

, luddaSlIl1 
l l..c:lClilJIU,.ktd 
: lwd dAlk. oIQJk: l 
: l...clOlSIJ'l -lc:fdltall( : 
: HtMtu : 

: :~""i~a:c:~~:~c:' ... : .... : ~ 

I ~~:~=I~U ~::::. : ...... UItO IoId 
: n .. n ·"-omll'll 

~ nmn·1ok:! ._---_. 

Figure 4: The Flat Hierarchy for Figure 1 

for each HyperNeWS object to communicate with an application, or client. 
This communication takes place via a high-level interface. The clients can be 
separate processes implemented in C, Prolog or Lisp, running on the same or 
other (networked) machines, a PostScript process running in the NeWS sever, 
or another HyperNeWS object. HyperNeWS objects communicate with their 
clients by sending messages to them. Clients are notionally inserted in the 
container hierarchy between the object and its parent. So any messages the 
object does not understand will be sent to the client for processing. If the client 
does not handle it, the message is passed up the container hierarchy as usual, 

Events 

Figure 5: Message Passing in HyperNeWS 



157 

HyperNeWS 

Figure 6: Message Passing between objects and clients 

see Figure 6. 
As all communication is carried out via message passing with the sender 

having no kn9wledge of the receiver, it is easy to prototype the interface using 
another HyperNeWS object (or even the user) to simulate the application, 
and then link up to the real application at a later date. In the early stages of 
design a HyperNeWS object (generally the window) can be used to simulate the 
application functionality. This functionality will be accessed via message sends 
from other HyperNeWS objects. When the interface is ready to be connected to 
the actual application the simulation methods can be removed from the window, 
and messages will automatically be passed on to the application (or client) . The 
client-interface communication is at the level of message sends. The clients can 
use provided methods to create references to HyperNeWS objects, and send 
messages to these. In addition the client can register which messages it expects 
to receive from which HyperNeWS objects, and define call backs to be invoked 
when these messages are caught . 

There are several architectures described in the literature for interface­
application communication, ranging from the Seeheim model [4], with a mono­
lithic application communicating with a monolithic dialogue component, to the 
PAC model [3], where each object in the interface contains a part of the ap­
plication. HyperNeWS is flexible enough to model this entire spectrum. The 
window can communicate with a monolithic application (as in the Seeheim 
model), or each individual HyperNeWS component can communicate with its 
own client (as in PAC), or any combination of these. 

The different ways of communicating between the client and the interface 
also provides different levels of separability. It is possible to have the whole 
application functionality defined within HyperNeWS, which gives you a low 
degree of separability, but a high degree of interactivity as required by some 
applications (such as drawing packages like HyperDraw discussed later). At the 
other end of the spectrum, the application functionality can be provided by 
several independent UNIX process, giving a high degree of separability. 



158 

Spednc 

Abstract RepresenLallon 
Long Jump 

G~neral ProgrammIng Language Between Level! 

J 
General • Design Space 

Figure 7: The Design Pyramid for two levels 

2.3 Scoped Variables 

HyperNeWS objects inherit attributes from their parent classes via the class 
hierarchy. However these attributes are statically inherited when the object 
is first created. It is often useful to have a dynamic inheritance mechanism 
which passes attributes down the container hierarchy at run-time. This is nec­
essary, for example, when constructing an OPENLOOK compliant interface, 
where the 3-D effect can only be maintained if consistent colour schemes are 
used. OPENLOOK defines variables used when defining the colours of the 
OPENLOOK components, including colours for the background, stroke, high­
light and shading. Problems arise when a component is copied from another 
window, which may have a different colour scheme, causing the correct 3-D 
effect to be lost. 

HyperNeWS provides scoped variables to allow dynamic inheritance of cer­
tain attributes of components (such as colours, fonts etc) from their parents 
in the container hierarchy. Each member of a group automatically inherits 
the values of its parent's scoped variables. Thus when a button is copied into 
a window, if it uses the OPEN LOOK naming scheme for its colours, it will 
dynamically inherit the colours of the window (which in turn inherits them 
from the user's environment). This also means that if the user develops a 
HyperNeWS interface in an environment which is set up to be based on pinks, 
when another user starts up that interface in their own environment (based on 
blues), the HyperNeWS interface will automatically adopt the colour scheme 
of the second user's environment (i.e. blue). 

This section has briefly covered the structure of HyperNeWS objects. The 
remainder of this paper will concentrate on how these objects are used to con­
struct graphical interfaces. 

3 Defining HyperNeWS Objects 

Make the simple things easy ... and the difficult things almost as 
easy. (Adapted from the original attributed to Alan Kay) 

The main goal of HyperNeWS was to aim for an incremental learning model 
which initially protects the user from the internal details of the components, 



159 

Specific 

Series of t Small Jumps 

General 
D!5ign Space 

Figure 8: The Design Pyramid for HyperNeWS 

and progressively reveals the details as the user becomes more confident and 
demanding. It is common for user interface design environments to support a 
high level of abstraction used to define the interface. Although these abstrac­
tions (or specification techniques) tend to be easy to use, it is usually the case 
that they are not general enough to allow the specification of all the required 
facets of the interface. To get round this problem trapdoors are often included 
which give access to a lower level programming language which is used to im­
plement the higher level abstractions, and which is general enough to allow all 
aspects of the interface to be defined. These low level languages are difficult 
to use, and it is a long jump for designers from the high level abstractions to 
the low level languages. This is shown by the design pyramid in Figure 7. The 
width of the pyramid represents the design space support at that level. At the 
top level, although interfaces are easy to generated, the designer is limited to 
a narrow design space. In contrast, at the base of the pyramid, the specifica­
tion language is more general, and the design space is correspondingly wider. 
The sharp edge of the pyramid shows the long drop from the high level to the 
general language. This drop can often prove intimidating for designers, and 
certainly involves a steep learning curve. 

In HyperNeWS an attempt has been made to provide several levels between 
the two extremes. These levels are supported in the HyperNeWS interface by 
providing several ways of accessing and updating the internal structure of the 
objects which constitute the interface. The levels range from easy to use, with 
a restricted design space; to a more general, un-restricted design space which 
requires programming. Our claim is that the smaller the step between the 
levels, the easier it is for designers to move between them. The design pyramid 
with multiple levels in shown in Figure 8. 

The levels are implemented as different ways of creating and manipulating 
a single universe of objects. Any changes made to an object at a higher level, 
will be accessible at the lower levels in a different representation. Thus the 
designer can learn about the different representations by making changes in 
higher levels, moving to lower ones, seeing the effects and if required, refining 
them. This is illustrated in the following sections. 



160 

Interfaces are usually constructed in HyperNeWS by copying existing ob­
jects from previously designed, or system provided, interfaces. These compo­
nents are then specialised. The idea of using a small set of pre-defined objects 
which can be configured is common in current user interface development sys­
tems, such as HyperCard or Guide [11]. However, these systems tend to allow 
flexible specialisation in terms of behaviour only. In most user interface design 
environments it is possible to specialise objects by augmenting their behaviour, 
either by defining callbacks for fixed events (as in Guide), or by adding new 
methods through scripts (as in HyperCard). Configuring the appearance of 
the objects is possible, but only by setting fixed attributes. As HyperNeWS 
is built on top of PostScript it has added power through the flexibility of the 
PostScript graphics model. It is possible to change the presentation of buttons 
and windows to any graphics representation. A lot of the power and extensibil­
ity of HyperNeWS stems from the fact that the levels of configurability apply 
both to the presentation and behaviour of objects. Although the user would 
usually mix the definition of presentation and behaviour, they are discussed 
separately below. 

3.1 Levels of Presentation 

Unlike systems such as HyperCard or SunView, where there are fixed parame­
ters which can be changed to configure the representations of objects, Hyper­
Ne WS harnesses the full power of PostScript in the definition of the presentation 
of objects. There are various ways in which the presentations of objects can be 
configured. 

Levell: The attributes of an object easiest to change are its position and size. 
Using the mouse it is possible to position objects where required, and scale 
them to the correct size. Each container provides an edit context, in which 
it is possible to edit the members of the container. If any of the members 
are themselves containers, they can be selected as the new edit context. 
So it is possible to move up and down the container hierarchy editing the 
contents of each group (see Figure 9). Objects can be copied from an 
existing interface or the Object Warehouse and pasted into the window 
being developed. Figure 10 shows the layout for the Object Warehouse, 
which contains template OPENLOOK objects. The user can add his own 
sets of objects to the Object Warehouse, or tailor those already on it. 

Level 2: Each object has associated properties which can be edited via a 
properties window (see Figure 11). Attributes such as tpxt font, text size, 
labels, colours etc may be changed by editing the properties window. In 
addition, those attributes which can be changed by direct manipulation 
at level one (such as position and size) can also be changed at level 2. 
This allows for exact control over an object's position which may have 
been roughly positioned by direct manipulation. This illustrates the idea 
of having all information set at higher levels visible at lower levels. 

Level 3: The representation of any object (including windows) may be changed 
to a drawing created using the drawing tool, HyperDraw (see Figure 12). 
This tool can be used to design pictures from scratch, or as a means of 



161 

Current Seledion 

Current Edit Context 

Figure 9: The edit context for the cursor controls 

importing graphics created using other tools, such as images or Encapsu­
lated PostScript. As the drawings are based on PostScript it is possible 
to have any representation, size or shape (see Figure 13). Any drawings 
created in HyperDraw can be used for the window representation, or for 
a button representation. 

Level 4: When a HyperDraw drawing is pasted into an object, the Draw 
method for that object is replaced with the PostScript required to draw 
the new representation. It is possible to change the representation by 
editing the Draw method by hand. Each object has an associated script 
which the user can edit to update existing methods, or add new ones. 
Scripting will be discussed more fully later. For example, there are some 
pre-defined methods such as Path (which defines the shape of the objects), 
Draw which paints the object. By changing the Path method (for exam­
ple) it is possible to create arbitrary shaped objects, such as triangular 
or cloud shaped buttons. The buttons shown in Figure 14 were created 
by changing the scripts shown to the right of the buttons. In all aspects, 
except shape, these buttons are the same. 

Level 5: Extending level 4, it is possible to introduce totally new drawing 
procedures via the script of an object, which may add new attributes 
to an object. Taking the slider as an example, it is possible to make it 
look like a dial, just by changing the drawing routines in the script (see 
Figure 15). To work properly, this new object needs added behaviour. 



162 

Figure 10: The Object Warehouse 

Techniques for changing the behaviour of objects are discussed in the next 
section. 

When new attributes are added to an object, it is generally the case that 
a new Properties window is created. This can be done by copying the 
existing Properties window, and adding objects to manipulate the new 
attributes. At this point, there is a complete revolution, where the new 
attributes which are added via scripts, can henceforth be manipulated 
using the Properties window (i.e. level 2 above). 

Figure 11: The Properties Window for Button Objects 



163 

Figure 12: The HyperDraw Graphics Tool 

3.2 Levels of Behaviour 

The behaviour of the objects can also be configured in a variety of ways. Each 
technique requires more programming and a greater knowledge of HyperNeWS, 
but at the same time provides greater flexibility. The actual levels to be used 
in HyperNeWS have not been fixed yet but the following are ideas of what the 
levels may look like. Further analysis is required to identify some standard be­
haviours that are common enough to all interfaces that it is worth while adding 
support for them at the higher levels. So far, the only behaviour supported at 
higher levels is that of linking objects to layouts, to support HyperText or 
HyperMedia applications. 

Levell: The properties window for objects, as well as containing presenta­
tional attributes, also contains attributes which may affect the object's 
behaviour, such as whether or not a text field is scrollable, the maximum 
or minimum value of a slider etc. 

Level 2: The second level allows linking of objects to other layouts either 
on the same or other windows. This linking can also be done via the 
properties window, by filling in a field Link To .... The name of the target 
layout can be entered directly, or found by using the menu option Name 
of ... to find the name of the layout, which can then be pasted into the 
link field. 

Level 3: The third level provides ease of use for programmers. It does not 
require programming in HyperNeWS, but it does require programming of 
the application. The user can specify the behaviour of an object by regis­
tering a client procedure name with a predefined method for an interface 



164 

Encapsulated PostScript 

Images 

Internal Format 

Figure 13: The Integrated Drawing Formats available in HyperDraw 

object. For example, when selected a button gets sent the message Ac­
tion. The user can register any client procedure with the button message 
Action which will be called when the button is selected. 

It is possible to define the application completely using this technique. 
Many projects (for example Optimist [2]) have used HyperNeWS to build 
highly interactive interaces for applications without any scripting at all. 
These projects depend on the message hierarchy to pass all messages 
from objects to the client. Thus the application programmer can define 
all interface and application behaviour in the same language. 

Level 4: In the previous levels the actions taken by the user will cause scripts 
to be generated automatically, although the user need not be aware of 
this. However, users will soon learn of the scripts, and t.he HyperNeWS 
generated code will serve as examples of simple scripts. Thus the user 
need never start from scratch. In previous version of HyperNeWS, the 
scripting language used was PostScript. This introduced new complexity 
to the system as few users were familiar with PostScript, which is a fairly 
low-level language. In an attempt to improve the accessibility of the 
scripting facilities within HyperNeWS, but still keep the flexibility and 
power of PostScript, a C-like language, PdB, was implemented. PdB has 
C data structures and syntax, but PostScript semantics. Scripts written 



voidPathO 
( 

int rrunding = min(Rolll1d,min(Heighl, Width)m); 
rrectpath(rrunding,O,l, Width-l ,Height-I) 

voidPathO 
( 

moveto(O,O); 
lineto(Width,O); 
lineto(Width/2,Height); 
c1O!1epath; 

voidPathO 
( 

int angle = 40; 
int iterate = 360; 
gsaveO; 

scale(Width,Height); 
translate(O.S,O.S); 
while(iterate > 0) 
{ 

iterate--; 
rotate(angle); 
arc(.2,.2,.2,-1 0,-1 00); 

I 
c1osepathO; 

grestoreO; 

Figure 14: The effects of changing the Path script for buttons 

in PdB are compiled into highly optimised PostScript. 

165 

Through scripting, the user can freely extend the behaviour of an object, 
adding new behaviours, or updating existing ones. By changing t.he script 
of existing objects, the user specialises existing classes. These modified 
classes are called shared classes. A shared class can be subsequently 
refined to produce other shared classes, that record the differences from 
the original. The shared classes are defined in terms of their differences 
from the base class from which they grew. New instances of these shared 
classes are made by copying existing instances. 

Level 5: After creating shared classes, the next level is to create new base 
classes (termed plug-in classes). These are classes which are written to­
tally in PdB [12], in files external to HyperNeWS. They should be used 
with caution, as the introduction of plug-in classes means that interfaces 
which use these new classes are no longer as portable as those using only 
shared classes. Objects which are instances of shared classes contain all 
the information required to define their behaviour, and thus can be freely 
cut and pasted, or passed on to other HyperNeWS users. However, ob­
jects based on added plug-in classes know only how they differ from the 
plug-in class. The actual definition of the plug-in class has to be passed 



166 

Default Slider Reconngured SUder 

Figure 15: The Changes to presentation possible using scripting 

around with the object. Sharing of interfaces is still possible, but more 
difficult, when using plug-in classes. 

4 Conclusions 

By generalising the way in which objects can be combined within HyperNeWS, 
it has been possible to increase the range of interfaces that can easily be con­
structed. This generality has been extended to include better communication 
with underlying applications. However, the new power has not been gained at 
the price of ease of use. The interface to HyperNeWS has been constructed 
to provide levels of access to the internals of the objects. These levels range 
from restricted designs, which are easily constructed to powerful, un-restricted 
designs, which require programming. 

Further research is required to increase the number of designs that can be 
implemented using levels 1 and 2 for both presentation and behaviour. Specifi­
cally, some task analysis is required to discern which tasks are common (such as 
generating links between objects), so that particular support can be provided 
to allow high level specification of these tasks. 

The design of HyperNeWS shows how it is possible to produce a user inter­
face environment that can be easily used to build interfaces which conform to 
a standard (such as OPENLOOK). By making use of the default components, 
a user can quickly build a OPEN LOOK conform ant interface, mainly using 
direct manipulation. However, HyperNeWS does not restrict the user to solely 
OPEN LOOK interfaces, but offers the freedom to design and implement a wide 
range of interface styles. 

5 Acknowledgements 

This paper covers work carried out by the HyperNeWS project at the 'lUring 
Institute. The group consists of Arthur van Hoff, Tim Niblett, Cathy Waite 
and Jim Rudolf. We would like to thank Rafael Bracho, Owen Densmore and 



167 

Don Hopkins of Sun Microsystems for useful input to the design and informa­
tion about TNT, and OPEN LOOK, and Wim Janssen of Philips for helpful 
discussion. 

References 

[1] Apple Computer, Inc. HyperCard User's Guide. Apple Computer, Inc., 
Cupertino, Calif., 1987. 

[2] Peter Clark. Representing knowledge as arguments: Applying expert sys­
tem technology to judgemental problem-solving. In T. R. Addis and R. M. 
Muir, editors, Research and Development in Expert Systems VII, pages 
147-159. Cambridge Univ. Press, 1990. (Proc. ES90, the 10th BeS Spe­
cialist Group on Expert Systems). 

[3] Joelle Coutaz. PAC, an Object Oriented Model for Dialog Design. In 
Human-Computer Interaction -INTERACT'B7, pages 431-436. Elsevier 
Science Publishers B.V, 1987. 

[4] M. Green. Report on dialogue specification tools. In User Interface Man­
agement Systems, pages 9-20. Springer-Verlag, 1983. 

[5] Sun Microsystems Inc and AT&T. OPEN LOOK Graphical User Tnterface 
Application Style Guiddines. Addison-Wesley, 1989. 

[6] Sun Microsystems Inc and AT&T. OPEN LOOK Graphical User Tnterface 
Functional Specification. Addison-Wesley, 1989. 

[7] The Turing Institute. The HyperNe WS 1.4 User Guide. 36 North Hanover 
Street, Glasgow, G1 2AD., September 1990. 

[8] The Turing Institute. The HyperNeWS 1.4 Reference Manual. 36 North 
Hanover Street, Glasgow, G 1 2AD., September 1990. 

[9] T. Niblett. The Object in HyperNeWS. In UK Unix systems user group 
1991 summer technical meeting, Liverpool, 15 - 17 July 1991. 

[10] Open Software Foundation. OSF/Motif Style Guide. Prentice-Hall, En­
glewood Cliffs, NJ, 1991. 

[11] Sun Micorsystems, Inc. Open Windows Developer's Guide. Mountain 
View, CA 94043, October 1990. 

[12] Arthur van Hoff. The PdB Reference Manual. Technical report, The 
Turing Institute, 36 North Hanover Street, Glasgow, G1 2AD., April 1991. 

[13] Arthur van Hoff, Tim Niblett, Cathy Waite, and Jim Rudolf. The Design 
of HyperNeWS 2.0. Technical report, The Turing Institute, 36 North 
Hanover Street, Glasgow, Gl 2AD., February 1991. 



· Declarative Objects for User Interface 
Construction 

Trevor P. Hopkins 
Computer Science Department, University of Manchester 

Oxford Road, Manchester, M13 9PL, U.K. 

Steve K. Wallis 
Computer Science Department, University of Manchester 

Oxford Road, Manchester, M13 9PL, U.K. 

Abstract 

As part of a project developing a toolkit for simulation-based interactive Computer­
Based Training (CBT), a declarative object-oriented programming system was 
devised. This paper starts by outlining this language, then goes on to describe its 
use for user interface construction. The interfaces created are specifically targeted 
at unsophisticated computer users, and the programming system and tools are in­
tended for use by CBT authors with limited programming experience. The results 
of using this system, together with the problems encountered, are also reported. 

1 Introduction 

This paper describes a toolkit for the development of interactive user interfaces, based 
on a composite object/functional programming system. This system has been used for 
the construction of realistic Computer-Based Training (CB1) applications. 

1.1 Aims and Objectives 

The aim of this work was to create and evaluate a prototype toolkit for building CBT 
applications. CBT has something of a reputation for being a rather boring medium of 
communication, mainly because the style of interaction is often very constrained. An 
important objective for this work, however, was to enable the construction of CBT 
packages which could be as open, or as constrained, as was required by a CBT author. 
This would make it possible to build highly interactive, exploratory learning packages. 

Another objective was to allow the construction of simulation-oriented training 
material. The system should allow the construction of a 'deep' model of some ma­
chine or system, and then allow a learner (via an appropriate interface) to explore and 
interact with the simulated system. One important kind of training problem addressed 
by this approach is diagnostic or fault-finding training, where the underlying simula­
tion can model a faulty machine. As an example, one package actually constructed 
using this toolkit modelled a hydraulically-operated steel press, and faults in individ­
ual components, such as valves or switches, could be introduced. The learners task 
was to find and rectify such faults, given diagnostic displays from (simulated) mimic 
panels, in the minimum amount of time. 



169 

Another aim was to make the toolkit usable by as wide a range of programmers 
as possible. Courseware authors are not usually sophisticated programmers, and it 
was hoped that an author could build complex courses without difficulty. However, 
the system should also be considered satisfactory by more sophisticated programmers, 
such as those building complex simulations, or those implementing specialised user 
interface components (called gadgets - see section 3.3). 

1.2 Definition of Terms 

A number of tenns are used in a slightly unusual fashion in this paper, so a few defini­
tions are required. Also, some of the tenns used may not be familiar to those outside 
the CBT area. A learner is an individual actually undergoing training, and is therefore 
the 'end user' of the application. A trainer is typically either a manager responsible 
for training within an organisation, or another (such as a course teacher) who is re­
sponsible for a group of learners. Since the focus of the project was on the construc­
tion of interactive training material, the tenn courseware is used synonymously with 
user interface in this paper. The tenn 'courseware author' (or just author) is used 
synonymOUSly with user interface constructor although, strictly speaking, a course­
ware author is also heavily involved with specific training requirements analysis. The 
tenns model and simulation are used synonymously to indicate the part of a system 
which provides the 'deep' behaviour, as opposed to the user interface part. Finally, 
the tenn modeller refers to an individual primarily concerned with the construction of 
the simulation component of a training package. 

1.3 Approach Taken 

A number of important decisions were taken early in the project. The first was to 
demand a clear, strong separation between the courseware and the underlying model. 
Although it was felt desirable that simulations and learner interfaces should use the 
same programming language, and (as far as possible) similar tools, they should be kept 
separate. This allowed learner interfaces and simulations to be developed separately, 
by different people, and furthennore would allow the same simulation to be used for 
several different (but related) training packages. 

It was also decided to use a strong object-oriented metaphor throughout Course­
ware authors (and modellers) are encouraged to design and use objects by describing 
classes, and composing complex objects from simpler ones, thus fonning a compo­
nent hierarchy. Objects have static connections, and definite inputs and outputs, so that 
objects can be 'plugged together', much like LEGO(TM) blocks. The object-oriented 
approach was also used by the implementors of the system, and Smalltalk-80 [1] was 
used for the prototype implementation. 

1.4 Project Structure 

This was a 14 month project, tenninating at the end of March 1990, and was funded 
by the UK Training Agency (part of the Deparunent of Employment). The project 
was treated as a user-centered design exercise, with involvement from several insti­
tutions. The prototype environment and tools were developed at the University of 
Manchester Computer Science Deparunent. Much of the courseware was developed 



170 

by authors at Mentor Interactive Training (Bradford), using the prototype tools; Men­
tor also collaborated with the University of Manchester on the development of the 
simulations. Specific training problems, together with trainers and learners, were sup­
plied by British Steel (Rotherham) and Crosfield Electronics (Watford). CBT consul­
tants from the Universities of Surrey and London, as well as independent consultants, 
advised on the progress and direction of the work. There was also an independent 
project manager, who coordinated activities on the multiple sites. 

1.5 Structure of this Paper 

The remainder of this paper is organised as follows. Section 2 provides an introduction 
to the programming model used for both courseware and simulations. Section 3 elabo­
rates on those objects specifically intended for courseware construction, and Section 4 
describes the window-based tools to support Simple and rapid development. Section 5 
gives a brief overview of the implementation approach used. Finally, section 6 out­
lines the post-prototype evaluation, discusses the advantages and disadvantages of the 
system implemented, and considers possible future directions. 

2 Programming Model 

This section describes the Object-oriented programming model which is used by both 
the modelling and user interface tools. This programming model is unusual in that 
it combines a functional (declarative) and an object-oriented approach to program 
construction. 

2.1 Objects and Classes 

All user interface entities are represented by objects (also known as components), 
which are instances of classes in the usual way. A conventional class-based single 
inheritance scheme is used, with subclasses inheriting properties from their super­
classes. Classes need not have a superclass, so that multiple disjoint class hierarchies 
can be created. Note however that changes made to classes are propagated immedi­
ately to their subclasses, and to instances of these classes, so that objects already in 
existence can be modified without losing their internal state. 

Objects can be described by their classes in one of two ways. Composite objects 
are described entirely in terms of completely encapsulated sub-objects, connected to­
gether as described below. A complete model is a Single (typically rather complex) 
composite object, usually without any kind of external connection. The sub-Object 
hierarchy, which is a strict tree, can be as deep as necessary. 

At the leaves of the sub-object tree, primitive objects are used. Classes describ­
ing primitive objects will define attributes, corresponding roughly to data members or 
instance variables in other languages. A major difference, however, is that most at­
tributes are simply names for values which are the results offunctions; these functions 
can be described in a number of ways (see below). Note that primitive objects will 
typically be rather more complex than composite objects; the latter are often simply 
containers for primitive objects. 

Both primitive and composite objects have explicit inputs and outputs: an input 
can be connected to at most one output, while an output can be connected to as many 
inputs as is required. The connections between inputs and outputs cannot change 



171 

while the simulation is running. It should be noted that this is a very 'static' object 
model, and is quite different from that provided in many object-oriented programming 
languages, such as Smalltalk-80 [1] and C++ [2]. 

2.2 Attributes and Connections 
Five kinds of attributes are available: 

Fixed attributes represent values which can never change. These are used like con­
ventional program constants. 

Variable attributes represent values which depend in some (pure functional) way on 
the values of other attributes. A variable attribute may depend on other variable, 
input, fixed and timed attributes to this object. 

Timed attributes support the notion of sequential state changes, which is not other­
wise available in a declarative language. Timed attributes therefore introduce 
an explicit notion of time. A timed variable can depend on the old value of 
itself, as well as both the old and current values of other attributes. This allows 
operations in conjunction with changes in variables to be described. 

Input attributes correspond to connections from other objects, which will be be output 
attributes. 

Output attributes provide connections to other objects. Apart from the fact that out­
put attributes cannot be used within their defining object, they behave exactly 
like variable attributes. 

All categories of attributes have a type (or unit) associated with them, and there is 
a type hierarchy which is quite independent of the class structure. The basic types 
are numeric, enumerated and list; user-defined units (sub-types) can include boolean 
(true or false), voltage, pressure, and so on. Similarly, all attributes have a default or 
initial value, which is useful both for defining the initial state of the simulation, and 
to allow unconnected inputs and undefined outputs (in a partially complete model) to 
be controlled. 

2.3 Describing Object Behaviours 
In order to completely describe what functionality is available within particular ob­
jects, classes specify a behaviour for each of its variable, timed and output attributes. 
The most general way of defining the behaviour of an attribute is to write a first­
order function, in a simple functional language designed and implemented as part of 
the project A large number of pre-defined built-in functions are provided, including 
list manipulation operations, as well as sophisticated functions for manipulating the 
elements of pictures. 

While writing complex functions is straightforward and natural for experienced 
programmers, another means of describing behaviours was provided for less experi­
enced modellers and courseware authors. This is done in two parts. First, the attributes 
which can affect a particular attribute are identified; these are termed the determiners 
for the dependent attribute. These determiners provide the headings for a table which 
can be filled in to describe the relationship between these attributes. Range specifiers 



172 

may be used in these tables; also, the two notations can be mixed, so that arbitrary 
functions can be used within tables. In the cases where classes are already defined, 
it is possible to construct simulations graphically, merely defining the connections 
between inputs and outputs. 

In summary, the programming model provided here has most of the features of a 
general-purpose object-oriented programming language. Note however that there are 
several important restrictions: connections cannot be determined dynamically, and 
new named functions cannot be introduced. It is first-order: objects cannot be used as 
the values of arguments to functions. Despite these restrictions, which were deliber­
ately introduced to simplify the language for the benefit of non-programmers, it is our 
experience that this system is adequate for the intended purpose. Later extensions [3] 
remove most of these restrictions. 

3 User Interface Objects 

The programming model described in the previous section is used directly in the mod­
elling environment. In this case, the modeller defines classes appropriate for the ap­
plication domain, and connects together instances of these classes as appropriate. For 
the construction of user interfaces, however, a large selection of pre-defined objects is 
made available. The basic classes and the gadget library are described in this section, 
while the tools used by courseware authors to build a user interface are described in 
the next section. 

3.1 Functional Areas 
The class of objects used as the basis for all courseware authoring is the Functional 
Area (FA). This represents a rectangular screen area, with programmable visibility. An 
FA may have a background picture, which is visible at all times the FA itself is visible; 
if no background is specified, the FA is effectively transparent. Each FA also has 
associated with it a list of pictures, which are displayed in an order given by a 'current 
pictures'list. An FA may have one or more 'sub-FAs', so that logically different parts 
of an interface may be divided up appropriately. A 'top-level FA' representing the 
physical screen of the computer system. 

3.2 Interaction Elements 
Functional areas are output-only; for user input, a further class of objects known as 
Interaction Elements (lEs) are provided. IEs add access to mouse and keyboard input, 
and provide some special outputs which control various aspects of the interaction -
the cursor shape, for example. By convention, IEs do not usually have sub-FAs. 
Normally, however, user input is handled by much more sophisticated objects known 
as gadgets (see section 3.3). 

For screen output, a number of special units (types) are defined. These include 
colour, which is just an enumerated type containing the names of the colours avail­
able, and various picture types. Picture types includefills, which fill a rectangular area 
with a particular colour, with an optional border in another colour; texts, which are 
displayable strings with associated font, style, size and colour; bitmaps, which are sim­
ple coloured images produced using conventional painting tools, and arcs, which are 



173 

coloured sections of an ellipse, again possibly with a coloured border. As mentioned 
previously, special functions for manipulating attributes of these types are provided. 

3.3 Gadgets 
To facilitate the rapid construction of user interfaces, a large library of pre-defined, 
specialised FAs known as Gadgets is made available. A library browser (see sec­
tion 4.1) is available to allow the courseware author access to these gadgets. Although 
these gadgets are actually implemented as specialised subclasses, the appearance pre­
sented to the author is that of a library of gadget 'prototypes'. Certain 'fixed' variables 
are made available as parameters. For example, there is no input which allows the 
colour used to display text in a push-button gadget to be altered. However, it is rea­
sonable to allow the courseware author to set up the colour to be used, for each new 
push-button instantiated. Some parameters are automatically set by the graphical ma­
nipulation tools (see section 4.2). 

It should be noted that the gadgets are entirely implemented in the language de­
scribed in the paper. Most gadgets support some interactive input operations, and 
therefore contain an Interaction Element (see section 3.2). Gadgets are regarded 
as 'sub-courses', and new gadgets of any degree of complexity can be created by 
a courseware author, using the normal mechanisms. A large number of gadgets 
are available; these include normal user interface components such as buttons and 
switches, sliders and scroll bars, and composeable menus, as well as more unusual 
items such as pie and bar charts, graphs and gauges, oscilloscopes and magnifiers. 

4 Author's Interface 

The interface provided to the courseware author is based on the familiar notion of 
windows. Window-based tools are provided for defining classes, with separate sub­
windows for defining attributes and behaviours. Other windows allow composite ob­
jects, including the entire user interface, to be composed from other objects. Changes 
to classes and inter-object connections can be made incrementally. Graphical tools for 
viewing and manipulating both the sub-object hierarchy and the inter-Object connec­
tions are also available, allowing a naive user to compose an interface from pre-defined 
classes readily. Interactive tools for tracing and debugging are also provided. These 
allow the internal state of any particular object to be monitored, and changed if appro­
priate, while the simulation is running. Each tool is described in a little more detail 
below; further details of the use of the tools can be found elsewhere [3,4]. Some of 
these tools are illustrated in Figure 1. 

The general approach taken is that, at anyone time, there is a single course (user 
interface) under construction. All tools operate on this course. To minimise the risk of 
unnecessary clutter on the screen, it is not possible to open more than one instance of 
certain of the tools discussed below. Attempting to open a second Library Browser, 
for example, will result in the currently active Browser being brought forward, de­
iconifying as necessary. 

4.1 Library Browser 
Since a large number of gadgets are made available, a browsing tool is provided to 
control access to a gadget library. The same library browser is also used to access 



::n ~ - c:::
: 

en
 
~
 SO
 a ~ [ en

 Er
 

~
 

t:
. g 

C
J
 

d
e

m
o

 ..
 

b
u

 ••
• 9

0
 

o 
pi

e 
b

u
 ..

. 9
0

 

C
A

T
E

G
O

A
V

 
p

.r
.m

e
t .

...
 

p
.r

lm
et

er
 

U
N

IT
 

c
o

lo
lr

 

.t
rl

n
g

 
&

N
Ii

. 

c
o

lo
lr

 

b
o

o
te

.n
 

_
lW

tD 

- --J -l'>
-

tr
u

Q
 



175 

complete courses or work in progress, simulations and bitmaps. The library is shared 
over a network of workstations and PCs, so that users on different machines can have 
instant access to updated simulations, courses or gadgets. The library browser also 
supports multiple versions of gadgets, so that older versions can be used, if required. 

In this description of operation, it will be assumed that the library browser is being 
used to access gadgets. Access to other kinds of library items is similar. The browser is 
structured so that first a 'category' of gadgets is selected (such as 'buttons' or 'gauges') 
in the top-left subwindow, then a particular gadget can be selected by name in the 
top-right subwindow. Once selected, the gadget is displayed in the lower part of 
the browser, together with a table (see later) of its input and output attributes, and 
any settable parameters. The browser display is interactive: for example, if a switch 
gadget is selected, pressing the mouse button over the switch causes it to operate. This 
allows the user to view the operation of an individual gadget before incorporating it 
into a course. The gadget can also be customised, by setting or altering parameters; 
these changes are also effective immediately. 

4.2 Display Editor 

Normally, the first action of a courseware author is to decide on the location and size 
of various Functional Areas (FAs) and gadgets. The relative position and size of these 
components can be determined graphically, using a tool known as the Display Editor. 
Gadgets and FAs can be placed inside other FAs; hierarchies of such components can 
be manipulated using the usual cut and paste operations. This tool also allows static 
pictures, including filled areas, static text and bitmaps, to be created and positioned. 
For complex user interfaces, the number of FAs and gadgets used may be large -
possibly many hundreds. To make it easier for the user to manipulate such a complex 
structure, the Display Editor allows portions of the FA hierarchy to be temporarily 
'hidden' . 

4.3 Block Diagram Editor 

Once the visual layout of the functional areas and gadgets has been determined, in­
terconnections between inputs and outputs may be required. For simple connections, 
these may be made graphically, using the Block Diagram Editor. For applications 
constructed entirely from gadgets, this is all that is required. If somewhat more com­
plex functions relating inputs and outputs are desired, then the Block Diagram Editor 
can be used together with Behaviour Templates (see section 4.5.3); alternatively, all 
these functions can be programmed using a Class Template (see section 4.5.1). 

The Block Diagram Editor also allows the FA and gadget hierarchy to be edited. 
New FAs and gadgets can be added using this tool, rather than using the Display 
Editor. The usual cut and paste editing operations are available for individual FAs, as 
well as for complex structures. 

In practice, of course, the Display Editor and Block Diagram Editor are used to­
gether with the other tools, making modifications to both the interaction and visual 
appearance as appropriate. Since all the tools are in independent windows, the course­
ware author is not constrained to any particular style of working. 



176 

4.4 Learners Screen 

Once both the visual layout and logical connections of the FAs and gadgets have been 
determined, the operation must be tested. Normally, a running application takes over 
the entire screen of the machine. However, for development purposes, it is desirable 
to be able to test the operation of a course, while still having the tools available. To 
facilitate this, a Learner's Screen (or Pseudo-Screen) window is provided. Usually, 
the Learner's Screen window will be smaller than the real screen, so that the scrolling 
of the window over the operating interface is supported. 

4.5 Templates 

As noted in section 2.3, the operation of a user interface can be described as a table. 
The tools for constructing such tables are known as templates. A wide variety of 
template windows are available, some of which are described below. 

Syntax analysis of information input in a template, together with some error check­
ing' is performed immediately. Errors are highlighted, but need riot be corrected im­
mediately, since they may be the result of an incomplete user interface; an interface 
can be 'run' at any time. Running an interface entails compiling any parts which 
have been modified since the last run, initializing all attributes to their default value, 
and then propagating changes to values as time passes. The implementation of this is 
briefly discussed in section 5. 

4.5.1 Class Template 

More complex connections between input and output attributes, as well as internal 
behaviour for FAs and gadgets, can be described using Class Template windows. This 
template allow new attributes (including inputs and outputs) to be defined; as described 
in section 2.2, all attributes have a unit (or type), as well as an initial (or default) value. 
Attributes corresponding to the outputs and inputs of sub-FAs and gadgets appear as 
named inputs and outputs respectively. The value of an attribute may be defined in 
terms of a function of other attributes (see section 2.3). This tool allows either a 
table-oriented form, or a function definition, to be used. 

4.5.2 Instance (Debug) Template 

Once a user interface is running, it is frequently desirable to be able to see the values 
currently associated with inputs, outputs or other attributes within a particular object. 
For this purpose, Instance Template windows are provided. An Instance Template can 
be opened on any object, displaying the current value of all attributes of that object. 
The Instance Template window is continually modified, as the user interface operates. 
For example, if a particular switch gadget has an output which is either true or false, 
the change from false to true as the switch is operated can be observed. Instance 
Templates also allow the value of unconnected input attributes to be modified. This 
is particularly useful in the case of partially-complete user interfaces, or where the 
underlying simulation is not yet available. 



177 

4.53 Behaviour Template 

Behaviour Template windows are primarily used in conjunction with the Block Di­
agram Editor (section 4.3). They allow a single function of one or more outputs to 
be used to give a value for an input attribute. Again, the function may be defined in 
terms of a table, or as an arbitrary expression. 

4.5.4 ModellCoursewareJnterface Template 

Although this is not described in this paper, this environment and language can also be 
used to build sophisticated models of real-world machines or systems. A simulation, 
and any courseware which might be used with it, are regarded as separate entities. 
This means that a particular simulation can be used with several different courses, for 
different training purposes. To be used in this way, a simulation will usually have input 
and output attributes which are not connected within that simulation; a corresponding 
course would also have unconnected inputs and outputs. For example, a simulation 
might have an input which causes it to start operating; this would need to be connected 
to the output of a push-button in the user interface. The ModellCourseware Interface 
Template window allows external connections to a simulation or user interface to be 
defined, and allows connections between a model and a user interface to be described. 

4.5.5 Unit Template 

As noted in section 2.2, all attributes and connections are 'typed' , by including a 'unit' 
as well as a value. The Unit Template window allows new types to be defined. This 
template also allows a default value to be defined for an attribute of a particular type. 
For user interface construction, useful pre-defined subtypes include boolean values, 
two-dimensional points, colour and area. It is rarely necessary for courseware authors 
to define new types, although this facility is much more useful for simulation purposes. 

4.5.6 Other Tools 

A variety of other tools were also made available, and integrated into the system. 
These include conventional drawing and painting tools, as well as other tools to ma­
nipulate the colour display system [5]. Further tools were provided more for support­
ing the construction of simulations; these support direct access to the class hierarchy, 
and to complex composite objects. 

5 Implementation 

The current version of the simulation system should be regarded as a prototype, and 
is implemented using the Smalltalk-80 [1] system. The language outlined previously 
is compiled into Smalltalk-80, although other versions [6] can also generate frolog 
and C. The basic functions required for the language were defined in Smalltalk-80; 
since it was occasionally necessary to define a new function, either for convenience 
or for performance reasons, a simple interface to the underlying Smalltalk-80 system 
was provided. 

The interactive tools were based on those provided by Smalltalk-80, although one 
version of the system made the tools available in colour, using a home-grown colour 
Smalltalk-80 system [5]. Extensive use was made of the Model-View-Controller 



178 

(MVC) mechanism [7], although some modifications were necessary to ensure that 
only one window of certain kinds could be active at a time. The current version runs 
on Sun-3 machines, using Smalltalk-80, version 2.3 (colour or monochrome), and on 
386-based PC machines using Smalltalk-80 version 2.4 (monochrome only). 

5.1 Representations 
To maintain consistency within the system, for example, between a visual presen­
tation in a window and the underlying data structures, or between classes and their 
instances, a general scheme known as representations [8, 9] was used. For example, 
the relationship between the 'source code' in a template, and the underlying represen­
tation (which might be either Smalltalk-80 (source) code, or a Smalltalk-80 compiled 
method) is handled using this scheme. Thus, small changes in,behaviour or connec­
tions within objects cause only small parts of the code to be re-compiled, thus giving 
the advantages of incremental compilation for a language with entirely static runtime 
semantics. 

This same representation mechanism is also used to ensure that when a change is 
made to a particular class, it is propagated to all subclasses and instances of all of those 
classes. As a final example, when an Instance Template (see section 4.5.2) is opened, 
the consistency between the window and the underlying object is ensured using the 
representation system. Using this system instead of the 'dependency' mechanism 
normally used in Smalltalk-80 applications meant that it was very straightforward 
to ensure that updates made using one window were immediately reflected in other 
windows, with no manual 'update' operation required. Further developments in using 
these techniques can be found in [6]. 

6 Evaluation and Conclusions 

In this section, the evaluation process used during this project is outlined, and problems 
which came to light but were unresolved are discussed. 

6.1 The Evaluation Process 
Since this project was intended to use a user-centered design approach, evaluations 
by users of all kinds was considered very important. In fact, there were some fairly 
formal post-project reviews, as well as a continuous review process during the normal 
operation of the project. 

The tools and programming system were designed in close collaboration with CBT 
authors, and many aspects were changed or modified in the light of their critical re­
marks. The tools and programming system were developed in parallel with the CBT 
authors attempting to use the system; while this led to some difficulties at the time, it 
did ensure that the tools were refined so as to maximise their appeal to the authors. 
There were also regular review sessions during the development period, with systems 
developers, CBT authors and external consultants offering their opinions. 

The system developed was used by authors at Mentor Interactive Training to de­
velop a training simulation of a hydraulically-operated steel press. This was a fault­
finding training exercise. The resulting system was evaluated by trainers and learners 
from British Steel at Rotherham, with generally positive results. The system was also 
used to construct a prototype course for Crosfield Electronics; again, this training was 



179 

structured as a fault-finding exercise. A number of other small courses were devel­
oped as demonstrations. and trainers at British Steel Open Learning Development Unit 
(Rotherham) also experimented with the system. 

6.2 Problems Encountered 

A number of design-related problems came to light during the evaluation period. One ' 
issue has to do with the visibility of gadgets in the Display Editor (section 4.2) tool. 
When a gadget is placed using this tool. the statically-determined background picture 
is displayed. If there is no background picture. then an outline only is drawn. so 
that the courseware author can see where it is located. Unfortunately, most of the 
gadgets in the library are interactive, and so necessarily generate most (or all) of their 
pictures dynamically. Thus, for most of the gadgets implemented in the library, only 
an outline box can be seen in the display editor; this is especially true for the more 
sophisticated gadgets. To address this deficiency. it would be particularly desirable if 
the display editor could partially execute a gadget before it was placed in the interface 
under construction. This would ensure that the display editor would at least display 
the default or initial state of the gadget. 

Another question remaining at the end of the evaluation was the nature of the 
interactions between the separate tools, especially between the Display Editor, the 
Learner's Screen, the Block Diagram Editor and the Library Browser. At present, 
all of these tools are 'loosely-coupled', and work largely independently. This kind 
of operation was liked by some users. but others disliked it and found it confusing. 
The latter users would like a closer coupling between tools so that, for example, se­
lecting a particular FA or gadget using the Block Diagram Editor would also select 
the corresponding FA visible in the Display Editor. It was not possible to resolve the 
dichotomy between these groups of users; perhaps a user-selectable 'mode' could be 
introduced. A similar question arose with the Display Editor and Learner's Screen: 
should these really be just one tool. with two different modes. Again, no clear answer 
was forthcoming. 

A different kind of issue discovered with the prototype is that of runtime per­
formance. The incremental compilation technique used allowed a large number of 
checks on correctness to be performed statically, but also avoided long compilation 
times when only a small change was made. Unfortunately, this led to two problems: 
firstly, the large and complex object structures required by the representations mecha­
nism used (see section 5.1) meant that when a large change is made, necessitating an 
extensive re-compilation, the time taken to update all these structures is very large. 
Since some compiles were rather quick, and others very slow, this led to a certain 
amount of user frustration and confusion. The second problem was that the inter­
object communication mechanism used was not particularly fast; consequently, for 
very complex user interfaces, certain interactions were annoyingly slow. 

A related performance issue was the size of the Smalltalk-80 image1 in use. The 
representations mechanism proved to be rather expensive in image space, with two 
consequences. Firstly, on workstations with virtual memory systems, both compile­
time and run-time performance dropped quickly as larger user interfaces were con­
structed. Secondly, on PC machines with a fixed maximum real memory size, the 
development system would run out of memory when larger systems were being de­
veloped. These problems were exacerbated when the colour Smalltalk-80 system was 

lIn Smalltalk-80 tenns, the 'image' is the memory space occupied by the objects. 



180 

in use, as this tended to increase the memory size required by pictures. 

6.3 Future Work 

At present, work on this system has stopped, although it is hoped to move toward 
a commercially-available CBT toolkit eventually. In view of the performance prob­
lems described in section 6.2, it is likely that a production version would use dif­
ferent implementation techniques to that used in the prototype. As an intermediate 
step, however, it is proposed to port the implementation to a more recent version 
of Smalltalk-80 (Objectworks/Smalltalk Release 4), although this has not yet been 
started. This Smalltalk-80 implementation is available on much faster workstations, 
and would help to address some of the performance-related problems discussed pre­
viously. Another advantage of this port is that Objectworks uses the window system 
provided by the underlying operating system, so that it would then be easy for other 
tools (word processors, drawing tools, and so on) to be used with the CBT develop­
ment environment. 

In the longer term, a production-quality system would require a re-think of the im­
plementation techniques used. The choice of whether Smalltalk-80 should be used as 
the implementation language is not clear: it is difficult to determine whether significant 
gains in performance would really be achieved by a move to a lower-level language 
such as C or C++. Perhaps more importantly, it may be that the full power of the repre-

. sentations mechanism might not be necessary, and that a simpler consistency-keeping 
approach would be adequate. Further work on the basic programming model, and 
the representations mechanism, can be found in a forthcoming Ph.D thesis [6]. This 
thesis also describes later extensions to this approach for a range of Object-oriented 
programming and knowledge representation problems, and also outlines further work 
on implementation techniques which address some of the problems encountered. 

Acknowledgments 

Stephanie Wilson designed and implemented the interactive tools described in this 
paper. The work described in this paper was in large part supported by the Training 
Agency. Steve Wallis was in part supported by a postgraduate studentship from the 
Science and Engineering Research Council. 



181 

References 

[1] A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implementa­
tion, Addison-Wesley, 1983. 

[2] B. Stroustrup, The C++ Programming Language, Addison-Wesley, 1986. 

[3] S. K. Wallis, S. Wilson and T. P. Hopkins, FOOD: A Declarative Object­
Oriented Framework, Internal Report, Computer Science Department, Univer­
sity of Manchester 1990. 

[4] S. K. Wallis,S. Wilson and T.P. Hopkins, Declarative Objects/or Simulation and 
User Interfaces, The Society for Computer Simulation Western Multiconference, 
Anaheim, California, USA, pp 143-150, January 1991. 

[5] T. P. Hopkins, A Colour System/or Smalltalk-80, Technical Report UMCS-89-
10-5, Computer Science Department, University of Manchester, October 1989. 

[6] S. K. Wallis, Integrating Object-Oriented Programming and Knowledge Rep­
resentation (working title), Ph.D thesis (in preparation), Computer Science De­
partment, University of Manchester, 1991. 

[7] S. Burbeck, How to use Model-View-Controller (MVC), Technical Report, Soft­
smarts, 1987. 

[8] S. K. Wallis, An Object-oriented Semantic Network System, Internal Report, 
Computer Science Department, University of Manchester, 1990. 

[9] S. K. Wallis,An Object-Oriented Approach to Semantic Networks, Transfer Re­
port, Computer Science Department, University of Manchester, September 1988. 



X-Designer - Abstraction and Visibility in 
Graphical User Interface Design 

Alistair George 
Imperial Software Technology Limited 

Reading, UK 

Abstract 
X-Designer is a graphical user interface (Gill) builder for the 
OSF/Motif toolkit. Like other tools in its class, it allows the developer 
to create the GUI for an application graphically, and then generates the 
code needed to implement the interface. Unlike other tools, however, it 
does not merely present the visual abstraction of the GUI - that is, this 
is how it looks - it also makes explicitly visible the internal structure -
that is, this is how it is. 

X-Designer uses a variety of simple techniques to control the 
amount of detail of the internal structure which is visible to the tool us­
er. This allows the tool to present both a simple view for naive users 
and at early stages of development, and a more complex but complete 
view when required. 

This provides considerable benefits in terms of designer support. 
This paper discusses these benefits, and shows how an appropriate 
set of tool functions can provide the advantages of abstraction and re­
use, particularly at the early stages of development, and yet still allow 
tight control and the use of a familiar paradigm in the implementation 
stages. 

1 Introduction 

A graphical user interface (GUn builder is a tool which supports the developer in 
building a GUI for an application. The level of support offered can vary widely. A 
typical GUI builder will: 

Allow a Gill to be constructed using direct manipulation techniques (eg 
"drag and drop"). 

Give an essentially instantaneous "what you see is what you get" 
(wysiwyg) view of the GUI under construction. 

Relieve the developer of at least some of the coding work which would 
otherwise be involved in building the GUI. 



183 

This is not intended to be the start of a debate about the nature of GUI build­
ers. These three functions are commonly found, and serve to distinguish GUI 
builder tools from, say, pencil and paper (the cheapest way of obtaining an instan­
taneous wysiwyg view using direct manipulation). 

Many GUI builders treat the external visual representation of the GUI (the 
wysiwyg view) as the fundamental representation used by the developer (for in­
stance, Builder Xcessory from ICS, and Sun Microsystem's dev/Guide). Compo­
nents are added by dragging them from a palette onto the wysiwyg view; the GUI 
builder then determines the internal structure of a GUI which will have the same 
appearance as that which the developer is creating, and generates code to imple­
ment this GUI. 

X-Designer takes a different approach. X-Designer presents both a wysiwyg 
view and a view of the GUI structure. All development is performed on the struc­
ture view. This may seem to be a regressive step, in that the developer needs to 
be aware of the implementation structure from an early stage. In fact, it offers sig­
nificant advantages, especially in the later stages of development. 

2 GUI Development According to MIT 

X-Designer is based on the Motif toolkit, itself built on the X toolkit and its intrin­
sics. In Motif (and other Xt intrinsics-based toolkits) the developer creates a 
GUlby: 

Creating a hierarchy of widgets (GUI components). 

Setting the resources (attributes) of each widget. 

Associating callback functions with user actions on widgets. 

The application behaviour is contained in the callback functions. A hierarchy of 
widgets with no associated callbacks will display some behaviour - that which is 
programmed into the widgets by the toolkit supplier. For instance, pressing a but­
ton in a menu bar will cause a pulldown menu to be displayed. Pressing the 
"Open" button in the "File" menu will not open a fIle, unless the callback function 
to do this has been written and linked in. 

The standard toolkit provides an API which allows the developer to create 
GUIs - that is, create widgets and the widget hierarchy, set resources and associ­
ate callback functions. A major difficulty in writing any GUI is simply the volume 
of code which has to be written. There are many pitfalls for the unwary, and a cod­
ing error may simply lead to failure of the application, rather than the helpful error 
message we would hope for. 

3 X-Designer as an Implementation Tool 

X-Designer fully supports the representation used by Motif. In particular, X-De­
signer provides: 



184 

Widget 
L Palette 1" 

A palette of icons representing the widget classes. 

A design area in which the widget hierarchy is constructed. 

Resource panels for each widget class, which allow the resources of 
each widget instance (including callback function names) to be set 

Widget Hierarchy 

..-m.... 
! ! T 

.- --.-
Resource Panel 

0pI1on I OIIlllIY a I 

WYSIWYG View Enlrybo_ IJ ~ 

Mllgln ..... h IJ ~ 
Margin hIighI IJ §:] 

c....... IJ ~ 

~ IJ~ 
Help widgol i=11IoIpII= •• =-----,H 
llll_ctod I Ii 

Figure 1: X-Designer 

Clicking on a widget icon in the palette adds it to the hierarchy as a child of the 
currently selected widget. Clicking on a widget icon in the design area makes that 
the currently selected widget (shown highlighted), and double-clicking brings up a 
resource panel appropriate to the class of the widget. 

The tool also presents the wysiwyg view of the GUI in a separate window. 
Since the GUI is constructed by operating on the hierarchy in the design area, the 
wysiwyg view always looks and behaves as the eventual GUI will - there is, for 
instance, no need to switch from build mode to test mode to try the effect of press-



185 

ing a button. 
At the most basic level, X-Designer is simply an interactive tool for defining a 

user interface dialog (in hierarchy/resources/callback terms), with an associated 
code generator. This alone gives several advantages over hand-coding: 

The generated code is syntactically correct. X-Designer does not need 
three tries to get the correct spelling of XmNmnemonic. 

Common errors (setting a non-existent resource, creating an invalid 
widget hierarchy) are barred by the tool. 

The wysiwyg view of the GUI is updated to take account of design 
changes immediately. There is no need to compile and link to see the 
effect of a change. This means that rapid prototyping is possible; it is 
also a considerable help in learning Motif. The questions "What does 
this do?" and "How do I do this?" can be answered by experimentation. 

At this level, the abstractions presented by the tool to the developer are 
(almost) the same as those presented by the API. That is, the tool is readily un­
derstood by experienced Motif developers, and the understanding developed by 
using the tool can be applied to the task of writing the callback functions. 

4 Object Types Supported by X.Designer 

One of the benefits of abstraction is that it simplifies the semantics of a type - the 
developer only has to deal with the public interface of the type. There is a general 
tradeoff between complexity and the number of different types - between a small 
number of powerful, generic (but complex) types and a larger number of simple, 
specific types. 

Not all of the abstractions supported by the Motif toolkit API are supported by 
X-Designer. For instance, an application warning message is usually displayed in 
an warning message box. To create such a message box, the developer must cre­
ate a two-widget hierarchy, with dialog shell parent and message box child, and 
set the message box type resource to 'warning'. This is such a common require­
ment that the Motif toolkit provides a convenience function 
(XmCreateWarningDialog) to do it. There are similar convenience functions for 
other types of message dialog (error, information ... ). 

X-Designer does not support this. To create an error message dialog in X­
Designer, the developer creates the hierarchy and sets the type of the message 
box via the resource panel. This process requires four clicks of the mouse button. 
If X-Designer supported the warning dialog as a (pseudo-)widget, it would re­
quire only one. The point here is simple. If the construction facilities are sufficient­
ly easy to use, the benefits of some kinds of abstraction are outweighed by the 
costs - in this case the addition of six extra functions to the API. Further, by 
avoiding this abstraction (and similar dialog creation convenience functions) we 
gain an important unification - that every widget hierarchy has a shell at its root. 



186 

I This is a warning message 

Figure 2: Warning message dialog 

An additional simplification provided by X-Designer is that widgets and gadg­
ets (less capable but less expensive versions of some classes of widget) are 
treated as configured instances of the same object. To create, say, a push button 
gadget, the developer creates a push button, and then uses a toggle in the re­
source panel to convert it to a gadget. 

In all, the 49 creation functions in the Motif API (XmCreate*) are replaced by 
32 icons in X-Designer. The tool facilities give a one-third reduction in the 
number of types of object the developer has to deal with (in respect of object crea­
tion) without loss of functionality or ease of use. 

The avoidance of abstractions is not a design principle - it is design pragma­
tism. X-Designer does not treat the different types of message dialog as distinct. 
However, it does distinguish the types of row column widget. Menu bar, radio 
box, popup menu and so on are all treated as different types of object. The deci­
sion as to whether to support objects as distinct is a matter of judgement, and is, I 
would suggest, not intrinsic to the problem. X-Designer presents only a single­
level view of the basic objects (the widget palette), and therefore aims to keep the 
number of different object types small. If the tool presented an object type hierar­
chy on multiple levels, so that clicking on a widget icon brought up a menu of its 
subtypes for selection, then a much larger set of types could be supported. That 
is, the set of types is influenced by the presentational characteristics of the tool, 
as well as the problem (Motif GUI building) which is being solved. 

5 Composite Widgets 

Some of the widgets provided by the Motif toolkit are primitives - button, text 
field, scroll bar, etc. These are single objects with no internal structure. Others, 
such as the message box, have children which are created when the parent widget 
is created. These are sometimes called composite widgets (strictly, only some of 
the composite widgets have automatically created children). 



187 

& 
me,s~agebox 

LQbQt. c:::J LClbolI. 
Okbutlon canceibulton symbol helpbulton separator messaget8XI 

Figure 3: Internal structure of a message box 

Typically, a composite widget will have resources which allow a subset of the chil­
dren's resources to be set. For instance, a message box has a label string re­
source. Setting the message box label string changes the message displayed in 
the box, by changing the label string of its message label widget child. However, 
the message box widget does not have a resource which allows, say, the font or 
colour of the OK button to be changed separately from the fonts or colours of the 
other buttons. That is, the message box does not show all the details of its con­
struction at its primary interface. 

There are occasions when it is necessary to set resources which do not ap­
pear at the primary interface of a composite widget. The Motif toolkit developers 
recognised this, and (in many cases) provided function calls which let an applica­
tion get handles on the children of a composite widget. Given these handles, the 
resources of the children can be set. 

X-Designer also provides this facility. When a composite widget is added to 
the design hierarchy, X-Designer determines its children (known as abstract 
widgets) and shows them in the hierarchy as well. From the developer's point of 
view, these are just more widgets which are part of the design. Their resources 
can be set, and callbacks associated with widget events. The only difference is 
that the internal structure of the composite widget cannot be changed in X-Design­
er - that is, the abstract widgets cannot, in general, be deleted. In this, X-Design­
er is merely respecting the toolkit. 

The developer can choose whether or not to set resources on the abstract 
widgets. Indeed, since any part of the design hierarchy can be folded, the develop­
er can choose to fold a composite widget, hiding its abstract children, and both 
view it and treat it as a primitive widget Typically, a composite widget may be 
treated as primitive at an early stage of development, and only unfolded later if it 
is necessary to set resources which cannot be accessed via the resource set of the 
composite parent. 

The facility to hide and reveal details of an object's structure allows the tool 
user to ignore detail at one stage of development, and exploit it at another. This is 
the best of both worlds - simplicity when wanted, tight control when needed. 



188 

6 The Cost of Visibility 

One of the benefits of abstraction is that implementation details are hidden from 
the developer, and can be changed without impact. A good example of this is pro­
vided by the Motif file selection box widget. This is a complex composite widget 
which gives the user a list of filenames from which to make a selection. In version 
1.0 of Motif, it looked like this:-

1m II 
File Finer 

I· I 
File. 

I 
!UIl.croamlapgldl.lgner/ccnforonceSlbc.pnoUSCCS 

~ 
!UIll croamlapgldll lgn,r/confl"nCISlbc'p .. "abrtrac1 
!UIl.ereamlapglda.lgner/ccnfereneeSlbc .pr.stdraft .Z 
!UIl.creamlapgldeslgner/conferenceSlbcsprestdraft.doc 
!UIllcr.amlapgld8.lgn .. /ccnfaranceSlbc.p .. "dra/l .dOC.bac~up 
!UIl.c .. amlapgldl.lgner/ccnfltoncISlbc.pno"drall .doc.lc~ 
!UIllcroamlapgldl.lgnor/ccnfltlnCISlbc.p .. "drall W 
uIIlCtOamllPQldlliqnor/ccnfltlnclSlbclPtO"dtalll 

Sellctlon 

LlUIIscrelllllapglde.lgnetleCnfetenCeslbcsprest J 

~ I Finer I IC8/1C811 ~ 

Figure 4: Motif version 1.0 File Selection Box 

The hierarchy of abstract widgets which constitute a Motif 1.0 file selection 
box is:-

CJ CJ CJ 

Figure 5: Internal structure of a Motif version 1.0 File Selection Box 

In Motif 1.1, everything changed. The widget became more complex, both in 
appearance and in structure. An extra scrolled list widget was added to hold a list 
of directory names. 



189 

111ereamlapgldeslgner/eonrerenceSlbelpresr 

Directorlel Flies 

1I1 •• all absjract 
lceSlbcspreSl .. draft ,Z 
lceSlbcspreSlSCCS draft. doc 

dratl .doc,bacllup 
drBft.doc,lcll 
dratl .1><l 
dratl1 
dratl1.bcI 

e Q 
Selecllon 

I JIIscreamtapgldeslgnerfconreranceslbcspreSl I 

Figure 6: Motif version 1.1 File Selection Box 

CJ CJ CJ 

Figure 7: Internal structure of a Motif version 1.1 File Selection Box 

The developer who had made use of only the file selection box resources to 
customise an instance of a Motif 1.0 file selection box was (reasonably well) insu­
lated from this change. The same code could be built against Motif 1.1, and show 
reasonab.le results. However, if the developer had set resources on the abstract 
widgets, then this insulation was lost. For instance, if the font for the fIlename list 
had been explicitly set on the list widget, under Motif 1.1 the fIle selection box 
would display the filename list in the selected font, but the directory list in the de-



190 

fault font. 

Filter 

I u/iscream/apg/designer/conferences/bcspres/'"I 

Directories 

IcrearnJa.pglde~lgne r/conferencesJbC$preSl .. 
;creamlapgldesigner/conferenceslbcspreslSCCS 

EM ., 
Selection 

Files 
abstract 
draft.Z 
draft.doc 
draft.doc.backup 
d raft.doc.lck 
draft.txt 
draftl 
draftl .txt 

I /u/iscream/apg/designer/conferences/bcspres/ I 

III OK III Filter Icancell Help 

Figure 8: Moving up from Motif 1.0 to Motif 1.1 

This problem is not characteristic of X-Designer. In allowing the developer to 
access and modify abstract widgets X-Designer is simply providing the same facil­
ities as the Motif toolkit. The problem arises not because X-Designer goes be­
yond the published interface of the file selection box (in this case it does not), but 
because that interface was not preserved between Motif 1.0 and Motif 1.1. How­
ever, it does demonstrate that there are costs in providing visibility of the internal 
structure of objects, as well as benefits. 

If an application has only a few instances of a file selection box of this sort, the 
problem is readily resolved. It is simply a matter of making the appropriate change 
to every instance, and then regenerating the code. The tool facilities make this 
straightforward, but it is time-consuming if there are many instances. 

Ideally, only one change would be needed. Rather than taking instances of the 
file selection box class, and setting the filename list font on each, the developer 
would create a 'file selection box with filename list font' class, and take instances 
of this. The implementation of this derived class would have to change when the 
file selection box implementation changed, so that the same font was used for the 
directory list as well, but this change would be centralised. The cost of this would, 
of course, be a proliferation of types. Better facilities for the management of the 
widget class hierarchy would be needed, and this would inevitably lead to an in-



191 

crease in presentational complexity. A new widget type is probably only appropri­
ate when the required functionality cannot be provided at reasonable cost by com­
posing existing widgets. 

7 Invisible Objects 

As we have seen, X-Designer provides a graphical technique for composing widg­
ets, and makes visible to the user some of the internal structure of composite 
widgets (which has an associated cost for both tool user and tool developer when 
the structure is changed by the widget developers). It also makes the wysiwyg 
view - the 'face' - of the widgets visible in the design window. 

Many widgets have no face, or changing faces. For instance, a widget which 
is used to control layout, such as a form, is visible only in the gaps between its 
children. If the wysiwyg view is used as the primary means of selecting widgets 
so as to set their resources, special techniques may be required to select layout 
widgets - after all, a form may have no gaps between its children, and so have 
nothing visible in the wysiwyg view to select. Similarly, menus, which are invisi­
ble in the wysiwyg view until the user presses a mouse button, may requires spe­
cial-purpose menu editors. 

Since X-Designer uses the internal structure as the access route, layout widg­
ets and menus can be treated in the same way as any other widget. The resourc­
es of a layout widget can be accessed by clicking on the relevant widget in the hi­
erarchy. Buttons are added to a menu by selecting it in the hierarchy, then clicking 
on the button icon in the widget palette, once for each button. The user model 
('menus contain buttons' rather than 'menus have menu items') is simple and con­
sistent, and the extension to provide submenus (cascading menus) is obvious. 

Ii f. o. .. aiiii'l 
I~ l<"~_- !!"OI 

C[j] "' ....... ·1-.. ., llii I E1~ 
V.,..III ~, I (IMIIiI«CI) I 

LIDEl 
[E(Q] I • 
[d~ eJ 
- I-=. -" MID~ 

, l.- T l _ §] l.- T ...... -•. ...." ......... - • ....... .. ,' ....... 
[Q]11l 

..----.-... 
= C!I a - .-ICI ICI &:J 

!ZJ """ - ..,.. \IIIIIdopIIC .... U 

iI 
1 

--- III III ,..., ..... 
\;]~ 

_ .... --- !."!-' !!"O I --- I 

o t::l = t::l t::l t::l p...,.. .... I §]m &:J 
c .. _ - .. - ~[ 

N. ,.. ...... 

I I 00 ... 1 

EJ[f] -- 0 ....... 
,.........0-.. I I~' 

~[f] = t::l 
....... _0¥tII' ",*"._M 

L~m II -'-I 

Figure 9: Dialog with menus and cascading menu 



192 

Although X-Designer was originally developed to work with the Motif toolkit, 
it has now been extended so that it can be configured to work with any widgets 
based on the X toolkit intrinsics (Athena, OLIT, or extra application-specific widg­
ets). These are, at least nominally, user interface objects. There is, in principle, 
no reason why X-Designer should not be extended to support other kinds of ob­
ject. The X toolkit intrinsics do not provide the ideal basis for, say, a database ob­
ject, and a more general model which supports the intrinsics as a special case will 
be required. In addition, the idea of an application as a set of object hierarchies 
(each corresponding to a user interface dialog) may need to be extended. Howev­
er, there is the prospect of a smooth transition from a user interface building tool to 
a more general application building tool. 

8 Re-use in X-Designer 

X-Designer allows the user to compose objects taken from a pre-defined (but ex­
tensible) set, the widget set. The user is free to create new widgets from existing 
ones, and add them to the widget palette. Widget building is still the blackest of 
black arts, and subclassing widgets is not a task which a typical application pro­
grammer would relish. 

X-Designer has a number of features which promote reuse at a level which is 
manageable without detailed knowledge of the technology. In particular, it sup­
ports reusable design fragments, and effective ways of modifying existing designs. 

Any part of a widget hierarchy can be saved as a clipboard item. A clipboard 
item can later be retrieved and pasted into a new design at an appropriate point in 
the hierarchy. Of course, this is similar to reusing existing code, using the cut and 
paste facilities of a text editor. However, an X-Designer clipboard item is a single 
object. The code required to implement it has, typically, half a dozen sections. To 
reuse the code, each section would have to be cut from the existing code file and 
pasted in at the appropriate point in the new code file. 

The clipboard mechanism provides a way to define, say, a project standard 
menu bar. The developer can paste this in to a new design, and need only popu­
late it with extra items which are specific to the application. This is useful where 
there is a common base which needs to be extended for particular purposes. An­
other situation which commonly occurs is that of a number of similar objects, but 
with no obvious common base. In this case, the need is to take an existing object, 
and modify it with the least possible effort. 

Again, the internal view of the design hierarchy is used. Conventional cut and 
paste facilities are provided, and any widget in the hierarchy can be moved to a 
new position by dragging it with mouse button 1, or copied by dragging with mouse 
button 2. These operations work on the dragged widget and all its children, so en­
tire sub-hierarchies can be moved or duplicated in a single operation. 

Both of these techniques - clipboard items and dragging - rely on visibility of 
the internal structure. In the wysiwyg view, it is much harder accurately to identi­
fy a part of the design - there is no clear visible boundary between objects, and 
some objects may not be visible. 



193 

9 X-Designer and the Widget Class Hierarchy 

Any widget toolkit consists of a number of classes of widget, derived in the usual 
way in a class hierarchy. Each child class inherits the resources of its parent 
class. 

In the Motif toolkit, this class hierarchy is, in some sense, imperfect. In partic­
ular, there are instances where a child class inherits resources from its parent 
which have no function in the child class - the documentation marks them as "not 
applicable" in the child class. There are also instances where the parent class has 
resources which have no function in the parent. but have a function in some class­
es derived from it. For instance, the Label widget class, which is used as the ba­
sis for a number of different classes of button, has resources which are used by 
some buttons, but not all. In addition, there are resources which are only useful in 
some circumstances - a pushbutton can have a keyboard accelerator if it is in a 
menu, but not otherwise. 

X-Designer provides resource panels which allow the resources of a widget 
instance to be set. The design of these panels is critical to the usability of a OUI 
builder, and there are a number of different approaches. 

9.1 Core Resource Panel 

The most obvious approach is to have a resource panel for each widget class, 
which includes all the resources of that class. However, there are many resources 
which a widget class inherits from remote ancestors, and which are only rarely set 
by application programmers. For instance, the unit type, which specifies whether 
dimensions are given in pixels, looths of a millimetre, etc is rarely set and, if it is, 
it is likely that the value will be the same for all widgets in the design, and so 
should be specified in an X resource file. 

In X-Designer, these resources are grouped together into a Core resource 
panel. Resource panels for each widget class contain only those resources which 
are not in the Core resource panel. Normally, a user will set resources in the 
class-specific resource panel. However, the Core resource panel is available 
when required. In this way, X-Designer hides detail which is irrelevant most of 
the time, but allows access to it when required. 

Note that the Core resource panel is also used for gadgets, which are not de­
rived from the Core class. In this case, inappropriate resources are greyed out, 
and cannot be set. 



194 

fa - il 
Opllon 1 Sotling. 0 1 

Uur -1:1111, 1...1 _____ ---' 

0 ~lg,.Ig/I' on 0"0' I (NO) 0 1 

0 T,. ... ~w on I (NO) CI I 
0 N.vtg.llonTypo I ~T",1l :)'0111'.' 01 
0 S'Mg "_Ion I (\. .. '0 RIg") 0 1 
0 UnII'ypo I (pI><o") 01 
0 Map "MfI." fIIanaged I (Ves) g I 
0 S.n,11'v1 I (VIS) C I 
0 R.tOufUI p.,slst.AI I (V.s) c I 

51o"'go cia.. I (Dofou.) 0 1 
o TaI>gtOUll 

• "'anogod 

Figure 10: The Core resource panel 

9.2 Subsidiary Resource Panels 

This technique is carried through to lower parts of the class hierarchy. The re­
source panels for derivatives of bulletin board do not include the bulletin board re­
sources, but provide access to the bulletin board resource panel via a button in the 
class-specific resource panel. Bulletin board resources which are 'not applicable' 
to a child class of bulletin board are greyed out in the bulletin board resource panel 
when it is being used to set resources of an instance of that child class. 

Iii 9.-c1lao iii 
Opllon I Display 01 Dplion I DISplay o 1IIIEMIe'''' BO .... R ......... I 

11"0 0 10 
"'argon 10019'" 0 EJ 
Margl.n..wfth 0 ~ 

Hon/onlaJ spacing 0 D 
vonlcaJ 'poc"'1l 0 D 

FracUon ba" 0 0 
Cancol bullon 1 

o.raun ounon 1 

No ,nlen dnng 0 I I 
PllI,m [] I I 

M~I'IiI'lOry illtm.t [] D 
TID4 ming [] I I 

VI'ibl. IItlll count [] ~ 
TM t06umn1 0 El 

o.reC1Ofy _.tt 0 I I 
OI .. Claty [] I I 

II Apply I I Ck)111 I undO I 8 leku,) I Undo I I Apply I ~ 
l!.;;;;;o;;;;;;;;iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii:.JI 

Figure 11: Resource panels for Bulletin Board and Selection Box 
(a Bulletin Board derivative) 



195 

Where the user has extended X-Designer to support a new widget which is 
not in the standard Motif toolkit, X-Designer builds a class-specific resource pan­
el for it on the fly. This includes only those resources of the widget which are not 
resources of its first known (Motif) ancestor. Access to the Motif ancestor is pro­
vided via a button in the class-specific resource panel (of course, if the new widget 
is not derived from a Motif widget, the class-specific resource panel will contain 
all those resources which are not in the Core resource panel). 

9.3 Multi.Purpose Resource Panels 

Although class-specific resource panels have been mentioned, it is not the case 
that every widget class has its own resource panel. Where there is a sub-hierar­
chy of classes which inherit from a common parent, the same resource panel may 
be used for them all. A case in point is the label class and its derivatives, which 
all use the same resource panel. Since the classes in the label subhierarchy have 
different resource sets, inappropriate resources are greyed out according to the 
class of widget whose resources are being set. 

Inappropriate may mean one of three things: 

The resource is not a resource of the selected widget. For instance, 
Arm Colour is not a resource of label, but is represented in the label re­
source panel so that the panel can be used for setting resources of 
pushbutton. It is only enabled in the resource panel when the currently 
selected widget is a pushbutton. 

The resource has no function in the currently selected widget. For in­
stance, the label class has resources related to keyboard mnemonics, 
but these only have a function for certain of the button classes derived 
from label. 

The resource has no function in the selected widget under the current 
circumstances. The mnemonic resources of a button are only enabled if 
the button is a child of a menu bar, pulldown menu or popup menu. 

There are two advantages in reusing resource panels. First, the number of re­
source panels in the tool is reduced, so the tool uses fewer machine resources (in 
particular, less memory). Second, the tool user has to learn fewer different tool di­
alogs, and there is less clutter on the screen. 

As well as cases where the same resource panel is used for all the classes in a 
subhierarchy, there are cases where a single resource panel is used for all the sub­
types of a given class. The various subtypes of the row column widget (menu bar, 
menu, radio box, etc) all use the same resource panel. 



196 

~1ii~~~~-~_~i1 ra~1!I ~~pow~eour..~ii 
Option I SIII""l' 0 I • Wldgot ~ Gl.dgl' Option I SlCIing' 0 I 
[] Align .. ,,. I (e ..... ) 01 
c Typo I (S,ong) 0 1 
C fII •• lzl I (VII) C I 
[] Pus" Bunon I ~Nvj 0 I 
C ShaaO'Wlt' I '.Elcr •• ..t Ihi Q I 
[] Fill an atI'III levI,) 0 I 
C Fin on .... I.a I r: .. )-; C I 
[] IndinSo, Ort I r: ... ,i c I 
C IncUc&tOf typ.1 \')..f:UI~,1 C I 
[] Munl el.U I (K"P) 0 I 
C Sit I , ...... ); c I 
a Vil ible 'WI'I.n off I r: .. lo; C I 

C Ol1'nll1lon I ' .• nlc~I.1 c I 
C Pac ~ng I (119M) 0 I 
C "''1ln .. ,,,, I ('BoglM4ngJ 0 I 
C Ad)u" '''' I (VII) 0 I 
C AdJUl1 lIIi/gln I (V,,) c I 
[] AIIg"." I (VI .. ) C I 
c Ho~.n.ou. I if JD~ C I 
c Popup enabltd I ~'.' .. :.; c I 
a Radio alw'ays 0,.. I iT'-:~ c I 
a Radio tltn.avtOt 1,."'1"; 0 I 
a R.'1I1 "'1.gI"II I (V •• ) Q I 
[] Rill" _. 1 (VII) 0 1 

Figure 12: The Label resource panel (as applied to a push button) 
and the RowColumn resource panel (as applied to a menu bar) 

Note that some of the resources in the Row Column resource panel are greyed 
out not because the selected widget is of a particular class, but because it is of a 
particular type (its type resource has a particular value). For instance, since menu 
bars can contain only cascade buttons as children, the homogeneous resource 
(which specifies that all the children must be of the same class) is never enabled 
for menu bars (instances of the row column class where the type resource has the 
value menu bar). The tool user cannot see the difference between this and the 
case where the same resource panel is used for instances of different widget class­
es. That is, the fact that the Motif toolkit uses types of the same class where dis­
tinct classes might have been appropriate is hidden from the tool user. 

9.4 Special-Purpose Resource Panels 

Most resource panels consist of lists of resources with a means of setting the re­
source value (by entering text, selecting from a list of alternatives or setting a tog­
gle, as appropriate). For some resources, this is not adequate. In particular, the 
form widget imposes constraint resources on its children which are used to specify 
the form layout. The mapping between the desired result and the resource values 
required to achieve it is not obvious, even to an experienced user of the Motif form. 

X-Designer provides a special layout editor which lets the developer defme 
the layout graphically. To maintain the principle that the external wysiwyg repre­
sentation should always look and behave as the fmal application will, layout, like 
hierarchy editing and resource setting, is done using a separate representation. 
This shows the children of the form as rectangles, with lines and circles to repre­
sent form attachments and position constraints. 



197 

,~ 

0- MOYI 

O." .. ~ 
o PO.JU .. 4" ' 1 

~ 
"",.1 

'100 I 0 1Ft..~ II'J'lr.I~. I 

IClOn I 
IH'I~ I r; III ..... -. DwIgo*' iI Izoo .. on I 
IZooII oUl I 

t- !1P- I--- ~ 

Sll. 0 ..... ' 

<> Cash 

<> Chequol 

o VISA 

Icanel,1 
LlC-,," I ..I 

&::I I~ 

-, 
Figure 13: Fonn Layout Editor and corresponding WYSIWYG View 

In this case, there is no question of X-Designer using a more abstract repre­
sentation, or hiding unwanted detail. The layout editor uses a different, more usa­
ble, representation, but it contains the same information as is contained in a list of 
constraint resources and their values (apart from offset values, available from a 
separate resource panel). 

10 Modelling the Application 

X-Designer provides facilities for a developer to create user interface dialogs. To 
complete the application, the developer must also define the behaviour of the user 
interface and, at some point, that of the core application. 

X-Designer provides only very limited support for these. To create a complete 
application, the developer will use X-Designer to design dialogs, and to associate 
callback function names with user actions and other events. The code generated 
by X-Designer includes these associations, but does not include the callback func­
tions themselves. These are written by the application developer, using whatever 
development tools are available and appropriate. The callback functions are then 
compiled and linked with the code generated by X-Designer to create the final ap­
plication. 

Since X-Designer uses essentially the same model as the implementation 
toolkit, it is straightforward for the developer to make the transition from the de­
sign phase to implementation. Code generated by X-Designer looks like the code 



198 

which the developer would have written to do the same job, but is easily related 
back to the design hierarchy. To the developer, working with the generated code 
is just like working with code written by another programmer (one who has an ex­
ceptionally consistent style, and who always writes code which corresponds ex­
actly to the design!). 

Although the behaviour of the fmal application is detennined by the callback 
functions, it is often convenient to be able to demonstrate the behaviour of a sys­
tem before all the code which implements it has been written. X-Designer sup­
ports this using a mechanism known as 'links'. Links are simply actions to be tak­
en when a button is pressed. There are four sorts of action - hide, show, enable 
and disable - and a single button press can invoke multiple actions on many differ­
ent widgets. 

j unk type 
I 

I • Show 

<> Hide 

<> Enilllie 

<> Disilllie 

EJ 
I r~e:"OY8 1 

~ 

''11<$ fOl' culb iI 
Selection 

l inks 

§E] ~ _, 
I!.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii.!l 

Figure 14: The Links Dialog 

Although this model verges on the trivial, it is sufficient to prototype behaviour 
of the application. The prospective end-user can see not only what the application 
will look like, but also the major paths through the application. 

The behaviour defined using links can optionally be passed through into the 
generated code, although it is more usual to replace the simple link actions with 
callback functions in the final application. However, there is at least one signifi­
cant application built using X-Designer which uses links to implement all the dia­
log behaviour. 

11 Summary and Conclusions 

The design of X-Designer attempts to reconcile the need for simplicity and ease of 
use with the requirement to provide access to and control of the very rich facilities 
of the underlying Motif toolkit. In order to do this, it uses a number of techniques 
which either hide that richness, or make parts of it unnecessary. In the course of 
development, a number of points arose which may have general relevance to the 
design of software development tools. 

First, the most obvious abstraction (in this case the wysiwyg view) is not 



199 

necessarily the most appropriate. A more concrete representation can bring bene­
fits in terms of: 

Consistency (no special purpose menu editors). 

Extensibility (support for invisible objects other than user interface lay­
out objects). 

Easy reuse (clipboards and dragging). 

Transition from design to implementation . 

Second, the set of basic object types which the tool has to support is not intrin­
sic to the problem being solved. but can be influenced by (quite minor) aspects of 
tool functionality and presentation. 

Finally, where the set of types exists in a derivation hierarchy. the tool user 
interface can profitably be used to conceal complexity (both the internal structure 
of objects and the many uninteresting attributes an object inherits from its distant 
ancestors). yet still provide access to the full facilities of the underlying toolkit 
types. It can also be used to conceal or mitigate idiosyncrasies in the structure of 
the underlying technology. 



SIRIUS: An Object-Oriented Framework 
for Prototyping User Interfaces 

Separation, Integration and Specialisation: Issues and Mechanisms/or 

Object-Oriented User Interface Construction 

Peter Windsor 

Logica Cambridge Limited 
Betjeman House, 104 Hills Road 

Cambridge CB2 ILQ, England 

Abstract 

The object-oriented approach to software construction is well suited to 

the development of graphical user interfaces with their rich state and 

complex behaviour. We have re-appraised how user interface and 

application software can be structured in an object-oriented context and 

developed a framework architecture which defines a standard 

organisation based on abstract superclasses which are specialised for an 

application. Our SIRIUS prototyping system is an implementation of this 

architecture and has been successfully used in the design of new user 

interfaces for the Oceanic Air Traffic Control Centre. 

1 Introduction 

It is practically impossible to design the user interface to a complex system and get it 

right first time [9]. We believe· that a fundamental process in developing usable 

computer applications is the construction of realistic prototypes of proposed user 

interfaces and their evaluation through trials with their eventual end users. In our work 

as an industrial human computer interaction group, we have built prototypes while 

designing user interfaces for application areas such as control and monitoring, job shop 

scheduling, insurance and banking and customer support and other office systems. In 

many cases, existing tools have been sufficient. However, where the important user 

interface design issues derived from the complexity and dynamics of the application, or 

the volume and variability of its data, we have found that these tools suffered from a 

number of limitations. Our work for the Civil Aviation Authority to develop the user 

interface for the Flight Data Processing System at the Oceanic Air Traffic Control 



201 

Centre (hereafter, called 'OACC') is an example of an application where these concerns 

arise [12, 13]. 

The fIrst problem with user interface tools is that they only have a limited capability to 

model the application domain. For all but the simplest domains, a user interface 

prototype needs to be a convincing, if incomplete, replica of the fInal system. When 

the prototype is for an application that does not yet exist, or, as in the case of Air 

TraffIc Control, is not accessible, the application has to be simulated. It is important 

that the tool allows at least a data model and some core functionality to be implemented 

with the minimum of effort. With many user interface tools, considerable effort is then 

required to map between the application entities and semantics and the facilities of the 

toolkit. To take a simple example, an application involving maps may use latitude­

longitude coordinates. Unless the tool explicitly supports this type of data, the 

prototype builder has to set up a translation between the application representation and 

the user interface elements provided by the tool. With the rich semantics of real 

applications these translations can become cumbersome and unwieldy. The 

Iconographer toolkit tackles this problem directly, but does not attempt to construct 

complete systems [5]. 

Secondly, the tools lack flexibility in the kinds of user interface they support. Toolkits 

implemented in conventional programming languages (e.g., the X toolkits) are diffIcult 

to customise, while UIMS style tools (e.g., Teleuse) are constrained by the capabilities 

of their definition languages. Further, it is not uncommon for a tool to work well 

within its intended context, but, as soon as a developer steps outside these bounds, the 

effort required increases by an order of magnitude or more. This 'trapdoor effect' is 

typified by moving from assembling a user interface using standard controls (widgets) 

to generating new widgets from scratch. Another related problem is that tools will lag 

behind the state of the art simply because of the time taken to integrate innovations into 

an existing system. These problems are partially addressed by parameterisation and 

templating facilities, but remain a serious handicap when using a tool for rapid 

prototyping. 

Finally, most commercially available user interface tools are delivery vehicles, not 

design tools. As a consequence, they do not meet the requirements of the design 

process. One major requirement is to be able to evaluate two or more alternatives for 

part of the user interface. With many tools this can be diffIcult If a tool does not allow 

the interface definition to be partitioned, it has to be duplicated, with the usual 

consequences for configuration management. Further, while tools will often allow 

different user interfaces to be examined using a defmition (layout) editor, it is typically 

necessary to shut down and restart the system to see the variations in a running system. 



202 

In this paper, we will present the design of our SIRIUS prototyping tool which aimed to 

address these problems. We took an object-oriented approach because it provided the 

basic technology to solve them. Specialisation allowed us to extend the basic toolkit 

and incorporate application semantics in the user interface while polymorphism 

supported flexibility. In combination with encapsulation, they provide the means to 

partition and vary the user interface. An object-oriented language with an established 

class library gave us a rich medium in which to work; this was especially necessary as 

we needed our prototypes to simulate applications. Lastly, by using an incremental 

development systeml we looked for a highly productive environment for constructing 

complete prototypes. 

In order to realise this potential, it was necessary to develop an appropriate architecture 

within which the technology could be exploited. In the following sections we will 

review the concerns that led to the SIRIUS architecture and explain the structure and 

mechanisms of the framework itself. We will also discuss the extent to which SIRIUS 

solves the problems described above and suggest how the lessons might influence the 

development of future User Interface Design Environments. 

2 The Structure of an Interactive Application and its User 
Interface 

2. 1 Separation of Concerns in an Interactive System 

Software systems are inherently complex. This is especially true of interactive systems 

with graphical user interfaces. In the development of the SIRIUS framework, an 

important goal was to design a generic architecture for interactive systems. We wanted 

to fmd an approach to decomposing such systems and support this decomposition with 

standard abstractions and hierarchichal organisations. Using Booch's terminology for 

the 'canonical form for complex systems' [1] we wanted to specify the architecture in 

terms of the structure of the class and object hierarchies we would expect in any 

interactive application. We could then implement a 'framework' of standard classes 

and mechanisms that would allow a prototype system to be assembled simply and 

quickly. 

Prior attempts to produce such a generic architecture have followed the Seeheim model 

[10] and started with a functional decomposition into Application and User Interface 

The primary implementation of SIRIUS uses Objectworks™/Smalltalk, but we also have 

a Lisp version. It would be straightforward to implement SIRIUS in C++ or another 

hybrid language, but some of the flexibility would be lost. 



203 

sub-systems. The user interface is then further sub-divided into components such as 

Presentation, Dialogue and Application Linkage, as shown in figure 1. 

.... 
User Interface .... 

I-~-~=~=~I 
Application 

........ ....... 

Figure 1 Simple functional decomposition 

Clearly, in any interactive system, we can distinguish application and user interface 

elements especially at the 'extremes' of the system. It is certainly possible to produce 

display device drivers, graphics packages and windowing systems that are independent 

of any application. Likewise, database systems and core application algorithms can be 

completely separate from the user interface. We can also describe the dialogue between 

the user and the system at an abstract level. Such a description would encompass 

commands that the user gives to the system, information that the user retrieves from the 

database and the application 'telling' the user when its database changes. 

However, this separation by functional decomposition breaks down when we consider 

the interactive system as a whole. First, the design of the application software is 

constrained by the requirements of interaction. Genuine batch systems legitimately take 

their complete instructions and re-order them for efficient processing. An interactive 

application, however, may need to be interruptable, provide progress reports and 

generally sub-divide its processing so that the user can retain control. Further, some 

pans of the application may not be able to proceed without intervention from the user. 

For example, Macintosh applications take control of the user interface when they ask 

the user to supply a floppy disk. 

Similarly, the user interface software needs to take the application semantics into 

account. Application 'objects' need to be mapped to names or visual representations 

(for example when presenting a set of files), parameters and options need to be derived 

from the state of the application data and semantic checks need to be applied to entered 

data. An especially demanding case is found in direct manipulation systems which 

require fme-grained semantic feedback. For example, 'desktop' applications using 

'drag & drop' interaction typically give semantic feedback about what operations are 

valid; documents can be dropped into folders but not vice versa. 

Even at the extremes of the application-user interface split, separation is not always 

appropriate. Performance requirements may demand that device drivers have 

customised features. For example graphics firmware for radar often includes primitives 



204 

for displaying data blocks. Similarly, it may be necessary to support application 

specific input devices. At the application end, the database may need to maintain user 

interface related data: images, colour and font data and user preferences. 

Finally, and most importantly, in any interactive system the nature of the interaction is 

characterised by how the system lets the user access objects in the domain. The system 

will have a 'state' which is defmed by the domain objects that are active in the user 

interface. For example, a word processor will typically have one or more documents 

active (open) and a current position for each. One document will be current, and new 

text is implicitly added to that document. This 'access model' is the essential state of 

the interaction and is effectively independent of the details of the user interface. In the 

Seeheim model and its derivatives, these aspects of a system are placed in the dialogue 

control sub-system or in the application interface. However, the interpretation of the 

access model is inseparable from the application semantics; the presentation of the user 

interface is largely the presentation of the active objects and the system's response to 

user input depends heavily upon the interactive state. 

For the SIRIUS architecture we wanted to partition our system so that application and 

user interface were largely separated for the database and device elements but integrated 

elsewhere. We were particularly concerned that the access model and the organisational 

aspects of the user interface were explicitly identified. The model we developed assigns 

each of the classes of an interactive system to one of five major categories arranged in 

layers, as shown in figure 2 (a more abstract version of this model was presented in 

[13]). The classes within a category are closely coupled and will depend on each other. 

Classes in one category will interact with those from an adjacent category more 

frequently than with those 'further away'. For any given class, the software will 

include both application and user interface functionality, but, as the figure indicates, the 

upper categories are predominantly concerned with the former while the lower 

categories are biased towards the latter. 

The domain model classes hold the application data and provide the core functionality. 

They will provide services to meet the requirements of the user interface. Conversely, 

the physical user interface classes provide the interface to the display and input 

hardware. Where necessary, they will provide application specific functions. 

The three intermediate layers deal with the interactive aspects of the system at distinct 

levels of abstraction. The access and actions layer specifies the interaction in a highly 

abstract fashion in terms of operations on objects from the domain. The structural level 

extends this by identifying a number of 'views' or components of the user interface and 

describing the roles they fill. It is still abstract; the functions of the components are 

defined but not their realisation. This is provided by the concrete presentation layer 



205 

which specifies the user interface as perceived by the user: windows, controls and 

menus for a GUI, or commands, messages and screens in a non-graphical context. 

A 
P 
P 
L 
I 

C 
A 
T 
I 
o 
N 

Domain Model 

Access & Actions 

Stnucture& Vievvs 

Figure 2 Aspects of an Interactive System 

u 
S 
E 
R 

I 
N 
T 
E 
R 
F 
A 
C 
E 

Although we have presented the five layer model after a discussion of architectural and 

implementation concerns, its main function is as a user interface design model. Each 

layer specifies a distinct part of the user interface, moving from the abstract description 

of the domain, to the characteristics of the physical devices. An important property 

exhibited by the model is the fact that it defines the consequences of changes to the 

system specification. 'Application' changes (new functionality / new presentations) 

will percolate down the model. 'User Interface' changes (new devices) will diffuse up. 

2.2 The Notion of a Framework 

The limitations of functional decomposition led us to the five layer model for the 

organisation of an interactive system. In addition, we needed a technology that would 

allow us to partition our software in a standard way into cohesive, independent 

elements and yet retain the capability to incorporate application specific functions. The 

obvious candidate was an object-oriented approach where we could use specialisation 

to add application software to standard classes and exploit polymorphism to implement 

standard mechanisms. The standard, abstract classes form a 'framework' upon which 

the system may be built [2, 4]. 

The SIRIUS framework is a 'sandwich' model with classes divided into three groups. 

The topmost layer, shown in figure 3, specifies the architecture for an interactive 

application. It defmes a set of abstract superclasses plus 'rules' for how an application 

may extend and modify them. An actual application will typically use a small number 



206 

of objects from these classes to form the backbone of the system. The framework 

defines a canonical structure showing how these major objects are connected. The 

abstract classes implement standard interfaces and mechanisms that will be needed by 

any application. Where application information is necessary, the framework places 

requirements on application subclasses to supply specific methods. Finally, rules and 

conventions dictate what parts of the application functionality should be placed in those 

subclasses. There are typically few of these 'superstructure' classes - the SIRIUS 

framework has seven - and their principal purpose is to manage and coordinate the 

operation of the system. 

Figure 3 The Abstract Superstructure 

The middle layer of the model, illustrated in fgure 4, is application specific. The 

application specialises the superstructure classes and instantiates them to form its 

structure. For some of the classes the application will use multiple subclasses and 

where appropriate there will be a class hierarchy with common aspects of the 

application abstracted out. For example in the OACC prototypes, there are a number of 

queue and log windows and the ComponentModel classes for these windows have a 

common intermediate superclass. Similarly, there may be multiple instances of some 

classes. The rules for the SIRIUS framework specify that some superstructure classes 

only have a single instance, while others occur mUltiply. 

Figure 4 The Application Superstructure Subclasses 

To turn the framework into an application, the interfaces between the superstructure 

classes are defined following existing conventions, state variables are added to manage 

the application state and methods written to implement the application functions. 

Typically these methods will invoke the standard mechanisms supplied by the 



207 

framework classes. The application might also introduce additional superstructure 

classes that are not generic but fulfIl a comparable role, typically managing a part of the 

system state that is sufficiently complex to demand encapsulation. 

The base layer, added in figure 5, consists of utility classes that support the 

construction of the complete system. The Smalltalk Collection and Magnitude 

classes are examples of universally applicable utilities. SIRIUS includes support classes 

for object graphics and for the interface with the display devices. It also has a library of 

utilities for Air Traffic Control data: air speeds, flight levels, aircraft types etc. 

Usually, these utilities are used in their vanilla form but subclasses are an important 

mechanism for adding application specific facilities to the standard mechanisms. 

Figure 5 The Complete Sandwich Model 

The separation of the framework software into superstructure and utility classes is not 

exact. Classes that form the superstructure for part of the system can be viewed as 

utilities in a broader context. For example, as we will discuss below, SIRIUS has a 

superstructure class ControlApparatus whose subclasses are the controls (buttons, 

sliders etc) that appear on the screen. Although the use of application specialisations of 

the various control classes is an important aspect of the framework, there is also a 

library of standard controls that are used as utilities. 

A framework is not a complete recipe for a system. There will still be many application 

specific classes that are not part of the framework structure. With SIRIUS it is still 

necessary to model the domain, although utility classes can simplify this. The 

importance of the framework notion is that it provides the organising principle for 

Object-Oriented systems. In the long term, we and others expect to see a variety of 



208 

both generic and domain-specific frameworks developed and we believe that they will 

prove to be a major facilitator for software re-use [4]. 

2.3 A Framework for an Interactive System 

How, then, can we combine the framework notion with our layered model? From the 

concerns we voiced in introducing the five layer model, a number of observations 

suggested the shape our superstructure might take. 

Starting with the 'naturally separable' aspects of the system, we expected to have a 

group of 'device interface' classes that encapsulate the functionality of the workstation 

hardware. In the context of modem window managers, these classes might include 

windows, sub-windows, menus, input events, fonts and colours. The process that 

receives events might also be represented as an object. In our sandwich model, these 

are utility classes, used in vanilla form, although they do fulfil a structuring rOle. In 

addition to these fundamental classes, we wanted to extend the capabilities of the device 

interface with utilities to support display lists (object graphics), named styles giving an 

indirect, and hence flexible, way of specifying display attributes and device 

independent descriptions of fonts and colours. 

Next, we expected to have classes for the domain entities themselves. For example, in 

the Air Traffic Control domain these would include flights, routes and sectors. 

Although these classes would primarily be 'application' rather than 'user interface' 

software, their interfaces would be 'coloured' by the interaction requirements. We also 

saw a need for 'database' objects to keep track of the domain objects. Although in a 

simple application it is reasonable to treat a class itself as the collection of all its 

instances (as well as being their template), this is not sufficient for more complex 

systems.2 The database objects would form part of the superstructure, while the 

domain objects are outside the framework. Depending on the application, there might 

also be classes that implement particular algorithms or functions, coordinating the 

functionality encapsulated by the individual domain objects. 

Then, we needed classes to take information from one or more domain objects and 

display it using the facilities of the device interface. These classes also needed to 

respond to input events and interpret them in application terms. Again, in a simple 

object-oriented system it may be possible for domain objects to present themselves with 

2 For example, in our OACC prototypes, we have several 'databases' each of which 

contains a different air traffic scenario. It is important that the system kept them distinct, 

not least because the • same' flight is in several databases but at different points in its 

journey. 



209 

straightforward display methods, but in practical applications, there is usually a 

requirement to present the same object in a number of different ways. For example, an 

aircraft's route might be displayed in tabular form, a 'flight plan' and on a map. 

Similarly, we wanted to support a variety of interaction techniques for entering 

commands and data. To meet such requirements we chose to use presentation objects 

that translated between the application and device worlds. An important point, though, 

is that we expected the presentation objects to access the domain objects directly, not 

via some additional interface. At the basic level, each presentation object would hold 

references to the domain objects with which it worked. The framework could provide 

superstructure classes for such objects and utilities for displaying common data types. 

We would expect an application to use many specialised presentation objects according 

to the variety of the domain and the user interface demands. 

The device interface, domain modelling, database and presentation classes are 

necessary building blocks for a framework for interactive systems, but its major 

concern is to provide the superstructure to coordinate those objects and manage the 

activities of the system as a whole - the central layers of the five layer model. The first 

part of this structure was to support the 'access model' that tracks those domain objects 

that are active in the interaction. Thinking about a graphical user interface with a 

number of windows suggested that we should have a single 'model' object that 

maintained the global access model, common to all windows3, plus one object for each 

window holding its local state. If necessary, for example when one window has sub­

windows, we could extend this structure and have a hierarchy of model objects. 

As the access model is the basis for the interaction, it was appropriate that the models 

should implement the dialogue at an abstract level. The framework model classes could 

provide mechanisms to support the interactions between the model objects while 

conventions would assist in deciding how the total state should be partitioned and what 

interfaces should be provided. In the SIRIUS framework, the central model plays the 

pivotal rOle in the system. As well as maintaining the global access model and 

controlling the dialogue, it manages the component (per window) models and provides 

access to the database objects and application functions. The hierarchy of model 

objects forms the backbone of the system and significantly detennines its character. 

For historical reasons, this central model is called the dialogue manager; it has also been 

called the interaction manager. Neither name is particularly appropriate; in this paper we 

will use 'central model' when talking about the framework concepts, but revert to 

DialogueManager when referring to the class. 



210 

The notion of a model that holds the interactive state and mediates between the domain 

and presentation classes is not new, coming originally from Smalltalk's Model-View­

Controller framework [6]. This also suggested another element for the complete 

framework: to split the abstract part of the interaction from its concrete presentation. 

This would allow us to provide different concrete user interfaces with the same basic 

semantics. A familiar example occurs in the Macintosh finder; the contents of a folder 

can be 'viewed' in a number of ways, but each form supports the same notions of 

selecting documents and invoking functions. 

In SIRIUS, we incorporated the model-view split, but with the more elaborate hierarchy 

of models providing the abstract level. However, the monolithic View-Controller 

organisation did not offer the flexibility we required; we wanted to use a network of 

individual, cooperating presentation objects. Coutaz' Presentation-Abstraction-Control 

paradigm [3] suggested an approach. Although PAC was intended as an overall 

architecture, we used it for just the concrete presentation part of the superstructure. The 

presentation objects could be organised into a hierarchy and each object would combine 

input and display methods and provide an abstract interface to the rest of the system. 

The concrete presentation layer would also need to manage the distribution of input 

events. We did not want to restrict ourselves to a simple geometry-based system with 

events dispatched to the leaves of our PAC hierarchy. For example, in a graphical 

editor with a variety of tools - selection tool, line drawing tool, text tool etc - a 

geometry-based distribution would mean that each presentation object would have to 

know about the currently selected tool. Therefore, we chose to pass input events to the 

root objects of the PAC hierarchy and then distribute them according to context. The 

framework would provide geometry-based distribution as a standard mechanism, but it 

could also support 'tool' objects and other techniques. 

Returning to the access and domain layers, it was also important that the framework 

should coordinate access to the application functionality and provide mechanisms to 

manage the system's response to changes in the domain. There were two major 

concerns. First, we felt that if the presentation objects were allowed to initiate changes 

to domain objects directly, this would rapidly become unmanageable. In particular, it 

would be difficult to provide standard mechanisms that ensured that every part of the 

user interface that needed to respond to a change did so in a systematic, co-ordinated 

manner. Second, we did not want commands, enquiries and responses to be 

implemented as methods in some object interface; such an approach would lead to 

large, unwieldy interfaces to the model objects which would be hard to maintain. In 

addition, the common GUI device of dialogue boxes for setting command arguments 

had a clear analogy with the relationship between presentation and domain objects. 



211 

Thus, we decided that 'commands', 'enquiries' and 'results' should be objects in their 

own right and that the framework should have superstructure classes for them. It could 

provide standard mechanisms for handling these 'action package' objects with small, 

straightforward and flexible set of interfaces in the models. A similar approach is used 

in Apple's MacApp framework [11] which demonstrates how command objects 

provide a basis for undo. We have also used them for command logging and to 

support progress (percent complete) indicators. 

The action packages would be created within the concrete user interface, passed 

through the models and then 'processed' under the auspices of a single 'application' 

object or transaction manager. This object would not perform any application 

functions itself; it would instruct the action packages to execute themselves and they in 

tum would invoke the appropriate methods of the domain objects. In addition, the 

transaction object could provide an interface for the action packages to declare what 

changes they had made to the domain model. This information would then be passed 

to the central model which would coordinate the response of the user interface 

components. 

Figure 3 shows the major SIRIUS superstructure. Although it can be viewed as a 

hierarchical organisation with the transaction manager as the root and the presentation 

objects as the leaves, the structure should be regarded as a flat graph with the all the 

objects having equal prominence. Further, the functions of the classes and the 

mechanisms that they provide are distinct; each layer fulfils a different role. 

In fact, SIRIUS is best described as two frameworks, one responsible for the 

organisation of the total system and a subsidiary one that supports the internal workings 

of the concrete presentation. As we will discuss later, this split allows us to consider 

extending SIRIUS by using other frameworks in this role. In the next sections, we will 

fIrst describe the superstructure and utility classes of the organisational part of the 

SIRIUS framework and then explain how the concrete presentation is supported. 



212 

Domain Model 

Access & Actions 

Physical User Interface 

Transaction 
Manager 

'. 
____ ·_Device Interface' .... ___ _ 

Figure 7 The Major Elements of the SIRIUS Superstructure 

3 The SIRIUS Architecture for Interactive Systems 

3. 1 The SIRIUS Device Model 

The first part of SIRIUS we will consider is the device interface classes that encapsulate 

the facilities of the workstation and its window manager. SIRIUS considers that a 

workstation has one or more screens, a keyboard and a pointing device. There is a 

normally a single 'connection' to a workstation, but in a networked environment. there 

can be multiple connections. On any workstation screen, there can be any number of 

'windows' - independent, virtual displays. Note that we use the term window for the 

'top-level' window, managed by the window manager and with label, resize and other 

decorations, rather than the XII sense of any member of the virtual display hierarchy. 



213 

Each window is tiled with panes and associated with each pane is a 'drawing surface' . 

This is illustrated in figure 8. 

Drawing 
Surface Drawing 

Surface 

Figure 8 Windows and Panes 

Pane 

Drawing 
Surface 

The Window and Pane classes serve several purposes. First, they keep track of the 

window manager resources and provide an interface to the associated functions: 

resizing, moving etc. Second, they hold references to the objects responsible for the 

concrete presentation and provide the mechanisms through which those objects gain 

access to the display functions. Finally, they are part of the input distribution chain. 

Drawing surfaces are implemented by the Paper class and provide device independent 

graphics. Each instance of Paper has its own, 'world' coordinate system of arbitrary 

size and orientation and maintains a mapping from part of that space onto the pixel 

coordinates of the pane as shown in figure 9. Then, Paper provides a rich graphics 

interface including line, shape and text drawing functions, a 2-d transformation stack 

and control over clipping. 

The second part of the device interface is the input model. For each workstation 

connection, SIRIUS has an 'input manager' that receives events from the window 

manager. It splits events into groups: pointer events, key events and window 

management events. 

Pointer events are generated for the press and release of pointer buttons, window entry 

and exit and pointer movement. The movement events are split into motion events 

when no pointer buttons are down and drag events when one or more buttons is being 



214 

pressed. Pointer events are generally passed to the pane containing the cursor, but the 

events for a 'drag sequence' (press, drag, release) are all passed to the same pane. 

Drawing Surface 

Device'sub window' 

Figure 9 Mapping from World to Pixel Coordinates 

Key events are generated when keyboard keys are pressed. They are split into 

alphanumeric keys, control keys and function keys. The fIrst two are distributed either 

to an application-controlled 'input focus' or to the pane containing the cursor. When an 

input focus is used, it will be a 'fIeld' (a presentation object) displayed in a pane. 

Function key events are always sent to the central model. 

The fInal event category is those events generated by the window manager to connol 

the multi-window environment. They include damage events, and events notifying the 

system of window moves and resizes. Window manager events are passed to the 

Window instance which will respond directly and inform the underlying model object. 

Event distribution is managed by an instance of the InputManager class. It converts 

the window manager data into an instance of the appropriate subclass of InputEvent 

and tells the event to process itself. The event determines its recipient and then sends a 

message to that object. The low level state of the interaction, particularly dragging and 

any input focus, are maintained by the input manager but used by the event specifIc 

methods. 

Although events are distinguishable objects within the framework mechanisms, they are 

passed to presentation objects as messages in the usual object-oriented programming 

sense. The protocol for input events is an important part of the framework conventions 

within the concrete user interface and the appropriate superstructure classes implement a 

default, 'do nothing', response. 



215 

The event distribution policy is arbitrary. It was chosen to suit our prototype user 

interfaces. It is possible for a particular application to provide its own policy by 

subclassing the InputManager class. This is facilitated by each application having its 

own workstation connection(s) and by the way the distribution mechanism is split 

between InputManager and InputEvent methods. 

The device interface also includes support for pop-up menus.4 Menus are defined 

using a number of superstructure classes (described in §4.8) but implemented in the 

device interface. In particular, the graphics do not use the device independent drawing 

surface approach, and during menu tracking events are passed directly to the menu. 

This retains some flexibility in defmition, but allows a simple interface and an efficient 

implementation. 

The SIRIUS device interface is a 'strong' model. As we will see in the subsequent 

sections, the framework is strongly influenced by the window and pane structure and 

that does limit its capabilities. This may seem inflexible when compared with a 'soft' 

model such as that provided by XlI's window hierarchy. It is our contention that the 

functions for which that flexibility is used are much better implemented in the concrete 

presentation software where application semantics can be applied. 

3.2 The Model I View I Control Panel I Drawing Surface organisation 

For each window used in the device interface, SIRIUS insists on a single 'component 

model' object. These objects provide the structure and views layer of the system and 

implement the abstract form of the user interface. The superstructure classes provide 

the mechanisms to layout the panes of the window and for managing the device 

interface objects. Note that the pane layout can be defined as simple fractions of the 

complete area or a more complex scheme can be achieved by using 'framing blocks' 

that calculate the areas according to an application algorithm. 

4 The original implementation of SIRIUS used Sun Microsystems' NeWS which supported 

menus in the server. Instances of a Menu class then managed the server resowces in the 

same fashion as Window. The current implementation is based on XII and so menus are 

implemented in the client, but the device interface implements them directly. 



216 

Figure 10 shows the part of the graph of objects for a window with two panes. 

Figure 10 Windows, Panes and Models 

It is also expected that some windows will be subsidiary to others. For example, a 

window displaying graphical data may have an associated dialogue box which is used 

to set display properties. In such a case, SIRWS has a hierarchy of model objects, but 

the windows are independent within the device interface. 

There are two model superstructure classes. WindowModel provides the basic 

mechanisms for constructing the window and panes. It can be subclassed directly for 

simple systems with a single window. For example, the test harness for SIRIUS 

consists of a number of such tiny applications. ComponentModel extends 

WindowModel for use within the complete SIRWS framework. It adds the links to the 

central model object plus the support for submodels. These classes are subclasses of 

Smalltalk's Model class so that the Smalltalk dependency mechanism can be used 

efficiently. 

Model 

Wi ndowMode 1 

... <standalone model classes> 

ComponentModel 

... <application model classes> 

For each type of window that an application uses, it will create an appropriate subclass. 

These objects will defme their windows and maintain the local part of the access model. 

More importantly, they will implement the abstract user interface and supply the pane 

with the presentation objects for the concrete user interface. When the model lays out 

panes on its window, it is specifying the 'views' through which the user will interact 

with the model. The pane and its drawing surface provide the device interface for the 

view, and the pane will ask the model to supply a 'control panel' object to form the 



217 

view contents. The control panel takes a set of domain objects and constructs the 

required presentation objects for display. It is also the recipient of input events and 

maintains its appearance after user or application initiated changes. 

Figure 11 shows the graph of objects for a 'view'. Note that the control panel does not 

hold a direct reference to the drawing surface but has to ask the pane for access to it. 

This makes it straightforward for control panel methods to be written to work when the 

control panel is not an active part of a view. 

Figure 11 A Control Panel forms the contents of a Pane 

Model objects persist as long as they are needed by the system, regardless of whether 

their windows are present and displayed. The window, pane and paper obj,ects are 

created when the window is displayed and do not change their organisation once it has 

been established. Control panels, however, are dynamic. As the interaction proceeds, 

one control panel can be replaced by another, possibly to display different domain 

objects or to present a different view of the original ones. It is possible, although not 

necessarily desirable, that a single view may have radically different contents at 

different times. 

3.3 Two representations and their maintenance 

As we have seen, SIRIUS has two major representations for each component of the user 

interface: the abstract version maintained by a component model and the concrete one 

presented as one or more views. Perhaps the most important mechanism in SIRIUS is 

that for the management of these two representations. It has three elements: the 

interface provided by a component model for its control panels, the complementary 

interface provided by the latter for the former and the mechanism for replacing a control 

panel. 

The fIrst interface is the actual abstract user interface. It defmes the operations a control 

panel may invoke and what information it can access directly. Obviously, this protocol 

depends on both the application and the user interface and cannot be defined by a 

framework. However, SIRIUS does have conventions that guide its specillcation plus 

standard control panels that use such interfaces. In particular, for a 'list' view 



218 

(presenting a set of objects and allowing the user to select one) there should be a single 

'select' method and for a 'command' view (typically a row of buttons which invoke 

operations) there will be a method for each operation. In addition, where the control 

panel is expected to generate action packages, there should be a single method for 

'sending' these commands. The only general guidance we can offer is to consider two 

or more concrete presentations and design the abstract user interface to encapsulate the 

underlying semantics. 

The remaining mechanisms are concerned with updating the concrete presentation to 

reflect changes in the interactive state or in the domain. If the system changes so that it 

needs to present a different set of domain objects, or so that it needs a different 

presentation, it is necessary to replace an active control panel with a new one. SIRIUS 

uses the Smalltalk dependency mechanism to achieve this. The model 'announces' that 

it has changed a particular view. The panes are dependents of the model and the 

appropriate one responds. It releases the previous control panel and asks the model for 

the new one. The drawing surface is cleared and reset for the required coordinate 

system and the control panel instructed to draw itself. This mechanism is similar to the 

Model-View-Controller system, but there the model supplies the view with the data 

(domain, objects) to be displayed and the view does the presentation itself. In SIRIUS 

the model creates a control panel which forms the contents of the view while the pane 

retains the organisational rOle. 

This 'wholesale' mechanism is inappropriate for changes 'within' the domain entities 

being presented. For example, if we have a view showing a flight plan and the 

aircraft's expected time of arrival at a beacon changes, we only want to update that 

piece of the presentation. SIRIUS supports this by allowing the model to communicate 

directly with its control panel. Again, the interface that the control panel provides for 

the model depends on both the application and the user interface and there are 

conventions associated with standard views. For the list views, the model can tell the 

control panel to add or remove an item from the set and to change the availability of 

individual items. The interface to a command view control panel allows the model to 

enable or disable commands and to substitute one command for another. Note that for 

both the interfaces between component models and control panels, an 'application 

should define its own conventions in addition to the general purpose ones. For 

example, in the Oceanic prototypes we have a standard protocol for a model to pass 

changes to a flight record to those control panels which display flight data. This helps 

ensure that we can exploit polymorphism both by substituting one control panel for 

another and by using the same control panel class with more than one model. 



219 

Other developers have extended the basic MVC approach by employing a hierarchy of 

view objects and using the dependency mechanism for all changes. We did not take 

this approach for a number of reasons. Firstly, as we have already indicated, we 

wanted to integrate the view and controller functions in presentation objects. Then, we 

wanted to separate out the static part of the structure, represented by the pane objects, 

from their dynamic contents. These are, perhaps, cosmetic differences; more 

importantly, we felt that the dependency mechanism became cumbersome when we had 

rich application semantics. This is partly because it is 'hidden' and partly because it 

would be difficult to manage the mapping between the model's structure and that of the 

presentation objects. We decided it was better that the model software was aware of its 

views and explicitly instructed the control panels through an abstract specification of 

their capabilities. In taking this decision we were potentially losing the useful property 

that a model was independent of its views and could have multiple views without 

change. In fact, SIRIUS retains this property by separating the central model from the 

individual component models. Our approach is that the component models defme the 

structure of the user interface and each model knows what views it has to support. The 

central model manages the user interface as a whole, and as far as possible does not 

distinguish between its components. 

3.4 The Central Model Object 

The focal point in a SIRIUS system is the 'central model' object, also known as the 

dialogue manager. Its purpose is to maintain the global access model, to coordinate the 

user interface and to provide the sole access route between the component models and 

the transaction manager (and hence the domain functions). Figure 12 illustrates how 

these objects are connected. 



220 

Figure 12 The Dialogue Manager and the Component Models 

The application is required to provide two interfaces in its central model class: one for 

use by the models and one for use by software within the domain model layer. As with 

the component models, these interfaces depend heavily on the application and the 

particular access model underlying the interaction. 

The interface for the component models allows them to access and change the 

interactive state and to pass action packages through to the transaction manager. The 

conventions for this interface are sparse. There should be a complete set of atomic 

operations on the interactive state and a rich enquiry protocol. There should be a single 

interface for passing action packages to the transaction manager, but it may be 

supplemented by 'command' methods that create and send objects for important 

commands taking the domain objects in the access model as arguments. Note that the 

component models are not allowed to interact directly. One model can only affect 

another as a consequence of in~oking a dialogue manager method. 

The interface for the domain model allows information about changes in the domain to 

be passed to the user interface. The interface must encompass the creation and 

destruction of domain entities, changes within an entity and changes in the 

relationships between them. The granularity at which changes are described is a 

balance between keeping the interface manageable while allowing the changes to be 

distinguished. Generally, we have used individual interfaces to notify creation and 

destruction of domain objects. For changes to a specific domain entity, we have 



221 

classified possible changes into a small number of groups and then passed a 'change 

description' identifying which categories have been affected. 

To support these application interfaces, the DialogueManager class can only provide 

some basic mechanisms. It keeps track of the components of the user interface by 

recording the models in a table by name. Then, it provides the means to 'broadcast' a 

message to those models, that is, to· send the same message to each in turn. The 

application software in its DialogueManager subclass uses this mechanism to inform 

the component models both of changes to the global access model and of changes in the 

domain. Normally, every component model object is notified of every change, but 

only needs to respond to those that affect it. This is achieved by using an application 

superstructure class between ComponentModel and the individual model classes. 

Occasionally, the user interface semantics will require that a message is only sent to a 

specific component, for example to bring its window to the front. In general, we avoid 

this as it reduces the flexibility to vary the user interface. 

DialogueManager also provides part of the mechanism to control the interaction 

between the central model and the transaction manager. We will return to this after 

discussing the action packages "and the transaction manager itself. 

3.5 The Transaction Manager and Action Packages 

SIRIUS does not allow arbitrary objects to invoke 'application processing'; that is, 

anything that changes domain objects or requires significant processing. It insists that 

these operations must take place under the auspices of a transaction manager objecL 

Further, the transaction manager does not perform any processing itself. This is 

delegated to a variety of action package classes. The application must subclass 

TransactionManager and provide an interface for action packages to declare what 

changes they have made to the application. This interface is comparable to that 

provided by the central model. We considered allowing action packages to notify the 

central model directly, but the extra level was needed to allow parts of the system to act 

asynchronously as we will discuss below. 

The application transaction manager may also provide functions to support 'structural 

changes' to the domain, that is, adding and removing objects and relationships. These 

methods ensure that relationships among several domain objects (e.g., consistency 

rules) are maintained. For example, in the Oceanic prototypes, rather than change a 

filed flight plan directly, a 'copy flight' is made and updated. Only a single copy is 

allowed and ultimately it will either replace the original flight plan or be discarded. The 

transaction manager for the Oceanic prototypes haS methods that implement these rules 



222 

centrally so that the action packages that update flight plans do not duplicate the logic 

concerning copies. 

As well as the transaction manager, SIRIUS has a single 'database' object. This keeps 

track of all the domain objects and provides searching functions as needed. Note that 

component models and control panels may acquire a reference to the database (via the 

central model) and hence retrieve domain objects directly. This means that the relevant 

interfaces do not have to be duplicated unnecessarily. 

The TransactionManager class provides two basic mechanisms. First, it provides a 

standard interface through which the central model passes it action packages. 

Secondly, it provides a queueing mechanism for buffering change notifications prior to 

sending them to the central model The Database class is purely a place holder; there 

are no standard functions that are appropriate for SIRIUS to provide. 

The superstructure classes for action packages are Actionpackage plus three 

subclasses: 

ActionPackage 

Command 

Enquiry 

Reply 

ActionPackage does not provide significant functionality, but dermes standard 

interfaces to be used in various parts of the system. It also provides default 

implementations for these methods. The important interface is that an action package 

class can specify the control panel class to be used as its user interface. This makes it 

possible for a model to include a view on an action package (essentially a dialogue box 

for the command) without knowing any details of what that command does. In this 

way, action packages integrate pieces of user interface and application function, 

inverting the separation of many user interface tools. 

As SIRIUS is primarily a prototyping tool, it does not attempt to support an application 

with complex internal processes. We recognise that for many applications the simple 

model of a transaction manager, a database and action packages will be inadequate. In 

our Oceanic prototypes, the simulated application is somewhat more involved. A 

complete implementation would need many classes to support the message switching, 

monitoring, recording and calculation services needed in an ATe system. We h~pe to 

see comparable frameworks developed for other categories of application. The 

appropriate application framework would be combined with SIRIUS to form an 

expanded superstructure. We expect that SIRIUS would still see the application as a 

single object, but it may be that a more elaborate model is needed. 



223 

3.6 Asynchronous operation & Distributed Processing 

The fmal element of the organisational part of SIRIUS is the way in which it manages 

the execution of its various elements. We wanted the user interface and domain 

processing to operate asynchronously so that the user interface was always active and 

so that the user could interrupt the application. We were also concerned to check that 

our user interface designs would work when the application processing was not local to 

the workstation. To achieve this, SIRIUS uses three concurrent processes, one each for 

the input manager, the central model and the transaction processor. 

We described the input manager process as part of the device interface. It is the 'top 

level loop , which takes events from the window manager and initiates their processing. 

It is this process that executes in direct response to user actions. For example if the 

user presses the mouse button with the cursor over a screen button control, the 

software that makes the button look 'pressed' is run within the input manager process. 

The other two processes control the interaction between the central model and the 

transaction manager. Each object has a 'job queue' on which the other places 

instructions and a process that consumes elements from that queue. The transaction 

manager places its change descriptions on the central model queue and the process 

belonging to the central model is responsible for initiating the system's response to each 

change. Similarly, the central model places action packages on the transaction 

manager's queue and the transaction manager process controls their processing. Figure 

13 illustrates these two processes. 

Figure 13 The Central Model and Transaction Manager Processes 

The central model and transaction manager processes do not interfere. However, the 

input manager and central model processes both execute software which can change the 

state of the system in any layer outside the domain model. In particular, both processes 

share the resources of the device interface. Therefore, access to the device interface is 



224 

via a semaphore, held by the input manager. Either process must acquire this 

semaphore before it can run, and the input manager will hold it across a drag sequence 

so that the user interface cannot change during a low-level interaction. 

In addition, SIRIUS has two conventions for controlling application processing. First, 

action packages are kept small so that the complete processing of a single 'command' is 

accomplished quickly. Then, the software that is invoking the command, typically 

within a component model, generates a stream of action packages to perform a larger 

task. It may generate and dispatch these objects en mass, but normally the reply from 

the processing of one command (passed back through the central model) will be the 

trigger for sending the next. 

The second approach is that an action package will complete a 'step' in its execution 

and then tell the transaction manager to re-queue it for further processing. If another 

part of the system has retained a reference to the package, it could then receive 

instructions to modify its subsequent behaviour. Most often, the action package would 

be told to terminate. We have generally used the technique of multiple action packages 

as we have found it simpler for providing feedback to the user. 

The central model-transaction manager split is not true distributed processing, as the 

two processes are in the same address space. However, it is sufficient to demonstrate 

that a SIRIUS-based system could be distributed, with the constraint that 'read-only' 

copies of domain objects would need to be available in the workstation. 

3.7 The Complete Framework 

To sum up, the major part of the SIRIUS framework imposes an organisation on an 

interactive system. The main features are: 

• The domain is modelled as a network of individual objects. 

There is a single database object which records all the domain objects. 

• The database and the domain objects can be accessed directly by any 

part of the system, but changes can only occur under the control of a 

transaction manager. 

• Action package objects are used to pass commands and enquires to the 

transaction manager and for it to pass back replies. 

• There is a single 'central model' that maintains the access model 

references to the domain objects that are active in the user interface. 



225 

• The user interface is split into components, with a 'component model' 

holding the interactive state for each component and defming the abstract 

user interface. 

• The concrete user interface for each component is organised as 'views' 

with a 'control panel' forming the contents of each view. 

• The device interface provides windows tiled with panes, input events, 

device independent graphics and pop-up menus. 

Figure 14 summarises the structure of a SIRIUS system. 

Dialogue 
Manager 

Core 
Application 

ObJect­
Oriented 
Database 

Figure 14 The SIRIUS Framework 

4 The SIRIUS 'Micro-Architecture' for the Concrete User 
Interface 

4.1 The Standard Control Classes 

The second half of SIRIUS is concerned with the concrete presentation and behaviour of 

the user interface. We have already explained that a control panel creates and manages 

a set of presentation objects, called' controls', which implement what the user actually 

sees. SIRIUS has a rich library of standard controls, so it is possible, and sometimes 

desirable, to use the organisational part of the framework with the control classes as 

utilities. The control panel superstructure class specifies a defmition method to be 

provided by each application subclass which instantiates and parameterises library 

controls as required. The interfaces to the control objects using the control panel are 



226 

standardised and kept abstract, so it is straightforward to vary the details of the user 

interface by substituting one control for another functionally compatible one. 

Note that these interfaces are in terms of domain objects. For example, a selection 

control (such as radio buttons or a scrolling list) is given the list of domain objects from 

which the user is to select. The 'label' that is used to represent the domain object is 

either obtained by the selection control asking the domain object for its default label, or 

supplied as a parameter by the control panel. When the user makes a selection, the 

control panel is given the actual domain object as the argument of the selection message 

(the message selector is a parameter). This approach of specifying interfaces in terms 

of domain objects and only switching to display terms (text strings, pictures) when 

absolutely necessary at the device interface is an important principle. It maximises the 

flexibility of the framework and makes it possible to achieve fine-grained semantic 

feedback in the concrete user interface. 

When using the control library, the concrete presentation layer of SIRIUS is essentially a 

conventional widget toolkit. However, for the complex prototypes which are the 

framework's raison d'etre, it is expected that a developer will create his or her own 

controls using the superstructure classes for the concrete user interface. These can 

vary from simple specialisations which set up standard uses of the library classes to full 

developments of highly specific presentation and behaviour. 

4.2 The PAC Approach 

SIRIUS' superstructure classes for the concrete user interface use a variation of Coutaz' 

Presentation-Abstraction-Control paradigm [3]. The external interface of each control 

object is split into three parts: presentation, abstraction and control. The methods 

invoked through these external interfaces communicate through a private 'update' 

protocol which maintains the internal state of the object.S Figure 15 illustrates this 

arrangement. 

The presentation protocol is concerned with displaying the control. Its major interface is 

the method that responds to a 'draw yourself' instruction from its superior. Although 

some controls are implemented to use the drawing surface functions directly, we 

normally use the object graphics system described below. When the control is first 

activated, it constructs its picture which can then be displayed and re-displayed as 

S In Coutaz' scheme, what we term Presentation and Control are combined into a single 

protocol and her Control corresponds to our internal Update methods. The mis-naming 

was due to sloppiness on our part. 



227 

necessary. The internal update methods invoke the necessary (private) portion of the 

presentation protocol to change and redraw the picture when the state changes. 

Update 

Abstraction 

Figure 15 The Interfaces to a Control Object 

The control portion of the interface provides the methods that respond to input events. 

For some controls these will process 'raw' events as defined by the device interface, 

but for controls that form part of a larger structure, the events will have some semantic 

interpretation. For example, a control which represents one element in a selection 

display (a single radio button) will receive 'select' and 'deselect' messages from the 

control that manages the complete selection. 

The abstraction interface is used to define and manage the control object without 

reference to it appearance or interactive behaviour. For example, the abstract interface 

to a toggle control (such as a check box) includes methods for switching it to the on or 

off state, for enquiring its current state and for specifying the message to be sent when 

the user changes the state. Typically this interface will be used by the application 

specific software in the control panel subclass which is using a control object. 

On a small scale, the PAC approach is the opposite of the Seeheim decomposition; 

rather than separate the elements of an interactive system, it integrates them into a 

cohesive unit To construct larger systems, the control objects are organised as a 

hierarchy with the control panel as the root. All activity, whether presentation, 

abstraction or control, commences in the control panel and is propagated down the 

hierarchy as required. Note that presentation methods in a parent control only send 



228 

presentation messages to its offspring and similarly for the other protocols. Figure 16 

shows the object network for a simple control panel. 

Event 
Distribution 

Figure 16 A Hierarchy of Presentation Objects 

The figure also shows the object graphics structure attached to a root control. Some 

toolkits have used a single structure with both control objects and graphical objects 

treated unifonnly. We chose not to do this because we saw a clear distinction between 

them. Controls are aware of the domain objects for which they provide the concrete 

user interface, play an active role in responding to user input and may incorporate 

application semantics. Graphic objects, however, are purely display objects and are 

universal. A SIRIUS control is responsible for maintaining the mapping between a part 

of the domain and its portion of the display. 

Coutaz proposed PAC as a complete architecture, but we have only applied it to the 

concrete user interface. We felt that PAC was not sufficient for constructing large 

interactive systems. It does not provide support for managing which domain objects 

were participating in the user interface - our access model, nor does it explicitly allow 

the split between abstract and concrete representations of a user interface. These were 

two features of the model-view-controller approach that we needed to retain with their 

associated mechanisms. Further, the PAC approach implicitly allowed changes to the 

domain to occur at any point within the hierarchy; we wanted to introduce action 

packages and a transaction manager so that domain changes could be controlled. It is 



229 

possible to describe a complete SIRIUS system as a PAC-like hierarchy, but we prefer 

to see the layers as a cooperating network of objects. 

4.3 An Example: SIRIUS' Selection Controls 

The value of the PAC approach in the concrete user interface is that it combines with 

inheritance and polymorphism to form the basis for an extensible widget system. To 

illustrate this, we will describe SIRIUS' selection controls that allow the user to choose 

from a set of objects. From the abstract viewpoint, these controls fall into two major 

categories: exclusive selections from which the user may make a single choice and non­

exclusive selections which allow any number of choices. Figure 17 shows some of the 

possible 'look and feel's for selection controls. 

I 

@ 

o 
o 

North 

South 

East 

West 

High 

Medium 

Low 

I 
IITJI B 

EGKK 
EGLL 
EGPK 
EINN 

c \W\ E 

Figure 17 Various Selection Controls 

SIRIUS uses a hierarchy of control objects for a selection control. The root object 

handles the semantics and layout and has one child control, a 'selection button', for 

each choice. Note that in the case of the scrolling list, all these offspring are present, 

but only a subset are visible. 

In the exclusive case, the root object 'knows' which domain object is selected and 

hence which child. When the user 'clicks' on the control, the root object determines 

which child was pointed at, sends a deselect message to the previously selected child 

and a select message to the newly chosen one. It then sends its selection message to the 

control panel (or other nominated receiver) with the chosen domain object as an 
I 

argument. The message selector for the selection message is a parameter dermed when 

the control is added to the control panel. 



230 

Similarly, for the non-exclusive case, the root control holds a set of selected objects. In 

response to a user click, it checks if the identified object is already selected and sends a 

select or deselect message as appropriate. It also sends an added or a removed message 

to the control panel. 

The individual selection button objects are independent of whether they are being used 

in an exclusive or non-exclusive context. Further, the interface between the root 

objects and the selection buttons is independent of the 'look and feel' of the buttons. 

Thus it is possible to use various look and feel styles by making the class of selection 

button to use a parameter of the root control. For convenience, SIRIUS has subclasses 

of its main selection control classes that default to the common styles (Motif, OpenLook 

etc). Figure 18 shows some of the objects involved in selection controls (most of the 

selection button objects are omitted). 

Iwlw x Iwl z 

@ Up 

o Down 

o Left 

o Right 

Figure 18 Alternative Semantics 

Much of the internal workings of the two forms of selection are also common. The 

root control has to identify which child is under a given point, and, when it is set up, it 

has to layout its offspring. These common elements have been teased apart with the 

PAC organisation as a guide. Between the exclusive and non-exclusive controls, the 

presentation aspects are common, with variations in the other protocols. 

We also wanted to vary the presentation. This can be controlled by the superstructure 

class with the details implemented in subclasses. Figure 19 shows an example of two 



231 

alternative layouts. The software which initialises the control will create its offspring 

and then invoke an internal method to tell them where they appear. 

1332 

1333 

I ~ 33ill 
1335 

1336 

1337 

1338 

Figure 19 Alternative Layouts 

Multiple inheritance would be useful here to define the layout techniques once for both 

the semantic forms. However, we have found it sufficient to provide distinct methods 

for the standard layouts in the superstructure class and have the subclasses 'indirect' to 

the appropriate one. 

4.4 Adding Application Semantics to Controls 

We expect applications to subclass the standard controls. Figure 20 shows two simple 

examples from our Oceanic prototypes. Our user interface designs had conventions for 

standard selection devices, particularly in the 'dialogue box' control panels for action 

packages. To make sure that the conventions were implemented once and to give a 

simple interface when setting up the control panel, we used subclasses of the selection 

control classes. The subclasses illustrated only changed the abstraction aspects of the 

controls. 



232 

1332 

1333 

1334 1 
1335 

1336 

1337 

1338 

Times spaced 
around a given 
time 

Oceanic reporting 
points for a Flight 

59N 10W 

61N 20W 

1162N 30W 

63N 40W 

62N 50W 

59N 60W 

YNI 

Figure 20 Application Specific Selection Controls 

Similarly, when we wanted graphics rather than simple labels in the selection buttons 

we subclassed selection button classes and specialised the presentation methods. 

Outside the selection classes, another example is the use of specific parsing methods in 

application subclasses of the standard input field classes. In that case, the principle of 

hiding the specific concrete presentation within the control meant that a control panel 

could use either a text field or a graphical device (slider or dial) for entering a value 

interchangeably. This could then be exploited using a hierarchy of control panels 

providing different concrete interfaces to the same functionality. In our Oceanic 

prototypes we made full use of this flexibility. 

4.5 Menus 

As well as the controls that are displayed directly as part of a view, SIRIUS supports 

two forms of pop-up menu: command menus and choice menus. For a command 

menu, the selection of an item invokes an associated method on some nominated object. 

In the simplest case, the menu is defined from a list of method names, each with an 

associated label. Similarly, a standard choice menu is constructed using a list of objects 

from which the user is to make a selection, plus a label for each. When an item is 

selected, there is a single method which is invoked with the selected object as an 

argument. 

Menu definitions are actually represented as a shallow hierarchy with a menu item 

object for each entry. The standard constructions set up this structure automatically, 

but more complex menus can be built piecemeal. In particular, there is a menu item for 

a 'sub-menu' allowing hierarchical menus to be defined. Menus can be edited by 



233 

adding and removing menu items, and, as with the rest of SIRIUS, application specific 

menu-items are expected. 

Menus can be activated by any software within the concrete presentation layer. The 

menu is then handed over to the device interface for the duration of the interaction. 

ControlPanel has standard methods for responding to the 'menu button' (right mouse 

button) to activate the menu for a pane. This mechanism tries three potential sources 

for the menu to use. First, it looks for a (context specific) menu from the control under 

the cursor, then it checks for a menu defined for the control panel. If neither of these is 

present. it requests a menu from the component model. 

4.6 Event distribution 

The ControlPanel and ControlApparatu5 classes provide standard mechanisms for 

distributing input events. Of the event types distinguished by the device interface, 

pointer and key events (bar function keys) are dispatched to control panels and their 

offspring. SIRIUS' default policy for passing these events to the appropriate control is 

intended to support 'dialogue box' style interactions, but there is also software to 

facilitate implementing 'diagram editing' with direct manipulation. 

The standard policy for distributing pointer events is geometry-based. The control 

panel identifies the control under the cursor for a 'down' event and makes it 'current'. 

All the messages for events in a single 'drag sequence' are sent to the current control. 

This leads to the familiar logic that 'pressing' on one control, say a button, and then 

dragging the cursor outside it causes a 'no-op' regardless of whether the cursor is over 

some other control when the button is released. Note that composite controls (such as 

the selection controls) are seen as a single control by the control panel. The semantics 

of the composite determine how the input sequence is interpreted. 

This simple mechanism, however, is inappropriate for diagram editors or other 

sophisticated contexts. For example, in an application such as MacDraw, when a 

'definition' tool is selected, it is irrelevant what object the cursor is over. It would be 

poor engineering if the software for individual controls had to check the global context 

while processing each input event. SIRIUS supports this form of interaction with 'tool 

objects'. A control panel using this mechanism has a current, or 'active' tool to which 

it sends all pointer events. The tool applies its own semantics, but asks the control 

panel when it does need to know what object / objects are under the cursor. 

SIRIUS has superstructure classes for tool objects including a selection tool class, 

skeleton defmition and edit tools and a 'zoom and pan' tool. The tool objects from 

these classes are PAC objects, but their 'presentation' is to the set the cursor shape for 

the appropriate pane. Then, during a drag sequence, they provide an 'echo' overlaid on 



234 

the display. The device interface provides a mechanism for drawing and erasing an 

echo without 'damaging' the underlying display. 

As with the other presentation objects, an application is expec~ed to implement tool 

object subclasses. Here, above all, is the place were SIRIUS allows fine-grained 

semantic feedback. For example, in the Oceanic prototypes, there is a 'route editor' for 

changing the proposed route for a flight. When the tool is used to drag a point on the 

route, it normally applies a 10 (lat-long) grid and echoes the modified route with a 

'rubber band' plus a text label. However, the exit points at the west edge of the Flight 

Information Region are restricted to specific 'beacons'. If the user is modifying such a 

point, the route editor recognises this and 'snaps' the point to the next beacon in a 

north-south sequence. 

The default policy for distributing character events is largely implemented in the device 

interface. The input manager sending key event messages to an 'input focus', a 

specific control, is usually, but not necessarily, a text field. However, each control 

panel has a list of which offspring are 'fields', that is, able to be the input focus, and 

Control Panel provides mechanisms for 'tabbing' between fields. Switching the input 

focus between control panels is usually driven by the component models, or possibly 

the central model6• A control panel is notified when the input focus moves into or out 

of its territory. If it is necessary for the control panel to intercept key events, this can 

be achieved by making the control panel the input focus and maintaining a 'current 

field'locally. 

An additional mechanism that we have found to be u~ful, allows the control panel 

holding the input focus to ask to be notified when the next key event is dispatched to 

one of its fields. We use this in 'dialogue boxes' as follows. We have a control panel 

with fields and other controls for entering the parameters of a command. When all the 

fields have valid data, an 'enter' button is enabled. If the user alters the contents of a 

field by typing into it, it is necessary to disable the 'enter' button (and enable a 'check' 

button). The notification mechanism makes it straightforward for the control panel to 

implement this logic without having to intercept every key event. 

4.7 Styles for Display Attributes 

In many graphics systems and user interface toolkits, controls/widgets have parameters 

that determine their 'display attributes', that is which colour, font, line style, and so on, 

6 Here, the concrete presentation does infringe on the software implementing the abstract 

user interface. We think this is unavoidable. but try to keep a degree of abstraction by 

using 'names' for the field involved, not direct references to the objects themselves. 



235 

to use when rendering the object. However, such a system is unwieldy when a 

developer wishes to make systematic changes to related objects in a system. SIRIUS, 

therefore, uses a system of named 'display styles' which specify display attributes 

indirectly, (this is similar to the Primitive Representation Numbers of GKS [7]). A 

drawing method tells a drawing surface the name of the style it wishes to use, the 

drawing -surface looks up the actual style object and sets up the display attributes 

accordingly. The use of names makes it straightforward to refer to styles in source 

code or in a definition database. 

Each style object actually holds three sets of display attributes, and the drawing surface 

is told to use a style with a 'display status' of 'normal', 'highlight' or 'dimmed'. This 

parameter is then used to select the appropriate attributes. Although the same 

functionality could be achieved using multiple styles we have found that we typically 

change the display attributes for groups of objects in order to reflect their status in the 

interaction. The status parameter makes it straightforward to achieve this when those 

objects use different styles. 

We have also found that it is useful to use a proliferation of styles, but then managing 

styles becomes a problem in its own right. In the original implementation, each style 

held its display attributes independently, but we have recently modified this so that 

styles have a defmition hierarchy. In this scheme, attributes not defmed specifically for 

style are 'inferred' from an ancestor. 

4.8 SIRIUS' Object Graphics Utilities 

To suppon the construction of control objects, SIRIUS has a simple 2d object graphics 

system, similar to, but less sophisticated than, PRIGS [8]. This allows a 'picture' to 

be defined as a hierarchy of objects totally independent of the display. The leaves of 

the hierarchy are 'graphics primitives': lines, arcs, text displays etc, while the nodes are 

'graphics segments' which structure the picture. Each segment has an associated 

transformation matrix (by default the identity) which defines the 'local' coordinate 

system for that pan of the picture. In addition, a segment is marked as 'visible' or 

'invisible' and has a display status of 'normal', 'highlight' or 'dimmed'. Each 

primitive holds its own defmition data plus the name of a display style; the display style 

plus the segment's status determine the display attributes which will be used when the 

primitive is rendered in the device interface. Figure 21 shows an object graphics 

hierarchy for a 'sketch' of an aeroplane. 



236 

Figure 21 An Object Graphics Picture 

The standard SIRIUS controls each have an object graphics 'picture' to define their 

appearance. The pictures are not independent, and each root segment defines the local 

coordinate system for its control relative to the 'world' system of the control panel. 

This usage of object graphics provides two benefits. First, it is both efficient and 

convenient. The calculations for a control's appearance are perfonned once and stored 

in the picture. The appearance can then be modified by making a segment visible or 

invisible, or by changing its display status as well as by 'primitive editing'. Second, if 

families of controls use the same organisation of segments, much of their behaviour can 

become common. For example, consider selection buttons and toggle controls. These 

objects all have two fonns of presentation, an 'on' and an 'off' state. SIRIUS uses a 

'background', an 'on' and an 'off' segment for each of these controls. The picture 

construction methods remain specific to the subclasses, but all the behavioural software 

is in the common superclass. 

The SIRIUS object graphics system. is not particularly sophisticated. In particular, 

unlike PHIGS or GKS, it does not automatically update the display when a picture is 

changed. It is left to the control that 'owns' the picture to manage the re-display, telling 

the appropriate parts of the picture to erase or draw themselves on the drawing surface 

as required. This approach was chosen for simplicity of implementation, but has 

proved to be very flexible as, once again, it allows appropriate semantics to be added. 

Similarly, we have not needed a 'hit search' ('pick') mechanism for the object graphics, 

but have handled geometry searches within the control hierarchy. Conversely, because 

of the object-oriented approach, it is straightforward to introduce custom primitives (or 

even segments) as subclasses of the object graphics superstructure classes. 

We believe that there is an important lesson here. If we were to use a display system 

such a PHIGS (or even an XII window hierarchy), we would need significant 

software to track our use of its resources and to manage the parameters that control its 

various algorithms. With a customisable server, the client-server interface can easily 



237 

become unwieldy or else much of the system is 'sucked' into the server as 

customisation. Vendors of display systems are keen to add functionality to their 

'servers' and offer improved performance via hardware support. The price for this is 

both a loss in flexibility and a more complex application. 

5 Frameworks, Toolkits and Development Environments 

5.1 Sirius' Development Cycle 

In developing and using SIRrus, we have learnt a number of lessons about what makes 

a usable user interface prototyping tool. The ftrst lesson came from an unexpected 

direction. We chose Smalltalk-80 as our implementation platform for two reasons: 

because it was a pure object-oriented system with a rich class library and because it had 

a productive incremental development environment. What we have realised is the value 

of incremental development in user interface prototyping. 

The key feature is 'suspended-time editing', that is, the ability to change a running 

system without having to shut it down and restart it. Suspended-time editing 

immediately saves development time because it eliminates the old 'edit-compile-debug' 

cycle. This is why we wanted an incremental development environment. Almost as a 

side effect, this has meant that SIRIUS remains productive despite not having an 

interactive layout tool. We could deftne the layout of a ~ontrol panel in a Smalltalk 

methods and see the effect of changes immediately. Note, however, that in our 

experience, the selection of controls and their layout is at most 10% of a user interface 

deftnition; the productivity gains apply to all of it. 

A more important property of suspended-time editing is that it allows us change the 

user interface of a running system. This is crucial if want to evaluate alternative user 

interfaces in user trials. An incremental development environment does not necessarily 

provide this ability. Many tools make it difftcult, either by using monolithic 

deftnitions, or by attaching user interface semantics to objects that are only instantiated 

at start-up time. The SIRIUS structure, however, distinguishes between static and 

dynamic parts of a system and localises different aspects of the user interface in 

individual objects. In particular, the standard mechanism for 'wholesale' update of a 

view replaces one control panel with another, giving suspended-time editing 

automatically. Similarly, component models can be added and removed without impact 

on the structure as a whole. SIRrus owes much of its power as a prototyping tool to 

this capability. 



238 

5.2 Using an Object-Oriented Language 

The second lesson is the utility of a uniform object-oriented language for user interface 

development. SIRIUS makes no pretence of being an end-user tool; it is fundamentally 

a programming system. While it is possible to conceive 'non-programmer' tools for 

prototyping simple user interfaces, defining the behaviour of a user interface is 

inherently a programming task and developing its structure is akin to software design. 

We chose an object-oriented approach as best practise in software engineering. As we 

expected, having an expressive, powerful language available to define any part of the 

system has contributed to its flexibility and capability. Our much emphasised insistence 

on using abstract interfaces and making domain objects available in concrete 

presentation software has ensured that any part of the system can exploit the power of 

the language to bring user interface and application semantics together. 

In addition, where we have used definition data-structures, defined in one place and 

interpreted in another, we were simply able to build such definitions as object networks 

without having to design a special definition language. For example, we have a simple 

definitions database for the Oceanic prototypes that specifies the dialogue manager and 

component model classes plus the air traffic scenario to be used. Smalltalk may not be 

the ideal 'concrete syntax' for a high level user interface design language, but it is an 

excellent vehicle for storing and interpreting the resulting definitions. 

Two further properties of Smalltalk are also worth noting. First, we made use of the 

fact that functions (Smalltalk Blocks) are first class objects as a parameterisation 

technique for utility classes. For example, the specification of each pane for a window 

includes a 'framing block' that is evaluated when the size of the window is known to 

yield the area for the pane. Similarly, we utilised the fact that classes are themselves 

objects in various algorithms for determining which class to use for a part of the 

system. Although we have not described it as part of the framework proper, SIRIUS 

has a system of configuration parameters through which we control variations in a user 

interface. Many of these parameters simply specify which class is to be used for a 

control panel or specific control. 

5 • 3 Frameworks and Software Re-use 

We think that SIRIUS has demonstrated that the framework approach assists software 

re-use. The utility classes such as the standard controls and the object graphics are 

potentially universal, but it is the framework that provides 'a place to put them' by 

guiding the development of the application. Further, we have found that perhaps 75% 

of what we have developed as 'application specific' is re-usable for similar systems in 



239 

the same domain. From our Oceanic prototypes we now have a large library of air 

traffic control utility classes. Most of these are additions to the control library, but they 

include standard control panels, superstructure classes for map (radar) and flight strip 

components and domain modelling utilities. Some of these classes could be generalised 

for use in other control and monitoring applications. 

However, there is undoubtedly a cost associated with the framework approach. A 

framework does not have a straightforward' Application Programmers' Interface'. If a 

developer is to use a framework such as SIRIUS to its maximum potential, he or she has 

to understand not only its facilities but also its philosophy. It is possible to use SIRIUS 

as a conventional 'widget assembler', with comparatively little knowledge, although it 

could be made easier with appropriate tools. However, the system will only be 

productive if the developer understands the way that SIRIUS expects an interactive 

system to be structured and how to use the superstructure classes. Weare sure this will 

be the case with any sophisticated framework. As SIRIUS incorporates much of our 

experience of building interactive systems, we think that ultimately the cost of 

understanding a framework will be regained through higher quality systems. 

5.4 Requirements for a UIDE 

Our experience with SIRIUS also suggests requirements for a User Interface 

Development Environment. First, SIRIUS' structure shows what a user interface 

definition must encompass and how such a definition could be partitioned. This is 

particularly important when we consider large scale developments with a team of user 

interface designers. It must be possible for members of the team to work together on 

the structure of the user interface and work independently on the details of its parts. As 

with any software development, this requires tools for version control and 

configuration management. In the prototyping context, this will need to support - not 

hinder - suspended-time editing. 

Secondly, we found that the application classes we developed within SIRIUS, 

particularly the component models and control panels, were naturally organised in 

specialisation hierarchies. This suggests that user interface definitions should 

themselves use an object-oriented approach. This could be based on a hierarchy of 

parameterised templates that are instantiated and then assembled to construct the user 

interface. Hopkins and Wallis' FOOD system (see the paper in this volume) is an 

example of such an approach applied to widget hierarchies and electro-mechanical 

simulations. We believe that such a system combined with the SIRIUS organisation 

would yield a powerful, flexible definition tool. 



240 

Thirdly, we recognise that a prototyping system must have a smooth transition from 

straightforward systems built directly through high level tools to complex ones that 

require programming. Organising and partitioning a system such as SIRIUS does assist 

this in that each component model or control panel is separate and can be defined either 

through a tool or directly programmed. However, it will also be necessary to have 

hybrids that are partly specified through a high level defmition and then completed by 

programming. We believe that there are two keys to achieving this integration. First, 

as we discussed above, the definitions should be held as object data-structures which 

could either be developed using design tools or be program generated. Then, the 

definitions should be essentially declarative, identifying which classes are to be used 

and specifying their parameters. At run-time, the definition interpreter creates and links 

the actual objects. These objects can be from application classes and there is no . 

difference between a definition derived system and a purely programmed one. 

5.5 Extending SIRIUS 

Our experience with SIRIUS also suggests how it might evolve. Our next major 

development will probably be a definition system and tools as suggested above. We 

have the simple system we used for assembling the various Oceanic prototypes, but 

although this had the declarative structure, it lacked templating and only supported a 

fixed set of parameters. We ate looking to design a general purpose system with 

flexible template and parameter handling taking the FOOD system as a guide. 

A related development is to consider specialisations of the substructure classes that 

would support common user interface designs. Three candidates we have identified are 

form-filling dialogues, some form of hypermedia and extensions to our existing 

support for diagram editors. We also believe that Iconographer could be integrated in 

SIRIUS. Its domain fIlter would map onto a component model with the switchboard 

and presentation system as part of a control panel in the concrete presentation. 

6 Conclusions 

SIRIUS has met its major objective: it has enabled us to construct complex user 

interfaces with the minimum of effort. It has demonstrated what can be achieved in a 

wholly object-oriented system. The potential benefits from inheritance and 

polymorphism are real and can be exploited to build flexible systems with minimal 

performance costs. Similarly, the framework approach has led to re-usable software. 

The architecture itself makes two specific contributions. First, the five layer model as 

realised in SIRIUS' superstructure shows how to organise a large interactive system. It 

separates those aspects that are genuinely independent so that alternative user interfaces 



241 

are easily produced, but allows user interface and application concerns to be integrated 

to deliver semantically rich interactions. Second, the combination of the model-view­

controller approach with widget hierarchies (control panels) shows how both an 

underlying abstraction and a much needed structure can be added to the now common 

widget systems. 

SIRIUS weaknesses come directly from its strengths. It cannot easily be applied to non­

object-oriented systems, nor Js it straightforward to use it as front-end to an existing 

application. Similarly, it sits uncomfortably with toolkits for standardised 'look and 

feel'. It is quite possible to use such a toolkit in SIRIUS' concrete presentation layer, 

but much of the flexibility is 10SL These are not problems for SIRIUS itself as a 

prototyping tool, but do arise when we consider the wider application of the 

architecture. 

We intend to develop SIRIUS into a more complete User Interface Development 

Environment and we will continue to use it to support our user interface design work 

when its sophistication is required. We also use it as a 'reference model' for assessing 

commercially available tools for user interface implementation. By comparison with 

SIRIUS we can see how much of the problem a tool addresses and where the likely 

limitations lie. We hope that tool developers will take up some of the ideas 

incorporated in SIRIUS for the next generation of tools. 

Acknowledgements 

David Brazier, Kate Taylor and Colin Grant worked on the design and implementation 

of SIRIUS and they and others contributed not only to the design but also to the 

underlying ideas. The device interface and, especially, the object graphics system are 

based on the work of Robin Langridge and his team at CADCentre Limited. I would 

particularly like to acknowledge the contribution of my Logica colleague Ian Clowes 

who has challenged me to develop my ideas on interactive architectures for many years 

and who reviewed the drafts of this paper. 

Finally, I would like to thank Phil Gray for the opportunity to write up SIRIUS in detail 

and his encouragement to do so. 

References 

[1] Grady Booch. Object-Oriented Design with Applications. The 

Benjamin/Cummings Publishing Company, Inc, California, 1991. 

[2] Communications of the ACM, Vol 33, No 9 (September 1990). Issue on 

Object-Oriented Design. 



242 

[3] loelle Coutaz. Architecture Models for Interactive Software: Failures and 

Trends. In Engineering for Human-Computer Interaction. Proc. IFIP WG2.7 

Working Conference, Napa Valley, California. 21-25 August, 1989. North­

Holland, 1990. pp. 78-93. 

[4] L. Peter Deutsch and Adele Goldberg. Small talk Yesterday, Today and 

Tomorrow. Byte Vol 18, No 8 (Aug 1991) pp 108-115. 

[5] S.W. Draper and K.W. Waite. Iconographer as a visual programming system. 

In D. Diaper and N. Hammond, eds., People and Computers VI. Cambridge 

University Press, 1991. pp. 171-185. 

[6] Philip Gray and Ramzan Mohamed. A Practical Introduction to Smalltalk-80. 

Pitman. 1990. 

[7] F.R.A. Hopgood, D.A. Duce, l.R. Gallop and D.C. Sutcliffe. Introduction to 

the Graphical Kernel System (GKS). Academic Press, 1983. 

[8] International Organisation for Standardisation, Information Processing Systems 

- Computer Graphics, Programmer's Hierarchical Interactive Graphics System 

(PRIGS), Part 1 - Functional Description. ISO IS 9592, 1988 

[9] D. A. Norman. The Psychology of Everyday Things. Basic Books, Inc., New 

York,1988. 

[10] Gunther, Pfaff, ed. Proceedings of the Workshop on User Inteface 

Management Systems, Seeheim, Nov. 1983. Springer-Verlag, 1985. 

[11] Schmucker. Kurt I. MacApp: An Application Framework. Byte 11,8 (August 

86), pp. 189-193. 

[12] G. Storrs and P. Windsor. Prototyping for Requirements Capture. In 

Stansilaw Wrycza, ed., Proceedings of the Second International Conference on 

Information Systems Developers Workbench, University of Gdansk, 

September 1990. 

[13] P.N. Windsor. An Object-Oriented Framework for Prototyping User 

Interfaces. Proceedings of Interact '90. pp. 309-314. 



Author Index 

Burns,·A................................................................................................ 56 
Cockburn, A. ........................................................................................ 35 
Cornali, DJ. ....................................................................................... 115 
Davison, A. ........................................................................................... 85 
Draper, S.W. ....................................................................................... 104 
Duce, D.A. ............................................................................................ 69 
Edmonds, E.A. ................................................................................... 115 
George, A. .......................................................................................... 182 
Gray, P. ............................................................................................... 133 
Heggie, S.P. ........................................................................................ 115 
Hopkins, T.P. ..................................................................................... 168 
Jones, S. ................................................................................................ 35 
Mohamed, R. ...................................................................................... 104 
Reid, I. ................................................................................................ 115 
Rosner, P. ............................................................................................. 85 
Slater, M. .............................................................................................. 85 
ten Hagen, PJ.W.................................................................................. 69 
Thimbleby, H. ...................................................................................... 35 
Took, R. .................................................................................................. 6 
van Liere, R. ......................................................................................... 69 
Waite, C. ............................................................................................. 151 
Wallis, S.K. ........................................................................................ 168 
Williams, P. ........................................................................................... 23 
Windsor, P. ......................................................................................... 200 



Published in 1990 

AI and Cognitive Science '89, Dublin City 
University, Eire, 14-15 September 1989 
A. F. Smeaton and G. McDermott (Eds.) 

Specification and Verification of Concurrent 
Systems, University of Stirling, Scotland, 
6-8 July 1988 
C. Rattray (Ed.) 

Semantics for Concurrency, Proceedings of the 
International BCS-FACS Workshop, Sponsored 
by Logic for IT (S.E.R.C.), University of 
Leicester, UK, 23-25 July 1990 
M. Z. Kwiatkowska, M. W. Shields and 
R. M. Thomas (Eds.) 

Functional Programming, Glasgow 1989, 
Proceedings of the 1989 Glasgow Workshop, 
Fraserburgh, Scotland, 21-23 August 1989 
K. Davis and J. Hughes (Eds.) 

Persistent Object Systems, Proceedings of the 
Third International Workshop, Newcastle, 
Australia, 10-13 January 1989 
J. Rosenberg and D. Koch (Eds.) 

Z User Workshop, Oxford, 1989, Proceedings of 
the Fourth Annual Z User Meeting, Oxford, 
15 December 1989 
J. E. Nicholls (Ed.) 

Formal Methods for Trustworthy Computer 
Systems (FM89), Halifax, Canada, 
23-27 July 1989 
Dan Craigen (Editor) and Karen Summerskill 
(Assistant Editor) 

Security and Persistence, Proceedings of the 
International Workshop on Computer 
Architecture to Support Security and Persistence 
of Information, Bremen, West Germany, 
8-11 May 1990 
John Rosenberg and J. Leslie Keedy (Eds.) 




