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Preface

Progress in system theory over the last two decades can be broadly categorized

into two main streams:

(1) Algebraic System Theory - Study of basic notions and fundamental concepts
of both algebra and system theory.

(2) System Analysis and Design Methods - Study of potential design techniques
to analyze the characteristics of systems and to design controllers for
satisfying various specifications and performance criteria.

Thousands of papers have been published in both areas in the last two decades.
Systemic presentations in book form can be found, for example, in [1-5] for the
former, in [6-10] for the latter, and in [11-16] for both. From this
literature, we find that many elegant theories still cannot be employed to
analyze/design the physical systems with ease. In other words, work is still
needed to f£ill the gap between algebraic system theory and practical system
analysis/design techniques. This provides the main motivation for our
monograph.

The development of our work is based upon state-space representations and matrix

fraction descriptions as the mathematical models for physical systems. A

unified approach characterizing the dynamics of a system is presented through

the formulation of the characteristic A-matrix (also known as the matrix
polynomial) of the system. Applications in pole assignment design, modal
control design for multivariable systems, parallel realizations, and cascade
realizations of multiport networks are illustrated. A detailed guide to the

content of the monograph is provided in the last section of Chapter I.
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CHAPTER 1 INTRODUCTION

In this introductory chapter, state-space representations and matrix
fraction descriptions of multivariable linear systems are reviewed in Section
1.1. Some basic definitions on A-matrices, which are the main mathematical
tools used in our work, are summarized in Section 1.2, and Section 1.3 gives a

guide to the content of the monograph,

1.1 State-Space Representations and Matrix Fraction Descriptions of

Multivariable Systems

An m-input, p-output linear time-invariant system O can be described by

state equations as follows:

AX(t) + Bu(t) (1.1a)

AX(t)

cx(t) + Du(t) (1.1b)

y(t)

where X(t)eXECn, y(t)t—:VECp, u(t)eugcm are state, output, and input vectors,
respectively; X, ¥, U are state, output and input spaces of 0O, respectively;
A,B,C,D are matrices of appropriate dimensions. For continuous-time systems, A
is a differential operator and teR, while for discrete-time systems, A 1is a
forward shift operator and tel.

Equations (1l.1a) and (1.1b) are referred to as the state-space

representation of the multivariable system g. A,B,C, and D can be treated as

linear maps:

System map A: X+X
Input map B: U+X
Output map C: X+VY

Forward map D: U~Y (1.2)



From Eq. (1.2), O can be described by the following diagram:

(1.3)

A
—
—2 .

w

£ ————

< —— 3
o

which is not commutative,

The diagram in Eq. {(1.3) is useful in studying the structural aspects of
the system O.

From Eq. (1.1), the input-output relationship of the system G can be

represented as

eV ult) (1.42)

y(t)

where

c(n) c(un—A)’lmn () (1.4b)

In Eq. (1.4b) CP™™()) denotes the set of pxm matrices with elements being
rational functions of A over the complex field C. G(A) is called the transfer
function matrix of the system 0. It has been showa in [1,13] that G(A) can be

represented as the "ratio" of two matrix polynomials:

R | (1.5a)
G(A) D, (X)NQ(A)

_ -1 (1.5b)
= Nr(X)Dr (A)

where Do (A eCPPIAL, N, (D), N (VeP™N], D (V™AL PP, PN and
C™™[A] are sets of matrix polynomials of A with coefficients in Cpxp, cpxm’ and

mem, respectively. Combining Eqs. (1l.4) and (1.5), yields



y(t) = Dgl()\)Nz()\)u(t) (1.6a)

(1.6b)

-1
Nr(x)nr (\)ult)

Equations (1.6a) and (1.6b) are referred to as left matrix fraction descriptions

(LMFD) and right matrix fraction descriptions (RMFD) of the system o,

respectively.

nxn

Let TeC be a nonsingular matrix, and from Eq. (1.1) define

A= TAT-I, B=TB, C= CT'I, D=0D (1.7a)
and
X(t) = TX(t) (1.7b)
Then the state equations for the system ¢ are as follows:
AX(t) = AX(t)+Bu(t) (1.8a)
y(t) = cx(e)+Du(t) (1.8b)

For the same set of inputs u(t), ¢ in Eq. (1.1) and o in Eq. (1.8) will generate

the same set of outputs y(t) for t20 if X(0) = TX(0). The difference between
A ~

the state vectors X(t) and X(t) in the system O and O, respectively, is

therefore not apparent if only the input-output relationships are considered.

Thus, we say that o and O are equivalent systems. Formally, we have the

following definition:

Definition 1.1 The system in Eq. (1.1) and the system in Eq. (1.8) are

equivalent if and only if the states are related by:

Q(t) = TX(t)



We will call this equivalence relation similarity equivalence (SE). 0

Let UE(A)eCpxP[A], and det UZ(A) = KE which is a nonzero constant (i.e.

UL(A) is unimodular). Define

> = (1.9a)
DL(A) = U (WD (N)
N = (1.9b)
Ny(A) = U, Q0N (N

and
G(A) = Dy (N, (A (1.9¢)

~

which is an LMFD of a system O:
y(t) = 6(Nu(t) (1.10)

From Eqs. (l.6a) and (1,10), 0 in Eq. (l.6a) and 0 in Eq. (1.10) will generate
the same set of y(t) for t20 if the same set of u(t) is used as inputs, and ©

~

and O both have the same set of initial conditiomns y(t), t<0. Thus, we say that

O and O are equivalent systems. Similar reasoning can be applied for RMFDs. We

reach the following definitions:

Definition 1.2 Two systems with LMFDs G(A) = DQI(X)NQ(X) and G{A) =

Dz-l(l)Nl(A) are equivalent if and only if

Dy(A) = U, (DN
and

ﬁg(x)

Uy (D, (X)



. -1
where Ul(k) is unimodular. Similarly, two systems with RMFDs G(A) = Nr(A)Dr ()

and G()) = Nr(A)D:l(A) are equivalent if and only if

Dr(x) Dr(X)Ur(X)

and

B = N (UL
r T r

where Ur(k) is unimodular, We will call this kind of equivalence relations

unimodular equivalence (UE). (m]

It can easily be verified that both SE and UE satisfy the basic properties
of an equivalence relation: transitivity, symmetry and reflexivity [13}. Since
a system can be represented via state-space equations or matrix fraction

descriptions, we have:

Lemma 1.1 Denote SE or UE by 7 Tys ay and g, are systems. Then, we have

(1) Transitivity: o, Gy and Uy g, implies o, " g,-

(2) Symmetry: o, Gy implies Uy -
(3) Reflexivity: o, " G- -

From the idea of equivalent systems, both state-space representations and
matrix fraction descriptions of multivariable systems are non-unique. In
Chapter I1I, we will develop canonical forms, which are unique for a given

system, for both state-space representations and matrix fraction descriptions.

1.2 Fundamental Properties of A-Matrices

Since the MFD representations of a MIMO (multi-input, multi-output) system
involve the ratio of two A-matrices, and the results presented in the following

chapters are closely related to A-matrices, it is appropriate to review some



definitions of A-matrices in this section. Further details and properties can
be found, for example, in [2] and [3]. Specifically, we can define A-matrices
as follows [17,18]. Let F be an arbitrary field, and F[A] be the ring of
polynomials over the field F. A A-matrix, denoted by AMEFPPA] is a pXm

matrix whose elements are in F[A]. Let Aij(l) be the (1i,j)th element of A(A),

then
A = (8,00, lsisp, lsism (1.11a)
and kij _—
A, (0D 4 2 a.. A Y , a.., eF (1.11b)
1] & ijk 1jk
k=0
where kij is the degree of the polynomial Aij(k).
Let r = Max(kij, 1<i<p, 1<j<m), then A(X) can be written as
3 r-k (1.12a)
AN = AN hee
k=0
where Akerxm, and the (i, j)th element of A is given by
A - { 350 tE kskg, (1.12b)
*J 0 otherwise

A A-matrix A(X)EFPXP[A] is said to be nonsingular if det(A(X)) 2 0, and
regular if the matrix coefficient A0 of the highest degree term (referred to Eq.
(1.12a)) is nonsingular. A regular A-matrix is monic if Ao is an identity
matrix.

Let A(X) be given by Eq. (1.11), and define

v, = Max(kij, 1<jsm), 1<gigp (1.13)



Then, v;, denoted by v; = 3_ (A(A)), is the row degree [12] of the ith row of
i
A()). Similarly

Ky = Max(kij, 1gigp), 1gj<m

denoted by K; =9, (A(})), is the column degree [12] of the jth column of A(}).

J
Define

Ahr = ((Ahr)ij)’ l¢icp, l<icm (1.15a)
where
aijv if kij = v
- i (1.15b)
(Anri {
0 if k.. < y.
ij i

Then Ahr is called the leading row matrix of A()). A()) called is a row-reduced

A—matrix if p=m and AL is nonsingular [12]. Similarly, defining

. . 1.16
Ao = ()5 ), lsisp, lsism (1-162)
where
ik, F Ry 7Kg
= j (1.16b)
(Ahc)ij {
Q if k.. < ¢

then Ahc is called the leading column matrix of A()), and if p=m and Ahc is

nonsingular, A(}) is a column-reduced A-matrix [12].

To analyze the structure of )-matrices, it is convenient to transform a
general )\-matrix to certain specific forms whose structures can be easily
handled. The most commonly used transformations are those of equivalence

[12,13].
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Definition 1.3 Two A-matrices AI(A) and A2()‘) are row equivalent, column

equivalent, or equivalent, iff Al()\) = UL()\)AZ()\), AI()\) = AZ(X)UR()\), or Al()‘)

= U (M)A (WNUL(A), respectively, where U (A) and U.(A) are unimodular A-
matrices. m|

The equivalence of nonsingular A-matrices can be stated as follows:

Lemma 1.2 Any nonsingular A-matrix is row equivalent, column equivalent, or
equivalent to a row-reduced, a column-reduced, or 2 row- and column-reduced A-
matrix. »

It is well known that equivalent row-reduced or column-reduced A-matrices
of a given nonsingular A-matrix [12] are not unique. According to Definition
1.3, a regular A-matrix is always equivalent to a wmonic A-matrix, and the
properties and applications of monic A-matrices have been discussed by wmany
authors [17-32]. We shall extend some known results on monic A-matrices to row-
reduced or column-reduced A-matrices in the following chapters.

In the analysis and design of multi-input, multi-output (Mi40, systems, MFD
representations of the systems are rational matrices over the cowplex field C.
Therefore, we will set F = C in the following chapters whenever A-matrices are

involved.

1.3 Organization of Chapters

The material in this monograph can be regarded as being in two parts: The
first part, which includes Chapters II, III and IV, is devoted to exploring the
spectral decomposition theory of A-matrices via the canonical structures of MIMO
systems represented in state space equations and MFDs; the second part, which
consists of Chapters V and VI, considers applications of the structure theory
developed in the first part to the design and decomposition of MIMO systems.
Illustrative numerical examples are presented throughout the book.

In Chapter II, the characteristic A-matrices of multivariable control



systems are defined. TFor a reachable system the characteristic \-matrix can be
constructed from the coefficients of the dependence equations for the column
vectors of the reachability test matrix; on the other hand, for an observable
system, the 1left characteristic )-matrix can be constructed from the
coefficients of the dependence equations for the row vectors of the
obgervability test matrix. The controller and observer canonical state-space
representations for reachable and observable MIMO systems, respectively, are
formally defined. The canonical RMFDs and LMFDs for reachable and observable
systems, respectively, are defined, and their properties are discussed based on
the canonical <controller and observer state-space representations. The
characteristic ) -matrices, the canonical state-space forms, and the canonical
MFDs are highly dependent on the Kronecker or observability indices of the
system. Thus, we also present a numerical method using an orthogonalized
projection scheme to compute the Kronecker and observability indices of MIMO
system. This numerical algorithm is based on the so-called minimal nice
selections.

Spectral analysis of general nonsingular A-matrices is presented in Chapter
III. Firstly, column-reduced and row-reduced canonical \A-matrices are defined;
then the equivalent transformations of a nonsingular ) -matrices to a column-
reduced or a row-reduced canonical ) -matrix are established. Consequently, the
latent roots and latent structures of a general nonsingular )-matrix can be
studied in terms of its equivalent column-reduced or row-reduced canonical A-
matrix. The relationships between the latent structures of nonsingular )A-
matrices and the eigenstructures of the system maps in their associated state-
space minimal realization quadruples are investigated. As a result, the Jordan
chains of nonsingular )\ -matrices can be easily found from the input and output
maps of their associated Jordan canonical minimal realization quadruples. The
matrix roots, formally called solvents, of nonsingular )-matrices are defined

and briefly discussed.
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Chapter IV 1is devoted to developing the theory of divisors and spectral
factors of nonsingular ) -matrices. The state-space structures of canonical left
and right divisors of nonsingular \A-matrices are extensively investigated via
the so-called geometric approaches. Constructive proofs on the existence of the
canonical divisors are provided, and some properties of left/right divisors of
nonsingular ) -matrices are investigated. Also, the concepts of complete sets of
canonical left/right divisors, which are extremely important in the applications
to the design and decomposition of MIMO systems, are presented. For
completeness, the structures of spectral factorizations used to factor a
nonsingular A-matrix into the product of lower degree canonical A-matrices are
also explored. Finally, computational algorithms for divisors and spectral
factors based on block triangularization and block diagonalization of square
matrices are discussed. A newly developed matrix sign algorithm is suggested
for effective computation of divisors and spectral factors of nonsingular A-
matrices.

The applications of the theory begin in Chapter V, where state-feedback
control designs of mnultivariable systems are studied. Properties of 1linear
state~feedback controls are discussed first. The invariance property of the
Kronecker indices of MIMO systems under linear state-feedback controls is an
important guide in devising various control schemes. The characteristic A-
matrix and column-reduced A-matrix assignments for the denominators of the
closed~loop MFDs are derived., A study is then made properties of the closed-
loop MFDs. For controlling the 1latent structure of the characteristic A-
matrices in the closed-loop system, we introduce the left/right latent structure
assignment. For the purposes of closed-loop decomposition, the divisor
assignment and decoupling design, via the notions of divisors, are also
presented,

Decomposition theories and their applications to multivariable analysis and

design are developed in Chapter VI, Parallel decomposition theory is derived



1"

based on the complete sets of 1left/right divisors of the characteristic A~
matrices. Applications of the parallel decomposition theory to model reduction
problem and multiport network synthesis are discussed. The semi-cascade
decomposition theory as well as applications to the modal control design of MIMO
systems are presented via the notion of spectral factorization of characteristic
A-matrices. Finally, the cascade decomposition theory for MIMO systems is

considered, with applications to the cascade realization of multiport networks.



CHAPTER 1I CHARACTERISTIC A-MATRICES AND CANONICAL MATRIX FRACTION

DESCRIPTIONS OF MIMO SYSTEMS

It is well-known that the dynamics of single-input, single-output (SISO)
systems can be determined from their transfer functions and characteristic
polynomials, which are the denominators of the transfer functions. Many system
design techniques of SISO systems can actually be interpreted as altering the
transfer functions or the characteristic polynomials of the closed loop systems
to satisfy some desired dynamic performance criterion. To facilitate the same
concepts for MIMO systems, in this chapter we present formal definitions of the
characteristic )~matrices and the canonical MFDs for MIMO sfstems, which are the
counterparts of the characteristic polynomials and the transfer functions for
SISO systems, respectively. Properties as well as computational algorithms for
the characteristic )-matrices and the canonical MFDs are given. Relationships
between the state space representations and MFDs of MIMO systems are
established, The results of this chapter provide the foundations for the
spectral analysis of )-matrices and the decompositions of MIMO systems which are

presented in the following chapters.

2.1 Characteristic )-matrices of Reachable and Observable Systems

An m-input, p-output linear time-invariant system can be described by the

state equations as follows:

(2.1a)

AX(t) = AX(t)+Bu(t)

(2.1b)

y(t) = cx{(t)+Du(t)
: n .

where X(£) gl y(t)ed and u(t)el™ are state, output, and input vectors,

respectively; A,B,C and D are matrices of appropriate dimensions. For

continuous—-time sgystems, ) is a differential operator and tgR, while, for
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discrete-time systems, A is a forward shift operator and t€Z.
The system described in Eq. (2.1) is reachable if the reachability test

matrix [13}

n-1 (2.2)

R(A,B) = [B,AB,...,A" 'B]

is of full rank. The system in Eq. (2.1) is observable if the observability

test matrix [13)

T T.n-1.T
et alct, ..., aHr T

0(A,C)

. (2.3)

is of full rank.

x sy .
Definition 2.1 Let B = [bl,bz,...,bm], biECn 1. The reachability base matrix

is defined by

K. -1 K -1

A 1 m
P(A,B) 2 [b,Ab ,.usA  biyeeuyb 8D sy ™ b ]

(2.4a)

where Ki's are the reachability or Kronecker indices [32-37] of (A,B). in

X
Definition 2.2 Let C = [C;,Cg,...,Cg]T, CiECl % The observability base matrix

is defined by

v, -1 v -1
) AT T, 1 T T T.T T .
2(a,c0) = [cl,Ach,...,(A ) ClrneesCosh Cp,...,(A ) P c:]T (2.4b)

where Vi's are the observability indices [32-37] of (A,C). (m]
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Obviously, the columns (rows) of P(A,B)(Q(A,C)) are contained in
R(A,B)(0(A,C)). Thus, P(A,B){((A,C)) can be obtained from R(A,B)((0(A,C)). The
selection of the columns (rows) of P(A,B)(Q(A,C)) from R(A,B)(0(A,C)) follows

the sequence proposed by Popov [35]. It is well known [33-36] that when (A,B)
is a reachable pair, rank[P(A,B)]=n and .E K;=nj when (A,C) is an observable
pair, then rank[J(A,C)] = n and .E v;=n. =

Assume that (A,B) 1is a Z;Lchable "pair with reachability indices Kj’

K.
j=1,2,...ym. Then A ij can be uniquely represented as [35-37]

K. j=1 K. m min[Ki,K,] -1
Adb, =- 7Y a_ii(e.+1)A Jbi- y J a oA by, if K0, 1<jsm
’ i=1 55 i=1 k=1 J j
K.<K
]
(2.5a)
and
i1
b, =-) a_.b., if kK, =0, 1sjsm (2.5b)
3 i rijl’i 3
i=1
K.>0
i

Note that the input matrix B may contain dependent vectors. As a result, we can

make a general structural analysis of MIMO systems. Similarly, if (A,C) is an
Vv,

observable pair with observability indices ) i=1,2,...,p, then CiA Y can be

uniquely represented as

v i-1 v, min[vi,v ] k-1
C.A =- ) a,.. C.A - ) ...C.A° 7, if v.>0, l<igp
i 591 lxj(vi+1) j 551 k=1 213k 1
v, <V,
i
(2.6a)
and
i-1
s e (2.6b)
¢, .; alijlcj’ if v;=0, lsisp
=1
v.>0

J



15

It has been shown that the Kronecker indices Ki and the set of parameters

{

arijk} are invariants of (A,B) under coordinate transformations of states, and
the K‘i are also invariant under linear state feedback. Similarly, the
observability indices Vi and the set of parameters {alijk} are invariants of
(A,C) under coordinate transformations of states and the V. are also invariant
for the full state observer coastruction.

We are now ready to define the characteristic A-matrices of multi-input

multi-output (MIMO) systems [30-32].

Definition 2.3 The right characteristic A-matrix of a reachable system in Eq.

(2.1), or a reachable pair (A,B), is defined by

A . . .
DM 2 [(0 ) 16PN, 1Sism, 1Sjsm (2.7a)

where the (i, j)th entries of Dr(l) are defined as

A (2.7b)
Srii(+D) 1

ij .

. N K = -
A L arij(k+l)x if K.,>0, or K.=0 and i=j
(Dr(k))ij = drij(l) =

0 if K;=0, i%j

K, if i=j (2.7¢)

e 8k, ik, i (2.7d)
ij j ij

Ki-l otherwise a

An illustrative example is given in Section 2.4.

Definition 2.4 The left characteristic A matrix of an observable system in Eq.

(2.1), or an observable pair (A,C), is defined by
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. . 2.
D (n) 2 [0, (), 1eC®PIA], 1sisp, lsise (2.8a)
where the (i, j)th entries of DSL()‘) are defined as
A (2.8b)
ii(ven) b
V..
1] k
. > - -
-): aZij(kﬂ))‘ if \)j 0, or \)j 0 and i=]j
(0. (A)) A 4 ) = k=0 (2.8¢)
A ij 2ij
0 if Vj=0 and izj
v, if i=)
5 if i=j
v, . 8 V. if v,<v,, izj (2.84)
ij i i)
\)j-l otherwise ]
Since {arijk}’ {alijk} are 1invariant under coordinate transformations of

the states, the right characteristic A-matrix, Dr(k) , and the left
characteristic  A-matrix, D,Q,O‘)’ are  invariant under the coordinate
transformations of states [35-36]. Furthermore, since KijSKj for 1<i<m, the
column degree of the jth column of Dr()\) is Kj' Define the leading column

matrix as

A . . (2.9a)
D, = [(Drh)ij]’ 1gi<m, 1£j<m
arij(Kj+1) for KjSKi
(D) 4 h .. = (2.90)
J J 0 otherwise
Drh is constructed using the coefficients of the highest powers of A in each
. = B iy .
column. Since arii(l(i+1) 1, and 'al'l_](Ki"'l) 0 for 1i>j, Drh is an upper
triangular matrix with diagonal elements all 1l's, so det(Drh) = 1. Thus, Dr(l)
m
is a column reduced A-matrix and the degree of det(Dr()\)) is ). Kj = n,
=1
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Similarly, when “ijsvi for 1l<jsp, the row degree of the ith row of DQ(A) is Vi

Define the leading row matrix

_ . : (2.10a)
Dﬂh = [(Dzh)ij]’ 1<igp, 1<j<p
fgijlu+1)  FOT VSV
b - (2.10b)
Dendis © Poij

0, otherwise

th is constructed by the coefficients of the highest powers of X in each row.
Since alii(vi+1) Zl, and alij(vi+1) = 0 for i«<j, Dzh is a lower triangular
matrix with diagonal elements all l's, so det(Dlh) = 1. Thus, DQ(A) is a row
|4
reduced A-matrix and the degree of det(DR(A)) is l v; = n.
i=1
From the definition of the right characteristic A-matrix in Eq. (2.7) and

the properties of D in Eq. (2.9), we have the following results:

Proposition 2.1 The right characteristic A-matrix Dr(k) in Eq. (2.7) has the

following properties,

(a) drii(A) z 0, monic
(b) deg drii(k) > deg dtij(k), i.j
(c) deg d ;5O > deg drji(k), j>i

(d) deg d ;i6A) 2 deg drji(l), jei

where drij(k) is the (i,j)th entry of Dr(l). o

Similarly, from Eqs. (2.8) and (2.10), we have:

Proposition 2.2 The left characteristic A-matrix DQ(A) in Eq. (2.8) has the

following properties.
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(a) dlii()‘) z 0, monic
(b) deg dy (X) > deg dz--(k), izj
(c) deg dp,.(X) > deg dy (X), j>i

(d) deg dp;3(AD) 2 deg d j(>\), j<i
where d ()‘) is the (i,j)th entry of DR,(D a

2.2 Canonical Matrix Fraction Descriptions (MFDs) of MIMO Systems

As we have mentioned in Section 1.1, the MFD representations of MIMO
systems are nonunique. In order to specify the "standard" MFDs for an MIMO
system, we shall define the canonical right MFD for the reachable systems and
the canonical 1left MFD for the observable systems in thig section. The
relationships between the 1left/right characteristic A-matrices and the
left/right MFDs of MIMO systems are also discussed.

To find the RMFD of the reachable system in Eq. (2.1), it is convenient to
transform the state equations in Eq. (2.1) into the canonical controller form

[32-34] using the following similarity transformation:

X (£) = T X(¢t) (2.11a)
Ky-1 K -1
T T .

T, = [P'{,...,(PIA Ly ,...,pi,...,(PmA“‘ 4 (2.11b)
where

1’i = the Gith row of P-l(A,B), Ki>o (2.11¢)
and

i
o &7 « (2.11d)
i 53
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The state equations in the canonical controller form are:

AX_(£) = A X _(£)+B u(t)
y(£) = C_X_(£)+D_u(t)

where

A -1 A
2 A . . N
Ac T AT, [(Ac)ij], 1<i<m, 1<j<m, Kin 0

0 :IK.—I
A : 1 KiXICi _ _
I Rl € 5 A .= l-a .. ,eee,ma,
(Ac)11 A ¢ ? Ac11 ! 3riil’ ’ arllK.]
cii B
0 [—arijl""’-arin.]’ KiSKj
A K, XK J
(Ac)ij =le---- ec J; cij = - -
Acij [—arijl,...,-arini,O,...,Ol,
and
A cen ces “es P
cll’ ’Aclm 2111 ’arllKl’ 12 1m1? ’arlme
_ -1
. cae o = Drh . aee . “os . sew .
A yeossA a yesagd yeeeyd yaneyd
eml cmn rmll rlel roml ’ rmme
A _ -1 A
Bc . TCB - EbcDrh’ Ebc a [ebcl’ebcz""’ebcm]
%
e if K.>0
\ { o ;
e =
bel 0 if K,=0
i
A -1 _ T T T T
G = CT" = 1€ 15C0prmenrCoy)

(2.12a)

(2.12b)

(2.13a)

(2.13b)

izj

K, <K,
]

(2.13¢)

(2.134)

(2.13e)

(2.13f£)

(2.13g)
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(2.13h)

[ciu,...,cilKi,...,ciml,...,cime]

>

(2.131)

>

From Eq. (2.12), the input-output relationship of the system can be described as

= -y~ L (2.14a)
y(t) [CC(XIn Ac) Bc+Dc]u(t)
Also, from Eq. (2.13), we have
A - -1 (2.14Db)
(XIn Ac) Bc ¢r(k)[Drh5r(l)]
where
A (2.14¢)
¢r(k) = [¢r1(l),...,¢}m(l)]
and
Ky~ T
[lec. % D PO § ’le(n-c.)] , Ki>0’i=1""’m
Y. () 4 o ' (2.144)
r 0 K. =0
nx1’ i
A _ (2.14e)
Sr(k) Grh(l) Arwr(k)
K.
8 (M) 8 giagir Li=1,...,m (2.14£)
A T T T ,T .mxn (2.14g)
Ar = [Arl’ArZ""’Arm] eC
Uith row of A for k.>0
A é{ ¢ t (2.14h)
ri _
leﬂ for Ki-O
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From Eq. (2.14a), we have

= -1 (2.15a)
y(8) = I O] M40 _Ju(e)
where
4 (2.15b)
Dr(k) = DrhGr(X)
xoy 2ew (2.15¢)
T cr

Thus, the RMFD representation of the system in Eq, (2.1) becomes

- -1 - & o oy & (2.16)
c(l)—ur(x)nr (A)+nc Nr(k)Dr (k),Nr(A) Nr(k)mcnr(x)

G(A) in Eq. (2.16) is referred to the canonical RMFD of the system in Egq. (2.1),
and Dr(l) is the right characteristic A-matrix of the RMFD. It is well known
that, for a reachable system, Dr(A) and Nr(l) are right coprime. From Egs.
(2.14¢) and (2.15¢), any column of Nr(l) corresponding to K;=0 is a zero column.
If the system in Eq. (2.1) is observable, the state equations can be
transformed into the observer canonical [32-34] form by the similarity

transformation as follows:

S | (2.17a)
xo(t) T, Xx(t)
v, -1 v -1
1 (2.17b
To = [ql""’A ql,...,qp,...,A P qp] )
where
q; = the T th column of QTI(A,C), Vi>0 (2.17¢)
and
T Q ]2 Vv (2.174)
i 3
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The state equations in the observable canonical form are as follows:

= (2.18&)
Axo(t) ono(t)+Bou(t)
= (2.18b)
y(t) Coxo(t)+D0u(t)
where
A -1 - . . (2.19a)
A, ¥ Ty AT, [(Ao)ij]’ 1sisp, lsjsp, "ivjx’
ay.. £ --0--~EA ot SN (-3 2. 1T (2.19%)
0'1i 1 Vioid ' Poii 0iil1’* " “piiv.
4 1
V.-l 1
1 1
[-a, -a 1T, if v.2v., iz
2 v, XV 0ij1’* " "Poijv,’ ? i%Vyr A
(A), [oAa..JjeCc* I;4..= J
0 01 033 -3, -a 0 01T if v.<v,,iz]
Oijl’.." Oij\’i, 3oy i j)l 3
(2.19¢)
and
A011""""01p 32.111"'"“2.11\;1”""’9.1;11""'alplv
- - P (2.194)
AOpl""’AOPp allpl"'"allpvl"'"aLppl""’alpp\)p
g 81715 - (B..,B B ] (2.19e)
0 0 01’02 ***?"om
A T (2.19f)
Boj [bljl,...,bljvi,...,bpjl,...,bpjvp]
i) ) W AT T ,T (2.19g)
€ = €Ty = DgnEepi Eep [ecol""’eccp]
T.
enl ’ if \)i>0
o7 g{ (2.19n)
c01 0 , if v,=
1
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D s (2.19i)

o D

From Eq. (2.18), the input-output relationships of the system can be expressed

y(&) = [e (A1 ~a)) "B #D )ule) (2.202)
From Eq. (2.19), we have
-4 3L = -1 (2.20b)
Co (AL -A)) [8,(Npy 1 "9 (N)
where
AT T T {2.20¢)
‘pz(A) = IWZ’I(A)yo--Q\pEP(A)]
and
v;-1
IOIXTi_l,l,A,...,A 101 x(n-1.)11 %0
¥, (0 & ' (2.204)
21
Otxa » %i70
A - (2.20e)
GZ(J\) 6%(1) wz(k)Az
AL Vi (2.20f)
Gzh()\) = diag[A 7,i=1,,..,p]
A nxp (2.20¢g)
Ay = [AM,AM,...,AZP] eC
o for \’i>0
4 (2.20i)

{Tith column of A

Ags
0nxl for vi=0



24

From Eq. (2.20a), we have

= 1p-! (2.21a)
y(£) = [0y (N, (A)+D Ju(t)
where
= (2.21b)
Dy () = §, (D,
- (2.21c)
Nl()‘) \PL(X)BO

Thus, the LMFD representation of the system in Eq. (2.1) becomes

G(A) = D?“‘”z“‘)*% - DEI(")Ng()‘);Ng(’\) A Nz(")*nzo‘)% (2.22)

G(A) in Eq. (2.22) is referred to the canonical LMFD of the system in Eq. (2.1)
and Dl(l) is the left characteristic A-matrix of the LMFD. Dg(}) and NQ(A) are
left coprime if Eq. (2.1) is an observable system. Note thtat ary row of Nz(k)
corresponding to vi=o ig a zero row.

From Eqs. (2.13) and (2.14), the minimal realization of D;ICA: using a pair

(A,B) can be formulated as follows.
Lemma 2.1 The quadruple (A’B’Cr’br)’ where
c_ 4 V()T and D 2 (1_-¥7(0) ¥ (0))p]}
is a minimal realization of D-l(l), i.e. D-l(k) =c (A -A)_IB+D .
r r rn T
Proof:

From Eqs. (2.13) and (2.14b), we have

ay-le o -1 (2.23a)
Tc(hn A) B “’r”‘)"r“’



25

Also, from Eq. (2.14d), we have

T i dT T 2.23b
YEOY_ () = L (0 = 1 - PRCSCAREREOIACH (2.230)
Ki=0
Thus,
T -l o % i i T -1 (2.23¢)
q,r(o)'rc(un A) B [Iln izl em(em) ]nr (¢V)
K;=0

Since Dr(x) = Drhs(x), we have D;l(k) = G—I(X)D;;. When ;=0, from Eq. (2.1l4e)
we have {s(x)}ii =1, {G(A)}ij = 0 for izj, and {s(x)}qi = 0 for qzi. As a
result, when Ki=o, we have {6-1(1)}5.]'. = 1, {é-l(k)}ij = 0 for i:j! and

{G—I(X)}qi = 0 for qzi. Thus

o
L
1=1

Ki:o Kiso

i, 83T =1,y or v i 33Tyl _ o T -1 (2.234)
ey D0 = LT ele) 10y = [,y {0y (0]n,

Rearranging the terms in Eq. (2.23c) and substituting Eq. (2.23d) into the
rearranged equation yields D;l(l) = Cr(AIn-A)_lB+Dr.
It can be easily shown that (Ac,¢g(0)), is an observable pair or (A,Cr) is
an observable pair. Thus, the results of Lemma 2,1 follow. [
From Lemma 2.1 we observe that, if every Kc; >0 for 1gigm, then p.= 0, both
Ct and B are of full rank, and D;l(x) is strictly proper. For representing

Dr(x) without involving the inverse of (AIR—A), an alternative representation of

Dr(x) is derived as follows.
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Lemma 2.2 Dr(l) can be represented as

Dt(A) = Cr()\I“-A)B(X)+Dr

- -1 o bp T T
vhere B #1700 05 ¢, 8o BT 75 0 80, 11 ~vEov (01,

Proof:
Using B, and A  in Eq. (2.13), $ (X) and A in Eq. (2.14), and 8 (}) in
Eq. (2.14f), it can be easily verified that Ar = E:CAc and 5rh(K) =
Ey_M_(0+[1_-y7(0)¢ (0)]. Then, from Eq. (10e) we have
T T T
6(A) = B, AP (M+[1 -y (039 (0)1-E, A ¥ (D)
_ T _ _aT
= By DAL -A 00 (M)+11 - (0)¥ (0))
= X T (A1 -m)T N (V+[1 -4(0) ¥ (0)]
bec n c 'r m T T
Thus, D _(A) =D &) = C (AL -A)B(A)+D_. )

In a similar fashion, from Eqs. (2.19) and (2.20), the minimal realization

of D;l(k) using a pair (A,C) can be expressed as follows:

. A T A T
Lemma 2.3 Define B, = T0¢2(0) and Dy = Dlh[Ip—wl(O)wl(O)] then, the gquadruple
(A,BQ,C,DQ) is a minimal realization of Dil(l), or DEI(X) = C(XIn—A)-lBEfDL. o
Also, an alternative representation of Dl(l) without involving the inverse

of (lIn-A) is as follows.

Lemma 2.4 Dz(k) can be represented as

~

Dl( A = c(( Mn-A)Bl+Dl
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c - -1, 2. . D = - ¥
where C(A) q’ﬂ.“‘)To i By = ToE oDgyi Dy IIp ¢£(0)¢!’(0))Dﬂ‘- .
Lemmas 2.3 and 2.4 can be proven following the same reasoning as in Lemmas

2,1 and 2.2, respectively.

2.3 Minimal Nice Selections for Determining Kronecker and Observability Indices

As we have seen, the right characteristic A-matrix and the canonical right
MFD of a reachable system can be determined once the Kronecker indices of the
reachable pair (A,B) are known, To find the Kronecker indices of reachable
systems, we introduce the notions of nice selections and minimal nice sections
for the reachability test matrix R(A,B). An algorithm to determine the
Kronecker indices from the winimal nice selection is also presented. The same
procedure is equally applicable for determining the observability indices of an

observable system.

Definition 2.5 A nice selection y is an ordered subset of the set {k:lgkgnm}

such that

(1) The cardinality |y| is equal to n.

(2) if i+mjey, then i+m(j-1)ey for lgism and 0<jsn-1. a

A nice selection y can be represented by a Young diagram [39] of m rows
labeled from 1 to m and n columns labeled from 0 to n-1 with a cross at an (i,])
entry iff i+mjey for 1<i<m and 0<jsn-1. Due to the property (2) in Definition
2.5, the Young diagram of a nice selection associated with vy either has
consecutive crosses or no crosses at all in each row. The Young diagram with

m=3, n=6 and a nice selection y = {1,2,3,4,6,9} is illustrated as follows:
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J-#
0 1 2 3 & 5
1 |x x b
-~ 2 |x b,
3 |x X x b,
I, A A2 A2 a8

Im denotes an mxm identity matrix.

Definition 2.6 Let (A,B) be a reachable pair and Q,j be the number of crosses in

the jth column of the Young diagram of a nice selection y associated with (A,B).

1f
k-1
Yy %= rank(B,AB,...,A" 'B), ken (2.24)
j=o 3

and (Ajbi), #(i,))e{(a,B): 1lsasm, 0<Psn-1 and otm(B-1l) ey} are independent, then
¥, defined as Y is a minimal nice selection of the reachable pair (A,B). (]

It has been shown [37] that minimal nice selections are unique up to
permutations of the rows of the Young diagram., Also, if K; denotes the number
of crosses at the ith row of the Young diagram of a minimal nice selection Yy
the set g = {Ki,lsism} is the Kronecker indices of the reachable pair (A,B)
associated with Yy- Note that g; may be zero for some i. The maximum number of
minimal nice selections associated with a reachable pair (A,B) is m!, and each
minimal nice selection results in one controller form and one associated RMFD.
All the controller forms and associated RMFDs are equivalent. To determine the
canonical controller form and associated canonical RMFD, we define the input

selection sequence as follows.

Definition 2.7 The input selection sequence for a multivariable system with m-

A
input, § = {s,,1<kgn}, is defined as a permutation of the set {k,1sksn}. The
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natural input selection sequence, SN’ is defined as SN - {81,82,-..,Bm} =

{1,2,...,m}. The minimal nice selection Yy with the input selection sequence §

is determined by examining the independent vectors of the ordered column vectors
in the following matrix:

A - -2 n-1
R(a,B) £ [bsl,baz,...,bs )Ab_ JAb_ yeeu,Ab yu.,A” lbs » A% a1

m 1 2 m 1 2 m
(2.25a)
o
If the set K contains the Kronecker indices of the minimal nice selection
Yy ©f a reachable pair (A,B) with the natural input selection sequence Sy» then
the reachability base matrix of the (A,B) due to Popov [35] is defined as

K,~1 K -1

1 (2.25b
Byreeesb yAb yereyh ™ b ] )

P(A,B) = [b,4b ,...,A

and the controller form transformation matrix Tc becomes Eq. (2.11b). From
Lemma 2.1, the right characteristic A-matrix can be determined. 1In addition,
the RMFD can be found by using Eqs. (2.14) and (2.15).

The linearly independent vectors in a rectangular or square matrix R(A,B)
. can often be determined by applying the Sylvester theorem [13] to the square
symmetric matrix R(A,B)RT(A,B), or by calculating the nonzero elements at the
diagonal entries of two triangular matrices, decomposed from the square
symmetric matrix R(A,B)RT(A,B) {38]. Here, we propose an orthogonalized
projection approach to determine the linearly independent vectors of R(A,B) in
Eq. (2.25a) as follows.

Let V = {vi,lsiSN} be a set of vectors vieCnxl,NSn. The orthogonalized
projection P(k)eC™™ for vy : {vi,lsiSR}, 1sksN, can be evaluated recursively as
follows:

p(0o) = I (the unit matrix of order n) (2.262)
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*
P(k-1)v, v, P(k-1)
P(k-1) - k

*
= for ka(k-l)vkzo
ka(k-l)vk

(k) = (2.26b)

*
P(k-1) for ka(k-l)vk =0

*
where i denotes the conjugate transpose of Vie

Lemma 2.5 Some important properties of the orthogonalized projection {39] are

as follows:

(1) P*(k) = P(K) or P(k) is symmetric.

(2) Pz(k) = P(k) or P(k) is idempotent.

(3) P(k)vi =0 10 ¥V;V 1sizk,
(4) R(RX = X, ¥ XV, xeC™1, 1gisk -

From Lemma 2.5, we have the following results:
* . A
Lemma 2.6 ka(k-l)vk =0 iff v eV, _,, vhere V,_, = Span [V, _,].

Proof:

Since P(k=-1) is idempotent and symmetric, we have

wP(e-Dv, = v (-DP(k-Dv, = (P(k=1)v,) " (P(k=1)v, )

k-1
(a) 1If ViV 1» then v = ¥ a;v;. From property (3) of Lemma 2.5 we have
i=1
k-1
P(k—l)vk = izl aiP(k—l)vi =01

Thus

*
ka(k—l)vk =0

*
(b) 1f ka(k-l)vk = 0, we have P(k-l)vk =0, 1"
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Let
k"l -~ ~
Yk T 12;1 239 Vild -1

Then, from property (4) of Lemma 2.5 we obtein

-~ A
P(k-l)vk = P(k-l)vk -V " onxl

k-1
Thus, v " )‘ a;v, or Vi€, 4. -
i=1
. A
Lemma 2.7 Define chvk; Wo =&;
if v.P(k-1)v, 20 for 1ksN
"k—lU{vk} i ka v 0 for lgkg
v @ .
wk-l if ka(k-l)vk =0 for l<kgN
Then, WN is a base for VN‘
Proof:
Lemma 2.7 can be proved directly from Lemma 2.6, |

Lemma 2.7 provides a foundation for deriving the recursive algorithm for
selecting the independent vectors from a set of vectors. Based on Lemma 2.7, we
now derive an algorithm to determine the Kronecker indices of the dynamic system

in Eq. (2.1) via the minimal nice selection as follows [40].
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Algorithm 2.1

Given: (A,B) - A reachable pair
§ - The input selection sequence

Find: & - The Kronecker indices
Algorithm:
{Initialization}

Pi=l {set orthogonalized projection to identify matrix)
For i:=1 to m Do
Begin
i:=0;{Reset Kronecker indices}
Flagi:=True;{Set selection flags true for all inputs}
i:-bi {Copy b, to vi}
End;
{processing}
Repeat
For i:=1 to m Do
Begin
j:-si ; {select Akbs_,kso}
1f Flagj then 1
Begin
d:=P:vj;
If vj*dzo then
Begin {Select v,}
P :=p-d*d*lv’;*d ; {Update P}
v,:=A*v, ;{Update v, for next selection}
Kj:=Kj+1{Updgte Kronecker index}
End
Else
Flagj:=false {Reset selection Flag}
End
End {For loop}
Until all Flagi are false;

Note that the * between two variables in the above algorithm is the product

notation, and the superscript * designates conjugate transpose.
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When the system in Eq. (2.1) is not reachable, the sum of the Kronecker
indices k; found by using the above algorithm is less than n, i.e, izl K;<n.
Thus, the above algorithm can also be used to test the reachability of systems
in state space form,

As is well-known, reachability and observability of a system are dual
concepts, The above algorithm can be modified to find the observability indices
v; by substituting (AT,CT) for (A,B), v; for Ki» and treating S as the output

selection sequence which is defined in the same way as the input selection

sequence in Defimition 2.6.

2.4 Illustrative Examples

Consider the following 3-input 2-output system

AX(t) = AX(t)+Bu(t) (2.27a)

y(t) = CX(t)+Dult) (2.27b)

where

-1 0 -2 5 -9 4 -3 =2
0 -1 4 -8 14 .11 1

A=[ 0 0o 1 -4 7|3 B=|-1 3 s
Lo 0 0 -1 6 2 1 4
o 0 0 0 2 1 0 1
_

111 & s 11 .

c 0 1 -1 & -5]’ D=0y,

Determine various controller forms and associated RMFDs using minimal nice

selection Yy and various input selection sequences S.

(1) If the input selection sequence, §, is selected as § = {1,2,3}, which is
the natural input selection sequence Sy then the canonical controller form

and associated canonical RMFD can be determined as follows.
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Using the minimal nice selection algorithm, we obtain the Kronecker
indices K1®2, K,=3 and K4=0. Note that the input matrix B contains a

dependent vector. The corresponding Young diagram becomes

1 X X bl

2 X X X bz

3 b3
15 A Az A? Aﬁ

The state equations in the canonical controller form of Eq. (2.27) can be

determined from Eqs. (2.11) and (2.12) as follows:

0 110 0 © 0 0 0 0 0 0
2_1'0 0 0 101} {1 o offr o a1
A =070 1TO Y5 B, =[T8T070 =00 Ofjo 1 2| =g D
0 010 0 1 0 0 0 0 o oflo o 1
0o ol1 1 -1 01 2 010
- -4 21-2 3 37, - h = (2.28a)
€ [o 3!022]’ De =D =053

The right characteristic )-matrix Dr(x) can be determined from Eq. (2.15)

D_(X) =D, 8 (X =D 15, (W-Ay (M)

NM-x2 0 -l
=l o Bl - (2.28b)
0 0 1

where



Note that nrh is an upper triangular matrix with diagonal entries all 1's,
and DI(X) is a column-reduced A-matrix which satisfies all the conditions
in Proposition 2.1.

The canonical RMFD can be obtained from Eqs. (2.,14) and (2.15) as

follows:

y(t) = Nt(A)D:l(A)u(t) (2.28c)

where

-4 242 0
N () = op () = [ ]

3 % o

(2) 1If the input selection sequence, S, is selected as 5 = {2,3,1}, then the

Kronecker indices become Ky=0, x,=3, and K3'2 and the Young diagram is

0 1 2 3 4

1 b,

2 |x |x |x b,

3 |x |x b,
1, A A A a8

The state equations in a controller form of Eq. (2.27) become



01 0'0 0 0 0 0 0 0 0
o0 tlo o 00 0 000 100
A= |11 -0 o by B o=fo 1 2f=[o 1 0] lo1 2|50
0001 0°6"0 00 0 10 1
00 012 1 1 0 1 0 0 1
where
1 0 077! 10 0
p.=|o0 1 2 = {21 -2
th 101 -1 0 1
c = [2 3 3} 2] (2.29a)
c 0 2 210 3

Note that Drh is not a triangular matrix.

The corresponding RMFD can be obtained from Eqs. (2.14) and (2,15) as

follows:

(3)

= -1 (2.29b)
y(e) = N, (OD_ 1 (Mule)
where
1 0 0 0 M2n-2 -4
= 3 2_ - _ 2 . -
Drl(X) 2 ATHATA-l 2 T+2aes | N,

-1 0 22a-2 0 22+ n

Note that Drl(k) is a column-reduced A-matrix but it does not satisfy the

conditions (b) and (c¢) in Proposition 2.1.

If the input selection sequence, S, is selected as 8 = {3,1,2}, then the

Kronecker indices become K1=2, K,=0, and K3=3, and the Young diagram is
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1 |x |x b,

2 b,

3 |x |x |x b,
1, A 2 A2 A

6 10 0 © 0 0 0 000
2133 3_.0 R T N Lo ot -5 0 -1
A =000 170, =|70" 0 0 =100 0fjo 10 Ep.Don
0 0:0 0 1 0 0 O o 0o oflo 5 1
0 041 1 -1 0 5 1 6 0 1
where
1 -5 017! 1 50
p,=}0 10 =fo 10
0 5 1 0 -5 1
c = [-a 210-12 6 s] (2.30a)
c 0 3+ 0 10 7

The corresponding RMFD can be described as follows:

- -1 (2.30b)
y{t) er(x)ntz(x)u(t)
where
2 2
A=A-2 5 -3A-3 2)-4 0 B8AT+6)1-12
Drz(k) = 0 1 0 H er(k) =

0 -5 Aeal-a-1 3A 0 7)%+10A
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Note thst in this case D, is not a triangular matrix, and D_,(X) is a
column-reduced A-matrix but it does not satisfy the conditions (b) and (c)

in Proposition 2.1.



CHAPTER III1 SPECTRAL ANALYSIS OF NONSINGULAR A-MATRICES

In this chapter, the latent structures of nonsingular A-matrices are
investigated. The column-reduced and the row-reduced canonical A-matrices are
defined as the standard forms of a nonsingular )-matrix. Equivalence
transformations are developed for transforming nonsingular A-matrices to row—
reduced or column-reduced canonical \-matrices, and for transforming non-~
canonical MFDs to canonical MFDs.

The existence of the first types of transformations enables us to analyze
the 1latent structures of nonsingular J\-matrices in terms of the 1latent
structures of canonical )-matrices. Due to the simplicity of the formulation
for minimal realizations of the inverse of the canmonical )\-matrices in state-
space, the latent structures of canonical \-matrices can easily be investigated
from their associated state-space minimal realization quadruples.

After the latent structures of nonsingular )A-matrices are established, the
“matrix roots", called solvents, of nonsingular A-matrices are studied via the
latent roots and latent vectors. Solvents of monic )A-matrices have been
discussed in many previous works {17-18,22-30]. Our reasons for considering
solvents in this chapter are: (1) to extend the idea of solvents for
nonsingular A-matricesj; (2) to develop the structure of a special class of
divisors, namely monic linear divisors of nonsingular A-matrices. The general

structure of divisors of nonsingular A-matrices is studied in the next chapter.

3.1 Canonical A-matrices and Canonical MFDs of MIMO Systems

In this section, we develop a technique to reduce a nonsingular A-matrix to
a row-reduced or column-reduced canonical A-matrix. The reduction technique is
then extended to convert a general MFD to one whose denominator is a row-reduced
or column-reduced canonical A-matrix. The converted MFDs are referred to as

canonical MFDs.
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Definition 3.1 A column-reduced canonical A-matrix, Dr(k), can be described as

D.(}) = Drhsr( A)

where Drh is an upper triangular square matrix with diagonal elements being all
1's. 8 (1) is a A-matrix with the (i,i)th entry, (Gr(l))i j» being a monic A
’
polynomial of degree ¢, = 3 _.(D_())) and the (i,j)th entry, (5_(X)). . being a A
i ci'r r 1,]

polynomial of degree < min(lci,ncj)-l, izj.

A row-reduced canonical )\-matrix, DE(D’ can be described as

DR.( A) = 52( )‘)Dzh

where Dlh is a lower triangular square matrix with diagonal elements being all
1's, GE(D is a A-matrix with the (i,i)th entry, (6!,()‘)1'.,1’. being a monic A
polynomial of degree v; = 8ri(D2‘(X)) and the (i,j)th entry, (6,_(k))i,j being a A
polynomial of degree < min(vi,\)j)-l, izj. u)

From Definition 3.1, we observe that the left (right) characteristic A-
matrices of MIMO systems discussed in Chapter II are the row (column) reduced
canonical A-matrices. Their salient feature is that the inverse of these A-
matrices can be described by the state-space realizations in canonical observer
or controller forms. Therefore, the structural properties of these A-matrices
can be systematically explored in terms of a state-space setting.

As mentioned in Lemma 1.2 of Chapter I, a nonsingular A-matrix is row
equivalent, column equivalent or equivalent to a row-reduced, a column-reduced
or a row-and-column-reduced A-matrix. However, since equivalent row-reduced
(column-reduced) \-matrices of a given nonsingular A-matrix are not unique, a
row-reduced (column-reduced) A-matrix is not necessarily a row-reduced (column-
reduced) canonical A-matrix as defined in Definition 3.1. We will investigate a

constructive way to explore the equivalent transformation of a nonsingular A-
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matrix to its row-reduced or column-reduced canonical A-matrix as follows.

We begin with the state-space minimal realizations of the inverse of the

reduced A-matrices.

Lemma 3.1 Let A(X) emem[A] be a column-reduced A-matrix with the column degrees

~

Kiyi=lyecoym.  Then A(A) can be represented as

AN = D [, (M)-A__¥_(M)]

~

where D ch is the leading column matrix of A()) and D (@) & dlaglk ,1-1,...,m],
|c.-1

2 ) -~
\IJ ()\) v 1()‘) wcz(X),...,\b (A)], ¢ (k) 1[01 o, P B S Y ’°1x(n-oi)]
o, ~ X
for K >0 and Y. (M) =0, for K =03 0 ] 32'1 Ky i=1,.,.,m; n b O3 A”_t-:C‘n n
can be determined from Dch and the coefficients of each entry of A(MA). [ ]
The minimal realization of A-l(k) can be stated below,
Lemma 3.2 A Y(A) = C (AL -A )"1B 4D (3.12)
—_— c " n e c ¢
where
_ % “n -
—N— - a b
01 0 . 0 'O(K-—l)xn :O(K-I)XK -~
O | 1 " 1 K
1 ! ‘ 1
DN N "S5-NE NV Ry S T T - . - -~ ~ A A
Ac __________ T -—.(fcr)l_ e e —m—— - _-_4 i nEnTK Ky
oo\ ~ H ] 0 ~
nxK ' : ! nxK
..._-_1-_.._5__-__-__:_---m_---_
Ot ~Dxk, ' O(K -)xn |} o010 .0 ;
= : . - . . i '@
e - e e e il e, e e d a L o
L -(Acr)m J
(3.1b)
(). 2 The ith row of A_,i=1,...,m (3.10)
er’i cr
%
e if nci>0
~ A ~ 1. -~ é ~ ~ ~ . ~ A (3.1d)
B, = x‘:'bcnch’ Ebc [ebcl’ebcz""’ebcml' ®bei { e o
0 if k,=0
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~
5 .T (3.1e)
c. ® v (0)
A T -1 (3.16)
Dc [Im WC(O)WC(O)chh
Proof:
Lemma 3.2 can be established by direct verification. a

-~ ”~ ~ ~

The quadruple (Ac,Bc,Cc,Dc) is referred to as a controller (not a canonical

~ A

controller) form realization of A-I(A). In general, we can define A 8 T;lAcTc,

~ oA ~

§ -1 - n . . e
B Tc Bc' C ccTc and D Dc’ where TC is a non-singular similarity
transformation matrix, so that the inverse of a column-reduced A-matrix, A(A),

can be realized by using a quadruple (A,B,C,D), or

Aoy = c(un-A)'lnm (3.2)

Let Dr(k) be the right characteristic A-matrix of (A,B) in Eq. (3.2).

Using Lemma 2.1, D;I(X) can be realized as follows:

-1 - ! (3.3)
D ) ct_(Ml_l 4A) B+Dt_ .

The relationship between A(A) in Eq. (3.2) and Dr(k) in Eq. (3.3) is the

following:

Theorem 3.1 Let A(A) be a column-reduced A-matrix represented by Eq. (3.2), and

let Dr(k) be defined in Eq. (3.3). Then,

A(X) = Dr(A)Ur(A) (3.4)
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where Ur(l) is a unimodular A-matrix, Ur(l) = [CT:I‘«Ur(X)"‘DDr(X)]_I. T, and
\llr(k) are defined in Eqs. (2.11b) and (2.14c), respectively.
Proof:

From Eqs. (2.6) in Chapter II and (3.2), we obtain

13y o aylo oo -1 - -1
AR (N c(un A) B+D Nr(l)Dr (A)+D N,__(Jt)nlr @V

where Nr()\) = CTzllllr(k)emew[l]; ;r()‘) = Nr()‘)+DDr(X); T, is a transformation
matrix which transforms (A,B) into the canonical controller pair. Since A(A) is
nonsingular; ;r(l) must be nonsingular or A()) = Dr(l)g;l(l). Also, since
O(A(A)) = O(A) = U(Dr()s)), we obtain det(A(})) = chet(Dr(X)), where K  is a
nonzero constant. Therefore, det(;;l(X)) = K. As a result, ;;l(k) = U () is
a unimodular A-matrix. [ ]
Theorem 3.1 provides a method for determining a unimodular A-matrix which
converts a nonsingular column-reduced A-matrix to the column-reduced canonical
A-matrix.
The dual results for row-reduced A-matrices are as follows:
Lemma 3.3 Let A()\)ECPXP[X] be a row-reduced A-matrix with row degree Gi’
i=1,...,p, then A()) can be represented as

. _ (3.5)
AQ) = [0, (V-4 (VA IDg

~

where D, is the leading row matrix of A(X) and Dh(l) 4 diag[l\’,iﬂl,...,m];

V. -1
T -
by 8 ST CS PN COPRRPA AR ¢} LI ¢V Lo, Aot O]
: i-1 Ts
for v >0 and Y .(}) =0 for 3-0' ; s i ; i=l,...,p; n A; ; A ,eC™P can
i 0i 1xa A P p’ "0%
be determined from D., and the coefficients of each entry of A(A). ]

Oh
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Lemma 3.4 A H(A) = Cu(AI_-A)) 1B+, (3.6a)
where
- v
) A?1 - AP ~ -
1 1] ‘ ~ ~ l
2 * * t ; OA A ole(v -1) 1 R
°o . . ‘ AT ‘ P ! v
- t ! ! ' 1
o . : . l :
~ A [T AT AT T T r---_-_l_-;\_ : ----| ~ ol
Ao = nx(VI-l) : '(Aoz)l . ees : oﬂx(\’p"l) : (Aog)p ;n=n-\)1-\’
__________ : %----_ﬂ___-___--'
) ] 0 . . H
: : 1oLl -
: : : 0o . . : \’P
[}
~ ~ ] N A A ) * * * [}
0 _ 1 y O 0 . 1 '
\,px(\’l 1) ) ' VP)(n : H
(3.6b)
(A 5) é The ith 1 f A i=1
08 i e ith column o WL TR 1
A
By = ¥2(0) (3.6¢)
T, ~
-~ A -~ ~ A ~ ~ ~ enl 4 lf vi>0
S, . 8 : T, - (3.6d)
Cy = DonFeo? Eco = [ec017%c027"**7%cop! § ®coi { -
Onxl if Vi-O
~ A - T (3.6e)
Dy = DOhIIP-'bO(O)‘bO(O)] -

~ ~ ~ ~

(AO,BO,CO,DO) is referred to as an observer {(not canonical observer) form
A A A A A
realization of A"X(A). 1In general, if we define A & TOAOTEI’ B = T,B,,

A A ”~
c= CoTaland D= DO’ where To is a coordinates transformation matrix, then the

inverse of a row-reduced A-matrix, A(A), can be realized by & quadruple

(A,B,C,D), i.e.
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Aty = car w7 lBen (3.7)

Theorem 3.2 Let A(A) be a row-reduced A-matrix, which can be realized, using a
quadruple {(A,B,C,D). Let DL(A) be the left characteristic A-matrix of (A,C).
Then

(3.8)
A(X) = Um(x)nz()\)

where UL(A) is a unimodular A-matrix, UL(A) = [\PQ(R)TBIB*‘D"(;\)D]-ls Ty and %l(l)
are defined in Eqs. (2.17b) and (2.20c), respectively. [}

Combining Lemma 1.2 and Theorems 3.1 and 3.2 yields the results as follows.

Theorem 3.3 A nonsingular A-matrix is row or column equivalent to a row-reduced
or column—-reduced canonical Xmatrix, respectively. .

Theorem 3.3 reveals the fact that the structural properties of nonsingular
A-matrices can be studied from the appropriate row-reduced or column-reduced
canonical A-matrices. In the next chapter, the structure theorems of divisors
of nonsingular matrices are derived, using the row-reduced or column-reduced
canonical A-matrices.

The following extension of Theorem 3.3 to the RMFD and LMFD can be easily

proved,

Theorem 3.4 An irreducible RMFD (LMFD) described by G(A)=N(A)D 1(A),

(c(a) = D-I(X)N(A)), can be converted to a canonical RMFD (LMFD) described by

&(n = Nr(X)D;l(X); (G(x) = Dil(k)ﬁz()‘)), where D()A) and N{)A) are coprime and

Dr(l)(Dg(l)) is a column-(row-) reduced canonical A-matrix. ]

Corollary 3.1 An irreducible proper RMFD or LMFD can be realized by a canonical

controller-form state-space quadruple (Ac’nc’cc’nc) in Eq. (2.12) or a canonical
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observer-form state-space quadruple (AO,BO,CO,DO) in Eq. (2.18), respectively.

Proof:

Let G(}A) = N(A)D-l(k) be an irreducible, proper RMFD, then from Theorem 3.4
we obtain G(A) = Nt(l)D;l(A), where aci(Nr(X)) < aci(Dr(X)). Thus, G(A) can be
expressed as G(A) = nr(x)n;lmmc(x), where 3_ (N _(A))<d_.(D_(A)). Since G(A)

is proper, we have ii: G(M)<=, Also ur(k)n;l(l) is strictly proper, or
&:2 NI(X)D;I(X) = 0, and therefore iiﬁ Dc(k)<°, or Dc(l) =D, is a constant

matrix. Thus

-1
G(X) = Nr(k)nr (K)+Dc .

From Eqs. (2.14) and (2.16), we can find the minimal realization quadruple
(Ac’Bc'cc’Dc) in the canonical controller form.
The minimal realization of the irreducible proper LMFD in the canonical

observer form can be proved in a similar way. ]

3.2 Latent Structure of Nonsingular A-matrices

As stated in Theorem 3.3 in Section 3.1, 2 nonsingular A-matrix is row or
column equivalent to a row-reduced or column-reduced caaonical A-matrix,
respectively. We shall first concentrate on the latent structures of canonical
A-matrices and then extend the results to nonsingular A-matrices.

The latent roots of a nonsingular A-matrix D(A) are defined as the roots of

det(D(A)) = 0.

Lemma 3.5 [17-19] Let the set of latent roots of D(A) be o(D(A)), and the set
of eigenvalues of A, which is the system map of a minimal realization of D-l(k),

be 0(A). Then o(D(X)) = o(A), and
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o) | = |o€A)| = n .

vhere | | denotes the cardinality of the set.

Proof:

Directly from Theorem 3.3 we have

= (3. 103)
D(A) Dr(x)ur(x)

where Dr(k) is a column-reduced. canonical A-matrix, and Ur(k) is unimodular.
From Lemma 2.1, we have

“liyy =yt a1 (3.10b)
D (X)) ur (x)[cr(un A) B+Dr]

Thus the results of Lemma 3.5 follow. |

The generalized latent vectors of a nonsingular A-matrix are defined as

follows:

Definition 3.2 [17-19] Let Ai be a latent root of D(A). A left Jordan chain

of left generalized latent vectors (left Jordan chain for abbreviation) for D(A)

associated with Xi is a set of nonzero vectors pij’ Osjsli-l such that

1 (k) T (3.11a)
L& @000

|| gt ]

N i(5=k) = Omx1

where D(k)(k)éd(k)D(k)/dkk = k-th derivative of D(A) with respect to A (3.11b)

The scalar 2i is named the length of the Jordan chain {41). Similarly, a right

Jordan chain of D()) associated with Xi is a set of nonzero vectors qij’
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05jsf;-1 such that

( (3.11c)

k)
(Xi))q.

j
L1 -
k-zo %7 (@ i(j-k) Onx1

The vectors P;q and 959 8re referred to as the primary left and right latent
vectors, respectively. O
We shall first present the properties of left/right Jordan chains of the
column-reduced canonical M-matrices, and the relations to the eigenvectors of
the system maps in their associated minimal realization quadruples.
The salient properties of left and right Jordan chains of a column-reduced

canonical A-matrix Dr()«) are described as follows.

lemma_ 3.6 Let (qij)l be the £-th component of 454 then for 0<k<m we have
(qij)!. = 0 if the Kronecker index, of a minimal realization quadruple of D;l(k),

satisfies Ko = 0, 0<f<m.

Proof:
From Eq. (3.1lc) we have
D (X)q;, =D D(A)q. =0

mx1

. . . . ..oom
Since D, is nonsingular, and if %p=0, the fth column of Dr(ki) is ey and Lth

row of Dr(ki) is (e‘E)T. Thus, the 2%th component of 440 is zero. Also, from
(1) -
Dp(A)a;y40 " (Ag 4 = 0

mX1

We find that the A&th component of 94, is zero. Repeatedly using Eq. (3.lle)

results in (qij)l =0 if Ky = 0, 1<R<m. =
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. Y I §

Lerma 3.7 If Pyj 0<jst;-1, is a left Jordan chain of Dr(l) and Pij - Dthpij’
then the %2-th component, (pij)l' of Pi; is zero. This implies that the &-th
colunn of D, is orthogonal to Pij if kg = 0 for 0<Lgm, A [ ]

Lemma 3.7 can be easily proved by observing the fact that pij’ Osjsli-l, is
a right Jordan chain of DE(A) and the R-th component of Pi; is zero if Ky = 0.

Let (Ab’Bc’cc’Dc) be a minimal realization quadruple of the inverse of a
column-reduced canonical A-matrix Dr(h), and 1let (Ac,Bc) be a controller
canonical pair as defined in Eqs. (2.13a) and (2.13d), i.e.

-1y « ! (3.12)
Dl' (x) CC(AID AC) BC+DC

The relationships between the Jordan chains of Ac and Jordan chains of Dr(k) can

be described in the following important theorems.

Theorem 3.5 1If a4 50 OSj52i-1, is a right Jordan chain of Dr(k) associated with

a latent root Ai’ then q . OSjSEi-l, a right Jordan chain of A, associated

J”
with an eigenvalue Ai’ can be found as

1 (3.13a)

(k)
iy = oo © LA

1795 (j-x)

where

wik)(l)éd(k)¢r(l)ldlk = n-th derivate of Wr(x) with respect to A (3.13b)

and ¢r(l) is defined in Eq. (2.1l4c).

Proof:

From Eqs. (2.14b) and (2.15b) we have
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= - (3.13C)
BcDr(X) (Hn Ac)wr(l)

Differentiating both sides of Eq. (3.13¢c) k times yields

() gy o k-1 a3 (K) (3.13d)
B,0. Y00 = ky 01 a0, ket

If qij’

(3.134) we have

0sjsf;-1, is a right Jordan chain of D_(}), from Eqs. (3.1lc) and

1 () i (k-1)
Be LA P (500 k§1 eI CIRL FPEwRy
o 3 Lo 00
k=0 k! im Te’'r 171 -k)
= onx1, 1sj$li’1 (3.148)
Thus, we have
(3.14b)

(AiIn—Ac)wr(Ai)in = OnXI

I 1w Ty ) o
Ay 1,7A) kgo W Ve (*i)qi(j—k)*kzo )T ¥ 9505 10 = Opyqr 18388471
(3.14¢)
: A Y1 (o (3.15a)
Define q.;. = kgo PYSL MG YRl FREIRn:
Then, Eq. (3.14) becomes
(3.15b)

X - =
( iIn Ac)qcio 0nxl
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(\.1_-A)q (3.15¢)

i™n e cij*qci(j-l) = onxl ! 1S"S!z'i.-1

Obviously q .., Osjski-l, is a Jordan chain of Ac. |

eij

Theorem 3.6 If 9ije Osjsli-l, is a right Jordan chain of A associated with an

eigenvalue li, then 450 8 right Jordan chain of Dr(A), can be determined by

T . .
9;: = ¥ (0)g » 3=0,1,.00,0,-1 (3.16)

ij cij
Proof:

From Eq. (3.15a) we have q ., = { (A.)q.,+ So from Eq. (2.23b),
ci0 r "1°7i0

WEOa_ ) = W00 (e, = Y0y (0da,y

The f-th component of wf(O)qcio can be expressed as

(a597g » ¥p>0

T
(wr(O)qciO)l = { 0 K. =0
A

From Lemma 3.6 we have 90 ™ wz(o)q Thus, from Eq. (3.15a) we have

cin®

T B Iy 1 (k) .
‘pr(o)qcij = kgo w1 V(0 " (A )e x) * PO

i(j
Since

T .
¢r(0)¢r(0) if k=0

0 if k0
n

Fouap -

This implies
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\pf(o)qcij - w{(o)w;(o)qij

The f~th component of d&(o)q

.. 18
*cij

(qij)l if k>0
(p(0)q ;) = {

0 if IC!"O

Thus, we have the result in Eq. (3.16). -

Theorem 3.7 If p ;) 0<jsR;-1, is a left Jordan chain of A associated with an

eij

eigenvalue Ai, then Pyjr @ left Jordan chain of Dr(k), can be determined by

T

Pis ™ BePeij

, Osjsli—l (3.17)

Proof:

From Eq. (3.13d), we have

00187 = kD ool anTar a7 .

Since p_.., 05js%.-1 is a left Jordan chain of A_, we have
eij i ¢

T :
()«iIn Ac) Peij = Pei(j-1)} 051s£i 1,

A
and Pei(-1) Onxl'

Therefore,

i 1 (k) T.T i 1
L Fr oo L T ¥

- (k-1)
k=0 cpci(j-k) ke

T
T (li)l pci(j-k)
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i L AR ) L oW ST L SN

k-O in ¢

(k) 11 0 T
kz'o ' [‘P (X N ch(j-k-l)-kzo T wr (Ai)] Pei(j-k-1)

IS S T -
T N’r O‘i)] Pei(-1) Oax1

Thus, we conclude that sz » 0<jsf,-1, is a left Jordan chain of D_(X). [ ]

cij

Theorem 3.8 If Pys 0<j<f.-1, is a left Jordan chain of Dr(l) associated with

latent root Ai’ then a left Jordan chain pcij of Ac can be determined by

i 1 (k) (3.18)
P k%o k7 ¥ O )Drhpl(J-k)

where TP = {[Tp]ij}; 1<j<m, 1<i<m and KKy * 0 ;

[Tp]ii = reversed upper triangular Toeplitz matrix [11] with first

- - T
column [aiiz""’aiilci’n
[Tp]ji = reversed upper triangular Toeplitz matrix with first column
- ~ T
[aij?.""’aijlc ,0] if k. SKJ, and [a 2”"’81_]K.’0""’0]
i i

if K, >k..
1]

Proof:

T
rh Pij

left Jordan chain of of}) = D;}];Dt(k). Define

From Lemms 3.7, D ’ Osjs!,i—l, are generalized left latent vectors of a

- 1 oo .
Peij 2- k_ r (A) hp (i)’ OSJSR.i—l
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~

5 osjsn.i-l is a right Jordan chain of A,

It follows from Theorem 3.5 that ;ci
which is the associated companion form for DT(A), and Kc é (Ac)ij for 1<i<m and

1<jSm is defined according to:

- K, XK,
(Ad51 = () &R
0, _ (8, cqpeeep=a;.. ) if K,SK,
. (KJ 1))<k1 K XK, ij1 ijk; i™j
(a)., = n er J TW _ _ if K, >K. 5i]
3 A.. J [-a...50003=8.. 30,04.,0] J
ji ijl 13&:5
By direct computations, it can be easily shown that Al = T A T-l. Thus, a left
c PCcP
Jordan chain of AL is p_.. -T; cse =
c cij pcij

From Theorems 3.5-3.8, the relationships between the Jordan chains of Dr(k)
and the Jordan chains of A, which is a system map of an arbitrary minimal

realization quadruple of D;l()‘), can be formulated as follows:

Corollary 3.2 Let Dr(X) be the right characteristic A-matrix of a reachable
pair (A,B); qaij for osjsli-l be a right Jordan chain of A associated with an
eigenvalue )‘i of A3 15 for Osjsﬂ.i-l be a right Jordan chain of Dr()‘) associated

with the same latent root )‘:i. of Dr(l). Then 9aij and q; can be related by

T I N OO oo
aij " T L Ve (A1)95 5y 0538871

T .
935 Wr(o)chaij, ostEi—l

where \I)ik)()‘) is defined in Eq. (3.13b), and T, is the transformation matrix

which transforms A to its controller canonical form Ac = TCAT:]‘. B
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Proof:
Corollary 3.2 can be proved in a straightforward fashion from Theorems 3.5

and 3.6. In a similar way using Theorems 3.7 and 3.8 we can obtain:

Corollary 3.3 Let Dt(A) be the characteristic A-matrix of a reachable pair

(4,B); p for Osjszi-l be a left Jordan chain of A associated with the

aij
eigenvalue Ai of A; Pi; for Osjsli-l be a left Jordan chain of Dr(k) associated

with the same latent root Ai of Dr(l). Then, Pgi; and p;; can be related by

ij 3
- 1% i Lot 0<jsh. -1
Paij ©P ym0 k! Yr i rhpi(j-k)’ Iy
and
= T 0<jsh, -1
Pij Poigr VSIS

where qék)(x) is defined in Eq. (3.13b) and T, is the transformation matrix such
that Ac = TCATZI, which is the controller canonical form of A. [
It is well known that the Jordan chains of a matrix are not unique; the
same is true for the Jordan chains of a A-matrix. However, from Theorems 3.5
through 3.8, we observe that, given a left/right Jordan chain of a system map
A , the corresponding left/right Jordan chain of the right characteristic A-
matrix of a reachable pair (Ac,Bc) can be uniquely determined, and vice versa.
Also, from Theorems 3.5 through 3.8, we observe that ¢;(k) in Eq. (2.l4c) links
the generalized eigenvectors of A  to the generalized latent vectors of D_(N).
Moreover, the input matrix B in Eq. (2.13d) or B in Eq. (2.1) relates the left
generalized eigenvectors of A, to the left generalized latent vector of D_(}).
Let M, be a modal matrix of A_. Then, we have A £ MZI is a

A M , where A
[

J J

system map in Jordan block canonical form, and Mc and (le) contain all the
right and left generalized eigenvectors of A, Thus, from Theorems 3.6 and 3.7

we can easily derive the following results.
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Lermma 3.8 (MEIBC)T contains all the left Jordan chains of a column-reduced

canonical )\-matrix Dr()‘), and q;E(O)Mc contains all the right Jordan chains of

D (\). ]

Corollary 3.4 Let (A,B) be a reachable pair, M be a modal matrix of A, and
Dr()‘) be the characteristic A-matrix of (A,B). Then, (M.-IB)"r and \IJ':(O)H contain
all the left and right Jordan chains of D (A}, respectively. a

Now, from Lemmas 2.1 and 3.8 we have the following conclusion.

Theorem 3.9 Let (AJ,BJ,EJ,EJ) be & minimal realization of a column-reduced
canonical )-matrix Dr()\) with A; in Jordan form. Then,

-1 - T IR B (3.19)
D_ () CJ(AIn AJ) 13J+1>J ’

where B:I]" in Eq. (3.19) contains all the left Jordan chains of Dr(x), and EJ

contains all the right Jordan chains of Dr(x).

Proof:

From Lemma 2.1, (A,B,C,D) is a minimal realization of Dr(k). Thus
-1 - -1 =_ T -1 =
D (V) C“In_A) B4D q,r(o)( AL -A ) B_+D

- T a3y Ll A= TS TR~
Y (0O (AT -A;) "M 7B +D £ C (AT -A)) B +D;

vhere T = 4% . =M1B:T =%
3 \pr(o)Mc,xaJ M_'B_; DJ D.

Hence, from Lemma 3.8, B§ and EJ contain all the left and right Jordan chains of
|
Dr(A).

In an analogous fashion, we can easily obtain the following results for a
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latent structure of the row-reduced canonical A-matrices:
Theorem 3.10 Let (AJ,BJ,CJ,DJ) be a minimal realization of a row-reduced
canonical A-matrix, DL(X), with A, in a Jordan form. Then,

-1 - _ -1- (3.20)
D, (2} c_,(un AJ) B 4D,

where Bg in Eq. (3.20) contains all the left Jordan chains of Dy(X), and Cy
contains all the right Jordan chains of Dz(x). a
The latent structures of general nonsingular A-matrices can be derived

directly from Theorems 3.3, 3.9, and 3.10:
Theorem 3.11 Let D{}X) be a nonsingular A-matrix and

D(A) = Dr( X)Ur( A)

where Dr( A) is a column-reduced canonical A-matrix and Ur(l) is unimodular. Let

ki be a latent root of Dr()‘)’ Pij and 95 for osjszi-l be an associated left and

an associated right Jordan chain of Dr(l) with length !'i’ respectively. Then

s, A fel - (3.21a)
Pi; pij ’ Ostzi 1

and
= A1 1 - ‘co - (3.21b)
9y 5 L w7 % (Ai)qi(j-k) ’ 0<jsf, -1

are respectively a left and a right Jordan chain of D(A) with length "i' These

correspond to the latent root A\i of D{A). U-(k)

A (Ai) denotes the value of the

k-th derivative of U-1()) evaluated at A = Xi.
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Proof:
From Theorem 3.3, we have

D(A) = D_(AU_(A)

Since Pijr Osjsli—l, is a left Jordan chain of Dr(k), from Definition 3.2

we have
11 0y, T : (3.22)
k},o w O ) iy Oyge Osistyl
Since D(A) = Dr(X)Ur(K), we have
oy = povu ok
r r
k () -(k-s) (3.23a)
= ) «SsP ()\)Ur 2 -
8=0
where sz is a binomial coefficient,
A k! (3.23b)

kcs T sl(k-s)1
Substituting Eq. (3.23) into (3.22) yields

3 k (k- (k-
By Loy e, n®apui a0 T
= s=0

iG-Kk) ~ 01 0<jsk -1
(3.24a)
Equation (3.24a) can be rearranged as
11 () T 4 1 (k=8) ) T :
L7 10,70 ) oot 0 APy = Oy 083SH71

s=0 k=s

(3.24b)
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or

(3.24¢)
Since U;l(xi) is nonsingular for all A from Eq. (3.24c) we conclude that
(3.25)

OSJSEi-l

I 1w, T
Loar TR "t O

k=0 :

By Definition 3.2, pij for Osjszi-l is a left Jordan chain of D()A) corresponding
to the latent root Ai.
Furthermore, since qij for Osjsli-l is a right Jordan chain of Dr(l), from

Definition 3.2 we have

i
1 (k) - o (3.26)
k;o 1) [Dr (xi)]qi(j—k) 01 O<jsh -1
Substituting Eq. (3.23) into (3.26) yields
j k
-1 (s) =-(k~s) - so0 -
kgo X7 lsgo KD AU (xi)lqi(j_k) 0 0<jsg;-1
(3.27a)
Equation (3.27a) can be rearranged as
b jzs
- 1 (s) 1 -Gk - fo0
sgo st 0Ty kzo W Ve 9o T O OISkl
(3.27b)

By Definition 3.2, we conclude that
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&3 Lt

q: .os_yy For 05j%9.-1
ij L KT r i(j=k) i
is a right Jordan chain of D(A) corresponding to the latent root li. u

From Theorem 3.11, we can easily deduce the following:

Corollary 3.5 Let D(A) and Dr(k) be defined in Theorem 3,11, ;ij and ;ij for
Osjsli-l be a left and a right Jordan chain of D{A) corresponding to a latent
root Ai' Then

(3.28a)

i Pij ’ OSJSRi-l

and

">

0<i<h. -1 (3.28b)
185

3

1 (k) -
. L o= U, ’
5 I k! r 1i771(j-k)
are a left and a right Jordan chain of Dr(k) corresponding to the same latent
root li. L

Again, for completeness we state the result corresponding to Theorem 3.11

and Corollary 3.5 for the row-reduced case.
Theorem 3.12 Let D(A) be a nonsingular A-matrix, and

D(A) = UL()‘)DL(A)

where Dz(l) is a row-reduced canonical A-matrix, and UE(X) is unimodular. Let
Pij and 95 for Osjsﬁi—l be a left and a right Jordan chain of DE(X) with length
Zi’ respectively., They correspond to a latent root Xi of Dt(k). Then

- A

A1 (k) T
pij = kzb ' [Ul (Ai)] P

cel o (3.29a)
i(5-k) 0sjsk -1

and
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0. fag . osispl (3.29b)

are a left and a right Jordan chain of D(A) with length L5 respectively. These

correspond to the latent root A; of D(A). a

Corollary 3.6 Let D()A) and DR‘(A) be defined in Theorem 3.12, ;ij

OSjSQi-l be a left and a right Jordan chain of D()) corresponding to a latent

and Eij for

root li, then

2] LMot ' (3.30a)
and
A - . .
435 - 9350 Osistyl (3.30b)

are a left and a right Jordan chain of Dz(A) corresponding to the same latent
root .. u
i
Theorems 3.11 and 3.12 with Corollaries 3.2 and 3.3 build up the latent
structures of nonsingular A-matrices based on the latent structures of canonical

A-matrices, whose importance is thereby emphasized.

3.3 Solveants of Nonsingular A -matrices

In this section we shall extend the idea of latent roots in nonsingular ) -
matrices to "matrix roots" which in the literature [17,18] are usually called
solvents.

Let £:(+C be analytic within, and on a simple closed contour C, and x be
any point interior to C, then the well~known Cauchy's integral theorem [42])

gives
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1 £(0 (3.31)
B0 = g $e 3 9

where C is traversed in the positive (counter-clockwise) sense.
Using this approach, a class of matrix functions can be generated from
scalar function £(X) [43]. Let XEdmnm, the set of mxm complex matrices, and let

11,...,Xq, for q<m, be the distinct eigenvalues of X. Suppose that Al,...,lq

are interior to C, then the matrix function £(X) can be defined [9] as

1 -1 1 -1 .
£(X) = 3= ﬁc E(NO(AI-X) "dA = T $o (AL_-X) “£(X)dA (3.32)

where Im is an mxm identity matrix.
If £(A), an n-th degree complex polynomial with coefficients £0 is

described by

n n
E) = § £ = ) e (3.33a)
k=0 k=0

then, the corresponding matrix function becomes

n n
B0 = ) £ x = ) X" (3.33b)

where Xo Q I.
m

An n-th degree, m-th order nonsingular A-matrix A(A)eC™"[A] can be written

as follows:

A(A) = AOA“+A11“'1+...+A

(3.34)
n-1A+An

Cm Xm

where Ake y k =0,1,...,n, det(A(})) = 0.
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Since A(A) is analytic everywhere in C, we can define the right matrix

mXm

polynomial AR:mem +C as

= _L )} (3.35a)
A (X) 777 $c AT A-X) “dA

where Xemem has all its eigenvalues interior to the simple closed contour C.

Substituting Eq. (3.34) into Eq. (3.35a) yields

1 n n-k -1
AR =g de (L AT DR

l Ak Zﬂl n-k(lmx-x)-ldll

(3.35b)
= X"
kzo Ak

Similarly, the left matrix polynomial of A()) is defined as

A0 =5t 5 (Ao Aa = T ke g (1"t
L 2m C ‘T %o C

N ana,

2n1

n
. (3.36)
= l X Ak

Having these definitions of right (left) matrix polynomials in Eqs. (3.35) and

(3.36), we are ready to define the solvents of j-matrices.
Definition 3.3 Let R be an mxm complex matrix such that

- n n-1 - (3.37)
AR(R) AOR +AR +...+An_1R+An UR
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Then R is a right solvent of the A-matrix A(}), where 0, is an ww null matrix.

Similarly, if L is an mxm complex matrix such that

o (P, 0=l . (3.38)
AL(L) = LUAGHLY "A 4. . 4LA_ L +A = O
then L is a left solvent of the A-matrix A(X). o

The solvents of A(A) can be constructed by using the latent roots and
generalized latent vectors of A(A). The structure and existence of solvents
have been extensively studied and reported in the literature (for example, [17-
19, 23-25]). Numerical methods to compute solvents can be found in [24,44-46].

Some important results on the properties of solvents are summarized as follows.

Theorem 3,13 If A(A) has m linearly independent right generalized latent
vectors ;1,...,; (left latent vectors ;1,...,;) corresponding to latent roots
Al"“’)‘m’ then QAQ (p lﬂp) is a right (left) solvent, where P = (;1,...,1:m)'r
(@ = (ql,...,q )) and A = d1ag(A1,...,l ). [ ]

A set of right (left) solvents Ry k= 1,...,n (Lk, k= 1,...,n) is called
a complete set of right (left) solvents of A(X) if o(A(N)) = U O(Rk)(O(A(A)) =
El o(L,)), where a(a(A)) ils the spectrum of A(A) and U(kR:)(U(Lk)) is the
kspectrum of the right (left) solvent Rk(Lk)’ The existence of the complete set
of right (left) solvents has been investigated by Gohberg et. al. [20,21], and
Dennis et. al. [18].

A right solvent R of A(A) is regular [17) if
a® noaPy) = ¢ (3.39a)

where A(l)()\) is given by
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A = AV a-p (3.39b)

and ¢ denotes the null set. Similarly, the definition of a regular left solvent

is given by

o) noaM ) = ¢ (3.400)

~

where A(l)(l) is given by

AN = (Imx-L)X“)m (3.40Db)

Thus, a complete set of regular right solvents F\(’ k = 1,...,n of A(}A) is
defined as

G(Rk) n O‘(Rj) = ¢, kzj and j,k = 1,...,n (3.41a)

n
o(A(R) = v olR) (3.41b)
k=1

Similarly, a complete set of regular left solvents Lo k= 1,...,n of A(N) is
given by

o(L) n c(Lj) =4, k2j, jok = 1,000yn (3.42a)

n
o(A(N) = v o(Lk) (3.42b)

k=1

An important theorem on regular solvents developed by Markus and Mereuca [23)

is:
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Theorem 3.14 If {Rk, k = 1""’n}({Lk’ k = 1,...,n}) is a complete set of
regular right (left) solvents of A(MA), then the associated block Vandermonde

matrix

Im Im e Im W
R, R, e R
Al 2 2 2 (3.43a)
V(Rl,...,Rn) R] R, -ee R
n-1 n-1 n-1
i Ry R, eee R ]
or
2 n-1
I L, L] ... Ly
2 n-1
L I o L (3.43b)

A
VB(LI,...,Ln) 2

~

=]
¢

-

is nonsingular, where the B in Eq. (3.43b) designates block transpose [18].
From Eq. (3.39b), if ReC™® is a right solvent of a nonsingular A-matrix
A(X), then A(A) can be written as

AN = A(l)(x)(ImA-R) (3.44a)

m>m

where A(l)(l)EC [A] is a A-matrix with degree lower than that of A(A). As we
shall see in Chapter 1V, (Iml—R) is a right divisor of A(}), and A(l)(l) is a
left divisor of A(A). Similarly from Eq. (3.40b) if LeC™™® §s a left solvent of
A()), then A(A) can be decomposed as

a()) = (ImX-L);(l)(X) (3.44b)

~
where A

(1)(X)€mem[X] is a A-matrix with degree lower than that of A(A); and
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~
(Imk-L) and A(l)(k) are a left and a right divisor of A(A), respectively. The
more general structure and properties of left and right divisors of a nonsingular

A-matrix are presented in Chapter IV,

3.4 TIllustrative Examples

Two examples are presented in this section. The first example demonstrates
the relationships between the latent structures of canonical A-matrices and the
eigenstructures of the system map of the associated controller canonical minimal
realization. The second example is devoted to verifying the relationships
between the latent structures of nonsingular A-matrices and the latent
structures of canonical A-matrices. In addition the complete set of solvents of

nonsingular A-matrices is found.

Example 3.1

Given a column-reduced canonical A-matrix

A3-an-2 0 -1
Dr(k) - 3243 il -2
0 0 1

The controller canonical minimal realization of D;I(X) can be found as

..1 -— _.1 —
Dr &) cc(lIA.Ac) Bc*Dc

where
0 1 0t0 0 0 0O
0 0130 0 0 0 O
A = 2 3 04.0__0_|; B, = |1 0.1
0 0 0)Vo 1 0 0 O
-3 -3 0 l-1 -2 0 1 2



[= =N
[~ -
(==~

o |

SO
QOO

0.0 -0.33333

0.0 0.33333

HA = 0.0 -0.33333
1.0 0.33333

-1.0 0.66667

D

-0.11111
-0.22222
0.55556
-0.88889
1.22222

|

The modal matrix of Ac can be found as

68

oo o
(=R =N

0.33333
=~0.33333
0.33333
<0.33333
0.33333

-0 0

0.11111
0.22222
0.44444
=-0.11111
=-0.22222

The minimal realization of D;I(A) in a Jordan form becomes

I
Ay = M, AN,

-0.33333
0.33333
0.0

= block diag 0

~0.11111
-0.88889
0.0

-
=]

0.33333
-0.33333
0.0

-1 0

0 2

gt

0.11111 ]
-0.11111
0.0 i

[~ M=)
QOO0
=00

The eigenvalues and the lengths of associated Jordan chains are {Xl"lr Am1, A3=2}

and {g,=3, 2,=1, L,"1}, respectively.

chain of Dr(x)

O

(Plo’pll'PIZ) = [

N =-~O

-

From Theorem 3.9 we have the left Jordan

N ~O

o[

Thus, from Theorem 3.8, we have the left generalized eigenvectors of Ac as

1

i
P..=T E X

€1 P y3p

where

¢£k)(ki)0

T

rhPi(j-k)
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-3 0 1}3 0 0 00 0 00
0 1 010 0 1 00 000
T =| 1 0 0lo 0 ;wil)(l)s 22 0 0 ;tpi’”(x)- 2 00
P 000 01271 0 0 0 000
0 0 0{1 0 0 10 0 0 0
Thus,
T
Pero = LYY DL P10 = [72,-1,1,0,0]
(1) - T
Perr = TI0, (DT ey w0 ADDT py ) = 11,1,0,1,1)
T
Pe1p = Tplh (2 DPp1o W QDR 3 W00l = 11,511,100
T
Pczo =T W (A rhpzo [310301111]
T
Pesp = Tp¥r (A3 Dt nP3o = [1:2,1,0,1]

If the left generalized eigenvectors pcij are known, then the left generalized

latent vectors of Dr(k) can be determined from Theorem 3.7 as

T . .
Pi; Bcpcij’ 0$J$2i 1, 1s5is3 .,

From E&, the right Jordan chains of Dr(l) can be determined as

0 -0.33333 -0.11111 0.33333
(qlo’qll’qlz) = ; 0.33333 -0.88889 H (qzo) = | -0.33333 |;

0.0 0.0 0.0
0.11111
Q) = | -0.11111 [,
30 0.0

Thus, from Theorem 3.5, we have the right generalized eigenvectors of Ac as

T
0 = ¢r(kl)q10 = [0,0,0,1,-1}

1 wr(kl)q11+¢§1)(kl)qlo - [-0.33333,o.33333,-o.33333,0.33333,0.666671T
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- (1) 1 (2 - { -
Vet T eyt 5 b (), = [-0.11111,-0.22222,0.55556,

912 2

0.88889,1.22222}7

T
920 mr(xz)qzo {0.33333,-0.33333,0.33333,-0.33333,0,33333)

= = - - T
.30 wr(AB)qBO [0.11111,0.22222,0.44444,-0.11111,-0,22222]

From Theorem 3.6, we can compute the right generalized latent vectors of Dr(k)
if the right generalized eigenvectors of Ac are known. Using the calculated

generalized eigenvectors, it can be easily verified that

el oY o T T T =1
Pe12'Pc117Pc10'Pe207Pe30! '9c107%¢117%1279¢207%c30 5°

Example 3.2

Consider a nonsingular )-matrix

3449334313 24503433 3241034382467 3449
D(y)) = 2 2
A #7412 A +8)+18

which is not a canonical j)-matrix (check with Definition 3.1). Using column

equivalent transformation (Theorem 3.3), we have

D()) = Dr( >‘)Ur( )

where

Panlaner -1
Dr(x) =
6 A
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and

A+2 A43
Ur(x) = ' Ur (A) =
A+l A+2 -A-1  A+2

A+2  =A-3

It is easy to verify that Dr(A) is a column-reduced canonical A-matrix and Ur(k)
is a unimodular A-matrix. Following the same approach in Example 3.1, we have
the Jordan form minimal realization of D;l(l)z

-1 - -1
D_"(A) = T,(AI_-A))7'B +D,

where

-1 1 0 o 1 o
0 -1 0 o I RS

A1 0 o0 -3 o B, 3 -1
0 0 0 -2 2 -1

s o 0.5 -0.75 0.25 -1.0

3 3.0 -1.5 0.5 -3.0

= 0 0

D, [o 0

The latent roots and the lengths of associated Jordan chains of Dr(k) are

{Al--1, A=

we have the left Jordan chains of Dr(l):

-3, A3=-2} and {21-2, 12=1,‘l3'1}, respectively. From Theorem 3.9,

(PyprPyy) = [é -1] v (pygd = [-i] v (pgp) = [ -11’]

and the right Jordan chains:
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_[0.5 -0.75 . [o0.25 . [-1.0
(2979;y) [3.0 -5 J 0 (agy) [o.s]' (459) [-3.0

Using Theorem 3.11, we have a left Jordan chains of D(}):

(®ygrpyp) = [3 -i] v (pyp) = [-i.] v (pyy) = [—i]

and the right Jordan chains:

a0 " ":—1("1)"10 = [; -1] [g:g = ['323

Lo (1)
41 = U (0)ag4*0, " ey

=[5 3]« [ ss] - 1]
Zzo'“;l()‘z)qzo' [-; -2][3:?5] - [-8'25]
30 = U:l(xs)qao = [g -(1)] :;:g = [-i:g]

From the left Jordan chains of D()) and Theorem 3.13, we have a complete set of

left solvents:
crs =1 T[AM 1] s o 4T
Ly = [Py Pyl [01 11] tPyo P!

ol SIRY | IR d | ¥ I e



73

- = -T 0 - - .1
L, = [pyg Pypl [32 A3] [py9 P3p)

-0 31 2l Al - (2.

Similarly, from the right Jordan chains of D()) and Theorem 3.13, we have a

complete set of right solvents:

A 1
- - - - -1
R, = [9;4 q44] la;4 4]
0 A
_ [-5.5 —0.25] [-1 1][ 1.0 0.25] (=L
3.0 1.0 0o -1}l-3.0 -s.5 475
_1 [-85 -121
19 L 3s a7
o A, © o
R, = a5 4] CPIRETY
0 2,

o el 2106 =

[5 2] -



CHAPTER 1V DIVISORS AND SPECTRAL FACTORS OF NONSINGULAR A-MATRICES

An essential difficulty in structural decompositions [30,31] of MIMO
systems lies in determining the left/right divisors and spectral factors of a
nonsingular A-matrix. The state-space minimal realizations of the inverse of a
nonsingular \-matrix discussed in Chapter III will be used to determine the
left/right divisors [30-31] and spectral factors [51-53]. 1In this chapter, we
investigate the existence of the left/right divisors and the spectral factors of
a nonsingular A-matrix. The so-called geometric approaches [5,47-50,81-82] are
employed to derive the structure decomposition theorems of a nonsingular A-
matrix.

First, we shall define the left and right divisors of A-matrices as

follows:

Definition 4.1 Given A(A)eC™T[A]. 1If

AN = LR (4.1)

where L(A), R()‘)ecmxm[)\], then L(A} is a left divisor and R(A) is a right
divisor of A()A), and L(A), R(A) are left and right spectral factors of A(AJ. If
det(L(A)) =z 0, (det(R(A)) =z 0), then L(X), (R(A)), is a nonsingular left {right)
divisor of A()). Also, if L{)), (R(A)), is a column-reduced (row-reduced)
canonical A-matrix, then L(A), (R(A)) is a caﬁonical left (right) divisor of

A(D). o

Definition 4.2 A left (right) divisor L(}A) (R(A)) of A()) is nontrivial if
LX) (R(A)) is not a unimodular A-matrix. o
If U()) is a unimodular A-matrix, L(A), (R(A)), is a left (right) divisor

of A()), then L(AN)U(X), (U(AIR(A)), is also a left (right) divisor of A(A).
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Furthermore, from Theorem 3.3 any nonsingular A-matrix can be reduced to a
column (row) reduced canonical )\-matrix by post multiplying (premultiplying) a
unimodular j-matrix. Thus, to investigate the structures of left/right divisors
of a nonsingular )-matrix, it is sufficient to study the structures of canonical
left (right) divisors of a column (row) reduced canonical )-matrix.

In Section 4.1, we shall discuss the state-space structures of the
canonical left divisors of column-reduced canonical )-matrices; the state-space
structures of the canonical right divisors of row-reduced canonical )-matrices
are dealt with in Section 4.2. Also, constructive proofs on the existence and
properties of canonical left/right divisors and complete sets of canonical
left/right divisors are provided in Sections 4.1 and 4.2. Section 4.3 is devoted
to investigating the state-space structures of the spectral factorization of
nonsingular j)-matrices. The computational aspects of the left/right canonical
divisors are presented in Section 4.4, The main theorems used to implement the
computational algorithms are block diagonalization and block triangularization
[54,55] of the system map, which is the minimal realization quadruples of the
inverse of a nonsingular j-matrix. A numerical method to compute the left/right
canonical divisors using the matrix sign algorithm [56-60] is presented. Some

illustrative examples are provided in Section 4.5.

4.1 Structure Theorems for Canonical Left Divisors and Complete Sets of

Canonical Left Divisors

In this section, we develop the structure theorems for canonical left
divisors of a column-reduced canonical )-matrix or a right characteristic )~
matrix of a reachable pair (A,B) in an MIMO system. The main tool used to study
the structural theorems of this section is the reachable state-space realization
{5,47-50] for the inverse of column-reduced canonical )-matrices. The complete
set of canonical left divisors of a column-reduced canonical j)matrices is

defined, together with the structure theorem for complete sets of canonical left
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divisors.

Consider a reachable pair (A,B). Let X=C" be the associated state space,
U = C® be the input space, and A: X+X B: U+X. Also, let S= Cﬂ8 be an A-
invariance subspace of X where n.<n, or AScS, and assume that V is the canonical
projection of X on X/S, or Vi X+XS. Denote B = Im(B), and BL = B+S)/S. Let

A be the induced map in X/S by A, and B, = VB, then BL = Im(B,) and the

L

following diagram commutes:

u A A (4.2)
B, ™ X/S ——» X/S

L A

It is well known that V is epic [5], and if (A,B) is reachable, then the induced

A n -1
pair (A.L,BL) in X/S is also reachable, or X/S = <AL|BvL> = BL+A'LBL+"'+ALV BL
which is the reachability subspace [5] of (AL,BL) and n = n-n_.

n _xm

Vxnv v
’ BLEC y

Theorem 4.1 Let (A,B) and (AL,BL), where Aec?x“, BeC™

n
’ ALeC
be reachable pairs with right characteristic A-matrices Dr(k) and DLR(A),
respectively, and nzn >0. Then DLr(A) is a canonical left divisor of Dr(X) iff

(AL’BL) is an induced pair of (A,B).

Proof:
(i) Sufficient Part:
Let X be the state space of (A,B), S be an A-invariant subspace of X and V:

X+ X% Sbe a canonical projection. Then, from Eq. (4.2), we have

(4.3a)

ALV = VA

. (4.3b)
BL VB
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Also, from Eq. (2.14b), we obtain

-1 (4.4a)
BD_(A) = (A1 AT, lbr(x) .

Premultiplying Eq. (4.4a) by V yields

-1
vnnr(x) = v(Mn-A)'rc wr( A)

or

- _ -1 {4.4b)
BLnr(k) (hnv A VT, wrm

Since (AL’BL) is an induced pair of (A,B), (AL,BL) is reachable and the inverse
of the right characteristic A-matrix of (AL’BL) can be realized using Lemma 2.1
as

-1

-1y = = _ - (4.be)
DLr(A) CL(AInv A) B +D

where

-1

= AT = T
¢, = WLR(O)TLC; b = [Im-wLR(o)lbLRm)lDLrh; ‘er(X).TL

C’DLrh

are defined as in Eqs. (2.14¢), (2.11b) and (2.9a) for the reachable pair

(AL,BL). Using the results in Eqs. (4.4b) and (4.4c) yields

-1 = -1 - (4.9)
nLr(k)nr(l) = C VT, wr(l)wLDr()\)

Since the right-hand side of Eq. (4.5) is a A-matrix, DLr(k) is a column reduced
left divisor of Dr(k).
(2) Necessary Part

Let DLr(A)R(A) = Dr(l) where R(A)ECme[xl- Since
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-1
B, () = (AInV-AL)TLchR(A), we have

- -1 (4.6)
BLDI(X) (klnv'AL)TLchr(k)R(k) .
Thus aci(Dr(X))>3ci(WLr(X)R(X)), and ¢LI(X)R(A) can be written as
n_xn
- v (4.7
¢LI(X)R(A) er(k), wel .
Substituting Eq. (4.7) into Eq. (4.6) gives
-1
BLDr(k) (llnv—AL)TLcwwr(A)
or
eyl o oo-l -1 (4.8a)
(Alnv AL) B, TLCWWr(A)Dr () .
Using the results in Egqs. (2.13), (2.14b) and (2.15b), Eq. (4.8a) becomes
G P S (4.8b)
(unv A) "B = T WI(AL -A)T.T] B
A 1 n_xn
Define V = TLCWTCEC . Then Eq. (4.8b) can be expressed as
(I -a)7ls = v(ar -a) 7B
n, AL L n
or
© . . ® . .
) Ai-lBLx-l - val=lpy~i (4.9)
i=1 i=1l

By equating the matrix coefficients in Eq. (4.9), we get
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Aan = VA'B, ix0

or

(A V-vA] (B,AB,A%B,...] = 10, 00n wgreee)
v v

Since (A,B) is reachable, we have

AV = VA = vB (4.10)

Also, since (AL,BL) is reachable and

n -1 n -1
[B,AB ... A V B, = VB,AB,...,A " B]

we have
nv-l nv—l
rank[BL,ALBL,...,AL BL] = nVSmxn[rank(V),rank(B,AB,...,A B)] .

n_xn
Thus, tank(V)znv. But VeC ' 50 we obtain rank(V) = n, ie. V is epic. Thus,

V is a canonical projection V: X+X/S, where S= Ker(V) and S is an A-invariant
subspace of X. From the results in Eq. (4.10) we can conclude that (AL’BL) is
an induced pair of (A,B) in X/ Svia V. s

Some structure properties of the left divisors of Dr(k) are described as

follows.

Lemma 4.1 Let (KI,KZ,...,Km) be the Kronecker indices of (A,B) and
(KLl’KLZ""’KLm) be the Kronecker indices of (AL,BL), then

K iSK; s lgigm

Li
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Proof:

(1)

(2)

A A
Let B = [b),...,b_ ], B, = [bLl,...,bLm]

Let i=l.

Assume, by contradiction, that K .><.. Then, we obtain {bLl’ALbLl""’

kbl ;1

K . -1 -1
At b} = {vb VAR ,...,vA L1

However, Akb1 for k>Ki is dependent of alv

1 for j = 1,..., i

bl} which contains independent vectors.

Thus,

VAkb1(=A:bL1) for k>¢; is dependent of VAJbl(-A%bLl) for j=1,...,K;. The

above result contradicts to the assumption, and therefore KL1<K1'
Let KLiSKi for 1S1k-1.
Assume, by contradiction, that KLi >k, . Then, we obtain
"
K .=-1 Krs =1
Ll Lig
{bLl,ALbLl,...,AL bLl,...,bLik,ALbLik,...,AL bLik} =
K, .=-1 Kpi, -l
{Vb.,vAb,,...,va Y b ,...,Vb. ,VAb, ,...,vA % b, }  which
1 1 1 i i i
independent vectors. However, for k>Ki .
k
. Ky=1
i & .
A, = )¢ ] % g5A%bg -
k  &=1 j=1
So that
i Kp=-1
', = ) § o g VAbg
k&1 =1 ]

is K_,SK, 1$i
From the hypothesis Lis%i for 1 i we have

T e 5w
VA“b. = @ ».VA'D
s EPET L %gg¥APg

i et
. . k d
which implies VAkb. = kb ) z

4 i AL L1k E=1 =1

akEinbLE‘

contains
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This leads to a contradiction, and therefore KL‘ <K,
1k l.k
(3) By mathematical induction, we obtain

KpiSKi» 1<igm a
Lemma 4.2 Let P(A,B) and P(AL,BL) be the reachability base matrices of (A,B)
and (AL,BL), and (Kl,...,xm), let (KLI”"’Khm) be the Kronecker indices of
(A,B) and (AL,BL), respectively and let V be the canonical projection shown in

Eq. (4.2). Then

VP(A,B)H = P(A_,B,) (4.11)
where
kL1 Op*l ) Op-1*1 Op-¥Kpm  PXTy
H=[e secese T a8 " geeese yeser® yesese 1eC

Proof:

K -1 -1
. : 1 w
Since VP(A,B) [bLl,ALbLl,...,AL by jreeesby s Ab el AL b ), from

Lemma 4.1 and the definition of H, the result in Lemma 4.2 follows.

Theorem 4.2 Let V, H, P(A,B), P(AL’BL) be the same as those defined in Lemma
4.2, Then

V= P(AL,BL)HTP(A,B)-]‘ (4.12)

Proof:

The result follows from Lemma 4.2 and the fact that HTH = In . B
v
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Let Tc be the transformation matrix for the controller canonical

o1l
form. Then T, TcpP (A,B) where

Tep = [Tcp]ij‘ kiK ;205 l<igm; l<jsm

[Tcp]ii = The reversed upper triangular Toeplitz matrix with first row
S e PIRLRL LI

[Tcp]ij = The reversed upper triangular Toeplitz matrix with first row
[arijz""’arinj’O] if KiSKj or [arijz,...,arini,O,...,O]
if K.<K,.

1]
Proof:
Lemma 4.3 can be verified by direct computationms. [

Corollary 4.1 Let '1‘c and TLC be the similarity transformation matrices which

transform (A,B) and (AL,BL) to their controller forms, then
| (4.13)
v TLCWTC
where

-1 T -1

= - = . = —1 —1
W= T BT 5 T = T oP(ALB T P7R(8,B)T,

Proof:

From

1.-1

- -1,-1
TCP and P(AL,BL) = T T Thus,

Lemma 4.3, we obtain P(A,B) = T, LC Lep”

from Theorem 4.2 we have

-1.-1 _.T -1

V= P(AL,BL)HTP'l(A,B) =1 7t T 1= 1N

LC'Lep "cp € cc
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-1 T,
LcpB T cp® |

From Eq. {4.5), the properties of the right divisor pairing with the

where W =T
canonical left divisor D (X)) of D_(A) can be stated as follows.

Corollary 4.2 Let DLI(A) be a canonical left divisor of Dr(k), which 1is

defined in Theorem 4.1, and Dr(k) = DLr(A)R(A). Then
(1) ROD = g (00 (W+(I -4 (0)y (0))Dg § (X

- o1 . . . : .
where DRh = DLthrh is an upper triangular matrix with diagonal elements all

1's.
(2) R(A) is a nonsingular A-matrix.

Proof:

- -1 -
(1) R(A) C VT, Il)r(l)+DLDr()\)

T -1 -1 T
\PLr(o)'rLcTLcwrcTc \pr(x)+(1m-wu(o)wh(o))n

-1
Lthrhsr(A)

T T
‘l’Lr(O)H\Dr(X)*( Im-er(O)\er(O))DRhGI(A)

(2) Since both Dr(k) and DLr(l) are column-reduced canonical A-matrices, R(})

is nonsingular., .

For some applications (refer to Chapter VI) of the divisor theorems, we
need to have a full set of divisors whose spectra cover the entire spectrum of a
A-matrix., We shall discuss the complete set of left divisors before leaving

this section.
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Definition 4.3 If L. = {D;(A),i=1,...,k} is a set of left divisors of a
nonsingular )\-matrix A(}) such that Di(x) are nontrivial and iz’l U(Di()‘)) =
o(A(Ad)), then L, is a complete set of left divisors of A(}); if Di()‘) are
canonical left divisors, then L, is a complete set of canonical left divisors.
If any complete set of left divisors of Di(A) contains only one element which is
column equivalent to Di()‘)’ then L is an irreducible complete set of left
divisors of A(A); if D;(A) are canonical left divisors, then L, is an
irreducible complete set of canonical left divisors. The complete set of
canonical right divisors and irreducible complete set of canonical right
divisors of A(A) can be defined in the same manner. m]

The structure theorems for a complete set of canonical left divisors are
formulated in Theorems 4.3 and 4.4; while the irreducible complete set of left

divisors is discussed in Section &4.4.

Theorem 4.3 Let 31 and S2 be complemented A-invariant subspaces of X(where
Sln§ = ¢ and X = Slesz), and (A'Li’BLi)’ i=1,2, be the induced reachable pairs

of (A,B) in X/Si’ i=1,2. Then the following diagram commutes.

Ay

XIS, XIS,
B1 T
T"l Y (4.14)
u B_ox A X
B
L2 lv lv
2 N 2
2
xIs, XIS,

The set of the right characteristic A-matrices {DLriO‘)’i-]"Z}’ of (ALi’BLi)’

i=1,2, is a complete set of canonical left divisors of Dt(k).

Proof:

From Theorem 4.1, D si=1,2 are canonical left divisors of Dr(l)- Since
i

ViA = ALivi’ we obtain
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A= (10515)

Because Ker(Vi) = Si and Slnsz = ¢, we have Ker(Vl)nKer(Vz) = ¢, Also, 31632

— A
= X, therefore dim(Ker(Vl))+dim(Ker(V2)) = dim(X) = n. Let V= [V'{,V.;]T. Since
Ker(V) = Ker(Vl)nKer(Vz) = $, we have dim(V) = n, ie. V is nonsingular. As a
result, we obtain take over VAV-I =  block cli.ag(AL1 ' A‘LZ) , and

oDy, (Duody, (W) = olhuolh,) = alblock disglhyy,h,) = o(h) =

U(Dt()‘))' Thus, {DLr (\),i=1,2} is a complete set of canonical left divisors of
i

D). n

The results of Theorem 4.3 can be easily extended to a more general case as

follows.

Theorem 4.4 Let Si’i=1""’k be independent A-invariant subspaces of X such

k . A . .
that igl 31 = X, Define Xi = Jél Si and (A.Li,BLi),l-l,...,k be the induced

J=i

reachable pairs of (4,B) in X/Xi, and D (», i=l,...,k be the right
i
characteristic )\-matrices of (ALi,BLi),i-l,...,k. Then {DLri()\),i-l,...,k} is a

complete set of canonical left divisors of Dt(l). ]

4,2 Structure Theorems for Canonical Right Divisors and Complete Sets of

Canonical Right Divisors

Parallel to the structural analysis of the canonical left divisors for
column-reduced )\-matrices in Section 4.1, we derive the structure theorems for
the canonical right divisors and the complete set of canonical right divisors
for row-reduced )\-matrices in this section,

Let X =C" be the state space, V-CP be the output space, and A: X*X C:

n

X+y. Let S=¢ s, n <n be an A-invariant subspace of X, and S be the canonical

injection map S: S+X. Define AR = AlSand CR » C|S. Then the following diagram



commnutes.

s\‘ (4.16)
/

"

(n-—bm x
0 ———

It is known that S is monic, and if (A,C) is observable, then the embedded pair

. ng i-1, o
(Ag,Cp) is also observable, or [ Rer(CpAp ™) = 0.

Dual to Theorem 4.1, we have the following results.

Theorem 4.5 Let (A,C) and (AR’CR) be observable pairs with left characteristic
A-matrices Dg( A) and DRR.( 2, respectively and
xn pxa

n
AeCnxn,CeCPxn,ARsCs s,CReC s,n2n8>0. Then DRR.O‘) is a canonical right

divisor of D!‘(X) iff (AR,CR) is an embedded pair of (A,C), or

Dl( A = L( )\)DRE()\)

-1 -1z = -l.=
where DRSL(D CR(MnS-AR) Bo+Dp; L(A) WL(X)TO SBR+D9,(X)DR, 0,‘.]12()‘), and S
are defined in Eqs. (2.17b), (2.20c) and (4.16), respectively. 2
The structure properties of the right divisors of DL(X) are as follows,

beginning with the analogues of Lemmas 4.1 and 4.2.

Lemma 4.4 Let (\Jl,vz,...,vp) be the observability indices of (A,C) and

(“Rl’\’RZ""’“Rp) be the observability indices of (AR,CR). Then VgiSV;ps 1<i<p. B

Lemma 4.5 Let Q(A,C) and Q(AR,CR) be the observable base matrices of (A,C) and
(Ag,Cp)s respectively, Let S be the canonical injection map in Eq. (4.16).

Then

ﬁQ(A,C)s = Q(AR,CR) 4.17)
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where
i = el Vg1 H*t T1*VR2 Tl Tp-1+va]TeCns
=le,.eere, se . seeere eeere) yeeese

xXn

i
T = 'l vj s 15isp
j=1

(vl,...,vp) and (VRI,...,VRP) are the observability indices of (A,C) and
(AR’CR)’ respectively. [

It then follows directly from Lemma 4.5:

Theorem 4.6 Let S, H, Q(A,C), and Q(AR,CR) be the same as those defined in

Lemma 4.4. Then

-1 ~r 4.18
5 = 071 (A, O QAL Cp) i
Lemma 4.6 Let TO be the similarity transformation matrix for the observer
canonical form and Q(A,C) be the observability base matrix. Then
S | -1 (4.19)
TO Q2 (A,C)ToP
where
\)iXVj
TOp = [Top]ijeC » 1sisp, 1sjisp, v J.>o
[Top]ii = The reversed upper triangular Toeplitz matrix with first row
[aziiz""’aziivi’ll
[T0p]ij = The reversed upper triangular Toeplitz matrix with first row

[alijz""’alijvj’o] for ViZVj or [alijz""’azijvi’o""’01

for v.<v,. n
1)

Corresponding to Corollaries 4.1 and 4.2, respectively, we have:
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Corollary 4.3 Let T0 and TRO be the similarity transformation matrices which

transform (A,C) and (A'R’CR) to their observer forms. Then

RS | (4.20)
S = TWTg,
ol oT-1 o ~1p-1 s R
where W TOPH Trop’ Top = To 977 (A,005 Tmp Q(Ap,CITeg » [ |

Corollary 4.4 Let Dp.(A\) be a canonical right divisor of D,()) defined in
Theorem 4.5 and DL(A) = L(A)DM(A). Then
(1 LD = YWY (0048, (AID, (T ~Y ,(0)¥,(0)) where D, = Dy Dgp is & low

triangular matrix with diagonal elements all 1's.

(2) L(A) is a nonsingular A-matrix. [

The structure theorems of the complete sets of canonical right divisors

defined in Definition 4.3 can now be given as follows.
Theorem 4.7 Let S1 and S, be complemented A-invariant subspaces of X(where

5,05, = ¢ and X = 31632), and (Ag;,Cp.),i=1,2, be the embedded observable

pairs of (A,C) in Sl,i=1,2. Then the following diagram commutes.

y (4.21)

The set of the left characteristic A-matrices, {Dm‘(l),iﬂ,z}, of (Az;,Cp.),
i

i=1,2 is a complete set of canonical right divisors of Dﬂ.()‘)'
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Proof:
From Theorem 4.5, Dnz.,i-l,z are canonical right divisors of Dl(l). Since

1
ASi = SiA

Ri® Y€ obtain

A[S{,S,] = [5,,8,]*block diaglAp,,Ap,] -

Because Im(S;) = S; and $,nS, = ¢, ve have Im(S,)nIm(S,)=¢. Also, 31(:)32 =
Im(Sl)(:)Im(Sz) = X, therefore rank(Sl) + rank(sz) = dim(X) = n,

Since Im([Sl,SZ]) - Im(sl)+1m(sz) = Im(Sl)(:)Im(Sz) = X, or rank([Sl,SZ]) =
dim(X) = n, and [81,82] is nonsingular, therefore, we obtain [51,52]_1A[SI,82] =

block diag[ARl’Akzl' Thus,

a(DREI(A))uc(DREZ(A)) = a(ARl(A))ua(ARZ(A)) = olblock diag(A; ,Ap,))

= g(A) = a(Dz(k)) .

Now, we can conclude that {DRE (A),i=1,2} is a complete set of canonical right
i

divisors of DE(A). n

The results of Theorem 4.7 can be extended to the following more general

case:

Theorem 4.8 Let Si,i=1,...,k be independent A-invariant subspaces of X such
k
that X= ® S., and (A_.,C..),i=1,...,k be the embedded observable pairs of
i=1 1 Ri’ "Ri
(A,C) in Si,i=1,...,k. Also, let DRl (A),i=1,...,k be the left characteristic A-
i
matrices of (ARi’cRi)' Then {DRQi(A)’i.l""’k} is a complete set of canonical

right divisors of DL(A). u

4.3 Structures Theorems for Spectral Factorization of Nonsingular A-matrices

We now investigate structure theorems for spectral factorization [50-53] of



nonsingular A-matrices.

Let (A,B,C,D) be a minimal realization of A-l(A), where A(A)Emem[X] is a
nonsingular A-matrix. Let Xe€C", U€C™ and yeC™ be the state, input, and output
spaces, respectively. SSCns is an A-invariant subspace of X. (AL’BL) and
(AR,CR) are the induced and embedded pairs in X/S and §, via the epic map V and
the monic map S, of (A,B) and (A,C), respectively. Then the following diagram

commutes,

B X/8

? 1 A X’ (4.22)
15 N ls>c: y
R

The sequence S*X*X/S is exact at X, i.e. V§ = 0 . Also, (A[,B/) and

(n-—ns)xns
(AR'CR) are reachable and observable pairs, respectively.
From the epic map V and the left iaverse of the monic map S, we can

construct a transformation T to block-triangularize the system map A:

*  w] * * k-
Lerma 4.7 Let 8* = (5°5) 15 and V' = v (W) 1 be the left and right inverses

of 8§ and V, respectively. Define

T = (4.23a)

Then

(a) T is nonsingular and ! a [S,VT]

(b) Let A; = TAT }, then
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+ _+
Ay 5AV n @, (“‘“,) x(n-ns) (4.23b)
A’l‘ - i AgeC H ALSC
0 A
(c) ofA) = o(AL)ua(AR) (4.23c)

Proof:

(a) Let T = [S,V+]. Then

- s*s s*v* I s*v*
T = = 8 =1
+ n
vs vV vs 1
n-n
8
so that T ! = [s,v*]
s* . stas stavt
() A= Als,v] = .
v VAS VAV

Since AV = VA and SAp = AS, we obtain s*As = AR; VAS = VSAp = 0; VAV* = AL’ and

therefore, the result in Eq. (4.23b) follows.

(¢) The result in Eq. (4.23c) can be proven directly from Eq. (4.23b). [ |
From Theorems 4,1, and 4.4, and Lemma 4.7, we arrive at the following

results on the spectral factorization of nonsingular )-matrices:

Theorem 4.9 Suppose (A,B,C,D) is a minimal realization quadruple of the

inverse of a nomsingular )-matrix, A()), and the asociated (AK,CR) and (AL’BL)

are defined in Eq. (4.22). Then A()) can be factored as

AQ)) = DL( )‘)UA(x)DR(x) (4.24)

where D, ()) and D,()) are the right characteristic )-matrix of (A 4B;) and the
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left characteristic A-matrix of (Ag,Cp), respectively. U,(}) is a unimodular )-

matrix.

Proof:

From Theorems 4.1 and 4.5, we have.

ACD) = D (VR = LOIDN) (4.25)

From Lemma 4.7, there are no shared latent roots between DL(X) and DR(X). Thus
DR(A) must be a right divisor of R(A), or R(A) = UA(A)'DR(X) and A(A) =
DL(A)UA(A)DR(X). Now, we obtain det(A(A)) = det(DL(l))det(UA(X))det(DR(A))-
Thus from Lemma 4.7 we observe that det(UA(X)) is a nonzero constant, and
therefore UA(X) is a unimodular A-matrix. u

When a column/row-reduced non-canonical A-matrix, A(A), is given and the
structures of the column/row-reduced, canonical left/right divisors of A(A) are

of interest, we develop the following results.

Theorem 4.10 Let (A,B,C,D) be a minimal realization of the inverse of a

column-reduced A-matrix, A(A), where Aanx“, BeCnxm, ceC™™ and DeC™®,  Let
n xn n_Xm

(AL'BL) be a reachable pair, where ALEC , BLEC and nznv>0. Also, let

DLr(A) be the right characteristic A-matrix of (AL,BL). Then, DLr(A) is a

canonical left divisor of A(A) iff (AL,BL) is an induced reachable pair of

(A,B).
Proof:
Since A(A) = Dr(A)Ur(k), from Theorem 4.1, the results of Theorem 4.10

follow. [ |

Corollary 4.5 Let (A,B,C,D) be a minimal realization of the inverse of a
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column-reduced X-matrix, A(}), Tc be the transformation matrix which transforms

(A,B) into a controller form (Ac - TCAT;1

-~
B =
’ Ve

TCB). Algo, let DLr(k) be the

right characteristic A-matrix of an induced reachable pair (AL,BL) of (A,B) via

n_xn
the canonical projection VeC vV . Then

A(Q) = DLt(A)R(l)
where

-1 = C -— -1 Y - =
DLr(l) CL(XInv A) B +D; n, rank(V)

R(A) = Eivrglwk(x)+B£A(x)

and 4;(1) is defined in Lemma 3.1.

Proof:

From Lemma 3.1 and Eq. (3.2), we obtain

BCA(A) = (Axnv-Ac)wc(l)

or

|
BA(A) = (XIn-A)'rc ¢c<x> .

From Eq. (4.2), we have

-1
BLA(A) = (AInv-AL)vrc \IJC(A) .

Thus

-1 ——— -
nLr(X)A(A) ¢ vr, wc(k)+DLA(A) = R(A)

(4.26)

As usual, the dual results on the spectral factorization of row-reduced A-



94

matrices can be written down at once:

Theorem 4.11 Let (A,B,C,D) be a minimal realization of the inverse of a row-
reduced A-matrix, A(A), where Ae(™®, BeC™™P, ce®™™® and DeCP™®. Let (Ap,Cp) be

n_xn pxn

an observable pair, where AR(-:Cs 8 &

» CgeC » m2n 0. Also, let DRl(A) be the
left characteristic A-matrix of <AR’CR)' Then, Dp,(A) is a canonical right

divisor of A(A) iff (AR’CR) is an embedded pair of (A,C). =

Corollary 4.6 Let (4,B,C,D) be a minimal realization of the inverse of a row-

reduced A-matrix, A(A) and let To be the transformation matrix which transforms
) P - Aq o~ - -

(A,C) iato an observer form (AO,CO), where AO = To ATO, Co = CTO. Also, let

DRL(X) be the left characteristic A-matrix of an embedded observable pair

(AR,CR) of (A,C) via the canonical injection S. Then,

= (4.27)
A(X) L(X)DRE(A)

where

DRE(X) = CR(XIn _AR)-IER*BR; n = rank(S)
8
~ly = _
L(A) = wo(A)TO SBR+A(A)DR ’

and WO(X) is defined in Lemma 3.3. =
Theorem &4.11 and Corollary 4.6 can be easily proved by using the same

approaches as given in Theorem 4.10 and Corollary 4.5.

4.4 Computational Aspects of Divisors and Spectral Factors for A-matrices

In this section, we present schemes for computing left/right divisors and
spectral factors of nonsingular A-matrices, and their associated complete sets

of irreducible left/right divisors and spectral factors. The computational
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schemes are mainly based on block triangularization or block diagonalization
[54,55] for the system map of the minimal realization quadruple for the inverse
of a nonsingular A-matrix. At the end of this section, a numerical method for
block triangularization and block diagonalization of a square matrix, using the
matrix sign algorithm [56-60}, is presented.

Let (A,B,C,D) be a minimal realization for the inverse of a nonsingular A-

matrix A()). Assume that A can be upper block triangularized as

A n.xn, n, xn
A= 1 12 ; A.eC i 1; i=1,2; A,.eC 1772 (4.28a)
i 12
0 Az
and B,C can be written as
T noxam .
B = [B§9B§] 3 B;eC Yoy i=1,2 (4.28b)
mxn,

G = [C),C,1; CeC 3 i=1,2 (4.28c)
Then, we obtain the following results.
Theorem 4.12 1f (A,B,C,D) is a minimal realization of the inverse of a

nonsingular A-matrix A(}A), with A, B and C shown in Eq. (4.28), then

(1) The right characteristic A-matrix of (Az'Bz)’ defined as D:Z(A), is a
canonical left divisor of A()\).

(2) The 1left characteristic A-matrix of (Al’cl)v defined as sz(*>- is a
canonical right divisor of A(}).

(3) AQQA) = Drz(A)Urz(l)Dzl(k) where Urz(k) is a unimodular A-matrix.

Proof:
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From Theorem 3.3, A(A) = B .(M)U_(A) = Uy (A)D (1), where D _(X) and D (X) are
column- and row-reduced canonical A-matrices, respectively. Each part of the
theorem is established as follows:

n,xn

(1) Choose v = [0,1_ JeC 27" and apply Theorem 4.1.

2 T nxny
(2) Choose S = [In ,0] eC and apply Theorem 4.5.
1

(3) From Theorem 4.9 and the results in (1) and (2). |

Similar results can be stated for a lower block triangularized system map A

of a minimal realization for the inverse of a nonsingular )\-matrix as following.

Corollary 4.7 If (A,B,C,D) is a minimal realization for the inverse of a

nonsingular )-matrix, A()), with A,B and C being partitioned as

0 n, xn, n,xn

A= ! 3 A.eC t 1; i=1,2; AZIEC 1 (4.29a)

A, A 1

21 "2

n.xm
T, T ] ]

B = lBi,le 3 BeC oy i=1,2 (4.29b)
S (4.29¢)

€ = [€},C,)3 C,eC Y im1,2

then

(1) The right characteristic \-matrix of (Al,Bl), defined as Drl(k), is a
canonical left divisor of A()).

(2) The 1left characteristic A-matrix of (Az,cz), defined as Du(l), is a
canonical right divisor of A(}).

(3) AQ)) = Dﬂ(l)Urz(X)Du(l) where “:9.(“ is a unimodular A-matrix. |
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To find a complete set of canonical left or right divisors, we need to
block-diagonalize the system map of A of the minimal realization quadruple for

the inverse of a nonsingular A-matrix.

Theorem 4.13 If (A,B,C,D) is a minimal realization of A-l(l) and A is block-

diagonalized as

n.Xn.
A = block diaglA;,i=l,u.., ki AGC 1 15 iml,euu,k (4.30a)
and
n.xm
T T T . .
B = [B,B,,...,B,15 B.eC ' ; i=l,...,k (4.30b)
mXn,
C = [C4CpperesCyls CEC 5 im1,uuuyk (4.30¢)
then

(1) The right characteristic A-matrices of (Ai,Bi), Dri(l), for 1<icgk,
constitute a complete set of canonical left divisors of A(A).
(2) The 1left characteristic A-matrices of (Ai’ci)’ Dzi(k), for 1gigk,

constitute a complete set of canonical right divisors of A(A).

Proof:

(1) Choose V., = block diagf0_ ,...,0 1. From Theorem
i n, n

S S T

i 1 n, ni+1 L

4.12, we obtain Dri(l) as a canonical left divisor of A()) for i=l,...,k.
k

Also, using Lemma 2.1 yields o(D_.{(A)) = og(A,), and hence U o(D_.{(A)) =

. ri i i=1 ri

'Ul o(A) = a(a(l)). Thus, {Dri(k), i*l,...,k} is a complete set of

1=

canonical left divisors of A(A).

(2) Similar to the proof in (1). [ |

The computational scheme for the irreducible complete set of canonical
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left/right divisors for a nonsingular A-matrix A(A) can be formulated by using

the Jordan canonical form minimal realization of A-I(A).

Theorem 4.14 If (A,B,C,D) is a minimal realization of A-l(k) and A is in

Jordan canonical form as

1
where AJieC

A = block diag[AJi,i'l,...,k]

n.xn,
1

is a Jordan block associated with an eigenvalue A; and a full

Jordan chain as

DY S
A.=| = M 1. (4.31a)
Ji
e~ . A

and B and C are represented as

then,

@9

(2)

n.xm
T T T . 4.31b
B = {By,..0sBy ] 5 By eC L=,k ( )

mXn,
1

. 4.31¢
G = [6yy5ueesCpds Cpy€C 15 iml,eun,k (4.31¢)

The right characteristic A-matrices of (AJi’BJi)’ Dri(x) for 1lgigk,
constitute an irreducible complete set of canonical left divisors of A(A).
Also, {Dri(k),i-l,...,k} is unique.

The left characteristic A-matrices of (AJi’ch)’ Dzi(k) for 1gizk,

constitute an irreducible complete set of canonical right divisors of A(A).

Also, {Dli(l),i=1,...,k} is unique.
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Proof:

(1) From Theorem 4.13, {Dri(k),iﬂl,...,k} is a complete set of canonical left
divisors of A(A). Since each AJi contains a Jordan block with a full
Jordan chain, A,. cannot be further decomposed into more than one block.
This fact shows that {Dri(k),i-l,...,k} is an irreducible complete set of
canonical left divisors of A(A). Moreover, the Jordan block decomposition
of a square matrix is unique, and therefore the irreducible complete set of
left divisors, {Dri(k),i=1,...,k}, is unique.

(2) Similar to (1). ]

From Theorems 4.12 and 4.13, we observe that the canonical left/right
divisors and complete sets of canonical left/right divisors of nonsingular A-
matrices can be determined from the block triangularization/diagonalization of
the system map A of the minimal realization quadruple (A,B,C,D) for the inverse
of the A-matrices. The block triangularization and diagonalization of a square
matrix can be reformulated as an algebraic Riccati equation problem [54) and
several numerical algorithms are available for solving such Riccati equations
[55-56]. Here, we shall present a new algorithm for block diagonalization and
block triangularization of a square matrix using the matrix sign algorithm [60].

Let us define the matrix sign function first,

Definition 4.4 The matrix sign function of AcC™*™ with U(A)CC+UC‘, where C+

and ( are the open right and left plane of (, respectively, is defined by [56]

Sign(A) = 2 Sign"(A)-I_= I_-2 Sign (A) (4.32a)
where
S PIR vl (4.32b)
Sign (A) = o= ‘*r,' (AL -A) “aA

and
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Sign (A) = 5%; ¢p (1_-m)7lar (4.32¢)

T, () is a simple closed contour in c*(C7), and encloses a(a)nC* (o(a)nCT). O
From Definition 4.4, we can formulate Sign(A) using the modal matrix M of

A. Let

1 (4.33a)

J = M "AM = block diag[J,,J )

n, Xn

™M 2"
where J eC and J_eC (n=n,+n,) are the collections of Jordan blocks

with 0(J+)CC+ and'G(J_)CC-, respectively. Then,

. R : S ) -1 (4.33b)
Sign(A) M[S1gn(J+)(:)Slgn(J_)]M M[In1(:)( Inz)]H
Assume that M is partitioned as
axn nxny (4.34)

- 1
M [MI'MZI’ MleC . stc

where M, and M, contain the eigenvectors associated with the eigenvalues of J

and J_, respectively. Let W be the inverse of M and be partitioned as

1 n,xn n,xn
Wl Cuec U g ec? (4.35)
W 1 2
2
Then, from Eq. (4.32a2), we obtain
-1 (4.36a)

S 1 .
Sign'(A) = 5 [Sign(A)+1 ] H[In1®0n2]M MW
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Obviously, rank[Sign+(A)] = 0. Let

Sign+(A) = [sl,sz,...,sn]ecnxn,siecnxl (4.36b)

and
nxn1

5 4 Ind[Sign+(A)]€C (4.37)

. . . . . .+
where S is a monic map which contains n; independent column vectors of Sign (A).
These independent wvectors are selected from the n(>n1) column vectors of
Sign'(A) in Eq. (4.36b).

Thus, we obtain the results as follows.

n,Xn
Lemma 4.8 There exists a nonsingular matrix §eC 11 such that S = H1€ and s¥

4 % 1% A w1
* = (s%5)71s* and Mt = (m) )

= E-IMI, where M, is defined in Eq. (4.34); s 1

are the left inverses of H, and S, respectively.

Proof:
X .+ . . s
Assume that S contains n, columns of Sign (A) with column indices as k; for

i=1,2,...,n1. Then from the definition of S we obtain

s = Sign+(A)Us

k k2 k
vhere UB = [en e Treeese

n
n |

A A
. a +
Since Sign (A) = M W,, we have § = MWU = MIE, where £ = Wwu. By

Sylvester's inequality [61], we obtain

tank(W1)+rank(Us)-n15rank(C)Smin(rank(wl),rank(us))

and since rank(wl) = rank(Us) = n;, we conclude that

rank(§) = n, (4.38)
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From the definition of the left inverse of s*, we have
* -1 % * -1 * -
s* = (5" = ey oo o eh = £ .
Two important properties of S are given by:

A
Theorem 4.15 Define S = Im(S) and let X be the state space and A: X+X. Then,

(i) S is an A-invariant subspace of X.

(ii) S is the canonical injection map S:S+X

Proof:
(i) From Lemma 4.8, we obtain

= = = -1 = (4.39a)
AS = AM E = M, J E ulg(E 3,0 SAp

where

-1 (4.39b)
Ay b JE

Thus, § * Im(S) is an A-invariant subspace of X,

(ii) Since S is monic and § = Im(S), S is the canonical injection map S:S+X @&

Obviously, from Theorems 4.5 and 4.15, S defined in Eq. (4.37) can be used
as a canonical injection map for finding the canonical right divisor of
nonsingular A-matrices. Since S is composed of the independent column vectors
of Sign‘(A), the orthogonalized projection algorithm in Section 2.3 can be used

- A -
to find S from S = Sign 1(A):
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Algorithm 4.1

Given: 3 = [Sl,Sz,...,Sn],SisanI, for lgign
Find: s = [skl’skz""’sknll’ such that Skie{si,lsisn} for 1gk gn, are
independent.
Algorithm:
{Initialization}
j:=0;{set independent vector index starting at zero}

P:=In;{set orthogonalized projection to identity matrix}

{Processing}

For i=1 to n Do

Begin

ds=P*S,;
1

*
if Si*dzO Then

Begin
j:=j+l;{increment index j}
Skj:=Si;{vi is an linearly independent column vector}
* *
P:=P-d*d /Si*d;{Update P}

End{I1£f}

End;{For loop}

n,:=j

rank

Note:

;{Total number of linearly independent column vectors which is the

of S}

The * between two variables in the above algorithm is the matrix
product notation; and the superscript * designates conjugate

transpose. [

The matrix S defined in Eq. (4.37) can be used for block diagonalization of

a system map as follows.
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Theorem 4.16 Let AeCY® with Be(li)to for i=1,2,...n, where {li,i-1,2,...,n}

is o(A). Define

nxn

5, = Ind[Sign*(a)]eC ! (4.40a)
nxna,

s, = Ind[Sign (A)]eC 2 (4.40b)

where Sign+(A) and Sign (A) are defined in Eq. (4.42) and n, 40, = 0.

Assume that nyn, 2 0, then

= 1 = : (4.41a)
Ay M AMs block dlag[ARl,ARZ]
where Ms is a block modal matrix and expressed as
A Cxn (4.41b)
Ms [51,82] €
n,xn, n,xn,
and ARlsc and ARzeC are defined as
n, xn
- ot 171 (4.41c)
ARI SlASIEC
i (4.41d)

+ 2
Agy = 5,A8,€C

* -1 % + *
SI and S; are the left inverses of §, and S,, or S; = (5131) 1Sl and S, = (5282)

=1 % .
52, respectively, where * designates conjugate transpose.

Proof:

Theorem 4.16 can be proved using Theorem 4.15 and Eq. (4.39). a
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If more than two blocks are needed for the block diagonalization of A, we

can construct the block modal matrix using generalized sign matrix functioms.

Definition 4.5 Let AcC™™ and Re(O(A))n{rI,rz} = ¢, vhere r,<r, and rl,rZER.
The generalized matrix sign function of A with respect to the open interval

(rl,rz) on the real axis is defined as

. s+
SIg“(rl,rz) 2 Slgn(rl,rz)(A) L
.- (4.42a)
=1 -28 A
a lgn(rl'rz)( )
where
.+ Al e (4.42b)
Slgn(rl’rz)(A) 2[313n(r1)(A) Slgn(rz)(A)]
.- AL .+ (4.42¢)
ngn(rl’rz)(A) 1 Slgn(rl’rz)(A)
and
Sign( )(A) 8 Sign(A—r.In), for i=1,2 . (4.42d)
ri 1 D
Theorem 4,17 Let Aecpxn and Re(O(A))n{ri,i-I,...,k} = ¢, where r1<r2<...<rk
and T ER for 1sisk. Define
nxn,
S, = Ind(Sign’ (A))eC b, 1siskel (4.43)
i (r. ,,r.)
i-17"1
A .
where r, = - and L o, Assume that nizo for 1gigk+l.
Then
-1, . . (4.44a)
Ms AMs Block dlag[ARl’ARZ’""AR(k+1)]
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where Ms is a block modal matrix

- (4.44b)
Ms [81’82""’Sk+1]
and ARi’ 1gigk+1, are defined as
A . = sTas (4.44¢)

Ri i1
where s; is the left inverse of 5, for lsisk+l.

Proof:
Directly from Theorem 4,15 and Definition 4.5. From Definition 4.5 and

Theorem 4.17, we have the following:

Corollary 4.8 Let Ag; be defined as in Eq. (4.44c). Then ri_1<Re(Aij)<ri, for
all eigenvalues Aij of Apss 1sjsni. |
Theorems 4.13 and 4.17, together with Corollary 4.9, allow us to decompose
a nonsingular A-matrix into a complete set of canonical right divisors such that
each divisor has latent roots clustering inside a certain vertical strip of the
complex plane (.
To obtain the canonical projection map from matrix sign function, we define

V = {Ind[(Sign(an)]}" (4.45)

. .+
which is epic. Note that V contains ny independent row vectors of Sign (A) and
.+
these independent vectors are selected from the n(>n;) row vectors of Sign (A)
in Eq. (4.36¢c). Parallel to Lemma 4.8, we have:

n,xn
. . +
Lemma 4.9 There exists a nonsingular matrix neC such that V = nwl and V
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- b x x . A x * -
= WIn 1, where W, is defined in Eq. (4.35); vt = v w™)? and WI = W (W) 1

are the right inverse of V and Wys respectively.

Proof:
From the definition of V we can describe V as

V= UVSign*(A) (4.46)

k
k k n
Td 1 %2 1
where Uv = [en 1€ Treense ].
Since from Eq. (4.36b) we have Sign+(A) = MW, Eq. (4.46) becomes V =
A
UM W, = nW,, vhere n = U.M,. By applying Sylvester's inequality [61], we have

rank(n) = n;. From the definition of right inverse, we have

v = Vv e e o un = winT (4.47)
»

Algorithm 4.1 can be utilized to find V from Sign+(A) by replacing

[Sign+(A)]T for S and V' for S. Corresponding to Theorem 4.15, the basic

properties of V are given by:

Theorem 4.18 Define Se Ker(V); let X be the state space and A: X*X. Then

(i) S is an A-invariant subspace of X.

(ii) V is the canonical projection map V: X+X/S. ]
Obviously, from Theorems 4.1 and 4.18, V defined in Eq. (4.45) can be used

as the canonical projection map for finding the canonical right divisors of

nonsingular A-matrices.

Paralleling Theorem 4.17, we can construct the block modal matrix from

canonical projection maps.

Theorem 4.19 Let AcC™" and Re(O(A))n{ri,i-l,...,k} = §, where r1<r2<...<rk
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and tieR for 1<isk. Define

n.xn
V. = {Ind((Sign, aNDHTec? , 1siske1 (4.48)
i SFETLIY
where Iy =~ and Tiel = & Assume that nizo for 1lg<igk+l. Then
-1 _ . (4.49a)
MAM," = Block diaglA; ) Ap,,-euihp iy )]
where H;l is a block modal matrix
T T T ,T 4.49b
My = [V, Vo,V ) (4-450)
ALi’ 1<igk+l, are defined as following
(4.49¢)

+
ALi Vi AVi

V; is the right inverse of Vi. Also, the real parts of all the eigenvalues of

A ; are in (ri_l,ri).

Proof:
Directly from Theorem 4.18 and Definition 4.5. =
Since matrix sign functions can be used to compute the canonical injection
and canonical projection maps, the block triangularization transformation can be
easily obtained from mattixisign functions of A by Lemma 4.7.

nxn

Theorem 4.20 Let Ac( and Re(U(A))n{rl,rz} = ¢, where r.<r, and risR for

1772

i=1,2, Define
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nxn

- .+ 1 (4.50a)
Ind(518n(r1,t2)(A))EC

s(rl,rz)

and

= . .- T, T, "2 (4.50b)
v('1:f2) [Ind((Slgn(rI’rz)(A)) )17eC

Assume that ny and n, are positive, Let

+
S(rl,rz)
Té| _ (4.51)
v
(rl,rz)
where ST is the left inverse of § « Then
(r,,r,) (r,,r,)
1’72 1'°2
Ar ArL
Ay £qart. (4.52a)
0
n,xn, AL
where
A+ (4.52b)
A =8 AS
R (rl,rz) (rl,rz)
A - -+ (4.52¢)
=V AV
AL (rl,rz) (tl,rz)
A+ -+ (4.524)

Agy * s(rl,rz)Av(rI,rz)

and Gzr ) is the right inverse of G(r )" Furthermore, the real parts of
1’2 1'°2

the eigenvalues of AR are inside (rl,rz) and those of AL are outside (rl,rz).

Proof:

From Theorem 4.15, S : S+X,

y is the canonical injection map, S(rl,rz)'

(rysry
4
where S Im(S(r r )) and X is the state space such that A: X+X, From the
1772

definition of V( and Lemma 4.9, we have

rl,rz)
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- .+
V(rl’rz) =- UV(In-Slgn(tl’rz)(A))

where - &
U= e le2 eyt
v n''n’""n

Also from Lemma 4.8, we have

s(rl,tz) = Sisn(tl,rz)(A)us

where

From Eq. (4.36a), it is easy to show that Signzr " )(A) is idempotent. Thus,
1°°2

we obtain

v(r1’r2)s('1’r2) = U§(In_81gn(r1.r2)(A))Slgn(rl,rz)(A)U. =0

since v(‘1"z) and S(rl’rz) are of full rank. This implies that Ker(V(rl’rz) =
Im(S(rI’rz) = § or v(‘1v'2) is a canonical projection map., By Lemma 4.7, the
rest of the results of Theorem 4.20 follow. a

To compute Sign(A) or Sign+(A), Roberts [56] proposed a recursive
algorithm, which is referred to as the matrix sign algorithm [56] and can be
described as follows:

Sign(i+1)(A) = %[Sign(i)(A)*(Sign(i)(A))-ll; Sign(O)(A) = A for iw(4-332)

and

sign(a) = 12 siga()(a) (4.53b)

The algorithm in Eq. (4.53a2) provides quadratic convergence at the neighborhood
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of Sign(A). Recently, a new algorithm to compute the matrix sign functions has

been devised [60]. This new algorithm for Sign(A) is as follows:

Theorem 4.21 The matrix sign function of A can be represented by a matrix

continued fraction:

Sign(A) = A[1n+(A2—1n)[zIn+(Az-1n)[21n+(A2-zn)[...1'11'11’11'1 (4.54a)

where AcC™™ and Re[0(A)] # 0.
The approximate matrix sign function becomes

sign(a) * [(1_+a)3-(1 -0 311(x_sa) er -1 & sign ;) (&) (4.54b)

where j is a finite integer.

The recursive algorithm for computing the matrix sign function of A with
RelO(A)] 2 0 is
(4.55)

Sign( )(A) = Sign(fk)[Sign(nk)(A)]

k+1l

where Sign(l)(A) 2 A; g fk'nk and fk>1 for k203 n,=1. N
The degree of the convergence rate of the algorithm in Eq. (4.55) at the
neighborhood of Sign(A) is fk if fk is constant for k20. The reader is referred
to [60] for further details of the new matrix sign algorithm in Eq. (4.55).
Theorems 4.15-4.21 present a set of computational algorithms for block
diagonalization and block triangularization of a square matrix A such that each
block matrix along the diagonal has eigenvalues clustering inside a certain
vertical strip of the complex plane C. These algorithms are suitable for

finding the complete sets of left/right divisors and spectral factors of
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nonsingular A-matrices occurred in the continuous-time systems (see Chapter VI).
For discrete-time system problems we often need to block-diagonalize or block-
triangularize a system map A such that each block matrix along the diagonal has
eigenvalues clustering inside a certain annulus centered at origin of the
complex plane C. Therefore, to use Theorems &4.15-4.21 for discrete-time
systems, the argument matrix A in the matrix sign functions, Sign(A), Sign+(A)

.- S U
and Sign (A), should be replaced by (A In)(A+In) H Slgn(rl'rz)(A),

Sign:rl,rz)(A) and Signzrl,rz)(A) in Definition 4.5 should be redefined
accordingly:
+
Si = 2 Si A)-1
xgn(rl’rz) (a) Slgn(rl’rz)( ) n
fon (4.56a)
=1-285 A
0 lgﬂ(rl'rz)( )
where
ign' 8 lig; -5 (4.56b)
Slgn(rl’rz)(A) 2[ngn(r1)(A) ngn(rz)(A)]
.- .+ (4.56¢)
S A A I -
lgn(rl,rz)( ) n Slgn(rl’rz)(A)
(4.56d)

signg () £ sign(a-1 (a1 )hr 1)), for i=1,2

With the definitions in Eq. (4.56), Sign(r c )(A) is called the generalized
172
matrix sign function of A with respect to the open annulus centered at origin of

C and bounded with radii (1+r1)/(1-r1) and (1+r2)/(1-r2).

4.5 Illustrative Examples

Two examples are illustrated in this section. The first example
demonstrates the computations of the complete sets of canonical 1left/right
divisors and the spectral factors for a nonsingular A-matrix via the Jordan form
decompositions. The second example illustrates the computations of the complete
sets of canonical left/right divisors and spectral factors for a nonsingular A-

matrix via the matrix sign algorithms,
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Example 4.1

Consider a reachable pair (A,B) of a continuous-time system:

(-1 -2 4 -9 21
0 -2 2 -5 &
A=1]10 2 -5 10 -23
0 1 -2 4 -4
L 0 0 0 0 2

and

w

L}
RNOO
N RN W
LB S ]

The right characteristic A-matrix is found to be

A2-x-2  -18)-18 1
() =| o Andar 4
0 0 1
which is a column-reduced canonical A-matrix. The Jordan form minimal

realization quadruple of D—l(k) can be found as

o]

-1 1 0 0 o
0 -1 1 0 o
a,= 1o 0 -1 0 o
o 0 0 -1 0
Lo 0 o o 2
C1 2 1
01 1
B.= |0 1 1
I 110
[ 12 1
-6 4 5/3 17/3 1/3
c;= |1 -1 0 -1 o0
Lo o o 0o o
0 0 0
p.=]0 0 o
I lo o 1

Let A, and B, be partitioned as
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" Al 0 B]_
A = B, =
J J
{ 0 Az Bz
where -
-1 1 o [-1 o]
A,=| 0 -1 1 A, =
L'l o o -1 2 0 2
-1 2 1 W [1 1 0 ]
B.=| 0 1 1 B, =
1 lLo 1 1. 2 1 2 1

The right characteristic A-matrices of (AI’BI) and (AZ’BZ) are

A+l -1 1
2
Drl(k) 0 AT+2)+1 1
L O 0 1
and -

Ath 6 1

D (A)={ -3 A-5 -1

r2 0 o 1

respectively, From Theorem 4.13, {Drl(k),Drz(A)} is a complete set of canonical

left divisors of Dr(x). S5imilarly, let CJ be partitioned as

Cy = 16)hC)]
where

[ -6 4 5/3 ] [ 17/3 1/3 ]
C, = 1 -1 o c,6 = -1 0
1 2 0 0

The left characteristic A-matrices of (Al'cl) and (AZ’CZ) are

A2-53+13 108 O
D, = 25/3 a7 0
0 o 1

and
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2 =17 0
Do, (N = 0 M1 O
2 o o 1
respectively. From Theorem 4.13, {Dzl(x),blz(x)} is a complete set of canonical
right divisors of Dr(A).
Let Ay, By, C; be partitioned as

[ 4 A2

1
[ 0 4, 2

where

. r1 2 1] . ro 1 1]
B = B.=|11 1
' 1o 11 2 L 21
-6 4 _ 75/3 17/3 1/3
¢, =] 1 - &, =|o -1 o
L o o o o o

The right characteristic A-matrix of (Kz,ﬁz) is

a2 -2 1
D_(A) = 0 Ml -1
r2 0 0 1

and the left characteristic A-matrix of (51,51) is

A2 -18 0
D,, (0 =| 0.5 a4 0
o o o 1

Therefore from Theorem 4.12, we have
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Dr(k) = Drz(k)urz(A)Dgl(k)

where Urz(l) is unimodular and can be found as

[ o 2 o
v,(A\) = |=~-0.5 A-2 0
th 0o o0 1

Dr(k) can also be factored as

Dr(k) = Drz(l)Dll(l)

where

1 2)A+8 0
= 2
Dzl(k) = UrE(X)Dgl(k) =] 0 A+2a+41 O
0 0 1

which is not a canonical A-matrix

Example 4.2

Consider a reachable pair (A,B) of a continuous-time system:

~ -1.0 -6.0 11.0 -32.0 63.0
-1.0 -2.0 3.0 -11.,0 24.0
A= 2,0 ~-4.0 10.0 -18.0 37.0
1.0 2.0 4,0 - 7.0 12.0
| 0.0 0.0 -0.5 1.0 -3.0
and [ -2.0 1.0 0.0
1.0 -2.0 -=3.0
B = 1.0 1.0 3.0
2.0 1.0 4.0
| 1.0 0.0 1.0

The right characteristic A-matrix is found to be

2343.666702-0.6111A-6.0556 A2-0.33331-0.6667 =-1.0
D_(\) = -0.5556A-9. 1667 22-0.6667A-2.0000 -2.0
0.0 0.0 1.0
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From Lemma 2.1, a minimal realization quadruple of D;I(A) is (A,B,Ct,Dr), vhere

-1.04444  2.06667 -4.42222 9,60000 -18.33333

0.29333 -0.64000 1.38667 -2.96000 5.76000 1
C =
0.00000 0.00000 0.00000 0.00000 0.00000

Selecting Ty = = 1) = -3, r, = 0, and ry = @, we have the following shifted

matrix eign functions:

[ ]
-

Szgn(ro)(A) 5
C 1.0 -4.0 8.0 =-20.0 40.0
0.0 -1.0 4.0 =-10.0 20.0
Sign, y(A) =} 0.0 0.0 1.0 0.0 0.0
1 0.0 0.0 0.0 1.0 0.0
| 0.0 0.0 0.0 0.0 1.0
[ 1.0 -5.0 10.0 -24.0 48.0
0.0 -1.0 0.0 =-20.0 4.0
Sign(r )(A) =] 0.0 0.0 -1.0 4,0 -8.0
2 0.0 0.0 0.0 1.0 -4.0
L 0.0 0.0 0.0 0.0 -1.0

Sign(ra)(A) - -I5

From Theorem 4.19, we have

v, = [0.0 2.0 -4.0 10.0 -20.0]
0.0
v, ® [o.o

L [Lo -2.0
A0 [o.o 0.0



118

-2.0_ 2.0_ 2.0

510 1.0 1.0

B.=MB=| 1.0 0.0 2.0
p= % 1.0 Z2.0 =3.0
0.0 -1.0 -=2.0

-1 -0.02667 | 0.18667
Cp = CM,” = | -0.01111 }-0.75556
0.00000 ! 0.00000

From Theorem 4.13, we have a complete

DEZ(A), D, (M)}:

A+4.0 1.0 1.0
Dzl(k) = [ 0.0 1.0 0.0 ]
0.0 0.0 1.0
[ A+1.5 <-0.5 <-1.0
nﬁz(x) = 2.5 A-0.5 -2.0 ]
. 0.0 0.0 1.0

and

1.0
Dy.{}) = -1.0
23 | 0.0

x
o O
.
[~~~
U
[l ol

0.0 =-0.5 -1.0 4.0
1.0 -1.0} ’ {-1.0 3.0
~0.08003 | 0.29333 -0.45333
0.13333 | -1.04444  1.31111
0.00000 ! 0.00000 0.00000

set of canonical left divisors {Dll(k),

and a complete set of canonical right divisors {Drl(k), Drz(k), Dra(l)):



[ A+4.00000 0.0 0.0
D,(\) = 0.41667 1.0 0.0
¥ | 0.00000 0.0 1.0
" A-0.58394  -0.25000 0.0
D,(A) = 5.69761 A+1.58394 o.o]
L 0.0 0.0 1.0
and
" A+0.16667 0.20000 0.0
Dr3(k) - -6.80556 A-2.16667 0.0
L 0.0 0.0 1.0
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To perform the spectral factorization, using Theorem 4.20, we have

S:x o) 1.00000 =~-2.00000 4.00000 2.00000  0.00000

2’3 _0.00000 _~0.16667 _ 0.33333 _ 0.16667 _ 0.00000

T=]|_ = |70.00000 ~ "2.00000 ~5.00000 ~12.00000 =-24.00000
Ve o) 0.00000 1,00000 0.00000 1.00000 - 2.00000
2°"3 0.00000  0.00000 0.00000 0.00000  2.00000

o . . -1 . .
and 2 minimal realization quadruple (AT,IT,CT,DT) of D_ (X)) with AT being block-

triangularized:
A A 11.0 -~100.0 1 -8.4660 0.2652 -7.8314
1 R S| |.1.0_-_9.0! 0.5000 _0.1667 -0.6661
AT = TAT ~ = = 0.0 0.0, -3.2000 -1.6000 0.5000
D3x2 AL 0.0 0.0 :-1.6000 -0.8000 1.0000
0.0 0.0, 0.2000 0.4000 -1.0000
B 4.0000 11,0000 26.0000
R _D.5000 0.83333 _ 2.1667_
By = TB = = |7-3.9080° T3700600 ~ 3.0000
BL 1.0000 -1.0000 -1.0000
2.0000 0.00000 2.0000
-1 2,9333 -3.0667: -0.2471 0.0703 -0.1555
CT =0T " = [CR,CL] = | -1.0444 11.2222; 0.7970 0.2542 0.3517
0.0000 0.0000' 0.0000 0.0000 0.0000
and
DT = Dr

From Theorem 4.12, Dr(k) can be factored as
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D (X = B_, (WU (D, (X

vhere th(R) is the right characteristic A-matrix of (AL'BL)=

. AZ43.5)+44.25 0.8X#0.7 =1.0
B_,(0) = 6.25 A1.5 -2.0
* 0.00 1.0 1.0

ﬁzl(x) is the left characteristic A-matrix of (AR,CR):

_ A+0.1667 0.2000 0.0
Dzl(k) =1 -6.8056 2A-2.1667 0.0
0.0000 0.0000 1.0

and Urz(k) is a unimodular A-matrix:

Urz(*) - I3

To factor 5r2(x), we find 2 minimal realization quadruple (AL’BL’EL’BL) of

-1
Drz(x)z

A = |-1.60 -0.80 1.00

[-3.20 -1.60 o.so]
[ 0.20 0.40 -1.00

[-3.00 3.00 3.00]7
B, = 1.00 -1.00 -1.00
L 2.00 0.00 2.00

_ F 0.04 0.12 0,00
€ = | 0.30 -0.10 0.50
0.00 0.00 0.00.

Selecting Tp = "™ ¥y < -3 and r, = ®, we have the following shifted matrix sign
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functions

Sign(ro)(AL) =1,

OO
R
coo

—_

Again, from Theorem 4.20, we have

s+
Liry,ry) 1.0 -2.0 0.0
T, = = 10.0_ 0.0 1.0
0.8~ 7034 0.0

v
L(rl,rz)

s . . ==1 . .
and a minimal realization quadruple (ALT’BLT’CLT’DLT) of th(k) with A . being

block-triangularized:

AR AL

1 0.0 -0.251 0.0
A, = TAT = = =} 0.2 -1.0 ! 0.0
T L“1L 1 . , 1 [|-2=--=_ 4 -
1 0
LT L | . | |-5=-=tc--5"=

LT L

LT T

Now, from Theorem 4,12 we have



B,,(0 = 5,0 (B,
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where Drz(x) is the right characteristic )\-matrix of (ALL,BLL):

B0 =

0.00 1.00 0.00

[ A+4.00 1.00 1.00

0.00 0.00 1.00

]

521(1) is the left characteristic A-matrix of (ALR'CLR):

- A-0.50 -0.20 0.00
Dgl(X) = 6.25 A+1.50 0.00
0.00 0.00 0.00

and ﬁrl(l) is a unimodular A-matrix:

UrE(A) = [

Combining these two parts of spectral factorization, we have

nr(x) =

[= =]
.« »
[~~~

[ A+4.00
0.00
0.00

" A-0.50
6.25

. 0.00

(=N -1
M
[= =]
\
--No

1.00
1.00
0.00

-0.20 0.007

A+1.50
0.00

1.00
0.00
1.00

0.00

1.00)]

]

[

A+0.1667
-6.8056
0.000

0.2000 0.0
A-2.1667 0.0

0.0000

1.0

]



CHAPTER V FEEDBACK CONTROL OF MULTIVARIABLE SYSTEMS

Feedback design for multivariable systems has attracted many researchers
[5-16,62-78] in the fields of system theory and control engineering. Probably
the most successful design methods are state-feedback control in the time domain
[5,63-71]1, and the inverse Nyquist array and the root loci design in the
frequency domain [8,72-78]. In this chapter, we shall discuss the feedback
control of multivariable systems employing the notions of the characteristic A-
matrices and their divisors for constructing the state-feedback control 1laws.
These new approaches permit a deeper imsight into some structural aspects of
feedback control. In general, the design schemes presented in this chapter
provide methods for constructing state feedback controllers by dealing with the
asgignments of the denominator of the closed-loop matrix fraction description.
Therefore, advantages of both the time domain and the frequency domain design
can be achieved via these design methods.

Some properties of linear state-feedback controls are set out in Section
5.1. In Section 5.2, methods using characteristic and non-characteristic A~
matrix assignments to construct the state-feedback controller are developed.
Section 5.3 is devoted to deriving the latent structure assignments which take
the left/right generalized 1latent vectors of the closed~loop right
characteristic A-matrices as the design guideline, The divisor assignment and

decoupling design approaches are discussed in Section 5.4,

5.1 Linear State-Feedback Controls and Properties

Consider an m-input, p-output linear time-invariant system described by

AX(t) = AX(t)+Bu(t) (5.1a)

y(t) = CX(t)+Du(t) (5.1b)
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where X(t)e™®, u(t)eC®, and y(t)e® are state, input, and output vectors,
respectively; A, B, C, and D are matrices of appropriate dimensionsj; X is an
operator, and t is an independent variable. For continuous time systems, X is a
differential operator with teR. For discrete time systems, A is a forward shift
operator with tel. Assume that the system in Eq. (5.1) is reachable. The
linear state-feedback control law can be described as:

u(t) = -FX(t)+GFr(t) (5.2)

where F, GF’ and r(t) are the feedback gain, input gain, and reference input,
respectively. The important invariance property of the Kronecker indices under

a state-feedback control is as follows.

Lemma 5.1 Let the state-feedback control law be Egq. (5.2), and let Drc(k) be
the right characteristic A-matrix of the closed-loop system. Then, aci[Drc(X)]
= aci[Dr(k)] = K;,i=1,...,m, where D_(X) is the right characteristic A-matrix of
the open—loop system, Ki,i=1,...,m are the Kronecker indices, and aci[Drc(k)]

denotes the ith column degree of Drc(l).

Proof:

Refer to Popov [35]. B

Lemma 5.1 gives the structure of all possible right characteristic A-
matrices of the closed-loop systems with linear state-feedback contrel laws. In
other words, we may only assign the closed-loop right characteristic A-matrix
having the same Kronecker indices as the open-loop right characteristic A-
matrix. However, this structural limitation does not restrict the freedom of
choosing the closed-loop eigenvalues. Thus, the dynamics of the closed-loop
system s5till can be controlled by assigning appropriate eigenvalues or poles.

From Lemma 5.1, we obtain the results below.
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Lemma 5.2 Let (A,B,C,D) be a minimal realization of D;I(x), where Dr(x) is the

right characteristic )-matrix of the reachable pair (A,B). Let Drc(x) be the

desired right characteristic A-matrix of the closed-loop system under the state-

feedback control law in Eq. (5.2). Then, (A-BF,BGF,E,EGF) is a wminimal
1

‘s -1 - - . A -
realization of Drc(A), where GF Drhnrhc’orhc is the leading-column coefficient

matrix of D_ (1), and D, is that of Dr(X).

h

Proof:

From Lemma 2.1, we have
-1 - oy~ lo, s o aT vl .= (5.3)
D (N C(XIn A) "B+D 4;(0)(11n A) B_+D

where € = ¥i(0)T_; D = (Im—wf_(owr(onn;;; A, = 'rcA'rgl; B, = T,B. (A,B) is

the controller canonical form of (A,B). Let

F =Am'c =D_F (5.4)

we obtain

T (A-BR)T ' =A-BF =A-E F 8% (5.52)
c c c ¢cc¢ c becc c
- -1 _ -1 9 = (5.5b)
TcBGF BcDththc EbcDrhc Bc

vwhere Kc and ic are the controller canonical forms of the closed-loop system.
From Lemma 5.1, the Kronecker indices of (A-BF,BGF) are the same as those of
(A,B), thus we obtain the winimal realization of the inverse of the right

characteristic A-matrix of (A-BF,BGF) as
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-1 = T pycls s _ = A -1 = (5.6)
Drc()‘) \Dr(o)(un A) B +D_ c(AIln (A-BF)) BG +DGy,

- T -1 -
vwhere Dc (Im-\vr(o)ll)r(o))Drhc DGF’ Thus, (A—BF,BGF,

realization of D;i(k). n

E,EGF) is the minimal

Lemma 5.2 reveals the state space structure of the closed-loop right
characteristics A-matrix under linear state-feedback controls. From Lemma 5.2,
we have the following results on the structure of the feedback gain when some of

the Kronecker indices are zero.

Corollary 5.1 Let K & {Kl,...,Km} be the Kronecker indices of (4,B). If K;=0
for some 1l<i<m, then the ith rows of ﬁc defined in Eq. (5.4), can be chosen to

be null, and therefore the ith rows of Fc and F are also null.

Proof:

From Eq. (5.5a), we have Kc = A-E F. If Kiﬂo, the ith column of E._ is

c bec e be

null, Thus, the ith row of E is null, and we can choose (Fc)i = 0, Since F

chc
= FT = D,FT and (Drh)ij = 0 for j#i and K;=0, the ith rows of F_ = D, F

and Fc are both null., N

c

In the following sections of this chapter, we discuss various schemes for

constructing linear state-feedback controls laws for different design purposes.

5.2 A-matrix Assignment

In this section, we discuss methods to construct the linear state-feedback
control laws from the desired denominator of the closed-loop RMFD. One simple
way to assign the denominator of the closed-loop RMFD is to select a column-
reduced canonical A-matrix which has the same Kronecker indices as those of the
open loop right characteristic A-matrix. This approach is referred to as the
right characteristic A-matrix assignment. For this scheme, the numerator A-

matrix of the closed-loop canonical RMFD is to be the same as that of the open
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loop canonical RMFD. A second way to approach the problem is to assign the
denominator of the closed-loop BRMFD as a non-canonical column-reduced A-matrix
having the same Kronecker indices as those of the open loop right characteristic \-
matrix. This approach is referred to as the column-reduced A-matrix assignment.
The important feature of this scheme is that the numerator A-matrix of the
closed-loop canonical RMFD may not be the same as that of the open-loop canonical
RMFD. This result is different from the situation in SISO systems using linear

state-feedback controls.

Theorem 5.1 (Right Characteristic A-matrix Assignment)
If the desired closed-loop right characteristic )A-matrix is given by
Drc(k), and Dot is the leading-column matrix of Dtc(k), then the feedback gain

and input gain become

F=FT (5.7a)

. -1 (5.7b)
Cp ® DrPrhc

where Fc can be determined by
(5.7¢)

chr(x) = GFDrc(A)-Dr(A)

Proof:

From Lemma 5.2, we obtain

B,D_ (M) = (AT_-A )Y (\) = (AL -A_+E, F )y (1)

= (AL -A DY (O)+E, F b (0) = B.D_(A)+E, F b (M)
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Therefore,
B_(GD_ (M)-D (M) = E_ F ()

Since Bc = Ebcb;i and the ith row of ic is zero if Ki=°’ we have
—1 -

Drh(GFDrc(k)—Dr(A)) chr(l).

Thus, the result of Eq. (5.7c) follows. L

The closed-loop canonical RMFD [79,80] can be found as follows.

Corollary 5.2 Let the desired closed-loop right characteristic A-matrix be
Drc(k) and F and G, be determined in Theorem 5.1. Then, the closed-loop

canonical RMFD with D = 0 is given by
canonical pxm

. ceacnery-loe o -1 (5.8)
Gc(k) c(un (A-BF)) BGy Nr(m’rc“‘)
Proof:
¢ (M) = C(AI_-(A-BF)) BG_ = ¢ (AI_-X )78
[ n F c n c c
= ¢y (0Dt = x_un ton n
c'r re r Trc

If arbitrary F and G_, are assigned in Eq. (5.2), the closed-loop RMFD,

F

which may not be the canonical RMFD, can be described as follows.

Theorem 5.2 Let D = opxm and the state-feedback control law be shown in Eq.
(5.2) with the ith row of F being null if ;=0 and G_ being nonsingular. Then,

the RMFD of the closed-~loop system can be expressed as
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- 3F)) lpg = -1 (5.9a)
6 (X C(A1_-(A-BF)) "BGg Nr(x)nrc(x)
where Drc(l) is a column-reduced A-matrix defined by
~ o olepe-l (5.9b)
D__(X) = G [FT_"¥ (N+p (V)]

Proof:

6,(X) = C(AT_-(A-BF)) 'BG, = C (AL -A) "B,

where

-1

- -1 -
A, = A-BFT = and B = T3BG, =E D,G,

For the arbitrary matrices F and Cp specified in Theorem 5.2, A_ and ic are in

c

controller forms but not necessary in canonical controller forms. Therefore,

from Lemma 3.2, we have
o-1 T - =l =
D_ (N = v (0)(A1 -A)) "B +D_

- T -1 .
where D = (I_ wr(o)wr(o))nrth. It can be easily shown that

-~

BcDrc(k) = (AIn-Ac)wr(A)
vhence
" -1 -1
BCGFDrc(A) = (lIn-Aci»BcFTc )wr(k) = (lIn-Ac)wr(k)+BcFTc wt(k)

-1
= Bcnr(k)+3crrc wr(x)

Since the ith row of F is null if K;*0, we have the result in Eq. (5.9b), from

which
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s -1
GFDrco‘) = Dr()‘)"ﬂc \pr(k)

Thus, the closed-loop RMFD becomes

e I ~-1 - -1
G.(X) = ¢ (A1 -A)7'B, C W .(ND_ (X)) = N (VD (X =

Remark

Theorem 5.2 reveals the fact that the closed-loop RMFD can be written as
Nr(k)g;i(k), where the RMFD may not be canonical even if Nr(l) is the numerator
of the open—loop canonical RMFD and Brc(k) is column-reduced A-matrix determined

by Dr(k), F and G If the canonical RMFD of the closed-loop system is found to

o
-1 .
be GC(A) Nrc(X)Drc(X), we can easily prove that Nrc(l) Nr(X)U(X) and
Drc(k) = Drc(k)U(A) where U(A) is a unimodular matrix.
From Theorems 5.1 and 5.2, we observe that the non-canonical column-reduced

A-matrix assignment can be accomplished as follows:

Theorem 5.3 (Column-reduced A-matrix Assignment)

Let Drc(k) be a given column-reduced A-matrix with column degrees

(Kl,...,ﬁm), which is the set of Kromecker indices of the open loop system in

Eq. (5.1). Dic is the leading-column matrix of Drc(k). We choose the

feedback gain and input gain to be

F=FT (5.10a)
c'e
~1 (5.10b)
GF Drh rhe
where Fc can be determined by
(5.10¢)

F wr( A) = GFD“( A) -Dr( )
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Then, the closed-loop RMFD with D = 0 is given by

pxm

G 1o, o 3-1 (5.11)
Gc()\)=C()‘In-(A-BF)) BGF Nr()‘)nrco‘)

Proof:

This follows directly from Theorems 5.1 and 5.2. L

Example 5.1

Given a 3-input 2-output continuous time system

AX(t) = AX(t)+Bu(t)

y(t) = cx(t)+Du(t)

where

[ 2.2 1.6 4.0 3.0 1.0
-6.4 -4.2 -8.0 -6.0 =2.0
A= -1.6 -0.8 -3.0 -2.0 -1.0
3.2 1.6 4.0 3.0 2.0
| 9.6 4.8 12.0 6.0 2.0

[ -2.0 1.0 0.0

-1.0 =2.0 -=5.0

B = 3.0 -1.0 1.0

-2.0 3.0 4.0

| 1.0 -2.0 -3.0

Using the minimal nice selection algorithm in Section 2.3, the Kronecker indices

are found to be Ky = 3, K, = 2 and K3 = 0. Note that the input matrix B

contains a dependent vector, but the system is reachable. From Eq. (2,16), we
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have the canonical RMFD

G(\) = ur(x)n;l(x)

where 2
[ =42°+13A-13 72-12 ©
Nr(x) = 2
| -5A°+10A+3 12X+7 O
and [ a3-2a2-ae2 =2Zers2 -1
Dr(x) - 0 12+2A+1 -2
0 0 1

The open loop poles are -1,-1,-1,1,2, We shall construct linear state-feedback
control laws using both the right characteristic A-matrix assignment and the

column~reduced A-matrix assignment as follows:

(1) Right characteristic A-matrix assignment
Let the desired closed-loop right characteristic Mmatrix be
Be6xe22030 -¥2-7012 0

D_ (N = -10 »-22 247012 0
0 0 1

which is a column-reduced canonical Mmatrix with the leading-column coefficient

matrix

From Theorem 5.1, we have the feedback gain matrix

-25.6 - 6.8 -22.0000 - 1.0000 6.0000

[-12.1 -12.3 -25.5833 -26.4167 -20.5833 ]
F=- 6
0.0 0.0  0.0000 0.0000  0.0000
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and the input gain matrix

The linear state-feedback control law is given by

u(t) = -Fx(t)+GFr(t)

The closed-loop canonical RMFD can be found as
(M) = N_(MD (W)
c T rC

The closed loop poles are -2,-2,-2,-3,-4.
(2) Column~reduced A-matrix assignment
Let the desired denominator of the closed loop RMFD be
Mranigns 2%-70-12 0

D_ (M) = 22244042 32472412 0
0 0 1

The leading-column coefficient matrix is

~ [ 1 -1 0]
D =10 1 0
rhe 0 0 1

which is nonsingular. Thus, Dtc(A) is column-reduced with column degrees
acl(nrc(x)) =3, acz(nrc(x)) = 2 and aca(nrc(X)) = 0. But

24622412048 0 0
L~

plp () =] 2aZsasz aZe7as12 0
rhe rc
0 0 1
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~
and from Definition 3.1, Drc(k) is not a column-reduced canonical A-matrix.

From Theorem 5.3, we have the feedback gain

-27.6 -10.8 -30.0000 -13.0000 - 4.0000

-10.1 - 8,3 ~-17.5833 -14.4167 -10.5833
F= =
0.0 - 0.0 0.0000 0.0000 0.0000

and the input gain

The linear state-feedback control law is

u(t) = -FX(t)+GFr(t)

The closed-loop RMFD is given by
6 (0 = N_ (VD XA
c r re

~ "~
Since the denominator of GC(X) is not a column-reduced canonical A-matrix, Gc(l)
is not a canonical RMFD., From Theorem 3.4, we have the canonical RMFD of the

closed-1loop system:

-1
Gc(l) = Nrc(A)Drc(k)
where

-2l 7A-12 0
Nrc()‘) = 2
-532-142-11 12347 0

It is easy to check that
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N_ (0 = N_(0U_()

Drc(k) = Drc(X)Ur(A)

where Ur(l) is a unimodular A-matrix
1 0 0
ur(l) = {-2 1 0
0 01

The denominator of the canonical RMFD of the closed-loop system in this design
example is the same as that in (1); however, the numerator is different (compare

the numerator of the open loop canonical RMFD with Nrc(l)).

5.3 Left and Right Latent Structure Assignment

In this section, we present an alternative method for constructing the
linear state-feedback control law from the desired left or right latent structure
of the closed-loop right characteristic A-matrix. This approach is the
counterpart of eigenstructure assignment for MIMO system design, which have been
discussed by many authors [64,66]. An advantage of determining the feedback
control law using the latent structure of the closed~loop right characteristic A-
matrix instead of the eigenstructure of the closed-loop system map, is to avoid
dealing with the higher dimensional eigenvectors of the system map.

Using the relationships between the latent structures of the right
characteristic A-matrix of a8 reachable pair and the eigenstructures of the
system map explored in Section 3.2, we derive the state-feedback control law via

latent roots and latent vectors assignment as follows.

Theorem 5.4 (Left Latent Structure Assignment)
A linear state-feedback controller in Eq. (5.2) is required for controlling

the m-input p-output reachable system in Eq. (5.1) with D = 0pxm such that the
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closed-loop right characteristic A-matrix has the assigned latent roots,

{Xi,i=1,...,k}, and left generalized latent vectors, {fij,j=0,1,...,

li—l,i=1,...,k}, where 2. is the length of Jordan chain corresponding to Ai and
1 &;=n. Define
i=1
i 8 plock diag{Ji,i=1,...,k}sc“"“ (5.11a)
where
- - =T
. . B .
- :1 ; : ot A 5 o Plzi-l 2 xm
Ji i * € 3 BJ * € H BJi 4 * €
X R =T
. . . Ai BJk PiO
(5.11b)

Assume that (KJ,EJ) is a reachable pair and the Kronecker indices of (ZJ,ﬁJ) are

equal to those of (A,B). Then, the desired feedback gain F and the input gain

. -1 .

GF can be determined by F = FcTc and ‘GF = Dthrhc' where Tc is the
transformation matrix which transforms A into the canonical controller form AC 8
-1 . . .
TcATc , and Fc is computed from chr(k) = GFDrC(A)-Dr(x). Drc(x) is the right

characteristic )A-matrix of (ZJ,EJ) with the leading-column matrix Drh and Dr(A)

c
is the right characteristic )-matrix of (A,B) with the leading-column matrix
Dl‘h'
Proof:

Theorem 5.4 can be proved using Theorems 5.1 and 3.9. B

Corollary 5.3 With the linear state-feedback control law determined in Theorem
5.4, the left generalized eigenvectors of the closed-loop system map A = A-BF

can be determined by

_ _
P .. =17 1

(k), - T = . .
aij ¢Tp kéo R Ve (Ai)D P 1)’ OstLi-l, i=l,...,k

the i(j

where
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= B ie= . .
T = {IT]).. 1<ism, 1<j<m, K.K.20
P {1 pllj}’ ’ Jsm, K, 3
[TP]ii = reversed upper triangular Toeplitz matrix with first column
" ~ T
[aiiZ""’aiiKi’ll
[ip]ji = reversed upper triangular Toeplitz matrix with first column

- ~ T _ - - T,
[aijZ""’aini’O] if Kisnj or [‘ijZ""’ainj’o""’O] if
Ki>Kj.

83 jk k=1,...,min(Ki,K3), are the coefficients of the (i,j)th entry of ar(k),

= _ a1
where Gr(k) = Drthrc(x)'
Proof:
Corollary 5.3 can be proved using Theorem 5.4 and Corollary 3.3. ]

Theorem 5.5 (Right Latent Structure Assignment)
A linear state-feedback controller in Eq. (5.2) is required for controlling

the reachable system in Eq. (5.1) with D = OP such that the closed-loop right

xm

characteristic A-matrix has the assigned latent roots, {Xi,iﬂl,...,k}, and right

generalized latent vectors, {aij,j-o,l,...,Zi—l,i-l,...,k}, where Ei is the
length of Jordan chain corresponding to Xi and ) %i'n. Define KJ s block
L.x%. i=1
diag[Ji,i=1,...,k]€C 1) where J; is defined in Theorem 5.4, and C; s
wxl,

= - xn = - - i - = .
ICJI,...,CJk]ECm vhere C . = [qio""’qili-llec + Assume that (AJ,CJ) is
an observable pair. The observability indices of (KJ,EJ) are the Kronecker
indices of (A,B), and the left characteristic A-matrix of (KJ,EJ) is Bz(k) with
a leading-row matrix I . Then, the feedback gain, F, and the input gain, Gp»
. -1 . .
can be determined by F FCTc and GF Dthrhc where Tc is the transformation
1

matrix which transforms A into its canonical controller form, Ac = TcATc . Fc

is computed from the following matrix equation:
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(5.12)
ch'r( A= GFDtc( )‘)_Dr( »

where Drc(x) = Drhcsl(k)’ D is any square upper triangular constant matrix

with diagonal elements all 1's and Dr(A) is the right characteristic )-matrix of

rhe

(A,B).

Proof:

From the assumption and Lemma 2.3, le(k) can be realized by

~

a=l .y = _x 412 (5.13)
By (0 = C(A1 -A) 7B +D;

2 -3 3T S _ ==l =T = I P
where BJ T0J¢2(0), DJ = Dlh[Im ¢£(0)], WE(A) WI(X), Dlh Im'
iOJ is the transformation matrix which transforms KJ into its observer canonical

- _-1 -—
form Ao TOJAJTOJ'

Since Blh = 1, the (i,j)th entry of Bz(l))ij, has degree min(vi,vj)-l,
where v; = Bri(ﬁl(k)), and (ﬁl(k))ii is monic. Because v; = Ki,i'l,...,m, where
K; are the Kronecker indices of (A,B), thus acicﬁl(x)) = k; and Bl(l) is also

column reduced. Therefore, Drc(l), defined as Drc(k) b 5L(A)D has

rhe?

aci(nrc(x)) = K;. From the assumption, D is an upper triangular matrix with

the

diagonal elements all 1's. Thus, Drc(k) is a column reduced canonical JA-matrix
with column indices Bci(Drc(X)) = k;,i=l,...,m and Dtc(k) is an appropriate

closed-loop right characteristic A-matrix. From Theorem 3.9 and D;z(x) = EJ(AIn

-7t

3 BJDrhc+DJDrhc’ C, contains all the preassigned right latent vectors,

J
aij,j=0,1,...,Ei-l,i=1,...,k, of Drc(l). Therefore, the control law in Theorem

5.5 contains the preassigned right latent structure. [ ]

Corollary 5.4 With the linear state-feedback control law determined in Theorem
5.5, the right generalized eigenvector of the closed-loop system map A = A-BF

can be determined by
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B T A T S P o (5.14)
9ij Te kzo ®T Y (xi)qi(j-k)’ 0sjst;-1

Proof:

Corollary 5.4 can be proved using Corollary 3.2. n

Example 5.2

Let us consider the same open loop system described in Example 5.1. We
shall construct the linear state feedback control laws using left and right
latent structure assignments as follows:

(1) Left latent structure assignment
Let the desired latent roots and left latent vectors of the closed-loop

right characteristic A-matrix be

- - T
X =5 Flo=11-20
X, = -4 ; B, =13 -40)]7F
2 i 20

- - T
X, =3 Py = [1-10)
X o=-2; P =11 101F
4 ; 40

o= -2 . =12 -30)7F
5 i 50

[-5 0 0 o0 o0

_ 0 -4 0 0 O
A= o 0 -3 0 o
o 0o 0 -2 0

L 0 0 o0 o0 -1

and

—

W
u
[ V]
]
-
coQ0oOoo
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It can easily be checked that the Kronecker indices of (KJ,EJ) are x; = 3, Ky =
2, Ky = 0. Using the formulas given in Theorem 5.4, the feedback gain is found

to be

=35.4 -19.2 -46.6667 -29.3333 -17.6667
F=- 15.4 - 6
0.0 0

.2 =17.5000 - 9.5000 - 3.5000
.0 0.0000 0.0000 0.0000

and the input gain is
[ 1 -1 =1 ]
G.=]|0 1 =2
F olo o 1
The linear state-feedback control law is

U(e) = -Fx(t) + GFr(t)

The closed-loop canonical RMFD isg
(M) = N ()DL
c r re

vhere Drc(x) is the closed-loop right characteristic \-matrix:

CanZazaezs a8 0
D__(M) = 62412 A249)+14 0
0 0 1

It is straightforward to check the Dtc(x) has latent roots ii and left latent
vectors ;io for 1¢ig5, as desired.
(2) Right latent structure assignment

Let the desired latent roots and right latent vectors of the closed-loop

right characteristic )-matrix be
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- - T
Al = -5 3 15 = {100)
- T
Xz = -4 3 450 = [1 2 0]
X, o= -3 a =[{10 o]T
3 ? 30
X, =-2; g,=0o00"
4 ’ 40
- T
xs -2 3 q50 {7 6 0]

From Theorem 5.5, we have

-5 0 0 0 0
_ 0 -4 0 0 0
A - 0 0 -3 0 o0
0 0o 0 -2 o
0 0 o o -2
and
_ 1 0 1 0 1
¢, = 0101-2]
L0 0 0 0 O

It is easy to check that the observability indices of (KJ,EJ) are v, = 3, v, =
2, V3 = 0 which are the Kronecker indices of the open loop system, Choosing the
leading-column coefficient matrix of the closed-loop right characteristic A-

matrix as

Drhc - [

with formulas given in Theorem 5.5, the feedback gain is found to be

com
O

-0 o
| IS— )

-10.6 - 3.8 -11.0000 - 4.0000 0.0000

[ -47.7 -27.1 -65.1667 -44.8333 -28.6667
Fs=s -~
0.0 0 0.0000 0.0000 0.0000

and the input gain is
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[ 1 -2 -1
G,.=] O 1 -2
F lo o 1
The linear state-feedback control law is

u(t) = -FX(£)+G r(t)

The closed-loop canonical RMFD is found as

-1
G (M) = K_(MDL(N)

where Drc(k) is the closed-loop right characteristic A-matrix:

23+10024310030 22246509 0

D__(N) = 0 2Ze62e8 0
Tre

0 0 1

It is straightforward to check that Drc(k) has latent roots ii and right latent

vectors Hio for 1<i<5 as desired.

5.4 Divisor Assignment and Decoupling Design of MIMO Systems

In this section, we shall extend the latent structure assignment scheme
discussed in Section 5.3 to the simpler state-feedback controller design method,
namely, divisor assignment. Basically, the divisor assignment approach is to
construct the feedback law by assigning the desired complete set of canonical
left or right divisors for the closed~loop right characteristic A-matrix. From
Theorems 3.9 and 4.4, divisor assignment is equivalent to the latent structure
assignment in Section 5.3. However, the notion of divisor assignment enables us
to construct the state-feedback controllers for parallel forms (refer to Chapter

V1 for details), input decoupling, and input-output decoupling [69-71] of
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closed~-loop MIMO systems.

Theorem 5.6 (Left Divisor Assignment)
Let {Drci(l), i=1,...,k} be a desired complete set of canonical left

divisors of the closed-loop right characteristic A-matrix. Assume that (Kci’

ﬁci,aci,ﬁci) is a minimal realization quadruple of D;ii(k) for i=l,...,k.
Define
< : n : 5.15
Ac = Block dxag[Aci, i=l,...,Kk] ( a)
and
= _ =T =T (5.15b)
B, = [B yy.0eyB )

If the Kronecker indices of (Ec’ic) are the same as those of the open loop
system, then the linear state-feedback control 1law in Eq. (5.2) can be

constructed as

F=FT (5.16a)
cc
en -l (5.16b)
GF Dthrhc
where Fc is determined by
(5.16¢)

chr(l) = GFDrc(X)-Dr(l)

Note that Dr(l) is the right characteristic A-matrix of the open loop system
described in Eq. (5.1); Drc(l) is the right characteristic A-matrix of (Kc,ic);
D, and D = are the leading-column coefficient matrices of Dr(l) and Drc(x),
respectively, ¢r(k) is defined by Eq. (2.13b). T, is the wmatrix which

transforms the system map A of the open loop system to its controller canonical
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form Ac'

Proof:

Similar to the proof of Theorem 5.4. ]

Theorem 5.7 (Right Divisor Assignment)
Let {chi(k), i=1,...,k} be a desired complete set of canonical right

divisors of the closed-loop right characteristic A-matrix. Assume that (KOi’
= = = . - . . -1 .
By;1Ci?Dp;) 15 a minimal realization quadruple of chi(X) for i=1,...,k.

Define

(5.17a)

>
]

Block diag[xoi, i=1,...,k]

and

_ = - (5.17b)
Co = [Cypre-21Cp]

If the observability indices of (KO,EO) are the same as the Kronecker indices of
the open loop system and the 1leading-row coefficient matrix of the left
characteristic A-matrix Of.(ﬁo,ao) is 1, then the linear state-feedback control

law in Eq. (5.2) can be constructed as

F=F T (5.18a)
[
- -1 (5.18b)
GF Drh Drhc
where Fc is determined by
- _ (5.18¢)
Fcklir(k) GFDrc(X) Dr(k)

And, Drhc is an upper triangular matrix with diagonal elements all 1's; Drc(A) =
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D, ER‘C(A) and Bzc()\) is the left characteristic A-matrix of (KO,EO). Dr(A) is
the right characteristic A-matrix of the open loop system. “I’r()‘) is defined by
Eq. (2.13b). T, is the transformation to transform the system map A of the open

loop system to its controller canonical form Ac.

Proof:

Similar to the proof of Theorem 5.5. u

In practical applications, we may choose the simpler structure for the
complete set of canonical left/right divisors of the closed loop characteristic A-
matrix such that all the necessary conditions in Theorems 5.6 and 5.7 are
satisfied. In Propositions 5.1-5.4, various ways to carry out the left/right
divisor assignment are proposed. The information which is needed to perform the
design of an MIMO system using the approaches in Propositions 5.1-5.4 is the set
of Kronecker indices of the open loop system. In Proposition 5.5, we shall
explore the input-output decoupling design problem, using the idea of divisor
assignment.

k
Proposition 5.1 Let Drci“) - diag{dij()\),jtl,...-,m} for i=1l,...,k, and Z

i=]l
deg[dij(l)] = Kj’ then {Drci(k),i-l,...,k} is a complete set of left divisors

vhich can be assigned to comstruct Drc(k). a
k
Since D_ () = diag{ w d..()),j=1,...,m}, the Kronecker indices of D_ (1)
re jep 13 rc

will be the same as those of the open loop system. Applying Theorem 5.6 gives

the desired feedback gains F and input gain G

F

Similarly, for right divisor assignment, we have the following:

k

Proposition 5.2 Let D, .() = diag{d..(A),j=1,...,m} for i=l,...,k, and )
et B i=1

deg[dij(l)] = Ky then {chi(l),hl,...,k} is a complete set of right divisors

which can be assigned to construct Drc(x). [ ]
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k

Since ch(k) - diag{_'l'r1 dij(X),j'l,...,m}, the observability indices of
1’

Slc(l) will be the same as the Kronecker indices of the open 1loop system.

Selecting a Drhc and applying Theorem 5.7 gives the desired feedback gain F and

input gain Gpe

Proposition 5.3 Let

= di j= (5.19)
Drci(k) d1ag[Ii_1,di(k),Im_i],x lyeeeym

with deg[di(k)] = K;» then {Drci(l),i-l,...,m} is a complete set of left

divisors which can be assigned to construct Drc(k). [

Proposition 5.4 Let

(5.20)
chi

) = diag[li_l,di(k),lm_i],i=1,...,m
with deg[di(k)] = K;, then {chi(l),i=1,...,m} is a complete set of right
divisors which can be assigned to construct Drc(l). [

The divisors suggested in Proposition 5.3 result in

Drc(l) = diag{di(l),i=l,...,m}

and the closed-loop RMFD becomes

v -1
I om_ 000 )

i=1

- - -1
GC(A) = c[AIn (A+BF)] BGF

Also, from Eq. (2.15¢), we have Nrci(k) = [Ni(k),O , where Ni(k) is

px17 e+ e1001

a column polynomial vector, The closed-loop transfer function matrix becomes
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o N.(A)

= 1 (5.21)
y(t) igl EZ(XT ri(t)

The parallel decomposed system in Eq. (5.21) is an input decoupling system. The
same reasoning can be applied for Proposition 5.4 with Drhc =1 The technique
for input decoupling can be extended to design an input-output decoupling system
which is defined as

n,(A)

yi(t) = E§TXT ri(t) for i=1,...,m and m=p (5.22)

The necessary and sufficient conditions for input-output decoupling using linear
state-feedback have been investigated by many authors [10,68-71]. Wolovich
[10,69] derived the condition that the matrix ii: EG(X)G(X) é KG be nonsingular

for m=p, where EG(A) is the interactor of the open loop system, namely

f.
EG(X) = diag{A 1,i=1,...,m} for fiZO

When KG is nonsingular, the closed-loop characteristic A-matrix can be factored

as

- (5.233)
Drc(l) D, (X)F(X)

where N()1) is a right divisor of Nr(x), or

N _(A) = N_(A)N(A) (5.23b)
r d

Nd(A) = diag{ni(k),i=1,...,m};Dd(x) = diag{di(l),i-l,...,m}
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degld,;(N)] = degln, (M)]+£;

For practical applications, N()) must be stable and invertible.

m

Note that the

closed-loop poles associated with ¢ di(k) can be arbitrarily assigned, and

i=1

that n.()) is the monic common divisor of the ith row component of N _(A). The

feedback gains for input-output decoupling can be determined as follows.

Proposition 5.5 Assume that di(x) are monic, then the feedback gains for the

input-output decoupling are F = FcTc’GF = K;l, vhere Fc satisfies

-lc,-1
F 0, (0 = D[RS ()-D_(N)]

Proof:
Since

Lim
pe ]

-1
£G(A)NI(A)Drc(A) = KGp

and

N_(OODZL(N) = diag{n,(N)/d;(X),ix1,...,m}

where both n.(}) and d4;(X) are monic, then K,G, = I orGp=

GF

From Eq. (5.7), we obtain 6 = D -}

rh rch and D

rch KGDrh'

-1
G

Thus, F (W) = (RD_)7'D__(W-0_lp (M = o iixZln_ (0-D (M.

rh r

Example 5.3

Consider a 3-input, 2-output system

AX(t) = AX(t)+Bu(t)

y(t) = CX{t)+Du(t)

(5.24)
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where
-1 =2 4 -9 21 4 -3 =2
0 -2 2 -5 4 -1 1 1
A= 0 2 -5 10 -23 H B=1(-1 3 5
0 1 -2 4 -4 2 1 4
0 0 0 0 2 1 0 1

e R A

The Kronecker indices are found to be K = 3, K, = 2 and Ky = 0. Note that the

input matrix B contains a dependent vector. From Eq. (2.11b) we obtain the
similarity transformation matrix as

0 -0.11111 0.55556 <-1.55556 3.55556

0 =0.22222 0.11111 =-0.11111 0.11111

Tc = 0 0.55556 -0.77778 1.77778 -2.77778
1 -2.88889  6.44444 -13.4444  26.4444

-1 3.22222 -7.11111 16.1111 -32.1111

Ac, Bc and Cc in the controller canonical form become

0 1 0 0 O 0 0 O
-1 0 01 0 0 000
AcﬁTcATc = __2____3__0__(1__0_ 4 B =TB= __1_9__1_
0 00 0 1 0 0 0
-3 -3 0 -1 -2 01 2
sl T2 0 204 37, .
cemert= [0 0 512 3] om0,
From Eq. (2.14c) we obtain
2 T

4&
~~
>
S’

[ ]
—
o O
(= =2 4

Yoo 2 30 0 0
0 1 A i A =1]-3 -3 0 -1 -2 ;
0 ¥ 6 00 0 O
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\Ilr()‘) plays an important role in determining the eigenvectors of the system
matrix Ac and the latent vectors of the right characteristic A-matrix of the
system. The right characteristic A-matrix of the system can be written as

0 -17 fal-3x-2 0 o
= - = - 2
D_(X) =D 1D (N)-4 3 (1) 01 -2 333 AS42a41 0

1 0 0 1
PR P N S |
= | 3a+3 aZa2ael -2
0 0 1

Nr(k) in Eq. (2.15c) becomes

[ 23242 34 0 ]
N(A) =Cy (N =
T ¢’r 3 Zaaaes 2042 0

The RMFD of the system can be described as G(A) = Nr(X)D;l(X).
To demonstrate the input decoupling of a MIMO system, using the divisor
assignment method, we assign the desired complete set of left divisors of the

closed-loop right characteristic A-matrix as:

Aa5i4 0 0 »2 0 0
D_.(A) = 0 A2 0], D_(N) = 0 A+4 O
rel 0 0o 1 re2 o o0 1

The minimal realization of the closed-loop characteristic A-matrix in a Jordan

form can easily be found from Drcl()‘) and Drcz( A) as:

-1 0 0 -2 0 1 0
A_. = block diag 0 -2 o0}, s B..=]0 1
¢ 0 B fo o
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Thus, the right characteristic A-matrix of the closed-loop system becomes

A3+7)\2+14A+8 0 0

D__(N) = 0 2e6x8 0
Irc

0 0 1

From Theorem 5.6, we have the state-feedback control law:

u(t) = Fx(t) + Gr(t)

where
0.0 1.0 - 2.0 5.0 -18.0
F= FcTc = -3.0 6.3333 -14.66667 24.66667 -45.66667
0.0 0.0 0.0 0.0 0.0
4 [1 0 -1]
G,=D_.D 01 =2
F rh rch 0 0 1

The closed~loop RMFD of the designed system is described by

23242 3as 07 F O+7ae1408 0 077!
¢ (A = 0 346248 0
3244008 202 0 0 0 1

The partial fraction expansion of the closed-loop RMFD yields (refer to Section

6.1)

1

7211 -1 0 M 2+sx4 0 07 =5 4 07[M2 0 O
G (A = 0 A+2 0 + 0 4 0
¢ 7)+10 -1 © 0 o 1 -4 3 oJLo o 1

Example 5.4

-1

To demonstrate the input-output decoupling of a MIMO system, we consider
the following 2-input, 2-output system:
Ax(t) = ax(t) + Bu(t)

y(t) = cs(t) + Du(t)
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where
-1 -2 4 -9 21 4 =3
0 -2 2 -5 4 -1 1
A= 0 2 -5 10 -23 s B= | -1 3
0 1 =2 4 -4 2 1
0 0 0 0 2 1 0
2 -5 1 10 8 =21 8 41 8
C = [ 9 9 9 9 ] : D=0
? 2x2
-3 9 -20 43 -85

The RMFD of the system can be computed as

2aan-s -a1] [ a3-3a-2 0 -1

G(\) = 2
0 A-2 3M+3 AT+22+1

The interactor is

E(0 = [g ‘;]
K = 1% £ (NG(Y) = [3 '{]

The numerator matrix Nt(A) can be decomposed as

3
PAEXPCTAES ¥S B I
Nr(x) = [ o )‘_ZJ = Nd(A)N(A)

where

-1 o0 . = [ A+ -1
“d“‘)=[o H], N(A) [0 1]

The number of poles which can be assigned is 4. Let the left divisor of the

closed-loop right characteristic A-matrix be
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- [+ e2) 0 ]
pg0 = [ M4 (A2 (Ae)
Thus, the closed-loop right characteristic A-matrix becomes

Drc(x) = Dd(A)N(A)

- [(x+1)(x+z)(x+4) —(m)(m)]
0 (A+2) (A+4)

The feedback control law can be solved as

u(t) = GFr(t) + FX(t)

where

111
Cp = K¢ [o 1]

_[-3.0 s.
F=FTI.* [-3.0 6.

66667 -19.33333 37.33333 -80.33333 ]
ce

33333 -14.66667 24.66667 -45.66667

The closed-loop RMFD of the designed system becomes

A-1
G (WF2y 0
Gc(k) =
0 A-2
(A+2)(A+4)

showing that the designed system is input-output decoupled.



CHAPTER VI STRUCTURAL DECOMPOSITION THEORIES AND APPLICATIONS 1IN

MULTIVARIABLE CONTROL SYSTEMS

The main purpose of this chapter is to investigate the interconnection
structures of multivariable systems described by MFDs. The divisor and spectral
factorization theorems developed in Chapter IV will be utilized as the primary
tools for studying the properties of the basic interconnection structures, these
being the parallel forms, the cascade forms, and the semi-cascade forms of
multivariable systems.

For convenience in explaining these basic interconnection forms, we
consider a class of m—-input, m-output systems, which can be described by a
proper, 3rd-degree, right matrix fraction description (RMFD) with a monic
denominator A-matrix [80]. The RMFD can be described by the following

fundamental structures:

1) = 6_(MU(N) (6.1a)
- 10y o 3,0 42 3.8 42 -1 (6.1b)
cr(X) Nr(x)Dr (1) (NOA +le +N2A+N3)(Imx +D1x +D21+D3)
B 2 2 o = = = -1 (6.1¢c)
= Nol(xxm+sl)(11m+sz)(A1m+s3)][(A1m+sl)(xlm+sz)(A1m+s3)1
- 3 2 = -1 = (-1 G | (6.1d)
(NOA +N1x +N2A+N3)(A1m+s3) (A1m+sz) ().Im+sl)
(6.1e)

-1 -1 -1
N0+K1 ( XIm+L1) +K2( Mm+L2) +K3( )\Im+L3)

-1 -1 -1
NOI(AIm+Zl)(AIm+P1) ][l1m+zz)(xxm+p2) ][(A1m+z3)(k1m+P3) ]
(6.1f)

where No,

N, and D, i=1,2,3 in Eq. (6.1b) are matrix coefficients} Si and §ﬂ
i=1,2,3 in Eq. (6.lc) are the spectral factors of Nr(k) and Dt(k), respectively;
L i=1,2,3 in Eq. (6.le) are the complete set of left solvents [17-18,25-27)

of Dr(k). The matrices K;y i=1,2,3 in Eq. (6.le) are the block residues [27-31)
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associated with L;, i=1,2,3. P, and 2., i=1,2,3 in BEq. (6.1f) are, in general,
not the spectral factors or solvents of Nr(k) and Dt(l), respectively, Note

~

that, for a single variable system, or a completely decoupled system, si =z

and §i = L; = P; for i=1,2,3. The set of linear A-matrices, {(XIm+Li),
i=1,2,3}, in Eq. (6.1e) is the complete set of left divisors [31] of Dr(l).

The structure of Eq. (6.1d) is the semi-cascade form in which the
denominator modes with associated latent vectors of Dr(k) are isolated from one
another but not from the dynamic modes of the numerator. The semi-cascade form
is a suitable structure for modal control of multivariable systems [30]. The
parallel structure of Eq. (6.1le) is a block partial fraction form [26] of Gr(l),
which is often used because of its satisfactory reliability and sensitivity
properties in physical system realizations. The cascade structure of Eq. (6.1f)
is valuable from many aspects. For example, such a structure provides advantages
of simplicity in construction, sensitivity reduction, maintenance in physical
system implementation and trouble shooting of the implementation hardware.

In this chapter, we shall investigate the interconnection structures of an
m-input, p-output linear time-invariant system described by Eq. (2.1), repeated
here for convenience:

AX(t) = Ax(t) + Bu(t) (6.2a)

y(£) = €X(t) + Du(t) (6.2b)

If the system in Eq. (6.2) is reachable, the canonical RMFD of the systems

becomes (refer to Section 2.2)

-1
G(A\) = Nr(X)Dr (A)+D

where Nr(A)D;l(A) is a strictly proper rational A-matrix, and Nr(A) and Dr(k)

are right coprime. If the system in Eq. (6.2) is observable, the canonical LMFD
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of the system is given by (refer to Section 2.2)

-1
(L) Dy ()‘)Nz(l)‘*D

where D;l(A)NL(X) is a strictly proper rational A-matrix, and Nj(A) and DE(k)
are left coprime., As pointed out in Section 2.1, for a general MIMO system,
Dr(k) and Dl(l) may not be monic., Instead, they are canonical column-reduced
and canonical row-reduced A-matrices, respectively. The principal tools for the
results developed in this chapter are the spectral decomposition/factorization
theorems of nonsingular A-matrices explored in Chapter IV via the geometric
approaches [5,81-82]}.

This chapter is organized as follows. In Section 6.1, we study the
parallel decomposition structure of MIMO systems and its applications to model
reductions and multiport network synthesis. In Section 6.2, the semi-cascade
realizations and their applications to modal control of MIMO systems are
investigated. In Section 6.3, the minimal cascade realizations and their

applications to multiport network synthesis are discussed.

6.1 Parallel Decomposition Theories and Their Applications to MIMO Systems and

Circuits

In this section, a complete set of canonical left (right) divisors of the
right (left) characteristic A-matrix of -a reachable (observable) MIMO system
derived in Section 4 of Chapter IV is employed to study the parallel decomposed
structures [26,27,31] of MIMO systems and to develop their applications to model

reductions and network synthesis.

6.1.1 Parallel Decomposition Theories of MIMO Systems

As indicated in Theorem 4.13, if a MIMO system is reachable (observable), a

complete set of canonical left (right) divisors of the right (left)
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characteristic A-matrix exists.

Definition 6.1 let & system (A,B,C,D) in Eq. (6.2) be reachable and

decomposable into the forms in Eq. (4.30). Also, let (K'I’Kiz""’rim) be the

Kronecker

transforms (A,,B.) into its controller canonical form (A ;B

cp

B
cp

c
cp

D
cp

and A .
Ccl
(A

(4,8,C,D).

Theorem 6.

Let (Acp’B

(A,B,C,D)

cp’Bcp’C

1

indices of (Ai’Bi)’ and Tci be the transformation matrix which

ci). Define

a . . Ry )

= block diaglA_;,i=1,...,k)5 A_,€C (6.3a)

A T T T.T A (6.3b)
[Bcl’Bcz""’Bck] ? Bcie

A PRy (6.3¢)
[ccl’ccz""’cck]’ cciec

A D (6.3d)

= TciAiT;:; By, = T, Bis €y = CiT:: for i=1,...,k. Then,
D__) is called a parallel controller canonical form of the system

cp’cp y

o

1 (The Generalized Right Partial Fraction Expansion Theorem)

,C_,D ) be a parallel controller canonical form of the system
cp’ cp  cp

in Eq. (6.2). Then, the right matrix fraction description (RMFD) can

be decomposed as

G(A)

where

Nri(

. -1 . -1 (6.4a)
Nt(k)nr (D)+D § Nri(l)nri(k)ﬂ)cp

i=1

1y, 8 -1
A)Dri()‘) - cci(AIni-Aci) Bc

i
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Dri(l) is the right characteristic A-matrix of (Aci’nci) and

. Lol (6.4b)
N =€ b () = €T o, (D)
where
K.,~-1
e A0 0 we 0 w00 L T
A i2 0 0
Ajo . . ) SRR § . .ee
Wri(l)
e e aes . e s e . R Y
00 «o. O 00 ... O eee 1A L. A
(6.4c)
Proof:
From Eq. (6.3) we obtain
A -1, -1
c(}) C(lIn-A) B+D = CCP(AIn Acp) Bcp"'Dcp
k -1 k -1
- z cci(XIn -Aci) Bci+Dcp = X Nri()‘)Dri(x)‘.Dcp u

i=1 i i=1

Equation (6.4) shows that the RMFD can be described by partial fraction
expansion forms. The interpretation of the system structure in Eq. (6.4) is that
the original system has been decomposed into the parallel connections of
subsystems described by the canonical RMFD Nri(k)D;:(X), i=l,...,k.

The dual results of the parallel decomposition for observable systems are

described as follows.

Definition 6.2 If the system {A,B,C,D) in Eq. (6.2) is observable and
decomposable into the forms of Eq. (4.30), let (vil,viz,...,vip) be the
observability indices of (Ai’ci) and Toi be the transformation matrix which

transforms (Ai’ci) to its observer canonical form (Aoi’coi)' Define
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n,xn.

A . . . i (6.5a)
AOp block dxag[Aoi,l 1,..05k]; AOieC
AT T T.T, n;Xm (6.5b)
Bop - [BoyrBogr---1Boil 3 Bp;€C
A Py (6.5¢)
Cop = [C917C022 -~ 1Cou) 3 Cos €
A
Dyp = D
and A, = T.YA.T .3 B.. = T.1B.; Co. = C.T., for i=l,...,k
oi = ToifiToi? Boi T Toi®id Yoi T “ifoi AAAELE
Then, (A, ,B, ,C. ,D. ) is called a parallel observer canonical form of the
Op' 0p’ 0p’ Op
system (A,B,C,D). a

Theorem 6.2 (The Generalized Left Partial Fraction Expansion Theorem)

Let (A0 DOp) be a parallel observer canonical form of the system

p’Bop’COPI
(A,B,C,D) in Eq. (6.2). Then, the LMFD of the system can be decomposed as

k
A -1 . F 4t (6.6a)
G(A) = Dy (NN (A)+D i=2'1 Dﬂ.i“)Nzi(M*DoP
vhere
pTlnm,. (0 S . - )7
121 1 0i ni 0i 0i
Dzi(k) is the left characteristic A-matrix of (Aoi,coi) and
(6.6b)

A ~1
g, (0 & ¥y (0B, = By (NTy;B,

where
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\).1-1
A ... oAt 0 I 0 ... 0
vi2-1
vee Ao, cee cee
eI o 1 A 00 0
e e see . v e ses . s o o wes ; -1
00 ... © 00 ... O oo 1 X . AT
(6.6¢)
Proof:
Similar to Theorem 6.1. N

As pointed out in Section 4.4, the matrix sign algorithm can be employed to
compute the transformations for block diagonalization of the system map A and to
find out the complete set of canonical left/right divisors for the right/left
characteristic A-matrix of the system in Eq. (6.2). Therefore, the matrix sign
algorithms, together with the minimal nice selection algorithms (Section 2.3)
for determining the Kronecker indices of each parallel decomposed subsysten,
constitute effective numerical methods for performing the left/right matrix
fraction expansions for left/right MFDs of MIMO systems,

Applications of the parallel decomposition for MIMO systems are illustrated

in the following subsections.

6.1.2 Model Reduction of MIMO Systems

A low-degree model of a high-degree MFD is often desirable for computer
simulations and control system designs., A model reduction method for a class of
MIMO systems described by MFDs with monic characteristic A-matrices has been
proposed by Shieh and Tsay [27]. This method is extended in this subsection for
analysis and design [83] of general MIMO systems.

The basic idea for reducing a high order MIMO system to a lower order model
is to decompose the system into dominant and non-dominant subsystems, and to
discard the non-dominant subsystem which has faster dynamic responses. Ve

define the dominant and non-dominant modes as follows.

Definition 6.3 The non-dominant modes of a continuous-time system are defined
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as the modes with Re(li)<Y1, where Y, is a real number, while the dominant modes
are the modes having Re(li)>Y1. If the eigenvalues distribution of the original
system is unknown, the real number Y, can be chosen as Y, = trace(A) /n, which is
the arithmetic mean of the eigenvalues of A. For a discrete-time system, the
non-dominant modes are the modes with Ili|<Y2, where Yz is a positive real
number, while the dominant modes are the modes having |1i|>Y2. If the
eigenvalues distribution of the original system is unknown, the positive real
number Yz can be chosen as Y, = In/E;?TXTI, which is the geometric mean of the
eigenvalues of A, [m]

Two methods, namely the frequency-domain reduction method and the time-
domain reduction method, are to be derived for the model reduction of MIMO
systems based on the idea mentioned above.

The use of Theorem 6.1 yields a frequency-domain model reduction method for

a right MFD as follows.

Theorem 6.3 If an MIMO system can be decomposed into parallel connections of

two subsystems as

- -1 -1 (6.7a)
(™) er(l)Drl(l)mtz(X)Drz(k)'rDcp

such that Drl(l) contains latent roots of dominant modes and Drz(l) contains

non-dominant modes, then the reduced-degree model of G(A) can be determined by

- “1yyen = (6.7b)
cA(A) Nﬂ(k)nn(x)mcp c(A)
where
Dcp = NrZ(O)D;;(0)+Dcp (for continuous-time systems) (6.7¢)
and
Dcp = er(l)D;;(1)+DCP (for discrete-time systems) (6.7d)

~

Dcp is an p*m constant matrix derived for matching the zero-th time-moment of
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impulse response of G(t), or the steady-state values of the unit-step responses
of the original stable system. L
In a similar manner, by utilizing Theorem 6.2, we obtain a frequency-domain

model reduction method for a left MFD as follows.

Theorem 6.4 If an MIMO system can be decomposed into parallel connections of

two subsystems as

| -1 (6.8a)
G(A) DM(X)NM(X)+D22(A)N£2(A)+Dop

such that Dzl(A) and DEZ(X) contain latent roots of dominant modes and non-
dominant modes, respectively, then the reduced-degree model of G(A) can be

determined by

| S {6.8b)
G, () D“(X)NLI(XHDOP = G(A)
where
DOp = D;;(O)N22(0)+DOP (for continuous-time systems) (6.8c)
and
DOp = DE;(I)N£2(1)+DOP (for discrete-time systems) (6°8d:

Since Drl(k) in Eq. (6.7b) and Dzl(l) in Eq. (6.8b) are obtained from the
induced pair (ALI’BLI) and the embedded pair (ARI’CRI) of (A,B) and (A,C),
respectively, the matrix sign algorithm in Theorem 4.21 can be employed to
compute the frequency-domain reduction models in Theorems 6.3 and 6.4.

In some control system problems, state-space reduction models are needed.
For instance, the suboptimal control design and the approximate observer design
are in this category. For these purposes, the time-domain method for the model

reduction of an observable MIMO system can be stated as follows.
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Theorem 6.5 Let (A,B,C,D) be an observable continuous-time system and define

A o+ nxn1
s, = Ind[Sign (A—Ylln)lec
A - )
52 = Ind{Sign (A-Ylln)]ec » ny4n, =
A+ Sl + * -1 %
Ap, F sjas eC » Sy = (8;8) s
L -1
By - S5B€C » Sy =M1 o , 185, s,]
1 "1"2
A pxny
CRl = CsleC
Y R T - -1 pm
Dop = C(-A) "B+D ch( ARI) BRIEC

The reduced-order model with dominant modes of the original system having a non-

zero initial vector X(0) becomes

Az(e) = ARlz(t)+BR1u(t)
y (e) = cmz(c)+ﬁopu<c) = y(t)

z(0) = [cC 1'1c;1[cx<0)-30pu(o)1 if pan)

*
R1°R1
or

* * -1 - .
z(0) CRIICRICRI] [cx(o)-nopu(o)] if psn)

-

The corresponding canonical LMFD of (ARI'BRI'CRI’DOP) is
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-1 ~
GA(U = D“(A)N“(A)'enop

Proof:
Theorem 6.5 can be proved from Theorems 6.4 and 4.16 and Corollary 4.8. [
An alternative time-domain method for the model reduction of a reachable

MIMO system can be stated in a similar way:

Theorem 6.6 Let (A,B,C,D) be a reachable continucus—-time system. Define

n,xn
\ 4 {Ind[(Sign+(A-711n))T]}TeC L

n,xn

b .- T1T A~ 2 -

v, {1nd[(sign (A-ylln)) 1}eC » mytn, = n
n,xn

) + A~ 1771 + Lo * =1

A, B VAV eC » vy vl(vlvl)
n,xm
BLl VIBEC
~  pXn -

4 1 4 (T, T,-T T

CL1 CvleC N Vl [VIVZ] [1“1 0“1"“2]

I R b T _ -1 pXm
DCP C(-A) "B+D cLl( Au) BLleC

Then, the reduced-order model with dominant models of the original system having

a non-zero initial vector X(0) becomes

Az(t) = ALIZ(t)+BL1“(t)

ys(t) = Cle(t)+Bcpu(t) = y(t)
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* -1 * - .
z(0) = [CLICLI] CL1{CX(0)-Dcpu(0)] if p2ny

or

* * -1 ~ .
2(0) = ¢, (¢ ¢ ,] [CX(O)-Dcpu(O)] if pgn,

The corresponding canonical RMFD of (ALI’BLI’CLI’Dcp) is
¢, () = N_, (0D 10D
A rl rl cp a

Again, the matrix sign algorithm in Theorem 4.21 can be used to compute the

time-domain reduction models in Theorems 6.5 and 6.6.

Example 6.1

Given a 3-input 2-output continuous-time system described by the state-

space equations (6.2) with X(0) = °5x1’ where

0.5 -3.0 10.5 -21.5 39.0 -2.0 1.0 0.0
0.5 -2.0 - 3.5 6.5 - 5.0 1.0 -2.,0 -3.0

A= -1.0 2.0 - 9.0 17.0 -30.0 4 B = 1.0 1.0 3.0 H
-0.5 1.0 - 2.5 4.5 -25.0 2.0 1.0 4.0
0.0 0.0 0.0 0.0 - 8.0 1.0 0.0 1.0

c = | 10.0 -15.0 41.0 -65.0 131.0 D=0
5.0 -2.,0 1:0.0 - 2.0 6.04 °’ 2x3

Find: (1) The corresponding canonical LMFD of this system.

(2) The block decomposition of the MIMO system into two subsystems:
one containing eigenvalues with real parts greater than
yl(= trace(A)/n) and the other containing eigenvalues with real
parts less than Yi*

(3) The left block partial fraction expansion and the reduced-degree

model of the LMFD.
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(4) The reduced-order model of the original systen.

Solution:

Using the minimal nice selection algorithm in Section 2.3, we find that the

Kronecker indices of this system are K1'3, Kh’z and Ké-o. Since xé-o, there

exists a dependent vector in the input matrix B. The corresponding canonical

LMFD can be found as

-1
G(X) = D, (N, (D)

where 3 2
[ A74+5.1642°+5.319A+3.475 -0.208X-1.658
D (X)) = 2 2
[ -0.649)\"-6.853A-4.366 A +8.836)+6.688
and _ 2 2 2
727+22,1492-2.074 16X +80.627A+55.24 39) +183.403l+108.406]
N, (X)) =
o | ~4.545)-54.377 6.6112+35.366 8.678A+16.354

We shall decompose the systems into the two subsystems described in (2) above,
where eigenvalues with real parts greater than "n- trace(A)/n = -14/5 = -2.8.
First, we have to compute Sign+(A-YIIS) and Sign—(A—YIIS), which can be

expressed as

.+ 1 .
Sign (A+2.8I5) 7 [SLgn(A+2.815)+15]

Sign (A+2.81,) = I -Sign+(A+2.815)

5

The computed matrix sign functions are:

1 0 1 -2 4 0 0 -1 2 -
. 01 -2 4 -8 ) 00 2 -4
Sign (A+2.815) =] 00 0 2 -4 |; Sign (A+2.815) =100 1 -2
0 0 0 1 =2 00 0 0
0 0 0 0 0 0 0 0 0

-8
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From the ranks of Sign‘(A+2.815) and Sign-(A+2.815), ve have n; = 3 and n, = 2,
respectively. Thus, the system map A can be block-decomposed into two
submatrices by using the block modal matrix Mg. To find the block modal matrix
Ms in Eq. (4.41b) for the block-diagonalization of A, we determine the canonical
injection maps S1 and s, in Eq. (4.40) using Algorithm 4.1 in Section 4.4. The

obtained matrix MS becomes

1 0 -23-1 -4

0 1 41 2 8

M, = [85.:8,] = 0 0 21 1 &4
5 172 0 0 1: 0 2
00 0,0 1

1
Let  =z(t) = 1;'X(¢)

where S, = Ind[Sign+(A+2.815)] and S, = Ind[Sign-(A+2.815)].

2

n,x1 n,x1
where z(t) = [z2(e),2 (0] 7; z(e)ec™; z(0eC bz ledec 2 .

Then, the block-decomposed system in z(t)-coordinates becomes

Az(t) = ADz(t)+BDu(t)

y(t) = CDz(t)+DDu(t)

where

-1 - . .
AD Ms AHS block d1ag[AR1;AR2] i

. [-o.s -1.0 - 4.5 . [-a.o 20.0
=s*as, = | 2.5 -6.0 -27.5 | ; = stas, =
a1 7 514 -0.5 1.0 4.5 Rz T 2152 0.0 -8.0

-1 T .T,T
By = MgB = [Bpy,Bpol 3
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-3.0 -1.0 -5.0

P By
R2 1.0 0.0 1.0

Cp = CMg = [Cpy5Cp,]

From Theorem 6.2, we obtain the left block partial fraction expansion of G(}) as

-1 -1
G(2) DZI()‘)NEI()‘)+D2.2()‘)NR.2()‘)

where

?

D..(A) = X2+1.154X+0.903 =0.469 |, N () = 5A-0.232 17X+13.611 39)+27
21 -0.810A-0.565 A+0.846 1 L1 =7.052 4.225 1.398

Meo0 7. .2 10
Dga( M) -4 x+s]' N2 (M) [3 -1 1]

Note that {DZI(A), Dlz(k)} is a complete set of canonical right divisors of
D).
Applying Theorem 6.4, the reduced-degree model obtained by dropping the

subsystem D;';()‘)Nu(l), which has eigenvalues less than -2.8, becomes

= -1 D o~
GA(A) DM(A)NM(AHDOP = G(A)
where

~ [ -0.5 0.25 0.0
Dyp = Dgp(0INy,(0) -0.625 0.25 -0.125

The reduced-order model obtained from Theorem 6.5 becomes
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Xzs(t) = A 1zs(t)+BR1u(t)

R

yx(t) = CRlzs(t)+Dopu(t) = y(t)

* -1 * ”
zs(O) = (CRICRI) CRIICDZ(O)-Dopu(O)]

0.643 -0.257 1.285 =-0.257 0.771

1.164 -0,465 2,327 -0.465 1.396
= z(0)
-0.539 0.903 -2.390 4.028 -8.084

-0.145 0.058 -0.029
+ | -0.080 0.032 -0.016 | u(0)

-0.021 -0.01l1 -0.002

The time-response curves of the original system and the reduced-degree model and
reduced-order models obtained above for the unit step inputs of u(t) = [1,0,0]T,
u(t) = [0,1,0]T and u(t) = [0,0,1]T are compared in Figs. 6.1-6.6. The
approximation is quite satisfactory. It is interesting to note that the
3 " -1.0, Xa ==4.0 and

A5 = =8. The reduced-degree model and the reduced-order model obtained by using

eigenvalues of the original system are 11 2 " -0.5%30.5, A
’
Theorems 6.11 and 6.5, respectively, contain eigenvalues Xl,lz and X3.

6.1.3 Multiport Network Synthesis

If G(A) is the transfer function matrix of a multiport network to be
realized, then Eqs. (6.4a) and (6.6a) are the parallel decompositions of G(A).
Each subsystem Nri(X)D;:(X) can be realized using active elements or R-C ladder
networks with summers [84,85). Thus, a desirable network can be constructed by
connecting all subnetworks together with the direct matrix gain Dcp‘ The

proposed approach can be viewed as the generalized Foster realization [86-88]

for multiport network synthesis.
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ORIGINAL SYSTEM
------ REDUCED MODEL
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6.2 Semi-Cascade Decomposition Theories and Their Applications to Modal

Controls of MIMO Systems

In this section, we investigate the realization of MFDs via spectral
factorizations of the characteristic )\-matrices of MIMO systems, and develop

their applications to modal control of MIMO systems [30,89,90).

6.2.1 Semi~-Cascade Decomposition Theories

1f the MIMO system (A,B,C,D) of Eq. (6.2) is reachable and A,B,C can be
decomposed into the forms in Eq. (4.28), then from Theorem 4.12, we obtain the
RMFD as

G(A) = N[, (DRI 74D = N (IR 1D, (0)+D (6.9)

where Drz(k) is the right characteristic A-matrix of (AZ’BZ) and R()) is a right

divisor of Dr(X).

Lemma 6.1 A reachable MIMO system of dimension greater than 1 can always be

decomposed into a semi-cascade realization form as follows.

AX(t) = AX(t) + Bu(t) (6.10a)
y(t) = cx(t) + Du(t) (6.10b)
where
A A n.xn,
A= [ 1 712 ] 3 AeC Lot i=1,2 (6.10¢c)
0 Az
TaNT, sect (6.10d)

B = [B),B,] ; B.eC oy i=,2
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pXn.

¢ = [c;,C,] ;5 C,eC Yy i=1,2 (6.10¢)

D=0 m (6.10£)
The corresponding semi-cascade RMFD is given by

(0 = N_(OE 0D (6.11a)

where DrZO‘) is the right characteristic A-matrix of (AZ’BZ)’ and it has
(AZ’BZ’CrZ’DrZ) as its associated 'minimal realization, where (.':r2 and DrZ are
defined in Lemma 2.1. Also

1 (6.11b)
N_(D) = CcT_"¥ (M)

. -1 (6.11¢)
R(}) chVTc Wr( A) +Dr2Dr( A)

where Dr(k) is the right characteristic A-matrix of (A,B) and V is the canonical
projectionX +X/S in which (AZ,BZ) is induced, where S is an A-invariant subspace

of X which is the state-space.

Proof:
Lemma 6.1 can be proved by directly using Theorem 4.1 and Theorem 4.12. B
Lemmaz 6.1 reveals the state-space structure and the RMFD representation for
the semi-cascade realization of a reachable MIMO system. From Eqs. (6.10) and
(6.11), the semi-cascade realization of a reachable system is, in fact, the
result of spectral factorization of the right characteristic A-matrix of the
system,

The dual results for the semi-cascade realizations of observable systems
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can be stated as follows.
Lemma 6.2  An observable MIMO system in Eq. (6.2) can always be decomposed into
a semi-cascade realization form as shown in Eq. (6.10) and the corresponding

semi-cascade LMFD is given by

S PRI | (6.12a)
GO = D (VLTHOING(N)

vhere DLI(X) is the left characteristic A-matrix of (Al’cl) and it has

(Al’Bll’Cl’Dll) as its minimal realization. Also

- -1 (6.12b)
Nl( A) ‘|’9,( A)To B
L)) = wz(x)ralsnzl+n2(x)nzl (6.12¢)

where Dz(k) is the left characteristic A-matrix of (A,C), 8 is the canonical
injection map from S+X, and (Al’cl) is the embedded map of (A,C) in S, whereX

and S are defined in Lemma 6.1.

Proof:

Similar to Lemma 6.1. n

6.2.2 Modal Control of MIMO Systems

To perform modal control of MIMO systems by assigning the divisors of the
characteristic A-matrices, which contain specific latent roots and associated
latent vectors of the A-matrices, we study the MIMO system (A,B,C,D) in Eq.
(6.2) which can be transformed into the following Jordan canonical form, using

the modal matrix M of A:
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- (6.13a)
AXJ(t) AJXJ(t)-I-BJu(t)
= (6.13b)
y(t) = C,X,(¢)
where
x;(t) = M x(r) (6.13¢)
-1 . . o .13d
AJ =M "AM = block d1ag[AJi,1=1,...,k];AJieC (6 )
S SR R ¢ T.T, et (6.13e)
B, =M B =1[B;,B,,...,B;] ;B eC
pxn,
= = . 1 (6.13f)
CJ CM [CJI’CJZ""’CJk]'CJiEC
Each AJi is a full Jordan block with eigenvalue A i.e.
Ai 1 e
. A, 1 . n,xn,
T I LA (6.132)

. . - . A

nxn,
The generalized left eigenvectors, ineC 1, associated with AJi can be

determined by partitioning the modal matrix M such that the following matrix
equations are satisfied:

= 1= (6.13h)
Ain inAJi’ i=1,2,...,k

The goal of modal control is to design a linear state-feedback control law
for the system in Eq. (6.2), or the equivalent system in Eqs. (6.10) and (6.13),

such that some undesirable eigenvalues and associated eigenvectors of the system
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can be replaced by desirable ones. Since the system map of Eq. (6.13) can be
viewed as a special case of the block triangularized system map in Eq. (6.10), we

consider the more general block triangularized system in Eq. (6.13) as

AXD(t) = ADXD(t)+BDu(t) (6.14a)
y(t) = CDXD(t)+DDu(t) (6.14b)
(6.14c)

= 1
XD(t) T, X(t)

where
A1 Ap12 By Xp (8
Ay = i By = i Xp(e) = i
0 Ay B2 Xpa(®)
Cp = [Chy5Cpp15 Dy=0

AD1 is the collection of the unimportant system modes not to be controlled, and

ADZ contains all dynamic modes to be controlled. XDi(t), BDi and CDi are
matrices of appropriate dimensions. Let the control law be
w(e) = ~F X (£)+6 r(e) = B ToIX(E)+Gor(E) (6.152)
A
where FD = [O,FDZ]. Then, the closed-~loop system becomes
-3 = (6.15b)
AxD(:) A.DXD(t:)+BDu(t)
(6.15¢)

y(t) = CDXD(t)

where
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_ Ap1 Ap127BpiFo2 - BpiCe
Ay = Ap7BpFp = o s Bp = = BpSp

Ap2 BT B2

The modal control design problem is to find FDZ such that ADZ-B has the

p2Fp2
prespecified eigenvalues and eigenvectors. From the structures of KD and ED’ we
observe that the modal control of the entire system is equivalent to the

eigenstructure assignment of the partitioned subsystem (ADZ,BDZ). Using Theorem

5.1, we obtain the control law for the sub-system (ADZ’BDZ) as follows.

Lemma 6.3 Let D _,(A) be the right characteristic A-matrix of (Ay,sBp,) which
contains the undesirable modes to be controlled. Assume that the desirable
closed-loop right characteristic A-matrix with prespecified modes is Drcz(l).

Then, the feedback gain F, and input gaim G in Eq. (6.15) become Fp, = F_,T

D2 c2°c2

and G respectively. F_, can be determined from the following

-1
F = Prn2Prhe2

matrix equation:

1?c'.2“11:2()\) = GFDrCZ(M-DrZ(k)

TcZ is the transformation matrix which transforms (ADZ’BDZ) into its canonical
controller form, and D,, and D , are the leading-column matrices of Drz(l)
and Dcm()‘)’ respectively. |

From the structure of the closed-loop state equations in Eq. (6.15) and
Lemma 6.1, we observe that Drc2(X) is the canonical left divisor of the closed-
loop characteristic A-matrix, Drc(k)- Therefore, the latent roots and left

generalized latent vectors of D_ _(A) are also part of the latent roots and left

rc2

generalized latent vectors of Drc(l). As a result, we can determine the modal

control law via latent roots and associated latent vectors assignment as follows.
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Theorem 6.7 {(Modal Control Law with Latent Structure Assignment)
Assume that the desired closed~loop latent roots and left latent vectors
corresponding to the modes to be controlled are (Xzi,i=1,...,k) and

(Ezij,j=0,1,...,li-l,i=l,...,k), respectively. Define

n,xn k
- e 2% (6.16a)
AJZ = block dlag[JZi,l 1,...,k]eC 30, izl Ei
n,Xm
=  _ T =T T ~2 (6.16b)
BJZ [BJ21""’BJ2k] eC

where Jzi and BJ2i are defined in Theorem 5.4.

Assume that (KJ2’§J2) is a reachable pair and that the Kronecker indices of

( ) are equal to those of (ADZ’BDZ) in Eq. (6.14). Then, the feedback

432085,
gain F of the modal control law in Eq. (6.15a) can be

_ -1
p2 = FegTep 30 Gp = DpyoDihegr  Fep can be

and the input gain G

D F

determined by FD = [O,FDZ], vhere F
determined from the following matrix equation:

= - (6.16c)
Fc2¢r2(l) - GFDcm(A) DrZ(A)

where Drz(k), ¢r2(k) are the same as those defined in Lemma 6.3, and Drcz(k) is
the right characteristic A-matrix of (AJZ’BJZ)'
Proof:
Theorem 6.7 can be proved from Theorem 5.4 and Lemma 6.3. L
From Theorems 5.2 and 6.3, the closed-loop RMFD of the system in Eq. (6.10)
with D = 0me and the modal control law in Eq. (6.15a) can be represented as

~ o-1 . A1 (6.17a)
GC(X) = c(x:n A) BG, Nt(k)nrc(k)

where
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-1 (6.17b)

b

_ -1 -1.-1 (6.17¢)
Drc(x) = Gp [FDTD T, wr(x)+nr(x)]

and Nr(x)D;l(X) = G(A) is the canonical RMFD of the open loop system in Eq.

(6.10), T, is the transformation matrix which transforms (A,B) into its

controller canonical form. The properties of Dtc(l) can be stated as follows.

Theorem 6.8 Drc(k) defined in Eq. (6.17c) is column reduced. If the open loop

right characteristic A-matrix of the system in Eq. (6.14) is factored as

- (6.18)
Dr(x) = R(X)Drz(x)

where th(l) is the right characteristic A-matrix of (ADZ’BDZ)’ then Drc(k) can

be factored as

~ _ (6.19)
Drc(A) = R(A)Drcz(x)

where Drcz(k) is the right characteristic A-matrix of (ADZ-B ).

p2Fp22Bp2CF

Proof:

From Eq. (6.17¢), the leading-column matrix, Gp

Dr is nonsingular because

~

)
D, the leading column matrix of Dr(k), is nonsingular, and therefore Dtc(k) is
column reduced.

If Dr(k) is factored as in Eq. (6.18), then from Theorem 4,1, Lemma 6.1 and

Eq. (6.14), we obtain

2 (ML, “Apy) BpotDi,

DrZ(A) =C_ ,
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=& yr-lpl =
R(}A) = C VT, T, ‘l’r()‘)"nrz’):“‘)

where V = [O,In ]. From Lemma 5.2, we have
2

D2°D2 GF

-3 _ 1y 6
DrCZ(X) B CrZ(Mn2 AD2+B Fpa) BDZGF+Dr2

Since Drc(l) is column reduced and Drcz(l) is a canonical left divisor

Drc(l), from Theorem 4.10 and Eq. (6.15), we obtain

~

Drc(k) = R'(X)Drcz(k)
where
_ = ~-1.-1 = ~
R'Y(N) = chVTD Tc ll’r(k)‘*DIZGFDrc()‘)
Therefore

R'(D-R(X) = D_, (6D (N-D (N]

Also, substituting Eq. (6.17¢) into the above equation yields

, _ = -1.-1 .= -1_-1
RCD=R'(XN) = D ,F T °T "9 (X DrZ[D’FDZ]TD T, b (N

. T -1 . .
Since Dr2 = [Im-dkz(o)déz(o)]Drhz, the ith row of F is null, and (D

th2°1j

th2)ij °

(D =0 for j= if %; =0, it follows that

- J S -1 =
D ,Fp, = (Im \prz(o)\brz(o))n F., 20

th2" D2

Therefore, R(A) = R'(A), or D_ ( M = R(HD_,( X.

From Eq. (6.17a) and Theorem 6.8 we obtain:

of
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Theorem 6.9 The closed-loop RMFD of the modal controlled system can be
represented as the semi-cascade form,

_ -1 -1 (6.20)
G, () = N IR “(MD__,(X)

where Nr(k) is the numerator of the open-loop canonical RMFD, R(A) is the right
divisor of the open-loop right characteristic A-matrix associated with the
uncontrolled modes, and Drcz(l) is the desired closed-loop right characteristic A-
matrix of the controlled modes. n

Theorem 6.9 reveals the important feature of the modal control design that
the left divisor of the denominator of the open-loop RMFD has been changed to the
desired one with prespecified eigenstructures.

Note that Gc(x) in Eq. (6.20) may not be a canonical RMFD. Using Theorem
3.4, we can transform Eq. (6.20) into a canomical RMFD as follows:

~ -1 (6.21)
Gc(x) = Nrc(x)nrc(x)

where Nrc(X) = Nr(k)Ur(X), Drc(k) = Drc(k)Ur(X), and Ur(X) is a unimodular A-
matrix., The result in Eq. (6.21) implies that although the zeros of the open-
loop system remain unchanged under modal control laws, the numerator of the

closed-loop canonical RMFD may be changed.

Example 6.2

Given a 3-input 2-output continuous time system in the form (6.2) where
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oo Cco

2x3
The RMFD of the system is found to be

_ -1
G(A) = Nr(X)Dr (@Y

where

-532413A-13  7A-12 0.0
N = 2
-532410M3 12047 0.0

and

Bo2a-xm2 ~aZiae2 -1
D_(N) = 0 i2nl -2
0 1

We shall illustrate the semi-cascade realization and the modal control
design for this system. For these purposes, the system map A has to be block-
triangularized. We shall use Theorem 4.20 to construct the transformation T, to
transform A to a block-triangular form.

Selecting ry = ~®and r; = 0 and utilizing the matrix sign algorithm in

Theorem 4.21 yields

Sign(ro)(A) =1
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. .

=000 0
a s e
OO0 O

Sign(rl)(A) =

From Theorem 4.20, we have the canonical injection map S( and the
ro,rl)
d ical jecti ¥ :
canonical projection map (ro’rl)
T
1.8 -1.6 =-0.8 1.6 -3.2
S( ) = 0.4 0.2 -0.4 0.8 -1.6
forh1 1.0 -2.0 0.0 2.0 <-4.0
; [ -0.8 -0.4 -1.0 0.0 0.0 ]
{r.,r,) 3.2 1.6 4.0 2.0 1.0
0’1
Thus the transformation TD can be constructed as
str ) "l o.e444 -1.7778 -0.4444 -0.1000 0.2000 ]!
0’1 -0.1778 0.9111 -0.2222 0.2000 -0.4000
TD = _ =1 -0.4444 -0_:2223 _ _9_._45&_45__ 0.1000 _—9_.2.0_09_
Vi e ~-0.8000 —0.4000 ~-1.0000 0.0000 0.0000
0’1 | 3.2000 1.6000 4,0000 2.0000 1.0000 J
1.8000 0.4000 1.0000! -0.4544 0.0000
-1.6000 0.2000 —2.0000: -0.2222 0.000Q
=| -0.8000 -0.4000 0.0000; -0.5556 0.0000
1.6000 0.8000 2.0000} 1.6000 0.4000
L—3.2000 -1.6000 -4.00001 0.8000 0.2000 |
Defining
X(t) = T, XD(t)

then the state equations of the system in X, - coordinates become

Axn(t) ADXD(t)+BDu(t)

y(t) CDXD(t)+DDu(t)
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where
o A1 Mopo
Ay = TyAT, = |
2x3 Bp2
. Bp1
BD=TDB= s
D2
Cp = CTp = [Cpy0 Cpyl
and
© 0.6 0.8 2.0 [2.0889 2.2444
=1 3.2 -2.6 -4.0 |; =| -1.9556 -3.3778
*o1 | 0.0 0.0 -1.0 b1z -0.4889 -0.8444

B . =1} -2.0222 -0.3778 -2.7778
L 2.0444  0.2556  2.5556

[ -1.0 1.0 1.0 ]
B =
b2 1.0 0.0 1.0

c.. = [ 2.8 3.4 4.0 ]_ c = [ 1.1778 1.6000
Dl 10.2 4.6 11.0 ? D2 -1.6667 1.0000

[ -2.0444  0.7444 -0.5556 ]

(1) Semi-Cascade Realization

From Corollary 4.2, Dr(A) can be factored as

D (M) =D, (AR(N
r r2
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where Drz(k) is the right characteristic A-matrix of (ADZ,BDZ):

-2 0 -1
D 2( A= -2 A1 =2
T 0 0 1

and R(A), which is a right divisor of Dr(k), can be computed by using Eq.

(6.11c):

Thus, from Lemma 6.1, the semi-cascade RMFD of the entire system is given by:

_ -1 -1
G(A) = Nr(k)R (x)nrz(k)

Note that Drz(k) contains two unstable modes of the system with latent roots 1

and 2, and R(A) contains three stable modes with latent roots -1,-1, and -1.

(2) Modal Control Law

Since AD2 contains two unstable modes with eigenvalues 1 and 2, we shall
design a modal controller to stabilize these two modes. Using the left latent
structure assignment in Theorem 5.4, we select the latent roots and latent
vectors of Drcz(k) in Theorem 6.7 to be

1 Pyyo = It -1 o1’

and

T
22 Pype = [T 1 0]

50 we have
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- _[-2 o
AJZ'[O —4]

and

]
n

~—
-

1
-
[N
| N—

12
The right characteristic A~-matrix of (KJZ’EJZ) is found to be
M3 1 o0
D_ (X = 1 A3 0
reZ 0 o0 1

Thus, from Eq. (6.15a) and Theorem 6.7, we have the modal control law

u(t) = —FX(t)+GFr(t)

where
-1 -18.4 -9.2 -23.0 -12.0 -6.0

F=F.T = - -19.2 -9.6 -24,0 -14.0 -7.0

0.0 0.0 0.0 0.0 0.0

and

From Theorem 6.8, we have the RMFD of the closed-loop system:

- -1
Gc( A) = Nr( A)Drc( 'y

where

p_ (X = D_.,¢ MR(N)
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AanZa-1 A%

0
=| 3a348r+s A243re2 0
o] 0 1

Note that GC(X) = Nr(X)D;i(X) is not a canonical RMFD., The canonical RMFD of

the closed loop system can be found from the closed loop state equations:

AX(t) = Kx(:)+BGFr(t)

y(t) = CX(t)+Du(t)

where
A = A-BF
-19.8 10.4 26.0 13.0 6.0
50.4 24,2 63.0 34.0 18.0
= -37.6 -18.8 -48.0 -24.0 -12.,0
-17.6 - 8.8 -22.0 -15.0 - 7.0
29.6 -14.8 37.0 22,0 10.0

From Eq. (2.13), we have the canonical RMFD of the closed-loop system:

6 (\) =8 ()DL
c TC rc

where
i -412-sx+23 7h-12 ¢
N (A = 2
re | —5A“-26A-18 12X\+7 0
[ A3s602410A45 -2%-32-2 0
D_(A) = -A-1 AZa3re2 0
rc
L 0 0 1

It is easy to show that
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D, (M) = D, (MU0

and

N (O = N_(DU_(A)

where Ur(l) is a unimodular A-matrix:

]

Also, Py10 and Pyyq 2are left latent vectors of Drc(l).

O W
(=R -]
[ = =]

ur(l) = [ -

6.3 Cascade Decomposition Theories and Their Applications to Multiport Network

Synthesis

In this section, we shall present the factorization of MFDs to achieve the
cascade realizations of MIMO systems, The minimal factorizations of MFDs are
defined first. Algorithms to perform the minimal factorization [91-98] of RMFDs
and LMFDs are derived. The corresponding state-space cascade realizations are
also discussed. Finally, applications of the cascade system structures to

multiport network realizations are illustrated.

6.3.1 Minimal Factorizations of MFDs

1f G(k)edmnm[X] can be factorized as

_ (6.22)
e(N) = cl(x)cz(x)

where G(}), G,(X) and G,(X) are described by MFDs, then Gl(s) and GZ(X) are
called the left factor and right factor of G(A), respectively. The

factorization of G(A) in Eq. (6.22) is minimal [94] if
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Deg(D(X)) = Deg(D, (1)) +Deg(D,(N)) (6.23)

where D()), Dl(l) and Dz(K) are the left or right characteristic A-matrices of
the systems described by G(A), Gl(k) and GZ()\), respectively. The minimal

factorization of G{A) im Eq. {(6.22) can be generalized as

- (6.24)
G(2) Gl(X)GZ(A)...Gk(X)
k
with Deg(d(A)) = } Deg(D, ().
i=1
Definition 6.4 An RMFD, G(A) = Nr(}\)D;l()\)Emem(k), is nonsingular if

Dr( MNeC®(A] is a column-reduced canonical A-matrix, and Nr( NeC™TA is
nonsingular., Similarly, an LMFD, G(A) = D;ll()\)Nl( A), 1is nonsingular if
D!’( Wel”™[A] is a row-reduced canonical A-matrix, and N.Q.( MVec™®A]  is

nonsingular. O

Theorem 6.10 (RMFD Factorization)
Consider a nonsingular canonical RMFD expressed as G(A) = Nr(A)Dr()\).
Assume that Dl()‘) and ﬁl()\) are a column-reduced left canonical divisor and a

row-reduced right canonical divisor of Dr()‘) and Nr()\), respectively, or

_ - (6.25a)
Dr(JL) = DI(A)DZ()\)
_ = (6.25b)
Nr()\) = NZ(A)Nl(A)
Let
(6.25¢c)

= --1 _ ~ ==1
Nl(x)n2 (A = ul(x)ml(x)nz N

where Hl(k) is a X-matrix and Nl()‘)ﬁgl(k) is a proper RMFD.
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Let (Al,Bl,Cl,Dl) be a minimal realization of the RMFD, Nl(k)ﬁgl()). Then,

G = 6,(NG, (N (6.26a)
where

6, (N = NI(DDI]'()\) (6.26b)

6, (N =m0y hn (6.26c)
and

LHSVIER WV WS NN (6.264)

D, CON, () = N, (0531 (6.260)

ol PN .
D, ()\)Nl()\) is the LMFD of (Al,Bl,Cl,Dl).

Proof:

Since

. -1,y . N FRNIC DU & =1 -1
G(A) = N_(OD_ 1 = N, O0F, (055 0D ) = 8,0 [H, 0+, (05, (01071

~ ———
and (Al’Bl'Cl’Dl) is a minimal realization of the RMFD, Nl(x)Dzl(k), we can

determine the corresponding LMFD, using (AI’Bl’cl’Dl) as follows:

-1 - _ =-1
D, (A)Nl(x) = Nl(A)DZ () .
Therefore

- S P -1,y o -1 -1
LA = N, (0D, () [N (A)+D, (0E (AID] 1A = Ny (D, OIN, (D] ()

and the result in Eq. (6.26a) follows. u
Theorem 6.10 provides a wmethod for factoring a nonsingular canonical RMFD

into the product of two nonsingular RMFDs. Since Dz(x) may not be in a column-
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reduced canonical form, Gz(x) may not be a canonical RMFD. However, using

Theorem 3.4, we can convert Gz(x) into a canonical RMFD.

Corollary 6.1 The RMFD factorization in Theorem 6.10 is minimal.

Proof:

Deg(D, (1)) +Deg(D, (X)) = Deg(Dl(x))weg(ﬁz(x)) = Deg(D_(})) a

Since the left factor Gl(x) and right factor Gz(x) can be represented as
nonsingular canonical RMFDs, we can repeatedly factorize G()) to obtain

= (6.27)
G(A) = 6, (NG, (W)eaeCy (R

if the conditions in Theorem 6.10 are satisfied.

The main feature of the RMFD factorization in Theorem 6.10 is that the
poles and zeros with associated latent vectors of Gl(x) and Gz(x) can be
preselected by performing spectral factorizations of Nr(l) and Dr(x). This
property is important in multiport network synthesis and factorization of a
para-Hermitian MFD.

The dual results of the LMFD factorization are stated as follows.

Theorem 6.11 (LMFD Factorization)

Given a nonsingular canonical LMFD as

=p! (6.28a)
G(A) Dz (A)NL(A)

Let Dz(x) = ﬁz(k)Dl(A) and NQ(A) = ﬁl(k)Nz(A), where DI(A) and ﬁl(k) are a row-

reduced right canonical divisor and a column-reduced left canonical divisor of
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Dg(A) and Np(}), respectively. Let Bgl(k) ﬁl(k) = Hl(k)+5;1(l) N, (X}, where
H;(A) is a A-matrix and 5;1(X) N, (X) is proper. Also, let (A;,B,,C,,D;) be a

minimal realization of BEI(X)XNI(K). Then

G(A) = GI(X)GZ()\) (6.28b)

where

n

- pl , -1 : -
6,(0) = DM VN (N5 6,0 = DTN, (N5 K (X = B (VDN

= - -1 ——1,,.0
+ N (03 N (0D = BN (W)

- -1 .
N, (0D, (A) is the RMFD of (4,,8,,€,,D)). |
Repeatedly applying Theorem 6.11, a nonsingular canonical LMFD can be

factorized into a product of many nonsingular canonical LMFDs as

= (6.29)
G(A) Gl(X)GZ(X)...Gk(X)

6.3.2 State-space Realization of the Cascade Systems

Let the state-space realizations of Gl(k) and GZ(A) in Eq. (6.26a) be

le(t) = Alxl(t)+Blu1(t) (6.30a)

v = €;X,(£)+D;u, (£} (6.30b)
and

kxz(t) = Azxz(t)+32uz(t) (6.30c)

¥,(t) = € %, (£)+D,u,(t) (6.30d)
where Ai’Bi’Ci and Di, i=1,2 are matrices of appropriate dimensioms. For

cascade connections, we let u(t) = u,(t), y,(r) = u,(¢), and y(r) = y,{t), where

u(t) and y(t) are the input and output of the overall system, respectively.
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Then, the state-space realization of the overall system becomes

X, (t) A 0 %, (t) B

1 1
A = + U(t) (6.313)
Xz(t) Bzc1 A2 Xz(t) anl
Xl(t)
- (6.31b)
y(t) = [D,C,,C,] + D,D,u(t)
Xz(t)

The above result can be generalized to the case of many subsystems as follows.

Theorem 6.12 Given a nonsingular MFD, G(A), which has a minimal factorizatiom

- (6.32)
G = 6, (6 _ (V).rG ()

and (Ai’Bi’ci’Di) is the minimal realization quadruples of Gi(K), i=1,2,,...,k.
Then, the state-space minimal realization quadruple of G()\), (A,B,C,D), can be

expressed as

- -
A1 0 N 0
B,C, A, eer 0 0
B,D,C, B,C, «.r O 0
A= . . cer - .
By 1Pz *D9Cp By_yDppereD3Cy wov A O
BDy_1-++D,0;  BD_1...DCy ... BC oL A

T § T T T T,T
B = [B,(B,D,) ,(B3D2D1) seees(By_ D _5e+eD) 7, (BD, ;... )]
€ = [D...D,C D, ..DyC,, D D Cay e, DG, 5C )
D= (DD _,...D,]
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Proof:
Theorem 6.12 can be proved by using induction on the number of cascade

subsystems. m

6.3.3 Cascade Realizations of Multiport Networks

If the matrix transfer function of a multiport network can be factorized as

G(A) = GI(A)GZ(A) . .Gk(A)

the subnetworks Gi(k) can be constructed in a way such that each Gi(k) contains
desirable latent roots and associated latent vectors of G()). Then, we can
realize each subnetwork with each Gi(A) and cascade them to construct the
complete network for G(X). Since the factorization of G(}) is wminimal, the
realized network uses minimal active elements or reactive elements. The

advantages of cascade structure were noted in the introduction to this chapter.

Example 6.3

Let the canonical right matrix fraction description of a 2-input 2-output

network be

_ -1
G() = Nr()\)Dr @)

where

[cl) i][lz"" % (1)0)]

2 11.8 -1.8 8.75 -10
DAN = 100 x [2.05 10.2] A [2.05 9.2]

Nr(l)

The zeros of G()) are -5, -10 and the poles of G()) are (-1,-1,-10%jl).
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(2)
(3)
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The minimal realizations of D:l in the controller canonical form and
in the Jordan form.

The minimal cascade factorizations of G(}).

The cascade realization of G()) in the state-space representation.

The implementation of the cascade networks.

Using Lemma 2.1, the minimal realization of D;l(x) in the controller

canonical form can be found as

where

1

_1 _ - _ - -
D (X)) = cc(u4 Ac) B +D_

- 0.00 1.00 ! 0.00 0.00
_78:75_ 1180 110.00  _1.80
0.00 0.00 | 0.00 1.00

L -2.05 - 2.051-9.20 -10.20

r 0 0
1 0
~3-2-
[ 0 1
1 010 0
[ooilo]

2x2

The corresponding Jordan form minimal realization of D;l can be obtained by

finding the Jordan forms minimal realization quadruple (AJ,BJ,CJ,DJ) from

(Ac,nc,cc,nc) as

_1 _ = _ —1 -
D_ (A = CJ(XI4 AJ) B _+D

where

R |
-1 110 0 11 0.1 -0.025
o -1} o0 0 0 1 =T _|-0.1 0.15 =
_____ J_.____— - e - - -4 H I =
g0 1w 1P BT P S el T oo TP Py T O
0 o0t-1 -l0 -1 1 0.0 =-0.125
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Note that the latent roots of D (X) have been arranged in two groups; {-1,-1}
and {-10%j1} as shown in the system map AJ. Using Theorems 4.9 and 4.12
together with the Jordan form minimal realization quadruple of D;l(k), yields

the spectral factorization of Dr(k) as follows:

DI(A) = DL(A)DODr(A)

where

L . 0.8 0.8 7 . ) n -
Do = Ip3 DA = Td + | 5705 1.2]’ b (M) Iz"*[z 9]

In a similar manner, the spectral factorization of Nr(l) can be determined as

N () = [é i] [I.z)‘ * io 20)]

Thus, G(A) can be represented as

1

_ - -1 -1
G(A) Nr(k)[DL(A)DR(A)J Nr()\)DR (J\)DL )

-1 -1
It s 5 0 0.8 -0.8 1 -
= [o 1 ][Iz)‘* 10 10)] [12)"’ (0.05 1.2)] [12“ ( 2 9)]

Applying Theorem 6.10 gives the cascade factorization of G(A) as

G(A) = GZ(A)Gl(A)
where

-1
1 s 1.8552 -0.4414
6, (M) '[ 0 1 ][Iz>‘+ 1.6569 0.1448]

-1
_ 6.0552 D0.3586 1n -
6, ‘[Iz>‘+ (11.6069 s.94as)] [12"* (z 9)]
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The cascade realization of G(A), using Theorem 6.12, can be found as

~

_ _ ~ -A _1A
G(A) = GZ(A)Gl()\) cr(A14 Ar) B +D_

where
-11.0 1.0 0.0 0.0 1 0
X = ._-_2;.0._ — :9£ — g'g —_ .9'.9_ —_ . ; = _.0_ _1_
T -~ 4.9450 1.3586 -1.8552 0.4414 } r 1 0
9.6069 -0.0552 -1,6569 -0.1448 01

The cascade realization of G(A) using four one-port R-C networks and summers but
without using multiwinding transformers and integrators [84] {s shown in Fig.
6.7. The poles and zeros of the first subnetwork, described by Gl(k), are

{-10£j1} and {-5,-10}, respectively whilst the poles and zeros of the second
subnetwork, described by G,()), are {-1,-1} and {=,®}, respectively. The
realized cascade multi-port network contains the prespecified poles and zeros in

each subnetwork.
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