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PREFACE

Programming is an essential engineering skill. To almost any engineer, it is as
important as circuit design to an electrical engineer, as statistics to a civil engineer, and
as heat transfer to a chemical engineer. The engineer has to program in high-level
languages to solve problems. He or she also should be able to read assembly-language
programs to understand what a high-level language does. Finally, he or she should
understand the capabilities of a microcontroller because they are components in many
systems designed, marketed, and maintained by engineers. The first goal of this book
then is to teach engineers how a computer executes instructions. The second goal is to
teach the engineer how a high-level language statement converts to assembler language.
A final goal is to teach the engineer what can be done on a small computer and how the
microcomputer is interfaced to the outside world. Even the nonprogramming engineer
should understand these issues. Although this book is written for engineers, it will serve
equally well for anyone, even hobbyists, interested in these goals.

The reader is taught the principles of assembly-language programming by being
shown how to program a particular microcomputer, the Motorola 6812. The important
thing about the 6812 is that it has a straightforward yet powerful instruction set, midway
between smaller and more powerful microcontrollers; from it the reader can adjust to
these smaller or more powerful microcontrollers. The best way to learn these principles
is to write a lot of programs, debug them, and see them work on a real microcontroller.
This hands-on experience can be inexpensively obtained on the 6812. Several 6812
boards, which do everything described in this book, are available for under $100. (This
price doesn't include the personal computer that hosts the 6812 target system.)

The following discussion outlines the book and explains several decisions that
were made when we wrote the book. Optional chapters are available for readers having
various interests. The main skills taught in each chapter are summarized.

Chapters 1 to 3 discuss programming using hand-translated machine code, and the
implementation of machine instructions in an idealized microcontroller. The assembler is
not introduced until Chapter 4. This gives the engineering student a fine feeling for the
machine and how it works, and helps him or her resolve problems encountered later with
timing in input/output programming or with the use of addressing modes in managing
data structures. Chapter 1 explains how a microprocessor interacts with the memory and
how it executes the instruction cycle. The explanation focuses on a microcomputer and
is simplified to provide just enough background for the remainder of the text. Simple
instructions and elementary programs are introduced next. Pointing out that there is no
best program to solve a problem, Chapter 1 observes what makes a good program and
encourages the reader to appreciate good programming style. A discussion of the
available organizations of 6812 microcontrollers concludes this chapter.

In Chapter 2, the main concept is the alternative forms of the same kind of
instruction on the 6812. Rather than listing the instructions alphabetically, as is
desirable in a reference book, we group together instructions that perform the same type
of function. Our groups are the classical ones, namely, the move, arithmetic, logical,
edit, control, and input/output groups. Although other groupings are also useful, this
one seerns to encourage the student to try alternative instructions as a way of looking for
the best instruction for his or her purpose. The 6812 has an extensive set of addressing
modes that can be used with most instructions; these are covered in Chapter 3, The
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different addressing modes are introduced with a goal of explaining why these modes are
useful as well as how they work. Examples at the end of the chapter illustrate the use of
these modes with the instructions introduced in Chapter 2.

The end of Chapter 3 shows the use of program-relative addressing for position
independence and the use of stack addressing for recursion and reentrancy.

Chapters 4 to 6 show how a program can be more easily written in assembler and
the high-level C language and translated into machine code by an assembler. Chapter 4
introduces the assembler, explains assembler directives and symbolic addresses, and
introduces limitations of forward referencing in a two-pass assembler. Assembly
language examples that build on the examples from previous chapters conclude Chapter
4. Chapter 5, which may be omitted if the reader is not going to write assembler
language programs, provides insights needed by programmers who write large assembler
language programs. A general discussion of related programs, including macro,
conditional, and relocatable assemblers and linkers, is given.

Chapter 6 develops assembler language subroutines. It illustrates techniques used
in assembler language at an implementation level (such as passing arguments in
registers). The tradeoffs between macros and subroutines as a means to insert the same
program segment into different places in a program are discussed.

Chapter 7 covers arithmetic routines. An implementation is shown for unsigned
and signed multiplication and division. Conversion between different bases is discussed
and examples are given illustrating conversion from ASCII decimal to binary and vice
versa. Stack operation and Polish notation are shown to be useful in realizing arithmetic
routines of any complexity. Multiple-precision integer arithmetic is discussed by means
of examples of 32-bit operations including multiplication and division. Floating-point
representations are introduced, and the mechanics of common floating- point operations
are discussed. Finally, a 6812-oriented introduction of fuzzy logic is presented.

Chapter 8, which may be omitted if the reader is already familiar with C, discusses
compilers and interpreters, and briefly introduces C programming to provide a
background for later chapters.

Chapter 9 introduces the implementation of C procedures. Several constructs in C,
such as switch statements, are shown implemented in assembler language. The
techniques C uses to hold local variables and to pass arguments to a subroutine on the
stack are shown implemented in assembler language.

Chapter 10 covers elementary data structures. The simplest, including the character
string used in earlier chapters, and the more involved deque and linked list structures are
related to the addressing modes available in the 6812. The main theme of this chapter is
that the correct storage of data can significantly improve the efficiency of a program.

Chapter 11 introduces input/output programming. Input and output devices are
characterized. Then the 6812's parallel ports are described. Input and output software is
illustrated with some examples. We then show 6812 synchronization hardware, to
introduce gadfly and interrupt synchronization. Finally we show how D-to-A and A-to-D
conversion is done.

Chapter 12 shows how the assembly language of a different microcontroller might
be learned once that of the 6812 has been learned. Although we would like to discuss
other popular microcontrollers, we believe that we could fill another book doing that. To
illustrate the idea, we look at the near relatives less costly than the 6812, in particular,
the 6805,6808, and 6811. We also discuss briefly more powerful microcontrollers such
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as the 68300, 500, and M-CORE series. The main theme is that once you understand
the instruction set of one microcontroller, you can quickly learn to program efficiently
on other microcontrollers.

This book systematically develops the concepts of programming of a
microcontroller in high-level language and assembly language. It also covers the
principles of good programming practice through top-down design and the use of data
structures. It is suitable as an introductory text for a core course in an engineering
curriculum on assembly language programming or as the first course on microcomputers
that demonstrates what a small computer can do. It may also be used by those who want
to delve more deeply into assembly language principles and practices. You should find,
as we have, that programming is a skill that magnifies the knowledge and control of the
programmer, and you should find that programming, though very much an important
engineering skill, is fun and challenging. This book is dedicated to show you that.

Problems are a major part of a good textbook. We have developed over twenty
problems for each chapter, and for each section we generally have at least two problems,
one that can be assigned for homework, while the other can be used in a quiz or exam.
Some of these problems are "brain teasers" that are designed to teach the student that
even simple programs should be tested, generally at their extreme values, to be sure they
work. Often the obvious and simple solutions succumb to truncation or overflow errors.
Also, problems in Chapter 11, including the keyless entry design and the experiment
that plays "The Eyes of Texas" on a pair of earphones, are absolutely great motivators
for sophomores, when they get them to work on a real microcontroller board. They see
how exciting computer engineering is. This is having a significant impact on retention.
An instructor's manual, available from the publisher, includes solutions to all the
problems given at the end of each chapter.

This book was developed largely from a book by the author and T. J. Wagner on
the 6809. The author expresses his gratitude for the contributions made by Dr. Wagner
through his writing of much of the earlier book.
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1

Basic Computer Structure
and the 6812

Computers, and microcomputers in particular, are among the most useful tools that
humans have developed. They are not the news media's mysterious half-human forces
implied by "The computer will decide . . ." or "It was a computer error!" No, computers
are actually like levers; as a lever amplifies what the human arm can do, so the computer
amplifies what the human brain can do. Good commands are amplified, and the computer
is a great tool, but bad commands are likewise amplified, and good commands incorrectly
programmed are also amplified. "To err is human, but to really foul things up, you need
a computer." You have to study and exercise this tool to make it useful; that is the
purpose of this book. The computer also has to be used with insight and consideration
for its effects on society, but that will not be studied in this book.

We shall study the computer as an engineer studies any tool—we begin by finding
out just how it ticks. We make our discussion concrete using the well-designed Motorola
6812 microcomputer, as a means of teaching the operations of computers in general. In
this chapter we introduce basic computer structure. We discuss memory, how memory
words are read to tell the microcomputer what to do, and how these words are written and
read to save the microcomputer's data. Finally, we describe a small but useful subset of
6812 instructions to show how a computer reads and carries out an instruction and a
program, to introduce the idea of programming.

After reading this chapter, you should be able to approach a typical instruction, to
be introduced in the next two chapters, with an understanding about what the mnemonic,
the machine code, and a sequence of memory reads and writes may mean for that
instruction. This chapter then provides background for the discussion of instructions that
we will present in the next two chapters.

1.1 Basic Computer Structure

What is a microcomputer, and how does it execute the instructions that a programmer
writes for it? This question is explored now at a level of abstraction that will be adequate
for this text. We do know that many readers will object to one aspect of the following

1



2 Chapter 1 Basic Computer Structure and the 6812

discussion, and we want to answer that objection a priori, so that those readers will not
miss the point. We will introduce a seemingly large number of terms. Don't miss the
objective: We are really introducing concepts. The reader should think about the concepts
rather than memorize definitions. Like your physics text, this text has to use terms in a
fairly precise way to avoid ambiguity. Your physics text, you may recall, used the word
"work" in a very precise way, as the product of force times distance, which is a bit
different from the conversational use of the word "work" as used in the expression, "He's
doing a lot of work." We will use terms such as "read" and "fetch" in a similar way.
When defined, they will be written in italics and will be listed in the index. We ask you
to learn the term and its meaning even though you do not have to memorize the wording
of the definition. But take heart, because although we do have a few concepts that have to
be learned, and we have to learn the terms for those concepts, we do not have many
formulas or equations to deal with. Accept our challenge to understand these terms; then
you will enjoy the latter discussions even more than if you muddle through this section
without thinking about the terminology.

You probably know what microcomputers and computers are, to some degree, but
let us discuss the term "computer" so that if you get into an argument about whether a
hand calculator is a computer, you can respond knowledgeably.

A microcomputer is a kind of computer or, more accurately, a kind of von Neumann
computer, named after the scientific giant of our century who invented it. All von
Neumann computers have four components: memory, controller, data operator
(sometimes called an arithmetic-logic unit), and input-output (I/O), which are
connected by an address and data bus. A simplified diagram of a computer is shown in
Figure 1.1. Briefly, the memory stores both the data and the program, and the input-
output provides the communication with the outside world. In a conventional personal
computer system input-output is done through peripherals such as CRTs, keyboards,
scanners, printers, modems, and so on. In typical microcontroller applications the input-
output system provides the necessary connections, or interfacing, to the device, of which
the microcontroller is a component, such as an automobile, kitchen appliance, toy, or
laboratory instrument. The data operator performs arithmetic and logical operations on
data, such as addition, ANDing, and so on. The controller controls the flow of
information between the components by means of control lines (which are not shown in
Figure 1.1), directing what computation is to be done. The input/output, controller, and
data operator may themselves contain a small amount of memory in registers.

A microcomputer is a computer that is implemented using low-cost integrated
circuits (ICs) arid is therefore cheap enough to be used in an incredible range of
applications where a large computer would be infeasible. For the purposes of this book,
if the data operator and the controller are together on a single 1C, but other ICs are needed
to complete the computer, that 1C is called a microprocessor, the computer that uses a

Figure 1.1. Simplified Computer Structure
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microprocessor is called a microcomputer; and, if a complete computer is on a single
integrated circuit, that integrated circuit is called a single-chip microcontroller.

Some aspects of microcomputers apply to all computers. We will often discuss an
aspect of the computer and, of course, that aspect applies to microcontrollers, on which
we are concentrating. The microcomputer's, or microcontroller's, controller and data
operator is abbreviated MPU (microprocessor unit). The abbreviation CPU (central
processor unit) is often used to denote the controller and data operator, but that term leads
subtly to the idea that the CPU is central and most important; but this is misleading,
especially when a computer system has many MPUs, none of which is "central."

We now look more closely at the memory and the MPU. We can think of the
memory as a large number of cells, each able to store a 0 or a 1 —that is, a binary digit
or one bit of memory. The bits are grouped together in units called bytes, which consist
of 8 bits. Within a particular byte the bits are labeled b7, . . ., bO as shown.

Byte

The right-hand bits are called lower-order or least significant, and the left-hand bits
are called higher-order or most significant. There is nothing sacred about this labeling,
and, in fact, many computer manufacturers reverse it. A word in memory is the number
of bits that are typically read or written as a whole. In small microcomputers, a word is
one byte, so that the terms "word" and "byte" are often used interchangeably. In this text,
the 6812 can read an 8-bit or a 16-bit word, which is two bytes. In a 16-bit word, bits are
numbered from 15 (on the left) to 0 (on the right). In the memory, each byte has an
address between 0 and 2^ -1, where N is the total number of address bits. In the 6812, N
is essentially 16, so each address between 0 and 65,535 is described by its 16-bit binary
representation (see Appendix 1), although some 6812 versions can extend this range.

The MPU controls the memory by means of a clock and a read/write line, and
communicates to it by an address bus and a data bus, shown in Figure 1.1. A line or
wire carries one bit of information at each instance of time by the level of voltage on it.
Each line can carry a true (1) or a false (0) value. A bus is a collection of lines that can
move a word or an address in parallel, so that one bit of a word or address is on one line
of the bus. The data bus moves an 8-bit or 16-bit word to or from memory and from or
to the MPU, and the address bus moves a 16-bit address from the MPU to the memory.
A clock is a signal that is alternately a 0 and 1 (a square wave). A clock cycle is the
time interval from when the clock just becomes 0 until the next time it just becomes 0,
and the clock rate, or clock frequency, is the reciprocal of the clock cycle time.
Contemporary 6812 microcontrollers essentially use an 8 MHz clock.

In one clock cycle, the MPU can read a word from the memory by putting an
address on the address bus and making the read/write line 1 for the cycle and then
picking up the word on the data bus at the end of the cycle. It can also write a word into
the memory in one clock cycle by putting the address on the address bus and putting the
word on the data bus and making the read/write line 0 for the cycle. A read or a write to
memory is also called an access to memory.
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We can enlarge our description of how the memory works. Assume that we want to
get the contents of a particular word or byte from memory, that is, read a word from
memory. The MPU first puts a 1 for read on the read/write line and then puts the address
of the desired word or byte on the address bus throughout the duration of a clock cycle.
The memory is designed so that, at the end of the clock cycle, the desired word is put on
the data bus. The MPU then places a copy of the contents of the word or byte on the data
bus into some register inside the MPU as required by the instruction that it is executing.
This is done without changing the contents in memory of the word or byte addressed.

To write a word into memory, the address of the word is put on the address bus, the
word is put on the data bus, and the read/write line has 0 (to indicate a write) for a full
clock cycle. The memory is designed to store the word at that address at the end of the
clock cycle. After the word is stored at the given address, the MPU may still retain in
one of its registers a copy of the word that has just been written.

The MPU can read or write an 8-bit or a 16-bit word in memory in one clock cycle.
Such a memory is usually called random access memory or RAM because each byte is
equally accessible or can be selected at random without changing the time of the access.
With microcomputer applications, it is not unusual to have part of the memory bytes in
ROM (read only memory). A ROM is capable of a read operation but not a write
operation; its words are written when it is made at the factory and are retained even when
the power is turned off. If the data in a RAM are lost when power is turned off, the RAM
is termed volatile; otherwise, it is termed nonvolatile. RAM memories are essentially
volatile. The term RAM is also used almost universally to imply memories that you can
read and write in, even though ROM memories can be randomly accessed with a read
operation. The part of memory that is in ROM is typically used to store & program for a
microcomputer that only executes one program. For example, the microcontroller used in
an automobile would be running the same program every time it is used, so that the part
of the memory that is used for storing the program is in ROM.

1.2 The Instruction

We now examine the notion of an instruction, which is an indivisible operation
performed by the MPU. It can be described statically as a collection of bits stored in
memory or as a line of a program or, dynamically, as a sequence of actions by the
controller. In this discussion we begin with a simplified dynamic view of the instruction
and then develop a static view. Examples are offered to combine these views to explain
the static aspects of the operation code, addressing mode, machine code, and mnemonics.
We conclude with an expanded view of the dynamic aspects of the instruction cycle.

The controller will send commands to memory to read or write and will send
commands to all other parts of the computer to effectively carry out the intentions of the
programmer. The specification of what the control unit is to do is contained in a
program, a sequence of instructions stored, for the most part, in consecutive bytes of
memory. To execute the program, the MPU controller repeatedly executes the
instruction cycle (or fetch/execute cycle):

1. Fetch (read) the next instruction from memory. 2. Execute the instruction.
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As we shall see with the 6812 MPU, reading an instruction from memory will
require that one or more bytes be read from memory. To execute the instruction, some
bytes may also be read or written. These two activities, read and execute, seem to be read
or write operations with the memory but are quite different to the MPU, and we use
different terms for them. To fetch means to read a word from memory to be used as an
instruction in the controller. The first step in the cycle shown previously is the fetch
phase. To recall means to read a word into the MPU that is not part of the instruction.
The recall and write operations are done in the second step of the instruction, which is
called the execute phase. Thus, when we talk about fetching a word, you cart be sure
that we are talking about reading the instruction, or part of the instruction. We will not
use "fetch" to describe an operation of reading data to be input to the data operator.

The 6812's registers are shown in Figure 1.2, where the top five registers hold 16
bits and the condition code register holds 8 bits. The 16-bit D register is composed of
two 8-bit registers A and B; D, A, and B are called accumulators because arithmetic
operations can be done with their contents with the results placed back in the registers to
accumulate the result. This accumulating aspect of registers D, A, and B will be
assumed to be understood so that we often refer to (register) "D," "A," or "B" rather than
"accumulator D," "accumulator A," or "accumulator B." The registers A and B are always
the left and right halves of register D; if you put $12 in register A and $34 in register B
then read register D, it has $1234. Similarly, if you put $5678 in register D, then
reading register A gives $56 and reading register B gives $78. Registers X and Y are

Figure 1.2. Registers in the 6812
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index registers, and SP is a stack pointer; they are used in address calculations. The
program counter, PC, is used to fetch the instruction. It is called a counter because it
normally increments each time it is used. The condition code register (CC) has bits that
are used to indicate results of tests that can be used in conditional branch instructions.

At the beginning of the instruction cycle it is assumed that the program counter
contains the address of the first byte of the instruction. As each byte of the instruction is
fetched, the PC is incremented by 1, so that the PC always has the address of the next
byte of the instruction to be read from memory. When the instruction cycle is completed,
the PC then automatically contains the address of the first byte of the next instruction.

We now look at the instruction statically as one or more memory bytes or as a line
of a program. This discussion will introduce new concepts, but we have tried to keep the
number down so that the examples can be discussed without your having too many terms
to deal with. The examples will help to clarify the concepts that we introduce below.

Each instruction in a microcomputer carries out an operation. The types of
operations provided by a von Neumann computer can be categorized as follows:

l.Move. 2. Arithmetic. 3. Logical.
4. Edit. 5. Control. 6. Input/output.

At this time, we are interested in how instructions are stored in memory as part of a
program and how they are executed by the 6812.

After the instruction is fetched, the execute phase of the fetch execute cycle will
often use an address in memory for the input data of the operation or for the location of
the result of the operation. This location is called the effective address. The Motorola
6812, like most microcomputers, is a one-address computer because each instruction can
specify at most one effective address in memory. For instance, if an instruction were to
move a word from location 100 in memory into register A, then 100 is the effective
address. This effective address is generally determined by some bits in the instruction.
The addressing mode specifies how the effective address is to be determined, and there are
binary numbers in the instruction that are used to determine the address. The effective
address is calculated at the beginning of the execute phase, just after the instruction is
fetched and before any of the operations actually take place to execute the instruction.

An instruction in the 6812 is stored in memory as one or more bytes. The first, and
possibly only, byte of the instruction is generally the operation code byte. The
operation code byte contains the operation code (opcode, for short), which specifies the
operation to be carried out and the specification of the addressing mode. The remaining
bytes of the instruction, if any, specify the effective address according to the given
addressing mode. The bytes representing the instruction can be represented as a sequence
of ones and zeros, that is, a binary number. The trouble with this is that it is hard to
remember and to check an 8-bit or longer string of ones and zeros. To make it easier, we
can represent the bit pattern as a hexadecimal number. A hexadecimal number will be
prefixed by a dollar sign ($) to distinguish it from a decimal number. (For example, 193
= $C1. If you are unfamiliar with hexadecimal numbers, see Appendix 1.) When the
opcode, addressing modes, and constants used to determine the address are represented
either as binary or hexadecimal numbers, we call this representation the machine code
because it is the actual format used to store the instruction in the machine
(microcomputer), and this format is used by the machine to determine what is to be done.
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Machine code is quite useful for making small changes in a program that is being
ran and corrected or debugged. However, writing even a moderately long program in
machine code is a punishment that should be reserved for the fifth level of Dante's
inferno. In Chapter 4 we discuss how text produced by an editor is converted by an
assembler to the machine code stored in the computer's memory. The text input to the
assembler is called source code. In a line of source code, to make remembering the
instructions easier, a three- or four-character mnemonic is used to describe the operation,
and its addressing information may be given as a hexadecimal or a decimal number. A
tine of source code, consisting of mnemonics and addressing information, can be
converted by hand into their hexadecimal machine code equivalents using Motorola's
CPU 12 Reference Guide (you can order it from Motorola by using reference number
CPU12RG/D). In the first three chapters, we want to avoid using the assembler, to see
clearly just how the computer ticks. We will hand-convert mnemonics and addressing
information to hexadecimal machine code and work with hexadecimal machine code.

We now look at a load immediate instruction in detail, to introduce concepts about
instructions in general. The load instruction will move a byte into an accumulator, either
A or B. Its simplest addressing mode is called immediate. For instance, to put a specific
number, say $2F, in accumulator A, execute the instruction whose source code line is

LDAA #$2F

where the symbol "#" denotes immediate addressing and the symbol "$" is used to
indicate that the number that follows is in hexadecimal. This instruction is stored in
memory as the two consecutive bytes:

(Look in CPU 12 Reference Guide, Instruction Set Summary, for the mnemonic LDAA
and, under it, find $86 in under the Machine Coding column, in the row beginning
LDAA #opr8i, which also has the addressing mode IMM for immediate addressing.)

Looking dynamically at an instruction, an operation (e.g., add, subtract, load, clear,
etc.) may be carried out with inputs (or operands) and may produce a result. The
instruction is executed in the instruction cycle as follows.

1. Fetch the first byte of the instruction from memory.
2. Increment the PC by one.
3. Decode the opcode that was fetched in step 1.
4. Repeat steps 1 and 2 to fetch all bytes of the instruction.
5. Calculate the effective address to access memory, if needed.
6. Recall the operand from memory, if needed.
7. Execute the instruction, which may include writing the result into memory.

The controller fetches the first byte, $86. The program counter is incremented. The
controller decodes $86. The controller fetches the second byte, $2F, putting it into
accumulator A. The program counter is incremented. After this instruction is executed,
another instruction is fetched and executed.
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1.3 A Few Instructions and Some Simple Programs

Now that we have examined the instruction from static and dynamic points of view, we
will look at some simple programs. The machine code for these programs will be
described explicitly so that you can try out these programs on a real 6812 and see how
they work, or at least so that you can clearly visualize this experience. The art of
determining which instructions have to be put where is introduced together with a
discussion of the bits in the condition code register. We will discuss what we consider to
be a good program versus a bad program, and we will discuss what is going to be in
Chapters 2 and 3, We will also introduce an alternative to the immediate addressing mode
using the load instruction. Then we bring in the store, add, software interrupt, and add
with carry instructions to make the programs more interesting as we explain the notions
of programming in general.

We first consider some variations of the load instruction to illustrate different
addressing modes and representations of instructions. We may want to put another
number into register A. Had we wanted to put $3E into A rather than $2F, only the
second byte of the instruction would be changed, with $3E replacing $2F. The same
instruction as

LDAA #$3E

could also be written using a decimal number as the immediate operand: for example,

LDAA #62

Either line of source code would be converted to machine code as follows:

We can load register B using a different opcode byte. Had we wanted to put $2F into
accumulator B, the first byte would be changed from $86 to $C6 and the instruction
mnemonic would be written

LDAB #$2F

We now introduce the direct addressing mode. Although the immediate mode is useful for
initializing registers when a program is started, the immediate mode would not be able to
do much work by itself. We would like to load words that are at a known location but
whose actual value is not known at the time the program is written. One could load
accumulator B with the contents of memory location $0840. This is called direct
addressing, as opposed to immediate addressing. The addressing mode, direct, uses no
pound sign "#" and a 2-byte address value as the effective address; it loads the word at this
address into the accumulator. The instruction mnemonic for this is

LDAA $0840
and the instruction appears in memory as the three consecutive bytes.
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Notice that the "#" is missing in this mnemonic because we are using direct addressing
instead of immediate addressing. Also, the second two bytes of the instruction give the
address of the operand, high byte of the address first.

The store instruction is like the load instruction described earlier except that it works
in the reverse manner (and a STAA or STAB with the immediate addressing mode is
neither sensible nor available). It moves a word from a register in the MPU to a memory
location specified by the effective address. The mnemonic, for store from A, is STAA;
the instruction

STAA 2090

will store the byte in A into location 2090 (decimal). Its machine code is

where we note that the number 2090 is stored in hexadecimal as $082A. With direct
addressing, two bytes are always used to specify the address even though the first byte
may be zero.

Figure 13. Registers and Memory
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Figure 1.3 illustrates the implementation of the load and store instruction in a
simplified computer, which has two accumulators and four words of memory. The data
operator has accumulators A and B, and a memory has four words and a decoder. For the
instruction LDAA 2, which loads accumulator A with the contents of memory word 2,
the controller sends the address 2 on the address bus to the memory decoder; this decoder
enables word 2 to be read onto the data bus, and the controller asserts a control signal to
accumulator A to store the data on the data bus. The data in word 2 is not lost or
destroyed. For the instruction STAB 1, which stores accumulator B into the memory
word 1, the controller asserts a control signal to accumulator B to output its data on the
data bus, and the controller sends the address 1 on the address bus to the memory decoder;
this decoder enables word 1 to store the data on the data bus. The data in accumulator B is
not lost or destroyed.

The ADD instruction is used to add a number from memory to the number in an
accumulator, putting the result into the same accumulator. To add the contents of
memory location $OB AC to accumulator A, the instruction

ADDA $OBAC

appears in memory as

The addition of a number on the bus to an accumulator such as accumulator A is
illustrated by a simplified computer having a data bus and an accumulator (Figure 1.4).

The data operator performs arithmetic operations using an adder (see Figure 1.4).
Each 1-bit adder, shown as a square in Figure 1.4b, implements the truth table shown in
Figure 1.4a. Registers A, B, and S may be any of the registers shown in Figure 1.2 or
instead may be data from a bus. The two words to be added are put in registers A and B,
Cin is 0, and the adder computes the sum, which is stored in register S. Figure 1.4c
shows the symbol for an adder. Figure 1.4d illustrates addition of a memory word to
accumulator A. The word from accumulator A is input to the adder while the word on the
data bus is fed into the other input. The adder's output is written into accumulator A.

When executing a program, we need an instruction to end it. When using the
debugger MCUez or HiWave with state-of-the-art hardware, background (mnemonic
BGND) halts the microcontroller, when using the debugger DBUG_12 with less-
expensive hardware, software interrupt (mnemonic SWI) serves as a halt instruction. In
either case, the BRA instruction discussed in the next chapter can be used to stop. When
you see the instruction SWI or BGND in a program, think "halt the program."
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Figure 1.4. Data Operator Arithmetic

The four instructions in Figure 1.5 can be stored in locations 2061 through 2070, or
$80D through $816 in hexadecimal; its execution adds two numbers in locations $840
and $841, putting the result into location $842.

Figure IS. Program for 8-Bit Addition
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Figure 1.6. Bits in the Condition Code Register

We will now look at condition code bits in general and the carry bit in particular.
The carry bit is really pretty obvious. When you add by hand, you may write the carry
bits above the bits that you are adding so that you will remember to add it to the next
bit. When the microcomputer has to add more than eight bits, it has to save the carry
output from one byte to the next, which is Cout in Figure 1.4b, just as you remembered
the carry bits in adding by hand. This carry bit is stored in bit C of the condition code
register shown in Figure 1.6. The microcomputer can input this bit into the next
addition as Cin in Figure 1.4b. For example, when adding the 2-byte numbers $349E and
$2570, we can add $9E and $70 to get $OE, the low byte of the result, and then add $34,
$25, and the carry bit to get $5A, the high byte of the result. See Figure 1.7. In this
figure, C is the carry bit obtained from adding the contents of locations 11 and 13; (re) is
used to denote the contents of memory location m, where m may be 10,11,12, etc. The
carry bit (or carry for short) in the condition code register (Figure 1.6) is used in
exactly this way.

The carry bit is also an error indicator after the addition of the most significant bytes
is completed. As such, it may be tested by conditional branch instructions, to be
introduced later. Other characteristics of the result are similarly saved in the controller's
condition code register. These are, in addition to the carry bit C, N (negative or sign bit),
Z (zero bit), V (two's-complement overflow bit or signed overflow bit), and H (half-
carry bit) (see Figure 1.6). How 6812 instructions affect each of these bits is shown in
the CPU 12 Reference Guide, Instruction Set Summary, in the rightmost columns.

We now look at a simple example that uses the carry bit C. Figures 1.8 and 1.9 list
two equally good programs to show that there is no way of having exactly one correct
answer to a programming problem. After the example, we consider some ways to know
if one program is better than another. Suppose that we want to add the two 16-bit
numbers in locations $810, $811 and $812, $813, putting the sum in locations $814,
$815. For all numbers, the higher-order byte will be in the smaller-numbered location,
One possibility for doing this is the following instruction sequence, where, for
compactness, we give only the memory location of the first byte of the instruction.

Figure 1.7. Addition of Two-Byte Numbers
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Figure 1.8. Program for 16-Bit Addition

In the program segment above, the instruction ADCA $812 adds the contents of A
with the contents of location $812 and the C condition code bit, putting the result in A.
At that point in the sequence, this instruction adds the two higher-order bytes of the two
numbers together with the carry generated from adding the two lower-order bytes
previously. This is, of course, exactly what we would do by hand, as seen in Figure 1.7.
Note that we can put this sequence in any 19 consecutive bytes of memory as long as the
19 bytes do not overlap with data locations $810 through $815. Finally, the notation
A:B is used for putting the accumulator A in tandem with B or concatenating A with B.
This concatenation is just the double accumulator D. We could also have used just one
accumulator with the following instruction sequence.

In this new sequence, the load and store instructions do not affect the carry bit C.
(See the CPU12RG/D manual Instruction Set Summary. We will understand why
instructions do not affect C as we look at more examples.) Thus, when the instruction
ADCA $ 812 is performed, C has been determined by the ADDB $ 813 instruction.

The two programs above were equally acceptable. However, we want to discuss
guidelines to writing good programs early in the book, so that you can be aware of them
to know what we are expecting for answers to problems and so that you can develop a
good programming style. A good program is shorter and faster and is generally clearer
than a bad program that solves the same problem. Unfortunately, the fastest program is

Figure 1.9. Alternative Program for 16-Bit Addition
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almost never the shortest or the clearest. The measure of a program has to be made on
one of the qualities, or on one of the qualities based on reasonable limits on the other
qualities, according to the application. Also, the quality of clarity is difficult to measure
but is often the most important quality of a good program. Nevertheless, we discuss the
shortness, speed, and clarity of programs to help you develop good programming style.

The number of bytes in a program (its length) and its execution time are something
we can measure. A short program is desired in applications where program size affects
the cost of the end product. Consider two manufacturers of computer games. These
products feature high sales volume and low cost, of which the microcomputer and its
memory are a significant part. If one company uses the shorter program, its product may
need fewer ROMs to store the program, may be substantially cheaper, and so may sell in
larger volume. A good program in this environment is a short program. Among all
programs doing a specific computation will be one that is the shortest. The quality of
one of these programs is the ratio of the number of bytes of the shortest program to the
number of bytes in the particular program. Although we never compute this static
efficiency of a program, we will say that one program is more statically efficient than
another to emphasize that it takes fewer bytes than the other program.

The CPU12RG/D manual Instruction Set Summary gives the length of each
instruction by showing its format. For instance, the LDAA #$2F instruction is shown
alphabetically under LDAA in the line IMM. The pattern 86 ii, means that the opcode is
$86 and there is a one-byte immediate operand ii, so the instruction is two bytes long.

The speed or execution time of a program is prized in applications where the
microcomputer has to keep up with a fast environment, such as in some communication
switching systems, or where the income is related to how much computing can be done.
A faster computer can do more computing and thus make more money. However, speed
is often overemphasized: "My computer is faster than your computer." To show you that
this may be irrelevant, we like to tell this little story about a computer manufacturer.
This is a true story, but we will not use the manufacturer's real name for obvious
reasons. How do you make a faster version of a computer that executes the same
instruction? The proper answer is that you run a lot of programs, and find instructions
that are used most often. Then you find ways to speed up the execution of those often-
used instructions. Our company did just that. It found one instruction that was used very,
very often: It found a way to really speed up that instruction. The machine should have
been quite a bit faster, but it wasn't! The most common instruction was used in a routine
that waited for input-output devices to finish their work. The new machine just waited
faster than the old machine that it was to replace. The moral of the story is that many
computers spend a lot of time waiting for input-output work to be done. A faster
computer will just wait more. Sometimes speed is not as much a measure of quality as it
is cracked up to be. But then in other environments, it is the most realistic measure of a
program. As we shall see in later chapters, the speed of a particular program can depend
on the input data to the program. Among all the programs doing the same computation
with specific input data, there will be a program that takes the fewest number of clock
cycles. The ratio of this number of clock cycles to the number of clock cycles in any
other program doing the same computation with the same input data is called the
dynamic efficiency of that program. Notice that dynamic efficiency does depend on the
input data but not on the clock rate of the microprocessor. Although we never calculate
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Figure 1.10. Most Efficient Program for 16-Bit Addition

dynamic efficiency explicitly, we do say that one program is more dynamically efficient
than another to indicate that the first program performs the same computation more
quickly than the other one over some range of input data.

The CPU12RG/D manual Instruction Set Summary gives the instruction timing.
For instance, the LDAA #$2F instruction is shown alphabetically under LDAA for the
mode IMM. The Access Detail column indicates that this instruction takes one memory
cycle of type P, which is a program word fetch. Generally, a memory cycle is 125 ns.

The clarity of a program is hard to evaluate but has the greatest significance in
large programs that have to be written by many programmers and that have to be
corrected and maintained for a long period. Clarity is improved if you use good
documentation techniques, such as comments on each instruction that explain what you
want them to do, and flowcharts and precise definitions of the inputs, outputs, and the
state of each program, as explained in texts on software engineering. Some of these
issues are discussed in Chapter 5. Clarity is also improved if you know the instruction
set thoroughly and use the correct instruction, as developed in the next two chapters.

While there are often two or more equally good programs, the instruction set may
provide significantly better ways to execute the same operation, as illustrated by Figure
1.10. The 6812 has an instruction LDD to load accumulator D, an instruction ADDD to
add to accumulator D, and an instruction STD to store accumulator D, which, for
accumulator D, are analogous to the instructions LDAA, ADDA, and STAA for
accumulator A. The following program performs the same operations as the programs
given above but is much more dynamically and statically efficient and is clearer.

If you wish to write programs in assembly language, full knowledge of the
computer's instruction set is needed to write the most efficient, or the clearest, program.
The normal way to introduce an instruction set is to discuss operations first and then
addressing modes. We will devote Chapter 2 to the discussion of instructions and Chapter
3 to the survey of addressing modes.

In summary, you should aim to write good programs. As we saw with the example
above, there are equally good programs, and generally there are no best programs. Short,
fast, clear programs are better than the opposite kind. Yet the shortest program is rarely
the fastest or the clearest. The decision as to which quality to optimize is dependent on
the application. Whichever quality you choose, you should have as a goal the writing of
clear, efficient programs. You should fight the tendency to write sloppy programs that
just barely work or that work for one combination of inputs but fail for others.
Therefore, we will arbitrarily pick one of these qualities to optimize in the problems at
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the end of the chapters. We want you to optimize static efficiency in your solutions,
unless we state otherwise in the problem. Learning to work toward a goal should help
you write better programs for any application when you train yourself to try to
understand what goal you are working toward.

1.4 MC68HC812A4 and MC68HC912B32 Organizations

The 6812 is currently available in two implementations, which are designated the
MC68HC812A4 (abbreviated the 'A4) and MC68HC912B32 (abbreviated the 'B32).
These are discussed herein.

The 'A4 can operate in the single-chip mode or the expanded bus mode. In the
single-chip mode, the 'A4 can be the only chip in a system, for it is self-sufficient. The
processor, memory, controller, and I/O are all in the chip. (See Figure 1.11.) The
memory consists of IK words of RAM and 4K words of electrically erasable
programmable memory (EEPROM). The I/O devices include a dozen parallel I/O
registers, a serial peripheral interface (SPI), a serial communication interface (SCI), a
timer, and an AID converter.

The ' A4's expanded bus mode removes three or four of the parallel ports, using their
pins to send the address and data buses to other chips. RAM, ROM, erasable
programmable read-only memory (EPROM), and programmable read-only memory
(PROM) can be added to an expanded bus. In a narrow expanded mode, ports A and B are
removed for address lines, and port C is an 8-bit data bus. Port D is available for parallel
I/O. In a wide expanded mode (see Figure 1.12), ports A and B are removed, their pins are
used for the address bus, and ports C and D are a 16-bit data bus. Port D is unavailable
for parallel I/O. In both modes, ports E, F, and G are available for bus control, chip
selects, and memory control, or else for parallel I/O.

Figure 1.11. Single-Chip Mode of the MC68HC812A4
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Figure 1.12. Expanded Wide Multiplexed Bus Mode of the MC68HC812A4

A memory map is a description of the memory showing what range of addresses is
used to access each part of memory or each I/O device. Figure 1.13a presents a memory

a.fortheMC68HC812A4

Figure 1.13. Memory Maps for the 6812
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Figure 1.14. Single-Chip Mode of the MC68HC912B32

map for the 'A4. Actually, EEPROM, RAM, and I/O may be put anywhere in memory
(on a 2K or 4K boundary), but we will use them in the locations shown in Figure 1.13a
throughout this text. I/O is at lowest address, and RAM is at $800 to $bff. The
EEPROM at $FOOO has a monitor. Usually your data is put in RAM, and your program
may be put in RAM or in EEPROM.

The 'B32 can also operate in the single-chip mode or the expanded bus mode, but in
the latter mode, address and data are time-multiplexed on the same pins. In the single-
chip mode, the 'B32 can be the only chip in a system. The processor, memory,
controller, and I/O are all in the chip. (See Figure 1.14.) The controller and data operator
execute the 6812 instruction set discussed earlier. The memory consists of IK words of
RAM, 768 bytes of EEPROM, and 32K words of flash memory, which is like
EEPROM. The I/O devices include eight parallel I/O registers, a serial peripheral
interface (SPI), a serial communication interface (SCI), a timer, & pulse-width modulator
(PWM), a Byte Data Link Communication Module (BDLC), and an A/D converter.

The expanded bus mode of the 'B32 removes two of the parallel ports, ports A and
B, using their pins to send the time-multiplexed address and data buses to other chips.
The address and data buses are time-multiplexed; in the first part of each memory cycle,
the 16-bit address is output on the pins, and in the second part, data is output or input on
the indicated pins. In a narrow expanded mode, port A is used for an eight-bit data bus. In
a wide expanded mode (see Figure 1.15), ports A and B pins are used for a 16-bit data
bus. In both modes, port E can be used for bus control or else for parallel I/O. RAM.
ROM, EPROM, and PROM can be added to the expanded bus.

Figure 1.13b presents a memory map for the 'B32. I/O is at lowest address, and
RAM is at $800 to $bff. A small EEPROM is at $dOO to $fff. Flash memory at $8000
to $ffff has a monitor. Usually your data is put in RAM, and your program may be put
in RAM or in flash memory.
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Figure 1.15. Expanded Wide Multiplexed Bus Mode of the MC68HC912B32

A significant advantage of the ' A4 or 'B32 is that either can be used in either the
single-chip or either narrow or wide expanded multiplexed bus mode. The former mode is
obviously useful when the resources within the microcontroller are enough for the
application—that is, when there are enough memory and I/O devices for the application.
The latter mode is required when more memory is needed, when a program is in an
EPROM and has to be used with the 'A4, or when more or different I/O devices are
needed than are in the 'A4.

1.5 Variable Word Width

We have glibly stated that a 6812 can have either 8-bit or 16-bit word widths. The
fastidious reader might wonder how this takes place. This optional section provides
details on how a 6812's word widths can be either 8 bits or 16 bits wide, as discussed.

The word width is a function of the instruction and of the bus mode discussed in the
last section. As noted in the last section, external memory can utilize a narrow or a wide
data bus. We first consider an external memory using the wide data bus and comment on
such a memory using a narrow bus at the end of our discussion. Figure 1.16 illustrates a
6812 system with an internal memory at locations $800 to $bff and an external memory
at locations $7000 to $7fff, each composed of two 8-bit-wide memory "banks."
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Figure 1.16. Variable Word Width Implementation

Each internal 8-bit wide memory bank's decoder can decode addresses on different
buses, while both external 8-bit wide memory banks' decoders decode the same address.
The even memory bank stores even bytes, such as 0, 2, 4, . . . while the odd memory
bank stores odd bytes, such as 1, 3, 5, . . . . The effective address computed by the
instruction is generally shifted one bit right to derive the address that is presented to the
memories (memory address). The original effective address's least significant bit indicates
which 8-bit memory is accessed.

We will consider reading an 8-bit word first, which is the simplest operation. Then
we discuss writing an 8-bit word, reading a 16-bit word, and writing a 16-bit word.

Consider reading an 8-bit word into accumulator A. A whole 16-bit word can be read
from both banks of either the internal memory at locations $800 to $bff or external
memory at locations $7000 to $7fff, using the same memory address; and the switches to
the right of accumulator A can feed the byte from an even or odd memory bank to it,
depending on whether the byte address is even or odd. Writing accumulator A into
memory can be effected by putting that register's data on both even and odd byte data
buses and giving the command to write to an even or odd bank depending on whether the
effective address is even or odd. The bank that does not get the command to write will see
the byte on its data input but won't write that byte into its memory.

Consider reading a 16-bit word into accumulator D, which is accumulator A
concatenated with accumulator B. If the address is even, then a 16-bit word is simply read
from both banks, using the same memory address, through both data buses and written
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into both accumulators A and B. Reading a 16-bit word from an odd effective address in
the internal memory can be done in one memory cycle; the even-byte memory bank can
decode a memory address one above the memory address of the odd bank, and the switches
next to the accumulators can reroute the bytes into the correct accumulators. However,
reading a 16-bit word from an odd address in the external memory is done in two memory
cycles; the byte at the lower address is read first, as discussed in the previous paragraph,
then the byte at the higher address is read.

Consider writing a 16-bit word from accumulator D. If the address is even, simply
write a byte from both accumulators A and B through both data buses into both banks. If
the address is odd, writing 16 bits is easily done in the internal memory; each byte is
written, but at different addresses in the even and odd byte memory banks. But if the
address is odd, writing 16 bits into the external memory is done by writing the lower
addressed byte first in one memory cycle, then writing the other byte in the next cycle.

Each access to read or write a byte through an 8-bit narrow bus takes one memory
cycle. Each access to read or write a 16-bit word uses two memory cycles.

Cycle counts in the CPU12RG/D manual Instruction Set Summary are for
instructions and data read and written in internal RAM. These counts may be higher
when instructions and data are read from or written into external RAM.

At the beginning of this chapter, we proposed to show you how an instruction is
executed in a microcontroller. But from this discussion of 6812 memory operations, you
see that a simple operation becomes significantly more complex when it is implemented
in a state-of-the-art microcontroller. Just reading a 16-bit word from memory might be
done several ways depending on where the word is located, inside or outside the
microcontroller, or using an even or an odd address. But from the point of view of how
an instruction is executed in the 6812, a simple model that explains the concept fully is
better than the fully accurate model that accounts for all the techniques used to
implement the operation; we simply state that a 16-bit word is read from memory. The
reader should understand how instructions are executed, but from now on in this book,
we will use a simplified model of the hardware to explain how an instruction is actually
implemented in hardware (in an idealized microcontroller, rather than the real 6812).

1.6 Summary and Further Reading

In this chapter we examined the computer and the instruction in some detail. You should
be prepared to study each of the instructions in the 6812 in the following two chapters
with respect to the details that we introduced for the load instruction in this chapter. We
will expand the ideas of programming, introduced at the end of this chapter, as we
progress through the book. Many questions may remain unanswered, though, after
reading this chapter. We want you to continue reading the following chapters as we
discuss the way to use this marvelous tool.

In this book, we use Motorola's CPU12RG/D manual to provide essential
information needed to write and read machine code for the 6812 in compact and neat
form. This manual is a summary of key tables and figures in the manual
CPU12RM/AD, which contains complete information on the execution of each
instruction. Additionally, there is a manual for the 'B32, M68HC912B32TS/D, and a



22 Chapter! Basic Computer Structure and the 6812

manual for the 'A4, M68HC812A4TS/D, which describe their I/O systems. Motorola is
generous with these manuals and maintains them better than we can in an appendix in
this book, so we recommend that you order the manuals from Motorola that you need to
accompany this book. Finally, if you are already an accomplished assembly language
programmer on another computer or microcomputer, you might find this book too
simple and spread out. We might offer Chapter 1 of the text Single- and Multiple-Chip
Microcontroller Interfacing (G. J. Lipovski), as a condensed summary of much of the
material in this text.

Do You Know These Terms?

This is a list of all italicized words in this chapter. You should check these terms to be
sure that you recognize their meaning before going on to the next chapter. These terms
also appear in the index, with page numbers for reference, so you can look up those that
you do not understand.

von Neumann random access hexadecimal memory
computer memory number (EEPROM)

memory (RAM) machine code serial peripheral
controller read only memory machine interface (SPI)
data operator (ROM) debug serial
input-output (I/O) volatile assembler communication
register nonvolatile source code interface (SCI)
microprocessor program mnemonic timer
microcomputer instruction immediate A/D converter
single-chip instruction cycle addressing erasable programmable

microcontroller fetch/execute operand read-only memory
MPU cycle direct addressing (EPROM)
byte fetch carry bit programmable
word fetch phase (carry) read-only
line recall condition code memory
wire execute phase register (PROM)
bus accumulator half-carry memory map
clock effective address static efficiency flash memory
clock cycle one-address dynamic pulse-width
clock rate computer efficiency modulator
clock frequency addressing mode clarity (PWM)
read operation code single-chip mode Byte Data Link
read/write line byte electrically Communication
write operation code erasable Module (BDLC)
access (op code) programmable
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PROBLEMS

1. Is a Hewlett-Packard handheld calculator, model 21 (or any programmable calculator
that you may select), a (von Neumann) computer, and why?

2 . What do the following terms mean: memory, controller, data operator,
input/output?

3 . What are a microcomputer, a microprocessor, and a single-chip microcontroller?

4 . Describe the terms clock, data bus, address bus, and read/write line. Discuss the
operation of reading a word from memory using these terms.

5 . How many memory read cycles are needed for the following instructions, using the
CPU 12 reference manual? How many are fetch operations, and how many are recall
operations? How many memorize cycles are used?

(a)LDAA #19
(b)LDAB #18
(c)ADDA $3FB2
(d)ADDA 23 (Use 16-bit direct addressing)
(e) STAA 199 (Use 16-bit direct addressing)

6. While executing a particular program, (PC) = 2088, (A) = 7, and (B) = 213 before
the following sequence is executed:

LDAA #10 Location Contents
ADDA 2142 2139 8
STAA 2139 2140 7

2141 16
2142 251
2143 19

If the contents of memory locations 2139 through 2143 are as shown on the right before
the sequence is executed, what will be the contents of A, B, and PC after the sequence is
executed? (Location is the memory location, or address, and Contents is the memory
contents. All numbers given are in decimal.) What will the C bit be equal to after the
sequence is executed?

7 . Write a program to add two 3-byte numbers in the same manner as the last program
segment of this chapter.

8 . Select goals for good programs in the following applications, and give a reason for
the goals. The goals should be: static or dynamic efficiency or clarity.

(a) A 75,000-instruction program
(b) A program for guidance of a space satellite
(c) A controller for a drill press
(d) An automobile engine controller
(e) Programs for sale to a large number of users (like a Basic interpreter)
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9 , What is the effective address in the following instructions, assuming the opcode
byte is at $802?

(a)LDAA 122
(b)LDAA #122
(c)ADDA $3452
(d)ADDA #125

10. Rewrite Figure 1.5 to subtract the 8-bit number in location $840 from the 8-bit
number in location $841, putting the result into location $842. Use SUBA.

11. How many clock cycles does it take to execute the program in Figure 1.5? (See the
operation code bytes table in the CPU12RG/D manual Instruction Set Summary.) If a
memory clock cycle is 125 nsec, how long does this program take, in real time?

12. Rewrite Figure 1.8 to subtract the 16-bit number in location $812 from the 16-bit
number in location $810, putting the result into location $814. Use SUBB and SBCA.

13. Rewrite Figure 1.9 to subtract the 16-bit number in location $812 from the 16-bit
number in location $810, putting the result into location $814. Use SUBA and SBCA.

14. How many clock cycles does it take to execute the program in Figure 1.8 and the
program in Figure 1.9? (See the operation code bytes table in the CPU12RG/D manual.)
If a memory clock cycle is 125 nsec, how long does this program take, in real time?

15. Rewrite Figure 1.10 to subtract the 16-bit number in location $812 from the 16-bit
number in location $810, putting the result into location $814. Use SUED.

16. How many clock cycles does it take to execute the program in Figure 1.10? (See
the operation code bytes table in the CPU12RG/D manual.) If a memory clock cycle is
125 nsec, how long does this program take to execute in real time?

11. How many parallel ports of the narrow expanded mode of the MC68HC812A4,
which are already on the microcontroller chip, can be used? How many parallel ports of
the wide expanded mode of the MC68HC812A4, which are already on the microcontroller
chip, can be used? In the latter case, how many can be used for output?

18. How many parallel ports of the narrow expanded mode of the MC68HC912B32,
which are already on the microcontroller chip, can be used? How many parallel ports of
the wide expanded mode of the MC68HC912B32, which are already on the
microcontroller chip, can be used? In the latter case, how many can be used for output?

19. In Figure 1.16, an external memory is 16 bits wide, but most static random access
memories (SRAMs) are 8 bits wide. If a 16 Kbyte external memory is to be used as
shown in this figure, what kind of SRAM chips should be ordered? How should the
microcontroller address bus be attached to the SRAM chip address pins?
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20. In Figure 1.16, an internal memory is 16 bits wide, while the older 6811
microcontroller's internal memory is 8 bits wide. A word of EEPROM can be
programmed each 10 milliseconds in either case. How long does it take to write a I
Kbyte program in EEPROM in each microcontroller?
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The Instruction Set

In our study of how the computer ticks, we think that you will be motivated to read this
chapter because it will describe the actions the computer can do. It will supply a key
ingredient that you need to write programs, so that the computer can magnify your ideas
as a lever can magnify your physical capabilities. The next chapter completes the study
of the instruction set by describing the addressing modes used with these instructions.

In order to learn the possible actions or operations that a computer may execute, you
need to keep a perspective. There is a lot of detail. You do need to learn this detail to be
able to program the 6812. But learning about that microcomputer must be viewed as a
means to an end, that is, to understand the operations of any computer in general. While
you learn the details about programming the 6812, get the feel of programming by
constantly relating one detail to another and questioning the reason for each instruction.
When you do this, you will learn much more than the instruction set of a particular
computer—you will learn about computing.

We have organized this chapter to facilitate your endeavor to compare and to
associate details about different instructions and to offer some answers to questions that
you might raise about these instructions. This is done by grouping similar instructions
together and studying the groups one at a time, as opposed to listing instructions
alphabetically or by presenting a series of examples and introducing new instructions as
needed by each example as we did in Chapter 1. We group similar instructions together
into a class and present each class one at a time. As mentioned in Chapter 1, the
instructions for the 6812, as well as any other computer, may be classified as follows:

1. Move instructions 2. Arithmetic instructions 3. Logic instructions
4. Edit instructions 5. Control instructions 6. Input output instructions
7. Special instructions

We have added, as a separate section, the special instructions that are generally arithmetic
instructions usually not used by compilers but that provide the 6812 with some unique
capabilities. We now examine each instruction class for the 6812. This discussion of
classes, with sections for examples and remarks, is this chapter's outline.

27
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At the conclusion of the chapter, you will have all the tools needed to write useful
programs for the 6812, in machine code. You should be able to write programs on the
order of 20 instructions long, and you should be able to write the machine code for these
programs. If you have a laboratory parallel to a course that uses this book, you should be
able to enter these programs, execute them, debug them, and, using this hands-on
experience, you should begin to understand computing.

2.1 Move Instructions

Behold the humble move instructions, for they labor to carry the data for the most
elegant instructions. You might get excited when you find that this computer has a fairly
fancy instruction like multiply, or you might be disappointed that it does not have
floating-point instructions like the ones most big machines sport. Studies have shown
that, depending on the kind of application program examined, between 25 and 40% of the
instructions were move instructions, while only 0.1% of the instructions were
multiplies. As you begin to understand computing, you will learn to highly regard these
humble move instructions and to use them well.

Move instructions essentially move one or two bytes from memory to a register (or
vice versa) or between registers or memory locations. The two aspects of these
instructions that give most readers some problems are the setting of condition codes and
the allowable addressing modes. We shall take some care with the setting of condition
codes in this chapter and the allowable addressing modes in the next chapter.

The two simplest instructions from the move class are the load and store
instructions. These have already been examined for accumulators A, B, and D; they also
may be used with index registers like X. For example, in the load instruction

LDX 2062

the high byte of X is taken from location 2062 while the low byte of X is taken from
location 2063. An exactly parallel situation holds for the store instruction

STX 2337

where the high byte of X is put into location 2337 while the low byte of X is put into
location 2338. In addition to X, there are load and store instructions for index register Y
and stack pointer S. They work exactly as described for D.

The TST and CLR instructions are two more examples in the move class of
instructions of the 6812. The clear instruction CLR is used to initialize the accumulators
or memory locations with the value zero. As such, CLRA can replace instructions such
as LDAA #0 in the sequence in Figure 2.1. Further, the two instructions in Figure 2.1
can be replaced by the single instruction CLR 2090.

Figure 2.1. A Program Segment to Clear a Byte
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Table 2.1. Move Instructions Using an Effective Address

Notice that although CLRA and LDAA #0 make the same move, CLRA clears C,
whereas LDAA #0 does not affect C. Your program may need to use C later. The test
instruction TST, sometimes called a "half a load " instruction, adjusts the N and Z bits
in the condition code register exactly as a load instruction does but without actually
loading the byte into an accumulator. The versatile "load effective address" instructions,
LEAK, LEAY, and LEAS, load one of the index registers or stack pointer with the
effective address computed in an indirect index address calculation, which will be
discussed in Chapter 3. These instructions do not affect the condition code register bits.

Table 2.1 lists the move instructions that use addressing modes. The expressions
such as (E) -> A; accurately describe the instruction's principle effect, E is the effective
address, (E) is the word in memory at location E, A is accumulator A, and -> is a data
transfer, so (E) -> A; means that the word in memory at the location determined by the
instruction's effective address is put into accumulator A. The CPU12RG/D manual
Instruction Set Summary further gives the opcode bytes, allowable addressing modes for
each instruction, and condition code modifications that result from executing these
instructions. These same conventions are used with the tables that follow in this chapter.

Table 2.2 lists move instructions that push on or pull from the stack. The stack
pointed to by register SP is called the hardware stack. A program can have other stacks
as well. A stack is an abstraction of a stack of letters on your desk. Received letters are
put on top of the stack; when read, they are removed from the top of the stack.

In the computer, letters become bytes and the memory that stores the stack becomes
a buffer with a stack pointer as follows. One decides to put this buffer, say, from $b80
to $bff. See Figure 2.2. The amount of storage allocated to the buffer should be the
worst case number of bytes saved on the stack. Usually, we allow a little extra to prevent
a stack overflow. SP points to the top byte that is on the stack. The SP register is
generally initialized once to the high end of the buffer, at the beginning of the program,
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Figure 2.2. A Stack

and is thereafter adjusted only by push and pull instructions and, perhaps, the LEAS
instruction to move it. For example, at the beginning of the program, the instruction
LDS #$cOO initializes the stack so that the first push is into location $bff.

If a byte is pushed onto the stack, SP is decremented by 1, and a byte, from one of
the 8-bit registers, is put into location (SP). If one byte is removed or pulled from the
stack, the byte is transferred to one of the 8-bit registers, and SP is incremented by 1. If
two bytes are pushed onto the stack, SP is decremented by 2, and two bytes, from one of
the 16-bit registers, are put into location (SP) and (SP+1). If two bytes are pulled from
the stack, two bytes from location (SP) and (SP+1) are put into one of the 16-bit
registers and SP is incremented by 2. Any of the registers, except SP, may be pushed or
pulled from the stack for which SP is the stack pointer. PSHB will push B onto the
stack, PULD will pull two words from the stack, putting the combined word in
accumulator D. The order for 16-bit words is always that the low byte is pushed before
the high byte and the high byte pulled before low byte.

The stack will later be used for saving and restoring the program counter when
executing a subroutine and saving and restoring all the registers when executing an
interrupt. It will later also be used to store procedure arguments and local variables.

The hardware stack and the stack pointer SP must be used with some care in
computers like the 6812. There may be a temptation to use it as an index register, to
move it around to different data locations. This is very dangerous. Interrupts, which may
occur randomly, save data on the hardware stack, and programs used to aid in the testing
and debugging of your program generally use interrupts. Such a program may be very

Table 22. Stack Move Instructions
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Table 23. Special Move Instructions

difficult to test and debug because some data in your program may be overwritten in your
attempt to test and debug it. On the other hand, this same stack is the best place to save
data used by a subroutine, which is not used by other subroutines, as we explain later.
Incidentally, the word "pop" is used instead of "pull" in many textbooks.

The transfer and exchange instructions in Table 2.3, TFR and EXG, allow the
transfer of register Rl to R2 or the exchange of Rl and R2, respectively, where Rl and R2
are any pair of 8- or 16-bit registers. You can move data from an 8-bit register to a 16-bit
one or vice versa. As an example, the instruction TFR D, Y puts the contents of D into
Y, and EXG D, X exchanged the contents of accumulator D and index register X.

The TFR or EXG machine code consists of an operation code byte and a post byte.
The opcode byte is obtained from the CPU12RG/D manual Instruction Set Summary,
and the post byte (see Table 3 therein) can be obtained as follows: The source is the left
nibble and the destination is the right nibble; their values are: 0, accumulator A; 1,
accumulator B; 2, condition code register; 4, accumulator D; 5, index register X; 6, index
register Y; 7, stack pointer SP. As an example, the instruction TFR D r Y is stored in
memory as the two bytes:

The post byte's left four bits indicate the source of the transfer, which is D, and the right
four bits indicate the destination of the transfer, which is Y. When transferring from an
8-bit to a 16-bit register, the sign bit is extended so that positive numbers remain
positive and negative numbers remain negative; the sign extend mnemonic SEX can be
used as an alternative to the TFR mnemonic in these cases. Figure 2.3a illustrates sign
extension when transferring the data from an 8-bit register, like A, shown on the top,
into a 16-bit register like X, shown on the bottom. The low-order byte is moved bit-by-
bit from the flip-flops in the 8-bit to the flip-flops in the 16-bit register. The high-order
byte's flip-flops are loaded with the low-order byte's sign bit. The EXG instruction
similarly permits exchanging the contents of two registers, and the post byte
coding is the same, but when moving from an 8-bit to a 16-bit register, instead of
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Figure 23. Transfers between Registers

extending the sign, it merely fills the high byte with zeros (see Figure 2.3b). Exchanges
are accomplished by means of a hidden register (see Figure 2.3c). The instruction EXG
A, B first copies register B into the hidden register. Then it copies A into B. Then it
copies the hidden register into A. Such hidden registers are not in the description of the
6812's register set (Figure 1.2) but are additional registers within the data operator.

The MOVB and MOVW instructions implement a constant-to-memory or a memory-
to-memory move. The instruction below puts the constant $04 into location $803,

MOVB #4,$803

This instruction is coded as shown below; the prefix byte $18 precedes the opcode byte
$OB. See the CPU12RG/D manual. In effect, the opcode is a 16-bit opcode $180B. The
prefix byte $18 is used in the 6812 to encode a number of instructions. It is as if, when
the 6812 fetches the prefix $18, it thinks: Oh, this is one of the 2-byte op codes, so
fetch another byte to get the complete opcode. The third byte is the immediate operand
$04, and the last two bytes are the direct address $803.
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This move instruction moves the immediate operand $04 into a hidden register and
then moves the data from the hidden register into location $803. From the CPU12RG/D
manual, we observe that its execution takes four memory cycles. The alternative to this
instruction is the program segment:

LDAA #4
STAA $803

which is encoded as follows:

This pair of instructions takes the same number of bytes as the MOVE instruction.
Further, the LDAA instruction executes in one memory cycle, and the STAA instruction
executes in three memory cycles. The MOVE instruction is neither statically nor
dynamically more efficient than the pair of instructions, LDAA and STAA. However, it
is clearer. We recommend using the MOVE instruction to write a constant into memory.

But if the same constant is written into two places in memory, as in

LDAA #4
STAA $803
STAA $807

then a program sequence using the MOVE instruction is less efficient:

MOVE #4,$803
MOVE #4,$807

This program sequence takes ten bytes and executes in eight memory cycles, while the
program sequence above it takes eight bytes and executes in seven memory cycles.

The MOVE instruction also moves data from any memory location to any memory
location. MOVE $801,$803 moves a byte from location $801 to location $803. The
MOVW instruction similarly moves 16 bits of data.

Missing move instructions can often be implemented by combinations of other
move instructions. Because there is no instruction to "load" the condition code register, it
can be loaded through accumulator A or B with the TFR instruction. For example, to put
3 into the condition code, execute the code shown in Figure 2.4.

Figure 2.4. Program Segment to Initialize the Condition Code Register
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2.2 Arithmetic Instructions

The computer is often used to compute numerical data, as the name implies, or to keep
books or control machinery. These operations need arithmetic instructions, which we
now study. However, you must recall that computers are designed and programs are
written to enhance static or dynamic efficiency. Rather than have the four basic
arithmetic instructions that you learned in grade school—-add, subtract, multiply, and
divide—computers have the instructions that occur most often in programs. Rather than
having the sophisticated square root as an instruction, for instance, we will see the often-
used increment instruction in a computer. Let us look at them. See Table 2.4.

We have already discussed the add instructions: ADCA, ADCB,ADDA, ADDB, and
ADDD. The corresponding subtraction instructions, SBCA, SBCB, SUBA, SUBB, and
SUBD, are the obvious counterparts of add instructions, where the carry condition code
bit holds the borrow. However, 16-bit add and subtract instructions with carry, ADCD and
SBCD, are missing; multiple-byte arithmetic must be done one byte at a time rather than
two bytes at a time. Comparisons are normally made by subtracting two numbers and
checking if the result is zero, negative, positive, or a combination of these. But using
the subtract instruction to compare a fixed number against many numbers requires that
the fixed number has to be reloaded in the register each time the subtraction is performed.
To streamline this process, compare instructions are included that do not change the
contents of the register used. These compare instructions are used to compare the
contents of registers A, B, D, X, Y, and SP with the contents of memory locations in
order to give values to the condition code bits C, V, N, and Z. Finally, note that DEC,
INC, and NEC are provided for often-used special cases of add and subtract instructions,
to improve efficiency.

Table 2.4. Add Instructions Using an Effective Address
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Figure 2.5. Program Segment for 32-Bit Addition

Figure 2.5 illustrates a simple example of an arithmetic operation: adding a 4-byte
number at $850 to a 4-byte number at $854. ADDD can be used to add the two low-order
bytes, but ADCB and ADCA are needed to add the high-order bytes.

Arithmetic instructions are really very simple and intuitively obvious, except for the
condition code bits. Addition or subtraction uses the same instruction for unsigned as for
two's-complement numbers, but the test for overflow is different (see Appendix 1). The
programmer has to use the correct condition code test after instruction completion; for
example, SUBA $876 sets C = 1 if, and only if, there has been an unsigned overflow;
that is, A - ($876) produces a borrow or, when each number is treated as an unsigned
number, A < ($876). (Here A and ($876) denote the contents of A and the contents of
location $876.) Similarly, V = 1 if, and only if, a two's-complement (signed) overflow
occurs, when A and ($876) are treated as two's-complement numbers; i.e., A - ($876) is
not in the 8-bit two's-complement range. Note again that subtraction is performed with
the same instruction, such as SUBA f regardless of whether the numbers are two's-
complement or unsigned numbers.

Table 2.5 shows special instructions used to improve efficiency for commonly used
operations. ABX, ABY, ABA, CBA, and SBA use accumulator B, and DBS, DEX,
DEY, INS, INK, and INY increment or decrement index registers and the stack
pointer.

Multiply instructions MUL and EMUL multiply unsigned numbers in specific
registers. EMULS similarly multiplies signed numbers. One may also multiply a signed
or unsigned number by two with the arithmetic shift-left instructions discussed with the
edit class, such as ASLA, ASLB, ASLD, and ASL 527. Divide instructions IDIV,
FDIV, and EDIV divide unsigned numbers in specific registers. IDIVS similarly
divides signed numbers. One may divide a two's-complement number by two with
corresponding arithmetic shift-right instructions, e .g., ASRA, ASRB, and ASR 327.

0110 0110 0110 0110
1010 1010 1010 1010
0110 01100 011110 0111100

add top number to 0 shift it left shift left, add top shift left

Figure 2.6. Multiplication
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Table 2.5. Arithmetic Instructions That Do Not Use an Effective Address

Multiplication can be done by addition and shifting almost as multiplication is done
by hand, but to save hardware, the product is shifted rather than shifting the multiplier to
be added to it. Figure 2.6 multiplies a 4-bit unsigned number 0110 by another 4-bit
number 1010, to get an 8-bit product. First, because the most significant bit of the
multiplier 1010 is one, add the number 0110 into the initial product 0, then shift the
product one bit left, twice, and then add the number 0110 into the product, and shift the
product one bit left. The answer is 00111100.

Actually, modern microcontrollers execute several shift-and-add operations in one
clock cycle. Thus, EMUL, which multiplies a 16-bit by a 16-bit unsigned number, takes
only three clock cycles. Signed multiplication sign extends its multiplier rather than
filling with zero, and it treats the sign bit differently. Therefore use the EMULS
instruction for signed numbers. These remarks apply analogously to the division
instructions EDIV and EDIVS. The other instructions: EDIV, EDIVS, EMULS, FDIV,
IDIV, IDIVS r and MUL, are similarly used. Note that after division, the remainder is in

Figure 2.7. Program Segment for 16-Bit Unsigned Multiplication
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Figure 2.8. Program Segment for BCD Addition

accumulator D, and the quotient is in an index register. As an example of a
multiplication of two 16-bit unsigned numbers at $852 and $854 to get a 16-bit product
into $856, see Figure 2.7.

The special instruction, DAA (decimal adjust accumulator A), adds binary-coded
decimal numbers. Briefly, two decimal digits per byte are represented with binary-coded
decimal, the most significant four bits for the most significant decimal digit and the least
significant four bits for the least significant decimal digit. Each decimal digit is
represented by its usual 4-bit binary code, so the 4-bit sequences representing 10 through
15 are not used. To see how the decimal adjust works, consider adding a four-digit binary
coded decimal number in the two bytes at $873 to a similar number at $862, as shown in
Figure 2.8. DAA "corrects" ADDA's result. The DAA instruction may be used after ADDA
or ADCA but can't be used with any other instructions such as ADDB, DECA, or SUBA.

Our next example illustrates the use of arithmetic instructions, with a move
instruction to put the desired intermediate result in the correct register for the next
operation. This example involves conversion of temperature from Celsius to Fahrenheit.
If temperature T is measured in degrees Celsius, then the temperature in Fahrenheit is
((T * 9) / 5) + 32. Suppose T, a signed 16-bit number representing degrees Celsius, is in
accumulator D. The program in Figure 2.9 evaluates the formula and leaves the
temperature, in Fahrenheit, in accumulator D.

Figure 2.9. Program Segment for Conversion from Celsius to Fahrenheit
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2.3 Logic Instructions

Logic instructions (see Table 2.6) are used to set and clear individual bits in A, B, and
CCR. They are used by compilers, programs that translate high-level languages to
machine code, to manipulate bits to generate machine code. They are used by controllers
of machinery because bits are used to turn things on and off. They are used by operating
systems to control input-output (I/O) devices and to control the allocation of time and
memory on a computer. Logic instructions are missing in calculators. That makes it hard
to write compilers and operating systems for calculators, no matter how much memory
they have. Returning to a problem at the end of Chapter 1, we now say a programmable
calculator is not a von Neumann computer because it does not have logic instructions or
any efficient replacements for these instructions with combinations of other instructions.
(This differentiation may be pedagogically satisfying, but unfortunately, von Neumann's
original computer is not a von Neumann computer by this definition. Because we are
engineers and not historians, we say that programmable calculators, and von Neumann's
original computer, are not von Neumann computers in the strictest sense because they
cannot support compilers and operating systems efficiently.)

Consider now the logic instructions that make a computer a computer and not a
calculator. The most important logic instructions carry out bit-by-bit logic operations on
accumulators A or B with a memory location or an immediate value. (See Figure 2.10
for a summary of the common logic operations.) For example, the instruction ANDB
$ 817 carries out a bit-by-bit AND with the contents of B and the contents of location
$817, putting the result in B (see Figure 2.lib). The ANDing is implemented by AND
gates in the MPU, shown in Figure 2.1 la. Compare to Figure 1.4d. The OR and AND
instructions are used, among other things, to set or clear control bits in registers used in
input-output operations.

The two instructions ANDA and ANDCC do the same thing as ANDB except that
ANDCC uses only immediate addressing and the condition code register CCR. As an
example, ANDCC #$FE clears the carry bit in the condition code register, that is, puts C
= 0 leaving the other bits unchanged. This instruction is used only to clear condition
code bits and is not used to modify other data bits. The same remarks hold for the OR
instructions, ORAA, GRAB, and ORCC, and for the exclusive-OR instructions, EORA
and EORB (see Figure 2.1 la again: Exchange the AND gates with OR or exclusive-OR
gates). The mnemonics CLC, CLI, SEC, SEI, SEV, CLV are merely special cases of
the ANDCC and ORCC instructions; they are given these special mnemonic names to
permit assembly-language programs written for the 6811 to be used without modification
in the 6812. While the ANDCC instruction is used to clear bits in the CCR register, the
ORCC instruction is used to set bits in that register. There is no EORCC instruction.

Figure 2.10. Common Logic Operations
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Table 2.6. Logic Instructions

Consider this example. Suppose that we need to clear bits 0 and 4; set bits 5,6, and 7;
and leave bits 1,2, and 3 unmodified in accumulator A. The following instructions carry
out these modifications.

ORAA #$EO Set bits 5,6, and 7, leaving others unchanged
ANDA #$EE Clear bits 0 and 4, leaving others unchanged

1 0 1 1 0 1 0 1 <- contents of $817
AND 0 0 0 1 1 1 0 0 <- initial value of B

0 0 0 1 0 1 0 0 <- final value of B

b. Logical Operation

Figure 2.11. Bit-by-Bit AND
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Table 2.7. Edit Instructions

The complement instruction COM takes the complement of the bit-by-bit contents of A,
B, or a memory location, putting the result in the same place. Finally, the BIT
instruction, for bit test, determines the bits as though the AND instruction had been
performed with A or B and the contents of a byte from memory. With the BIT
instruction, however, the contents of A and B are unchanged. It is to the AND instruction
what the CMP instruction is to the SUB instruction; it is used to avert the need to reload
the register after the condition code bits are set as in the AND instruction.

Logic instructions are used primarily to set and clear and to test and change
(logically invert) bits in a word. These instructions are used to build operating systems,
compilers, and other programs that control resources and format data. These are the
instructions that make a computer so much more useful than a programmable calculator.

Figure 2.12. Shifts and Rotates
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Figure 2.13. Shift Hardware

2.4 Edit Instructions

Edit instructions (see Table 2.7) rearrange bits of data without generating new bits as an
ADD does. Large machines have complex edit instructions, but microcomputers have
simple ones. For example, the arithmetic shift-left instructions shift all the bits left,
putting the most significant bit into the carry bit of the condition code register and
putting a zero in on the right (the same as LSLA) (see Figure 2.12a). This, except for
overflow, doubles the unsigned or signed number contained in A, The ASR instruction
keeps the sign bit unchanged and shifts all other bits to the right, putting the least
significant bit into the carry bit (see Figure 2.12c). As mentioned in the discussion of
the arithmetic class of instructions, ASR divides the original two's-complement number
contained in an accumulator or memory location by two (rounding down).

The shift operation is generally done in the MPU, and is shown in Figure 2.13 for
LSRA. The MPU shifts the data because these data paths follow the same data paths as
addition and logical operations (see Figures 1.4d and 2.11 a). Each flip-flop's output feeds
through the multiplexer in the MPU to the input of the next bit to the right; a zero is fed
into the leftmost flip-flop and the rightmost flip-flop's output is put in the carry C.

Figure 2.14. Program Segment to Swap Nibbles
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Figure 2.15. Program Segment for Insertion of Some Bits

The remaining shifts and rotates (e.g., LSR, LSL, ROR, ROL) are easily
understood by looking at Figure 2.12. The rotate instructions are used with multiple-byte
arithmetic operations such as division and multiplication. Edit instructions are generally
used to rearrange bits. For example, Figure 2.14 swaps the nibbles in accumulator A.

In a slightly more interesting problem, we insert the three low-order bits of the byte
in $854 into bits 9 to 7 of the 16-bit word at location $856. This program in Figure
2.15 illustrates the use of logical instructions to remove unwanted bits and to combine
bits and edit instructions to move bits into the desired bit positions. A program segment
like this is used in C structs using bit fields and is commonly used in inserting bits
into I/O ports that do not line up with whole bytes or whole 16-bit words.

In this example, observe that all logical and many edit instructions are performed on
8-bit operands in each instruction. However, instructions are so designed that pairs of
instructions, on accumulator A and accumulator B, effectively work on accumulator D,

2.5 Control Instructions

The next class of instructions, the control instructions, are those that affect the program
counter PC. After the MOVE class, this class composes the most-often-used
instructions. Control instructions are divided into conditional branching instructions and
other control instructions. We discuss conditional branching first and then the others.

The BRA instruction loads the PC with a new value, using relative addressing
discussed in §3.3. It adds the last byte of its instruction, called the offset, to the PC.
Branch statements have "long" branch counterparts where each mnemonic is prefaced
with an L, such as LBRA, and the offset is two bytes, enabling the programmer to add
larger values to the PC, to branch to locations further from the instruction.
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Table 2.8. Conditional Branch Instructions

Conditional branch instructions test the condition code bits. As noted earlier, these
bits have to be carefully watched, for they make a program look so correct that you want
to believe that the hardware is at fault. The hardware is rarely at fault. The condition code
bits are often the source of the fault because the programmer mistakes where they are set
and which ones to test in a conditional branch. The instructions should now be reviewed
with regard to how they affect the condition code bits. See the right columns of the
CPU12RG/D manual Instruction Set Summary. Note that move instructions generally
either change the N and Z bits or change no bits; arithmetic instructions generally change
all bits; logic instructions change the N and Z bits; and edit instructions change all bits.
However, there are many exceptions, and these exceptions are precisely the ones that
cause mystifying errors. There is sound rationale for which bits are set and the way they
are set. Some of that is discussed in this chapter. But most of it is simply learned by
experience. We conclude by reminding you that when your program does not work and
you have checked every angle, carefully examine the setting and testing of the condition
code bits. Now we look at the testing of these bits in detail.

Eight simple branching instructions test only a single condition code register bit:
BNE, BEQ, BPL, BMI, BVC, BVS, BCC, and BCS. The letters S and C are used for "set"
and "clear" (to 1 and 0, respectively) in branching instruction mnemonics.

Frequently, two numbers are compared, as in a compare instruction or a subtraction.
One would like to make a branch based on whether the result is positive, negative, and
so forth. Table 2.8 shows the test and the branching statement to make depending on
whether the numbers are interpreted as signed numbers or unsigned numbers. The branch
mnemonics for the two's-complement numbers, or signed, numbers case are the ones
usually described in mathematical "greater or less" prose. For example, BLT for "branch
if less than," BLE for "branch if less than or equal to," and so forth. The mnemonics for
unsigned numbers are described in mathematical "high or low" prose, offbeat enough to
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Figure 2.16. Decision Tree

keep you from confusing them with the signed ones, for example, BLO for "branch if
lower," BLS for "branch if lower or the same," BHI for "branch if higher," and BHS for
"branch if higher or the same." Notice that BLO is the same instruction as BCS, and BHS
is the same instruction as BCC. Here then is an example of two different mnemonics
describing the same instruction, something that is sometimes warranted when the
programmer will be using the same instruction with two distinct meanings.

Figure 2.16 illustrates a flow chart of several tests that form a decision tree. In
Figure 2.17 and subsequent figures, labels are written left justified and end in a colon.
Upon entry at label LO, location $801 is tested; if it is positive, go to L2 if location
802's unsigned value is greater than $32, otherwise go to L3. If location $801 is
negative, go to L4 if location $801 bit 2 is zero, otherwise go to L5. The program
segment in Figure 2.17 implements this decision tree.

Do not be concerned about calculating the relative branch offsets; §3.3 will discuss
this calculation. One should consult Table 2.8 for a while to make sure that the correct
branch is being chosen. For example, to test a register value greater than or equal to a
memory value, you might be tempted to use the simple branch BPL for signed numbers
instead of BGE. The problem is that you want the branch test to work even when
subtraction or comparison generates a signed overflow. But this is just exactly when the

Figure 2.17. Program Segment for a Decison Tree
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Table 2.9. Other Control Instructions

sign is incorrect; then using BPL cannot be used to replace BGE. Thus, after a compare
or subtract between signed numbers, use BGE rather than BPL. You might also be
tempted to use BPL for the unsigned test. However, if accumulator A has $80 and the
immediate operand is $32, then N = 0 after performing the test. Thus BPL takes the
branch, even though it should not because $32 is not higher than $80. Thus after an
unsigned number comparison or subtraction, use BHS rather than BPL.

A rather amusing instruction, BRN L, which "branches never" regardless of the
location L, is the opposite to the "branch always" instruction. It is useful because any
branching instruction can be changed to a BRA or BRN instruction just by changing an
opcode byte. This allows a programmer to choose manually whether a particular branch
is taken while he or she is debugging a program.

Figure 2.18. Program Segment for Setting, Clearing, and Testing of a Bit
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Figure 2.19. Program Segment for a Wait Loop

We now consider the control instructions other than conditional branches. See Table
2.9. Some instructions combine a logical or arithmetic test with a conditional branch and
do not modify condition codes. BRCLR branches if all "1" bits in the mask are "0" in the
word read from memory. Similarly, BRSET branches if all masks "1" bits are "1" in the
word read from memory. These bits can be set and cleared using BSET and BCLR listed
in Table 2.6. Figure 2.18 illustrates such setting, clearing, and testing of individual bits
in memory. If this program segment is entered from location LI ($820), then bit 6 of
location $802 is set there, and the instruction at L3 ($82A) branches to location L4
($831). However, if this program segment is entered from location L2 ($826), then bit 6
of location $802 is cleared there, and the instruction at L3 ($82A) doesn't branch but
Mis through to location $82F.

DBEQ, DBNE, IBEQ, and IBNE, which have a postbyte and a relative offset,
decrement or increment a counter, which may be A, B, D, X, Y, or SP, and branch if the
result in the counter is zero or nonzero, as indicated by the mnemonic and coded in the
post byte. TBEQ and TBNE similarly test a register without incrementing or
decrementing it and branch if the result is zero or nonzero. The low-order post byte bits
indicate which register is used as a counter or test register (0, A; 1, B; 4, D; 5, X; 6, Y;
and 7, SP) and the high-order three bits indicate the operation (000, DBEQ; 001, DBNE;
010, TBEQ; O i l , TBNE; 100, IBEQ; 101, IBNE). Post-byte bit 4 is appended as high
bit to the instruction's third byte to give a 9-bit offset.

The program segment in Figure 2.19 wastes time while an I/O operation takes
place. (Calculation of the last byte, the offset $FD, will be discussed in §3.3.) The
DBNE instruction takes three clock cycles, where each clock cycle is 125 nanoseconds.
This instruction loops to itself five times in a delay loop, which wastes 1.875 us&c.

The simple jump instruction is the simplest control instruction; the effective address
is put into the program counter. JMP $899 puts $899 into the program counter, and
the next opcode byte is fetched from $899. It simply "jumps to location $899."

You commonly encounter in programs a repeated program segment. Such a segment
can be made into a subroutine so it can be stored just once but executed many times.
Special instructions are used to branch to and return from such a subroutine. For
example, if the subroutine begins at location $812, the instruction JSR $812 (for
jump to subroutine) causes the PC to be loaded with $812 and the address immediately
after the JSR instruction (say it is $807) to be pushed onto the hardware stack, low byte
first. Figure 2.20a shows this return address, saved on the stack. BSR (for branch to
subroutine) similarly pushes the program counter but locates the subroutine using
relative addressing (§3.3). At the end of the subroutine, the 1-byte instruction RTS (for
return from subroutine) pulls the top two bytes of the hardware stack into the PC, high
byte first. JSR, SUB, and RTS, efficiently call, and return from, the subroutine.
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Figure 2.20. Subroutine and Handler Addresses

Figure 2.20 illustrates the use of the stack for holding temporary results as discussed
in 2.1, with subroutine return addresses as illustrated in §2.5. We suggest that you step
through this program using the simulator or debugger and watch the stack expand and
compress. A constant in X, 1, is pushed on the stack before the subroutine and restored
by pulling X after the subroutine is executed and has returned. This is commonly done
when the calling routine needs the saved value later. The subroutine return address is
saved on the stack by the BSR instruction and restored by the RTS instruction at the end
of the subroutine. Inside the subroutine, the X and Y registers are saved and restored in
order to exchange them. Pushing and pulling is often done to hold intermediary results.

Figure 221. Program Segment for Swap Subroutine



48 Chapter 2 The instruction Set

A special CALL instruction permits saving and then loading a page register when
saving and then loading the program counter. That extends the addressing capability to
over 16 bits in some 6812s, such as the 'A4. The corresponding RTC instruction returns
from a subroutine called by a CALL instruction.

As noted earlier, the stack pointer is to be initialized at the beginning of a program,
with an instruction like LDS #$COO. It must be initialized before any instruction, such
as JSR or CALL, uses the stack pointer. If it is not, the RTS or RTC does not work
because the return address is "saved" in a location that is not RAM, so it is lost.

The (hardware or I/O) interrupt is very important to I/O interfacing. Basically, it is
evoked when an I/O device needs service, either to move some more data into or out of
the device or to detect an error condition. Handling an interrupt stops the program that is
running causes another program to be executed to service the interrupt and then resumes
the main program exactly where it left off. The program that services the interrupt (called
an interrupt handler or device handler) is very much like a subroutine, and an interrupt
can be thought of as an I/O device tricking the computer into executing a subroutine. An
ordinary subroutine called from an interrupt handler is called an interrupt service routine.
However, a handler or an interrupt service routine should not disturb the current program
in any way. The interrupted program should get the same result no matter if or when the
interrupt occurs.

I/O devices may request an interrupt in any memory cycle. However, the data
operator usually has bits and pieces of information scattered around in hidden registers, it
is not prepared to stop the current instruction because it doesn't know the values of these
registers. Therefore, interrupts are always recognized at the end of the current instruction,
when all the data are organized into accumulators and other registers that can be safely
saved and restored. The time from when an I/O device requests an interrupt until data that
it wants moved is moved or the error condition is reported or fixed is called the latency
time. Fast I/O devices require low latency interrupt service. The lowest latency that can
be guaranteed must exceed the duration of the longest instruction because the I/O device
could request an interrupt at the beginning of such an instruction's execution.

The SWI instruction is essentially like an interrupt. It saves all the registers as
shown in Figure 2.20c and puts the contents of $fff6, $fff7 into the program counter, to
begin an SWI handler at that address. All TRAP instructions (there are over 200 of them)
save all the registers as the SWI instruction does and put the contents of $fff8, $fff9 into
the program counter to begin a trap handler at that address, RTI pulls the contents of the
registers saved on the stack and fetches the next opcode at the address that is the returned
program counter. WAI stacks all the registers and waits for an interrupt to occur. STOP
stacks the registers and stops all the 6812 clocks to conserve power. A system reset or an
interrupt will cause the computer to resume after these instructions. Two interrupt
inhibit bits (also called an interrupt mask bit) I and X are kept in the condition code;
when they are set, interrupts are not permitted. A stop disable bit S is used to prevent
execution of the STOP instruction. BGND places the MPU in a background mode to
permit the background debug module to examine memory and registers and possibly
modify some of them. If background debugging is not enabled, BGND can be made to act
exactly like an SWI instruction.

The condition code register, accumulators, program counter, and other registers in
the controller and data operator are collectively called the machine state and are saved
whenever an interrupt occurs as shown below, resulting in the stack in Figure 2.20c.



2.6 Input/Output Instructions 49

SP - 2 -> SP; PC -> (SP):(SP+1); SP - 2 -> SP; Y -> (SP):(SP+1);
SP - 2 -> SP; X -> (SP):(SP+1); SP - 2 -> SP; B > (SP); A -> (SP+1);
SP - 1 -> SP; CCR -> (SP);

After completion of a handler entered by a hardware interrupt or similar instruction, the
last instruction executed is return from interrupt (RTI). All handlers end in an RTI
instruction. RTI pulls the top nine words from the stack, replacing them in the registers
the interrupt took them from. The RTI instruction executes the operations:

(SP) -> CCR; SP + 1 -> SP (SP) -> B; (SP+1) -> A; SP + 2 -> SP
(SP):(SP+1) -> X; SP + 2 -> SP (SP):(SP+1) -> Y; SP + 2 -> SP
(SP):(SP+1) -> PC; SP + 2 -> SP

You can modify the program in Figure 2.21 to see how the trap instruction saves
and restores the machine state. Replace the BSR instruction at location $807 with ao
SWI instruction whose opcode is $3F (and a NOP, $A7) and the RTS instruction at
location $810 with RTI whose opcode is $OB; put the adddress $80C into locations
$FFF6 and $FFF7; and rerun this program. You should see that changing the registers
inside the trap handler has no effect on the returned values of the registers, because they
are saved on the stack and restored by the RTI instruction.

We have covered both the conditional and unconditional branch instructions. We
have also covered the jump and related instructions together with subroutine branch and
jump instructions. Control instructions provide the means to alter the pattern of fetching
instructions and are the second most common type of instruction. If you use them
wisely, they will considerably enhance the static and dynamic efficiency.

2.6 Input-Output Instructions

The last class of instructions for the 6812, the input-output or I/O class, is easy to
describe because there aren't any! With the 6812 a byte is transferred between an
accumulator and a register in an I/O device through a memory location chosen by
hardware. The LDAA instruction with that location then inputs a byte from the register of
the I/O device to accumulator A, while the STAA instruction with that location does the
corresponding output of a byte. Other instructions, such as MOVE, MOVM, ROL, ROR,
DEC, INC, and CLR, may be used as I/O instructions, depending on the particular device.
We look more closely at all of these issues in Chapter 11 .

2.7 Special Instructions

Table 2.10 lists 6812's special instructions, which are arithmetic instructions of primary
interest in fuzzy logic. They use index addressing, which is discussed in the next chapter.
Fuzzy logic uses minimum and maximum functions to logically AND and OR fuzzy
variables. The 6812 has instructions MAXA,MAXM,MINA,MINM, EMAXD, EMAXM,
EMIND, and EMINM to determine the maximum or minimum of an 8-bit or a 16-bit pair
of unsigned numbers, one of which is in a register (A or D) and the other of which is
one or two bytes at the effective address, and to put the maximum or minimum
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Table 2.10. Special Instructions

in either the register or the memory at the effective address. EMACS is a multiply-and-
accumulate instruction similar to such instructions used in digital signal processors
(DSPs).

The following examples use pointer addressing, in which the effective address is the
contents of an index register, without adding any other value to it.

We are about to output the contents of accumulator D to an output device, but the
output must be limited to be at least Vmin, and at most Vmax. Suppose location $803
has the address of Vmax and location $805 has the address of Vmin. Pointer addressing
(§3.2) is one of the modes usable with the EMAXD and EMIND instructions. Figure 2.22
limits the value of accumulator D to be Vmin & D sVmax.

Figure 2.23 illustrates the use of index registers in the multiply-and-accumulate
instruction to evaluate the expression: A = A + (B * C), where A is a signed 32-bit
number at $910, B is a signed 16-bit number at $914, and C is a signed 16-bit number at
$916. Pointer addressing is the only mode that can be used with the EMACS instruction.
From Table 2.10, the EMACS instruction executes the expression (X):(X+1) x (Y):(Y+1)
+ (E):(E+l):(E+2):(E+3) -> (E):(E+ l):(E+2):(E+3); from the CPU12RG/D manual, it
executes this operation in thirteen clock cycles, a little under 2 ptsec.

Figure 2.22. Program Segment for Ensuring a Value Is between Limits
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Figure 2.23. Program Segment for a Multiply and Add Operation

The TBL and ETBL instructions perform 8-bit and 16-bit table lookup and
interpolation. TBL puts into accumulator A the value (E) + (B * ((E+l) - E)) where E is
the effective address, which can be the pointer address as in EMAXD, and B is
accumulator B, considered as an unsigned fraction. CMPB can search a list of values,
which are in increasing order, for the nearest value just below, and B and TBL can
interpolate between that value and the next higher value. ETBL is similar but is for 16-
bit unsigned number interpolation: It puts into accumulator D the value (E):(E+1) + (B *
((E+2):(E+2) - E:(E+1))). The CPD instruction can search a list of values to use ETBL.

The instructions MEM, REVW, REV, and WAV are used for fuzzy logic rule
evaluations, which are developed in §7.6. These highly specific and efficient operations
make the 6812 singularly well-suited to fuzzy logic control applications.

The fuzzy logic membership instruction MEM uses accumulator A as the current
input, and X points to a 4-byte data structure that describes a trapezoidal membership
function (PI, P2, SI, S2). The instruction puts into the byte pointed to by Y, the
function value, and then adds 4 to X and 1 to Y to access the next trapezoid and output
value. If A < PI or A > P2, then the output function value is 0, or else the output
function value is MIN(A - PI) * SI, (P2 - A) * S2, $FF).

REV and REVW perform min-max rule evaluation for 8-bit and 16-bit unsigned
numbers. For REV, each rule input is an 8-bit offset from the base address in Y. Each
rule output is an 8-bit offset from the base address in Y. $FE separates rule inputs from
rule outputs, and $FF terminates the rule list. REV may be interrupted. For REVW, each
rule input is the 16-bit address of a fuzzy input. Each rule output is the 16-bit address of
a fuzzy output. The value $FFFE separates rule inputs from rule outputs, and $FFFF
terminates the rule list. REV and REVW use this MIN-MAX rule: Find the smallest rule
input (MIN), and store to rule outputs unless fuzzy output is already larger (MAX).

WAV calculates the sum-of-products and sum-of-weights for a list of 8-bit unsigned
elements. Accumulator B is the number of elements in both lists, X points to the first
list, and Y points to the second list. The sum-of-products is put in registers Y (high-
order 16 bits) and D (low-order 16 bits), and the sum of weights, pointed to by Y, is put
into register X. The instruction wavr resumes the execution of the WAV instruction if it
is interrupted in the middle of its execution.

2.8 Remarks

One might wonder why some move instructions, such as LDAA, TSTA, and STAA,
always put V = 0 rather than leaving V unchanged as they do C. The reason is that doing
so allows all of the signed branches to work after these instructions as well as after the
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arithmetic type of instruction. For example, suppose that one wants to look at the
contents of some memory location, say $811, and branch to location L if the contents of
location 458, treated as a signed number, are greater than 0, The sequence

TST $811
BGT L

does exactly this. If the TST instruction had left V unaffected, we would have had to use
the longer sequence:

LDAA $ 811
CMPA #0
BGT L

A little more experience will show that the designer's choice here is quite reasonable,
because we will find a more frequent use of signed branches for load instructions than for
checking for signed overflow, as we will do in the next chapter.

Do You Know These Terms?

See the end of Chapter I for instructions.

stack subroutine hardware interrupt service routine
push jump to I/O interrupt latency time
pull subroutine interrupt interrupt inhibit
hardware stack return address handling interrupt mask
buffer branch to interrupt handler stop disable
post byte subroutine device handler machine state
hidden register return from interrupt service return from
prefix byte subroutine routine interrupt
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PROBLEMS

When a program (ending in BGND or SWI) or program segment is asked for in the
problems below, use the format that is used for the examples in the text.

1 . Assume the following instruction is missing from the 6812 instruction set. Show
the shortest program segment that will accomplish exactly the same effect as this
missing instruction. That is, this program segment must give the same results in all the
registers, including the condition code register.

(a)XGDX(or EXG X,D) (b) TFR X,Y (c) PSHD

2 . Assume MOVE is missing from the 6812 instruction set. Show the shortest
program segment that accomplishes exactly the same effect as MOVE $803/$822.

3 . Show the shortest program segment that will push the following 32-bit constant
on the stack. The most significant byte must be at the lowest address.

(a)0 (b)l (c)-l

4 . Write a shortest program to evaluate a quadratic polynomial. Let a be at $810, b be
at $812, c be at $814, x be at $816; the program is to put a x2 + b x + c into $818. All
numbers, including the result, are 16-bit two's-complement signed numbers.

5 , Write a shortest program to execute an inner product. Let x[0] be at $810, x[l] be
at $812, y[0] be at $814, y[l] be at $816; the program is to put x[0] y[0] + x f l ] y f l ]
into $818. All numbers are 16-bit unsigned numbers.

6 . Write a shortest program to compute the resistance of a pair of resistors connected
in parallel. Let rl be at $810 and r2 be at $812; the program is to put rl II r2 into $814.
All values are 16-bit unsigned numbers.

7 . If a count C is obtained, the frequency is 8,000,000 / C. Write a shortest program
to compute the 16-bit frequency corresponding to the 16-bit count C in location $8la,
putting the result into $81c. Show this program, beginning at $81e, in hexadecimal.

8 . Why doesn't DAA work after an INC, DEC, or ASR instruction?

9 . Assume the following instruction is missing from the 6812 instruction set. Show
the shortest program segment that will accomplish exactly the same effect as the
missing instruction. For part (c) assume that locations $813 and $814 are able to be used
as scratch bytes. (Scratch means the location is available for storing temporary results.)

(a)BSET $810,#$aa (b) BCLR $811,#$f (c) EORA $812

1 0, ASCII characters are defined by Table 4.1. Write a single instruction for the following:
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(a) Accumulator A is an upper- or lower-case character. Convert it to lower case,
(b) Accumulator A is an upper- or lower-case character. Convert it to upper case.
(c) Accumulator A is a single BCD number. Convert it to an ASCII character.
(d) Accumulator A is an ASCII character. Convert it to a BCD number.

11. Write a fastest program segment to put the following property, of a number in
Accumulator A, into accumulator B (do not use branch instructions). For part (c),
assume that location $822 is a scratch byte.

(a) the count of the number of 1. 's (b) the parity (c) the number of leading zeros

12. A 32-bit number is in accumulator D (low-order) and index register Y (high-order).
Write a shortest program segment to execute the following on these same registers.

(a) logical shift left 1 bit (b) logical shift right 1 bit (c) arithmetic shift right 1 bit

13. Illustrate the differences between BLT and BMI with an example that branches to
location L if accumulator A is less than the contents of the byte at $869.

14. Will a signed branch work after a DEC or INC instruction? Explain. What about
unsigned branches?

15. Assume the following instruction is missing from the 6812 instruction set. Show
the shortest program segment that will accomplish the same effect as the missing
instruction, except that the condition codes will be changed.

(a) BRCLR $811,#$f,L (b) BRSET $810,#$aa,L (c) DBNE A,L

16. The 6812 doesn't have an LBSR instruction. Compare the static efficiency of JSR,
using program counter relative addressing, to an LBSR, which will be coded like LBRA.

17. Figure 2.16 shows a delay loop for up to about 25 msec. Write a shortest delay
loop for up to 27 minutes. You do not need to compute two constants used in this loop.

18. Assume the following instruction is missing from the 6812 instruction set. Show
the shortest program segment that will accomplish the same effect as the missing
instruction, except that the condition codes will be changed differently. For part (c),
assume that index registers X and Y can be modified.

(a) MINM 0 , X (b)EMAXD 0 ,Y (c) EMACS $810

19. Write a shortest program to execute an inner product using EMACS and EMULS.
Let x[0] be at $810, x[l] be at $812, y[0] be at $814, y[l] be at $816; the program is to
put x[0] y[0] + x[l] y[l] into $81a, and $818 and $819 are scratch bytes. All numbers
are 16-bit signed numbers.

20. Write a shortest program segment to extract the three bits that were inserted by
Figure 2.20, leaving the extracted bits right-justified in accumulator B.

21. Write a shortest program segment to convert temperature from Fahrenheit (±300°),
in Accumulator D, to Celsius. The output value is left in Accumulator D. You may
preload constants into registers to shorten your machine code, but show their values.
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22. The 32-bit binary number at location $822 is the number of ticks, where a tick
time is l/60th second, and zero represents Saturday midnight. Write a shortest program
to put the day-of-week in location $826, (military time) hour in $827, minute in $828,
seconds in $829, and tick-within-a-second in $82a.

23. Write a shortest program to write problem 22's 32-bit binary number tick count
into location $822, for input values written in its day-of-week, hour, minute, seconds,
and tick-within-a-second memory words (locations $826 to $82a), $82b to $832 is
scratch.
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Addressing Modes

In the past two chapters, we have introduced the instruction cycle and the instruction set.
We have used a few addressing modes in order to understand those ideas. However, we did
not attempt to convey the principles of addressing modes. We now complete our
understanding of the instruction by describing the addressing modes used in the 6812.

Recall from Chapter 1 that an instruction generally consists of an operation with
one address in memory for an operand and/or result. How that address is determined is
called addressing, and the different ways that the address is determined are called
addressing modes. The data are accessed in a program, that is, read or written, by an
instruction with the addressing modes available in the computer. These modes correspond
to the data structures that can be easily managed in that computer. If you want to handle
a particular structure, such as a string of characters, an addressing mode such as
postincrement is very useful, as we discuss in more detail in Chapter 9. This chapter
introduces the 6812's addressing modes, which provide the tools that make handling the
most useful data structures so easy on this machine. Learning the rich set of addressing
modes here will also make it easier later to learn about the common data structures.

This chapter introduces the following general aspects of addressing. We first discuss
addressing modes that are determined by bits in the operation code byte, which is
generally the first byte of the instruction. Indexing modes use a post byte and are
discussed next. Relative modes are then discussed to show the important concept of
position independence. We give examples that rework the addition program of Chapter 1
to illustrate data structure ideas and position independence using these addressing modes.
Finally, we consider some architectural thoughts about addressing such as multiple
address instructions and the effective address computation in the fetch execute cycle. We
also discuss the level of addressing that indicates how many times an address must be
read from memory to get the actual or effective address of the operand or result used with
the instruction.

Upon completion of this chapter, you should be able to use the addressing modes
described here with any instruction that has been introduced in Chapter 2. You should be
able to determine what has been done to compute the effective address, what that effective
address will be, and what side effects are generated where some modes are used. This will
prepare you to use good data structures in your programs and thus to write shorter, faster,
and clearer programs as you progress through this material.

57
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3.1 OP Code Byte Addressing Modes

This section discusses addressing that is selected in the opcode byte, which is generally
the first byte of the instruction. We have already introduced this idea in an ad hoc manner
in Chapter 1 when we discussed implied, immediate, and direct addressing. Now we add
page zero addressing and explain when each address mode should be used.

Some instructions do not involve any address from memory for an operand or a
result. One way to avoid going to memory is to use only registers for all the operands.
The DEC instruction decrements (subtracts one from) the value in an accumulator so that
DECA and DECS are really the same operation, with the registers A and B serving as the
addresses for the operand and result. Motorola considers DECA and DECB to be different
instructions, whereas other manufacturers would call them the same instruction with a
register address that indicates which register is used. Either case has some merits, but we
will use Motorola's convention.

There is also an instruction

DEC 100

that recalls the word at location 100, decrements that word, and writes the result in
location 100. That instruction uses direct addressing (as discussed in Chapter 1), whereas
DECA does not use direct addressing. Because the instruction mnemonic for instructions
such as DECA makes it clear which registers are being used, at least for simple
instructions, Motorola calls this type of addressing inherent or implied. It is a zero-
level mode. For instance, CLRA clears accumulator A (puts its contents to zero) and uses
inherent addressing, whereas

CLR 1000

clears the word at location 1000 and uses direct addressing. Several other instructions,
such as SWI and BGND, which we are using as a halt instruction, have been included in
the inherent category because the operation code byte of the instruction contains all of
the addressing information necessary for the execution of the instruction.

We have used the immediate addressing mode in Chapter 1, where the value of the
operand is part of the instruction, as in

LDAA #67

which puts the number 67 into accumulator A. We use the adjective "immediate" because
when the instruction is being fetched from memory the program counter contains the
address of the operand, and no further memory reads beyond those required for the
instruction bytes are necessary to get its value.

You should use inherent addressing wherever it will shorten the program storage or
speed up its execution, for example, by keeping the most frequently used data in registers
as long as possible. Their use will involve only inherent addressing. Immediate
addressing should be used to initialize registers with constants or provide constants for
other instructions, such as ADDA.
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Other modes allow the data to be variable, as opposed to the fixed data. The 6812
has two such modes, direct and page zero, to allow for accessing any word in memory,
but they allow accessing the most common words more efficiently.

We introduced the direct mode in Chapter 1, and we merely review it here. It is
really the only mode required for any program that we would write if we were not
concerned about efficiency and if we permitted the program to modify one of its own
instructions. Indeed, that was the way the first computer was programmed. However, if
one examines a program that changes its instructions, it is very unclear. An example of
this type of program, using what is called self-modifying code, is given in the problems
at the end of this chapter. To avoid self-modifying code and to improve efficiency, other
addressing modes will be introduced. In the direct mode, the address of the operand or
result is supplied with the instruction. For example, as discussed before,

LDAA $803

puts the contents of location $803 into accumulator A. The opcode for this instruction is
$B6, and the instruction is stored in memory as the sequence:

In the direct mode, a full 16 bits are always used to describe the address even though the
first byte may consist of all zeros. Unfortunately, when they first developed the
MC6800, a predecessor of the 6812, Motorola called page zero addressing "direct
addressing," most likely because they envisioned only a 256-byte RAM. Motorola called
direct addressing "extended addressing." This nonstandard use of the term has continued
through Motorola's 8-bit and 16-bit microcontrollers and confuses everyone who uses or
studies a variety of machines, including other Motorola microprocessors. Because we
intend to teach general principles, using the 6812 as an example rather than teaching the
6812 only, we will stick to the traditional terra. But when you read Motorola's literature,
remember to translate their "extended addressing" into "direct addressing." Do not confuse
Motorola's "direct addressing" with our use of the term "direct addressing."

Experience has shown that most of the accesses to data are to a rather small number
of frequently used data words. To improve both static and dynamic efficiency, the 6812
has a compact and fast version of one-level addressing to be used with the most
commonly accessed data words. The page zero mode is an addressing mode that forms
the effective address by forcing the high-order byte to be 0 while the lower-order byte is
supplied by the eight bits in the instruction. For example,

LDAA $67

will put the contents of location $0067 into accumulator A. This instruction is stored in
memory as:
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Figure 3.1. Op Code Byte Coding

Clearly, page zero addressing uses fewer instruction bits, and thus the instruction
can be fetched faster than with direct addressing. In the 6812, the I/O registers occupy
page zero (unless the address map is changed). Therefore I/O instructions use page zero
addressing, and your programs can't use page zero addressing for anything else.

The symbol "<" can be used in several addressing modes. It will generally mean that
a short 8- or 9-bit number in the instruction is used in the calculation of the effective
address. It will be used here for page zero addressing. The symbol ">" can be used for
direct addressing. It will generally denote that a 16-bit number in the instruction is used
in the calculation of the effective address. In Chapter 4 we will find that these symbols
can usually be dropped when the instruction mnemonics are automatically translated into
machine code, because the computer that does the translation can figure out whether an
8-bit or a 16-bit value must be put in the instruction. Until then, to enhance your
understanding of how the machine works and to simplify hand translation of mnemonics
into machine code, we will use the symbol "<" to designate forced 8-bit direct address
values and the symbol ">" to designate forced 16-bit direct address values.

Coding of the opcode byte for almost half of the 6812 instructions follows a simple
pattern (see Figure 3.1). In instructions in which the most significant bit is 1, the
opcode is generally SUB, SBC, AND, BIT, LDAA, EOR, ADC, OR, ADD, or a compare
opcode. For these instructions, the next most significant bit generally indicates the
accumulator register used. For instance (using immediate addressing), SUBA is $80,
while SUBB is $CO. The next two bits indicate the addressing mode: 00 is immediate, 01
is page zero, 11 is direct, and 10 is index (using a post byte to distinguish among
different index modes as discussed in the next section). For instance, SUBA # is $80,
SUBA <0 is $90, SUBA >0 is $BO, and its index addressing modes use the opcode $AO,
The four least significant bits are the opcode. About half of the 6812 instructions follow
this pattern. Many of the other 6812 instructions similarly encode their opcode bytes to
systematically derive the opcode and addressing mode from bits in the opcode byte.
However, do not attempt to memorize these decoding rules. The best way to encode an
instruction is to look up its coding in the CPU12RG/D manual.

This section introduced some of the simpler addressing modes: inherent, direct, and
page zero. We saw that inherent addressing should be used when data is kept in registers,
typically for the most frequently used data. Page zero addressing, where data is kept on
page zero, should be used for the rest of the frequently used data and is used for I/O
registers in the 6812. We now turn to the next group, which is based on decoding the
post byte and the use of other registers in the addressing mode.

3.2 Post-Byte Index Addressing Modes

This section introduces a collection of addressing modes that are encoded in a post byte
and that use index registers in the address calculation. To improve efficiency, the
controller is often provided with a few registers that could be used to obtain the effective
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address. These registers are called pointer or index registers. Obtaining an address from
such an index register would be faster because the number of bits needed to specify one of
a few registers is much less than the number of bits needed to specify any word in
memory that holds the address. Moreover, index addressing is the most efficient mode to
handle many data structures, such as character strings, vectors, and many others, as we
discuss later. With this potential, index registers have been used in a number of similar
modes, called collectively index addressing modes, which are introduced below.

Before we get into the modes of index addressing we have to discuss the idea of a
post byte. As noted earlier, the 6812 is a successor of the 6811. The latter had only the
modes inherent, immediate, page zero, direct, and one form of index addressing discussed
below. To keep the same customers that they had for the 6811 happy with the newer
machine. Motorola opted to make the 6812 as similar as possible to its predecessors. But
to introduce more addressing modes, they needed more room in the instruction. The 6812
is as similar to its predecessors as possible, using the same opcodes in many cases. The
extra addressing modes were provided by including an extra byte, right after the opcode
byte, for addressing information only and then only for variations of index addressing that
are used on the 6812. This byte is the post byte.

The 6812 uses index addressing with two index registers, X and Y, the stack pointer
SP and program counter PC. Although these have equivalent addressing capabilities, the
SP register and program counter have special uses that are discussed in later sections of
this chapter. Generally, all the addressing modes described for X below also apply to the
other registers. First, there are load instructions that can load these registers. For
example, the instruction

LDX #$843

will load the 16-bit X register with $843. It is machine coded very much like the LDAA
immediate instruction. (See the CPU12RG/D manual.) In the following examples,
assume X is $843.

The other registers can be loaded using similar instructions, and other addressing
modes can be used to get the two bytes to be put in the index register. In all cases, the
effective address determined by the instruction is used to get the first byte to be put into
the high byte of the index register. The effective address plus one is used to get the
second byte to be put into the low byte of the index register.

Coding of the post byte is shown in Figure 3.2. You can read the tree shown therein
from left to right to decode a post byte, or from right to left to encode an index mode
into a post byte. To decode a post byte, start at the tree root, and proceed right if bit 5 is
zero, otherwise go down. Then check the bit(s) indicated at the next branching point, to
determine where to go next, and so on. To encode an index mode into a post byte, locate
the index mode on the right, then follow the tree from there to the root, noting the
settings of the bits along the way that constitute the post byte code. This information is
also shown in the CPU12RG/D manual, in Table 1 and Table 2, using other formats.



62 Chapter 3 Addressing Modes

Figure 3.2. Post Byte Coding

Index addressing uses a signed offset in the post byte or the post byte and one or
two bytes following it. When executed, the offset is added to the index register, say X, to
get the effective address of the operand or result in memory. See Figure 3.4.

Effective addresses are frequently within ±16 locations of the index register address,
and many others are within ±256 locations. Thus, for greater efficiency, a shortest 5-bit
or a 9-bit option is used for some cases, but a full 16-bit index option is also available
for cases that do not fall in the range of ±256 locations. The 5-bit offset is entirely
contained in the post byte. The 9-bit offset's sign bit is in the post byte, and the
remaining eight bits are in the following byte. The 16-bit offset is in the two bytes
following the post byte.

The shortest mode with a 5-bit offset will always be used when the offset is between
-16 and +15. The instruction LDAA 1, X loads the number contained in location 1 +
$843 into accumulator A. The post byte for this 5-bit offset mode (see Figure 3.2) has a
zero in bit 5, the index register in bits 7 and 6 (00 is X, 01 is Y, 10 is SP, and 11 is
PC),and the offset in bits 4 toO. LDAA l ,X's machine code is:
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Figure 33, Program Segment to Add Two Bytes Using Vector Indexing

$A6 is the opcode byte for any LDAA index mode, and $01 is the post byte. The saved
offset is sign extended and added to the index register (see Figure 3.4).

The program segment in Figure 3.3 adds the word at $844 to the word at $845,
putting the sum in $846. No instruction's execution changes the contents of X.

The 9-bit option will be used when the offset is between -256 and +255 or when
the offset is between -16 and +15 and a "<" symbol, as it is used in the page zero mode,
is written preceding the offset. The instruction

LDAA <$11,X

loads the number contained in location $11+ $843 = $854 into accumulator A. The post
byte for this 9-bit offset mode (see Figure 3.2) has ones in bits 7 to 5, the index register
in bits 4 and 3 (00 is X, 01 is Y, 10 is SP, and 11 is PC), a zero in bits 1 and 2, and the
sign bit of the offset in bit 0. Like the 5-bit offset case, the saved offset is sign extended
and added to the index register to get the effective address, as illustrated by Figure 3.4.
The machine code is

where $A6 is the opcode byte for any index option with LDAA, $EO is the post byte,
and bit 0 of the post byte and the next byte $11 are the offset.

When a larger offset is needed, the full 16-bit offset option can be used. The 16-bit
option will be used when the offset is outside the range -256 and +255 or when the
offset is in this range and a ">" symbol, as it is used in the direct mode, precedes the
offset. The instruction

LDAA >$3012,X

Figure 3.4. Offset Calculation
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loads the number contained in location $3012 + $843 = $3855 into accumulator A. The
post byte for this 16-bit offset mode (see Figure 3.2) has ones in bits 7 to 5, the index
register in bits 4 and 3 (00 is X, 01 is Y, 10 is SP, and 11 is PC), and 010 in bits 2 to
0. The machine code is given by

where $A6 is the opcode byte for any index option with LDAA, $E2 is the the post
byte, and $3012 is the 16-bit two's-complement offset. The saved offset is added to the
index register to get the effective address, as illustrated by Figure 3.4.

In short, addresses requiring several accesses are kept in index registers, if possible,
and utilize the more efficient index addressing. Shorter offsets produce more efficient
programs and can be used if the index register value is close to the effective addresses that
will be used. But while negative offsets are mechanically as usable as positive offsets to
more often use shorter offsets, positive offsets are often preferred for clarity.

The 5-, 9-, and 16-bit offset index addressing modes are useful for reading data out of
a vector. Suppose a 10-element vector of 8-bit items has element 0 at $843, element 1 at
$844, element 2 at $845, and so on. Then if X has $843, then

LDAA 2 , X

puts element 2 into accumulator A. Suppose now that a 10-element vector of 8-bit items
has element 0 at $872, element 1 at $873, element 2 at $874, and so on. Then if X has
$872, this instruction still gets element 2 out of the vector. This instruction uses the
efficient 5-bit offset mode. The following instruction gets element i from the vector
beginning at $843 into accumulator A, where the vector index i is in index register X:

LDAA $843,X

This instruction uses the less efficient 16-bit offset mode, but it lets the variable index
be in the X index register.

Index registers can be either autoincremented or autodecremented before or after
being used in effective address calculations. It is denoted by a delta value between 1 and

Figure 3.5. Autoincrement Address Calculation
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8, a comma, and the register name with a "+" or "-" symbol. If "+" appears, the index
register is incremented by the delta value, and if "-" appears, the index register is
decremented by the delta value; if this symbol appears before the register name,
incrementing or decrementing is done before effective address calculation, and if the
symbol appears after the register, incrementing or decrementing is done after the
calculation. Consider an example of postincrementing by 1; if X had $843,

LDAA 1,X+

loads the contents from location $843 into A and then increments the contents of X by I
to make it $844. For an example of preincrementing by 1, if X had the value $843,

LDAA 1,+X

increments the contents of X by 1, and then loads the contents from location $844 into
A. An example of postincrementing by 2, if X had the value $843,

LDD 2 , X +

loads the contents from locations $843 and $844 into D and then increments the contents
of X by 2 to make it $845. For an example of predecrementing, if X had the value $843,

LDAA 1,-X

decrements the contents of X by 1 to make it $842 and then loads the contents from
location $842 into A. Delta can be as high as 8.

These addressing modes are encoded in the post byte as follows (see Figure 3.2):
Bits 7 and 6 identify the register (00 is X, 01 is Y, and 10 is SP, but 11 is not used for
this mode), bit 5 is 1, bit 4 is 0 if the index value changes before address calculation and
1 if after, bit 3 is 1 if decrementing and 0 if incrementing. For incrementing, bits 2 to 0
are the value of delta minus 1 (or equivalently, delta is the low-order three bits plus 1).
For decrementing, bits 2 to 0 are the value of delta, as a negative two's-complement
number, to be added to the index register. For example, for LDAA 1, X+ the post byte
is $30, for LDAA 1,+X the post byte is $20, for LDD 2 ,X+ the post byte is $31, for
LDAA 1, -X it is $2F, and for LDAA 2, -X it is $2E, and so on.

Figure 3.5 illustrates how the delta value fetched from memory can be added to the
index register. The index value before or after modification can be used as the effective
address by appropriately setting the switch that determines the effective address.

Consider addition again. If you want to add the word at location $843 with the word
at location $844, putting the result at location $845, execute the code in Figure 3.6.

Figure 3.6. Program Segment to Add Two Bytes Using Autoincrementing
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Figure 3.7. Accumulator Index Address Calculation

Note that these increment and decrement modes produce a side effect. They not only
compute the effective address, they also change the value in the index register used to get
the address. No other addressing mode has such a side effect. We will see how useful
these options are when we look at some examples later in this chapter.

Sometimes, the effective address is the sum of two variable numbers. The index
register can be used to hold one of the variables, and an accumulator, A, B, or D, can
hold the other number, as in LDAB A, X. The sign-extended accumulator (A) is added
to the index register (X) to provide the effective address. The effective address can be
obtained as in Figure 3.7. This is called accumulator indexed addressing.

The contents of the registers A and B are treated as 8-bit two's-complement numbers
in these instructions while the contents of D may be treated as a 16-bit two's-
complement number or an unsigned 16-bit number, because the sum of the contents of D
and the contents of any 16-bit index register, truncated to 16 bits, is the same unsigned
16-bit number in either case. The post byte for accumulator index addressing is as
follows: Bits 7 to 5 and bit 2 are 1, the index register is encoded in bits 4 and 3 (00 is X,
01 is Y, 10 is SP, and 11 is PC), and the accumulator is encoded in bits 1 and 0 (00, A;
01, B; and 11, D). The instruction LDAB A, X is encoded as follows:

Accumulator index addressing modes are useful for reading data out of a vector where
the location of the vector in memory, as well as the vector index, are determined at run
time. Suppose a 10-element vector of 8-bit items has element 0 at $843, element 1 at
$844, element 2 at $845, and so on. Then if X has $843, and accumulator A is 2, then

LDAA A,X

puts element 2 into accumulator A. Suppose now that a 10-element vector of 8-bit items
has element 0 at $872, element 1 at $873, element 2 at $874, and so on. Then if X has
$872, and accumulator A is 2, then this instruction still gets vector element 2.

Finally, indirect addressing can be combined with accumulator D and 16-bit offset
forms of index addressing discussed above. Indirect addressing goes to memory to get the
address of the operand, as we describe with examples below. In the 6812, indirect
addressing may only be used with these two forms of index addressing. The instruction

LDAA [ D , X ]
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will use the sum of accumulator D and the index register X as an effective address to read
two bytes and then use these two bytes as another effective address, to load accumulator
A with the word at the latter address. For instance, if D is clear, X contains the value
$843, location $843 contains $08, and location $844 contains $67, LDAA [ D, X ] will
load the word at $867 into accumulator A. The post byte for indirect D accumulator
index addressing has ones in bits 7 to 5 and 2 to 0, and the index register is specified in
bits 4 and 3 (00 is X, 01 is Y, 10 is SP, and 11 is PC). The post byte for the instruction
LDAA [ D, X ] is $E7. The instruction

LDAA [$12,X]

will use the sum of the 16-bit offset $0012 and the index register X as an address to read
two bytes, use these two bytes as another address, and load accumulator A with the word
at the latter address. Note that even though the offset of this instruction is an 8-bit
number, only 16-bit index addressing is permitted when indirect addressing uses an offset.
For instance, if X contains the value $843, location $855 contains $08, and location
$856 contains $23, LDAA [ $ 12 , X ] will load the word at $823 into accumulator A.
The post byte for indirect 16-bit offset index addressing has ones in bits 7 to 5 and 1 and
0, a zero in bit 2, and the index register is specified in bits 4 and 3 (00 is X, 01 is Y, 10
is SP, and 11 is PC). The post byte for the instruction LDAA [ $ 12, X ] is $E3.

The LEAX, LEAY, and LEAS instructions can use only index addressing modes,
but not index indirect modes. They can be used like a transfer instruction; LEAX 0 , Y
will transfer Y to X. More generally, they can be used to add a signed number constant or
variable to an index register and possibly put the result in a different register. The
instruction LEAX -3,X subtracts 3 from index register X, while LEAY A,X adds
accumulator A to the value of X and puts the result in Y. These instructions are
alternatives to arithmetic instructions such as ADDD or SUED and are especially useful
when the result will eventually be put in an index register.

The idea of using a register to form the effective address is very powerful. Several
addressing modes were introduced that use this idea. The index mode doesn't modify the
contents of the register, but can add a 5-, 9-, or 16-bit offset to get the effective address.
The most common change to an address is to increment or decrement it. The instruction
can automatically increment the value in the index register before or after it is used, by
one to eight. This will be quite common in some data structures that we meet later. A
mode that adds the values of an accumulator to the value of an index register permits one
to compute addresses that are derived from two variable values, rather than from a
variable and a fixed value. Finally, these modes may be combined with indirect
addressing for some special applications. With these modes of addressing, the 6812 is a
very powerful microprocessor. With this power, we can show you how to use data
structures intelligently to make your programs shorter, faster, and clearer.

3.3 Relative Addressing and Position Independence

The microcomputer is very much like any other computer; however, the use of ROMs in
microcomputers raises an interesting problem that is met by the last mode of addressing
that we discuss. The problem is that a program may be put in a ROM such that the
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Figure 3.8. Simplified Control Hardware for Relative Addressing

program starts at location $1000 and ends at $2000. Suppose that someone buys this
ROM, but his/her microcomputer has another program in a ROM that starts at location
$1000 and ends at $2000. We would like to be able to use this new ROM so that the
new program would start at location $4000 and end at location $5000, for instance, or
wherever there is room in the address space of the microcomputer. However, because the
program is in a ROM, it cannot be changed by the buyer. Similarly, a compiler or
assembler that downloads a particular program into different parts of memory won't have
to change addresses if the program is position independent. A program that works the
same way, wherever it is loaded in memory, is said to be position independent. Position
independent programs can be written by an assembler or compiler to run anywhere in
memory without modification. Programs we have seen so far are position independent
when the location of the data is fixed, and, in fact, most program segments that do not
use JMP or JSR instructions using direct addressing are position independent.

Program counter relative addressing, or simply relative addressing, adds a two's-
complement number, called a relative offset, to the value of the program counter to get
the effective address of the operand. Figure 3.8 illustrates a simplified implementation of
a controller. The top switch can add "1," or the sign-extended data bus, to the program
counter. The former is used to increment the program counter each time an instruction
byte is fetched, and the latter is used for relative branches. The bottom switch permits the
adder's output or the data bus value to be put into the program counter. The bottom
switch selects the latter when a JMP, JSR, RTS, or RTI instruction or interrupt loads
the program counter. The adder's output can also be used as an effective address.

The relative addressing mode is used to implement position independence. If the
program segment at $1000 to $2000 was in a ROM and that ROM was installed so that
the instruction following the BNE was at $4000, the BNE instruction would still have the
relative offset $20. If Z is 0 when the instruction is executed, the program counter would
be changed to $4020. That would be the address of the instruction that had the label L,
The program would execute the same way whether it was stored at location $1000 or
$4000. This makes the program position independent.

Branching instructions all use relative addressing. For example, the instruction BRA
L for "branch always" to location L will cause the program counter to be loaded with
the address L. An example of a branch is illustrated in Figure 3.9. Observe that label L is
two bytes below the end of the BRA L instruction. The program counter PC has the
address $834 of the next instruction, LDAA #4, when it is executing the BRA L
instruction. The second byte of the BRA L instruction, the offset, 2, is added to the
program counter, to make it $836, and then the next byte is fetched.
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Figure 3.9. Program Segment Using BRA, Illustrating Position Independence

The example in Figure 3.10 constantly flips bits in location 1. It might be used in
Chapter 12; location I is an output port, and this program segment outputs a square
wave on all the bits. The two's-complement offset is negative because the branch is
backwards. Observe that, after BRA L is fetched, the program counter is on location
$816; the offset $FB is -5, so the program counter becomes $811 after it is executed.

Many programmers have difficulty with relative branch instructions that branch
backwards. We recommend using sixteen's complement arithmetic to determine the
negative branch instruction displacement. The sixteen's complement is to hexadecimal
numbers as the two's complement is to binary numbers. To illustrate this technique, the
displacement used in the branch instruction, the last instruction in the program in Figure
3.10, can be determined as follows. When the branch is executed, the program counter
has the value $816, and we want to jump back to location $811. The difference, $816 -
$811, is $05, so the displacement should be -$05. A safe way to calculate the
displacement is to convert to binary, negate, then convert to hexadecimal. Because $5 is
00000101, the two's complement negative is 11111011. In hexadecimal, this is $FB.
That is not hard to see, but binary arithmetic gets rather tedious. A faster way takes the
sixteen's complement of the hexadecimal number. Just subtract each digit from $F (15),
digit by digit, then add 1 to the whole thing. Then -$05 is ($F - 0),($F - 5) + 1 or
$FA + 1, which is $FB. That's pretty easy, isn't it!

If the relative offset is outside the 8-bit range, one uses the long branch equivalent,
LBRA L, which uses a 16-bit two's-complement relative offset.

Program counter relative addressing can be used to read (constant) data that should be
stored with the program. Relative addressing can be implemented using a 5-bit, 9-bit, or
16-bit signed relative offset. Nine-bit offset relative addressing is denoted by the "<"
before and ", PCR" after the offset and 16-bit offset by ">" symbol before and ", PCR"
after the offset, (This mode's machine code uses a post byte as it is an index option.)

Figure 3.10. Program Segment to Put a Square Wave on an Output Port
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For example,
LDAA <L,PCR

can load any word into A that can be reached by adding an 8-bit signed number to the
program counter. (Recall that the PC is pointing to the next instruction just below the
LDAA instruction when the effective address L is calculated.) The instruction

LDAA >L,PCR

can be used to access words that are farther away than -128 to + 127 locations from the
address of the next instruction; it adds a 16-bit offset to the current value of the program
counter to get the effective address. Although the machine coding of relative addressed
instructions is the same as that of index addressed instructions, do not dwell too much on
that similarity because the offset put in the machine code is determined differently.

Program counter relative indirect addressing can be used to access locations such as
I/O ports as in

LDAA [L,PCR]

Assuming that L is 18 bytes below this instruction, the machine code is given by

where $A6 is the opcode byte for any LDAA index mode; the post byte $FB indicates
indirect index addressing with 16-bit offset, but using the program counter as the "index
register", and the last two bytes are added to the program counter. The indirect address
($12 in the example above) is in a location relative to the program. If the program is
loaded into a different location, the offset $12 is still used to get the indirect address.
Such use of relative and indirect relative addressing lets the program have one location
and only one location where a value is stored, so that a downloaded file can insert the
value in one place to run the program anywhere it is stored.

Branch and long branch instructions do not need the ",PCR" symbol in the
instruction because they only use relative addressing with 16-bit relative offsets.
However, the BSR L, having an 8-bit offset, doesn't have a corresponding long branch
to subroutine. But JSR L,PCR is a 16-bit position independent subroutine call that
has the same effect as the missing LBSR L.

A 16-bit position independent indirect subroutine call, JSR [ L, PCR ], can jump
to a subroutine whose address is in a "jump table," as discussed in a problem at the end
of this chapter. Such jump tables make it possible to write parts of a long program in
pieces called sections and compile and write each section in EEPROM at different times.
Jumps to subroutine in a different section can be made to go through a jump table rather
than going directly to the subroutine. Then when a section is rewritten and its
subroutines appear in different places, only that section's jump table needs to be
rewritten, not all the code that jumps to subroutines in that section. The jump table can
be in EEPROM at the beginning of the section, or in RAM, to be loaded at run time.
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A program is not position independent if any instruction in it causes it to do
something different when the program is moved, intact, to a different location. The only
real test for a program's position independence is to show that it can be moved without
changing its operation. One necessary condition, however, is that all changes to the
program counter be position independent, and using branch instructions in place of jump
instructions, or JMP and JSR instructions with program counter relative addressing, will
generally make that possible. The relative addressing mode is generally used with data
that move with the program, such as constants that are on the same ROM as the
program, and with instructions that compute the address to jump to in a manner to be
introduced later. Listed with other instructions, then, the relative mode allows programs
to be position independent, and that may be very important in a microcomputer that uses
a lot of ROMs.

3.4 Stack Index Addressing, Reentrancy, and Recursion

The stack pointer may be used with all the index addressing modes, but its uses have
special meaning. These uses correspond to pushing and pulling, and they support
reentrancy and recursion. Also, the index registers X and Y may be used as auxiliary
stack pointers. This section shows these variations of index addressing.

The instruction LDAA 1, SP+ is essentially the same as PULA because both pull a
byte from the (hardware) stack into accumulator A. Similarly, the instruction LDD
21SP+ is essentially the same as PULD; the instruction STAA 1, -SP is essentially
the same as PSHA; and the instruction STD 2,-SP is essentially the same as
PSHD. The differences between these pairs of instructions is in their length and
execution time and in the effect they have on condition codes. The instructions PULA,
PSHA, PULD, and PSHD are usually preferred because they are faster and shorter, but
the instructions LDAA 1,SP+, STD 2,-SP, and so on may be used if pulling or
pushing needs to set the condition codes for a future conditional branch instruction.

Moreover, autoincrement addressing can be used with other instructions to pull a
byte or 16-bit word and simultaneously use the pulled data in an instruction. The
sequence:

PSHB
ADDA 1,SP+

is often used in code generated by C and C++ compilers to add accumulator B to
accumulator A (equivalent to the simpler instruction ABA). However, this push-and-pull-
into-an-instruction technique can be used with other instructions like ANDA and ADDD.
The sequence:

PSHX
ADDD 2,SP+

is often used in code generated by C and C++ compilers to add index register X to
accumulator D.
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Figure 3.11. A Stack Buffer for Two Stacks

The hardware stack, pointed to by SP, is useful for holding a subroutine's
arguments and local variables. This will be discussed at the end of this section. However,
because return addresses are saved on and restored from the hardware stack, we sometimes
need a stack that is not the same as that hardware stack. For instance, we may push data
in a subroutine, then return to the calling routine to pull the data. If we use the hardware
stack, data pushed in the subroutine need to be pulled before the subroutine is exited, or
that data will be pulled by the RTS instruction, rather than the subroutine's return
address. A second stack can be implemented using an index register such as Y. If index
register Y is also needed for other purposes in the program, this second stack pointer can
be saved and restored to make it available only when the second stack is being accessed.

Figure 3.11 illustrates that a second auxiliary stack may use the same buffer as the
hardware stack. The hardware stack pointer is initially loaded with the address of (one
past) the high address of the buffer, while the second auxiliary stack pointer (Y) is loaded
with (one below) the low end of the same stack buffer. The second stack pointer is
initialized as: LDY #$B7F. Accumulator A can be pushed using STAA 1, +Y. A
byte can be pulled into accumulator A using LDAA 1, Y- . A 16-bit word can be
pushed and pulled in an obvious way. Observe that autoincrementing and
autodecrementing are reversed compared to pushing and pulling on the hardware stack,
because, as seen in Figure 3.11, their directions are reversed.

The advantage of having the second stack in the same buffer area as the hardware
stack is that when one stack utilizes little of the buffer area, the other stack can use more
of the buffer, and vice versa. You only have to allocate enough buffer storage for the
worst-case sum of the stack sizes, whereas if each stack had a separate buffer, each buffer
would have to be larger than the worst case size of its own stack.

A recursive subroutine is one that calls itself. The procedure to calculate n factorial,
denoted n!, is recursive; for any positive nonzero integer n, if n is one, n! is 1, otherwise
n! is (n-1)! * n. The subroutine in Figure 3.12 calculates n!; upon entry, n is in
accumulator D, and upon exit, n! is in accumulator D.
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Figure 3.12. Subroutine to Compute n! Recursively

Although recursive subroutines implement a scientist's induction mechanism, they
are not always useful. Consider the alternative in Figure 3.13 that uses a loop. The
alternative is significantly more efficient. The recursive solution uses the hardware stack
as a counter, pushing a 2-byte return address and 2-byte saved parameter value each time
it calls itself to reduce its parameter by 1. If n is 5, this subroutine uses up 20 bytes of
stack storage. This is not efficient. But there are efficient recursive subroutines,
especially for following linked list data structures, as we will see in Chapter 9.

A subroutine is reentrant if it can be stopped, for instance because of an interrupt,
and then resumed, and it will get the same result as if it were not stopped, even though
the interrupt handler might call this subroutine during its execution. Also, a time-sharing
computer uses interrupts to switch between tasks or threads that share a computer.
Reentrant subroutines can be used by each task or thread, without concern that, when a
thread or task is stopped during execution of the subroutine, another thread will execute
the subroutine. The subroutine in Figure 3.14 is nonreentrant, and following it is a
reentrant subroutine; both clear five bytes beginning at location $824.

Figure 3.13. Subroutine to Compute n! in a Loop
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Figure 3.14. Nonreentrant Subroutine to Clear Memory

This program fails to work correctly if it is interrupted after the STAA instruction is
executed, and before the RTS instruction is executed and the interrupt handler calls this
subroutine. The second call to this subroutine will wipe out the counter at location $822
because the second call will also use this same location and will leave it cleared when the
first call to this subroutine resumes execution. The first call to this subroutine will not
work the same way if the interrupt occurs as it does if the interrupt doesn't occur.
However, the subroutine in Figure 3.15 will work correctly if it is similarly interrupted.

The key idea behind both recursion and reentrancy is to keep data on the stack. The
stack provides new storage locations for each instantiation of the subroutine to keep its
variables separate from the variables of other instantiations, so they aren't destroyed,

Note that the decrement instruction accesses the counter on the stack without
pulling the byte. If three 1-byte items were pushed on the stack, the instruction LDAA
2, SP will read into accumulator A the first byte pushed without removing it from the
stack. In general, items can be pushed on the stack at the beginning of a procedure and
pulled off at the end of the procedure. Within the procedure the items can be read and
written using offsets from the stack pointer.

Figure 3.15. Reentrant Subroutine to Clear Memory
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LEAS -3,SP allocate 3 bytes

LDAA #5 generate constant 5
STAA 0,SP store in allocated

LEAS -2,SP allocate 2 bytes

LDAA 2,SP read out the byte 5

LEAS -4,SP allocate 4 bytes

LDAA 6,SP read out the byte 5

LEAS 4,SP deallocate 4 bytes

LEAS 2,SP deallocate 2 bytes

LEAS 3,SP deallocate 3 bytes

a. Program Segment

Figure 3.16. A Stack Buffer for Nested Segments

The concept of storing data on the stack leads to nested allocation, access, and
deallocation of local variables. Nested segments are commonly used in C and C++
programs to call procedures; the outer segment holds parameters passed to the procedure,
and the inner segment stores some of the local variables of a procedure. Further, C and
C++ programs nest segments within a procedure to hold temporary variables needed to
evaluate a C statement. This concept is fully explained in terms of a program trace,
which is introduced first. Then we consider a simple trace, and then a nested trace.

One can record a program's instructions in the exact order they are executed to obtain
a trace. Simple program segments without branching statements are the same as their
traces. If a program has a loop that is executed five times, the trace has five copies of the
instruction sequence in the loop.

In a program trace, one can allocate local variables by pushing items on the stack,
and one can deallocate them by pulling them from the stack, as already illustrated in this
section. Once allocated, the data on the stack can be accessed by reading or writing the
contents as discussed above. Moreover, one can allocate several bytes in one instruction,
using the LEAS instruction. For instance, to allocate five bytes, execute LEAS -
5, SP. By moving the stack pointer SP five locations toward lower memory, five bytes
of data can be stored in these bytes that were skipped over. The LEAS instruction can
deallocate several words at a time. To deallocate five bytes, execute the instruction LEAS
5 , SP. A stack is said to be balanced in a simple trace, which has no alternative
branches in it; so it is linear, if the number of allocated bytes equals the number of
deallocated bytes, and at no step in the trace, between allocation and deallocation, are
more bytes deallocated than were allocated. If, due to conditional branches, there are
several possible simple traces to take from when space has been allocated to a given
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point in the program, the stack is balanced at that point if it is balanced in every possible
simple trace to that point. To balance the stack means to deallocate all the bytes that
have been allocated, so that it becomes balanced. We usually allocate space for variables
at the beginning of a subroutine and deallocate the space just before we exit the
subroutine to balance the stack, but we can have program segments that are not
subroutines in which space is allocated at the beginning of the program segment and
deallocated at the end of that program segment.

It is possible for a program to have a segment that has space allocated at its
beginning and deallocated at its end and to have within it another segment that has space
allocated at its beginning and deallocated at its end. This is called a nested allocated
segment. Figure 3.16a illustrates a program that has a nested segment where the outer
segment allocates three bytes, an inner segment allocates two bytes, and an inner
segment of it allocates another four bytes. The outer segment writes the number 5 in its
lowest addressed byte, the next inner segment reads this byte into accumulator A, and the
innermost segment reads this byte into accumulator B. Note that different offsets are used
with the stack pointer to access the same byte of data, due to intervening allocations, but
the outer data is available to each inner program segment, even though they are nested.

3.5 Examples

We now tie together some of the ideas that were introduced above using some examples.
These examples give you some experience with addressing modes and loops.

One of the most common operations is to clear a block of memory. The program
segment in Figure 3.17 clears 39 bytes starting at location $910.

This example can be sped up by using STD, where accumulator D is zero. A
similarly common operation is to move a block of data from one area to another. The
following program segment moves 15 bytes from a block starting at location $930 to a
block starting at location $921. The MOVW instruction can move data twice as fast.

We now extend an example started in Chapter 1. Suppose that we want to add N 1-
byte numbers that are stored consecutively beginning in location $843. The value of N is
stored in location $841, and the result is to be placed in location $842. The program
segment in Figure 3.19 does this for either unsigned or signed (two's-complement)
numbers. If the numbers are unsigned, the result will be correct as long as there is no
unsigned overflow, that is, the sum can be expressed with an 8-bit unsigned number. If
the numbers are signed, the result will likewise be correct as long as there is no signed

Figure 3.17. Program Segment to Clear a Block of Memory
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Figure 3.18. Program Segment to Move a Block of Memory

overflow; that is, the result can be expressed with an 8-bit two's-complement number.
Note that accumulator B is initially loaded with the number of times that the loop is to
be executed. This loop counter (accumulator B in this case) is decremented by DBNE ,
which branches back to the location L if the (B) is greater than zero after it is
decremented. The loop from location L to the DBNE instruction is repeated N times,
where N is the initial value in accumulator B.

In the program in Figure 3.19, register A is used to accumulate the result, register B
holds the number of remaining bytes to be added, and the index register X contains the
address that points to the next byte to be added.

We extend the multiply-and-accumulate example of §2.7 to evaluate the expression:
2 i = 0 Bi * Q , where a vector of five signed 16-bit numbers Bj are at $914, and a
vector of five signed 16-bit numbers Q is at $9IE. This expression is called the inner
product of the vectors B and C. The two vectors B and C can have as many elements as
you want, but the two vectors have the same number of elements. It is widely used in
signal processing and data compression. See Figure 3.20. Note that EM ACS only uses
pointer addressing, so the index registers X and Y must be moved using LEA
instructions in order to pick up the elements Bi and Q. This procedure is very similar to
the WAV instruction but is for 16-bit elements while WAV is for 8-bit elements.

This section illustrates several examples of the great value of the synergetic
combination of autoincrement index addressing and counting using the DBNE instruction.
The combination of accumulator index addressing and counting using the DBNE
instruction, whose counter register is the accumulator used with the index, is also widely
used. We seern to run into such a combination in every other program that we write.

Figure 3.19. Program Segment to Add Vector Elements
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Figure 3.20. Program Segment to Compute an Inner Product

3.6 Architectural Notions of Addressing

The particular computer that we are studying, the 6812, is a one-address computer. Have
you thought, perhaps, that a computer that has instructions with two addresses may be
better than a one-address computer? In some cases, it would be, and a three-address
computer would be even better; but in other cases, it would not. We will compare the
static efficiency of one-address and three-address computers to help you look beyond the
particular machine that we are studying, to understand the general principle of addressing,
and at the same time to reassure you that the 6812 is a good machine for most
applications. Next, we will review the detailed fetch/execute cycle to expose some
possible ambiguities in the addressing operation of the 6812. This may help you to
understand some very useful addressing techniques. Although this discussion does not
show you how to apply specific addressing modes as the previous section did, it will
further your general understanding of addressing and programming.

We might want to add the contents of location 511 to the contents of 512 and put
the result into 513. In the 6812, we would execute the program segment

LDAA 511
ADDA 512
STAA 513

The same effect could be obtained in a different computer that had a three-address
instruction. The instruction

ADD 511,512,513

would add the contents of location 511 to that of 512, putting the result into 513. The
6812 program segment used nine bytes, while this three-address machine might use only
seven bytes. The three-address machine is more efficient for this example. However, if
we want to add the numbers in locations 511 through 515 and put the result in 516, the
three-address machine must use something like:
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ADD 511,512,516
ADD 513,516,516
ADD 514,516,516
ADD 515,516,516

while the one-address 6812 uses

LDAA 511
ADDA 512
ADDA 513
ADDA 514
ADDA 515
STAA 516

A comparison now shows that the three-address machine takes 28 bytes while the
one-address 6812 takes 18. Of course, this computation is very inefficient for the three-
address machine, but it may represent a more typical computation than the one that the
particular instruction directly handles.

In §12.5, we will see a three-address architecture in the fast and powerful 500 series
of Motorola microcomputers. The three-address architecture is actually the method of
choice for these powerful microcomputers because this architecture actually permits
several instructions to be executed in parallel if the instructions' registers are mutually
distinct. Nevertheless, there are applications in which the three-address architecture is
justifiable based on static or dynamic efficiency.

You may have already run into confusing addressing modes. If you haven't yet, we
would like to offer the following discussion to help you when you do. Consider the
instruction

LDX 0,X

that loads a register using an address that is calculated using the same register. Is this like
a definition of a term that uses the term to define itself? No. It is quite legal and very
useful in handling data structures such as linked lists, which you will study in Chapter
10. Let us review the fetch/execute cycle again, with this particular instruction as an
example. First, the opcode and then the post byte are fetched. The opcode is decoded, and
then the address is calculated. Predecrementing, if needed, is done at this point. Finally,
the operation is carried out. Note that the address is calculated using the old value in the
index register X. Then the two words recalled from that address are put into the index
register to become the new value of the register. For example, if X contained 100,
location 100 contained 0, and location 101 contained 45, then, after the instruction is
executed, the X register contains 45.

There are some further ambiguities with the last load instruction and the
corresponding store instruction when postincrementing is used. For example, with the
instruction

LDX 2 ,X+
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it is not clear whether the load is executed before the + or after the +. Note that if the
latter is true, the + would have no effect on the instruction. Indeed, in the 6812, the + is
carried out before the operation; in this case a load, so that

LDX 2,X+
is the same as

LDX 2 ,X-

For any load instruction involving the same index register for the location of the
operand and the location of the result, the general rule is that postincrementing has no
effect on the instruction. However, the fact that the postincrementing is carried out before
the operation produces an unexpected result in the store counterpart of the load
instruction just discussed. For example, with

STX 2 ,X+

suppose that X initially contains 373. After the instruction is executed, one will find that
X becomes 375, and 375 has been stored in locations 373 and 374. We conclude this
discussion by noting that predecrementing has none of these ambiguities. For example,
if X initially contains 373 before the instruction

STX 2,-X

is executed, then 371 will be stored in locations 371 and 372.
There is often considerable confusion about LDX (direct), LDX #, and LEAX.

Consider the following examples, assuming location $820 stores $1234.

LDX $820

will load $1234 into X. Direct addressing loads the data located at the instruction's
address. However, immediate addressing loads part of the instruction into the register, as

LDX #$820

will load $820 into X. Sometimes, immediate addressing is used to load an address into
memory so that pointer addressing (index addressing with zero offset) can access the data:

LDX #$820
LDX 0 ,X

will eventually load $1234 into X. Also, the LEAX instruction loads the effective address
into an index register. When it is used with program counter relative addressing, it has
the same effect as LDX # but is position independent.

LEAX $820,PCR
LDX 0,X

will eventually load $1234 into X. But LEAX can be used with other addressing modes
for other effects; for instance LEAX 5, X adds 5 to X, and LEAX D, X adds D to X.
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3.7 Summary

In this chapter we looked at the addressing modes in the 6812. We saw four general
themes: the use of page zero, the use of index registers, the use of relative addressing for
position independence, and the use of stack addressing for reentrancy and recursion.

With the first theme, we saw inherent and page zero addressing are useful for
improving static and dynamic efficiency over direct addressing. Put the most commonly
accessed variables in registers, using inherent addressing to access them, and put the next
most common variables in page zero, using page zero addressing to access them.

For the second theme, we saw that index registers may be used efficiently to handle
addresses that require several accesses and that index registers may be useful for data
structure accesses. Index addressing is the fastest and shortest index addressing option and
index addressing using 5-bit offsets is available for locations close to that pointed to by
the register, while 16-bit offsets are available for all accesses. We also saw that the
accumulators may be used, in lieu of an offset, to combine a variable in an index register
with a variable in an accumulator to get the effective address. Index registers and their
addressing modes provide a lot of power, which we explore further throughout this book.

With the third theme, the program counter is used as a kind of index register and the
same steps used to carry out index addressing are used to carry out relative addressing
using the program counter in place of an index register. Although the mechanics are the
same, the effect is quite different, and the representation of the address is different. In
particular, the address in the instruction using relative addressing is the effective address,
not an offset, while the machine code for the instruction uses a relative offset, which is
the amount that must be added to the program counter to get the effective address. This
mode is useful in making programs position independent, so that they may be mass
produced in ROMs and many different systems can use the same ROM.

The last theme showed how the stack pointer can be used with an offset to access
local variables and parameters passed on the stack. The reentrancy and recursion
techniques are shown to be easily implemented using stack pointer addressing.

This chapter covered the rich collection of addressing modes in the 6812. These
correspond to the modes in most of the other microcomputers and to most of the useful
modes in any computer. Now that you know them, you should be prepared to use them
with any instruction in the 6812 (where they are permitted) as we discuss these
instructions in the next chapter. You should know which mode to use, based on our
study of the themes above so that you can produce shorter, faster, and clearer programs.

Do You Know These Terms?

See the end of Chapter 1 for instructions.

addressing pointer register independent reentrant
addressing modes index register program counter subroutine
accessed index addressing relative nested allocation
inherent post byte relative unsigned overflow
implied offset relative offset signed overflow
self-modifying autoincrement sixteen V inner product

code autodecrement complement three-address
page zero indirect addressing recursive instruction

mode position subroutine jump vector
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PROBLEMS

1 . Identify all instructions that have a direct mode of addressing but do not have a page
zero mode of addressing.

2 . Identify all instructions that have both direct and page zero addressing, in which the
direct addressing opcode byte is the page zero addressing opcode byte plus $20. Which
instructions have both direct and page zero addressing, in which the direct addressing
opcode byte is not the page zero addressing opcode byte plus $20?

3 . We often write a constant to an output port, which is a byte on page zero.
Compare the static and dynamic efficiency, and clarity, of the MOVB #$12, $0034
instruction to the instruction sequence LDAA #$12 STAA $ 3 4. When should you use
the MOVB instruction, and when should you use the LDAA - STAA sequence?

4. Suppose that we have a vector of 1-byte signed numbers whose first byte is at
location $840 and whose length is at location $83f and is less than 32 bytes. Write a
shortest program to search through the vector, using autoincrement addressing, putting
all those numbers that are negative and even into a vector beginning at location $860,
keeping the order of the numbers in the second vector the same as the original vector, and
putting the length of the new vector in location $85f.

5 , Suppose that we have N 16-bit two's-complement numbers stored beginning at
location $850. The two bytes of each number are stored consecutively, high byte first.
Write a shortest program, using autoincrement addressing, that puts the maximum
number in locations $84e and $84f, high byte first. Do not use "special" instructions.
The variable N is stored in location $84d. How would your program change if the
numbers were unsigned?

6. Write a shortest program that adds a 3-byte number at locations $832 through $834
to a 3-byte number at locations $835 through $837, putting the sum in locations $838
through $83a. Each number is stored high byte first and other bytes at higher addresses.
When the program finishes, condition code bits Z, N, V, and C should be set correctly.
Hint: Use just one index register to read in a byte from each number and also write out a
byte, and obtain the final condition code Z by ANDing Z bits obtained after each add.

7 . A ten-element 16-bit per element vector at location $844 is initially clear. Write a
shortest program segment that increments the vector element whose index is in
accumulator B and that is a positive integer less than 10. After the program segment is
executed several times, each vector element has a "frequency-of-occurrence" of the index.
This vector is called a histogram.

8 . Write a shortest program segment that sets a bit in a bit vector having 256 bits.
Location $856 and the following 7 bytes contain $80, $40, $20, $10, 8, 4, 2, and 1.
Index register X points to the byte that contains the leftmost (lowest-numbered) bit of
the bit vector. Bits are numbered consecutively from 0, the sign bit of the byte pointed
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to by X, toward less significant bits in that byte, and then toward bytes at consecutively
higher addresses. If accumulator A is a bit number n, this program segment sets bit n in
the bit vector pointed to by X.

9 . Write a shortest program segment, which is to be executed only once, that adds a
24-bit number at locations $811 to $813, to a 24-bit number at $814 to $816 to get a
24-bit result at $817 to $819 but that does not use any index registers; it uses only self-
modifying code. Each address's low byte is decremented after each time it is used,

10. Write a shortest program segment that adds a 24-bit number to a 24-bit number to
get a 24-bit result but that does not use any index register, only indirect addressing. Use
locations $811 and $812 to hold the pointer to the first 3-byte number (which is the
address of its least significant byte), locations $813 and $814 to hold the pointer to the
second number (which is the address of its least significant byte), locations $815 and
$816 to hold the pointer to the result (which is the address of its least significant byte).
Assume that no byte of any of the 24-bit numbers spans a page discontinuity, where the
low byte of the address is zero. This program segment need be executed only once.

11. Suppose that Y = 613 and X = 918 before each of the following instructions is
executed. Give the contents of the registers X and Y after each is executed, in decimal.
Then explain what is stored where if STY 2 , -Y is executed with Y = 613.

(a) LEAK 2 , -Y (b) LEAX 2 , -X (c) LEAX 2 , Y+

12. Give the shortest 6812 instruction sequences that carry out the same operation as
the following nonexistent 6812 instructions. Condition codes need not be correctly set.

(a)AAX (b)ADX (c) LSLX

13. A section is a collection of n subroutines that are assembled together and written
together in a PROM, EPROM, or EEPROM. The first 2 n bytes of storage for each
section contain the direct address of each subroutine in the section, in a jump vector.
The first two bytes are the address of the first subroutine, and so on. Suppose section 1
begins at $FOOO, so subroutine 3's address would be in $f006. In another section, a call
to subroutine m in section 1, puts the 16-bit number from location 2 m + $fOOQ into
the program counter. Show the machine code for parts (a) and (b).

(a) Write a single instruction, at location $d402, to call subroutine 3.

(b) How do we fill the "jump table" at location $fOOO with addresses of subroutines
at run time (assuming the jump table is in RAM). In particular, if the subroutine at
location f is a label at the beginning of the third subroutine whose address is at location
$f006, write a program sequence to generate and write this address in the vector.

(c) How does this capability simplify the debugging of large programs?

14. The jump vector of problem 13 is to be made position independent. Each element
is a relative offset to the subroutine. Repeat part (a), (b), and (c) of problem 15 for this
jump vector. Write parts (a) and (b) as a program segment, where X points to the jump
table's beginning.
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1 5. Write a shortest program segment beginning at $866 to call subroutine PRINT, at
$852, with the address of the character string to be printed in index register X, first for a
string stored at location $876 and then for one at $893. However, the calling program
segment, the subroutines, and the strings may be in a single ROM that can be installed
anywhere in memory. They are in locations fixed relatively with respect to each other
(position independence). Show your machine code.

16. Write a shortest program segment to put square waves on each output port bit, at
location 0 so bit i's square wave's period is 21 times the period of bit O's square wave.

17. Write a shortest program segment to add index register X to accumulator D,
transferring the data on the auxiliary stack pointed to by Y, as shown in Figure 3.11.

18. Write a shortest program segment to exclusive-OR accumulator A into accumulator
B, transferring the data on the auxiliary stack pointed to by Y, as shown in Figure 3.11.

19. The Fibbonacci number of 0, ^F(O) is 1, and ^F(l) is 1, otherwise ?(i) is ?(i - 1)
+ J(i - 2) for any positive integer i. Write a subroutine FIB that computes the
Fibbonacci number; the input i is in index register X and the result f ( i ) is left in
accumulator D.

(a) Write a recursive subroutine, (b) Write a nonrecursive (loop) subroutine.

20. Write a subroutine POWER, with input signed number n in accumulator D and
unsigned number m in index register X that computes nm leaving the result in
accumulator D.

(a) Write a recursive subroutine, (b) Write a nonrecursive (loop) subroutine.

21. In Figure 3.16a, the instruction MOVW #$ 18bc, 1, SP writes to a local variable
on the stack in the outer loop. Write an instruction to load this value into index register
X, which is just inside the next inner loop, where the instruction LDAA 2, SP is. Write
an instruction to load this value into index register X, which is just inside the innermost
loop, where the instruction LDAA 6, SP is.

2 2. Assume that an overflow error can occur in an ADD instruction in the innermost
loop in Figure 3.16a, just after the instruction LDAA 6, SP. The following instruction
BVS L, after the ADD instruction, will branch to location L. Write an instruction at this
location L to deallocate stacked local variables such that the stack pointer will be exactly
where it was before the first instruction of this figure, LEAS -3,SP, was executed.

2 3. Write a shortest subroutine that compares two n-character null (0) terminated
ASCII character strings, si and s2, which returns a one in accumulator B if the strings
are the same and zero otherwise. Initially, X points to the first member of si (having the
lowest address), Y points to the first member of s2, and n is in accumulator A.

24. Figure 3.21 shows a table where the first column is a 32-bit Social Security
number; other columns contain such information as age; and each row, representing a
person, is 8-bytes wide. Data for a row are stored in consecutive bytes. Write a shortest
program segment to search this table for a particular social security number whose high
16 bits are in index register Y, whose low 16 bits are in accumulator D, and for which X
contains the address of the first row minus 8. Assume that a matching Social Security
number will be found. Return with X pointing to the beginning of its row.
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Figure 3.21. A Table
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Technological Arts' Adapt812 is a modular implementation of the 68HC812A4, in single-
chip mode, which includes all essential support circuitry for the microcontroller. A well
designed connector scheme groups the dedicated I/O lines on one standard 50-pin con-
nector, while routing the dual-purpose I/O lines to a second 50-pin connector, to form the
address and data bus for use in expanded memory modes.
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Assembly Language
Programming

In the examples presented so far, you have probably noticed some real programming
inconveniences, such as finding the operation code bytes, computing the addresses
(particularly relative addresses), and associating the variable names with their memory
locations. Furthermore, if you change the program, much of this routine work may have
to be done again. What we have been doing is sometimes called hand assembly, in that
we generate all of the machine code ourselves. Certainly, hand assembly is appropriate to
the understanding of computer fundamentals. Beyond this we need to know hand
assembly to remove the errors without reassembly. In this chapter we study the
assembler and the skill of assembling programs using the computer.

Before the success of C and C++ compilers, when most programs were written in
assembly language, more knowledge of assembly language was needed than is needed
now because most programs are written in C and C++. The programmer needs to know
how to read an assembly-language listing, which assembles code written by a compiler,
and how to insert critical assembly-language statements in a C or C++ program. This
chapter discusses critical assembler concepts that a programmer writing in C and C++
must know. The next chapter will delve deeper into assembly-language concepts, to
enable the programmer to write large assembly-language programs.

87
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An assembler is a program someone else has written that will help us write our
own programs. We describe this program by how it handles a line of input data. The
assembler is given a sequence of ASCII characters. (Table 4.1 is the table of ASCII
characters.) The sequence of characters, from one carriage return to the next, is a line of
assembly-language code or an assembly-language statement. For example,

( space) LDAA ( space) #$ 10 (carriage return) (I)

would be stored as source code in memory for the assembler as:

The assembler outputs the machine code for each line of assembly-language code. For
example, for line (1), the assembler would output the bytes $86 and $10, the opcode byte
and immediate operand of (1), and their locations. The machine code output by the
assembler for an assembly-language program is frequently called the object code. The
assembler also outputs a listing of the program, which prints each assembly-language
statement and the hexadecimal machine code that it generates. The assembler listing also
indicates any errors that it can detect (assembly errors). This listing of errors is a great
benefit, because the assembler program tells you exactly what is wrong, and you do not
have to run the program to detect these errors one at a time as you do with more subtle
bugs. If you input an assembly-language program to an assembler, the assembler will
output the hexadecimal machine code, or object code, that you would have generated by
hand. An assembler is a great tool to help you write your programs, and you will use it
most of the time from now on.

In this chapter you will look at an example to see how an assembly-language
program and assembler listing are organized. Then you will look at assembler directives,
which provide the assembler with information about the data structure and the location of
the instruction sequence but do not generate instructions for the computer in machine
code. You will see some examples that show the power of these directives. The main
discussion will focus on the standard Motorola assembler in their MCUez freeware.

At the end of this chapter, you should be prepared to write programs on the order of
100 assembly-language lines. You should be able to use an assembler to translate any
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program into machine code, and you should understand how the assembler works.
Although you may not be able to understand how to write an assembler, you will be
prepared from now on to use an assembler as a tool to help you write your programs,

4.1 Introductory Example and Assembler Printout

We now consider a simple example to introduce you to assembly-language programs.
Consider a program that obtains the maximum of a sequence of numbers. We will
assume that this sequence consists of 16-bit unsigned numbers stored consecutively in
memory, high byte first for each number. This data structure is called a vector or (one-
dimensional) array. The name of the vector will be the location of the first byte of the
vector, so that the high byte of the ith number in the vector (i = 0, 1, 2, . . .) can be
found by adding 2*i to the vector name. Suppose then that Z is a vector of four 16-bit
two's-complement numbers beginning in location $86a with N stored in location $868.
The ith number will be denoted Z(i) for i = 0 through N - 1. We want a program that
finds the maximum of these numbers, putting it in locations $868 and $869.

One possible program for this, following the style of previous examples, is shown
in Figure 4.1. We have arbitrarily started the program at address $89C.

Looking at the preceding program, we certainly would like to use just the
mnemonics column with the variable addresses and the labels for the branches and let the
assembler generate the other two columns, that is, do what we have been doing by hand.
We would also like to be able to use labels, also called symbolic addresses (or just
symbols) for the memory locations that hold the values of variables. The meaning of
symbolic addresses is explored in greater detail in the next chapter. We use them in this
section to get the main idea (they are used before dissecting them carefully). The use of
symbolic addresses allows program segment (2) to be replaced by program segment (3),

LDX #$86A (2)
STD $868

LDX #Z (3)
STD RESULT

Figure 4.1. Program MAX
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ORG $868
N: EQU 3
RESULT: DS.B 2
Z; DS.B 50
*

LDX #Z ; Point X to the vector Z
LDY #N ; get count
LDD 2 , X+ ; Z(0) into D

LOOP: EMAXD 2 , X+ ; D- Z(i)
DBNE Y,LOOP ; Another number?
STD RESULT ; Store result
BGND ; Halt

Figure 4.2. Assembler Source Code for the Program MAX

Program segment (3) is clearer than program segment (2). An assembly-language source
code for the program in Figure 4.1 is shown in Figure 4.2.

Putting this assembly-language program into the assembler yields the output listing
shown in Figure 4.3. Although some new mnemonics have crept in, we can nevertheless
see that we do not have to refer to actual addresses, only labels. We can see that we have
not had to calculate relative offsets for the branching instructions, and we have not had to
find memory locations or machine code. We now look into some of the details.

An assembly-language source statement takes the following form, where the fields,
which are groups of consecutive characters, are separated by one or more one spaces:

Label Field Operation Field Operand Field Comment

The label field and the comment field may be empty and, depending on the operation,
the operand field may be empty.

Label Field

A label (or symbolic address), if present, must have a letter as the first character and
continue with letters, numbers, periods, or underscores. If a line's first character is an
asterisk (*) or semicolon (;), the whole line is treated as a comment. Finally, labels that
are identical to register names are not allowed (e.g., A, B, CC, X, Y, S, SP, PC, D, and
PCR). The label ends in a colon (:). In some assemblers the colon is mandatory after a
label; in some it cannot be used; and in others it is optional.

Operation Field

Except for comment lines, the operation field must consist of an instruction mnemonic
or assembler directive (more about these later). The mnemonic must be written with no
spaces: CLRA, TSTB, ADDD, and so on.

Operand Field

The operand field contains the addressing information for the instruction. Although
numbers can be used to specify addresses, you will find that symbolic addresses are
generally much easier to use in the operand field. For example, using the symbolic
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Table 4.2. Addressing Modes

Notes: 1: Prefix "<" or postfix .B forces Page 0. 2t Prefix ">"
or postfix .W forces Direct. 3: Can substitute Y, SP, or PC for X.
4: Can substitute Y or SP for X. 5: Can substitute B or D for A

address or label ALPHA, the addressing modes in Table 4.2 can now all use symbolic
addresses in place of numbers in the previous examples.

The assembler understands the use of addition, multiplication, and the like, using
symbolic addresses in expressions. If ALPHA is location 100 and the operand field
contains ALPHA+1, the assembler will put in the value 101. In simplest terms, an
expression is just the usual algebraic combination of labels, numbers, and C language
operations +, -, *, /, %, «, », &, I , ~, !, <, >, <=, >=. !=, ==. Pascal operators = and
o are also recognized. Parenthesis are allowed, and precedence and evaluation are exactly
as they are in C. Some examples of expressions are:

JUMP JUMP* ( 8 -I- TAB) ( (RATE-2 ) * 17 ) -TEMP

Comment Field

In the comment field, the programmer can insert short comments stating the purpose of
each instruction. The comment must begin with a semicolon (;). In other assemblers, the
comments begin one or more blanks after the operand field and are printed in the
assembler listing but are otherwise ignored by the assembler.

In summary, writing an assembly-language program is a lot easier than writing
machine code by hand. You can use symbolic addresses, letting the assembler determine
where to put them and letting the assembler make sure that the instructions have the
right operand values. You do have to conform to the rales of the language, however, and
you have to spell the mnemonics exactly the way the assembler wants to recognize
them. Although it would be nice to be able to just talk to the computer and tell it what
you want it to do using conversational English, an assembler can barely understand the
mnemonics for the instructions if you write them correctly and carefully. Nevertheless,
writing assembly-language programs is easier than writing hexadecimal machine code.
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1 1 0000 ORG $868
2 2 0868 0000 0003 N: EQU 3
3 3 0868 RESULT: DS.B 2
4 4 086A Z: DS.B 50
5 5 089C CE086A LDX #Z ; Point X to Z
6 6 089F CD0003 LDY #N ; get count

7 7 08A2 EC31 LDD 2,X+ ; Z(0) into D
8 8 08A4 181A31 LOOP: EMAXD 2,X+ ; D- Z(i)
9 9 08A7 0436FA DBNE Y,LOOP ; Another number?

10 10 08AA 7C0868 STD RESULT ; Store result
11 11 08AD 00 BGND ; Halt

Figure 43. Assembler Listing for the Program MAX

The listing, shown in Figure 4.3, generally mirrors the source code but includes
machine code and storage information. The listing line begins with a pair of line
numbers. The first number is an absolute line number used for error messages, and the
second is a relative line number used for include files and macro expansions discussed
in the next chapter. The hexadecimal location of the instruction is given next; then the
hexadecimal machine code is displayed. Finally, the source code line is shown.

4.2 Assembler Directives

Before looking more closely at how the assembler works, we describe the simplest
assembler directives. These are instructions to the assembler that do not result in any
actual executable machine coded instructions but are, nevertheless, essential to providing
information to the assembler. A number of these will be introduced in this section and
are listed in Table 4.3 for your convenience.

If we go back to the example at the beginning of the chapter, we recall that what we
wanted was to just write down the mnemonics column and let the assembler generate the
memory locations and their contents. There must be some additional information given
to the assembler; in particular, you have to tell the assembler where to start putting the
program or store the variables. This is the purpose of the ORG (for ORiGin) directive.
The mnemonic ORG appears in the operation column, and a number (or expression)
appears in the operand column. The number in the operand column tells the assembler
where to start putting the instruction bytes, or reserved bytes for variables, that follow.
For example, if the assembler puts the three bytes for LDX #123 in locations 100,101,
and 102, the bytes for the instructions that follow are put consecutively in locations 103,
104, . . .. The operand can be described in decimal, hexadecimal, or binary, following
Motorola's usual conventions. Thus we could replace the ORG directive above by

ORG 256

If there is no ORG directive at the beginning of your program, the assembler will start at
memory location 0. There can be more than one ORG directive in a program.
ABSENTRY sets the entry point, the initial value of the PC, in the HIWAVE debugger,
when a program is loaded, so you don't have to enter the PC each time you load it.
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Table 43. Assembler Directives

In all of our examples, we have set aside memory locations for variables. In the last
example, we set aside bytes for N, RESULT, and Z. The way we tell the assembler to do
this is with the DS (define space) directive. An optional postfix . B indicates bytes are
allocated. Here DS appears in the operation field and the number n in the operand field
tells the assembler that n bytes are being allocated. If no postfix is used, . B is assumed
by default. Alternatively, a postfix of .W indicates that words are allocated so the number
of bytes is 2«, and a postfix of .L indicates that long words are allocated so the number
of bytes is 4«. The label in the DS directive is the variable name that the allocated space
is given. The label is given the value of the address of its first, and perhaps only, byte,
In the program of Figure 4.3, RESULT is given the value $868, and Z is given the value
$86A.

The symbolic address N, which was introduced in §4.1, appears to have a split
personality, especially for data. The symbol N is being used in two different ways here,
as an address and as the value of a variable. The way to understand this is by analogy to a
glass of water. When you say "drink this glass," the glass is the container, but you mean
to drink the contents of the container. You do not expect the listener to be confused
because he or she would never think of drinking the container. So too, the symbolic
address N stands for the container, variable N's location, whereas the contents of the
container, the word at the address, is variable N's value. If you think hard enough, it is
generally clear which is meant. In the instructions LDX #L or LEAK L,PCR, the
symbolic address L is the address of the variable, which is the container. In the
instruction LDAA L, the symbolic address represents the contents, in that it is the
contents of location L that goes into A. But if you are confused about what is meant,
look to see if the symbolic address is being used to represent the container or Its
contents.

The DS assembler directive assigns a number to the symbolic address or container.
In the preceding example, N's container has the value $868 because $868 is the address of
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N, However, the contents of N are not assigned a value, in contrast to a directive DC
discussed later. The contents of N are undefined; they are the data that happen to be at
location $868 at the time the program is started. The DS directive does not do anything
to the value of a variable. We say the memory is allocated but is not initialized.

We have covered everything in the program of Figure 4.2 except the label LOOP,
which appears in the label field for a machine instruction, not assembler directives. When
a label is used with a machine instruction, it is given the value of the address of the first
byte of that instruction. Notice that the value of LOOP in Figure 4.3 is $8a4. This value
is also the address of the opcode byte of the EMAXD instruction. Thus the container
LOOP is the address $8A4, while the contents of LOOP are the bits of the opcode byte
for the EMAXD instruction.

Looking at other common assembler directives, the EQU directive (for EQUate)
assigns a specific value to a label. In Figure 4.2, the label N is given the value 3 by the
EQU directive. Generally, equates can be used to assign values to containers. Used this
way, they are like DS directives, where the programmer assigns an address to the
container rather than letting the assembler choose the value automatically. The EQU
directive enables you to control where variables are stored, as in hand coding, but allows
symbolic addresses to be used, as in assembly-language coding to improve readability,
We will find EQU directives useful in fixing addresses in monitor programs and in fixing
the addresses of I/O devices. These directives are often used to replace constants, to
improve readability, and to simplify the modification of programs. For example, the
instruction LDY #3 has been replaced, in Figure 4.2, by the lines

N: EQU 3

LDY #N

where the EQU directive is put near the top of the program. Using EQU directives makes
the program more readable and self-documenting, to an extent. It also makes it easier to
modify the program if a different count N is used. The value of the count is in the EQU
directive near the beginning of the program. If all changeable parts are kept in this area,
it is fairly easy to modify the program for different applications by rewriting the EQU
statements in this area. With an EQU directive, the label field cannot be empty, and the
operand field can be an expression as well as a number. As we shall see later, there is a
small restriction on the labels used in an expression of an EQU directive.

The DC (define constant) directive puts the values in the operand field into
successive memory locations starting with the next available memory location. DC. B
(define constant byte) allocates and initializes an 8-bit word for each item in the list in its
operand field. The suffix . B is the default; DC is the same as DC. B. A label, if used, is
assigned the address of the first value in the operand field. As an example

TABLE: DC.B 14,17,19,30 (4)

appearing in a program generates four consecutive bytes whose values are 14,17,19, and
30 and whose locations are at TABLE, TABLE+1, TABLE+2, and TABLE+3, as shown,

TABLE -> $OE
TABLE+1 -> $11
TABLE+2 -> $13
TABLE+3 -> $1E
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The actual value of the container TABLE will depend on where it is placed in the
program. Note that, in contrast to the DS directive, this directive initializes or assigns
values to the container (the address) as well as allocating room for its contents (the word
at that address). Beware, however, that the contents are given this value only when the
program is loaded into memory. If the program is reran without being loaded again, the
value of the contents is what was left there as a result of running the program the last
time. When rerunning the program, you should check these values and possibly rewrite
them before you assume they are the contents specified by the program.

The DC. W (define constant word) directive does exactly the same thing as DC. B in
(4) except that now two bytes are used for each value in the operand field, where, as
usual, the high byte is first. For example, the directive

TABLE DC.W 14,17,19,30 (5)

puts the values in memory as shown.

The DC. L directive allocates and initializes a 32-bit memory block for each item in
the directive's operand list. Its mechanism is essentially like that for DC .W in (5).

The DC. B directive can have a sequence of ASCII characters in the operand field.
(See Table 4.1 for a table of ASCII characters and their representations.) The ASCII
codes for the characters are now put in the successive memory locations. The most
convenient form is

LIST DC.B "ABC"

where quotes enclose all the ASCII characters to be stored, namely, A, B, and C. Single
quotes can be used instead of these quotes, especially where a character is a quote.

The define constant block DCB. B directive has a number n and a value v in the
operand field; n copies of v are now put in the successive memory locations. Suffixes
.B, .W, and .L can be used in an obvious way, and . B is the default.

To see how these directives might be used, suppose that we wanted to store a table
of squares for the numbers between 0 and 15. The program, whose assembler listing is
shown in Figure 4.4, uses this table to square the number N, returning it as NSQ. With
the given data structure, the location of N2 equals the location TABLE plus N. Thus if X
contains the location TABLE and B contains the value of N, the effective address in the
instruction LDAA B, X is the location of N2.
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1 1 0000 ORG $868
2 2 0868 * this program squares the number N between 0 and 15
3 3 0868 0001 N: EQU I
4 4 0868 NSQ: DS.B 1
5 5 0869 00010409 TABLE: DC.B 0 ,1 ,4 ,9 ,16,25,36,49,64,81

086D 10192431
0871 40516479
0875 90A9C4E1

6 6 0879 CE0869 LDX #TABLE ; POINT X TO TABLE
7 7 087C C601 LDAB #N ; PUT N INTO B
8 8 087E A6E5 LDAA B,X ; PUT N**2 INTO A
9 9 0880 7AO868 STAA NSQ ; STORE RESULT

12 12 088F 00 BOND

Figure 4.4. Assembler Listing for the Program Square

4.3 Mechanics of a Two-Pass Assembler

Some questions will soon arise about how symbolic addresses can be used without error.
These questions have to be answered in terms of forward references, and their answers
have to be understood in terms of how an assembler generates its output in two passes.
Although we do not study how to write an assembler program (except in problems at the
end of the chapter), we do want you to get a feeling for how it works so that you can
understand how forward references are limited by what a two-pass assembler can do.

How does an assembler work? We begin by reading down through the instructions,
called a pass. The first pass builds a symbol table, a list of all the symbolic addresses
for labels and their values. The second pass will generate both the listing that shows the
effects of each assembler line and the object code that is used to run the program.

We have earlier used the symbol "*" for the location counter. The location counter
keeps track of the address where the assembler is when it is reading the current assembly-
language statement, somewhat like the program counter does when the program runs.
The location counter symbol "*" is always the address of the first byte of the instruction.
In both passes, the location counter advances as code is generated.

The assembly-language program of Figure 4.5 finds all the odd, negative, 1-byte
integers in the array COLUMN and puts them into the array ODD. On the first pass, the
ORG statement sets the location counter to $800. Thus the label N has the value $800,
the label M has the value $801, the label COLUMN has the value $802, and the label ODD
has the value $834. The instruction CLR M will take three bytes (and we know what
they are), the instruction LDAB N will take three bytes (and we know what they are), and
so forth. Similarly, we see that the first byte of instruction

LOOP: LDAA 1,X+

will be at location $872. Thus the symbolic address (the container) LOOP has the value
$872. Continuing in this way, we come to

BPL JUMP
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* This program searches the array COLUMN looking for odd, negative,
* one-byte numbers which then are stored in array ODD. The length of
* COLUMN is N and the length of ODD is M, which the program calculates,
*

ORG $800
N: DS 1
M: DS 1
COLUMN: DS 50
ODD: DS 50
*

CLR M initialize M
LDAB N Put N into B
LDX #COLUMN Point X to COLUMN
LDY #ODD Point Y to ODD

LOOP: LDAA 1, X+ Next number of COLUMN into A
BPL JUMP Go to next number if positive
BITA #1 Z = 1 if, and only if, A is even
BEQ JUMP Go to next number if even
STAA 1, Y+ Store odd, negative number
INC M Increment length of ODD

JUMP: DBNE B, LOOP ; Decrement counter; loop if not done
BGND ; Halt

Figure 4.5. Program to Select Negative Odd Numbers

which takes two bytes in the program. We do not know the second byte of this
instruction because we do not know the value of the address JUMP yet. (This is called a
forward reference, using a label whose value is not yet known.) However, we can leave
this second byte undetermined and proceed until we see that the machine code for DBNE
is put into location $87f, thus giving JUMP the value $87f. As we continue our first
pass downward, we allocate three bytes for DBNE B,LOOP. We do not find this
instruction's offset yet, even though we already know the value of LOOP.

Scanning through the program again, which is the second pass, we can fill in all the
bytes, including those not determined the first time through, for the instructions BPL
JUMP, BEQ JUMP, and DBNE B,LOOP. At this time, all object code can be
generated, and the listing can be printed, to show what was generated.

What we have described is a two-pass assembler. On the first pass it generates the
symbol table for the program, and on the second pass it generates the machine code and
listing for the program.

We have been using the prefix "<" in instructions like LDAA <N or a postfix ". B"
such as in LDAA N. B to indicate an 8- or 9-bit addressing mode. If the prefix "<" or
postfix ". B" is omitted, the assembler will still try to use 8-bit or 9-bit addressing when
possible. Specifically, on the first pass, if the assembler knows the value of N when the
instruction LDAA N is encountered, it will automatically use page zero addressing if N is
on page zero. If it does not know the value of N yet, or if N is known but is not on page
zero, it will then use direct addressing.
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We have also been using the inequality symbols with index addressing to indicate
whether the constant offset is to be described with eight or sixteen bits. The 6812
actually has another choice for the offset that we have not discussed before now because
there is no special symbol for it. This is the 5-bit offset option. In this case, one can
actually squeeze the offset into the post byte as described in the instruction set summary
of the CPU12RG/D manual. The assembler chooses between the three offset options in
exactly the same way that it chooses between page zero and direct addressing. On the first
pass, if it knows the values in all the labels used in an expression for the offset, it will
choose the shortest possible offset option or, if the expression is zero, it will take the
zero offset option, which is pointer addressing. If it does not know some of the labels
used in the expression for the offset, the assembler will default to the 16-bit offset
option, determining these bytes on the second pass. From now on, we will drop the use
of inequality signs in all addressing modes, except where it is needed in the relative mode
to designate a short forward reference. Generally, it is best to let the assembler choose the
appropriate option.

We sometimes observe an error message "phasing error," or "labels changed values
on second pass." Such an error occurs when an instruction's length is computed on the
first pass but is computed to have a different value on the second pass. Following such
an instruction, successive labels will have a different value on the second pass than they
had on the first pass. To fix such an error, read backward from the first instruction with
the line that has such an error until you see an instruction whose length changes in. the
second pass, due to its using a different addressing mode. Put a prefix or suffix on its
operand to force the instruction's first pass length to its second pass length,

ORG $800
K: DS M
M: EQU 2
*

LDD K
ADDD #3
STD K
SWI

Figure 4.6. Program with Illegal Forward Reference

As we have discussed earlier, an assembler does several things for us. It allows us to
use instruction mnemonics, labels for variable locations, and labels for instruction
locations while still providing the machine code for our program. As Figure 4.6 shows,
however, we must be careful with forward references when using assembler directives.

The assembler reads the assembly-language program in Figure 4.6 twice. In pass
one, the symbol table is generated and, in pass two, the symbol table, the instruction
set, and assembler directive tables are used to produce the machine code and assembly
listing. On each pass, each line of assembly language is processed before going to the
next line so that some undetermined labels may be determined on the second pass. For
example, in the program in Figure 4.6 the assembler will not determine the length of M
on the first pass because the DS directive makes a forward reference to M, that is, uses a
symbol in the expression for K that has not been determined yet. Suppose now that we
change the program a little bit. See Figure 4.7.
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ORG $800
M: EQU 2

K: DS M
*

LDD K
ADDD #3
STD K
SWI

Figure 4.7. Program without Forward Reference

When the line K: DS M is assembled, the value of M is known. Usually, it is easy
to see which programs with forward referencing are assembled correctly just by
examining how the assembler works with that particular program. An "undefined
symbol" error occurs when K: DS M is assembled and M is not yet defined.

By now it should be obvious that for correct assembly a label can appear only once
in the label field. Multiple occurrences are given an error message. (However, in the next
chapter we will see a SET directive in which labels can be redefined.)

Looking at the instructions
BNE JUMP

JUMP: ADDA M

in a particular program, one might wonder what happens if the location JUMP is more
than 127 bytes below the BNE instruction. Does the assembler still proceed, not
knowing location JUMP, and then give an error message when it finds that JUMP is
beyond the 127-byte range on the second pass? Or does it immediately put in the long
branch equivalent

LBNE JUMP

and determine the right 2-byte relative address on the second pass? It might seem
reasonable to expect the latter, but the first possibility has been chosen because the latter
choice would force all forward branches to be long branches. In other words, the
assembler leaves the burden of picking the shortest branching instruction to the
programmer. For exactly the same reason, the programmer will want to use the
inequality sign "<" with forward references for relative addressing used with other
instructions. As an example, you should use LDAA <L,PCR instead of LDAA
L, PCR when the effective address L is a forward reference which is within 127 bytes of
the next byte after the LDAA instruction. Otherwise, the assembler will choose the 2-
byte relative offset option.

4.4 Character String Operations

Before we look into an assembler, we will study some operations that copy, search, and
manipulate character strings. These operations make it easier to understand how an
assembler works, which we cover in the next section. They also provide an opportunity
to show how assembly-language source code is written, in order to simplify your
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ORG $800
K: DC . b "ALPHA", 0 ; a NULL-terminated character string for part (b).
OUTPUT: Ds. b 10 ; storage buffer for output characters for part (c).
OUTPTR: DC . w OUTPUT ; pointer to the above buffer

a. Data

PRINT: LDX #K ; get address of string
NEXT: LDAA 1, X+ ; get a character of string, move pointer

BEQ END ; if it is NULL, exit
BSR PUT ; otherwise print the character in A
BRA NEXT ; repeat the loop

END: SWI ; return to the debugger

b. Calling PUT

PUT: PSHX ; save
LDX OUTPTR ; get pointer to output string
STAA 1, X+ ; save character, move pointer
STX OUTPTR ; save pointer
RTS ; return
PULX ; restore

Figure 4.8. Print Program

programming effort. From now on, we will not write machine code, but we will write
(ASCII) source code and use the assembler to generate the machine code.

The first three examples illustrate character string processing. The first example
prints out a character string. The second transfers a character string from one location to
another. The third compares two strings, returning 1 if they match. These examples are
similar to PUT, STRCPY, and STRCMP subroutines used in C.

Figure 4.8b's program prints a string of characters using a subroutine PUT, like
problem 3.15. Such strings often end in a NULL (0) character. The program reads
characters from the string using LDAA 1, X+, and calls PUT to print the character in A.
This also sets the condition code Z bit if the byte that was loaded was NULL, which
terminates execution of the loop. An analogous program inputs data from a keyboard
using the subroutine GET and fills a vector with the received characters until a carriage
return is received. These programs can be generalized. Any subroutine that uses characters
from a null-terminated character string can be used in place of PUT, and any subroutine
that puts characters into a string can be used instead of GET.

PUT and GET are actually I/O procedures we show in §11.8, which require
considerable understanding of I/O hardware. We don't want to pursue the actual PUT and
GET subroutines quite yet. Instead, we replace the actual PUT and GET subroutines with
a stub subroutine (Figure 4.8c). After stopping the computer, examine the string
OUTPUT to see what would be output. Similarly, a stub subroutine can be used instead
of GET, to "input" characters. The sequence of input characters is preloaded into a string.

Our second example (Figure 4.9) copies a null-terminated character string from one
location to another. The original string is generated by the assembler and downloaded
into memory, using Src DC . b. The program copies it to another part of memory at
Dst Ds . b. Note that the NULL is also copied to the destination string.
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Src: DC . b "ALPHA", 0 ; initialization of the source string (downloaded)
Dst: Ds .b l6 ; allocation of the destination string

COPY: LDX #Src ; get address of source string
LDY #Dst ; get address of destination string

NEXT: LDAA 1, X+ ; get a character of string, move pointer
STAA I, Y+ ; store it in the destination
BNE NEXT ; if it is not NULL, reexecute the loop

Figure 4.9. Character Move Program Segment and Data

Our third example (Figure 4.10) compares one null-terminated character string with
another. Both strings are downloaded into memory starting at label Src and Cmprd. We
examine several cases of execution right after this program listing.

We examine several cases with this comparison program. Consider the case where
Src is "BETA." The first time after label NEXT, the CMPA instruction clears the Z
condition code bit, and the program goes to BAD to clear A and exit. Consider the case
where Src is "ALPH." The fifth time at label NEXT, the LDAA instruction sets the Z
condition code bit, and the program goes to EXIT where it tests the byte pointed to by
Y, which is the ASCII letter A, so it goes to BAD to again clear A and exit. Consider the
case where Src is "ALPHAS ." The sixth time after label NEXT, the CMPA instruction
clears the Z condition code bit, and the program goes to BAD to clear A and exit. Finally,
consider the case where Src is "ALPHA. " The fifth time at label NEXT, the LDAA
instruction sets the Z condition code bit, and the program goes to EXIT where it tests
the byte pointed to by Y, and because it is zero, the program sets A to 1 and exits. If the
two strings are identical, the program ends with 1 in A, otherwise it ends with 0 in A.

The next example illustrates a comparison of a letter provided in accumulator A, to
find a match among a collection of four letters L, A, S, and D, assuming it may not be
any other letter. The number left in B is 0 if the letter is L, 1 if it is A, 2 if S and 3 if
D. Two ways to do this are (1) execute compares with immediate operands, and (2) store
the letters in a string and compare the unknown letter to each letter in the string. See
Figure 4.11. Except for small collections of letters, the string method is best.

Src: DC . b "ALPHA", 0 ; source string (downloaded)
Cmprd: DC . b "ALPHA", 0 ; comparand string (downloaded)

CMPR: LDX #Src ; get address of source string
LDY #Cmprd ; get address of comparand string

NEXT: LDAA 1, X+ ; get a character of source string, move pointer
BEQ EXIT ; if it is NULL, exit the loop
CMPA 1, Y+ ; compare it to comparand character, move pointer
BEQ NEXT ; if it is the same, reexecute the loop

BAD: CLRA ; otherwise exit; A is cleared to indicate mismatch
SWI ; return to the debugger

EXIT: TST 0, Y ; see if compare character is also NULL
BNE BAD ; if it is not NULL, terminate indicating failure
LDAA #1 ; it must be identical - end with A set to 1

Figure 4.10. Character String Compare Program Segment and Data
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SRCH: CLRB initialize result in case first branch is taken
CMPA #' L' compare to a character of string, move pointer
BEQ EXIT if it is 'L', exit the loop
INCB increase result to 1 in case next branch is taken
CMPA #' A' compare to a character of string, move pointer
BEQ EXIT if it is 'A', exit the loop
INCB increase result to 2 in case next branch is taken
CMPA #' S' compare to a character of string, move pointer
BEQ EXIT if it is 'S', exit the loop. Otherwise it is S
INCB increase result to 3 since all other cases tested

EXIT: SWI return to the debugger

a) Using immediate operands

ORG $800
Cmprd: DC . b "DSAL" ; comparand string (downloaded)

CMPR: LDX #Cmprd ; get address of comparand string
LDAB #3 ; loop counter, and also the return value

NEXT: CMPA 1, X+ ; compare to a character of string, move pointer
BEQ EXIT ; if it is a matching character, exit the loop
DBNE B, NEXT ; decrement B, count out four loop executions

EXIT: SWI ; return to the debugger

b) Using a character string of comparison values

Figure 4.11. Character Search in a String

ORG $800
Diet: Ds. b 32 ; storage for the dictionary
Ptr: DC . w Diet ; address beyond the end of the dictionary
Cntr: DC . b 0 ; size of the dictionary

INSRT: LDX Ptr ; get the pointer
STD 2, X+ ; store letter that is in A and value that is in B
STX Ptr ; save the pointer
INC Cntr ; increment the count of the dictionary size

a) Build

CMPR: LDX #Dict ; get address of beginning of the dictionary
LDAB Cntr ; loop counter, and also the return value

NEXT: CMPA 2, X+ ; compare to a character of string, move pointer by 2
BEQ EXIT ; if it is NULL, exit the loop
DBNE B,NEXT ; decrement B, count out four loop executions

EXIT: LDAB -1, X ; get the numerical value of the letter into B

b) Search

Figure 4.12. Dictionary Program Segments
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Location Contents Mnemonics

0
1
2

03
44
85

L 3
A 4
S 5

L A
A B
S C

A D 12
B D 34
C D 00

b. Source codea. Machine code

Figure 4.13. Machine and Source Code

Finally, we show a pair of programs that will build and search a dictionary (of
letters). Figure 4.12a's program segment is executed each time a letter in accumulator A
is inserted into the dictionary. The letter has a numerical "value" associated with the
letter in B. The program segment in Figure 4.12b searches the dictionary. On entry, a
letter is put in A. The "value" of the letter is left in B when the segment is completed.

These simple search programs can be fairly easily expanded for searching for longer
strings of characters, or counting characters, rather than testing for a NULL, to determine
when to terminate the search. Variations can handle the case where the comparand is not
found. However, these are all linear searches in which the time to search for an item in
the dictionary is linearly related to the number of elements in the dictionary. For large
dictionaries, linear searches are entirely too slow; linked lists (§10.4) are much faster.
However, linear searches are adequate for the simple assembler in §4.5.

4.5 A Simplified Two-Pass Assembler

An assembler is really a simple program. To illustrate how it works and to gain valuable
experience in assembly-language techniques, we write parts of a "Simple Assembler"
SA1 for a simple computer, with the overall specifications shown in Figure 4.14. Figure
4.13a shows SAl's machine code for a program to add two numbers (like Figure 1.5),
and Figure 4.13b similarly shows how its source code might appear.

1. The target computer has only one 8-bit accumulator and 64 bytes of memory.

2. The target computer's opcodes will be L (binary 00), A (01), and S (10), coded as
bits 7 and 6 of the opcode byte, which have a 6-bit direct address coded in the
low-order 6 bits of the opcode byte. The assembler has a directive D, for "define
constant byte," that has one two-digit hexadecimal number operand.

3. A source code line can have (1) a label and one space or else (2) two spaces. Then
it has an opcode or assembler directive. Then it has a space and an operand,
ending in a carriage return.

4. The assembler is to be run on the 6812 host. Assume the source code does not
have errors. The source code will be stored in a constant ASCII string SOURCE,
which is null terminated; and the object code, stored in 8-byte vector OBJECT, is
indexed using an 8-bit variable LCNTR. No listing is produced.

5. All labels will be exactly one character long. The symbol table, stored in the 8-
byte vector LABELS, consists of four 2-byte rows for each symbol, each row
comprising a character followed by a one-byte address.

Figure 4.14. Simple Computer and Assembler SA1 Specifications
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ORG $800
JSR PASSI
JSR PASS2
SWI

Figure 4.15. Assembler Main Program

The first instruction, which will be stored in location 0, loads the contents of
location 3. The left two bits, the opcode, are 00, and the address of location 3 is 000011,
so the machine code is 03 in hexadecimal. The next instruction's opcode is 01 for add; its
effective address is 000100. The last instruction's opcode is 10 for store; its effective
address is 000101. The source code shown in Figure 4.13b includes directives to
initialize location 3 to $12, location 4 to $34, and location 5 to 0.

The assembler is written as two subroutines called PAS SI and PASS 2. This
program segment illustrates the usefulness of subroutines for breaking up a large
program into smaller subroutines that are easier to understand and easier to debug.

The data are defined by assembler directives, generally written at the beginning of
the program. See Figure 4.16. They can be written just after the program segment shown
in Figure 4.15. The first directive allocates a byte to hold the object pointer (which is the
location counter). The second directive allocates and initializes the ASCII source code to
be assembled. The next two lines allocate two eight-element vectors, which will store
the machine code and symbol table.

LCNTR: Ds. b 1 ; index used to store object code, which is the location counter
SOURCE: Dc.b " LA",$d," AB",$d," S C",$d,"A D 12",$d,"B D 34",$d,"C D00",$d,0;
OBJECT: Ds.b 8 ; machine code
LABELS: Ds . b 8 ; symbol table

Figure 4.16. Assembler Directives

PASS 1: CLR LCNTR ; clear index to object code vector
LDX #SOURCE ; begin source scan: x-> first letter in source string
LDY #LABELS ; y-> first symbol

P11: LDAB 1, x+ ; get the line's first character to B and move x to next character
BEQ PI4 ; exit when a null character is encountered
CMPB #' ' ; if B is a space
BEQ PI3 ; get opcode by going to PI3
STAB 1, y+ ; move character to symbol table
MOVE LCNTR, 1,y+ ; put label value into symbol table

P13: LDAB 1, x+ ; load B with character, move pointer
CMPB #$d ; compare to carriage return which ends a line
BNE P13 ; until one is found. Note that x-> next character after this.
INC LCNTR ; increment location counter (we are processing the next line)
BRA PI 1 ; go to PI 1 to process the next line

P14: RTS

Figure 4.17. Assembler Pass 1
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PASS2 : CLR LCNTR ; clear location counter, which is object code index
LDX #SOURCE ; begin source scan: x-> first letter in source string

P21: LDAB 2, +x ; move past label and space, to get opcode character
LEAX 2 , X ; skip mnenmonic and space after it
CMPB #' D' ; if mnemonic is a directive D,
BEQ P22 ; go to get the hex value
JSR GETOPCD ; otherwise get the opcode, returns opcode in A
LDAB 1, x+ ; get symbolic name which is instruction effective address
JSR FINDLBL ; search labels, OR label value into opcode in A
BRA P23

P22: BSR GETHEX ; get hexadecimal value into A
P23 : LDAB LCNTR ; get location counter which is 8-bits, into B

EXG b, y ; expand B by filling with zero bits, to get 16-bit Y
STAA OBJECT, y ; store the opcode-address or the hex value
INC LCNTR ; increment location counter
LDAB #$d ; skip to end of the current source code line

P24: CMPB l,x+
BNE P24
TST 0, x ; get first character of next line; if null, exit
BNE P21 ; otherwise loop again
RTS

Figure 4.18. Assembler Pass 2

PAS SI (Figure 4.17) simply reads the characters from the source listing and inserts
labels and their values into the symbol table. As is typical of many programs, an initial
program segment initializes the variables needed in the rest of the subroutine, which is a
loop. This loop processes one line of assembly-language source code. If the line begins
with a label, it inserts the label and the current location counter into the symbol table. If
the line begins with a space, it skips the character. It then scans the characters until it
runs into the end of the line, indicated by a carriage return. Then it repeats the loop.
When a NULL character is encountered where a line should begin, it exits.

PASS2 (Figure 4.18) simply reads the characters from the source listing and
generates machine code, which is put into the object code vector. As in PASS1, an
initial program segment initializes the variables needed in the rest of the subroutine,
which is a loop. This loop processes one line of assembly-language source code. The
program skips the label and space characters. If the mnemonic is a D for define constant,
it calls a subroutine GETHEX to get the hexadecimal value; otherwise, it passes the
opcode mnemonic to a subroutine GETOPCD that searches the list of mnemonic codes,
returning the opcode. In the latter case, the subroutine FINDLBL finds the symbolic
label, ORing its value into the opcode. The machine code byte is then put into the object
code OBJECT.

GETOPCD (Figure 4.19) searches until it finds a match for the mnemonic. As it
searches for a match in B, it generates the machine code in A. Because there are no errors
in our source code, this extremely simple search procedure will always succeed in
returning the value for the matching mnemonic. Because the directive D has been
previously tested, if the opcode mnemonic is not an "L" or an "A" it must be "S."
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*;(;**;};*****.•(;**************

* Get an Opcode
* entry: B is mnemonic opcode character
* exit: A is opcode
* X is unchanged
+

GETOPCD: CLRA ; if exit next, return zero as machine opcode
CMPB #'L' ;Load
BEQ GO1
LDAA #$40 ; if exit next, return $40 as machine opcode
CMPB # 'A ' ;Add
BEQ G01 ; if it isn't D, L, or A, it must be S, for Store
LDAA #$80; return $80 as machine opcode

G01: RTS

Figure 4.19. Subroutine to Get the Opcode

FINDLBL (Figure 4.20) begins by setting up X for a loop; the loop searches each
row of the symbol table, which was created in PASS1, until it finds a match. It searches
each row of the symbol table. Because we assume there are no errors in our source code,
it will always succeed in returning the value for the matching label.

GETHEX (Figure 4.21) calls an internal subroutine Gl to translate an ASCII
character to a hexadecimal value. Gl uses the fact that ASCII letters "0" to "9" are
translated into hexadecimal numbers by subtracting the character value of "0" from them,
and the remaining ASCII characters "A" to "F" are translated into hexadecimal by further
subtracting 7 from the result (because there are seven letters between "9" and "A" in the
ASCII code). The first value obtained from the first letter is shifted to the high nibble
and pushed on the stack. When the second value is obtained from the second letter, it is
combined with the value pulled from the stack.

*************************

* Find Label
* entry: label character in B, OP code byte (from GETOPCD) in A
* exit: ORs symbol's value into A
* x is unchanged
*

FINDLBL: LDY #LABELS ; y-> first symbol table row
F1: CMPB 2, y+ ; compare first character in B and move to next symbol table entry

BNE Fl ; if mismatch, try next by going to Fl
ORAA -1, y ; OR previous row's value into the OP code in A
RTS ; return to caller

Figure 4.20. Subroutine to Insert a Label as an Operand
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* Get hexadecimal value
* entry: X->first character of hex number
* exit: A:value, X->next character after hex number
* saved: B,Y
*

GETHEX: BSR GH1 ; convert ascii character to a nibble
LSLA ; move to high nibble
LSLA
LSLA
LSLA
PSHA ; save on stack
BSR GH1 ; convert ascii character to a nibble
ORAA 1, sp+ ; pop and combine
RTS

*

GH1: LDAA 1, x+ ; get next symbol
CMPA # '9 '
BLS GH2
SUBA #7

GH2 : SUBA #' 0 ' ; subtract ascii 0
RTS

Figure 421. Convert ASCII Hex String to a Binary Number

The reader should observe that this subroutine, PASS2, is broken into subroutines
GETOPCD, GETHEX, and FINLBL. Each of these subroutines is more easily understood
and debugged than a long program PASS2 that doesn't use subroutines. Each subroutine
corresponds to an easily understood operation, which is described in the subroutine's
header. This renders the subroutine PASS2 much easier to comprehend.

The contents of the vector OBJECT will be downloaded into the target machine and
executed there. The assembler permits the programmer the ability to think and code at a
higher level, not worrying about the low-level encoding of the machine code.

The reader should observe the following points from the above example. First, the
two-pass assembler will determine where the labels are in the first pass. Thus, labels that
are lower in the source code than the instructions that use these labels will be known in
the second pass when the instruction machine code is generated. Second, these
subroutines further provide many examples of techniques used to convert ASCII to
hexadecimal, used to search for matching characters, and used to insert data into a vector.

4.6 Summary

In this chapter, we learned that an assembler can help you write much larger programs
than you would be able to write by hand coding in machine code. Not only are the
mnemonics for the instructions converted into instruction opcode bytes, but also
symbolic addresses are converted into memory addresses. However, every new powerful
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tool also has some negative aspects. To use an assembler, you have to spell the
mnemonics correctly and use the symbolic addresses exactly the same way throughout
the program. You have to be concerned about the rales of writing a line of assembly-
language code and the rales about forward references. But once these are mastered, you
can use this powerful tool to help you write larger assembly-language programs.

The middle of this chapter explored some techniques for handling character strings to
prepare you for the simple assembler. These techniques are pervasively used in
microcontrollers. The PUT subroutine and the corresponding GET subroutine are used
whenever we need to output or input characters. While they are actually discussed in
§11.8, a stub can be used in the meantime to simulate output as shown in §4.4, and a
similar stub can be used to simulate input. The string copy subroutine can be modified
to make a string concatinate subroutine to append strings, and variations of the search
and dictionary subroutines can recognize strings of characters, to respond to them.

At the end of this chapter, we presented a simple assembler. This program is larger
than those that we found in Chapters 1 to 3. Scanning over this program, you should
become aware of the need for a tool like the assembler to write longer programs.
Consider the effort of writing such a long program manually, as we did in Chapters I to
3. We will also note, in Chapter 6, the need for subroutines. Our assembler used
subroutines to break up a long program into shorter subroutines, which were easier to
understand and to debug. This program and preliminary material in §4.4 also introduced
techniques in handling ASCII character strings. You will use these techniques in most of
the programs that you write from now on.

The assembler is just one such tool for converting your ideas into machine
instructions. High-level languages can be used too, using compilers and interpreters to
convert your language into the machine's language. High-level languages let you write
even larger programs with a similar degree of effort, but they move you away from the
machine, and it is difficult to extract the full power of the computer when you arc no
longer in full control. While high-level languages are used extensively to program most
computers, especially larger computers, you will find many instances where yoo will
have to program small computers in assembly language in your engineering designs.

This section has introduced the essential ideas of the assembler. The next chapter
further expands the capabilities of the conditional and macro assembler and the linker,
However, this chapter contains all the reader needs to know to read the assembly-
language source code that is generated by a C compiler.

Do You Know These Terms?
See the end of chapter 1 for instructions.

hand assembly object code operation field allocate
assembler listing operand field initialize
ASCII character assembly errors expressions pass
line of assembly- vector comment field symbol table

language code labels include file location counter
assembly- symbolic address assembler forward reference

language symbol directive two-pass
statement label field undefined data assembler
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PROBLEMS

1. Suppose that the ORG statement is removed from the assembler. How can such
statements be handled by other directives, and what assumptions have to be made to
make it possible to completely replace the ORG statement?

2 . Although the assembler has an ALIGN, an EVEN, and a LONGEVEN assembler
directive, the ORG directive can align the location counter to an integer multiple of a
constant. Write such an ORG directive that aligns the next location to the next multiple
of four. Do not move the location counter if it is already aligned (low two bits are zero).

3 . An I/O port at location $cb is to be loaded with a constant. If bit 2 is asserted,
input hardware is activated; if bit 3 is asserted, output hardware is activated; if bit 5 is
asserted, input hardware can cause an interrupt; and if bit 7 is asserted, output hardware
can cause an interrupt. Write EQU directives that define four constants that can be ORed
together to generate a constant to be stored into the memory location or can be used with
BSET, BCLR, BRSET or BRCLR instructions. The constant ION turns on the input,
OON truns on the output, I INT enables input interrupts, and OINT enables output
interrupts. Write a MOVE instruction that turns on the input and output hardware and
enables input interrupts. Write an instruction that subsequently enables output interrupts
and another that disables output interrupts, neither of which change any other bits in
location $cb except bit 7. Comment on the use of symbols to improve clarity.

4 . A two-dimensional array of 8-bit elements is to have R rows and C columns. Write
EQU statements to define R to 3 and C to 4. Write a DC. B statement to allocate enough
storage for the array for any R and C. Write a shortest program segment that reads the
byte at row i column j into accumulator B, assuming rows and columns are numbered
starting with zero, and elements of a row are stored in consecutive memory locations.

5 . A vector of four 16-bit constants is to be initialized after location RATES, each of
which are calculated as 8,000,000 divided by 16 times the desired rate. For example, to
get a rate of 9600, put 52 into the element. The first element is to have a rate of 9600;
the next, of 1200; the next, of 300; and the last of 110. Write this DC directive.

6 . A vector of eight 8-bit constants is to be initialized after location PTRNA, each of
which is a bit pattern displayed on consecutive lines on a screen to draw a letter A. For
instance, the top row of eight bits will be $10, the next row will be $28, and so on.
Write this DC directive.

7 . Write a directive to clear all bytes from the current location counter to the location
whose four low address bits are zero.

8 . Write a directive to fill all bytes from the current location counter to location
$FFF6 with value $FF.
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ABSENTRY ENT ABSENTRY ENT
ORG $800 ORG $800

ENT: LDD K,PCR ENT: LDD <K,PCR
ADDD #3 ADDD #3
STD K,PCR STD <K,PCR
SWI SWI

K: DS 1 K: DS 1

a) Illegal Forward Reference b) Legal Forward Reference

Figure 4.22. Program with Relative Address Reference

9 . Figure 4.22 shows two programs that attempt to add 3 to variable K, However,
Figure 4.22a may not assemble because of an illegal forward reference; or, if it does
assemble, it produces less efficient code than you can produce by hand. Explain why this
problem might occur. Figure 4.22b illustrates a solution to the problem, by using the
"<" operator. Explain why this will assemble to produce efficient code.

10. Figure 4.23 shows three programs that attempt to add 3 to the variable K. However,
Figure 4.23a may not assemble because of an illegal forward reference; or, if it does
assemble, it produces less efficient code than you can produce by hand. Explain why this
problem might occur. Figure 4.23b illustrates a solution to the problem by changing the
forward to a legal backward reference. Explain why this assembles correctly. Figure 4.23c
illustrates another solution to the problem, by using the "<" operator. Explain why this
will assemble directly. Finally, explain why programmers generally put their data in
front of (at lower addresses than) the program(s) that use the data,

11. Write a shortest assembly-language (source code) program that calls subroutine
GET, which inputs a character, returning it in accumulator A, and stores these characters
in the vector K as in Figure 4.8. Consecutively input characters are put in consecutive
bytes until a carriage return is input; then a null (0) byte is written in K.

12. Write a shortest assembly-language (source code) subroutine that moves characters
as in Figure 4.9 but converts lower case letters to upper case letters as it moves them,

ORG $800 ORG 0 ORG $800
ENT: LDD K K: DS 1 ENT: LDD <K

ADDD #3 * ADDD #3
STD K ENT: LDD K STD <K
SWI ADDD #3 SWI
ORG 0 STD K ORG 0

K: DS 1 SWI K: DS 1

a) Illegal Forward Reference b) Legal Backward Reference c) Legal Forward Reference

Figure 4.23. Program with Direct or Page Zero Reference
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13. Write a shortest assembly-language (source code) subroutine that concatenates one
null-terminated string onto the end of another null-terminated string, storing a null at the
end of the expanded string. Assume that on entry, X points to the first string, Y points
to the second string, and there is enough space after the second string to fit the first
string into this space. This program is essentially the C procedure strcat().

14. Write a shortest assembly-language (source code) subroutine to compare at most n
characters of one null-terminated string to those of another null-terminated string, similar
to Figure 4.10. Assume X points to the first string, and Y points to the second string,
and A contains the number n. Return carry set if and only if the strings match.

15. Write a shortest assembly-language (source code) subroutine that builds a symbol
table as in Figure 4.12a but stores six-letter symbolic names and a two-byte value in
each symbol table row. Upon entry to the subroutine, X points to the first of the six
letters (the other letters follow in consecutive locations), and accumulator D contains the
two-byte value associated with this symbol. The symbol table is stored starting at label
LABELS, and the number of symbols (rows) is stored in one-byte variable SIZE.

16. Write a shortest assembly-language (source code) subroutine that searches a symbol
table as in Figure 4.12b but searches six-letter symbolic names having a two-byte value
in each symbol table row. Upon entry to the subroutine, X points to the first of the six
letters (the other letters follow in consecutive locations). The symbol table is stored
starting at label LABELS, and the number of symbols (rows) is stored in one-byte
variable SIZE. The subroutine returns with carry bit set if and only if a matching
symbol is found; then Y points to the beginning of the row where the symbol is found.

17 . Write a shortest assembly-language (source code) program that finds the maximum
MAX of N 4-byte signed numbers contained in array Z where N < 100. Your program
should have in it the assembler directives

N DS 1
MAX DS 4
Z DS.L 100

and be position independent. How would your program change if the numbers were
unsigned?

18. Write an assembly-language program that finds the sum SUM of two 4-byte signed
magnitude numbers NUM1 and NUM2. The result should also be in signed-magnitude
form. Your program should include the assembler directives

ORG $800
N DS 1
NUM1 DS 4
NUM2 DS 4
SUM DS 4
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19. Write an assembly-language program that adds N 2-byte signed numbers stored in
the vector Z, N < 10. Your program should sign-extend each number as it is being added
into the current sum so that the result SUM is a 3-byte signed number. Your program
should have the assembler directives

ORG $800
N DS.B 1
Z DS.W 10
SUM DS 3

Can overflow occur in your program?

2 0. Write an assembly-language program to find the smallest nonzero positive number
NUM in the array Z of N 2-byte signed numbers. If there are no nonzero positive
numbers, the result should be put equal to zero. Your program should have the following
assembler directives:

ORG
N DS 1
Z DS.W 100
NUM DS 2

21. Write an assembly-language program that finds the sum SUM of two N-byte
numbers NUM1 and NUM2 and, when the SWI is encountered, has the condition code bits
Z, N, V and C set properly. Your program should have the directives

N DS 1
NUM1 DS 20
NUM2 DS 20
SUM DS 20

ORG $800 Begin program
LEAX N,VECTOR Point X to VECTOR
LDAB N Length of VECTOR into B

LDDP LD Af X+ A vector element into A
BLO LI if negative.
COM A replace with two's-complement

Ll ANDA #~1 Make contents of A even
STAA -1, X Put number back
DECB Counter is in accumulator B

* BCS \0
SWI End of program

VECTOR DS N
N EQU 5 Number of elements in VECTOR

Figure 4.24. Program with Errors
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ORG 0
COUNT DS 0 Number of characters changed
STRING DC.B " A b c . 1 String to be converted
BEGIN DC.B STRING Starting address of string
S DC.B STRING-BEGIN The length of the string
*

ORG #$800
LD A,S String size into A
LEAY #COUNT Counter address into Y
LDX BEGIN X points to STRING
CLR COUNT initialize counter

LOOP LDAB 0,X Get next character
CMPB #'a Compare character with "a"
BLOW L if lower, go to L
CMPB #97 Compare character with "z"
BLS L if higher, go to L
ANDB #~$20 Change by clearing bit 5
INC 0,Y increment counter

L STAB ,X+ Put back letter
DEC A Decrement number left
BNE LOOP Check next character
SWI

Figure 4.25. Another Program with Errors

22. Correct the assembly-language program in Figure 4.24 so that each line, and the
whole program, would be accepted by the Motorola assembler without an assembler
error. Do not change any lines that are already correct. The program replaces each of the
N 8-bit two's-complement numbers with the absolute value of the number, rounded
down to the next lower even number. For example, + 4 is replaced with + 4, - 4 with +
4, - 5 with + 4, + 5 with + 4, and so on.

2 3. Correct the assembly-language program in Figure 4.25 so that each line would be
accepted by the Motorola assembler without an assembler error. The program takes a
sequence STRING of ASCII characters and converts all of the lowercase letters in
STRING to uppercase letters while finding the number COUNT of letters that were
converted. Do not change any lines that are already correct.

Location Contents Mnemonics

0
1
2

0003
0104
0205

LD 3
AD 4
ST 5

LD ALF
AD BET
SS GAM

ALF DC 0012
BET DC 0034
GAM DC 0000

b. Source codea. Machine code

Figure 4.26. Machine and Source Code for SA2
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For problems 4.24 to 4.30, we will write parts of a "Sample Assembler" SA2 with the
following overall specifications:

a) The target computer has only one 16-bit accumulator (A), one condition code
(N), and 256 16-bit memory words. Each memory address is for a 16-bit word,

b) The target computer's opcodes will be LD (0), AD (1), ST (2), and BM (3)
(similar to 6812 opcodes LDAA, ADDA, STAA, and BMI). The assembler has a
directive DC, for "define constant byte," that has one four-digit hexadecimal
number operand, and EN, which is the end of the source code.

c) A source code line can have a 3-character label or not (DC must have a label),
one or more spaces, an opcode or assembler directive, one or more spaces, an
operand, and optionally, one or more spaces and comments, ending in a carriage
return. Permissible addressing modes are 8-bit direct for LD, AD, and ST, and
signed 8-bit relative addressing for BM. So each instruction is 2 bytes.

d) The assembler is to be run on the 6812 host. The source code can have errors,
and error numbers are printed. The source code will be stored in a constant
ASCII string SOURCE, which is null terminated, the object code, stored in 16-
byte vector OBJECT, is indexed by an 8-bit variable LCNTR; and the listing,
stored in 80-byte vector LISTING, is pointed to by 16-bit variable LPTR.
Finally, 8-bit variable LINE is the source code line number being read.

e) All labels will be exactly three characters long. The symbol table, stored in 16-
byte vector LABELS consists of four 4-byte rows for each symbol, each row
comprising three characters followed by a one-byte address. The number of
symbols currently in the table is in 8-bit variable SIZE.

2 4, Write DS assembler directives needed to declare all storage locations for "SA2."

25. Correct the assembly-language program in Figure 4.27. Do not change any lines
that are already correct. The calling routine, part of pass 1 of an assembler, checks the
symbol table for a matching label and enters the label if no match is found. The symbol
table contains this label, which is three ASCII characters, and the associated value, which
is 1 byte. This program consists of a calling routine and a subroutine FINDLBL for
"SA2," used in Problems 28 and 29, to compare a string of assembler source code
characters at SPTR against known labels in the symbol table; if a match is found, the
symbol table row number in which it is found is returned in accumulator A with carry
clear; if not found, it returns with carry set. The program must assemble in Hi ware and
run correctly in the 6812 'B32chip.

2 6. Write a shortest subroutine GETOPCD for "SA2," used in Problem 29, to compare a
string of assembler source code characters against the permissible opcodes, returning the
opcode or value of the defined constant in accumulator D, with carry set if found, and
returning with carry clear if no match is found.
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origin 800 ; put at the beginning of SRAM
entry SOURCE ; provide entry address to Hiwave

*
LCNTR: ds.w 1 ; 8-bit location counter
SIZE: ds. b ; 8-bit number of symbols
SOURCE: dc.b "ALF DC 7A"f$d,"LBl LD LB2",$d,"LB2 AD LBl,$d
LABELS dc.b 32 ; allocate 32-byte symbol table
*

Idx SOURCE ; get source code string address
bsr FINDLABEL ; look for label
bvs FOUND ; if none found, skip. Note: y -> next symbol entry
movb 1, x+, y+1 ; if found, copy first char from source to symbol table
movd 2, x+, 2, y+ ; then copy 2nd and 3rd characters to symbol table
movb #LCNTR, 1, y + ; and copy location counter into symbol table
add SIZE, 1 ; increase label count

FOUND: bra * ; wait for debugger to stop program
*

FINDLBL: pshx ; save caller's pointer on the stack
leax #LABELS ; x-> first symbol table row
Idab 1, X+ ; get a character from source file
Idy +1, X ; get next two characters from source file
Ida SIZE ; A = number of symbols
branch F2 ; go to end at F2 (in case there are zero items)

*

F1: cpb 4, x+ ; compare first character in B and move to next row
bne F2 ; if mismatch, try next by going to F2
cpy 3, x ; compare second, third character in Y
clra ; clear A and carry indicating success
Idx - 4 , x ; make x-> beginning of row found
bra F4 ; exit after balancing stack, putting pointer in Y

F2 : dec a ; count down accumulator A
bpl Fl ; go to Fl to do search if more to come
setc ; set carry to indicate failure

F3: leay SOURCE ; make y-> beginning of row found
pula ; restore caller's pointer from the stack
rts ; return to caller

Figure 4.27. FINDLBL Subroutine with Errors

27. Correct the assembly-language program in Figure 4.28. Do not change any lines
that are already correct. This shortest subroutine LIST for "SA2" prints a line of the
listing at the end of PASS2, after two bytes have been put into the object code. It prints
the decimal line number ( < 10), the hexadecimal object code, and the source code.
OUTHEX prints a binary number n in accumulator A as two digits (the hexadecimal
representation of n). OUTCH places the ASCII character in accumulator A into a line of
the listing, which is pointed to by the X register.
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org 800 ; put at the beginning of SRAM
OPTR: ds. w 1 ; pointer to object code that was generated
LINE i ds .b 1 ; line number (line < 10 )
LINEBGN: ds . w 1 ; address of first character in line of source code
*
* listing subroutine : X points to the listing line
LIST: Idab #0 ; generate ASCII character "zero"

addb #LINE ; add binary line number (line < 10 )
bsr DUTCH ; output line number
Idb #$20 ; output space
bsr DUTCH
Idy Optr ; get pointer to object code
Ida 1, y+ ; y points to where next byte will be put,
bsr OutHex ; output two previously stored bytes of object code
Idaa l,y+
bsr OutHex
styr OPTR ; save pointer to object code
Idab #$20 ; output space
bsr DUTCH ;
Idy LINEBEGIN ; get beginning of source line

Loop: Idab 2, y+ ; get character, advancer to next character
bsr DUTCH ; output character
cpb #d ; up to and including c.r.
bne LOOP
return ; return

*
OUTHEX: tab ; duplicate byte to be printed

Isrb ; shift right four bits
bsr OUTHEX 1 ; output hex number that was in high nibble of A
tab ; fall through, output low nibble of A

OUTHEX l:andb #$fO ; clear away all but low nibble
cmpb #9 ; if low nibble is a letter (A - F)
bis OUTHEX2 ; then adjust the output
addb #7 ; by adding 1 to the input

OUTHEX2 : addb #0 ; convert to ASCII character
DUTCH: stab 1, x ; store the character in the listing, move pointer

rts ; return to caller

Figure 4.28. Line Print Subroutine with Errors

28. Write a shortest subroutine PAS SI for "SA2" that will fill the symbol table, if a
symbol appears more than once; it prints the line number, the word "error," and the error
number 1; and it terminates with carry clear; otherwise, it terminates with carry set. The
line number is to be printed in hexadecimal using OUTHEX (Problem 27). Assume the
answers to Problems 24,25, and 27 are "included" (don't write them).
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2 9. Write a shortest subroutine PASS2 for "SA2" that writes in the object and listing,
reporting error 2 if an illegal opcode appears, and error 3 if a symbol is not found,
"Include" the answers to Problems 24 to 27 (don't write them). A listing line consists of
a hexadecimal line number, the two-byte hexadecimal code, and the line of source code. If
an error occurs, the next line shows "error" hexadecimal error number.

30. Write a shortest subroutine SYMLTBL for "SA2" that prints its symbol table.
Assume the answers to Problems 24 and 27 are "included," and use PUT to print the
ASCII character in accumulator A (don't write them, and assume they do not change the
registers used in the subroutine SYMLTBL). Each line lists a symbolic name and its
hexadecimal value that was stored in a row of the symbol table.
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The Motorola M68HC12B32EVB board can implement all the experiments and examples
in this book, except those of Chapter 10. When used without another 6812 board, the
debugger called DBUG_1.2 will use half of SRAM, permitting the other half to be used for
an. experiment.



5

Advanced Assemblers,
Linkers, and Loaders

This chapter discusses the advanced assembler and the linker, which are tools needed to
assemble large programs; it is written for the reader who intends to write a lot of
assembly-language programs or large assembly-language programs. Whereas the last
chapter gave sufficient detail for the reader to understand the assembler output of a C
compiler and to embed a limited amount of assembly language code in a C procedure,
this chapter provides additional tools and greater depth to enable you to write large
assembly-language programs using a relocatable, conditional, or macro assembler, and to
join together separately assembled programs using a linker program.

This chapter is optional. Current economics leads to writing programs in a high-
level language like C or C++ rather than in assembly language. Most programmers will
not need to write a lot of programs in assembly language nor to write large programs in
assembly language. Such readers can skip this chapter without losing any background
needed for the rest of this book.

The first section introduces the complementary ideas of cross assembler and
downloader. The next section describes the pair of ideas of relocatable assembler and
linker program. Section 5.3 discusses how conditional assembly is used. The next
section shows the power of macros in assembly-language programs. A final section
recommends good documentation standards for programs written in assembly language.

Upon completion of this chapter, the reader should understand the tools needed for
writing a large number of assembly-language programs or large assembly-language
programs. He or she should have little difficulty writing assembly-language programs in
the order of a couple of hundred lines long.

5.1 Cross Assemblers and Downloaders

In this section we introduce a close cousin of the assembler, the cross-assembler, which,
like the assembler, converts sequences of (ASCII) characters into machine instructions.
For the most part, this section's material is descriptive, almost philosophical, rather than
precise and practical. It is important general knowledge, and it is included here because
the reader should understand what he or she is doing when using a personal computer to
assemble a program for a microcontroller.

119
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The cross-assembler is a special kind of assembler. A true assembler is a program
that runs on a computer that generates machine code for that same computer, it is
common for a microcontroller to be too limited to be able to assemble code for itself,
particularly for a microcontroller that is used in a laboratory for a university course. Such
microcontrollers may not have enough memory, or a disk capable of holding the
assembler program or the assembly language to be input to this program, or a printer
capable of printing the listing. It is common to have a PC available with such user-
friendly characteristics as Windows, large hard disks, and editors with which the user is
already familiar. Such a computer, called the host computer, assembles programs for the
microcontroller, which is called the target machine. The cross-assembler is written to
run on the host machine and output target machine code.

The powerful host machine can handle the assembly-language program. An editor is
a program on the host that helps you write the program. Editors can be used to write any
kind of (ASCII) character data. The cross-assembler is used to generate the machine code
for the target machine. The host machine's printer is used to print the listing, and the
host machine's disk is used to hold the (ASCII) assembly-language program, the
program listing, and the machine code output that is to be put into the target machine.

If your personal computer has a cross-assembler, it will usually also have a
downloader. The downloader is a program running on the personal computer that takes
the object code of the cross-assembler from the personal computer's disk or its primary
memory and writes it into the target microcontroller's memory. A monitor program in
the microcontroller receives data from the downloader; it generally does not need to be
loaded because it is stored once and for all time in the microcontroller's ROM.

In a microcontroller in which it is desired to maximize the available RAM, one
might have a small program, called a bootstrap, whose only purpose is to load the
downloader into its RAM. After the program is put in by the loader, the memory space
occupied by the downloader could be used by the program for data storage. The bootstrap,
now occupying only a small amount of memory space, is generally in ROM.

It is also possible to connect host computers in a laboratory by means of a high-
speed link to implement a local area network. The computers in this network are called
servers. A printer attached to this network, with a computer to support it, is a print
server. A computer that you experiment with is called a workstation. With each
workstation connected to the print server, each can print a listing when it needs to do so,
provided that the printer is not already in use. One printer can serve about a dozen
workstations. This is economical and efficient. The downloader in a workstation sends
the code generated by a cross-assembler to a target microcontroller. This kind of
distributed processing, using local area networks, is one way to use a cross-assembler.

The program's machine code will be broken up into several records, to constrain
the record's length within a suitable size. For each record, the downloader provides a
starting address for the first byte and the number of bytes, as shown in Figure 5.1.

A byte called the checksum is usually included with each block, as indicated in
Figure 5,1. This byte is formed by adding up all the bytes used to describe that particular
block, ignoring carries. After loading, the checksum is computed and compared with the
one supplied by the assembler. If any pattern of single errors in the columns has
occurred, the two checksums will always be different, and an error message can be
generated by the monitor.
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Figure 5.1. Loader Record

S-records are generally used by Motorola and other microcontroller vendors to store
loader records, because ASCII character strings are easy to store on disks and send
through a personal computer's communication software to the target microcontroller. S-
records are essentially character strings made of several fields that identify the record type,
record length, memory address, code/data, and checksum. Each byte of binary data is
encoded as a 2-character hexadecimal number; the first character represents the high-order
four bits, and the second represents the low-order four bits of the byte. An S-record's
fields are shown in Figure 5.2, and Table 5.1 explains the content of each of the S-
record's fields. Each record may be terminated with a carriage return, line feed, or both.
Additionally, an S-record may have an initial field to accommodate other data such as line
numbers generated by some time-sharing systems. Simple downloaders use only three of
eight types of S-records: SO, SI, and S9 records. The SO record generally contains header
information. All data before the first SI record is ignored. Thereafter, all code/data records
must be of type SI, until the S9 record terminates data transfer,

An SO record, which is a header record, is ignored by the downloader, but the cross-
assembler may write in it any descriptive information identifying the following block of
S-records. The SO record address field is normally zeroes. An SI record contains code/data
and the 2-byte starting address at which the code/data is to reside. An S9 record terminates
SI records. Its address field may optionally contain the 2-byte address of the first
instruction to be executed. If an S9 record doesn't specify an address, the first entry point
specification encountered in the object module input is used. There is no code/data field.

A short program, whose listing is shown in Figure 5.3a, generates the S-record in
Figure 5.3b. This simple program has only one SI and the terminal S9 records, which
are explained following the figure. Generally, programs have several SI records.

The S1 code/data record begins with the ASCII characters S1, indicating a code/data
record of length $16 bytes, to be loaded at the 2-byte address $0820. The next 20
character pairs are the ASCII bytes of the actual program code/data. In this assembly
language example, the hexadecimal opcodes of the program are written in sequence in the
code/data fields of the SI records. The first byte is B6, and the second byte is 08 .
Compare this S-record string in Figure 5.3b with the listing in Figure 5.3a.

TYPE RECORD LENGTH ADDRESS CODE/DATA CHECKSUM

Figure 5.2. An S-Record
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Table 5.1. S-Record Fields

The second record begins with ASCII characters S9, indicating a termination record,
Its length is 3, It is followed by a 4-character 2-byte address field, which is zeroes, and
$FC, which is the checksum of the S9 record.

0000 ORG $820
0820 B60811 LDAA $811
0823 BB0813 ADDA $813
0826 7A0815 STAA $815
0829 B60810 LDAA $810
082C B90812 ADCA $812
082F 7A0814 STAA $814
0832 00 BGND

a. Listing

S1160820B60811BB08137A0815B60810B908127A0814004E
S9030000FC

b. S-record

Figure 53. A Program
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5.2 Relocatable Assemblers and Loaders

The downloader described in the previous section is sometimes called an absolute loader,
because the location of the program is completely specified by the assembler that writes
S-records. There is a limitation with an absolute loader. Suppose that you have written a
program that uses a standard subroutine from a collection provided by Motorola or a third
party. You have to copy it physically into your program, perhaps changing the ORG so
that it does not overlap with your program, and then assemble the whole package. What
you might like to do instead is to be able to assemble your program separately and then
have the loader take your machine code, together with the machine code of any standard
subroutines already assembled, and load them all together in consecutive RAM locations
so that memory bytes would not be wasted.

To achieve merging of programs that are assembled separately, assemble each
program segment as if it began at location zero. Each such program segment is called a
relocatable section. A linker program determines the sizes of each section and allocates
nonoverlapping areas of target memory to each. Each section's addresses are then adjusted
by adding the section's beginning address to the address within the section.

Assembler directives, listed in Table 5.2, are used to name sections and identify
labels that are declared in other files or are to be made available for use in other files. See
Figure 5.4. A relocatable section begins with a SECTION directive. In each section,
certain symbols would have to be declared in XDEF and XREF directives.

Table 5.2. Relocation Directives

.data: SECTION
XDEF N, V ; Make N, V externally visible

N: DS 1 ; Declare a global variable
V: DS 50 ; Declare a global vector

a. A data section in file Program! .asm.

.text: SECTION
XDEF FUN ; Make FUN externally visible

*
FUN: RTS ; Should be replaced by full sub.

b. A program section in file Program2.asm

Figure 5.4. Sections in Different Source Code Files
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.pgm: SECTION
XDEF ENTRY ; Make externally visible
XREF FUN, N ; Use externally defined names

*
ENTRY: LDS #$BFF ; First initialize stack pointer

LDAA N ; Access external variable
JSR FUN ; Call external subroutine

c. Another program section in file Programs .asm

Figure 5.4. Continued

For example, JSR FUN might occur in a section . pgm in one file, but the code for
subroutine FUN is in a different section . text in another file. FUN is declared, in each
file where it is used, in an XREF directive. In the file where the FUN subroutine is
written, label FUN would be declared in an XDEF directive. Labels used by more than one
file are similarly declared where defined (with XDEF) and where used (with XREF).

The SECTION directive's label is the name of the section, which is used in the
parameter file that controls linking. Figure 5.5 illustrates a parameter file that directs
the linker to put certain sections in certain parts of memory. If two or more sections
have the same name, the linker appends them together, forming a larger section that is
allocated in memory as a whole. A SECTION directive may have the word SHORT as an
operand; this means that the section is on page zero and may use page-zero addressing.
The linker requires, as a minimum, sections with names .data and .text.

The parameter file simply tells the linker what files are output from it and input to
it. This parameter file uses C syntax for comments and constants. The parameter file
declares memory segments, which are areas of memory available for assembly-language
sections, and then declares what sections are put in which segments. Finally, parameter
file statements tell where execution begins and what to put in the target's interrupt
vectors, including the reset vector. Interrupt and reset vectors are discussed in Chapter 11 ,

LINK Program. abs /* the linker will write a file called prog.abs */
NAMES /* list all assembler output files input to the linker */

Programl.o Program2.o Programs.o
END /* several assembler files can be read: end with END */

SEGMENTS /* list all segments, read/write permission & address ranges */
ROM = READ_ONLY 0x800 TO Ox9FF /* a memory segment */
RAM = READ_WRITE OxAOO TO OxBFF /* a memory segment */

END /* several segments can be declared: end with END */

PLACEMENT /* list all sections, in which segments they are to be put */
. text, . pgm INTO ROM /* puts these sections into segment ROM */
.data INTO RAM /* puts a section called .data into segment RAM */

END /* several segments can be filled with sections: end with END */

IN IT ENTRY /* label of first instruction to be executed */
VECTOR ADDRESS OxFFFE ENTRY /* puts label ENTRY at OxFFFE */

Figure 5.5. A Parameter File
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The assembler begins program segments with either an ORG statement, introduced
in the previous chapter, or a SECTION statement, introduced above. Another way of
looking at this: SECTION is an alternative to ORG. Sections beginning with ORG are
called absolute sections; each section runs until the next ORG, SECTION, or END
directive or the end of the file. The programmer is responsible for ensuring that absolute
sections, and memory segments, declared in the parameter file, do not overlap.

The linking loader, in a manner similar to a two-pass assembler, takes the
parameter file and the list of external and entry symbols declared in XREF and XDEF
declarations; it calculates the addresses needed at load time, and inserts these into the
machine code in a .o file that was generated by the assembler. In this example, the 2-byte
relative address for FUN in the instruction above is determined and then inserts the code
for the instruction. The linker output file, a .abs file, is ready to be downloaded into a
target microcontroller.

5.3 Conditional Assemblers

A near cousin of the assembler, that we examined in the last chapter, is the conditional
assembler. A conditional assembler allows the use of conditional directives such as
IFEQ and ENDC, as listed in Table 5.3. For example, the segment

IFEQ MODE
LDAA #1
STAA LOCI
ENDC

inserted in an assembly language program causes the assembler to include instructions

LDAA #1
STAA LOCI

in the program if the value of MODE is equal to zero. If the value of MODE is not equal to
zero, assembler directives in lines from the IFEQ directive to the ENDC directive, except
ENDC and ELSE, are ignored and do not generate machine code. The label MODE is
usually defined, often at the beginning of the program, through an EQU directive, say
MODE EQU 1. There are often several conditional directives such as IFEQ MODE
throughout the program, for a single directive such as MODE EQU 1. The single EQU
directive uniformly governs all of these conditional directives. This way, a directive at
the beginning of the program can control the assembly of several program segments
throughout the program.

The conditional statement argument can be a more complex expression. There are
other conditional directives — IFNE, IFGE, IFGT, IFLE, IFLT, and IFNE—
that can be used instead of IFEQ, and the ELSE statement can cause code to be
assembled if the condition is false, so code immediately after the conditional is not
generated. And conditional expressions can be nested. For instance, the program segment



126 Chapter 5 Advanced Assemblers, Linkers, and Downloaders

IFGT OFFSET-1
LEAX OFFSET,X
ELSE
IFEQ OFFSET-1
INX
ENDC ; matches IFEQ
ENDC ; matches IFGT

tests the predefined symbol OFFSET. If OFFSET is greater than one, a LEAX
instruction is used; if it is one, a shorter INX instruction is used, and if it is zero, no
code is generated.

The conditional IFDEF directive is often used to be sure that a symbolic name is
defined before it is used in an assembler line, such as another conditional directive, to
avoid generating an error message. The IFNDEF directive is particularly useful in
INCLUDE files described in a later section on documentation.

The IFC and IFNC conditional directives are able to test strings of characters to see
if they are exactly matching. The former assembles lines to the ENDC or ELSE directive
if the strings match; the latter assembles the lines if the strings don't match. It finds
special use in macros, discussed in the next section where an example is given.

One of the principal uses of conditional assembly directives is for debugging
programs. For example, a number of program segments following each IFDEF MODE
up to the matching ENDC can be inserted or deleted from a program by just inserting the
EQU directive defining MODE. All of these directives allow the programmer to uniformly
control how the program is converted to object code at assembly time.

Another significant use of conditional assembly is the maintenance of programs for
several different target microcomputers. Some code can be conditionally assembled for
certain target microcontrollers, but not for other microcontrollers.

Table 53. Conditional Directives
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5.4 Macro Assemblers

A macro assembler is able to generate a program segment, which is defined by a
macro, when the name of the macro appears as an opcode in a program. The macro
assembler is still capable of regular assembler functioning, generating a machine
Instruction for each line of assembly language code; but like a compiler, it can generate
many machine instructions from one line of source code. Its instruction set can be
expanded to include new mnemonics, which generate these program segments of machine
code. The following discussion of how a macro works will show how this can be done,

A frequently used program segment can be written just once, in the macro
definition at the beginning of a program. For example, the macro

AAX: MACRO
EXG A,B
ABX
EXG A,B
ENDM

allows the programmer to use the single mnemonic AAX to generate the sequence

EXG A,B
ABX
EXG A,B

The assembler will insert this sequence each time the macro AAX is written in the
assembler source code. If the mnemonic AAX is used ten times in the program, the three
instructions above will be inserted into the program each time the mnemonic AAX is
used. The advantage is clear. The programmer almost has a new instruction that adds the
unsigned contents of A to X, and he or she can use it like the real instruction ABX that
actually exists in the machine. The general form of a macro is

label MACRO
instructions
ENDM

Here the symbolic name "label" that appears in the label field of the directive is the name
of the macro. It must not be the same as an instruction mnemonic or an assembler
directive. The phrases MACRO and ENDM are assembler directives indicating the start and
the end of the macro. See Table 5.4. Both appear in the operation field of the instruction.

Table 5.4. Macro Directive
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Table 5.5. Macro Arguments

Every time the programmer uses this macro, he or she writes

label name parameter,parameter,...,parameter

where name is the name of the macro, which is placed in the operation field, to which
an optional size . B, .W,or .L may be appended. The designation label at the
beginning of the line is treated just like a label in front of a conventional assembly line.

The parameters can be inserted into the body of the macro using the two-character
symbols in Table 5.5. As an example, the macro

MOVE: MACRO
LDD \1
STD \2
ENDM

will move the two bytes at parameter location \1 to parameter location \2, like the MOW
instruction, but the macro is faster and shorter where the second parameter is a page-zero
address. When used in the program, say as

MOVE Z+3 ,M (1)

the two bytes at locations Z + 3, Z + 4 will be moved to locations M, M + 1. In this
example, all the usual rules for choosing between direct and page-zero addressing would
apply. Additionally, if the actual parameters involve an index mode of addressing that
uses a comma, the actual parameters must be enclosed within parentheses as in MOVE
( 3, X ) , Y for the sequence

LDD 3, X
STD Y

As implied in the example above, when a macro is used, the actual parameters are
inserted in a one-to-one correspondence with the order in (1).

If "goto" labels are to be used within macros, then, because the macro may be used
more than once during the program, assembler-generated labels must be used. The
symbol character pair "\@" means an underbar followed by the macro invocation number,
which is initially zero and is incremented each time a macro is called. When the first
macro is expanded \@ generates the label _00000, when the second macro is expanded,
\@ generates _00001, and so on. Throughout the first macro, \@ generates _00000 even
though this macro may call another macro expansion, whenever it is used, before or after
other macros are called and expanded. This generated symbol can be concatenated to other
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ADD: MACRO
LDX \1
LDAB \2
CLRA

\@: ADDA 1,X+
DBNE B, \ @
ENDM

Figure 5.6. Loop Macro to Add Consecutive Values

letters to generate unique labels inside the macro itself. This capability is especially
useful if a macro expansion has two or more "goto" labels in it; for without it,
unambiguous labels could not be generated. Using the macro invocation number, each
macro expansion generates labels that are different from the labels generated from the
same macro that are expanded at a different time. For example, the macro in Figure 5.6,
when implemented by ADD #M,N, adds the contents of the N bytes beginning in
location M, putting the result in accumulator A.

A macro definition can use a macro defined earlier, or even itself (recursively). For
macro assemblers that have conditional assembly, conditional directives within their
definition can be used to control the expansion. The actual parameters of the macro can
then be tested with these directives to determine how the macro is expanded. In particular,
the IFC and IFNC directives can be used to compare a macro parameter, considered as a
string, against any constant string. If a parameter is missing, it is a null string "\0." We
can compare a given parameter, such as the second parameter, considered as a string
denoted "\2," to a null string "\0." When the strings are equal, the second parameter is
missing, so this condition can terminate the macro expansion.

The example in Figure 5.7 illustrates the use of recursion, conditional assembly,
and early exiting of macros using MEXIT. You might want to use the ADDA instruction
with a series of arguments, to add several bytes to accumulator A. If you wish, you can
use a text editor to make copies of the ADDA instruction with different arguments.
However, you can define a macro whose name is ADDQ, in which the body of the macro
expands into one or more ADDA directives to implement the same effect. This ADDQ
macro uses recursion to add one parameter at a time, up to eight parameters in this
simple example, stopping when a parameter is missing (null string). When a null
(missing) parameter is encountered, the macro "exits" by executing MEXIT, thereby not
generating any more expansion or code.

ADDQ: MACRO
IFNC "\1",""
ADDA \1
ENDC
IFC "\2",""
MEXIT
ENDC
ADDQ \2,\3,\4,\5,\6,\7,\8
ENDM

Figure 5.7. Recursive Macro to Add up to Eight Values
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5.5 Documentation

A significant part of writing large assembly-language programs is the effort to make the
program understandable to a programmer who has to debug it. Some tools to do this are
provided by state-of-the-art assemblers. Table 5.6 shows assembler directives that
significantly clarify assembler listings. The LIST and NOLIST directives can clean up a
listing by not printing parts of the program that are neither interesting nor informative.
CLIST and MLIST directives control whether conditional expressions and macros are
fully listed. Other directives, TITLE, LLEN, NOPAGE, PLEN, and TABS, control the
format of a listing, and PAGE and SPC tidy up a listing.

The INCLUDE directive permits other files to be inserted into a source code file.
The assembler saves the location after the INCLUDE directive, opens the file that is
named in the directive's operand, reads all of that file, and then returns to the saved
location to resume reading the file in which the INCLUDE directive appeared. Included
files can include other files but cannot eventually include themselves (the INCLUDE
directive is not recursive). It is common to include a file defining a program's constants,
in EQU directives, in each file that uses these constants. However, in such files, so that
they are included only once, the contents of an INCLUDE file might be written as
follows:

IFNDEF Fl
... (an entire file, except the three statements shown here)

Fl: EQU 0 ; it really doesn't matter what F1 is set to here
ENDC

The conditional statement will include the contents of a file the first time it is named as
the parameter of an INCLUDE statement. Subsequent INCLUDE statements will fail to
assemble the contents of the file because the symbolic name F1 will be defined after the
first time it is INCLUDEd.

Table 5.6. Listing Directives
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It should be noted that, in the relocatable assembler, the INCLUDE directive allows
breaking up a large program into smaller files that are easier to understand, debug, and
maintain. You should break up large files into smaller ones, each of which implements a
conceptually uncluttered collection of operations, and put each such collection into its
own section. Sections reused in many application programs can be saved in files
collectively called a library. When a later program needs the same function, it can
INCLUDE a file from the library that has the function already debugged and assembled.
Your application program can INCLUDE prefabricated files from a library and parts of
the program now being written, which are in different files, to break up the larger
program into smaller sections, each of which is easier to understand, debug, and use.
While further development of tools to do this are incorporated into object-oriented
programming, the basic ideas can be incorporated into state-of-the-art assembly-language
programs as well.

We continue this section with a list of coding techniques that make your programs
or subroutines more readable.

1. Use meaningful labels that are as short as possible.

2. One should try to write code so that the program flow is progressively forward
except for loops. This means that one should avoid using unnecessary
unconditional jumps or branches that break up the forward flow of the program.

3. Keep program segments short, probably 20 instructions or less. If not
commented in some way, at least use a line beginning with "*" or ";" to break up
the code into program segments for the reader.

4. Including lucid, meaningful comments is the best way to make your program
clear. Either a comment line or a comment with an instruction is acceptable, but it
is probably best to use complete lines of comments sparingly. Do not make the
sophomore mistake of "garbaging up" your program with useless comments, such
as repeating in the comment what simple instructions do.

5. The comments at the beginning of the subroutine should be clear enough that
the body of the subroutine need not be read to understand how to use it. Always
give a typical calling sequence if parameters are being passed on the stack, after the
call or in a table. Indicate whether the data themselves are passed (call-by-value) or
the address of the data is passed (call-by-name). In addition for short subroutines,
indicate whether registers remain unchanged in a subroutine. Also explain what the
labels mean if they are used as variables.

CMPY #1170
BEQ LI
BMI L2
CMPB SI
BEQ L3
CMPB S2
BEQ L4
BRA Tl

Figure 5.8. Example Control Sequence Program
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Figure 5.9. Flowchart for Example Control Sequence

Finally, one should consider attaching a flowchart with each subroutine as part of the
documentation. Flowcharts are particularly useful for detailing complex control
sequences. For example, the rather impenetrable sequence in Figure 5.8 becomes more
fathomable when displayed as part of the subroutine flowchart shown in Figure 5,9.

5.6 Summary

In this chapter, we learned that a more powerful assembler can help you write much
larger programs than you would be able to write by hand coding in machine code or by
using a simplified assembler. Relocation, conditional assembly, and macro expansion
permit the programmer to significantly expand his or her techniques. However, high-
level languages provide alternative means to these and other ends, so that high-level
language programming has superceded the more powerful assembly-language
mechanisms described in this chapter.

Do You Know These Terms?

See the End of Chapter 1 for Instructions.

cross-assembler servers relocatable linking loader
host computer print server section conditional
target machine workstation linker assembler
downloader records parameter file macro assembler
monitor program checksum memory macro
bootstrap S-records segment library
local area network absolute loader absolute section
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PROBLEMS

1 . Give the SI and S9 records for the program in Figure 1.5.

2 . Give the program source code (in the style of Figure 1.5) for the following S-
record: S10D0800FC0852FD0854137C08564E.

3 . Write a shortest program segment to translate an ASCII SI record located in a 32-
character vector SRECORD, to write its data into SRAM.

4 . Write a parameter file for the 'B32. Its SRAM, EEPROM, and flash memory are to
be the segments, with the same names; the sections are .data, .text, and .pgm; segment
SRAM contains section .data; segment EEPROM contains section .text; and segment
flash contains section .pgm. The starting address, named BEGIN, is to be put in $FFFE.
The input file is to be progB32.o, and the output file is to be called progB32.abs.

5 . Write a parameter file for the 'A4. Its SRAM and EEPROM are to be the
segments, with the same names; the sections are .data and .text; segment SRAM
contains section .data; and segment EEPROM contains section .text. The starting
address, named START, is to be put in $FFFE. The input file is to be progA4.o, and the
output file is to be called progA4.abs.

6 . Write a parameter file for an expanded bus 'A4. Its internal SRAM, extended
memory SRAM at $7000 to $7FFF, internal EEPROM at $4000 to $4FFF, and
external ROM at $8000 to $FFFF, are to be the segments with the names ISRAM,
ESRAM, EEPROM, and ROM; and the sections are .data , .edata, .text, and .pgm.
Segment ISRAM contains section .data, segment ESRAM contains section .edata,
segment EEPROM contains section .text, and segment ROM contains section .pgm.
The starting address, named BEGIN, is to be put in $FFFE. The input files are to be
camcorder 1 .o, camcorder2.o, camcorderS.o, and carncorder4.o, and the output file is to be
called camcorder .abs.

7 . Write a relocatable assembler program that uses fuzzy logic, that has a section .text
that just calls fuzzy logic subroutines FUZZY and ADJUST one after another without
arguments, and a section .pgm that has in it fuzzy logic subroutines FUZZY and
ADJUST, which just have RTS instructions in them. Comment on the use of a
relocatable assembler to break long programs into more manageable parts.

8. Write a relocatable assembler program that has a section .text that just calls
subroutines OUTCH, OUTS, OUTDEC, and OUTHEX one after another. The argument
in Accumulator A, for OUTCH, OUTDEC, and OUTHEX, is $41. The argument for
OUTS, passed in index register X, is the address of string STRING 1. A section .pgm has
in it subroutines OUTCH, OUTS, OUTDEC, and OUTHEX, which just have RTS
instructions in them, and the string STRING1, which is "Well done\r". Comment on the
use of a relocatable assembler to break long programs into more manageable parts.
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9 . A program is to have symbolic names A4, B32, and MACHINE. Write the EQU
directives to set A4 to 1, B32 to 2, and MACHINE to B32. Write a program segment
that will store accumulator A to location $0 if MACHINE is B32 but will store
accumulator A into location $1 if MACHINE is A4. Comment on the use of conditional
expressions to handle programs that will be assembled to ran in different environments.

10. A program is to have symbolic names LITE, FULL, and FEATURES. Write the
EQU directives to set LITE to 1, B32 to 2, and FEATURES to FULL. Write a program
segment that will execute a subroutine SUB if FEATURES is FULL. Comment on the
use of conditional expressions to handle programs that will be assembled for different
levels of features for different-priced markets.

11. A program is to have symbolic names TRUE, FALSE, and DEBUG. Write the
EQU directives to set TRUE to 1, FALSE to 0, and DEBUG to TRUE. Write a program
segment that will execute the 6812 background instruction if DEBUG is TRUE.
Comment on the use of conditional expressions in debugging.

12. Write a shortest macro BITCOUNT that computes the number of bits equal to 1 in
accumulator D, putting the number in accumulator B.

1 3. Write shortest macros for the following nonexistent 6812 instructions:

(a)NEGD (b)ADX (c)INCD (d) ASRD

14. Write a shortest macro NEGT that replaces the number stored at location A with its
two's complement whose size is indicated by the size parameter appended to the macro
name NEGT. This macro should change no registers. The call's form should be NEGT.B
A, NEGT.W A, or NEGT.L A. Why can't NEG be the name of this macro?

15. Write a shortest macro INCR that increments the number stored at the address
given as the macro's parameter A, whose size is indicated by the size parameter appended
to the macro name INCR. The call's form should be INCR.B A, INCR.W A, or INCR.L
A. No registers should be changed by the macro. Use the macro invocation counter rather
than the location counter "*." Why can't we use the name INC for this macro?

16. Write a shortest macro MOVE, as in §5.4, so that no registers are changed except
the CC register, which should be changed exactly like a load instruction.

17. Write a shortest macro XCHG that will exchange N bytes between locations L and
M. No registers should be changed by the macro. The call should be of the form XCHG
LJVLN. If N is missing, assume it is 2. A typical use would be

XCHG L,M,N

1 8. Write a shortest macro for each of CLEAR, SET, and TEST, that will clear, set,
and test the ith bit in the byte at location L. (Bits are labeled right to left in each byte
beginning with 0 on the right.) For example, CLEAR L,5 will clear bit #5 in location
L.
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19. Write a shortest macro MARK that uses symbolic names given in Problem 11,
which writes the characters in its parameter if DEBUG is TRUE. The macro expansion
should put the character string argument inside the macro expansion and branch around it.
A character is printed by calling subroutine DUTCH with the character in Accumulator
A. Comment on the use of both conditional expressions and macros in debugging.

2 0. Write the assembly-language directives needed to print macro and conditional
expansions in the listing. Consult HiWare documentation for the directive formats.

21. Write macros LISTON and LISTOFF that use a symbolic name LISTLEVEL,
initially zero, as a count. LISTON increments this level, LISTOFF decrements this
level, and if the level changes from 1 to 0, the assembler listing is turned off, while if
the level changes from 0 to 1, the assembler listing is turned on.
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Adapt912 is Technological Arts' version of Motorola's 912EVB evaluation board for the
68HC912B32 microcontroller. Offering the same modular hardware design as other
Adapt 12 products, Adapt912 includes Motorola's DBug-12 in on-chip Flash. This gives it
the versatility to function as a standalone development system, a BDM Pod, or even a fin-
ished application (when combined with the user's circuitry on a companion Adapt 12
PRO! Prototyping card).
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Assembly Language
Subroutines

Subroutines are fantastic tools that will exercise your creativity. Have you ever wished
you had an instruction that executed a floating-point multiply? The 6812 does not have
such powerful instructions, but you can write a subroutine to execute the floating-point
multiplication operation. The instruction that calls the subroutine now behaves pretty
much like the instruction that you wish you had. Subroutines can call other subroutines
as you build larger instructions out of simpler ones. In a sense, your final program is
just a single instruction built out of simpler instructions. This idea leads to a
methodology of writing programs called top-down design. Thus, creative new
instructions are usually implemented as subroutines where the code is written only once.
In fact, macros are commonly used just to call subroutines. In this chapter, we
concentrate on the use of subroutines to implement larger instructions and to introduce
programming methodologies.

To preview some of the ideas of this chapter, consider the following simple
subroutine, which adds the contents of the X register to accumulator D.

SUB: PSHX ; Push copy of X onto stack
ADDD 2, SP+ ; Add copy into D; pop copy off stack
RTS

It can be called by the instruction

BSR SUB

Recall from Chapter 2 that the BSR instruction, besides branching to location SUB,
pushes the return address onto the hardware stack, low byte first, while the instruction
RTS at the end of the subroutine pulls the top two bytes of the stack into the program
counter, high byte first. See Figure 6.1. In this figure, H:L denotes the return address and
the contents of X is denoted XH:XL. Notice particularly that the instruction

ADDD 2,SP+

in the subroutine above not only adds the copy of the contents of X into D but also pops
the copy off the stack so that the return address will be pulled into the program counter
by the RTS instruction.

137
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Figure 6.1. Subroutine Calling and Returning

The BSR and RTS instructions are calling and returning mechanisms, and the
PSHX and ADDD instructions are the program segment in this subroutine. The X and D
registers at the time the BSR is executed contain the input parameters, and the D register
at the time that the RTS is executed contains the output parameter. We pass these
parameters into the subroutine at the beginning of its execution and out of the subroutine
at the end of its execution. The value pushed on the stack by the PSHX instruction
becomes a local variable of this subroutine, a variable used only by this subroutine.

In this chapter, we discuss the mechanics of writing subroutines and, to a much
lesser extent, the creative issue of what should be a subroutine and what should not.
Echoing the theme of Chapter 1, we want to teach you how to correctly implement your
good ideas, so you'll know how to use the subroutine as a tool to carry out these ideas.

This chapter is divided into sections that correspond to each capability that you need
to write good subroutines. We first examine the storage of local variables. This
discussion gives us an opportunity to become more familiar with the stack, so that the
later sections are easier to present. We next discuss the passing of parameters and then
consider calling by value, reference, and name. We then discuss the techniques for calling
subroutines and returning from them. Finally, we present a few examples that tie
together the various concepts that have been presented in the earlier sections and present
some conclusions and recommendations for further reading.

Upon completion of this chapter, you should be able to pick the correct methods to
call a subroutine, use local variables in it, and pass parameters to and from it. You
should know how to test and document a subroutine and test the routine that calls the
subroutine. With these capabilities, you should be ready to exercise your imagination
creating your own subroutines for larger programs.

138
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6.1 Local Variables

In this section we offer a mechanism that will help you write much clearer programs,
The main contribution to clarity is modularization of a program into smaller segments.
Think small, and the relationships within your program will be clearer. The problem
with programs that are not so modularized is that a change to correct a bug in one part of
the program may cause a bug in another part. If this propagation of errors explodes
cancerously, your program becomes useless. The way to squelch this propagation is to
divide the program into segments and to control the interaction between the segments
with standard techniques. The main source of uncontrolled interaction is the storage of
data for different segments. In this section, we introduce you to the tools to break up a
program into segments and to store efficiently the data needed by these segments.

A program segment is a sequence of instructions that are stored one after another in
memory as part of your program. An entry point of the segment is any instruction of
the segment that can be executed after some instruction which is not in the segment. An
exit point of the segment is any instruction that can be executed just before some
instruction that is not in the segment. Figure 6.2a shows the flowchart of a program
segment with multiple entry and exit points. For simplicity, however, you may think of
a segment as having one entry point, which is the first instruction in the segment, and
one exit point, which is the last instruction in the segment. See Figure 6,2b.

Figure 6.2. Program Segment with a Plurality of Entry and Exit Points
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For the purpose of this discussion, we assume that the program segment has
information passed into it by its input parameters (or input arguments) and that the
results of its computation are passed out through its output parameters (or output
arguments). Any variables used in the segment for its computation but not used
elsewhere, and which are not parameters are called local variables. The program segment
can be thought of as a box with the parameters and variables that relate to it. Some of
the parameters may be global variables—variables that are, or can be, used by all
program segments. If you have learned about sequential machines, the input parameters
are like the inputs to the sequential machine, the local variables are like the internal
states of the machine, and the output parameters are like the outputs of the machine. As
a sequential machine can describe a hardware module without the details about how the
module is built, one can think about the input and output parameters and local variables
of a program segment without knowing how it is written in assembly language. Indeed,
one can think of them before the segment is written.

Consider the following example. Suppose that we have two vectors V and W, each
having two I-byte elements (or components) V (1 ) , V ( 2 ) and W (1) , W {2 ) . We want
to compute the inner product

V ( 1 ) * W ( 1 ) + V ( 2 ) * W ( 2 ) (1)

which is often used in physics. Input parameters are the components of V and W, and the
one output is the dot product result. The components of V and W are assumed to be 1-
byte unsigned numbers; for instance, assume that VI is 1, V2 is 2, Wl is 3, and W2 is
4. The 2-byte dot product is placed in accumulator D at the end of the segment, but it
becomes clear that we will have to store one of the products in expression (1) somewhere
while we are computing the second product in accumulator D. This 2-byte term that we
save is a local variable for the program segment we are considering. It may also be
convenient to place copies of the vectors V and W somewhere for easy access during the
calculation. These copies could also be considered local variables. We will continue this
example below to show how local variables are stored in a program segment.

We first consider the lazy practice of saving local variables as if they were global
variables, stored in memory and accessed with page-zero or direct addressing. One
technique might use the same global location over and over again. Another technique
might be to use differently named global variables for each local variable. While both
techniques are undesirable, we will illustrate them in the examples below.

A single global variable, or a small number of global variables, might be used to
hold all local variables. For example, assuming that the directive TEMP DS 2 is in the
program, one could use the two locations TEMP and TEMP+1 to store one of the 2-byte
local variables for the dot product segment. Figure 6.4 illustrates this practice. Six bytes
are needed for various temporary storage. We first allocate six bytes using the declaration
TEMP DS 6 . Then the values of these variables are initialized by MOVE instructions.
Next, these local variables are used in the program segment that calculates the inner
product. The algorithm to compute the inner product is clearly illustrated by comments.

Using this approach can lead to the propagation of errors between segments
discussed earlier. This can be seen by looking at the "coat hanger" diagram of Figure 6,3,
A horizontal line represents a program segment, and a break in it represents a call to a
subroutine. The diagonal lines represent the subroutine call and its return. Figure 6,3
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Figure 63. Changing a Global Variable before It Has Been Completely Used

illustrates a program segment using TEMP to store a variable to be recalled later. Before
that value is recalled, however, TEMP has been changed by subroutine B, which is called
by subroutine A, which itself is called by the program segment. This case is difficult to
debug because each subroutine will work correctly when tested individually but will not
work when one is called, either directly or indirectly through other subroutines, from
within the other. This technique also confuses documentation, specifically the meaning
of the local variable TEMP, generally making the program less clear.

With the other technique, the local variables will be put in different memory
locations, having different symbolic names. See Figure 6.5. This approach is superior to
the last approach, because differently named local variables, stored in different locations,
will not interfere with the data stored in other locations. The names can be chosen to
denote their meaning, reducing the need for comments. However, memory is taken up by
these local variables of various program segments, even though they are hardly ever used.
In a single-chip 'A4 or 'B32, only IK bytes of SRAM are available. Using all these
bytes for rarely used local variables leaves less room for the program's truly global data.

TEMP: D S 6 ; Allocate 6 bytes of memory for temporary variables
enter: MOVB#1, TEMP ; Allocate and initialize V( 1)

MOVE #2,TEMP+1 ; Allocate and initialize V(2)
MOVE #3,TEMP+2 ; Allocate and initialize W(l)
MOVE #4,TEMP+3 ; Allocate and initialize W(2)
LDAA TEMP ; V(l) into A
LDAB TEMP+2 ; W(l) into B
MUL ; The value of first term is now in D
STD TEMP+4 ; Store first term in TERM
LDAA TEMP+1 ; V(2) into A
LDAB TEMP+3 ; W(2) into B
MUL ; Calculate second term
ADDD TEMP+4 ; Add in TERM; dot product is now in D

Figure 6.4. Inner Product Utilizing a Global Variable such as TEMP (a Bad Example)
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VI: DS 1 ; Allocate a byte of memory just for VI
V2 : DS 1 ; Allocate a byte of memory just for V2
Wl: D S 1 ; Allocate a byte of memory just for W1
W2: D S 1 ; Allocate a byte of memory just for W2
TERM: DS . W 1 ; Allocate two bytes of memory just for TERM
enter: MOVE #1, VI ; Allocate and initialize V( 1)

MOVE #2, V2 ; Allocate and initialize V(2)
MOVE #3, W1 ; Allocate and initialize W( 1)
MOVE #4, W2 ; Allocate and initialize W(2)
LDAA VI ; V(l) into A
LDAB Wl ;W(l)intoB
MUL ; The value of first term is now in D
STD TERM ; Store first term in TERM
LDAA V2 ; V(2) into A
LDAB W2 ; W(2) into B
MUL ; Calculate second term
ADDD TERM ; Add in TERM; dot product is now in D

Figure 6.5. Inner Product Utilizing Different Global Variables (a Bad Example)

Rather than storing a subroutine's local variables in global variables, put them in
either registers or the hardware stack. Figure 6.6 illustrates how registers can be used to
store local variables; this is basically what we did throughout the previous chapters.
Because the 6812 has few registers, the stack holds most local variables, which will be
called stacked local variables. We review relevant stack index addressing and stack-
oriented instructions presented in Chapters 2 and 3.

Recall from Chapter 3 that index addressing using the stack pointer can access data
in the stack and can push or pull data from the stack. We will use a general and simple
rule for balancing the stack so that the segment will be balanced. Push all the stacked
local variables of the segment on the stack at the entry point, and pull all of the local
variables off the stack at the exit point. Do not push or pull words from the stack
anywhere else in the program segment except for two- or three-line segments used to
implement missing instructions. While an experienced programmer can easily handle
exceptions to this rule, this rule is quite sound and general, so we recommend it to you.
In following sections, our program segments will be balanced unless otherwise noted and
we will usually follow this rule, only occasionally keeping local variables in registers.

LDAA #1 ; V(l) into A
LDX #3 ; V(2) into low byte of X
LDAB #2 ;W(l) in toB
LDY #4 ; W(2) into low byte of Y
MUL ; First term is now in D
EXG D, Y ; Store first term in Y, get W(2) in B
EXG A,X ;V(2)intoA
MUL ; Calculate second term
LEAY D, Y ; Add terms, to get result in Y

Figure 6.6. Inner Product Utilizing Registers
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enter: MOVE #4,1,-SP ; Allocate and initialize W(2)
MOVE # 3,1, - S P ; Allocate and initialize W( 1)
MOVE #2,1,-SP ; Allocate and initialize V(2)
MOVE # 1,1, - S P ; Allocate and initialize V( 1)
LEAS - 2 , SP ; Allocate room for term
LDAA 2,SP ;V(l) intoA
LDAB 4,SP ;W(l) intoB
MUL ; The value of first term is now in D
STD 0 , SP ; Store first term in TERM
LDAA 3,SP ;V(2)intoA
LDAB 5,SP ;W(2)intoB
MUL ; Calculate second term
ADDD 0, S P ; Add in TERM; dot product is now in D
LEAS 6,SP ; Deallocate local variables; balance stack

Figure 6.7, Inner Product Program Segment Utilizing Local Variables on the Stack

We now look more closely at this rule to show how local variables can be bound,
allocated, deallocated, and accessed using the stack. Binding means assigning an address
(the actual address used to store the variable) to a symbolic name for a variable.
Allocation of a variable means making room for that variable in memory, and
deallocation means removing the room for that variable. Accessing is the process of
finding that variable which, for stacked local variables, will be on the stack. An input
parameter supplies a value to be used by the program segment. While input parameters
are usually not changed by the program segment, local variables and output parameters
that are not also input parameters generally need to be initialized in the program
segment. That is, before any instruction reads a value from them, a known value must be
written in them. A stacked local variable or output parameter is usually initialized
immediately after the entry point of the program segment.

Stacked local variables are bound in two steps. Before the program is ran, the
symbolic address is converted to a number that is an offset that is used in index
addressing with the stack pointer. The binding is completed when the program is
running. There, the value in the stack pointer SP, at the time the instruction is executed,
is added to the offset to calculate the actual location of the variable, completing the
binding of the symbolic address to the actual address used for the variable. This two-step
binding is the key to reentrant and recursive subroutines, as discussed in Chapter 3.

We will allocate stacked local variables in a balanced program segment using LEAS
with negative offset and instructions like PSHX, which make room for the stacked local
variables. We will deallocate the variables using LEAS with positive offset and
instructions like PULX, which remove the room for the local variables. We will bind and
access stacked local variables in a couple of ways to illustrate some alternative techniques
that you may find useful. First, to access local variables, we use explicit offsets from the
stack pointer, reminiscent of the programming that you did in the first three chapters.
Then we use EQU, ORG, and DS directives to bind local variable names to offsets for the
stack pointer. This allows symbolic names to be used to access these local variables,
taking advantage of the assembler to make our program clearer.
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Figure 6.8. Nested Subroutines Using Local Variables Stored on the Stack

Let's now look at our dot product example in Figure 6.7, where we will initialize
the copies of V(l), V(2), W(l), and W(2) to have values 1, 2, 3 and 4, respectively. The
first term of the dot product shown in formula (1), which will also be placed on the
stack, will be denoted TERM. Notice how the simple rule for balancing the stack is used
in this segment. If the stack pointer were changed in the interior of the segment, offsets
for local variables would change, making it difficult to keep track of them. As it is now,
we have to determine the offsets from the stack pointer for each local variable. The local
variable TERM occupies the top two bytes, the local variables V(l) and V(2) occupy the
next two bytes, and the local variables W(l) and W(2) occupy the next two bytes.

Figure 6.8 illustrates how the use of the stack avoids the aforementioned problem
with global variables. Because the stack pointer is moved to allocate room for local
variables, the temporary variables for the outermost program are stored in memory
locations different from those that store local variables of an inner subroutine like B.

The advantage of using the stack can be seen when two subroutines are called one
after another, as illustrated in Figure 6.9. The first subroutine moves the stack pointer to
allocate room for the local variable, and the local variable is stored with an offset of 0 in
that room. Upon completion of this subroutine, the stack pointer is restored, deallocating
stacked local variables. The second subroutine moves the stack pointer to allocate room
for its local variable, and the local variable is stored with an offset of 0 in that room.
Upon completion of this subroutine, the stack pointer is restored, deallocating stacked
local variables. Note that the same physical memory words are used for local variables in
the first subroutine that was called, as are used for local variables in the second
subroutine that was called. However, if the second subroutine were called from within the
first subroutine, as in Figure 6.8, the stack pointer would have been moved, so that the
second subroutine would not erase the data used by the first subroutine. Using the stack
for local variables conserves SRAM utilization and prevents accidental erasure of local
variables.

Figure 6.9. Local Variables Stored on the Stack, for Successive Subroutines
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TERM: EQU 0
VI i EQU 2
¥2: EQU 3
Ml: EQU 4
W2: EQU 5
MBYTES: EQU 6

LEAS -MBYTES, SP ; Allocate all local variables
MOVB #1, VI , SP ; Initialize V(l)
MOVB #2, V2, SP ; Initialize V(2)
MOVB #3, Wl, SP ; Initialize W(l)
MOVB #4, W2 , SP ; Initialize W(2)
LDAA VI,SP ; VI into A
LDAB Wl, SP ; Wl into B
MUL ; First term is now in D
STD TERM, SP ; Store first term in TERM
LDAA V2 , SP ; V2 into A
LDAB W2 , SP ; W2 into B
MUL ; Calculate second term
ADDD TERM, S P ; Add in TERM; dot product in D
LEAS NBYTES, SP ; Deallocate locals; balance stack

Figure 6.10. Using Symbolic Names for Stacked Local Variables

A problem with the stack approach is that remembering that a variable is at 2, SP
(or is it at 5, SP?) is error prone, compared to giving names to variables (see Figure
6.7). We need to give names to the relative locations on the stack; that is, we need to
bind the variables. We discuss two ways to bind names to locations on the stack: the
EQU and DS assembler directives. See Figure 6.10.

Since TERM is on top of the stack, the EQU assembler directive can bind the value
of the name TERM to the location 0, SP; then TERM, SP can access it. Note that you
bind the name of the container TERM to 0, SP and not the contents of TERM to 0 with
the EQU directive. That is, we use 0 wherever we see TERM, and we use it in calculating
the address with TERM as an offset in index addressing with the SP register. Similarly,
we can bind VI to 2 , SP and W2 to 5, SP. Also, the offsets used in the LEAS
instructions to allocate and deallocate the local variables can be set when they are defined.
Initialization is changed a bit to make NBYTES easier to use, but the effect is the same.
The program segment to calculate the dot product can now be rewritten as in Figure
6.10. (We write the changed parts in boldface, here and in later examples, to focus your
attention on them.) Note that each statement is quite readable without comments.
However, good comments are generally still valuable.

As described above, this technique requires the programmer to calculate the values
for the various labels and calculate the value for NBYTES. Adding or deleting a
variable requires new calculations of these values. Figure 6.11 shows how this can be
avoided. With this use of the EQU directive, each new stacked local variable is defined in
terms of the local variable just previously defined plus the number of bytes for that local
variable. Insertions or deletions of a stacked local variable in a segment now requires
changing only two lines, a convenience if the number of local variables gets large.
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TERM: EQU 0
VI: EQU TERM+2
V2: EQU Vl + 1
Wl: EQU V2 + 1
W2: EQU Wl + 1
MBYTES: EQU W2 + 1

Figure 6.11. Defining Symbolic Names for Stacked Local Variables by Sizes

Another technique, shown in Figure 6.12, uses the DS directive to play a trick on
the assembler. The technique uses the DS directive to bind the stacked local variables
partially with the stack pointer SP, using the location counter and the ORG directive to
modify the location counter. Recall that ALPHA DS 2 will normally allocate two bytes
for the variable ALPHA. The location counter is used to bind addresses to labels like
ALPHA as the assembler generates machine code. The location counter and hence the
address bound to the label ALPHA correspond to the memory location where the word
associated with the label ALPHA is to be put. A DS statement, with a label, binds the
current value of the location counter to the label (as the name of the container, not the
contents) and adds the number in the DS statement to the location counter. This will
bind a higher address to the next label, allocating the desired number of words to the label
of the current directive. Note that ALPHA EQU * will bind the current location counter
to the label ALPHA but not affect the location counter. Also, recall that the ORG
directive can set the location counter to any value. These can be used as shown in Figure
6.12.

You can reset the location counter to zero many times, and you should do this
before each group of DS directives that are used to define local storage for each program
segment. These DS statements should appear first in your program segment. Each set
should be preceded by a directive such as LCSAVE DS 0 to save the location counter
using LCSAVE and an ORG 0 directive to set the location counter to 0; and each set
should be followed by a directive such as ORG LCSAVE to set the origin back to the
saved value to begin generating machine code for your program segment. The last
directive in Figure 6.12, ORG LCSAVE, can be replaced by DS LCSAVE-*, which
avoids the use of the ORG statement. The DS directive adds its operand LCSAVE-* to
the location counter, so this directive loads LCSAVE into the location counter.

LCSAVE : EQU * ; Save current location counter
ORG 0 ; Set the location counter to zero

TERM: DS 2 ; First term of dot product
VI: DS 1 ; Copy of input vector element V(l)
V2 : DS 1 ; Copy of input vector element V(2)
W1: D S 1 ; Copy of input vector element W( 1)
W2: D S 1 ; Copy of input vector element W(2)
N B Y T E S : E Q U * ; Number of bytes of local variables

ORG LCSAVE ; Restore location counter

Figure 6.12. Declaring Symbolic Names for Local Variables Using DS Directives
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W: EQU 0 ; Input vector V(1),V(2)
WW: EQU 2 ; Input vector W(1),W(2)
SIZEA: EQU 4
*

STARTA: LEAS -SIZEA, SP ; Start of segment A
MOVW #$102,W,SP ; Initialize both bytes of VV
MOVW #$ 3 0 4, WW, SP ; Initialize both bytes of WW

*
TERM: EQU 0
SIZES: EQU 2
*
STARTS: LEAS -SIZEB, SP ; Start of segment B

LDAA VV-f SIZES, SP ; V(l) into A
LDAB WW+SIZEB,SP ;W(l)intoB
MUL ; First term is now in D
STD TERM, SP ; Store first term in TERM
LDAA VV+1+SIZEB,SP ; V(2) into A
LDAB WW+1+S1ZEB, SP ; W(2) into B
MUL ; Calculate second term
ADDD TERM,SP ; Add in TERM; dot product in D

ENDB: LE AS SIZ EB, S P ; End of segment B; balance stack
*
END A: LEAS S I Z EA, SP ; End of segment A; balance stack

Figure 6.13. Declaring Symbolic Names for Extended Local Access

It is easy to insert or delete variables without making mistakes, using this
technique, because the same line has the variable name and its length, as contrasted with
the last technique using the EQU directive. The number of bytes needed to store the local
variables is also automatically calculated with this technique. You do, however, have to
write three more lines of code with this technique. You have to invent some kind of
convention in naming variables to avoid this problem, but that is not too difficult to do.

In Chapter 3, we introduced nested local variables. Suppose that a program segment
B is nested in, that is, entirely contained in, a program segment A. An instruction inside
B may need to access a local variable that is allocated and bound for all of segment A.
There are two techniques that can be used to access the variable in B that is defined for A.
These are the extended local access and stack marker access techniques described below.

The idea of the extended local access technique assumes that there is a way to fix
the location of the desired variable over one or more allocations of stacked local
variables. See Figure 6.13. In this version, the outer segment A copies vectors into the
stack where the inner segment B calculates the dot product. The dot product is placed in
D by segment B and left there by A.

The stack marker technique uses an index register to provide a reference to local
variables of outer segments. See Figure 6.14. Just before a program segment allocates its
variables, the old value of the stack pointer is transferred to a register. Just after the local
variables are allocated, the value in this register is put into a stacked local variable for the
inner segment. It is called a stack marker because it marks the location of the stack that
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was used for the local variables of the outer program segment. It is always in a known
position on the stack (in this case, on the very top of the stack), so it is easy to find. See
Figure 6.14, where the inner program segment can access the local variables of the outer
segment by loading the stack marker into any index register and using index addressing to
get the variable. Note that the stack marker is deallocated together with the other stacked
local variables at the end of the program segment.

MARK A: EQU 0 ; Stack mark for segment A
W: EQU 2 ; Input vector
WW: EQU 4 ; Input vector
SlZEAi EQU 6
*

START A: TFR SP,X ; Start for segment A
LEAS -SIZEA,SP
STX MARKA,SP
MOVW #$102,W,SP ; Initialize both bytes of VV
MOW #$304,WW,SP ; Initialize both by tes of WW

*

MARKB : EQU 0 ; Stack mark for segment B
TERM: EQU 2
SIZEB: EQU 4
*

STARTS: TFR SP,X
LEAS -SIZEB,SP
STX MARKB,SP
LDAA VV,X ;V(l ) in toA
LDAB WW,X ;W(l)intoB
MUL ; First term is now in D
STD TERM, SP ; Store first term in TERM
LDAA W+1,X ;V(2)intoA
LDAB WW+1,X ;W(2)intoB
MUL ; Calculate second term
ADDD TERM,SP ; Add in TERM; dot product in D

ENDB: LEAS SIZEB ,SP ; End of segment B
*
ENDA: LEAS SIZEA,SP ; End of segment A

Figure 6.14. Accessing Stacked Local Variables Using a Stack Marker

Either the extended local access or the stack marker access mechanisms can be used
in cases where program segments are further nested. Consider program segment C, with
SIZEC stacked local variables, which is nested in segment B and needs to load
accumulator A with the value of SA, a stacked local variable of segment A. Using
extended local access, as in the first example, the following instruction will accomplish
the access.

LDAA SIZEC+SIZEB+SA,SP
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Using the stack marker of the second example, the following instructions will
access the variable.

LDX 0, SP ; Get to segment B
LDX 0, X ; Get to segment A
LDAA SA, X ; Access local variable SA

The extended local access mechanism appears to be a bit simpler for smaller assembly
language programs because it takes fewer instructions or directives. The stack marker
mechanism seems to be used in some compilers because the compiler program has less
to "remember" using this approach than using the other, where the compiler has to keep
track of the sizes of each allocation of stacked local variables, particularly if a subroutine
is called by many program segments that have different numbers of local variables. It is
not unreasonable to expect a large program to have 20 levels of nesting. Because the
stack marker to the next outer segment is always on top of the stack, the compiler does
not have to remember where it is. In fact, the labels for stack markers are not really
necessary for access at all, their only real use being for allocation and deallocation of the
local variables. With two good mechanisms, you will find it easy to use one of them to
handle nested program segments to many levels.

This section introduced the idea of a local variable and the techniques for storing
local variables on the 6812. We demonstrated that local variables should not be stored in
global variables, whether using the same name (TEMP) for each or giving each variable a
unique name. Local variables can be stored on the stack in any program segment. They
are especially easy to use in the 6812, because the LEAS instructions are able to allocate
and deallocate them, the index addressing mode using the stack pointer is useful in
accessing them, and the EQU or DS directives are very useful in binding the symbolic
names to offsets to the stack pointer. These techniques can be used within subroutines,
as we discuss in the remainder of this chapter. They can also be used with program
segments that are within macros or those that are written as part of a larger program. The
nested program segments can be readily handled too, using either the extended local
access or stack marker technique to access local variables of outer program segments.

6.2 Passing Parameters

We now examine how parameters are passed between the subroutine and the calling
routine. We do this because an assembly-language programmer will have frequent
occasions to use subroutines written by others. These subroutines may come from other
programmers that are part of a large programming project, or they may be subroutines
that are taken from already documented software, such as assembly-language subroutines
from a C support package. They may also come from a collection of subroutines
supplied by the manufacturer in a user's library. In any case, it is necessary to understand
the different ways in which parameters are passed to subroutines, if only to be able to use
the subroutines correctly in your own programs or perhaps modify them for your own
specific applications.
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Before we begin, however, we reiterate that these techniques are quite similar to
those used in Section 6.1 to store local variables. However, these techniques are used
between subroutines, while the latter were used entirely within a subroutine.

* SUBROUTINE DOT PRODUCT
DOTPRD: MUL ; First term is now in D

EXG D, Y ; Store first term in Y, get W(2) in B
EXG A,X ;V(2)intoA
MUL ; Calculate second term
LEAY D, Y ; Add terms, to get result in Y
RTS ; Return to the calling program

a. A subroutine

LD AA # 2 ; Copy of V( 1) into A
LDX # 7 ; Copy of V(2) into low byte of X
LDAB # 6 ; Copy of W( 1) into B
LDY # 3 ; Copy of W(2) into low byte of Y
BSR DOTPRD ; Call the subroutine
STY DTPD ; Store dot product in DTPD

b. A calling sequence

LDAA LV, SP ; Copy of V(l) into A
LDX LW-1, S P ; Copy of V(2) into low byte of X
LDAB LV+1,SP ; Copy of W(l) into B
LDY LW, S P ; Copy of W(2) into low byte of Y
BSR DOTPRD ; Call the subroutine
STY DTPD ; Store dot product in DTPD

c. Another calling sequence

Figure 6.15. A Subroutine with Parameters in Registers

In this section we examine six methods used to pass parameters to a subroutine. We
illustrate each method with the dot product from Section 6.1. We first consider the
simplest method, which is to pass parameters in registers as we did in our earlier
examples. Then the passing of parameters by global variables is discussed and
discouraged. We then consider passing parameters on the stack and after the call, which
are the most common methods used by high-level languages. We then discuss the
technique of passing parameters using a table, which is widely used in operating system
subroutines.
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The first method is that of passing parameters through registers, which is preferred
when the number of parameters is small. We will also use this method to illustrate the
idea of a calling sequence. See Figure 6.15. Suppose that the calling routine, the
program segment calling the subroutine, puts a copy of the vector V into registers A and
X and a copy of the vector W into registers B and Y, where, as.before, the low byte of a
16-bit register contains the 8-bit element. Both components of each vector are 1-byte
unsigned numbers. Assume that the dot product is returned in accumulator D, a
subroutine DOTPRD that performs the calculation is shown in Figure 6.15a. The
instructions in the calling routine shown in Figure 6.15b cause the subroutine to be
executed for vector V equal to (2,6) and vector W equal to (7,3). Notice that the values
in A and B have been changed by the subroutine, because an output parameter is being
returned in D. The sequence of instructions in the calling routine that handles the
placement of the input and output parameters is termed the calling sequence. In our
calling sequence we have, for convenience, assumed that constant input parameters are
given to DOTPRD while the output parameter in D is copied into the global variable
DTPD. These constants and the global variable could just as easily have been stacked
local variables for the calling routine.

To emphasize that a calling sequence is in no way unique, suppose that the calling
routine has vectors that are pairs of 8-bit local variables on the stack, labeled LV and LW,
as offsets to the stack pointer. To compute the dot product of LV and LW, execute the
calling sequence in Figure 6.15c.

We have, for simplicity, omitted the binding, allocation, and deallocation of the
local variables of the calling routine. The point of this second example is to stress that
any calling sequence for the subroutine DOTPRD must load copies of the vectors for
which it wants the dot product into X and Y and then call DOTPRD. It must then get the
dot product from D to do whatever it needs to do with it. From a different point of view,
if you were to write your own version of DOTPRD, but one that passed parameters in
exactly the same way, your version could not directly access the global variable LV used
in the calling sequence in Figure 6.15. If it did, it would not work for the catling
sequence in Figure 6.14c.

Parameters are passed through registers for most small subroutines. The main
limitation with this method of passing parameters is that there are only two 16-bit
registers (you do not pass parameters in the stack pointer SP register itself), two 8-bit
registers, and a few condition code bits. Although this limits the ability of the 6812 to
pass parameters through registers, you will, nevertheless, find that many, if not most, of
your smaller subroutines will use this simple technique.

The next technique we discuss is that of passing parameters through global
variables. We include it because it is used in small microcomputers like the 6805, but
we discourage you from using it in larger machines like the 6812. It is easy to make
mistakes with this technique, so much so that most experienced programmers avoid this
method of passing parameters when other techniques are available. Figure 6.16 shows a
coat hanger diagram that illustrates how incorrect results can occur when parameters are
passed with global variables. Notice in particular how subroutine B writes over the vaiue
of the global variable passed by the calling routine to subroutine A, so when subroutine
A performs the load instruction, it may not have the calling routine's value.
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Figure 6.16. Change a Global Parameter before Its Subroutine Has Used It

* SUBROUTINE DOTPD - LOCAL VARIABLES
TERM: EQU 0 ; First term of the dot product
MBYTES: EQU 2
*

DOTPRD: LEAS -MBYTES, SP ; Allocate local variables
LDAA V1 ; First component of V into A
LDAB W1 ; First component of W into B
MUL ; First term of dot product into D
STD TERM, SP ; Save first term
LDAA V2 ; Second component of V into A
LDAB W2 ; Second component of W into B
MUL ; Second term of dot product into D
ADDD 2,SP+ ; Dot product into D, Deallocate loc var
STD DTPD ; Place dot product
RTS

Figure 6.17. A Subroutine with Parameters in Global Variables

In assembly language, global variables are defined through a DS directive that is
usually written at the beginning of the program. These variables are often stored on page
zero on smaller microcontrollers so that direct page addressing may be used to access
them. However in the 6812, page zero is used for I/O ports. Assuming that the directives
are written somewhere in the program, the subroutine in Figure 6.17 does the previous
calculation, passing the parameters through these locations. Note that we use local
variables in this subroutine, as discussed in Section 6.1.

The subroutine in Figure 6.17 uses global variables VI, V2, Wl, W2, and DTPD to
pass parameters to the subroutine and from it. If the calling routine wants to compute the
dot product of its local variables LV and LW, which each store a pair of 2-element 1-byte
vectors, putting the result in LDP, the calling sequence in Figure 6.18 could be used.
Notice that the calling routine's local variables are copied into global variables VI, V2,
Wl, and W2 before execution and copied out of the global variable DTPD after execution.
Any other calling sequence for this version of DOTPRD must also copy the vectors of
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which it wants to compute the dot product, call the subroutine, and get the dot product
result from DTPD. Note also that

ADDD 2 , SP+ ; Dot product into D, also deallocate local variable

rendered the last LEAS instruction of the subroutine unnecessary.

MOVE LV,SP,V1 ;CopyV(l)
MOVE LV+1, SP, V2 ; Copy V(2)
MOVE LW,SP,W1 ;CopyW(l)
MOVE LW+1, S P , W2 ; Copy W(2)
BSR DOTPRD
MOVW DTPD, LDP, SP ; Place result in local variable LDP

Figure 6.18. Calling a Subroutine for Figure 6.17

aLOCV: EQU 0 ; Input parameter copy of the vector V
aLOCW: EQU 2 ; Input parameter copy of the vector W
aLOCDP: EQU 4 ; Output parameter copy of dot product
PSIZEj EQU 6 ; Number of bytes for parameters
*

LEAS -PSIZE,SP ; Allocate space for parameters
MOVW V, aLOCV, S P ; Initialize parameter LOCV,SP
MOVW W, aLOCW, SP ; Initialize parameter LOCW,SP
BSR DOTPRD
MOVW aLOCDP, SP, DTPD ; Place output in global variable
LEAS P SIZ E , S P ; Deallocate space for parameters

Figure 6.19. Calling a Subroutine with Parameters on the Stack for Figure 6.2]

We now consider a very general and powerful method of passing parameters on the
stack. We illustrate the main idea, interpreting it as another use of local variables, as
well as the technique that makes and erases "holes" in the stack, and we consider
variations of this technique that are useful for very small computers and for larger
microcontrollers like the 68332.

Input and output parameters can be passed as if they were local variables of the
program segment that consists of the calling sequence that allocates and initializes. The
local variables are allocated and initialized around the subroutine call. In this mode the
parameters are put on the stack before the BSR or JSR. For our particular dot product
example, the calling sequence might look like Figure 6.19.

For simplicity, we have assumed that input parameter values come from global
variables V and W, and the output parameter is placed in the global variable DTPD. All
of these global variables could, however, just as well have been local variables of the
calling routine. The idea is exactly the same. The stack is as shown in Figure 6.20 as
execution progresses. The dot product subroutine is now as shown in Figure 6.21.
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Figure 6.20. Location of Parameters Passed on the Hardware Stack

* SUBROUTINE DOTPRD - LOCAL VARIABLES
TERM: EQU 0 ; First term of the dot product
MBYTES: EQU 2
* PARAMETERS
RETN: EQU 2 ; Return address
LOCV: EQU 4
LOCW: EQU 6
LOCDP: EQU 8
DOTPRD: LEAS -NBYTES,SP ; Allocation for local variables

LDAA LOCV,SP
LDAB LOCW,SP
MUL
STD TERM, SP ; Copy first term to local variables
LDAA LOCV+1,SP
LDAB LOCW+lfSP
MUL
ADDD TERM, SP ; Dot product into D
STD LOCDP, SP ; Place dot product in output parameter
LEAS NBYTES, SP ; Deallocate local variables
RTS

Figure 6.21. A Subroutine with Parameters on the Stack
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* SUBROUTINE DOTPRD - LOCAL VARIABLES
TERM: EQU 0 ; First term of the dot product
MBYTES: EQU 2
* PARAMETERS
LOCV: EQU 0
LOCW: EQU 2
LOCDP: EQU 4
PSIZE: EQU 6
*

DOTPRD: LEAS -MBYTES ,SP ; Allocation for local variables
LDAA LOCV+NBTTTES+2, SP
LDAB LOCW+NBYTES+2,SP
MUL
STD TERM, SP ; First term to local variables
LDAA LOCV+NBYTES+2+1,SP
LDAB LOCW+NBYTES+2+l,SP
MUL
ADDD TERM, SP ; Dot product into D
STD LOCDP+NBYTES+2, SP ; Dot product to output parameter
LEAS MBYTES, SP ; Deallocate local variables
RTS

Figure 6,22. Revised Subroutine with Local Variables and Parameters on the Stack

LEAS -PSIZE, SP ; Allocate space for parameters
MOVW V, LOCV, SP ; Put copy in parameter location
MOVW W, LOCW, SP ; Put copy in parameter location
BSR DOTPRD
MOVW LOCDP,SP,DTPD ; Put in global location
LEAS PSIZE, SP ; Deallocate space for parameters

Figure 6.23. Calling a Subroutine with Parameters on the Stack for Figure 6.22

Notice several things about the way this version of the subroutine is written. We do
not need the local variables to hold copies of vectors V and W as we did in the earlier
versions because the copies are already on the stack as parameters where we can access
them using the extended local access technique described in Section 6.1. Because the
number of parameters and local variables is small and because each is equal to two bytes,
we can easily calculate the stack offsets ourselves, particularly if we use a dummy
parameter RETN for the return address. Notice particularly how we have redefined the
labels LOCV, LOCW, and LOCDP in the subroutine with the EQU directive to avoid
adding an additional offset of 4 to each parameter to account for the number of bytes in
the return address and the local variables. Suppose now that we write the subroutine as
shown in Figure 6.22. When EQU is used in this way, the additional offset of
MBYTES-1-2 is needed to access the parameters to account for the local variables and the
return address. No EQU directives are needed in the calling sequence, however, because
EQU is a global definition; that is, the labels LOCV, LOCW, LOCDP, and PSIZE are
fixed, respectively, at 0, 2, 4, and 6 throughout the program. The calling sequence for
this case is shown in Figure 6.23.
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Putting the additional offset of NBYTES+2 in the subroutine, which is written only
once, makes the calling sequence, which may be written many times, more
straightforward. However, keeping the EQU directives with the subroutine as shown will
force 2-byte offsets for parameter accesses in all of the calling sequences placed before the
subroutine. For this reason, the EQU tables for subroutines might be placed at the
beginning of a program to improve the static efficiency of the calling sequences. One
could also force 1-byte offsets by using "<" before the expressions that access the
parameters, as in LDAA <LOCW+NBYTES+2 , SP. This, however, would still not get
the 5-bit offset for those local variables that would be accessed with offset expressions in
the range from zero to fifteen.

The reader should recognize that in this method of passing parameters, the calling
sequence is just another instance of a balanced program segment, with local variables that
are the parameters to the subroutine. Variables are copied from the calling routine to the
parameter locations and back so that the subroutine will have a precise place to find
them. Compare this to the earlier example where parameters were passed by global
variables, and review the discussion after that example.

There is another way to think of this technique, which some students have found to
be more concrete. You can think of "holes in the stack." To pass an argument out of the
subroutine, such as LOG DP, you create room for it in the calling routine. The instruction
LEAS -PSIZE, SP creates a hole for this output parameter, among other things, and
the subroutine puts some data in this hole. Conversely, the input parameters LOCV and
LOCW are used up in the subroutine and leave holes after the subroutine is completed.
These holes are erased by the instruction LEAS PS IZE , SP.

Figure 6.24. Parameters Passed after the Call

Some readers may appreciate the generality of the idea of parameters as local
variables of the calling sequence, whereas others may prefer the more concrete technique
of providing and removing holes for input and output parameters. They are the same.

The reason that the stack mode of passing arguments is recommended is that it is
very general. Because registers are quite limited in number and are useful for other
functions, it is hard to pass many parameters through registers. You can pass as many
arguments to or from a subroutine as you will ever need using the stack. Compilers
often use this technique. It is easier to use a completely general method in a compiler,
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* SUBROUTINE DOTPRD - LOCAL VARIABLES
TERM: EQU 0 ; First term of the dot product
NBYTES: EQU 2
* PARAMETERS
PARV: EQU 0 ; Copy of vector V
PARW: EQU 2 ; Copy of vector W
PARDP: EQU 4 ; Dot product of V and W
PSIZE: EQU 6
*

DOTPRD: PULX ; Return address into X
LEAS -NBYTES, SP ; Allocation for local variables
LDAA PARV, X
LDAB PARW,X
MUL
STD TERM, SP ; Copy first term into local variable
LDAA PARV+1,X
LDAB PARW+1,X
MUL

ADDD TERM,SP ; Dot product into D
STD PARDP, X ; Place dot product in out parameter
LEAS NBYTES, SP ; Deallocate local variables
JMP P S I Z E , X

Figure 625. A Subroutine with Parameters after the Call, which Pulls the Return

PARV: EQU 0
PARW: EQU 2
PARDP: EQU 4
*

MOVW V, PARV+L, PCR ; Copy of V into parameter list

MOVW W,PARW+L,PCR ; Copy of W into parameter list
BSR DOTPRD

L: DS 6

MOVW PARDP+L, PCR, DTPD ; Copy result into DTPD

Figure 626. A Subroutine Calling Sequence for Figure 6.25

rather than a kludge of special methods that are restricted to limited sizes or applications.
The compiler has less to worry about and is smaller because less code in it is needed to
handle the different cases. This means that many subroutines that you write for high-
level languages such as C may require you to pass arguments by the conventions that it
uses. Moreover, if you want to use a subroutine already written for such a language, it
will pass arguments that way. It is a good idea to understand thoroughly the stack mode
of passing parameters.
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* SUBROUTINE DOTPRD
* LOCAL VARIABLES
TERM: EQU 0 ; First term of the dot product
MBYTES: EQU 2
*

* PARAMETERS
*

PARV: EQU 0 ; Copy of vector V
PARW: EQU 2 ; Copy of vector W
PARDP: EQU 4 ; Dot product of V and W
*

DOTPRD: LDX 0, SP ; Return address into X
LEAS -NBYTES, SP ; Allocation for local variables
LDAA PARV+2,X
LDAB PARW+2,X
MUL
STD TERM, SP ; Copy first terra into local variable
LDAA PARV+1+2,X
LDAB PARW+1+2,X
MUL
ADDD TERM,SP ; Dot product into D
STD PARDP+2, X ; Place dot product in out parameter
LEAS NBYTES, SP ; Deallocate local variables
RTS

Figure 6.27. A Subroutine with Parameters after the Call, which Uses RTS

entry: MOVW V, PARV+L, PCR ; Copy of V into parameter list
MOW W,PARW+L,PCR ; Copy of W into parameter list
BSR DOTPRD
BRA LI

*

L: DS 6
*

L1: MOVW PARDP+L, PCR, DTPD ; Copy parameter list into DTPD

Figure 6.28. A Subroutine Call with Parameters after the Call for Figure 6.27

We now consider another common method of passing arguments in which they are
put after the BSR or equivalent instruction. This way, they look rather like addresses that
are put in the instruction just after the op code. Two variations of this technique are
discussed below.
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* SUBROUTINE DOTPRD
* LOCAL VARIABLES
*

TERM: EQU 0 ; First term of the dot product
NBYTES: EQU 2
*

* PARAMETERS
*

PARV: EQU 0 ; Copy of vector V
PARW: EQU 2 ; Copy of vector W
PARDP: EQU 4 ; Dot product of V and W
*

DOTPRD: PULX ; Return address into X
LEAS -NBYTES, SP ; Allocation for local variables
LDAA [PARV,X]
LDAB [PARW,X]
MUL
STD TERM, SP ; Copy first term into local variable
LDY PARV,X
LDAA 1, Y
LDY PARW,X
LDAB 1, Y
MUL
ADDD TERM, SP ; Dot product into D
STD [ PARDP, X ] ; Place dot product in out parameter
LEAS NBYTES, SP ; Deallocate local variables
JMP 0 , X

Figure 6.29. A Subroutine With In-Line Parameters that Are Addresses

BSR DOTPRD
D C . W ADDRV ; Address for V
DC.W ADDRW ; Address for W
D C . W ADDRDP ; Address for dot product

Figure 630. An In-Line Argument List of Addresses for Figure 6.29

In the first alternative, the parameters are placed after the BSR or JSR instructions
in what is called an in-line argument list. Looking at Figure 6.24, we see that the return
address, which is pushed onto the hardware stack, points to where the parameters are
located. When parameters are passed this way, sometimes referred to as after the call, the
subroutine has to increment the return address appropriately to jump over the parameter
list. If this is not done, the MPU would, after returning from the subroutine, try to
execute the parameters as though they were instructions. For our dot product example,
assume that the parameter list appears as shown in Figure 6.24. Notice that the
subroutine must skip over the six bytes in the parameter list when it returns to avoid
"executing the parameters." The subroutine shown in Figure 6.25 does this.
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Notice that the return address is pulled into X before the local variables are allocated
and that the labels for the parameters are now used as offsets with X. In particular, the
label PSIZE used in the JMP instruction automatically allows the proper return. If we
make the assumption that the global variables V, W, and DTPD are moved to and from
the parameter list, a calling sequence would look as in Figure 6.26.

One should note that this technique generally takes more bytes of code than doing
the correction within the subroutine because each call requires an additional two bytes.

A second alternative permits the return from the subroutine to be simply an RTS
instruction without modifying the return address saved by the BSR instruction. To
account for the BRA instruction, the labels for the parameters have to be increased by 2
so that the subroutine is now written as in Figure 6.27. The trick is to put a BRA
instruction in front of the argument list to branch around it, as shown in Figure 6.28.

The typical use of passing parameters after the call assumes that all of the
arguments are either constant addresses or constant values. They are often just addresses.
The addresses are not usually modified, although the data at the addresses can be modified.
In particular, one will always be modifying the data at the addresses where output
parameters are placed. Calling sequences for this situation are particularly simple, as we
show in Figure 6.30 for our dot product example in Figure 6.29.

Because programs are usually in ROM in microprocessor applications, parameters
passed after the call must be constants or constant addresses. At a place in the program,
these addresses are constants. At another place, the addresses would be different constants.

Passing parameters in an in-line argument list is often used in FORTRAN
programs. A FORTRAN compiler passes the addresses of parameters, such as the
parameters in the example above. Like the stack method, this method is general enough
for FORTRAN, and it is easy to implement in the compiler. In assembly language
routines, this method has the appeal that it looks like an "instruction," with the opcode
replaced by the calling instruction and addressing modes replaced by the argument list,

BSR SWITCH
DC.W LO,L1,L2,L3

LO: ; program segment for case 0
BRA L4

*

LI: ; program segment for case 1
BRA L4

*

L2: ; program segment for case 2
BRA L4

*

L3: ; program segment for case 3
L4: BRA *

a. A calling sequence with an in-line argument list of jump addresses

SWITCH: CLRA
LSLD
PULX
JMP [D,X]

b. The subroutine
Figure 631. Implementation of a C or C++ Switch—Case Statement
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Before we look at other argument passing techniques using our running inner
product subroutine example, we illustrate a common subroutine used in C and C++
compilers to implement the case statement by means of an in-line argument list of
addresses. Figure 6.31 illustrates how, when a variable between 0 and 3 is in accumulator
B, the program can jump to label LO if the variable is 0, to LI if the variable is 1, to L2
if the variable is 2, and to L3 if the variable is 3. For each case, an address is put in the
in-line argument list; the SWITCH subroutine reads one of these arguments into the PC,
as selected by the value in accumulator B. Note that this technique is more efficient than
a decision tree (Figure 2.14) when the same variable is tested for numbers, which happen
to be consecutive, going to a program segment that the number indicates. However, this
example is neither position independent nor does it use 8-bit in-line arguments to further
improve efficiency. The reader is encouraged to improve this technique to do this.

TABLE: DS 6
PARV: EQU 0
PARW: EQU 2
PARDP: EQU 4

b. Assembler directives

Figure 632. Parameters in a Table

We now consider the technique of passing parameters via a table. The argument list,
which is in-line when parameters are passed after the call, can be a table stored anywhere
in memory. This technique is quite similar to passing parameters after the call. For our
example, suppose that one uses a table whose address is passed in X and that looks like
Figure 6.32, where, as before, the suffixes H and L stand for the high and low bytes of
the 2-byte parameters PARV, PARW, and PARDP. The subroutine shown in Figure 6.33a
is called by a sequence shown in Figure 6.33b.

Passing parameters by a table is often used to control a floppy disk in a way that is
transparent to the user. The number of parameters needed to control a disk can be very
large; therefore the table can serve as a place to keep all the parameters, so only the
address of the table is sent to each subroutine that deals with the floppy disk.

In this section, we considered ways to pass arguments to and from subroutines. The
register technique is best for small subroutines that have just a few arguments. The stack
technique is best for larger subroutines because it is the most general. The in-line
argument list that passes parameters after the call is used in FORTRAN subroutines, and
the table technique is commonly used in operating system subroutines. The technique
that passes parameters in global variables was covered for completeness and is useful in
very simple micrcontrollers such as the 6805, but it is discouraged in the 6812.
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* SUBROUTINE DOTPRD
* PARAMETERS
*

PARV: EQU 0 ; Copy of vector V
PARW: EQU 2 ; Copy of vector W
PARDP: EQU 4 ; Dot product of V and W
*

* LOCAL VARIABLES
*

TERM: EQU 0
MBYTES: EQU 2
DOTPRD: LEAS -NBYTES, SP ; Allocation for local variables

LDAA PARV,X
LDAB PARW,X
MUL ; First term of DP into D
STD TERM, SP ; Store in local variable
LDAA PARV+1,X
LDAB PARW+1,X
MUL ; Second term into D
ADDD TERM,SP
STD PARDP, X ; Place dot product
LEAS NBYTES, SP ; Deallocate local variables
RTS

a. The subroutine

LDX fTABLE
MOVW V, PARV, X ; Place copy of V into parameter
MOVW W, PARW, X ; Place copy of W into parameter
BSR DOTPRD ; Call Subroutine
MOVW PARDP, X, DTPD ; Copy result into global variable

b. Calling sequence

Figure 633. Calling Sequence for Passing Arguments in a Table

6.3 Passing Arguments by Value, Reference, and Name

Computer science students, as opposed to electrical engineering students, study the
passing of parameters in high-level language subroutines on a different level than that
used in the preceding section. We include this section to explain that level to you. On
the one hand, this level is very important if, say, you are writing or using a subroutine
that is used by a high-level language program and that subroutine has to conform to the
properties discussed below. On the other hand, the differentiation between some of the
characteristics discussed below is rather blurry in assembly language programs.
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The most important characteristic of a parameter is whether you pass the value of
the parameter to the subroutine, or the address of the parameter to the subroutine. In the
example used throughout §6.2, values of the vectors and the dot product usually were
passed to and from the subroutine rather than the addresses of these arguments. (The one
exception was in the discussion of passing parameters after the call, where constant
addresses were passed in the argument list.) If the value of a parameter is passed, we say
the parameter is passed or called by value. Output parameters passed by value are also
said to be passed or called by result. If the address of the parameter is passed, the
parameter is passed by reference or by name as we describe below.

The passing of parameters by value is completely general but could be time
consuming. Consider a simple example where the string STRING of ASCII characters,
terminated by an ASCII carriage return ($OD), is passed one character at a time into the
subroutine, and the string is up to 100 characters long. Clearly, a lot of time would be
used copying the characters into parameter locations. Were there enough registers, we
would have to load 100 bytes into registers before calling the subroutine. A hundred
bytes would be moved to global memory using the global technique, or 100 bytes would
be pushed on the stack using the stack technique. Obviously, it is more efficient to pass
an address rather than these values. For this case, the address would be the address of the
first character of the string, or the label STRING itself. The parameter is called by
reference, or is called by name. There is a slight difference between call by reference and
call by name, but in assembly language, this difference is not worth splitting hairs
about. We will refer to this technique, where the address of the data is passed as an
argument, as call by name. Figures 6.29 and 6.31 are examples of subroutines that pass
parameters by name. The other figures in this chapter called input parameters by value
and called output parameters by result.

Call by name is useful when the parameters themselves are subroutines as, for
example, in a subroutine that integrates the function FUN between 0 and 1. In this case,
the function FUN could be supplied as an argument to an integration subroutine and it is
reevaluated each time the subroutine calculates a new point of FUN. For example, the
call to FUN may supply a starting point and an increment delta. The nth call to the
subroutine returns the value of function FUN(x) at x = starting point + (n - 1) * delta.
This continues until the calling routine changes the value of the starting point. Each call
to FUN inside the integration subroutine returns a different value for FUN. This, then, is
an example of call by name, because the address (of a subroutine) is passed.

In this section, we have described the types of information that are passed about
parameters. The most important distinction is whether a value is passed (a call by value
or call by result) or whether an address is passed (a call by name or a call by reference).

6.4 Calling and Returning Mechanisms

The 6812 provides several mechanisms to call a subroutine and return from it. The
standard subroutine uses BSR, or the equivalent instruction, to call the subroutine and
RTS, or the equivalent instruction, to return from it. We have used this mechanism in
the earlier sections of this chapter. However, there are the SWI and RTI instructions that
can be used for the software interrupt handler; the LDX #RETURN instruction can be
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used to call and return from a program segment that is very much like a subroutine. Such
a calling and returning mechanism is used in the Motorola 500 series of RISC
microcomputers discussed in Chapter 12. In the spirit of showing design alternatives, we
will survey these techniques, pointing out advantages and disadvantages of each approach.

As we proceed, we will discuss several related important topics. We will look at
hardware interrupts and at the fork and join mechanisms used in timesharing. These
important topics are best covered in this section on calling and returning mechanisms.

There are alternatives to the most commonly used BSR/RTS mechanisms. We first
discuss alternative returning mechanisms and then alternative calling mechanisms.

The alternative to the returning mechanism can be used to greatly improve the
clarity of your programs. A significant problem in many programs that call subroutines
occurs when the subroutine alters the contents of a register, but the writer of the calling
routine does not think it does. The calling routine puts some number in that register,
before calling the subroutine, and expects to find it there after the subroutine returns to
this calling routine. It will not be there. Two simple solutions to this problem come to
rnind. One is to assume all subroutines will change any register, so the calling routine
will have to save and restore any values in registers that it wants to save. The other is to
assume that the subroutine will save and restore all registers except those used for output
parameters. The latter solution is generally more statically efficient because any
operation done by a subroutine requires instructions that are stored just once, where the
subroutine is stored, whereas any operation done in the calling routine requires
instructions to be stored at each place that the subroutine is called.

SUB: TFR X,D
LEAY D , Y
RTS

Figure 634. Simple Subroutine

SUB: PSHD ; Save D
TFR X f D
LEAY D , Y
PULD ; Restore D
RTS ; Return

Figure 635. A Subroutine Saving and Restoring Registers

Suppose that a subroutine is called ten times. Then the former solution needs ten pairs of
program segments to save and restore the register values. The latter solution requires
only one pair of segments to save and restore the registers.

Consider the simple example in Figure 6.34 to add the contents of the register X to
that of register Y without altering any register except Y. If we use TFR X , D, followed
by LEAY D, Y, accumulator D is changed. However, as shown in Figure 6.35, if we
save D first and restore it after the addition is done by the LEAY instruction (which
doesn't affect condition codes), we don't affect other registers when we add X to Y. This
technique for saving registers can be used to save all the registers used in a subroutine
that do not return a result of the subroutine.
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The extended local access of stacked local variables can be used with this technique.
Consider the body of the subroutine after the PSHC instruction and before the PULC
instruction as a program segment. The local variables are allocated just after the PSHC
instruction that saves registers and are deallocated just before the PULC instruction that
returns to the calling routine. You now look at the saved register values as stacked local
variables of an outer program segment that includes the PSHD, PSHC, PULC, and PULD
instruction. Using extended local access, you can read these registers and write into them,
too. This allows you to output data in a register, even if the data are saved.

REGCC: EQU 0
REGD: EQU 1
REGX: EQU 3
REGY: EQU 5
*

SUB: PSHY ; Save Y
PSHX ; Save X
PSHD ; Save D
PSHC ; Save CC
LDD REGX, SP ; Get to caller's X value
ADDD REGY, SP ; Add to caller's Y value
STD REGY, SP ; Result to caller's Y value
PULC ; Restore CC
PULD ; Restore D
PULX ; Restore X
PULY ; Restore Y
RTS ; Return

Figure 636. Saving and Restoring All the Registers

SUB LBRA SUBO
LBRA SUB1
LBRA SUB2

SUBO: ; perform initialization
RTS

SUB1: ; perform output
RTS

SUB2: ; perform termination
RTS

Figure 637. A Subroutine with Multiple Entry Points

As an example of this, look at the preceding example again, now using saved
registers as stacked local variables of an outer program segment. See Figure 6.36. This
idea was expanded earlier to cover the passing of arguments on the stack. The basic idea
is that you just have to know where the data are, relative to the current stack pointer SP,
in order to access the data. Thus, access to the saved registers, the caller's stacked local
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variables, or the caller's saved registers is as easy as access to local variables. You are
really using the extended local access technique regardless of the variations.

Although BSR is the most efficient instruction to call subroutines, its 8-bit offset
limits it to call subroutines within -128 to +127 locations of the instruction after that
BSR instruction. The JSR instruction with program relative addressing can be used for
subroutines that are outside that range. Both instructions are position independent. This
means that if the BSR or JSR instruction and the subroutine itself are in the same ROM,
the subroutine will be called correctly wherever the ROM is placed in memory. The JSR
instruction using direct or indirect addressing does not have this property and, because of
this, should be avoided except for one case.

The one exception is where the subroutine is in a fixed place in memory. A monitor
or debugging program is a program used to help you step through a program to find
errors in it. These programs are often in ROM at fixed addresses in memory to allow the
reset mechanism (that is executed when power is first turned on) to work correctly,
Calling a subroutine of the monitor program from outside of the monitor program
should be done with a JSR instruction, using direct or indirect addressing, because,
wherever the calling routine is assigned in memory, the subroutine location is fixed in
absolute memory, not relative to the address of the calling routine. The simple statement
that all subroutines must be called using BSR or JSR with program relative addressing
to make the program position independent is wrong in this case.

A variation of the calling mechanism uses computed addresses, computed in an
index register, say X, and loaded from there into the program counter using JSR 0, X.
One place where this calling mechanism is used is to call a subroutine with many entry
points. In this situation, we need to have a standard means to call these different entry
points that does not change if the subroutine is modified. If this is not done, a subroutine
modification to fix a bug may cause a change in the calling routine because the entry
point it used to jump to is now at a different location. This is another example where
fixing an error in one part of a program can propagate to other parts of the program,
making the software very difficult to maintain. The solution is to have standard places to
call that contain the appropriate jumps to the correct entry points.

ASLB
ASLB ; Multiply contents of B by 4
LDX #SUB
JSR B, X ; Jump to ith entry point

Figure 638. Calling the ith Subroutine for Figure 6.37

The standard places are at the beginning of the subroutine, so that their locations
will not be affected by changes in the subroutine. These places contain LBRA
instructions that jump to the proper entry point. The LBRA instructions are always the
same length regardless of whether or not the entry point may be reached by a BRA.

When LBRA instructions are used, the standard places to jump are always some
multiple of three bytes from the beginning of the subroutine. An example will make this
clearer. Suppose a subroutine SUB to interface to a printer has three entry points, SUBO,
SUB1, and SUB2. We call SUBO before we use the printer to initialize it, we call SUB1
to output a character to it, and we call SUB2 after we use the printer to turn it off. The



6.4 Calling And Returning Mechanisms 167

layout of the subroutine is shown in Figure 6.37. If one wants to call subroutine SUB at
its ith entry point, i = 0 to initialize it, i = 1 to output to it, and i = 2 to terminate its
use, then, assuming that the value of i is in accumulator B, the calling sequence in
Figure 6.38 can be used.

Notice that the machine code for the calling sequence stays the same regardless of
internal changes to subroutine SUB. That is, if SUB1 were to increase in size due to
modifications of the code, the calling program in Figure 6.38 is not changed at all. This
technique limits the interaction between program segments so that changes in one
segment do not propagate to other segments. So if a bug is fixed in the subroutine and
the calling routine is in a different ROM or a different part of EEPROM, it won't have

SUB: DC.W SUBO
DC.W SUB1
DC.W SUB2

Figure 639. A Jump Vector

to be changed when the subroutine size changes. A variation of this technique uses
indirect addressing and addresses instead of LBRA instructions, because fewer bytes are
used with DC .Ws than LBRA instructions. However, this does not yield a position
independent subroutine. For example, if the layout of SUB has the LBRA instructions
replaced by the program segment in Figure 6.39, then its calling sequence is that shown
in Figure 6.40. Although we described this technique and its variation as useful for a
subroutine with several entry points, either works equally well for distinct subroutines.

ASLD ; Multiply contents of D by 2
LDX #SUB
JSR [ D, X ] ; Jump to ith entry point

Figure 6.40. Calling the ith Subroutine of a Jump Vector

LEAS -2,SP ; Make space for return address
PSHY ; Save Y above return
PSHX ; Save X above that
PSHA ; Save accumulator A
PSHB ; Save accumulator B
PSHC ; Save condition codes
LEAX RET, PCR ; Get return address ( position independent)
STX 7 , SP ; Place return address
LDX $ FFF6 ; Get SWI handler address
JMP 0, X ; Go to handler

RET: (next instruction)

Figure 6.41. Emulation of SWI

Now we consider some variations of subroutines. A handler is really just a
subroutine that "handles" an interrupt. The software interrupt instruction SWI pushes all
the registers onto the hardware stack, except SP, and then loads the program counter with
the contents of locations $FFF6 and $FFF7. The sequence in Figure 6.41 produces the
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same effect as the SWI instruction except for minor changes in the CC and X registers.
The subroutine at the address contained in $FFF6 and $FFF7 is called the SWI handler,
A handler must end in an RTI instruction rather than an RTS instruction because all
registers are pushed onto the stack with the SWI instruction. The RTI instruction at the
end of an SWI handler does the same thing as the code in Figure 6.42.

SWI differs from BSR in that the address of the handler is obtained indirectly
through the implied address $FFF6. This makes the SWI instruction shorter, in this case
one byte long. An SWI handler can be made to perform a function, such as our
ubiquitous dot product. See Figure 6.43. The initialization of the high-address "vector"
need be done only once, before the first SWI call is made, as shown in Figure 6.44a.
Then, each time it's called, insert the SWI instruction in your calling program, as shown
in Figure 6.44b. Note that in the calling routine, we pass arguments in registers; but
inside the handler, we access these arguments using stack techniques.

When you are debugging a program, you can use a program called a debugger or a
monitor to help you debug the program that you are writing. You may want to display
the values in some of the registers or memory locations or to insert some data into some
of the registers or memory locations. As used with most debug programs, the SWI
handler is a routine in the debug program that displays a prompt character, such as "*,"
on the terminal and waits for the user to give commands to display or change the values
in registers or memory locations. This can be used to display or change any amount of
data or even to modify the program. This SWI instruction is called a breakpoint.

A typical monitor program inserts a breakpoint at the start of an instruction by
replacing the opcode byte with an SWI instruction. The address of the replaced opcode
byte, as well as the byte itself, are kept in a part of RAM that the monitor uses for this
purpose. The program now runs until it encounters the SWI breakpoint. Then the
registers might be displayed together with a prompt for further commands to examine or
change memory or register contents. It is indispensable that the SWI instruction be one
byte long to be used as a breakpoint. If you tried to put breakpoints in the program with
a JSR instruction, you would have to remove three bytes. If your program had a branch
in it to the second byte being removed, unfathomable things might begin to happen! The
problem in your program would be even harder to find now. However, if the single-word
SWI instruction is used, this cannot happen, and the SWI handler call can be made to
help you debug the program. One limitation of breakpoints is that the program being
debugged must be in RAM. It is not possible to replace an opcode in ROM with an SWI
instruction. Programs already in ROM are therefore more difficult to debug.

PULC ; Restore condition codes
PULB ; Restore accumulator B
PULA ; Restore accumulator A
PULX ; Restore X
PULY ; Restore Y
RTS ; Restore PC

Figure 6.42. Emulation of RTI
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* original variables
RESULT; DS.W 1
*

* SUBROUTINE DOTPRD
* LOCAL VARIABLES
*

TERM: EQU 0
MBYTES: EQU 2
* Saved registers
*

REGCC: EQU 0+NBYTES ; saved condition code register
REGB: EQU 1+NBYTES ; saved accumulator B ~ note "backwards"
REGA: EQU 2+NBYTES ; saved accumulator A — note "backwards"
REGX: EQU 3+NBYTES ; saved index register X
REGY: EQU 5+NBYTES ; saved index register Y
*

DOTPRD: LEAS -NBYTES,SP
LDAA REGA,SP
LDAB REGB,SP
MUL
STD TERM, SP ; First term to local variables
LDAA REGX+lrSP
LDAB REGY+1,SP
MUL
ADDD TERM, SP ; Dot product into D
STAA REGA, SP ; Dot product high byte to output parameter
STAB REGB, SP ; Dot product low byte to output parameter
LEAS NBYTES, SP ; Deallocate local variables
RTI

Figure 6.43. An SWI Handler

entry: MOVW #DOTPRD,$FFP6

a. Initialization (done just once)
LDAA #1
LDAB #2
LDX #3
LDY #4
SWI
STD RESULT ; Put in global location
BRA *

b. Calling sequence (done each time the operation is to be performed).

Figure 6.44. Calling an SWI Handler
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Early in this book, we said that the SWI instruction can be used at the end of each
program. This instruction is really a breakpoint. You cannot turn off a microcomputer at
the end of a program, but you can return to the debug program in order to examine the
results of your program. The "halt" instruction is just a return to the debug program.

The TRAP instructions do essentially the same thing as the SWI instruction except
that the program counter is loaded from different consecutive addresses ($FFF8). These
instructions also happen to be two words long rather than one. The handlers, whose
addresses are put there, are used in lieu of subroutines for very commonly used operations
needing to save all of the registers. For example, operating system subroutines frequently
use these instructions.

* TRAP HANDLER
* saved registers
REGCC: EQU 0 ; saved condition code register
REGB: EQU 1 ; saved accumulator B
REGA: EQU 2 ; saved accumulator A
REGX: EQU 3 ; saved index register X
REGY: EQU 5 ; saved index register Y
REGPC: EQU 7 ; saved PC
JUMPVECTOR: DC.W FO,F1,F2,F3
*

TRAP: CLRA
LDX REGPC,SP
LDAB -1,X
SUBB #$30
LSLD
LDX #JUMPVECTOR
JMP [D,X]

FO: RTI ; do inner product
F1: RTI ; do quadradic
F2: RTI ; do temperature conversion
F3: RTI ; do parallel resistor

Figure 6.45. A Trap Handler

entry: MOW #TRAP,$FFF8
LDAA #1
LDAB #2
LDX #3
LDY #4
DC.W $1831 ; TRAP #$31
LDX #5
LDY #6
DC.W $1833 ; TRAP #$33
bra *

Figure 6.46. Calling a Trap Handler
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A trap handler, shown in Figure 6.45, can execute the program segment to compute
the inner product, if the instruction whose opcode is $1830 is executed; can execute the
program segment to compute the quadratic formula, if the instruction whose opcode is
$1831 is executed; can execute the program segment to compute the temperature
conversion, if the instruction whose opcode is $1832 is executed; and can execute the
program segment to compute the parallel resistor calculation, if the instruction whose
opcode is $1833 is executed. Each of the program segments in the trap handler will look
like the SWI handler shown in Figure 6.43. Calling routines can generate these
nonstandard opcodes using DC directives, as in Figure 6.46. This program passes
arguments in the registers for the quadradic formula and then for the parallel resistor
formula.

The TRAP instructions can be used to emulate other instructions. Emulation means
getting exactly the same result but perhaps taking more time. This technique is often
used in minicomputers that are sold in different models that have different costs and
speeds. The faster, more expensive model may have an instruction such as floating point
add that is implemented on the slower, cheaper model as TRAP. The same program can
be run in both the cheaper and more expensive models. When such an opcode is
encountered in more expensive models, it results in the execution of the instruction. In
cheaper models it results in calling a handler to emulate the instruction. In a sense, the
instruction TRAP is a wildcard instruction because it behaves a bit like an instruction but
is really a call to a software handlers. The 68000 family uses these types of instructions,
which they call f-line instructions, to emulate some instructions in the cheaper 68332
that are implemented in hardware in the 68020 and 68881.

We digress for a moment to discuss hardware interrupts. These are handlers that are
called up by an I/O device when that device wants service. An I/O hardware interrupt can
occur at any time, and the main program will stop as if the next instruction were an SWI
instruction. When the handler has finished, the RTI instruction is executed. This causes
the main program to resume exactly where it left off. One exception, the reset interrupt,
occurs when the reset pin on 6812 has a low signal put on it. The program counter is
then loaded with the contents of locations $FFFE and $FFFF. The reset pin can be put
in a circuit such that the pin is put low whenever the power is turned on, thus allowing
the microprocessor to start running its program stored in ROM. The hardware interrupt is
not all that magical. It is merely a handler that is called by I/O hardware by putting the
appropriate signal on some pin of the 6812. This hardware is outside the direct control of
the program that you are writing. Interrupts are further considered in Chapter 11.

In this section we have considered the subroutine and its alternatives. The subroutine
is most often called by the BSR or JSR instruction, but it is occasionally called using
the JSR instruction with direct or index addressing to achieve position independence.
The SWI and RTI instructions call and return from handlers, which are like subroutines
but are also like user-defined machine instructions. The hardware interrupt is a handler
that is initiated by a hardware signal rather than a program call. With these tools, you are
ready to modularize your programs into subroutines or equivalent program segments, so
that each subroutine is more compact and easier to understand and so that interactions
between these subroutines are carefully controlled to prevent unnecessary propagation of
errors.
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6,5 Summary

This chapter introduced the subroutine. It was dissected into parts to show alternative
techniques for each part. Stacked local variables were studied along with alternatives for
accessing local variables of nested program segments. Calling and returning mechanisms
were studied, and the principal one, using BSR and RTS, was shown to have several
alternatives, including ones that save the registers and restore them efficiently.
Alternatives such as SWI and TRAP were studied. We then turned to the techniques that
are used to pass arguments. The register, global, stack, in-line argument list, before the
subroutine entry point, and table techniques were considered.

You should now be able to write subroutines, call them, and pass arguments to
them in an effective manner. You should be prepared to use them in the following
chapters to manipulate data structures, perform arithmetic, and interface to I/O hardware.
Moreover, you should know how to approach a problem using top-down design or how
to test a module with a driver. The need for the last two techniques is not apparent to the
student who writes a lot of small programs and never faces the problem of writing a large
program. When he or she does face that problem without the tools that we have
introduced, inefficiencies and chaos generally will be the result. We introduced these
techniques early and suggest that you use them whenever you can do so, even if they are
not absolutely needed.

Do You Know These Terms?

See the end of chapter 1 for instructions.

top-down design input parameter reset call by result
calling and input argument initialized call by reference

returning output parameter extended local call by name
mechanism output argument access handler

program segment local variable stack marker software interrupt
input parameter global variable calling routine SWI handler
output parameter stacked local calling sequence debugger
pass parameters variable in-line argument monitor
local variable binding list breakpoint
program segment allocation after the call emulate
entry point deallocation case hardware
exit point accessing call by value interrupts

reset
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PROBLEMS

1. Write a program segment that evaluates the quadratic function ax2 + bx + c, where
signed 16-bit arguments a, b, c, and x are stored on the stack and are initialized to 1, 2,
3, and 4, respectively, by pushing 4, then 3, then 2, and then 1, in the manner of Figure
6.6, and the output is stored on the stack in a "hole" created by a LEAS ~2 , SP
instruction before the segment begins. In order to demonstrate local variables, as part of
your program segment, save 16-bit value ax2 in a 16-bit local variable on the stack,

2 . Write a shortest program segment that computes the parallel resistance of two
resistors Rl and R2, where unsigned 16-bit arguments Rl and R2 are stored in local
variables, which are both initialized to 100, by pushing 100 and then 100, and the result
is stored on the stack in a "hole" created by a LEAS -2, SP instruction, in the manner
of Figure 6.6. In order to demonstrate local variables, as part of your program segment,
store Rl times R2 in a 32-bit local variable on the stack.

3 . Write a program segment that evaluates the quadratic function ax2 + bx + c, where
signed 16-bit arguments a, b, c, and x are stored in local variables PARA, PARE, PARC,
and PARK on the stack, which are initialized to 1, 2, 3, and 4, respectively, and the
output is returned in local variable RESULT on the stack, in the manner of Figure 6.JO.
In order to demonstrate local variables, as part of your program segment, store ax2 in a
16-bit local variable on the stack.

4 , Write a shortest program segment that computes the parallel resistance of two
resistors Rl and R2, where unsigned 16-bit arguments are stored in local variables named
Rl and R2, which are both initialized to 100 and the output is returned in register D, in
the manner of Figure 6.10. In order to demonstrate local variables, as part of your
program segment, store Rl times R2 in a 32-bit local variable on the stack.

5 . Write a program segment that evaluates the quadratic function ax2 + bx + c, where
signed 16-bit arguments a, b, c, and x are stored in local variables PARA, PARE, PARC,
and PARX on the stack as outer segment local variables, which are initialized to 1, 2, 3,
and 4, respectively, and the output is returned in register D, in the manner of Figure
6.13. In order to demonstrate local variables, as part of your inner program segment,
store ax2 in a 16-bit local variable on the stack.

6 . Write a shortest program segment that computes the parallel resistance of two
resistors Rl and R2, where unsigned 16-bit arguments are stored in outer segment local
variables Rl and R2, which are both intitilaized to 100, and the output is returned in
register D, in the manner of Figure 6.13. To demonstrate local variables, as part of your
inner program segment, store Rl times R2 in a 32-bit local variable on the stack.

7 . Write a program segment that evaluates the quadratic function ax2 + bx + c, where
signed 16-bit arguments a, b, c, and x are stored in local variables PARA, PARE, PARC,
and PARX on the stack as outer segment local variables, which are initialized to 1, 2, 3,
and 4, respectively, and the output is returned in register D, using a stack marker in the
manner of Figure 6.14. In order to demonstrate local variables, as part of your inner
program segment, store ax2 in a 16-bit local variable on the stack.
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8 . Write a shortest program segment that computes the parallel resistance of two
resistors Rl and R2, where unsigned 16-bit arguments are stored in outer segment local
variables Rl and R2, which are both initialized to 100, and the output is returned in
register D, using a stack marker in the manner of Figure 6.14, In order to demonstrate
local variables, as part of your inner program segment, store Rl times R2 in a 32-bit
local variable on the stack.

9 . Write a position-independent reentrant subroutine QUAD that evaluates the quadratic
function ax2 + bx + c, where signed 8-bit arguments a, b, c, and x are passed in registers
A, B, (low byte of) Y, and (low byte of) X, and the output is passed in A. In order to
demonstrate local variables, as part of your subroutine, store ax2 in an 8-bit local
variable on the stack. Write a calling sequence that loads 5 into A, 2 into B, 3 into Y,
and 4 into X; calls QUAD; and stores the result in global variable ANSWER.

10. Write a shortest position-independent reentrant subroutine PAR that computes the
parallel resistance of two resistors Rl and R2, where unsigned 16-bit arguments Rl and
R2 are passed in registers D and Y and the output is passed in D. In order to demonstrate
local variables, as part of your subroutine, store Rl times R2 in a 32-bit local variable
on the stack. Write a calling sequence that loads 100 into D and Y, calls PAR, and stores
the result in global variable ANSWER.

11. Write a position-independent reentrant subroutine QUAD that evaluates the quadratic
function ax2 + bx + c, where signed 16-bit arguments a, b, c, and x are passed in global
variables PARA, PARE, PARC, and PARK and the output is passed in global variable
RESULT. In order to demonstrate local variables, as part of your subroutine, store ax2 in
a 16-bit local variable on the stack. Write a calling sequence that loads 1 into PARA, 2
into PARB, 3 into PARC and 4 into PARX; calls QUAD; and stores the result in global
variable ANSWER.

12. Write a shortest position-independent reentrant subroutine PAR that computes the
parallel resistance of two resistors Rl and R2, where unsigned 16-bit arguments Rl and
R2 are passed in global variables Rl and R2 and the output is passed in global variable
RESULT. In order to demonstrate local variables, as part of your subroutine, store Rl
times R2 in a 32-bit local variable on the stack. Write a calling sequence that loads 100
into Rl and R2, calls PAR, and stores the result in global variable ANSWER.

13. Write a shortest reentrant, position-independent subroutine SEARCH that returns
the number of times that the integer K appears in the vector Z of length N and each
element is one byte. If the address of Z is in X, the value of K is in A, the value of N is
in B, and the return value NUM is left on the stack, SEARCH is called as in Figure 6.47.



PROBLEMS 175

PSHA
PSHB
PSHX
CLR I, -SP Hole for NUM
BSR SEARCH
PULA Put NUM into A
LEAS 4, SP Balance stack

Figure 6.47. Program for Problem 13

14. Write a position-independent reentrant subroutine QUAD that evaluates the quadratic
function ax2 + bx + c, where signed 16-bit arguments a, b, c, and x are passed on the
stack, named PARA, PARE, PARC, and PARK, and the output is passed on the stack,
named RESULT. In order to demonstrate local variables, as part of your subroutine, store
ax2 in a 16-bit local variable on the stack. Write a calling sequence that pushes 1, 2, 3,
and 4; calls QUAD; pulls the result from the stack; and stores the result in global variable
ANSWER.

15. Write a shortest position-independent reentrant subroutine PAR that computes the
parallel resistance of two resistors Rl and R2, where unsigned 16-bit arguments are
passed on the stack and named Rl and R2, and the output is passed on the stack, named
RESULT. In order to demonstrate local variables, as part of your subroutine, store Rl
times R2 in a 32-bit local variable on the stack. Write a calling sequence that pushes 100
twice, calls PAR, pulls the result from the stack, and stores the result in global variable
ANSWER.

16. Do the same thing as in Problem 13, assuming that the input parameters are passed
after the call in the same order, while the parameter NUM is returned on the stack as
before. Do not use a BRA instruction before the parameter list, but follow the style of
Figure 6.27. Provide an example of a calling sequence.

17. Write a position-independent reentrant subroutine QUAD that evaluates the quadratic
function ax2 + bx + c, where signed 16-bit arguments a, b, c, and x are passed after the
call, named PARA, PARB, PARC, and PARX, and the output is passed after the call,
named RESULT. In order to demonstrate local variables, as part of your subroutine, store
ax2 in a 16-bit local variable on the stack. Do not use a BRA instruction before the
parameter list but follow the style of Figures 6.25 and 6.26. Write a calling sequence
that writes 1, 2, 3, and 4 into PARA, PARB, PARC, and PARX; calls QUAD; and moves
the result to global variable ANSWER.

18. Write a shortest position-independent reentrant subroutine PAR that computes the
parallel resistance of two resistors, where unsigned 16-bit arguments are passed after the
call and named Rl and R2 and the output is passed after the call, named RESULT. In
order to demonstrate local variables, as part of your subroutine, store Rl times R2 in a
32-bit local variable on the stack. Do not use a BRA instruction before the parameter list,
but follow the style of Figures 6.25 and 6.26. Write a calling sequence that writes 100
into Rl and R2, calls PAR, and moves the result to global variable ANSWER.
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19. One reason for not passing output parameters after the call is that a subroutine that
calls another subroutine and has some parameters passed back to it after the call will not
always be reentrant. Explain why this is so. Are there similar restrictions on input
parameters?

2 0. Give an example of passing output parameters after the call where the program can
still be stored in ROM.

21. Write a subroutine to search an N-byte vector Z until a byte is found that has the
same bits in positions 0,3,5, and 7 as the word MATCH. The address of Z is passed as
the first entry AZ in a table, the value of MATCH is passed below it in the table, the
value of N is passed below it in the table, and the address of the first byte found, ADDR,
is passed below it in a table. If no byte is found in Z with a match, $FFFF should be
placed in AZ. The address of the table is in X when the subroutine is called.

2 2, Write a position-independent reentrant subroutine QUAD that evaluates the quadratic
function ax2 4- bx + c, where signed 16-bit arguments a, b, c, and x are passed in a table,
named PARA, PARB, PARC, and PARK; and the output is passed in the table, named
RESULT. The address of the table is in X when the subroutine is called. In order to
demonstrate local variables, as part of your subroutine, store ax2 in a 16-bit local
variable on the stack. Write a calling sequence that writes 1, 2, 3, and 4 into PARA,
PARB, PARC, and PARK; calls QUAD; and moves the result to global variable ANSWER.

2 3. Write a shortest position-independent reentrant subroutine PAR that computes the
parallel resistance of two resistors Rl and R2, where unsigned 16-bit arguments are
passed in a table and in elements Rl and R2 and the output is passed in the same table in
an element named RESULT. In order to demonstrate local variables, as part of your
subroutine, store Rl times R2 in a 16-bit local variable on the stack. The address of the
table is in X when the subroutine is called. Write a calling sequence that writes 100 into
Rl and R2, calls PAR, and moves the result to global variable ANSWER.

2 4. Repeat Problem 14, saving and restoring all the registers that were used.

2 5. Repeat Problem 15, saving and restoring all the registers that were used.

2 6. Repeat Problem 22, saving and restoring all the registers that were used.

2 7 . Repeat Problem 23, saving and restoring all the registers that were used.

2 8. How would the calling sequence of Figure 6.40 be modified if the subroutine SUB
in Figure 6.41 replaced the LBRA instructions with

SUB DC.W SUBO-SUB
DC.W SUB1-SUB
DC.W SUB2-SUB

What are the advantages of doing this, if any?
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29. A device driver is an operating system component that interfaces to an I/O device.
It has subroutines Init, Read, Write, and Terminate. Subroutine Init is called when the
I/O device is being prepared for use, Subroutine Read is called to read data from the I/O
device, Subroutine Write is called to output data from the I/O device, and Subroutine
Terminate is called when the I/O device is no longer needed. Write a program segment for
the beginning of a position-independent device driver, which, for an address in index
register X, JSR 0, X always executes the Init subroutine; JSR 4, X always executes
the Read subroutine; JSR 8,X always executes the Write subroutine; and JSR 16,X
always executes the Terminate subroutine, regardless of where the device driver is stored.

3 0. Write an instruction sequence that produces the same moves as the instruction SWI
and, in addition, sets the bits in the CC register in exactly the same way.

31. Write a shortest trap handler whose opcode is $1830, to test whether a 2-byte
number N is prime. The number N should be passed by value in D and the carry bit
should be returned set if N is prime. Write a program segment that loads 11 into D,
executes $1830, and branches if carry set to location ISPRIME.

32. Write a shortest trap handler whose opcode is $1831 that evaluates the quadratic
function ax2 + bx + c, where signed 8-bit arguments a, b, c, and x are passed in registers
A, B, Y, and X, and the 16-bit output is passed in A. In order to demonstrate local
variables, as part of your handler, store ax2 in an 8-bit local variable on the stack. Write
a program segment that loads 1 into A, 2 into B, 3 into Y, and 4 into X; executes
$1831; and stores the result in global variable ANSWER.

3 3. Write a trap handler whose opcode is $1832, that computes the parallel resistance
of two resistors Rl and R2, where unsigned 16-bit arguments Rl and R2 are passed in
registers D and Y, and the 16-bit output is passed in D. In order to demonstrate local
variables, as part of your handler, store Rl times R2 in a 32-bit local variable on the
stack. Write a program segment that loads 100 into D and Y, executes $1832, and stores
the result in global variable ANSWER.

34. Write a position-independent trap handler, whose address is in $FFF8, which
branches to address PRIME if the trap instruction is $1830, to address QUAD if the trap
instruction is $1831, and to address PAR if the trap instruction is $1832.
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This inexpensive Axiom PB68HC12A4 board is well suited to senior design, and other
prototyping projects. Its wire-wrap pins can be reliably connected to external wire-wrap
sockets and connectors.
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Arithmetic Operations

This chapter deals with how one number crunches, using algebraic formulas, and how
one writes subroutines for conversion between different bases, multiple-precision integer
arithmetic, floating-point arithmetic, and fuzzy logic.

The first section describes unsigned and signed multiplication and division.
Although the subroutines developed herein are in fact equivalent to 6812 instructions,
they clearly illustrate the algorithms used to execute these instructions in a typical
controller, and easily developed variants of these subroutines are usable on other
microcontrollers that do not have these instructions.

In the next section, we develop ways to convert integers between number systems,
such as binary and decimal. These techniques are needed when you input numbers from a
terminal keyboard and output numbers to a terminal display. A full comparison of these
techniques is made, examining all known possibilities and selecting the best, something
that you should try to do in writing any of your own subroutines for any purpose.

The third section presents a technique to write program segments that evaluate
algebraic formulas. The operations in the formulas are implemented with macros.
Formula evaluation becomes a sequence of macro calls. You can hand assemble these
macros. The actual variables used in the formula could be 32-bit integers, floating-point
numbers, or any other type of variable that the subroutines have been written to handle.

Some C compilers do not support long and float data types. Section 7.4 shows
how to perform 32-bit signed and unsigned integer arithmetic, which is useful to one
who uses a microprocessor in a numerical control application. The fifth section deals
with floating-point arithmetic. These sections will provide subroutines that enable you
to perform arithmetic using these number systems.

Section 7.6 deals with fuzzy logic, for which the 6812 has special instructions. This
section will give you some background so that you can describe a fuzzy logic system,
and you can write assembly language subroutines to execute fuzzy logic.

After reading this chapter, you should be able to convert integers from one base to
another. You should be able to write a sequence of subroutine calls to evaluate any
algebraic formula and write subroutines to work out any multiprecision arithmetic
operation, especially 32-bit long arithmetic. You should understand the principles of
floating point arithmetic and fuzzy logic to the point that you could write subroutines for
the usual floating-point and fuzzy logic operations.

179
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7.1 Multiplication and Division

This section illustrates basic multiplication and division algorithms using the 6812
instruction set. Because there are 6812 instructions that give the same results, these
subroutines are not useful for this machine. However, for other instruction sets that do
not have multiply and divide instructions, these subroutines are the only ways to perform
multiplication and division on these machines. Finally, these subroutines provide an
understanding of how the operations can be implemented in a controller and how these
operations can be extended to higher precisions where the instructions at that level of
precision may be unavailable in the microcontroller's instruction set.

We first look at multiple-precision multiplication. The 6812 microcontroller has
several instructions that multiply 8-bit unsigned integers and 16-bit signed and unsigned
numbers. To see the advantages of the MUL instruction, look at the subroutine BINMUL
of Figure 7.1, which does exactly the same multiplication as MUL, which takes three
clock cycles. Neglecting the clock cycles for the BSR and RTS instructions, BINMUL
takes 87 to 95 clock cycles to execute the multiplication. This illustrates that generally,
hardware operations are 10 to 100 times faster than the same operations done in software.

Turning to the division of unsigned integers, the subroutine of Figure 7.2 divides
the unsigned contents of B by the unsigned contents of A, returning the quotient in B and
the remainder in A. To understand better the division subroutine of Figure 7.2, let's look
more closely at binary division, where, for simplicity, we consider just 4-bit numbers.
To divide 6 into 13, we can mimic the usual base-10 division algorithm as follows:

*
* BINMUL multiplies the two unsigned numbers in A and B, putting
* the product in D. Register Y is unchanged.
*

BINMUL: PSHA ; Save first multiplier
CLRA ; Accumulator D will become the product
LDX #8 ; Count out 8 loops

*

LOOP j CLC ; Clear carry, if not adding first number
BITB #1 ; If multiplier bit is 1
BEQ SHIFT

*

ADDA 0, SP ; Add first number
*

SHIFT: RORA ; Shift 16 bits, feeding carry back into sum
RORB

*

DBNE X , LOOP ; Count down, repeat
*

LEAS 1, SP ; Balance stack
RTS

Figure 7.1.8-Bit Unsigned Multiply Subroutine



7,1 Multiplication and Division 181

0010
0110 ) 0001101

0011
0000
0110

0001
0000
0001

Another way of doing the bookkeeping of this last version is to first put all zeros in the
nibble A and put the dividend in nibble B so that the contents of A:B look like

which we will think of as our initial 8-bit state. Next, shift the bits of A:B left, putting
1 in the rightmost bit of B if the divisor can be subtracted from A without a carry,
putting in 0 otherwise. If the subtraction can be done without a carry, put the result of
the subtraction in A. Repeat this shift-subtract process three more times to get the
remainder in A and the quotient in B.

*
* DIVIDE divides the 1-byte unsigned number in B (dividend) by the
* 1-byte unsigned number in A (divisor), putting the quotient in B and
* the remainder in A. Register Y is unchanged.
*

DIVIDE: PSHA ; Save divisor
CLRA ; Expand dividend, fill with zeros
LDX #8 ; Initialize counter

*

LOOP: ASLD ; Shift dividend and quotient left
*

CMPA 0, SP ; Check if subtraction will leave positive rslt
BLO JUMP ; If so

*

SUBA 0, SP ; Subtract divisor
INCB ; Insert 1 in quotient

*

JUMP: DBNE X,LOOP ; Decrement counter
*

LEAS 1, SP ; Balance stack
RTS ; Return with quotient in B, remainder in A

Figure 72.8-Bit Unsigned Divide Subroutine
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The 8-bit case is identical to the above except that A and B become bytes, our state
A:B becomes sixteen bits, and there are eight shifts instead of four. The shift left on D
can be done with ASLD, which always puts a zero in the rightmost bit of B. If the
divisor can be subtracted from A without a carry, one needs to execute INCH and perform
the subtraction from A. The complete subroutine is shown in Figure 7.2. You should be
able to see how to adapt this subroutine for, say, dividing two unsigned 16-bit numbers
or an unsigned 16-bit number by an 8-bit one. (When the dividend and the divisor are of
different lengths, one has to check if a one has been shifted out when the state is shifted
left, and if so, the divisor should be subtracted from the remainder part of the state. This
prevents the remainder from being truncated.)

We now discuss briefly the multiplication and division of signed integers with a
special look at the multiplication of 8-bit signed integers. Using the usual rule for the
sign of the product of two signed numbers, we can extend the multiplication subroutines
of this section in a straightforward way to handle signed integers. Extending the
subroutines for division in this way is also straightforward after recalling that the sign of
the remainder is the same as the sign of the dividend and that the sign of the quotient is
positive if the signs of the dividend and divisor are equal; otherwise, it is negative.

There are also algorithms to multiply n-bit signed integers directly. We leave the
details of this to more advanced treatments of arithmetic, because it is quite easy to
modify any of the subroutines that we have presented for unsigned integers to work for
signed integers. We illustrate the technique by showing how to modify the results of the
MUL instruction to obtain an 8-bit signed multiply of Jl and $, which are 8-bit signed
integers located in registers A and B. Suppose & is represented as bits a-j,. . ., a0 and fS
is represented as by, . . ., bo- Then the numerical value of signed number % is,

# = -a7 * 27 + a6 * 26 + . . , . + OQ * 2°

Now, by adding a? * 28 to both sides, thereby making 37 * 28 + -37 * 27 = a.j * 27

we get, from the previous expression:

(A + a7 * 28) = a7 * 27 + a6 * 26 + . . . + ao * 2°

(This addition of a constant is called biasing.) We recognize this equation's right side as
an unsigned number A. It can be input to the MUL instruction, which actually
multiplies unsigned A times unsigned B. The result in accumulator D is

(A+ a7 * 2 8 )* (#+ b7 * 28) (!)

which, by multiplying out the terms, is

A. * « + a7 * -5 * 28 + b7 * %. * 28 + a7 * b7 * 216 (2)

We see that to get the first term J? * 2? from (2) requires subtracting the two middle terms
of (2) from accumulator D. [The rightmost term of (2), 216, does not appear in D and can
be ignored.1 The subroutine in Figure 7.3a makes this adjustment in D, where we note
that to subtract 28 * $ or 28 * %. from accumulator D, we subtract 'B or %. from
accumulator A. See Figure 7.3. Subroutine SGNMUL behaves like an instruction that
multiplies the signed contents of accumulator A with the signed contents of accumulator
B, putting the signed result in D. The Z bit is not set correctly by SGNMUL, however.
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*
* SGNMUL multiplies the 1-byte signed number in B by the 1-byte signed number in
* A, putting the product in accumulator D. Registers X and Y are unchanged.
*

SGNMUL: PSHD ; Save two bytes to be multiplied
MUL ; Execute unsigned multiplication
TST 1, SP ; If first number is negative
BPL LI ; Then
SUBA 0, SP ; Subtract second number

LI: TST 0,SP ;If second number is negative
BPL L2 ; Then
SUBA 1, SP ; Subtract first number

L2: LEAS 2, SP ; Balance stack
RTS ; Return with product in accumulator D

a. Using MUL

*
* SGNMUL multiplies the 1-byte signed number in B by the 1-byte signed number in
* A, putting the product in accumulator D. Register X is unchanged.
*

SGNMUL: SEX A, Y ; move one multiplier to Y, sign extending it
SEX B f D ; sign extend the other multiplier
EMULS ; put the low-order 16-bits in D
RTS ; Return with product in accumulator D

b. Using EMULS

Figure 73.8-Bit Signed Multiply Subroutine

Another approach to multiplication of signed 8-bit numbers is to use signed 16-bit
multiplication available in the EMULS instruction. See Figure 7.3b. This method is far
better on the 6812, because the EMULS instruction is available, but the former method is
useful on other machines and shows how signed multiplication is derived from unsigned
multiplication having the same precision. A modification of it is used to multiply 32-bit
signed numbers, using a procedure to multiply 32-bit unsigned numbers.

7.2 Integer Conversion

A microcomputer frequently communicates with the outside world through ASCII
characters. For example, subroutines INCH and DUTCH allow the MPU to communicate
with a terminal, and this communication is done with ASCII characters. When numbers
are being transferred between the MPU and a terminal, they are almost always decimal
numbers. For example, one may input the number 3275 from the terminal keyboard,
using the subroutine INCH, and store these four ASCII decimal digits in a buffer. After
the digits are input, the contents of the buffer would be
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While each decimal digit can be converted to binary by subtracting $30 from its
ASCII representation, the number 3275 still has to be converted to binary (e.g., $OCCB)
or some other representation if any numerical computation is to be done with it. One
also has to convert a binary number into an equivalent ASCII decimal sequence if this
number is to be displayed on the terminal screen. For example, suppose that the result of
some arithmetic computation is placed in accumulator D, say, $OCCB. The equivalent
decimal number, in this case 3275, must be found and each digit converted to ASCII
before the result can be displayed on the terminal screen. We focus on the ways of doing
these conversions in this section.

One possibility is to do all of the arithmetic computations with binary-coded
decimal (BCD) numbers, where two decimal digits are stored per byte. For example, the
BCD representation of 3275 in memory would be

Going between the ASCII decimal representation of a number to or from equivalent BCD
representation is quite simple, involving only shifts and the AND operation. With the
6812, it is a simple matter to add BCD numbers; use ADDA or ADC A with the DAA
instruction. Subtraction of BCD numbers on the 6812 must be handled differently from
the decimal adjust approach because the subtract instructions do not correctly set the half-
carry bit H in the CC register. (See the problems at the end of the chapter.) For some
applications, addition and subtraction may be all that is needed, so that one may prefer to
use just BCD addition and subtraction. There are many other situations, however, that
require more complex calculations, particularly applications involving control or
scientific algorithms. For these, the ASCII decimal numbers are converted to binary
because binary multiplication and division are much more efficient than multiplication
and division with BCD numbers. Thus we convert the input ASCII decimal numbers to
binary when we are preparing to multiply and divide efficiently. However, depending on
the MPU and the application, BCD arithmetic may be adequate so that the conversion
routines below are not needed.

We consider unsigned integer conversion first, discussing the general idea and then
giving conversion examples between decimal and binary representations. A brief
discussion of conversion of signed integers concludes this section. The conversion of
numbers with a fractional part is taken up in a later section.

An unsigned integer N less than bm has a unique representation
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where 0 £ q < b for 0 <. i < m. The sequence cm_[, . . . CQ is called an m-digit base-b
representation of N. We are interested in going from the representation of N in one base
to its representation in another base. There are two common schemes for this conversion
that are based on multiplication and two schemes that are based on division. Although
one of the division schemes is taught in introductory logic design courses, and you are
likely to select it because you know it well, it does not turn out to be the most efficient
to implement in a microcomputer. We look at all the schemes in general and then give
examples of each to find the most promising one.

The two multiplication schemes simply carry out (3), doing the arithmetic in the
base that we want the answer in. There are two ways to do this. Either evaluate
expression (3) as it appears or else nest the terms as shown.

N = ( ... ( 0 + cm_, ) * b + cm_2) * b + . . . + c, ) * b + c o (4)

The other two schemes involve division. Notice from (3) that if you divide N by b, the
remainder is CQ. Dividing the quotient by b again yields c\, and so forth, until one of the
quotients becomes 0. In particular, if one has a base-r representation of N and wants to
go to a base-b representation, division of N by b is done in base-r arithmetic. You are

*
* SUBROUTINE CVDTB puts the unsigned equivalent of five ASCII decimal digits
* pointed to by X into D.
*

SCRATCH: ds. b 6 ; Scratch area for product and multiplier
K t dc.w 10000,1000,100,10,1 ; Coefficient Vector
*

CVDTB: LDAB #6 ; Clear scratch area
LDY #SCRATCH

Cl: CLR 1,Y+
DBNE B,C1

*

LDAB #5 ; Five terms to be evaluated
LDY #K ; Constants in vector K, Y = multiplicand address

*

C2: LDAA 1,X+ ; Next ASCII digit into A
PSHX ; Save pointer for next character
SUBA #$30 ; ASCII to binary
STAA SCRATCH*5 ; Save in last byte in scratch
LDX #SCRATCH+4 ; Get address of multiplier
EMACS SCRATCH ; Multiply and accumulate
LEAY 2, Y ; Next multiplicand address
PULX ; Restore pointer for next character
DBNE B, C2 ; Count down and loop
LDD SCRATCH+2 ; Get number
RTS ; Return to Caller

Figure 7.4. Conversion from Decimal to Binary by Multiplication by Powers of 10
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probably familiar with this technique because it is easy to go from a decimal
representation to any base with it using a calculator, because the calculator does decimal
arithmetic. The other scheme using division simply divides the number N, assumed to be
less than bm, by b"1"1, so that the quotient is the most significant digit cm_i. Dividing
the remainder by bm~2 produces the next most significant digit, and so on. We will also
consider these schemes below. Which of these four schemes is best for microcomputers?
We now look more closely at each for conversion between decimal and binary bases,

Consider first the multiplication scheme that evaluates formula (3) directly. Suppose
that N4 , . . ,, NO represent five decimal digits stored in a buffer pointed to by X.
Assume that these five decimal digits have been put in from the terminal using INCH so
that each digit is in ASCII. Then

N4 * 104 + N3 * 103 + , . . + NO * 10° (5)

is the integer that we want to convert to binary. To carry out (5) we can store constants

K dc.w 10000,1000,100,10,1

and then multiply N4 times (K):(K + 1), NS times (K + 2):(K + 3), and so on, adding up
the results and putting the sum in D. The subroutine shown in Figure 7.4 does just that,
indicating an overflow by returning the carry bit equal to 1. The multiplication scheme
in Figure 7.4 takes advantage of the fact that the assembler can convert 104 through 109

into equivalent 16-bit binary numbers using the dc.w directive.
Looking at the second multiplication conversion scheme applied to our present

example, we rewrite the decimal expansion formula (3) as (6).

* CVDIB converts the five ASCII decimal digits, stored at the location
* contained in X, into an unsigned 16-bit number stored in D.
*

CVDIB: CLRA ; Generate 16-bit zero
CLRB ; Which becomes the result
LEAY 5 , X ; Get address of end of string
PSHY ; Save it on stack

*

C2; LDY #10 ; Multiply previous by 10
EMUL ; Multiply D * Y
PSHD ; Low 16 bits of product to stack
LDAB 1, X+ ; Next ASCII digit into B
SUBB #$30 ; ASCII to binary
CLRA ; Extend to 16 bits
ADDD 2 , SP+ ; Add previous result
CPX 0, SP ; At end of ASCII string?
BNE C2 ; No, repeat
PULY ; Balance the stack
RTS ; Return to caller

Figure 7.5. Conversion from Decimal to Binary by Multiplication by 10
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Doing our calculations iteratively from the inner pair of parentheses, we can get the
same result as before without storing any constants. A subroutine that does this is
shown in Figure 7.5. In this subroutine, there is only one local variable, except for a
program sequence to save the low 16 bits of the sum, so that the binding process can be
omitted. If we compare the two subroutines, we see that the second one has the clear edge
in terms of lines of code or static efficiency, particularly if you consider the ten bytes
used by the dc.w directive in the first subroutine. Furthermore, if one wanted to convert a
7-digit decimal number to a 32-bit binary number, the difference in the static efficiencies
of these two multiplication techniques would become even more pronounced. For
example, a 40-byte table of constants would be needed for the analog of the subroutine of
Figure 7.4, an increase of 30 bytes that is not needed by the corresponding analog of
Figure 7.5's subroutine. Finally, each subroutine can take the ASCII decimal digits
directly from the terminal, using subroutine INCH, effectively accessing the digits as a
character sequence rather than a vector. (See the problems at the end of the chapter.)

* CVBTD converts unsigned binary number in D into five ASCII decimal
* digits at the location passed in X. For each power of 10, subtract it as many
* times as possible from D without causing a carry. The number obtained,
* after ASCII conversion, is the ASCII decimal coefficient of that power of 10.
*

K: dc.w 10000,1000,100,10,1
*
CVBTD: LEAY K+10,PCR ; End of power-of-tens

PSHY ; Save a local variable for CPY
LEAY K, PCR ; Point Y to power-of-tens

*

CVB1: MOVE #$ 3 0,1, X+ ; Generate ASCII '0' in character position
CVB2: SUBD 0, Y ; Try removing one power-of-ten

BLO CVB3 ; If unsuccessful, quit
INC -1, X ; If successful, up the ASCII character
BRA CVB2 ; Repeat trial

*

CVB3: ADDD 2, Y+ ; Restore D, point Y to next constant
•%

CPY 0, SP ; At end of constants?
BNE CVB 1 ; If not, repeat for next power-of-ten

*

PULY ; Deallocate local variables
RTS ; Return

Figure 7.6. Conversion from Binary to Decimal by Successive Subtraction
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*
* CVBTD converts the unsigned contents of D into an equivalent 5-digit ASCII decimal
* number at the location passed in X. Registers A, B, CC, and X are changed,
*

CVBTD: LEAY K+12,PCR ; End address of power-of-tens
PSHY ; Save a local variable for CPY
LEAY K, PCR ; Point Y to power-of-tens
PSHY ; Save for LDY
PSHX ; Save output string pointer

L1: LDY 2 , SP ; Get address of powers-of-ten
LDX 2 ,Y+ ; Get a power of ten, move pointer
CPY 4, SP ; At end of string?
BEQ L2 ; Yes, exit
STY 2,SP ; Save address of powers-of-ten
LDY #0 ; High 16-bits of dividend (low 16-bits in D)
EDIV ; D is remainder Y is quotient
XGDY ; Put quotient in D
ADDB #$30 ; ASCII conversion
PULX ; Restore output string pointer
STAB 1, X+ ; Store character, move pointer
PSHX ; Save output string pointer
XGDY ; Remainder to D
BRA LI ; Continue

L2: LEAS 6, SP ; Balance stack
RTS ; Exit

Figure 7.7 Conversion from Binary to Decimal by Division by Powers of Ten

The remaining two techniques use division. The second division technique that
divides by different numbers each time, getting the most significant digit first, suffers
from the same malady as the first multiplication scheme. A lot of numbers have to be
stored in a table, and that reduces static efficiency. The other division scheme, getting the
least significant digits first, is the one most commonly taught in introductory courses on
logic design. Although it is better than the last division scheme, it is going to be less
useful on the 6812 than the multiplication schemes, because this microcomputer has no
decimal divide instruction, and the divide routine will take up memory and be slow. Thus
the best scheme for conversion from decimal to binary is the multiplication scheme that
uses the nesting formula (4) to avoid the need to store all the powers of 10.

Let's apply the division techniques to converting a binary number into ASCII
decimal digits to be output to a terminal. In particular, suppose that we want to convert
the unsigned 16-bit number in D into five ASCII decimal digits.

Consider the division scheme that generates the most significant digit first. We
could again have a table of constants in the subroutine with the directive

K dc.w 10000,1000,100,10,1
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* CVBTD converts the unsigned contents of D into an equivalent 5-digit ASCII decimal
* number ending at the location passed in X. Register Y is unchanged.
*

CVBTD: PSHX ; Save beginning address of string
LEAK 5, X ; End address of string
PSHX ; Save on stack

LI: LDX #10 ; Divide by 10
LDY #0 ; High 16-bits of dividend (low 16-bits in D)
EDIV ; D is remainder Y is quotient
ADDB #$30 ; ASCII conversion
PULX ; Restore output string pointer
STAB 1 r -X ; Store character, move pointer
PSHX ; Save output string pointer
XGDY ; Remainder to D
CPX 2 , SP ; At end of string?
BNE LI ; Continue
LEAS 4, SP ; Balance stack
RTS ; Exit

a. Using a Loop

* SUBROUTINE CVBTD converts unsigned binary number in D into five
* ASCII decimal digits ending at the location passed in X, using recursion.
*

CVBTD: PSHX ; Save string pointer
LDY #0 ; High dividend
LDX #10 ; Divisor
EDIV ; Unsigned (Y:D) / X -> Y, remainder to D
ADDB #$30 ; Convert remainder to ASCII
PULX ; Get string pointer
STAB 1, -X ; Store in string
TFR Y, D ; Put quotient in D
TBEQ D, LI ; If zero, just exit
BSR CVBTD ; Convert quotient to decimal (recursively)

LI: RTS ; Return

b. Using Recursion

Figure 7.8 Conversion from Binary to Decimal by Division by 10

Looking at the expansion (3) we see that N4 is the quotient of the division of (D) by
(K):(K + 1). If we divide the remainder by (K + 2):(K + 3), we get N3 for the quotient,
and so forth. These quotients are all in binary, so that a conversion to ASCII is also
necessary. The subroutine CVBTD of Figure 7.6 essentially uses this technique, except
that the division is carried out by subtracting the largest possible multiple of each power
of ten which does not result in a carry.
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An improved technique shown in Figure 7.7 uses division, rather than successive
subtraction, to speed up the algorithm, but it has the same difficulties as the one in
Figure 7.3; larger numbers require a larger table of constants. We now look at the other
division scheme. For example, if the contents of D is divided by 10, the remainder is the
binary expansion of NQ. Dividing this quotient by 10 yields a remainder equal to the
binary expansion of N j , and so on. See Figure 7.8a. This approach can be implemented
by a recursive algorithm. See Figure 7.8b.

Suppose that we wanted to convert a 16-bit unsigned binary integer in D to the
equivalent decimal number using the best multiplication technique, in particular, the one
that used (4) instead of (3). Write the binary expansion of the number bjs , bo in
decimal notation as

and assume that the equivalent five-decimal digits are to be placed at the address passed in
X, with one decimal digit stored per byte in binary. (We can convert each digit to ASCII
later, if necessary.) After initializing the result to 0, we iteratively build the equivalent
decimal number from the innermost parentheses above by repeating the following steps:

* CVBTD converts the 16-bit unsigned number in D to an equivalent 6-digit BCD
* number stored in 3 bytes at the address passed in by the calling routine in X.
*

CVBTD: PSHD ; Save number to be converted
CLR 0,X
CLR 1,X
CLR 2, X ; Initialize decimal number
MOVE #16,1, -SP ; Push count

*

CBD1: ASL 2,SP
ROL 1, SP ; Put next bit in C
LDAB #2 ; 3-byte decimal addition

*
CBD2; LDAA B,X ; Get ith byte

ADCA B, X ; Adding a number to itself doubles it
DAA ; Double in decimal
STAA B, X ; Put back ith byte

*

DECB
BPL CBD2 ; Count down and loop 3 bytes
DEC 0,SP
BNE CBD1 ; Count down and loop 16 bits

*
LEAS 3, SP ; Balance stack
RTS

Figure 7.9. Conversion from Binary to Decimal by Decimal Multiplication
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1. Multiply the five decimal digits pointed to by X by 2.
2, Add 1 to the five decimal digits pointed to by X if bn = 1.

Recall, however, that the preceding operations must be done in decimal. For this, it is
more convenient to output our digits in BCD rather than one decimal digit per byte
because we can take advantage of the DAA instruction. In particular, notice that in the
subroutine of Figure 7.9, the carry bit in loop CBD2 equals bn the first time through,
while the next two times through, the loop completes the doubling in decimal of the
BCD contents of the three bytes pointed to by X. The conversion of the BCD number to
ASCII, if desired, is straightforward. (See the problems at the end of the chapter.)

Conversion of signed numbers is straightforward once the foregoing techniques are
understood. This conversion can be done strictly by the formula that defines the signed
number, as done above for unsigned numbers, or the signed number can be expressed as a
sign and a magnitude, and the magnitude can be converted as before because it is an
unsigned number. The idea of conversion is quite general. You can convert to base 12 or
from base 12 using any of these ideas. You can convert between the time in a week
expressed in days of the week, hours, minutes, and seconds and the time of the week in
seconds represented in binary. This type of conversion is similar to going between a
binary sector number and a disk track sector number, something that becomes important
if you are involved in writing disk controller programs. Conversion can be met in
unexpected places, and with the techniques of this section, you should be able to handle
any integer conversion problem.

An important aspect of this discussion is the manner in which a software engineer
approaches any problem in general and a numeric problem in particular. The general rale
is to learn about all the algorithms that can be used to solve the problem. In
algebraically specified problems such as conversion between number systems, the
algorithms are described by different formulas. The software engineer researches all the
formulas that have been applied to the problem. For example, we found that formulas (3)
and (4) apply to number system conversions. Then the different programming styles,
such as storing coefficients in a table, generating the required constants by a subroutine,
and using loops or recursion can be attempted to derive different programs. The shortest,
fastest, or clearest program is then selected for the application.

7.3 From Formulas to Subroutine Calls

In following sections, we develop techniques to write subroutines to carry out the usual
arithmetic operations on long integer and floating-point numbers, namely, +, -, *, and /.
We could, with further study, write a whole collection of subroutines that would carry
out the functions we would meet in engineering, such as sin(x), cos(x), log(x), (x)2, yz,
and so on. In a given application, we might have to write a program segment to evaluate
a complicated formula involving these operations, for example,

This section examines a general technique to write such a program segment.
For simplicity, we will assume that all operands are long integers or single-

precision floating point numbers (four bytes) and that the subroutines are written so that
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the values of the operands are pushed on the stack before the subroutine call with only
the result on top of the stack after the return. (See Figure 7.10, and notice particularly
that the subroutine for an operation with two operands leaves only the result on top of
the stack.) To place these parameters on the stack, we will here assume that a macro
PUSH has been written that pushes the 4-byte number at address ADDR onto the stack,
low byte first, with PUSH ADDR. Similarly, we will assume that a macro PULL has
been written so that

PULL ADDR

will pull a 4-byte number off the stack, high byte first, and place it at the address ADDR,
Variables x, y, u, w, and z are at addresses X, Y, U, W, and Z, respectively, and the
constant 2 is at address K2. This can be implemented with the directives in (9). We can
evaluate (8) with the program segment (10) , where the symbolic names of the variables
are in (9). In this segment, FPMUL, FPADD, and FPDIV are subroutines to multiply,
add, and divide floating-point numbers, while SIN is a subroutine to calculate the sine of
a floating-point number. The movement of the stack is shown after each operation in
Figure 7.11.

X: DS.L 1
Y: DS.L 1
U: DS.L 1 (9)
W: DS.L 1
Z: DS.L 1
K2: DS.L 1

b. Two Operand Operations

Figure 7.10. Passing Parameters on the Stack
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Figure 7.11. Stack Movement when Evaluating (8)

PUSH X
PUSH K2
PUSH Y
BSR FPMUL
BSR FPADD
PUSH U (10)
BSR SIN
PUSH W
BSR FPADD
BSR FPDIV
PULL Z

How does one write a program segment to evaluate formula or expression (8)? The
method comes from the work of the Polish logician Jan Lucasiewicz, who investigated
ways of writing expressions without using parentheses. With his technique, referred to as
Polish notation, one would write (8) as

Notice that when reading (11) from left to right, each variable name generates a PUSH in
(10) and each operation generates a subroutine call. Going between (10) and (11) is easy.
We soon show a simple algorithm to write a segment for any expression.

The way to display a formula by parsing it into its basic operations uses a binary
tree as we will use again in §10.4. Moreover, the technique to write a program segment
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to evaluate the formula from its tree representation will be virtually the same one that we
use to scan that tree from the left in Chapter 10. Any operation with two operands, such
as +, has a tree with two branches and nodes whose values are the operands for the
operation. For example, the result of x + y and x * y are represented by the trees

If the operation has only one operand, the operation is displayed as a tree with only
one branch. For example, sin(y) and sqrt(x) (for "square root of x") have trees

If your formula is more complicated than those shown above, you just plug in the
results of one tree where the operand appears in the other tree. For instance, if you want
the tree for sqrt(x + y), just substitute the tree for x + y into the node, for example,

The tree for the formula (8) is shown in Figure 7.12. Notice how the formula is like
a projection onto a horizontal line below the tree and how the tree can be built up from
the bottom following the "plug in" technique just described.

Figure 7.12. Finding a Parsing Tree for (8) from the Bottom Up
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Figure 7.13. Algorithm to Write a Sequence of Subroutine Calls for (8)

The reader is invited to find these parsing trees for the formulas given in the
problems at the end of the chapter. Note that a parsing tree is really a good way to write
a formula because you can see "what plugs into what" better than if you write the
formula in the normal way. In fact, some people use these trees as a way to write all of
their formulas, even if they are not writing programs as you are, because it is easier to
spot mistakes and to understand the expression. Once the parsing tree is found, we can
write the sequence of subroutine calls in the following way. Draw a string around the
tree, as shown in Figure 7.13. As we follow the string around the tree, a subroutine call
or PUSH is made each time we pass a node for the last time or, equivalently, pass the
node on the right. When a node with an operand is passed, we execute the macro PUSH
for that operand. When a node for an operation is passed, we execute a subroutine call for
that operation. Compilers use parsing trees to generate the subroutine calls to evaluate
expressions in high-level languages. The problems at the end of the chapter give you an
opportunity to learn how you can store parsing trees the way that a compiler might do it,
using techniques from the end of Chapter 6, and how you can use such a tree to write the
sequence of subroutine calls the way a compiler might.

As a second example, we consider a program evaluating the consecutive expressions

delta = delta + c
s = s + (delta * delta)

These can be described by the trees
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The subroutine calls for these consecutive expressions are shown in (12) assuming that
the 4-byte floating-point numbers c, s, and delta are at addresses C, S, and DELTA,
respectively.

PUSH DELTA

PUSH C

BSR FPADD

PULL DELTA

PUSH S (12)

PUSH DELTA

PUSH DELTA

BSR FPMUL

BSR FPADD

PULL S

The example above is easy to work through once you have studied the example for (8).
Note, however, that a lot of pushing and pulling is done between the variable locations
and the stack. Seven of the ten macros or subroutines merely move data to or from the
stack, and three do arithmetic operations. It might be more efficient to use another
technique for simple problems like this one. The stack method handles more complicated
situations and offers a completely general technique for evaluating expressions.

This technique handles formulas of any complexity with ease and accuracy; it can be
used with any system that uses a stack to hold intermediate results. This approach can be
used in the 6812 such that the stack pointed to by SP is used to store the intermediate
results. This approach can be used in the 6812 such that an auxilliary stack (Figure 3.11)
is used to store these intermediate results. Moreover, a microcontroller such as the 68332
(§12.4) which has eight data registers analogous to the 6812's two accumulators A and
B, can use this technique to assign its data registers to store these intermediate results.
That is, the first item pushed is kept in data register 0, the next in data register 1, and so
on. In the next section, we find that the stack described in this section is best handled by
putting its topmost element in registers, like the 68332 does, and to put the remainder of
the stack described in this section on the hardware stack pointed to by SP.

7.4 Long Integer Arithmetic

Multiple-precision arithmetic is very important in microcontrollers because the range of
integers specified by a 16-bit word, whether signed or unsigned, is too small for many
applications. Therefore, we will develop 32-bit arithmetic operations in this section. We
will use the stack discussed in the last section for storage of intermediate results, to
provide generally useful subroutines. However, due to the use of the register pair Y:D for
multiplication, we put the top 32-bit element of the stack in register Y (high order 16
bits) and accumulator D (low order 16 bits); we call this pair of registers "register L."

It should be clear that pushing and pulling can be done by loading and storing L,
which is done by loading and storing Y and D. However, to maintain the stack
mechanism, pushing requires moving L into a long word on the hardware stack. The
following program segment pushes a long word from location ALPHA.
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PSHD ; Move up low 16-bits from register L to stack
PSHY ; Move up high 16-bits from register L to stack
LDY ALPHA ; Get high 16-bits of register L
LDD ALPHA+2 ; Get low 16-bits of register L

This program segment's first two instructions alone will duplicate the top stack element,

PSHD ; Duplicate low 16-bits from register L to stack
PSHY ; Duplicate high 16-bits from register L to stack

Similarly, to maintain the stack mechanism, a long word can be pulled from the stack to
fill L. The following program segment pulls a long word into location ALPHA.

STY ALPHA ; Save high 16-bits of register L
STD ALPHA+2 ; Save low 16-bits of register L
PULY ; Move down high 16-bits to register L
PULD ; Move down low 16-bits to register L

If you use a macro assembler, these operations are easily made into macros. Otherwise,
you can "hand-expand" these "macros" whenever you need these operations.

A 32-bit negate subroutine is shown in Figure 7.14. The algorithm is implemented
by subtracting register L from 0, putting the result in L. This is a monadic operation, an
operation on one operand. You are invited to write subroutines for other simple monadic
operations. Increment and decrement are somewhat similar, and shift left and right are
much simpler than this subroutine. (See the problems at the end of the chapter.)

A multiple-precision comparison is tricky in almost all microcomputers if you want
to correctly set all of the condition code bits so that, in particular, all of the conditional
branch instructions will work after the comparison. The subroutine of Figure 7.15 shows
how this can be done for the 6812. If Z is initially set, using ORCC #4, entry at
CPZRO will test register L for zero while pulling it from the stack. The first part of this
subroutine suggests how subroutines for addition, subtraction, ANDing, ORing, and
exclusive-ORing can be written.

* SUBROUTINE NEG negates the 32-bit number in L.
*

NEG: PSHY ; Save high 16 bits
PSHD ; Save low 16 bits, which are used first
CLRA ; Clear accumulator D
CLRB
SUED 2 , SP+ ; Pull low 16 bits, subtract from zero
TFR D, Y ; Save temporarily in Y
LDD #0 ; Clear accumulator D, without changing carry
SBCB 1, SP ; Subtract next-to-most-significant byte
SBCA 2 , SP+ ; Subtract most-significant byte, balance stack
XGDY ; Exchange temporarily in Y with high 16-bits
RTS ; Return with result in register L

Figure 7.14.32-Bit Negation Subroutine
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* SUBROUTINE COMPAR subtracts the next word on the stack from L, and pulls the
* next word into L. Condition codes reflect top - next
Jf!

COMPAR: SUED 4 , SP ; Compare with low 16 bits of operand
XGDY ; Get high 16-bits
SBCB 3, SP ; Compare with next 8 bits of operand
SBCA 2 , SP ; Compare with high 8 bits of operand

CPZRO: TBNE D, Ll ; If high 16 bits of result are nonzero, go to clear Z
TBEQ Y, L2 ; If low 16 bits of result are zero, leave Z alone

Ll: ANDCC #$FB ; Clear Z bit
L2: PULX ; Pull return address

PULY ; Remove operand from stack
PULD ; Remove operand from stack
JMP 0,X ; Return to caller

Figure 7.15. 32-Bit Compare Subroutine

Multiple-precision multiplication takes advantage of the EMUL instruction. The
general 32-bit by 32-bit unsigned case is illustrated in Figure 7.16 and handled by the
subroutine in Figure 7.17. A signed multiplication subroutine can be easily written that
combines Figures 7.17 and 7.3. Unsigned division is shown in Figure 7.18. It can be
modified to leave the remainder, rather than the quotient. For signed division, recall that
the sign of the remainder is the same as the sign of the dividend and that the sign of the
quotient is positive if the signs of the dividend and divisor are equal; otherwise, it is
negative. A signed divide can be implemented with the unsigned divide and sign
modification using the above rule. These subroutines can also be optimized. When a
PUSH macro precedes an ADD subroutine, the combined operation can be done simply as
seen in Figure 7.19.

We have completed our examination of multiple-precision arithmetic for both signed
and unsigned integers. With the techniques developed in this section and in the examples
of the earlier chapters, you should be prepared to handle any arithmetic calculation with
signed or unsigned long (32-bit) integers.

Figure 7.16. Multiplication of 32-Bit Numbers
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* SUBROUTINE MULT multiplies the unsigned next word on the stack with
* L, and pulls the next word
sK

LCSAVE: EQU *
ORG 0

PROD: DS.L 1
N: DS.L 1
M: DS.L 1

ORG LCSAVE
MULT: PULX ; pull return address

PSHD ; low part of N
PSHY ; high part of N

*
LDY M+2 - 4, SP ; note: M is operand offset in sub middle
EMUL ; note - accum D is still low part of N
PSHD ; low word of product
PSHY ; high word of product

*
LDD N, SP ; get high part of N
LDY M+2, SP ; get low part of M
EMUL
ADDD PROD, SP ; add to high word
STD PROD r SP ; place back

*
LDD N+2, SP ; get low part of N
LDY M , SP ; get high part of M
EMUL
ADDD PROD, SP ; add to high word
TFR D,Y ; high 16 bits
LDD PROD+2 , SP ; low 16 bits

*

LEAS 12, SP ; remove M, N, and PROD
JMP 0, X ; return

Figure 7.17.32-Bit by 32-Bit Unsigned Multiply Subroutine

LCSAVE: EQU *
ORG 0

RTRN: DS.W 1
COUNT: DS.B 1
DVS: DS.L 1
REM: DS.L 1
QUOT: DS.L 1

Figure 7.18. 32-Bit by 32-Bit Unsigned Divide Subroutine
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ORG LCSAVE
*
* SUBROUTINE DIV
* DIV divides the unsigned next word on the stack into L, and pulls the next word
*
DIV: PULX ; unstack return address

LEAS - 4 , SP ; room for remainder right above dividend
PSHD ; save low 16 bits of divisor
PSHY ; save high 16 bits of divisor
MOVB #32,1, -SP ; count for 32 bits
PSHX ; put back return address
CLRA
CLRB
STD REM,SP
STD REM+2,SP

*

DIV1: CLC ; divide loop
LDAA #8 ; shift remainder and divisor: shift 8 bytes
LEAK QUOT+3, SP ; pointer for bottom of quotient-remainder

DIV2: ROL 1, X-
DBNE A,DIV2

*

LDY REM, SP ; subtract from partial product
LDD REM+2 , SP ; (note: 4 extra bytes on stack)

*
SUED DVS+2,SP
XGDY
SBCB DVS+1,SP
SBCA DVS,SP
XGDY

*

BCS DIV3 ; if borrow
STD REM+2 , SP ; then put it back
STY REM,SP
INC QUOT+3, SP ; and put 1 into Isb of quotient

DIV3: DEC COUNT, SP ; counter is high byte of last operand
BNE DIV1 ; count down - 32 bits collected

*
PULX ; pull return
LEAS 9 , SP ; balance stack - remove divisor
PULY
PULD ; pop quotient

DIVEXIT: JMP 0,X ; return to caller

Figure 7.18. Continued.
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* ADD adds the word pointed to by X into L (combined PUSH and ADD)
ADD: ADDD 2, X ; add low 16 bits

XGDY ; put high 16 bits in D
ADCB I, X ; add mid 8 bits
ADCA 0, X ; add high 16 bits
XGDY ; put high 16 bits in Y
RTS ; return to caller

Figure 7.19. Push-and-Add Subroutine

7.5 Floating-Point Arithmetic and Conversion

We have been concerned exclusively with integers, and, as we have noted, all of the
subroutines for arithmetic operations and conversion from one base to another could be
extended to include signs if we wish. We have not yet considered arithmetic operations
for numbers with a fractional part. For example, the 32-bit string bsi, . . .,bo could be
used to represent the number x, where

x = b31 * 223 + ... + b8 * 2° + ... + b0 * 2~8 (13)

The notation b3i . . . bg • bj . . . bo is used to represent x, where the symbol "%" called
the binary point, indicates where the negative powers of 2 start. Addition and subtraction
of two of these 32-bit numbers, with an arbitrary placement of the binary point for each,
is straightforward except that the binary points must be aligned before addition or
subtraction takes place and the specification of the exact result may require as many as 64
bits. If these numbers are being added and subtracted in a program (or multiplied and
divided), the programmer must keep track of the binary point and the number of bits
being used to keep the result. This process, called scaling, was used on analog computers
and early digital computers. In most applications, scaling is so inconvenient to use that
most programmers use other representations to get around it.

One technique, called a fixed-point representation, fixes the number of bits and the
position of the binary point for all numbers represented. Thinking only about unsigned
numbers for the moment, notice that the largest and smallest nonzero numbers that we
can represent are fixed once the number of bits and the position of the binary point are
fixed. For example, if we use 32 bits for the fixed-point representation and eight bits for
the fractional part as in (13), the largest number that is represented by (13) is about 224

and the smallest nonzero number is 2~8. As one can see, if we want to do computations
with either very large or very small numbers (or both), a large number of bits will be
required with a fixed-point representation. What we want then is a representation that
uses 32 bits but gives us a much wider range of represented numbers and, at the same
time, keeps track of the position of the binary point for us just as the fixed-point
representation does. This idea leads to the floating-point representation of numbers,
which we discuss in this section. After discussing the floating-point representation of
numbers, we examine the arithmetic of floating-point representation and the conversion
between floating-point representations with different bases.



202 Chapter 7 Arithmetic Operations

We begin our discussion of floating-point representations by considering just
unsigned (nonnegative) numbers. Suppose that we use our 32 bits b 3 j , ... .bo to
represent the number

S * 2E

where S, the significant}, is of the form

r>23 .b22 • • • bo

and 2E, the exponential part, has an exponent E, which is represented by the bits b3i ,
. . . , b24- If these bits are used as an 8-bit two's-complement representation of E, the
range of the numbers represented with these 32 bits goes from 2~151 to 2127, enclosing
the range for the 32-bit fixed-point numbers (13) by several orders of magnitude. (To get
the smallest exponent of-151, put all of the significand bits equal to 0, except bo for an
exponent of-128-23 = -151.)

This type of representation is called a floating-point representation because the
binary point is allowed to vary from one number to another even though the total
number of bits representing each number stays the same. Although the range has
increased for this method of representation, the number of points represented per unit
interval with the floating-point representation is far less than the fixed-point
representation that has the same range. Furthermore, the density of numbers represented
per unit interval gets smaller as the numbers get larger. In fact, in our 32-bit floating-
point example, there are 273 + 1 uniformly spaced points represented in the interval from
2n to 2n+l as n varies between -128 and 127.

Looking more closely at this same floating-point example, notice that some of the
numbers have several representations; for instance, a significand of 1.100 . . .0 with an
exponent of 6 also equals a significand of 0.1100 . . . 0 with an exponent of 7.
Additionally, a zero significand, which corresponds to the number zero, has 256 possible
exponents. To eliminate this multiplicity, some form of standard representation is
usually adopted. For example, with the bits b$i, . . . . , bo we could standardize our
representation as follows. For numbers greater than or equal to 2~127 we could always
take the representation with b23 equal to 1. For the most negative exponent, in this case
-128, we could always take b23 equal to 0 so that the number zero is represented by a
significand of all zeros and an exponent of -128. Doing this, the bit b23 can always be
determined from the exponent. It is 1 for an exponent greater than -128 and 0 for an
exponent of -128. Because of this, b23 does not have to be stored, so that, in effect, this
standard representation has given us an additional bit of precision in the significand.
When b23 is not explicitly stored in memory but is determined from the exponent in this
way, it is termed a hidden bit.

Floating-point representations can obviously be extended to handle negative
numbers by putting the significand in, say, a two's-complement representation or a
signed-magnitude representation. For that matter, the exponent can also be represented in
any of the various ways that include representation of negative numbers. Although it
might seem natural to use a two's-complement representation for both the significand
and the exponent with the 6812, one would probably not do so, preferring instead to
adopt one of the standard floating-point representations.
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We now consider the essential elements of the proposed IEEE standard 32-bit
floating-point representation. The numbers represented are also called single precision
floating-point numbers, and we shall refer to them here simply as floating-point
numbers. The format is shown below.

In the drawing, s is the sign bit for the significand, and f represents the 23-bit
fractional part of the significand magnitude with the hidden bit, as above, to the left of
the binary point. The exponent is determined from e by a bias of 127, that is, an e of
127 represents an exponent of 0, an e of 129 represents an exponent of +2, an e of 120
represents an exponent of -7, and so on. The hidden bit is taken to be 1 unless e has the
value 0. The floating-point numbers given by

are called normalized, (In the IEEE standard, an e of 255 is used to represent ±_infmity
together with values that are not to be interpreted as numbers but are used to signal the
user that his calculation may no longer be valid.) The value of 0 for e is also used to
represent denormalized floating-point numbers, namely,

(-l)s*2e-126*0.f fore = 0,f*0

Denormalized floating-point numbers allow the representation of small numbers with
magnitudes between 0 and 2~]26. In particular, notice that the exponent for the
denormalized floating-point numbers is taken to be -126, rather than -127, so that the
interval between 0 and 2~126 contains 223-l uniformly spaced denormalized floating-
point numbers.

Although the format above might seem a little strange, it turns out to be convenient
because a comparison between normalized floating-point numbers is exactly the same as
a comparison between 32-bit signed-magnitude integers represented by the string s, e, f.
This means that a computer implementing signed-magnitude integer arithmetic will not
have to have a separate 32-bit compare for integers and floating-point numbers. In larger
machines with 32-bit words, this translates into a hardware savings, while in smaller
machines, like the 6812, it means that only one subroutine has to be written instead of
two if signed-magnitude arithmetic for integers is to be implemented.

We now look more closely at the ingredients that floating-point algorithms must
have for addition, subtraction, multiplication, and division. For simplicity, we focus our
attention on these operations when the inputs are normalized floating-point numbers and
the result is expressed as a normalized floating-point number.

To add or subtract two floating-point numbers, one of the representations has to be
adjusted so that the exponents are equal before the significands are added or subtracted.
For accuracy, this unnormalization always is done to the number with the smaller
exponent. For example, to add the two floating-point numbers
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24 * 1.00 . . . 0
+ 22 * 1.00 . . . 0

we first unnormalize the number with the smaller exponent and then add as shown,

24 * 1.000 ... 0
+ 24 * 0.010 . . . 0

24 * 1.010 ... 0

(For this example and all those that follow, we give the value of the exponent in decimal
and the 24-bit magnitude of the significand in binary.) Sometimes, as in adding,

24 * 1.00 . . . 0
+ 24 * 1.00 . . . 0

24 *10.00 . . . 0

the sum will have to be renormalized before it is used elsewhere. In this example

25 * 1.00 . . . 0

is the renormalization step. Notice that the unnormalization process consists of
repeatedly shifting the magnitude of the significand right one bit and incrementing the
exponent until the two exponents are equal. The renormalization process after addition or
subtraction may also require several steps of shifting the magnitude of the significand left
and decrementing the exponent. For example,

24 * 1.0010 ... 0
- 24 * 1.0000 . . . 0

24 * 0.0010 ... 0

requires three left shifts of the significand magnitude and three decrements of the
exponent to get the normalized result:

21 * 1.00 . . . 0

With multiplication, the exponents are added and the significands are multiplied to get
the product. For normalized numbers, the product of the significands is always less than
4, so that one renormalization step may be required. The step in this case consists of
shifting the magnitude of the significand right one bit and incrementing the exponent.
With division, the significands are divided and the exponents are subtracted. With
normalized numbers, the quotient may require one renormalization step of shifting the
magnitude of the significand left one bit and decrementing the exponent. This step is
required only when the magnitude of the divisor significand is larger than the magnitude
of the dividend significand. With multiplication or division it must be remembered also
that the exponents are biased by 127 so that the sum or difference of the exponents must
be rebiased to get the proper biased representation of the resulting exponent.
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In all of the preceding examples, the calculations were exact in the sense that the
operation between two normalized floating-point numbers yielded a normalized floating-
point number. This will not always be the case, as we can get overflow, underflow, or a
result that requires some type of rounding to get a normalized approximation to the
result. For example, multiplying

256 * i .oo . . . 0
* 210Q * 1.00 . . . 0

2*56 * 1.00 . . . 0

yields a number that is too large to be represented in the 32-bit floating-point format.
This is an example of overflow, a condition analogous to that encountered with integer
arithmetic. Unlike integer arithmetic, however, underflow can occur, that is, we can get
a result that is too small to be represented as a normalized floating-point number. For
example,

2-126 * 1.0010 . . . 0
- 2-l26 * 1.0000 . . . 0

2-126 * 0.0010 . . . 0

yields a result that is too small to be represented as a normalized floating-point number
with the 32-bit format.

The third situation is encountered when we obtain a result that is within the
normalized floating-point range but is not exactly equal to one of the numbers (14).
Before this result can be used further, it will have to be approximated by a normalized
floating-point number. Consider the addition of the following two numbers.

22 * 1.00 . . . 00
+ 20 * 1.00 . . . 01

22 * 1.01 . . . 00 (01 )
(in parenthesis: least significant bits of the significand)

The exact result is expressed with 25 bits in the fractional part of the significand so that
we have to decide which of the possible normalized floating-point numbers will be
chosen to approximate the result. Rounding toward plus infinity always takes the
approximate result to be the next larger normalized number to the exact result, while
rounding toward minus infinity always takes the next smaller normalized number to
approximate the exact result. Truncation just throws away all the bits in the exact result
beyond those used in the normalized significand. Truncation rounds toward plus infinity
for negative results and rounds toward minus infinity for positive results. For this
reason, truncation is also called rounding toward zero. For most applications, however,
picking the closest normalized floating-point number to the actual result is preferred.
This is called rounding to nearest. In the case of a tie, the normalized floating-point
number with the least significant bit of 0 is taken to be the approximate result.
Rounding to nearest is the default type of rounding for the IEEE floating-point standard.
With rounding to nearest, the magnitude of the error in the approximate result is less
than or equal to the magnitude of the exact result times 2~24.
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One could also handle underflows in the same way that one handles rounding. For
example, the result of the subtraction

2-126 * i .o i lO . . . 0
- 2-126 * i .oooo . . . Q

2-126 * 0.0110 . . . 0

could be put equal to 0, and the result of the subtraction

2-126 * i . ioiO . . . 0
2-126 * i.oooo . . . Q
2-126 * 0.1010 . . . 0

could be put equal to 2~126 * 1.0000. More frequently, all underflow results are put
equal to 0 regardless of the rounding method used for the other numbers. This is termed
flushing to zero. The use of denormalized floating-point numbers appears natural here,
as it allows for a gradual underflow as opposed to, say, flushing to zero. To see the
advantage of using denormalized floating-point numbers, consider the computation of the
expression (Y — X) + X. I f Y - X underflows, X will always be the computed
result if flushing to zero is used. On the other hand, the computed result will always be
Y if denormalized floating-point numbers are used. The references mentioned at the end of
the chapter contain further discussions on the merits of using denormalized floating point
numbers. Implementing all of the arithmetic functions with normalized and denormalized
floating-point numbers requires additional care, particularly with multiplication and
division, to ensure that the computed result is the closest represented number, normalized
or denormalized, to the exact result. It should be mentioned that the IEEE standard
requires that a warning be given to the user when a denormalized result occurs. The
motivation for this is that one is losing precision with denormalized floating-point
numbers. For example, if during the calculation of the expression (Y — X) * Z. If Y
-X underflows, the precision of the result may be doubtful even if (Y — X) * Z i s a
normalized floating-point number. Flushing to zero would, of course, always produce
zero for this expression when (Y — X) underflows.

The process of rounding to nearest, hereafter just called rounding, is straightforward
after multiplication. However, it is not so apparent what to do after addition, subtraction,
or division. We consider addition/subtraction. Suppose, then, that we add the two
numbers

20 * 1.0000 . . . 0
+ 2-23 * 1.1110 . . . 0

After unnormalizing the second number, we have

20 * 1.0000 ... 00
+ 2° * 0.0000 . . . Qlflll)

20 * 1.0000 . . . 01(111)
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(The enclosed bits are the bits beyond the 23 fractional bits of the significand.) The
result, when rounded, yields 2° * 1.0 . . . 010. By examining a number of cases,
one can see that only three bits need to be kept in the unnormalization process, namely,

where g is the guard bit, r is the round bit, and s is the sticky bit. When a bit b is
shifted out of the significand in the unnormalization process.

Notice that if s ever becomes equal to 1 in the unnormalization process, it stays equal to
1 thereafter or "sticks" to 1. With these three bits, rounding is accomplished by
incrementing the result by 1 if

or

If adding the significands or rounding causes an overflow in the significand bits (only one
of these can occur), a renormalization step is required. For example,

2° * 1.1111 . . . 1
+ 2-23 * Lino . . . 0

becomes, after rounding, 2° * 10.0 . . . 0 Renormalization yields 2l * 1.0
. . . 0, which is the correct rounded result, and no further rounding is necessary.

Actually, it is just as easy to save one byte for rounding as it is to save three bits,
so that one can use six rounding bits instead of one, as follows.

The appropriate generalization of (15) can be pictured as

while (16) is exactly the same as before with r replaced by 15 ... TO
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The rounding process for addition of numbers with opposite signs (e.g., subtraction) is
exactly like that above except that the round byte must be included in the subtraction,
and renormalization may be necessary after the significands are subtracted. In this
renormalization step, several shifts left of the significand may be required where each
shift requires a bit b for the least significant bit of the significand. It may be obtained
from the round byte as shown below. (The sticky bit may also be replaced by zero in the
process pictured without altering the final result. However, at least one round bit is
required.) After renormalization, the rounding process is identical to (16). As an example,

20 * 1.1111 . . . 1
- 2-23 * 1.1110 . . . 0

becomes
2° * 1.0000 . . . 00

- 20 * 0.0000 . . . O i r i l l O O O Q O )
2° * 0.1111 . . . 10(00100000)

which, after renormalization and rounding, becomes 2~l * 1.1... 10 0. Subroutines
for floating-point addition and multiplication are given in Hiware's C and C++ libraries.
To illustrate the principles without an undue amount of detail, the subroutines are given
only for normalized floating-point numbers. Underflow is handled by flushing the result
to zero and setting an underflow flag, and overflow is handled by setting an overflow flag
and returning the largest possible magnitude with the correct sign. These subroutines
conform to the IEEE standard but illustrate the basic algorithms, including rounding. The
procedure for addition is summarized in Figure 7.20, where one should note that the
significands are added as signed-magnitude numbers.

One other issue with floating-point numbers is conversion. For example, how does
one convert the decimal floating-point number 3.45786* 104 into a binary floating-point
number with the IEEE format? One possibility is to have a table of binary floating-point
numbers, one for each power of ten in the range of interest. One can then compute the
expression

3 * 104 + 4 * 103 + . . . + 6 * 10-1

using the floating-point add and floating-point multiply subroutines. One difficulty with
this approach is that accuracy is lost because of the number of floating point multiplies
and adds that are used. For example, for eight decimal digits in the decimal significand,
there are eight floating-point multiplies and seven floating-point adds used in the
conversion process. To get around this, one could write 3.45786 * 104 as .345786 * 105

and multiply the binary floating-point equivalent of 105 (obtained again from a table) by
the binary floating-point equivalent of .345786. This, of course, would take only one
floating-point multiply and a conversion of the decimal fraction to a binary floating-
point number.
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1. Attach a zero round byte to each significand and unnormalize the number with the
smaller exponent.

2, Add significands of operands (including the round byte).
3, If an overflow occurs in the significand bits, shift the bits for the magnitude and

round byte right one bit and increment the exponent.
4. If all bits of the unrounded result are zero, put the sign of the result equal to + and

the exponent of the result to the most negative value; otherwise, renormalize the
result, if necessary, by shifting the bits of the magnitude and round byte left and
decrementing the exponent for each shift.

5. If underflow occurs, flush the result to zero, and set the underflow flag; otherwise,
round the result.

6, If overflow occurs, put the magnitude equal to the maximum value, and set the
overflow flag.

Figure 7.20. Procedure for Floating-Point Addition

Converting the decimal fraction into a binary floating-point number can be carried
out in two steps.

1. Convert the decimal fraction to a binary fraction.
2, Convert the binary fraction to a binary floating-point number.

Step 2 is straightforward, so we concentrate our discussion on Step 1, converting a
decimal fraction to a binary fraction.

Converting fractions between different bases presents a difficulty not found when
integers are converted between different bases. For example, if

is a base-r fraction, then it can happen that when f is converted to a base-s fraction.

that is, bi is not equal to 0 for infinitely many values of i. (As an example of this,
expand the decimal fraction 0.1 into a binary one.) Rather than trying to draw analogies
to the conversion of integer representations, it is simpler to notice that multiplying the
right-hand side of (18) by s yields bi as the integer part of the result, multiplying the
resulting fractional part by s yields b2 as the integer part, and so forth. We illustrate the
technique with an example.

Suppose that we want to convert the decimal fraction .345786 into a binary fraction
so that

.345786 = bx * 2~l + b2 * 2"2 + ...

Then bi is the integer part of 2 * (.345786), b2 is the integer part of 2 times the
fractional part of the first multiplication, and so on for the remaining binary digits. More
often than not, this conversion process from a decimal fraction to a binary one does not
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terminate after a fixed number of bits, so that some type of rounding must be done.
Furthermore, assuming that the leading digit of the decimal fraction is nonzero, as many
as three leading bits in the binary fraction may be zero. Thus, if one is using this step to
convert to a binary floating-point number, probably 24 bits after the leading zeros should
be generated with the 24th bit rounded appropriately. Notice that the multiplication by 2
in this conversion process is carried out in decimal so that BCD arithmetic with the
DAA instruction is appropriate here much like the CVBTD subroutine of Figure 7.9.

The conversion of a binary floating-point number to a decimal floating-point
number is a straightforward variation of the process above and is left as an exercise.

This section covered the essentials of floating-point representations, arithmetic
operations on floating-point numbers, including rounding, overflow, and underflow, and
the conversion between decimal floating-point numbers and binary floating-point
numbers. Hi Ware's C and C++ libraries illustrate subroutines for adding, subtracting,
and multiplying single-precision floating-point numbers. This section and these libraries
should make it easy for you to use floating-point numbers in your assembly language
programs whenever you need their power.

7,6 Fuzzy Logic

This section, taken from the Motorola CPU 12 reference manual (Rev. 1), section 9,
gives a general introduction to fuzzy logic concepts and illustrates an implementation of
fuzzy logic programming. There are a number of fuzzy logic programming strategies;
this discussion concentrates on the methods that use 6812 fuzzy logic instructions.

In general, fuzzy logic provides for set definitions that have fuzzy boundaries rather
than the crisp boundaries of Boolean logic. A Boolean variable is either true or false,
while in fuzzy logic, a linguistic variable has a value that is a degree of confidence
between 0 and 1. A value can be "0.2 (or 20%) confident." For a specific input value,
one or more linguistic variables may be confident to some degree at the same time, and
their sum need not be 1. As an input varies, one linguistic variable may become
progressively less confident while another becomes progressively more confident.

Fuzzy logic membership Junctions better emulate human concepts like "I got a B
on the last quiz" than Boolean functions that are either absolutely true or absolutely
false; that is, conditions are perceived to have gradual or fuzzy boundaries. Despite the
term "fuzzy," a specific set of input conditions always deterministically produces the
same result, just as in conventional control systems. Fuzzy sets provide a means of
using linguistic expressions like "I got a B" in rules that can then be evaluated with
numerical precision and repeatability. We will see that fuzzy membership functions help
solve certain types of complex problems that have eluded traditional methods, as we
study how fuzzy logic could compute a student's course grade from his or her quiz scores.

An application expert, without any microcontroller programming experience, can
generate a knowledge base. In it, membership functions express an understanding of the
system's linguistic terms. And in it, ordinary language statement rules describe how a
human expert would solve the problem. These are reduced to relatively simple data
structures (the knowledge base) that reside in the microcontroller memory.
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Figure 7.21. Fuzzy Logic Control System

A microcontroller-based fuzzy logic control system has & fuzzy inference kernel and
a knowledge base. See Figure 7.21. The fuzzy inference kernel is executed periodically
to determine system outputs based on current system inputs. The knowledge base
contains membership functions and rules.

A programmer who does not know how the application system works can write a
fuzzy inference kernel. One execution pass through the fuzzy inference kernel generates
system output signals in response to current system input conditions. As in a
conventional control system, the kernel is executed as often as needed to maintain
control. If the kernel is executed too often, processor bandwidth and power are wasted;

Figure 7.22. Membership Functions
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but if too infrequently, the system gets too far out of control. The steps of this kernel
are: fuzzification, rule evaluation, and defuzzification.

During fuzzification, the current system input values are compared against stored
input membership functions, usually in a program loop structure, to determine the degree
to which each linguistic variable of each system input is true. Three membership
functions are indicated in Figure 7.22; these convert a student's quiz test score to a letter
grade. This is accomplished by finding the y-value for the current input value on a
trapezoidal membership function for each label of each system input. If a student's test
score is 43, his or her membership in linguistic variable "Grade is A" is zero, in
linguistic variable "Grade is B" is $80 (50%), and in linguistic variable "Grade is C" is
$80 (50%). Fuzzy logic avoids the agony of missing a "B" by a point or two.

In our example, system inputs are each quiz's and homework assignment's numeric
grades. Linguistic variable values are the degree of confidence that the student has a
particular grade associated with each letter grade. If there are two quizzes and one
homework assignment, and each has three grades, then there are nine linguistic variables.

The end result of the fuzzification step is a collection of fuzzy linguistic variables
reflecting the system. This is passed to the rule evaluation phase, which processes a list
of rules from the knowledge base using current fuzzy input values to produce a list of
fuzzy output linguistic variables. These fuzzy outputs are considered raw suggestions for
what the system output should be in response to the current input conditions. The
following is an example of a typical rule:

If you get an A on quiz 1, an A on quiz 2, and an A on homework assignments, then
you should get an A+ for the course.

The left portion of the rule is a statement of input conditions, antecedents connected by
& fuzzy AND operator, and the right portion of the rule is a statement of output actions
called consequents,

In an automotive antiskid braking system, about 600 such rules are used to compute
the brake pressure to be applied. Analogous to the Boolean sum-of-products, rule
evaluation employs a fuzzy AND operator, used to connect antecedents within a rule, and
& fuzzy OR operator, which is implied among all rules affecting a given consequent.
Each rule is evaluated sequentially, but the rules as a group are treated as if they were all
evaluated simultaneously. The AND operator corresponds to the mathematical minimum
operation, and the fuzzy OR operation corresponds to the maximum operation. Before
evaluating any rules, all fuzzy outputs are set to zero (meaning none are true). As each
rule is evaluated, the minimum antecedent is taken to be the overall confidence of the
rule result. If two rules affect the same fuzzy output, the rule that is most true governs
the value in the fuzzy output, because the rules are connected by an implied fuzzy OR.
There is also & fuzzy negate operator, which complements each bit.

Each antecedent expression consists of the name of a system input, followed by
"is," followed by a label name defined by a membership function in the knowledge base.
Because "and" is the only operator allowed to connect antecedent expressions, there is no
need to include these in the encoded rule. Each consequent expression consists of the
name of a system output, followed by "is," followed by a label name; for example:
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If quiz 1 is A, quiz 2 is A, homework assignment is A, then course is A.+,

Rules can be weighted. The confidence value for a rule is determined as usual by
finding the smallest rule antecedent. Before applying this value to the consequents for the
rule, the value is multiplied by a fraction from zero (rule disabled) to $FF (rule fully
enabled). The resulting modified confidence value is then applied to the fuzzy outputs,
Equation (19) illustrates that the output for a set of rules is the output Sj for each rule
times a weight Fj, divided by the sum of the weights.

The rules can reflect nonlinear, but deterministic, relationships. For instance, if a
student gets a B on the first quiz and an A on the second quiz, the instructor may decide
that the course grade is A-, but if a student gets an A on the first quiz and a B on the
second quiz, the instructor may decide that the course grade is B+. But if the student also
did poorly in lab work, then the course grade might be B-, to give the student some
incentive to get to work. That is, if quiz 1 is A, quiz 2 is B, and lab is not C, then
course is B+, but if quiz 1 is A, quiz 2 is B, and lab is C, then course is B-. In the
limit, if there are n input variables and each input variable is associated with m linguistic
*

* Fuzzification step:
*

FUZZIFY: LDX #INPUT_MFS ;Point at member function definitions
LDY #FUZ_INS ;Point at fuzzy input vector
LDAA CURRENT__INS ;Get first input value
LDAB #7 ;7 fuzzy values per input

GRADJLOOP: MEM ;Evaluate a member function
DBNE B,GRAD_LOOP ;For 7 labels of 1 input
LDAA CURRENT_INS+1 ;Get second input value
LDAB #7 ;7 fuzzy values per input

GRAD_LOOP 1: MEM ;Evaluate a member function
DBNE B,GRAD_LOOP1 ;For 7 fuzzy values of 1 input

* Rule Evaluation step:
LDAB #7 ;Loop count

RULE_EVAL: CLR 1,Y+ ;Clr a fuzzy out & inc ptr
DBNE B,RULE_EVAL ;Loop to clr all fuzzy Outs
LDX #RULE_START ;Point at first rule element
LDY #FUZ_INS ;Point at fuzzy ins and outs
LDAA #$FF ;Init A (and clears V-bit)
REV ;Process rule list

* Defuzzification step:
DEFUZ s LDY #FUZ_OUT ;Point at fuzzy outputs

LDX #SGLTN_POS ;Point at singleton positions
LDAB #7 ;7 fuzzy outs per COG output
WAV ;Calculate sums for weighted av
EDIV ;Final divide for weighted av
TFR Y,D ;Move result to accumulator D
STAB COG_OUT ;Store system output

Figure 7.23. A Fuzzy Inference Kernel
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variables, then there can be as many as nm rules to produce each output linguistic
variable, one to cover each case. That would be unattractive, but heuristics are used to
substantially reduce this number of rules using common sense.

But before the results can be applied, fuzzy outputs must be further processed, or
defuzzified, to produce a single output value that represents the combined effect of all of
the fuzzy outputs. In our example, a single output would be a numerical grade for the
course. The end result of the rule evaluation step is a collection of suggested or "raw"
fuzzy outputs. These values were obtained by plugging current conditions (fuzzy input
values) into the system rules in the knowledge base. The raw results cannot be supplied
directly to the system outputs because they may be ambiguous. For instance, one raw
output can indicate that a grade should be B+ with a degree of confidence of 50% while,
at the same time, another indicates that the grade should be C- with a degree of
confidence of 25%. A simple "max defuzzification" technique, which outputs the
maximum of all the degrees of confidence, ignores all other degrees of confidence, and
gives inferior results. A better defuzzification step resolves multiple-degree ambiguities
by combining the raw fuzzy outputs into a composite numerical output using
singletons. The singleton for a linguistic variable is a single value assigned to the
output variable if the rules produce this linguistic variable with a degree of confidence of
1, and all other linguistic variables have a degree of confidence of zero. For instance, the
singleton for A+ might be 100, the singleton for A might be 95, that for A- might be
90, and so on. Singletons Sj are weighted by fuzzy output degrees of confidence Fj, for n
such outputs, normalized to a degree of confidence of one, in the expression (19)

Figure 7.23 shows a 6812 fuzzy inference kernel. When the fuzzification step
begins, a MEM instruction fuzzifies the inputs. The current value of the system input is
in accumulator A, index register X points to the first membership function definition,
and a index register Y points to the first fuzzy input. As each fuzzy input is calculated by
executing a MEM instruction, the result is stored to the fuzzy input, and both X and Y
are updated automatically to point to the locations associated with the next fuzzy input.
For each system input, a DBNE instruction executes as many MEM instructions as a
system input has fuzzy input linguistic variables. Thus MEM and DBNE handle one
system input's fuzzification. Repeated such program segments handle each system input.

Each trapezoidal membership function is defined by four 8-bit parameters, XI, X2,
St, and S2. XI is where the trapezoid's left slope intercepts Y = 0, and X2 is where the
trapezoid's right slope intercepts Y = 0. SI is the trapezoid's left slope (AY/AX), and S2
is the trapezoid's right slope (-AY/AX), but a slope of 0 is defined as a vertical line.

More complicated membership functions can be evaluated by the TBL instruction,
which interpolates arbitrary table functions. A 16-bit version of TBL, ETBL, permits
handling 16-bit input variables and 16-bit degrees of confidence.

The rule evaluation step is likewise almost completely executed by the REV
instruction. Before it is executed, fuzzy outputs are cleared, index register X points to a
vector of the rules, Y points to the base address of fuzzy inputs and outputs, and
accumulator A is set for maximum ($FF). Each antecedent expression is represented as
an 8-bit relative offset from index register Y, to read an 8-bit fuzzy input. Antecedents are
separated from consequents with reserved "offset" value $FE. Each consequent expression
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is represented as an 8-bit relative offset from index register Y, to write an 8-bit fuzzy
output. The consequents end with a reserved value $FE, if more rules must be evaluated,
or $FF, after the last rule is evaluated. The condition code V signifies whether
antecedents are being processed (V = 0) or consequents are being processed (V = 1).

Besides REV, the more complex REVW instruction allows each rule to have a
separate weighting factor, and EMIND and EMAXD can be used to implement 16-bit
rule evaluation.

The WAV instruction calculates the numerator and denominator sums for weighted
average of the fuzzy outputs. Before executing WAV, accumulator B must be loaded with
the number of iterations, index register Y must be pointed at the list of singleton
positions in the knowledge base, and index register X must be pointed at the list of fuzzy
outputs in RAM. If the system has more than one system output, the WAV instruction
is executed once for each system output. The final divide is performed with a separate
EDIV instruction placed immediately after the WAV instruction.

The EM ACS instruction can be used to evaluate 16-bit linguistic variables. A
separate but simple program segment must calculate the sum of linguistic variables,
which is automatically calculated by the WAV instruction.

The 6812 is currently the only microcontroller that has machine instructions that
can be used to implement the complete fuzzy inference kernel. These machine
instructions speed up execution of the kernel by a factor of about 10 over software
evaluation that uses ordinary instructions. This feature makes the 6812 the
microcontroller of choice for time-critical applications that use fuzzy logic.

In conclusion, fuzzy logic provides fuzzy rather than crisp boundaries. Linguistic
variables indicate a degree of confidence. Combinations of variables are presumed to be
true to the worst-case (minimum) degree of confidence, and alternatives are presumed to
be true to the best-case (maximum) degree of confidence. Final values are weighted sums
of typical values, using degrees of confidence as weights. Such fuzzy logic systems are
currently being applied to automotive control and other rather complex control systems,

7.7 Summary

This chapter covered the techniques you need to handle integer and floating point
arithmetic in a microcontroller. We discussed the conversion of integers between any two
bases and then discussed signed and unsigned multiple precision arithmetic operations
that had not been discussed in earlier examples. Floating-point representations of
numbers with a fractional part, and the algorithms used to add and multiply floating-
point numbers, were discussed together with the problems of rounding and conversion.
The IEEE standard floating-point format was used throughout these discussions. We
ended with the use of the stack for holding the arguments for arithmetic subroutines and
showed how you can write a sequence of subroutine calls to evaluate any formula.

You should now be able to write subroutines for signed and unsigned arithmetic
operations, and you should be able to write and use such subroutines that save results on
the stack. You should be able to convert integers from one representation to another and
write subroutines to do this conversion. You should be able to write numbers in the
IEEE floating-point representation, and you should understand how these numbers are
added or multiplied and how errors can accumulate.
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Do You Know These Terms?

See the end of chapter 1 for instructions.

long data floating-point rounding toward fuzzy inference
float data numbers zero kernel
state bias rounding to knowledge base
biasing normalized nearest antecedent
rn-digit base-b number flushing to zero fuzzy AND

representation denormalized rounding consequent
Polish notation number guard bit fuzzy OR
parsing tree unnormalization round bit fuzzy negate
fixed-point renormalized sticky bit singleton

representation overflow decimal floating-
significand underflow point number
exponential part rounding toward linguistic variable
floating-point plus infinity value
hidden bit rounding toward membership
single precision minus infinity function

floating-point truncation rule
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PROBLEMS

1 . How would you rewrite the subroutines of Figures 7.1 and 7.2 if you did not want
any registers changed by the subroutines except D, the output parameter?

2 . Write a shortest subroutine DIVS that divides the signed contents of B by the
signed contents of A, putting the quotient in B and the remainder in A.

3 . Rewrite the subroutine of Figure 7.4 so that, using INCH, the digits can be input
from the terminal as a string. A carriage return should terminate the input string so that
zero through five digits can be put in. (The empty sequence should be treated as zero.)
Your subroutine should do the same thing as the one in Figure 7.4 as long as the
number of digits put in is five or less. INCH inputs a character from the keyboard,
returning it in A.

4 . Rewrite the subroutine of Figure 7.7 so that (DUTCH can be used to output the
decimal digits to the terminal. OUTCH prints the character input in A.

5 . Write a shortest subroutine INBCD using INCH that will input six ASCII decimal
digits and place the equivalent 6-digit BCD number at the address passed in X. INCH
inputs a character from the keyboard, returning it in A.

6 . Write a shortest subroutine OUTBCD that will output the 6-digit BCD number
pointed to by X to the terminal. The subroutine, using OUTCH, should display the
equivalent 6-digit decimal with leading zeros suppressed. OUTCH prints the character in
A.

7 . Using the subroutine OUTCH, write another shortest subroutine OUTBCD A that
puts out the BCD contents of accumulator A to the terminal. OUTCH prints the
character in A.

8 . Write a shortest subroutine that will replace the DAA instruction when two base-
13 digits are stored per byte.

9. Give a sequence of subroutine calls for the following formula.

z = sqrt((17 + (x /y ) ) * (w - (2 + w / y ) ) )

Provide a graphical parsing tree for this formula, and show assembly language statements
(dc.b directives, etc.) for the storage of the parsing tree for z so that Problem 7.10 can be
done.

10. Write a flow chart that will read the data structure of Problem 7.9 (or any similar
formula tree stored in a linked list structure), and then write an assembly language source
program (in ASCII) for the subroutine calls needed to evaluate the formula.



218 Chapter 7 Arithmetic Operations

11. Give the graphical parsing trees needed to efficiently evaluate the formula

2 = (4x2 + y2) + (y/2x)2 ln(Vx + (4x + y)2 + Hy)

Assume that you have subroutines to evaluate a square root and a natural logarithm. To
do an efficient calculation, you should evaluate the common subexpression (e.g., x2)
first.

12. Show how the formulas

delta = delta + c s = s + (delta * delta)

can be more efficiently evaluated by passing arguments through registers instead of on
the stack as was done in the text.

13. Modify the subroutine of Figure 7.14 so that the Z flag is returned correctly for a
4-byte negate.

14. Write a shortest subroutine that multiplies the 24-bit unsigned number in A (high
byte) and X with the 24-bit unsigned number in B (high byte) and Y, returning the
product in X (most-significant 16 bits), Y (middle-significant 16 bits), and D (least-
significant 16 bits) .

15. Write a shortest subroutine that multiplies the 24-bit signed number in A (high
byte) and X with the 24-bit signed number in B (high byte) and Y, returning the product
in X (most-significant 16 bits), Y (middle-significant 16 bits), and D (least-significant
16 bits) .

16. Write a shortest subroutine DIVS that divides the signed contents of Y and D by
the signed contents of the next word on the stack, putting the quotient in Y and D.

17. Write a shortest subroutine DIVS that divides the signed contents of Y and D by
the signed contents of the next word on the stack, putting the remainder in Y and D.

18. Because the half-carry is not set correctly by the instructions SUBA and SBC A,
how do you subtract multiple byte BCD numbers? Explain.

19. Write a subroutine to convert a decimal fraction .xyz . . . input from the terminal
using INCH, to the closest 16-bit binary fraction returned in D. The decimal fraction can
have up to five decimal digits terminated by a carriage return.

2 0. Write a subroutine to convert a 16-bit binary fraction in D to a decimal fraction
.xyz . . . and output it from the terminal using OUTCH. The decimal fraction can have
up to five decimal digits terminated by a carriage return.

21. Write a subroutine FPOUT to convert a single-precision binary floating-point
number, which is a positive integer less than 100,000, popped from the top of the stack
to a decimal floating-point number that is displayed on a terminal screen. Assume you
have FPADD and FPMUL, and follow the steps in Figure 7.6.
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2 2 . Write a subroutine FPIN to convert a decimal floating-point number input on the
keyboard in "scientific notation," which is a positive integer less than 100,000, to a
single-precision binary floating-point number pushed on the top of the stack. Assume
you have a subroutine FPADD and FPMUL. Follow the steps in Figure 7.5.

2 3. Give an example that shows that the round bit r can not be eliminated, that is, give
an example that shows that it really is not superfluous.

24. Give an example of the addition of two floating-point numbers, each with a
magnitude less than or equal to 1, that results in the biggest possible rounding error.
Repeat the problem for multiplication.

2 5. Write a subroutine FPDIV to divide a single precision floating-point number on
the top of the stack into the second number on the stack, popping both numbers and
pushing the remainder on the top of the stack.

2 6. Write a subroutine FPADD to add a single precision floating-point number on the
top of the stack into the second number on the stack, popping both numbers and pushing
the result on the top of the stack.

27. Write a program to make your microcomputer a simple four-function calculator,
using subroutines from Hiware's library, subroutine FPDIV of problem 7.24, and input
and output subroutines FPIN and FPOUT of problems 20 and 21. Your calculator should
use Polish notation and should only evaluate +, —, ~, and /, inputting data in the form of
up to eight decimal digits and decimal point (e.g., 123.45,1234567.8,12., and so forth).

28. Write, in DC.B's, the parameters pointed to by X when the MEM instruction is
executed for each of the linguistic variables in Figure 7.20, for the data in Figure 7.23.
The highest C is 50, the lowest B is 40, the highest B is 70, and the lowest A is 60.

29. Assume a function f(x) is graphed as the grade B graph in Figure 7.22. Write a
shortest assembly language subroutine F and a table T stored using a DC.B directive, to
evaluate f(x) where 40 s x s 70 is input in accumulator A, which leaves the result in
accumulator A. [Hint: see Figure 9.12 in the CPU12 manual (CPU12RG/D)].
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The Motorola M68HC12A4EVB board can implement all the experiments including those
of Chapter 10. The wire-wrap area shows a shift-register that implements the device dia-
grammed in Figure 10.6.
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Programming in C and C++

This chapter gives background material for Chapter 9, which shows how C or C++
statements are encoded in assembly language. Together, they illustrate what a
programmer is doing when he or she writes high-level language programs. However, if
you have already covered this material, it can be skipped.

The first section provides terminology and understanding of where to use high-level
language compilers and interpreters. We then begin with a description of C, illustrating
first operators and statements and then conditional and loop expressions. We give an
example of a program that uses many of the features we need in the next chapter, and
then discuss C++ and object-oriented programming.

8.1 Compilers and Interpreters

We first discuss the difference between an assembler and a compiler. A compiler is a
program that converts a sequence of (ASCII) characters that are written in a high-level
language into machine code or into assembly language that can be converted into
machine code. A high-level language is different from an assembly language in two
ways. First, a line of a high-level language statement will often generate five to a few
tens of machine instructions, whereas an assembly-language statement will usually
generate (at most) one machine instruction. Second, a high-level language is designed to
be oriented to the specification of the problem that is to be solved by the program and to
the human thought process, while a program in an assembly language is oriented to the
computer instruction set and to the hardware used to execute the program. Consider the
dot product subroutine used in the previous chapter, written in C below. Each line of the
program generates many machine instructions or lines of assembly-language code. Each
high-level language statement is designed to express an idea used in the statement of the
problem and is oriented to the user rather than the machine. The compiler could generate
the assembly-language program or the machine code produced by this program.

int dotprod(char v[] , char w [ ] ) { int i, dprd = 0;
for(i = 0; i < 2; i++) dprd += v[i] * w[i] ;
return dprd;

}

221
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Compilers are used for different purposes than are assemblers. Studies have shown
that a typical programmer can generate about ten lines of documented, debugged code per
day, regardless of whether the program is written in a high-level language or an assembly
language. Because a high-level language generates about an order of magnitude more
machine instructions per line, a high-level language program should be an order of
magnitude shorter (in the number of lines) and an order of magnitude cheaper to write
than an assembly language program that does the same job.

However, a high-level language compiler usually produces inefficient code. For
example, an instruction STAA LOCI might be immediately followed by the instruction
LDAA LOCI in the compiler output. As the compiler generates code from each line of
the program, line by line, the last operation of one line can generate the STAA
instruction, and the first machine code generated by the next line might be the LDAA
instruction, for the same variable. The compiler is usually unable to detect such an
occurrence and to simplify the code produced by it. Such inefficient code is quite
acceptable in a large computer where the slow execution and large memory space needed
to store the program are traded against the cost of writing the program. Hardware is cheap
and programmers are expensive, so this is a good thing. In a very small computer, which
might be put in a refrigerator to control the cooling cycle or keep the time, memory
space is limited because the whole computer is on just one chip. Inefficient code is
unacceptable here because there is not much room for code and the cost of writing the
program is comparatively small. The company that uses high-level languages for small
microcomputers will not be able to offer all the features that are crammed into a
competitor's product that is programmed in efficient assembly language; or, if it offers
the same features, its product will cost more because more memory is needed.

Some compilers are called optimizing. They use rules to detect and eliminate the
unnecessary operations such as the STAA and LDAA pair described above. They can be
used to generate more efficient code than that generated by nonoptimizing compilers. But
even these optimizing compilers produce some inefficient code. You should examine the
output of an optimizing compiler to see just how inefficient it is, and you should ignore
the claims as to how optimal the code is. Compilers are more powerful, and using them
is like driving a car with an automatic transmission, whereas using assemblers is like
driving a car with a standard transmission. An automatic transmission is easy to drive
and appeals to a wider market. A standard transmission is more controlled and enables
you to get the full capabilities out of the machine.

We now consider the differences between the compiler and the interpreter. An
interpreter is rather like a compiler, being written to convert a high-level language into
machine code. However, it converts a line of code one line at a time and executes the
resulting code right after it converts it from the high-level language program. A pure
interpreter stores the high-level language program in memory, rather than the machine
code for the program, and reads a line at a time, interprets it, and executes it. A popular
high-level language for interpreters is JAVA, and a JAVA program appears below, doing
the same job as the previous programs in C. By design, it has the same syntax as C,

An interpreter reads and executes the source code expression dprd += v[i] *
w[ i 3 twice. A compiler interprets each source code expression just once, reading it and
generating its machine code. Later the machine executes the machine code twice.
Interpreters are slow. However, it is easy to change the program in memory and execute
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it again in an interpreter without having to go through the lengthy process of compiling
the code. On the internet, programs can be sent to different servers to be executed.
Servers on the internet can immediately interpret a JAVA program regardless of which
server gets the code or from where it was sent. This interpretive language has proven to
be a very powerful tool for the internet.

Some interpreters are almost compilers. The high-level language is stored in
memory almost as written, but some words are replaced by tokens. For example, in the
preceding program, the word for could be replaced by a token $81. All the bytes in the
program would be ASCII characters, whose value would be below $7F. The original
high-level language can be regenerated from the information in memory, because the
tokens can be replaced by their (ASCII) character string equivalents. But as the program
is executed, the interpreter can essentially use the token $81 as a command, in this case
to set up a loop. It does not have to puzzle over what the (ASCII) characters f , o, and
r are before it can decide what the line means. These interpreters have the convenience
of a pure interpreter, with respect to the ease of changing the program, but they have
speeds approaching those of compilers. They are really partly compiler, to get the
tokens, and partly interpreter, to interpret the tokens and the remaining characters and
have some of the better features of both.

The state-of-the-art 6812 clearly illustrates the need for programming
microcontrollers in a high-level language and in object-oriented languages. Further, the
32K-byte flash memory of the MC68HC912B32 or the 4K-byte EEPROM memory of
the MC68HC812A4 is large enough to support high-level language programs. Also,
object-oriented features like modularity, information hiding, and inheritance will further
simplify the task of controlling 6812-based systems.

This chapter illustrates C and C++ programming techniques. C programming is
introduced first. The use of classes in C++ will be introduced at the end of this chapter.
While this introduction is very elementary and rather incomplete, it is adequate for the
discussion of how high-level languages generate machine code in the next chapter.

8.2 Operators and Assignment Statements

We first explain the basic form of a C procedure, the simple and the special numeric
operators, conditional expression operators, conditional statements, loop statements, and
functions. However, we do not intend to give all the rules of C you need to write good
programs. A C program has one or more procedures, of which the first to be executed is
called main, and the others are "subroutines" or "functions" if they return a value.

All the procedures, including main, are written as follows. Carriage returns and
spaces (except in names and numbers) are not significant in C programs and can be used
to improve readability. The periods (.) in the example below do not appear in C
programs but are meant here to denote that one or more declaration or statement may
appear. Each declaration of a parameter or a variable and each statement ends in a
semicolon (;), and more than one of these can be put on the same line. Parameters and
variables used in the 6812 are usually 8-bit (char), 16-bit (int), or 32-bit (long)
signed integer types. They can be declared unsigned by putting the word unsigned in
front of char, int, or long. In this and the next chapter we will not discuss long
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data. More than one variable can be put in a declaration; the variables are separated by
commas (,). A vector having n elements is denoted by the name and square brackets
around the number of elements «, and the elements are numbered 0 to n.— 1, For
example, the declaration int a, b[ 10 ]; shows two variables, a scalar variable a and a
vector b with ten elements. Variables declared outside the procedure (e.g., before the line
with procedure_name) are global, and those declared within a procedure (e.g., between
the curly brackets { and } after procedure_name) are local. Parameters will be discussed
in §8.5. A cast redefines a value's type. A cast is put in parentheses before the value. If
i is an int, (char) i is a char.

declaration of global variable;
declaration of global variable;

procedure_name (parameter_l, Parameter^,...)

{
declaration of local variable;
declaration of local variable;

statement;
statement;

}

Table 8.1. Conventional C Ooerators Used in Exoressions

Statements may be algebraic expressions that generate assembly-language
instructions to execute the procedure's activities. A statement may be replaced by a
sequence of statements within a pair of curly brackets ({ and }). This will be useful in
conditional and loop statements discussed soon. Operators used in statements include
addition, subtraction, multiplication, and division, and a number of very useful operators
that convert efficiently to assembly-language instructions or program segments. Table
8.1 shows the conventional C operators that we will use in this book. Although they are
not all necessary, we use a lot of parentheses so we will not have to learn the precedence
rules of C grammar. The following simple C procedure fun has (signed) 16-bit input
parameter a and 32-bit local variable b; it puts 1 into b and then puts the (a+b) th
element of the ten-element unsigned global 8-bit vector d into 8-bit unsigned global c
and returns nothing (void) as is indicated by the data type to the left of the procedure
name:
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unsigned char c,d[10];
void fun{int a) { long b;

b=l;
c = dfa+b] ;

}

Some very powerful special operators are available in C. Table 8.2 shows the ones
we use in this book. For each operator, an example is given together with its equivalent
result using the simple operators of Table 8.2. The assignment operator = assigns the
value on its right to the variable named on its left and returns the value it assigns so that
value can be used in an expression to the left of the assignment operation: The example
shows 0 is assigned to c, and that value (0) is assigned to b, and then that value is
assigned to a. The increment operator + + can be used without an assignment operator
(e.g., a++ just increments a). It can also be used in an expression in which it
increments its operand after the former operand value is returned to be used in the
expression. For example, b = a[i++] will use the old value of i as an index to put
a[i] into b, then it will increment i. Similarly, the decrement operator -- can be
used in expressions. If the + + or — appear in front of the variable, then the value
returned by the expression is the updated value; a[++i] will first increment i, then
use the incremented value as an index into a. The next row shows the use of the + and
= operators used together to represent adding to a variable. The following rows show -
| and & appended in front of = to represent subtracting from, ORing to, or ANDing to
a variable. Shift « and » can be used in front of the = sign too. This form of a
statement avoids the need to twice write the name of, and twice compute addresses for,
the variable being added to or subtracted from. The last two rows of Table 8.2 show shift
left and shift right operations and their equivalents in terms of elementary shift and
assignment operators.

A statement can be conditional, or it can involve looping to execute a sequence of
statements that are written within it many times. We will discuss these control flow
statements by giving the flow charts for them. See Figure 8.1 for conditional statements,
8.2 for case statements, and 8.3 for loop statements. These simple standard forms appear
throughout the rest of the book, and we will refer to them and their figures.

Table 8.2. Special C Operators Table 8.3.
Conditional Expression Operators
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8.3 Conditional and Loop Statements

Simple conditional expressions of the form if then (shown in Figure 8.la), full
conditionals of the form if then else (shown in Figure 8.1b), and extended conditionals
of the form if then else if then else if then . . . else (shown in Figure 8.lc), use
conditional expression operators (shown in Table 8.3). In the last expression, the else if
part can be repeated as many times as needed, and the last part can be an optional else.
Variables are compared using relational operators ( > and < ), and these are combined
using logical operators ( &&) . For example, {a > 5) && (b < 7) is true if a > 5
andb < 7.

A useful alternative to the conditional statement is the case statement. (See Figure
8.2.) An expression giving a numerical value is compared to each of several possible
comparison values; the matching comparison value determines which statement will be
executed next. The case statement (Figure 8.2a) jumps into the statements just where the
variable matches the comparison value and executes all the statements below it. The
break statement can be used (as shown in Figure 8.2b) to exit the whole case statement
after a statement in it is executed, rather than executing the remainder of it.

Loop statements can be used to repeat a statement until a condition is met. A
statement within the loop statement will be executed repeatedly. The expressions in both
the following loop statements are exactly like the expressions of the conditional
statements, using operators as shown in Table 8.3.

Figure 8.1. Conditional Statements
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Figure 8.2. Case Statements

The while statement of Figure 8.3a tests the condition before the loop is executed
and is useful if, for example, a loop may have to be done 0 times. The do while
statement (shown in Figure 8.3b) tests the condition after the loop is executed at least
once, but it tests the result of the loop's activities. It is very useful in I/O software. It
can similarly clear alpha[ 10]. Though perhaps less clear, it usually leads to more
efficient code. The do while ( ) construct is generally more efficient than the while (}
construct because the latter has an extra branch instruction to jump to its end.

The more general for statement (shown in Figure 8.3c) has three expressions
separated by semicolons (;). The first expression initializes variables used in the loop;
the second tests for completion in the same style as the while statement; and the third
updates the variables each time after the loop is executed. Any of the expressions in the
for statement may be omitted. For example, for (i = 0; i < 10; i++) alpha[i]
= 0; will clear the array alpha as the above loops did.

The break statement will cause the for, while, or do while loop to terminate
just as in the case statement and may be used in a conditional statement. For instance,
f o r ( ; ; ) {i++; i f ( i ™ 30) break;} executes the compound statement {i++;
if (i ==30) break; } indefinitely, but the loop is terminated when i is 30.

8.4 Constants and Variables

An important feature of C, extensively used to access I/O devices, is its ability to
describe variables and addresses of variables. If a is a variable, then &a is the address of
a. If a is a variable that contains an address of another variable b, then* a is the
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>*

Figure 83. Loop Statements

contents of the word pointed to by a, which is the contents of b. (Note that a*b is a
times b but *b is the contents of the word pointed to by b.) Whenever you see &,
read it as "address of," and whenever you see *, read it as "contents of thing pointed to
by." In a declaration statement, the statement char *p; means that the thing pointed to
by p is a character, and p points to (contains the address of) a character. In an
assignment statement, *p = 1; means that 1 is assigned to the value of the thing
pointed to by p, whereas p*l; means that the pointer p is given the value 1.
Similarly, a=*p; means that a is given the value of the thing pointed to by p, while
a^p; means a gets the value of the pointer p. C compilers can give an error message
when you assign an integer to a pointer. If that occurs, you have to use a cast. Write p
~ (int *) 0x4000; to tell the compiler 0x4000 is really a pointer value to an integer
and not an integer itself.

Constants can be defined by define or enum statements, put before any declarations
or statements, to equate names to values. The define statement begins with the
characters #def ine and does not end with a semicolon.

#define ALPHA 100

Thenceforth, we can use the label ALPHA throughout the program, and 100 will
effectively be put in place of ALPHA just before the program is actually compiled. This
permits the program to be better documented, using meaningful labels, and easier to
maintain, so that if the value of a label is changed, it is changed everywhere it occurs.
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A number of constants can be created using the enum statement. Unless reinitialized
with an "=" sign, the first member has value 0, and each next member is one greater than
the previous member. Hexadecimal values are prefixed with zero ex (Ox):

enum { BETA, GAMMA, DELTA = 0x5};

defines BETA to have value 0, GAMMA to have value 1, and DELTA to be 5.
Any scalar variable can be declared and initialized by a "=" and a value; for instance,

if we want global integers i, j and k to be initially 1, 2 and 3, we write a global
declaration:

int i=l, j=2, k=3;

C procedures access global variables using direct addressing, and such global variables
may be initialized in a procedure _startup that is executed just before main is started.
Initialized local variables of a procedure should generate machine code to initialize them
just after they are allocated each time the procedure is called. The procedure

void fun{){
int i, j, k; /* allocate local variables */
i = l ; j = 2 ; k = 3 ; / * initialize local variables */

>

is equivalent to the procedure

void fun{){
int i = l, j = 2, k = 3; /* allocate and init. local vars. */

}

A 16-bit element, three-element vector 31, 17, and 10, is generated by a declaration
int v[3] and stored in memory as (hexadecimal):

00 IF
0011
OOOA

and we can refer to the first element as v[ 0 ], which happens to be 31. However, the
same sequence of values could be put in a vector of three 8-bit elements, generated by a
declaration char u [ 3 ] and stored in memory as:

IF
11

OA

The declaration of a global vector variable can be initialized by use of an "=" and a list
of values, in curly brackets. For instance, the three-element global integer vector v can
be allocated and initialized by

int v[3] = {31, 17, 10};

The vector u can be similarly allocated and initialized by the declaration

char u[3] = {31, 17, 10};
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The procedure f u n ( ) in §8.2 illustrated the accessing of elements of vectors in
expressions. The expression c = d[a + b], accessed the a + b th element of the 8-
bit 10-element vector d. When reading the assembly code generated by C, be wary of
the implicit multiplication of the vector's precision (in bytes) when calculating offset
addresses of elements of the vector. Because C does not check that indexes are within a
vector, a C program must be able to implicitly or explicitly assure this to avoid nasty
bugs, as when a vector's data is inadvertently stored outside memory allocated to a
vector.

The C structure mechanism can store different-sized elements. The mechanism is
implemented by a declaration that begins with the word struct and has a definition of the
structure within angle brackets and a list of variables of that structure type after the
brackets, as in

struct { char 11; int 12; char 13;} list;

A globally defined list can be initialized as we did with vectors, as in

struct { char 11; int 12; char 13;} list = {5,7,9};

The data in a list are identified by "dot" notation, where a dot (.) means "element." For
instance, list. 11 is the 11 element of the list list. If P is a pointer to a struct,
then arrow notation, such as P->11, can access the element 11 of the list. The
typedef statement, though it can be used to create a new data type in terms of existing
data types, is often used with structs. If typedef a struct { char 11; int 12;
char 13;} list; is written, then list is a data type, like int or char, and can be
used in declarations such as list b; that declare b to be an instance of type list.
We will find the typedef statement to be quite useful when a struct has to be
declared many times and pointers to it need to be declared as well. A structure can have
bit fields, which are unsigned integer elements having less than 16 bits. Such a
structure as

struct {unsigned a:l, b:2, c:3;}l;

has a one-bit field 1. a, two-bit field 1. b, and three-bit field 1. c. A linked list
structure, a list in which some elements are addresses of (the first word in) other lists, is
flexible and powerful and is widely used in advanced software.

We normally think of an array as a two-dimensional pattern, as in

1 2 3
4 5 6
7 8 9
10 11 12

An array is considered a vector whose elements are themselves vectors, and C syntax
reflects this philosophy. For instance, the global declaration

int arl[4][3]={{l,2,3},{4,5,6},{7,8,9},{10,ll,12}>;

allocates and initializes a row major ordered array (rows occupy consecutive memory
words) ar 1, and a = ar 1 [ i ] [ j ]; puts the row-z column-,/ element of ar 1 into a.

A table is a vector of identically formatted structs. Tables often store characters,
where either a single character or a collection of n consecutive characters is considered an
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element of the structs in the table. Index addressing is useful for accessing elements in a
row of a table. If the address register points to the first word of any row, then the
displacement can be used to access words in any desired column. Also, autoincrement
addressing can be used to select consecutive words from a row of the table.

In C, a table tbl is considered a vector whose elements are structures. For instance,
the declaration

struct {char ll;int 12;char 13;} tbl[3];

allocates a table whose rows are similar to the list list above. The dot notation with
indexes can be used to access it, as in

a = tbl[2].11;

In simple compilers, multidimensional arrays and structs are not implemented. They
can be reasonably simulated using one-dimensional vectors. The user becomes
responsible for generating vector index values to access row-column elements or struct
elements.

Finally a comment is anything enclosed by / * and * / . These can be put
anywhere in your program, except within quotation marks. Alternatively, everything
after / / on a source line is considered a comment. However, the latter syntax is not
available on all C compilers.

8.5 Procedures and Their Arguments

A procedure in C may be called by another procedure in C as a procedure. The arguments
may be the data themselves, which is call by value, or the address of the data, which is
call by name. Call by reference is not used in C (it is often used in FORTRAN).
Consider the following example: RaisePower computes i to the power j , returning
the answer in k where i, j, and k are integers. The variable i is passed by value,
while j and k are passed by name. The calling procedure would have
RaisePower (i, & j , & k ) ; and the called procedure would have

void RaisePower (int i, int *j, int *k) { int n;
for(*k =1 , n = 0; n < *j; n++) *k =* k * i;

}

Formal parameters are listed after the procedure name in parentheses, as in (i j,k),
and in the same order they are listed after the procedure name as they would be for a
declaration of local variables. However, they are listed before the curly bracket ({).

Call by value, as i is passed, does not allow data to be output from a procedure,
but any number of call by value input parameters can be used in a procedure. Actual
parameters passed by name in the calling procedure have an ampersand (&) prefixed to
them to designate that the address is put in the parameter. In the called procedure, the
formal parameters generally have an asterisk (*) prefixed to them to designate that the
data at the address are accessed. Observe that call by name formal parameters j or k
used inside the called procedure all have a prefix asterisk. A call by name parameter can
pass data into or out of a procedure, or both. Data can be input into a procedure using
call by name, because the address of the result is passed into the procedure and the
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procedure can read data at the given address. A result can be returned from a procedure
using call by name, because the address of the result is passed into the procedure and the
procedure can write new data at the given address to pass data out of the procedure. Any
number of call by name input/output parameters can be used in a procedure.

A procedure may be used as a function that returns exactly one value and can be used
in the middle of algebraic expressions. The value returned by the function is put in a
return statement. For instance, the function power can be written

int power(int i, int j ) { int k, n;
for(n = 1, k = 0; k < j; k++) n = n * i;
return n;

}

This function can be called within an algebraic expression by a statement a=power(b,2).
The output of the function named in the return statement is passed by call by result.

In C, the address of a character string can be passed into a procedure, which uses a
pointer inside it to read the characters. For example, the string s is passed to a procedure
puts that outputs a string by outputting to the user's display screen one character at a
time using a procedure putchar. The procedure puts is written

void puts(s) char *s; {
while(*s != 0) putchar(*{s++));

>

It can be called in either of three ways, as shown side by side:

void main{) { void main() { void main() {
Char s[6]="ALPHA"; char s[6]="ALPHA"; puts{"ALPHA");
puts{&s[0]); puts(s); }

}
}

The first calling sequence, though permissible, is clumsy. The second is often used to
pass different strings to the procedure, while the third is better when the same constant
string is passed to the procedure in the statement of the calling program.

A prototype for a procedure can be used to tell the compiler how arguments are
passed to and from it. At the beginning of a program we write all prototypes, such as

extern void puts(char *);

The word extern indicates that the procedure puts( ) is not actually here but is
elsewhere. The procedure itself can be later in the same file or in another file. The
argument char * indicates that the procedure uses only one argument and it will be a
pointer to a character (i.e. the argument is called by name). In front of the procedure
name a type indicates the procedure's result. The type void indicates that the procedure
does not return a result. After the prototype has been declared, any calls to the procedure
will be checked to see if the types match. For instance, a call puts ( ' A ' ) will cause an
error message because we have to send the address of a character (string), not a value of a
character to this procedure. The prototype for power ( ) is:

extern int power{int, int);
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to indicate that it requires two arguments and returns one result, all of which are call-by
value-and-result 16-bit signed numbers. The compiler will use the prototype to convert
arguments of other types if possible. For instance, if x and y are 8-bit signed numbers
(of type char) then a call power ( x , y ) will automatically extend these 8-bit to 16-bit
signed numbers before passing them to the procedure. If a procedure has a return n
statement that returns a result, then the type statement in front of the procedure name
indicates the type of the result. If that type is declared to be void as in the puts { )
procedure, there may not be a return n statement that returns a result.

At the beginning of each file, prototypes for all procedures in that file should be
declared. While writing a procedure name and its arguments twice, once in a prototype
and later in the procedure itself, may appear clumsy, it lets the compiler check for
improper arguments and, where possible, instructs it to convert types used in the calling
routine to the types expected in the called routine. We recommend the use of prototypes.

The macro is similar to a procedure but is either evaluated at compile time or is
inserted into the program wherever it is used, rather than being stored in one place and
jumped to whenever it is called. The macro in C is implemented as a #def ine
construct. As #defines were earlier used to define constants, macros are also
"expanded" just before the program is compiled. The macro has a name and arguments
rather like a procedure, and the rest of the line is the body of the macro. For instance

#define f ( a, b, c) a = b * 2 + c

is a macro with name f and arguments a, b, and c. Wherever the name appears in
the program, the macro is expanded and its arguments are substituted. For instance if f {
x, y, 3) appeared, then x = y * 2 + 3 is inserted into the program. Macros with
constant arguments are evaluated at compile time, generating a constant used at run time.

8.6 An Example

A very nice coding scheme called the Huffman code can pack characters into a bit stream
and achieve about a 75% reduction in storage space when compared to storing the
characters directly in an ASCII character string. It can be used to store characters more
compactly and can also be used to transmit them through a communications link more
efficiently. As a bonus, the encoded characters are very hard to decode without a code
description, so you get a more secure communications link using a Huffman code.
Further, Huffman coding and decoding provide a rich set of examples of C techniques.

Figure 8.4. A Huffman Coding Tree
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The code is rather like Morse code, in that frequently used characters are coded as
short strings of bits, just as the often-used letter "e" is a single dot in Morse code. To
insure that code words are unique and to suggest a decoding strategy, the code is defined
by a tree having two branches at each branching point (binary tree), as shown in Figure
8.4. The letters at each end (leaf) are represented by the pattern of Is and Os along the
branches from the left end (root) to the leaf. Thus, the character string MISSISSIPPI can
be represented by the bit string 111100010001011011010. Note that the ASCII string
would take 88 bits of memory while the Huffman string would take 21 bits. When you
decode the bit string, start at the root, and use each successive bit of the bit string to
guide you up (if 0) or down (if 1) the next branch until you get to a leaf. Then copy the
letter, and start over at the root of the tree with the next bit of the bit string.

A C program for Huffman coding is shown below. The original ASCII character
string is stored in the char vector strng. We will initialize it to the string
MISSISSIPPI for convenience, although any string of M I S and P letters could be
used. The procedure converts this string into a Huffman coded 48-bit bit string stored in
the vector code[ 3 ] . It uses the procedure shift { ) to shift a bit into code. This
procedure, shown after main, is also used by the decoding procedure shown after it.

int code [ 3 ], bitlength; /* output code and its length */

char strng [12] = "MISSISSIPPI"; /* input code, terminated in a NULL */
struct table{ char letter; char charcode[4]; } codetable[4]

= { 'SV'XXO", ' I ' / 'XIO" , 'P 1 ,"110",'M',"111" };

void main(){ int row, i; char *point, letter;
for (point=strng; *point ; point++ ){

row = 0; do{
if (((*point) & 0x7f) == codetable[row++].letter){

i = 0; while(i < 3){
letter = codetable{row].charcode[i++];
if (letter != ' X ' )

{ sh i f t ( ) ; code[2]|=(letters1); bitlength++;}

}
}

} while(row < 4 ) ;

}
i- bitlength; while ( ( i++) <4 8) shift ( ) ; /* shift out unchanged bits */

}

int shift() { int i;
i = (0x8000 & code[0]) == 0x8000; code[0] «= 1;
if (code[l] & 0x8000) code[0]++; codefl] = code[l] «1;
if (code[2] & 0x8000) code[l]++; code[2] - code[2] «1;
return(i);

}
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Huffman decoding, using the same shift ( ) , is done as follows:

int codefS] = {Oxfll6, OxdOOO, 0}, bitlength = 21; /* input string */
char ary[3][2] = {{!S ' ,1},{ ' I 1 ,2},{ 'P1 , 'M1}};
char strng[ 20 ]; /* buffer for output characters */

void main(){ int row,entry; char *point;
point=strng; row =0;
while((bitlength—)>=0){

if((entry = ary[row][shift()]) < 0x20) row = entry;
else {row =0; *(point++) = entry &0x7f; }

}
*point = ' \ 0 ' ; /* terminate C string with NULL character */

;
We suggest that you compile these procedures and step through them using a high-

level debugger. We will discuss each of the features of this program below.
While a for loop can be used for the encoder's outermost, middle, and innermost

loops, we have shown the loops using the different constructs to provide different
examples. Each execution of the encoder's outermost for loop takes a character from
strng. The next inner loop, a do while loop, looks up the character in table, a
vector of structs. When it finds a matching character, the innermost loop, a while
loop, copies the encoded bits into the 48-bit bit vector code.

Bits are stored in the global vector code by the subroutine shift ( ) . The leftmost
16 bits are stored in code [ 0 ] , the next 16 bits are stored in code [ 1 ] , and the
rightmost 16 bits are stored in code [ 2 ]. shift ( ) shifts the bit vector left, outputting
the leftmost bit. sh i f t ( ) first makes local variable i I if the bit vector's most
significant bit is 1, otherwise i is 0 (i is the return value). code[0] is shifted left,
clearing its least significant bit, then code[0] is incremented if code[ l] 's most
significant bit is 1. Note that incrementing shifts the most significant bit of code [ 1 ]
into code [ 0 ]. Then code [ 1 ] is shifted, and then code [ 2 ] is shifted, in like manner.
Observe that the least significant bit of code [ 2 ] is cleared by the last shift. The
encoder procedure, after it calls shif t ( ) , ORs a 1 into this bit if it reads an ASCII
character 1 from the struct table.

The decoder program shifts a bit out of code, for bitlength bits, using
shift( ) . This bit is used as an index in the two-dimensional array ary. This array
stores the next node of the tree shown in Figure 8.4. A row of the array corresponds to a
node of the figure, and a column corresponds to an input code bit. The element stored in
this array is an ASCII character to be put in the output buffer string if its value is
above the ASCII code for space (0x20). If it is a character, decoding proceeds next at the
root of the tree, or row zero of the array. Otherwise the value is the node number of the
tree, or row number of the array, where decoding proceeds next.

Now that we have shown how nice the Huffman code is, we must admit a few
problems with it. To efficiently store some text, the text must be statistically analyzed
to determine which letters are most frequent, so as to assign these the shortest codes.
Note that S is most common, so we gave it a short code word. There is a procedure for
generating the best Huffman code, which is presented in many information theory books,
but you have to get the statistics of each letter's occurrences to get that code.
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Nevertheless, though less than perfect, one can use a fixed code that is based on other
statistics if the statistics are reasonably similar. Finally, although the code is almost
unbreakable without the decoding tree, if any bit in the bit string is erroneous, your
decoding routine can get completely lost. This may be a risk you decide to avoid because
the code has to be sent through a communications link that must be as error free as
possible.

8.7 Object-Oriented Programming in C++

The concept of object-oriented programming was developed to program symbolic
processes, database storage and retrieval systems, and user-friendly graphic interfaces.
However, it provides a programming and design methodology that simplifies the
programming of microcontrollers and systems that center on them.

Object-oriented programming began with the language SMALLTALK.
Programmers using C wanted to use object-oriented techniques. Standard C cannot be
used, but a derivative of C, called C++, has been developed to utilize objects with a
syntax similar to that of C. Although a 6812 C++ compiler was not available to the
author when this book was written, the Metrowerks C++ compiler was used to generate
code for 68332 and 68340-based microcontrollers to check out the ideas described below.

C++ has a few differences from C. C++ permits declarations inside expressions, as
infer (int i = 0; i < 10; i++). Parameters can be passed by name using a
PASCAL-like convention; & in front of a formal parameter is like VAR. See the actual
parameter a and corresponding formal parameter b below:

void main(){ char a; void f(char &b) {
f ( a ) ; b = '!';

> }

An object's data are data members, and its procedures are function members; data
and function members are encapsulated together in an object. Combining them is a
good idea because the programmer becomes aware of both together and logically separates
them from other objects. As you get the data, you automatically get the function
members used on them. In the class for a character stack shown below, observe that data
members error, Bottom, Top, and Ptr are declared much as in a C struct, and
function members push, pull, and error are declared like prototypes are declared in C.
Protection terms, protected, public, and virtual, will be soon explained.

class Cstack { // definition of a class
protected: // members below are not available outside

char Error; // a data member to record errors
int *Bottom, *Top, *Ptr; // data members to point to the stack

public: IS members below are available outside
Cstack (char); // constructor, used to initialize data members
virtual void push (int); // function member to push onto stack
virtual int pull (void); // function member to pull from stack
virtual char error (void); // function member to check on errors

;.•



8.7 Object-oriented Programming in C++ 237

A class's function members are written rather like C procedures with the return type
and class name in front of two colons and the function member name.

void Cstack::push{int i){if(Ptr==Top){Error=l; return?} *(++Ptr)=i; }

int Cstack::pull{){if(Ptr==Bottom){ Error=l; return 0;} return *(Ptr—);}

char Cstack::error{){ char i; i = Error; Error = 0; return i; }

Any data member, such as Top, may be accessed inside any function member of
class Cstack, such as push ( ) . Inside a function member, when a name appears in an
expression, the variable's name is first searched against local variables and function
formal parameters. If the name matches, the variable is local or an argument. Then the
variable is matched against the object data members and finally against the global
variables. In a sense, object data members are global among the function members,
because each of them can get to these same variables. However, it is possible that a data
member and a local variable or argument have the same name such as Error. The data
member can be identified as this->Error, using key word this to point to the object
that called the function member, while the local variable or argument is just Error.

C++ uses constructors, allocators, destructors, and deallocators. An allocator
allocates data member storage. A constructor initializes these variables; it has the same
function name as the class name. Declaring or blessing an object automatically calls the
allocator and constructor, as we will see shortly. A destructor terminates the use of an
object. A destructor has the same function name as the class name but has a tilde (~) in
front of the function member name. A deallocator recovers storage for data members for
later allocation. We do not use a deallocator in our experiments; it is easier to reset the
6812 to deallocate storage. Here's Cstack's constructor:

Cstack::Cstack(int i){Top=(Ptr=Bottom=(char*)allocate(i))+i;Qlen=
Error=0;}

Throughout this section, a conventional C procedure allocate provides buffer
storage for an object's data members and for an object's additional storage such as its
stacks. The contents of global variable free are initialized to the address just above the
last global; storage between free and the stack pointer is subdivided into buffers for
each object by the allocate routine. The stack used for return addresses and local
variables builds from one end and the allocator builds from the other end of a common
RAM buffer area, allocate's return type void * means a pointer to anything.

char *free=0xb80;
void *allocate(int i) { void *p=free; free += i; return p; }

A global object of a class is declared and then used as shown below:

Cstack S(10);
void main() { int i;

S.push(l); i = S.pull();

}
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The object's data members, Error, Bottom, Top, and Ptr, are stored in mernory
just the way a global struct is stored. Suppose s is a stack object as described above,
and Sptr is a pointer to a stack object. If a data member could be accessed in main, as
in i = s.Error or i = Sptr->Error (we see later that it can't be accessed from
main), the data member is accessed by using a predetermined offset from the base of the
object exactly as a member of a C struct is accessed. Function members can be called
using notation similar to that used to access data in a struct; s.pushf 1) calls the
push function member of s to push 1 onto S's stack. The "s. " in front of the
function member is rather like a first actual parameter, as in push(s, 1), but can be
used to select the function member to be run, as we will see later, so it appears before
the function.

The class's constructor is executed before the main procedure is executed, to
initialize the values of data members of the object. This declaration s ( 1 0 ) passes actual
parameter 10 to the constructor, which uses it, as formal parameter i, to allocate 10
bytes for the stack. The stack is stored in a buffer assigned by the allocate routine.

Similarly a local object of a class can be declared and then used as shown below;

void main() { int i; Cstack S(10);
S.push(l); i = S.pull();

}

The data members Error, Bottom, Top, and Ptr, are stored on the hardware stack,
and the constructor is called just after main is entered to initialize these data members; it
then calls allocate to find room for the stack. The function members are called the
same way as in the first example when the object was declared globally.

Alternatively, a pointer Sptr to an object can be declared globally or locally; then
an object is set up and then used as shown below.

void main{) { Cstack * Sptr; int i;
Sptr = new Cstack (20 ) ;
Sptr ->push(l); i = Sptr ->pull();

}

In the first line, Sptr, a pointer to an object of class stack, is declared here as a local
variable. (Alternatively it could have been declared as a global variable pointer.) The
expression Sptr = new Cstack ( 2 0 ) ; is put anywhere before the object is used. This
is called blessing the object. The allocator and then the constructor are both called by
the operator new. The allocator allocate automatically provides room for the data
members Error, Bottom, Top, and Ptr. The constructor explicitly calls up the
allocate procedure to obtain room for the object's stack itself, and then initializes all the
object's data members. After it is thus blessed, the object can be used in the program. An
alternative way to use a pointer to an object is with a #def ine statement to insert the
asterisk as follows:

#define S (*Sptr)
void main() { int i;

Cstack *Sptr = new Cstack(20);
S.push(l); i = S.pull();

}
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Wherever the symbolic name s appears, the compiler substitutes (*sptr) in its place.
Note that *ptr.member is the same as ptr->member. So this makes the syntax of
the use of pointers to objects match the syntax of the use of objects most of the time.
However, the blessing of the object explicitly uses the pointer name.

A hierarchy of derived and base classes, inheritance, overriding, and factoring are all
related ideas. These are described below, in that order.

A class can be a derived class (also called subclass) of another class, and a
hierarchy of classes can be built up. We create derived classes to use some of the data or
function members of the base class, but we can add members to, or replace some of the
members of, the base class in the derived class. For instance the aforementioned class
Cstack can have a derived class istack for int variables; it declares a potentially
modifiable constructor and different function members pull and push for its stack.
When defining the class Istack the base class (also called superclass) of Istack is
written after its name and a colon as : public Cstack. A class such as Cstack, with no
base class, is called a root class; it has no colon and base class shown in its declaration,

class Istack:public Cstack
{public:Istack(char)?virtual void push(int);virtual int pull(void);};

Istack::Istack(char i) : Cstack(i & -1) {}

void Istack:: push (int i)
{if(Ptr==Top) {Error=l; return;} *(++Ptr) = i»8; *(++Ptr)=i; }

int Istack:: pull ( )
{int i;if(Ptr==Top){Error=l;return 0;} return *(Ptr—)|(*(Ptr-)«8);}

The notion of inheritance is that an object will have data and function members
defined in the base class(es) of its class as well as those defined in its own class. The
derived class inherits the data members or function members of the parent that are not
redefined in the derived class. If we execute Istack::error then the function member
Cstack: :error is executed, because Istack does not declare a different error
function member. If a function member cannot be found in the class that the object was
declared or blessed for, then its base class is examined to find the function member to be
executed. In a hierarchy of derived classes, if the search fails in the class's base class, the
base class's base class is searched, and so on, up to the root class. Overriding is the
opposite of inheritance. If we execute Sp t r ->push( 1) ;, function member
istack: :push is executed rather than Cstack: :push,because the class defines an
overriding function member. Although we did not need additional variables in the derived
class, the same rules of inheritance and overriding would apply to data members as to
function members.

Most programmers face the frustration of several times rewriting a procedure, such
as one that outputs characters to a terminal, wishing they had saved a copy of it and used
the earlier copy in later programs. Commonly reused procedures can be kept in a library.
However, when we collect such common routines, we will notice some common parts in
different routines. Common parts of these library procedures can be put in one place by
factoring. Factoring is common to many disciplines—or instance, to algebra. If you
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have ab + ac you can factor out the common term a and write a (b + c) , which has
fewer multiplications. Similarly, if a large number of classes use the same function
member, such a function member could be reproduced for each. Declaring such a function
member in one place in a base class would be more statically efficient, where all derived
classes would inherit it. Also, if an error were discovered and corrected in a base class's
function member, it is automatically corrected for use in all the derived classes that use
the common function member. Istack's constructor, using the notation : Cstack(i
& -1) just after the constructor's name Istack: :istack(char i) before the
constructor's body in {}, calls the base class's constructor before its own constructor is
executed. In fact, Istack's constructor does nothing else, as is denoted by the empty
procedure {}. All derived classes need to declare their constructor, even if that constructor
does nothing but call its base class's constructor. Other function members can call their
base's function members by the key word inherited as in inherited:: push {i); or by
explicitly naming the class, in front of the function call, as in Cstack:: push ( i ) ;

Consider the hypothetical situation where a program can declare classes Cstack and
Istack. Inside main, are statements Sptr->push(1); and i = Sptr->pull ( } ; .
At compile time, either of the objects can be declared for either Cstack or Istack,
using conditional compilation; for instance, the program on the left:

void main(){ int i; void main(){ int i; Cstack *Sptr;
#ifdef mode #ifdef mode

Cstack. S(1Q) ; Sptr = new Cstack (10);
#else #else

Istack S(10); Sptr = new Istack (10);
#endif #endif

S.push(l); i = S.pull(); Sptr->push(1); i = Sptr->pull();

} }

declares S a class Cstack object if mode is #declared, otherwise it is a class
Istack object. Then the remainder of the program is written unchanged. Alternatively,
at compile time, a pointer to objects can be blessed for either the Cstack or the
Istack class. The program above right shows this technique.

Moreover, a pointer can be blessed to be objects of different classes at run time. At
the very beginning of main, assume a variable called range denotes the actual
maximum data size saved in the stack:

void main(){ int i, range; Cstack *Sptr;
if(range >= 128) Sptr = new Istack(lO); else Sptr = new Cstack(lO);
Sptr->push(1); i = Sptr->pull();

}

Sptr->push ( 1 ) ; and i = Sptr->pull ( ) ; will use the stack of 8-bit members if the
range is small enough to save space, otherwise they will use a stack that has enough
room for each element to hold the larger data, as will be explained shortly.

Polymorphism means that any two classes can declare the same function member
name and argument, especially a class and its inherited classes. It means that simple
intuitive names like push can be used for interchangeable function members of different
classes. Polymorphism will be used later when we substitute one object for another
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object; the function member names and arguments do not have to be changed. You don't
have to generate obscure names for functions to keep them separate from each other.
Moreover, in C++, the number and types of operands, called the function's signature, are
part of the name when determining if two functions have the same name. For instance,
push {char a) is a different function than push(int a ) .

A function member that is declared virtual will be called indirectly instead of by a
BSR or equivalent instruction. The program jumps indirectly through a list of function
member entry addresses, called a viable. The blessing of the object links the calls to the
object's function members through this viable. If an object is blessed for a different
class, another class's vtable is linked to the object, so that calling the object's function
members will go to the class's function members for which it is blessed.

When object pointers are blessed at run time and have virtual function members, if a
virtual function member appears for a class and is overridden by function members with
the same name in its derived classes, the sizes and types of all the arguments should be
the same, because the compiler does not know how an object will be blessed at run time.
If they were not, the compiler would not know how to pass arguments to the function
members. For this reason, we defined the arguments of cstack's push and pull
function members to be int rather than char, so that the same function member name
can be used for the int version or a char version. This run-time selection of which
class to assign to an object isn't needed with declarations of objects, but only with
blessing of object pointers, because the run-time program can't select at compile time
which of several declarations might be used. Also the pointer to the object must be
declared an object of a common base class if it is to be used for several class.

Information hiding limits access to data or function members. A member can be
declared public, making it available every where, protected, making it available only to
function members of the same class or a derived class of it, or private, making it
available only to the same class's function members and hiding it from other functions.
These words appearing in a class declaration apply to all members listed after them until
another such word appears; the default if no such words appear is private. The data
member Error in the class Cstack cannot be accessed by a pointer in main as in i
=S. Error or i =Sptr->Error because it is not public, but only through the public
function member error ( ) . This way, the procedure main can read (and automatically
clear) the Error variable but cannot accidentally or maliciously set Error, nor can it
read it, forgetting to clear it. You should protect your data members to make your
program much more bug-proof. Declare all data and function members as private if
they are to be used only by the class's own function members, declare them protected
if they might be used by derived classes, and declare them public if they are used
outside the class and its derived classes.

Templates generalize object-oriented programming. A template class is a class that
is defined for an arbitrary data type, which is selected when the object is blessed or
declared. We will define a templated class Stack. The class declaration and the function
members have a prefix like template <class T> to allow the user to bless or declare
the object for a specific class having a particular data type, as in s = new
stack<char> ( 1 0 ) . The generalized class definition is given below; you can substitute
the word char for the letter T every where in declarations or class function members.
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The following class also exhibits another feature of C++, which is the ability to
write the function member inside the declaration of the class. The function is written in
place of the prototype for the function. This is especially useful when templates are used
with int function members, because otherwise the notation template <class T> and
the class name stack:: would have to be repeated before each function member,

template <class T> class Stack{ private:! *Bottom,*Top,*Ptr;char Error;

public :Stack(int i)
{ Top = ( Bottom = Ptr = (T*)allocate( i ) ) + i ); Error = 0; }

virtual void push (T i){if(Ptr==Top){Error=l; return;} *(++Ptr)=i;}

virtual T pull(void){if(Ptr==Bottom){Error=l; return 0;}return *Ptr—?}

virtual char error ( ) { char i; i = Error; Error = 0; return i; }
};

If you declare Stack<char> S(10) ; or bless Sptr = new Stack<char>( 10);
then a stack is implemented that stores 8-bit data, but if you declare stack<int> s (10)
or bless Sptr = new stack<int> (10); then a stack is implemented that stores 16-bit
data. Templates permit us to define one generalized class that can be declared or blessed to
handle 8-bit, 16-bit, or 32-bit signed or unsigned data when the program is compiled.
This selection must be made at compile time, because it generates different calls.

Operator overloading means that the same operator symbol generates different
effects depending on the type of the data it operates on. The C compiler already
effectively loads its operators. The + operator generates an ADDB instruction when
adding data of type char, and an ADDD instruction when adding data of type int. What
C++ does but C cannot do is to overload operators so they do different things when an
operand is an object, which depends on the object's definition. In effect, the programmer
can provide a new part of the compiler that generates the code for symbols, depending on
the types of data used with the symbols. For instance, the « operator used for shift can
be used for input or output if an operand is an I/O device. The expression S « a can be
defined to output the character a to the object s, and s » a can be defined to input a
character from the object S and put it into a. This type of operator overloading is used
in I/O streams for inputting or outputting formatted character strings. Without this
feature, we simply have to write our function calls as a=S. Input ( ) and s. Output ( a )
rather than s«a or s»a. However, with overloading we write a simpler program; for
instance we can write an I/O stream S « a « " is the value of " « b;
Overloading can also be used to create arithmetic-looking expressions that use function
members to evaluate them. Besides operators like + and -, C++ considers the cast to be
an operator, as well as the assignment =. In the following example, we overload the cast
operator as shown by operator T ( ) ; and the assignment operator as shown by T
operator = ( T ) ; . T will be a cast, like char, so operator T {}; will become
operator char { ) ; whenever the compiler has an explicit cast like (char} i, where
i is an object, or an implicit cast where object i appears in an expression needing a
char, the compiler calls the user-defined overloaded operator to perform the cast
function. Similarly, wherever the compiler has calculated an expression that has a char
value but the assignment statement has an object i on its left, the compiler calls up the
overloaded = operator the user specifies with T operator = ( T ) ;
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template <class T> class Ostack : public Stack<T> { char Index;

public: Ostack(int i): Stack(i) { }/* constructor, calls base constructor */

operator T {) /* overloaded cast operator */
{if(index>(Ptr-Bottom)){Error=l;return 0;} return Ptr[-index];}

T operator = (T data) /* overloaded assignment operator */
{if(index>(Ptr-Bottom)){Error-Itreturn 0;} return Ptr[-index]=data;J

T operator [](char data){index=datajreturn *this; }/* index operator */
};

The overloaded index operator [ ] illustrates another C++ feature. This overloaded
operator is called whenever the compiler sees an index [ ] to the right of an object, as in
s [ 0 ], whether the object and index are on the left or right of an assignment statement
=. It executes the overloaded operator [ 3 before it executes the overloaded cast or
overloaded assignment operator. This overloaded operator simply stores what is inside the
square brackets, 0 in our example, in an object data member index. Then the following
overloaded cast or assignment operator can use this saved value to supply the offset to
the stack. Then s [ i ] would read or write the rth element from the top of the stack.

Now, whenever the compiler sees an object on the left side of an equal sign when it
has evaluated a number for the expression on the right side and it would otherwise be
unable to do anything correctly, the compiler looks at your declaration of the overloaded
assignment operator, to determine that the number will be pushed onto the stack, The
expression S = 1; will do the same thing as s. push ( 1 ) ; , and *Sptr - 1; will do
the same thing as Sptr->push{ 1); . Similarly, whenever the compiler sees an object
anywhere on the right side of an equal sign when it is trying to get a number and it
would otherwise be unable to do anything correctly, the compiler looks at your
declaration of the overloaded cast operator to determine that the number will be pulled
from the stack. The expression i = S; will do the same thing as i = S .pul l ( ) ; ,
and i = *Sptr; will do the same thing as i = Sptr->pull();. Now if a stack S
returns a temperature in degrees centigrade, you can write an expression like degreeF =
(S * 9) / 5 + 32; or degreeF = (*Sptr * 9) / 5 + 32;, and the compiler
will pull an item from the stack each time it runs into the s symbolic name. While
overloading of operators isn't necessary, it provides a mechanism for simplifying
expressions to look like common algebraic formulas.

A derived class usually defines an overloaded assignment operator even if its base
class has defined an overloaded assignment operator in exactly the same way, because the
(Metrowerks) C++ compiler can get confused with the "=" sign. If SI and S2 are
objects of class Cstack<char>, then SI = S2; won't pop an item from S2 and push
it onto si, as we would wish when we use overloaded assignment and cast operators,
but "clones" the object, copying device2's contents into devicel as if the object
were a struct. That is, if SI's class's base class overrides "=" but SI's class itself
does not override "=", SI = S2; causes S2 to be copied into SI. However, if "=" is
overridden in si's class definition, u=" is an overridden assignment operator, and SI =
S2; pops an item from S2 and pushes it onto SI. The derived class has to override
"=" to push data. The "=" operator, though useful, needs to be carefully handled. All
our derived classes explicitly define operator = if "=" is to be overridden.
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C++ object-oriented programming offers many useful features. Encapsulation
associates variables with procedures that use them in classes, inheritance permits
factoring out of procedures that are common to several classes, overriding permits the
redefinition of procedures, polymorphism allows common names to be used for
procedures, virtual functions permit different procedures to be selected at run time,
information hiding protects data, template classes generalize classes to use different data
types, and operator overloading permits a program to be written in the format of
algebraic expressions. If the programmer doesn't have C++ but has a minimal C
compiler, many of the features of object-oriented programming can be simulated by
adhering to a set of conventions. For instance, in place of a C++ call Cstack. push ( ) ,
one can write instead StackPush() . Information hiding can be enforced by only
accessing variables like QptrError in procedures like stackPush(). C++ gives us a
good model for useful C conventions.

Object-oriented programming has very useful features for designing state-of-the-art
microcomputer's I/O device software, as proposed by Grady Booch in his tutorial
Object-Oriented Computing. Encapsulation is extended to include not only instance
variables and methods, but also the I/O device, digital, analog, and mechanical systems
used for this I/O. An object is these parts considered as a single unit. For instance,
suppose you are designing an automobile controller. An object (call it PLUGS) might be
the spark plugs, their control hardware, and procedures. Having defined PLUGS, you call
function members (for instance, SetRate( 10) to PLUGS), rather like connecting wires
between the hardware parts of these objects. The system takes shape in a clear intuitive
way as the function members are defined. In top-down design, you can specify the
arguments and the semantics of the methods that will be executed before you write them.
In bottom-up design, the object PLUGS can be tested by a driver as a unit before it is
connected to other objects.

An object can be replaced by another object, if the function calls are written the
same way (polymorphism). If you replace your spark plug firing system with another,
the whole old PLUGS object can be removed and a whole new PLUGS 1 object inserted,
You can maintain a library of classes to construct new products by building on large
pretested modules. Having several objects with different costs and performances, you can
insert a customer-specified one in each unit.

In this context, protection has clear advantages. If interchangeable objects avoid
mismatch problems, then all public function and data members have to be defined exactly
the same. Private and protected function and data members, by contrast, do not need to be
defined exactly the same in each of the objects because they cannot be accessed outside
the object. Make a function or data member public only if you will maintain the
member's appearance and meaning in all interchangeable classes. Because there is no need
to make private and protected members the same in all classes, you have more
flexibility, so you make function and data members public only if you have to.

Virtual functions have further advantages, if an object can be blessed to be one of a
number of polymorphic classes at run time. For instance, output from a microcontroller
can be sent to a liquid crystal display or a serial printer. The user can cause the output to
be sent to either device without reloading, or in any way modifying, the
microcontroller's program.
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Classes can be used in a different way to simplify programming rather complex
6812 I/O systems. Some basic routines, available in a library of classes, will be needed
to initialize the device, to exchange data with the device, or to terminate a device's use.
These routines can be put into operating systems as device drivers. Alternatively, they
can be implemented as classes. Then as larger systems are implemented, such as PLUGS,
that use the device, new classes can be defined as derived classes of these existing classes,
to avoid rewriting the methods inherited from the classes in the library.

8.8 Summary

This chapter gives some background in C and C++, so that the next chapter can illustrate
how each C or C++ expression or mechanism can be assembled into 6812 assembly
language, which we dwell on in the next chapter. We will also include C or C++
programs to illustrate data structures, arithmetic operations, and I/O operations in the
remaining chapters. This chapter has served to give you enough background to be able to
fully appreciate the points to be made in the remaining chapters.

Do You Know These Terms?

See the end of chapter 1 for instructions.

compiler break statement macro superclass
high-level while statement Huffman code root class

language do while binary tree inheritance
optimizing statement data member overriding

compiler for statement function members factoring
interpreter define statement encapsulate polymorphism
tokens enum statement object virtual
procedure structure allocator viable
declaration of a struct constructor information
parameter or a linked list destructor hiding

variable structure deallocator public
cast array allocate protected
statement row major blessing private
relational table new template class

operators call by value derived class operator
logical operators return statement subclass overloading
case statement prototype base class
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Problems

Problems in this chapter and many in later chapters are C and C+ + language
programming problems. We recommend the following guidelines for problems answered
in C: In main() or "self-initializing procedures" each statement must be limited to C
operators and statements described in this chapter, should include all initialization
operations, and should have comments as noted at the end of §8.4, and subroutines
should follow the style for C procedures recommended in §8.5. Unless otherwise noted,
you should write programs with the greatest static efficiency.

1. Write a shortest C procedure void ma in ( ) that will find x and y if ax + by = c
and dx + ey = f . Assume that a, b, c, d, e, f are global integers that somehow
are initialized with the correct parameters, and answers, x and y, are stored in local
variables in main ( ) . (You might verify your program with a source-level debugger.)

2. Write a shortest C procedure void main ( ) that sorts five numbers in global integer
vector a[ 5 ] using an algorithm that executes four passes, where each pass compares
each a [ i ] , i running from 0 to 3. During each pass, a [ i ] is compared to each
a [ j ] , j running from i+1 to 4, putting the smaller in a (i ] and larger in a [ j ].

3. Write a C procedure void main() to generate the first five Fibonacci numbers F(i),
(F(0) = F(l) = 1 and for i>l, F(i) = F(i-l) + F(i-2) ) in global integers
aO, al, a2, a3, a4 so that ai is F(i). Compute F(2), F(3), and F(4).

4. A two-dimensional array can be simulated using one-dimensional vectors. Write a
shortest C procedure void main( ) to multiply two 3 x 3 integer matrices, A and B,
putting the result in C, all stored as one-dimensional vectors in row major order. Show
the storage declarations/directives of the matrices, so that A and B are initialized as

1 2 3 10 13 16
A = 4 5 6 B = 11 14 17

7 8 9 1 2 1 5 1 8

5. A long can be simulated using one-dimensional char vectors. Suppose A is a
zero-origin 5-by-7 array of 32-bit numbers, each number stored in consecutive bytes
most significant byte first, and the matrix stored in row major order, in a 140-byte char
vector. Write a C procedure int get (char *a, unsigned char i, unsigned char
j r char *v), where a is the storage array, i and j are row and column, and v is the
vector result. If 0 & i < 5 and 0 a? j < 7, this procedure puts the ith row, jth
column 32-bit value into locations v, v+1, v+2, andv+3, most significant byte
first, and returns 1; otherwise it returns a 0 and does not write into v.

6. A s t ruc t can be simulated using one-dimensional char vectors. The
struct{long vl; unsigned int v2:4, v3:8, v4:2, v5:1}; has, tightly packed, a
32-bit element vl, a 4-bit element v2, an 8-bit element v3, a 2-bit element v4, a 1-
bit element v5, and an unused bit to fill out a 16-bit unsigned int. Write shortest C
procedures void getVl(char *s, char *v), void getV2( char *s, char *v),
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void getV3{char *s, char *v), void getV4(char *s, char *v), void
getV5(char *s, *v), void putVl(char *s, char *v), void putV2(char *s,
char *v), void putV3(char *s, char *v), void putV4(char *s, char *v),
void putvs (char *s, *v), in which get... will copy the element from the struct
to the vector and put... will copy the vector into the struct; e.g., getV2(s, v)
copies element V2 into v, and putvs (s , v) copies v into element V5.

7. Write a shortest C procedure void main( ) and procedures it calls, without any
assembly language, which will first input up to 32 characters from the keyboard to the
6812 (using getchar ( ) ) and will then jump to one of the procedures, given below,
whose name is typed in (the names can be entered in either upper or lower case, or a
combination of both, but a space is represented as an underbar). The procedures: void
start(), void step_up(), void step_dovm(), void recalibrate(), and void
shut_down() , just type out a message; for instance, start ( ) will type out "Start
Entered" on the host monitor. The main ( ) procedure should generate the least number
of bytes of object code possible and should ran on the host. Although you do not have to
use a compiler and target machine to answer this problem, you can use it without
penalty, and it may help you get error-free results faster.

8. Suppose a string such as "SEE THE MEAT," "MEET A MAN," or "THESE NEAT
TEAS MEET MATES" is stored in char str ing[40]; . Using one dimensional
vector rather than linked list data structures to store the coding/decoding information:

a. Chain b. Uniform Tree
Figure 8.5. Other Huffman Codes
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a. Write a C procedure encode ( ) to convert the ASCII string to Huffman code, as
defined by the coding tree in Figure 8.5a, storing the code as a bit string, first bit as
most significant bit of first element of int code [16]; .

b. Write a C procedure decode ( ) that decodes such a code in int code [ 16 ], using
the coding tree in Figure 8.5a, putting the ASCII string back as it was in char
string[4Q].

9. Repeat Problem 8 for the Huffman coding tree in Figure 8.5b.

10. Write an initialization and four shortest C procedures void pstop( int) push to
top, int pltop() pull from top, psbot(int) push to bottom, int plbot( ) pull
from bottom, of a ten-element 16-bit word deque. The deque's buffer is int
deque [ 10 ]. Use global int pointers, top and bottom. Use global char varaibles
for the size of the deque, size, and error flag errors which is to remain cleared if
there are no errors and to be 1 if there are underflow or overflow errors. Note that C
always initializes global variables to zero if not otherwise initialized. The procedures
should manage the deque correctly as long as errors is zero. Procedures pstop() and
psbot ( ) pass by value, and procedures pltop() and plbot ( ) pass by result.

11. Write a C procedure get (char *a, int i), whose body consists entirely of
embedded assembly language, which moves i bytes following address a into a char
global vector v, assuming v has a dimension larger than or equal to i. To achieve
speed, use the MOVE and DBNE instructions. The call to this procedure, get (s , n ) ,
is implemented:

Idx s
pshx
Idx n
jsr get
leas 4,sp

12. Write a shortest C procedure hexString(unsigned int n, char *s) that runs in a target
machine to convert an unsigned integer n into printable characters in s that represent it
in hexadecimal so that sfOJ is the ASCII code for the 1000's hex digit, s[l] is the code
for the IQO's hex digit, and so on. Suppress leading Os by replacing them with blanks.

13. Write the shortest procedure int inhex() in C to input a four-digit hexadecimal
number from the keyboard (the letters A through F may be upper or lower case; typing
any character other than 0...9, a...f, A...F, or entering more than four hexadecimal digits
terminates the input and starts the conversion) and convert it to a binary number,
returning the converted binary number as an unsigned int. Although you do not have to
use a compiler and target machine to answer this problem, you can use it without
penalty, and it may help you get error-free results faster.



PROBLEMS 249

14. Write a shortest C program int check(int base, int size, int range) to
write a checkerboard pattern in a vector of size s = 2n elements beginning at base,
and then check to see that it is still there after it is completely written. It returns 1 if the
vector is written and read back correctly; otherwise it returns 0. A checkerboard pattern is
range r = 2k elements of Os, followed by 2k element of $FF, followed by 2k elements
of Os, , . . for k < n, repeated throughout the vector. (This pattern is used to check
dynamic memories for pattern sensitivity errors.)

15. Write a class BitQueue that is fully equivalent to the class Cstack in §8.3, but
pushed, stores, and pulls 1-bit values, and all sizes are in bits rather than 16-bit words.
The bits are stored in 16-bit int vector allocated by the allocate ( ) procedure.

16. Write a class Shif tint that is fully equivalent to the class Cstack in §8.3, but
the constructor has an argument n, and function member j = obj . shift ( i ) ; shifts
an int value i into a shift register of n ints and shifts out an int value to j .

17. Write a class Shif tchar that is a derived class of the class Shif tint in Problem
18. where function member j = shif t ( i ) ; shifts a char value i into a shift register
of n chars and shifts out a char value to j . Sh i f tCha r uses S h i f t l n t ' s
constructor.

18. Write a class Shif tBit that is fully equivalent to the class Shif tint in Problem
19, but shifts 1-bit values, and all sizes are in bits rather than 16-bit words. The bits are
stored in 16-bit int vector allocated by the allocate ( ) procedure.

19. Write a templated class Deque that is a derived class of templated class Cstack,
and that implements a deque that can be pushed into and pulled from either end. The
member functions pstop( ) push to top, pltop( ) pull from top, psbot() push to
bottom, and plbot( ) pull from bottom. Use inherited data and function members
wherever possible.

20. Write a templated class indexStack which is a derived class of templated class
Cstack (§8.7), that implements an indexable stack, in which the rth member from the
top can be read. The member functions push ( ) pushes, pul l ( ) pulls, read(i) reads
the ith element from the top of the stack. Function member read( i) does not move
the stack pointer. Use inherited data and function members wherever possible.

21. Write a templated class indexDeque that is a derived class of templated class
Queue, that implements an indexable deque that can be pushed into and pulled from
either end, and in which the ith member from the top or bottom can be read. The
member functions pstop( ) push to top, pltop( ) pull from top, psbot() push to
bottom, plbot ( ) pull from bottom, rdtop(i) reads the ith element from the top,
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and rdbot ( i) reads the ith element from the bottom of the deque. Function members
rdtop( i) and rdbot ( i ) do not move the pointers. Use inherited data and function
members wherever possible.

22. Write a templated class Matrix that implements matrix addition and multiplication
for square matrixes (number of rows = number of columns). Overloaded operator + adds
two intervals resulting in an interval, overloaded operator * multiplies two matrixes
resulting in a matrixes, and overloaded operators = and cast with overloaded operator
[] writes or reads elements; for instance, if M is an object of class Matrix, then
M [ i ] [ j 3 = 5; will write 5 into row i , column j , of matrix M , and k =
M{ i ] [ j ]; will read row i, column j , of matrix M into k. Matrix's constructor
has an argument size that is stored as a data member size and allocates enough
memory to hold a size by size matrix of elements of the template's data width, using
a call to the procedure allocate.

23. Intervals can be used to calculate worst-case possibilities, for instance in
determining if an I/O device's setup and hold times are satisfied. An interval <a,b>, a s
b, is a range of real numbers between a and b. If <a,b> and <c,d> are intervals A and B,
then the sum of A and B is the interval <a+c, b+d>, and the negative of A is <-b, -a>,
Interval A contains interval B if every point in A is also in B. Write a templated class
Interval having public overloaded operators + for adding two intervals resulting in an
interval, - for negating an interval resulting in an interval, and an overloaded operator
> returning a char value 1 if the left interval contains the right interval, otherwise it
returns 0. If A, B, and c are of class Interval, the expression A = B + C; will add
intervals A and B and put the result in c, A = - B; will put the negative of A into
B, and the expression if (A > B) i = 0; will clear i if A contains B. The
template allows for the values such as a or b to be char, int, or long. The class
has a public variable error that is initially cleared and set if an operation cannot be
done or results in an overflow.

24. Write a templated class Interval, having the operators of Problem 25 and
additional public overloaded operators * for multiplying two intervals to get an interval,
and / for dividing two intervals to get an interval, and a procedure sqrt (Interval},
which is a friend of Interval, for taking the square root. Use the naive rule for
multiplication, where all four terms are multiplied, and the lowest and highest of these
terms are returned as the product interval, and assume there is already a procedure long
sqrt (long) that you can use for obtaining the square root (do not write this procedure).
If A, B, and C are of class Interval, the expression A = B * C; will multiply
intervals B and C and put the result in A; A = B/c will divide B by c, putting the
result in A, and A = sqrt ( B ) ; will put the square root of B into A. Note that a /b
is a * (1 /b) , so the multiply operator can be used to implement the divide operator,
a - b is a + (-b), so the add and negate operators can be used to implement the
subtract operator; and 4 * a i s a + a + a + a, so scalar multiplication can be done
by addition. Also Interval has a public data member error that can be set if we
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invert an interval containing 0 or get the square root of an interval containing a negtive
value. Finally, write a main() procedure that will initialize intervals a to <1,2>, b to
<3,4>, and c to <5,6>, and then evaluate the result of the expression ( -b + sqrt ( b
* b - 4 * a * c ) ) / (a + a).
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A memory expansion card, Adapt812 MX1, plugs onto the rear of Adapt 812, offering the
user up to 512K of Flash and 512K of SRAM. A real-time clock/calendar and battery back-
up for the SRAM is included, as well as a prototyping area for the user's own application
circuitry. A versatile dual-slot backplane/adapter couples the memory card to the micro-
controller card so that the entire assembly can be plugged into a solderless breadboard.
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Implementation of C Procedures

This chapter is perhaps the most important chapter in this book. We show how the 6812
assembly language implements C expressions and statements. We will use the HiWare
C++ compiler in our examples. While different compilers will generate different code for
the same C statement, studying one such implementation prepares you well to
understand other implementations.

We first discuss how C allocates and accesses global and local variables. Then we
consider how variables of different types are correctly coded in expressions and
assignment statements. Next we discuss the implementation of conditional statements.
We then describe how arrays and structs are accessed and then how loops are executed.
Finally we discuss procedure calls and arguments, and we present our conclusions.

After you study this chapter, you will be able to read the assembly-language output
of a C compiler with ease. One of the incidental benefits of this chapter is that you will
see how to implement many operations in assembly language, by reading a "definition"
of the problem to be solved in a C expression or statement and seeing the "solution" to
the problem in assembly language. You will also be able to write C code that produces
more efficient assembly-language code. As a further benefit, you will be able to fine-tune
a C procedure by replacing parts of it with assembly-language code that can be embedded
in the C procedure. Also, you will learn that you can write a C procedure that you can
debug on a personal computer and hand-compile it into an assembly-language program.
The C source program statements can be written in assembly-language comments to
document your assembly-language program. This is one way to quickly write complex
assembly-language programs.

This is therefore a very interesting chapter to complete the earlier chapters. You will
really understand how hardware, which we showed in Chapters 1 to 3 implemented the
6812 instruction set, becomes a powerful machine that executes C and C++ procedures,
in which you can express complex algorithms. You should be comfortable writing in a
high-level language like C or C++, knowing what really happens, right down to the
machine level, whenever you write an expression in your program.

We point out that the examples in this chapter are generated by a specific version
(5.0.8) of the HiWare C++ compiler, with selected optimization options. You can expect
to get slightly different code using different compilers, versions, or optimization options.
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9,1 Global and Local Variables

This section shows how a variable is allocated and accessed in C. The first part of this
section shows how to write a constant into a variable, which highlights the allocation
mechanism, and the addressing mode and instruction data width used with each variable.
The shorter second part describes what is done before the main procedure is executed, and
a short third part discusses access to I/O ports, which are treated as global variables in C,

In the first part of this section, we will use a short procedure main as an example
that we briefly show first. The names of the variables are abbreviations of their
characteristics; guc represents a global unsigned char, and gsi represents a global
signed int. The C program in Figure 9.la, which writes some constants into these
variables, is compiled into the assembly-language program in Figure 9.1b. Global
variables, which are declared outside a procedure, can be allocated by the compiler by the
equivalent of assembly-language ORG statement and DS statements. For instance, a
possible global declaration for Figure 9.1b is shown in Figure 9.1c.

unsigned char guc; int gsi;
roain(){ char Isc; unsigned int lui;

guc = 0; gsi = 5; Isc = 0; lui = 7;

}

a. A C Program

4: main(){ char Isc; unsigned int lui;
0000095B 1B9D LEAS ~3,SP

5s guc = 0;
0000095D 790800 CLR $0800

6: gsi = 5;
00000960 C605 LDAB #5
00000962 87 CLRA
00000963 7C0801 STD $0801

7: Isc = 0;
00000966 6A82 STAA 2,SP

8: lui = 7;
00000968 C607 LDAB #7
0000096A 6C80 STD 0,SP

10: }
0000096C 1B83 LEAS 3,SP
0000096E 3D RTS

b. Assembly Language Developed From Part (a)

ORG 2048 ; put global data at the beginning of RAM ($800)
guc: DS. B 1 ; allocate a byte for scalar char variable guc
gsi: DS. W 1 ; allocate two bytes for scalar int variable gsi

c. Declarations for Part (b)

Figure 9.1. A Simple Program
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In Figure 9.1c the ORG statement's operand is set to a RAM location, such as $800.
char or unsigned char variables are allocated one byte by DS. B directives, and int
or unsigned int variables are allocated two bytes by DS. W directives.

Global variables, which in the 6812 are located in SRAM at $800 to $bff, generate
16-bit direct addressed instructions. The global unsigned char variable guc can be
written into by a STAB, MOVB, or CLR instruction. The statement guc = 0; is
implemented in assembly-language code as

CLR $800 ; clear global variable guc

Similarly, a char variable can be cleared, because signed and unsigned variables are
coded as all zeros when intialized as zero. The global int variable gsi can be written
into by a STD, MOVW, or a pair of CLR instructions. The statement gsi - 5 ; is
implemented in assembly-language code as

LDAB #5
CLRA
STD $0801

Local variables, which are declared within, and generally at the beginning of, a
procedure, are generally allocated at run time by means of a LEAS statement. For
instance, the local declaration char Isc, unsigned int lui; requires three bytes on
the stack, so it is allocated by the instruction

LEAS -3,SP ; allocate local variables

immediately upon entry into the procedure, and deallocated by the instruction

LEAS 3, SP ; deallocate local variables

at the end of the procedure, just before RTS is executed. Local variables generate index
addressed instructions. The local char variable Isc can be written into by a STAB,
MOVB, or CLR instruction. The variable Isc is at 2, SP. Because the compiler knows
that accumulator A must be clear, as a result of the previous operation, the statement
Isc = 0; is implemented in assembly-language code as

STAA 2, SP ; clear local variable Isc

The global unsigned int variable gui can be written into by a STD, MOVD, or a pair
of CLR instructions. The variable lui is at 0, SP. Because the compiler knows that
accumulator A must be clear, the statement lui = 7; is efficiently implemented in
assembly-language code as

LDAB #7
STD 0 , SP ; write 7 into local variable lui
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A C program can have global variables, and it can have global constants. Global
constants are initialized by writing them into RAM when the program is downloaded or
in ROM in a stand-alone microcontroller. In the HiWare compiler, a #pragma
into_rom preceeds the storage of such constant variables declared as const char, and
the like.

Global variables (as opposed to global constants) must be initially cleared, unless
they are indictated as being initialized to some other value, before main() is executed,
The following program segment can be used to clear 39 bytes beginning at $800:

LDX #$800 ; initialize pointer to beginning of global storage
LDD #3 9 ; initialize counter to number of bytes in global storage

L: CLR 1, X+ ; clear a byte
DBNE D r L ; loop until all bytes cleared

If a global variable is declared and initialized, as in the statement

unsigned char guc = 4; int gsi = 4;

then the following assembly-language program segment should be executed after the
above described program segment that clears all global variables, before main is called.

LDD #4 ; generate the constant 4 for both assignments
STAB guc ; store low-order 8 bits into char variable
STD gsi ; store all 16 bits into int variable

Finally, we discuss I/O access as a variant of global addressing. The 6812's main
I/O ports are on page zero. They can be accessed as if they are global variables:

volatile unsigned char PORTA, PORTB, DIRA, DIRB

which are linked to a segment at location 0. This is equivalent to an assembler sequence:

org 0 ; put this "global data" at the beginning of I/O (0)
PORTA ds. B 1 ; port A is at location 0
PORTB ds. B 1 ; port B is at location 1
DIRA ds. B 1 ; port A direction register is at location 2
DIRB ds. B 1 ; port B direction register is at location 3

An output statement to output 5 to port A is written PORTA = 5; which is implemented

LDAB #5 ; generate constant 5
STAB PORTA ; write it to the output port

An input statement guc = PORTA; to input port A to guc is implemented

LDAB PORTA ; read input data
STAB guc ; write it into global variable guc
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The input and output statements use page-zero addressing, which provides improved
static and dynamic efficiency over direct adddressing. Note that the MOVB instruction is
not useful for accessing these I/O ports, because there is no page-zero address option in
MOVB. The LDAB and STAB instructions above are more efficient than a MOVB
instruction.

The assignment of I/O ports to global variable names should be written and executed
before true global variables are assigned, because the origin will be set to the beginning
of RAM (at $800) to assign true global variables. The declaration of globally defined I/O
ports is often put in an #include file, which is inserted in a program before globals are
defined in the program.

9.2 Expressions and Assignment Statements

In this section, we illustrate how operators are used in expressions. We will look at
addition and subtraction statements that use same-width and different-width operands in a
discussion of upcasting and downcasting. We will then study statements that use logical
and arithmetic operators. We will carefully consider the increment and decrement
operators and then look at expressions that save temporary results on the hardware stack.

The program in Figure 9.2a has several local and global variables, some of which
are signed and others of which are unsigned, and some of which are 8-bit and others of
which are 16-bit. Figure 9.2b shows assembly language developed from this program.
Observe that each variable's name is an abbreviation of its characteristics; gsi is a
global signed integer.

Many C statements are easily and efficiently translated into assembly language. This
is especially true when all the variables in a statement are 8-bit char or unsigned
char variables or when all the variables in a statement are 16-bit int or unsigned
int variables. Assume the following statements are written in Figure 9.2a's main.
Figure 9,2's statement gsi = lui + 12; is easily encoded as

LDX 0, SP ; get 16-bit local variable lui
LEAX 12, X ; add 12 (note that this is shorter than addd #12)
STX $0801 ; put into 16-bit global variable gsi

and similarly the statement guc = Isc - 33; is simply encoded as

LDAB 2, SP ; get 8-bit local variable Isc
SUBB #33 ; subtract 33
STAB $ 0 8 0 0 ; put into 8-bit global variable guc

If a statement gets an int variable and writes a char variable, the source is truncated
when it is read. Figure 9.2's statement guc = lui + 9; is encoded as

LDAB 1, SP ; get low byte of 16-bit local variable lui
ADDB #9 ; add 9
STAB $ 0 8 0 0 ; put into 8-bit global variable guc

An optimizing compiler can change the instruction ADDD #9 to ADDB #9
because the result will not be altered (reducing the precision is called downcasting).
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However, without optimization, the intermediate values are generally computed using the
largest precision of the variables in the expression (extending the precision called
upcasting). Although many C compilers do all arithmetic in the largest precision, 16
bits in our case, HiWare efficiently operates upon numbers in the smallest possible
precision.

unsigned char guc; int gsi;
main(){ char Isc; unsigned int lui;

gsi = lui + 12; guc = Isc - 33;
guc = lui + 9; gsi = gsi + Isc; lui = guc - 17;

}
a. C Program

4: main(){ char Isc; unsigned int lui;
main:
0000095B 1B9D LEAS -3,SP

5: gsi = lui + 12;
0000095D EE80 LDX 0,SP
0000095F 1AOC LEAK 12,X
00000961 7E0801 STX $0801

6: guc = Isc - 33;
00000964 A682 LDAA 2,SP
00000966 8021 SUBA #33
00000968 7A0800 STAA $0800

7: guc = lui + 9;
0000096B E681 LDAB 1,SP
0000096D CB09 ADDB #9
0000096F 7B0800 STAB $0800

8: gsi = gsi + Isc;
00000972 A682 LDAA 2,SP
00000974 B704 SEX A,D
00000976 F30801 ADDD $0801
00000979 7C0801 STD $0801

9: lui = guc - 17;
0000097C F60800 LDAB $0800
0000097E 87 CLRA
0000097F 830011 SUBD #17
00000983 6C80 STD 0,SP

10: }
00000984 1B83 LEAS 3,SP
00000986 3D RTS

b. Assembly Language Generated by Part (a)

Figure 9.2. A C Program with Local and Global Variables
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If a statement gets a char variable and writes an int or unsigned int variable,
the result is sign extended when it is read. Figure 9.2's statement gsi = gsi + Isc;
or equivalently gsi += isc ,• is simply encoded as

LDAA 2, SP ; get 8-bit global variable Isc
SEX A, D ; upcast from char to int or unsigned int
ADDD $ 0 8 01 ; add in 16-bit global variable gsi
STD $ 0 801 ; put into 16-bit global variable gsi

But if a statement gets an unsigned char variable and writes an int or unsigned
int variable, the high byte is cleared before the unsigned char variable is read.
Figure 9.2's statement lui = guc - 17; is encoded as

LDAB $ 0 8 0 0 ; get 8-bit global variable guc saved earlier
CLRA ; upcast from unsigned char to int or unsigned int
SUED #17 ; subtract 17
STD 0, SP ; put into 16-bit global variable lui

You should observe that the declaration char or int affects the instruction data length,
and char and unsigned char determine whether, on upcasting, the 8-bit data is sign
extended with an SEX instruction or filled with zeros using a CLRA instruction.

The previous examples should indicate to the C programmer how to decide how a
variable is to be type cast. If its range of values is 0 to 127, declare it to be an
unsigned char, because upcasting is done with a short CLRA instruction rather than a
longer SEX instruction. If its range is 0 to 256, declare it to be an unsigned char,
but if the range is -128 to 127, declare it a char, to save space and time. Otherwise
declare it to be int.

To discuss how common operators are handled, we use the following main as an
example; it merely ANDs, ORs, multiplies, and divides some variables. Figure 9.3a's
program is compiled into the assembly-language program in Figure 9.3b.

Logical bit-by-bit ANDing is illustrated in Figure 9.3 by the expression Isc =
lsc& guc; or equivalently by Isc &= guc;, which is realized by

LDAA 2, SP ; get local variable Isc
ANDA $ 0 8 0 0 ; AND with global variable guc
STAA 2, SP ; put into local variable Isc

However, if one of the operands is constant, the BCLR instruction can be used. The
expression in Figure 9.3, Isc = lsc& 0x12;,or equivalently Isc &= 0x12; is
realized by

BCLR 2, SP, #2 3 7 ; AND local variable Isc with inverted constant 0x12

Note that the complement of the constant is used in the operand of BCLR. Logical bit-
by-bit ORing is illustrated in Figure 9.3 by the expression gsi - gsi | lui; or
equivalently by gsi | = lui;, which is realized by

LDD $ 0 8 01 ; get global variable gsi
ORAA 1, SP ; OR with high byte of local variable lui
ORAB 0, SP ; OR with low byte of local variable lui
STD $0801 ; put into global variable gsi
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unsigned char guc; int gsi;
main(){ char Isc; unsigned int lui;

Isc = Isc & guc; Isc &= 0x12; gsi = gsi | lui;
gsi = gsi & 0x1234; lui = Isc * guc; lui = lui / guc;

}
a. A C program

4: main(){ char Isc; unsigned int lui;
0000095B 1B9D LEAS -3,SP

5: Isc = Isc & guc; Isc &= 0x12;

0000095D A682 LDAA 2, SP
0000095F B40800 ANDA $0800
00000962 6A82 STAA 2,SP
00000964 OD82ED BCLR 2,SPf#237

6: gsi = gsi | lui; gsi = gsi | 0x1234;
00000967 FC0801 LDD $0801
0000096A EA81 GRAB 1,SP
0000096C AA80 ORAA 0,SP
0000096E 7C0801 STD $0801
00000971 1C080112 BSET $0801,#18
00000975 1C080234 BSET $0802,#52

7: lui = Isc * guc;
00000979 A682 LDAA 2,SP
0000097B B706 SEX ArY
0000097D F60800 LDAB $0800
00000980 87 CLRA
00000981 13 EMUL
00000982 6C80 STD 0,SP

7: lui = lui / guc;
00000984 F60800 LDAB $0800
00000987 87 CLRA
00000988 B745 TFR D,X
0000098A ECB1 LDD 0,SP
0000098C 1810 IDIV
0000098E 6E80 STX 0,SP

8: }
00000990 1B83 LEAS 3,SP
00000992 3D RTS

b. Assembly Language Generated by Part (a)

Figure 93. A C Program with Some Operators

However, if one of the operands is constant, BSET can be used. The expression gsi =
gsi | 0x1234; or equivalently gsi |= 0x1234; is realized by

BSET $0801,#18 ;OR high byte of global variable gsi with Ox 12
BSET $0802, #52 ; OR global variable low byte gsi with 0x34
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One can complement accumulator D by complementing accumulator A and then
complementing accumulator B. We might want to implement NEGD in the same way
with a pair of instructions NEGA NEGB, but 1 is always added to A whether a carry is
generated by adding 1 to B or not. Because NEGB sets C if the contents of B is nonzero,
we can cancel the addition of 1 to A by NEGA, except when the contents of B is 0, by

NEGA
NEGB
SBCA #0

Multiplication uses a multiply instruction EMUL or EMULS, depending on
whether the operations is signed; for instance the expression in Figure 9.3, lui = Isc
* guc, is

LDAA 2, SP ; get global variable Isc
SEX A, Y ; upcast from char to int, copy to register Y
LDAB $0800 ; get guc
CLRA ; upcast from unsigned char to int
EMUL ; multiply unsigned
STD 0, SP ; put 16-bit result into local lui

Similarly, division can be implemented using a divide instruction IDIV, EDIV, or
EDIVS, depending on whether the operation is signed; for instance in Figure 9.3 the
expression lui = lui / guc; (or equivalently, lui /= guc;) is implemented

STD 2, -SP ; save numerator from previous statement
LDAB $ 8 0 0 ; get denominator guc
CLRA ; upcast from unsigned char to unsigned int
TFR D, X ; put in X for IDIV
LDD 2 f SP+ ; get global variable lui
IDIV ; divide X into D, putting quotient in X
STX 0 , SP ; put into local variable lui

To discuss how increment and decrement operators are handled, we use main in
Figure 9.4 as an example; it merely increments and decrements some variables.

The simple increment and decrement instructions can be used directly with char or
unsigned char variables .The statement in Figure 9.4, guc++;, is implemented

INC $ 0 8 0 0 ; increment global variable guc

and the statement Isc—; in Figure 9.4 is implemented

DEC 0, SP ; decrement local variable Isc

However, the increment and decrement instructions on int or unsigned int variables
use a longer sequence. The first problem with this operator is that there is no 16-bit
memory operand version of it, and the second problem is that the carry bit is not affected
by the 8-bit version of this operator. The statement gsi++; in Figure 9.4 is coded as
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LDX $0801 ;getgsi
INX ; add 1
STX $0801 ; put it back

and the statement lui—; in Figure 9.4 is implemented

LDX 1, SP ; get lui
DEX ; subtract 1
STX 1, SP ; put it back

When the increment or decrement operator appears in a larger expression, the initial
or final value of the variable used in the outer expression depends on whether the pair of
"+" or "-" signs appears before or after the variable. Isc = ++ guc; is implemented

unsigned char guc; int gsi;
main{){ char Isc; unsigned int lui;

guc++; Isc—; gsi++; lui—; Isc = ++guc; Isc = guc++;
}

a. A C Program

4: main(){ char Isc; unsigned int lui;
0000095B 1B9D LEAS -3,SP

5: guc++;
0000095D 720800 INC $0800

6: Isc—;
00000960 6380 DEC 0,SP

7: gsi++;
00000962 FE0801 LDX $0801
00000965 08 INX
00000966 7E0801 STX $0801

8: lui—;
00000969 EE81 LDX 1,SP
0000096B 09 DEX
0000096C 6E81 STX 1,SP

9: Isc = ++guc;
0000096E 720800 INC $0800
00000971 B60800 LDAA $0800
00000974 6A80 STAA 0,SP

10: Isc = guc++;
00000976 A680 LDAA 0,SP
00000978 720800 INC $0800
0000097B 6A80 STAA OrSP
0000097D 1B83 LEAS 3,SP
0000097F 3D RTS

b. Assembly Language Generated by Part (a)

Figure 9.4. A C Program with Incrementing and Decrementing
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INC $0800 ; increment variable guc
LDAA $0800 ; get value
STAA 0, SP ; store variable Isc

while Isc = guc++; in Figure 9.4 is implemented

LDAA $ 0 8 0 0 ; get value
INC $0800 ; increment variable guc
STAA 0, SP ; store variable Isc

To discuss how the stack is used to store temporary results, we use main in Figure
9.5 as an example; it merely ORs, ANDs, and shifts some variables. This C program
main is compiled into the assembly-language program in Figure 9.5b.

A statement involving several operations saves intermediate values on the stack. If
an operand of an instruction like ADD or SUB has to be zero-filled or sign extended, then
the instruction's other operand, in accumulator B or D, may have to be temporarily
moved somewhere. It can be conveniently pushed on the stack and then pulled and
operated on. The statement lui = lui - Isc; in Figure 9.5, or equivalently, lui -=
Isc; is implemented by sign extending Isc and pushing the result on the stack. Then
the variable lui is recalled into accumulator D, and the extended value of Isc is
subtracted.

LDAA 2, SP ; get local variable Isc
SEX A,Y ; sign extend
LDD 0, SP ; get local variable lui
PSHY ; save on stack
SUBD 2, SP+ ; pull from stack, subtract from accumulator D
STD 0, SP ; put into global variable lui

From Figure 9.5, we next offer an example that inserts three bits into a 16-bit local
int. Note that, due to pushing the two-byte temporary variable on the stack, the stack
address to recall/w/is 4,SP. The statement lui = (lui & Oxfc7f ) | {(Isc «
7) & 0x380); is compiled

PSHD ; save on stack (previous statement just computed lui)
LDAB #128 ; we will multiply by 2**7 to shift left
CLRA seven bits, so get this constant ready
PSHY save Isc from previous statement
EMUL shift it
ANDA #3 mask off low two bits of accumulator A
ANDB #128 mask off high bit of accumulator B
PSHD save temporary result
LDD 4, SP get lui (notice offset adjustment)
ANDB #127 mask all low-order bits
ANDA #252 mask all high-order bits
ORAA 1, SP+ combine new and old values
GRAB 1, SP+ in both bytes
STD 2 , SP write out new value of lui
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unsigned char guc; int gsi;
main(){ char Isc; unsigned int lui;

lui -= Isc; lui = (lui & Oxfc7f) j ((Isc « 7) & 0x380);
lui = (lui « 3) + (lui « 1) + Isc - ' 0 ' ;

}
a. C Program

4: main(){ char Isc; unsigned int lui; lui -= Isc;
0000095B 1B9D LEAS -3,SP
0000095D A682 LDAA 2,SP
0000095F B706 SEX A,Y
00000961 EC80 LDD 0,SP
00000963 35 PSHY
00000964 A3B1 SUBD 2,SP+
00000966 6C80 STD 0,SP

6: lui = (lui & Oxfc7f) | ((Isc « 7) & 0x380);
00000968 3B PSHD
00000969 C680 LDAB #128
0000096B 87 CLRA
0000096C 35 PSHY
0000096D 13 EMUL
0000096E C480 ANDB #128
00000970 8403 ANDA #3
00000972 3B PSHD
00000973 EC84 LDD 4,SP
00000975 C47F ANDB #127
00000977 84FC ANDA #252
00000979 AA81 ORAA 1,SP+
0000097B EA81 GRAB 0,SP+
0000097D 6C82 STD 2,SP

7: lui = (lui « 3) + (lui « 1) + Isc -' 0 ' ;
0000097F 59 ASLD
00000980 59 ASLD
00000981 59 ASLD
00000982 B745 TFR D,X
00000984 EC82 LDD 2,SP
00000986 59 ASLD
00000987 1AE6 LEAX D,X
00000989 B754 TFR X,D
0000098B E380 ADDD 0,SP
0000098D 830030 SUBD #48
00000990 6C84 STD 4,SP
00000992 1B87 LEAS 7,SP
00000994 3D RTS

b. Assembly Language Generated by Part (a)

Figure 9.5. A C Program with ORing, ANDing and Shifting
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The statement lui = (lui « 3) + (lui « 1) + Isc -' 0 ' ; in Figure 9.5
which can be used to build a decimal number from ASCII characters, is compiled into

STD 0, SP ; save lui which was left in D
LSLD ; shift left three places
LSLD ; in order to
LSLD ; multiply by eight
TFR D, X ; save this intermediate result in a register
PULD ; get lui again.
LSLD ; shift left to double it
LEAX D, X ; add both parts
TFR X, D ; move to D to complete the addition
ADDD 0, SP ; add Isc, which is left on the stack
SUED #48 ; subtract the constant for ASCII '0'
STD 4 , SP ; save result in lui: note the offset

Temporary results can be saved in registers, as we saw in the TFR D, X instruction. The
stack provides another place to temporarily save the data in accumulator D and can save
essentially any number of such values. Note again that the stack pointer offset changes
as temporary results are saved on the stack. At the subroutine's end, the stack pointer is
adjusted, not only to deallocate local variables but also to deallocate temporary variables,
using the instruction LEAS 7,SP. Deallocating at the end saves instructions that
should deallocate temporary variables when they are no longer needed, to improve static
efficiency, at the expense of using up more of the stack than would be needed if
temporary variables were promptly deallocated when they were no longer needed.

9.3 Conditional Statements

A statement can be conditional, or it can control looping to execute a sequence of
statements that are written within it many times. We first present Boolean operators that
generate a 1 (true) or 0 (false) variable. We then give assembly-language program
segments for an example of several of C's control statements.

To illustrate Boolean operators, the expression main in Figure 9.6 compares some
variables. Many branch instructions such as BEQ *+5 are used to indicate a branch that
is five bytes ahead of the (beginning of the) BEQ instruction. This current location
counter is used to avoid generating a lot of labels for local branching.

In Figure 9.6, the C procedure's first expression guc = Isc > -3; results in

LDAA 3, -SP ; allocate 3 bytes for local variables and get variable Isc
CMPA #253 ; if greater than -3 as a signed number
BGT *+4 ; then proceed to "true" program segment
CLRA ; if false, clear guc. If true,
CPS #34305 ; then skip over operand jump to operand which is LDAA #1
S TAA $ 0 8 0 0 ; store the result
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unsigned char guc; int gsi;
main{){ char Isc; unsigned int lui;

guc = Isc > -3; Isc = lui > 5; lui = gsi >= 0;
gsi = lui >= 0; gsi = Isc — 0; Isc = (gsi & 4) == 0;

1
a. A C Program

5: guc = Isc > -3; Isc = lui > 5;
0000095B A6AD LDAA 3,-SP
0000095D 81FD CMPA #253
0000095F 2E02 BGT *+4 ;abs = 0963
00000961 87 CLRA
00000962 8F8601 CPS #34305
00000965 7A0800 STAA $0800
00000968 EC81 LDD 1,SP
0000096A 8C0005 CPD #5
0000096D 2202 BHI *+4 ;abs = 0971
0000096F 87 CLRA
00000970 8F8601 CPS #34305
00000973 6A80 STAA 0,SP

7: lui = gsi >= 0;
00000975 FC0801 LDD $0801
00000978 2A02 BPL *+4 ;abs = 097C
0000097A C7 CLRB
0000097B 8FC601 CPS #50689
0000097E 87 CLRA
0000097F 6C81 STD 1,SP

8s gsi = lui >= 0;
00000981 C601 LDAB #1
00000983 87 CLRA
00000984 7C0801 STD $0801

9: gsi = Isc == 0;
00000987 A680 LDAA 0,SP
00000989 2702 BEQ *+4 ,-abs = 098D
0000098B C7 CLRB
0000098C 8FC601 CPS #50689
0000098F 87 CLRA
00000990 7C0801 STD $0801

10: Isc = (gsi & 4) == 0;
00000993 1F08020402 BRCLR $0802,#4,*+7 ;abs = 099A
00000998 87 CLRA
00000999 8F8601 CPS #34305
0000099C 6AB2 STAA 3,SP+

b. Assembly Language Generated by the body of Part (a)

Figure 9.6. A Program with Boolean Operators
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Note that signed numbers use branches like BGT. Unsigned number comparisons use
branches like BHI, One of the more difficult problems of accurately translating C into
assembly language is that of choosing the correct kind of conditional branch instruction
to take care of signed or unsigned comparisons.

In one of the more peculiar operations, CPS #34305 is used to skip a two-byte
operand, LDAA #1. Suppose the instruction is at location $962. If the entire
instruction is executed, the only effect is that the condition codes are set, but they are not
tested in subsequent instructions, so the CPS #34305 is a no-op. However, if a branch
to $963 is made, the constant 34305 is executed as an opcode. This instruction is LDAA
#1, and the result is to load 1 into accumulator A. The HiWare C compiler uses this
technique to make accumulator A either a 1 (T) or a 0 (F). We see several examples in
the program in Figure 9.6. It is also used in a case statement in which several of the
cases load different values into the same variable. Such a case statement appears in
Figure 9.9.

The expression Isc = lui > 5; in Figure 9.6 results in the following code:

LDD 1, SP ; get 16-bit variable lui
CPD #5 ; if less than 5 as an unsigned number
BHI *+4 ; branch to the operand of the CPS instruction
CLRA ; otherwise clear the value
CPS #34305 ; skip, or else set result to 1.
STAA 0, SP ; store the result

Note that the constant 1 (T) or a 0 (F) is generated in accumulator A to reflect the
Boolean value of the test lui > 5. Signed number comparisons that test just the sign
use branches like BPL. The expression lui = gsi >= 0 j in Figure 9.6 results in the
following code:

LDD $0801 ; preclear result
BPL *+4 ; if nonnegative then
CLRB ; clear and skip
CPS #50689 ; skip or set result to 1.
CLRA ; high result is always 0
STD 1, SP ; put result in lui

Note that there is no test for the expression gsi = lui >= 0;, because unsigned
numbers are always nonnegative. This is an error made by many programmers. Be careful
when you determine the data type of a variable and when you test that variable, so that
you avoid the situation where you test a variable declared to be an unsigned number for a
value less than zero or a value greater or equal to zero.

Comparisons for equality or inequality can often use TST and branches like
BEQ. The expression gsi = Isc == 0; in Figure 9.6 results in the following code:

LDAA 0, SP ; test 8-bit variable Isc
BEQ *+4 ; if nonzero then
CLRB ; clear and skip
CPS #50689 ; skip or set result to 1.
CLRA ; high result is always 0
STD $0801 ; put result in gsi
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Certain bit tests can often use BRSET or BRCLR branches. In Figure 9.6, the
expression Isc = (gsi & 4 ) == 0; results in the following code:

BRCLR $0802, #4 , *+2 ;if bit 4 is not zero then
CLRA ; clear result
GPS #34305 ; skip, or set result to 1
STAA 3, SP+ ; put result in lui and deallocate local variables

The Boolean result of the test, a value of 1 (T) or a 0 (F), is actually not usually
generated but may be used to branch to a different location. For instance if {lui > 5)
results in the following code:

LDD 1, SP ; get 16-bit variable lui
CPD #5 ; if less than 5 as an unsigned number
BLS L ; branch around the expression if lui is higher than 5

Simple conditional expressions of the form if then, full conditionals of the form if
then else, and extended conditionals of the form if then else if then else if then , . .
else, use conditional expression operators. In the last expression, the else if part can be
repeated as many times as needed, and the last part can be an optional else. Variables are
compared using relational operators ( > and < ), and these are combined using logical
operators (&&). We give examples of common simple conditionals first.

The C program in Figure 9.7a is compiled into the assembly language program
shown in Figure 9.7b. A statement if ( ! Isc) guc = 0; or equivalently if (Isc ==
0) guc = 0; is encoded as

LDAA 3, -SP ; allocate and set condition codes for variable Isc
BNE *+5 ; if nonzero, skip over next instruction
CLR $0800 ; otherwise, if zero, clear variable guc

Where the condition applies to a complex expression of many statements, the
branch instructions can be converted to long branch instructions. For instance,

if (gsi < 5) { ... /* many instructions */ }

can be implemented

LDD $0801 ;get variable gsi
CPD #5 ; if greater than or equal to 5 as an unsigned number
LBGE LI ; then skip over next several instructions

; many instructions generated between { } appear here

LI: EQU * ; located after the latter} matching the if statement's {

A simple C compiler can always implement the conditional operation using the
long branch instructions like LBHS, but an optimizing C compiler will get the size of
the branch offset. It uses a long branch instruction when the label cannot be reached by
the corresponding shorter branch instruction.
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unsigned char guc; int gsi;
main(){ char Isc; unsigned int lui;

if(lsc == 0) guc = 0;
if(gsi < 5) { ... /* many instructions */ }

if(Isc + guc) gsi = 0;

if(guc < 5) Isc = 0; else Isc = 9;

}

a. A C Program

4: main(){ char Isc; unsigned int lui; if(Isc == 0) guc = 0;
0000095B A6AD LDAA 3,-SP
0000095D 2603 BNE *+5 ;abs = 0962
0000095F 790800 CLR $0800

6: if(gsi < 5) { /* many instructions */ lui =0; }
00000962 FC0801 LDD $0801
00000965 8C0005 CPD #5
00000968 2C04 BGE *+6 ;abs = 096E
0000096A C7 CLRB
0000096B 87 CLRA
0000096C 6C81 STD 1,SP

7: if(Isc + guc) gsi = 0;
0000096E A680 LDAA 0,SP
00000970 B704 SEX A,D
00000972 B745 TFR D,X
00000974 F60800 LDAB $0800
00000977 87 CLRA
00000978 1AE6 LEAK D,X
0000097A 044504 TBEQ X,*+7 ,-abs = 0981
0000097D C7 CLRB
0000097E 7C0801 STD $0801

8: if(guc < 5) Isc = 0; else Isc = 9;
00000981 B60800 LDAA $0800
00000984 8105 CMPA #5
00000986 2404 BCC *+6 ;abs = 098C
00000988 6980 CLR 0,SP
0000098A 2004 BRA *+6 ;abs = 0990
0000098C C609 LDAB #9
0000098E 6B80 STAB 0,SP

9: }
00000990 1B83 LEAS 3,SP
00000992 3D RTS

b. Assembly Language Generated by Part (a)

Figure 9.7. A Program with If-Then Expressions
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unsigned char alpha, beta , gamma, delta, epsilon, zeta;
main ( ) {

if((alpha < 5)&&(beta = = 0 ) ) gamma = 0;
if((alpha < 5)| |(beta = = 0 ) ) gamma = 0;
if(alpha != 0) beta = 10; else if(gamma — 0) delta++;
else if((epsilon != 0)&&(zeta==l)) beta=beta « 3; else beta=0;

}

a. A C Program

6: if((alpha < 5)&&(beta == 0)) gamma = 0;
0000095B B60800 LDAA $0800
0000095E 8105 CMPA #5
00000960 2C08 BGE *-t-10 ;abs = 096A
00000962 B60801 LDAA $0801
00000965 2603 BNE *+5 ;abs = 096A
00000967 790802 CLR $0802

7: if((alpha < 5)|[(beta == 0)) gamma = 0;
0000096A B60800 LDAA $0800
0000096D 8105 CMPA #5
0000096F 2D05 BLT *+7 ;abs = 0976
00000971 B60801 LDAA $0801
00000974 2603 BNE *+5 ;abs = 0979
00000976 790802 CLR $0802

8: if(alpha 1= 0) beta = 10;
00000979 B60800 LDAA $0800
0000097C 2707 BEQ *+9 ;abs = 0985
0000097E C60A LDAB #10
00000980 7B0801 STAB $0801
00000983 201C BRA *+30 ;abs = 09A1

9: else if(gamma == 0) delta++;
00000985 B60802 LDAA $0802
00000988 2605 BNE *+7 ;abs = 098F
0000098A 720803 INC $0803
0000098D 2012 BRA *+20 ;abs = 09A1

10: else if ((epsilon!=0)&&(zeta==l)) beta=beta«3; else beta=0;
0000098F B60804 LDAA $0804
00000992 270A BEQ *+12 ;abs = 099E
00000994 B60805 LDAA $0805
00000997 042004 DBNE A,*+7 ;abs = 099E
0000099A 0764 BSR *+102 ;abs = OAOO
0000099C 2003 BRA *+5 ;abs = 09A1
0000099E 790801 CLR $0801

b. Assembly Language Generated by Part (a)

Figure 9.8. Assembly Language for a Decision Tree
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An operation result may be in accumulator B or D. It can be tested by the TBEQ or
TBNE instructions. In Figure 9.7, the statement if(lsc + guc) gsi = 0; similarly
encodes as

LDAA 0, SP ; get value of Isc
SEX A,D ; upcast to 16 bits
TFR D f X ; use X as accumulator
LDAB $ 0 8 0 0 ; get value of guc
CLRA ; upcast to 16 bits
LE AX D, X ; add values
TBEQ X, *+7 ; check value of sum. If zero
CLRB ; generate a 16-bit zero (A is already clear)
STD $0801 ; store to clear variable gsi

In Figure 9.7, the else part of a conditional expression is easily implemented by a
BRA instruction. The statement if (guc < 5) Isc = 0; else Isc = 9; encodes as

LDAA $ 0 8 0 0 ; get variable guc
CMPA #5 ; if greater than or equal to 5 as an unsigned number
BBS *+6 ; then skip over next instruction (this is BCC)
CLR 0, SP ; otherwise, if zero, clear variable Isc
BRA *+6 ; now skip over next two instructions
LDAB #9 ; write 9 into variable Isc
STAB 0,SP

A conditional expression can be a logical OR or a logical AND of tests described
above. The logical OR test will check each case, from left to right, for a true result, and
will execute the statement when it finds the first true result. The logical AND checks
each case, from left to right, for a false, and bypasses the statement the first time it finds
a false test. If alpha, beta, and gamma are signed global char variables, the
statement in Figure 9.8 if ((alpha < 5) && (beta = = 0 ) ) gamma = 0; encodes as

LDAA $ 0 8 0 0 ; get variable alpha
CMPA #5 ; if less than 5 as a signed number
BGE *+10 ; then skip to CLR instruction
LDAA $ 0 8 01 ; if beta is nonzero
BNE *+5 ; then skip over next instruction
CLR $0802 ;if you get here, clear variable gamma

and if ((alpha < 5) | | (beta = = 0 ) ) gamma = 0; is encoded as

LDAA $ 0 8 0 0 ; get variable alpha
CMPA #5 ; if less than 5 as a signed number
BLT *+7 ; then skip to CLR instruction
LDAA $ 0 8 01 ; if beta is nonzero
BNE *+5 ; then skip over next instruction
CLR $ 0 8 0 2 ; if you get here, clear variable gamma.

As seen in the previous examples, the ANDing of conditions is affected by branching
around the "then" code if either condition is false, and the ORing of conditions is affected
by branching to the "then" code if either condition is true.
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Many else if expressions can be inserted between an if expression and the final
else expression. The branch instructions jump out of a statement that is executed to the
statement beyond the final else statement. Moreover, the final else expression may be
omitted. Obviously, one can have more than two OR or AND tests, and one can nest
OR tests within AND tests, or one can nest AND tests within OR tests, and so on.

One of the common errors in C is to confuse bit-wise logical OR with the OR test
discussed above. The expression if ((alpha < 5) | (beta == 0 ) ) gamma = 0;
encodes as

LDAA alpha ; get variable alpha
CMPA #5
BLT LO ; if greater or equal to 5
LDX #0 ; generate zero
BRA LI ; and skip

LO: LDX #1 ; otherwise generate one
LI: LDAA beta ; test variable beta

BEQ *+4 ; if nonzero, branch to middle of CPS
CLRB ; otherwise clear B
CPS #50689 ; address mode is actually LDAB #1
CLRA ; high-order byte is always zero
PSHX ; OR X into D
GRAB 1, SP ; by pushing X
ORAA 2, SP+ ; then pulling it and ORing it into D
TBEQ D, *+6 ; if the result is nonzero
CLR gamma ; clear variable gamma

What a difference a single character makes! Although the same answer is obtained with
the statement if ((alpha < 5) | j (beta = = 0 ) ) gamma = 0; as with if ((alpha
< 5) | (beta == 0 ) ) gamma = 0;, the assembly language generated by the latter is
significantly less efficient than that generated by the former statement.

Another of the common errors in C is to confuse assignment with equality test. The
expression if (beta == 0) gamma = 0; encodes as

TST beta ; test variable beta
BNE *+5 ; if the result is nonzero then
CLR gamma ; clear variable gamma

The expression if (beta = 0) gamma = 0; encodes as

CLR beta ; clear variable beta (note: this is an assignment statement)
BNE *+5 ; if the result is nonzero (it isn't) then
CLR gamma ; clear variable gamma

From the rest of Figure 9.8, note how a string of else if ( . . . ) . . . else . . . ;
statements cause the tests we have already discussed to be done, and when one is
successful, so its following statement is executed, a branch is made to the end of the
series of else i f ( . . . ) . . . else . . .; statements. Incidentally, the subroutine branched
tobyBSR * +10 2 shifts the byte in beta left three places.
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The case statement is a useful alternative to the conditional statement. Consider an
expression like switch(n){ case 1: i=l; break; case 3: i=2; break; case 6:
i=3;break;}. This is compiled into assembly language by calling a subroutine
switch to evaluate the case and providing the cases as addresses below its call, as
shown in Figure 9.9a. This technique is used in Hi Ware's compiler when the cases are,
or are nearly, consecutive numbers. Another technique used in some compilers is to
implement the test using a sequence of CMP A and BNE instructions. Assembly language
in Figure 9.9b implements the same switch statement with branch instructions. This
technique is used in HiWare's compiler when the cases are not consecutive numbers.

* switch(n){case 0:1=1; break; case l:i=2; break; case 2:i=3; break;}

00000867 EC81 LDD 1,SP
00000869 072D BSR switch
0000086B 03 L: DC.B LO-L
0000086C 06 DC.B Ll-L
0000086D 09 DC.B L2-L

5: case 1: i=l; break;
0000086E C601 LO: LDAB #1
00000870 8FC602 CPS #50690 ; is SKIP2 L1:LDAB #2

6: case 3: i=2; break;
00000873 8FC603 CPS #50691 ; is SKIP2 L2:LDAB #3
00000876 6B80 STAB 0,SP

* . . .
00000898 30 switch: PULX
00000899 E6E6 LDAB D,X
0000089B 05E5 JMP B,X

a) Using a Subroutine and Argument List

* switch(n){case l:i=l; break;case 3:i=2;break;case 6: i=3;break;}

LDAA $ 0 8 0 0 ; get switch operand alpha
CMPA #6 ; check for last case
BHI *+2 7 ; branch over the rest of the cases
CMPA #1 ; check for first case
BEQ *+12 ; if found, go to LDAB instruction
CMPA #3 ; check second case
BEQ * +11 ; if so go to middle of first CPS instruction
CMPA #6 ; check last case
BEQ * + 10 ; if so go to middle of second CPS instruction
BRA * -f 13 ; if not matched, skip over cases
LDAB #1 ; this is for the case one
CPS #50690 ; skip, or LDAB #2
CPS #50691 ; skip, or LDAB #3
STAB $ 0 8 01 ; store result in beta

b) Using a Sequence of CMP and conditional branch instruction Pairs

Figure 9.9. Alternative Assembly Language for a Case Statement
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9.4 Loop Statements, Arrays, and Structs

In this section, we show how statements within a loop can be repeated until a condition
is met, governed by an expression much like the expressions of the conditional
statements. First, we consider an accumulation of variables incremented or decremented
in the loop, in different loop constructs. Then we discuss array elements accessed using
indexes. Struct elements are accessed using AND, OR, and shift operations. We will
access a two-dimensional array using indexes in for loops and a struct in a do
while loop.

The for and while statements test the condition before the loop is executed and
are useful if, for example, a loop may have to be done 0 times. The do while
statement performs the statement once before it tests the condition. See Figure 9.10.

int i;
main(){ int j, k;

for( j = k = 0; j != i; j++) k += j;
while(j != 0) k += —j;
do k += j—; while (j != i);

}

a. A C Program

* 3: for( j = k = 0; j != i; j++) k += j;
00000802 C7 CLRB
00000803 87 CLRA
00000804 B745 TFR D,X
00000806 2005 BRA *+7 ;abs = 080D
00000808 1AE6 LEAK DfX
0000080A C30001 ADDD #1
0000080D BC0800 CPD $0800
00000810 26F6 BNE *-8 ;abs = 0808
* 4: while(j != 0) k += —j;
00000812 2005 BRA *+7 ;abs = 0819
00000814 830001 SUBD #1
00000817 1AE6 LEAK D,X
00000819 0474F8 TBNE D,*-5 ;abs = 0814
* 5: do k += j—; while (j != i);
0000081C 1AE6 LEAK D,X
0000081E 09 DEX
0000081F BC0800 CPD $0800
00000822 26F8 BNE *-6 ;abs = 081C
00000824 3D RTS

b. Assembly Language developed from Part (a)

Figure 9.10. For, While, and Do While Loops
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In Figure 9.10 a for loop has an initialization expression, shown first in the for
list of expressions; a test expression, shown in the middle; and a loop termination
expression, shown last:

* 3: fo r ( j = k = 0; j != i; j++) k += j;
CLRB ; j in D
CLRA
TFR D , X ; k in X
BRA LI ; do the test before the loop is done once

LO : LEAX D, X ; this is the statement that is executed in the loop
ADDD #1 ; this is the expression done after each loop is done

LI: CPD $0800 ; this is the loop test
BNE LO

A while loop has a test expression that is executed before the loop is executed once:

* 4: while(j != 0) k += —j ;

BRA L3 ; do the test first
L2 : SUED #1 ; these are the two statements

LEAX D , X ; that are executed in the loop
L3 : TBNE D,L2 ; this is the loop test

A do while loop has a test expression that is executed after the loop is executed:

* 5: do k += j—; while (j != i);
L4 : LEAX D, X ; these are the two statements

DEX ; that are executed in the loop
CPD $0800 ; this is the loop test
BNE L4

Figure 9.11 illustrates nested for loops and the two-dimesional array index
addressing mechanism. This example shows how loop statements can themselves be
loops, in a nested loop construction, and how optimizing compilers make loops more
efficient. The outer for loop, for (i = sum = 0 ; i < 10; i++) is encoded as an
initialization:

CLRA ; generate 0
CLRB ; in high and low bytes
STD $08 IE ; store to clear sum
STAB 1, SP ; store to clear i

and by the outer loop termination:

INC 1, SP ; count up
LDAA 1, SP ; get the variable to be tested
CMP A #10 ; compare against 10
BCS *-40 ; loop as long as i is less than 10
CMPA #3 ; check if another iteration is to be done
BCS *-30 ; if so, branch to the instruction following the initialization
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unsigned char a[10][3]; int sum;
main() { unsigned char i, j;

for(i = sum = 0 ; i < 10; i++)
for(j=0; j < 3; j++)

sum +=£ a[ i ] [ j ] ;
>

a. A C Program

4: main() { unsigned char i," j;
0000095B 3B PSHD

5: for(i = sum = 0; i < 10; i++)
0000095C C7 CLRB
0000095D 87 CLRA
0000095E 7C081E STD $081E
00000961 6B81 STAB 1,SP

6: for( j = 0; j < 3; j++) sum += a[i][j];
00000963 6980 CLR 0,SP
00000965 E681 LDAB 1,SP
00000967 87 CLRA
00000968 CD0003 LDY #3
0000096B 13 EMUL
0000096C B745 TFR D,X
0000096E E680 LDAB 0,SP
00000970 87 CLRA
00000971 1AE6 LEAK D,X
00000973 E6E20800 LDAB 2048,X
00000977 F3081E ADDD $081E
0000097A 7C081E STD $081E
0000097D 6280 INC 0,SP
0000097F A680 LDAA 0,SP
00000981 8103 CMPA #3
00000983 25EO BCS *-30 ;abs = 0965

5: for(i = sum = 0; i < 10; i++)
00000985 6281 INC 1,SP
00000987 A681 LDAA 1,SP
00000989 810A CMPA #10
0000098B 25D6 BCS *-40 ;abs = 0963

7: }
0000098D 30 PULX
0000098E 3D RTS

b. Assembly Language developed from Part (a)

Figure 9.11. Array Manipulation Program
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The initialization should branch to the loop termination, but because the compiler
determines that the first loop will satisfy the termination test, this step is skipped to
improve efficiency. The inner loop is almost identically constructed. Generally, the for
loop is fundamentally a while loop with a built-in initialization and a built-in stepping
operation that is executed after the statement governed by the for loop is executed and
before the while condition is tested. The general and natural for loop is the most
widely used looping mechanism in C and C++.

The more general for statement is used with instructions that access a two-
dimensional array using accumulator D index addressing. The program in Figure 9.11
adds all the elements of a global unsigned char two-dimensional array into a global
int variable. The two-dimensional array is declared as a[ 10 ] [ 3 ], so it is a ten-row,
three-column array. Elements in rows are stored in consecutively accessed locations, and
whole rows are stored in consecutive groups of these memory words (this is called row-
major order). The middle of the assembly-language code from Figure 9.12 is shown
below:

; get row index

; number of bytes per row
; gets the relative location of row i in array a

; add column number

LDAB 1,SP
CLRA
LDY #3
EMUL
TFR D,X
LDAB 0,SP
CLRA
LEAX D,X
LDAB 2 0 4 8, X ; get element

It reads out element i, j , into accumulator D. Observe that the calculation of the
location of the i, j th element is obtained by multiplication and addition operations (a
polynomial expression).

The do while statement can produce efficient assembly-language code using C
code that may look somewhat awkward. Figure 9.12 illustrates an efficient way to clear a
vector. Note that the loop counter is decremented, and tested after it has been
decremented, in order to use the instruction DBNE. In order to use this loop counter as an
index into a vector, one is subtracted from the counter to make it the vector index. This
produces the tightest loop to clear a vector in the 6812.

char alpha[10];
void main() { char i = 5; do alpha[i - 1] = 0; while{—i); }

a. A C Program

00000959 8605
0000095B B705
0000095D 69E207FF
00000961 0430F7
00000964 3D

LDAA
SEX
CLR
DBNE
RTS

#5
A,X
2047,X
A,*-6 ;abs = 095B

b. Assembly Language developed from Part (a)

Figure 9.12. Clearing a Vector with a Do While Loop
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struct spiDevice {
unsigned int spie:l,spe:l,swom:l,mstr:lfcpol:lrcpha:l,ssoeil,

lsbf:l;
} *spiPtr = (struct spiDevice *)OxdO;
#define spi (*spiPtr)

raain() { spi.spe = 1; do ; while(spi.spe); }

a. A C Program

0000095B 3B PSHD
0000095C FE0800 LDX spiPtr
0000095F 6E80 STX 0,SP
00000961 OC0040 BSET 0,X,#64
00000964 EE80 LDX 0,SP
00000966 OE0040FA BRSET 0,X,#64,*-6 ;abs = 0964
0000096A 30 PULX
0000096B 3D RTS

b. Assembly Language developed from Part (a)

Figure 9.13. A Program Setting and Testing a Bit

The do while statement in Figure 9.13a tests the condition after the loop is
executed at least once, but it tests the result of the loop's activities. This is very useful
in I/O software because it lets you get data within the statement and test the result in the
conditional expression, which is not executed until the statement is executed at least
once. See Figure 9.13. The program sets a bit of a struct and tests it repeatedly until
it is cleared (by hardware). It is compiled into assembly language shown in Figure 9.13b.
The struct definition shown below merely defines accesses using the pointer spiPtr.
The elements can be accessed using "arrow" notation. For instance the bit spe can be
set using spiPtr->spe = 1; However, by declaring #define spi (*spiPtr), the
expression spi. spe = 1; can be used instead. This is encoded into assembly language
using the BSET instruction:

BSET 0, X, #6 4 ; set bit 6 of location pointed to by X (the spi port)

The statement do ; while (spi. spe); is implemented with

BRSET 0, X , #6 4 , * - 6 ; wait while bit 6 of location OxDO is 1

Generally, if the bitfield is more than one bit, data to be inserted will have to be shifted
to the correct bit position, and masked parts of it are ORed with masked parts of bits in
other fields, to be written into the memory. This code looks like the code for statement
lui = (lui « 3) + (lui « 1) + Isc - ' 0 ' ; that we studied at the end of
Section 9.2. Data read from such a bitfield will have to be shifted and masked in like
manner.
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9.5 Procedure Calls and Arguments

A C procedure is generally called using a JSR orBSR instruction, with the input
arguments pushed on the stack. The return value of a function is generally left in
accumulator D. If the input argument is a vector, or an "&" sign appears before the
name, then the address is passed on the stack, using call-by-name; otherwise the data
itself is pushed on the stack, using call-by-value. However, the rightmost argument is
passed into a function through a register. The function might push this register value
inside it, as a local variable. Passing one argument this way improves efficiency, because
even if it is pushed on the stack inside the function itself, its code therein appears just
once in a program, rather than each time the subroutine is called. As an example, the
procedure power can be called by main( ) in Figure 9.14a. Figure 9.14b shows the
calling procedure's assembly language.

Figure 9.15 shows the stack within the procedure that was called; its assembly
language is shown Figure 9.14c. The while loop requires the test at the end of the loop
and a branch at the beginning of the while loop to that test program sequence. Observe
from Figure 9.14c that call-by-value argument j is generally in accumulator A. The test
requires checking the argument j before it is decremented, so the instruction PS HA
saves j , the DEC instruction decrements j , and the BNE instruction tests the value
obtained by the LDAB 1, SP+ instruction.

The EMUL instruction multiplies the value in D by the value in Y. We passed the
address of argument i to power, merely to show how call-by-name can be handled. It
was pushed on the stack. Note from Figure 9.15 that this address is at 2 , SP. The int
value at that location can be read into index register Y by LDY 2 , SP LDD 0, Y and
the other multiplier, a local variable, is read into Y by the TFR X, Y. The data are
multiplied and the result stored in the local variable using TFR D, X. Note that the final
returned value is passed in accumulator D.

It is also possible to pull the return address and deallocate the procedure's arguments
at the end of the procedure before returning to the main program. This is similar to the
passing of the rightmost argument in a register. In some sense these optimization
techniques are just minor modifications. However, they can improve static efficiency. If a
procedure is called from ten different places in the main program, then putting push and
pull instructions within the called procedure removes these instructions from ten places
in the calling sequence and puts only one copy in the called procedure. Moreover, the
technique of putting the first input argument in accumulator D works especially well for
small procedures with only one argument; we may not need to save the argument on the
stack at all, merely use the value in accumulator D. However, the last technique of
pulling the program counter and balancing the stack inside the called procedure has a
significant limitation. It is not possible to have a procedure with an arbitrary number of
arguments when the called procedure removes the same number of bytes from the stack
whenever it is called. The C printf procedure allows an arbitrary number of arguments,
so it would not be able to pull the program counter and balancing the stack inside it.
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int a;
void main() { int b; b = power(&a, 2 ) ; }
int power(int *i, unsigned char j ) { int n ~ 1;

while( j— ) n = n * *i; return n;
}

a. A C Procedure calling a Subroutine

00000976 CC0800 LDD #2048
00000979 3B PSHD
0000097A C602 LDAB #2
0000097C 07DD BSR *-33 ;abs = 095B
0000097E 3A PULD
0000097F 3D RTS

b. Assembly Language for the Calling Procedure in Part (a)

0000095B CE0001 LDX #1
4: while( j— ) n = n * *i;

0000095E B710 TFR B,A
00000960 200B BRA *+13 ;abs = 096D
00000962 ED82 LDY 2,SP
00000964 36 PSHA
00000965 EC40 LDD 0,Y
00000967 B756 TFR X,Y
00000969 13 EMUL
0000096A B745 TFR D,X
0000096C 32 PULA
0000096D 36 PSHA
0000096E 43 DECA
0000096F E6BO LDAB 1,SP+
00000971 26EF BNE *-15 ;abs = 0962

5: return n;
00000973 B754 TFR X,D
00000975 3D RTS

c. Assembly Language for the Called Procedure in Part (a)

Figure 9.14. A Subroutine to Raise a Number to a Power

SP->
inside the
subroutine

Figure 9.15. Stack for power Procedure
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C++ generally has similar operators and implements them in assembly language in
similar ways. However, C++ has a calling mechanism, where a member function is
designated virtual, that permits run-time substitutions of one class and its function
members for another class and its function members. If we do not insert the word
virtual in front of a function member in the class declaration, then the function is
directly called by a JSR or BSR instruction, like C procedures discussed above.

If a function member is declared virtual, then to call it, we look its address up in
a viable associated with the class, as is shown on the right side of Figure 9.16. This
table is used because generally a lot of objects of the same class might be declared or
blessed, and they might have many virtual function members. For instance there could be
stacks for input and for output and stacks holding temporary results in the program. A
single table holds the function member addresses for all of a class's objects in one place.
Suppose Q is a pointer to an object, and the object stores data members in the block
pointed to by Q. The hidden pointer, at location Q, points to the jump table. Then, data
members are easily accessed by the pointer Q, and virtual function members are almost
as easily accessed by means of a pointer to a pointer.

The operator new blesses a pointer to an object. A subroutine allocate will
return a location where the data members and the hidden pointer can be stored in index
register X. Then if ctbl is the jump table for the class Cstack, the statement Sptr =
new Cstack; is implemented as

JSR allocate ; return value in accumulator D is a pointer to object data
STX Sptr ; save address in pointer to the object
MOW #Ctbl, 0, X ; put the class Cstack jump table address in the hidden pointer

If new blesses a pointer to an object to make it an object of a different class,
1 stack, then if Itbl is the jump table for the class Istack, the statement Sptr =
new Istack; is implemented as

JSR allocate ; return value in accumulator D is a pointer to object data
STX Sptr ; save address in pointer to the object
MOW #tbl 1, 0 , X ; put class CharQueue's jump table address in the hidden pointer

Figure 9.16. An Object and Its Pointers
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If a function member is executed, as in Sptr ->pull ( ) , the object's hidden pointer has
the address of a table of function members; the specific function member is jumped to by
using a predetermined offset from the hidden pointer. If we wish to call the pull member
function, which might be at location 2 in this jump table, we can execute:

LDX [ Sptr, PCR ]; get the address of the jump table for the object pointed to by Sptr
JSR [ 2, X ] ; call the procedure at location 2 in the jump table (pull)

It will go to the jump table for the class for which Q was blessed by the new operator, to
get the address of the function member to pull data from the queue.

Observe that different objects of the same class point to the same table, but each
class has its own separate table. Note that data members of different objects of a class are
different data items, but function members of different objects of a class are common to
all the objects of the same class via this table.

A final technique used in C-H- is the templated class such as Stack<T>. Such a
templated class can potentially generate many classes such as s tack<char>,
Stack<unsigned char>, stack<int>, and so on. Rather than generate, and store in
the microcontroller, all possible classes that can be obtained with different types for the
template, a templated class generates real code only when it is declared or blessed.

9.6 Examples from Character String Procedures

In order to provide additional examples of C compiled into assembly language, we will
compile some common C procedures that are used to handle character strings.

We first show strlen which is used to determine the number of characters in a
null-terminated string. See Figure 9.17. Notice how the argument str, passed in
accumulator D, is saved as a local variable right after the local variable s is pushed, and
is then on top of the stack.

1: int strlen(char *str){ char *s = str;
0000088A 3B PSHD
0000088B 3B PSHD
0000088C 6C82 STD 2,SP

2: while(*str++);
0000088E EE80 LDX 0,SP
00000890 E630 LDAB 1,X+
00000892 6E80 STX 0,SP
00000894 0471F7 TBNE B,*-6 ;abs = 088E

3: return (str - s - 1);
00000897 B754 TFR X,D
00000899 A382 SUED 2,SP
0000089B 830001 SUBD #1

4: }
0000089E 1B84 LEAS 4fSP
000008AO 3D RTS

Figure 9.17. The Strlen Procedure
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3: char *strchr(char *str, int chr){
0000088A 3B PSHD

4: while (*str) {
QOG0088B 200B BRA *+13 ;abs = 0898

5: if(*str == chr) return (str);
0000088D B715 SEX B,X
0000088F AE80 CPX 0,SP
00000891 2711 BEQ *+19 ;abs = 08A4

6: -M-str;
00000893 EE84 LDX 4,SP
00000895 08 INX
00000896 6E84 STX 4,SP

4: while (*str) {
00000898 EE84 LDX 4,SP
0000089A E600 LDAB 0,X
0000089C 26EF BNE *-15 ?abs = 088D

8: if(*str == chr) return str;
0000089E B715 SEX B,X
000008AO AE80 CPX 0,SP
000008A2 2603 BNE *+5 ;abs = 08A7
000008A4 EC84 LDD 4,SP
000008A6 8FC787 CPS #51079

10: }
000008A9 30 PULX
000008AA 3D RTS

Figure 9.18. The Strchr Procedure

The procedure str chr searches for a character in a null-terminated string. See
Figure 9.18. The first argument specifies the string. The second argument is a character.
The procedure searches the string for a matching character; if it finds the character, it
returns the address of the character in the string, otherwise it retuns a null (0).

We now show strncpy which is used to copy characters from and to a null-
terminated string. See Figure 9.19. We show the calling routine for this example to
illustrate the passing of more than three arguments. The main procedure calls the
strncpy procedure with three arguments. Notice how arguments are pushed in order or
their appearance from left to right, so the leftmost string, pushed first, is at 8,SP inside
strncpy. You should step through the while loop to see how each C statement is
compiled into assembly language. Note, however, that the pointers keep getting reloaded
into X and Y registers from their local variable storage locations. You can do a lot better
by writing the program in assembler language. But you can use this code, produced by
the Hiware C++ compiler, as a starting point for a tightly coded assembler language
program.

The procedure strncmp compares characters in two null-terminated strings,
specified by the first two arguments, up to a number of characters specified in the third
argument. See Figure 9.20. Observe the condition used to execute the while loop. If
any of the three conditions are false, the subroutine terminates.
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char *strncpy(char *str_d,char *str_s,int count){char *sd = str d;
0000088A 3B PSHD
0000088B 3B PSHD
0000088C EC88 LDD 8,SP
QQOGQ88E 6C82 STD 2,SP

51 whi le (count—) {
00000890 201A BRA *+28 ;abs = 08AC

6: if(*str_s) *str__d++ = *str_s++;
00000892 EE86 LDX 6,SP
00000894 E600 LDAB 0,X
00000896 270E BEQ *+16 ;abs = 08A6
00000898 EE88 LDX 8,SP
0000089A ED86 LDY 6,SP
0000089C E670 LDAB 1,Y+
0000089E 6B30 STAB 1,X+
000008AO 6E88 STX 8,SP
000008A2 6D86 STY 6,SP
000008A4 2006 BRA *+8 ;abs = 08AC

7: else *str_d++ = '\0';
000008A6 EE88 LDX 8,SP
000008A8 6930 CLR 1,X+
000008AA 6E88 STX 8,SP

5: while(count—) {
000008AC EE80 'LDX 0,SP
000008AE 191F LEAY -1,X
000008BO 6D80 STY 0,SP
000008B2 0475DD TBNE X,*-32 ;abs = 0892

9: return (sd);
000008B5 EC82 LDD 2,SP

10: }
000008B7 1B84 LEAS 4,SP
000008B9 3D RTS

13: void main() { strncpy(sl, s2, 5);
000008BD CC080B LDD #2059 ; this is si
000008CO 3B PSHD
000008C1 CE0800 LDX #2048 ; this is s2
000008C4 34 PSHX
000008C5 C605 LDAB #5 ; this is the rightmost argument
000008C7 87 CLRA
000008C8 07CO BSR *-62 ;abs = 088A
000008CA 1B84 LEAS 4,SP

15: }
000008D2 3D RTS

Figure 9.19. The Strncpy Procedure
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4: int strncmp(char *strl, char *str2, int count) {
0000088A 6CAE STD 2,-SP

5: if (!count) return 0;
0000088C 2618 BNE *+26 ;abs = 08A6
0000088E C7 CLRB
0000088F 87 CLRA
00000890 203B BRA *+61 ;abs = 08CD

7: if (*strl != *str2) break;
00000892 EE86 LDX 6,SP
00000894 E600 LDAB 0,X
00000896 EE84 LDX 4,SP
00000898 E100 CMPB 0,X
0000089A 261F BNE *+33 ;abs = 08BB

8: ++strl; ++str2;
0000089C EE86 LDX 6,SP
0000089E 08 INX
0000089F 6E86 STX 6,SP
000008A1 EE84 LDX 4,SP
000008A3 08 INX
000008A4 6E84 STX 4,SP

6: while(count— && *strl && *str2 ){
000008A6 EE80 LDX 0,SP
000008A8 191F LEAY -1,X
000008AA 6D80 STY 0,SP
000008AC 04450C TBEQ X,*+15 ;abs = 08BB
000008AF EE86 LDX 6,SP
000008B1 E600 LDAB 0,X
000008B3 2706 BEQ *+8 ;abs = 08BB
000008B5 EE84 LDX 4,SP
000008B7 E600 LDAB 0,X
000008B9 26D7 BNE *-39 ;abs = 0892

10: return (*strl - *str2);
000008BB EE86 LDX 6,SP
000008BD E600 LDAB 0,X
000008BF B714 SEX BfD
000008C1 EE84 LDX 4,SP
000008C3 3B PSHD
000008C4 E600 LDAB 0,X
000008C6 B715 SEX B,X
000008C8 34 PSHX
000008C9 EC82 LDD 2,SP
000008CB A3B3 SUED 4,SP+

11: }
000008CD 30 PULX
000008CE 3D RTS

Figure 9.20. The Strncmp Procedure
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9.7 Summary

In this chapter, we have shown how C constructs are encoded in assembly language. We
showed how variables are allocated and accessed. We saw how simple expressions, and
then more complex expressions, are implemented. Assembly-language implementations
of conditional expressions were then shown. Implementation of indexed and sequential
structures were covered along with implementation of looping statements. We then
considered the implementation of procedures and the passing of arguments. Finally, the
mechanism for handling a C++ virtual procedure call was considered.

This chapter provides the reader with a basic understanding of what is being done at
the machine level when a high-level language statement is encoded. It should give the
reader the understanding necessary to write efficient high-level language programs.

Do You Know These Terms?

See the end of chapter 1 for instructions.

downcasting logical operators virtual
upcasting row-major order viable
relational operators
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PROBLEMS

In all the following problems, assume lui, gsc, etc., are declared as they are used
throughout this chapter (see §9.1).

1. A global variable declared as long alpha; is loaded from global variables below.
Show assembly-language program segments to load alpha from:

a.unsigned int gui b.int gsi c.unsigned char guc d.char gsc

2 . A global variable declared as long alpha; is stored into global variables below.
Show assembly-language program segments to store alpha to each variable, and
indicate an assembly-language test that sets char error to 1 if an overflow occurs.

a.unsigned int gui b. int gsi c.unsigned char guc d. char gsc

3 . A global variable declared as unsigned long alpha; is stored into global
variables below. Show assembly-language program segments to store alpha to each
variable, and indicate a test on the value of alpha that will result in an error.

a. unsigned int gui b. int gsi c. unsigned char guc d. char gsc

4 . C local variables are not cleared. However, write a shortest program segment that
clears all N local variables of a subroutine, where N is a constant.

5 . Write a shortest program segment to execute each of the following C statements.

a. gui=lsi+lsc; b. lsi=gsi+lsc; C. Isc = luc + gsc; d. gui += Isi;

6 . Write a shortest program segment to execute each of the following C statements.

a. gui = Isi A Isc; b. Isi /= gsi; c. Isc = ~ luc; d. lui /= gsi;

1 . Global variables are declared as long alpha, beta, v[ 10 ] ; . Write a shortest
program segment to execute each of the following C statements.

a. beta = v[alpha]; b. beta = v[++alpha]; c. beta = v[—alpha];

8. Global variables are declared as struct { unsigned int alpha:3, beta:?,
gamma: 6 } s; int i;. A struct with bit fields is packed from leftmost bit for the
first field named on the left, through consecutive fields, toward the right. Write a shortest
program segment to execute each of the following C statements.

a. i = s.alpha; b. s. beta = i; c. s.alpha = s.gamma;
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9. Global variables are declared as struct { unsigned int alpha: 3, beta:?,
gamma: 6 } *p; int i;. A struct with bit fields is packed from leftmost bit for the
first field named on the left, through consecutive fields, toward the right. Write a shortest
program segment to execute each of the following C statements.

a. i = p->alpha; b. p->beti =- i; c.p->alpha = p->gamma;

10. Write a shortest program segment to execute each of the following C statements,

a. gui = (gui & Oxc7ff) + ((Isc « 11) & 0x3800);
b. lux = (lui & Oxffc?) \ ((gsc « 3) & 0x38);
c. lui = (lui & Oxc7c7) + ((gsc«3)&0x38) \ ((Isc«ll)&0x3800);

11. Write a shortest program segment to execute each of the following C statements,

a. guc = gui >= lac ; «
b. luc = lui < gsc ;
c. lui = (gui >= Isc) \ \ (lui < gsc) ;

12. Write a shortest program segment to execute each of the following C statements.

a. if{ gui >= Isc ) lui++;
b. if( ! ( gui A Isc) ) lui *= 10;
c. i f ( ( gui >= Isc ) & & ( ! ( (gui A Isc) & gsc) ) ) lui A= gui;

13. Write a shortest program segment to execute each of the following C statements.

a. i f ( ( gui <= Isc ) | j ( gui >=( Isc + 7 ) ) ) lui++;
b. if( ( gui > Isc) && ( gui < (Isc + 3) ) ) lui *= 10;
c. i f ( ( gui >= 0 ) && ( Isi < 0 ) && ( gui > Isi ) ) lui "= gui;

14. Write the case statement below according to the conventions of Figure 9.9a.

switch(guc){case 2: gui = -1; break;case 4:Isc = -1;default:Isi = -1;}

15. Repeat Problem 14 according to the conventions of Figure 9.9b.-

16. Rewrite the assembly-language program of Figure 9.1 Ib for a main program, like
Figure 9.11 a, in which the declaration int sum; is replaced by int k; , and the
statement sum += a[ i ] [ j ] ; is replaced by if (k > a [ i ] [ j ] ) k = a[ i ] [ j ] ;

17. Write the C program and the resulting assembly-language program that transposes
a two-dimensional matrix of size 4 by 4, following the approach of Figure 9.11.

18. Write the C program and the resulting assembly-language program that stays in a
do while loop as long as both bits 7 and 6 of the byte at location $dO are zero, following
the approach of Figure 9.13b.
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19, Write the C program and the resulting assembly-language program that calls a
procedure with prototype unsigned int par (unsigned int Rl, unsigned int
R2 ) ; to compute the resistance of two parallel resistors Rl and R2, following the
approach of Figure 9.14, returning the result in accumulator D.

2 0, Write the C program and the resulting assembly-language program that calls a
procedure with prototype unsigned int inner (unsigned int *v, unsigned int
*w); to compute the inner product of two two-element vectors v and w, following
the approach of Figure 9.14, returning the result in accumulator D.

21. Hand-compile the C procedure strncat below. Put the 6812 instructions under
each C statement that generates them, main calls strncat which concatenates the
second argument string on the end of the first argument string, but copies at most the
number of characters given in the third argument. For full credit, store ail parameters and
local variables on the stack, even though they can be left in registers to make the
program shorter, and do not optimize between statements, but provide the most statically
efficient assembler language code for each C statement. Your solution should be
reentrant, but need not be position independent. Assume that arguments which are put on
the stack are pushed in the order that they appear from left to right.
char *strncat(char *str_d,char *str_s,int count){char *sd=str_d;

while (*str_d++) ;
str_d—-;
while (—count) { if (!(*str_d++ = *str_s++)) return sd; }
*str_d = ' \0'; return sd;

}

22. Hand-compile the C procedure memchr below. Put the 6812 instructions under
each C statement that generates them, main calls memchr which searches the first
argument string for the second argument character, but searches at most the number of
characters given in the third argument. If it finds the second argument, it returns the
address of that character in the string. Otherwise it returns a null (0). For full credit, store
all parameters and local variables on the stack, even though they can be left in registers
to make the program shorter, and do not optimize between statements, but provide the
most statically efficient assembler language code for each C statement. Your solution
should be reentrant, but need not be position independent. Assume that arguments which
are put on the stack are pushed in the order that they appear from left to right.

char *memchr(char *buffer,char chr,int count){char *ptr=buffer;
while(count—) { if( *ptr == chr ) return ptr; ++ptr; }
return 0;

}
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The Axiom PB68HC12A4 board is fitted with female harmonica plugs and a prototyping
area for a laboratory developed for this book. Experiments can be quickly connected by
pushing 22-gauge wire into the harmonica plugs and prototyping areas.
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Elementary Data Structures

In all the earlier chapters, we have used data structures along with our examples. While
you should therefore be somewhat familiar with them, they need to be systematically
studied. There are endless alternatives to the ways that data are stored, and so there is a
potential for disorder. Before you get into a crisis due to the general disarray of your data
and then convince yourself of the need for data structures, we want you to have the tools
needed to handle that crisis. In this chapter, we systematically cover the data structures
that are most useful in microcomputer systems.

The first section discusses what a data structure is in more detail. Indexable
structures, including the frequently used vector, are discussed in the second section. The
third section discusses sequential structures, which include the string and the stack
structures. The linked list is briefly discussed next, only to give you an idea of what it
is, while the conclusions summarize the chapter with recommendations for further
reading on data structures.

At the end of this chapter, you should be able to use simple data structures, such as
vectors and strings, with ease. You should be able to handle deques and their derivatives,
stacks and queues, and you should know a linked list structure when you see one. This
chapter should provide you with the tools that you need to handle most of the problems
that cause confusion when storing data in your microcomputer programs.

10.1 What a Data Structure Is

In previous chapters, we described a data structure as the way data are stored in memory.
While this description was adequate for those earlier discussions, we now want to be
more precise. A data structure is more or less the way data are stored and accessed. This
section expands on this definition.

A data structure is an abstract idea that is used as a reference for storing data. It is
like a template for a drawing. For example, a vector is a data structure that we have used
since Chapter 3. Several sets of data can be stored in a vector in the same program and
the same "template" is used to store each set. You may write or see a program that uses
vectors that have five 1-byte elements. While writing another program, you may
recognize the need for a vector that has five 1-byte elements and, by using the same
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template or data structure that you used earlier, you can quickly copy appropriate parts of
the old program to handle the vector in your new program. Moreover, another program
may need a similar structure that has ten 1-byte elements, or three 2-byte elements or
even a vector whose elements are themselves vectors. Rather than having a different
template around for each possible vector, you will, with some understanding, be able to
modify a program that handles a vector with five 1-byte elements to handle these other
cases, too. In a sense, data structures are elastic templates that can be stretched to
accommodate different sizes.

We have used the analogy with a template to describe how data are stored in a data
structure. The description of a data structure is completed when we describe how the data
of the structure can be read or written, that is, accessed. A simple example will make this
clear. A vector Z of N 1-byte elements can be stored in consecutive bytes of a buffer
created with the DS directive:

Z: DS N

This buffer begins at location Z (see Figure 10.1). By pointing X to the buffer's first
byte, we can easily access any byte of the vector. For instance, LDX #Z followed by
LDAA 3 f X, will read the fourth byte of the vector into accumulator A. We can also
access it by an instruction LDAA Z+3, or if accumulator A has 3 and index register X
has the address Z, we can access it using the instruction LDAA A , X . Suppose,
however, that our N bytes were not stored in a buffer but were stored on a tape that, when
read, moves forward one byte. The constraint here is that we can access only the "current"
byte on the tape. This situation is exactly analogous to a person sitting at a terminal
typing characters to be input to a computer. To remind us of this, the data structure of N
consecutive bytes, which can be accessed only at some "current" position, is called a
string. Of course, once a string is put into memory by storing it in consecutive bytes of
a buffer, it can be accessed like a vector. This distinction becomes important in
applications. Is one accessing a string in memory, or accessing a string from a terminal
or some other hardware device? Thus the programmer should consider what data structure
is appropriate for the application, which includes considering the constraints placed on
accessing that structure.

Figure 10.1. A Vector Z
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The data structure, as we observed in Chapter 3, affects both static and dynamic
efficiency. Besides the compactness and speed of the program itself, the compactness of
the data may be affected by the structure used to store it. In a small microcomputer with
IK bytes of RAM, a program may not work at all if the data are stored in a structure that
requires 2K bytes of RAM, but it may work if the correct data structure is used and that
structure requires only 100 bytes of RAM. Using the right data structure can also
improve clarity, because the techniques to access the structure for a particular program
may be more transparent than with a less appropriate structure.

10.2 Indexable Data Structures

We have already used the vector data structure, which is the most common example of an
indexable data structure. A vector is a sequence of elements (or components), each of
which is labeled by a number called an index. The indexes of successive elements are
successive integers, and each element is represented by the same number of bytes. The
number of bytes representing each element of the vector is termed its precision, the
number of elements in the vector is its length, and the index of the first element is its
origin (or base). For example, a vector Z with N elements would usually have its
element labeled with i denoted Z(i), where i runs between the origin and the (origin + N
- 1). For an origin of 1, the elements are labeled Z(1), . . . , Z(N) while, for an origin of
0, the elements are labeled Z(Q),. . . , Z(N - 1). If the origin is understood, we refer to the
element Z(i) as the ith element.

Vectors stored in memory are stored in buffers, putting successive elements in
successive memory locations. If the elements of the vector have more than one byte of
precision and represent integers or addresses, we have adopted the Motorola convention
that the elements are stored most significant byte first.

In C programs, a vector data structure of any length is obviously handled by C
vector notation. Zero-origin 8-bit and 16-bit precision vectors are directly handled; for
instance, a global vector Z of N 16-bit elements is declared as int Z [ N ] , and an
element i is accessed as z [ i] . If the origin is changed, for instance to 1, then an
element i is accessed as z {i — 1 ]. If the precision is changed, unless memory space
is critical, the next higher precision, 8-bit or 16-bit precision, would be used.

In assembly language, a buffer to hold vector Z is established with directive

Z: DS 20 (1)

With this directive, we have a buffer that will hold a vector of up to twenty 1-byte
elements, a vector of up to ten 2-byte elements, a vector of up to five 4-byte elements,
and so on. Although the directive (1) establishes the buffer to hold the vector, it does not
specify the origin, precision, or the length of the vector stored in the buffer. Any element
of a vector can be accessed and, to access the ith element, the programmer must know the
precision and origin of the vector. For example, if global vector Z has origin 1 and 1-
byte precision, then if i is in accumulator B, Z(i) can be loaded into A with

LDX #Z ; Point X to Z (2)
DECS ; i-1 intoB
LDAA B, X ; Z(i) into A
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Figure 10.2. A Histogram

If the precision is 2 and the origin is 1, then if i is in accumulator B, Z(i) can be loaded
into D with

LDX #Z ; Point X to Z
DECS ; i-1 into B (3)
ASLB ; 2*(i - 1) into B
LDD B f X ;Z(i)intoD

The origin is 1 for Z in the segments (2) and (3). It seems obvious by now that for
assembly language or C programming, an origin of 0 has a distinct advantage because
the DECS instruction can be eliminated from segments (2) and (3) if Z has an origin of 0.
Unless stated otherwise, we will assume an origin of 0 for all of our indexable data
structures. Accessing the elements of vectors with higher precision is straightforward and
left to the problems at the end of the chapter.

A histogram is implemented with a vector data structure. In a histogram, there are,
say, 20 counters, numbered zero through nineteen. Initially all counters are zero. A
stream of numbers arrives, each between zero and nineteen. As each number i arrives,
counter i is incremented. This vector of counts is the histogram.

Figure 10.2 illustrates the first six counts of the histogram Z, An item "2" arrives,
so counter 2 should be incremented. In C, if the vector is Z and the number "2" is in
i, then z [ i]++; increments the counter for number "2"; and, in assembly language, if
this number "2" is in index register X, then the instruction in (4) will increment the
counter:

INC Z , X ; increment the Xth count (4)

Histograms are useful in gathering statistics. We used them to "reverse engineer" a TV
infrared remote control; the counts enabled us to determine how a "1" and a "0" were
encoded as pulse widths and how commands were encoded into 1 's and O's. Note that the
data structure is a vector. Counts are accessed in random order as items arrive.

A list is similar to a vector except that each element in the list may have a different
precision. Lists are stored in memory in buffers just like vectors, successive elements in
successive memory locations. Like a vector, there is an origin and a length and each
element of the list can be accessed. However, you cannot access the ith element of a list
by the simple arithmetic computation used for a vector. Consider the following example
of a list L that consists of 30 bytes for*a person's name (ASCII), followed by 4 bytes for
his or her Social Security number (in C, an unsigned long), followed by a 45-byte
address (ASCII), and another 4 bytes for the person's telephone number (an unsigned
long). This list then has four elements, which we can label LO, LI, L2, and L3, and



10.2 Indexable Data Structures 295

whose precisions are 30,4,45, and 4, respectively. In C, a list is conveniently handled
by a struct. The list above can be represented by struct{ char name [ 30 ]; long ss;
char address [45 ] ; long phone; } s;. The phone element of struct s is indicated
by the notation s.phone. The assembly-language implementation of lists is simple.
Assuming that the label L is used for the address of the first byte of the list, we can load
the jth byte of L2 (the address) into A with the sequence

LDX #L+34 ; Point X to L2 (5)
LDAA A, X ; jth byte of L2 into A

where we have also assumed that the value of j is initially in accumulator A. While the
segment (5) seems simple enough, remember that we have had to compute the proper
offset to add to L in order to point X to L2. For simple lists, such as this example, this
is not much of a problem, and the programmer may elect to do it "in his (or her) head."
But the assembler can help. For our example list, we can create labels for the offsets to
avoid remembering the sizes of each element.

NAME: EQU 0 ; Name of person (6)
SSN: EQU NAME+30 ; Social Security number
ADDRE SS:EQU SSN+4 ; Address of person
TN: EQU ADDRESS+45 ; Telephone number
NBYTES: EQU TN+4 ; Number of bytes in the list

In the following program segment, a telephone number is stored in accumulator D (high
16 bits) and index register X (low 16 bits). If the list L's telephone number matches this
D:X, put the Social Security number in D:X, otherwise go to label NoMatch:

CMPD L+TN ; check high 16-bits of telephone number (7)
BNE NoMatch
CPX L+TN+2 ; check low 16-bits of telephone number
BNE NoMatch
LDD L+SSN ; get high 16-bits of Social Security number
LDX L+SSN+2 ; get low 16-bits of Social Security number

Notice that with the EQU directives of (6) the program segment (7) becomes much more
self-documenting. What makes this technique work is that it is easy to associate labels
with attributes, particularly because the order of the list elements is usually unimportant.
Notice that the EQU statements (6) not only let the programmer use labels for offsets,
but also let the assembler calculate the offsets for the programmer. This same example
will be continued for the description of a table, which is a vector of lists. However, we
will first discuss an array, which is a bit simpler.

A R ( 0 , 0 ) , A R ( 0 , 1 ) , A R ( 0 , 2 ) , . . .
A R ( 1 , 0 ) , AR(1 ,1 ) , A R ( 1 , 2 ) , . . .
A R ( 2 , 0 ) , A R ( 2 , 1 ) , A R ( 2 , 2 ) r . . .

Figure 103. An Array
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A (two-dimensional) array is a vector whose elements are vectors, each of which
has the same length and precision. For us, it suffices to consider an array as the usual
two-dimensional matrix pattern of elements of the same precision, where, as before with
vectors and lists, it is convenient to start indexing the rows and columns from 0, If we
consider our array to be a vector of rows, the data structure is called a row major array. If
we consider it to be a vector of columns, the data structure is called a column major
array. In C, row-major order is used by arrays; a zero origin 1-byte precision two-
dimensional array is declared as char AR[ 5 ] [ 5 ], and the ith row jth column element is
designated A R { i ] [ j ], Rows are kept together. For instance, AR[ 0 ] [ 4 ] might be
located in memory at location $833, AR[ 1 ] [ 0 ] at location $834, and AR[ 1 ] {1 ] at
location $835. In assembly-language programming, two dimensional n by m arrays are
declared as a vector of n times m elements, e.g., AR DS n*m. The address of AR(ij) is
given, by

address of AR(ij) = (i * 5) + j + address of AR(0,0) (8)

Formula (8) can easily be modified for arrays with higher-precision elements. One uses
MUL to compute array addresses. For instance, if the precision of each element of AR is
two bytes, as if declared in C as int AR[ 5 ] [ 5 ], and if AR is the address of the first byte
of the array, and further if i and j are in accumulators A and B, respectively, the
following segment puts AR(i,j) into accumulator D.

PSHB ; Save j
LDAB #5 ; Number of columns into B
MUL ; i * 5 into D
ADDB 1, SP+
ADCA #0 ; (i * 5) + j into D
ASLD ; 2 * ((i * 5) +j) into D
XGDX ; Put combined offset in X
LDD AR,X ; AR(ij) into D

In this segment, multiplication by two for the contents of D is done by ASLD.
Multiplication by powers of two can be done by repeating ASLD.

Consider a program that writes into ZT the transpose ZT of a 5 by 5 matrix Z of 1-
byte elements. The C procedure is shown below.

void ZTRANS( char Z[5 ] [5 ] , char ZT[5][5] ) {char i,j;
for{i = 0 ; i < 5; i++)

for( j = 0; j < 5; j++)
ZT[ i ] [ j ] = Z [ j ] [ i ] ;

}

While this subroutine appears to pass its arguments by value, they are actually passed by
name, because all vectors and arrays are passed by name. Figure 10.4 shows the
assembly-language program that performs the same operation, but in an optimized way.
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* ZTRANS computes the transpose ZT of a 5 by 5 matrix Z of 1-byte elements,
* CALLING SEQUENCE:
* PSHX Address of the transpose matrix ZT
* PSH Y Address of the matrix Z
* BSR ZTRANS
* LEAS 4,SP Balance the stack
jf:

* PARAMETERS
*

RA: EQU 0 ; Return address
ADDRZ: EQU RA+2 ; Address of Z
ADDRZT: EQU ADDRZ+2 ; Address of ZT
*
ZTRANS: LDX ADDRZ ,SP ; First row address into X

LDY ADDRZT, SP ; First column address into Y
LDAA #5 ; There are 5 columns in the matrix Z

*
STR1: LDAB #5 ; There are 5 elements in a column of the matrix Z
*
STR2 : MOVB 5, X+, 1, Y+ ; Transfer data and move pointers to next array element

DBNE B, STR2 ; Count down number of elements in a column
*

LEAK - 2 4, X ; Move to next element of row 0 (back up 25-1)
DBNE A, STR1 ; Count down number of columns
RTS

Figure 10.4. Subroutine ZTRANS

A table is a vector of identically structured lists. For example, one might have a
table of lists where each list is exactly like the list example just discussed, one for each
person in the table. In C, a table of 100 telephone number and Social Security number
lists can be represented by struct{ char name[30 ]; long ss; char address [ 45 ];
long phone; } t[ 100];. A search for a specific Social Security number theSS,
putting the matching telephone number in theTel, is accomplished in the program main
below:

main() { long theSS, theTel; int i;
for(i = 0 ; i <1 00; i++)

if(theSS — t[i].ss) break;
theTel = t[i].phone;

}

We assume it finds a matching telephone number, which is left in accumulator D (low
16 bits) and index register X (high 16 bits) when we exit. In assembly language, index
addressing can be used to access any particular list in the table and offsets can be used, as
done earlier, to access any particular element of the list. For instance, the directive



298 Chapter 10 Elementary Data Structures

HUM: EQU 100 ; Number of lists in the table (9)
TABLE: DS NUM*NBYTES ; Allocation of table

creates a buffer for 100 of the lists defined by (6). The address of the first byte of the
buffer is TABLE. The following program segment searches such a table for a certain
telephone number, which is stored (in binary) in accumulator D (low 16-bits) and index
register X (high 16 bits). We will assume it finds a matching telephone number, which
Is left in accumulator D (low 16-bits) and index register X (high 16 bits) when we exit.

LOOP: CPX TN, Y ; check high 16-bits of telephone number of row Y
BNE NOMTC
CPD TN+2, Y ; check low 16-bits of telephone number of row Y
BEQ MTCH

NOMTC: LEAY NBYTES,Y ; skip to next list
CPY #TABLE+NUM*NBYTES ; at end of table?
BNE LOOP ; if not, loop

MTCH: LDD SSN, Y ; get high 16-bit Social Security number of row Y
LDX SSN+2 , Y ; get low 16-bit Social Security number of row Y

This discussion has examined indexable data structures. Each element of an
indexable data structure can be accessed, and, furthermore, some form of indexing can be
used for the access. The simple, but very useful, vector was easy to access because the
address of the ith element, assuming a zero origin, is obtained by adding imprecision) to
the address of the vector. A list is like a vector but has fewer restrictions, in that
elements can be of any precision. Arrays and tables are just mixtures of these two
structures. These indexable structures are used often in a microcomputer like the 6812,
because they are so easy to handle with its index addressing options and multiply
instructions,

10.3 Sequential Data Structures

We now consider sequential data structures. The ubiquitous string, which you met earlier,
and various deques, including the stack, are sequential structures. The key characteristic of
sequential structures is that there is a current location, or top or bottom, to the structure,
and access to the data in this structure is limited to this location.

Strings can be variable or constant. A buffer is used to hold a variable string,
which, in particular, can have a variable length. In a program with string manipulations,
the length of a particular string can change in the program (up to the size of its buffer) in
contrast to a vector of, say, 2-byte numbers that has a constant length throughout most
programs. In C, a global constant string is declared char s [ 11 ] = "High there";.
Most strings in C are terminated by a null character ($0); the number of bytes allocated
for a string generally must include this extra null character at the end. In assembly
language, constant strings can be created in memory with assembler directives like

s: DC.B "This is a string" (9)
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In assembly language, a string's length can be ascertained in one of three ways: by also
giving its length, either by knowing it implicitly or giving it in a variable, by
terminating it with a special character such as null, carriage return, or $4 (end-of-text), or
by setting the sign bit in the last, and only the last, character in the string. In C, a
pointer is generally used to access the current location of a string. For instance, suppose
we declare global char *ptr; and later we initialize ptr = s;. Then the pointer ptr
can be used to access the current location. Alternatively, a numerical index can be used,
declared as in char i;, and the index i can be intialized to zero, as in i = 0; , so that
s [ i ] is the first character in the string s. In assembly language, this string (9) can
appear in the program area as a constant to be displayed on a terminal or to be printed on
a printer. It is often in the program area because it may be stored in ROM together with
the program. To preserve position independence, the address of the string is generally put
in an index register using program counter relative addressing as in

LEAK S,PCR

With this instruction, the address of the first character of s will be put into X regardless
of where the ROM containing the program is placed in memory. A numerical index can
also be used to read elements of a string in assembly language, as we did in C (see the
problems at the end of the chapter).

Strings can be accessed at a current location, which can be moved as the string is
accessed. In C, we can access this element and move to the next location using *ptr++
or *ptr~~. Alternatively, if we use an index to access the elements, we can increment
or decrement an index, as in the expression s [ i++ ] or s [ i— ]; In assembly language,
if the current location is a memory word whose address is in the index register X, the
string can be accessed by instructions like LDAA 0, X , LDAA 1, X+, or LDAA 1, X.

In C, operations on a string can repeat until the null character is read at the end of
the string, as in the statement while (*ptr) f ( *ptr++);. If we are using indexes to
access characters, this operation can be written as while (s [ i ] ) f (s [ i++ 3 ) *,. In
assembly language, if a null-terminated string is used, the load instruction such as LDAA
1 f X+ will be followed by a branch instruction such as BEQ END, to terminate when
the null character is read. If another special character such as a carriage return is used,
then a CMPA instruction can be used to detect the end of the string. If a sign bit indicates
the end of the string, then the LDAA 1, X+ will be followed by a branch instruction
such as BMI END, to terminate when the last character is read. The program generally
has to strip off the sign bit before using the last character.

Strings of characters are frequently input and output from a terminal using a buffer.
To discuss this, we first need to make some remarks about how single characters are
input and output between a terminal and the MPU. In C, there is generally a procedure
such as is given by the prototype char i n c h ( ) ; (for "input character") to input
characters from the keyboard. It waits for a key to be depressed at the terminal; and,
when the key is depressed, the procedure returns to the calling routine with the ASCII
code of the key depressed. There is also generally a procedure such as is given by the
prototype void outch(char c); (for "output character") to output characters to the
screen; it generally displays the ASCII contents of the seven low-order bits of c, but
control characters, such as carriage return ($OD) and line feed ($OA), will move the screen
cursor in the usual way. (The remaining ASCII characters are used for different purposes
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and are displayed differently on different terminals. These are usually input from the
terminal keyboard by holding down a "control" key and pressing one of the other keys.
These characters will not be needed in this discussion.) Implicit in the subroutine DUTCH
is a segment of code that will wait until the previous character is displayed on the
terminal before c is displayed. In assembly language, we might use two subroutines
equivalent to these procedures; to input a character, execute subroutine INCH , which
leaves the character in accumulator A, and to output a character, put it in accumulator A,
and execute subroutine OUTCH. The exact code used in INCH and OUTCH are not important
at this point.

In C, if ptr points to the beginning of a null-terminated string s, a statement
while (*ptr) outch( *ptr++); outputs the string s, if ptr points to the beginning
of a buffer b, a statement do *ptr++ = c = inch(); while (c != ' \ r ' ) inputs
characters to the buffer b, until a carriage return is received (the carriage return is
written at the end of the string that is in b). In assembly language, we can input or
output strings of ASCII characters almost as easily. For example, we could display the
constant string (9) on the terminal beginning at the current cursor position with the
segment

LDAB #16 ; Number of characters in STRING (10)
LDX #STRING

LOOP: LDAA 1,X+ ; Next character of STRING; into A
JSR OUTCH
DBNE B,LOOP

Program segment (10) assumes that the programmer will count the number of characters
in the string. This can be avoided by adding

LENGTH: EQU *-STRING

after the definition of STRING and replacing LDAB #16 with LDAB #LENGTH in the
sequence (10). We can also input a string of characters from the terminal, terminated by
an ASCII carriage return ($OD), with the program segment below. The string is stored in
a buffer labeled BUFFER established with the directive

BUFFER: DS 100

The string is entered with the program segment (11)

LDX #BUFFER ; X -> buffer to hold the string (11)
AGAIN: JSR INCH

STAA 1, X+ ; Place character in buffer
CMPA #$ OD ; is the character input a carriage return?
BNE AGAIN

OUT: RTS

Another type of sequential data structure is the deque, which we now discuss. A
special case of the deque is the stack, which we studied extensively in Chapters 3 and 8.
Our stacks have also been indexable, because the S register can be used as an index
register as well as a stack pointer. Nevertheless, when these stack pointers are used only
with push and pull instructions, they become true sequential structures.

A deque is a generalization of a stack. It is a data structure that contains elements
of the same precision. There is a top element and a bottom element, and only the top and
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Figure 10.5. Deque Data Structure

bottom elements can be accessed. Pushing an element onto the top (or bottom) makes
the old top (or bottom) the next-to-top (or next-to-bottom) element and the element
pushed becomes the new top (or bottom) element. Popping or pulling an element reads
the top (or bottom) element, removes it from the deque, and makes the former next-to-
top (or next-to-bottom) element the new top (or bottom) element (see Figure 10.5). You
start at some point in memory and allow bytes to be pushed or pulled from the bottom
as well as the top.

In C, two pointers can be used, as a pointer was used in the string data structure, or
else indexes can be used to read or write on the top or bottom of a deque, and a counter is
used to detect overflow or underflow. We use indexes in this example and invite the
reader to use pointers in an exercise at the end of the chapter.

The deque buffer is implemented as a 50-element global vector deque, and the
indexes as global unsigned chars top and hot initialized to the first element of the
deque, as in the C declaration

unsigned char deque [50], size,error, top, bot;

Figure 10.6. Buffer for a Deque Wrapped on a Drum
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As words are pulled from top or bottom, more space is made available to push
words on either the top or bottom. To take advantage of this, we think of the buffer as a
ring or loop of words, so that the next word below the bottom of the buffer is the word
on the top of the buffer (see Figure 10.6). That way, as words are pulled from the top,
the memory locations can become available to store words pushed on the bottom as well
as words pushed on the top, and vice versa. Then to push or pop data into or from the
top or bottom of it, we can execute procedures:

void pstop(int item_tq_push) {
{if((size-H-)>=50)error=l;if(top==50)top=0; deque [top++] = item_to_push;}

int pltop()
<if((—size) < 0)error=l;if(top == 0)top=50;return(deque[—top]);}

void psbot(int item_tojpush) {
if((size++)>=50)error=l; if(bot==0) bot=50;deque[—hot]=item_tq_push?}

int plbot()
{if((--size)<0) error=l; if(bot==50) bot=0; return( deque[bot++]);}

In assembly language, a deque can use registers to point to its top and bottom
elements. In our discussion, we will first assume that all of memory is available to
store the deque elements, and then we will consider the more practical case where the
deque is confined to a buffer rather than all of memory. We use register X to point to the
top and Y to point to the bottom of the deque. If location L is where one wants the first
possible push on the top to go, one initializes the top pointer with

LDX #L

A push from accumulator B onto the top of the deque then corresponds to

STAB 1, X+

while a pull from the top into B corresponds to

LDAB 1,-X

Just as we wrapped around a drum as shown in Figure 10.6 in C, we need to do the same
in assembly language. When a byte is pushed into the bottom of the deque, it is actually
put into the bottom byte of the buffer. The pointer is initialized to the top of the buffer,
but upon the first push to the bottom of the deque, the pointer is moved to the bottom of
the buffer. As an example, if we use a buffer with 50 bytes to hold the deque, we would
have the directive
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DEQUE: DS 50
PSHTP: CMP A #50

LBEQ ERROR ; Go to error routine
INC A
CPX #DEQUE+50 ; Pointer on top?
BNE LI
LDX #DEQUE ; Move to bottom

LI: STAB 1,X+
RTS

PLTP: DECA
LBMI ERROR ; Go to error routine
CPX #DEQUE ; Pointer at bottom?
BNE L2
LDX #DEQUE+50 ; Move to top

L2: LDAB 1, -X
RTS

Figure 10.7. Subroutines for Pushing and Pulling B from the Top of the Deque

at the start of our program. If accumulator A contains the number of elements in the
deque and if X and Y are the top and bottom pointers, we would initialize the deque with

CLRA ; Initialize deque count to 0
LDX #DEQUE ; First push onto top into DEQUE
LDY #DEQUE ; First push onto bottom into DEQUE+49

Pushing and pulling bytes between B and the top of the deque could be done with
the subroutines PSHTP and PLTP, shown in Figure 10.7. The index register X points to
the top of the deque, while the index register Y points to the deque's bottom.

Similar subroutines can be written for pushing and pulling bytes between B and the
bottom of the deque. In this example, if the first byte is pushed onto the top of the
deque, it will go into location DEQUE, whereas, if pushed onto the bottom, it will go
into location DEQUE+4 9. Accumulator A keeps count of the number of bytes in the
deque and location ERROR is the beginning of the program segment that handles
underflow and overflow in the deque.

Usually, you do not tie up two index registers and an accumulator to implement a
deque as we have done above. The pointers to the top and bottom of the deque and the
count of the number of elements in the deque can be kept in memory together with the
buffer for the deque elements. The subroutines for this implementation are easy
variations of those shown in Figure 10.7. (See the problems at the end of the chapter.)

A queue is a deque where elements can only be pushed on one end and pulled on the
other. We can implement a queue exactly like a deque but now only allowing, say,
pushing onto the top and pulling from the bottom. The queue is a far more common
sequential structure -than the deque because the queue models requests waiting to be
serviced on a first-in first-out basis. Another very common variation of the deque, which
is close to the queue structure, is the shift register or first-in first-out buffer. The shift
register is a full deque that only takes pushes onto the top, and each push on the top is
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preceded by a pull from the bottom. If the buffer for the shift register holds N bytes,
then, after N or more pushes, the bottom byte of the shift register is the first in among
the current bytes in the shift register, the next-to-bottom is the second in among the
current bytes, and so on. If all pushes into the shift register are from accumulator B, only
one macro and one pointer are needed to implement this data structure. (See the problems
at the end of the chapter.) Although these two sequential structures are more common
than the deque, we have focused on the deque in our discussion to illustrate the differences
between accessing these sequential structures' top and bottom with the 6812.

In this section we have studied the sequential structures that are commonly used in
microcomputers; the string and the variations of the powerful deque, the stack, queue, and
shift register. As you have seen, they are easy to implement on the 6812.

10.4 Linked List Structures

The last structure that we discuss is the powerful linked list structure. Because its careful
definition is rather tedious and it is not as widely used in microcomputer systems as the
structures discussed in the previous sections, we examine this structure in the context of
a concrete example, a data sorting problem. Suppose that we have a string of ASCII
letters, say,

t c x u a f b (12)

where we want to print the letters of the string in alphabetical order.
We will store this string of letters in a data structure called a tree, using a linked

list data structure to implement the tree. The reason that we do not want to store the
letters in consecutive bytes of memory as, say, a vector, but in a linked list
implementation of a tree, is that, stored as a vector, the time to find a particular letter
grows linearly with the number of letters in the string. If the letters were files of data,
searching for a particular file could take days if the number of files is large. Organized as
a linked list implementation of a tree, the search time grows logarithmically with the
number of files so that searching for that same file could be done in seconds. Large
collections of data are typically stored in some manner to improve the time to search
them, and the linked list implementation of a tree is a common way to do this.

Figure 10.8. Picture of the Tree Representing the String (12)
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We first describe the tree using the algorithm to generate its graph. The first letter
in the string is put at the root of the tree (see Figure 10.8), while the second letter is
pu.t at the left or right successor node of the root, depending on whether it is
alphabetically before or after the letter at the root. Successive letters begin at the root
node, going left or right to successor nodes in the same way as the second letter until an
empty node is found. The new letter is placed at this empty node. We recommend that
you work through the characters in the string (12) above, and build up the tree shown in
Figure 10.8 using the foregoing rule.

As you have just seen, it is fairly easy to generate the graph of the tree. We now
describe how to store the tree in memory using a linked list structure. After each letter
in the string, append two integers where the first is the string index of the letter for the
left successor and the second is the string index of the letter for the right successor,
(String indexes, as usual, begin at 0, so that 0 is the string index for t, 1 is the string
index for c, and so on.) The symbol NS, which is $FF, indicates no successor of that
type. (See Figure 10.9 for the linked list representation of the tree. The symbolic
contents of each byte is shown rather than the usual hexadecimal contents.) This linked
list structure contains identically structured lists, such as the first three bytes, t,!,2. The
list index of each list is identical to the string index of the letter in the list so that the
list t,l ,2 is the Oth list in the linked list. Each list has three elements, a letter and two
links. Although the elements of each list are the same precision in this example (each is
one byte), the precisions are generally different, from one bit to hundreds of bits per
element. The links in this example are equal to the indexes of the lists that contain the
left and right successors. For the top, which is the Oth element and represents the root of
the tree, the left successor of the root is the letter c, and the element that contains the
letter c has index 1, so that the first link out of the Oth element is 1. The root's right
successor is the letter x, and the element that contains x has index 2, so the second link
of the Oth element is 2. You should verify that the other elements, which are identical in
form to the Oth element, have the same relationship to the tree that the Oth element has.

Figure 10.9. Linked List Representation of the Tree Shown in Figure 10.8
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Once the linked list is formed, the tree can be scanned to print the letters in order by
an algorithm pictured in Figure 10.10. The idea behind the algorithm is this. Starting at
the root, wrap a cord around the outside of the tree and print each node's letter (except 0),
as you pass under its crotch. Its crotch is the part between the branches to its successors
or, if it does not have successors, the crotch is the part between where the successors
would be connected, (Try this out on Figure 10.10.) Although a human being can
visualize this easily, a computer has a hard time working with pictures. This algorithm
can be implemented in a computer using the elegantly simple rule:

1. Process the tree at the left successor node. (13)
2. Print the letter.
3. Process the tree at the right successor node.

in processing the root node, you process the tree containing nodes c, a, b, and f first,
then print the letter t, then process the tree containing x and u last. Before you print the
letter t, you have to process the tree containing the nodes c, a, b, and f first, and that
processing will result in printing some letters first. In processing the tree containing c,
a, b, and f, you process the tree containing a and b, then print the letter c, then process
the tree containing f. Again, before you print the letter c, you have to process the tree
containing a and b first, and that will result in some printing. In processing the tree
containing a and b, you process the "null" tree for the left successor node of letter a (you
do nothing), then you print the letter a, then you process the tree containing b. In
processing the tree containing b, you process the "null" tree, you print the letter b, then
you process the "null" tree. After you print the letter c, you will process the tree
containing f and then process the tree containing x and u after printing the letter t. Try
this rale out on the tree, to see that it prints out the letters in alphabetical order.

The flowchart in Figure 10.11 shows the basic idea of the rule (13). The calling
sequence sets LINK to 0 to process list 0 first. If LINK is $FF, nothing is done;
otherwise, we process the left successor, print the letter, and process the right successor.
Processing the left successor requires the subroutine to call itself, and processing the
right successor requires the subroutine to call itself again so that this subroutine is
recursive, as discussed in Chapter 5. (To read the flowchart of Figure 10.11, RETURN
means to return to the place in the flowchart after the last execution of SCAN.)

Figure 10.10. Path for Scanning the Tree
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Figure 10.11. Flowchart for Scanning Tree

In C, the linkage can be by means of indexes into a table, which is a vector of
structs. The following procedure is intially called as in scan ( 0 ) ;

typedef struct node{char c; unsigned char l,r; } node; node table[10];
void scan(unsigned char i)

{if(i!=0xff) {scan(table[i].l);outch(table[i].c);scan(table[i].r); }}

A similar approach is used in assembly language, in the subroutine shown in Figure
10.12. It simply implements the flowchart, with some modifications to improve static
efficiency. First, index register X points to the Oth list, so that LINK can be input as a
parameter in accumulator B. This link value is multiplied by three to get the address of
the character of the list. That address, with one added, gets to get the link to the left
successor, and that address, with two added, gets the link to the right successor. The
subroutine computes the value 3 * LINK and saves this value on the stack. In processing
the left successor, the saved value is recalled, and one is added. The number at this
location, relative to X, is put in B, and the subroutine is called. To print the letter, the
saved value is recalled, and the character at that location is passed to the subroutine
DUTCH, which causes the character to be printed. The saved value is pulled from the
stack (because this is the last time it is needed), and two is added. The number at this
location relative to X is passed in B as the subroutine is called again. A minor twist is
used in the last call to the subroutine. Rather than doing it in the obvious way, with a
BSR SCAN followed by an RTS, we simply do a BRA SCAN. The BRA will call the
subroutine, but the return from that subroutine will return to the caller of this
subroutine. This is a technique that you can always use to improve dynamic efficiency.
You are invited, of course, to try out this little program.
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* SUBROUTINE SCAN scans the linked list TREE from the left, putting out the
* characters in alphabetical order. The calling sequence below scans TREE
*

* LDX #TREE
* CLRB ; Put LINK to 0
* BSR SCAN
*

SCAN: CMPB #$FF
BEQ L
LDAA #3
MUL
PSHB ; Save 3 * B on stack
INCB ; 3 * (B) + 1 into B
LDAB B, X ; Left successor link into B
BSR SCAN
LDAA 0, SP ; Recover 3 * B
LDAA A, X
JSR DUTCH ; Put out next character
PULB ; Recover 3 * B from stack, remove from stack
ADDB #2
LDAB B, X ; Link to right successor into B
BRA SCAN

L: RTS

Figure 10.12. Subroutine SCAN Using Indexes

The main idea of linked lists is that the list generally has an element that is the
number of another list, or it has several elements that are numbers of other lists. The
number, or link, allows the program to go from one list to a related list, such as the list
representing a node to the list representing a successor of that node, by loading a register
with the link element. The register is used to access the list. This is contrasted to a
sequential search of consecutive rows of a table, which is a vector of lists. In a table, one

Location Letter Left Right
0x800

0x803

0x806

0x809

0x8 Oc

OxSOf

0x812

t

c

X

u

a

f

b

0x803

OxSOc

0x809

0

0

0

0

0x806

OxSOf

0

0

0x812

0

0

Figure 10.13. Linked List Data Structure for SCAN
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* SUBROUTINE SCAN
*

* SCAN scans the linked list TREE from the left, putting out the characters in
* alphabetical order. The address of TREE is passed in X with the calling sequence
*

* LDX #TREE
* BSR SCAN
*

SCAN: CPX #0 ; If pointer is a "null" (0)
BEQ L ; Exit without doing anything
PSHX ; Save link
LDX 1, X ; Left successor link.into X
BSR SCAN ; Call this subroutine again
LDAA [ 0, SP ] ; Get character
JSR OUTCH ; Put out next character
PULX ; Pull pointer from stack
LDX 3 f X ; Move pointer to right successor into B
BRA SCAN ; Call this subroutine again

L: RTS

Figure 10.14. Subroutine SCAN Using Address Pointers

usually accesses one list-(row) after the list (row) above it was accessed. In a linked list,
one can use any link from one list to go to another list. By providing appropriate links
in the list, the programmer can easily implement an algorithm that requires going from
list to list in a particular order. Linked lists generally store addresses rather than index
numbers, to simplify the procedure and to avoid an artificial restriction on length. The
linked list above can be stored as in Figure 10.13, and the procedure in Figure 10.14 can
be used to read the list.

Compare the implementation of the tree structure above using a linked list with one
using a simple table where the nodes are put down successively by levels. Not only are
most offsets calculated to go from node to successor node, but gaps will be left in the
table where the tree has no successors, and testing for the end of the search will be
messy. Even constructing this table from the string will be difficult. However the linked
list program can be written in a simple and logical form, using the power of the data
structure to take care of many variations. In the example above, nodes that have no left
successor or nodes that have no right successor are handled the same way as nodes that
have two successors. While links can simplify the program, as we have just discussed,
additional links can speed up a program by permitting direct access to lists that are linked
via several link list-link list . . . -link list steps. Linked lists can simplify the program
as well as speed it up, depending on how the designer uses them.

This final section briefly introduced the linked list structures. These are very useful
in larger computers, although rarely seen in microcomputers, in our experience.
Nevertheless, they are well known to be useful in artificial intelligence applications so
that you may expect to see them used in the near future in robots and pattern recognition
devices. You should read further material on these powerful structures.
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10.5 Summary

This chapter has presented the data structures that are most commonly used in
microcomputers. Although many programmers have written millions of lines of code
without knowing about them, they help you to create order in a maze of possible ways
to store data, they allow you to copy, or almost copy, the code needed to access the
structures, and they allow you to save memory by using a better structure.

To show how your knowledge of data structures can save memory in a small
computer, consider the storage and access of a mathematical array of ten rows by ten
columns of 1-byte numbers, where 96 of the numbers are zero (this is called a sparse
array). A natural way to store this data is in an array, but that array would take 100
memory locations, and most would contain zeros. It is more efficient to store the four
numbers of the sparse array in a table that stores the nonzero elements of the array, where
the first column of the table is the row number, the second is the column number, and
the third is the data in that row and column. This could be done in only twelve bytes.
Knowledge of data structures can enable you to make a program work in a limited
amount of memory, which may not be possible otherwise.

This chapter only scratches the surface of this fertile area of study. If you study
computer science, you will probably take a whole course on data structures, as well as
meeting this material in other courses on database systems and compiler design. It is
your best single course to take from the computer science area of study. Many textbooks
are available for these courses, and you can use practically any of them to expand your
comprehension of data structures. We suggest one of the earliest books, Fundamental
Algorithms. Vol. 1, The Art of Computer Programming, 2nd ed. (D. Knuth, Addison-
Wesley Publishing Co., Inc., Reading, Mass., 1973), for your reading.

From reading this chapter, you should be able to handle any form of the simple
data structures that are likely to be met in microcomputer programming, and you should
be able to handle the various types of sequential structures. You should also be able to
recognize the linked list structures. But most important, you should be prepared to put
some order in the way your programs handle data.

Do You Know These Terms?

See the end of chapter 1 for instructions.

data structure base deque buffer
vector histogram push tree
element list pop root
component array pull successor
index row major queue linked list
precision column major shift register structure
length table first-in crotch
origin string first-out link
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PROBLEMS

1. What are the limitations on the precision and length of the vector Z that are
accessed by program segments (2) and (3)? How would you change these segments for a
vector Z with length 500?

2 . Write a shortest subroutine READY that returns in index register Y (high 16 bits)
and accumulators A and B (low 8 bits), the ith element of a zero-origin vector. For
instance, V may be allocated as in V DS M*N, where V has precision M bytes (M & 4)
and cardinality N elements. To read V, the parameters can be passed on the stack with the
calling sequence shown below. If M is 1, pass the result in ACCB; if 2, pass it in
ACCI>, if 3, pass it in Y (msb) and ACCB (Isb); and if 4, pass it in Y (msb) and ACCD
(Isb).

MOW #V,2,-SP
MOVE #Mrl,-SP
MOVB #i,l,-SP
JSR READV
LEAS 4,SP

3 . Write a shortest subroutine WRITEV that writes the M bytes (M s 4) into the ith
element of a one-origin vector. For instance, the data may be in index register Y (high 16
bits) and accumulators A and B (low 8 bits). V may be allocated as in V DS M*Nr

where V has precision M bytes (M s 4) and cardinality N elements. To write the data into
V, the parameters can be passed on the stack with the calling sequence as shown below.
Pass returned results as in Problem 2.

MOVW #V, 2 , - SP ; Vector base address
MOVB #M, I f -SP ; Vector precision
MOVB #i, 1, -SP ; Desired element number
JSR WRITEV ;
LEAS 4 , SP ; Balance stack

4 . Consider the zero-origin vector of 32 bytes in locations 0 through 31. Assume that
the bits in this vector are labeled 0 to 255 beginning with the first byte in the vector and
going right to left within each particular byte. Write a subroutine SETBIT that will set
the ith bit in this vector assuming that the value of i is passed on the stack with the
calling sequence

MOVB #5 8 ,1 , - SP ; Value of i into parameter
BSR SETBIT
LEAS 1, SP ; Balance stack

5 . Write a subroutine STRBIT that will store the binary-valued variable BIT
in me ith bit of the zero-origin vector in Problem 4. The value of BIT and INDEX can
be passed on the stack with the calling sequence
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MOVE BIT, 1, -SP ; Bit to be written
MOVB INDEX, 1, -SP ; Index to be written
BSR STRBIT
LEAS 2, SP ; Balance stack

6 . Assume S[100] stores a 100-character (maximum) string that is accessed by an 8-
bit index I that is initialized to zero. Write a shortest subroutine READ to return in
accumulator A the elements one at a time, beginning with element zero.

7 , Write a subroutine DISPLY, using DUTCH, whose input is in A, that will display
a zero-origin vector with the structure of Problems 4 and 5 8 rows by 32 columns of O's
and 1's. The bits of the vector must be displayed left to right, 32 consecutive bits per
row. You may assume that the address of the vector is passed after the call with the
sequence

BSR DISPLY
DC.W VECTOR

8 . Give two subroutines PSHBT and PLBT, to go with those of Figure 10.7, that
will push and pull the contents of accumulator B on the bottom of the deque.

9 , One would not usually tie up two index registers and an accumulator to implement
a deque. Rewrite the two subroutines in Figure 10.7 and the initialization sequence to
push and pull bytes from B and the top of the deque when the deque is stored in memory
as

COUNT: DS. B 1 ; Deque count
TPOINT: DS.W 1 ; Top pointer
BPOINT: DS.W 1 ; Bottom pointer
DEQUE: DS.B 50 ; Buffer for the deque

Here, COUNT contains the number of elements in the deque, and TPOINT and BPOINT
contain, respectively, the addresses of the top and bottom of the deque. The subroutines
should not change any registers except B, which is changed only by the pull subroutine,

10. Assuming that the location of the deque and the error sequence are fixed in memory,
how would you change the subroutines of Figure 10.7 so that the machine code generated
is independent of the position of the subroutines? How would you change these
subroutines if the size of the deque was increased to 400 bytes?

11. Do you see how you can avoid keeping a counter for the deque? For example, can
you check for an empty or full deque without a counter? "Full" means the last element
is now used up.

12. Assume that a 10-byte shift register is established in your program with

SHIFTR: DS 10 ; Buffer memory
POINT: DS 2 ; Pointer to SHIFTR

Write a subroutine SHIFT to put a byte into the shift register from B and pull a byte out
into A.
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13. Write the shortest subroutines necessary to maintain five 8-element one-byte
element queues, where each queue is in a buffer. Your implementation should include a
branch to location ERROR if an overflow of the buffer to hold the strings occurs. The
first queue is stored at label Ql; the second, at Q2, etc. Upon entering the subroutines,
the address of the queue being used is in X and the data is passed in ACCA.

14. Write a subroutine BUILD, which is passed, by name, a string of ASCII lower-
case letters terminated by a carriage return, to form the linked list shown in Figure 10.9.

15. What is the limitation on the number of characters in the tree for the subroutine of
Figure it). 10? How would you change the subroutine to allow for 350 characters?

16. Write the subroutine REVSCAN that corresponds to SCAN but that now scans the
tree from the right, printing the characters out in reverse alphabetical order.

17. Write a subroutine to add M 4-byte numbers that corresponds to the following
header:

* SUBROUTINE ADD4
*

* ADD4 adds the M 4-byte numbers pointed to by Z Placing
* the result in SUM. All parameters are passed on the
* stack with the sequence
*

* LDAB M ; Value of M into B
* LEAX Z,PCR ; Address of Z into X
* LEAY SUM, PCR ; Address of SUM into Y
* PSHY
* PSHX
* PSHB
* BSR ADD4
* LEAS 5,SP ; Balance stack

1 8. Write a position-independent reentrant subroutine to go with the header:

*

* SUBROUTINE INSERT inserts the string STG into string TEXT at the first
* occurrence of the ASCII letter SYMBOL. No insertion is made if SYMBOL does not
* occur in TEXT. Parameters are passed on the stack with the sequence
*

* LDAA SYMBOL ; ASCII symbol into A
* LDAB LSTG ; Length of STG into B
* PSHD ; Push both parameters
* MOVW #STG,2,-SP ; Push Address of STG
* LDAB LTEXT ; Length of TEXT into B
* PSHB ; Push parameter
* MOVW #TEXT,2,-SP ; Push Address of TEXT
* BSR INSERT ; Subroutine balances the stack
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1 9. Write a shortest subroutine GETS that puts three characters into B (first character)
and Y (second and third character) pointed to by X, and moving X past them and a next
space or carriage return. Write a shortest subroutine CHKEND that reads three characters
using subroutine GETS, and checks for the characters "END". Assume the calling
subroutine has not pushed anything on stack, so if "END" is read, return by pulling two
bytes from the stack and executing rts, so as to terminate the calling subroutine,
otherwise return by just executing rts as usual to return to the calling subroutine.
These subroutines are to be used in problem 21.

2 0. Write a shortest subroutine FIND which searches a binary tree, pointed to by X for
three letters, B:Y as returned by GETS of problem 19. The binary tree nodes contain a
3-byte character string, a one-byte value, and two two-byte addresses, the first of which
points to a left son, and the other points to a right son. If the three letters are found,
return with X pointing to the beginning of the node, else if the letters are lower in the
dictionary than the last node searached in the tree, X points to the left son field of the last
node, but if higher, X points to the right son field of the last node. This subroutine is to
be used in problem 21.

21. Write a 6812 assembler program using linked lists, able to assemble programs
having the following specifications.

(a) The operations will be encoded in the left two bits of a one-byte opcode: LDA is
00, ADD (for ADDA) is 01, STA is 10, and SWI is 11. There will also be
directives DCB and END.

(b) At most six lables can be used, each of which is exactly three uppercase letters
long. Operands will be encoded in the right six bits of a one-byte opcode.

(c) Only direct addressing can be used with instructions, which will be coded in the
right 6 bits of the instruction, and only hexadecimal numbers, beginning with $,
can be used with the DCB directive.

(d) The input line will have a fixed format: label (3 characters), space, instruction
mnemonic (three characters), space, address (3 characters or 2-digit hexadecimal
number prefixed with a $) ending in a carriage return. There are no comments, and,
if a label is missing, it is replaced by 3 spaces.

(e) The program will have from 1 to 10 lines, ending in an END directive.

(f) The source code has no errors (i.e., your assembler does not have to check
errors). The origin is always zero.

Your assembler will have the source code prestored as a character array TEXT, 10
rows by 12 columns, and will generate an object code string OBJ up to 10 bytes
long. No listing will be generated. The assembler should be able to at least
assemble the following two programs, shown on the left and shown on the right.
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LDA ABB ALP DCB $01
ADD BAB GAM DCB $00
STA BBA DEL DCB $04
SWI BET DCB $03

ABB DCB $01 LDA ALP
BAB DCB $02 ADD BET
BBA DCB $00 ADD DEL

END STA GAM
SWI
END

A two-pass assembler is required, and labels and opcodes must be stored as linked
lists. Use subroutines GETS and CHKEND (Problem 19) to input labels or opcode
mnemonics, and FIND (Problem 20) to search both the symbol table and the
mnemonics, in your assembler. Show the storage structure for your mnemonic's
binary tree (it is preloaded) following the graph shown in Figure 10.15. On the
first pass, just get the lengths of each instruction or dkectives and save the labels
and their addresses in a linked list. End pass one when END is encountered. On
pass two, put the opcodes and addresses in the sring OBJ.

Figure 10.15. Graph of Linked List for Problem 10
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The Adapts 12 is connected to an M68HC12B32EVB board which is configured in POD
mode, which in turn connects to a PC. We used this configuration to download and debug
using HiWare, using the ASCIIMON target interface.
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Input/Output

An input routine is a program segment that inputs words from the outside world into
the computer, and an output routine is a program segment that does the reverse. It
outputs words from the computer to the outside world. Clearly, a computer that does not
have input and output routines, and the hardware to carry out these routines, would be
useless regardless of its power to invert matrices or manipulate great quantities of data.
Until now, we have implied that you should avoid knowing the details of these routines.
Even though we have left the discussion of input and output until near the end of this
book, it is really simple and should pose no problem to the reader.

In this chapter, we first describe how the basic input and output operations are
implemented in hardware and executed in software, using simple ports available in both
the 6812 'A4 and 'B32. We then discuss the use of buffers in input and output. To
describe synchronization, we describe a greatly simplified timer interrupt mechanism,
which is also available in both the 6812 'A4 and 'B32. We then discuss gadfly and
interrupt mechanisms. Finally, we introduce D-to-A and A-to-D converters.

Upon concluding this chapter, you should understand how basic input and output
operations are performed and be able to read and write input and output routines that use
simple synchronization mechanisms.

11.1 Input and Output Devices

In this section, we introduce a simplified hardware model used to understand input-output
routines. We also discuss simple input and output ports to provide enough background
for the later sections of this chapter.

Figure 11.1. Simplified Diagram of a Microcomputer (Identical to Figure 1.1)

317
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Recall from Chapter 1 that a computer is divided into its major components; the
controller, data operator (arithmetic/logic unit), memory, and input-output unit (see
Figure 11.1). Input and output instructions use the same address and data bus as load and
store instructions with memory, but the action of input and output instructions on
input-output hardware is a bit different than the action of load and store instructions on
memory. In many microcontrollers, different instructions are used for memory reads or
writes than for input or output operations, even though essentially the same pins are
used for each instruction. However (see Figure 11.2), in microcontrollers such as the
Motorola 6812, the load instruction, used to read data from memory such as words 1,2,
or 3, can also be used to input data such as from word 0, and the store instruction, used
to store data in memory such as words 1,2, or 3, can also be used to output data such as
to word 0,

Figure 11.2. A Memory and Its Connection to the MPU (Compare to Figure 1.3)

Certain 8-bit or 16-bit memory locations are chosen to be output ports
corresponding to a hardware component called an output device, which has output lines
connected to the outside world. Certain 8-bit or 16-bit memory locations are chosen as
input ports, corresponding to a hardware component called an input device, which has
input lines coming from the outside world.

From the point of view of the I/O device, each address, data, or control line has a
signal that is a (logical) one if the voltage is above a certain threshold level and a
(logical) zero if the voltage is below that level. The voltages corresponding to a (logical)
one and a (logical) zero are also termed high signal and low signal, respectively. The
clock signal is alternately low and high repetitively in a square wave. The clock signal
between high-to-low transitions is called a clock cycle. In each clock cycle, the
microcontroller can read a word from an input port, such as word 3, by putting the
address of the word to be read on the address bus and putting the read/write line to high
throughout the clock cycle. At the clock cycle's end, the device will put data on input
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lines on the data bus, and the processor will copy the word on the data bus into some
internal memory register. The microcontroller can also write a word into an output port,
such as word 3, at a particular address in one clock cycle by putting the address on the
address bus, putting the word to be written on the data bus, and making the signal low
on the read/write line throughout the clock cycle. At the clock cycle's end, the
microcontroller will write the word on the data bus into the device. The written data wilt
become available on the device's output lines, until changed by another output
instruction.

For example, whenever the microcontroller writes data into location $0000, such as
in the instruction

STAA $00

the data written are put on the output lines of the device. This instruction can use the
page-zero addressing mode because the address is at location zero. The simplest output
port is writable but not readable: This "write-only memory" is usually a topic only for a
computer scientist's joke collection, but it is a real possibility in an output port.

For example, location $0000 may be an input port, and a hardware input device will
be built to input data from that port. Whenever the microcontroller reads data from
location $0000, as in the instruction

LDAA $00

the signals on the input lines of the input device will be read into the microcontroller
just like a word read in from memory. Note that an input operation "takes a snapshot" of
the data fed into the input device at the end of the last clock cycle of the load instruction
and is insensitive to the data values before or after that point in the last clock cycle. A
final aspect is whether the port can be read from or written in, or both.

In a sense, the basic input and output devices trick the microcontrollers. The
microcontroller thinks it is reading or writing a word in its memory at some address.
However, the microcontroller designer has selected that address as an input or an output
port and built hardware to input or output data that are read from or written into that port.
By means of the hardware, the designer tricks the microcontrollers into inputting data
when it reads a word at the address of an input port or into outputting data when it writes
data into the word at the address of an output port.

One of the most common faulty assumptions in port architecture is that I/O ports
are eight bits wide. For instance, in the 6812, the byte-wide LDAB instructions are used
in I/O programs in many texts. There are a number of 16-bit I/O ports on I/O chips that
are designed for 16-bit microcontrollers. But neither 8 nor 16 bits is a fundamental width.
In this chapter, where we emphasize fundamentals, we avoid that assumption. Of course,
if the port is 8 bits wide, the LDAB instruction can be used, and used in C by accessing a
variable of type char . There are also 16-bit ports. They can be read by L D D
instructions, or as an int variable in C or C++. A port can be 1 bit wide; if so, a 1-bit
input port is read in bit 7; reading it will set the N condition code bit, which a BMI
instruction easily tests. Many ports read or write ASCII data. ASCII data is 7 bits wide,
not 8 bits wide. If you read a 10-bit analog-to-digital converter's output, you should read
a 10-bit port.
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11.2 Parallel Ports

The ' A4 and 'B32 have two parallel ports, shown in Figure 11.3. The description of each
port and their special features and programming techniques are discussed in the first
subsection. The second subsection describes an object-oriented class for these ports.

The 6832's parallel ports have a direction port. For port A, for each bit position, if
the port A direction bit is zero, as it is after reset, the port bit is an input, otherwise if
the port A direction bit is one, the port bit is a readable output bit. A direction port is an
example of a control port, which is an output port that controls the device but doesn't
send data outside it.

We illustrate the use of PORTA in assembly language first, and in C or C++ after
that. To make PORTA an output port, we can write in assembly language:

LDAB #$FF ; generate all ones
STAB $2 ; put them in direction bits for output

Then, any time after that, to output accumulator B to PORTA we can output
accumulator B to port A by writing STAB $0. To make PORTA an input port, we
put zeros in direction bits for input by executing CLR $2. Then, any time after that, to
input PORTA into accumulator B we read PORTA into accumulator B by writing
LDAB $0. It is possible to make some bits, for instance the rightmost three bits,
readable output bits and the remaining bits input bits, as follows:

LDAB #7 ; generate three ones in rightmost bits
STAB $2 ; put them in direction bits for output

The instruction STAB $0 writes the rightmost three bits into the readable output port
bits. The instruction LDAA $0 reads the left five bits as input port bits and the right
three bits as readable output bits. A minor feature also occurs on writing the 3-bit word:
The bits written where the direction is input are saved in a register in the device and
appear on the pins if later the pins are made readable output port bits.

Ports can be identified by putting the @ sign after port names, followed by their
locations. These can be put in a header file that is #included in each program:

unsigned char PORTAiO, PORTBll, DDRA@2, DDRB83;

The equivalent operations in C or C++ are shown below. To make PORTA an output
port, we can write

DDRA = Oxff;

Address Name 'A4 Pins 'B32 Pins

Figure 113. Some 6812 Parallel I/O Ports
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Note that DDRA is declared an unsigned char variable. Then, any time after that, to
output a char variable i to PORTA, put

PORTA = i;

Note that PORTA is declared an unsigned char variable. To make PORTA an input
port, we can write

DDRA = 0;

Then, any time after, to input PORTA into an unsigned char variable i we write

i = PORTA;

Generally, the direction port is written into before the port is used the first time and need
not be written into again. However, one can change the direction port from time to time,

PORTA and PORTS together, and their direction ports DDRA and DDRB together, can
be treated as a 16-bit port because they occupy consecutive locations. Therefore, they can
be read from or written into using LDD and STD instructions. To make PORTAB an
output port, we can write in assembly language:

LDD #$FFFF ; generate all ones
STD $2 ; put them in direction bits for output

Then, any time after that, to output accumulator D to PORTAB we can write

STD $0 ; output accumulator D

To make PORTAB an input port, we can write

CLR $2 ; put zeros in high direction bits for input
CLR $ 3 ; put zeros in low direction bits for input

Then, any time after that, to input PORTAB into accumulator D we can write

LDD $ 0 ; read PORTA into accumulator D

Also, some of the 16 bits can be made input, and some can be output. In manner similar
to how 8-bit ports are accessed in C, 16-bit ports can be declared in a header file that is
#included in each program as follows:

int PORTAB@0, DDRAB@2;

To make PORTA and PORTS an output port, we can write: DDRAB = Oxf ff f ; .
Note that DDRAB is declared an int variable. Then, any time after that, to output an
int variable i, high byte to PORTA and low byte to PORTS, we can write PORTAB =
i;. Note that PORTAB is declared an int variable. To make PORTA and PORTS an
input port, we write: DDRAB = 0;. Then, any time after that, to input PORTA (as high
byte) and PORTB (as low byte) into an int variable i we can write i = PORTAB;.
The ports A and B, or the combined port AB, can be made an input or output port and
can be easily accessed in assembly language or in C.

As a simple example of the use of an input port, consider a home security system.
See Figure 11.4a. Three switches, each attached to a different window, are normally
closed. When any window opens, its switch opens, and the pull-up resistor makes
PORTA's input high; otherwise the input is low. This signal is sensed in PORTA bit 0.
The C program statement if (PORTA & 1) alarm(); will execute procedure alarm if
any switch is opened. It is optimally programmed into assembly language as follows:
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Figure 11.4. Simple Devices

BRCLR 0, #1, *+6 ; branch over BSR if bit one of PORTA is low
BSR alarm ; otherwise call the subroutine

As a simple example of the use of an output port, consider the light-emitting diode
(LED) display shown in Figure 11.4b. When PORTA's output is high, current flows
through the transistor and LED, being limited by the 330 Q resistor. The C program
statement PORTA = 1; will cause the LED to light up. It is optimally programmed
into assembly language as follows:

LDAB #1 ; generate a one
STAB $0 ; output it to the port

11.3 Input and Output Software

Input or output of a single word is simple, but we often need to input or output a string
of characters, an array of numbers, or a program consisting of many words. This section
reviews how vectors can be used in these situations.

The simplest and one of the most common situations occurs when one is inputting
or outputting a vector of bytes. To output a vector of bytes to PORTA, smallest indexed
byte first, execute the following C procedure:

char buffer[0x10];

void main() { char i = -0x10;

DDRA = Oxff; do PORTA = buffer[i + 0x10]; while(++i);

}

An optimized assembly language program segment for the body of this C procedure is

LDD #$FFFO ; Put $FF in Accumulator A, -$10 in Accumulator B
STAA $2 ; Put $FF in direction, to make it output
LDX #BUFFER+ $ 10 ; Set index register X to just beyond end of vector

LOOP: LDAA B, X ; Get an element of the vector
STAA $0 ; Write it to the output port
IBNE B, LOOP ; For each element of the vector
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Note the ease of indexing a vector in a do while loop statement. This operation,
emptying data from a vector to an output port, is one of the most common of all I/O
programming techniques.

Conversely, to input a vector of bytes, this time largest indexed byte first, with data
on the input lines of the simple input device, execute the following C procedure:

char buffer[0x10];
void roain() { char i = 0x10;

DDRA = 0; do buffer[i - 1] = PORTA; while(—i);
}

An optimized assembly-language program segment for the body of this C procedure is

LDD #$10 ; Generate 0 in Accumulator A, $10 in Accumulator B
STAA $2 ; Put 0 in direction, to make it input
LDX #BUFFER-1 ; Set index register X to base of vector

LOOP: LDAA $0 ; Get a byte from the input port
STAA B, X ; Write it into the vector, top element first
DBNE B , LOOP ; For each element of the vector

From the two examples above, the reader should be convinced that inputting to or
outputting from a vector is a very simple operation in either C or assembly language.

We show a simple example of an output device, a toy traffic light. While this
example is not the best way to control a traffic light, it serves to demonstrate output
from a vector and other techniques discussed later in the chapter. Each of the six least
significant bits of the output PORTA controls a pair of LED traffic lights (see Figure
11.5a). The north and south LEDs are wired in parallel, and the east and west LEDs are
similarly paralleled and turned on if the transistor base input is HIGH (see Figure 11.5b,
which is like Figure 11.4b). Making PORTA bit 5 HIGH turns on the red LEDs, bit 4
turns on the yellow LEDs, and bit 3 turns on the green LEDs, in north and south lanes.
Making PORTA bit 2 HIGH turns on the red LEDs, bit 1 turns on the yellow LEDs,
and bit 0 turns on the green LEDs, in east and west lanes. So making PORTA bits 5 and
0 HIGH would turn on the red north and south and green east and west LEDs.

Figure 115. A Traffic Light
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We will output a vector of light patterns to the LEDs, largest indexed element first,
Because page-zero addressing is used for the STAA $0 instruction, a byte is output to
the LED display every eight clock cycles, which is every microsecond, much too fast for
any type of useful display. But an arbitrary delay can be easily added in the loop to
display each pattern as long as desired. To output an element every second, execute

char buffer[0x10];
void mairi() { char i = 0x10; long t;

DDRA=Oxff;do{PORTA=buffer[i-1];for(t=0;t<2666666;t++);}while(—i);
}

An optimized assembly language program segment for the body of this C procedure is

MOVE #$FF, $ 2 ; PORT A direction set for output
LDAB #$10 ; Vector Index initialized to high end
LDX #BUFFER-1 ; Base address of the vector

LOOP: LDAA B, X ; Get an element out of the vector
STAA $0 ; Write it into the output port
LDAA #100 ; Execute outer loop 100 times

WTO: LDY #80000/3 ; Execute the inner loop 26666 times
WT1: DBNE Y, WT1 ; Inner loop takes 10 ms

DBNE A, WTO ; Outer loop takes 1 second
DBNE B, LOOP ; Output all elements of the vector

The inner loop, the single instruction, WT1: DBNE Y, WT1, takes three memory
cycles. Because index register Y is initialized to 26666, this loop takes 80,000 memory
cycles, which, for an 8 MHz 6812 clock, takes 10 ms. The outer loop, including the
inner loop and LDY #80000/3 and DBNE A, WTO, is executed 100 times, delay ing
very close to 1 second. So the program segment outputs a vector element each second.
The vector buffer can therefore be initialized with appropriate bit pattern constants to
produce the desired sequence of lighted LEDs. Figure 11.6a illustrates the general idea of
a delay loop used to synchronize output from a vector.

Figure 11.6. Flow Charts for Programmed I/O
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Arrays or strings can be used with buffers to input or output many numbers in a
similar way. Queues are implemented in buffers to input or output data when the
program needs them in the same order that they are input or when the device needs them
in the same order that they are provided by the program, but at different times than they
are provided. Generally, data structures are used to maintain order in the data that are
being transferred between the MPU and an input-output device.

11.4 Synchronization Hardware

The previous section illustrated the use of a delay loop to synchronize the output to a
traffic light controller. In the next sections, we consider the use of gadfly loops and
interrupts to synchronize input and output. These use hardware to indicate when I/O is to
be done. The most commonly used hardware is an edge-triggered flip-flop that is set
when an output is needed or when an input is available. In this section, we introduce the
' A4 or 'B32 basic counter/timer device to illustrate edge-triggered sensing of I/O status
signals. (See Figure 11.7.) We also briefly discuss PORTT and its direction bits.

Figure 11.7. The Counter/Timer Subsystem
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The counter/timer device is very flexible, and so it has many control bits that can be
set or cleared to permit it to implement different functions. In this section, we use just
one of these functions, to detect an edge of an input signal. Bits that we set or clear are
shown in clear rectangles in Figure 11.7 and discussed below; unused bits are shown in
rectangles with diagonal lines in them. We therefore merely initialize some control ports
in a "fixed" way and do not discuss the other ports in this counter/timer device.

The counter/timer device is enabled when TEN, bit 7 of TSCR, is T ( J ) , We
illustrate our techniques using PORTT bit 0 (pin 105 in the 'A4, or pin 7 in the *B32),
Bits 1 and 0 of TCTLE determine which edges will be sensed; if that port's bit I is set,
then a falling edge on PORTT bit 0 sets the flip-flop; if its bit 0 is set, a rising edge sets
the flip-flop; and if both bits are set, either edge sets the flip-flop. Bit 0 of TFLG1 reads
this flip-flop. This bit can be tested in a gadfly loop, or if bit 0 of TMSKl is also set, it
causes an interrupt vectored through OxFFEE and OxFFEF. Bit 0 of TFLGI must be
cleared before it can be set sensed again; it is cleared by writing a T (1) into it.

For each bit position, PORTT can be used as a parallel I/O port whose direction is
specified by the corresponding bit in DDRT. Even when a PORTT bit is used to detect an
edge, the port can also be an input port to directly read the pin's signal.

11.5 Gadfly Synchronization

In the gadfly synchronization technique, the program continually "asks" one or more
devices what they are doing (such as by continually testing the timer flag bit). This
technique is named after the great philosopher, Socrates, who, in the Socratic method of
teaching, kept asking the same question until he got the answer he wanted. Socrates was
called the "gadfly of Athens" because he kept pestering the local politicians like a pesky
little fly until they gave him the answer he wanted (regrettably, they also gave him some
poison to drink). This bothering is usually implemented in a loop, called a gadfly loop,
in which the microcomputer continually inputs the device state of one or more I/O
systems until it detects DONE or an error condition in one of the systems. Gadfly
synchronization is often called polled synchronization. However, polling means
sampling different people with the same question—not bothering the same person with
the same question. Polling is used in interrupt handlers discussed in the next section; in
this text, we distinguish between a polling sequence and a gadfly loop.

A gadfly loop is illustrated by the flow charts shown in Figure 11.6b. The processor
keeps testing a status port, which is set by the device when it is done with the request
for the input, after which data can be read from the input port.

Gadfly synchronization generally requires more extensive initialization before the
device can be used. The counter/timer control registers must be set up so that when data
are to be output, a falling edge on PORTT bit 0 can set a flag bit. Bit 7 of the TSCR
needs to be set to enable any operation in the counter/timer. Bits 1 and 0 of TCTLE must
be set to 1 and 0 respectively, to indicate that a falling edge sets the TFLGI bit 0. This
flag can accidentally become set before the first output operation occurs, so to clear it
just in case it is set, $01 should be written into the TFLGI port. The initialization of the
counter/timer consists of the C statements: TSCR = 0x80; TCTLE = 2; TFLGI = 1,*.
It is optimally compiled to assembly language as:
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LDAB #$80 ; Put one in leftmost bit of accumulator B
STAB TSCR ; Put it into the control register TSCR
LDD #$201 ; Generate 2 in Accumulator A, 1 in Accumulator B
STAA $8B ; Write 2 in rightmost bit of control register TCTLE
STAB $8E ; Write one in rightmost bit of control register TFLG1

In place of a delay loop, the gadfly loop itself is used whenever input or output is
done: do ; while{(TFLG1 & 1) == 0 ) ; TFLG1 = 1;. The loop waits until an edge
sets the flag bit, and the next statement clears the flag bit. This is optimally compiled to
assembly language as

L: BRCLR $8E,#1,L ; Wait for one in TFLG1 bit 0
LDAB #1 ; Put one in rightmost bit of accumulator B
STAB $8E ; Write it into control register TFLG1

We illustrate the use of gadfly synchronization for counting pulses from a Geiger
counter. Each time a pulse occurs, PORTT bit 0 sees a rising edge. To count the pulses,
execute the C procedure:

void main() { int i = 0;
TSCR = 0x80; TFLG1 = 1;TCTLE = 1;

do {while({TFLG1 & 1) == 0); TFLG1 = 1; i++; }while(1);

}

An optimized assembly language program segment for the body of the C procedure is

LDAB #$80 ; Put one in leftmost bit of accumulator B
STAB $86 ; Write it into control register TSCR
LDD #$102 ; Generate one in Accumulator A, 2 in Accumulator B
STAA $ 8E ; Write one in rightmost bit of control register TFLG1
STAB $ 8B ; Write 2 in rightmost bit of control register TCTLE
CLRA ; Clear msbyte of local variable i
CLRB ; Clear next byte of i

LOOP: BRCLR $ 8E, #1, LOOP ; Wait for one in TFLG1 bit 0
MOVE #1, $ 8E ; Write 1 into control register TFLG1 to clear bit 0
ADDD #1 ; Increment count
BRA LOOP ; Loop forever

You can stop this program after it has counted the pulses and examine accumulator D.
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Figure 11.8. Status Port

We next illustrate the use of gadfly synchronization by implementing a variation of
a traffic light controller, as it was described in Section 113. But each time another vector
element is to be output, a switch is closed and PORTT bit 0 sees a falling edge. See
Figure 11.8. Moving the switch to the bottom contact causes exactly one falling edge.
The capacitor holds the voltage on the port input bit when the switch is in between the
top and bottom contact. To output the vector, execute the C procedure:

char buffer[0x80],v
void main() { char i = 0x80;

DDRA = OxFF; TSCR = 0x80; TFLG1 = 1; TCTLE = 2;

do <PORTA=buffer[i-l]; do ; while((TFLG1&1)==0); TFLGl=l;>while(—i);
}

Each time the do while loop is executed, it waits for the next edge to occur. The edge
sets the flag, and the do while loop exits. The next statement clears this flag. An
optimized assembly language program segment for the body of the C procedure is

LDAB #$80 ; Put one in leftmost bit of accumulator B
STAB $ 8 6 ; Write it into control register TSCR
LDD #$102 ; Generate one in Accumulator A, 2 in Accumulator B
STAA $ 8E ; Write one in rightmost bit of control register TFLG1
STAB $ 8B ; Write 2 in rightmost bit of control register TCTLE
LDD #$FF80 ; Generate two constants in Accumulators A and B
STAA $2 ; Make PORTA output
LDX #BUFFER-1 ; Get the address of the buffer into X

LOOP: LDAA B,X ; Read a byte from the buffer
STAA $0 ; Output the data

L: BRCLR $ 8 E, # 1, L ; Wait for one in TFLG 1 bit 0, which occurs once/sec.
LDAA #1 ; Put one in rightmost bit of accumulator A
STAA $8E ; Write it into control register TFLG1
DBNE B, LOOP ; Count down and loop until all are output
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The gadfly loop waits until a hardware-generated edge occurs, while the delay loop
waits a prescribed number of instruction executions. In general, delay loops do not
require as much hardware as gadfly loops, because a gadfly loop needs a status bit In
hardware and a means to set it. However, gadfly synchonization can wait exactly as long
as an I/O device needs, when hardware causes the edge to occur, while a delay loop is
generally timed to provide a delay that is the worst-case delay needed for the device,

11.6 Interrupt Synchronization

In this section, we consider interrupt hardware and software. Interrupt software can be
tricky, so some companies actually have a policy never to use interrupts but instead to
use the gadfly technique. At the other extreme, some designers use interrupts just because
they are readily available in microcomputers like 6812 systems. We recommend using
interrupts when necessary, but using simpler techniques whenever possible.

The hardware or I/O interrupt is an architectural feature that is very important to
I/O interfacing. Basically, it is invoked when an I/O device needs service, either to move
some more data into or out of the device or to detect an error condition. Handling an
interrupt stops the program that is running, causes another program to be executed to
service the interrupt, and then resumes the main program exactly where it left off. The
program that services the interrupt (called an interrupt handler or device handler) is very
much like a subroutine, and an interrupt can be thought of as an I/O device tricking the
computer into executing a subroutine. An ordinary subroutine called from an interrupt
handler is called an interrupt service routine. However, a handler or an interrupt service
routine should not disturb the current program in any way. The interrupted program
should get the same result no matter when the interrupt occurs.

I/O devices may request an interrupt in any memory cycle. However, the data
operator usually has bits and pieces of information scattered around and is not prepared to
stop the current instruction. Therefore, interrupts are always recognized at the end of the
current instruction, when all the data are organized into accumulators and other registers
(the machine state) that can be safely saved and restored. The time from when an I/O
device requests an interrupt until data that it wants moved is moved, or the error
condition is reported or fixed, is called the latency time. Fast I/O devices require low
latency interrupt service. The lowest latency that can be guaranteed is limited to the
duration of the longest instruction, because the I/O device could request an interrupt at
the beginning of such an instruction's execution.

The condition code register, accumulators, program counter, and other registers in
the controller and data operator, the machine state, and these nine bytes are saved and
restored whenever an interrupt occurs. After completion of a handler, the last instruction
executed is return from interrupt (R.TI). It pulls the top nine bytes from the stack,
replacing them in the registers the interrupt took them from.

Interrupt techniques can be used to let the I/O system interrupt the processor when it
is DONE, so the processor can be doing useful work until it is interrupted. We first
look at steps in an interrupt. Then we consider interrupt handlers and the accommodation
of critical sections.
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Figure 11.9. Interrupt Request Path

After port and counter/timer control registers are properly initialized, a falling edge
on the counter/timer bit 0 can request an interrupt. See Figure 11,9. The six-step
sequence of actions that lead to an interrupt and that service it are outlined below.

1. When the external hardware determines it needs service either to move some data into
it or out of it or to report an error, we say the device requests an interrupt. This
occurs when PORTT bit 0 falls.

2. If the PORTT bit 0 pin is an input (in DDRT bit 0) and had been assigned (in TMSK1
bit 0) to sense interrupts, we say PORTT bit 0 interrupts are enabled.

3. If the microprocessor's condition code register's I bit is 0 we say the microprocessor
is enabled. When I is 1, the microprocessor is masked (or the microprocessor is
disabled). If a signal from the device is sent to the controller, we say the
microprocessor sees a request, or a request is pending, and an interrupt will occur, as
described below. (The bit I is also controlled by hardware in the next step.)

4. Most microcomputers cannot stop in the middle of an instruction. Therefore, if the
microprocessor recognizes an interrupt, it honors an interrupt at the end of the current
instruction. When the 6812 honors a counter/timer interrupt, it saves the registers and
the program counter on the stack, sets the condition code register I bit, and loads the
16-bit word at Oxffee into the program counter to process this interrupt. Importantly,
condition code bit I is set after the former I was saved on the stack.

5. Beginning at the address specified by Oxffee is a routine called the timer 0 handler.
The handler is like a subroutine that performs the work requested by the device. It may
move a word between the device and a buffer, or it may report or fix up an error. One
of a handler's critically important but easy to overlook functions is that it must
explicitly remove the cause of the interrupt (by negating the interrupt request) unless
the hardware does that for you automatically. This is done by writing 1 into bit 0 of
the TFLG1 port.

6. When it is completed, the handler executes an RTI instruction; this restores the
registers and program counter to resume the program where it left off.
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Some points about the interrupt sequence must be stressed. As soon as it honors an
interrupt seen on a line, the 6812, like most computers, sets the I condition code bit to
prevent honoring another interrupt from the same device. If it didn't, the first instruction
in the handler would be promptly interrupted—an infinite loop that will fill up the stack.
You do not have to worry about returning it to its value before it was changed, because
step 6 restores the program counter and the condition code register and its I bit to the
values they had before the interrupt was honored. However, a handler can change that
level using a T F R , A N D , o r O R to condition code instruction to permit honoring
interrupts. Note that the I/O device is generally still asserting its interrupt request line
because it doesn't know what is going on inside the microprocessor. If the RTI is
executed or I is otherwise cleared, this same device will promptly interrupt the processor
again and again—hanging up the machine. Before the handler executes RTI or changes I,
it must remove the interrupt source! (Please excuse our frustration, but this is so simple
yet so much of a problem.)

To handle the interrupts, we need to put the handler's address in the 16-bit word at
Oxffee. The mechanism that puts an interrupt handler's address where the interrupt
mechanism needs to find it is specific to each compiler. In a compiler that is specifically
designed for I/O interfacing, all we need to do is write interrupt 8 in front of the name
of the procedure for counter/timer device 0 (a number different from 8 is used for other
devices—see Table 11.1). This convention inserts the address of the handler into Oxffee,
and further ends the procedure with an RTI. For other compilers a statement * (int
*) Oxffee = (int) handler; puts the address of the handler in the location that the
hardware will use when an interrupt occurs. However, this location is in EEPROM in
the ' A4 and flash in the 'B32, so special programming procedures are used.

There are two parts of the path that an interrupt request takes. In our example, the
counter/timer flag is set if an edge occurs on its input. A switch in series with an input
that can set this flag is called an arm; if it is closed the device is armed, and if it is
opened, the device is disarmed. Any switch between the flag register and the 6812
controller is called an enable; if all such switches are closed the device is enabled, and if
any are opened, the device is disabled. Arming a device lets it record a request and makes
it possible to request an interrupt, either immediately if it is enabled or later if it. is
disabled. You disarm a device if you do not want to honor an interrupt now or later. But
you disable an interrupt to postpone it. You disable an interrupt if you can't honor it
now, but you may honor it later when interrupts are enabled.

Also, for gadfly synchronization, you arm the device so the flag register can become
set when the device enters the DONE state, but you do not enable the interrupt because
the program has to test the flag. If an interrupt did occur and was honored properly so as
not to crash the computer, the gadfly loop wouldn't exit because the flag would be
cleared in the handler before the gadfly loop could test it and exit its loop.

We illustrate the use of interrupt synchronization by implementing a variation of
the Geiger counter that used gadfly synchronization. Each time a pulse occurs, PORTT
bit 0 sees a rising edge, which causes an interrupt. To count the pulses, execute the C
procedure
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unsigned char i;
void main() {

TSCR = 0x80; TTMSKl = TFLG1 = TCTLE = 1; asm CLI

do ; while(l);

}
void interrupt 8 hndlr(void){ TFLG1=1; /*clrreqst*/ i++; /* inc count */}

An optimized assembly-language program segment for the body of the C procedure is

i: DS. B 1 ; Global storage for 8-bit count i
LDAB #$80 ; Put one in leftmost bit of accumulator B
STAB $86 ; Write it into control register TSCR
LDAA #$ 1 ; Generate one in Accumulator A
STAA $ 8E ; Write one in rightmost bit of control reg. TFLG1
STAA $ 8C ; Write one in rightmost bit of control reg. TMSK1
STAA $8B ; Write 1 in rightmost bit of control reg. TCTLE
CLI ; Enable interrupt

LOOP: BRA LOOP ; loop forever

An optimized assembly-language program segment for the handler is

HNDLR: MOVE #1, TFLG1 ; Write one in rightmost bit of control register TFLG1
INC i ; Increment count
RTI ; Return to interrupted routine

The main procedure above initializes the control registers and loops forever. The I
condition code bit is generally clear after the 6812 is reset and must be cleared to enable
interrupts to occur. A high-level language like C generally does not have a way to enable
interrupts, except by inserting embedded assembly language. The statement asm CLI
inserts CLI into the assembly-language program. Each time another vector element is to
be output, a switch is closed, and PORTT bit 0 sees a rising edge. This causes an
interrupt, and the handler is entered. This handler increments the count.

We further illustrate an interrupt-based traffic light controller that is essentially the
same as the gadfly-based traffic light controller example. The main procedure initializes
the control registers, waits for all elements to be output, and then disables the interrupt.
Each time another vector element is to be output, a switch is closed, and PORTT bit 0
sees a falling edge. See Figure 11.9. This causes an interrupt, and the handler is entered.
This handler outputs an element from the vector. To output the vector, execute

char buffer[0x80], i = 0x80;
void main{) {

DDRA = OxFF; TSCR = 0x80; TFLG1 = TMSK1 = 1; TCTLE = 2; asm CLI

do ; while ( i ) ; /* wait until all are output */ TMSK1 = 0; /* disable interrupt */
}

void interrupt 8 hndlr (void) (TFLGl=l;PORTA=buff erf—i ]; /* output data */}
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An optimized assembly-language program segment for the body of the C procedure is
shown below. For it and the subsequent handler program segment, we assume there is a
global variable I that is initialized to $80, the number of elements in the buffer, and there
is an $80-element buffer.

LDAB #$80 ; Put one in leftmost bit of Accumulator B
STAB $86 ; Write it into control register TSCR
LDD #$102 ; Generate one in Accumulator A, 2 in Accumulator B
STAA $8C ; Write one in rightmost bit of control register TMSK1
STAA $ 8E ; Write one in rightmost bit of control register TFLG1
STAB $ 8B ; Write 2 in rightmost bit of control register TCTLE
LDD #$FF80 ; Generate two constants in Accumulators A and B
STAA $2 ; Make PORT A output
CLI ; Enable Interrupts

LOOP: LDAB i ; Get index
BNE LOOP ; Wait until all vector elements are output
CLR $8C ; Disable interrupt

An optimized assembly-language program segment for the handler is

CCTO : MOVE #1, TFLG1 ; Write one in rightmost bit of control register TFLG1
LDX #BUFFER ; Get the address of the buffer into X
DEC i ; Decrement index
LDAB i ; Get index
LDAA B f X ; Read a byte from the buffer
STAA $ 0 ; Output the data
RTI ; Return to interrupted routine

This program is quite like the gadfly program in Section 11.5. However, the loop
do ; while { i ) ; can be replaced by a program that does useful work. Interrupts
provide output whenever the device needs it, without wasting time in a delay or gadfly
loop.

This raises an often-misunderstood point about interrupts. Gadfly has lower latency
than interrupt synchronization. Gadfly does not have to save the registers and then
initialize registers used in the handler. If, when using interrupt synchronization, you just
waste time in a gadfly or wait loop, use gadfly synchronization to lower latency.

The 6812 has a number of I/O devices, and most of them have their own interrupt
vector, shown in Table 11.1. The handler used in the previous example has its vector at
$FFEE and $FFEF, for "Timer channel 0." When an edge occured on PORTT bit 0, the
contents of this vector, the 16-bit data in $FFEE (high byte) and $FFEF (low byte), are
put into the program counter, and the interrupt handler is then executed starting at this
address. Other interrupt vectors of interest in this introductory discussion are the reset,
SWI, and TRAP vectors. The reset vector at $FFFE and $FFFF is the address of the first
instruction that is executed when a 6812 comes out of reset. Locations $FFF6 and
SFFF7 usually contain the address of the monitor program, which is where you go when
an SWI instruction is executed, or a BOND instruction is executed, but the background
debug module is not set up to handle a monitor program. Locations $FFF8 and $FFF9
usually contain the address of the handler for illegal instructions, which can be used to
emulate instructions not implemented in the 6812.



334 Chapter 11 Input/ Output

Table 11.1. Interrupt Vectors in the 6812 'A4

This section has introduced the interrupt and its implementation on the 6812. You
have learned how interrupts work in hardware and how an assembly-language program
can be written to handle the interrupt from the timer module 0, in particular for rising or
falling edges on PORTT bit 0.

This section, together with the last section, has shown two commonly used
alternative methods for synchronization. Gadfly synchronization actually provides lower
latency than interrupt synchronization (that is, faster response to an edge signal), while
interrupts let you do other work while waiting for an edge from an I/O device. Upon
completion of these two sections, you should find either technique easy to use.

11.7 Analog-to-Digital and Digital-to-Analog Conversion

Throughout electrical engineering, microcontrollers interface with analog systems in
which a voltage level represents a property like pressure or speed. The digital
microcontroller uses an analog-to-digital converter (A-to-D) to convert analog voltages
to digital numbers that it can process, and it uses a digital-to-analog converter (D-to-A)
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Figure 11.10. D-to-A Converter

to convert digital numbers that it has processed into analog voltages. This section
illustrates A-to-D and D-to-A devices usable with the 'A4 and 'B32.

Both the ' A4 and 'B32 have built-in A-to-D converters. They do not have any built-
in D-to-A converters, however, but this gives us an opportunity to build a D-to-A
converter using a parallel port in order to better explain how it works. An A-to-D
converter generally has within it a D-to-A converter. When we use the built-in A-to-D
converter, we will refer to the D-to-A converter that we will build into a parallel port.

Figure 11.10 illustrates how an 8-bit r-2r ladder D-to-A converter can be
implemented using Port A. The seven resistors on the bottom left of the figure have
resistance r (10 KQ), and all other resistors have resistance 2r (20 KQ).

If the port bit output resistance is small compared to r (10 KQ) and the
microcontroller's supply voltage is 5.00 volts, then Vout is 5 * D / 256, where D is the
binary number in port A. The reader can verify this using analog system analysis, which
is simple enough but is outside the scope of this course.

In reality, the microcontroller's output port has significant resistance and is
nonlinear; the input resistance of the Vout measuring instrument loads down this circuit,
and the microcontroller's supply voltage is not 5.00 volts and has noise on it. So this is
not a good D-to-A converter. An integrated circuit, such as a DAC-08, and an OP amp
are used to implement an 8-bit r-2r ladder D-to-A converter. However, the latter does
essentially the same thing as Figure 11.10. Furthermore we will find it instructive to
measure the accuracy of the circuit shown in Figure 11.10 at the end of this section.

An A-to-D converter basically consists of a D-to-A converter and an analog
comparator. The latter has two inputs and outputs a high signal only when one input is
greater than the other input. By outputting different analog voltages and comparing these
voltages to the input voltage, the input voltage can be determined.

The 'A4 and 'B32 both have an on-board A-to-D converter connected to input port
PORTAD. Figure 11.11 shows the block diagram of this subsystem. Using voltages on
pin VRH as high- and pin VRL as low-reference voltages, the analog voltage on inputs
PADO can be converted to 8-bit digital values and put into registers ADRO. Initially,
control bit ADPU must be set to apply power to this subsystem (100 /*s are then needed
for the voltages to become stable). The conversion is begun when control register
ATDCTL5 is written with a value 0. While ATDSTATO bit 7 is 0, conversion is being
done. Although four conversions are done, we will only use one result, which is read
from port ADRO at location 0x70.
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Figure 11.11. A-D Subsystem of the 'A4 or 'B32

Assuming VRH is 5 volts and VRL is ground, the following procedure converts the
voltage (times 256/5 ) on PORTAD bit 0 into i:

main() { unsigned char i;
ATDCTL2 = 0x80; for (i=l;iI=0; i++); /* wait for voltages to stabilize */
ATDCTL5 = 0 ; do ; while(!(ATDSTATO & 0x80)) ; i = ADRQ;

}
An optimized assembly-language program segment for the body of the C procedure is
shown below:

LDD #$80 ; Put one in leftmost bit of Accumulator B
STAB $62 ; Write $80 into control register ATDCTL2
LDY #800/3 ; Allow 100 // sec to elapse

L1; DBNE Y, L1 ; Wait for A-to-D device voltages to stabilize
STAA $65 ; Put zero in control register ATDCTL5 to start conversi<

L2: BRCLR $66,#$80,L2 ; Wait for one in bit SCF of the ATDSTATO port
LDAB $ 7 0 ; Get the converted value

If we connect the Vout from Figure 11.10 to PORTAD bit 0, the following C program
will convert values from 0 to $FF and accumulate the largest error above and below the
correct value;

unsigned char above, below;
main() { unsigned char i, j; DDRA = Oxff;

ATDCTL2 = 0x80; for (i=l; i! =0; i++); /* wait for voltages to stabilize */
for(i = 0 ; i != Oxff; i++){

PORTA = i; ATDCTL5 = 0 ; do ; while(i(ATDSTATO & 0x80)) ;
if({ADRO > i) && ( ( j = (ADRO - i ) ) > above ) ) above = j;
i f ( (ADRO < i) && (( j = ( i - ADRO) ) > below ) ) below = j;

>
}
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Writing an optimized assembly-language program for this C procedure is left as an
exercise for the reader. But observe two aspects of this technique. The initialization of the
A-to-D device, which is required only before the first time you use the device, writes a
value in a device's control registers and waits 100//sec for voltages to stabilize. Each
time a conversion is needed, we write a value into the control register, wait in a gadfly
loop until conversion is completed, and read the value from the ADRO port,

We conducted an experiment that tied the output of Figure 11.10 to the AD port bit
0 input and ran the program shown above. The difference between the byte output from
PORT A and the value read from port ADRO was 4. Because the A-to-D converter is
well-designed, we assume the D-to-A converter had an accuracy of a little less than 1 %.

11.8 UART Protocol

The Universal Asynchronous Receiver-Transmitter (UART) is a module (integrated
circuit) that supports a frame protocol to send up to eight-bit frames (characters). We call
this the UART protocol. The UART frame format is shown in Figure 11.12. When a
frame is not being sent, the signal is high. When a signal is to be sent, a start bit,
which is a low, is sent for one bit time. The frame, from five to eight bits long, is then
sent one bit per bit time, least-significant bit first. A parity bit may then be sent and
may be generated so that the parity of the whole frame is always even (or always odd).
To generate even parity, if the frame itself had an even number of ones already, a low
parity bit is sent; otherwise a high bit is sent. Finally, one or more stop bits are sent.
A stop bit is high and is indistinguishable from the high signal that is sent when no
frame is being transmitted. In other words, if the frame has n stop bits (n = 1, 1 !/2, or 2)
this means the next frame must wait that long after the last frame bit or parity bit of the
previous message has been sent before it can begin sending its start bit. However, it can
wait longer than that.

The 'A4 and 'B32 have a UART-like device called the Serial Communication
Interfaces (SCIO). The SCIO device shown in Figure 11.13 is often used by the
debugger. When not so used, it can be available for serial communication in an
experiment or project. We describe its data, baud rate generator, and control and status
ports. Then we will show how the SCI can be used in a gadfly synchronization interface.

The SCI has, at the same port address, a pair of data registers that are connected to
shift registers. Eight bits of the data written at SCO DHL (Oxc7) are put into the shift
register and shifted out, and eight bits of the data shifted into the receive shift register can
be read at SCODRL (Oxc7). Observe that, though they are at the same address, they are
different ports. Reading the address reads the input port; writing writes the output port.

Figure 11.12. Frame Format for UART Signals
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TxDO
RxDO

Figure 11.13.6812 Serial Communication Interface

The clock rate is established by the 12-bit SCOBD port (OxcO). The number put in
this port is the clock going to the SCI (Figure 11.13) divided by 16 times the desired
baud rate. For example, to get 9600 baud, put 52 into the SCOBD port.

The 16-bit control port, SCOCR, at Oxc2 has parity enable PE and parity type PT to
establish the parity, transmitter interrupt enable TIE and receiver interrupt enable RIE
to enable interrupts, and transmitter enable TE and receiver enable RE to enable the
device. The 16-bit status port at Oxc4 indicates what is happening in the transmitter and
receiver. TDRE is T (1) if the transmit data register is empty; it is set when data are
moved from the data register to the shift register and is cleared by a read of the status port
followed by a write into the data port. The remaining status bits are for the receiver.
RDRF is T (1) if the receive data register is full because a frame has been received.
Receive error conditions are indicated by OR, set when the receiver overruns (that is, a
word has to be moved from the input shift register before the previously input word is
read from the data register) FE; T (1) if there is a framing error (that is, a stop bit is
expected but the line is low; and PE, T (1) if there is a parity error.
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Again, we offer a C program to send and receive serial data using gadfly
synchronization; we leave the assembly-language program as an exercise for the reader. In
main, the SCI is initialized for gadfly synchronization of 9600 baud and eight data bits
without parity. Reading status and data registers twice clears the RDRF flag. The put
procedure gadflies on transmitter data register empty (TDRE); when it is empty, put
outputs its argument. The get procedure gadflies on the receive data register full
(RDRF); when the receive register is full, get returns the data in data port SCODRL.
These procedures are the get and put procedures we have mentioned many times in this
book:

enum{ PE=Ox200, PT=OxlOO, TIE=Ox80, RIE=Ox20, TE=8, RE=4 };

enum{ TDRE = -32768, RDRF =0x2000, OR = 8, FE = 2, PF = 1 };

void main() { char i;
SCOBD = 52; 7*9600 baud*/SCOCR « TE + RE;/* enable Xmt, Rev devices */
i=SCOSR; i=SCODRL; i=SCOSR; i=SCODRL;/* clear RDRF */
put(0x55); i = get();

}

put(char d) { while( ( SCOSR & TDRE ) == 0) ; SCODRL = d; }

char get() { while( ( SCOSR & RDRF ) == 0) ; return SCODRL; }

An interrupt-based C program below will send a character vector and receive serial
data into a buffer; we again leave the assembly-language program as an exercise for the
reader. In main, the SCI is initialized for interrupt synchronization at 4800 baud and
eight data bits without parity. Reading status and data registers twice clears the RDRF
flag. The interrupt handler outputs a byte from the character string whenever a transmitter
data register empty (TDRE) bit is set. The handler also moves a byte from the SCIO data
port whenever receive data register full (RDRF) bit is asserted. In this simplified example,
we do not worry about overrunning the input buffer or output character string.

enum{ PE = 0x200, PT = 0x100, TIE = 0x80, RIE = 0x20, TE=8, RE=4 };

enum{ TDRE « -32768, RDRF =0x2000, OR = 8, FE = 2, PF = 1 };

char outString[] = "Hi thereXr", inStringflO], *in, *out;

void main() { char i;
SCOBD = 104;/*4800baud*/SCOCR = TE + RE + RIE + TIE; //en. int.
i=SCOSR; i=SCODRL; i=SCOSR; i=SCODRL ;/* clear RDRF */

in = inString; out = outString; asm CLI
do ; while(l);

/

void interrupt 20 hndlr(void){
if( SCOSR & TDRE ) SCODRL = *OUt++;

if( SCOSR & RDRF ) *in++ = SCODRL;

}
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11.9 Summary and Further Reading

This chapter has introduced you to input-output programming, a somewhat obscure area
because many texts, magazine articles, and courses define input-output to be beyond their
scope while they concentrate on some other topic. But it is not obscure. This chapter
showed that the basic notion of input-output in a microcontroller is really a minor
extension of reading and writing to memory. The input-output integrated circuit was
studied. Synchronization mechanisms were discussed, and the gadfly and interrupt
techniques were detailed. The get and put subroutines were then shown and their
operation explained. You can now see how simple input-output programming can be.
We then looked at simple examples of the use of the A-to-D and D-to-A converters and
the SCI device used for serial I/O. We looked at the last example to understand the way
that the get and put subroutines work, which have been mentioned many times earlier
in this book. The method of outputting several words one after another to the same
device was discussed. This method, using buffers, was seen to be very straightforward,

If input-output programming interests you, we recommend the following books. Of
course, we recommend the accompanying textbook, Single and Multiple Chip
Microcontroller Interfacing for the Motorolla 68HC12 (G. Jack Lipovski). It
emphasizes the software used to control devices, using the 6812 and chips in the 6800
family for concrete examples, experiments, and problems. Two books by P. Garrett,
Analog I/O Design and Analog Systems for Microprocessors and Minicomputers (both
published by Reston Publishing Co., Inc., Reston, Va,, 1981 and 1978, respectively),
give excellent discussions of operational amplifiers and filters used in input-output
devices and also discuss the characteristics of transducers and measurement hardware.

Do You Know These Terms?

See the end of chapter I for instructions.

input routine status port microprocessor is enabled
output routine hardware interrupt enabled disabled
output port I/O interrupt microprocessor is analog-to-digital
output device handling an masked converter
output line interrupt microprocessor is digital-to-analog
input port interrupt handler disabled converter
input device device handler microprocessor r-2r ladder
input line interrupt service sees a request analog
high signal routine request is pending comparator
low signal latency time honors an UART protocol
direction port return from interrupt start bit
control port interrupt handler stop bit
gadfly device requests an arm Serial

synchronization interrupt armed Communication
gadfly loop interrupts are disarmed Interface

enabled enable
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PROBLEMS

1. The least significant bit of a port, as shown in Figure 11.4, is connected as input to a
push-button switch. The signal from the switch is high if the button is not pressed and
low if it is pressed. However, when it is pressed or released, it "bounces," that is, it
changes value rapidly from high to low to high to low . . . for about 10 milliseconds.
Write a program segment that will loop until the button is down for at least 5
milliseconds without the signal changing value. (This is called a debouncer.)

2. Draw a diagram similar to that shown in Figure 11.4 in which three switches,
normally open, are connected in parallel, such that PORT A bit 0 is normally high,
becoming low when any switch is closed. Comment on why the circuit in Figure 11.4
is better than this circuit for a security system. (Hint: Consider ways to thwart the
alarm.)

Figure 11.14. Parallel Output Port of the 'A4 or 'B32

3. Write a shortest program to flash the two LEDs in Figure 11.14. Only one LED
should be lit at a time, and each LED should be lit for 1 second. Initially, the LED
connected to PORTA bit 4 should be lit for 1 second. Then the LED connected to PORTA
bit 3 should be lit for 1 second, and so on. This cycle should be repeated indefinitely.

4. Write a shortest program to use the three switches in Figure 11.15 in a game.
Initially all switches are open. When the first switch is closed, print its switch number
on the terminal using the OUTCH subroutine.

5. Write a shortest program to record the sequence of pressing the three switches in
Figure 11.15 ten times. Only one switch should be pressed at a time. When it is pressed,
it is closed multiple times, but within 5 milliseconds. A 10-element, 8-bit element
vector INPUTS is to store input key strokes. Each time any switch is pressed, the
number of the switch (1 on the left, 2 in the middle, and 3 on the right) is to be put into
the next vector element.

Figure 11.15. Parallel Input Port of the ' A4 or 'B32
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Figure 11.16. Parallel D-to-A Output Port of the 'A4 or 'B32

6. Write a keyless entry system, using the output port shown in Figure 11.14 and the
input port shown in Figure 11.15. When the keys 1,3, and 2 are pressed, LED 1 lights
up; otherwise, after three keys are pressed that are not in the sequence, LED 2 lights.

7. Write a shortest program to use the switches to play the first four notes of the tune,
"The Eyes of Texas," using a parallel port to output a staircase approximation to a sine
wave. The first four notes are C F C G. A Johnson counter is simulated in software
using output port A bits 2 to 0, essentially as shown in Figure 11.16. A 4-bit Johnson
counter has sequence of bit values from Figure 11.17, where H is high (1) and L is low
(0). The left three bits of this bit vector are connected to output port A bits 2 to 0
respectively, as shown in Figure 11.16. The note C has a frequency of 523 Hz or a
period of 1912 /<sec and is to be played when the left push-button switch is closed; the
note F has a frequency of 698 Hz or a period of 1432 #sec and is to be played when the
middle push-button switch is closed; and the note G has a frequency of 783 Hz or a
period of 1277 /<sec and is to be played when the right push-button switch is closed.
Write a shortest program to play the notes when the switches are pressed.

8. Draw the staircase approximation to a sine wave generated by the program in
Problem 7 for a period of 1 millisecond, showing the voltage levels to two decimal
places, assuming the port outputs 0 or 5 volts.

9. Write the contents of vector BUFFER so the model traffic light in Figure 11.5 will
have the north-south red LED on and east-west green LED on for 10 seconds, the north-
south red LED on and east-west yellow LED on for 2 seconds, the north-south green
LED on and east-west red LED on for 8 seconds, and the north-south yellow LED on and
east-west red LED on for 2 seconds, using the program listed below that figure.

0000
1000
1100
1 1 1 0
1 1 1 1
0 1 1 1
001 1
0001

Figure 11.17. Johnson Counter Sequence



PROBLEMS 343

10. Write a shortest assembly-language program to output data from a buffer using
autoincrernent addressing to Port B each time Port A bit 7 rises from low to high.
Instead of using LDAA B,X STAA l,use LDAA 1,X+ STAA 1 to transfer a byte
from input to buffer. The program outputs ten bytes from vector BUFFER and exits.

11. Write a shortest assembly-language program to input data, from Port B each time
Port A bit 7 rises from low to high, to a buffer using autoincrernent addressing. Instead
of using LDAA 1 STAA B ,X , use LDAA 1 STAA 1,X+ to transfer a byte
from the input to the buffer. The program should store ten such bytes in vector
BUFFER and then exit.

12. In Figure 11.7, if the two least significant bits of port TCTLE, which is the 16-bit
port at $8a, are 10 instead of 01, the flag, which is the least significant bit of TFLG1
and is the 8-bit port at $8e, is set on the rising edge. Write a shortest program segment
to initialize the device and a shortest program segment to gadfly until a rising edge
occurs on PORTT bit 0.

13. In Figure 11.7, if the two least significant bits of port TCTLE, which is the 16-bit
port at $8a, are 11 instead of 01, the flag, which is the least significant bit of TFLG1
and is the 8-bit port at $8e, is set on both the rising and falling edge. Write a shortest
program segment to initialize the device and a shortest program segment to gadfly until
an edge of either type occurs on PORTT bit 0.

14. Write a shortest program to initialize the devices and input a byte from PORTA to
the 10-element BUFFER in an interrupt handler each time a rising edge occurs on PORTT
bit 0.

1 5. Write a shortest program to initialize the devices and input a byte from PGRTA to
the 10-element BUFFER in an interrupt handler each time a rising or a falling edge
occurs on PORTT bit 0.

16. Explain why interrupts are useful when unexpected requests are made from a device
but are actually slower than gadfly routines when expected requests are made from a
device,

17. Give two concrete examples of devices that will require each of the following
synchronization mechanisms, so that they should only use that mechanism and no other,
and give reasons for your choice: real-time, gadfly, and interrupt. For example, a
microcontroller in an electric stapler, that generates a pulse to engage a solenoid, should
use real-time synchronization, because the microcontroller is doing nothing else, and this
is the least costly approach, requiring minimal hardware.

18. An A-to-D converter consists of (1) a D-to-A converter that outputs data through
PORTA in Figure 11.10, which is converted to an analog voltage Vref, and (2) an analog
comparator that compares Vref to an input voltage Vin, inputting a high (1) in PORTS
bit 7 if Vref < Vin, otherwise inputting a low (0). Write a shortest subroutine RAMP
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that begins outputting Vref = 0, increments Vref until it just exceeds Vin, and returns
the byte it last output in PORTA. This is called a ramp converter.

19. An A-to-D converter is connected as in Problem 18. Write the shortest subroutine
SUCCESS that begins outputting Vref = 2.5 and recursively determines whether Vin is
in the upper or lower half of the range, reducing the range by one half each time it
determines which half of the range Vin is in. SUCCESS returns the final value output
on PORTA. This divide-and-conquer algorithm is like binary number division; it is called
successive approximation conversion.

20. For the compiled C procedure in Figure 11.18, encircle and label the following C
statements and assembly-language program segments: (1) declaration of global
variables; (2) declaration of I/O ports; (3) declaration, allocation, and deallocation of
local variables; (4) the initialization ritual; (5) for loop control statements to output
str; (6) while loop control statements to input until a carriage return; (7) gadfly loops;
(8) input operation; and (9) output operation. Next to each circle, write the label shown
above in italics or a number enclosed in parentheses () to identify which part the code
corresponds to. If one of the above appears in two parts, circle each part.

21. For the compiled C procedure in Figure 11.19, encircle and label the following C
and assembler program segments: (1) declaration of global variables; (2) declaration of
I/O ports; (3) declaration of local variables; (4) the initialization ritual; (5) the loop
control statements to try each value from 1 to 128; (6) the gadfly loop; (7) the input
operation; (8) the output operation; (9) calculation and collection of results; and (10)
an infinite loop to stop the program. Next to each circle, write the label shown above
in italics or a number enclosed in parentheses () to identify which part the code
corresponds to.

* volatile int SClBD@OxC8;volatile char SClCR@OxCB,SClSR@OxCC,SClDR@QxCF;
SClBDi EQU $C8
SC1CR: EQU $CB
SC1SR: EQU $CC
SC1DR: EQU $CF

ORG $800

* char j; const char str[10] = "Hi ThereXr";
j: DS.B 1
str: DC.B "Hi ThereXr"

* void put(char d) { while( ( SC1SR & 0x80 ) == 0) ; SC1DR = d; }

put: BRCLR SC1SR,$80,put
STAA SC1DR

RTS

* char get{) { while( ( SC1SR & 0x20 ) == 0) ; return SC1DR; }
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get: BRCLR SC1SR,$20,get
LDAB SC1DR
RTS

* void main() { char i;

PSHA

* SC1BD = 52; 7*9600 baud*/ SC1CR = OxC; /* enable Xmt, Rev devices */

MOVW #52,SC1BD
MOVE #$C,SC1CR

* i = SC1SR; i = SC1DR; i = SClSR; i = SC1DR; /* clear RDRF */

LDAB SClSR
LDAB SC1DR
LDAB SClSR
LDAB SC1DR

* for(i = 0; i < 9; i++) put(str[i]);

CLR 0,SP
LDX #str

11: LDAB B, X
BSR put
INC 0,SP
LDAB 0,SP
CMPB #9
BLT 11

* do j = get(); while( j != ' \ r ' ) ;

12: BSR get
STAB j
CMPB #13
BNE 12
PULA
RTS

Figure 11.18. Program with Disassembly
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unsigned char hi = 0, lo = 0;
HI: DC.B 0
LO: DC.B 0

unsigned char
PORTB61,DDRB@3,ATDCTL2@Ox62,ATDCTL5@Qx65,ATDSTATO@Ox66, ADR380x76;

PORTS: EQU 1

DDRB: EQU 3
ATDCTL2: EQU $62
ATDCTL5: EQU $65
ATDSTATO: EQU $66
ADR3: EQU $76

void main() { unsigned char i, j, k; DDRB - Oxff;

ORG $850
MAIN: LDD #$FF80

STAA DDRB ;DDRB=OXFF

ATDCTL2 = 0x80; for( j = 1; j != 0x80; j++) ;

STAB ATDCTL2 ;ATDCTL2=Ox80
LDY #$800 ; for( j=l ; j!=0x80; j++)

LOOP1: DBNE Y, LOOPl

for(i = 0; i != Oxff; i++){ PORTB « i; ATDCTL5 = 3;

LDD #03
LOOP2: STAA PORTB ;PORTB = i

STAB ATDCTL5 ;ATDCTL5 = 3

do ; while(!(ATDSTATO & 0x80)) ; k = ADR3;

PSHA
LOOP3: BRCLR ATDSTATO, #$80, LOOP3
;do-while(iATDSTATO & 0x80)

k = ADR3;

LDAB ADR3 ;k = ADR3

if((k > i) && (( j = (k ~ i ) ) > hi )) hi = j;
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SUBB 0,SP ;j-k-i
BEQ LOOP 4
BLO LOOP 5
CMPB HI ?j>hi?
BLS LOOP4
STAB HI ;hi=j
BRA LOOP4

if((k < i) && (( j = ( i - k) ) > lo )) lo - j;

LOOPS: NEGB ;j=i-k
CMPB LO
BLS LOOP4 ;j>lo?
STAB LO

for(i = 0; i != Oxff; i++){

LOOP4: PULA
INCA ;i++
CMPA #$FF ;j!=0x
BNE LOOP 2

LOOP6-. BRA LOOP6 ;do-while(l)

Figure 11.19. Another Program with Disassembly
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This board from Axiom Manufacturing has an MC68HC912B32,64K external static RAM
and AX-BDM-12 Debug 12 debugger. It is a full-function platform for developing prod-
ucts using the MC68HC912B32.
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Other Microcontrollers

The microcomputer is a powerful tool, as we have learned in the preceding chapters. But
the microcomputer is more than just one type of computer. There is a wide variety of
microcomputers with different capacities and features that make them suitable for
different applications. This chapter gives you some idea of this variety and the
applications for which particular microcomputers are useful. To keep our discussion
within the scope of this book, we examine microcomputers that are related to the 6812.
This is particularly convenient for us since the 6812 is in the middle of the Motorola
family of microcomputers, so that being thoroughly familiar with the 6812 makes it
fairly easy to learn the other microcomputers in this family. This discussion of Motorola
microcomputers will also help you with microcomputers designed by other companies.

This chapter has two themes. The first consists of a discussion of Motorola
microcomputers that are simpler than the 6812, which include the 6811, the 6808, and
the 6805. The second theme is an overview of the 68300, 500, and M-CORE series,
machines more powerful than the 6812. After you read this chapter, you should be able
to write simple programs for the 6811,6808, and 6805 and their variants. You should be
able to answer such questions as: Where should a 32-bit, 16-bit, or 8-bit microcomputer
be used? You should be able to approach a microcomputer designed along quite different
lines than the Motorola family, with some idea of what to look for. You should
appreciate the capacities of different microcomputers, and you should be able to pick a
microcomputer that is suitable for a given application.

Although the 6805 came first historically, we will treat the 8-bit microcomputers in
order of their similarity to the 6812. We begin with a discussion of the 6811 followed by
the 6808 and 6805. The final sections cover the 68300, 500, and M-CORE series, and
observe the suitability of each microcomputer for different applications.

12.1 The 6811

The 6811, the immediate predecessor of the 6812, was designed for a specific application,
automotive control, and then made available for other applications. The 6812 is upward
compatible to the 6811. The register set for the 6811 is identical to that of the 6812. The
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* SUBROUTINE DOTPRD
* LOCAL VARIABLES
TERM: EQU 0
* PARAMETERS
RADDR: EQU 2
LOCV: EQU 4
LOCWi EQU 6
DOTPRD: PSHX ; Allocate locals

TSX ; SP+1 -> X (Note: SP -> first free byte)
LDAA LOCV,X
LDAB LOCW,X
MUL
STD TERM, X ; Copy first term to local variables
LDAA LOCV+1,X
LDAB LOCW+1,X
MUL
ADDD TERM,X ; Dot product into D
P U L X ; Deallocate local variables
RTS

Figure 12.1. A 6811 Dot Product Subroutine

6811 lacks some of the instructions and many of the addressing modes of the 6812 (see
Table 12.1). You will be concerned mostly with the absence of stack index addressing.

Before we examine the differences, we should emphasize the similarities. The
instruction sets are so similar that many of the programs in earlier chapters can be used
in the 6811. The example that follows, the subroutine DOTPRD of Chapter 6 with the
parameters passed on the stack, shows how similar the 6811 is to the 6812.

In Figure 12.1, bold type shows differences from the 6812 example, which are in
allocating and indexing the stack. The 6811 has immediate, page-zero, 16-bit direct, and
inherent addressing, exactly as in the 6812. The relative address mode is available only as
an 8-bit relative address in BRA type of instructions, which behave exactly like their
counterparts in the 6812. Indirect, postincrement, predecrement, and program counter
relative addressing modes are missing in LDAA and similar instructions, and the index
mode is only available in the form where an unsigned 8-bit offset in the instruction is
added to the 16-bit index register X or Y. This program had to use the X register to
access the local variables and parameters on the stack because there is no indexing mode
that uses the stack pointer SP. The stack pointer actually points to the first free byte
below the top of the stack; the TSX instruction puts SP+1 in X, so the top of the stack
is at O^C. The LEAS instruction is absent from the 6811, so we allocate using PSHX, or
DBS, or temporarily putting SP into accumulator D and using SUED; and we deallocate
using PULX, or INS, or temporarily putting SP into accumulator D and using ADDD.
Also, instructions that read, modify, and write the same word in memory, such as INC
COUNT, may use only 16-bit direct or 8-bit unsigned offset indexed addressing. All 6811
address arithmetic is unsigned, so that if X contains $1000, then LDAA $FF, X loads
accumulator A from locations $1000 to $10FF. Programs using the 16-bit index
addressing mode of the 6812, such as LDAA $1000, X have to be modified too,
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because the 6811 has only an 8-bit offset. You often have to calculate the address
explicitly as the effective address is calculated within the 6812 instruction, put this
effective address in the X register, and use the instruction LDAA 0, X. Also, index
arithmetic can be done in accumulator D; the 6811 has the instruction XGDX to move
the result to and from X.

The 6812 LBRA and other 16-bit branch instructions, which simplify the writing of
position-independent code, are missing in the 6811, Writing position-independent code is
tedious. However, except for this capability, the 6811 can get the effect of long branch

Table 12.1. Instruction Set and Addressing Modes of the 6811



352 Chapter 12 Other Microcontrollers

instructions. For example, the 6812 instruction LBCC can be replaced by the 6811
sequence

BCS *+5
JMP L2

The 6812 extended arithmetic instructions _ EMUL, EMULS, EDIV, ED1VS,
IDIVS, and EMACS _ are not 6811 instructions. These have to be implemented as
subroutines. Other arithmetic instructions, MUL, FDIV, and IDIV, are quite a bit slower
in the 6811. Fuzzy logic instructions M E M , R E V , R E V W , WAV, and similar
instructions —ETBL, MAXA, MAXM, MINA, MINM, EMAXD, EMAXM, EMIND, and
EMINM—are not 6811 instructions; they are implemented as subroutines or macros.
6812 control instructions—CALL, DBNE, DBEQ, IBNE, IBEQ, TBNE, and TBEQ —are
not 6811 instructions, so a modified strategy is used to control loops and effect
conditional expressions. Finally, the 6811 does not have the MOVE, MOVM, PSHC,
PULC, and SEX instructions and does not have the full capabilities of TFR and EXG
instructions.

With these modifications, you can rewrite a program written for the 6812. Try a few
programs. Scan through the earlier chapters, and pick programs you have already written.
Rewrite them for the 6811. It is not too hard. However, we caution you that each
computer has its strong points, and writing a good program by adapting a program from
another computer for a new computer does not take full advantage of the strong points of
the latter. In the 6811, for instance, ABX is one byte, takes three cycles, and adds B as an
unsigned 8-bit number; its equivalent in the 6812, LEAX B,X, is two bytes, takes two
cycles, and adds B as a signed 8-bit number. The 6811 should use programs where an
unsigned index is added to the X register, in preference to those programs where a signed
index is added to X. You have to be more careful in the 6811 to organize your data to use
only positive offsets from X. For instance, you may select to implement a second stack
in the same direction as the hardware stack, to avoid using a negative offset to a stack
that moves in opposite direction to the hardware stack that shares its buffer space.

Your 6811 programs can be tested using the debugger MCUez or Hi Ware, which can
be implemented for the 6811 using a PC. We strongly recommend that you try your
programs on such a system to get a feeling for the 6811.

12.2 The 6808

The 6808 is upward compatible from the 6805 (described in the next section), which it is
intended to replace, while having the essential capabilities that are needed to implement
code generated by a C compiler. Moreover, the 6808 is likely to replace the 6805 in
newer designs and is more similar to the 6812, so we study it before the 6805. We will
show how you might program these microcomputers by comparing them to the 6811
and 6812.

Maintaining compatibility will be discussed after the 6805 is presented. We focus
on the differences between the 6812 and the 6808, so that you can adapt your 6812
programs to the 6808. Registers for the 6808 are like those in the 6811, but there is
neither accumulator B nor index register Y (see Figure 12.2, and see its condition codes
in Figure 12.3).
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Figure 12.2. Registers of the 6808

The 6808 addressing modes, except indexed, are the same as those in the 6812. The
16-bit index register HX is used as a pointer register without offset, as an index register
with an unsigned 8-bit offset, and as an index register with a 16-bit offset. The stack
pointer SP is used as a 16-bit register with an unsigned 8-bit or 16-bit offset. The MOV
(byte move) and CBEQ (compare and branch if equal) can use either pointer post-
increment or post-increment with 8-bit unsigned offset.

The instructions dealing with accumulator D in the 6811 and 6812 generally can be
replaced with those dealing with the 8-bit accumulator A in the 6808, at some loss in
efficiency. The index register HX is treated as a pair of registers, register H and register
X, just as accumulator D is accumulator A and accumulator B in the 6812, X can also be
compared, incremented, decremented, shifted, or used in MUL, like an accumulator.

The instruction set of the 6808 and its addressing modes appear in Table 12.2. New
instructions, not in the 6812 or 6811, are discussed below. These include MOV, RSP,
CPX, CPHX, AIX, AIS, NSA, CBEQ, DBNZ, BHCC, BHCS, BIH, and BIL. Also the
BSET, BCLR, BRSET, and BRCLR instructions use a bit position rather than a mask.

The 6808 MOV instruction is like the 6812 MOVE instruction but is restricted to a
source that may be immediate, page-zero, or autoincrement addressed and a destination
that is page-zero addressed or else a page zero source and destination that is autoincrement
addressed. It is especially useful for I/O that are ports on page zero.

RSP, needed for upward compatibility to the 6805, writes $FF into register X but
leaves register H unmodified. However, TXS and TSX move the index register HX to and
from the stack pointer SP (TSX increments and TXS decrements the value moved), so the
stack pointer can be set up in index register HX and transferred into SP. Because SP
points to the first free word below the stack, byte 0,SP shouldn't be read or written.

Figure 123. Bits in the 6808 Condition Code Register
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Table 12.2. Instruction Set and Addressing Modes of the 6808

While CPX compares only the low byte of the index register, CPHX compares both
bytes of register HX. AIX adds a signed 8-bit constant to register HX to access vectors.
AIS does the same to the SP, to allocate and deallocate local variables.

The instruction NSA exchanges the high and low nibbles in the accumulator; it can
be used to edit BCD numbers. DIV divides X into H (high byte) and A (low byte),
putting the remainder in H and the quotient in A. The MUL instruction multiplies A by
X, putting the 16-bit product in X:A.

The CBEQA and CBEQX instructions compare the accumulator or the X register to
an immediate operand. The CBEQ instruction compares the accumulator to a byte
addressed using page-zero, autoincrement, or stack pointer unsigned 8-bit offset index
addressing. A special CBEQ instruction compares the accumulator to a byte addressed
using an unsigned 8-bit offset index addressing using register HX and then increments
HX. The DBNZA and DBNZX instructions decrement the accumulator or the X register
and branch if nonzero. The DBNZ instruction decrements a byte addressed using page-zero
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or unsigned 8-bit offset index addressing using the index register HX, the stack pointer
SP, or HX without an offset. DBNZA and DBNZX are similar to the 6812 DBNE using
accumulator A, but DBNZ using a stack-indexed address is especially suited to using a C
local variable for a loop counter. For instance, the following program clears a 16-byte
vector whose base address is initially in HX; although the accumulator can be better used
as a loop count, using a local variable shows this special 6808 mechanism:

LDAA #$10 ; generate loop count
PS HA ; save it on the stack

LOOP: CLR , X ; clear word pointed to by HX (no offset)
AIX # 1 ; i ncrement pointer
DBNZ 0, SP, LOOP ; count down
PULA ; restore the stack

The branch instructions have a means to test the half-carry condition code bit H,
which are BCHS and BHCC; a means to test the interrupt request pin IRQ, which are BIH
and BIL; and the interrupt request mask, which are BMC and BMS. Finally, the BSET,
BCLR, BRSET, and BRCLR instructions use a binary bit number to indicate which bit is
set, cleared, or tested, rather than the bit mask used in the 6811 and 6812. For instance,
the instruction BSET 3 , $ 10 will set bit 3 in word $10.

* SUBROUTINE DOTPRD
* LOCAL VARIABLES
TERM: EQU 1 ; Note: location 0,SP is first free byte above stack
NBYTES: EQU 2
* PARAMETERS
RADDR: EQU 3 ; Return address
LOCV: EQU 5 ; Vector V passed by value
LOCW: EQU 7 ; Vector W passed by value
DOTPRD: AIS #-NBYTES ; Allocation for local variables

LDAA LOCV,SP ; Get V(0)
LDX LOCW,SP ;GetW(0)
MUL
S T X TERM, SP ; High byte to local variable
STAA TERM+1, SP ; Low byte to local variable
LDAA LOCV+1,SP ; Get V(l)
LDX LOCW+1,SP ;GetW(l)
MUL
ADD TERM+1, SP ; Add low byte
STAA TERM+1, SP ; Store low byte
T X A ; Get high byte
ADC TERM,SP ; Add high byte
TAX ; Put high byte in X
LDAA TERM+1, SP ; Get low byte
AIS #NBYTES ; Deallocate local variables
RTS

Figure 12.4. A 6808 Dot Product Subroutine
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Figure 12.5. The Register Set of the 6805

Figure 12.4, the DOTPRD subroutine with stack parameters from Chapter 6, shows
some similarity between the 6808 and the 6812. Differences, shown in bold type, are in
allocating local variables and implementing 16-bit arithmetic.

With these "patches," you can refer to the CPU08 Central Processor Unit Reference
Manual to learn how to program it without much difficulty, although you might have a
certain amount of frustration after being accustomed to the 681.2.

12.3 The 6805

The very inexpensive single-chip 6805 was designed for simple control applications that
utilize bit manipulation and data structures but require simple instructions and only a few
registers. Thus the 6805 has many addressing modes and bit manipulation instructions,
even though it has few registers and few complex instructions.

Figure 12.5 shows the 6805 register set. Compared to the 6808, the stack pointer
and index register are only eight bits long. Figure 12.6 shows the 6805 condition code
register. Compared to the 6808, there is no V bit to indicate a two's-complement
overflow. Finally, Table 12.3 displays the 6805 addressing modes and instruction set.
Compared to the 6808, the main difference is there are no push or pull instructions or
stack index addressing. The 6805 stack is designed to hold only a subroutine return
address and hold the machine state during an interrupt. There is no effective way to pass
parameters on the stack or allocate and access local variables on the stack. Also, because
there is no V condition code bit, there are no conditional branches for signed arithmetic;
and because there is no HX register, there are no instructions for that register. And 6808
special instructions, DAA, MOV, NSA, DIV, DBNZ, and CBEQ are missing.

Figure 12.6. Bits in the 6805 Condition Code Register



123 The 6805 357

Table 123. Instruction Set and Addressing Modes of the 6805

Figure 12.7 is a 6805 example of the subroutine DOTPRD in Chapter 6 that passes
parameters as global variables, because the 6805 stack can't effectively pass parameters.
Also, local variables are not allocated or deallocated, because the stack can't effectively
hold local variables. Otherwise this subroutine is very similar to the 6808 DOTPRD.

Returning to the 6808, which is upward compatible to the 6805, the assembly
language as well as machine code instructions that are in both will execute the same,
except that the 6808 V condition code is modified as it is in the 6812. If the H register is
not used, it is initialized to zero, and index addressing is the same in both machines. In
fact, the H register is not stacked when SWI is executed or when an interrupt occurs. An
interrupt handler has to save and restore H using an explicit PSHH or PULH instruction.

We focus here on programming this microcontroller, but we are intrigued by the
6805 hardware and spellbound by the possibilities of applying it. With this coverage and
the information in a data sheet for the 6805, you should be able to write short programs
for that very-low-cost microcomputer.
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* SUBROUTINE DOTPRD
* GLOBAL VARIABLES USED IN SUBROUTINE AND AS PARAMETERS
TERM: RMB 2
LOCV: RMB 2
LOCW RMB 2
LOCDP: RMB 2
*

DOTPRD: LDAA LOCV
LDX LOCW
MUL
STAA TERM+1 ; Copy first term low byte to local variables
STX TERM ; Copy first term high byte to local variables
LDAA LOCV+1
LDX LOCW+1

MUL

ADD TERM+1 ; Add first term low byte to product
STAA LDCDP+l ; Copy first term low byte to out. param.
TXA ; Move high byte to accumulator
ADC TERM ; Add first term high byte to product
STAA LDCDP ; Copy first term high byte to out. param.
RTS

Figure 12.7. A 6805 Dot Product Subroutine

12.4 The 68300 Series

The preceding sections covered microcomputers that are less powerful than the 6812. We
now present an overview of the 68300 series of microcomputers (the 68332, 68340) to
convey an understanding of the strengths and weaknesses of these microcomputers in
particular and of similar 16-bit microcomputers in general. The next section will
similarly introduce the 500 and M-CORE series of RISC microcontrollers. However, in
these two sections, we will at best be able to prepare you to write a few programs,
similar to those written for the 6812, for these microcomputers. There is much more to
these computers than we can discuss in the short section we can allot to each computer.

The register set for the 68300 series features seventeen 32-bit registers, a 32-bit
program counter, and a 16-bit status register (see Figure 12.8). The eight data registers
are functionally equivalent to the accumulators in the 6812, and the nine address registers
are similar to the index registers.

The low byte of the status register is similar to the 6812 condition code register,
having the familiar N, Z, V, and C condition code bits and a new condition code bit X,
which is very similar to the carry bit C. Bits X and C differ in that C is changed by
many instructions and is tested by conditional branch instructions, while X is changed
only by a few arithmetic instructions and is used as the carry input to multiple-precision
arithmetic operations. Having two carry bits, X and C, avoids some dilemmas in the
design of the computer that are inherent in simpler computers such as the 6812. This
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Figure 12.8. Register Set of 68300 Series Microcomputers

allows X to be set specifically for multiple-precision arithmetic and lets C be set for
more instructions (such as MOVE) to facilitate testing using instructions (such as BLS).
The high byte of the status register contains a bit, S, that distinguishes the mode as user
or system. When it is set, the program uses the system stack pointer whenever it uses
address register 7; and when it is clear, the program uses the user stack pointer whenever
it uses address register 7. Further, several instructions can only be executed when the
program is in the system mode (S = 1), and hardware can be built so that some memory
or I/O devices may be accessed only when the program is in the system mode. This
permits the writing of secure operating systems that can have multiple users in a time-
sharing system, so that the users cannot accidentally or maliciously damage each other.

The 68300 series memory is organized as shown in Figure 12.9a. The 16-bit-wide
memory is actually addressed as an 8-bit memory, so that a 16-bit word (the unit of
memory read or written as a whole) is logically two consecutive locations. Instructions
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Figure 12.9. Memory Spaces in the 68300 Series

can read or write a byte (the mnemonic ends in . B for byte), a 16-bit word (these end in
. W for word), or two consecutive words (these end in . L for long). If the suffix . B, . W,
or . L is omitted, it is generally assumed to be a word (. W) instruction, unless such an
option is not available. Word and long accesses must be aligned with memory so their
addresses are even numbers; byte accesses using even addresses will read or write the high
byte; and those with odd addresses will access the low byte of a word. This is consistent
with the 6812 convention that puts the most significant byte at the lower-numbered
address. Bits are numbered from right (0) to left (7) in a byte exactly as the 6812. If the
hardware is so designed, access in the supervisor mode can access different memory than
in the user mode, and fetching instructions can be done in different memories than
reading or writing data, as shown in Figure 12.9b. Otherwise all memory can be the
same regardless of whether it is accessed in supervisor mode or user mode, fetched from
program space, or memorized or recalled from data space, as shown in Figure 12.9c.

The instruction set and the addressing modes are shown in Tables 12.4 to 12.6. You
may observe the general MOVE instruction, which has variations for moving one byte
(MOVE. B), a word (MOVE . W), or two words (MOVE. L). The source is always the first
(left) operand, and the destination is the second (right) operand. Any addressing mode may
be used with the source or destination. This general instruction is equivalent to the 6812
LDAA, LDD, LDX, and so on, and STAA, STD, STX, and so on, as well as the TFR
A,B and TFR D , X instructions. It also includes a capability to move directly from
memory to memory without storing the moved word in a register. In fact, there are over
12,000 different combinations of addressing modes that give different move instructions.
There are similar byte, word, and long modes for arithmetic, logical, and edit
instructions.
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Table 12.4. Addressing Modes for the 68300 Series

The addressing modes listed in Table 12.4 can be used with almost all instructions.
We will note those that are essentially the same as 6812 modes first, and then we will
examine those that are significantly different.

Moving a byte, or word, into a 32-bit data register will result in replacing only the
low byte, or word, in the register, leaving the other bits of the register untouched.
Moving a word to an address register results in filling the high sixteen bits with the sign
bit of the word that was moved, and moving a byte to or from an address register is not
permitted. Immediate addressing can provide 16- or 32-bit operands. (Long) direct
addressing uses a 32-bit address and can therefore address any word in memory. Pointer,
postincrement, and predecrement are the same as in the 6812; a postincrement read of a
word increments the pointer by 2, and a postincrement read of a long word increments the
pointer by 4. Predecrement works similarly and write works similarly. Your experience
with the 6812 should facilitate learning these modes.

The remaining modes consistently use sign extension to expand 8- or 16-bit
instruction offsets to 32 bits before using them in address calculations. (Short) direct
addressing is somewhat like direct page addressing, requiring a short 16-bit instruction
offset; but, using sign extension, it can access locations 0 to $7FFF and $FFFF8000 to
$FFFFFFFF. Similarly, index addressing uses sign extension, so if AO contains
$10000000, AO index addressing accesses locations $QFFF8000 to $10007FFFF.

In Tables 12.5 and 12.6, Dn is any data register; An or Am is an address register;
Xn is any An or Dn; nnnnnnnn is any 32-bit number; nnnn is any 16-bit number; nn is
any 8-bit number; and n is a number 0 to 7. rrrr is any 16-bit offset for which PC+rrrr =
LI; and IT is any 8-bit offset for which PC + rr = LI . Re —SFC, DFC, VBR, or USP—
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Table 12.5. Move and Arithmetic Instructions for the 68300 Series
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Table 12.6. Other Instructions for the 68300 Series
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is a list of data and/or address registers; #<data> is an immediate operand; <ea> is an
addressing mode; <label> is a label on a program statement; and cc is a condition code
and value.

The 68300 effective address can be the sum of three values. The sum of a general
register (which is any address or data register), an address register, and a signed 16-bit
offset is used as the effective address in base index addressing.

Several special move instructions are provided. A MOVE instruction can move data
to or from the status register (although the user can only access the low byte using
MOVE. B), and the user stack pointer can be set while in the system state using a special
MOVE. An EXG instruction permits exchanging the bits in the data or address registers.
The instruction MOVEM, for move multiple, is a generalized PSHX or PULX instruction.
Registers to be pushed or pulled are specified by separators "/," meaning AND, and " --,"
meaning TO, The instruction MOVEM DO/D1/AO, - (A7 ) pushes DO, Dl, and AO
onto the user's stack (or system stack if in the system mode). However, any address
register may be used in lieu of A7, so that the user may create many stacks or queues and
use this instruction with them. MOVEA is a variation of MOVE that moves to an address
register and that does not affect the condition codes, MOVEQ is a short version of MOVE
immediate using an 8-bit signed immediate operand, and MOVEP is a MOVE that can be
used to move data to an 8-bit I/O device that might be designed for the 6812.

Other instructions from the move class include the LEA instruction, which works
just like LEAX in the 6812; PEA, which pushes this effective address on the stack; and
the familiar TST and CLR instructions. The LINK and UNLINK instructions are designed
to simplify allocation and deallocation of local variables using the stack marker, as
discussed in Chapter 6. The instruction LINK AO will push AO onto the stack, put the
resulting stack address into AO, and add (negative 10) to the stack pointer to allocate ten
bytes. The instruction UNLINK AO deallocates by reversing this procedure, copying
AO into the stack pointer and then pulling AO from the stack.

Arithmetic instructions are again similar to 6812 arithmetic instructions. As with
MOVE instructions, ADD, SUB, and CMP have byte, word, and long forms, and ADDA and
SUBA are similar to MOVEA. A memory-to-memory compare CMPM uses preincrement
addressing to permit efficient comparison of strings. There are no INC or DEC
instructions. Rather ADDQ can add 1 to 8, and SUBQ can subtract 1 to 8, from any
register. These instructions are generalized INC and DEC instructions. Multiple-precision
arithmetic uses ADDX, SUBX, and NEGX in the same way that ADC is used in the 6812,
except that the Z bit is not set, only cleared if the result is nonzero and only
predecrement addressing is used. The handling of Z facilitates multiple-precision tests for
a zero number. Decimal arithmetic uses ABCD, SBCD, and NBCD and is designed to work
like multiple-precision binary arithmetic such as ADDX. However, only bytes cart be
operated on in these instructions. A special compare instruction CHK is used to check
addresses. For example, CHK DO , #$ 1000 will allow the program to continue if DO is
between 0 and 1000; otherwise, it will jump to an error routine much as the SWI
instruction does in the 6812. Finally, this machine has multiply and divide instructions
for signed and unsigned 16-bit operands that produce 32-bit results. Logic instructions are
again very familiar. We have AND, OR, and EOR as in the 6812. As with ADD, the
instructions AND and OR can operate on a data register and memory word, putting the
result in the memory word. We have BCLR, BSET, and BTST as in the 6805 and also a
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BCHG instruction that inverts a bit. Moreover, the chosen bit can be specified either by
an immediate operand or by the value in a data register. The S*** group of instructions
copies a condition code bit, or a combination of them that can be used in a branch
instruction, into a byte in memory. For example, SEQ $100 copies the Z bit into all
the bits of byte $100. The test and set instruction (TAS) is useful for some forms of
multiprocessing. It sets the condition codes as in TST, based on the initial value of a
byte, and then sets the byte's most significant bit.

Edit instructions include the standard shifts, with some modifications. All shifts that
shift the contents of a data register can be executed many times in one instruction. The
instruction ASL. W #3, DO will shift the low byte of DO three times, as in the 6812
sequence

ASLD
ASLD
ASLD

The number of shifts can be specified as an immediate operand or can be the number in a
data register. However, when shifting memory words, an instruction can shift only one
bit. Also, ROL and ROR are circular shifts of the 8- , 16-, or 32-bit numbers that do not
shift through the X bit; ROXL and ROXR are 9-, 17-, or 33-bit shifts that shift through
the X bit as the ROL and ROR instructions shift through the C bit in the 6812. EXT is a
sign extend instruction like the 6812 instruction SEX, and SWAP exchanges the low and
high words in the same data register.

Control instructions include the familiar conditional branch (B*** S), branch
(BRA.S), branch to subroutine (BSR.S), long branch (BRA.L), conditional long
branch (B*** .L), long branch to subroutine (BSR.L), jump (JMP), and jump to
subroutine (JSR) instructions, as well as the NOP, RTS, and RTE (equivalent to the
6812 RTI). The instruction RTR is like RTS, which also restores the condition codes.
Special instructions STOP and RESET permit halting the processor to wait for an
interrupt and resetting the I/O devices.

The decrement and branch group of instructions permits decrementing a counter and
simultaneously checking a condition code to exit a loop when the desired value of the
condition code is met. The condition code specified by the instruction is first tested, and
if true, the next instruction below this instruction is begun. If the condition is false, the
counter is decremented, and, if-1, the next instruction is executed; otherwise, the branch
is taken. The sequence

LI: CLR.B (A0) +
DBF DO,LI

will execute the pair of instructions n + 1 times, where n is the number in DO . This
powerful instruction allows one to construct fast program segments to move or search a
block of memory. Moreover, in the 68300 series and such short loops are detected, and,
when they occur, the two instructions are kept inside the MPU so that the opcodes need
not be fetched after the first time, so that these loops run very fast.

We now consider a few simple programs that illustrate the 68300 series instruction
set. The first is the familiar program that moves a block of 10 words from SRC to DST.
This program shows the way to specify the byte, word, or long form of most
instructions, and it shows the powerful decrement and branch instruction.
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Let us now look at the overused inner product subroutine, passing the parameters in
the in-line argument list by value, in Figure 12.10. Although this method of passing
parameters is not the best for the 68300 series because it has plenty of registers to pass
parameters by registers, it illustrates the use of data and address registers and is used by C
and C++. The LINK and UNLINK instructions are generally used to duplicate the stack
pointer in another register, commonly A6. Register A6 accesses parameters with positive
offsets and local variables with negative offsets. But, with an abundance of registers, the
68300 series can often save intermediate results in registers rather than on the stack, as in
this example. So this example doesn't use any local variables.

Whereas we can see that the 68300 series is superior to the microcontrollers
discussed earlier in this chapter for 16-bit and 32-bit arithmetic, this example shows they
have a little difficulty in dealing with 8-bit data. The multiply instructions do not have
an 8-bit by 8-bit multiply such as MULU. W LOCW+1 (A6 ) , DO . Moreover, just using
an instruction like MOVE .B LOCV( A6 ) ,DO to bring in the operand and then using
MULU. W D1, DO leaves the high-order bits of DO unmodified. Bits 15 to 8 will be used
in the MULU.W D1,DO instruction. So these bits must be cleared unless they are
known to be clear already. The instruction CLR. L DO will take care of this. We didn't
have to worry about such a case in the microcontrollers discussed earlier in this chapter.
The 68330 series, designed for 16-bit and 32-bit arithmetic, is often no better than the
6812, 6811, 6808, and 6805 microcontrollers for operating on 8-bit data and may even
be less efficient for some operations than those microcontrollers are.

With this short example, some of the flavor of the 68300 series can be seen. The
machine offers a very large address space, over 16 megabytes, and 17 data and address
registers. They offer superior performance for 16-bit and 32-bit arithmetic, and a more
extensive instruction set than the microcontrollers discussed earlier in this chapter.
However, especially in handling 8-bit data, those microcontrollers discussed earlier in
this chapter may well exhibit comparable or even superior performance.

* SUBROUTINE DOTPRD
* PARAMETERS
LOCV: EQU 4
LOCW: EQU 6
DOTPRD: L I N K A 6 , 0 ; Allocate no locals; put stack frame in A6

C L R . L D 0 ; Clear out high bits of DO
CLR. L D 1 ; Clear out high bits of Dl
C L R. L D 2 ; Clear out high bits of D2
MOVE. B LOCV ( A 6 ) , D 0 ; Get V(0)
MOVE. B LOCW (A6 ) , D1 ; Get W(0)
MULU. W Dl , DO ; Multiply V(0) by W(0), result in DO
MOVE.B LOCV+1(A6)/D1 ;GetV(l)
MOVE.B LOCW+1 (A6 ) ,D2 ;GetW(l)
MULU.W D2,D1 ; Multiply V(l) by W(l)
ADD. W D1, DO ; Dot product into DO
UNLINK A6 ; Deallocate local variables
RTS

Figure 12.10. A 68300 Series Dot Product Subroutine
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12.5 The 500 Series

The 500 series of microcomputers are Reduced Instruction Set Computers (RISC) that
differs from Complex Instruction Set Computers (CISC) discussed heretofore. Its
registers are shown in Figure 12.11, and its instruction set is given in Table 12.7.

A RISC computer trades off control complexity for additional general purpose
registers. See Figure 12.11. The 500 series has 32 32-bit registers that can be used as
address or as integer data registers are used in the 68300 series. Additionally, 32 64-bit
floating-point registers each can hold a double-precision floating-point number. Finally,
there is a link register that holds a subroutine return address, a count register that holds a
loop counter, a condition register that holds codes for conditional branching, a floating-
point status and control register, and an integer exception register.

The RISC architecture has very simple move instructions with limited addressing
modes. The load instruction mnemonics (Table 12.7) are parsed as illustrated by lhau
r3,10 ( r4 ) : the "1" means load; the "h" means half-word, which is 16 bits; "u"
means unsigned (fill with zero bits) to load general register r3; and the effective address is
the sum of the instruction's offset 10 and general register 4. The last general register, r4
in this example, may be register 0, in which case the value 0 is used in place of it. This
permits a page-zero addressing mode but uses a sign-extended offset. If an "x" is
appended, a second general register is used in place of the offset in the address calculation.
The instruction lhaux r3, r4, r5 loads general register 3, as an unsigned number,
with the half-word, at the effective address which is the sum of general register 4 and
general register 5. In place of "1" the letters "st" cause the register to be stored, in
place of "h" the letter "b" causes eight bits to be moved or the letter "w" causes 16
bits to be moved; and in place of "u" the letter "a" causes the number to be sign
extended when it is loaded. The letter "r" in Ihbrx indicates byte reversal; a 16-bit word
is loaded, but the two bytes in it are reversed as they are loaded. The load multiple
instruction Imw r3,10 (r5 ) loads the registers from r3 to r31 with memory data
starting from the effective address, which is the contents of register 5 plus ten. The load
string instruction Iswx similarly loads string data into registers, but with more
complexity, which we skip in this introductory treatment. There are corresponding
integer store instructions and similar load and store instructions for floating-point and for
special-purpose registers.

Figure 12.11. User Registers for the 500 Series
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Table 12.7. Instructions for the 500 Series

The RISC architecture uses three-register-address instructions for all arithmetic,
logical, and edit instructions. There are also immediate operand arithmetic instructions,
but no arithmetic instructions that access memory. For instance, the add instruction add
r3 , r4 , r5 puts the sum in r3 of r4 plus r.5. Letters appended to the mnemonic enable
other results of addition to be recorded or used. If a letter "c" is appended, the carry bit in
the integer exception register is loaded with the carry out of the addition; if a letter "o" is



12.5 The 500 Series 369

appended, the overflow in the integer exception register is loaded with a two's-
complement overflow status bit; and if a period (.) is appended, the condition code
registers are updated for conditional branching. An appended letter "e" adds the previous
carry bit into the sum, in the manner of the ADC instruction, and another appended "m"
adds a minus 1 to it. An appended letter "i," as in addi r5, r6,7, indicates that the
sum put in r5 is source general register, r6 plus a 16-bit signed immediate operand, 7,
But if the source register is rO, the constant 0 is used instead of the contents of the source
register; this add immediate instruction is thus used to load immediate data into a general
register. Also, if a letter "s" is appended, as in addis, the immediate value can be added
to the high 16 bits of the destination general purpose register rather than the low-order 16
bits.

There are subtract instructions analogous to the add instructions. The letter "£" in
their mnemonics, as in subf r2 , r3, r4, just means subtract r3 "from" r4, putting
the result in r2. The multiply instruction can multiply a register's high word or low
word as signed or unsigned numbers, and a register's word value can be divided by
another register's word value as a signed or unsigned number. A register can be ANDed,
ORed, or exclusive-ORed with an immediate value (in the register's left 16 bits or right
16 bits) or another register, and source values can be complemented before being operated
on. The edit instructions include the logical shift left instruction slw, logical shift right
instruction srw, where the amount shifted is an immediate operand or the contents of
another general purpose register, and the sign extension instructions extsb and
extsh. The novel rlwinm edit instruction rotates the register contents left, and also
generates a mask that is ANDed with the result of stripping off some of the bits. It and
similar instructions can efficiently extract and insert bit fields in a struct.

The control instructions differ from the instruction sets discussed heretofore in the
way conditions are recorded and tested and the way a return address is saved and restored.

The conditional branches be, bca, bcl, and bcla test bits in the 32-bit condition
register. The branch address is a signed page-zero address (ba and bla) or a relative
address (b and bl). Four bits are typically used for each condition. Within each four-bit
set, the leftmost bit indicates less than; the next bit, greater than; the next bit, equal to;
and the last bit, indicating that the numbers are not able to be computed (an overflow
occurred) or compared (they are unordered). There are eight sets of these 4-bit conditions.
The leftmost set reflects integer arithmetic condition codes, modified by an arithmetic
instruction if a period is put at the end of the opcode mnemonic. A subsequent
conditional branch instruction reacts to the arithmetic instruction's result condition. The
second leftmost set reflects floating-point exceptions. The other six sets are updated by
compare instructions; some of its instruction bits designate which set in the condition
register is updated. In effect, the conditional branch instruction contains a bit number for
a bit in this condition register, and the branch takes place if the selected bit is true. There
are also similar unconditional branch instructions b, ba, bl, and bla.

* SUBROUTINE DOTPRD
DOTPRD: MULU r26, r27 , r28 ; Multiply V(0) by W(0), result in r26

MULU r3l,r29,r3Q ; Multiply V(l) by W(l), result in r31
ADD r31fr31,r26 ; Dot product into r31
BLR ; Return link register to program counter

Figure 12.12. A 500 Series Dot Product Subroutine
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Branch instructions (bl, bla, bcl, and bcla) save the address of the next
instruction in the link register (Table 12.7). This link register can later be moved into
the program counter to return from the subroutine by a blr instruction (which can also
be conditional). If a subroutine is to call another subroutine, the contents of the link
register must be saved. While there is no hardware stack on which return addresses are
automatically saved, the programmer can implement a software stack, using any register
as a software stack pointer. The link register can be saved on this stack just after the
subroutine is entered and can be restored into the link register when the subroutine is
about to be exited by a blr instruction. It should be noted that this overhead, of saving
the return address on a stack and restoring it, is only needed if the subroutine calls
subroutines. It should be further noted that if a subroutine is called ten times, the code to
save and restore the return address is put just once in the subroutine, not in each
occurrence where the subroutine is called. Thus, even though hardware does less work in
a RISC processor than a conventional CISC processor, these tradeoffs can be justifiable.

The 500 series has a count register able to be used in decrement and count
instructions. This register can also be used like the link register to save return addresses.

To conclude this section, in Figure 12.12 we illustrate the overused inner product
subroutine, passing the parameters in registers by value. High-number registers are easy
to load and unload, using load multiple and store multiple instructions. Therefore we
assume that the vector elements V[0] and V[l] are in general registers 27 and 28, the
vector elements W[0] and W[l] are in general registers 29 and 30, and the inner product
result is left in register 31. So this example doesn't use any local variables.

12.6 The M-CORE Series

Motorola has recently introduced the M-CORE series of RISC microcontrollers. Memory
in an M-CORE processor is organized similarly to the memory in the 3xx family. This
processor has user and supervisor modes. The user mode has 16 general-purpose registers,
a program counter PC, and a carry bit C. The supervisor mode has this set, and an
alternate set, of these general purpose registers, and 13 special-purpose status and control
registers. See Figure 12.13. We will mainly discuss the user mode in this overview.

The instructions are described in Table 12.8. LD.B can load any general-purpose
register (GPR) with a byte from memory at an effective address that is the sum of a GPR
and a 4-bit unsigned constant multiplied by the data size. LD. H similarly loads a 16-bit
word, and LD. W loads a 32-bit word. These load instructions load the right bits of the
GPR, filling the other bits with zeros. Similarly, ST. B, ST. H, and ST. W store a GPR
into memory using the effective address discussed for LD.B. The LRW instruction can
load a GPR with a 32-bit word at an effective address that is the program counter PC
added to an 8-bit offset; MOV can move any GPR to any GPR; and MOVI can write a 7-
bit unsigned immediate number into a GPR. MTCR can move any GPR to any special
register, and MFCR can move any special register to any GPR. LDM permits a group of
GPRs, from a register number designated by an operand, to register r!5, using register
RO as a pointer; and STM stores such a group of registers. Similarly LDQ and STQ load
and store GPR registers r4 to r7 using any GPR as a pointer.
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Figure 12.13. M-CORE Register Set

One of the interesting features of this microcontroller is that it has only one
condition code bit, which is affected by only a few of the instructions. Generally, the
result of an operation is put in a general-purpose register; a compare instruction is
executed to put the result of this result into C; and an instruction tests this bit to branch
to another location. Instruction MOVT (and MOVF) transfers any GPR to any GPR if the
C bit is true (false). Instruction MOVC (or MOVC ) transfers C (or C complemented) to
the low-order bit of any GPR, filling the other bits with zero. TSTNBZ sets C if none of
the four bytes of the designated GPR is zero; otherwise it clears C. The clear instruction
clears if the C bit is true (CLRT) or if it is false (CLRF).

M-CORE arithmetic instructions include addition (ADDU) to add a GPC to a GPC,
add immediate (ADDI), add with carry (ADDC), similar subtract (SUBU), subtract
immediate (SUBI), subtract with carry (SUBC), reverse subtract (RSUB), and reverse
subtract immediate (RSUBI), wherein the subtrahends are reversed.

Compare instructions set the C bit if one GPR is higher or the same as another
(CMPHS), if one GPR is less than another (CMPLT), if a GPR is less than an immediate
operand (CMPLTI), if a GPR is not equal to another GPR (CMPNE), or to an immediate
operand (CMPNEI). CMPLT and CMPLTI are signed compares; the others are unsigned
compares.

The arithmetic instructions include unsigned multiplication (MULT) and division
(DIVU) and signed division (DIVS). Multiplication multiplies one GPR by another and
puts the product in a 32-bit product in the first GPR. Division always divides any GPR
by rl, putting the quotient in the GPR.

The increment instruction adds one to a GPR if the C bit is true (INCT) or if it is
false (INCF), and the decrement instruction subtracts one from a GPR if the C bit is true
(DECT) or if it is false (DECF). Other decrement instructions subtract one from a GPR
and set the C bit if the result is greater than zero (DECGT), if the result is less than zero
(DECLT), or if the result is not zero (DECNE).



372 Chapter 12 Other Microcontrollers

Table 12.8. Instructions for the M-CORE Series

M-CORE has some unusual arithmetic instructions. The ABS instruction gets the
absolute value of a GPR's data. The FF1 instruction finds the first one of a bit pattern in
a GPR. This instruction is useful in emulating floating-point arithmetic (alternatively a
floating-point hardware accelerator can be put on the chip to more quickly execute
floating-point instructions). Index instructions IXH and IXW add one GPR to another,
multiplying one of the addends by two or four. These are useful in calculating an address
of an element of a vector.

M-CORE logical instructions include AND to AND, a GPC to a GPC; AND I to
AND, an immediate operand to a GPC; and ANDN to AND, the negative of a GPC to a
GPC. TST sets C if the AND of two designated GPR is nonzero; otherwise it clears C.
It has an OR instruction to OR a GPC to a GPC, an XOR instruction to exclusive-OR a
GPC to a GPC, and an instruction, NOT, to complement all bits in a GPC. Further
logical instructions are BCLRI, which clears a bit of a GPR specified by an immediate
operand; BSETI, which sets a bit of a GPR specified by an immediate operand; and
BTSTI, which puts a bit of a GPR, specified by an immediate operand, into the C bit.
The instruction BGENI sets a bit of a GPR specified by an immediate operand and clears
all other bits, and BGENR sets a bit of a GPR selected by another GPR. BMASK1 sets all
bits of a GPR to the right of a bit selected by an immediate operand.
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M-CORE edit instructions include ASR to shift a GPR right arithmetically a
number of bits specified by a GPR; ASRC to shift a GPR right arithmetically one bit,
putting the bit shifted out into C; ASRI to shift a GPR right arithmetically a number of
bits specified by an immediate operand; and similar instructions LSL,LSR,LSRC,
LSLI, LSLRI, and ROTLI. The last instruction is a circular shift of a GPR. The BREV
instruction reverses the bits in a GPR. XSR shifts a GPR one bit right, putting the bit
shifted out into the C bit. SEXTB sign extends a GPR from 8 to 32 bits, SEXTH sign
extends a GPR from 16 to 32 bits, ZEXTB zero extends a GPR from 8 to 32 bits, and
ZEXTH zero extends a GPR from 16 to 32 bits. XTRBO extracts byte zero (the LSbyte)
of any GPR to GPR register 1. XTRB1 similarly extracts byte one of any GPR, XTRB2
extracts byte two, and XTRB3 extracts byte three.

Addition and subtraction are unsigned, there being no V condition code bit needed for
a signed overflow check. But because data moved into a GPR can be sign-extended using
SEXTB or SEXTH, and addition and subtraction are 32-bit operations, a 32-bit signed
overflow is unlikely. Before a store instruction such as ST. B or ST. H, the high bits,
which are not stored, can be checked to see if they are all zeros or all ones.

The reader should observe that the M-CORE architecture has unusually extensive
logic and edit instructions. These instructions are valuable for I/O operations. However,
there are comparatively fewer arithmetic and move instructions in this RISC processor.

M -CORE control instructions include BR to branch to a relative address using an
11-bit relative address, BRT to branch if C is true, BRF to branch if C is false. JMP
copies a GPR into the PC, and JMP I jumps indirectly to an address at a word specified
by an 8-bit displacement. If the C bit is 1, the LOOPT instruction decrements a GPR
and branches backwards up to 15 instructions to implement a loop. Otherwise it
decrements the GPR and continues to execute the instruction below it.

JSR saves the PC in GPR register 15 and copies a GPR into the PC, and JSRI
saves the PC in GPR register 15 and jumps indirectly to an address at a word specified by
an 8-bit displacement. TRAP, having a 2-bit immediate operand, effects an exception
like an interrupt, through an address stored at 0x40 to Ox4f. TRAP and other exceptions
and interrupts save the processor status register (special purpose register 0) and return
address in status/control registers. The instruction RTE returns from an exception, and
RFI returns from a fast interrupt, restoring the saved PC and processor status register.

The instruction BKPT causes a breakpoint exception. It can be used to stop a
program so that the debugger can examine memory or registers and resume. WAIT
causes the processor to enter low-power wait mode in which all peripherals continue to

*
* SUBROUTINE DOTPRD: a JSR/BSR instruction puts the return address into R15
*
DOTPRD: MUL r 1, r3 ; Multiply V(0) by W(0), result in rl

MUL r 2, r 4 ; Multiply V( 1) by W( 1), result in r2
ADD rl, r2 ; Dot product into rl
JMP r!5 ; Return R15 to program counter

Figure 12.14. An M-CORE Dot Product Subroutine
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run, and DOZE causes the processor to enter low-power doze mode in which some
peripherals continue to ran. STOP causes the processor to enter low-power stop mode.
The MMC2001, a first implementation of the M-CORE family, uses 40 milliamps at
3.3 volts. Both wait and doze modes have current drain of 3 milliamps, and the stop
mode has current drain of only 60 microamps. SYNC causes the processor to suspend,
fetching new instructions until all previously fetched instructions complete execution.

To conclude this section, in Figure 12.14, we illustrate the overused inner product
subroutine again, passing the parameters in registers by value. Upon input, GPR rl has
v[0], r2 has v[l], r3 has w[0], and r4 has w[l], and upon exit, rl contains the result,

12.7 Selecting a Microcontroller for an Application

Suppose you are designing a product that will have a microprocessor in it. Which one
should you use? You have to look at many different alternatives, such as the ones we
looked at in this chapter and similar microcomputers made by other companies. You
should not select one with which you are very familiar, such as the 6812, or one that
you are overwhelmed with, such as the 500 series, unless you have good reason to select
it. You have to analyze the needs of the application to pick the most suitable
microcomputer. Smaller computers are less costly, and larger computers make it easier to
write large programs. However, many of the techniques are the same as those you have
already learned, passing parameters, handling local variables, writing clear programs, and
testing them. You are prepared to learn to read the 68300 series, 500 series, or M-CORE
family programs. However, the greater size and complexity of these microcomputers
requires longer to master all of their peculiarities than smaller microcomputers, to enable
you to fluently read their programs.

Generally, the larger the microprocessor, the easier it is to write large programs, The
68300 series, 500 series, and M-CORE family have more capabilities to handle high-
level languages, such as C or C++, and have an instruction set that allows assembly-
language programs to be written that can handle fairly complex operations in short
fashion (such as the L I N K instruction). It is easy to say that the larger the
microprocessor, the better, and to select the largest one you can get. But consider some
other aspects.

The smaller microcomputers such as the 6805 are very inexpensive. A version of
this 6805 sells for only 50 cents. You can build a fully functioning microcomputer
using just the 6805 and a couple of resistors and capacitors. The 68300 series requires
external SRAM and ROM to make a working computer. The cost of the integrated
circuits, the printed circuit board, and the testing needed to get the board working make
the 68300 series system more than an order of magnitude more expensive than the 6805
system. An M-CORE microcontroller, running with a 32 MHz clock, can require more
than a two-layer printed circuit board. Multilayer boards are significantly more expensive
than one- or two-layer boards. This can make a big difference to the cost of your product,
especially if you intend to make thousands of copies of the product.

The trend toward networking should be observed. If you divide your problem in half,
each half may fit on a smaller microcomputer. We once read a news article that claimed
the Boeing 767 jet had over a 1000 microcomputers scattered throughout the wing tip,
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landing gear, and cockpit to control the plane. The distributed computer system saved
wire and thus weight. Offices are using personal computers so that each person has a
microcomputer dedicated to his or her work rather than time-sharing a large computer.
Small jobs or small parts of a larger job should be put on small computers.

The main criterion for selecting a microprocessor (within a family such as the
Motorola family described here) is the size of the program stored in it. The
microcomputer should be able to store the programs and data, with a little to spare to
allow for correcting errors or adding features. That is, as the program and data approach
the maximum size of the microprocessor, the cost of programming rises very sharply,
because squeezing a few extra instructions in will require moving subroutines around and
cause errors to propagate as assumptions are forgotten and violated. The 6805 and its
successor, the 6808, are the best choices when the program size is about 4K bytes. The
6811, and its successor, the 6812, are better when the size is above that but less than
about 32K bytes. Generally the successors, the 6808 and 6812, should be used on new
designs, but the older 6805 and 6811 may be less costly and fully adequate. The 68300
series, 500 series, and MCORE are the best choices when the program size exceeds 64K
bytes,

Other criteria include the requirements for I/O and speed. All the microcontrollers
have some peripherals in the MPU chip. If the application needs more than the chip has,
the advantage of that chip relative to memory size may be overshadowed by the extra cost
of peripherals needed for the application. Speed can be a factor. Especially in
communication systems and control of electronic systems, the fastest microprocessor
may be needed. However, speed is often overrated. In most systems having I/O, the
microprocessor will spend much, if not most, of its time waiting for I/O. The faster
microprocessor will spend more time waiting. If you can select faster I/O (such as a
Winchester disk in place of a floppy disk) the overall performance of the system will be
much better than if you spend a great deal more money on the microprocessor.

A final and often overwhelming criterion is available software. Your company may
have been using the 6805 for years and may therefore have millions of lines of code for
it. This may force you to select the 6805 or the upward compatible 6808, even though
the 6811 or 6812 may be indicated due to memory size, I/O, or speed requirements.
Often, the availability of operating systems and high-level languages selects the
microprocessor. The Z80 microprocessor from Zilog and the 8080-8085 microprocessors
from Intel run the popular Microsoft operating system, which will support a very wide
range of languages and other programs for business data processing.

This section has pointed to the need to consider different microprocessors. You
should be able to select a microprocessor for an application and defend your selection.
You should extend your understanding and appreciation of microprocessors made by other
manufacturers.

12.8. Summary

This chapter has examined other microcomputers related to the 6812. There are smaller
microcomputers, such as the 6805 and the 6811, that are ideal for controlling appliances
and small systems; and there are larger microcomputers, such as the 68300 series, that
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are excellent for larger programs. Moreover, having learned to program the 6812, you are
well prepared to learn the languages for the 6805 and the 68300 series. It is rather like
learning a second foreign language after you have learned the first. Although you may err
by mixing up the languages, you should find the second easier to learn because you have
been through the experience with the first language. After learning these languages for
the Motorola family, you should be prepared to learn the languages for othei
microcomputers and become a multilingual programmer.

This text has taken you through the world of microcomputer programming. You
have learned how the microcomputer actually works at the level of abstraction that lets
you use it wisely. You have learned the instruction set and addressing modes of a good
microcomputer and have used them to learn good techniques for handling subroutine
parameters, local variables, data structures, arithmetic operations, and input-output. You
are prepared to program small microcomputers such as the 6805, which will be used in
nooks and crannies all over; and you have learned a little about programming the 68300
series, which will introduce you to programming larger computers. But that should be no
problem. A computer is still a computer, whether small or large, and programming il is
essentially the same.

Do You Know These Terms?

See the end of chapter 1 for instructions.

Reduced Instruction Set Computer (RISC)
Complex Instruction Set Computer (CISC)
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PROBLEMS

1. Write an 6811 subroutine DOTPRD that passes parameters after the call as that
subroutine was written in Figure 6.25. It should be reentrant, position independent, and
as short as possible.

2. Write a shortest 6811 subroutine SRCH that finds a string of ASCII characters in a
text. The label STRNG is the address of the first letter of the string, STLEN is the length
of the string, TXT is the address of the first letter of the text, TXLEN is the length of the
text, and the subroutine will exit with C = 1 and the address of the first occurrence of the
first letter of the string in the text in X, if it is found, or C = 0 if it is not found.

3 . Write a position-independent reentrant 6811 subroutine QUAD that evaluates the
quadratic function ax2 + bx + c, where unsigned 8-bit arguments a, b, c, and x are passed
on the stack from low to high addresses respectively, named PARA, PARE, PARC, and
PARX, and the output is returned in register B. In order to demonstrate local variables, as
part of your subroutine, store ax2 in an 8-bit local variable on the stack. Write a calling
sequence that writes 1, 2, 3, and 4 into PARA, PARB, PARC, and PARX, calls QUAD,
and moves the result to global variable ANSWER.

4. Write a shortest position-independent reentrant 6811 subroutine PAR that
computes the parallel resistance of two resistors Rl and R2, where unsigned 8-bit
arguments are passed on the stack and named Rl and R2, and the output is returned in
register B. In order to demonstrate local variables, as part of your subroutine, store Rl
times R2 in a 16-bit local variable on the stack. Write a calling sequence that writes 100
into Rl and R2, calls PAR, and moves the result to global variable ANSWER.

5 . Write a shortest reentrant 6808 SWI interrupt handler AAX that will add A to X.

6 . Write a shortest reentrant 6808 SWI interrupt handler EMUL that will multiply A
by HX, putting the result in HX, exactly as the 6812 EMUL works. Ignore CC bits,

7 , Write a position-independent reentrant 6808 subroutine QUAD that evaluates the
quadratic function ax2 + bx + c, where unsigned 8-bit arguments a, b, c, and x are passed
on the stack from low to high addresses respectively, named PARA, PARB, PARC, and
PARX, and the output is returned in register A. In order to demonstrate local variables, as
part of your subroutine, store ax2 in an 8-bit local variable on the stack. Write a calling
sequence that writes 1, 2, 3, and 4 into PARA, PARB, PARC, and PARX, calls QUAD,
and moves the result to global variable ANSWER.

8 . Write a shortest position-independent reentrant 6808 subroutine PAR that computes
the parallel resistance of two resistors Rl and R2, where unsigned 8-bit arguments are
passed on the stack, and named Rl and R2, and the output is returned in register B. In
order to demonstrate local variables, as part of your subroutine, store Rl times R2 in an
16-bit local variable on the stack. Write a calling sequence that writes 100 into Rl and
R2, calls PAR, and moves the result to global variable ANSWER.

9 . Write a shortest reentrant MC6805 SWI interrupt handler PSHX that will push X
on the stack as the 6811 instruction PSHX works. Assume the location of SWI is at
$281. This instruction must be reentrant.
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10. Write a shortest 6805 subroutine MOVE that can move any number of words from
any location to any other location in memory. The calling sequence will put the
beginning address of the source in page-zero global variable SRC, the beginning address
of the destination in DST, and the length in LEN. Use impure coding if necessary.

11. Write a position-independent reentrant 6805 subroutine QUAD that evaluates the
quadratic function ax2 + bx + c, where unsigned 8-bit arguments a, b, c, and x are passed
as globals named PARA, PARE, PARC, and PARK, and the output is returned in register
A. In order to demonstrate the absence of local variables, as part of your subroutine, store
ax2 in an 8-bit global variable TEMP. Write a calling sequence that writes 1, 2, 3, and 4
into PARA, PARE, PARC, and PARK, calls QUAD, and moves the result to global
variable ANSWER.

1 2. Write a shortest position-independent reentrant 6805 subroutine PAR that computes
the parallel resistance of two resistors Rl and R2, where unsigned 8-bit arguments are
passed as globals named Rl and R2, and the output is returned in register A. In order to
demonstrate the absence of local variables, as part of your subroutine, store Rl times R2
in a 16-bit global variable TEMP. Write a calling sequence that writes 100 into Rl and
R2, calls PAR, and moves the result to global variable ANSWER.

13. Write a shortest 6805 program segment that will jump to subroutines LO to L7
depending on the value of X. If (X) = 0, jump to subroutine LO; if (X) = 1, jump to
subroutine LI, and so on. Assume that there is a table JTBL as shown below:

JTBL DC.W LO, LI, L2, L3, L4, L5, L6, L7

Use self-modifying code if necessary.

14. Write a shortest 6805 subroutine to divide the unsigned number in X by the
unsigned number in A, leaving the quotient in X and the remainder in A. Use only
TEMPI and TEMP2 to store variables needed by the subroutine.

15. Write a shortest 6805 subroutine to clear bit n of a 75-bit vector similar to the
SET in Problem 8 in Chapter 3. The instruction BCLR N , M clears bit N of byte M and
has opcode $ 11 + 2 * N followed by offset M. Use self-modifying code.

16. Write an 6805 subroutine to transmit the bits of the 75-bit vector set by SET
described in Problem 8 in Chapter 3, bit 0 first, serially through the least-significant bit
of output port A at location 0. Each time a bit is sent out, the second-least-significant
bit of that output port is pulsed high and then low. The least-significant bit happens to
be connected to a serial data input, and the second-least-significant bit is connected to a
clock of a shift register that controls display lights.

17. Write a shortest 68300 series subroutine CLRREG to clear all the registers except
A7. Assume that there is a block of 60 bytes of zeros, after LOCO, that is not in part of
your program (i.e., use 32-bit direct addressing, and do not count these bytes when
calculating the length of your subroutine). Be careful, because this one must be checked
out, and the obvious solutions do not work.
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18. Write a fastest 68300 series subroutine MULT that multiplies two 32-bit unsigned
binary numbers in DO and Dl, to produce a 64-bit product in DO:D1.

19. Write a position-independent, reentrant, fastest 68300 series subroutine DOTPRD
that passes parameters on the stack, in the same manner as that subroutine in Figure
6.21.

2 0. Write a position-independent reentrant 68300 series subroutine QUAD that evaluates
the quadratic function ax2 + bx + c, where signed 16-bit arguments a, b, c, and x are
passed on the stack from low to high addresses respectively, named PARA, PARB, PARC,
and PARX, and the output is returned in register DO. In order to demonstrate local
variables, as part of your subroutine, store ax2 in a 16-bit local variable on the stack.
Write a calling sequence that writes 1, 2, 3, and 4 into PARA, PARE, PARC, and PARX,
calls QUAD, and moves the result to global variable ANSWER.

21. Write a shortest position-independent reentrant 68300 series subroutine PAR that
computes the parallel resistance of two resistors Rl and R2, where unsigned 16-bit
arguments are passed on the stack and named Rl and R2, and the output is returned in
register DO. In order to demonstrate local variables, as part of your subroutine, store Rl
times R2 in a 16-bit local variable on the stack. Write a calling sequence that writes 100
into Rl and R2, calls PAR, and moves the result to global variable ANSWER.

2 2. Write a fastest position-independent, reentrant, 68300 series subroutine CAH that
converts a string of ASCII characters representing a hexadecimal number to an unsigned
binary number in DO. The first character is pointed to by AO, and the length is in DO.

2 3. Write a position-independent reentrant 500 series subroutine QUAD that evaluates
the quadratic function ax2 + bx + c, where signed 16-bit arguments a, b, c, and x are
passed in registers r27, r28, r29, and r30, respectively, and the output is returned in
register r31. In order to demonstrate local variables, as part of your subroutine, store ax2

in register r26. Write a calling sequence that writes 1, 2, 3, and 4 into the four registers
holding a through x, resepectively, and moves the result to global variable ANSWER.

2 4. Write a shortest position-independent reentrant 500 series subroutine PAR that
computes the parallel resistance of two resistors Rl and R2, where unsigned 16-bit
arguments are passed in registers r29 and r30, and the output is returned in register r31.
In order to demonstrate local variables, as part of your subroutine, store Rl times R2 in
a 16-bit local variable in register r28. Write a calling sequence that writes 100 into Rl
and R2, calls PAR, and moves the result to global variable ANSWER.

2 5. Select the most suitable microprocessor or microcomputer among the 6805, 6811,
6812, or for the following applications.

(a) A graphics terminal needing 250K bytes of programs and 100K bytes of data

(b) A motor controller, storing a 15K program, needing to quickly evaluate polynomials

(c) A text editor for a "smart terminal" needing 8K for programs and 40K for data storage

(d) A keyless entry system (combination lock for a door) requiring $DO bytes of program
memory and 2 parallel I/O ports.
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This module from Axiom Manufacturing has an MMC2001 on a small plug-in board that
can be purchased separately, and a mother board that has external flash memory, sockets
for debug software, and LCD and keypad interfaces.



Appendix 1
Number Representations and Binary Arithmetic

This appendix contains material needed for the rest of the book that is usually found in
an introductory course on logic design. The two topics are the representation of integers
with different bases and binary arithmetic with unsigned and two's-complement numbers,

Al.l Number Representations
If b and m are positive integers, and if N is a nonnegative integer less than bm, then N
can be expressed uniquely with a finite series

N = Cm_i * b^i + Cnv_2 * b^ + + CQ * b0 (1)

where 0 s c i < b for 0 s i =s m - 1. The integer b is called the base or radix and
the sequence cm_] . . . CQ is called a base-b representation of N. If b = 2, the digits cm_j
. . . CQ are called bits, and the sequence cm_i . . . CQ is called an m-bit binary
representation of N. Binary, octal (base 8) and hexadecimal (base 16) representations, as
well as the ordinary decimal representation, are the ones used when discussing computers
with hexadecimal being particularly useful with microcontrollers. When the hexadecimal
representation is used, the numbers 10 through 15 are replaced by the letters A through
F, respectively, so that hexadecimal sequences such as 112 will be unambiguous without
the use of commas (e.g., without commas, 112 could be interpreted as 1,1,2, or 11,2, or
1,12, which are the decimal numbers 274, 178, or 28, respectively). Unless stated
otherwise, all numbers will be given in decimal and, when confusion is possible, a
binary sequence will be preceded by a % and a hexadecimal sequence by a $. For
example, 110 denotes the integer one hundred and ten, %110 denotes the integer six, and
$110 denotes the integer two hundred seventy-two.

To go from a base-b representation of N to its decimal representation, one has only
to use (1). To go from decimal to base b, notice that

N = C0 + ci * b1 + ... + Cm_i * b11*-1

= GO + b * (GI + b * (02 + ... ) ... )

so that dividing N by b yields a remainder CQ- Dividing the quotient by b again yields a
remainder equal to GI and so on. Although this is a fairly convenient method with a
calculator, we shall see later that there is a more computationally efficient way to do it
with an 8-bit microprocessor.

To go from binary to hexadecimal or octal, one only needs to generalize from the
example:

%1101 0011 1011 = $D3B

Thus, to go from binary to hexadecimal, one first partitions the binary representation
into groups of four Os and Is from right to left, adding leading Os to get an exact
multiple of four Os and Is, and then represents each group of four Os and Is by its
hexadecimal equivalent. To go from hexadecimal to binary is just the reverse of this
process.
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A1.2 Binary Arithmetic

One can add the binary representations of unsigned numbers exactly like the addition of
decimal representations, except that a carry is generated when 2 is obtained as a sum of
particular bits. For example,

1010 1100 1110
ifllll +0111 ±0111
10001 10011 10101

Notice that when two 4-bit representations are added and a carry is produced from adding
the last or most significant bits, five bits are needed to represent the sum.

Similarly, borrows are generated when 1 is subtracted from 0 for a particular bit. For
example,

1111 1011 1000
-0101 -0100 -1001
1010 0111 (1)1111

In the last of the examples above, we had to borrow out of the most significant bit,
effectively loaning the first number 24 to complete the subtraction. We have put a "(1)"
before the 4-bit result to indicate this borrow. Of course, when a borrow occurs out of
the most significant bit, the number being subtracted is larger than the number that we
are subtracting it from.

When handling numbers in microprocessors, one usually has instructions that add
and subtract m-bit numbers, yielding an m-bit result and a carry bit. Labeled C, the carry
bit is put equal to the carry out of the most significant bit after an add instruction, while
for subtraction, it is put equal to the borrow out of the most significant bit. The bit C
thus indicates unsigned overflow; that is, it equals 1 when the addition of two positive
m-bit numbers produces a result that cannot be expressed with m-bits, while with
subtraction, it equals 1 when a positive number is subtracted from a smaller positive
number so that the negative result cannot be expressed with equation (1).

We can picture the m-bit result of addition and subtraction of these nonnegative
numbers (also called unsigned numbers) using Figure Al.l, where m is taken to be four
bits. For example, to find the representation of M + N, one moves N positions clockwise
from the representation of M while, for M - N, one moves N positions counterclockwise.
Mathematically speaking, we are doing our addition and subtraction modulo-16 when
we truncate the result to four bits. In particular, we get all the usual answers as long as
unsigned overflow does not occur, but with overflow, 9 + 8 is 1, 8-9 is 15, and so on.

We also want some way of representing negative numbers. If we restrict ourselves
to m binary digits cm, CQ, then we can clearly represent 2m different integers. For
example, with (1) we can represent all of the nonnegative integers in the range 0 to
2m-l. Of course, only nonnegative integers are represented with (1), so that another
representation is needed to assign negative integers to some of the m-bit sequences. With
the usual decimal notation, plus and minus signs are used to distinguish between
positive and negative numbers. Restricting ourselves to binary representations, the
natural counterpart of this decimal convention is to use the first bit as a sign bit. For
example, put cm equal to 1 if N is negative, and put cm_i, equal to 0 if N is positive or
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zero. The remaining binary digits cm_2 • • • ,CQ are then used to represent the magnitude
of N with (1).

Figure Al.l. 4-Bit Binary Representations

This particular representation, called the signed-magnitude representation, has two
problems. First, carrying out addition and subtraction is clumsy, particularly from a
logic design point of view. Second, the number zero has two representations, 10 . . . 0
and 00 . . . 0 , which, at best, has a perplexing feeling to it. The following
representation, the two's-complement representation, essentially solves both of these
problems.

Looking again at Figure Al.l, notice that when we subtract the representation of N
from M, we get the same thing as adding the representation of M to that of 2 —N because
moving N positions counterclockwise is the same thing as moving clockwise 2 -N
positions. Thus, as far as modulo-16 addition is concerned, M-l = M + (-1) is the same
as M + 15, M-2 = M + (-2) is the same as M + 14, and so on. Letting — 1 be represented
with the sequence for 15, -2 with the sequence for 14, and so on, we get the two's-
complement representation shown in Figure Al.l for m equal to four.

We choose to represent the negative integers -1 through -8 in Figure Al.l because,
with this choice, the leading bit is a sign bit, as with the signed magnitude
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representation (e.g., 1 for minus, 0 for plus). Additionally, the number zero, which is
now considered positive, is represented by the single sequence 0000. However, the nicest
feature is that the two's-complement representation of M + N is obtained by simply
adding the two's-complement representations of M and N and truncating to four bits. This
works, of course, as long as there is no signed overflow, that is, adding two m-bit
two's-complement numbers whose sum cannot be represented with an m-bit two's-
complement number. For addition, notice that signed overflow occurs when, and only
when, the sign of the two representations added are the same but different from the sign
of the result. A similar observation can be made for the two's-complement representation
ofM-N.

We can now summarize the facts for m-bit two's-complement representations. With
m fixed and -2m~~1 s: N < 2m~~1, the m-bit two's-complement representation of N is
given by:

1. The m-bit representation of N for 0 «s N < 2m~1.
2. The m-bit representation of 2m + N for -2m^1 * N < 0.

The first bit of the representation is a sign bit and, after a little thought, you should be
able to see that if cm , cO is the rn-bit two's-complement representation of N, then

The difference between equations (2) and (1), of course, is that the first term in (2) is
negative. Finally, the two's-complement representation of M + N is obtained by adding
the two's-complement representations of M and N and truncating to m bits. The answer is
correct except when signed overflow occurs or, equivalently, when the signs of the two
representations are the same but different from that of the result.

If N is positive, its m-bit two's-complement representation y is just its ordinary in-
bit representation. It is not difficult to see that the m-bit two's-complement
representation of -N can be obtained by subtracting each bit of y from 1 and then adding
1 to the result. This procedure, sometimes called "taking the two's-complement" of y,
works even if N is zero or negative, with two exceptions. If N is zero, the result needs to
be truncated to m bits. If N = -2m~1, one will just get back the two's-complement
representation of -2 . To see why this works for -2m~1 < N < 2In~1, suppose that y =
cm, CQ and let dj = 1-c j, 0 <* j s m—1. Then it is easy to see from (2) that dm_i . . . do is
the m-bit two's-complement representation of -N-l. That the procedure works now
follows from the fact above for the addition of two's-complement representations.

One situation frequently encountered when two's-complement representations are
used with microprocessors is that of finding the hexadecimal equivalent of the 8-bit
two's-complement representation of a negative number. For example, for a -46 you
could find the 8-bit representation of 46, use the technique just mentioned, and then find
its hexadecimal equivalent. You could also use the two's-complement definition, finding
the 8-bit representation of 24-46 and then converting this to hexadecimal. It would,
however, usually be quicker just to convert 2r-46 = 210 to hexadecimal. Finally, one
could also use a 16's-complement approach, that is, convert the number to hexadecimal,
subtract each hexadecimal digit from 15, and then add 1 to get the result. For example.
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46 = $2E and the 16's-complement of $2E is $D1 + 1 = $D2, the desired result. You
should try to understand how this works. (See the problems at the end of this appendix.)

A 1.3 Remarks

The material discussed here can be found in any introductory text on logic design. We
recommend the book Fundamentals of Logic Design, 4th ed., by C. H. Roth (PWS
Publishing Co., Boston MA, 1995).
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PROBLEMS

1. Find the hexadecimal equivalents of the 8-bit two's-complement representations of
-44 and-121.

2. Explain why the 16's-complement technique works when used for calculations such as
Problem 1.

3. Suppose that you were going to add a 16-bit two's-complement representation with an
8-bit one. How would you change the 8-bit representation so that the 16-bit result would
be correct? This process is sometimes called sign extension.

4. Give a simple condition for signed overflow when two's-complement representations
are subtracted,

5. One textbook reason for preferring the two's-complement representation of integers
over the signed-magnitude representation is that the logic design of a device that adds and
subtracts numbers is simpler. For example, suppose that M and N have m-bit two's-
complement representations x and y. To subtract M from N, one can take the two's-
complement of x and then add it to y, presumably simpler from the logic design
viewpoint than dealing with signed-magnitudes. Does this always work? Try it with m =
8 N equal to -1, and M equal to -128. What is the condition for overflow? Does this
work when N and M are interpreted as unsigned numbers? Interpret.

6. Suppose that we add two m-bit representations x and y, where x is the unsigned
representation of M and y is the two's-complement representation of N. Will the answer,
truncated to m bits, be correct in any sense? Explain.



Appendix 2
Using the HiWare CD-ROM

A2.1 Loading HIWARE Software
You can use the software on the enclosed CD-ROM to simulate your programs on a PC
running Windows 95 or later, or Windows NT 5.0 or later, without using any extra
hardware. You can also use this software with a real target microcontroller, so you can
collect data from external hardware, and control external hardware. Open the CD-ROM,
check "setpe.exe", and choose the Motorola HC12 target. If you have 60 megabytes of
disk space, load all parts of the tool chain.

A2.2 Opening the HIWARE Toolbox
You can open the HIWARE Toolbox in at least two ways, depending on how HIWARE
was installed. The best way is to click on the Start icon, to the Programs item, to the
HIWARE item, to HC12 Projects item, to either ManualProject item or
AssemblerProject item. This should open the toolbox for this book's experiments.

Another way to open the HIWARE Toolbox is to click on the Start icon, to the
Programs item, to the HIWARE item, to the HIWARE TOOLS item. When the tool bar
appears, click on its leftmost icon (the one with the picture of three pages and a pencil)
to open a dialog box. In that dialog box, click on the Open., icon. Click on folder and
files names to find and select one of the folders described below. Then click on OK in the
inner box, and the outer box. If a dialog box appears to confirm that you change the
project, click on OK. This should open the toolbox for experiments in this book.

The folder ManualProgramFolder in the HIWARE folder provides examples of
programs in the first three chapters of the book. These examples use just the HIWARE
debugger applicaton. The folder Assembly ProgramFolder in the HIWARE folder
provides examples of programs in the remaining chapters of the book. These examples
use the NOTEPAD text editor, the HIWARE assembler and the HIWAVE debugger.
You can also use other text editors such as WinEdit, in place of NOTEPAD, to generate
source code for the assembler.

A2.3 Running Examples From the ManualProgramFolder

ManualProgramFolder has files which contain examples from this text book that you
can load and run on the HIWAVE simulator, or download and run on the target machine.
The file p.ll.abs contains machine code for an example on page 11, which is Figure
1.5. Similarly, p.lSa.abs is the example on the top of page 13, Figure 1.8. Click on the
HIWAVE icon in the HIWARE toolbox. After HIWAVE starts, load an example by
pulling the Simulator menu to the Load., item. Select the file for the example, such as
p.ll.abs. First, double-click on the box next to SP in the Register window, and type a
suitable stack pointer value such as hexadecimal AOO (just press the keys A, 0, and 0,
and Enter), Then single-step though the program to learn how it works. You can single-
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step by clicking on the RUN menu and releasing on the Single Step item, or by using
the Fil key, or by clicking on the single step icon, which is a U-shape with an arrow
into the center of the U. Observe the changes in the registers as the program is executed.
Note that by right-clicking on the Register window, you can change the register's format
to binary or decimal representation. Use the format most suitable for the example.

To examine a part of memory, right-click on the Memory window, and select the
Address... item. When the dialog box appears, type the address such as hexadecimal 800.
and then type Enter. Alternatively, to display the memory around the address that is in a
register such as the stack pointer, drag and drop from the register's box to the Memory
window. The Memory window should now display the memory beginning with the
address. The left part of the Memory window displays the memory data, and the right
part displays the same data as ASCII characters (See Chapter 4). Note that by right-
clicking on the Memory window, you can change the memory data format to binary or
decimal representation, or change the memory display's word size to 16 bits or 32 bits.

You can change the data in memory after the program has been loaded to learn more
about the topic covered by the example. Double-click on the display of a byte you wish
to change in the memory window, and retype its hexadecimal value. After entering a
hexadecimal number into the memory, press Enter or press another number key to enter
a number into the next memory location. You can also double-click on the ASCII
representation of the memory data to enter ASCII characters into memory.

You can run until an instruction is executed. Right-click on the Assembly window
on the line displaying the instruction at which you wish to stop. Release on the Run To
Cursor item. You can set breakpoints, which are instructions which you wish to stop at,
and run the program to the first breakpoint it meets. Right-click on the Assembly
window on the line displaying the instruction at which you set a breakpoint and release
on the Set Breakpoint item. Then start execution by clicking on the RUN menu and
releasing on the Start/Continue item, or by using the F5 key, or by clicking on the
Start/Continue icon, which is a green arrow.

Finally, you can insert the instruction BRA *, whose opcode is $20FE, at the end
of your program. Start the program as described above. After a moment, stop it by
clicking on the Stop icon, which is a red tee.

To write a new program into memory, load the file blank.abs. This file merely has a
value of zero written into location 800. Then type the program machine code into the
Memory window. Note that you cannot type a program into the Assembly window. But
after a program is manually entered into the Memory window, you can see the program
in the Assembly window to verify that you got the correct machine code into memory,

A2.4 Running Examples From the AssemblyProgramFolder

Assembly ProgramFolder has files such as Ea4.txt, which contain examples from chapter
4 in this text book, and which you can copy and paste into an assembler source file such
as Program.asm. To assemble Program.asm to generate an absolute file such as
Program .abs, open the assembler by clicking on the assembler icon in the HIWARE
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toolbox. Type the source file's name, Program .asm, in the assembler's top center
window. If the file name is already in the window, instead of retyping the file name,
click on the icon immediately to the right of this window. The status of the assembly,
including error messages, is output into the bottom window. When you have no errors,
the Program.abs file is written. Program.abs can then be simulated as in §A2.3.

A2.5 Downloading to a 'B32 Board

You can use the HIW ARE software to download and debug a program in a file, such as
p. 1 Labs or program.abs, on the Motorola M68HC12B32EVB board as your target.
Before you attempt to run your first program on a target, you should begin by
simulating the program on the HIWAVE simulator, as in §A2.4. After you are
comfortable with the simulator's operation, you should run it on actual hardware. First,
make sure that W3 and W4 are in their 0 position to configure the board for EVB mode.
Then connect the target's DB-9 connector to the personal computer COM! port. Apply 5
volt power to the target. You should always apply the 5V power after all connections are
made, and you should never change a connector while power is applied to the 'B32 board.
Pull the Component menu to the Select_Target item, which brings up a dialog box. In
that box, select the Asciimon target name. (If COM1 is not available, use another
COM port, but change HIWAVE's communictations by pulling the Monitor menu to
the Communication item, and change the port in the dialog box that appears).

HIWAVE behaves the same when used as a downloader/debugger as when used as a
simulator. Follow §A2.4's procedures to run an example on the target microcontroller.

Having changed HIWAVE from a simulator to a downloader/debugger, you can pull
the File menu to the Save Project item and release. This will save the current
configuration so that when you restart HIWAVE it will start as a downloader/debugger,
and you won't have to repeat the above procedure each time you use HIWAVE as a
downloader/debugger. To change HIWAVE back to a simulator, pull the Components
menu to the Set Target item, and click on the Sim entry.

A2.6 POD-Mode BDM Interface

You can run your program on a target, such as an Technological Arts Adapt-812 board,
or an Axiom PB68HC12A4 board. This technique utilizes the state-of-the-art background
debug module BDM in your target, providing a debugger that runs in the
M68HC12B32EVB board (called the POD) that is isolated from the target.

Begin by running a program on the HIWAVE simulator, and then running it on the
'B32 board, as described in §A2.5. After you are comfortable with the simulator's and
'B32 board's operation, reconnect the W3 to its 0 position and W4 to its 1 position to
configure the board for POD mode, and reset the POD. Plug the 6-wire cable into the
POD's Wl l connector and the target's BDM connector. Match pin 1 with the
cable/connector pin 1. Restart HIWAVE. You should be able to duplicate what you did
In the 'B32 board, nmning it on the Adapt-812 or PB68HC12A4 board as a target. You
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can use a more powerful Motorola BDI debugger, in place of the POD, and other target
microcontrollers can be run using the POD or similar BDI debugger.

A2.7 Techniques for Hi Ware Tools

We have had some experiences with HiWare tools that might help you use them more
efficiently. We add a note here on our suggestions to help you with this powerful
software.

A problem with the current version is that when you change project files, the
compiler/linker/HIWAVE debugger may read or write the wrong files, or fail to find the
files it needs. We found that by shutting down all HiWare programs, and starting them
up again, the problem goes away. But you do not have to restart the computer. If you
have verified that the paths to the files are correct, but you are unable to access them
through the compiler/linker/HIWAVE debugger, then try restarting all HiWare programs
"from scratch," The same remedy is suggested when the HIWAVE simulator or debugger
fails to execute single-step commands, or breakpoints, correctly.

When dealing with different environments such as your own PC running Windows
95, workstations running Windows NT, and a PC running Windows 98 in the
laboratory, keep separate complete project folders for each environment, and copy the
source code from one to another folder. That way, you will spend less time readjusting
the paths to your programs and HiWare*s applications when you switch platforms.

We hope that the CD-ROM supplied through HiWare makes your reading of this
book much more profitable and enjoyable. We have found it to be most helpful in
debugging our examples and problem solutions.
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binding 142 device requests an interrupt 326
bootstrap 120 digital-to-analog converter 330
branch to subroutine 45 direct addressing 8
break statement 226 direction port 315
breakpoint 169 disabled 327
buffer 29 disarmed 327
bus 3 do while statement 227
byte 3 downloader 120
Byte Data Link Communication Module dynamic efficiency 14

(BDLC) 18
effective address 6

call by name 163 electrically erasable programmable
call by reference 163 memory (EEPROM) 16
call by result 162 element 289
call by value 162 emulate 171
call by value 231 enable 327
calling and returning mechanism 138 encapsulate 236
calling routine 149 entrv P°int 139

calling sequence 151 OT*1^fiff1S!blc memOry

12 (fcrRUM) 16
^ i- ,„ enum statement 228

carfy blt 12 execute phase 5
cast 224 exit point 139
checksum 120 exponential part 202
clarity 15 expressions 91
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extended local access 147 input argument 140
input device 314

factor 239 input line 314
fetch 5 input parameter 138, 140, 142
fetch phase 5 input port 314
fetch/execute cycle 4 input routine 313
first-in first-out buffer 299 input-output 2
fixed-point representation 201 instruction 4
flash memory 18 instruction cycle 4
floating-point 202 interpreter 222
floating-point numbers 203 interrupt 46
flushing to zero 206 interrupt handler 46, 325
for statement 227 interrupt inhibit 47
forward reference 97 interrupt mask 47
function members 236 interrupt service routine 46, 325
fuzzy AND 212 interrupts are enabled 326
fuzzy inference kernel 211
fuzzy negate 212 jump to subroutine 45
fuzzy OR 212

knowledge base 211
gadfly loop 322 label field 90
gadfly synchronization 322 labels 89
guard bit 207 latency time 325

latency time 47
half-carry 12 length 263
hand assembly 87 library 131
handler 167, 326 line 3
handling 46 line of assembly language code 88
handling an interrupt 325 linguistic variable 210
hardware interrupt 322 link 304
hardware interrupt 46 linked list structure 230, 301
hardware interrupts 171 linker 123
hardware stack 29 linking loader 125
hexadecimal number 6 list 290
hidden bit 202 listing 88
hidden register 32 local area network 120
high signal 314 local variable 138
high-level language 221 location counter 96
histogram 290 logical operators 226
honors an interrupt 326 Sow signal 314
host computer 120
Huffman code 233 machine 6

machine code 6
I/O interrupt 46 , 325 machine state 47
immediate addressing 7 macro 127
implied 58 macro assembler 127
in-line argument list 157 membership function 210
include file 92 memory 2
index 289 memory map 17
index addressing 61 memory segments 124
index register 61 microcomputer 3
indirect 66 microprocessor 2
information hiding 241 microprocessor is disabled 326
inherent 58 microprocessor is enabled 326
inheritance 239 microprocessor is masked 326
inner product 77 microprocessor sees a request 326
initialize 94 mnemonic 7
initialized 142 monitor 169
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monitor program 120 push 29
MPU 3 push 297

nested allocation 75 queue 299
nonvolatile 4
normalized number 203 r-2r ladder 331

random access memory (RAM) 4
object 236 read 3
object code 88 read only memory (ROM) 4
offset 62 read/write line 3
one-address computer 6 recall 5
op code 6 records 120
operand 7 recursive subroutine 72
operand field 90 Reduced Instruction Set Computer
operation code 6 (RISC) 363
operation code byte 6 reentrant subroutine 73
operation field 90 register 2
operator overloading 242 relational operators 226
optimizing compiler 222 relative 68
origin 289 relative offset 68
output argument 140 relocatable section 123
output device 314 renormalized 204
output line 314 request is pending 326
output parameter 123, 140 reset 171
output port 314 return address 45
output routine 313 return from interrupt 47, 325
overflow 205 return from subroutine 45
overriding 239 return statement 232

root 301
page zero mode 59 round bit 207
parameter file 124 rounding 206
parsing tree 195 rounding to nearest 205
pass 96 rounding toward minus infinity 205
pass parameters 138 rounding toward plus infinity 205
pointer register 61 rounding toward zero 205
Polish notation 193 row major 230, 291
polymorphism 240 rale 211
pop 297
position independent 68 S-records 121
post byte 31 self-modifying code 59
post byte 61 serial communication interface
precision 289 (SCI) 16, 333
prefix byte 32 serial peripheral interface (SPI) 16
print server 120 servers 120
private 241 service routine 46
procedure 223 shift register 299
program 4 signed overflow 76
program counter relative 68 significand 202
program segment 138 single precision floating-point 203
program segment 139 single-chip microcontroller 3
programmable read-only memory single-chip mode 16

(PROM) 16 singleton 214
protected 241 sixteen's complement 69
prototype 232 software interrupt 167
public 241 source code 7
pull 29 stack 29
pull 297 stack marker 147
pulse-width modulator (PWM) 18 stacked local variable 142
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start bit 333
statement 224
static efficiency 14
status port 322
sticky bit 207
stop bit 333
stop disable 47
string 294
struct 230
structure 230
subclass 239
subroutine 45
successor 301
SW! handler 167
symbol 83
symbol table 96
symbolic address 89

table 230, 293
target machine 120
template 241
three-address instruction 78
timer 16
tokens 223
top-down design 137
tree 300
truncation 205
two-pass assembler 97

UART protocol 333
undefined data 94
underflow 205
unnormalization 203
unsigned overflow 76

vector 89, 289
virtual 241
volatile 4
von Neumann computer 2

while statement 227
wire 3
word3
workstation 120
write 3
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