
Engineering and Managing
Software Requirements

Aybüke Aurum · Claes Wohlin (Eds.)

123

Engineering and
Managing Software
Requirements
With 54 Figures and 48 Tables

Library of Congress Control Number: 2005927220

ACM Computing Classification (1998): D.2.1, D.2.9, K.6.1

ISBN-10 3-540-25043-3 Springer Berlin Heidelberg New York

ISBN-13 978-3-540-25043-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in
any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer. Violations are liable for prosecution under
the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Cover design: KünkelLopka, Heidelberg
Typesetting: Camera ready by the editors
Production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig

Printed on acid-free paper 45/3142/YL - 5 4 3 2 1 0

Editors
Aybüke Aurum
School of Information Systems, Technology and Management
University of New South Wales
Sydney, NSW 2052, Australia
aybuke@unsw.edu.au

Claes Wohlin
School of Engineering
Blekinge Institute of Technology
Box 520, 372 25 Ronneby, Sweden
Claes.Wohlin@bth.se

Foreword

Pericles Loucopoulos

The effects of integration and evolution of Information and Communication Tech-
nologies (ICT) are having a profound effect on both the way that organizations
function and people interact with each other. The increasing reliance of our every
day activities on ICT systems demands sustainable service levels from such sys-
tems commensurate with our expectations and levels of investment for their im-
plementation. Such investments, however, have been regrettably risky and the
mortality rates of ICT systems have been above average in any industry. Whilst
the rate of failed projects and cost overruns has decreased in recent years bust still
remaining unacceptably high over half of commissioned projects fail to meet their
initial objectives. If we have been less than successful in delivering yesterday’s
systems, what chance is there for developing tomorrow’s highly complex and de-
manding systems?

Using the field of Requirements Engineering as their focal point, Aurum and
Wohlin address this question in this book from a multidisciplinary perspective. As
a field of intellectual endeavor and industrial practice Requirements Engineering
has traditionally been concerned with goals for, functions of and constraints on
software intensive systems. This book argues for a broader perspective in order to
gain a better understanding of the interdependencies between enterprise stake-
holders, processes and information systems that would in turn give rise to more
appropriate techniques and higher quality systems.

It is this broader perspective that gives this book its distinct appeal and should
be of interest not only to software engineers but also to researchers and practitio-
ners working in other disciplines such as business process engineering, organiza-
tional change, enterprise integration, and design theories and across many differ-
ent business sectors. A common issue of concern across all these different areas is
how one should tackle “ill-structured problems” where the problem state is not
known at the outset and there is no definitive formulation, and where multiple
stakeholders from different divisions and often different organizations need to
reach agreement about the intended systems. Decisions taken at this stage have a
profound effect on the technical and economic feasibility of the project. It is no
longer appropriate for information systems professionals to focus only on func-
tional and non-functional aspects of the intended system and somehow assume
that organizational context and needs are outside their scope.

Here in these pages the reader will find a clear exposition of the processes in-
volved in requirements together with a critique of current theories and practice.
The book is thoughtfully assembled as a series of articles from leading researchers
and practitioners, each article focusing on a specific issue. Whilst each article,
presented as a distinct chapter, represents an important contribution in its own
right, the confluence and structuring of these articles into this book provide the
reader with a unique opportunity to begin a journey of exploration about Require-

VI Foreword

ments Engineering. I commend to you the journey that Aurum and Wohlin have
begun for you with this book.

Author Biography

Pericles Loucopoulos holds the chair of Information Systems in the School of In-
formatics, The University of Manchester. He is the co-editor-in-chief of the Jour-
nal of Requirements Engineering published by Springer and is on the editorial
board of five other international journals. He has served as General Chair and Pro-
gramme Chair of six international conferences and has been a member of over 100
Programme Committees of international conferences. His research work is con-
cerned with the engineering of information, and the tools, methods and processes
used to design, develop and deploy information systems in order to meet organisa-
tional goals. He works closely with industrial, commercial and governmental insti-
tutions in improving the way that information systems could be deployed to im-
plement change in an effective and efficient manner. He is the co-author of 6
books and the author and co-author of over 150 papers published in academic
journals and conference proceedings.

Preface

Aybüke Aurum and Claes Wohlin

This book explores the interdisciplinary nature of Requirements Engineering (RE)
and portrays the current status of understanding, analyzing, modeling and manag-
ing of RE activities for current as well as future systems, with particular emphasis
on innovative ideas, frameworks and empirical studies, and future directions of
RE practice.

Introduction

As we enter the third millennium, organizations have to cope with accelerating
rates of change in technology and increased levels of competition on a global scale
more than ever before. There is incredible pressure on companies to achieve and
sustain competitive advantage. In order to stay competitive within this changing
business environment, organizations are forced to constantly pursue new strategies
to differentiate themselves from their competition, such as offering a stream of
new products and services. Organizations in search of competitive advantage be-
come more conscious of how software products have become a strategic asset to
their business. Software companies, like many other organizations, are forced to
adapt to the strategic challenges and opportunities presented by the new economy
where new technology causes dramatic changes in business processes, products
and services. Since software products play a vital role in supporting strategic chal-
lenges and opportunities in business, it is important that these products function
according to customers’ or markets’ requirements. Hence, an important task in
software development is the identification and understanding of key business re-
quirements to ensure that software products will fully support and evolve with the
system.

Requirements Engineering (RE) is the process by which the requirements for
software products are gathered, analyzed, documented, and managed throughout
the SE lifecycle. RE is concerned with interpreting and understanding stake-
holders’ goals, needs and beliefs. There are many problems associated with RE
which may lead to inconsistent and incomplete requirements and cancellation of
software projects. As RE is one of the main contributors to the success of software
projects, improving the RE process can significantly increase the likelihood of
software project success. Software developers realize that a strong requirements
management process is essential to the successful completion of software projects.
Furthermore, understanding, identifying and articulating the role of business re-
quirements which are elicited from stakeholders from diverse backgrounds with
different needs, expectations and goals is a challenge in RE. Quality management
in software development starts with an accurate description of business processes
and a basic understanding of stakeholder needs. Requirements analysis is a critical

VIII Preface

task in software development as it involves investigating and learning about the
problem domain in order to develop a better understanding of stakeholders’ actual
goals, needs, and expectations.

This book looks at software requirements from both engineering and manage-
ment perspectives. We believe that RE is both an “engineering” and “manage-
ment” activity. It is an engineering activity because it is concerned with identify-
ing appropriate methodologies to develop software solutions and identifying cost
effective ways of doing so. In other words, the aim of RE is to introduce engineer-
ing principles into the practice of software systems analysis while integrating RE
with a quality assurance process of utmost value to practitioners. Requirements
change during the software development lifecycle and evolve after the system has
become operational. Thus, RE is also a “management” activity as it is concerned
with managing RE activities such as monitoring product requirements and manag-
ing the project scope, cost and schedule throughout the software development
process, while ensuring that all essential business applications are delivered as
specified in different requirements documents on different levels, for example,
product and project levels.

This book is intended to draw engineering and management perspectives to-
gether to discuss the issues that face the RE in the third millennium.

Aims of the Book and Target Audience

Engineering and managing software requirements are key means for systematic
software development. This book presents several examples of how this vision is
supported by theory, as well as how to apply these solutions to industrial practice.
Furthermore, it provides a collection of state-of-the-art RE research as well as in-
formation about current industry practices. The intention is that the book should
primarily function as a textbook for research students and researchers, although it
should also be useful to undergraduate and graduate students as well as require-
ments engineers operating in industry. The typical reader has most likely taken a
basic course, read an introductory book to RE or worked with RE in industry for
some time. Although it is recommended that readers have a sound background in
software development, this book offers new insights into the software develop-
ment process for both novice software developers as well as experienced profes-
sionals.

Book Overview

This book is organized into three major parts. Each part contains five to seven
chapters. In addition, Chap. 1 provides an exploration of some of key issues in re-
quirements engineering. This includes offering an understanding of the different
levels of requirements involved in requirements engineering and illustrating the

Preface IX

role of different stakeholders in requirements engineering. Chapter 1 also demon-
strates how the three parts of this book are interrelated. Although it is preferable to
firstly familiarize yourself with the first chapter, the book is designed to permit
reading of the parts in any order, depending on readers’ interests.

Part 1: State-of-the-Art Surveys of Requirements Engineering Process
Research

Part 1 of this book provides a general introduction to the field of RE. It aims to
enable readers to understand the motivation behind RE activities. The objective is
to illustrate the strengths as well as weaknesses of this discipline and, as such, this
part will present surveys of state-of-the art RE process research along with critical
assessments of existing models, frameworks and techniques. Part 1 contains a col-
lection of articles and up-to-date survey chapters that address the phases of the RE
process, namely, requirements elicitation and capturing, modeling and specifica-
tion, prioritization, dependencies, impact analysis, negotiation and quality assur-
ance.

Part 2: The Next Practice in Requirements Engineering

Building complex systems is still a challenge for software developers. The techno-
logical improvements in the global market are closely related to business envi-
ronments. New concepts such as enterprise systems, e-business and telecommuni-
cations have led to new trends for researchers and practitioners. The growth in
strategic importance of IT implies that tools, techniques and processes need to be
integrated with software system requirements so that they are aligned with the
strategic business objectives and business model of the organizations they support.
Part 2 covers articles that address new trends in RE. Topics covered in this part in-
clude market-driven requirements, decision support and decision making in RE,
RE for agile methods, goal modeling, web-based information systems, require-
ments ambiguity and use of natural language in RE.

Part 3: Studies and Industrial Experience

Empirical research compares theory to reality, helping us draw conclusions and to
evaluate new methods and tools. It is also important to learn more about technolo-
gies used in industrial practice. Part 3 concludes the book with articles that present
empirical evidence. The studies in this part report on RE solutions and practices.
This part focuses on state-of-the-practices that address overall RE issues including
industrial experience, non-functional requirements and RE metrics.

X Preface

Acknowledgements

There are many people whom we would like to thank for their help and support.
We wish to thank all the authors for their hard work and effort in creating this
book. We are especially grateful to the following colleagues who participated in
the external review process and for their valuable comments: Mark Staples, Karl
Cox, Cat Kutay, Paul Bannerman, Niazi Mahmoud, Jenny Liu, from National ICT
Australia; Ghassan Beydoun and Ken Stevens from University of New South
Wales, Australia.

We would also like to thank Kerrie Miller and Max Mail for their assistance in
formatting this book and Irem Sevinç for assisting with proofreading. Special
thanks go to Ralf Gerstner of Springer Germany for providing professional advice
during the publishing process. Finally, a big thank you is due to our families for
enduring the lengthy editing process. This book is dedicated to our families.

Contents

List of Contributors... XV

1 Requirements Engineering: Setting the Context .. 1
1.1 Introduction.. 1
1.2 Background.. 3
1.3 The Role of Stakeholders in Requirements Engineering.............................. 6
1.4 Different Levels of Requirements... 7
1.5 Requirements Management... 9
1.6 New Trends and the Next Practice.. 11
1.7 Empirical Evidence ... 12
1.8 Conclusion ... 12

Part 1 State-of-the-Art Surveys of Requirements Engineering Process
Research ... 17

2 Requirements Elicitation: A Survey of Techniques, Approaches
and Tools .. 19

2.1 Introduction.. 19
2.2 What is Requirements Elicitation?.. 21
2.3 Techniques and Approaches for Requirements Elicitation 25
2.4 Methodology Based Requirements Elicitation ... 34
2.5 Tool Support for Requirements Elicitation... 35
2.6 Issues and Pitfalls of Requirements Elicitation .. 36
2.7 Trends and Challenges in Requirements Elicitation................................... 38
2.8 Future Directions in Requirements Elicitation Research 41
2.9 Summary.. 41

3 Specification of Requirements Models... 47
3.1 Introduction.. 47
3.2 Modeling vs. Specification.. 48
3.3 Meta-models Categories.. 50
3.4 Specification Methodology ... 56
3.5 Requirements Transformation... 59
3.6 Conclusion ... 64

4 Requirements Prioritization.. 69
4.1 Introduction.. 69
4.2 What is Requirements Prioritization? ... 70
4.3 Aspects of Prioritization.. 72
4.4 Prioritization Techniques .. 75
4.5 Involved Stakeholders in the Prioritization Process 79
4.6 Using Requirements Prioritization.. 82
4.7 An Example of a Requirements Prioritization.. 86
4.8 Future Research in the Area of Requirements Prioritization...................... 89
4.9 Summary.. 91

XII Contents

5 Requirements Interdependencies: State of the Art and Future 95
5.1 Introduction ... 95
5.2 Requirements Traceability: a Basis for Understanding Requirements
Interdependencies .. 96
5.3 An Overview of Interdependency Types .. 100
5.4 How can Knowledge about Requirements Interdependencies Facilitate
Software Engineering? .. 105
5.5 Research Issues.. 109
5.6 Summary.. 113

6 Impact Analysis .. 117
6.1 Introduction ... 117
6.2 Strategies for Impact Analysis .. 124
6.3 Non-Functional Requirements .. 130
6.4 Impact Analysis Metrics.. 131
6.5 Tool Support .. 137
6.6 Future of Impact Analysis ... 138
6.7 Summary.. 139

7 Requirements Negotiation... 143
7.1 Introduction ... 143
7.2 The Negotiation Process.. 145
7.3 Dimensions of Requirements Negotiation.. 148
7.4 Examples of Negotiation Systems .. 154
7.5 Conclusions ... 158

8 Quality Assurance in Requirements Engineering .. 163
8.1 The Importance of Early Quality Assurance .. 163
8.2 Requirements and Quality Assurance... 165
8.3 Constructive Approaches .. 172
8.4 Analytical Approaches .. 175
8.5 Open Research Questions ... 180
8.6 Conclusion... 182

Part 2 The Next Practice in Requirements Engineering 187

9 Modeling Goals and Reasoning with Them .. 189
9.1 Introduction ... 189
9.2 State-of-the-Art Review .. 190
9.3 Goal/Strategy Maps... 199
9.4 Conclusion... 211

10 Managing Large Repositories of Natural Language Requirements 219
10.1 Introduction ... 219
10.2 The Role of Natural Language Requirements .. 220
10.3 State of the Research Addressing NL Requirements 222
10.4 Requirements Similarity.. 225

Contents XIII

10.5 Case 1: Keeping the Repository in Shape... 228
10.6 Case 2: Linking Customer Wishes to Product Requirements 232
10.7 Case 3: Managing Redundant Customer Requests................................. 236
10.8 Conclusions.. 240

11 Understanding Ambiguity in Requirements Engineering......................... 245
11.1 Introduction ... 245
11.2 Related Work... 247
11.3 A New Definition of Requirements Ambiguity...................................... 248
11.4 Ambiguity in RE Processes... 250
11.5 Detection of Ambiguity in Requirements Inspection 257
11.6 How to Live with Ambiguity .. 263
11.7 Summary and Conclusion ... 264

12 Decision Support in Requirements Engineering .. 267
12.1 Introduction ... 267
12.2 Basic Concepts .. 268
12.3 Decision Support versus Decision Making... 273
12.4 Analysis of Research ... 275
12.5 Conclusion and Future Research... 281

13 Market-Driven Requirements Engineering for Software Products 287
13.1 Introduction ... 287
13.2 Concepts and Context.. 289
13.3 The MDRE Process ... 293
13.4 MDRE Data Management ... 296
13.5 Market Analysis and Requirements Elicitation 300
13.6 Roadmapping and Release Planning... 301
13.7 Conclusion ... 304

14 Requirements Engineering for Agile Methods ... 309
14.1 Introduction ... 309
14.2 Agile Methods ... 310
14.3 Traditional and Agile Requirement Engineering.................................... 315
14.4 Agile Approaches to Requirements Engineering.................................... 316
14.5 Role and Responsibility of Customers, Developers, and Managers 321
14.6 Tools for Requirements Management in AMs 322
14.7 Conclusions.. 323

15 Requirements Engineering for Web-Based Information Systems 327
15.1 Introduction ... 327
15.2 Approaches to RE for Development of WBIS.. 329
15.3 Significance of Concerns in Requirements Engineering........................ 334
15.4 A Model of Concern-Driven Requirements Evolution........................... 339
15.5 Summary and Conclusion ... 343

Part 3 Studies and Industrial Experience... 351

XIV Contents

16 Requirements Engineering: A Case of Developing and Managing
Quality Software Systems in the Public Sector.. 353

16.1 Introduction ... 353
16.2 The ABS Case Study Setting .. 354
16.3 Governance of ABS Software Development.. 356
16.4 The ABS Software Development Process .. 358
16.5 The ABS Software Requirements Phase .. 360
16.6 Some Examples of ABS Software .. 365
16.7 What can We Learn From the ABS? .. 367

17 Good Quality Requirements in Unified Process... 373
17.1 Introduction ... 373
17.2 Background.. 374
17.3 Practice .. 375
17.4 Evaluation.. 377
17.5 Conclusions ... 401

18 Requirements Experience in Practice: Studies of Six Companies............ 405
18.1 Introduction ... 405
18.2 Studied Companies.. 406
18.3 Methodology.. 407
18.4 Assessment Findings ... 413
18.5 Comparison with State of Practice Surveys.. 418
18.6 Discussion.. 421
18.7 Conclusions ... 424

19 An Analysis of Empirical Requirements Engineering Survey.................. 427
19.1 Introduction ... 427
19.2 Empirical Research.. 428
19.3 Classification of Existing Broad RE Studies.. 429
19.4 Broad Studies Outcomes ... 436
19.5 Requirements Engineering Practice: A New Study................................ 442
19.6 Remarks on Empirical RE Research... 445
19.7 Conclusion... 446

20 Requirements Engineering: Solutions and Trends 453
20.1 Introduction ... 453
20.2 A Requirements Engineering Framework: Available Solutions 454
20.3 Trends in Requirements Engineering ... 460
20.4 Conclusions and Outlook .. 473

Index ... 477

List of Contributors

Anneliese K. Amschler Andrews
School of Electrical Engineering and

Computer Science

Washington State University

PO Box 642752

Pullman, WA 99164-2752, USA

Email: aandrews@eecs.wsu.edu

Aybüke Aurum
School of Information Systems, Technology

and Management

University of New South Wales

Sydney NSW 2052 Australia

Email: aybuke@unsw.edu.au

Patrik Berander
Department of Systems and Software

Engineering

School of Engineering

Blekinge Institute of Technology

Box 520

SE-372 25 Ronneby, Sweden

Email: patrik.berander@bth.se

Lars Borner
Institute for Computer Science

University of Heidelberg

Im Neuenheimer Feld 326

D-69120 Heidelberg, Germany

Email: lars.borner@informatik.uni-

heidelberg.de

Sjaak Brinkkemper
Institute of Information and

Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

Email: S.Brinkkemper@cs.uu.nl

Chad Coulin
Department of Software Engineering

Faculty of Information Technology

University of Technology, Sydney

P O Box 123 Broadway

NSW 2007, Australia

Email: chadc@it.uts.edu.au

Jacob L. Cybulski
School of Information Systems

Faculty of Business and Law

Deakin University

Burwood, Vic 3125, Australia

Email: jlcybuls@deakin.edu.au

Åsa G. Dahlstedt
School of Humanities and Informatics

University of Skövde
Box 408
SE-541 28 Skövde, Sweden
Email: asa.dahlstedt@his.se

Christian Denger
Fraunhofer Institute for

Experimental Software Engineering

Sauerwiesen 6

D-67661 Kaiserslautern, Germany

Email: denger@iese.fhg.de

Christof Ebert
Alcatel

54 rue La Boetie,

75008 Paris, France

Email: Christof.Ebert@alcatel.com

 XVI List of Contributors

João M. Fernandes
Dept. Informatica

Universidade do Minho, Campus de

Gualtar

4700-320 Braga, Portugal

Email: jmf@di.uminho.pt

Vincenzo Gervasi
Dipartimento di Informatica

via F. Buonarroti, 2

I-56127 Pisa, Italy

Email: gervasi@di.unipi.it

Tony Gorschek
Department of Systems and Software

Engineering

School of Engineering

Blekinge Institute of Technology

Box 520

SE-372 25 Ronneby Sweden

Email: tony.gorschek@bth.se

Shirley Gregor
School of Business and Information

Management

Faculty of Economics and Commerce

Hanna Neumann Building 021

Australian National University

ACT 0200 Australia

Email: shirley.gregor@anu.edu.au

Paul Grünbacher
Systems Engineering & Automation

Johannes Kepler University Linz

Altenbergerstr. 69

4040 Linz, Austria

Email: pg@sea.uni-linz.ac.at

Per Jönsson
Department of Systems and Software

Engineering

School of Engineering

Blekinge Institute of Technology

Box 520

SE-372 25 Ronneby, Sweden

Email: per.jonsson@bth.se

Erik Kamsties
Institute for Computer Science and

Business Information Systems (ICB)

University of Duisburg-Essen

Schuetzenbahn 70
D-45117 Essen, Germany

Email: kamsties@sse.uni-essen.de

Tom Koenig
Fraunhofer Institute Experimental Software

Engineering

Sauerwiesen 6

D-67661 Kaiserslautern, Germany

Email: Tom.Koenig@iese.fraunhofer.de

Mikael Lindvall
Fraunhofer USA

University of Maryland

4321 Hartwick rd, suite 500

College Park, MD 20740, USA

Email: mikli@fc-md.umd.edu>

Pericles Loucopoulos
School of Informatics

The University of Manchester

P.O. Box 88

Manchester M60 1QD, UK

Email: p.loucopoulos@manchester.ac.uk

List of Contributors XVII

Ricardo J. Machado
Dept. Sistemas de Informacao

Universidade do Minho, Campus de

Azurem

4800-058 Guimaraes, Portugal

Email: rmac@dsi.uminho.pt

Nigel Martin
14 Derham Court

Wanniassa, Canberra

ACT 2903 Australia

Email: Nigel.Martin@defence.gov.au

Johan Natt och Dag
Dept. of Communication Systems

Lund University

Box 118,

SE-221 00 Lund, Sweden

Email: johan.nattochdag@telecom.

lth.se

An Ngo-The
Laboratory of Software Engineering

Decision Support

University of Calgary

2500 University Drive NW

Calgary, Alberta, Canada T2N 1N4

Email: ango@cpsc.ucalgary.ca

Thomas Olsson
Fraunhofer Institute of Experimental

Software Engineering

Sauerwiesen 6

67661 Kaiserslautern, Germany

Email: olsson@iese.fhg.de

Barbara Paech
Institute for Computer Science

University of Heidelberg

Im Neuenheimer Feld 326

D-69120 Heidelberg, Germany

Email: paech@informatik.uni-heidelberg.de

Anne Persson
School of Humanities and

Informatics

University of Skövde

Box 408
SE-541 28 Skövde Sweden
Email: anne.persson@his.se

Isabel Ramos
Dept. Sistemas de Informacao

Universidade do Minho, Campus de

Azurem

4800-058 Guimaraes, Portugal

Email: iramos@dsi.uminho.pt

Bjorn Regnell
Dept. of Communication Systems

Lund University

Box 118

SE-221 00 Lund, Sweden

Email: bjorn.regnell@telecom.lth.se

Colette Rolland
Centre de Recherche en Informatique

Université Paris 1 - Panthéon Sorbonne

90, rue de Tolbiac,

F-75013 Paris, France

Email: Colette.Rolland@univ-paris1.fr

Guenther Ruhe
University of Calgary

2500 University Drive NW

Calgary, Alberta, Canada T2N 1N4

Email: ruhe@ucalgary.ca

Camille Salinesi
Centre de Recherche en Informatique

Université Paris 1 - Panthéon Sorbonne

90, rue de Tolbiac,

F-75013 Paris, France

Email: Camille.Salinesi@univ-paris1.fr

 XVIII List of Contributors

Pradip K. Sarkar
School of Information Systems,

Deakin University,

221 Burwood Highway, Burwood,

Vic 3125, Australia

Email: pks1@deakin.edu.au

Norbert Seyff
Systems Engineering & Automation

Johannes Kepler University Linz

Altenbergerstr. 69

4040 Linz, Austria

Email: ns@sea.uni-linz.ac.at

Alberto Sillitti
Center for Applied Software

Engineering

Faculty of Computer Science

Free University of Bozen

Piazza Domenicani 3,

I-39100 Bolzano, Italy

Email: Alberto.Sillitti@unibz.it

Giancarlo Succi
Center for Applied Software Engineering

Faculty of Computer Science

Free University of Bozen

Piazza Domenicani 3,

I-39100 Bolzano, Italy

Email: Giancarlo.Succi@unibz.it

Mikael Svahnberg
Department of Systems and Software

Engineering

School of Engineering

Blekinge Institute of Technology

Box 520

SE-372 25 Ronneby Sweden

Email: mikael.svahnberg@bth.se

Roel Wieringa
Dept. of Computer Science,

Faculty of Electrical Eng., Mathematics and

Computer Science,

University of Twente,

PO Box 217, 7500 AE Enschede,

Netherlands;

Email: R.J.Wieringa@ewi.utwente.nl

Claes Wohlin
Department of Systems and Software

Engineering

School of Engineering

Blekinge Institute of Technology

Box 520,

SE-372 25 Ronneby, Sweden

E-mail: claes.wohlin@bth.se

Nur Yilmaztürk
ABB AB
Corporate Research
SE-721 78 Västerås, Sweden
Email: nur.yilmazturk@se.abb.com

Didar Zowghi
Department of Software Engineering

Faculty of Information Technology

University of Technology, Sydney

P O Box 123 Broadway
NSW 2007 Australia

Email: didar@it.uts.edu.au

1 Requirements Engineering: Setting the Context

Aybüke Aurum and Claes Wohlin

Abstract: This chapter presents a brief overview of requirements engineering and
provides an introduction to some of the critical aspects of this field. This includes
offering and understanding of the different levels of requirements involved in re-
quirements engineering, namely organizational, product and project level require-
ments, and illustrating the role of different stakeholders in requirements engineer-
ing. The chapter also aims to demonstrate how the three parts of this book are
interrelated.

Keywords: Requirements management, Business requirements, Product require-
ments, Project requirements, Stakeholders, Requirements taxonomy.

1.1 Introduction

The objective of this chapter is twofold. First, it aims to provide a brief introduc-
tion to requirements engineering, and secondly it aims to set a common context for
the other chapters of the book. This introductory chapter is provided to set the
stage for the remaining chapters and highlight some of the important areas covered
by this book. The remaining chapters require a basic understanding of require-
ments engineering to benefit from the deeper insights provided. These chapters are
divided into three parts, each with a different focus, as shown in the table of con-
tents and described briefly in the Preface.

Requirements engineering is accepted as one of the most crucial stages in soft-
ware design and development as it addresses the critical problem of designing the
right software for the customer. Requirements engineering is increasingly becom-
ing a set of processes that operates on different levels, including organizational,
product and project levels. Furthermore, it is a continuous process on organiza-
tional and product levels and a process limited in time on the project level. How-
ever, most requirements engineering research to date is devoted to handling re-
quirements on the project level, making this the main focus of this chapter. The
different levels are revisited in Sect. 1.4. Requirements engineering on the project
level is the process by which the requirements for a software project are gathered,
documented and managed throughout the software development lifecycle.

The development of a software requirements specification is widely recognized
as the bases of system functionality. Software requirements are the critical deter-
minants of software quality, given empirical studies showing that errors in re-
quirements are the most numerous in the software life-cycle and also the most ex-
pensive and time-consuming to correct. According to the Standish group report in
1995 [10], 52.7% of projects cost (named as challenged projects) 189% of their
original budget estimates, and only a disappointing 42% of the original features of

2 Aurum and Wohlin

challenged projects were implemented. The study demonstrates that only 16.1% of
all US software projects are developed on-schedule, on-budget and with all origi-
nally planned features, while 31.1% of projects are terminated before completion.
It was also observed that the average project is delivered at approximately three
times the budget and in three times the scheduled time.

Such poor figures lead to questioning the causes of these deficiencies. Often
these problems are a result of inadequate requirements [25]. According to a survey
conducted with 350 organizations in the USA (with over 8000 projects), one third
of the projects were never completed and one half succeeded only partially. About
half of the managers interviewed identified poor requirements as a major source of
problems, along with other factors such as low user involvement and unclear ob-
jectives. Similarly, according to another survey which was conducted with 3800
organizations from over 17 countries in Europe, most problems are in the area of
requirements specifications (50%) and requirements management (50%) [18]. In
1999, the Standish group report [11] revealed that three of the top ten reasons for
“challenged” projects and project failure were lack of user involvement, unstable
requirements and poor project management. In a 2001 report, while user involve-
ment was no longer a key concern, unstable requirements and poor project man-
agement remained amongst the primary reasons for project failure [12].

In a more recent survey of twelve UK companies’ requirements problems ac-
counted for 48% of all software problems [20]. In one of the case studies, Tveito
and Hasvold [38] observed that there was a huge gap between the day to day op-
erations of a hospital and software developers’ domain knowledge of these opera-
tions, though every year healthcare organizations spend large amounts of money
and resources on IT systems. Tveito and Hasvold argue that this gap is due to in-
sufficient requirements gathering and misunderstanding requirements due to the
lack of domain knowledge.

These facts and figures only depict the sad reality of “software depression”.
Furthermore, the cost of repairing requirements-related problems dramatically in-
creases as the software development process progresses. A study by Boehm and
Papaccio [6] revealed that it costs US$1 to locate and fix an error in the require-
ments definition stage, US$5 in the design phase, US$10 in the coding phase,
$20US during unit testing, and up to US$200 after system delivery. It is therefore
evident that the RE process has important ramifications for the overall success of a
software project. Although the above example dates back just over 15 years, the
ratio remains the same today.

Requirements engineering is concerned with the identification of goals for a
proposed system, the operation and conversion of these goals into services and
constraints, as well as the assignment of responsibilities for the resulting require-
ments to agents such as humans, devices and software. Requirements engineering
has now moved from being the first phase in the software development lifecycle to
a key activity that spans across the entire software development lifecycle in many
organizations. New products or new releases of products are entering the market
or delivered to customers at an increasingly faster pace. In order to improve re-
quirements engineering processes, current practices in the real world need to be
examined. Understanding and modeling current requirements engineering proc-

1 Requirements Engineering: Setting the Context 3

esses is an important step towards improving requirements engineering practices
and therefore increasing the success of software projects [31].

Researchers agree that the requirements engineering process should consist of
structured and repeatable activities where both engineering and management as-
pects are properly handled [39]. Unfortunately, there is no consensus regarding the
appropriate requirements engineering process models to use across different in-
dustries, as the selection of available models spans from activity-based process
models to decision-oriented paradigms, each with their own subset of model struc-
tures.

The objective of this chapter is to provide the context in which the other chap-
ters of this book operate. As briefly mentioned above, this context includes an un-
derstanding of the different process levels involved in requirements engineering.
Moreover, the different stakeholders and their respective roles in requirements en-
gineering must be understood. The activities involved in the processes are pre-
sented at a high level, providing the reader insight into the work being performed
as part of requirements engineering. This chapter provides a brief introduction to
some fundamental building blocks of requirements engineering to allow the reader
reap the full benefit and obtain a clear understanding of the other chapters.

The chapter is outlined as follows. Sect. 1.2 provides an introductory back-
ground to the area of requirements engineering. This is followed by a brief discus-
sion of the roles of stakeholders in Sect. 1.3. In Sect. 1.4, different levels of re-
quirements are presented. The management of requirements is discussed in Sect.
1.5 while Sect. 1.6 explores the future of the area. Finally, empirical evidence is
touched upon in Sect. 1.7 and some conclusions are presented in Sect. 1.8.

1.2 Background

This objective of this section is to present background information on require-
ments engineering.

1.2.1 What is a Requirement?

All projects begin with a statement of requirements. Requirements are descriptions
of how a software product should perform. A requirement typically refers to some
aspect of a new or enhanced product or service. The widely cited IEEE 610.12-
1990 standard [24] defines a requirement as:

(1) A condition or capability needed by a user to solve a problem or achieve an
objective,

(2) A condition or capability that must be met or possessed by a system or sys-
tem component to satisfy a contract, standard, specification, or other formally im-
posed documents,

A documented representation of a condition or capability as in (1) or (2).

4 Aurum and Wohlin

Therefore, requirements include not only user needs but also those arising from
general organizational, government and industry standards. Clearly, a requirement
is a collection of needs arising from the user and various other stakeholders (gen-
eral organization, community, government bodies and industry standards), all of
which must be met. Ideally, requirements are independent of design, showing
“what” the system should do, rather than “how” it should be done. However, this
is not always possible in practice. That is, the meanings of “what” and “how” dif-
fer from person to person [15].

Requirements can be classified in many ways, as illustrated in Table 1.1. While
the literature draws a distinction between different types of requirements, in prac-
tice it is not always easy to identify such differences [4]. For example, a user re-
quirement concerned with security may be classified as a non-functional require-
ment. However, during implementation other requirements may evolve which are
distinguishably functional such as user authorization [37]. More examples of this
issue can be found in Chap. 6.

Table 1.1 Types of requirements

Requirements Classification

Functional requirements — what the system will do
Non-functional requirements — constraints on the types of solutions that will
meet the functional requirements e.g. accuracy, performance, security and modi-
fiability
Goal level requirements — related to business goals
Domain level requirements — related to problem area
Product level requirements — related to the product
Design level requirements — what to build
Primary requirements — elicited from stakeholders
Derived requirements — derived from primary requirements

Others classifications, e.g.
Business requirements versus technical requirements
Product requirements versus process requirements —- i.e. business needs versus
how people will interact with the system
Role based requirements, e.g. customer requirements, user requirements, IT re-
quirements, system requirements, and security requirements

Having understood the basics of what constitutes a requirement, the next step is
to elaborate on the process used to manage and engineer requirements.

1.2.2 Requirements Engineering Process

Requirements engineering refers to all life-cycle activities related to requirements.
This primarily includes gathering, documenting and managing requirements. With
the growing awareness of the significance of requirements in the software process,

1 Requirements Engineering: Setting the Context 5

requirements engineering increasingly becomes an area of focus in software engi-
neering research.

Common requirements engineering activities are elicitation, interpretation and
structuring (analysis and documentation), negotiation, verification and validation,
change management and requirements tracing. There are several process models
available to describe the requirements engineering process. The process itself is
often depicted in different forms, including linear, incremental, non-linear and spi-
ral models. Kotonya and Sommerville [25] suggest a conceptual linear require-
ments engineering process model, which indicates iterations between activities.
On the other hand, Macaulay [30] provides a purely linear requirements engineer-
ing process model that does not indicate the overlapping or iteration of activities
suggested by the Kotonya and Sommerville [25] model. While some researchers
tend to portray the requirements engineering process as a linear model, non-linear
models have also been suggested. Loucopoulos and Karakostas [27] depict the re-
quirements engineering process as iterative and cyclical in nature. Alternatively,
the spiral model represents a sequence of activities being performed in iterations,
resulting in gradual progression requirements engineering process [5]. However, it
has implications on the requirements engineering process model. A spiral ap-
proach would require requirements to be handled in each round. The spiral model
is similar to the ideas presented by Kotonya and Sommerville [25]. They provide a
second requirements engineering process model, which depicts the same require-
ments engineering activities as in their linear model, only occurring in a spiral rep-
resentation. The activities from the linear process model are repeated in iterations,
forming a spiral. At the end of each iteration a decision is made as to whether to
accept the requirements document or to perform a further iteration.

Results from studies of the requirements engineering processes in practice have
indicated that the systematic and incremental requirements engineering models
presented in literature may not necessarily reflect the requirements engineering
processes in current practice. Martin et al. (2002), who examined the requirements
engineering process in a case by case study, found that projects were generally
handled by following a linear model, with some iteration of activities. Most of the
projects they examined generally followed a linear process until the prototyping
phase, which then resulted in an iterative process. Martin et al., [32] indicated that
the Loucopoulos and Karakostas [27] model was a good representation of the ad
hoc process and the iterative nature of prototyping, but did not show the progres-
sion of phases. On the other hand, Nguyen and Swatman [35] found that the re-
quirements engineering process in their case study did not occur in a systematic,
smooth and incremental way. Rather, it was opportunistic, with sporadic simplifi-
cation and restructuring of the requirements model when it reached points of high
complexity. Furthermore, Houdek and Pohl [22] performed a case study in the
field but could not produce a monolithic requirements engineering process model
of requirements engineering activities, as they were too heavily intertwined and
not seen as separate tasks by the participants of the study.

Requirements engineering field studies have also gathered conflicting results as
to the status of requirements engineering process standards in organizations. This
indicates that the area has not fully matured in the sense that there is no univer-

6 Aurum and Wohlin

sally used and accepted process. Instead, several different requirements engineer-
ing processes have been presented. Kotonya and Sommerville [25] put forward
that not many organizations have a standard requirements engineering process
definition. Consistent with this, Hofmann and Lehner [21] examined, requirements
engineering processes of 15 requirements engineering teams in industry and found
that most participants saw requirements engineering as ad hoc, with only some
projects using an explicitly defined requirements engineering process or customiz-
ing a company-wide requirements engineering process standard. Furthermore,
studies of requirements engineering in web development projects have further
confirmed the ad hoc nature of requirements engineering [28]. In contrast to these
findings, El Emam and Madhavji [17] concluded that organizations tend to use
standard requirements engineering processes, as they are viewed as best practices.
Chatzoglou [13] used a three-phased mail-out survey to examine the requirements
engineering process in 64 projects to understand the differences between projects
with different characteristics. Particular focus was placed on human resources.
The main conclusions were that a standard process methodology should be used
but should also be tailored to the specific needs of each project. Furthermore, re-
sources should be put into the initial iteration of the requirements engineering
process.

Since requirements engineering processes are fundamental to the success of
software projects, it surprisingly not improving the requirements engineering
process can subsequently enhance the chances of developing successful software.
Prior to devising strategies for software process improvement, research and analy-
sis of present requirements engineering processes must be undertaken to provide a
solid grasp of current requirements engineering practices.

1.3 The Role of Stakeholders in Requirements Engineering

In essence, requirements engineering aims to transform potentially incomplete, in-
consistent and conflicting stakeholder goals into a complete set of high quality re-
quirements. Information systems researchers define stakeholders “…as those par-
ticipants in the development process together with any other individuals, groups or
organizations whose actions can influence or be influenced by the development
and use of the system whether directly or indirectly” [36]. Typical stakeholders
are product managers, various types of users and administrators from the client
side, and software team members from the software development side. This view
is somewhat limiting when considering software development for markets. The
traditional view of software development and requirements engineering, is that of
bespoke software development. This is the situation when software is developed
with a specific customer in mind and when it is often possible to have direct con-
tact with this one user/customer. This situation becomes different when develop-
ing software for a market or a set of customers, in particular if all customers are
not known at the time of development. This has led to studies of market-driven
software development, where one important issue is to identify and handle the dif-

1 Requirements Engineering: Setting the Context 7

ferent stakeholders under these situations. More information on market-driven re-
quirements can be found in Chap. 13.

As software projects became increasingly complex, software developers face
the challenge of identifying the goals of stakeholders who come from a diverse
range of backgrounds. It may also be very difficult to represent the essential re-
quirements of software in a way which is accessible to all stakeholders, as soft-
ware is effectively invisible [9]. The importance of stakeholder involvement in re-
quirements engineering activities is widely accepted given that accurate
identification of stakeholder needs largely determines the quality of the software
product.

One of the major problems in requirements engineering is the management of
different types of inconsistencies resulting from requirements elicitation, model-
ing, specification, and prioritization activities. Inconsistencies become particularly
apparent when there are multiple stakeholders and viewpoints, since different
stakeholders have varying ways of expressing themselves and different opinions
as well as priorities. Although some researchers point out that inconsistencies be-
tween requirements models may be desirable, as they allow further elicitation (in
capturing requirements models) and they recommend tolerating some internal in-
consistencies during requirements modeling [23, 33], the success of requirements
engineering projects depends on accurate analysis of these perspectives for in-
completeness and inconsistencies. Therefore, requirements need to be negotiated
and validated before they are documented and developers commit to implementing
them.

1.4 Different Levels of Requirements

Effective management of the software development process contributes to sustain-
able competitive advantage for software companies. This implies that managers
need to consider customers’ and business requirements, as well as the technologi-
cal opportunities which may be distinct or overlap. It is important to stay on
budget, reduce life cycle time and achieve product performance goals to ensure
that the software requirements are aligned with business goals. These challenges
are not unique to software development and are in fact typical of complex system
products. In the Internet age there have been significant changes in business envi-
ronments creating more complex demands on the technologies that support busi-
ness information systems. Consequently, understanding, analyzing, modeling and
managing requirements have become equally complex task. In order to deliver
high quality software systems on time and on budget, it is essential to have prop-
erly structured and controlled requirements specifications that are understandable,
comprehensive and consistent.

The requirements engineering process is one of the main contributors to the
success of software projects. This is particularly true in a global competitive mar-
ket where time-to-market and meeting stakeholder requirements are key success
factors. Thus, improving the requirements engineering process can significantly

8 Aurum and Wohlin

increase the likelihood of software project success. According to Edwards et al.,
[16] contemporary software design approaches often mix business issues with IT
implementation issues to form monolithic systems that are no more responsive to
change than their predecessors. IT systems in this industry would therefore need to
be dynamic and quickly adaptable to their environments.

Table 1.2 Requirements classification in three levels

 Strategic Man-
agement

Tactical Man-
agement

Operational Man-
agement

Requirements at
organizational
level

*Business strat-
egy

*Competitiveness
*Technology
* Marketing
*Economic value

of the product

* Planned benefits
of the product

* Tradeoff between
technology-push and
market-pull

Requirements at
product level

* Packaging re-
quirements for a
specific release

* Product archi-
tectures

* Resource man-
agement

*Implementation
of a specific re-
lease

*Change management
* Requirements vola-

tility e.g. whether a
particular require-
ment is subject to a
syntactic or semantic
change

Requirements at
project level

*Project planning
*Feasibility study
*Recruiting peo-
ple

* Project man-
agement

* Quality control

*Validation in terms of
which requirements
will go to the next re-
lease

The current expanded perspective of software products in business has various
implications for managing software development processes, i.e., software re-
quirements should not be solely handled in software projects. Based on Anthony’s
[1] three level managerial decision making model, namely strategic, tactical and
operational decisions, Aurum and Wohlin [2] illustrate how to conduct an analysis
of the requirements engineering process and its underlying decision-making proc-
esses using classical decision making frameworks. In this book, we adopt a similar
view, i.e. that the management of software requirements is subject to organization-
oriented, product-oriented and process-oriented activities and that need to be man-
aged at strategic, tactical and operational levels. Table 1.2 illustrates classification
of software requirements in 3*3 matrixes, where each cell provides a few exam-
ples of requirements activities or decisions. The three levels can be briefly de-
scribed as follows:

a) Requirements at the Organizational Level. The senior management team of
an organization may have strategic objectives and long-term goals in terms of
market share and so forth. The goals and strategies at the organizational level will
inevitably influence which products an organization ought to develop. Thus, re-

1 Requirements Engineering: Setting the Context 9

quirements posed on products must first be evaluated on at organizational level to
ensure that they are aligned with the goals and strategies of the organization. One
of the main challenges faced when successfully developing software products is
that of determining how the end product will support business objectives.

b) Requirements at the Product Level. The requirements of software products
must be aligned with the business goals of the software development organization.
One of the crucial questions is how to balance customers’ concerns with develop-
ers’ concerns. Goal modeling techniques in requirements engineering serve as a
mechanism by which one can link requirements to strategic objectives anchored in
the context of the overall business strategy model. The requirements are typically
both functional and non-functional requirements. Product management has to en-
sure that the requirements are aligned with the goals and objectives in terms of the
product. This may mean selecting the requirements for the product that are best
aligned with the overall goals and strategies of the organization.

c) Requirements at the Project Level. Requirements on the product level must
be packaged into parts that go into specific projects or releases of the software. It
is important that requirements are prioritized and selected based on their fulfill-
ment of both product and organizational goals and strategies. Requirements may
be chosen for implementation based on whether they fulfill the needs of a specific
and important customer, or whether they potentially open up a new market seg-
ment to the organization. These requirements define the conditions under which
the project will be run, including issues related to project planning, risk manage-
ment, budget and cost.

The growth in strategic importance of IT implies that tools, techniques and
processes need to be integrated with software system requirements so they are
aligned with the strategic business objectives and business model of the organiza-
tions they support. Business change is a part of system development. As systems
become more integrated and involve more users from diverse backgrounds, soft-
ware developers are pressured to understand the implications of their decisions in
relation to cost/benefit analysis, particularly during early life cycle activities [8,
19, 26]. System engineering and management literature, in particular risk man-
agement literature, stress the importance of project planning effort, schedule plan-
ning, cost planning, and risk assessment in product development as being essential
to the generation of products that meet customer requirements and align with stra-
tegic business goals.

1.5 Requirements Management

The quality of a software product is largely determined by the quality of the de-
velopment process used to create it. Many projects fail due to mistakes in the elu-
cidation of requirements, while others fail because of the requirements have be-
come outdated by the time the project is delivered [9]. It is also a major challenge

10 Aurum and Wohlin

developers to determine which requirements changes will cause a major problem
in the project or the product itself [9]. Managing requirements engineering phases
is crucial to the successful development of software products. In order to deliver
high quality software systems on time and on budget it is essential to have prop-
erly structured and controlled requirements specifications that are understandable,
comprehensive and consistent.

As mentioned above, it is important to have a good understanding of stake-
holder goals and ensure their involvement in the requirements engineering proc-
ess. The management of requirements involves establishing a shared understand-
ing between the stakeholders and the requirements they have specified for
inclusion in the software product. The essential practices of requirements man-
agements are:

Requirements Elicitation, Specification and Modeling: This involves under-
standing the needs of stakeholders, eliciting requirements, modeling and col-
lecting them in a repository. This is an important stage in software develop-
ment. However, for a variety of reasons, including cognitive, communicative
and motivational reasons, the requirements tend to be incomplete and inconsis-
tent. Therefore, there is always room for improvement in these activities.
Prioritization: It is not always easy for developers to decide which require-
ments are important to customers. This activity assists project managers with
resolving conflicts (where customers and developers collaborate on require-
ments prioritization), plan for staged deliveries, and make necessary trade-off
decisions.
Requirements Dependencies and Impact Analysis: It is important to ac-
knowledge that requirements change and that this may significantly impact the
software project [14]. Several issues such as recording decisions, understanding
the effect of business changes and the use of domain models are yet to be ad-
dressed [29].
Requirements Negotiation: Requirements engineering is essentially a com-
plex communication and negotiation process involving customers, designers,
project managers and maintainers. The people, or stakeholders, involved in the
process are responsible for deciding what to do, when to do it, what information
is needed, and what tools need to be used [25]. In many situations conflict is
inherent in requirements, thus they need to be negotiated between stakeholders.
Some tools, such as Win-Win Groupware, have been developed to support
stakeholders throughout the negotiation process [7]. The requirements negotia-
tion activity is one of the most crucial activities in software development as it
has a great impact on the final product. In reality, this activity is carried out in
parallel with the activities mentioned above and continues until the require-
ments are implemented. Further information on negotiation can be found in
Chap. 7.
Quality Assurance: The objective is to ensure that high quality requirements
are recorded in the specification document. The purpose of quality assurance is
to establish reasonable and realistic levels of confidence when writing and
managing requirements. It is important that both customers and developers are

1 Requirements Engineering: Setting the Context 11

involved in quality assurance activities in requirements engineering as they in-
fluence the success of a project. It is important to stress that quality assurance
of requirements is not only an activity in the requirements phase in projects.
Quality assurance must be addressed throughout the software lifecycle. Re-
quirements should be traced throughout development and the quality assured,
for example, through inspections, reviews and testing.

1.6 New Trends and the Next Practice

The technological improvements in the global market are closely related to busi-
ness environments. New concepts such as enterprise systems, e-business and tele-
communications have led to new trends in research for researchers and practitio-
ners. Furthermore, the complexity of working in a distributed and heterogeneous
environment is causing profound changes in the skills needed and the technology
used to develop and maintain software applications. In this ever-changing business
and technology environment, new trends have started emerging and have caused
fundamental shifts in software development. In a similar fashion, requirements
engineering has begun to evolve from its traditional role, as a mere front-end in
the software development lifecycle, towards becoming a key focus in the software
development process; a process that requires a more precise understanding of the
field itself. Today, the definition of what the software development lifecycle con-
stitutes is expanding and evolving as new technologies emerge, forcing software
developers to scramble to position themselves in a rapidly changing business envi-
ronment [34].

The requirements engineering process is a decision-rich complex problem solv-
ing activity. Decision making and managing the phases of requirements engineer-
ing is becoming increasingly crucial to the successful development of software
products. The complexity of the activities involved in the requirements engineer-
ing process call for the need for organizations to coordinate the decision-making
process and increase visibility of the decisions and the roles played with respect to
decision-making in requirements engineering more visible. In order to support the
requirements engineering process, a better understanding of activities involved in
the process itself as well as an appreciation of the decisions made throughout these
activities is necessary [2]. In other words, software developers need to have a bet-
ter understanding of the range of decisions made at the organizational, product and
project levels to ensure effective management of the requirements engineering
process.

Software developers need a better understanding of what it takes to generate
adequate management support and stakeholders’ participation in the requirements
engineering process. The effective management of the requirements engineering
process mandates procedures and tools to support the phases of the requirements
engineering process model and also takes into account other issues, e.g., social,
political and cultural issues. There is a strong need for decision support throughout
software development at the organizational, project and product levels. As new

12 Aurum and Wohlin

software developments approaches are emerging, such as agile methods, trends in
business and technology force requirements engineering to expand its role in the
software development life cycle.

1.7 Empirical Evidence

Empirical research aims to capture quantitative evidence and compares theory to
reality, helping us to draw conclusions and to evaluate new methods and tools.
Empirical research is important to the requirements engineering field because the
results of such studies both help to characterize the potential problems (regarding
requirements at the business, product and project levels) with which the field is
concerned and evaluate new techniques in a relevant context. Empirical research
provides valuable insight into aspects of requirements engineering. Furthermore,
both academics and software practitioners need supporting evidence from case
studies, field studies and experiments before adopting new technologies. Collect-
ing empirical evidence from industry is often time consuming and can become
very complicated. However, this is necessary to quantify and demonstrate their
relative merits to the requirements engineering community.

Depending on the purpose of the evaluation, whether it is techniques, methods
or tools, and depending on the conditions for the empirical investigation, the three
most common types of quantitative investigations (strategies) are:

Experiment [40]: Experiments are often highly controlled (and hence also occa-
sionally referred to as controlled experiments) and often run in a laboratory set-
ting. When experimenting, subjects are assigned to different treatments at ran-
dom.
Case study [41]: Case studies are normally conducted studying a real project
and are used for monitoring projects, activities or assignments. Data is collected
for a specific purpose throughout the study.
Survey [3]: A survey is often an investigation performed in retrospect, when
e.g. a tool or technique, has been in use for some time. The primary means of
gathering qualitative or quantitative data are interviews or questionnaires.

1.8 Conclusion

This chapter has two key contributions: (a) from a theoretical point of view, it
provides a brief introduction to the area of requirements engineering, and (b) from
a practical point of view, it aims to provide the reader with guidelines to some im-
portant aspects of requirements engineering that are needed to obtain the full bene-
fit of the other chapters of this book.

There are three parts in this book. Part 1 contains “state-of-the-art” chapters
that address the key requirements engineering activities mentioned in Sect. 1.5,
namely requirements elicitation, specification and modeling, prioritization, re-

1 Requirements Engineering: Setting the Context 13

quirements dependencies, impact analysis, requirements negotiation and quality
assurance issues. Part 2 is intended to address new trends in requirements engi-
neering and pinpoints the advantages and pitfalls of these trends. Finally, Part 3
contains chapters focusing on empirical evidence from academic research as well
industrial case studies.

References

1. Anthony RN (1965) Planning and control systems: a framework for analysis. Harvard
University, Boston, USA

2. Aurum A, Wohlin C (2003) The fundamental nature of requirements engineering activi-
ties as decision making process. Journal on Information and Software Technology,
45(14): 945 954

3. Babbie E (1990) Survey research methods. Wadsworth, ISBN 0 524 12672 3
4. Berry DM, Lawrence B (1998) Requirements engineering. IEEE Software 25(2): 26 29
5. Boehm BW, (1988) A spiral model of software development and enhancement, Com-

puter, May, 21(5): 61 72
6. Boehm BW, Papaccio, PN (1988) Understanding and controlling software costs. IEEE

transactions on software engineering, 14 (10): 1462 1477
7. Boehm BW, Grünbacher P, Brigges RO (2001) Developing groupware for requirements

negotiation: lessons learned. IEEE, Software, May/June, pp. 46 55
8. Boehm BW (2003) Value-based software engineering. ACM SIGSOFT, Software engi-

neering notes, March, 28(2): 1 12
9. BSC’04 (2004) The challenges of complex IT projects. The report of a working group

from the Royal academy of engineering and the British computer society. ISBN 1-
903496-15-2. Access on 20th October 2004. http://www.bcs.org/BCS/News/ Position-
sAndResponses/Positions/complexity.htm

10. Chaos’94 (1995) The Standish group. Access on 4th October 2004. http://standish
group.com/sample_research/

11. Chaos’98 (1999) A recipe for success. The Standish group report. Access on 4th Octo-
ber 2004 http://www.standishgroup.com/sample_research

12. Chao’01 (2002) Extreme chaos. The Standish group report. Accessed on 4th October
2004 http://www.standishgroup.com/sample_research

13. Chatzoglou PD (1997) Factors affecting completion of the requirements capture stage
of projects with different characteristics. Information and Software Technology, 39 (9):
627 640

14. Curtis B, Krasner H, Iscoe N (1988) A field study of the software design process for
large systems. Communications of the ACM 31(11):1268 1287

15. Davis A (1990) System testing: Implications of requirements specifications. Informa-
tion and Software Technology, 32 (6): 407 414

16. Edwards J, Coutts I, McLeod S (2000) Support for system evolution through separating
business and technology issues in a banking system. In: Proceedings of international
conference on software Maintenance, 11-14 October, pp. 271 276

17. El Emam K, Madhavji NH (1995) A field study of requirements engineering practices
in information systems development. In: Proceedings of 2nd international symposium
on requirements engineering, York, England, IEEE CS Press, pp.68 80

14 Aurum and Wohlin

18. European Software Institute (1996) European user survey analysis. Report USV_EUR
2.1, ESPITI project, January

19. Faulk SR, Harmon RR, Raffo DM (2000) Value-base software engineering: A value-
driven approach to product-line engineering. In: Proceedings of 1st international con-
ference on software product-line engineering, Colorado, August 28, 2000

20. Hall T, Beecham S, Rainer A (2002) Requirements problems in twelve companies: an
empirical analysis. IEE proceedings software, 149 (5): 153 160

21. Hofmann HF, Lehner F (2001) Requirements engineering as a success factor in soft-
ware projects. IEEE Software, 18 (4): 58 66

22. Houdek F, Pohl K (2000): Analyzing requirements engineering processes: a case study.
In: Proceedings of the 11th international workshop on database and expert systems ap-
plications, Greenwich, UK, 6-8 September, pp.983 987

23. Hunter A, Nuseibeh B (1997) Analyzing inconsistent specifications. In: Proceedings of
3rd international symposium on requirements engineering, RE’07, Annapolis, Md,
pp.78 86

24. IEEE-STD 610.12-1990, Standard Glossary of Software Engineering Terminology,
1990, Institute of Electrical and Electronics Engineers

25. Kotonya G, Sommerville I (1998) Requirements engineering – processes and tech-
niques, John Wiley & Sons UK

26. Lauesen, S (2002) Software requirements: styles and techniques, Addison-Wesley,
London, UK

27. Loucopoulos P, Karakostas V (1995): System requirements engineering. McGraw-Hill
Book company Europe

28. Lowe D, Eklund J (2001) Development issues in specification of web systems. In: Pro-
ceedings of 6th Australian workshop on requirements engineering, 22 23 November,
University of New South Wales, Sydney, Australia, pp. 4 13

29. Lubars M, Potts C, Richter C (1993) A review of the state of the practice in require-
ments modelling. In: Proceedings of the IEEE international symposium on require-
ments engineering, IEEE Computer Society, San Diego, USA, pp. 2 14

30. Macaulay LA (1996) Requirements engineering. Springer-Verlag, New York, London
31. Madhavji NH, Holtje D, Hong W, Bruckhaus T (1994) Elicit: a method for eliciting

process models. In: Proceedings of CAS conference, Toronto, Canada, 31 October–3
November, pp.11 122

32. Martin S, Aurum A, Jeffery R, Paech B (2002) Requirements engineering process mod-
els in practice. In: Proceedings of 7th Australian workshop on requirements engineer-
ing, AWRE'02, 2-3 December, Melbourne, pp. 41 47

33. Menzies T, Easterbrook S, Nuseibeh B, Waugh S (1999) An empirical investigation of
multiple viewpoint reasoning in requirements engineering. In: Proceedings of IEEE in-
ternational symposium on requirements engineering, 7-11 June, pp.100 109

34. Miller E (2002) For survival, start thinking lifecycle management. Computer-aided en-
gineering, 21 (1): 15 18

35. Nguyen L, Swatman P (2003) Managing the requirements engineering process. Re-
quirements engineering, 8 (1): 55 68

36. Pouloudi A, Whitley EA (1997) Stakeholder identification in inter-organizational sys-
tems: Gaining insights for drug use management systems. European journal of informa-
tion systems, 6: 1 14

1 Requirements Engineering: Setting the Context 15

37. Sommerville I (2001) Software engineering. Pearson Education Ltd, UK
38. Tveito A, Hasvold P (2002) Requirements in the medical domain: Experiences and pre-

scriptions. IEEE Software, Nov-Dec, pp.66 69
39. van Lamsweerde A (2000) Requirements engineering in the year 00: a research per-

spective. In: Proceedings of 22nd International conference on software engineering,
pp.5 19

40. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimen-
tation in software engineering – An introduction. Kluwer Academic Publishers, Boston,
MA, USA

41. Yin RK (1994) Case study research design and methods. Sage Publications, Beverly
Hills, California, USA

Author Biography

Aybüke Aurum is a senior lecturer at the School of Information Systems, Tech-
nology and Management, University of New South Wales. She received her BSc
and MSc in geological engineering, and MEngSc and PhD in computer science.
She is the founder and group leader of the requirements engineering Research
Group (ReqEng) at the University of New South Wales. She also works as a visit-
ing researcher in National ICT, Australia (NICTA). She is on the editorial board
of Journal of Requirements Engineering published by Springer. She edited three
books, including “Managing Software Engineering Knowledge” and “Value-Based
Software Engineering”, and published over 70 articles. Her research interests in-
clude management of software development process, software inspection, re-
quirements engineering, decision making and knowledge management in software
development. She is on the editorial boards of Requirements Engineering Journal
and Asian Academy Journal of Management.

Claes Wohlin is a professor in software engineering at the School of Engineering
at Blekinge Institute of Technology in Sweden. He is also pro vice chancellor of
the institute. Prior to this, he has held professor chairs in software engineering at
Lund University and Linköping University. He has a M.Sc. in Electrical Engineer-
ing and a Ph.D. in Communication Systems both from Lund University, and he
has five years of industrial experience. Dr. Wohlin is co-editor-in-chief of the
journal of Information and Software Technology published by Elsevier. He is on
the editorial boards of Empirical Software Engineering: An International Journal,
and Software Quality Journal. Dr. Wohlin received the Telenor Nordic Research
Prize in 2004 for his achievements in software engineering and improvement of
software reliability in telecommunications.

Part 1
State-of-the-Art Surveys of Requirements Engineering
Process Research

This part provides an introduction to some state-of-the-art in the requirements en-
gineering process, as well as presenting literature surveys in the field. The objec-
tive is to give the reader an in-depth look at key areas of concern, otherwise cov-
ered only briefly in most textbooks to date on requirements engineering. This part
contains seven chapters. The process of engineering and managing software re-
quirements starts with the elicitation and capturing of the requirements (Chap. 2).
Then the requirements must then be carefully specified (Chap. 3). When a suffi-
cient understanding of the requirements has been obtained it is possible to priori-
tize them (Chap. 4). One important consideration when handling requirements is
the dependencies between them, so that this can be taken into account when taking
decisions in relation to the requirements (Chap. 5). When requirements are to be
implemented, it is important that impact analysis is carried out, i.e. to predict the
impact of the requirements on any existing software (Chap. 6). Different stake-
holders most likely have different views of what the requirements are and hence it
may be necessary to perform negotiations (Chap. 7). Once requirements have been
implemented, it is crucial to be able to work with quality assurance (Chap. 8). On
the above mentioned considerations regarding the engineering and managing of
requirements are addressed in the chapters of Part 1. Thus, in summary this part
contains an introduction to state-of-the-art practices in the following areas:

Chapter 2: Elicitation and capturing of requirements
Chapter 3: Modeling and specification of requirements
Chapter 4: Prioritization of requirements
Chapter 5: Dependencies between requirements
Chapter 6: Impact analysis of requirements
Chapter 7: Negotiation of requirements
Chapter 8: Quality assurance of requirements

These seven chapters highlight some of the main issues related to engineering
and managing software requirements. The chapters have been written by interna-
tionally recognized researchers from around the world who specialize in the above
listed areas.

The seven chapters are by Didar Zowghi and Chad Coulin from University of
Technology Sydney, Australia; Richardo J. Machado, Isabel Ramos and João M.
Fernandes from University of Minho, Portugal; Patrik Berander from Blekinge In-
stitute of Technology, Sweden and Anneliese Andrews from Washington State
University, USA; Anne Persson and Åsa G. Dahlstedt from University of Skövde,
Sweden; Per Jönsson from Blekinge Institute of Technology, Sweden, and Mikael
Lindvall from Fraunhofer Centre for Experimental Software Engineering, Mary-
land, USA; Paul Grünbacher and Norbert Seyff from Johannes Kepler University
Linz, Austria; Christian Denger and Thomas Olsson from Fraunhofer Institute for
Experimental Software Engineering, Germany.

2 Requirements Elicitation: A Survey of Techniques,
Approaches, and Tools

Didar Zowghi and Chad Coulin

Abstract: Requirements elicitation is the process of seeking, uncovering, acquir-
ing, and elaborating requirements for computer based systems. It is generally un-
derstood that requirements are elicited rather than just captured or collected. This
implies there are discovery, emergence, and development elements in the elicita-
tion process. Requirements elicitation is a complex process involving many activi-
ties with a variety of available techniques, approaches, and tools for performing
them. The relative strengths and weaknesses of these determine when each is ap-
propriate depending on the context and situation. The objectives of this chapter are
to present a comprehensive survey of important aspects of the techniques, ap-
proaches, and tools for requirements elicitation, and examine the current issues,
trends, and challenges faced by researchers and practitioners in this field.

Keywords: Requirements, Elicitation, Techniques, Approaches, Tools, Issues,
Challenges, Trends, Survey.

2.1 Introduction

The importance of requirements engineering (RE) within software systems devel-
opment has long been established and recognized by researchers and practitioners
(Chap. 1). The elicitation of requirements represents an early but continuous and
critical stage in the development of software systems. The requirements for a
software system may be spread across many sources. These include the problem
owners, the stakeholders, documentation, and other existing systems. Because of
the communication rich nature of requirements elicitation activities, many of the
effective techniques do not originate from the traditional areas of software engi-
neering or computer science research. Techniques for requirements elicitation are
derived mostly from the social sciences, organizational theory, group dynamics,
knowledge engineering, and very often from practical experience.

The process of requirements elicitation is generally accepted as one of the criti-
cal activities in the RE process. Getting the right requirements is considered a vital
but difficult part of software development projects [36]. A recent field study of fif-
teen RE teams carried out by Hofmann and Lehner [31] identified key RE prac-
tices that should lead to project success. Effective elicitation of requirements was
arguably among the most important of the resulting recommended good RE prac-
tices.

Requirements elicitation itself is a very complex process involving many activi-
ties, with multiple techniques available to perform these activities. The multi-
disciplinary nature of requirements elicitation only adds to this complexity. Elici-

20 Zowghi and Coulin

tation is subject to a large degree of error, influenced by key factors ingrained in
communication problems. Despite the importance of requirements elicitation
within software development, insufficient attention has been paid to this area in
industry and software engineering research to date.

In reality requirements elicitation is a multifaceted and iterative activity that re-
lies heavily on the communication skills of requirements engineers and the com-
mitment and cooperation of the system stakeholders. One of the main problems
facing software development project teams is communication barriers and agree-
ment about the requirements. The main point is that concepts that are clearly de-
fined to one community of participants can be entirely opaque to members of an-
other. The fact that this situation exists often goes unnoticed in the course of
elicitation unless specific attention is paid to the problem. The type of the system
and the purpose of the project significantly affect the way in which requirements
elicitation is conducted. For example, it can be said that the method employed for
a custom built embedded control system is likely to be substantially different to
that of a commercially available inventory management system. The elicitation of
requirements can be performed in a variety of settings including the development
of web based information systems (Chap. 15) and market driven product lines
(Chap. 13), the implementation of large enterprise systems, the selection of com-
mercial off the shelf products (COTS), and the maintenance of existing and legacy
systems. Furthermore, project teams may be spread across different geographical
locations and from diverse cultural backgrounds. The specific elicitation tech-
niques used for a particular situation often depend on a variety of additional fac-
tors including time and cost, the availability of resources, the safety criticality of
the system, and any legal or regulatory constraints.

In this chapter we present the state of the art and practice in requirements elici-
tation through an extensive review and analysis of the relevant literature bearing in
mind the interdisciplinary and practical nature of this important activity. The aim
is to inform the reader of the strengths and weaknesses of some of the current
techniques, approaches, and tools used in requirements elicitation today.

The chapter is structured as follows: Sect. 2.2 introduces the process of re-
quirements elicitation, the activities associated with it, and the roles performed
during elicitation by the analyst. Sect. 2.3 surveys a wide variety of techniques and
approaches used for requirements elicitation, and includes a comparison of these
with respect to each other and the activities they are used for. Sect. 2.4 provides
some examples of methodology based requirements elicitation, and Sect. 2.5 pre-
sents the types of available tool support for this process. Sect. 2.6 describes some
of the most common issues and pitfalls experienced during requirements elicita-
tion, and Sect. 2.7 is dedicated to the current trends and challenges in this field.
Sect. 2.8 offers some suggestions for future directions in requirements elicitation
research, and finally Sect. 2.9 contains a brief summary of the chapter.

2 Requirements Elicitation: A Survey of Techniques, Approaches 21

2.2 What is Requirements Elicitation?

Currently there is very little uniformity in RE research and practice concerning a
standard definition for requirements elicitation. Requirements elicitation is con-
cerned with learning and understanding the needs of users and project sponsors
with the ultimate aim of communicating these needs to the system developers. A
substantial part of elicitation is dedicated to uncovering, extracting, and surfacing
the wants of the potential stakeholders. Robertson and Robertson [54] refer to this
process as “trawling for requirements” to highlight the fact that through this proc-
ess you are likely to get more requirements than expected. This implies that gath-
ering a few extraneous requirements initially is always better than gathering less.
This is one of the reasons why prioritization (Chap. 4) and negotiation (Chap. 7)
are important parts of RE, especially within market driven RE (Chap. 13) where
an overload from the constant influx of large amounts of requirements is a serious
issue (Chap. 10). More recently the concepts of inventing and creating require-
ments have been used to highlight the role of creativity and to emphasize what
really goes on during requirements elicitation [43].

2.2.1 The Process of Requirements Elicitation

The requirements elicitation process involves a set of activities that must allow for
communication, prioritization, negotiation, and collaboration with all the relevant
stakeholders. It must also provide strong foundations for the emergence, discov-
ery, and invention of requirements as part of a highly interactive elicitation proc-
ess. Requirements elicitation involves activities that are intensely communicative.
These activities increase in significance when one considers the “culture gap” [62]
or basic semantic differences dividing the problem owning and the problem solv-
ing communities when attempting to engage in meaningful dialogue [7]. Once
again there is very little uniformity in the research literature and practice concern-
ing the names given to the activities often performed during requirements elicita-
tion. However what is generally accepted is that elicitation is the initial stage
within the RE process albeit an iterative and integrated one. Typical activities of
the requirements elicitation process can be divided into five fundamental types as
described below:

Understanding the Application Domain – It is important when beginning the
process of requirements elicitation to investigate and examine in detail the
situation or “real world” in which the system will ultimately reside (sometimes
called the application domain) [34, 68]. The current environment needs to be
thoroughly explored including the political, organizational, and social aspects
related to the system, in addition to any constraints they may enforce upon the
system and its development. Existing work processes and the related problems
to be solved by the system need to be described with respect to the key business
goals and issues.

22 Zowghi and Coulin

Identifying the Sources of Requirements – Requirements may be spread
across many sources and exist in a variety of formats [41]. In all software de-
velopment projects a number of possible sources for requirements may be iden-
tified. Stakeholders represent the most obvious source of requirements for the
system. Users and subject matter experts are used to supply detailed informa-
tion about the problems and user needs. Existing systems and processes repre-
sent another source for eliciting requirements, particularly when the project in-
volves replacing a current or legacy system. Existing documentation about the
current systems and business processes including manuals, forms, and reports
can provide useful information about the organization and environment, as well
as requirements for the new system and their supporting rationale and impor-
tance.
Analyzing the Stakeholders – Stakeholders are people who have an interest in
the system or are affected in some way by the development and implementation
of the system and hence must be consulted during requirements elicitation.
Typically stakeholders include groups and individuals internal and external to
the organization. The customer, and more specifically the project sponsor, is
usually the most apparent stakeholder of the system. In some cases however the
actual users of the system may be the most important. Other parties whose
sphere of interest may extend to some part of the system operations, such as
those responsible for work process standards, customers, and partners, should
also be regarded as stakeholders if affected. One of the first steps in require-
ments elicitation therefore is to analyze and involve all the relevant stake-
holders. An extensive list of potential project stakeholders that should be con-
sulted during this activity is available in the literature (e.g., [3, 54]). The
process of analyzing the stakeholders also often includes the identification of
key user representatives and product champions.
Selecting the Techniques, Approaches, and Tools to Use – Although some
may advocate that just one elicitation technique or a single methodology is suf-
ficient and may be applied to all cases, it is generally accepted that an individ-
ual requirements elicitation technique or approach cannot possibly be suitable
for all projects. The choice of techniques to be employed is dependent on the
specific context of the project and is often a critical factor in the success of the
elicitation process [48]. Hickey and Davis [27, 29] have investigated the elicita-
tion technique selection and state that a particular elicitation technique may be
selected for a variety of reasons. These include (a) the technique selected is the
only one the analyst knows, (b) the technique selected is the analyst’s favorite,
(c) the selected technique is the one prescribed by a specific methodology that
is being followed for the system development, and (d) the choice of technique
is governed solely by the intuition of the analyst to be effective in the current
context. Clearly requirements elicitation is best performed using a variety of
techniques. In the majority of projects several methods are employed during
and at different stages in the software development life cycle, often in coopera-
tion where complementary.
Eliciting the Requirements from Stakeholders and Other Sources – Once
the sources of requirements and the specific stakeholders have been identified,

2 Requirements Elicitation: A Survey of Techniques, Approaches 23

the actual elicitation of the core requirements then begins using the selected
elicitation techniques, approaches, and tools. During this activity it is important
to establish the level of scope for the system and investigate in detail the needs
and wants of the stakeholders, especially the users. It is also essential to deter-
mine the future processes the system will perform with respect to the business
operations, and examine the ways in which the system may support them in or-
der to satisfy the major objectives and address the key problems of the busi-
ness.

It is important to remember that requirements elicitation does not occur in a
vacuum. It is strongly related to the context in which it is conducted and specific
characteristics of the project, organization, and environment [11]. In practice the
budget and schedule of the project have a significant effect on the process and the
way in which it is performed. The structure and maturity of the organization will
determine how requirements are elicited, as will the way in which the system will
interact with users and other systems. The level of volatility within a project must
also be considered, as this will directly affect the quality of requirements and the
elicitation process itself.

Typically the process begins with an informal and incomplete high-level mis-
sion statement for the project [69]. This may be represented by a set of fundamen-
tal goals, functions, and constraints for the target system, or as an explanation of
the problems to be solved. In order to develop this description, stakeholders and
other sources of requirements are identified and used for elicitation. These pre-
liminary results form the basis of further investigation and refinement of require-
ments in a typically iterative and incremental manner.

Over the years a number of process models have been proposed for require-
ments elicitation [13, 39, 58]. For the most part these models provide only a ge-
neric roadmap of the process with sufficient flexibility to accommodate the basic
contextual differences of individual projects. The inability of these models to pro-
vide definitive guidelines is a result of the wide range of task that may be per-
formed during requirements elicitation, and the sequence of those activities being
dependent on specific project circumstances. The variety of issues that may be
faced and the number of techniques available to use only makes it more complex.
In most cases the process of requirements elicitation is performed incrementally
over multiple sessions, iteratively to increasing levels of detail, and at least par-
tially in parallel with other system development activities. In reality its completion
is often determined by time and cost constraints rather than achieving the required
level of requirements quality and completeness. Typically the result of this process
is a detailed set of requirements in natural language text and simple diagrammatic
representations with additional information including descriptions of the sources,
priorities, and rationales.

24 Zowghi and Coulin

2.2.2 Roles of the Requirements Engineer During Elicitation

During requirements elicitation the requirements engineer (also sometimes re-
ferred to as the systems analyst or business analyst) may play a variety of roles
and assume different responsibilities. These responsibilities and roles are depend-
ent on the project, people, context and organization involved. A substantial part of
elicitation involves exploring the problem domain and the requirements that are
situated in that domain. Furthermore, the requirements engineers often need to
perform some typical aspects of project management. Not only do they have to
manage the process of elicitation, but they also have to communicate it effectively
to the stakeholders. This involves among other things, decision-making (Chap.
12), prioritization (Chap. 4), and negotiation (Chap. 7).

Requirements engineers often play the important role of facilitator. When elic-
iting requirements by group work sessions, they are not only required to ask ques-
tions and record the answers, but must guide and assist the participants in address-
ing the relevant issues in order to obtain correct and complete requirements
information. They are also responsible for ensuring that participants feel comfort-
able and confident with the process, and are given sufficient opportunity to con-
tribute. This role represents a significant part of the skill and expertise required by
the analyst in order to perform effective requirements elicitation. During elicita-
tion conflicts between elicited requirements and stakeholders themselves are in-
evitable. In many cases the prioritization of requirements from different stake-
holders groups is a source of much debate and dispute. When these situations
occur the analyst is often playing the role of a mediator and is responsible for
finding a suitable resolution through negotiation and compromise. It is important
that the analyst is sensitive to all the political and organizational aspects of the
project when mediating discussions related to the system.

Frequently requirements engineers are responsible for documenting the re-
quirements elicited. This role is particularly important as it represents the produc-
tion of results from the elicitation process, and forms the foundation for the subse-
quent project phases. Evaluation of the elicitation process and the work performed
by the analyst is based on these resultant artifacts, which in some cases may form
the basis of contractual agreements.

Analysts are often required to assume the various roles of the developer com-
munity during requirements elicitation. This includes system architects, designers,
programmers, testers, quality assurance personnel, implementation consultants,
and system maintenance administrators. This is often due to the fact that these
stakeholders have not yet been assigned to the project at the requirements elicita-
tion stage. Despite this the decisions made during this phase of the project will
significantly affect these stakeholders and the subsequent phases of development.

All the requirements elicited must be validated against the other stakeholders,
other systems, each other, and then compared with previously established goals
for the system. By this it is meant that the requirements describe the desired fea-
tures of the system appropriately, and that those requirements will provide the
necessary functions in order to fulfill the specified objectives of the target system.

2 Requirements Elicitation: A Survey of Techniques, Approaches 25

This process typically involves all the identified stakeholder groups, and results in
further elicitation activities.

2.3 Techniques and Approaches for Requirements Elicitation

For over two decades now much of the research and practice within RE for soft-
ware systems has been largely directed towards improving the complex process
known as elicitation through the application and development of various tech-
niques, approaches, and tools. Many of these methods have been borrowed and
adapted from other disciplines such as the social sciences, and only a select few
have been developed specifically for eliciting software requirements [14]. It is im-
portant to explain what we mean by the terms “technique” and “approach” as there
exists a number of different uses for each of them in practice and multiple defini-
tions in the literature. A “technique” is a way of doing something or a practical
method applied to some particular task. An “approach”, on the other hand is a sys-
tematic arrangement, usually in steps, of ideas or actions intended to deal with a
problem or situation. In reality there are literally hundreds of different techniques
and approaches from a variety of sources that can and have been employed for re-
quirements elicitation. Below we present only some of those that are more widely
used. Although not exhaustive, we believe this selection is representative of the
range described in literature and practiced in industry today.

Interviews
Interviews [1, 32] are probably the most traditional and commonly used technique
for requirements elicitation. Because interviews are essentially human based social
activities, they are inherently informal and their effectiveness depends greatly on
the quality of interaction between the participants. Interviews provide an efficient
way to collect large amounts of data quickly. The results of interviews, such as the
usefulness of the information gathered, can vary significantly depending on the
skill of the interviewer [23]. There are fundamentally three types of interviews be-
ing unstructured, structured, and semi-structured, the latter generally representing
a combination of the former two.

Unstructured interviews are conversational in nature where the interviewer en-
forces only limited control over the direction of discussions. Because they do not
follow a predetermined agenda or list of questions, there is the risk that some top-
ics may be completely neglected. It is also a common problem with unstructured
interviews to focus in too much detail on some areas, and not enough in others
[45]. This type of interview is best applied for exploration when there is a limited
understanding of the domain, or as a precursor to more focused and detailed struc-
tured interviews. Structured interviews are conducted using a predetermined set of
questions to gather specific information. The success of structured interviews de-
pends on knowing what are the right questions to ask, when should they be asked,
and who should answer them. Templates that provide guidance on structured in-
terviews for requirements elicitation such as Volere [54] can be used to support

26 Zowghi and Coulin

this technique. Although structured interviews tend to limit the investigation of
new ideas, they are generally considered to be rigorous and effective.

Questionnaires
Questionnaires [21] are mainly used during the early stages of requirements elici-
tation and may consist of open and/or closed questions. To be effective, the terms,
concepts, and boundaries of the domain must be well established and understood
by the participants and questionnaire designer. Questions must be focused to avoid
gathering large amounts of redundant and irrelevant information. They provide an
efficient way to collect information from multiple stakeholders quickly, but are
limited in the depth of knowledge they are able to elicit. Questionnaires lack the
opportunity to delve further on a topic, or expand on new ideas. In the same way
they provide no mechanism for the participants to request clarification or correct
misunderstandings. Generally questionnaires are considered more useful as infor-
mal checklists to ensure fundamental elements are addressed early on, and to es-
tablish the foundation for subsequent elicitation activities.

Task Analysis
Task analysis [9, 53] employs a top-down approach where high-level tasks are de-
composed into subtasks and eventually detailed sequences until all actions and
events are described. The primary objectives of this technique is to construct a hi-
erarchy of the tasks performed by the users and the system, and determine the
knowledge used or required to carry them out. Task analysis provides information
on the interactions of both the user and the system with respect to the tasks as well
as a contextual description of the activities that take place. In most cases consider-
able effort is required to perform thorough task analysis, and it is important to es-
tablish what level of detail is required and when components of the tasks need to
be explorer further.

Domain Analysis
Examining the existing and related documentation and applications is a very use-
ful way of gathering early requirements as well as understanding and capturing
domain knowledge, and identification of reusable concepts and components.
These types of investigations are particularly important when the project involves
the replacement or enhancement of an existing legacy system. Types of documen-
tation that may be useful for eliciting requirements include design documents and
instruction manuals for existing systems, and hardcopy forms and files used in the
current business processes. Application studies often also include looking at both
upstream and downstream systems, as well as competitive or like solutions. In
most cases these studies involve other elicitation techniques such as observing the
exiting system in use and interviewing the current users. Domain knowledge in the
form of detailed descriptions and examples plays an important part in the process
of requirements elicitation. Approaches based on this type of information are often
used in conjunction with, and as the input to other elicitation techniques. For ex-
ample, analysts use previous experience in similar domains as a discussion tem-

2 Requirements Elicitation: A Survey of Techniques, Approaches 27

plate for facilitating group work and conducting interviews. Analogies and ab-
stractions of existing problem domains can be used as baselines to acquire specific
and detailed information, identify and describe possible solution systems, and as-
sist in creating a common understanding between the analyst and stakeholders.
These approaches also provide the opportunity to reuse specifications and validate
new requirements against other domain instances [61]. Problem Frames [35] in
particular provide a method for detailed problems examination in order to identify
patterns that could provide links to potential solutions.

Introspection
The technique of introspection [23] requires the analyst to develop requirements
based on what he or she believes the users and other stakeholders want and need
from the system. Despite being employed to some extent by most analysts, this
technique is mainly used only as a starting point for other requirements elicitation
efforts. Introspection is only really effective when the analyst is not only very fa-
miliar with the domain and goals of the system, but also expert in the business
processes performed by the users. In cases where the analyst is forced to use this
technique more, for example when the users have little or no previous experience
with software systems in their work environment, a type of facilitation introspec-
tion should take place via other elicitation techniques such as interviews and pro-
tocol analysis.

Repertory Grids
Repertory grids [38] involve asking stakeholders to develop attributes and assign
values to a set of domain entities. As a result the system is modeled in the form of
a matrix by categorizing the elements of the system, detailing the instances of
those categories, and assigning variables with corresponding values to each one.
The aim is to identify and represent the similarities and differences between the
different domain entities. These represent a level of abstraction unfamiliar to most
users. As a result, this technique is typically used when eliciting requirements
from domain experts. Although more detailed than card sorting, and to a lesser
degree laddering, repertory grids are somewhat limited in their ability to express
specific characteristics of complex requirements.

Card Sorting
Card sorting requires the stakeholders to sort a series of cards containing the
names of domain entities into groups according to their own understanding. Fur-
thermore, the stakeholder is required to explain the rationale for the way in which
the cards are sorted. It is important for effective card sorting that all entities are in-
cluded in the process. This is possible only if the domain is sufficiently understood
by both the analyst and the participants. If the domain is not well established then
group work can be used to identify these entities. Class Responsibility Collabora-
tion (CRC) cards [5] are a derivative of card sorting that is also used to determine
program classes in software code. In this technique cards are used to assign re-
sponsibilities to users and components of the system. Because entities represent

28 Zowghi and Coulin

such a high level of system abstraction, the information obtained from this tech-
nique is limited in its detail.

Laddering
When using laddering [30] stakeholders are asked a series of short prompting
questions, known as probes, and required to arrange the resultant answers into an
organized structure. A primary assumption when employing laddering is that the
knowledge to be elicited can actually be arranged in a hierarchical fashion. For
this technique to be effective, the stakeholders must be able to express their under-
standing of the domain and then arrange it in a logical way. This knowledge,
which is often displayed using tree diagrams, is reviewed and modified dynami-
cally as more is added. Like card sorting, laddering is mainly used as a way to
clarify requirements and categorize domain entities.

Group Work
Group work such as collaborative meetings is a very common and often default
technique for requirements elicitation. Groups are particularly effective because
they involve and commit the stakeholders directly and promote cooperation. These
types of sessions can be difficult to organize due to the number of different stake-
holders that may be involved in the project. Managing these sessions effectively
requires both expertise and experience to ensure that individual personalities do
not dominate the discussions. Key factors in the success of group work are the
makeup of participants and the cohesion within the group. Stakeholders must feel
comfortable and confident in speaking openly and honestly, and therefore group
work is less effective in highly political situations.

Brainstorming
Brainstorming [50] is a process where participants from different stakeholder
groups engage in informal discussion to rapidly generate as many ideas as possible
without focusing on any one in particular. It is important when conducting this
type of group work to avoid exploring or critiquing ideas in great detail. It is not
usually the intended purpose of brainstorming sessions to resolve major issues or
make key decisions. This technique is often used to develop the preliminary mis-
sion statement for the project and target system. One of the advantages in using
brainstorming is that it promotes freethinking and expression, and allows the dis-
covery of new and innovative solutions to existing problems.

Joint Application Development (JAD)
Joint Application Development (JAD) [65] involves all the available stakeholders
investigating through general discussion both the problems to be solved, and the
available solutions to those problems. With all parties represented, decisions can
be made rapidly and issues resolved quickly. A major difference between JAD and
brainstorming is that typically the main goals of the system have already been es-
tablished before the stakeholders participate. Also JAD sessions are typically well

2 Requirements Elicitation: A Survey of Techniques, Approaches 29

structured with defined steps, actions, and roles for participants (including a spe-
cialist facilitator). The focus of this type of meeting tends to often be on the needs
and desires of the business and users rather than technical issues.

Requirements Workshops
Requirements workshop [25] is a generic term given to a number of different
types of group meetings where the emphasis is on developing and discovering re-
quirements for a software system. There are many different forms of requirements
workshops, including cross functional which involves different types of stake-
holders from various areas of the business, Co-operative Requirements Capture
(CRC) [42] (where like JAD, there is a defined set of activities and the develop-
ment community is especially involved), and Creativity [43] which encourages in-
novative thinking and expression. Another variation of requirements workshops
often used in market analysis is the Focus Group [40].

Ethnography
Ethnography [4, 60], being the study of people in their natural setting, involves the
analyst actively or passively participating in the normal activities of the users over
an extended period of time whilst collecting information on the operations being
performed. These techniques are especially useful when addressing contextual fac-
tors such as usability, and when investigating collaborative work settings where
the understanding of interactions between different users with the system is para-
mount. In practice, ethnography is particularly effective when the need for a new
system is a result of existing problems with processes and procedures, and in iden-
tifying social patterns and complex relationships between human stakeholders.

Observation
Observation is one of the more widely used ethnographic techniques. As the name
suggests the analyst observes the actual execution of existing processes by the us-
ers without direct interference. This technique is often used in conjunction with
others such as interviews and task analysis. As a general rule ethnographic tech-
niques such as observation are very expensive to perform and require significant
skill and effort on the part of the analyst to interpret and understand the actions be-
ing performed. The effectiveness of observation and other ethnographic tech-
niques can vary as users have a tendency to adjust the way they perform tasks
when knowingly being watched.

Protocol Analysis
Protocol analysis [23, 46] is where participants perform an activity or task whilst
talking it through aloud, describing the actions being conducted and the thought
process behind them. This technique can provide the analyst with specific infor-
mation on and rationale for the processes the target system must support [45]. In
most cases however talking through an operation is not the normal way of per-
forming the task, and as a result may not necessarily represent the true process

30 Zowghi and Coulin

completely or correctly. Likewise minor steps performed frequently and repeti-
tively are often taken for granted by the users, and may not be explained and sub-
sequently recorded as part of the process.

Apprenticing
Apprenticing [54, 6] involves the analyst actually learning and performing the cur-
rent tasks under the instruction and supervision of an experienced user. In this
technique the analyst is taught the operations and business processes by observing,
asking questions, and physically doing, rather than being informed of them, as is
the case with protocol analysis. Similar to Role Playing but more involved, ap-
prenticing is very useful where the analyst is inexperienced with the domain, and
when the users have difficulty in explaining their actions. The technique of Emer-
sion takes apprenticing one step further whereby the analyst becomes actively in-
volved in the real life activities of the business.

Prototyping
Providing stakeholders with prototypes of the system to support the investigation
of possible solutions is an effective way to gather detailed information and rele-
vant feedback [60]. It is common that prototypes are used in conjunction with
other elicitation techniques such as interviews and JAD. Prototypes are typically
developed using preliminary requirements or existing examples of similar sys-
tems. This technique is particularly useful when developing human-computer in-
terfaces, or where the stakeholders are unfamiliar with the available solutions.
There are a number of different methods for prototyping systems such as story-
boards, executable, throwaway and evolutionary, with varying levels of effort re-
quired. In many cases prototypes are expensive to produce in terms of time and
cost. However, an advantage of using prototypes is that they encourage stake-
holders, and more specifically the users, to play an active role in developing the
requirements. One of the potential hazards when using prototypes for require-
ments elicitation is that users may become attached to them, and therefore become
resistant to alternative solutions from then on. Despite this, the technique is ex-
tremely helpful when developing new systems for entirely new applications.

Goal Based Approaches
The fundamental premise of goal modeling (Chap. 9) and goal based approaches
is that high-level goals that represent objectives for the system are decomposed
(e.g. usually using AND and OR relationships) and elaborated (e.g. with “Why”
and “How” questioning) into sub goals and then further refined in such a way that
individual requirements are elicited. The result of this process is significantly
more complicated and complete than the traditional methods of representing sys-
tem goals using tree structure diagrams. These approaches are able to represent
detailed relationships between domain entities, requirements, and the objectives of
the system. In general one of the risks when using goal based approaches is that
errors in the high-level goals of the system made early on can have a major and
detrimental follow on effect, and that changing goals are difficult to manage. In

2 Requirements Elicitation: A Survey of Techniques, Approaches 31

recent times significant effort has been devoted to developing these types of ap-
proaches for requirements elicitation such as the F3 project [8], the KAOS meta
model [16] and the i* framework [67]. The use of goals in conjunction with sce-
narios to elicit requirements has also attracted considerable attention [55, 51, 26].
In practice these approaches have been particularly useful in situations where only
the high-level needs for the system are well known, and there exists a general lack
of understanding about the specific details of the problems to be solved and their
possible solutions.

Scenarios
Scenarios are widely used in requirements elicitation and, as the name suggests,
are narrative and specific descriptions of current and future processes including
actions and interactions between the users and the system. Like use cases, scenar-
ios do not typically consider the internal structure of the system, and require an in-
cremental and interactive approach to their development. Naturally, it is important
when using scenarios to collect all the potential exceptions for each step. A sub-
stantial amount of work from both the research and practice communities has been
dedicated to developing structured and rigorous approaches to requirements elici-
tation using scenarios including CREWS [15], The Inquiry Cycle [15], SBRE
[37], and Scenario Plus [56]. Scenarios are additionally very useful for under-
standing and validating requirements, as well as test case development.

Viewpoints
Viewpoint approaches aim to model the domain from different perspectives in or-
der to develop a complete and consistent description of the target system. For ex-
ample, a system can be described in terms of its operation, implementation and in-
terfaces. In the same way systems can be modeled from the standpoints of
different users or from the position of related systems. These types of approaches
are particularly effective for projects where the system entities have detailed and
complicated relationships with each other. Viewpoints are also useful as a way of
supporting the organization and prioritization of requirements. One common criti-
cism of viewpoint approaches is that they do not enable non-functional require-
ments to be represented easily, and are expensive to use in terms of the effort re-
quired. Some viewpoint approaches [59, 47] provide a flexible multi-perspective
model for systems, using different viewpoints to elicit and arrange requirements
from a number of sources. Using these approaches analysts and stakeholders are
able to organize the process and derive detailed requirements for a complete sys-
tem from multiple project specific viewpoints.

2.3.1 Comparison of Techniques and Approaches

Two important questions that need to be addressed during requirements elicitation
are: (1) Which techniques and approaches should be used for a given requirements
elicitation activity? and (2) Which of the these techniques and approaches are

32 Zowghi and Coulin

complementary or can be used as alternatives? Ultimately, each situation is unique
and the answers to these questions are highly dependant on the context of the pro-
ject and system. We acknowledge that because of this there is always the possible
for exceptions to any rule made along these lines; however, the following two ta-
bles in this section are presented as a way of offering some high level support to
this end. The intention is to provide an overview of how different techniques and
approaches can be used for each of the requirements elicitation activities, and
which of the commonly used techniques and approaches often employed for re-
quirements elicitation can be used in cooperation with, or instead of each other.
Rather than including all the techniques and approaches previously presented in
Sect. 2.3 of this chapter, we have selected a core group of eight techniques and
approaches which we believe provide suitable coverage across the spectrum of
available techniques and approaches (for example ethnography includes observa-
tion, and JAD is an example of groupwork), and that are also appropriately repre-
sentative of those that are currently both state of the art and state of practice. The
information contained in these tables is based largely on our assessment of the lit-
erature as well as practical experience and observation in requirements elicitation
research and practice.

Table 2.1 Techniques and approaches for elicitation activities.

In
te

rv
ie

w
s

D
om

ai
n

G
ro

up
w

or
k

E
th

no
gr

ap
hy

P
ro

to
ty

pi
ng

G
oa

ls

Sc
en

ar
io

s

V
ie

w
po

in
ts

Understanding the do-
main

X X X X X X X

Identifying sources of
requirements

X X X X X X

Analyzing the
Stakeholders

X X X X X X X X

Selecting techniques and
approaches

X X X

Eliciting the
Requirements

X X X X X X X X

Techniques and Approaches for Elicitation Activities
We have seen that different techniques and approaches have different and relative
strengths and weaknesses, and may be more or less suited to particular types of
situations and environments. Likewise, some techniques and approaches are more
appropriate for specific elicitation activities and the types of information that
needs to be acquired during those activities. Table 2.1 below presents a selected
core group of techniques and approaches best suited (marked with an “X”) for the
specific requirements elicitation activities described earlier on in Sect. 2.2 of the
chapter.

2 Requirements Elicitation: A Survey of Techniques, Approaches 33

We can see from Table 2.1 above that for each of the requirements elicitation
activities there are a number of suitable techniques and approaches that can be
used. Apart from interviews, domain analysis, and group work, which are generic
and flexible enough to provide support for all the listed elicitation activities, goal,
scenario, and viewpoint based approaches can also be used extensively throughout
the process. Given that we have already classified them as requirements elicitation
techniques and approaches, it is natural that all the core techniques and approaches
presented in the table can be used for activity of actually eliciting the require-
ments.

Table 2.2 Complementary and alternative techniques and approaches

In
te

rv
ie

w
s

D
om

ai
n

G
ro

up
 w

or
k

E
th

no
gr

ap
hy

P
ro

to
ty

pi
ng

G
oa

ls

Sc
en

ar
io

s

V
ie

w
po

in
ts

Interviews C A A A C C C

Domain C C A A A A A

Group-work A C A C C C C

Ethnography A A A C C A A

Prototyping A A C C C C C

Goals C A C C C C C

Scenarios C A C A C C A

Viewpoints C A C A C C A

Complementary and Alternative Techniques and Approaches
In most projects more than one requirements elicitation technique and approach
will need to be used, therefore it is useful to select those techniques and ap-
proaches that are complementary to achieve the best possible results from the re-
quirements elicitation process. In the same way alternative requirements elicitation
techniques and approaches enables greater flexibility to the process, and more
choice for the analysts and stakeholders. Table 2.2 below provides some guidance
with respect to which of the selected core group of techniques and approaches can
be used in cooperation (marked with a “C”), and which can be used as alternatives
(marked with an “A”).

We can see from Table 2.2 above that for each of the core requirements elicita-
tion techniques and approaches there are both alternatives and those that are com-
plementary. In some cases, such as when prototypes are operated by users under

34 Zowghi and Coulin

the observation of the analyst, the combination of these techniques has the poten-
tial to provide much richer and more detailed requirements information on both
the business processes and the needs of the users. Alternative techniques and ap-
proaches are useful if for some reason a selected techniques or approach is not be-
ing as effective as expected, or when the analyst is unfamiliar, uncomfortable, or
unable to use a particular technique or approach. For example, it may not be pos-
sible to observe users perform their normal business operations due to the physi-
cally hazardous environment in which they work. In this case the analyst may
choose to use scenarios to elicit that type of information instead.

2.4 Methodology Based Requirements Elicitation

Methodology and model driven approaches (Chap. 3) provide ways of represent-
ing the existing or future processes and systems using analytical techniques with
the intention of investigating their characteristics and limits. Goal, scenario, and
agent based modeling techniques as detailed later in this chapter are also used for
requirements elicitation in addition to the two approaches described below.

Structured Analysis and Design (SAD) [19, 66] has been around since the mid-
1970s and has been widely written about, promoted, and used. The approach is
largely function oriented. It comprises of a collection of techniques such as Data
Flow Diagrams (DFD) which detail the functional decomposition with the empha-
sis on the data in and out of the system and related components, and Entity Rela-
tionship Diagrams (ERD) that facilitate the representation of system entities, their
attributes, and their relationships to each other. Other SAD techniques used during
requirements elicitation include Data Dictionaries and Event Lists.

Object Oriented (OO) approaches, and specifically the Unified Modeling Lan-
guage (UML) contain several techniques often used for requirements elicitation
with established yet flexible notations and formats such as Use Cases diagrams,
Use Case descriptions, and Class Diagrams. Use Cases [12] are essentially ab-
stractions of scenarios that describe the functional behavior of the system, and
have become especially accepted in both research and practice despite their short-
comings such as impreciseness. The diagrammatic and tabular representations
make them easy to understand and flexible enough to accommodate some context
specific information. These techniques are especially effective in projects where
there is a high level of uncertainty or when the analyst is not an expert in that par-
ticular domain.

Several attempts have been made to develop methodologies that combine a
number of techniques with supporting roadmaps and guidelines as a way of ad-
dressing requirements elicitation. One such approach of combining techniques
suggests that the process should begin with an ethnographic study to discover fun-
damental aspects of existing patterns and behavior, followed by structured inter-
views to gain deeper insight into the needs of the stakeholders and the priorities of
requirements [23]. Furthermore, it is proposed that the more extensive require-

2 Requirements Elicitation: A Survey of Techniques, Approaches 35

ments elicitation techniques are used to examine in greater detail those needs
deemed important.

In other examples of methodology based approaches, requirements elicitation is
a defined but closely integrated activity within other aspects of the software de-
velopment process, such as is the case with Soft System Methodology (SSM) [10],
which addresses organizational problems and change, and Quality Functional De-
ployment (QFD) [2], which focuses on achieving customer satisfaction through
quality based development. Gause and Weinberg [22], on the other hand, have de-
veloped a methodology centered on requirements elicitation, and provide useful
and practical techniques for the process including concepts such as Starting Points
and Context-Free Questions.

Agile Methods (Chap. 14) for the most part enforce very little upfront require-
ments elicitation but instead advocate incremental and iterative discovery
throughout and integrated with the software development lifecycle [44]. In addi-
tion to interview and prototypes, Agile Methods supports the use of Customer or
User Stories. These provide basic descriptions of the business processes and what
the system needs to do to support them. Typically, these are written on index cards
by the customer and used as starting points for the development process. Addi-
tional requirements elicited as a result of the process from the ever-present cus-
tomer are added to a Product Backlog, which represents a living requirements
document consisting of prioritized system features and functions.

2.5 Tool Support for Requirements Elicitation

A wide variety of tools exist that have been developed and used to support re-
quirements elicitation. These range from shallow to deep with respect to the level
of detail and formality, and from generic to specific in purpose and operation.
Tools can support a specific technique or process, and may have varying levels of
task automation and assistance. Much like the techniques and approaches de-
scribed above, some of the tools detailed below have been developed for purposes
other than requirements elicitation but applied to it, whereas other have been de-
signed specifically for it. By “tool” we refer to an implement, such as software or
an artifact, used in practice to accomplish some act, in this case being require-
ments elicitation. For the most part the use of tools for requirements elicitation has
been relatively limited and the more successful applications have tended to be
domain or approach specific, with the exception of process guidelines and proto-
typing utilities. Templates such as IEEE Std 830 Software Requirements Specifi-
cation [33] and Volere Requirements Specification Template [54] represent the
most basic type of tool used by analysts to support the process of requirements
elicitation. In a similar way requirements management tools like DOORS,
CaliberRM and RequisitPro provide format based support for the elicitation of re-
quirements. Many analysts also utilize specific modeling tools to assist the process
of requirements elicitation. These typically have an easy to use graphical or tabu-
lar notation.

36 Zowghi and Coulin

A number of tools have been developed to support specific requirements elici-
tation approaches, however, so far the mainstream software engineering commu-
nity has largely not adopted these. Examples include Objectiver for goal based
modeling and ART-SCENE for scenario elicitation. Several tools have been de-
veloped with cognitive support for the requirements elicitation analyst in mind
such as The Requirements Apprentice [52], ACME/PRIME [20], and AbstFinder
[24]. Enhanced multimedia support for this process and distributed stakeholders
was also identified and addressed by several tools including AMORE [64].

Groupware represents a very wide range of tools that has been applied to re-
quirements elicitation. This covers everything from basic support tools such as
discussion boards and video conferencing to generic meeting tools like mind map-
ping and idea capture software, all the way through to virtual collaboration envi-
ronments specifically designed groups sessions such as developed by TeamWave
[27] and GroupSystems [63].

2.6 Issues and Pitfalls of Requirements Elicitation

There has been little doubt in the past about the complexity and difficulty of re-
quirements elicitation in most situations, but the question is: why is this still the
case today? Part of the reason is the number of problems that may need to be ad-
dressed and overcome during the process of requirements elicitation. In general
terms there are a large number of contextual, human, economic, and educational
factors which effect and may inhibit effective requirements elicitation. For the
sake of explanation we have categorized some of the more commonly occurring
issues and pitfalls in requirements elicitation faced by both practitioners and re-
searchers according to the aspect of requirements elicitation that they most relate
to. These have been collected from a variety of sources in the literature [11, 28,
49] as well as from practical experience and observation.

Process and Project
Each project is unique and no two requirements elicitation situations are ever ex-
actly the same. The process can be performed as part of a custom software devel-
opment project, COTS selection activity, product line definition, and existing sys-
tem maintenance operation. Projects can range all the way from simple bespoke
web-based applications to large and complex enterprise information system prod-
uct lines. The environment in which the process takes place can also vary greatly
including the geographic distribution of stakeholders and the familiarity of users
with software systems. Furthermore, the process of requirements elicitation is in-
herently imprecise as a result of the multiple variable factors, vast array of options
and decision, and its communication and socially rich nature. Arguably the most
common project based requirements elicitation issue is that the initial scope of the
project has not been sufficiently defined, and as such is open to interpretations and
assumptions. Projects like all functions of a business are subject to change and in-

2 Requirements Elicitation: A Survey of Techniques, Approaches 37

fluence from internal or external factors including economic, political, social, le-
gal, financial, psychological, historical and geographical.

Communication and Understanding
It is common that stakeholders have difficulty articulating their requirements. In
some cases this may be a result of the analyst and stakeholders not sharing a
common understanding of concepts and terms, or the analyst is unfamiliar with the
problem. Often stakeholders will have difficulty seeing new ways of doing things,
or do not know the consequences of their requirements and as such may not know
what is feasible or realistic. Stakeholders may understand the problem domain
very well, but are unfamiliar with the available solutions and the way in which
their needs could be met. Alternatively, stakeholders sometimes suggest solutions
rather than requirements. Things that are trivial or constantly repeated by stake-
holders are often assumed and overlooked although they may not be apparent to
the analyst and other stakeholders.

Quality of Requirements
The requirements elicited may not be feasible, cost-effective, or easy to validate.
In other cases they can be vague, lacking specifics, and not represented in such a
way as can be measured or tested. Furthermore, requirements may be defined at
different and insufficient levels of detail. Because the process of elicitation is in-
formal by nature, a set of requirements may be incorrect, incomplete, inconsistent,
and not clear to all stakeholders. The context in which requirements are elicited
and the process itself is inherently volatile. As the project develops and stake-
holders become more familiar with the problem and solution domains, the goals of
the system and the wants of the users are susceptible to change. In this way the
process of elicitation can actually cause requirements volatility and therefore af-
fect the quality of the requirements as a whole.

Stakeholders
Conflicts between stakeholders and their requirements are common and almost in-
evitable. Furthermore, stakeholders may not want to compromise or prioritize their
requirements when these conflicts occur. Sometimes stakeholders do not actually
know what they want or what their real needs are, and are therefore limited in their
ability to support the investigation of possible solutions. Likewise, stakeholder can
be adverse to the change a new system may introduce and therefore have varying
levels of commitment and cooperation towards the project. Often stakeholders do
not understand or appreciate the needs of the other stakeholders and might only be
concerned with those factors that affect them directly. Like all humans, stake-
holders can change their minds independently, or as a result of the elicitation
process itself.

38 Zowghi and Coulin

Analyst
Analysts may not be equipped with sufficient implementation expertise and ex-
perience to prepare for and perform effective requirements elicitation including
appropriate technique selection and the identification of all requirements sources.
This may be as a result of lack of education in terms of theory behind techniques
and approaches, or the practice of using soft skills such as listening, communicat-
ing, and questioning. Analyst from traditional software engineering backgrounds
may sometimes focus on the solution not the problem, and reply on only those
techniques they are familiar with for all situations. It is also the case that many
analysts do not employ any structured or rigorous processes within software de-
velopment projects to address requirements elicitation.

Research
It is arguable that many of the available techniques are not sufficiently useful or
practical, and the transfer of knowledge required to introduce these methods and
approaches to industry is too difficult. In fact, the quantity of detailed process
guidelines with appropriate tool support is very limited, especially with respect to
technique selection and addressing the contextual factors in different situations.
This can largely be attributed to the absence of sufficient empirical research, case
studies and experience reports on the specific topic of requirements elicitation in
the literature. Furthermore, there are no agreed metrics by which to measure the
performance of the requirements elicitation process within a software develop-
ment project.

Practice
In general terms there is still a lack of sufficient awareness, understanding, and
expertise in requirements elicitation practice. Large gaps exist between require-
ments elicitation theory and practice, as well as novice and expert analysts. The
result of which is that many are still making the same mistakes time and time
again with respect to requirements elicitation and do not acknowledge the real is-
sues and their subsequent effects. It is unfortunate that in many cases organiza-
tions and particularly customers are resistant to investing the appropriate time and
effort into the process despite an increased need for project success.

2.7 Trends and Challenges in Requirements Elicitation

Over the years a number of important trends and challenges have emerged within
the field of requirements elicitation in research and practice although not necessar-
ily the same for both. For that reason we have divided the following section into
four areas, namely (1) trends in research, (2) trends in practice, (3) challenges in
research, and (4) challenges in practice. These trends and challenges show how the
field has progressed and changed, and what still needs to be done to further evolve
this process in research and practice.

2 Requirements Elicitation: A Survey of Techniques, Approaches 39

2.7.1 Trends in Requirements Elicitation Research

As the field of RE began to develop, researchers and practitioners identified that
the elicitation of requirements for software-based systems had some unique and
complicated characteristics, and therefore needed to be addressed as a new and
separate topic from traditional knowledge acquisition [17, 23]. As a result, and for
a time, attention was directed to the development of specific tools and techniques
to support this process in the hope of reducing its complexity and resolving some
of the key challenges in its execution [52, 20]. In the mid to late 1990s the focus
of requirements elicitation research however was strongly on developing struc-
tured and rigorous manual approaches based on new and different paradigms as
opposed to tools. These included those based on goals [16], scenarios [51], view-
points [59], and domain knowledge [61], which continues to be used today.

Recently the development of much needed support for this process has once
again been focused on creating tools, but this time for the implementation of those
newly developed manual approaches, in addition to adapting generic applications
to requirements elicitation such as template-driven documentation generation and
assistive groupware applications. This has evolved as a result of the continuing
need for improvement and the enduring complexity of the process. Furthermore,
new approaches to requirements elicitation are being developed to support current
and specific topics in software engineering such as agent and aspect oriented
methodologies, web based systems, and product lines. Agile methods continue to
gain interest and support, and subsequently work has been directed to investigat-
ing how the requirements elicitation process can be effectively implemented with
these techniques whilst still maintaining the fundamental principles.

2.7.2 Trends in Requirements Elicitation Practice

Unfortunately, RE is not universally practiced as a distinct phase in software de-
velopment; however its adoption has been on the steady increase particularly over
the past decade or so. Many software organizations have discovered that it is in
their best interests and the interests of their customers to invest the required time
and effort into this phase by implementing a sufficient degree of structure and
rigor to the process. However, for the most part this is only true for the larger and
more technically mature organizations.

Overall the majority of analysts assigned the responsibility of eliciting require-
ments for software systems still use generic and traditional techniques such as in-
terviews and group meetings, and only attempt to use others that they are familiar
and comfortable with regardless of the circumstances. In recent times, however,
approaches that have been developed specifically for requirements elicitation,
such as JAD, Use Cases, Goal and Scenario based approaches, have grown in
popularity and usage at least among experienced practitioners. The adoption of
Agile Methods and modeling approaches such as UML continues to grow with
widespread acceptance of use case diagrams and descriptions. The concept of just
enough requirements engineering and subsequently elicitation as proposed by

40 Zowghi and Coulin

Davis [18] has been readily accepted by industry and will hopefully lead to the
adoption of robust requirements elicitation without unnecessarily committing to
expensive and overly detailed processes.

2.7.3 Challenges in Requirements Elicitation Research

One of the key challenges for researchers remains the development of ways to re-
duce the infamous gap [57] between research and practice in terms of awareness,
acceptance, and adoption. This can only be achieved by establishing the results in
practice and making the approaches more attractive, thereby providing the proof
and motivation for practitioners to use them. In order to make this happen, re-
searchers need to reduce the complexity of approaches and the expertise required
to integrate them into practice. Packaging them into manageable and flexible
components with appropriate tool support can facilitate this process.

It is important to work towards reducing the gap between experts and novices
through practical roadmaps, frameworks, and guidelines that can be easily taught
to students and novices. Finding more efficient and effective ways to transfer ex-
pert knowledge is certainly part of this effort. Furthermore, educators need to ade-
quately address the wide range of skills and expertise required to produce effective
requirements engineers, and provide authentic learning environments for gaining
realistic experiences. Overall research needs to continue to develop ways of im-
proving the process and quality of requirements elicitation, and quantifying its
success. Only through application to practice can the true value of new techniques,
approaches, and tools be determined.

2.7.4 Challenges in Requirements Elicitation Practice

Industry, like academia, must also look for ways to reduce the gap between ex-
perts and novices by investing time and effort in education on what is currently
available, and developing new procedures and process for the transfer of knowl-
edge from senior analyst to juniors. Knowing when and which techniques, ap-
proaches and tools to use combined with the knowledge of how, will ultimately
improve the chances of customer satisfaction and project success.

Practitioners need to be able to allocate sufficient time and resources to re-
quirements elicitation. This can be partly achieved by educating customers of the
value of being diligent in the process, and presenting the risks of not doing so. It is
also important that stakeholders themselves understand the benefits and are com-
mitted to process. Organizations in practice need to be more open to accepting the
research results, and prepared to join forces, pool resources, and share information
to collaboratively produce improved methods of working, and better results for
customers. Industry should be more prepared to address the social and organiza-
tional factors involved in requirements elicitation, and focus on building software
systems that achieve both the business goals and satisfy the users’ needs by using
the appropriate techniques.

2 Requirements Elicitation: A Survey of Techniques, Approaches 41

2.8 Future Directions in Requirements Elicitation Research

Despite the successes and progress to date, many important topics remain open for
investigation with respect to providing appropriate techniques, approaches, and
tools for requirements elicitation, including specific assistance for novice analysts,
cognitive support through intelligent tools, and methods that involve direct inter-
action with stakeholders. Below we have listed some of the potential requirements
elicitation research areas not completely resolved to date that we believe deserve
appropriate attention in the coming years:

Reducing the gap between the theory and practice, and experts and novices
Increasing the awareness and education of analysts and stakeholders in industry
Developing guidelines for technique selection and managing the impact of fac-
tors on the process
Investigating ways of collecting and reusing knowledge about requirements
elicitation
Integration and use of new technologies including web and agent based archi-
tectures into the next generation of support tools
Producing and publishing case studies and industrial experience reports on how
requirements elicitation contributed to successes and failures of projects
Exploring how requirements elicitation activities relates to new and developing
fields of software engineering such as agent based systems, agile development
methodologies, and web systems

More collaboration is still required between research and practice in order to
fully evaluate the existing approaches, and develop new ones for emerging prob-
lems. Many of the best results in requirements elicitation research achieved so far
have come from this type of joint work with industry. Awareness and education
remain two of the biggest issues faced for those working in requirements elicita-
tion. Students need to be given practical experience as well as a sound theoretical
foundation. Practitioners need to be equipped with a variety of techniques, ap-
proaches, and tools to use where appropriate depending on what is best suited to
the situation. Customers need to understand the importance of the process, believe
in it, and support the efforts involved in doing it right.

2.9 Summary

The process of requirements elicitation, including the selection of which tech-
niques, approach, or tool to use when eliciting requirements, is dependant on a
large number of factors including the type of system being developed, the stage of
the project, and the application domain to name only a few. Because of the relative
strengths and weaknesses of the available methods and the type of information
they provide, the reality is that in almost all projects a combination of several dif-
ferent techniques will be necessary to achieve a successful outcome. This is sup-

42 Zowghi and Coulin

ported by the fact that many of the techniques are intended to be used in conjunc-
tion with each other, and have complementary attributes as discussed throughout
the chapter. Most of the approaches require a significant level of skill and exper-
tise from the analyst to use effectively. However, from the range of existing tech-
niques, variations of interviews, group workshops, observation, goals, and scenar-
ios are still the most widely used and successful in practice. Despite attempts to
automate parts of the process and develop frameworks and guidelines, require-
ments elicitation still remains more of an art than a science.

References

1. Agarwal R, Tanniru, MR (1990) Knowledge acquisition using structured interviewing:
An empirical investigation. Journal of Management Information Systems, 7(1):
123 140

2. Akao Y (1995) Quality function deployment: Integrating customer requirements into
product design. Productivity press: Cambridge, MA

3. Alexander IF, Stevens R (2002) Writing better requirements. Addison Wesley, Great
Britain

4. Ball LJ, Ormerod TC (2000) Putting ethnography to work: The case for a cognitive eth-
nography of design. International Journal of Human–Computer Studies, 53(1): 147 168

5. Beck K, Cunningham W (1989) A laboratory for teaching object-oriented thinking. In:
Proceedings of the conference on object-oriented programming systems languages and
applications, October 1-6, New Orleans, LA, pp. 1 6

6. Beyer HR, Holtzblatt K (1995) Apprenticing with the customer. Communications of the
ACM, 38(5): 45 52

7. Bostrum RP (1989) Successful application of communication techniques to improve the
systems development process. Information and Management, 16(5): 279 295

8. Bubenko JA, Jr., Wangler B (1993) Objectives driven capture of business rules and of in-
formation systems requirements. In: Proceedings of the international conference on sys-
tems, man and cybernetics, October 17-20, Le Touquet, France, pp. 670 677

9. Carlshamre P, Karlsson J (1996) A usability-oriented approach to requirements engineer-
ing. In: Proceedings of the 2nd International conference on Requirements Engineer-ing,
April 15-18, Colorado Springs, CO, pp. 145 152

10. Checkland P, Scholes J (1990) Soft systems methodology in action. John Wiley &
Sons: New York, NY

11. Christel MG, Kang KC (1992) Issues in requirements elicitation. Carnegie Mellon Uni-
versity Technical report, CMU/SEI-92-TR-012

12. Cockburn A (2001) Writing effective use cases. Addison Wesley: Reading, MA
13. Constantine L, Lockwood LAD (1999) Software for use: A practical guide to the mod-

els and methods of usage-centered design. Addison Wesley: Reading, MA
14. Coulin C, Zowghi D (2004) Requirements elicitation for complex systems: Theory and

practice. In: Requirements Engineering for Socio-Technical Systems, Mate JL, Silva A
(Eds.), Idea Group: USA

15. CREWS, http://sunsite.informatik.rwth-aachen.de/CREWS/, Accessed 15 November
2004

2 Requirements Elicitation: A Survey of Techniques, Approaches 43

16. Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed requirements acquisi-
tion. Science of Computer Programming, 20(1-2): 3 50

17. Davis AM (1994) Software requirements: Analysis and specification. Prentice Hall:
New Jersey

18. Davis AM (2004) Just enough requirements management: Where marketing and devel-
opment meet. Dorset House: New York

19. DeMarco T, Plauger PJ (1979) Structured analysis and system specification. Prentice
Hall, New York, NY

20. Feblowitz M, Greenspan S, Reubenstein H, Walford R (1996) ACME/PRIME: Re-
quirements acquisition for process-driven systems. In: Proceedings of the 8th Interna-
tional workshop on software specification and design, March 22 23, Paderborn, Ger-
many, pp. 36 45

21. Foddy W (1994) Constructing questions for interviews and questionnaires. Cambridge
University Press, Cambridge

22. Gause DC, Weinberg GM (1989) Exploring requirements: Quality before design. Dor-
set House, New York

23. Goguen JA, Linde C (1993) Techniques for requirements elicitation. In: Proceedings of
the IEEE International symposium on Requirements Engineering, January 4-6, San
Diego, CA, pp. 152 164

24. Goldin L, Berry DM (1994) AbstFinder: A prototype natural language text abstraction
finder for use in requirements elicitation. Automated Software Engineering 4 (4):
375 412

25. Gottesdiener E (2002) Requirements by collaboration. Addison Wesley: Boston, MA
26. Haumer P, Pohl K, Weidenhaupt K (1998) Requirements elicitation and validation with

real world scenes. IEEE transactions on Software Engineering, 24 (12): 1036 1054
27. Herela D, Greenberg S (1998) Using a groupware space for distributed requirements en-

gineering. In: Proceedings of the 7th workshop on enabling technologies: Infrastructure
for collaborative enterprises, June 17-19, Stanford, CA, pp. 57 62

28. Hickey AM, Davis AM (2002) The role of requirements elicitation techniques in
achieving software quality. In: Proceedings of the 8th International workshop of re-
quirements engineering: Foundation for software quality, September 9-10, Essen, Ger-
many

29. Hickey AM, Davis AM (2003) Elicitation technique selection: How do experts do it?
In: Proceedings of the 11th IEEE International requirements engineering conference,
Sep-tember 8-12, Monterey Bay, CA, pp. 169 178

30. Hinkle D (1965) The change of personal constructs from the viewpoint of a theory of
implications. Doctoral Dissertation, Ohio State University, USA

31. Hofmann HF, Lehner F, (2001) Requirements engineering as a success factor in soft-
ware projects. IEEE Software, 18 (4): 58 66

32. Holtzblatt K, Beyer HR (1995) Requirements gathering: The human factor. Communi-
cations of ACM, 38 (5): 30 32

33. IEEE (1998) IEEE Std 830-1998 Software Requirements Specification, The Institute of
Electrical and Electronics Engineers, Inc. 345 East 47th Street, New York, NY
10017 2394, USA

34. Jackson M (1995) The world and the machine. In: Proceedings of the 17th IEEE Inter-
national conference on software engineering, April 24-28, Seattle, WA, pp. 283 292

44 Zowghi and Coulin

35. Jackson M (2000) Problem frames: Analyzing and structuring software development
problems. Addison Wesley: Boston, MA

36. Jones C (1996) Applied software measurement: Assuring productivity and quality.
McGraw-Hill: New York

37. Kaufman LD, Thebaut S, Interrante MF (1989) System modeling for scenario-based re-
quirements engineering. SERC Technical Report, SERC-TR-33-F

38. Kelly G (1955) The psychology of personal constructs, Norton, New York
39. Kotonya G, Sommerville I (1998) Requirements engineering: Processes and techniques,

John Wiley & Sons, Great Britain
40. Krueger RA (1994) Focus groups: A practical guide for applied research, Sage, Thou-

sand Oaks, CA
41. Loucopoulos P, Karakostas V (1995) Systems requirements engineering, McGraw-Hill:

London
42. Macaulay LA (1993) Requirements as a cooperative activity. In: Proceedings of the

IEEE Symposium on Requirements Engineering, January 4 6, San Diego, CA, pp.
174 181

43. Maiden N, Gizikis A, Robertson S, (2004) Provoking creativity: Imagine what your re-
quirements could be like. IEEE Software, 21(5): 68 75

44. Martin RC (2003) Agile software development: Principles, patterns and practices, Pren-
tice Hall: Upper Saddle River

45. McGraw KL, Harbison-Briggs K (1989) Knowledge acquisition: Principles and guide-
lines, Prentice Hall: New Jersey

46. Nielsen J, Clemmensen T, Yssing C (2002) Getting access to what goes on in people’s
heads: Reflections on the think-aloud technique. In: Proceedings of the 2nd Nordic
Con-ference on Human-Computer Interaction, October 19 23, Aarhus, Denmark, pp.
101 110

47. Nuseibeh B, Finkelstein A, Kramer J (1996) Method engineering for multi-perspective
software development. Information and Software Technology Journal, 38(4): 267 274

48. Nuseibeh B, Easterbrook S (2000) Requirements engineering: A roadmap. In: Proceed-
ings of the conference on the future of software engineering, June 4-11, Limerick, Ire-
land, pp. 35 46

49. OPEN Process Framework, http://www.donald-firesmith.com/, Accessed 15 November
2004

50. Osborn AF (1979) Applied imagination. Charles Scribner’s Sons: New York
51. Potts C, Takahashi K, Anton AI (1994) Inquiry-based requirements analysis. IEEE

Software, 11 (2): 21 32
52. Reubenstein H, Waters R (1991) The requirements apprentice: Automated assistance

for requirements acquisition. IEEE Transactions on Software Engineering, 17(3):
226 240

53. Richardson J, Ormerod TC, Shepherd A (1998) The role of task analysis in capturing
requirements for interface design. Interacting with Computers, 9(4): 367 384

54. Robertson S, Robertson J (1999) Mastering the requirements process, Addison Wesley:
Great Britain

55. Rolland C, Souveyet C, Ben Achour C (1998) Guiding goal modeling using scenarios.
IEEE Transactions on Software Engineering, 24(12): 1055 1071

56. Scenario Plus, http://www.scenarioplus.org.uk/, Accessed 15 November 2004

2 Requirements Elicitation: A Survey of Techniques, Approaches 45

57. Siddiqi J, Shekaran C (1996) Requirements engineering: The emerging wisdom. IEEE
Software, 13(2): 15 19

58. Sommerville I, Sawyer P (1997) Requirements engineering: A good practice guide,
John Wiley & Sons, Great Britain

59. Sommerville I, Sawyer P, Viller S (1998) Viewpoints for requirements elicitation: A
practical approach. In: Proceedings of the IEEE International Conference on Require-
ments Engineering, April 6-10, Colorado Springs, CO, pp. 74 81

60. Sommerville I (2001) Software engineering. 6th edition, Addison Wesley, USA
61. Sutcliffe A, Maiden N (1998) The domain theory for requirements engineering. IEEE

Transactions on Software Engineering, 24(3): 174 196
62. Taylor-Cummings A (1998) Bridging the user-IS gap: A study of major systems pro-

jects. Journal of Information Technology, 13(1): 29 54
63. Weatherall A (1998) Creative problem solving using Group Systems. In: Proceedings of

the 31st Hawaii International Conference on System Sciences, January 6-9, Hawaii, 1,
pp. 588 595

64. Wood D, Christel M, Stevens SM (1994) A multimedia approach to requirements cap-
ture and modeling. In: Proceedings of the 1st International Conference on Require-
ments Engineering, April 18-22, Colorado Springs, CO, pp. 53 56

65. Wood J, Silver D (1995) Joint application development. John Wiley & Sons, New York
66. Yourdon E (1989) Modern structured analysis. Prentice Hall, Englewood Cliffs, NJ
67. Yu ESK (1997) Towards modeling and reasoning support for early-phase requirements

Engineering. In: Proceedings of the 3rd IEEE International Symposium on Require-
ments Engineering, January 5-8, Washington, D.C, pp. 226 235

68. Zave P, Jackson M (1997) Four dark corners of requirements engineering. ACM Trans-
actions on Software Engineering and Methodology, 6(1): 1 30

69. Zowghi D (1999) A logic-based framework for the management of changing software
requirements. Doctoral Dissertation, Macquarie University, Australia

Author Biography

Didar Zowghi is Associate Professor of Software Engineering and the Director of
Requirements Engineering Research Laboratory in the Faculty of Information
Technology at University of Technology, Sydney. She holds a Bachelor of Sci-
ence (Hons) and a Masters of Science in Computer Science, and PhD in Software
Engineering. She serves on the program committee of many national and interna-
tional conferences, in particular the IEEE International Conferences on Require-
ments Engineering since 1998. She is the regional editor (and the editor of the
Viewpoints column) of the International Requirements Engineering Journal and
the associate editor of the Journal of Research and Practice in Information Tech-
nology (JRPIT). She has published extensively on many aspects of Requirements
Engineering.

Chad Coulin is a PhD candidate and member of the Requirements Engineering re-
search group in the Faculty of Information Technology at the University of Tech-
nology, Sydney. He holds a Bachelors of Engineering (Hons.) in Microelectronics,
and is currently working on the development of new and innovative methods to

46 Zowghi and Coulin

support requirements elicitation for software-based systems. His other research in-
terests include Computer Supported Cooperative Work (CSCW) and the develop-
ment of interactive and intelligent Computer Assisted Software Engineering
(CASE) tools. Previously he has worked as a project and product manager in the
USA and Europe developing and implementing large-scale industrial software
systems.

3 Specification of Requirements Models

Ricardo J. Machado, Isabel Ramos and João M. Fernandes

Abstract: The main aim of this chapter is to present and discuss a set of modeling
and specification techniques, in what concerns their ontology and support in the
requirements representation of computer-based systems. A systematic classifica-
tion of meta-models, also called models of computation, is presented. This topic is
highly relevant since it supports the definition of sound specification methodolo-
gies in relation to the semantic definition of the modeling views to adopt for a
given system. The usage and applicability of Unified Modeling Language (UML)
diagrams is also related to their corresponding meta-models. A set of desirable
characteristics for the specification methodologies is presented and justified to al-
low system designers and requirements engineers to more consciously define or
choose a particular specification methodology. A heuristic-based approach to sup-
port the transformation of user into system requirements is suggested, with some
graphical examples in UML notation.

Keywords: Modeling, Specification, Meta-Models, Requirements, Model trans-
formation.

3.1 Introduction

Computer-based systems integrate, as information processing sub-systems, one or
more computing systems able to capture, store, process, transfer, present and man-
age information. Within the design of computer-based systems, this justifies the
need for the incorporation of several technological entities: (1) software, firmware,
and (analog and digital) hardware, to process and store information; (2) communi-
cation network services to transport information; (3) sensors and actuators to in-
teract with the physical environment; and (4) human-machine interfaces to ex-
change information with human operators. Although computer-based systems can
be strictly based on computer technologies, they normally include other entities
such as human operators, organizational subsystems, documentation, and manuals.

Since computer-based systems are, by nature, heterogeneous, modeling and
specifying their requirements demands a holistic approach.

A requirement can be defined as “something that a client needs.” From the
point of view of the system designer or the requirements engineer, a requirement
could also be defined as “something that must be designed.” The IEEE 610 stan-
dard [21] defines a requirement as: (1) a condition or capability needed by a user
to solve a problem or achieve an objective; (2) a condition or capability that must
be met or possessed by a system or system component to satisfy a contract, stan-
dard, specification or other formally imposed documents; (3) a documented repre-
sentation of a condition or capability as in (1) or (2).

48 Machado, Ramos and Fernandes

Clients and developers (system designers and requirements engineers) have, natu-
rally, different points of view towards requirements, which imply that require-
ments can be divided into two different categories: user and system requirements.

User requirements result directly from the requirements elicitation task (see

Chap. 2 for further details on requirements elicitation techniques), as an effort to
understand the clients’ needs. They are, typically, described in natural language
and with informal diagrams, at a relatively low level of detail. User requirements
are focused in the problem domain and are the main communication medium be-
tween the clients and the developers, at the analysis phase. System requirements
result from the developers’ efforts to organize the user requirements at the solution
domain. They, typically, comprise abstract models of the system, at a relatively
high level of detail, and constitute the first system representation to be used at the
beginning of the design phase. The correct derivation of system requirements from
user requirements is an important objective because it assures that the design
phase is based on the effective clients’ needs. This also guarantees that no mis-
judgment is arbitrarily introduced by the developers during the process of system
requirements specification.

The aim of this chapter is to present and discuss a set of modeling and specifi-
cation techniques, in what concerns their ontology and support in the requirements
representation of computer-based systems. This chapter is not intended to be used
as an exhaustive survey and summary of existing modeling approaches. It pro-
vides some guidelines to system designers and requirements engineers so that they
select the modeling approach that best fits their problems. The intended audience
of this chapter is system designers and requirements engineers who wish to ex-
pand their background knowledge on meta-modeling and improve their develop-
ment strategy options.

Section 3.2 discusses the differences between the modeling and the specifica-
tion activities. In this chapter, specification is only related to models, and not to
other possible forms. Sect. 3.3 presents a systematic classification of meta-models
as a key issue for the semantic definition of the modeling views to adopt for a
given system. Some authors use the term “modeling techniques”, instead of
“meta-models”. Sect. 3.4 describes a set of desirable characteristics for specifica-
tion methodologies, so that system designers and requirements engineers can more
consciously define or choose a particular specification methodology. Sect. 3.5
briefly describes a heuristic based approach to support the transformation of user
into system requirements. This section shows that model continuity is a key issue
and highlights the importance of having a well defined process to relate, map and
transform requirements models.

3.2 Modeling vs. Specification

The first decision of developers, when they want to specify a system, is to select
which part of the system they wish to take into account. The selection of that part
defines the system view, i.e., the system perspective that needs to be represented

3 Specification of Requirements Models 49

[5]. This view has a merely conceptual existence in the human mind, and, accord-
ing to an unstructured and informal representation, at least at the conscious level
of the developers.

System Specification

View

MM MM

Meta-Model

Grammar

Language
Model

Fig. 3.1 Specification of systems

The formalization of the system view occurs when it originates a model. This
model consists in a representation, still conceptual, of the view of the system, ac-
cording to a particular meta-model. This meta-model corresponds to a set of (func-
tional or structural) composition elements and of composition rules that permits to
build a model representing the system view. This model serves the purpose of ex-
plaining and sharing the conceptual view held in the human mind. In this way, de-

velopers make their view available to the judgment of others and to further refor-
mulation.

The accuracy of a particular modeling approach depends on its capability to se-
lect the meta-model that semantically supports the characteristics of the system to
be modeled. The selected meta-model defines the semantic limits of the system
representation at the model level. Meta-models characterization is of central im-
portance due to its impact on the systems modeling accuracy.

Although the system model is already the result of a formalization effort of the
system view, its existence is still at the conceptual level. To become “tangible” it
must be transformed into a concrete representation called “specification”, i.e., a
real representation of the system model in a given language [41]. The conceptual
model adopted in the definition of the language corresponds to the language meta-
model, which allows the description of the system model by means of a graphical,
textual or other kind of representation; see Fig. 3.1.

According to the terminology used here, the difference between modeling and
specification, activities that are often misunderstood, is now clearer. Modeling
corresponds to the activity of selecting a meta-model to formalize, at the concep-
tual level, a given system view, while specification is related to the adoption of a
language to make a system model tangible. Obtaining a specification that ade-

50 Machado, Ramos and Fernandes

quately represents the system depends both on the characteristics of the selected
meta-model for the modeling activity and on the meta-model of the chosen repre-
sentation language. Thus, to avoid semantic mismatches, the two adopted
meta-models must be compatible. Whenever possible, the language meta-model
should be the same as the one used in the system modeling activity. In this con-
text, it becomes clear that the characterization of meta-models is a fundamental is-
sue for accomplishing both the modeling and the specification activities.

3.3 Meta-Models Categories

Although the two meta-models involved in the construction of a system specifica-
tion may not be exactly the same, one can assume, for simplification purposes,
that the representation language has been consciously selected taking into account
the characteristics of its meta-model (which is not always true).

Ideally, representation languages should allow the specification of the desired
system characteristics, in a non ambiguous way. This is possible, if the
meta-model of the language is: (1) formal (accurate, rigorous), to avoid ambigui-
ties in the interpretation of the system representation; (2) complete, to allow the
construction of a representation that totally describes the system view. These are
not absolute properties, since they depend on the particular system to be specified.
In [17], Gajski et al. organize the most common meta-models into five distinct
groups. A brief description of each meta-model category is presented next.

3.3.1 State Oriented Meta-Models

State oriented meta-models allow modeling a system as a set of states and a set of
transitions. The transitions between states evolve according to some external
stimulus. These meta-models are adequate to model systems in which temporal
behavior is the most important aspect to be captured. Finite state machines
(FSMs), finite state machines with data paths (FSMDs), StateCharts and Petri nets

are examples of state oriented meta-models.
FSMs [32], also known as “finite state automata”, correspond to the most used

meta-model in the description of control systems, since the temporal behavior of
these systems is naturally represented in the form of states and transitions between
states. The two basic alternatives to construct state machines (Mealy or Moore)
differ only in the output function. On Mealy machines the output function depends
both on the state and the inputs, while on Moore machines the output function de-
pends only on states. Graphical diagrams that represent state machines are usually
called “state transition diagrams” (STDs).

3 Specification of Requirements Models 51

E

G

Fr s

a

u

DA

B

C

ba(P) / c

Fig. 3.2 Example of a StateChart

p1 p2

p3

p4

p5

p6

p7t1 t2

t3

t4

t5

t6

Fig. 3.3 Example of a Petri net

FSMDs [16] are an evolution of FSMs to solve, in a simple way, the problem of
state explosion. FSMDs extend FSMs by using integer or floating variables to re-
place thousands of states in the corresponding FSM. While FSMs can only repre-
sent control systems, FSMDs are also able to represent computing systems. These
meta-models are not able to capture complex behaviors, since they lack the ability
to deal with concurrency and hierarchy.

HCFSMs are another FSM extension, since they support the representation of
concurrency and allow the construction of hierarchical models. HCFSMs are rela-
tively limited in dealing with complex data structures. The meta-model behind
HCFSMs is the same as Harel’s StateCharts graphical representation language
[18]; see Fig. 3.2. UML’s state diagrams have their origins in Harel’s StateCharts.

Petri nets [34, 35] constitute another state oriented meta-model. Petri nets are
appropriate to model concurrent actions, since they can deal with parallelism, syn-
chronization, resource sharing and memorization; see Fig. 3.3. Petri nets enclose a
solid mathematical base, enabling models to be formally analyzed. Additionally,
Petri nets are one of the meta-models that offer more extensions, allowing an
enormous variety of utilizations, from system specification and performance
analysis to system synthesis and implementation. Several Petri net extensions in-
clude powerful semantic mechanisms, such as hierarchical approaches and object
orientation, allowing to cope with complex system modeling [24, 31]. There are
some languages that directly support some of the existing Petri net extensions [25,
28].

52 Machado, Ramos and Fernandes

3.3.2 Activity Oriented Meta-Models

Activity oriented meta-models allow modeling a system as a set of activities re-
lated by data or by execution dependencies. These meta-models are well suited to
model systems where data are affected by a sequence of transformations at a con-
stant rate. Data flow diagrams (DFDs) and flowcharts are two examples of activity
oriented meta-models.

A DFD [10], also known as a “data flow graph” (DFG), consists in a set of in-
terconnected activities or processes with arcs representing the data flow among
them. DFDs support hierarchy, since each activity can be further detailed by an-
other DFD. DFDs can not express temporal behavior, or action control. UML does
not have any kind of diagram based on this meta-model [12]. Neither UML’s use
case diagrams nor UML’s activity diagrams are DFDs, although some developers

argue that there are some graphical resemblances.
Flowcharts [9], also known as “control flow graphs” (CFGs), model control

flow among activities. While in FSMs transitions are activated by external events,
in flowcharts transitions are activated as soon as an activity is complete. This
meta-model is suitable for modeling systems with well defined activities and that
do not depend on external stimulus, allowing the representation of sequences of
activities related by control flow. UML’s activity diagrams are essentially based
on this meta-model. However, fork and join primitives of activity diagrams are in-
spired by Petri net transitions.

3.3.3 Structure Oriented Meta-Models

Structure oriented meta-models allow the description of system physical modules
and their interconnections. These meta-models are dedicated to the characteriza-
tion of the physical composition of a system, instead of its functionality. Block
diagrams, also called “component-connectivity diagrams” (CCDs), are the most
frequently used structure oriented meta-model. UML’s deployment and compo-
nent diagrams are based on this meta-model.

3.3.4 Data Oriented Meta-Models

Data oriented meta-models allow modeling a system as a collection of data related
by some kind of attribute. These meta-models dedicate more importance to the or-
ganization of data than to the system functionality. UML does not have any kind
of diagram exclusively based on these meta-models, since it favors object oriented
systems and does not promote the usage of diagrams mainly dedicated to data
modeling. Nevertheless, it is possible to argue that UML’s class diagrams are par-
tially data oriented meta-models.

Data oriented meta-models are, typically, used within methodologies based on
the traditional structure analysis and design techniques [46]. Entity relationship
diagrams (ERDs) and Jackson’s structured diagrams (JSDs) are two examples of

3 Specification of Requirements Models 53

data oriented meta-models. ERDs [6] describe a system as a collection of entities
and the existing relationships among them. Each entity corresponds to a unique
type of data with one or more specific attributes. This meta-model is useful when
developers want to organize complex relationships between different data types.
ERDs cannot model functional or temporal characteristics.

JSDs [42] model the structure of each data type, through subtype decomposi-
tion. Decomposition is performed in a tree structure in which the leaves corre-
spond to the basic data types and the other nodes to the composite data, obtained
through various operations such as composition (AND), selection (OR), and itera-
tion (*). While ERDs are suitable to model different data entities with complex in-
ter-relations, JSDs are adequate to model complex data structures. The limitations
of JSDs are similar to the ones referred for ERDs.

+

W

X

A

+

X

3

A

C

1 2 E

X : X+2

A : X+5
A : X+3 A : X+W

+

2

X

X

5

A

+

Fig. 3.4 Example of a control/data flow graph

3.3.5 Heterogeneous Meta-Models

Heterogeneous meta-models allow the usage, in the same system representation,
of several characteristics from different meta-models, namely the four categories
described before. These meta-models are a good solution when relatively complex
systems must be modeled. Control/data flow graphs (CDFGs), object process dia-
grams (OPDs) and program state machines (PSMs) are examples of heterogeneous
meta-models.

CDFGs [16] embody DFDs (to model data flow between system activities) and
flowcharts (to impose the sequence of DFDs execution). CDFGs succeed in mod-
eling, in a single representation, data dependencies and system control sequence,
simultaneously benefiting from DFDs and flowcharts advantages; see Fig. 3.4.

Within the Object Process Methodology (OPM), the combined usage of objects
and processes is recommended [11]. An OPD can include both processes and ob-
jects, which are viewed as complementary entities that together describe the struc-
ture and behavior of the system. Objects are persistent entities and processes trans-
form the objects by generating, consuming or affecting them. In addition, states
are also integrated in OPDs to describe the objects.

54 Machado, Ramos and Fernandes

wait_for_start

parity_error ‘0’;

read_enable ‘0’;

allow_read

read_enable ‘1’;

parity_error

parity_error ‘1’;

read_bits

for i in 0 to 7 loop
wait until rising (clk);

rx_reg[i] : line;

parity_bit : parity_bit xor line;
end loop;

parity_bit line

parity_bit / line

receive

line ‘1’

Fig. 3.5 Example of a PSM model specified in the SpecCharts language

PSMs [33] allow the integration of HCFSMs with a textual programming lan-
guage. This meta-model basically consists in a hierarchy of program states, in
which each state represents a distinct computation mode. At any instant, only a
subset of the program states is simultaneously executing their computations. PSMs
are more powerful than HCFSMs to model systems that possess complex data
structures, since they are able to incorporate, in a unique model, data, activities
and states. HCFSMs and programming languages delimit the two opposite ex-
tremes of using PSMs. A program may be considered a PSM with only one speci-
fied state, and a HCFSM may be viewed as a PSM in which none of their states
possess descriptions in the programming language. SpecCharts is a representation
language for the PSM meta-model; see Fig. 3.5.

If PSMs are considered a heterogeneous meta-model, it is also acceptable to
consider programming languages as a meta-model themselves. There exits a con-
siderable number of developers that make use of programming languages to spec-
ify systems, usually, their behavior and data structures. This approach to specifica-
tion imposes a considerable amount of design and implementation decisions at the
analysis phase, which can have an undesired effect on the specifications.

Programming languages allow the modeling of data structures, activities and
control. The modeling “style” imposed by a particular programming language is
called paradigm in computer science terminology. The meta-model behind a pro-
gramming language is its paradigm and not the language itself. Programming lan-
guages should be considered representation languages at the implementation level.

3 Specification of Requirements Models 55

system

model 1

model 2

model 3

criterion 1

criterion 3

criterion 2

Fig. 3.6 The multiple view approach

Historically, there are two different meta-models (paradigms) for programming
languages: imperative and declarative. The imperative paradigm (where C and
Pascal are included) follows von Neumann’s computational model, since it adopts
the sequential execution of the computing primitives. The declarative paradigm
(where Lisp and Prolog are included) does not define an explicit order of execu-
tion of the primitives, focusing in defining the target of computation, through
functions and logic rules declaration. More recently, the object oriented paradigm
has emerged, which is based on the heterogeneous object oriented meta-model.
Object oriented meta-models evolved from data oriented meta-models, being
characterized by its tendency in describing the system as a collection of cooperat-
ing objects. Each object consists in a data collection and in operations to transform
its data. This meta-model supports data abstraction (information hiding), through
encapsulation of data in each object, making data invisible to other objects. They
can easily represent concurrency, since each object coexists with the others and
can potentially execute its tasks in parallel with tasks in other objects.

3.3.6 Multiple-View Approach

With the increasing complexity of systems, the use of different meta-models to
represent different kinds of system characteristics is becoming a common practice.
A system is modeled by a set of different models, each one corresponding to a dif-
ferent view of the system, devoted to represent a well delimited set of the system
characteristics, see Fig. 3.6, where the criteria shown are related to the characteris-
tics each view is intended to capture. This multiple view approach does not corre-
spond to the usage of a heterogeneous meta-model, since the information in dif-
ferent views may not be explicitly related through common information structures.
On the contrary, in a heterogeneous meta-model the different views must hold
common information structures within a unique integrated representation. UML
notation permits the adoption of multiple view approaches.

56 Machado, Ramos and Fernandes

Multiple view modeling can adopt orthogonal views: (1) the function view is
responsible for representing the processes of the system and UML’s activity dia-
grams can be used to support this view; (2) the data view defines system informa-
tion, that can be supported by UML’s class diagrams; (3) the control view charac-
terizes the system dynamic behavior that can be described by UML’s state
diagrams. Several authors have defined different multiple view approaches where
views are vehicles for separation of concerns [1, 14, 27, 29].

3.4 Specification Methodology

Formal description, comparison, and construction of methods and techniques for
systems development are the main goals of the method engineering community
[19]. Meta-models of the development process are also called “meta-process mod-
els” and meta-models of the development products, or deliverables, are called
‘meta-data models’ (in this chapter we call these just “meta-models”). Some well
known approaches to the method engineering are: ISO/IEC 12207 [22], OPEN
[15] and PIE [8].

The act of defining our own specification methodology is called “situational
method engineering” [44] and it is in this context that it is important to take into
consideration the following three key issues [39]: specification language, com-
plexity control, and model continuity.

3.4.1 Specification Language

Specification languages must allow the representation of a particular system view,
without ambiguities. This is the main purpose of specification languages, and their
relation with the meta-models has already been discussed. Additionally, specifica-
tion languages must offer support for analyzing and reasoning about the specifica-
tion. The available analysis mechanisms depend on the specification language it-
self. However, there are essentially two different kinds of mechanisms: formal
analysis and specification execution. Formal analysis is important to verify if a
specification is incoherent, but its existence is only possible if the specification
language owns a solid mathematical base. Executable specifications allow an early
testing of system prototypes for requirements validation, rendering a more robust
and understandable specification process.

3 Specification of Requirements Models 57

1 3 6 n.(n-1)/2

Fig. 3.7 Complexity

3.4.2 Complexity Control

The control of the complexity of the specification process can be carried out
within two different dimensions: representational complexity and development
complexity. The complexity of a system does not only depend on the cardinality
of its parts, but mainly on the way its parts interact among them; see Fig. 3.7,
where systems are represented by circles and interactions by arrows.

Fig. 3.8 Abstraction levels

The first dimension of complexity control refers to the representational com-
plexity. It essentially depends on the specification language and, if correctly man-
aged, permits concise and comprehensible specifications to be obtained. Complex-
ity control at the representation level can be achieved by making use of three
different techniques: hierarchy, orthogonality, and representation scheme. Devel-

opers must be able to decide the appropriate abstraction level to be used. Typi-
cally, the adoption of higher levels of abstraction improves the understanding of
the system as a whole, while details are being hidden.Model hierarchization corre-
sponds to grouping similar (structural or behavioral) system parts together into a
new element that represents the group; see Fig. 3.8. Model orthogonalization con-
sists in describing a set of system behaviors independently from each other (when-
ever possible). In what concerns the representation scheme, complexity control ef-
fort can decide either for textual representations or for graphical representations.
Graphical representation schemes imply visual formalisms where both syntactic
and semantic interpretations are assigned to graphical entities. Graphical ap-

58 Machado, Ramos and Fernandes

proaches are usually easier to understand than textual ones and thus improve the
readability and the understandability of system view. UML adopts a graphical ap-
proach.

The second dimension of complexity control (development complexity) refers
to the control of the evolution of the system specification from initial conceptuali-
zation of requirements. This control can be accomplished by deferring certain de-
tails to the next phases of system development and by adopting different specifica-
tion evolutions throughout the specification process (top-down, bottom-up or
middle-out).

3.4.3 Model Continuity

Models obtained in the initial phases of the development must be persistent,
avoiding their rewriting at each step. To support design and implementation meth-
odologies, this model continuity concern must assure conformity in models evolu-
tion throughout the whole development process. This is possible by allowing
models to be refined through the inclusion of new behavioral and structural attrib-
utes acquired along the design and implementation phases; see Fig. 3.9.

design requirements implementation analysis

system

Fig. 3.9 Model continuity

The first model must be independent of implementation, allowing developers to
focus in the system behavioral modeling. When constructing the first specifica-
tion, design or implementation decisions and unnecessary restrictions should be
avoid. Within a full model continuity approach, it is desirable that the automatic
synthesis of the solution is completely based on the system specification. This
synthesis technique, carried out at the system level, is not yet sufficiently efficient.
It is usually based on the structural characteristics of the specifications and it has
the disadvantage of limiting the design space exploration, generating non-optimal
solutions for system implementation.

3.4.4 Non-Functional Requirements

Non-functional requirements limit the design space exploration, since they typi-
cally impose, at early stages of development, particular design and implementation
solutions. This kind of requirements can be classified into three different groups:
design objectives, design decisions, and design constraints.

Design objectives are related to general requirements of qualitative system per-
formance. Typical design objectives appear in the form of “it must be as fast as
possible,” “it must be cheap” or “it must be easy to adapt.” Although, these design

3 Specification of Requirements Models 59

objectives are not really requirements, they can be transformed into design con-
straints if some metrics can be devised. Otherwise, design objectives should only
be used to select amongst functional equivalent alternatives, when there is no
firmer criterion for the decision; see Chap. 12 for further details on decision sup-
port in requirements engineering.

Design decisions can be related, for example, to the inclusion of the system in a
given family of commercial products or with the incorporation into a bigger prod-
uct. These non-functional requirements can affect the technological decisions or
interfere with the functionality of the system, so they should always be questioned
and justified. UML’s OCL (Object Constraint Language) can be used to describe
architectural or functional design decisions. Design constraints include, for exam-
ple, performance, reliability, cost and size. Timing requirements can be classified
as reply time, repetition rate and correlation time. This kind of non-functional de-
cisions is typically quantifiable and syntactically incorporated in the system mod-
els as tagged values or object stamps. UML’s sequence diagrams can support the
inscription of timing and performance requirements.

In [7, 36] non-functional requirements are thoroughly treated both on how to
discover and on how to specify them.

3.5 Requirements Transformation

The problem of obtaining system requirements models from user requirements
that can be directly used within the design phase is not simple and easy and faces
several difficulties [26]. Generically, it involves several decisions that can not be
made by a method or a tool, due to the natural discontinuity between functional
and structural models. Holland and Lieberherr consider that the identification of
objects and the description of the relationships between them are two of the three
challenges of object oriented design in the construction of object oriented models
[20].

There are many authors that propose solutions to tackle this problem, namely
by guiding the transformation of use case models into object/class models [2, 3,
23, 37]. Some approaches [30, 38] propose a use case rationale based on goal
identification and can be used to better support the transition for the architectural
design issues. However, they lack an explicit scenario framework for capturing the
semantic intentionality of each use case. This could be incorporated by adopting
some scenario based requirements engineering techniques, such as those suggested
in [43, 45]. See Chap. 5 for further details on requirements interdependencies.

In this section, we describe an approach for defining the system objects based
on use cases and their respective textual descriptions. The strategy uses the object
categories (interface, data and control) defined in [23] and incorporates some
mechanisms that allow each object to be related to the use cases that gave origin to
it. Due to the relatively weak support of UML 1.5 to component based design,
UML object concept was chosen to represent system level entities or components.

60 Machado, Ramos and Fernandes

UML 2.0 was not used here since its final approval as an ISO standard was not
taken at the time of writing.

3.5.1 User Requirements Modeling

The identification of the system components requires the definition of a model to
capture the system functionalities offered to its users. Use cases are one of the
most suitable techniques for that purpose, since they are simple and easy to read.
In fact, they only include three main concepts (use cases, actors and relations).
This low number of concepts is a fundamental characteristic for involving
non-technical stakeholders in the requirements capture process.

Although use cases are used in several object oriented projects, they do not
hold any intrinsic characteristic that can be classified as “pure” object oriented.
However, there is a large consensus on the recognition that use cases are a proper
technique for object oriented projects [4], namely for discovering (and later speci-
fying) the behavior of the system, during the analysis phase. This is also high-
lighted by the fact that use cases are part of UML. Thus, adopting use cases for
user requirements is undoubtedly a valid technique, but poses the problem related
to the transformation of use cases into objects or components.

The requirements for the case study used in this chapter were acquired using
requirements engineering techniques, and the end-result was a collection of arti-
facts, including UML diagrams. Some of the artifacts are presented in Fig.
3.10-3.11. After identifying all the use cases of the system, the next step is to de-
scribe their behavior. There are some alternatives for describing use cases, namely
informal text, numbered steps with pre- and post-conditions pseudo code and ac-
tivity diagrams [40]. As an example, the description of the top level use case
{U0a.1} with informal text is presented. Similar descriptions were created for the
other top-level use cases.

{U0a.1} send alert: Send domain alert or disseminating domain information to the users in-
forming of domain related events and situations or unexpected domain situations that are
happening in the region. Only users that have previously subscribed this e-service will re-
ceive the alert messages (subscription made via {U0a.4} user profile subscription). This is
an asynchronous e-service. If technically possible, the system acquires user context raw in-
formation (location, time, etc) from external context sources. Also, a contextualization
process will assist the system in making the level of granularity of the information adequate
to the geographic location of the user context (geographic location context, time context
and activity context). Examples: an alert of a dangerous hole in a street should only be sent
to the users geographically located in that street; an alert of a street obstructed should be
sent to the users geographically located in that street or in any of the incident streets; an
alert of weather storm should be sent to all the users in the region. The information associ-
ated to the alert should always be up-to-date and match the user-specific request, excluding
any extra information or undesired advertisements. For those users that require personalized
information, a subscription must be made via {U0a.4} user profile and e-service subscrip-
tion.

3 Specification of Requirements Models 61

Fig. 3.10 UML top level use case diagram according to two orthogonal criteria; top: func-
tionality criterion; bottom: domain criterion

3.5.2 4SRS Technique

Transforming use cases into architectural models representing system require-
ments is a difficult task. A technique called 4 step rule set (4SRS) was proposed to
help with that task in [13]. The 4SRS technique is organized as four steps to trans-
form use cases into objects: object creation (step 1), object elimination (step 2),
object packaging and aggregation (step 3) and object association (step 4).

In step 1 (object creation), each use case must be transformed into three objects
(one interface, one data, and one control). Each object receives the reference of its
respective use case appended with the suffix (i, d, c) that indicates the object’s
category (in this approach, object references start with an “O”). This is a fully
“automatic” step, since there is no need to any kind of particular decisions or ra-
tionale for the specific context of each use case. From this step on, there are only
objects as design entities. Use cases are still used in the following steps to allow
the introduction of requirements into the object model.

62 Machado, Ramos and Fernandes

In step 2 (object elimination), it must be decided which of the three objects
must be maintained to fully represent, in computational terms, the use case, taking
into account the whole system and not each use case in isolation. These decisions
must be based on the textual description for each use case. This step aims at decid-
ing which of the objects created in step 1 must be kept in the object model. It also
eliminates redundancy in the user requirements elicitation and detects missing re-
quirements. Object elimination is the most important step of the 4SRS technique,
since the definitive system level entities are decided here. To cope with the com-
plexity of the step, it has been decomposed into seven micro-steps: use case identi-
fication (micro-step 2i), local elimination (micro-step 2ii), object naming (micro-
step 2iii), object description (micro-step 2iv), object representation (micro-step
2v), global elimination (micro-step 2vi) and object renaming (micro-step 2vii).
The description of these micro-steps is out of the scope of this chapter.

In step 3 (object packaging and aggregation), the remaining objects (those that
were maintained after step 2) for which there is an advantage in being treated in a
unified way should give origin to aggregations or packages of semantically consis-
tent objects. This step supports the construction of a truly coherent object model,
since it introduces an additional semantic layer at a higher abstraction level, that
works as a “functional glue” for the objects.

Packaging is technique that can introduce a very light semantic cohesion among
the objects. This cohesion can be easily reversed within the design phase when-
ever needed. This means packaging can be flexibly used to obtain more compre-
hensive and understandable object models. In the opposite way, aggregation im-
poses a strong semantic cohesion among the objects. The level of cohesion in
aggregations is more difficult to reverse in subsequent stages, which suggests a
more scrupulous approach in using this kind of functional glue. Thus, aggregation
should only be used when it is explicitly assumed that the set of considered objects
is affected by a conscious design decision. Typically, aggregation is used when
there is a part of the system that constitutes a legacy subsystem, or when the de-
sign has a pre-defined reference architecture that constricts the object model.

Step 4 (object association) of the 4SRS technique supports the introduction of
associations in the object model, completely based on the information from the
use case model and generated in micro-step 2i. Regarding the information in the

use case model, if the textual descriptions of use cases possess hints on the kind of

sequences use cases are inserted in, this information must be used to include asso-

ciations in the object model.

Alternatively, the use case model can include other kinds of information to
support associations, when there are UML relations between use cases. As an ex-
ample, use case {U0a.1.1} «uses» use case {U0a.1.2}, which justifies the associa-
tion between objects {O0a.1.1.d} and {O0a.1.2.c}, and between objects
{O0a.1.1.i} and {O0a.1.2.d}; see Fig. 3.12.

3 Specification of Requirements Models 63

Fig. 3.11 Refinement of UML use case {U0a.1}

3.5.3 System Requirements Modeling

The system architectural model expresses the system requirements, but also an in-
formal description of the objects. 4SRS helps to define a logical architecture for
the system by capturing all its functional requirements and its non-functional in-
tentions. The former gives origin to textual descriptions for each object in the
model and the later has been classified as design decisions and design constraints.
Design objectives are not allowed at system requirements models generated by the
4SRS technique.

The generated object model shows how significant properties of a system are
distributed across its constituent parts. The 4SRS technique generates a raw object
diagram that identifies the system level entities, their responsibilities and the rela-
tionships among them. Its purpose is to direct attention at an appropriate decom-
position of the system without delving into details. Each one of the used packages
defines one different decomposition region that contains several tightly semanti-
cally connected objects. Within the next design phases, these packages must be
further specified concerning its architectural structure, by using design patterns.

The resulting raw object diagram can be used in the following development
phases to support the definition of specific sub-projects, by using collapsing and
filtering techniques. These techniques allow the redefinitions of the system
boundary, giving origin, for instance, to the database project, services formaliza-
tion, or platform pattern analysis. Fig. 3.12 shows the collapsed object diagram
that was obtained from the raw object diagram by hiding packages details. There-
fore, associations appear at a higher level of abstraction and the resulting object
diagram is more readable.

64 Machado, Ramos and Fernandes

Fig. 3.12 Collapsed UML object diagram representing system requirements

3.6 Conclusion

The correct derivation of system requirements from user requirements is an impor-
tant topic in requirements engineering research. This activity assures that the de-
sign phase is based on the effective clients’ needs without any misjudgment arbi-

3 Specification of Requirements Models 65

trarily introduced by the developers during the process of system requirements
specification. One approach to support this derivation is by transforming user re-
quirements models into system requirements models, by manipulating the corre-
sponding specifications. User requirements are, typically, described in natural lan-
guage and with informal diagrams, at a relatively low level of detail and are
focused in the problem domain. System requirements comprise abstract models of
the system, at a relatively high level of detail, and constitute the first system repre-
sentation to be used at the beginning of the design phase.

This chapter deals with the characteristics of different modeling techniques for
the specification of systems requirements. It presents various classes of modeling
and specification techniques that can be used in different circumstances during
development projects. Here, meta-models play an important role, since they define
the semantic capability of the modeling views to adopt for a given system. The
chapter ends with a brief description of a heuristic based approach to support the
transformation of user into system requirements. This transformational approach
shows that model continuity is a key issue and highlights the importance of having
a well defined process to relate, map and transform requirements models.

The topics presented in this chapter emphasize the fact that system design is a
highly abstract task that focuses on the functional and non-functional requirements
of computer-based systems. Both system designers and requirements engineers
benefit from a model based approach to requirements specification to allow the
correct evolution of system representations during development projects.

References

1. Ainsworth M, Cruickshank AH, Groves LG, Wallis PJL (1994) Viewpoint specification
and Z. Information Software Technology, , February 36: 43 51

2. Back RJ, Petre L, Porres I (1999) Analyzing UML use cases as contracts: Beyond the
standard. In: Proceedings of 2nd International Conference on the Unified Modeling
Language (UML’99), Fort Collins, CO, USA, pp.518 33

3. Becker LB, Pereira CE, Dias OP, Teixeira IM, Teixeira JP (2000) MOSYS: A methodol-
ogy for automatic object identification from system specification. In: Proceedings of
3rd International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC 2000), Newport Beach, CA, USA, pp.198 201

4. Booch G (1996) Best of booch: Designing strategies for object technology. SIGS, New
York, NY, USA

5. Calvez JP (1996) A system specification model and method. In: High Level System
Modeling: Specification and Design Methodologies. Waxman R, Bergé JM, Levia O,
Rouillard J. (Eds.), Kluwer Academic, Dordrecht, The Netherlands

6. Chen PS (1977) The entity relationship approach to logical data base design. Q.E.D. In-
formation Sciences, Wellesley, MA, USA

7. Chung L, Nixon B, Yu E, Mylopoulos J (2000) Non-functional requirements in software
engineering. Kluwer Academic, Boston, MA, USA

8. Cunin PY, Greenwood R, Francou L, Robertson I, Warboys B (2001) The PIE method-
ology: Concept and application. In: Proceedings of 8th European Workshop on Soft-
ware Process Technology, Witten, Germany, pp.3 26

66 Machado, Ramos and Fernandes

9. Davis WS (1983) Tools and techniques for structured systems analysis and design. Addi-
son-Wesley, Reading, MA, USA

10. De Marco T (1979) Structured analysis and system specification. Yourdon Press, New
York, NY, USA

11. Dori D (2002) Object-process methodology: A holistic systems paradigm, Springer,
Berlin, Germany

12. Fernandes JM, Lilius J (2004) Functional and object-oriented views in embedded soft-
ware modeling. In: Proceedings of 11th International Conference on the Engineering of
Computer Based Systems (ECBS 2004), Brno, Czech Rep., pp.378 87, IEEE CS Press,
May

13. Fernandes JM, Machado RJ (2001) From use cases to objects: An industrial information
systems case study analysis. In: Proceedings of 7th International Conference on Object-
Oriented Information Systems (OOIS'01), Calgary, Canada, August pp.319 28

14. Finkelstein A, Kramer J, Nuseibeh B, Finkelstein L, Goedicke M (1992) Viewpoints: A
framework for integrating multiple perspectives in system development. International
Journal of Software Engineering and Knowledge Engineering, 2: 31 57

15. Firesmith D, Henderson-Sellers B (2002) The OPEN process framework: An introduc-
tion. Addison-Wesley, Harlow, UK

16. Gajski D, Dutt N, Wu A, Lin S (1992) High level synthesis: Introduction to chip and
system design, Kluwer Academic, Boston, MA, USA

17. Gajski D, Vahid F, Narayan S, Gong J (1994) Specification and design of embedded
systems. Prentice Hall, Englewood Cliffs, NJ, USA

18. Harel D (1988) On visual formalisms. Communications of the ACM, 31(5): 514 30
19. Henderson-Sellers B (2003) Method engineering for OO systems development. Com-

munications of the ACM, 46(10): 73 8
20. Holland IM, Lieberherr KJ (1996) Object-oriented design. ACM Computing Surveys,

28(1): 273 5
21. IEEE (1990) IEEE Standard glossary of software engineering terminology, 610.12-1990
22. International Standards Organization (1995) Information technology: Software life-

cycle processes (ISO/IEC12207). Geneva, Switzerland
23. Jacobson I, Christerson M, Jonsson P, Overgaard GÄ (1992) Object-oriented software

engineering: A use case driven approach. Addison Wesley, Reading, MA, USA
24. Jensen K (1997) Colored Petri nets: Basic concepts, analysis methods and practical use.

Vol.1, Basic concepts. Monographs in Theoretical Computer Science, Springer, New
York, NY, USA

25. Jensen K, Christensen S, Huber P, Holla M (1992) Design/CPN: A reference manual.
MetaSoftware Corporation

26. Kaindl H (1999) Difficulties in the transition from OO analysis to design. IEEE Soft-
ware, 16(5): 94 102

27. Kotonya G, Sommerville I (1992) Viewpoints for requirements definition. Software
Engineering Journal, 7(6): 375 87

28. Lakos C, Keen C (1994) LOOPN++: A new language for object oriented Petri Nets. In:
Proceedings of European Simulation Multi-conference, Barcelona, Spain, pp.369 74,
Society for Computer Simulation

29. Leite JCSP, Freeman PA (1991) Requirements validation through viewpoint resolution,
IEEE Transactions on Software Engineering, 12(12): 1253 1269

3 Specification of Requirements Models 67

30. Liang Y (2003) From use cases to classes: A way of building object model with UML.
Information and Software Technology, 45: 83 93

31. Machado RJ, Fernandes JM (2001) A Petri Net meta-model to develop software com-
ponents for Embedded Systems. In: Proceedings of 2nd IEEE International Conference
on Application of Concurrency to System Design (ACSD’01), Newcastle, UK,
pp.113 22, IEEE CS Press

32. Moore EF (1964) Sequential machines: Selected papers. Addison Wesley, Reading,
MA, USA

33. Narayan S, Vahid F, Gajski D (1991) System specification and synthesis with the spec-
charts language. In: Proceedings of International Conference on Computer-Aided De-
sign (ICCAD ’91), Santa Clara, CA, USA, pp.266 9, IEEE CS Press

34. Peterson J (1981) Petri Net theory and the modeling of systems. Prentice Hall, Upper
Saddle River, NJ, USA

35. Reisig W (1985) Petri Nets: An introduction, EATCS Monographs on Theoretical
Computer Science, Vol.4, Springer, Berlin, Germany

36. Robertson S, Robertson J (1999) Mastering the requirements process, Addison Wesley,
Reading, MA, USA

37. Rosenberg D, Scott K (1999) Use case driven object modeling with UML: A practical
approach. Addison Wesley, Reading, MA, USA

38. Saeki M, Kaiya H (2003) Transformation based approach for weaving use case models
in aspect-oriented requirements analysis. 4th Workshop on AOSD Modeling with
UML, within the UML 2003 Conference, San Francisco, CA, USA, October

39. Sarkar A, Waxman R, Cohoon J (1995) Specification modeling methodologies for reac-
tive systems design. In: High Level System Modeling: Specification Languages. Bergé
JM, Levia O, Rouillard J. (Eds.), Kluwer Academic, Dordrecht, The Netherlands

40. Schneider G, Winters JP (1998) Applying use cases: A practical guide. Addison
Wesley, Reading, MA, USA

41. Stevens R, Brook P, Jackson K, Arnold S (1998) Systems engineering: Coping with
complexity. Prentice Hall Europe, Hertfordshire, UK

42. Sutcliffe A (1988) Jackson system development. Prentice Hall, Hertfordshire, UK
43. Sutcliffe A, Maiden M, Minocha S, Manuel D (1998) Supporting scenario-based re-

quirements engineering. IEEE Transactions on Software Engineering, 24(12): 1072-88
44. ter Hofstede AHM, Verhoef TF (1997) On the feasibility of situational method engi-

neering. Information Systems, 22(6/7): 401-22
45. van Lamsweerde A, Willemet L (1998) Inferring declarative requirements specifica-

tions from operational scenarios. IEEE Transactions on Software Engineering, 24(12):
1089 114

46. Yourdon E, Constantine L (1978) Structured design: Fundamentals of a discipline of
computer program and systems design. Yourdon Press, New York, NY, USA

Author Biography

Ricardo J. Machado is an assistant professor of Software Engineering and coordi-
nator of the Software Engineering and Management Research Group (SEMAG) at
the Department of Information Systems, Universidade do Minho (Guimarães, Por-
tugal). He holds a PhD and an MSc degrees in Informatics and Computer Engi-

68 Machado, Ramos and Fernandes

neering (both from U.Minho), and a DEng degree in Electronics and Computer
Engineering (from FEUP). He is the president of the Portuguese technical commit-
tee responsible for analyzing the documents produced by JTC1/SC7 from ISO/IEC
and by TC311 from CEN/CENELEC in the software and system engineering do-
main, and he is one of the founding members of IFIP WG10.3 SIG-ES special in-
terest group. He is a regular scientific reviewer of IEEE Transactions on CAD and
IEEE Transactions on Software Engineering. He acted as general chair of
ACSD’03 conference, as co-organizer of MOMPES series workshops, and has
been appointed as general chair of DIPES’06 conference. He has also served as a
PC member of ETFA’03, ACSD’03/’04/’05, MOMPES’04, and INDIN’05. His
current research interests include software engineering, embedded software, and
pervasive information systems.

Isabel Ramos holds a doctorate degree in Information Technologies and Systems,
specialization in Information Systems Engineering and Management, since 2001.
She also holds a master degree in Informatics for management. Isabel Ramos is an
assistant professor at the Department of Information Systems, Universidade do
Minho (Guimarães, Portugal). She is a researcher in the Algoritmi Research Cen-
ter and coordinates the interest group in Knowledge Management of the depart-
ment. She is also responsible for the Requirements Engineering modules in the
Master course on Information Systems. She integrates the steering committee of a
Master on Business Information. Isabel is author of several scientific publications
presented at international conferences and published in scientific and technical
journals. Her main areas of interest are requirements engineering, knowledge
management, organizational theory, sociology of knowledge, history of science,
research methodology.

João M. Fernandes is an assistant professor at the Department of Informatics, Uni-
versidade do Minho (Braga, Portugal). He received a DEng degree in Informatics
and Systems Engineering in 1991, MSc degree in Computer Science in 1994, and
a PhD degree in Computer Engineering in 2000, all from U. Minho. From
Sep/2002 until Feb/2003, he was a post-doctoral researcher at the TUCS Embed-
ded Systems Laboratory (Turku, Finland). He is a (co-)author of several scientific
publications with peer revision on international conferences, journals and chapters
of books. He has already served as a scientific reviewer for an Addison-Wesley
book, for several international conferences, and for IEEE, Elsevier, and Springer
international journals. He has also served as a member of the Program and Orga-
nizing Committees of international workshops and conferences, namely DSOA
2004, CPN 2004, MOMPES 2004, ETFA 2003, and ACSD 2003. His research in-
terests focus on embedded software, hardware/software co-design, methodologies
for system development, software modeling, software process and management,
and history of computing.

4 Requirements Prioritization

Patrik Berander and Anneliese Andrews

Abstract: This chapter provides an overview of techniques for prioritization of
requirements for software products. Prioritization is a crucial step towards making
good decisions regarding product planning for single and multiple releases. Vari-
ous aspects of functionality are considered, such as importance, risk, cost, etc. Pri-
oritization decisions are made by stakeholders, including users, managers, devel-
opers, or their representatives. Methods are for combining individual
prioritizations based on overall objectives and constraints. A range of different
techniques and aspects are applied to an example to illustrate their use. Finally,
limitations and shortcomings of current methods are pointed out, and open re-
search questions in the area of requirements prioritization are discussed.

Keywords: Requirements analysis, Software product planning, Requirements pri-
oritization, Decision support, Trade offs.

4.1 Introduction

In everyday life, we make many decisions, e.g. when buying a DVD-player, food,
a telephone, etc. Often, we are not even conscious of making one. Usually, we do
not have more than a couple of choices to consider, such as which brand of mus-
tard to buy, or whether to take this bus or the next one. Even with just a couple of
choices, decisions can be difficult to make. When having tens, hundreds or even
thousands of alternatives, decision-making becomes much more difficult.

One of the keys to making the right decision is to prioritize between different
alternatives. It is often not obvious which choice is better, because several aspects
must be taken into consideration. For example, when buying a new car, it is rela-
tively easy to make a choice based on speed alone (one only needs to evaluate
which car is the fastest). When considering multiple aspects, such as price, safety,
comfort, or luggage load, the choice becomes much harder. When developing
software systems, similar trade-offs must be made. The functionality that is most
important for the customers might not be as important when other aspects (e.g.
price) are factored in. We need to develop the functionality that is most desired by
the customers, as well as least risky, least costly, and so forth.

Prioritization helps to cope with these complex decision problems. This chapter
provides a description of available techniques and methods, and how to approach
a prioritization situation. The chapter is structured as follows: First, an overview
of the area of prioritization is given (Sect. 4.2). This is followed by a presentation
and discussion of different aspects that could be used when prioritizing (Sect. 4.3).
Next, some prioritization techniques and characteristics are discussed (Sect. 4.4),
followed by a discussion of different stakeholders’ situations that affect prioritiza-

70 Berander and Andrews

tion in Sect. 4.5. Section 4.6 discusses additional issues that arise when prioritiz-
ing software requirements and Section 4.7 provides an example of a prioritization.
Section 4.8 discusses possible future research questions in the area. Finally, Sect.
4.9 summarizes the chapter.

4.2 What is Requirements Prioritization?

Complex decision-making situations are not unique to software engineering. Other
disciplines, such as psychology, and organizational behavior have studied deci-
sion-making thoroughly [1]. Classical decision-making models have been mapped
to various requirements engineering activities to show the similarities [1]. Chapter
12 in this book provides a comprehensive overview of decision-making and deci-
sion support in requirements engineering. Current chapter primarily focuses on re-
quirements prioritization, an integral part of decision-making [49]. The intention is
to describe the current body of knowledge in the requirements prioritization area.

The quality of a software product is often determined by the ability to satisfy
the needs of the customers and users [7, 53]. Hence, eliciting (Chap. 2) and speci-
fying (Chap. 3) the correct requirements and planning suitable releases with the
right functionality is a major step towards the success of a project or product. If
the wrong requirements are implemented and users resist using the product, it does
not matter how solid the product is or how thoroughly it has been tested.

Most software projects have more candidate requirements than can be realized
within the time and cost constraints. Prioritization helps to identify the most valu-
able requirements from this set by distinguishing the critical few from the trivial
many. The process of prioritizing requirements provides support for the following
activities [32, 55, 57, 58]:

for stakeholders to decide on the core requirements for the system
to plan and select an ordered, optimal set of software requirements for imple-
mentation in successive releases
to trade off desired project scope against sometimes conflicting constraints such
as schedule, budget, resources, time to market, and quality
to balance the business benefit of each requirement against its cost
to balance implications of requirements on the software architecture and future
evolution of the product and its associated cost
to select only a subset of the requirements and still produce a system that will
satisfy the customer(s)
to estimate expected customer satisfaction
to get a technical advantage and optimize market opportunity
to minimize rework and schedule slippage (plan stability)
to handle contradictory requirements, focus the negotiation process, and resolve
disagreements between stakeholders (more about this in Chap. 7)
to establish relative importance of each requirement to provide the greatest
value at the lowest cost

4 Requirements Prioritization 71

The list above clearly shows the importance of prioritizing and deciding what
requirements to include in a product. This is a strategic process since these deci-
sions drive the development expenses and product revenue as well as making the
difference between market gain and market loss [1]. Further, the result of prioriti-
zation might form the basis of product and marketing plans, as well as being a
driving force during project planning. Ruhe et al. summarize this as: “The chal-
lenge is to select the “right” requirements out of a given superset of candidate re-
quirements so that all the different key interests, technical constraints and prefer-
ences of the critical stakeholders are fulfilled and the overall business value of the
product is maximized” [48].

Of course, it is possible to rectify incorrect decisions later on via change man-
agement (more about change impact analysis in Chap. 6), but this can be very
costly since it is significantly more expensive to correct problems later in the de-
velopment process [5]. Frederick P. Brooks puts it in the following words: “The
hardest single part of building a software system is deciding precisely what to
build. […] No other part of the work so cripples the resulting system if done
wrong. No other part is more difficult to rectify later.” [10]. Hence, the most cost
effective way of developing software is to find the optimal set of requirements
early, and then to develop the software according to this set. To accomplish this, it
is crucial to prioritize the requirements to enable selection of the optimal set.

Besides the obvious benefits presented above, prioritizing requirements can
have other benefits. For example, it is possible to find requirements defects (e.g
misjudged, incorrect and ambiguous requirements) since requirements are ana-
lyzed from a perspective that is different from that taken during reviews of re-
quirements [33].

Some authors consider requirements prioritization easy [55], some regard it of
medium difficulty [57], and some regard prioritization as one of the most complex
activities in the requirements process, claiming that few software companies have
effective and systematic methods for prioritizing requirements [40]. However, all
these sources consider requirements prioritization a fundamental activity for pro-
ject success. At the same time, some text books about requirements engineering
[9, 47] do not discuss requirements prioritization to any real extent.

There is no “right” requirements process and the way of handling requirements
differs greatly between different domains and companies [1]. Further, require-
ments are typically vaguer early on and become more explicit as the understanding
of the product grows [50]. These circumstances imply that there is no specific
phase where prioritization is made, rather, it is performed throughout the devel-
opment process (more about this in Sect. 4.6.2) [13, 38]. Hence, prioritization is
an iterative process and might be performed at different abstraction levels and
with different information in different phases during the software lifecycle.

Prioritization techniques can roughly be divided into two categories: methods
and negotiation approaches. The methods are based on quantitatively assigning
values to different aspects of requirements while negotiation approaches focus on
giving priorities to requirements by reaching agreement between different stake-
holders [39]. Further, negotiation approaches are based on subjective measures
and are commonly used when analyses are contextual and when decision variables

72 Berander and Andrews

are strongly interrelated. Quantitative methods make it easier to aggregate differ-
ent decision variables into an overall assessment and lead to faster decisions [15,
50]. In addition, one must be mindful of the social nature of prioritization. There is
more to requirements prioritization than simply asking stakeholders about priori-
ties. Stakeholders play roles and should act according to the goals of that role, but
they are also individuals with personalities and personal agendas. Additionally,
many organizational issues like power, etc. need to be taken into account. Ignoring
such issues can raise the risk level for a project. Negotiation and goal modeling
are described in detail in Chaps. 7 and 9, respectively, while this chapter focuses
primarily on quantitative methods for prioritizing requirements.

4.3 Aspects of Prioritization

Requirements can be prioritized taking many different aspects into account. An
aspect is a property or attribute of a project and its requirements that can be used
to prioritize requirements. Common aspects are importance, penalty, cost, time,
and risk. When prioritizing requirements based on a single aspect, it is easy to de-
cide which one is most desirable (recall the example about the speed of a car).
When involving other aspects, such as cost, customers can change their mind and
high priority requirements may turn out to be less important if they are very ex-
pensive to satisfy [36]. Often, the aspects interact and changes in one aspect could
result in an impact on another aspect [50]. Hence, it is essential to know what ef-
fects such conflicts may have, and it is vital to not only consider importance when
prioritizing requirements but also other aspects affecting software development
and satisfaction with the resulting product. Several aspects can be prioritized, and
it may not be practical to consider them all. Which ones to consider depend on the
specific situation, and a few examples of aspects suitable for software projects are
described below. Aspects are usually evaluated by stakeholders in a project (man-
agers, users, developers, etc.)

4.3.1 Importance

When prioritizing importance, the stakeholders should prioritize which require-
ments are most important for the system. However, importance could be an ex-
tremely multifaceted concept since it depends very much on which perspective the
stakeholder has. Importance could, for example, be urgency of implementation,
importance of a requirement for the product architecture, strategic importance for
the company, etc. [38]. Consequently, it is essential to specify which kind of im-
portance the stakeholders should prioritize in each case.

4 Requirements Prioritization 73

4.3.2 Penalty

It is possible to evaluate the penalty that is introduced if a requirement is not ful-
filled [57]. Penalty is not just the opposite of importance. For example, failing to
conform to a standard could incur a high penalty even if it is of low importance for
the customer (i.e. the customer does not get excited if the requirement is fulfilled).
The same goes for implicit requirements that users take for granted, and whose ab-
sence could make the product unsuitable for the market.

4.3.3 Cost

The implementation cost is usually estimated by the developing organization.
Measures that influence cost include: complexity of the requirement, the ability to
reuse existing code, the amount of testing and documentation needed, etc. [57].
Cost is often expressed in terms of staff hours (effort) since the main cost in soft-
ware development is often primarily related to the number of hours spent. Cost (as
well as time, cf. Sect. 4.3.4.) could be prioritized by using any of the techniques
presented in Sect. 4.4, but also by simply estimating the actual cost on an absolute
or normalized scale.

4.3.4 Time

As can be seen in the section above, cost in software development is often related
to number of staff hours. However, time (i.e. lead time) is influenced by many
other factors such as degree of parallelism in development, training needs, need to
develop support infrastructure, complete industry standards, etc. [57].

4.3.5 Risk

Every project carries some amount of risk. In project management, risk manage-
ment is used to cope with both internal (technical and market risks) and external
risks (e.g. regulations, suppliers). Both likelihood and impact must be considered
when determining the level of risk of an item or activity [44]. Risk management
can also be used when planning requirements into products and releases by identi-
fying risks that are likely to cause difficulties during development [41, 57]. Such
risks could for example include performance risks, process risks, schedule risks
etc. [55]. Based on the estimated risk likelihood and risk impact for each require-
ment [1], it is possible to calculate the risk level of a project.

74 Berander and Andrews

4.3.6 Volatility

Volatility of requirements is considered a risk factor and is sometimes handled as
part of the risk aspect [41]. Others think that volatility should be analyzed sepa-
rately and that volatility of requirements should be taken into account separately in
the prioritization process [36]. The reasons for requirements volatility vary, for
example: the market changes, business requirements change, legislative changes
occur, users change, or requirements become clearer during the software life cycle
[18, 50]. Irrespective of the reason, volatile requirements affect the stability and
planning of a project, and presumably increase the costs since changes during de-
velopment increase the cost of a project (see more about this issue in Chap. 6).
Further, the cost of a project might increase because developers have to select an
architecture suited to change if volatility is known to be an issue [36].

4.3.7 Other Aspects

The above list of aspects has been considered important in the literature but it is
by no means exhaustive. Examples of other aspects are: financial benefit, strategic
benefit, competitors, competence/resources, release theme, ability to sell, etc. For
a company, we suggest that stakeholders develop a list of important aspects to use
in the decision-making. It is important that the stakeholders have the same inter-
pretation of the aspects as well as of the requirements. Studies have shown that it
is hard to interpret the results if no guidelines about the true meaning of an aspect
are present [37, 38].

4.3.8 Combining Different Aspects

In practice, it is important to consider multiple aspects before deciding if a re-
quirement should be implemented directly, later, or not at all. For example, in the
Cost-Value approach, both value (importance) and cost are prioritized to imple-
ment those requirements that give most value for the money [30]. The Planning
Game (PG) from eXtreme Programming (XP) uses a similar approach when im-
portance, effort (cost), and risks are prioritized [2]. Further, importance and stabil-
ity (volatility) are suggested as aspects that should be used when prioritizing while
others suggest that dependencies also must be considered [12, 36] (more about de-
pendencies in Chap. 5). In Wiegers’ approach, the relative value (importance) is
divided by the relative cost and the relative risk in order to determine the require-
ments that have the most favorable balance of value, cost, and risk [57]. This ap-
proach further allows different weights for different aspects in order to favor the
most important aspect (in the specific situation).

There are many alternatives of combining different aspects. Which aspects to
consider depends very much on the specific situation and it is important to know
about possible aspects and how to combine them efficiently to suit the case at
hand.

4 Requirements Prioritization 75

4.4 Prioritization Techniques

The purpose of any prioritization is to assign values to distinct prioritization ob-
jects that allow establishment of a relative order between the objects in the set. In
our case, the objects are the requirements to prioritize. The prioritization can be
done with various measurement scales and types. The least powerful prioritization
scale is the ordinal scale, where the requirements are ordered so that it is possible
to see which requirements are more important than others, but not how much more
important. The ratio scale is more powerful since it is possible to quantify how
much more important one requirement is than another (the scale often ranges from
0 100 percent). An even more powerful scale is the absolute scale, which can be
used in situations where an absolute number can be assigned (e.g. number of
hours). With higher levels of measurement, more sophisticated evaluations and
calculations become possible [20].

Below, a number of different prioritization techniques are presented. Some
techniques assume that each requirement is associated with a priority, and others
group requirements by priority level. When examples are given, importance is
used as the aspect to prioritize even though other aspects can be evaluated with
each of the techniques. It should be noted that the presented techniques focus spe-
cifically on prioritization. Numerous methods exist that use these prioritization
techniques within a larger trade-off and decision making framework e.g.
EVOLVE [24], Cost-Value [30] and Quantitative Win-Win [48].

4.4.1 Analytical Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP) is a systematic decision-making method
that has been adapted for prioritization of software requirements [45, 51]. It is
conducted by comparing all possible pairs of hierarchically classified require-
ments, in order to determine which has higher priority, and to what extent (usually
on a scale from one to nine where one represents equal importance and nine repre-
sents absolutely more important). The total number of comparisons to perform
with AHP are n × (n-1)/2 (where n is the number of requirements) at each hierar-
chy level, which results in a dramatic increase in the number of comparisons as
the number of requirements increases. Studies have shown that AHP is not suit-
able for large numbers of requirements [39, 42]. Researchers have tried to find
ways to decrease the number of comparisons (e.g. [26, 54]) and variants of the
technique have been found to reduce the number of comparisons by as much as 75
percent [31].

In its original form, the redundancy of the pair-wise comparisons allows a con-
sistency check where judgment errors can be identified and a consistency ratio can
be calculated. When reducing the number of comparisons, the number of redun-
dant comparisons are also reduced, and consequently the ability to identify incon-
sistent judgments [33]. When using other techniques (explained below) a consis-
tency ratio is not necessary since all requirements are directly compared to each
other and consistency is always ensured. Some studies indicate that persons who

76 Berander and Andrews

prioritize with AHP tend to mistrust the results since control is lost when only
comparing the requirements pair-wise [34, 39]. The result from a prioritization
with AHP is a weighted list on a ratio scale. More detailed information about AHP
can be found in [30], [51] and [52].

4.4.2 Cumulative Voting, the 100-Dollar Test

The 100-dollar test is a very straightforward prioritization technique where the
stakeholders are given 100 imaginary units (money, hours, etc.) to distribute be-
tween the requirements [37]. The result of the prioritization is presented on a ratio
scale. A problem with this technique arises when there are too many requirements
to prioritize. For example, if you have 25 requirements, there are on average four
points to distribute for each requirement. Regnell et al. faced this problem when
there were 17 groups of requirements to prioritize [45]. In the study, they used a
fictitious amount of $100,000 to have more freedom in the prioritizations. The
subjects in the study were positive about the technique, indicating the possibility
to use amounts other than 100 units (e.g. 1,000, 10,000 or 1,000,000). Another
possible problem with the 100-dollar test (especially when there are many re-
quirements) is that the person performing the prioritization miscalculates and the
points do not add up to 100 [3]. This can be prevented by using a tool that keeps
count of how many points have been used.

One should only perform the prioritization once one the same set of require-
ments, since the stakeholders might bias their evaluation the second time around if
they do not get one of their favorite requirements as a top priority. In such a situa-
tion, stakeholders could put all their money on one requirement, which might in-
fluence the result heavily. Similarly, some clever stakeholders might put all their
money on a favorite requirement that others do not prioritize as highly (e.g. Mac
compatibility) while not giving money to requirements that will get much money
anyway (e.g. response time). The solution could be to limit the amount spent on
individual requirements [37]. However, the risk with such an approach is that
stakeholders may be forced to not prioritize according to their actual priorities.

4.4.3 Numerical Assignment (Grouping)

Numerical assignment is the most common prioritization technique and is sug-
gested both in RFC 2119 [8] and IEEE Std. 830-1998 [29]. The approach is based
on grouping requirements into different priority groups. The number of groups can
vary, but in practice, three groups are very common [37, 55]. When using numeri-
cal assignment, it is important that each group represents something that the
stakeholders can relate to (e.g. critical, standard, optional), for a reliable classifica-
tion. Using relative terms such as high, medium, and low will confuse the stake-
holders [57]. This seems to be especially important when there are stakeholders
with different views of what high, medium and low means. A clear definition of
what a group really means minimizes such problems.

4 Requirements Prioritization 77

A further potential problem is that stakeholders tend to think that everything is
critical [36, 55]. If customers prioritize themselves, using three groups; critical,
standard, and optional, they will most likely consider 85 percent of the require-
ments as critical, 10 percent as standard, and 5 percent as optional [4, 57]. One
idea is to put restrictions on the allowed number of requirements in each group
(e.g. not less than 25 percent of the requirements in each group) [34]. However,
one problem with this approach is that the usefulness of the priorities diminishes
because the stakeholders are forced to divide requirements into certain groups
[32]. However, no empirical evidence of good or bad results with such restrictions
exists. The result of numerical assignment is requirements prioritized on an ordi-
nal scale. However, the requirements in each group have the same priority, which
means that each requirement does not get a unique priority.

4.4.4 Ranking

As in numerical assignment, ranking is based on an ordinal scale but the require-
ments are ranked without ties in rank. This means that the most important re-
quirement is ranked 1 and the least important is ranked n (for n requirements).
Each requirement has a unique rank (in comparison to numerical assignment) but
it is not possible to see the relative difference between the ranked items (as in
AHP or the 100-dollar test). The list of ranked requirements could be obtained in a
variety of ways, as for example by using the bubble sort or binary search tree algo-
rithms [33]. Independently of sorting algorithm, ranking seems to be more suitable
for a single stakeholder because it might be difficult to align several different
stakeholders’ views. Nevertheless, it is possible to combine the different views by
taking the mean priority of each requirement but this might result in ties for re-
quirements which this method wants to avoid.

4.4.5 Top-Ten Requirements

In the top-ten requirements approach, the stakeholders pick their top-ten require-
ments (from a larger set) without assigning an internal order between the require-
ments. This makes the approach especially suitable for multiple stakeholders of
equal importance [36]. The reason to not prioritize further is that it might create
unnecessary conflict when some stakeholders get support for their top priority and
others only for their third priority. One could assume that conflicts might arise
anyway if, for example, one customer gets three top-ten requirements into the
product while another gets six top-ten requirements into the product. However, it
is important to not just take an average across all stakeholders since it might lead
to some stakeholders not getting any of their top requirements [36]. Instead, it is
crucial that some essential requirements are satisfied for each stakeholder. This
could obviously result in a situation that dissatisfies all customers instead of satis-
fying a few customers completely. The main challenge in this technique is to bal-
ance these issues.

78 Berander and Andrews

4.4.6 Which Prioritization Technique to Choose

Table 4.1 summarizes the presented prioritization techniques, based on measure-
ment scale, granularity of analysis, and level of sophistication of the technique.

Table 4.1 Summary of presented technique

Technique Scale Granularity Sophistication
AHP Ratio Fine Very Complex
Hundred-dollar test Ratio Fine Complex
Ranking Ordinal Medium Easy
Numerical Assignment Ordinal Coarse Very Easy
Top-ten - Extremely Coarse Extremely Easy

A general advice is to use the simplest appropriate prioritization technique and
use more sophisticated ones when a more sensitive analysis is needed for resolv-
ing disagreements or to support the most critical decisions [42]. As more sophisti-
cated techniques generally are more time consuming, the simplest possible tech-
nique ensures cost effective decisions. The trade-off is to decide exactly how
“quick and dirty” the approach can be without letting the quality of the decisions
suffer. It should also be noted that there exist several commercial tools that facili-
tate the use of more sophisticated techniques (e.g. AHP) and that it is possible to
construct simple home-made tools (e.g. in spreadsheets) to facilitate the use of dif-
ferent prioritization techniques.

4.4.7 Combining Different Techniques

The techniques in Table 4.1 represent the most commonly referenced quantitative
prioritization techniques. It is possible to combine some of them to make prioriti-
zation easier or more efficient. Some combinations of the above techniques exist
and probably the best known example is Planning Game (PG) in eXtreme Pro-
gramming (XP) [2] (more about agile methods in requirements engineering in
Chap. 14). In PG, numerical assignment and ranking are combined by first divid-
ing the different requirements into priority groups and then ranking requirements
within each group [34]. Requirements triage is an approach where parallels are
drawn to medical treatment at hospitals [17]. Medical personnel divide victims
into three categories: those that will die whether treated or not, those who will re-
sume normal lives whether treated or not, and those for whom medical treatment
may make a significant difference. In requirements prioritization, there are re-
quirements that must be in the product (e.g. platform requirements), requirements
that the product clearly need not satisfy (e.g. very optional requirements), and re-
quirements that need more attention. This means that the requirements are as-
signed to one of three groups (numerical assignment) and requirements that need
more attention are prioritized by any of the other techniques (AHP, ranking, 100
points etc.). In this approach, not all requirements must be prioritized by a more
sophisticated technique, which decreases the effort.

4 Requirements Prioritization 79

The two examples above show that it is possible to combine different tech-
niques for higher efficiency or to make the process easier. Which method or com-
bination of methods is suitable often depends on the individual project.

4.5 Involved Stakeholders in the Prioritization Process

In Chap. 13, market-driven software development is discussed and similarities and
differences between market-driven and bespoke software development are pre-
sented. As can be seen in Chap. 13, similarities and differences also apply when
prioritizing software requirements. In a bespoke project, only one or a few stake-
holders must be taken into consideration while everyone in the whole world might
serve as potential customers in market-driven development. Table 4.2 outlines
some of the differences between market-driven and bespoke development that af-
fects requirements prioritization.

Table 4.2 Differences between market-driven and bespoke development [11]

Facet Bespoke Development Market-driven Development
Main stakeholder Customer organization Developing organization

Users Known or identifiable Unknown, may not exist until
product is on market

Distance to users Usually small Usually large
Requirements Con-
ception

Elicited, analyzed, validated Invented (by market pull or
technology push)

Lifecycle One release, then mainte-
nance

Several releases as long as there
is a market demand

Specific RE issues Elicitation, modeling, vali-
dation, conflict resolution

Steady stream of requirements,
prioritization, cost estimating,
release planning

Primary goal Compliance to specification Time-to-market
Measure of success Satisfaction, acceptance Sales, market share

As can be seen in Table 4.2, there are large differences between these two ex-
tremes and different projects have to consider different ways to handle, and hence
prioritize, requirements. Table 4.2 shows the two extremes in software develop-
ment; a real case probably falls somewhere in between. For example, it is possible
that a company delivers for a market, but the market is limited to a small number
of customers (e.g. telecommunication systems are only bought by telephone op-
erators). The discussion here focuses on three different “general” scenarios: one
customer, a number of “known” customers, and a mass-market.

4.5.1 One Customer

In a one customer situation, there is only one customer’s priorities that need to be
considered (from the customer/user perspective). Many of the present software

80 Berander and Andrews

development processes are based on one customer and assume that this customer
is available throughout the project [11]. For example, eXtreme Programming has
an “on-site customer” as one of the core practices (the focus is on having one cus-
tomer even though this customer could represent a market) [2]. One important is-
sue to consider when having a one-customer situation is that the customer and the
end-user(s) are not always the same. In this case, the person who prioritizes and
the persons who will use the system may not have the same priorities [24]. Such
situations are of course undesirable since it may result in reduced use of the prod-
uct. In this case, it would be better to involve the end-users in prioritizing the re-
quirements since they are the ones who know what they need. For example, if the
customer is an employer, and the user is an employee of the company buying the
product, this may result in conflicts. It is possible to imagine features that are de-
sirable to an employer, but not an employee.

4.5.2 Several Known Customers

When having several customers, the issue of prioritization becomes more difficult
since the customers may have conflicting viewpoints and preferences [1]. This in-
troduces the challenge of drawing these different customer views together [38].
The ultimate goal in these situations is to create win-win conditions and make
every stakeholder a “winner” [6]. If one perspective is neglected the system might
be seen as a failure by one or several of the stakeholders [1]. Hence, it is of tre-
mendous importance that all stakeholders are involved in this process since the
success of the product ultimately is decided in this step. A discussion on how to
make trade-offs between different stakeholders is provided in Sect. 4.5.5.

4.5.3 Mass-Market

When developing for a mass-market, it is not possible to get all customers to pri-
oritize. When eliciting information for prioritization in a mass-market situation,
different sources exist [35]: internal records (e.g. shipments, sales records), mar-
keting intelligence (e.g. information from sales force, scientists), competitor intel-
ligence (e.g. information about competitors’ strategies, benchmarking competi-
tors’ products) and marketing research (e.g. surveys, focus groups). When
conducting marketing research, the sample must be representative for the intended
market segment (group of consumers with similar needs) [35]. For example, if de-
veloping products for large companies, it is meaningless to involve small compa-
nies in the focus groups or the surveys. Hence, it is very important to decide which
market segments should be the focus of the product before performing the prioriti-
zation.

The result from a prioritization for a mass-market product could provide a good
base for analyzing which requirements are high priorities for all different market
segments. By using this information, it is possible to identify which parts of a sys-
tem should be common for all market segments and which parts should be specifi-

4 Requirements Prioritization 81

cally developed for specific market segments. This way of dealing with require-
ments is valuable when developing software product lines [14].

One way of dealing with the problem that all possible users are not known or
accessible is to use the concept of “personas” that originated in marketing and has
been used in system design [25]. These personas are fictional persons, represent-
ing market segments. They have names, occupations, possessions, age, gender, so-
cioeconomic status, etc. They are based on and inspired by real people that are
supposed to use the developed product. This information is gathered from ethno-
graphies, market research, usability studies, interviews, observations, and so forth.
The intention is to help the developing organization focus the attention on perso-
nas that the system is and is not designed for, and to give an understanding of
these target personas. Further, personas enhance engagement and reality by pro-
viding fictional users of the system. The developing organization can use the per-
sonas in decision-making (and prioritization) by asking questions like: Why are
we building this feature (requirement)? Why are we building it like this? When
having such explicit but fictitious users of the system, the organization can get an
understanding of which choices the personas would make in different situations.

4.5.4 Stakeholders Represented in the Prioritization

Since requirements can be prioritized from several different aspects, different
roles must also be involved in the prioritization process to get the correct views
(e.g. product managers prioritize strategic importance and project managers priori-
tize risks). At least three perspectives should always be represented: customers,
developers, and financial representatives [17]. Each of these stakeholders provides
vital information that the other two may neglect or are unable to produce since
customers care about the user/customer value, developers know about the techni-
cal difficulties, and financial representatives know and care for budgetary con-
straints and risks [17]. Nevertheless, it is of course suitable to involve all perspec-
tives (beside these three) that have a stake in the project or product.

4.5.5 Trade-Off between Different Stakeholders

In both market-driven and bespoke projects, there can be several different stake-
holders with different priorities and expectations of the system. How to make
trade-offs between several stakeholders with different priorities is an issue that is
commonly mentioned as a problem by product managers in software organiza-
tions. First, this could be a problem when having one or a few very strong stake-
holders since their wishes are often hard to neglect (i.e. when the big customer
says jump, the company jumps). Second, “squeaky wheel” customers often get
what they want [38, 58].

In such situations, it is important to have a structured way of handling different
stakeholders. Regnell et al. adjust the influence of each stakeholder by prioritize
for different aspects [45]. This can be done by weighting market segments based

82 Berander and Andrews

on for example: revenue last year, profit last release, size of total market segment,
number of potential customers, etc. The weighting aspect depend on the strategy
most suitable in the current market phase ([43], cited in [45]). Priorities are then
used to weigh each stakeholder in the prioritization process. This approach is also
possible when dealing with specific stakeholders even though the aspects on
which the priorities are based might be different. The weighting of the stake-
holders could be performed in the same way as ordinary prioritization, and the
techniques described in Sect. 4.4 could be used to provide the weights (preferably
the techniques based on a ratio scale since these will provide distances of impor-
tance between the stakeholders).

4.6 Using Requirements Prioritization

Requirements prioritization needs to consider several different aspects, techniques,
and stakeholder situations. This section presents additional issues to consider and
ways of dealing with such issues.

4.6.1 Abstraction Level

Requirements are commonly represented at different levels of abstraction [23],
which causes problems when prioritizing requirements. One reason is that re-
quirements on higher abstraction levels tend to get higher priority in pair-wise
comparisons [39]. For example, if prioritizing requirements in a car, a lamp in the
dashboard cannot be compared with having a luggage boot. Most customers would
probably prefer a luggage boot over a lamp in the dashboard but if one had to
compare a lamp in the luggage boot and a lamp in the dashboard, the lamp in the
dashboard might have higher priority. Hence, it is really important that the re-
quirements are not mixed at different abstraction levels [57].

Deciding on the level of abstraction can be difficult and depend very much on
the number of requirements and their complexity. With a small number of re-
quirements, it might be possible to prioritize the requirements at a low level of ab-
straction while it might be a good idea to start with requirements at a high level
and prioritize lower levels within the higher levels later when having many re-
quirements to prioritize [57]. AHP supports this approach of decomposing re-
quirements into different hierarchical levels in order to decrease the number of
comparisons. In other cases, it might even be a good idea to just prioritize the high
level requirements, and then letting the subordinate requirements inherit the priori-
ties. If choosing this approach, it is important that all stakeholders are aware of
this inheritance [57].

Regnell et al. discuss the problem of having a lot of requirements to prioritize
[45]. They grouped the requirements to make the prioritization easier. The re-
quirements were divided into a low level (original requirements) and a higher
level (requirements were grouped based on relationships). This approach not only

4 Requirements Prioritization 83

reduces the number of requirements to prioritize but also deals with dependencies
of requirements [50]. Grouping requirements based on requirements dependencies
(e.g. which requirements must be implemented together) would make further
analysis of the requirements easier since requirements that are grouped together
would not compete for priorities (issues related to dependencies are further dis-
cussed in Chap. 5). According to the result of the study, forming coherent groups
was easy and the stakeholders successfully prioritized at both levels.

4.6.2 Reprioritization

When developing software products, it is likely that new requirements will arrive,
requirements are deleted, priorities of existing requirements change, or that the re-
quirements themselves change [24, 39]. Hence, it is of tremendous importance that
the prioritization process is able to deal with changing requirements and priorities
of already prioritized requirements. When prioritizations are on an ordinal (e.g.
ranking and numerical assignment) or absolute scale (estimating cost) this does
not introduce any major problems since the new or changed requirement just need
to be assigned a value, or a correct priority. Such iterations of the numerical as-
signment technique have been used successfully [17].

When using prioritization on a ratio scale (such as AHP), the situation becomes
more complex since all requirements should be compared to all others to establish
the correct relative priorities. However, it is possible to tailor this process by com-
paring new or modified requirements with certain reference requirements and
thereby estimating the relative value. For example, when using the 100-dollar test
it is possible to identify the two requirements with higher and lower ranking, and
then establish the relative value in comparison to these and normalize the weights
(of the complete requirements set). However, this means that the original process
is not followed and the result might differ from a complete reprioritization even
though the cost versus benefit of such a solution might be good enough. Cost and
benefit must be taken into consideration when choosing a prioritization technique.

Further, it is important to not forget that priorities of already implemented re-
quirements can change; especially non-functional requirements. Techniques such
as gap-analysis (see Sect. 4.6.5) could be successfully used to prioritize already
implemented requirements in order to take these into account in a reprioritization.

4.6.3 Non-Functional Requirements

Previously in this chapter, no differences in analyzing functional and non-
functional (quality attributes) requirements have been discussed. The previously
presented methods can be used with both kinds of requirements and sometimes it
is preferable to prioritize them together. Nevertheless, it is not always advisable to
prioritize functional and non-functional requirements together, for the same rea-
sons that requirements at different abstraction levels should not be prioritized to-

84 Berander and Andrews

gether. Differences between functional and non-functional requirements include,
but are not limited to [36, 47, 56]:

Functional requirements usually relate to specific functions while non-
functional requirements usually affect several functions (from a collection of
functions to the whole system).
Non-functional requirements are properties that the functions or system must
have, implying that non-functional requirements are useless without functional
requirements.
When implemented, functional requirements either work or not while non-
functional requirements often have a “sliding value scale” of good and bad.
Non-functional requirements are often in conflict with each other, implying that
trade-offs between these requirements must be made.

Thus, it is not always possible or advisable to prioritize both types of require-
ments together. For example, if there is one functional requirement about a spe-
cific function and one non-functional requirement regarding performance, it could
be hard to prioritize between them. In such cases, it is possible to prioritize them
separately with the same or even with different techniques. Some techniques are
especially suitable for prioritizing non-functional requirements. One such ap-
proach (originating from marketing) is conjoint analysis where different product
alternatives are prioritized based on the definition of different attribute levels [22].
It should be noted that there does not seem to be a need to include all levels of all
attributes (e.g. faster response time is always preferable). Since trade-offs often
are present with such attributes (e.g. maintainability vs. performance), one idea is
to only include comparisons where trade-offs are taken into consideration.

4.6.4 Introducing Prioritization into an Organization

As with other technology transfer situations, it is recommended to start small with
one or a few of the practices (e.g. using numerical assignment to prioritize impor-
tance and cost) and then add more sophistication (and thereby complexity) as need
and knowledge increase. Since introducing and improving prioritization is a form
of process improvement, rules and guidelines for software process improvement
should be applied (e.g. changes should be done in small steps and should be tested
and adjusted accordingly [28]). A good idea could be to monitor future extensions
by measuring process adherence and satisfaction of the involved stakeholders
(both internally and externally). This way, it is possible to continuously measure
the process and thereby determine when the process gets too heavy by calculating
the cost versus benefit of each extension.

4.6.5 Evaluating Prioritization

Both for the reasons of improving and adjusting the prioritization process, and for
improving and adjusting a product, it is necessary to evaluate the result of prioriti-

4 Requirements Prioritization 85

zations in retrospect. For both purposes, it is important that information about the
priorities is kept since these provide the best information for analyzing both the
product and the process [38]. This includes information about both selected and
discarded requirements from a release [46]. When having access to this informa-
tion, it is possible to do post mortem analysis to evaluate if the correct require-
ments were selected and if they fulfilled the stakeholders’ expectations. If they did
not, it is possible to change the process and the product for subsequent prod-
ucts/releases to get better prioritizations and more satisfied stakeholders. One way
of evaluating if the correct priorities were assigned is through gap-analysis where
the “gap” between perceived levels of fulfillment of a requirement and the impor-
tance of the requirement is calculated [27]. The result shows how well each re-
quirement, or type of requirement, is fulfilled according to how important the
stakeholders think the requirements are. In this case, the requirements with the
largest gaps get the highest priorities for improvement (PFI) [27]. This makes it
possible to improve parts of the product with a low level of fulfillment, but it
could also be used to tune the process to avoid such situations again.

4.6.6 Using the Results of Requirements Prioritization

The results of a prioritization exercise must be used judiciously [39]. Dependen-
cies between requirements should be taken into consideration when choosing
which requirements to include. Dependencies could be related to cost, value,
changes, people, competence, technical precedence, etc. [16, 49]. Such dependen-
cies might force one requirement to be implemented before another, implying that
it is not possible to just follow the prioritization list (dependencies are further dis-
cussed in Chap. 5). Another reason for not being able to solely base the selected
requirements on the priority list is that when the priority list is presented to the
stakeholders, their initial priority might have emerged incorrectly [39]. This means
that when the stakeholders are confronted with the priority list, they want to
change priorities. This is a larger problem in techniques where the result is not
visible throughout the process (e.g. AHP).

The product may have some naturally built-in constraints. For example, pro-
jects have constraints when it comes to effort, quality, duration, etc. [50]. Such
constraints makes the selection of which requirements to include in a product
more complex than if the choice were solely based on the importance of each re-
quirement. A common approach to make this selection is to propose a number of
alternative solutions from which the stakeholders can choose the one that is most
suitable based on all implicit context factors [24, 38, 48, 50, 57]. By computeriz-
ing the process of selecting nominated solutions, it is possible to focus the stake-
holders’ attention on a relatively small number of candidate solutions instead of
wasting their time by discussing all possible alternatives [19]. In order to auto-
mate and to provide a small set of candidate solutions to choose from, it is neces-
sary to put some constraints on the final product. For example, there could be con-
straints that the product is not allowed to cost more than a specific amount, the

86 Berander and Andrews

time for development is not allowed to exceed a limit, or the risk level is not al-
lowed to be over a specific threshold.

4.7 An Example of a Requirements Prioritization

To illustrate the different aspects, prioritization techniques, trade-offs between
stakeholders, and combinations of prioritization techniques and aspects, an exam-
ple of a prioritization situation is given. The method used in this example is influ-
enced by a model proposed by Wiegers but is tailored to fit this example [57]. The
example analyses 15 requirements (R1-R15) in a situation with three known cus-
tomers (see 4.5.2). The analysis is rather sophisticated to show different issues in
prioritization but still simple with a small amount of requirements. While many
more requirements are common in industry, it is easier to illustrate how the tech-
niques work on a smaller example. Each of the 15 requirements is prioritized ac-
cording to the different aspects presented in Sect. 4.3. Table 4.3 presents the as-
pects that are used in the example together with the method that is used to
prioritize the aspect and from which perspective it is prioritized.

Table 4.3 Aspects to prioritize

Aspect Prioritization Technique Perspective
Strategic importance AHP Product Manager
Customer importance 100-dollar / Top-ten1 Customers
Penalty AHP Product Manager
Cost 100-dollar Developers
Time Numerical Assignment (7) Project Manager
Risk Numerical Assignment (3) Requirements Specialist
Volatility Ranking Requirements Specialist

As can be seen in Table 4.3, all prioritization techniques presented in Sect. 4.4
are used. However, two clarifications are in order. First, numerical assignment for
time (7) and risk (3) uses a different number of groups to show varying levels of
granularity. The customer importance is prioritized both by the top-ten technique
and the 100-dollar technique depending how much time and cost the different cus-
tomers consider reasonable.

To make the prioritizations more effective, requirements are further refined.
First, requirements R1 and R2 are requirements that are absolutely necessary to
get the system to work at all. Hence, they are not prioritized by the customers but
they are estimated when it comes to cost, risk, etc. since R1 and R2 influence
these variables no matter what. This is a way of using the requirements triage ap-
proach presented in Sect. 4.4.7. Further, two groups of requirements have been
identified as having high dependencies (must be implemented together) and

1 The top-ten technique is modified to a top-four technique in this example due to the lim-

ited number of requirements.

4 Requirements Prioritization 87

should hence be prioritized together. Requirements R3, R4, and R5 are grouped
together as R345, and requirements R6 and R7 are grouped into R67.

Table 4.4 Prioritization results of strategic and customer importance. Priority, P(RX) =
RPC1 × WC1 + RPC2 × WC2 + RPC3 × WC3 + RPPM × WPM, where RP is the requirement pri-
ority, and W is the weight of the stakeholder

Requirement C1 (0.15) C2 (0.30) C3 (0.20) PM (0.35) Priority:
R8 0.25 0.24 0.16 0.15 0.19
R9 0.07 0.14 0.03 0.06
R10 0.25 0.05 0.13 0.29 0.18
R11 0.05 0.01 0.02 0.02
R12 0.16 0.04 0.01 0.06
R13 0.05 0.16 0.02 0.05
R14 0.25 0.02 0.10 0.10 0.10
R15 0.03 0.04 0.05 0.03
R345 0.04 0.18 0.17 0.11
R67 0.25 0.29 0.04 0.16 0.19
Total: 1 1 1 1 1

Table 4.5 Descending priority list based on importance and penalty (IP). IP(RX) = RPI × WI

+ RPP × WP, where RP is the requirement priority, and W is the weight of Importance (I)
and Penalty (P)

Requirement Importance
(0.7)

Penalty
(0.3)

IP Cost Time Risk Volatility

R1 1 1 1 0.11 3 1 2
R2 1 1 1 0.13 4 2 1
R8 0.19 0.2 0.20 0.07 1 3 7
R67 0.19 0.09 0.16 0.10 6 3 5
R10 0.18 0.01 0.13 0.24 2 3 11
R14 0.10 0.16 0.12 0.01 1 3 10
R345 0.11 0.02 0.08 0.03 3 2 8
R9 0.06 0.12 0.08 0.09 3 2 9
R15 0.03 0.17 0.08 0.05 5 1 4
R12 0.06 0.06 0.06 0.11 4 2 6
R11 0.02 0.14 0.06 0.02 3 1 3
R13 0.05 0.03 0.05 0.04 7 1 12
Total / Median: 3 3 3 1 3 2

The next step is to prioritize the importance of the requirements. In the case at
hand, the three known customers and the product manager prioritize the require-
ments. Furthermore, these four stakeholders are assigned different weights de-
pending on how important they are deemed by the company. This is done by using
the 100-dollar test to get the relative weights between the stakeholders (see Sect.
4.5.5). Table 4.4 presents the result of the prioritization. In the table, the three cus-
tomers are denoted C1 C3 and the product manager is denoted PM.

As can be seen in this table, the different stakeholders have different priorities,
and it is possible to combine their different views to an overall priority. The

88 Berander and Andrews

weights (within parenthesis after each stakeholder) represent the importance of
each customer and in this case, the product manager is assigned the highest weight
(0.35). This is very project dependent. In this case, the mission of this product re-
lease is to invest in long-term requirements and attract new customers at the same
time as keeping existing ones. As also can be seen, C1 used the top-ten technique
and hence the priorities were evenly divided between the requirements that this
customer regarded as most important. The list to the far right presents the final
priority of the requirements with the different stakeholders and their weights taken
into consideration. This calculation is possible since a ratio scale has been used in-
stead of an ordinal scale.

The next step is to prioritize based on the other aspects. In this case, the Priority
from Table 4.4 is used to express Importance in Table 4.5. It should also be noted
that requirements R1 and R2 (absolutely necessary) have been added in Table 4.5.

Table 4.6 Selected requirements based on IP and cost

Requirement IP Cost IP/Cost Time Risk Volatility
R1 1 0.11 9.09 3 1 2
R2 1 0.13 7.69 4 2 1
R8 0.20 0.07 2.80 1 3 7
R67 0.16 0.1 1.59 6 3 5
R10 0.13 0.24 0.54 2 3 11
Total / Median: 2.48 0.65 21.71 3 3

Table 4.5 shows a prioritized list of the requirements (based on IP). With this
information there are two options: 1) pick prioritized items from the top of the list
until the cost constraints are reached, 2) analyze further based on other prioritized
aspects, if prioritizations of additional aspects are available. The example has two
major constraints: 1) the project is not allowed to cost more than 65% of the total
cost of the elicited requirements, and 2) the median risk level of the requirements
included is not allowed to be higher than 2.5. Based on this, we first try to include
the requirements with the highest IP. The result of this is presented in Table 4.6
where the list was cut when the sum of costs reached 65% of the total cost of elic-
ited requirements.

Table 4.6 shows that we managed to fit within the cost constraints but could not
satisfy the risk constraint. As a result, the project becomes too risky. Instead, an-
other approach is taken to find a suitable collection of requirements. In this ap-
proach, we take the IP/Cost ratio into consideration. This shows which require-
ments provide most IP at the least cost. In this case, we try to set up a limit of only
selecting requirements that have an IP/Cost-ratio higher than 1.0. The result is pre-
sented in Table 4.7. Table 4.7 shows the cost constraints are still met (even nine
percent less cost) while also satisfying the risk constraint. Comparing tables 4.6
and 4.7 shows that the IP-value of the second candidate solution is higher which
indicates that the customers are more satisfied with the product and the IP/Cost ra-
tio is almost doubled. The second candidate solution satisfies 91 percent (2.73/3)
of the IP aspect, compared to 83 percent in the first candidate solution. The fact
that the second alternative costs less and is less risky also favors this choice. Nev-

4 Requirements Prioritization 89

ertheless, the above example is not optimal since cost was constrained at 0.65 and
other combinations of requirements may be more optimal for the selection.

Table 4.7 Selected requirements based on cost and IP/cost ratio.

Requirement IP Cost IP/Cost Time Risk Volatility
R1 1 0.11 9.09 3 1 2
R2 1 0.13 7.69 4 2 1
R8 0.20 0.07 2.80 1 3 7
R67 0.16 0.1 1.59 6 3 5
R14 0.12 0.01 11.70 1 3 10
R345 0.08 0.03 2.71 3 2 8
R15 0.08 0.05 1.50 5 1 4
R11 0.06 0.02 2.94 2 1 3
R13 0.05 0.04 1.17 7 1 12
Total / Median: 2.73 0.56 41.19 3 2

This type of release planning is known in operational research as the binary
knapsack problem [13]: maximize value when the selection is bounded by an up-
per limit. However, the difference between a classical knapsack problem and the
problem faced above is that release planning is a “wicked problem” [13]. This
means that an optimal solution may not exist, that every release planning is
unique, and that no objective measure of success exists, etc. [13]. In addition, the
values of the aspects in the above example are estimates and subjective measures
in comparison to objective measures such a length, weight, and volume. Instead of
finding the optimal set, different alternative solutions should be discovered and the
alternative that seems most suitable should be chosen [13]. This implies that the
purpose with prioritization is not to come up with a list of final requirements, but
rather to provide support for good decisions. In comparison to the above example,
real projects generally have more requirements, and more complex dependencies
[13]. However, this example was meant to show how different aspects can be used
to handle trade-offs between different (sometimes conflicting) aspects. It is also
possible, as illustrated, to fine-tune an existing technique or method to suit a com-
pany specific situation.

4.8 Future Research in the Area of Requirements Prioritization

Requirements engineering is a field with much research activity. One journal, sev-
eral workshops, and one large annual international conference are devoted to re-
quirements engineering. Nevertheless, the existing work in the area of require-
ments prioritization is limited even though the need for prioritizing software
requirements is acknowledged in the research literature [32]. Especially, few em-
pirical validations of different prioritization techniques and methods exist. Instead,
it is common that new techniques and methods are introduced and they seem to
work well, but the scalability of the approach has not been tested [48]. However,
there exist some studies that have evaluated different prioritization techniques [33,

90 Berander and Andrews

34]. Unfortunately, such empirical evaluations most often focus on toy systems
with a few requirements (seldom more than 20). This is not really providing any
evidence of whether one technique is better than another even though some pre-
liminary evidence could be found. One of the few industry studies, for example,
found that AHP was not usable with more than 20 requirements since the number
of comparisons became too many for the practitioners [39]. Hence, more studies
are needed when prioritization methods are used in industry.

A further question that seldom is addressed in requirements prioritization re-
search is the question of how much sophistication is actually needed. Many tech-
niques and methods are developed and they become more and more complex with
the goal to provide more help for practitioners but the results are seldom used in
industry. Instead, professionals use simple methods such as numerical assignment.
Practitioners live in a different environment than experimental subjects (often stu-
dents) and are more limited by time and cost constraints [4]. Hence, an important
question to answer is how much sophistication (and thereby complexity) is actu-
ally necessary and desirable by practitioners?

The above issues lead to another open question about when a technique or
method is suitable. Existing empirical studies seldom discuss factors such as com-
pany size, time-to-market limitations, number of stakeholders, domain, etc. In-
stead, focus is on whether a technique or method is better than another one. A
more sound approach would be to test different approaches in various environ-
ments to get some understanding when different prioritization techniques, aspects,
etc. are suitable. In [21] a framework for evaluating pair programming is sug-
gested and independent (e.g. technique), dependent (e.g. quality), and context
variables (e.g. type of task) are proposed for evaluating programming techniques.
A similar framework for requirements prioritization would be beneficial.

Another important question in the area of requirements prioritization concerns
dependencies between requirements. Dependencies are not covered in this chapter
since Chap. 5 discusses this in detail. Nevertheless, the impact of dependencies
can be tremendous. For example, prioritization techniques (such as AHP) assume
that requirements are independent even though we know that they seldom are [46].
We need to find better ways to handle dependencies in an efficient way.

As could be seen in Sect. 4.6.3, functional and non-functional requirements are
very different even though they have a serious impact on each other. Prioritizing
these two entirely together or separately might not be the best solution. Ap-
proaches where prioritizations of functional and non-functional could be com-
bined in an efficient way are necessary. Different methods that seem suitable for
prioritizing non-functional requirements are available (e.g. Conjoint Analysis [22],
and Quality Grid [36]) and it would be interesting to evaluate these empirically in
industrial settings. Further, finding ways to combine such approaches with ap-
proaches more directed to functional requirements would be a challenge.

4 Requirements Prioritization 91

4.9 Summary

This chapter has presented a number of techniques, aspects, and other issues that
should be thought of when performing prioritizations. These different parts to-
gether form a basis for systematically prioritizing requirements during software
development. The result of prioritizations suggests which requirements should be
implemented, and in which release. Hence, the techniques could be a valuable
help for companies to get an understanding of what is important and what is not
for a project or a product. As with all evaluation methods, the results should be in-
terpreted and possibly adjusted by knowledgeable decision-makers rather than
simply accepted as a final decision.

References

1. Aurum A, Wohlin C (2003) The fundamental nature of requirements engineering activi-
ties as a decision-making process. Information and Software Technology 45(14):
945 954

2. Beck K (1999) Extreme programming explained. Addison-Wesley, Upper Saddle River
3. Berander P, Wohlin C (2004) Differences in views between development roles in soft-

ware process improvement – A quantitative comparison. In: Proceedings of the 8th In-
ternational Conference on Empirical Assessment in Software Engineering (EASE
2004). IEE, Stevenage, pp.57 66

4. Berander P (2004) Using students as subjects in requirements prioritization. In: Proceed-
ings of the 2004 International Symposium on Empirical Software Engineering
(ISESE’04). IEEE Computer Society, Los Alamitos, pp.167 176

5. Boehm BW (1981) Software engineering economics. Prentice Hall, Englewood Cliffs
6. Boehm BW, Ross R (1989) Theory-W software project management: Principles and ex-

amples. IEEE Transactions on Software Engineering 15(7):902 916
7. Bergman B, Klefsjö B (2003) Quality from customer needs to customer satisfaction.

Published by Studentlitteratur AB, Lund, Sweden
8. Bradner S (1997) RFC 2119. http://www.ietf.org/rfc/rfc2119.txt (24 November 2004)
9. Bray IK (2002) An introduction to requirements engineering. Pearson Education, London
10. Brooks FP (1995) The mythical man-month: Essays on software engineering. Addison-

Wesley Longman, Boston
11. Carlshamre P (2001) A usability perspective on requirements engineering – From

methodology to product development. Ph.D. thesis, Linköping Institute of Technology,
Sweden

12. Carlshamre P, Sandahl K, Lindvall M, Regnell B, Natt och Dag J (2001) An industrial
survey of requirements interdependencies in software release planning. In: Proceedings
of the 5th IEEE International Symposium on Requirements Engineering (RE’01). IEEE
Computer Society, Los Alamitos, pp 84 91

13. Carlshamre P (2002) Release planning in market-driven software product development:
provoking an understanding requirements engineering 7(3):139 151

14. Clements P, Northrop L (2002) Software product lines – Practices and patterns. Addi-
son-Wesley, Upper Saddle River

92 Berander and Andrews

15. Colombo E, Francalanci C (2004) Selecting CRM packages based on architectural,
functional, and cost requirements: Empirical validation of a hierarchical ranking model.
Requirements Engineering 9(3):186-203

16. Dahlstedt Å, Persson A (2003) Requirements interdependencies – Molding the state of
research into a research agenda. In: Proceedings of the 9th International Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ ’03). Universität
Duisburg-Essen, Essen, pp. 71 80

17. Davis AM (2003) The art of requirements triage. IEEE Computer 36(3):42 49
18. Ecklund EF, Delcambre LML, Freiling MJ (1996) Change cases: Use cases that identify

future requirements. In: Proceedings of the 11th ACM SIGPLAN Conference on Ob-
ject-Oriented Programming, Systems, Languages, and Applications (OOPSLA ’96).
ACM, USA, pp. 342 358

19. Feather MS, Menzies T (2002) Converging on the optimal attainment of requirements.
In: Proceedings of the IEEE Joint International Conference on Requirements Engineer-
ing (RE’02). IEEE Computer Society, Los Alamitos, pp. 263 270

20. Fenton, NE, Pfleeger SL (1997) Software metrics – A rigorous and practical approach,
2nd Edition. PWS Publishing Company, Boston

21. Gallis H, Arisholm E, Dybå T (2003) An initial framework for research on pair pro-
gramming. In: Proceedings of the 2003 International Symposium on Empirical Soft-
ware Engineering (ISESE’03). IEEE Computer Society, Los Alamitos, pp.132 142

22. Giesen, J, Völker A (2002) Requirements interdependencies and stakeholders prefer-
ences. In: Proceedings of the IEEE Joint International Conference on Requirements
Engineering (RE’02). IEEE Computer Society, Los Alamitos, pp.206 209

23. Gorschek T (2004) Software process assessment & improvement in industrial require-
ments engineering. Licentiate Thesis, Blekinge Institute of Technology

24. Greer D, Ruhe G (2004) Software release planning: An evolutionary and iterative ap-
proach. Information and Software Technology 46(4): 243 253

25. Grudin J, Pruitt J (2002) Personas, participatory design and product development: An
infrastructure for engagement. Participation and Design Conference (PDC2002), Com-
puter Professionals for Social Responsibility, Palo Alto, pp.144 161

26. Harker PT (1987) Incomplete pairwise comparisons in the analytic hierarchy process.
Mathematical Modeling 9(11): 837 848

27. Hill N, Brierly J, MacDougall R (1999) How to measure customer satisfaction. Gower
Publishing, Hampshire

28. Humphrey WS (1989) Managing the software process. Addison-Wesley, USA
29. IEEE Std 830-1998 (1998) IEEE recommended practice for software requirements

specifications. IEEE Computer Society, Los Alamitos
30. Karlsson J, Ryan K (1997) A cost-value approach for prioritizing requirements. IEEE

Software 14(5): 67 74
31. Karlsson J, Olsson S, Ryan K (1997) Improved practical support for large-scale re-

quirements prioritizing. Requirements Engineering 2(1): 51 60
32. Karlsson J (1998) A systematic approach for prioritizing software requirements. Ph.D.

Thesis, Linköping Institute of Technology
33. Karlsson J, Wohlin C, Regnell B (1998) An evaluation of methods for prioritizing soft-

ware requirements. Information and Software Technology 39(14-15): 939 947

4 Requirements Prioritization 93

34. Karlsson L, Berander P, Regnell B, Wohlin C (2004) Requirements prioritisation: An
experiment on exhaustive pair-wise comparisons versus planning game partitioning.
In: Proceedings of the 8th International Conference on Empirical Assessment in Soft-
ware Engineering (EASE 2004). IEE, Stevenage, pp.145 154

35. Kotler P, Armstron G, Saunders J, Wong V (2002) Principles of marketing, 3rd Euro-
pean Edition. Pearson Education, Essex

36. Lausen S (2002) Software requirements – styles and techniques. Pearson Education, Es-
sex

37. Leffingwell D, Widrig D (2000) Managing software requirements – A unified approach.
Addison-Wesley, Upper Saddle River

38. Lehtola L, Kauppinen M, Kujala S (2004) Requirements prioritization challenges in
practice. In: Proceedings of 5th International Conference on Product Focused Software
Process Improvement, Lecture Notes in Computer Science (vol. 3009), Springer-
Verlag, Heidelberg, pp.497-508

39. Lehtola L, Kauppinen M (2004) Empirical evaluation of two requirements prioritization
methods in product development projects. In: Proceedings of the European Software
Process Improvement Conference (EuroSPI 2004), Springer-Verlag, Berlin Heidelberg,
pp.161 170

40. Lubars M, Potts C, Richter C (1993) A review of the state of practice in requirements
modeling. In: Proceedings of IEEE International Symposium on Requirements Engi-
neering, IEEE Computer Society, Los Alamitos, pp.2-14

41. Maciaszek LA (2001) Requirements analysis and system design – Developing informa-
tion systems with UML. Addison Wesley, London

42. Maiden NAM, Ncube C (1998) Acquiring COTS software selection requirements. IEEE
Software 15(2):46 56

43. Moore G (1991) Crossing the chasm. HarperCollins, New York
44. Nicholas JM (2001) Project management for business and technology: Principles and

Practice. Prentice Hall, Upper Saddle River
45. Regnell B, Höst M, Natt och Dag J, Beremark P, Hjelm T (2001) An industrial case

study on distributed prioritization in market-driven requirements engineering for pack-
aged software. Requirements Engineering 6(1):51-62

46. Regnell B, Paech B, Aurum A, Wohlin C, Dutoit A, Natt och Dag J (2001) Require-
ments mean decisions! – Research issues for understanding and supporting decision-
making in requirements engineering. In: Proceedings of 1st Swedish Conference on
Software Engineering Research and Practise (SERP’01). Blekinge Institute of Technol-
ogy, Ronneby, pp. 49 52

47. Robertson S, Robertson J (1999) Mastering the requirements process. ACM Press, Lon-
don

48. Ruhe G, Eberlein A, Pfahl D (2002) Quantitative WinWin – A new method for decision
support in requirements negotiation. In: Proceedings of the 14th International Confer-
ence on Software Engineering and Knowledge Engineering (SEKE’02), ACM Press,
New York, pp. 159 166

49. Ruhe G (2003) Software engineering decision support - A new paradigm for learning
software organizations. Advances in learning software organization, Lecture Notes in
Computer Science, Springer-Verlag, Vol. 2640, pp.104 115

50. Ruhe G, Eberlein A, Pfahl D (2003) Trade-off analysis for requirements selection. In-
ternational journal of Software Engineering and Knowledge Engineering 13(4):
345 366

94 Berander and Andrews

51. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York
52. Saaty TL, Vargas LG (2001) Models, methods, concepts & applications of the analytic

hierarchy process. Kluwer Academic Publishers, Norwell
53. Schulmeyer GG, McManus JI (1999) Handbook of software quality assurance, 3rd Edi-

tion. Prentice Hall, Upper Saddle River
54. Shen Y, Hoerl AE, McConnell W (1992) An incomplete design in the analytical hierar-

chy process. Mathematical computer modeling 16(5):121 129
55. Sommerville I, Sawyer P (1997) Requirements engineering – A good practice guide.

John Wiley and Sons, Chichester
56. Sommerville I (2001) Software engineering, 6th Edition. Pearson Education, London
57. Wiegers K (1999) Software requirements. Microsoft Press, Redmond
58. Yeh AC (1992) REQUirements engineering support technique (REQUEST) – A market

driven requirements management process. In: Proceedings of 2nd Symposium of Qual-
ity Software Development Tools. IEEE Computer Society, Piscataway, pp.211 223

Author Biography

Patrik Berander is a Ph.D. student in Software Engineering at the School of Engi-
neering at Blekinge Institute of Technology in Sweden. He received his degree of
Master of Science with a major in Software Engineering – with a specialization in
Management in 2002. His research interests are requirements engineering in gen-
eral and decisions related to requirements and products in particular. Further re-
search interests include software product management, software quality, economic
issues in software development, and software process management.

Dr. Anneliese Amschler Andrews is the Huie Rogers Endowed Chair in Software
Engineering at Washington State University. Dr. Andrews is the author of a text-
book and over 130 articles in the area of Software Engineering, particularly soft-
ware testing and maintenance. Dr. Andrews holds an MS and PhD from Duke
University and a Dipl.-Inf. from the Technical University of Karlsruhe. She served
as Editor in Chief of the IEEE Transactions on Software Engineering. She has also
served on several other editorial boards including the IEEE Transactions on Reli-
ability, the Empirical Software Engineering Journal, the Software Quality Journal,
the Journal of Information and Software Technology, and the Journal of Software
Maintenance. She was Director of the Colorado Advanced Software Institute from
1995 to 2002. CASI's mission was to support technology transfer research related
to software through collaborations between industry and academia.

5 Requirements Interdependencies: State of the Art
and Future Challenges

Åsa G. Dahlstedt and Anne Persson

Abstract: It is well acknowledged in practice as well as in research that require-
ments are related to each other and that these relationships affect software devel-
opment work in various ways. This chapter addresses requirements interdepend-
encies, starting from a traceability perspective. The focus of the chapter is on
giving an overview of requirements interdependency research and on synthesizing
this into a model of fundamental interdependency types and a research agenda for
the area. Furthermore, a description of how knowledge about requirements inter-
dependencies can facilitate various activities within software engineering is pro-
vided. The main challenges for the future are to understand the nature of require-
ments interdependencies and to develop approaches that enable to identify,
describe and effectively deal with them in the software development process.

Keywords: Requirements traceability, Requirements interdependencies, Require-
ments dependencies, Requirement coupling.

5.1 Introduction

Most individual requirements, developed during the requirements engineering
(RE) process, cannot be treated in isolation during software development. Instead
they are related to and affect each other in complex manners [5, 33]. A recent
study has shown that only approximately a fifth of the requirements in any set of
requirements are truly singular, i.e., are not related to or influence any other re-
quirements [5]. Examples of how requirements may affect each other are when
one requirement:

Constrains how other requirements can be designed or implemented
Affects the cost of implementation of other requirements, or
Increases or decreases the customer satisfaction of other requirements

Requirements interdependencies are not problematic per-se, but they influence
a number of development activities and decisions made during the software engi-
neering process, e.g. in release planning [5, 20], change management [22, 37], re-
quirements design and implementation [35], testing [8], and requirements reuse
[38]. These activities or decisions may be based on one or several requirements
and may affect other requirements in ways not intended or not even anticipated.
For example, a change made to one requirement may affect several other require-
ments making them to change as well [22, 26]. Neglecting these dependencies
when assessing the impact of a change may result in neglecting some of the actual

96 Dahlstedt and Persson

impact of a change. Consequently, the cost of implementing a requirement may
become several times higher than expected, and in turn cause budget or schedule
problems (see Chap. 6). A similar example is within release planning, where an
optimal set of requirements is selected for implementation in the next release of a
software system. It is not always possible to select the requirements with highest
priority, due to requirements interdependencies. Implementing a high priority re-
quirement may, e.g., require that a requirement with low priority and high cost
must be implemented first [5, 20]. Understanding and knowing about these rela-
tionships is important in order to avoid selecting a set of requirements that must be
changed later, which may potentially cause costly modifications of the software.

Knowing about the existence and consequences of requirements interdependen-
cies is hence essential in order to avoid costly mistakes. The purpose of systemati-
cally dealing with requirements interdependencies is to improve decisions made
during software development and also to support early detection of potential prob-
lems due to requirements interdependencies. Managing requirements interdepend-
encies is about identifying, storing, and maintaining information about how re-
quirements relate to and affect each other. This also involves deciding which
interdependency information is needed in various situations in the software devel-
opment process and how that information should be presented.

Despite the need for and potential benefits of systematically taking require-
ments interdependencies into account, there is little research invested in this topic
and more is needed [4, 5, 20]. In addition, existing literature tends to address the
topic based on a specific problem or development activity [5, 20, 35, 28]. As a
consequence, current knowledge about requirements interdependencies is spread
throughout the literature into different segments dealing with specific aspects and
development activities. It is certainly important to address the area focusing on
specific development activities, but the literature about the common characteristics
of requirements interdependencies is scarce. The objective of this chapter is hence
to synthesize existing knowledge regarding requirements interdependencies in or-
der to give an overall view of the area through describing the state of the art and
presenting a research agenda for future research in the area.

In the following we outline requirements traceability, in order to place require-
ments interdependencies into a context (Sect. 5.2). This is followed by an over-
view of fundamental types of interdependencies that can exist between require-
ments (Sect. 5.3). A discussion on how knowledge about requirements
interdependencies can facilitate software engineering is given in Sect. 5.4. Section
5.5 outlines a research agenda for the area, and finally, a summary is given in
Sect. 5.6.

5.2 Requirements Traceability: A Basis for Understanding
Requirements Interdependencies

There are several different definitions of the term requirements traceability (see
e.g. [16, 18, 26, 34]). In this chapter, we have chosen to define it as the “ability to

5 Requirements Interdependencies: State of the Art and Future 97

describe and follow the life of a requirement, in both forward and backward direc-
tion, ideally through the whole system life cycle” ([17], p. 32, based on [13]). This
definition is one of the most frequently used within the field. Requirements trace-
ability is, generally speaking, achieved through associating related information ob-
jects such as:

Requirements and related system components satisfying those requirements
System objectives and requirements derived from those requirements
Change proposals and requirements which they intend to change
A decision and the rationales and assumptions on which they are based
Test cases and the requirements which fulfillment they intend to ensure, and
System components and the resources needed to implement those requirements

The topic of requirements interdependencies is viewed as a specific aspect of
traceability, since it is about associating related information of a specific type –
namely requirements (see the shaded area in Fig. 5.1). Therefore, in order to place
requirements interdependencies into a context this section aims at providing an
overview of the area of requirements traceability.

5.2.1 Why Requirements Traceability?

Requirements traceability is nowadays considered as important support for devel-
oping high quality software systems. In order to avoid costly mistakes, traceability
information is needed as a basis for decisions and tasks in most phases of the
software development process [12, 26]. One example is within change integration,
where traceability information enables identification of the impact of a proposed
change [22, 30, 37]. Identifying how requirements and other artifacts are affected
by the change proposal facilitates more accurate cost and schedule analysis. Re-
quirements traceability also supports the understanding of why a certain object has
been created, modified and evolved [30]. This motivates and explains the deci-
sions and trade-offs made during development work, and is also a valuable input
for process improvement [26, 27]. Traceability also provides a possibility to en-
sure that all requirements are fulfilled by the system components and that no fea-
tures have been added [29, 32] since all components or features within the system
should be related to one or several requirements. Comprehensive traceability sup-
ports producing a better quality product, improving both the development and
maintenance of software, and potentially lowering system life cycle costs [32]. It
is emphasized in [11] that poor traceability practice, where traceability is ne-
glected or where insufficient and unstructured traces are captured, leads to “a de-
crease in system quality, causes revisions, and thus, increases project cost and
time. It results in loss of knowledge if individuals leave the project, leads to wrong
decisions, misunderstanding, and miscommunications” (p. 54).

Capturing and maintaining traces is hence seen as an important activity during
requirements engineering as well as other parts of software engineering. The topic
is well-explored, judging by the large amount of literature describing both theo-
retical and empirical studies (see e.g. [11, 13, 14, 17, 19, 27, 30, 31, 32]).

98 Dahlstedt and Persson

5.2.2 Different Types of Requirements Traceability

Figure 5.1 presents an overview of requirements traceability and shows what is
meant by forward and backward direction mentioned in the definition. However, it
is a simplified view of what type of information that should be related in order to
ensure requirements traceability, as is indicated by the examples above. As the
figure shows, requirements traceability can be divided into two major types: pre-
traceability and post-traceability [13].

Domain
Requirements
Documents/
Repository

Design
Documents/
Components

Forward-to traceability

Forward-from traceabilityBackward-from traceability

Backward-to traceability

PRE-TRACEABILITY POST-TRACEABILITY

BR

S

SDoc

BR

R3

R1.2

R3.1

R2

R1

C3

C2

C1

BR

Doc

R1.1

 Fig. 5.1 Different types of traceability (based on [13] and [22])

Pre-traceability refers to those aspects of a requirement’s life before it is in-
cluded in the requirements specification [13] and is focused on enabling a better
understanding of requirements. Pre-traceability includes tracing the elicitation and
definition of the requirements, as well as their evolution [26]. The requirements
should be related to their origin e.g. stakeholder (S), business rule (BR), or previ-
ous documentation (Doc), but also to other associated requirements e.g. through
requirements decomposition. Requirements pre-traceability is the foundation for
managing evolution of a system, because it enables elicitation of the parts of the
specification that are affected by a particular raised change request, e.g. by organ-
izational policies, business processes, or the usage of the system.

Post-traceability refers to those aspects of a requirement’s life from the point
in time when it has been included in the requirements specification and forward
[13] and is focused on enabling a better understanding and acceptance of the cur-
rent system/software. Post-traceability is concerned with ensuring that all require-
ments are fulfilled by the system, through the design and implementation of the
system, by relating the requirements to the component (C), which helps satisfying
that particular requirement. No requirements should be lost and none added [26].
It also involves relating requirements to test cases, which should be used to ensure
that components fulfill those requirements. Requirements post-traceability is also

5 Requirements Interdependencies: State of the Art and Future 99

important for change integration by enabling identification of the impact that
changes have on design and implementation [22].

Requirements pre-traceability is hence concerned with requirements production
and focuses on the domain with which we interact when requirements are devel-
oped and in which the systems is to be installed. Requirements post-traceability is
concerned with requirements deployment and is focused on the software that is
developed based on the requirements. A more refined categorization can be found
in [10], together with four types of requirements traceability (see Fig. 5.1) related
to the direction of the tracing. Traceability can also be divided into horizontal and
vertical traceability [12, 29] which refers to whether the related information ob-
jects belong to the same type or not. Horizontal traceability deals with relating
versions or variants of the same type of information, e.g. between requirements or
between system components. Vertical traceability is concerned with tracing in-
formation between previous and subsequent phases in the development process i.e.
between information objects of different types. One example is relating a require-
ment to the design made based on the requirement, and further to the system com-
ponent that fulfils the requirement.

Stakeholder

Object Source

Manages

Has role in

Documents

Traces to

Fig. 5.2 Traceability meta-model [32]

5.2.3 A Meta-Model of Requirements Traceability

The meta-model presented in Fig. 5.2 shows the major perspectives of require-
ments traceability [32] and also indicates that there are several dimensions of the
traceability information. The source is the physical artifact where the information
is maintained, e.g. requirements specification document, design document, memo-
randum, and telephone call. This perspective emphasizes the document manage-
ment part of traceability, which is important because trace objects available in per-
sistent sources constitute long-term traceability. The stakeholder is the agent
involved in the management of traceability, e.g. the customer, system analyst, and
project manager. This perspective emphasizes the importance of different usage
roles when designing and implementing a traceability system. It also provides the
ability to define who is responsible for various products and decisions during the
development process. Object refers to the type of information objects that should
be related to each other, e.g. requirement, rationale, decision, and system compo-

100 Dahlstedt and Persson

nent. Several reference models for traceability have been presented in [30]. They
focus on the object aspect and describe the different types of objects that should be
related to each other as well as the different types of traceability links offered to
carry out this linking.

These three perspectives are related to each other in such a way that the sources
are used to document objects. The stakeholders are involved in managing the dif-
ferent sources, i.e. they create, use and maintain them. They also have different
roles in the establishment and use of various objects and traces between objects.
This meta-model can be used to represent several dimensions of traceability, in-
cluding (see [30]):

What information is represented
Where it is represented and how
Who are the stakeholders and what are their roles in the creation and use of the
information, and
Why certain object is created or modified

5.2.4 Some Concluding Remarks on Requirements Traceability

In this chapter, we focus on the object aspect of requirements traceability and the
dimension concerning what information that should be represented. More specifi-
cally, we focus on objects of one specific type requirements and traceability be-
tween requirements. This is defined above as mainly a pre-traceability issue (see
Fig. 5.1) belonging to the horizontal traceability category, since we relate infor-
mation objects of the same type.

The different types of traceability information discussed above support differ-
ent phases and activities during the development and maintenance of a software
system (see [22]). The information that needs to be captured varies between pro-
jects, organizations, and domains, and must be adjusted to the situation at hand
[11]. Organizations hence need support for defining traceability strategies that are
suitable for their project-specific needs. In addition, traceability information tends
to take enormous proportions resulting in large additional costs for collecting,
storing and maintaining it [13, 22, 23]. This further emphasizes the need to care-
fully consider what information that is needed based on the situation at hand.

5.3 An Overview of Interdependency Types

In Sect. 5.2 requirements interdependencies was described as a specific issue in
requirements traceability. As for traceability in general, there are several ways in
which requirements can relate to each other. This section provides an overview of
currently known interdependency types, which can be used to describe relation-
ships between requirements.

5 Requirements Interdependencies: State of the Art and Future 101

As stated in Sect. 5.1, current literature which explicitly addresses types of re-
quirements interdependencies approaches the subject from different perspectives.
This has resulted in several more or less different views on existing interdepen-
dency types. None of these include all dependency types presented in the litera-
ture. In addition, many of the interdependency types found are overlapping or
similar, and are hence difficult to distinguish from each other. This problem is also
identified in a survey on requirements interdependencies, where practitioners were
asked to find interdependencies between a given set of requirements and to iden-
tify which type should be used to describe how they related to each other [5]. Fur-
thermore, the meanings of certain terms used to denote the types clear and distinct
among the different sources. Even when the interdependency types appear to be
fairly different they can be difficult to separate in practice. One example is the re-
lationship between two requirements in the sense that one requirement should be
implemented before the other. This can be described as a temporal dependency,
i.e. that one should be implemented before the other. On the other hand, it can also
be viewed as the second requirement requiring the first one, i.e. that one cannot
function without the other [5].

Interdependency
Types

Structural
Interdependencies

Constrain
Interdependencies

Cost/Value
Interdependencies

Refined_to

Similar_to

Change_to

Requires Conflicts_with

Increases/
Decreases_

cost_of

Increases/
Decreases_

value_of

??

 Fig. 5.3 A classification of fundamental interdependency types

We aim to provide an overall view of existing interdependency types presented
in the literature, but due to the selection problem mentioned above we focus on
identifying the fundamental interdependency types. We have therefore compiled
overlapping or similar interdependency types into more generic types and hence
kept the number of interdependency types as low as possible, without losing any
of the core intentions behind the types presented in literature. The result is a model
of fundamental interdependencies types (Fig. 5.3.). The types in this model can, of
course, be further elaborated due to project-specific needs. Furthermore, the ques-
tion marks in the model emphasize that the model needs further research, where
more fundamental categories and interdependency types may be found. The model
is based both on the literature and an interview study. For more detail concerning
how the model has been developed, we refer to [7, 8]. The literature used is the
following, all explicitly presents various interdependency types [4, 5, 20, 26, 30,

102 Dahlstedt and Persson

35, 37, 38]. An overview of all interdependency types presented in the literature
can be found in [9].

5.3.1 Structural Interdependencies

Structural interdependencies are concerned with the fact that given a specific set
of requirements, they can be organized in a structure where relationships are of a
hierarchical as well as of a cross-structure nature. High-level business require-
ments are gradually decomposed into more detailed software requirements, form-
ing a hierarchy. Also, there can be structural relationships between requirements
within different parts of the overall hierarchy. We find that the following interde-
pendency types fall into this category:

Refined_to. A higher-level requirement is refined by a number of more spe-
cific requirements. This dependency type is used to describe hierarchical struc-
tures, where more detailed requirements are related to their source requirements.
In this sense, these requirements provide further explanation, detail or clarification
about the source requirement. The source requirement can hence be seen as an ab-
straction of the detailed requirements. If a detailed requirement is derived from a
higher-level requirement, but is not a prerequisite for this requirement, the rela-
tionship is of the dependency type refined_to.

In the literature there are many variants of this interdependency type. We have
chosen to compile these into one group, due to the difficult task of clearly distin-
guishing them from one another (see discussion above). This dependency type
hence covers situations where one requirement is elaborated by another, where a
more detailed requirement is derived from a high level requirement, or where one
or several requirements are based on a source requirement. It also includes de-
pendencies were one requirement has been divided into several parts, i.e., several
simpler requirements are considered as part of a complex source requirement.
Other situations here are if one requirement formalizes another requirement or if
one high-level requirement is a generalization of one or several more detailed re-
quirements. All these types are used to describe some kind of hierarchical rela-
tionships, where high level requirements are refined into more detailed ones by
several more detailed requirements. They are therefore compiled into one type, re-
fined_to.

EXAMPLE: A requirement stating that “The system should support a
following up of the customer orders after their delivery,” could be refined
by requirements stating e.g. during a following up it should be possible to
compare the cost of producing the products related to a given customer or-
der with the manufacturing budgets for those products, and the system
should facilitate changing the manufacturing budgets when following up the
products within a customer order.

Changes_to. One requirement changes to another requirement if a new version
of that requirement is developed which replaces the old one.

This dependency type is used to describe the history of a requirement, i.e., how
it has evolved over time since it enables to relate the different versions of a single

5 Requirements Interdependencies: State of the Art and Future 103

requirement. A new version of a requirement may be developed for several rea-
sons. It may, for example, be the result of making the requirement more compre-
hensive, changing details within the requirement, or expressing it more formally.

EXAMPLE: The requirements “It should take no longer than 10 seconds
to perform a search for contact information” could be changed to a new ver-
sion of that particular requirements stating that “It should take no longer
than 15 seconds to perform a search for contact information.”

Similar_to. One stated requirement is similar to or overlapping with one or
more other requirements.

This interdependency type describes situations where one requirement is simi-
lar to or overlapping with another in terms of how it is expressed or in terms of a
similar underlying idea of what the system should be able to perform. It can also
be used to describe similar solutions, from which one has to be selected to be part
of the system. It can hence be used to describe similarities both within the re-
quirements and their potential solutions. This topic is further discussed in Chap.
10.

EXAMPLE: The requirements “The system shall support the manage-
ment of library items” and “The system shall provide means to handle books
and journals within the library” are similar since both books and journals
could be considered as library items.

5.3.2 Constraining Interdependencies

Some literature introduces fairly broad and general interdependency types such
that there are some requirements that are dependent on or that constrain others [26,
38]. Our hypothesis is that more detailed interdependencies can be identified here
in order to describe how requirements can constrain each other or be dependent on
each other, especially if this classification is further elaborated with respect to dif-
ferent development activities or decisions. However, at this stage we choose to in-
clude this general interdependency category, being aware of the need for further
research. We have, so far, identified two types within this category.

Requires. The fulfillment of one requirement depends on the fulfillment of an-
other requirement. This type is used to describe that if one requirement is to be in-
cluded into the system, it requires another requirement to be included as well. It
can also be used to describe hierarchical relations between two requirements of a
stronger nature than refined_to. Requires in this sense means that one or more de-
tailed requirements are required, i.e. not optional, in order to fulfill a requirement
on a higher level. Requires can hence be seen as partly belonging to the structural
category as well.

This type is also fairly common in the literature, only the term used to describe
it differs. It includes dependencies where one requirement must exist among the
selected ones in order to implement another requirement and describes a situation
where one requirement cannot work without another. This means that one re-
quirement is a pre-requisite or pre-condition for another. Because of that, requires

104 Dahlstedt and Persson

can also be used to describe a temporal interdependency, where one requirement
needs to be implemented before another.

There are also interdependency types of a weaker nature than requires, where
requirements which support or enhance each other’s fulfillment are related. Re-
quires can hence be used to describe relations where one requirement must be im-
plemented in order for another to be implemented, but also where one requirement
have a positive effect on the fulfillment of another.

 EXAMPLE: If the system should be able to include emailing and web-
access, a network connection is required.

Conflicts_with. A requirement is in conflict with another requirement if they
cannot exist at the same time or if increasing the satisfaction of one requirement
decreases the satisfaction of another requirement.

This interdependency type both includes situations were it is impossible to im-
plement both requirements, and situations where requirements have a negative in-
fluence on each other’s achievement and a trade-off between the resolution of the
requirements must be made. Conflict is also one of the most frequently mentioned
interdependency types. [35] has a strong focus on conflict dependencies, and pre-
sents some relations, which can be interpreted as reasons for the conflict, e.g. in
terms of needing the same resources, one requirement describing a task that is de-
pending on another requirement, or in terms of one requirement describing a con-
sequence of another. The concept of conflict between requirements is further dis-
cussed in Chap. 7.

EXAMPLE: If one requirement states that “All personnel should be able
to search for information about both products and customers” and another
states that “Only personnel with security status A should be able to search
for customers classified as military related,” these two contradict each
other, and cannot be simultaneously satisfied.

5.3.3 Cost/Value Interdependencies

Cost/value interdependencies are concerned with the costs involved in implement-
ing a requirement in relation to the value that the fulfillment of that requirement
will provide to the perceived customer/user. The following interdependency types
fall into this category (both these are also mentioned in relation to negotiation in
Chap. 4):

Increases/Decreases_cost_of. If one requirement is chosen for implementa-
tion, then the cost of implementing another requirement increases or decreases.

It is used to relate requirements that somewhat influence the implementation,
cost of each other, e.g., by making it more expensive or cheaper to implement an-
other requirement.

EXAMPLE: If a requirement states that no response time should be
longer than 5 seconds, it will most likely increase the cost of implementing
many other requirements.

5 Requirements Interdependencies: State of the Art and Future 105

Increases/Decreases_value_of. If one requirement is chosen for implementa-
tion, then the value to the customer of another requirement increases or decreases.

This type focuses on the effect relations between requirements may have on the
perceived customer value. Some requirements may have a positive influence on
the customer value of each other, while others have a negative influence, e.g., by
making functionality more complex.

EXAMPLE: The customer satisfaction of including a planning calendar
into a mobile phone will probably increase if it is possible to synchronize
this with planning calendars used on PCs.

5.4 How can Knowledge about Requirements Interdependencies
Facilitate Software Engineering?

We have argued that requirements are interdependent and that these dependencies
influence different activities in the software engineering process. This section pre-
sents an overview of situations during software engineering where interdependen-
cies may influence the tasks carried out. It aims at providing an insight into how
requirements interdependencies influence activities within software engineering
and how knowledge about dependencies can facilitate software development. For
each activity described, the interdependency types relevant to the activity are dis-
cussed.

5.4.1 Requirements Management

Requirements Management (RM) is concerned with managing the large amount of
requirements-related information elicited during the RE process [15]. RM in-
cludes, among other things, keeping track of and maintaining the decomposition
of requirements, i.e. how high level requirements and objectives are decomposed
into more refined requirements describing the software system in more detail.
Knowledge about the decomposition is important in order to understand why these
derived requirements exist and how they have been developed, especially since the
decomposition is often based on assumptions made by developers and other stake-
holders [30]. This knowledge also provides means to ensure that all low level re-
quirements are related to higher level requirements or goals, i.e. that they exist for
a good reason. Most often, there are tight budget and time schedule constraints to
meet in a software project. This means that requirements that support the business
strategies and objectives of the system should have high priority and be included
in the requirements specification. Therefore, all requirements should come from
an approved source and be based on customers’ and users’ real needs [21]. In ad-
dition, tracking the decomposition provides a historical view of the evolution of
the requirements in the sense that they show how the high-level requirements have
been decomposed into more detail. The RM issue here is to provide traceability
between the source requirements, and the more detailed requirements explaining

106 Dahlstedt and Persson

them. Finally, managing the decomposition is also a way of managing the fast in-
creasing number of requirements, since the requirements are often grouped into
hierarchies.

Managing requirements in the manner described above relies heavily on the
ability to identify, document and maintain information about requirements inter-
dependencies. The focus here is particularly on the structural interdependency
types, namely refines_to, and changed_to, and also requires.

5.4.2 Change Management and Impact Analysis

One of the major challenges in software development is the constant evolution and
change of requirements [30]. Change management and impact analysis are con-
cerned with systematically managing changes, and assessing the effect of change
requests. Research into impact analysis has traditionally been focused on program
code [1] which may explain the limited amount of literature discussing the influ-
ence of requirements interdependencies in this context. However, requirements in-
terdependencies are useful here since they show the evolution of requirements, i.e.
how a certain requirement has changed over time. They also show the major as-
sumptions behind a requirement, by relating it to the original requirement, which
can indicate the importance of the requirement. Moreover, one of the more impor-
tant benefits of requirements interdependencies is that they show if requirements
influence each other. This facilitates the accuracy of impact analysis since other
requirements that need to be changed due to a change request can be identified
[22, 37]. More detail on impact analysis can be found in Chap. 6.

The interdependency types that are useful in this context consequently belong
to constrain category as well as the change_to interdependency type. Refined_to
together with requires are also relevant interdependency types because they enable
showing the major assumptions behind a requirement.

5.4.3 Release Planning

In market-driven development, software suppliers usually release new versions of
their software products on a more or less regular basis. Release planning is the ac-
tivity concerned with selecting an optimal collection of requirements for imple-
mentation in the next version of a software system. More often than not, software
suppliers have a large number of requirements to choose from during this task.
The aim is to identify the set of requirements that maximizes the value added for
customers, but also to select the requirements that can be developed within the
constraints of the resources available and the fixed release date [5]. The selection
is usually based on requirements priority (see Chap. 4) and the estimated cost of
implementing the requirement. However, due to the fact that requirements are re-
lated to and affect each other, this cannot be the only basis for requirements selec-
tion [5, 20]. The selection of one requirement may imply that several other re-
quirements have to be selected as well or at least considered for selection. For

5 Requirements Interdependencies: State of the Art and Future 107

example, the selection of a highly prioritized requirement A may imply that the
costly but not so highly prioritized requirement B has to be selected as well, since
A cannot be implemented without having B in place. Requirements interdepend-
encies hence increase the complexity of requirements selection for a certain re-
lease. Knowledge about how requirements relate to, affect and depend on each
other is, therefore, an important basis for these decisions since these dependencies
demonstrate the impact of including or excluding requirements [20]. For more in-
formation about release planning, we refer to Chap. 13.

The interdependency types that are useful to take into consideration during re-
lease planning are requires, similar_to, conflicts_with, and the whole cost/value
category. The requires category is useful in order to show that if one requirement
is selected, another must be included as well. If similar requirements are shown,
situations can be avoided where two similar requirements are included in a re-
lease. Then resources are not calculated twice for the same functionality or prop-
erty of the system. Such double-calculation could potentially have hindered the in-
clusion of other requirements due to resource limitations. Knowledge about
conflicting requirements is useful during release planning since these conflicts can
be either solved before inclusion or be avoided, e.g. by only including one of the
conflicting requirements. The interdependency types in the cost/value category are
useful here since this knowledge enables to maximize the requirements selected
for implementation with respect to available recourses.

5.4.4 Reuse of Components

Traceability supports the process of reusing components on a requirements level
[26]. If similarities between requirements are documented, this information can be
used to identify reusable components by comparing the stated requirements with
the requirements of the existing system. These can then be traced down to design
and implementation, using traceability information, and identify the component
used to implement the requirement. Moreover, the traceability information can
also be used to recognize the adjustment needed to change the components to the
new application.

The interdependency type useful in this situation is similar_to.

5.4.5 Reuse of Requirements

Knowledge about requirements interdependencies can also be useful not only
when reusing components, but also when reusing requirements (see also Chap. 10
which discusses this topic). When variants of software products are developed,
part of the requirements may be the same since products are often built on the
same basic functionality. The requirements documents hence have many similari-
ties. When requirements are recycled, e.g., when building a new variant of a prod-
uct, this is usually carried out ad-hoc which is both time consuming and error
prone [38]. One reason is the difficulty to identify the requirements that can poten-

108 Dahlstedt and Persson

tially be reused and another is the difficulty to ensure that all requirements related
to the once recycled ones are included. It is also a problem that too many require-
ments are included in the new requirements document. Knowledge about the rela-
tionships and dependencies between the requirements can clearly support the task
of requirements recycling.

Not all related requirements can be included without analysis [38]. There are
more complex recycling steps where adaptation is taken into consideration, i.e.
changes to the recycled requirements may occur. In addition to this, the refinement
of a high level requirement into more detailed requirements is a negotiation proc-
ess (see Chap. 7), where the details concerning, e.g., the functionality are decided.
Consequently, it is not self-evident that all these details should be part of the func-
tionality of the new version of the system. For example, a search function can be
further explained by a number of detailed requirements, which describes how this
function should behave in detail. When this functionality is recycled, some ad-
vanced details regarding this search function may be excluded due to budget con-
straints, i.e. some of the requirements are excluded from the specification of the
new version.

The interdependency types relevant to take into consideration in this context are
both the refined_to and the requires interdependency types, and also the constrain
category as a whole.

5.4.6 Design and Implementation

Software design is to a large extent concerned with decision-making. Many trade-
offs are made e.g. to decide the scope and functionality of the system as well as
between implementation cost and other resources [30]. A common trade-off is be-
tween conflicting or inconsistent requirements [6]. A challenging issue is hence to
analyze to what extent multiple requirements can be satisfied simultaneously. This
is beneficial in order to detect potential problems prior to system construction
[35]. An area called requirements interaction management has been developed to
answer this need. It is defined as “the set of activities directed toward the discov-
ery, management, and disposition of critical relationships among sets of require-
ments.” ([35], p. 132). The aim is to find dependencies between requirements and
to show those that cannot be simultaneously satisfied. This knowledge is utterly
important to take into consideration in order to identify and solve problems when
the system is being designed. Chap. 7 presents several conflict resolutions strate-
gies for resolving conflicts among stakeholders.

Requirements interdependencies can also be used to plan the implementation of
requirements, e.g. in which order the requirements should be implemented due to
testing constraints and efficiency, or allocation of requirements to developers.

Identifying and showing conflicts between requirements is hence important in
this context, which makes conflicts_with a fundamental interdependency type
here. Other relevant interdependency types are requires and increase/de-
crease_cost_of.

5 Requirements Interdependencies: State of the Art and Future 109

5.4.7 Testing

Testing is, among other things, about ensuring that all the requirements of the sys-
tem have been met [36] and includes tasks such as test planning, selecting and de-
signing test cases, executing test cases, and reporting on the result of the execu-
tion. For more information about testing and how it relates to requirements, see
Chap. 8.

The order in which test cases are executed is essential, since some system func-
tionality cannot be tested before other functionality is in place and verified. In ad-
dition, the order is essential for efficiency reasons. Functionality, on which much
other functionality is based, should be tested first in order to avoid or reduce un-
necessary re-execution of test cases if errors are discovered within that base func-
tionality. The ideal situation is to be able to identify and test this base information
first, and then after that test related functionality. These types of relationships can
be discovered based on dependencies between requirements. This issue is also re-
lated to regression tests, where related test cases are selected for re-execution
when errors are found and corrected. In that case, already tested functionality must
be tested again in order to ensure that the system functions the way it should and
did before the correction.

During testing, test cases are developed based on the requirements to ensure the
fulfillment of the requirements. Since requirements are related, knowledge about
requirements interdependencies certainly affects the ability to create purposeful
and complete test cases. Test cases are related to one or several requirements,
which means that requirements interdependencies are useful for deciding which
requirements should be grouped into one test case.

The interdependency types relevant in this situation are mainly requires and the
constrain category. However, it is also important to have a good structure and
overview of the requirements set which makes the structural category, foremost
the refined_to interdependency type important as well.

5.5 Research Issues

The topic of requirements interdependencies is fairly unexplored and diverse.
There are some parts where more research has been carried out, e.g. within re-
quirements interaction management and requirements conflict management, but
on the whole a substantial amount of additional research is needed in order to pro-
vide a comprehensive view of the area as such. More research is also needed into
interdependency-related problems and their solutions. This section introduces a re-
search agenda consisting of four major areas.

110 Dahlstedt and Persson

5.5.1 What is the Nature of Requirements Interdependencies?

Due to the fact that requirements interdependencies are fairly unexplored, there is
not much known about the phenomenon as such. There are many issues to con-
sider here. How frequently are requirements interdependent? Why are require-
ments interdependent and how exactly do they affect each other? Which type of
dependency is most common/frequent? Does our model of fundamental interde-
pendency types cover the most common relationships between requirements? We
believe that resolving these questions is essential for improving the understanding
of the nature of requirements interdependencies and in particular for developing
approaches to address the three issues identified below.

5.5.2 How can we Identify Requirements Interdependencies?

The problems within requirements interdependencies are not only concerned with
how to record and maintain links between related requirements. These relation-
ships must also be identified somehow. Some interdependencies may be easy to
identify when analyzing the requirements set, but there are interdependencies that
are more difficult to discover. In addition, it can also be difficult to identify how
requirements affect each other, especially when it comes to non-functional re-
quirements.

Another problem concerning identification is that interdependencies are not
necessarily static with respect to the software development life cycle. For exam-
ple, if a change is to be made to one requirement R1, this may not affect require-
ment R2, but in release planning, R1 may have an important impact on the cus-
tomer value of R2. The dynamics of requirements interdependencies is hence an
area for future research.

A potential risk with introducing the task of identifying requirements interde-
pendencies is that it could be seen as yet another task that has to be done within a
tight schedule within the software development process. A possible solution is to
combine this analysis with other existing activities, such as prioritization or in-
spections, in order to achieve benefits from work already performed (as in [5]).
We believe that this could be a sound starting point when an approach for identify-
ing requirements interdependencies is developed.

Work on using language tools to analyze requirements sets is presented in [25],
but only for identifying similarities between requirements (see also Chap. 10).
[26] has proposed a method for automatically recording traceability links and [5]
describes how to use pair-wise analysis of the requirements to discover interde-
pendencies. The later also discusses several alternatives how to decrease the time
required to carry out this analysis. These two approaches assume that the develop-
ers know how the requirements affect each other but none of them deals with dy-
namic dependencies. There is also a need for approaches focusing on how to ex-
plore the consequences of a particular interdependency type in a given situation,
i.e. how the requirements affect each other and not only that they affect each
other.

5 Requirements Interdependencies: State of the Art and Future 111

5.5.3 How can we Describe Requirements Interdependencies?

When the different relationships between requirements have been identified we
must also provide support for storing and managing them. A common problem in
current traceability tools is that they provide means to store a relationship between
requirements but they provide very little guidance regarding the semantics and in-
herent meaning and consequences of a relationship.

In order to develop an effective as well as efficient approach to storing and
managing requirements interdependencies, there are several issues that should be
addressed. Firstly, large amounts of interdependencies are difficult and time-
consuming to maintain. How can we develop an approach that scales up? Should
we delimit the amount of interdependencies? If so, should we focus on the most
critical ones, or the most critical requirements [30] or is better to bundle require-
ments and store relations between bundles? Also, how do we know which interde-
pendencies are most critical in different development situations and what is meant
by critical in various contexts? Secondly, there could be a need to store the
strength of the dependency, since the impact may be small or large [5, 30].
Thirdly, we must consider dynamic interdependencies. How can we show under
which conditions a dependency exists? Finally, the difficulties in choosing which
dependency type to use should also be addressed, e.g. by prioritizing the interde-
pendency types perhaps based on development situation.

This list of requirements for a tool supporting the management of interdepend-
encies must, of course, be elaborated. In fact, we have just scratched the surface of
the topic. A first step would be the evaluation of existing approaches which may
be suitable for storing and managing interdependencies. We would like to really
emphasize the need for improving way beyond the current trend towards using de-
pendency matrixes to store and manage interdependencies. Current traceability
matrix approaches lack support for specifying the nature of dependencies and pro-
vide poor visualization capabilities. Finally, it is not clear on which abstraction
level interdependencies should be described. In some situations it is relevant to re-
late autonomous requirements, in other situations it is more appropriate to bundle
requirements and to relate groups of requirements.

Requirements traceability research includes several alternative approaches for
recording and managing traceability links. One important research issue is to in-
vestigate which of these are suitable for recording and managing requirements in-
terdependencies. [5] presents one approach for describing requirements interde-
pendencies. This approach is built on visualization, which is considered to be an
important feature involved in this issue. It could also be relevant in this context to
look at other areas for new ideas. Goal modeling could be a potential area to in-
vestigate here (see e.g. [2, 3, 39] as well as Chap. 9 which discusses how goal
driven approach supports RE), since requirements could be considered to be low-
level goals.

112 Dahlstedt and Persson

5.5.4 How Do we Address Requirements Interdependencies in the Software
Development Process?

According to [30], literature and standards within requirements traceability pro-
vide few guidelines regarding what type of information must be captured and used
in what context. An important research issue is, therefore, to investigate what it
means in different contexts when stating that an inter-dependency exists. As indi-
cated by the literature, different types of interdependencies are important in differ-
ent development activities or as a basis for various decisions. Another important
research issue is to explore which types of interdependencies are critical to con-
sider in different situations. The first step towards this is to investigate which ac-
tivities are affected by requirements interdependencies (see Sect. 5.3 for a starting
point regarding this issue).

It has been suggested that management of interdependencies should be based
on strength rather than type [5]. We believe that selecting which interdependencies
to store and manage depends on several factors. The potential usage of the knowl-
edge about interdependencies is one relevant factor, i.e. what we need to know
when making various decisions and/or with respect to different development situa-
tions. Other factors are the strength of the dependencies, but also the criticality
and significance of the requirements [27].

5.5.5 Relations Between the Research Issues

The issues discussed above are, of course, related. For example, being able to dis-
cover and identify interdependencies is a prerequisite for having something to
store and manage. If we want to be able to effectively support the management of
interdependencies we need to understand how this knowledge should be used in,
development activities and decisions during software development. In order to
make the identification more efficient and effective we need to know more about
what we should identify, i.e. how interdependencies affect different development
situations. Therefore, we believe that there is no obvious starting point for re-
search among these three issues. There are, for example, ways to identify interde-
pendencies, but they could most likely be improved. However, it could be benefi-
cial to know more about what we should identify before we start this investigation.
On the other hand, if we had better techniques for exploring potential relationships
it would support the work of finding out more about what types of dependencies
there are. Addressing all three issues is hence essential, and improving the under-
standing of the very nature of requirements interdependencies is clearly a neces-
sity.

5 Requirements Interdependencies: State of the Art and Future 113

5.6 Summary

Most individual requirements, developed during the requirements engineering
(RE) process, cannot be treated in isolation during software development. Instead
they are related to and affect each other in complex manners. We call these rela-
tionships requirements interdependencies. The objective of this chapter is to pro-

vide an overview of this area, by synthesizing existing knowledge about the phe-

nomenon.

In this chapter we have identified requirements interdependences as being part
of a larger topic, namely requirements traceability. We have developed a model

describing the fundamental types of interdependencies, which can be used to de-

scribe how requirements relate to and affect each other. Dependencies between re-

quirements is not a problem per se, but interdependencies affect many decisions

and activities in the software development process, e.g. requirements manage-

ment, change management and impact analysis, release planning, reuse of compo-

nents and requirements, design and implementation, and testing. Failure to address

requirements interdependencies in these situations will most likely cause problems

in terms of poor functionality as well as budget and schedule overruns.

The topic of requirements interdependencies is fairly unexplored and diverse.

There are some parts where more research have been carried out, e.g. within re-

quirements interaction management and requirements conflict management, but

on the whole much more research is needed in order to provide a comprehensive

view of the area as such. More research is also needed into interdependency-

related problems and their solutions. More specifically, the main challenges for

the future are to understand the nature of requirements interdependencies and to

develop approaches that enable to identify, describe and effectively deal with them

in the software development process.

References

1. Briand LC, Labiche Y, O'Sullivan L (2003) Impact analysis and change management of
UML models. In: Proceedings of the International Conference on Software Mainte-
nance, Amsterdam, The Netherlands, pp.256 265

2. Bubenko jr., JA (1993) Extending the scope of information modeling. In: Proceedins of
4th International Workshop on the Deductive Approach to Information Systems and
Databases, Department de Llenguatges i Sistemes Informatics, Universitat Politecnica
de Catalunya, Report de Recerca LSI/93 25, Barcelona

3. Bubenko jr JA, Persson A, Stirna J (2001) User guide of the knowledge management ap-
proach using enterprise knowledge patterns. Deliverable D3, IST Programme project
HyperKnowledge - Hypermedia and Pattern Based Knowledge Management for Smart
Organisations, Project no. IST-2000-28401, Dept. of Computer and Systems Sciences,
Royal Institute of Technology, Stockholm, Sweden available on
http://www.dsv.su.se/~js/ekd_user_guide.html

114 Dahlstedt and Persson

4. Carlshamre P, Regnell B (2000) Requirements lifecycle management and release plan-
ning in market-driven requirements engineering processes. In: Proceedings of 2nd In-
ter-national Workshop on the Requirements Engineering Process, Greenwich, London,
pp.961-966

5. Carlshamre P, Sandahl K, Lindvall M, Regnell B, Natt och Dag J (2001) An industrial
survey of requirements interdependencies in software product release planning. In: Pro-
ceedings of the 5th International Symposium on Requirements Engineering, 27 31 Au-
gust, Toronto, Canada, pp. 84 91

6. Curtis B, Krasner H, Iscoe N (1988) A field study of the software design process for
large systems. Communications of the ACM, 31(11): 1268 1286

7. Dahlstedt ÅG (2004) Requirements interdependencies – Towards an understanding of
their nature and context of use. Licentiate thesis, Department of Computer and Systems
Science, Stockholm University/Royal Institute of Technology, Sweden

8. Dahlstedt ÅG, Persson A (2003a) Requirements interdependencies - Molding the state of
research into a research agenda. In: Proceedings of the 9th International Workshop on
Requirements Engineering: Foundation for Software Quality, Klagenfurt/Velden, Aus-
tria, pp. 71-80

9. Dahlstedt ÅG, Persson A (2003b) An overview of requirements interdependency types.
http://www.ida.his.se/ida/~asa/ReqInterdependencies.pdf.

10. Davis AM (1990) The analysis and specification of systems and software requirements.
Systems and Software Requirements Engineering, IEEE Computer Society Press,
pp.119 144

11. Dömges R, Pohl K (1998) Adapting traceability environment to project-specific needs.
Communication of the ACM, 41(12): 54 62

12. Gotel O (1995) Contribution structures for requirements traceability. PhD Thesis, De-
partment of Computing Imperial College of Science, Technology and Medicine, Uni-
versity of London

13. Gotel O, Finkelstein A (1994) An analysis of the requirements traceability problem. In:
Proceedings of the 1st international Conference on Requirements Engineering, Colo-
rado Springs, Colorado, USA, pp. 94 102

14. Gotel O, Finkelstein A (1997) Extended requirements traceability: Results of an indus-
trial case study. In: Proceedings of the 3rd International Symposium on Requirements
Engineering, Annapolis, MD, IEEE Computer Society Press, pp. 169 178

15. Grehag Å (2001) Requirements management in a life-cycle perspective - A position pa-
per. In: Proceedings of the 7th International Workshop on Requirements Engineering:
Foundation for Software Quality, Interlaken, Switzerland, pp.183 188

16. IEEE Standard 830 (1984): IEEE guide to software requirements specifications. Insti-
tute of Electrical and Electronics Engineers, New York, USA

17. Jarke M (1998) Requirements tracing. Communication of the ACM, 41(12): 32 36
18. Johnson WL, Feather MS, Harris DR (1991) Integrating domain knowledge, require-

ments and specifications. Journal of Systems Integration, 1: 283 320
19. Kaindl H (1993) The missing link in requirements engineering. ACM SIGSOFT Soft-

ware Engineering Notes, 18(2): 30 39
20. Karlsson J, Olsson S, Ryan K (1997) Improved practical support for large-scale re-

quirements prioritization. Requirements Engineering, 2(1): 51 60
21. Kirkman DP (1998) Requirements decomposition and traceability. Requirements Engi-

neering, 3(2): 107 114

5 Requirements Interdependencies: State of the Art and Future 115

22. Kotonya G, Sommerville I (1998) Requirements engineering – Processes and tech-
niques, John Wiley & Sons

23. Maciaszek LA (2001) Requirements analysis and system design – Developing informa-
tion systems with UML, Addison Wesley

24. Moran TP, Carroll JM (1996) Design rationale concepts, techniques, and use. Lawrence
Erlbaum Associates, Publisher, Mahwah, New Jersey

25. Natt och Dag J, Regnell B, Carlshamre P, Andersson M, Karlsson J (2002) A feasibility
study of automated natural language requirements analysis in market-driven develop-
ment, Requirements Engineering, 7(1): 20 33

26. Pohl K (1996) Process-centered requirements engineering, John Wiley & Sons Inc.
27. Ramesh B (1998) Factors influencing requirements traceability practice. Communica-

tions of the ACM, 41(12): 37 44
28. Ramesh B, Dhar V (1992) Supporting systems development by capturing deliberations

during requirements engineering, IEEE Transactions on Software Engineering, 18(6):
498 510

29. Ramesh B, Edwards M (1993) Issues in the development of a requirements traceability
model. In: Proceedings of the IEEE International Symposium on Requirements Engi-
neering, San Diego, California, USA, pp. 256 259

30. Ramesh B, Jarke M (2001) Toward reference models for requirements traceability.
IEEE Transactions on Software Engineering, 27(1): 58 93

31. Ramesh B, Powers T, Stubbs C, Edwards M (1995) Implementing requirements trace-
ability: A case study. In: Proceedings of the 2nd International Symposium on Require-
ments Engineering, York, England, pp. 89 93

32. Ramesh B, Stubbs C, Powers T, Edwards M (1997) Requirements traceability: Theory
and Practice. Annals of Software Engineering, 3: 397 415

33. Regnell B, Paech B, Aurum A, Wohlin C, Dutoit A, Natt och Dag J. (2001) Require-
ments mean decisions! – Research issues for understanding and supporting decision-
making in requirements engineering. In: Proceedings of 1st Swedish Conference on
Software Engineering Research and Practice (SERP’01), October 25 26, Ronneby,
Sweden

34. Robertson S, Robertson J. (1999) Mastering the requirements process, Addison-Wesley
35. Robinson WN, Pawlowski SD, Volkov V (2003) Requirements interaction manage-

ment. ACM Computing Surveys, 35(2): 132 190
36. Sommerville I (1996) Software engineering, Addison-Wesley, UK
37. von Knethen A, Grund M (2003) QuaTrace: A tool environment for (semi-) automatic

impact analysis based on traces. In: Proceedings of the International Conference on
Software Maintenance, Amsterdam, The Netherlands, pp. 246 255

38. von Knethen A, Peach B, Kiedaisch F, Houdek F (2002) Systematic requirements recy-
cling through abstraction and traceability. In: Proceedings of IEEE Joint International
Conference on Requirements Engineering, 9-13 September, Essen, Germany,
pp.273 281

39. Yu E (1995) Modeling strategic relationships for process reengineering. Ph.D thesis,
Department of Computer Science, University of Toronto, Canada

116 Dahlstedt and Persson

Author Biography

Åsa G. Dahlstedt is a Ph.D. Student at the University of Skövde. Her research in-
terests are within the area of Requirements Engineering, with a focus on how re-
quirements are related to and affect each other as well as how that influences the
software development work e.g. regarding release planning and testing. She is cur-
rently working on her Ph.D. thesis related to this issue.

Anne Persson is a senior lecturer in Information Systems Engineering at the Uni-
versity of Skövde. She holds an MSc in computation from the University of Man-
chester Institute of Science and Technology (UMIST), UK, a licentiate and a PhD
in computer and systems science from Stockholm University. Research areas in-
clude Enterprise Modeling, Requirements Engineering and methods for Informa-
tion Systems Engineering.

6 Impact Analysis

Per Jönsson and Mikael Lindvall

Abstract: Software changes are necessary and inevitable in software develop-
ment, but may lead to software deterioration if not properly controlled. Impact
analysis is the activity of identifying what needs to be modified in order to make a
change, or to determine the consequences on the system if the change is imple-
mented. Most research on impact analysis is presented and discussed in literature
related to software maintenance. In this chapter, we take a different approach and
discuss impact analysis from a requirements engineering perspective. We relate
software change to impact analysis, outline the history of impact analysis and pre-
sent common strategies for performing impact analysis. We also mention the ap-
plication of impact analysis to non-functional requirements and discuss tool sup-
port for impact analysis. Finally, we outline what we see as the future of this
essential change management tool.

Keywords: Impact analysis, Software change, Traceability analysis, Propagation
of change, Non-functional requirements, Metrics.

6.1 Introduction

It is widely recognized that change is an inescapable property of any software, for
a number of reasons. However, software changes can, and will, if not properly
controlled, lead to software deterioration. For example, when Mozilla’s 2,000,000
Source Lines of Code (SLOC) were analyzed, there were strong indications that
the software had deteriorated significantly due to uncontrolled change, making the
software very hard to maintain [17].

Software deterioration occurs in many cases because changes to software sel-
dom have the small impact they are believed to have [40]. In 1983, some of the
world’s most expensive programming errors each involved the change of a single
digit in a previously correct program [38], indicating that a seemingly trivial
change may have immense impact. A study in the late 90s showed that software
practitioners conducting impact analysis and estimating change in an industrial
project underestimated the amount of change by a factor of three [26]. In addition,
as software systems grow increasingly complex, the problems associated with
software change increase accordingly. For example, when the source code across
several versions of a 100,000,000 SLOC, fifteen-year-old telecom software system
was analyzed, it was noticed that the system had decayed due to frequent change.
The programmers estimating the change effort drew the conclusion that the code
was harder to change than it should be [13].

Impact analysis is a tool for controlling change, and thus for avoiding deteriora-
tion. Bohner and Arnold define impact analysis as “the activity of identifying the

118 Jönsson and Lindvall

potential consequences, including side effects and ripple effects, of a change, or
estimating what needs to be modified to accomplish a change before it has been
made” [3]. Consequently, the output from impact analysis can be used as a basis
for estimating the cost associated with a change. The cost of the change can be
used to decide whether or not to implement it depending on its cost/benefit ratio.

Impact analysis is an important part of requirements engineering since changes
to software often are initiated by changes to the requirements. In requirements en-
gineering textbooks, impact analysis is recognized as an essential activity in
change management, but details about how to perform it often left out, or limited
to reasoning about the impact of the change on the requirements specification [20,
23, 27, 32, 35]. An exception is [40], where Wiegers provides checklists to be
used by a knowledgeable developer to assess the impact of a change proposal.

Despite its natural place in requirements engineering, research about impact
analysis is more commonly found in literature related to software maintenance. In
this chapter, we present impact analysis from a requirements engineering perspec-
tive. In our experience, impact analysis is an integral part of every phase in soft-
ware development. During requirements development, design and code do not yet
exist, so new and changing requirements affect only the existing requirements.
During design, code does not yet exist, so new and changing requirements affect
only existing requirements and design. Finally, during implementation, new and
changing requirements affect existing requirements as well as design and code.
This is captured in Fig. 6.1. Note that in less idealistic development processes, the
situation still holds; requirements changes affect all existing system representa-
tions.

Fig. 6.1 Software life-cycle objects (SLOs) affected (right) due to requirements changes in
different phases (left)

The chapter is organized as follows. In the remainder of this section, we define
concepts, discuss software change and outline the history of impact analysis. In
Sect. 6.2, we present common strategies for impact analysis. Sect. 6.3 discusses
impact analysis in the context of non-functional requirements. We explore a num-
ber of metrics for impact analysis and give an example of an application of such
metrics in Sect. 6.4. In Sect. 6.5, we look at tool support for impact analysis and
discuss impact analysis in requirements management tools. Finally we outline the
future of impact analysis in Sect. 6.6 and provide a summary of the chapter in
Sect. 6.7.

6 Impact Analysis 119

6.1.1 Concepts and Terms

Throughout this chapter, we use several terms and concepts that are relevant in the
field of impact analysis. In this section, we briefly visit these terms and concepts,
and explain how each relates to impact analysis and to other terms and concepts.

Software life-cycle objects (SLOs also called software products, or working
products) are central to impact analysis. An SLO is an artifact produced during a
project, such as a requirement, an architectural component, a class and so on.
SLOs are connected to each other through a web of relationships. Relationships
can be both between SLOs of the same type, and between SLOs of different types.
For example, two requirements can be interconnected to signify that they are re-
lated to each other. A requirement can also be connected to an architectural com-
ponent, for example, to signify that the component implements the requirement.

Impact analysis is often carried out by analyzing the relationships between
various entities in the system. We distinguish between two types of analysis: de-
pendency analysis and traceability analysis [3]. In dependency analysis, detailed
relationships among program entities, for example variables or functions, are ex-
tracted from source code. Traceability analysis, on the other hand, is the analysis
of relationships that have been identified during development among all types of
SLOs. Traceability analysis is thus suitable for analyzing relationships among re-
quirements, architectural components, documentation and so on. Requirements
traceability is defined and discussed in Chap. 5. It is evident that traceability
analysis has a broader application within requirements engineering than depend-
ency analysis; it can be used in earlier development phases and can identify more
diverse impact in terms of different SLO types.

It is common to deal with sets of impact in impact analysis. The following sets
have been defined by Arnold and Bohner [3]:

The System Set represents the set of all SLOs in the system – all the other sets
are subsets of this set.
The Starting Impact Set (SIS) represents the set of objects that are initially
thought to be changed. The SIS typically serves as input to impact analysis ap-
proaches that are used for finding the Estimated Impact Set.
The Estimated Impact Set (EIS) always includes the SIS and can therefore be
seen as an expansion of the SIS. The expansion results from the application of
change propagation rules to the internal object model repeatedly until all ob-
jects that may be affected are discovered. Ideally, the SIS and EIS should be the
same, meaning that the impact is restricted to what was initially thought to be
changed.
The Actual Impact Set (AIS), finally, contains those SLOs that have been af-
fected once the change has been implemented. In the best-case scenario, the
AIS and EIS are the same, meaning that the impact estimation was perfect.

In addition to the impact sets, two forms of information are necessary in order to
determine the impact of a change: information about the dependencies between
objects, and knowledge about how changes propagate from object to object via
dependencies and traceability links. Dependencies between objects are often cap-

120 Jönsson and Lindvall

tured in terms of references between them (see Chap. 5). Knowledge about how
change propagates from one object to another is often expressed in terms of rules
or algorithms.

It is common to distinguish between primary and secondary change. Primary
change, also referred to as direct impact, corresponds to the SLOs that are identi-
fied by analyzing how the effects of a proposed change affect the system. This
analysis is typically difficult to automate because it is mainly based on human ex-
pertise. Consequently, little can be found in the literature about how to identify
primary changes. It is more common to find discussions on how primary changes
cause secondary changes, also referred to as indirect impact.

The indirect impact can take two forms: Side effects are unintended behaviors
resulting from the modifications needed to implement the change. Side effects af-
fect both the stability and function of the system and must be avoided. Ripple ef-
fects, on the other hand, are effects on some parts of the system caused by making
changes to other parts. Ripple effects cannot be avoided, since they are the conse-
quence of the system’s structure and implementation. They must, however, be
identified and accounted for when the change is implemented.

We have previously mentioned architectural components as an example of
SLOs. The software architecture of a system is its basic structure, consisting of in-
terconnected components. There are many definitions of software architecture, but
a recent one is “the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and the relationships
among them” [2]. Several other definitions exist as well (see [34]), but most echo
the one given here. Software architecture is typically designed early in the project,
hiding low-level design and implementation details, and then iteratively refined as
the knowledge about the system grows [10]. This makes architecture models inter-
esting from a requirements engineering and impact analysis point-of-view, be-
cause they can be used for early, albeit initially coarse, impact analysis of chang-
ing requirements.

6.1.2 Software Change and Impact Analysis

Software change occurs for several reasons, for example, in order to fix faults, to
add new features or to restructure the software to accommodate future changes
[28]. Changing requirements is one of the most significant motivations for soft-
ware change. Requirements change from the point in time when they are elicited
until the system has been rendered obsolete. Changes to requirements reflect how
the system must change in order to stay useful for its users and remain competitive
on the market. At the same time, such changes pose a great risk as they may cause
software deterioration. Thus, changes to requirements must be captured, managed
and controlled carefully to ensure the survival of the system from a technical point
of view. Factors that can inflict changes to requirements during both initial devel-
opment as well as in software evolution are, according to Leffingwell and Widrig
[23]:

6 Impact Analysis 121

The problem that the system is supposed to solve changes, for example for eco-
nomic, political or technological reasons.
The users change their minds about what they want the system to do, as they
understand their needs better. This can happen because the users initially were
uncertain about what they wanted, or because new users enter the picture.
The environment in which the system resides changes. For example, increases
in speed and capacity of computers can affect the expectations of the system.
The new system is developed and released leading users to discover new re-
quirements.

The last factor is both real and common. When the new system is released, users
realize that they want additional features, that they need data presented in other
ways, that there are emerging needs to integrate the system with other systems,
and so on. Thus, new requirements are generated by the use of the system itself.
According to the “laws of software evolution” [24], a system must be continually
adapted, or it will be progressively less satisfactory in its environment.

Problems arise if requirements and changes to requirements are not managed
properly by the development organization [23]. For example, failure to ask the
right questions to the right people at the right time during requirements develop-
ment will most likely lead to a great number of requirements changes during sub-
sequent phases. Furthermore, failure to create a practical change management
process may mean that changes cannot be timely handled, or that changes are im-
plemented without proper control.

Maciaszek points out: “Change is not a kick in the teeth, unmanaged change is”
[27]. In other words, an organization that develops software requires a proper
change management process in order to mitigate the risks of constantly changing
requirements and their impact on the system. Leffingwell and Widrig discuss five
necessary parts of a process for managing change [23]. These parts, depicted in
Fig. 6.2, form a framework for a change management process allowing the project
team to manage changes in a controlled way.

Fig. 6.2 Change management process framework [23]

Plan for change involves recognizing the fact that changes occur, and that they
are a necessary part of the system’s development. This preparation is essential for
changes to be received and handled effectively.

Baseline requirements means to create a snapshot of the current set of require-
ments. The point of this step is to allow subsequent changes in the requirements to
be compared with a stable, known set of requirements.

A single channel is necessary to ensure that no change is implemented in the
system before it has been scrutinized by a person, or several persons, who keep the

122 Jönsson and Lindvall

system, the project and the budget in mind. In larger organizations, the single
channel is often a change control board (CCB).

A change control system allows the CCB (or equivalent) to gather, track and as-
sess the impact of changes. According to Leffingwell and Widrig, a change must
be assessed in terms of impact on cost and functionality, impact on external stake-
holders (for example, customers) and potential to destabilize the system. If the lat-
ter is overlooked, the system (as pointed out earlier) is likely to deteriorate.

To manage hierarchically defeats a perhaps too common line of action: a
change is introduced in the code by an ambitious programmer, who forgets, or
overlooks, the potential effect the change has on test cases, design, architecture,
requirements and so on. Changes should be introduced top-down, starting with the
requirements. If the requirements are decomposed and linked to other SLOs, it is
possible to propagate the change in a controlled way.

This framework for the change process leaves open the determination of an ac-
tual change process. Requirements engineering textbooks propose change man-
agement processes with varying levels of detail and explicitness [27, 32, 35]. The
process proposed by Kotonya and Sommerville is, however, detailed and consists
of the following steps [20]:

1. Problem analysis and change specification
2. Change analysis and costing, which in turn consists of:

1. Check change request validity
2. Find directly affected requirements
3. Find dependent requirements
4. Propose requirements changes
5. Assess costs of change
6. Assess cost acceptability

3. Change implementation

Impact analysis is performed in steps 2b, 2c and 2e, by identifying requirements
and system components affected by the proposed change. The analysis should be
expressed in terms of required effort, time, money and available resources.
Kotonya and Sommerville suggest the use of traceability tables to identify and
manage dependencies among requirements, and between requirements and design
elements. We discuss traceability as a strategy for performing impact analysis in
Sect. 6.2.1.1.

6.1.3 History and Trends

In some sense, impact analysis has been performed for a very long time, albeit not
necessarily using that term and not necessarily resolving the problem of accurately
determining the effect of a proposed change. The need for software practitioners
to determine what to change in order to implement requirement changes has al-
ways been present. Strategies for performing impact analysis were introduced and
discussed early in the literature. For example, Haney’s paper from 1972 on a tech-
nique for module connection analysis is often referred to as the first paper on im-

6 Impact Analysis 123

pact analysis [18]. The technique builds on the idea that every module pair of a
system has a probability that a change in one module in the pair necessitates a
change in the other module. The technique can be used to model change propaga-
tion between any system components including requirements. Program slicing,
which is a technique for focusing on a particular problem by retrieving executable
slices containing only the code that a specific variable depends on, was introduced
already in 1979 by Weiser [39]. Slicing, which is explained in Sect. 6.2.1.2, can be
used to determine dependencies in code and can be used to minimize side effects.
Slicing can also be used to determine dependencies between sections in docu-
ments, including requirements, which is described below. Requirements traceabil-
ity was defined in ANSI/IEEE Standard 830-1984 in 1984 [1]. Traceability de-
scribes how SLOs are related to each other and can be used to determine how
change in one type of artifact causes change in another type of artifact. The notion
of ripple effect was introduced by Yau and Collofello in 1980 [41]. Their models
can be used to determine how change in one area of the source code propagates
and causes change in other areas.

Impact analysis relies on techniques and strategies that date back a long time. It
is however possible to identify a trend in impact analysis research over the years.
Early impact analysis work focused on source code analysis, including program
slicing and ripple effects for code. The maturation of software engineering among
software organizations has led to a need to understand how changes affect other
SLOs than source code.

For example, Turver and Munro [37] point out that source code is not the only
product that has to be changed in order to develop a new release of the software
product. In a document-driven development approach, many documents are also
affected by new and changed requirements. The user manual is an example of a
document that has to be updated when new user functionalities have been pro-
vided. Turver and Munro focus on the problem of ripple effects in documentation
using a thematic slicing technique. They note that this kind of analysis has not
been widely discussed before. The same approach can be applied to the require-
ments document itself in order to determine how a new or changed requirement
impacts the requirements specification.

In 1996, Arnold and Bohner published a collection of research articles called
Software Change Impact Analysis [3]. The purpose of the collection was to pre-
sent the current, somewhat scattered, material that was available on impact analy-
sis at the time. Reading the collection today, nearly ten years later, it becomes ap-
parent that it still is very relevant. Papers published after 1996 seem to work with
the same ideas and techniques. We do not mean to depreciate the work that has
been done, but it indicates that the field is not in a state of flux. Rather, the focus
remains on adapting existing techniques and strategies to new concepts and in new
contexts. Impact analysis on the architectural level is an example of this.

When the year 2000 approached, the Y2K problem made it obvious that exten-
sive impact analysis efforts were needed in order to identify software and parts of
software that had to be changed to survive the century shift. This served as a reve-
lation for many organizations, in which the software process previously had not
included explicit impact analysis [4].

124 Jönsson and Lindvall

Today, software systems are much more complex than they were 25 years ago,
and it has become very difficult to grasp the combined implications of the re-
quirements and their relationships to architecture, design, and source code. Thus, a
need for impact analysis strategies that employ requirements and their relation-
ships to other SLOs has developed. Still, dependency webs for large software sys-
tems can be so complex that it is necessary to visualize them in novel ways.
Bohner and Gracanin present research that combines impact analysis and 3D visu-
alization in order to display dependency information in a richer format than is pos-
sible with 2D visualization [5]. Bohner also stresses the need to extend impact
analysis to middleware, COTS software and web applications. The use of these
types of software is becoming more common, moving the complexity away from
internal data and control dependencies to interoperability dependencies. Current
impact analysis strategies are not very well suited for this type of dependencies
[4].

6.2 Strategies for Impact Analysis

There are various strategies for performing impact analysis, some of which are
more germane to the requirements engineering process than others. Common
strategies are:

Analyzing traceability or dependency information
Utilizing slicing techniques
Consulting design specifications and other documentation
Interviewing knowledgeable developers

We divide these impact analysis strategies into two categories: automatable and
manual. With automatable strategies, we mean those that are in some sense algo-
rithmic in their nature. These have the ability to provide very fine-grained impact
estimation in an automated fashion, but require on the other hand the presence of a
detailed infrastructure and result at times in too many false positives [30]. With
manual strategies, we mean those that are best performed by human beings (as op-
posed to tools). These require less infrastructure, but may be coarser in their im-
pact estimation than the automatable ones. We recognize that the two categories
are not entirely orthogonal, but they do make an important distinction; the manual
strategies are potentially easier to adopt and work with because they require less
structured input and no new forms of SLOs need to be developed.

A previous study indicated that developers’ impact analyses often result in op-
timistic predictions [26], meaning that the predicted set of changes represents the
least possible amount of work. Thus, the work cannot be easier, only more diffi-
cult. The study also identified the need for conservative predictions and establish-
ing a “worst level” prediction. The real amount of work will lie between the opti-
mistic and the conservative level. An improvement goal would be to decrease
variation as the impact analysis process stabilizes and becomes more mature.

6 Impact Analysis 125

The cost associated with producing a conservative prediction depends on its ex-
pected accuracy. Since conservative predictions identify such a large part of the
system, developers often cannot believe they are realistic. The benefit of having a
conservative prediction is the ability to determine a most probable prediction
somewhere between the optimistic and the conservative prediction. An ideal im-
pact analysis approach would always provide an optimistic and a conservative es-
timate. By collecting and analyzing empirical data from the predictions as well as
the actual changes, it can be established where in that span the correct answer lies.

6.2.1 Automatable Strategies

Automatable impact analysis strategies often employ algorithmic methods in order
to identify change propagation and indirect impact. For example, relationship
graphs for requirements and other SLOs can be used with graph algorithms to
identify the impact a proposed change would have on the system. The prerequisite
for automatable strategies is a structured specification of the system. By struc-
tured, we mean that the specification is consistent and complete, and includes
some semantic information (for example, type of relationship). Once in place,
such a specification can be used by tools in order to perform automatic impact
analysis. Requirements dependency webs and object models are examples of
structured specifications.

The strategies presented here, traceability and dependency analysis and slicing,
are typically used to assess the Estimated Impact Set by identifying secondary
changes made necessary because of primary changes to the system. They are not
well suited for identifying direct impact.

6.2.1.1 Traceability/Dependency Analysis
Traceability analysis and dependency analysis both involve examining relation-
ships among entities in the software. They differ in scope and detail level; trace-
ability analysis is the analysis of relationships among all types of SLOs, while de-
pendency analysis is the analysis of low-level dependencies extracted from source
code [3]. Requirements traceability is discussed further in Chap. 5.

By extracting dependencies from source code, it is possible to obtain call
graphs, control structures, data graphs and so on. Since source code is the most
exact representation of the system, any analysis based on it can very precisely pre-
dict the impact of a change. Dependency analysis is also the most mature strategy
for impact analysis available [3]. The drawback of using source code is that it is
not available until late in the project, which makes dependency analysis narrow in
its field of application. When requirements traceability exists down to the source,
it can, however, be very efficient to use source code dependencies in order to de-
termine the impact of requirements changes. A drawback is that very large sys-
tems have massive amounts of source code dependencies, which make the de-
pendency web difficult to both use and to get an overview of [5].

Traceability analysis also requires the presence of relationship links between the
SLOs that are analyzed. Typically, these relationships are captured and specified

126 Jönsson and Lindvall

progressively during development (known as pre-recorded traceability). The suc-
cess of traceability analysis depends heavily on the completeness and consistency
of the identified relationships. However, if traceability information is properly re-
corded from the beginning of development, the analysis can be very powerful.

A common approach for recording traceability links is to use a traceability ma-
trix (see, for example, [20], [23] and [40]). A traceability matrix is a matrix where
each row, and each column, corresponds to one particular SLO, for example a re-
quirement. The relationship between two SLOs is expressed by putting a mark
where the row of the first SLO and the column of the second SLO intersect. It is
also possible to add semantic information to the relationship between SLOs. For
example, the relationship between a requirement and an architectural component
can be expanded to include information about whether the component implements
the requirement entirely, or only partially.

Fig. 6.3 Three views of the relationships among SLOs

Ramesh and Jarke report that current requirement practices do not fully embrace
the use of semantic information to increase the usefulness of relationships between
SLOs [31]. A relationship stating that two SLOs affect each other but not how,
will be open to interpretation by all stakeholders. According to Ramesh and Jarke,
different stakeholders interpret relationships without semantic information in dif-
ferent ways. For example, a user may read a relationship as “implemented-by,”
while a developer may read the same relationship as “puts-constraints-on.”

To further illustrate the need for semantics in traceability links, we have created
an example with six interconnected SLOs. Figure 6.3 shows the SLOs in a con-
nectivity graph (left), where an arrow means that the source SLO affects the desti-
nation SLO. For example, SLO 2 affects, or has an impact on, SLO 1 and SLO 4.

The connectivity graph corresponds exactly to a traceability matrix, shown next
in the figure. An arrow in the traceability matrix indicates that the row SLO af-
fects the column SLO. Both the connectivity graph and the traceability matrix
show direct impact, or primary change needed, whereas indirect impact, or secon-
dary change needed, can only be deduced by traversing the traceability links. For
systems with many SLOs, the amount of indirect impact quickly becomes im-
mense and hard to deduce from a connectivity graph or a traceability matrix. In
order to better visualize indirect impact, the traceability matrix can be converted

6 Impact Analysis 127

into a reachability matrix, using a transitive closure algorithm1. The reachability
matrix for our example is also in Fig. 6.3, showing that all SLOs eventually have
impact on every other SLO. Consequently, the reachability matrix for this exam-
ple is of limited use for assessing indirect impact. Bohner points out that this prob-
lem is common in software contexts, unless some action is taken to limit the range
of indirect impact [4].

One way of limiting the range of indirect impact is to add distances to the reach-
ability matrix. By doing so, it becomes possible to disregard indirect impacts with
distances above a predefined threshold. This is a simple addition to the normal
creation of reachability matrices, but it fails to address the fact that different types
of traceability relationships may affect the range of indirect impact differently.
Another solution is to equip the traceability matrix with traceability semantics and
adjust the transitive closure algorithm to take such information into account. The
algorithm should consider two SLOs reachable from each other only if the trace-
ability relationships that form the path between them are of such types that are ex-
pected to propagate change.

Traceability analysis is useful in requirements engineering, which we view as an
activity performed throughout the entire software lifecycle. Initially, traceability
links can only be formed between requirements, but as design and implementation
grow, links can be created from requirements to other SLOs as well.

6.2.1.2 Slicing Techniques
Slicing attempts to understand dependencies using independent slices of the pro-
gram [16]. The program is sliced into a decomposition slice, which contains the
place of the change, and the rest of the program, a complement slice. Slicing is
based on data and control dependencies in the program. Changes made to the de-
composition slice around the variable that the slice is based on are guaranteed not
to affect the complement slice. Slicing limits the scope for propagation of change
and makes that scope explicit. The technique is, for example, used by Turver and
Munro [37] for slicing of documents in order to account for ripple effects as a part
of impact analysis. Shahmehri et al. [33] apply the technique to debugging and
testing. Pointer-based languages like C++ are supported through the work of Tip
et al. and their slicing techniques for C++ [36]. Slicing tools are often based on
character-based presentation techniques, which can make it more difficult to ana-
lyze dependencies, but visual presentation of slices can be applied to impact
analysis as shown by Gallagher [15].

Architectural slicing was introduced by Zhao [42], and is similar to program
slicing in that it identifies one slice of the architecture that is subject to the pro-
posed change, and one that is not. As opposed to conventional program slicing, ar-
chitectural slicing operates on the software architecture of a system. As such, it
can be employed in early development, before the code has been written. The
technique uses a graph of information flows in order to trace those components
that may be affected by the component being changed. In addition, those compo-

1 The transitive closure of a graph is a graph where an edge is added between nodes A and

B if it is possible to reach B from A in the original graph.

128 Jönsson and Lindvall

nents that may affect the component being changed are also identified. This means
that there must be a specification of the architecture that exposes all the informa-
tion flows that it contains.

Slicing techniques can be useful in requirements engineering to isolate the im-
pact of a requirements change to a specific part of the system. In order to provide
a starting point for the slicing technique, the direct impact of the change must first
be assessed.

6.2.2 Manual Strategies

Manual impact analysis strategies do not depend as heavily on structured specifi-
cations as their automatable counterparts do. Consequently, there is a risk that they
are less precise in their predictions of impact. On the other hand, they may be eas-
ier to introduce in a change management process and are, in our experience, com-
monly employed in industry without regard to their precision.

The strategies presented here, using design documentation and interviewing, are
primarily used for assessing the Starting Impact Set by identifying direct impact.
The identification of secondary impact is possible, but is better handled by auto-
matable strategies. Note that manual strategies, like the ones described here, can
be used to capture traceability links between SLOs to be used in traceability
analysis.

6.2.2.1 Design Documentation
Design documentation comes in many different forms, for example as architecture
sketches, view-based architecture models, object-oriented UML diagrams, textual
descriptions of software components and so on. The quality of design documenta-
tion depends on the purpose for which it was written, the frequency with which it
is updated, and the information it contains. It is far too common in industry that
design documentation is written early in a project only to become shelfware, or
that the documentation is written after the project, just for the sake of writing it.
To perform impact analysis and determine how a new or changed requirement af-
fect the system based on design documentation requires the documentation to be
up-to-date and consistent with any implementation made so far. In addition, a pre-
requisite for using design documentation to assess direct impact is the possibility
of relating requirements to design SLOs found in the documentation. The success
and precision of this activity depends on a number of factors:

The knowledge and skills of the persons performing the analysis. Persons with
little insight into the system will most likely have problems pinpointing the im-
pact of changed requirements in the system.
The availability of the documentation. Documentation that is “hidden” in per-
sonal computers or stored in anonymous binders may be overlooked in the
analysis.
The amount of information conveyed in the documentation. Simple design
sketches are common, but fail to express the semantics in connections between

6 Impact Analysis 129

classes or architectural components. Ill-chosen naming schemes or inconsistent
notation makes the analysis task arduous.
Clear and consistent documentation. Ambiguous documentation is open for in-
terpretation, meaning, for example, that the impact of a proposed change is
coupled with great uncertainty, simply because another interpretation would
have yielded different impact.

If the factors above have been taken into account, impact analysis of a require-
ments change can be performed by identifying the design SLOs that implement or
in any other way depend on the requirements affected by the change. Additional
measures that can be taken in order to alleviate the impact analysis effort are:

Keep a design rationale. A design rationale is documentation describing why
decisions are made the way they are. Bratthall et al. performed an experiment
on the effect of a design rationale when performing impact analysis [7]. The re-
sults from the experiment suggest that a design rationale in some cases can
shorten the time required for impact analysis, and increase the quality of the
analysis.
Estimate impact of requirements as soon as the requirements are developed.
The estimated impact is necessarily coarse to begin with, but can be improved
incrementally as knowledge about the system increases.

Of course, structured design documentation can also be used with traceability
analysis (see Sect. 6.2.1.1) to identify indirect impact. For example, Briand et al.
propose a method for performing impact analysis in UML models, where they use
a transitive closure algorithm to find indirect impacts in the models [8]. They do
point out, however, the essential criterion that the UML models are updated as the
system undergoes changes.

6.2.2.2 Interviews
Interviewing knowledgeable developers is probably the most common way to ac-
quire information about likely effects of new or changed requirements according
to a study on impact analysis [25]. The study found that developers perceive it as
highly cost-effective to ask a knowledgeable person instead of searching in docu-
ments or other forms of information sources. Extensive communication between
developers was also mentioned by developers as a success factor for software de-
velopment projects. Analysis of source code was the second most common way of
acquiring information about the likely impact of new or changed requirements.
While all developers said they interviewed other developers and consulted source
code, about half of the developers answered that they also consulted information,
such as use-case models and object models, stored in the CASE tool in use. When
asked why information in object models was not used more extensively, the de-
velopers answered that the information in object models was not detailed enough
for impact analysis. In addition, they did not believe that the information in the
models was up-to-date. “Source code, on the other hand, is always up-to-date.”
Among some developers, especially newcomers, the attitude towards using object
models as the basis for determining change as an effect of new or changed re-

130 Jönsson and Lindvall

quirements was less than positive. Object models (and the particular CASE tool
that was used) were, however, mentioned as a good tool for documenting impact
analysis and for answering questions about the relation between requirements and
design objects using the support for traceability links.

6.3 Non-Functional Requirements

Requirements are often divided into functional and non-functional requirements.
Non-functional requirements, or quality requirements, are those requirements
“which are not specifically concerned with the functionality of the system” [20].
Non-functional requirements are often harder to deal with than functional ones,
because their impact is generally not localized to one part of the system, but cuts
across the whole system.

A non-functional requirement that, for example, relates to and calls for high se-
curity, often requires fundamental support in the software architecture, as it may
constrain data access, file management, database views, available functionality
and so on. Changes to functional requirements may also affect non-functional re-
quirements. For example, if a change involves replacing a data transfer protocol to
one that is more data intensive, overall system performance may be degraded. One
approach for dealing with non-functional requirements is to convert them into one
or more functional requirements [6]. For example, a requirement stating that “no
unauthorized person should be allowed access to the data” may be broken down
into the more tangible requirements “a user must log into the system using a pass-
word” and “the user’s identity must be verified against the login subsystem upon
data access.” Not all non-functional requirements can be converted in this way,
however, which means that changes to them still have system-wide impact. Unfor-
tunately, most impact analysis techniques deal exclusively with changes that can
be initially pinpointed to a specific component, class or the like.

Lam and Shankararaman stress the distinction between functional impact analy-
sis and quality impact analysis, i.e. impact analysis for functional and quality re-
quirements, respectively [21]. They suggest the use of Quality Function Deploy-
ment (QFD) for dealing with changes to both functional and non-functional
requirements. In QFD, a matrix connecting customer requirements with design
features is constructed. A change to a requirement can be mapped to design fea-
tures through the QFD matrix.

Cleland-Huang et al. accomplish performance-related impact analysis through
event-based traceability [9]. In their approach, requirements are interconnected as
event publishers to subscribing performance models. Whenever a change to a re-
quirement is proposed, the relevant performance models are re-calculated. The re-
sulting impact analysis is subsequently compared to constraints in the require-
ments specification. If several requirements are linked to the same performance
model, they will all be verified against the impact analysis.

6 Impact Analysis 131

Fig. 6.4 Measuring impact using metrics

The impact of non-functional requirements is commonly dealt with in software
architecture evaluation. Bosch has created a software architecture design method
with a strong focus on non-functional requirements [6]. In the method, an initially
functional architecture is progressively transformed until it is capable of meeting
all non-functional requirements posed on the system. Parts of the method lend
themselves well to impact analysis, since they deal with the challenge of assessing
the often system-wide impact that non-functional requirements have. For most op-
erational non-functional attributes (for example performance and reliability), a
profile consisting of usage scenarios, describing typical uses of the system-to-be is
created. The scenarios within the profile are assigned relative weights, in accor-
dance with their frequency or probable occurrence. In scenario-based assessment,
an impact analysis is performed by assessing the architectural impact of each sce-
nario in the profile. For performance, the impact may be expressed as execution
time, for example. Based on the impact and the relative weights of the scenarios, it
is possible to calculate overall values (for example, throughput and execution
time) for the quality attribute being evaluated. These values can be compared to
the non-functional requirements corresponding to the quality attribute, in order to
see whether they are met or not. Furthermore, they serve as constraints on the ex-
tent to which non-functional requirements can change before an architectural reor-
ganization is necessary. Also, should a functional requirement change, it is possi-
ble to incorporate the change in a speculative architecture, re-calculate the impact
of the scenarios in the scenario profile, and see whether the non-functional re-
quirements are still met or not.

6.4 Impact Analysis Metrics

Metrics are useful in impact analysis for various reasons. They can, for example,
be used to measure and quantify change caused by a new or changed requirement
at the point of the impact analysis activity. Metrics can also be used to evaluate the
impact analysis process itself once the changes have been implemented. This is il-
lustrated in Fig. 6.4, in which two measure points are depicted; one after the re-
quirements phase has ended and design is about to start, and one when testing has
been completed. Using these measure points, one can capture the predicted impact

132 Jönsson and Lindvall

(the first point) and compare it to the actual impact (the second point). This kind
of measurement is crucial for being able to do an analysis and learn from experi-
ences in order to continuously improve the impact analysis capability. The figure
is simplified and illustrates a learning cycle based on a waterfall-like model. As
discussed earlier, impact analysis can be used throughout the life cycle in order to
analyze new requirements and the measure points can be applied accordingly:
whenever a prediction has been conducted and whenever an implementation has
been completed.

6.4.1 Metrics for Quantifying Change Impact

Metrics for quantifying change impact are based on the SLOs that are predicted to
be changed as an effect of new or changed requirements. In addition, indicators of
how severe the change is can be used. Such measures of the predicted impact can
be used to estimate the cost of a proposed change or a new requirement. The more
requirements and other SLOs that are affected, the more widespread they are and
the more complex the proposed change is, the more expensive the new or changed
requirement will be. Requirements that are costly in this sense but provide little
value can, for example, be filtered out for the benefit of requirements that provide
more value but to a smaller cost.

Change impact can be measured based on the set of requirements that is affected
by the change. For example, the number of requirements affected by a change can
be counted based on this set. The affected requirements’ complexity often deter-
mines how severe the change is and can be measured in various ways. Examples
are the size of each requirement in terms of function points and the dependencies
of each requirement on other requirements. For other SLOs, the metrics are simi-
lar. For architecture and design, measures of impact include the number of af-
fected components, the number of affected classes or modules, and number of af-
fected methods or functions. For source code, low-level items such as affected
lines of code can be measured and the level of complexity for components,
classes, and methods can be measured using standard metrics such as cyclomatic
complexity and regular object-oriented metrics.

In determining how severe or costly a change is, it is useful to define the impact
factor. Lindvall defined the impact factors in Table 6.1 to measure the impact of a
suggested change [25]. The impact factor is based on empirical findings in which
it was determined that changes to different types of SLOs can be used as an indi-
cator of the extent of the change. The higher the impact factor, the more severe the
change. For example, changes that do not affect any other type of SLO but the de-
sign object model are relatively limited in scope. Changes that affect the use-case
model are instead likely to require changes that are related to the fundamentals of
the system and are therefore larger in scope. In addition, changes to the use-case
model most likely also involve changes of all other SLOs making this kind of
changes even more severe.

6 Impact Analysis 133

Table 6.1 Impact factors

Impact Factor Impact Description
M1 Change of the

design object
model.

These changes regard the real or physical descrip-
tion of the system and may generate change in the
software architecture about the size of the change in
the model.

M2 Change of the
analysis ob-
ject model.

These changes regard the ideal or logical descrip-
tion of the system. A small change here may gener-
ate change in the software architecture larger than
the change in this model.

M3 Change the
domain object
model.

These changes regard the vocabulary needed in the
system. A small change here may generate large
change in the software architecture.

M4 Change the
use-case
model.

These changes require additions and deletions to
the use-case model. Small changes here may re-
quire large change in the software architecture

Fig. 6.5 Tree of impact analysis metrics

6.4.2 Metrics for Evaluation of Impact Analysis

Bohner and Arnold proposed a number of metrics with their introduction of im-
pact sets [3]. These metrics are relations between the cardinalities of the impact
sets, and can be seen as indicators of the effectiveness of the impact analysis ap-
proach employed (# denotes the cardinality of the set):

1. #SIS / #EIS, i.e. the number of SLOs initially thought to be affected over the
number of SLOs estimated to be affected (primary change and secondary
change). A ratio close to 1 is desired, as it indicates that the impact is restricted
to the SLOs in SIS. A ratio much less than 1 indicates that many SLOs are tar-
geted for indirect impact, which means that it will be time-consuming to check
them.

2. #EIS / #System, i.e. the number of SLOs estimated to be affected over the
number of SLOs in the system. The desired ratio is much less than 1, as it indi-

134 Jönsson and Lindvall

cates that the changes are restricted to a small part of the system. A ratio close
to 1 would indicate either a faulty impact analysis approach or a system with
extreme ripple effects.

3. #EIS / #AIS, i.e. the number of SLOs estimated to be affected over the number
of SLOs actually affected. The desired ratio is 1, as it indicates that the impact
was perfectly estimated. In reality, it is likely that the ratio is smaller than 1, in-
dicating that the approach failed to estimate all impacts. Two special cases are
if AIS and EIS only partly overlap or do not overlap at all, which also would
indicate a failure of the impact analysis approach.

Fasolino and Visaggio also define metrics based on the cardinalities of the im-
pact sets [14]. They tie the metrics to properties and characteristics of the impact
analysis approach, as per the tree in Fig. 6.5.

Adequacy is the ability of the impact analysis approach to estimate the impact
set. It is measured by means of the binary metric Inclusiveness, which is strictly
defined to 1 if all SLOs in AIS also are in EIS and 0 otherwise. Effectiveness is the
ability of the approach to provide beneficial results. It is refined into Ripple-
sensitivity (the ability to identify ripple effects), Sharpness (the ability not to over-
estimate the impact) and Adherence (the ability to estimate the correct impact).

Ripple-sensitivity is measured by Amplification, which is defined as
(#EIS - #SIS) / #SIS, i.e. the ratio between the number of indirectly impacted
SLOs and the number of directly impacted SLOs. This ratio should preferably not
be much larger than 1, which would indicate much more indirect impact than di-
rect impact. Sharpness is measured by ChangeRate, which is defined as
#EIS / #System. This is the same metric as the second of Arnold and Bohner’s
metrics presented previously. Adherence is measured by S-Ratio, which is defined
as #AIS / #EIS. S-Ratio is the converse of the third of Arnold and Bohner’s met-
rics presented previously.

Lam and Shankararaman propose metrics that are not related to the impact sets.
These metrics are more loosely defined and lack consequently recommended val-
ues [21]:

Quality deviation, i.e. the difference in some quality attribute (for example, per-
formance) before and after the changes have been implemented, or between ac-
tual and simulated values. A larger than expected difference could indicate that
the impact analysis approach failed to identify all impact.
Defect count, i.e. the number of defects that arise after the changes have been
implemented. A large number of defects could indicate that some impact was
overlooked by the impact analysis approach.
Dependency count, i.e. the number of requirements that depend on a particular
requirement. Requirements with high dependency count should be carefully ex-
amined when being subjected to change.

Lindvall [25] defined and used metrics in a study at the Swedish telecom com-
pany Ericsson AB in order to answer a number of questions related to the result
(prediction) of impact analysis as conducted in a commercial software project and
performed by the project developers as part of the regular project work. The study

6 Impact Analysis 135

was based on impact analysis conducted in the requirements phase, as Fig. 6.4 in-
dicates, and the term requirements-driven impact analysis was coined to capture
this fact. The results from the impact analysis was used by the Ericsson project to
estimate implementation cost and to select requirements for implementation based
on the estimated cost versus perceived benefit. The study first looked at the col-
lected set of requirements’ predicted and actual impact by answering the following
questions: “How good was the prediction of the change caused by new and
changed requirements in terms of predicting the number of C++ classes to be
changed?” and “How good was this prediction in terms of predicting which classes
to be changed?” The last question was broken down into the two sub questions:
“Were changed classes predicted?” and “Were the predicted classes changed?”

There were a total of 136 C++ classes in the software system. 30 of these were
predicted to be changed. The analysis of the source code edits showed that 94
classes were actually changed. Thus, only 31.0% (30 / 94) of the number of
changed classes were predicted to be changed.

In order to analyze the data further, the classes were divided into the two groups
Predictive group and Actual group. In addition, each group was divided into two
subgroups: Unchanged and Changed. The 136 classes were distributed among
these four groups as shown in Table 6.2.

Table 6.2 Predicted vs. actual changes

Predictive Group
Unchanged Changed

Unchanged A: 42
(30.9%)

B:0
(0.0%

A+B: 42
(30.9%)Actual

Group Changed C; 64
(47.1%)

D: 30
(22.1%)

C+D: 94
(69.1%)

 A+C: 106
(77.9%)

B+D: 30
(22.1%)

N: 136
(100.0%)

Cell A represents the 42 classes that were not predicted to change and that also
remained unchanged. The prediction was correct as these classes were predicted to
remain unchanged, which also turned out to be true. The prediction was implicit as
these classes were indirectly identified they resulted as a side effect as comple-
ment of predicting changed classes.

Cell B represents the zero classes that were predicted to change, but actually
remained unchanged. A large number here would indicate a large deviation from
the prediction.

Cell C represents the 64 classes that were not predicted to change, but turned out
to be changed after all. As with cell B, a large number in this cell indicates a large
deviation from the prediction.

Cell D, finally, represents the 30 classes that were predicted to be changed and
were, in fact, changed. This is a correct prediction. A large number in this cell in-
dicates a good prediction.

There are several ways to analyze the goodness of the prediction. One way is to
calculate the percentage of correct predictions, which was (42 + 30) / 136 =

136 Jönsson and Lindvall

52.9%. Thus, the prediction was correct in about half of the cases. Another way is
to use Cohen’s Kappa value, which measures the agreement between two groups
ranging from -1.0 to 1.0. The -1.0 figure means total discompliance between the
two groups, 1.0 means total compliance and 0.0 means that the result is no better
than pure chance [11]. The kappa value in this case is 0.22, which indicates a fair
prediction. We refer to [26] for full details on the Kappa calculations for the ex-
ample. A third way to evaluate the prediction is to compare the number of classes
predicted to be changed with the number of classes actually changed. The number
of classes predicted to be changed in this case turned out to be largely underpre-
dicted by a factor of 3. Thus, only about one third of the set of changed classes
was identified. It is, however, worth noticing that all of the classes that were pre-
dicted to be changed were in fact changed.

The study then analyzed the predicted and actual impact of each requirement by
answering similar questions for each requirement. The requirements and the
classes that were affected by these requirements were organized in the following
manner: For each requirement, the set of classes predicted to be changed, the set
of changed classes and the intersection of the two sets, i.e. classes that were both
predicted and changed. In addition, the sets of classes that were predicted but not
changed and the set of classes that were changed but not predicted were identified.

The analysis showed that in almost all cases, there was an underprediction in
terms of number of classes. In summary, the analysis showed that the number of
changed classes divided by the number of predicted classes ranged from 1.0 to 7.0.
Thus, up to 7 times more classes than predicted were actually changed.

Estimating cost in requirements selection is often based on the prediction like it
was in the Ericsson case, which means that requirements predicted to cause
change in only a few entities are regarded as less expensive, while requirements
predicted to cause change in many entities are regarded as more expensive. This
makes the rank-order of requirements selection equal to a requirements list sorted
by the number of items predicted. By comparing the relative order based on the
number of predicted classes with the relative order based on the number of actu-
ally changed classes, it was possible to judge the goodness of the prediction from
yet another point of view. In summary, the analysis on the requirements level
showed that a majority of the requirements were underpredicted. It was also clear
that it is relatively common that some classes predicted for one requirement are
not changed because of this particular requirement, but because of some other re-
quirement. This is probably because the developers were not required to imple-
ment the changed requirements exactly as was specified in the implementation
proposal resulting from the impact analysis. The analysis of the order of require-
ments based on number of predicted classes showed that the order was not kept
entirely intact; some requirements that were predicted to be small proved to have a
large change impact, and vice versa.

In order to try to understand the requirements-driven impact analysis process
and how to improve it, an analysis of the various characteristics of changed and
unchanged classes was undertaken. One such characteristic was size, and the ques-
tions were: “Were large classes changed?”, “Were large classes predicted?” and
“Were large classes predicted compared to changed classes?”

6 Impact Analysis 137

The analysis indicated that large classes were changed, while small classes re-
mained unchanged. The analysis also indicated that large classes were predicted to
change, which leads to the conclusion that class size may be one of the ingredients
used by developers, maybe unconsciously, when searching for candidates for a
new or changed requirement.

6.5 Tool Support

The complexity of the change management process makes it necessary to use
some sort of tool support [27, 35]. A change management tool can be used to
manage requirements and other SLOs, manage change requests, link change re-
quests to requirements and other SLOs, and monitor the impact analysis progress.
A simple database or spreadsheet tool may be used as basic change management
support, but still requires a considerable amount of manual work, which eventu-
ally may lead to inconsistencies in the change management data. If the tool sup-
port is not an integral part of the change management process, there is always a
risk that it will not be used properly. A change management system that is not
used to its full extent cannot provide proper support to the process.

A problem with many change management tools is that they are restricted to
working with change and impact analysis on the requirements level. Ideally, a
change management tool would support impact analysis on requirements, design,
source code, test cases and so on. However, that would require the integration of
requirement management tools, design tools and development environments into
one tool or tool set. In a requirements catalog for requirements management tools,
Hoffmann et al. list both traceability and tool integration as high-priority re-
quirements, and analysis functions as a mid-priority requirement, confirming the
importance of these features [19].

In a survey of the features of 29 requirements management tools supporting
traceability, we could only find nine tools for which it was explicitly stated on
their web sites that they supported traceability between requirements and other
SLOs, such as design elements, test cases and code. Depending on the verbosity
and quality of the available information, this may not be an exact figure. However,
it indicates that in many cases it is necessary to use several different tools to man-
age traceability and perform impact analysis, which can be problematic depending
on the degree of integration between the tools.

There are tools that extract dependency information from existing system repre-
sentations, for example source code and object models, but the task of such tools
is nonetheless difficult and often requires manual work [12]. Higher-level repre-
sentations may be too coarse, and source code may have hidden dependencies, for
instance due to late binding. Egyed, for example, proposes an approach for ex-
tracting dependencies primarily for source code [12]. Input to the approach is a set
of test scenarios and some hypothesized traces that link SLOs to scenarios. The
approach then calculates the footprints of the scenarios, i.e. the source code lines
they cover, and based on footprints and hypothesized traces generates the remain-

138 Jönsson and Lindvall

ing traces. The approach can also be used when no source code exists, for example
by simulating the system or hypothesizing around the footprints of the scenarios.

Tools that deal with source code are mostly used in software maintenance con-
texts, and are obviously of limited use within the development project. Natt och
Dag et al. have studied automatic similarity analysis as a means to find duplicate
requirements in market-driven development [29]. In addition to the original field
of application, they suggest that their technique can be used to identify depend-
ency relationships between requirements, for example that two requirements have
an “or” relation, or that several requirements deal with similar functionality. How
to deal with natural language requirements is further explored in Chap. 10. Tools
that aid in performing impact analysis can be synonymous with the underlying
methods. Methods that rely on traceability analysis are well suited for inclusion in
tools that try to predict indirect impact. For example, Fasolino and Visaggio pre-
sent ANALYST, a tool that assesses impact in dependency-based models [14].
Lee et al. present another tool, ChAT, which calculates ripple effects caused by a
change to the system [22]. Many such tools are commonly proof-of-concept tools,
constructed to show or support a particular algorithm or methodology. What is
lacking is the integration into mainstream change management tools.

6.6 Future of Impact Analysis

Most strategies for impact analysis work under the assumption that changes only
affect functionality. It is thus more difficult to assess the impact of changes to
non-functional requirements, or changes where non-functional requirements are
indirectly affected. Some work on this topic exists (see [9] and [21]), but a
stronger focus on impact analysis for non-functional requirements is needed.

As we have pointed out, impact analysis is mostly referred to in software main-
tenance contexts. We have argued that impact analysis is an essential activity also
in requirements engineering contexts, and that standard impact analysis strategies
apply in most cases (for example, traceability approaches are commonly exercised
for requirements). There is still, however, a need for more research focusing on
the requirements engineering aspects of impact analysis, for example, how to re-
late requirements to other SLOs and how to perform change propagation in this
context. Most automatable strategies for impact analysis assume complete models
and full traceability information. Since it is common in industry to encounter
models that are not updated and traceability information that is only partial, there
is a need for more robust impact analysis strategies that can work with partial in-
formation. Egyed has proposed one such approach [12]. Existing tools for impact
analysis are often proof-of-concept tools, or work only with limited impact analy-
sis problems, such as the extraction of dependencies from system representations.
Some mainstream requirements management tools incorporate impact analysis of
not only requirements, but also design, code and test, but far from all these things.
Full-scale impact analysis must be an integral part of requirement management
tools in order for change to be dealt with properly. Impact analysis needs to be

6 Impact Analysis 139

adapted to the types of systems that become increasingly common today, such as
web applications and COTS software. Web applications, for example, often con-
sist of standalone components that connect to a central repository, such as a data-
base. Thus, there are few control dependencies between components, and instead
rich webs of data dependencies towards and within the central repository. The fact
that such repositories can be shared among several distinct systems introduces in-
teroperability dependencies that impact analysis strategies especially tailored for
these technologies must address in order to be effective.

6.7 Summary

Impact analysis is an important part of requirements engineering since changes to
software often are initiated by changes to the requirements. As the development
process becomes less and less waterfall-like and more of new and changed re-
quirements can be expected throughout the development process, impact analysis
becomes an integral part of every phase in software development. In some sense,
impact analysis has been performed for a very long time, albeit not necessarily us-
ing that term and not necessarily fully resolving the problem of accurately deter-
mining the effect of a proposed change. The need for software practitioners to de-
termine what to change in order to implement requirement changes has always
been present. Classical methods and strategies to conduct impact analysis are de-
pendency analysis, traceability analysis and slicing. Early impact analysis work
focused on applying such methods and strategies onto source code in order to
conduct program slicing and determine ripple effects for code changes. The matu-
ration of software engineering among software organizations has, however, led to
a need to understand how change requests affect other SLOs than source code, in-
cluding requirements, and the same methods and strategies have been applied.
Typical methods and strategies of today are based on analyzing traceability or de-
pendency information, utilizing slicing techniques, consulting design specifica-
tions and other documentation, and interviewing knowledgeable developers. Inter-
viewing knowledgeable developers is probably the most common way to acquire
information about likely effects of new or changed requirements. Metrics are use-
ful and important in impact analysis for various reasons. Metrics can, for example,
be used to measure and quantify change caused by a new or changed requirement
at the point of the impact analysis activity. Metrics can also be used to evaluate the
impact analysis process itself once the changes have been implemented. In deter-
mining how severe or costly a change is, it is useful to determine the impact factor
as it indicates the likely extent of a change to a certain type of SLO. To summa-
rize: Impact analysis is a crucial activity supporting requirements engineering. The
results from impact analysis feed into many activities including estimation of re-
quirements’ cost and prioritizing of requirements. These activities feed directly
into project planning, making impact analysis a central activity in a successful
project.

140 Jönsson and Lindvall

Acknowledgements

We would like to thank Jen Dix for proof reading, and the anonymous reviewers
for helping to improve the chapter.

References

1. ANSI/IEEE Std 830-1984 (1984) IEEE guide to software requirements specifications,
Institute of the Electrical and Electronics Engineers

2. Bass L, Clements P, Kazman R (2003) Software architecture in practice, Addison
Wesley

3. Bohner SA, Arnold RS (1996) Software change impact analysis, IEEE Computer Society
Press

4. Bohner SA (2002) Extending software change impact analysis into COTS components.
In: Proceedings of the 27th Annual NASA Goddard Software Engineering Workshop,
December 4 6, Greenbelt, USA, pp.175 182

5. Bohner SA, Gracanin D (2003) Software impact analysis in a virtual environment. In:
Proceedings of the 28th Annual NASA Goddard Software Engineering Workshop, De-
cember 2 4, Greenbelt, USA, pp.143 151

6. Bosch J (2000) Design & use of software architectures - Adopting and evolving a prod-
uct-line approach. Pearson Education, UK

7. Bratthall L, Johansson E, Regnell B (2000) Is a design rationale vital when predicting
change impact? - A controlled experiment on software architecture evolution. In: Pro-
ceedings of the 2nd International Conference on Product Focused Software Process Im-
provement, June 20-22, Oulo, Finland, pp.126 139

8. Briand LC, Labiche Y, O’Sullivan L (2003) Impact analysis and change management of
UML models. In: Proceedings of the International Conference on Software Mainte-
nance, September 22 26, Amsterdam, Netherlands, pp 256 265

9. Cleland-Huang J, Chang CK, Wise JC (2003) Automating performance-related impact
analysis through event based traceability. Requirements Engineering 8(3):171 182

10. Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Nord R, Stafford J (2003)
Documenting software architectures: Views and beyond. Addison Wesley, UK

11. Cohen J (1960) A coefficient of agreement for nominal scales, educational and psycho-
logical measurement 20(1):37 46

12. Egyed A (2003) A scenario-driven approach to trace dependency analysis. IEEE Trans-
actions on Software Engineering 29(2):116 132

13. Eick SG, Graves L, Karr AF, Marron JS (2001) Does code decay? Assessing the evi-
dence from change management data. IEEE Transactions on Software Engineering
27(1):1 12

14. Fasolino AR, Visaggio G (1999) Improving software comprehension through an auto-
mated dependency tracer. In: Proceedings of the 7th International Workshop on Pro-
gram Comprehension, May 5 7, Pittsburgh, USA, pp 58 65

15. Gallagher KB (1996) Visual impact analysis. In: Proceedings of the International Con-
ference on Software Maintenance, November 4 8, Monterey, USA, pp 52 58

16. Gallagher KB, Lyle JR (1991) Using program slicing in software maintenance. IEEE
Transactions on Software Engineering 17(8):751 761

6 Impact Analysis 141

17. Godfrey LW, Lee EHS (2000) Secrets from the monster - Extracting Mozilla's software
architecture. In: Proceedings of the 2nd International Symposium on Constructing
Software Engineering Tools, Limerick, Ireland, pp 15 23

18. Haney FM (1972) Module connection analysis - A tool for scheduling software debug-
ging activities. In Proceedings of AFIPS Joint Computer Conference, pp 173 179

19. Hoffmann M, Kühn N, Bittner M (2004) Requirements for requirements management
tools. In: Proceedings of the 12th IEEE International Requirements Engineering Con-
ference, September 6 10, Kyoto, Japan, pp 301 308

20. Kotonya G, Sommerville I (1998) Requirements engineering - Processes and tech-
niques. Wiley and Sons, UK

21. Lam W, Shankararaman V (1999) Requirements change: A dissection of management
issues. In: Proceedings of the 25th EuroMicro Conference, September 8 10, Milan, It-
aly, Vol. 2, pp.244 251

22. Lee M, Offutt JA, Alexander RT (2000) Algorithmic analysis of the impacts of changes
to object-oriented software. In: Proceedings of the 34th International Conference on
Technology of Object-Oriented Languages and Systems, July 30 Aug 4, Santa Bar-
bara, USA, pp 61 70

23. Leffingwell D, Widrig D (1999) Managing software requirements - A unified approach.
Addison Wesley

24. Lehman MM, Ramil JF, Wernick PD, Perry DE, Turski WM (1997) Metrics and laws
of software evolution - The nineties view. In: Proceedings of the 4th International
Software Metrics Symposium, November 5-7, Albuquerque, USA, pp 20 32

25. Lindvall M (1997) An empirical study of requirements-driven impact analysis in object-
oriented systems evolution. Ph.D. thesis no. 480, Linköping Studies in Science and
Technology, Sweden

26. Lindvall M, Sandahl K (1998) How well do experienced software developers predict
software change?, Journal of Systems and Software 43(1):19 27

27. Maciaszek L (2001) Requirements analysis and system design - Developing informa-
tion systems with UML, Addison Wesley

28. Mockus A, Votta LG (2000) Identifying reasons for software changes using historic da-
tabases. In: Proceedings of the International Conference on Software Maintenance, Oc-
tober 11-14, San Jose, USA, pp 120 130

29. Natt och Dag J, Regnell B, Carlshamre P, Andersson M, Karlsson J (2002) A feasibility
study of automated support for similarity analysis of natural language requirements in
market-driven development. Requirements Engineering 7:20 33

30. O’Neal JS, Carver DL (2001) Analyzing the impact of changing requirements. In: Pro-
ceedings of the International Conference on Software Maintenance, November 6-10,
Florence, Italy, pp.190 195

31. Ramesh B, Jarke M (2001) Towards reference models for requirements traceability.
IEEE Transactions on Software Engineering 27(1): 58 93

32. Robertson S, Robertson J (1999) Mastering the requirements process. Addison Wesley,
UK

33. Shahmehri N, Kamkar M, Fritzson P (1990) Semi-automatic bug localization in soft-
ware maintenance. In: Proceedings of the Conference on Software Maintenance, No-
vember 26-29, San Diego, USA, pp 30 36

34. Software Engineering Institute (2004): How do you define software architecture?,
http://www.sei.cmu.edu/architecture/definitions.html, Accessed November 19, 2004.

142 Jönsson and Lindvall

35. Sommerville I, Sawyer P (1997) Requirements engineering - A good practice guide.
John Wiley and Sons, London

36. Tip F, Jong DC, Field J, Ramlingam G (1996) Slicing class hierarchies in C++. In: Pro-
ceedings of Object-Oriented Programming, Systems, Languages & Applications Con-
ference, October 6-10, San Jose, USA, pp 179 197

37. Turver RJ, Munro M (1994) An early impact analysis technique for software mainte-
nance. Journal of Software Maintenance Research and Practice 6(1):35 52

38. Weinberg GM (1983) Kill that code. Infosystems 30: 48 49
39. Weiser M (1979) Program slices: formal, psychological, and practical investigations of

an automatic program abstraction method. Ph.D. thesis, University of Michigan, Michi-
gan, USA

40. Wiegers KE (2003): Software requirements. Microsoft Press
41. Yau SS, Collofello JS (1980) Some stability measures for software maintenance. IEEE

Transactions on Software Engineering 6(6): 545 552
42. Zhao J (1998) Applying slicing technique to software architectures. In: Proceedings of

the 4th IEEE International Conference on Engineering of Complex Computer Systems,
August 10-14, Monterey, USA, pp.87 98

Author Biography

Per Jönsson is a Ph.D. student in Software Engineering at the School of Engineer-

ing at Blekinge Institute of Technology in Sweden, where he also received his De-

gree of Master of Science in Software Engineering in 2002. His main research in-

terest is impact analysis on a software architecture level. This touches the

boundary between requirements engineering and software architecture, and in-

cludes questions about how requirements affect the architecture, but also how ar-

chitectures are created, changed, maintained and merged.

Dr. Mikael Lindvall is a scientist at Fraunhofer Center Maryland. He manages the
center’s participation in NASA’s High Dependability Computing Project. He
heads test bed development for experimenting with and determining technologies’
impact on software dependability and studies how best practices, lessons learned
and other experience and knowledge management strategies are best applied in
software engineering. He studies software architecture evaluation and evolution to
efficiently understand software architectures and to identify architectural viola-
tions. Lindvall received a Ph.D. from Linköping University, Sweden 1997, on im-
pact analysis and evolution of object-oriented systems at Ericsson Radio in Swe-
den.

7 Requirements Negotiation

Paul Grünbacher and Norbert Seyff

Abstract: Negotiation is regarded as crucial in many disciplines, and negotiation
methods and tools are increasingly studied by requirements engineering research-
ers and practitioners. The objectives of this chapter are to motivate the need for
negotiation in requirements engineering, to introduce fundamental concepts and
terminology, and to provide an overview about negotiation research. We structure
the existing research (a) by presenting a general negotiation process highlighting
typical negotiation stages; (b) by introducing a framework covering important dimen-
sions of requirements negotiation comprising the conflict resolution strategy, the
collaboration situation of the stakeholders, and the degree of negotiation tool sup-
port; and (c) by discussing and classifying existing negotiation tools using the
general process and framework.

Keywords: Negotiation, Negotiation process, Conflict resolution, Collaboration,
Negotiation tools, Stakeholder win-win.

7.1 Introduction

Conflicts play an important role in software engineering although they are often
neglected or badly handled by existing development methods. Conflicts arise al-
most inevitably as project stakeholders such as future system users, acquirers, de-
velopers, or maintainers frequently pursue mismatching goals [10]. For example,
future system users are typically interested in many features, high level of service,
or early availability. Acquirers focus on cost effectiveness, compliance with stan-
dards, or budget/schedule constraints. Developers typically want flexible contracts
and stable requirements. Although studies show that conflict is extensive in soft-
ware engineering [15], many existing methods neglect or do not explicitly address
conflict handling and resolution. Nevertheless, negotiation techniques and tools
have gained increased attention in software engineering research. As a result,
methods and tools have been developed supporting the requirements negotiation
process, some of them are also available commercially.

Software engineering is a highly collaborative process and identifying shared or
opposed interests is a necessity for project success [41, 60]. The objectives of cus-
tomers, users, or developers have to be understood and reconciled to develop mu-
tually acceptable agreements [5]. This obviously does not mean that stakeholders
will always agree. The result of negotiation is also to understand why stakeholders
disagree. Identified disagreements represent major risks and need to be addressed
by project management.

Requirements negotiation is not a one time episode in a project, but should be
used early on and repeated in later stages [9]. In each cycle new stakeholders and

144 Grünbacher and Seyff

new objectives have to be considered often leading to negotiations. In iterative
software life cycles such as the spiral model [3] the achieved agreements are
evolved into more detailed requirements, development plans, architectures, etc.
The primary purpose of requirements negotiation is to identify and resolve con-
flicts among stakeholders. It contributes to the goal of defining feasible and mutu-
ally satisfactory requirements that accommodate all stakeholder goals and expec-
tations [6, 41, 60]. Beyond this primary purpose, research and evidence from
practitioners show further benefits:

Understanding project constraints. It has been shown in many studies that
software projects often fail to meet critical project constraints such as budget and
schedule [58]. Negotiation makes stakeholders aware of these constraints and sup-
ports finding solutions for meeting them.

Adapting to changes. Because of rapid chances of market competition, technol-
ogy, personnel, etc. requirements (and sometimes even constraints) are highly
volatile. As a result stakeholders are forced to frequently adapt to new situations.
Negotiation helps to deal with such changes more easily as stakeholders are aware
of existing issues and alternatives. Should agreements become obsolete they can
be re-negotiated and revised to accommodate the evolving requirements and con-
straints.

Fostering team learning. Different stakeholders come to a project with their
experiences, backgrounds, and expectations and bring their goals to the table. De-
veloping requirements is a cognitive process, in which stakeholders collabora-
tively find out what has to be done [60] by understanding problems and domains,
learning from other stakeholders, and by negotiating and discussing different
viewpoints. Stakeholders share information and search for mutually beneficial so-
lutions. Developers, for example, learn more about the customer’s and user’s
world, while customers and users learn more about what is technically and eco-
nomically feasible.

Surfacing tacit knowledge. People know more than they can ever tell. Tacit
stakeholder goals, hidden assumptions and expectations often lead to problems in
software projects. Negotiation supports people bringing hidden issues and assump-
tions to the table [27].

Managing complexity. Establishing software requirements is fraught with com-
plexity. In a typical non-trivial project with 10+ stakeholders one has to deal with
hundreds of individual goals, and dozens of issues and alternatives that need to be
understood. Complex interdependencies among requirements and between re-
quirements and related development artifacts are another source of complexity as
described in Chap. 5. Further things complicating negotiations are cognitive over-
flows, conflicting strategies of negotiators, or unforeseen interventions by third
parties [57]. Handling that complexity is supported by negotiation techniques [14].

Dealing with uncertainty. Specifying software requirements without negotia-
tion is difficult, because users do not know exactly what they need and what is
technologically feasible [4, 60]. Negotiation helps to reduce uncertainty by high-
lighting things needing attention and fosters a shared vision among stakeholders.

Finding better solutions. Without negotiation techniques stakeholders often try
to persuade others to accept a suggested solution instead of jointly seeking for new

7 Requirements Negotiation 145

solutions that are beneficial to all parties [52]. For example, the main disadvantage
of sequential negotiation of issues is that trade-offs between issues cannot be con-
sidered adequately. Negotiation techniques help to see the full picture instead of
dealing with issues sequentially, which can help to avoid suboptimal solutions.

The benefits of negotiation are obvious, and many researchers have pointed out
its usefulness for requirements engineering [42, 46]. However, establishing a re-
quirements negotiation process is not trivial and important issues have to be ad-
dressed: How can conflicts be identified? How can the identified conflicts be re-
solved? How can stakeholders find feasible alternatives? Who is in charge of the
negotiation, the stakeholders themselves or a facilitator? How can the negotiation
be supported with tools or other means? Requirements negotiation can make use
of negotiation methods and tools from a wide range of disciplines and domains.
Negotiation is a phase in the decision making process and there is a strong body of
knowledge on decision making. Consequently, negotiation in group decisions
have been investigated from multiple perspectives, such as decision theory [36],
management theory and social sciences [19, 50, 59], organizational psychology
[61], and game theory [49]. Giving an overview about the start-of-the-art in re-
quirements negotiation is challenging, as a thorough discussion of all these aspect
is certainly beyond the scope of this chapter. We therefore discuss the existing re-
search from the perspective of software requirements negotiation instead of nego-
tiation in general.

The chapter is structured as follows: In Sect. 7.2 we review several definitions
for requirements negotiation, define basic terminology, and present a general ne-
gotiation process highlighting typical negotiation stages. Section 7.3 introduces
our framework covering important dimensions of requirements negotiation such as
conflict resolution strategy, the collaboration situation of the stakeholders, and the
level of negotiation tool support. The purpose of the framework is to help under-
stand and classify existing and future research approaches and to increase aware-
ness of the issues involved in defining and implementing requirements negotiation
processes in practice. In Sect. 7.4, we use the framework to present examples of
existing requirements negotiation approaches. Conclusions round out the chapter
in Sect. 7.5.

7.2 The Negotiation Process

Negotiation is widely adopted and has been investigated by multiple disciplines.
Consequently, there are different perspectives on negotiation and different aspects
are emphasized [14, 16, 31, 47]. Negotiation is traditionally viewed as “the actual
interactions among participants that lead to mutual commitment” starting “when
participants begin communicating their goals, and ending (successfully) when all
agree to a specified contract.” [52]

Other definitions have a slightly different flavor. Easterbrook [20] defines ne-
gotiation as “a collaborative approach to resolving conflict by exploration of the
range of possibilities. It is characterized by the participants attempting to find a

146 Grünbacher and Seyff

settlement which satisfies all parties as much as possible.” The author emphasizes
conflict as the fundamental reason for negotiation and points out that negotiation
often involves some sort of compromise when saying that parties should be satis-
fied “as much as possible.”

In another definition Curtis et al. [15] take a requirements engineering perspec-
tive when stating that “in general terms, requirements negotiation can be seen as
an iterative process through which stakeholders make tradeoffs between requested
system functions, the capabilities of existing or envisioned technology, the deliv-
ery schedule and the cost.” Robinson and Volkov [52] argue that beyond the ac-
tual negotiation one should also consider pre- and post-negotiation phases as part
of the negotiation process covering activities such as initial problem recognition,
participant solicitation and communication, or solution maintenance. This broader
view is also confirmed by different negotiation approaches. The negotiation sup-
port system Inspire [40], for example, uses the phases pre-negotiation, negotiation,
post-settlement. The EasyWinWin negotiation approach is embedded in processes
of preparing the actual negotiation and post-negotiation analyses and quality as-
surance [28]. The identification of stakeholders in EasyWinWin is covered by the
win-win spiral model. Our discussion of the negotiation process follows these ap-
proaches and therefore discusses the general stages of pre-negotiation, negotiation,
and post-negotiation.

7.2.1 Pre-Negotiation

Important activities of this phase are the definition of the negotiation problem, the
identification and solicitation of stakeholders, the elicitation of goals from stake-
holders, and the analysis of goals to find conflicts. The results of this phase are the
issues and conflicts involved. According to [40] an issue is “a topic of discussion
that is of particular interest in a negotiation. Each issue has a range of alternatives
or options, one of which must ultimately be agreed upon by the negotiators in or-
der to achieve a compromise.”

Problem Definition. Before the actual negotiation can start it is important to
identify the problem by analyzing the situation and defining the purpose of the ne-
gotiation. For example, in a software project the problem depends on both the
overall objectives of the project and the current stage of the project. Early stage
requirements negotiations involve high-level issues while later negotiation might
focus on specific aspects or subprojects. Requirements gathered in early stages of
a project express a wider range of possibilities in general terms and become more
precise later on [22]. Defining the negotiation problem is essential for stakeholder
identification and for adjusting the negotiation method and techniques.

Stakeholder Identification. The success-critical stakeholders have to be identi-
fied. Finding the people (or appropriate representatives) whose interests must be
accommodated is often a challenging task itself [32, 56] but essential for the suc-
cess of the requirements negotiation. The success-critical stakeholders are the
people that can make agreements about requirements and can make those agree-
ments stick. Identifying the right people can accelerate the negotiation process.

7 Requirements Negotiation 147

Goal Elicitation. Before conflicts can be identified stakeholders have to bring
their individual goal to the table. A goal is an objective the system under consid-

eration should achieve [43]. All success-critical stakeholders need to express their
individual goals or the goals of people they represent. Depending on the identified

problem and stakeholder characteristics such as role, domain knowledge, experi-

ence, etc. goals are formulated at different levels of granularity, ranging from

high-level aspects such as general system capabilities, budgets, or schedules to

lower level technical concerns such as development environments or target plat-

forms. Many of the elicitation and prioritization techniques presented in Chaps. 2
and 4 support this activity.

Goal analysis. The elicited goals are examined to identify conflicts, i.e., by ana-
lyzing stakeholder goals and preferences. For example, there might be a conflict
between the level of service required by users and budget constraints imposed by
acquirers. Identifying conflicts is typically a manual process and relies on the
knowledge and expertise of the involved stakeholders and the capabilities of the
facilitator. Goal analysis does not only reveal conflicts among stakeholder goals
but typically also reveals inconsistencies, risks, uncertainties, and hidden assump-
tions [27]. Prioritization techniques presented in Chap. 4 support this task.

Different authors have tried to automate or partially automate the task of under-
standing requirements conflicts. For example, Egyed and Grünbacher [21] re-
cently presented an approach for identifying conflicts and cooperation among re-
quirements based on software attributes and automated traceability. Another
example of this kind of support are sophisticated visualization techniques to iden-
tify conflicting goals and requirements [33].

7.2.2 Negotiation

This phase involves the actual conduct of the negotiation and the definition of
agreements. Based on the elicited goals and the identified conflicts stakeholders
seek mutually beneficial solutions that are acceptable to all parties. This activity is
about structuring issues and developing alternatives to solve problems, for exam-
ple by exchanging offers and counteroffers, or proposing alternatives for mutual
gain. After developing possible solutions stakeholders eventually agree on the
“best” one. The explanation of possible solutions is a prerequisite before stake-
holders can agree on a decision and requires the establishment of judgment crite-
ria, a common set of rules agreed by all stakeholders [60]. If these rules are miss-
ing, the merits of different options will be inconsistent. It might therefore be
necessary to carry out a preparatory negotiation session in order to agree on these
judgment criteria.

Depending on the type of conflict and problem at hand different strategies can
be adopted [48] for dealing with the conflicts (see also Sect. 7.3). This involves
trade-offs in which stakeholders give up partly on some issues so as to gain on
other issues, for example, by making concessions to ease gaining an agreement;
problem-solving by identifying and adopting solutions that satisfy the goals of the
parties; or persuading other negotiators to concede. Apparently, negotiators might

148 Grünbacher and Seyff

also decide to drop out of a negotiation. Some authors have developed automated
approaches for resolving conflicts. An example is the Oz system developed by
Robinson and Fickas [51].

7.2.3 Post-Negotiation

In this phase stakeholders (or automated tools) analyze and evaluate the negotia-
tion outcomes and suggest re-negotiation if necessary. For example, it can be de-
termined if the current agreement satisfies the preferences of the counterparts and
if a better solution would be possible for one negotiation party, without causing
loss to the other side [37]. It can also involve quality assurance reviews of the ne-
gotiation results [28]. The importance of early quality assurance in RE is also em-
phasized in Chap. 8. Another important aspect of post-negotiation is to secure
commitment of stakeholders over time. For example, by monitoring existing
agreements and initiating re-negotiation in case agreements become obsolete due
to new developments. Especially in iterative life cycle models [2, 3, 7] negotiation
results need to be constantly evolved as new goals can always arise and potentially
cause new conflicts [8]. Understanding the impacts of changing goals is typically
non-trivial as also discussed in Chap. 6.

7.3 Dimensions of Requirements Negotiation

The negotiation process presented in the previous section defines the scope and
purpose of activities relevant in requirements negotiation. It does, however, not
address more specific aspects of negotiations. We therefore present a simple
framework which describes important dimensions of requirements negotiation in
more detail. By explaining the dimensions of the framework we give a survey of
relevant research. The purpose of the framework is twofold: (a) It can be used for
classifying and understanding existing negotiation approaches and tools by using
well-defined and relevant dimensions; (b) it addresses issues important for organi-
zations wishing to design and implement effective negotiation processes.

The dimensions of the framework address (1) the conflict resolution strategy,
(2) the collaboration situation of stakeholders, and (3) the degree of negotiation
tool support. The dimensions are derived by analyzing literature and negotiation
tools from different fields. Although the chosen dimensions are important we do
not claim that the framework is complete and covers all aspects relevant in re-
quirements negotiations. Also, dependencies between the dimensions are not ex-
plicitly addressed. For example, a certain collaboration situation may imply cer-
tain conflict resolution strategies and specific kinds of negotiation support. The
dimensions cover key questions in requirements negotiation: How are conflicts re-
solved? How do stakeholders collaborate? Which tools are used to support the
process?

7 Requirements Negotiation 149

Conflict resolution strategy. Conflict is an inevitable part of system design and
the reason for negotiation. The first dimension thus addresses the different conflict
resolution strategies based on the conflict handling modes developed by Thomas
[61] in the field of organizational psychology.

Collaboration situation. The second dimension addresses the collaboration set-
ting defined by the location of stakeholders and the time of negotiation. Synchro-
nous/co-located negotiations, where people work together face to face, are funda-
mentally different from asynchronous/dislocated forms of negotiations that make
interaction more difficult. This dimension is informed by research done in CSCW
(Computer Supported Cooperative Work) [35].

Fig. 7.1 Determinants of conflict behavior [1, 61]

Negotiation support tools. Negotiations can be supported with different kinds
of tools ranging from manual guidelines to sophisticated tools and environments.
Understanding these types and levels of automation is important to choose the ap-
propriate level of support for a given situation. Authors in the field of negotiation
support systems (NSS) have done research to classify the different options for tool
support [34, 37, 44].

7.3.1 Conflict Resolution Strategy

Software engineering projects face conflicts of interests and needs in important
decisions. Theoretically, such situations can be framed as mixed- motive, where

150 Grünbacher and Seyff

parties experience partly common ground (joint goals and objectives of the pro-
ject) but also face considerable differences in preferences for specific issues. It has
been shown that conflict is not the exception but very common in group interac-
tions. A study by Curtis et al. [15] reveals three major sources of conflict in soft-
ware engineering: the thin spread of application domain knowledge; fluctuating
and conflicting requirements; and breakdowns in communication and co-
ordination. Conflicting requirements have many causes, including changes in the
organizational setting and business environment. Also, software will be used by
different people with different goals and needs. Further sources of conflicts listed
by Easterbrook [20] include conflicts between suggested solution components;
conflicts between stated constraints; conflicts between perceived needs; conflicts
in resource usage; and discrepancies between evaluations of priority.

A well-known model of conflict behavior has been proposed by Thomas in the
field of organizational psychology [61]. According to this model a stakeholders’
orientation has two dimensions: the focus on satisfying their own concerns (unas-
sertive, assertive) and the emphasis on satisfying the concerns of others (uncoop-
erative, cooperative). Using the two dimensions one can define five dominant ori-
entations of dealing with conflicts (see Fig. 7.1):

Competing (forcing) involves an emphasis on winning one’s own concerns at
the expense of another, often leading to “win-lose” situations.
Accommodating (smoothing) involves trying to satisfy the other's concerns
without attention to one’s own concerns. This can mean that one stakeholder is
self-sacrificing and yielding to the other.
Collaborating (problem-solving) focuses on satisfying the concerns of all par-
ties to find alternatives that try to satisfy the concerns of all. The emphasis is on
finding “win-win” situations.
Avoiding (withdrawing from) a negotiation could be a result of indifference,
denial, or apathy.
Compromising (sharing) involves concessions to find a satisfactory middle
ground.

Figure 7.1 shows that choosing the best conflict handling strategy depends on
factors such as the outcome stakes, the interdependence of interests, the relative
power of parties, and their quality of relationship. For example, if the outcome
stakes for a stakeholder is high (which is the case in many software projects) and
people want to maintain a good quality of relationship, a collaborative conflict
handling mode is preferred over accommodative behavior. Another model for
comparing different negotiation styles has been proposed by Fisher and Ury [23].
The authors distinguish between soft, hard, and principled negotiation strategies.
In the soft strategy the underlying assumption is that parties are willing to collabo-
rate to seek mutually satisfactory agreements. Stakeholders cooperate in a consen-
sus-oriented, problem-solving team process. In the hard strategy parties are seen
as competitors that not necessarily want to arrive at a win-win situation. It can also
be seen as an interaction of competing stakeholders, where conflicts are will occur

7 Requirements Negotiation 151

inevitably. Instead of focusing on these two extremes Fisher and Ury propose a
combined approach called principled strategy [23].

Table 7.1 Characteristics of soft, hard and principled strategies [23]

Soft Hard Principled

Participants are friends. Participants are adversaries.
Participants are problem-
solvers.

The goal is agreement. The goal is victory.
The goal is a wise outcome
reached efficiently and ami-
cably.

Make concessions to culti-
vate the relationship.

Demand concessions as a
condition of the relation-
ship.

Separate the people from the
problem.

Be soft on the people and the
problem.

Be hard on the problem and
the people.

Be soft on the people, hard
on the problem.

Trust others. Distrust others. Proceed independent of trust.

Change your position easily. Dig into your position.
Focus on interests, not posi-
tions.

Make offers. Make threats. Explore interests.

Disclose your bottom line.
Mislead as to your bottom
line.

Avoid having a bottom line.

Accept one-sided losses to
reach agreement.

Demand one-sided gains as
the price of agreement.

Invent options for mutual
gain.

Search for the single answer:
the one they will accept.

Search for the single an-
swer: the one you will ac-
cept.

Develop multiple options to
choose from; decide later.

Insist on agreement. Insist on your position.
Insist on using objective cri-
teria.

Try to avoid a contest of will. Try to win a contest of will.
Try to reach a result based
on standards independent of
will.

Yield to pressure. Apply pressure.
Reason and be open to rea-
son; yield to principle, no to
pressure.

Table 7.1 compares the three strategies using a set of negotiation characteris-
tics. The combined strategy focuses on four principles printed in bold in Table 7.1.
These are separating the people from the problem; focusing on interests, not posi-
tions; generating a variety of possibilities before deciding what to do; and insisting
that the result is based on some objective standard.

152 Grünbacher and Seyff

7.3.2 Collaboration Situation

The negotiation process discussed in Sect. 7.2 has to consider different collabora-
tion situations depending on the time and place of interaction. For example, a team
might decide to organize a face to face meeting for the definition of agreements,
while the elicitation of preferences is carried out in a dislocated manner. The time
of the negotiation and location of stakeholders have a strong impact on the actual
interactions during a negotiation and pose additional challenges. The field of
Computer-Supported Cooperative Work has developed the CSCW matrix, a sim-
ple classification scheme that distinguishes four different scenarios (see Table
7.2):

Table 7.2 Collaboration situations of negotiating stakeholders [35]

Co-located Dislocated

Synchronous

communication
Same time/Same place Same time/Different place

Asynchronous

communication
Different time/Same place Different time/Different place

Same time/Same place. Face to face meetings are still a common way to elicit
and negotiate requirements. In requirements engineering, many approaches still
work best or even necessitate continuous, synchronous team work [32]. Newer
approaches such as agile methods strongly advocate face to face meetings. A
popular example is the “on-site customer”, a practice in eXtreme Programming
[2]. Especially when trying to resolve conflicts the richness of face to face interac-
tions makes it easier to build trust and jointly seek for solutions. The facilitator
guidelines of the EasyWinWin approach, for example, suggest to organize the
“negotiation of agreements” activity as a face to face meeting to benefit from the
richness of non-verbal cues, which make it easier to understand people and there-
fore to reduce negotiation time.

Different time/Same place. Organizing an entire negotiation with face to face
meetings is typically not possible even if stakeholders are co-located at the same
site. The duration of negotiations often exceeds the time of typical workshops and
meetings are generally difficult to arrange due to time constraints. Also, informa-
tion needed to take a final decision is often not available during a meeting. It is
then necessary to carry out certain steps in an asynchronous manner, supported by
shared workspaces allowing all stakeholders to contribute to ongoing negotiations
and to keep track of the progress [26].

Same time/Different place. Even if it is impossible to bring together stake-
holders in a face to face meeting, it is frequently possible to gather them at the
same time, with some of them participating remotely. The use of audio and video
conferencing provides a reasonable interaction bandwidth and the team benefits
from same-time interaction. For example, group decision support systems have
been successfully used to support synchronous/dislocated brainstorming or voting
sessions [45].

7 Requirements Negotiation 153

Different time/Different place. Requirements engineering is increasingly carried
out in an asynchronous and dislocated setting as more and more projects span
globally or affect multiple organizations [12]. In such a situation advanced tech-
nology for collaboration is a necessity to allow stakeholders to contribute from
different parts of the world. However, little research exists to investigate the im-
pact of different time/different place interactions on the success of requirements
negotiation. Damian et al. [18] have explored the role of facilitation in such a
situation.

The four collaboration situations described by the CSCW matrix do, however,
not address all important issues that impact requirements negotiations such as the
number of stakeholders involved, the difference between multiple individual sites
verses multiple group sites, as well as cultural differences among negotiating par-
ties.

7.3.3 Negotiation Tool Support

The third dimension of our framework deals with the type and degree of tool sup-
port. Negotiations are often supported by traditional means such as guidelines and
handbooks for facilitation as well as general meeting tools for all stakeholders
such as whiteboards, flipcharts etc. [25]. The scale and complexity of real-world
projects however suggest the use of more sophisticated forms of negotiation sup-
port ranging from software tools for communication to intelligent software agents.
In a recent paper Kersten [37] provides an insightful classification for negotiation
support tools:

Passive Support. Such tools provide an infrastructure for negotiation and sup-
port all different collaboration situations discussed above. They allow all parties
involved to express their preferences, to communicate about ideas, offers and ar-
guments, and to share intermediate and final results. Examples are email, chat, or
multimedia rooms [17]. Passive systems do not support the production of content
with hints and guidance.

Active facilitative support. Tools of this kind are capable of guiding the stake-
holders towards an agreement, for example, by identifying situations for mutual
gain. Such systems can aid the users in the formulation, evaluation, and solution of
difficult problems. They also support concession-making and construction of of-
fers, as well as the assessment of the process. Active negotiation support systems
typically follow a negotiation process. Group decision support systems [45] fall in
this category especially if the collaborative tools are integrated with facilitation
guidelines [13].

Pro-active interventive support. These systems are additionally capable of co-
ordinating the activities of stakeholders. For example, they critique their actions or
suggest what agreement to accept. To provide such capabilities the systems access
and use knowledge-bases and employ intelligent software agents that monitor the
negotiation process and the negotiators’ individual activities. An example is the
Atin intelligent software agent augmenting the Inspire system (see Sect. 7.4.1)
[39].

154 Grünbacher and Seyff

7.4 Examples of Negotiation Systems

Researchers and practitioners have been developing different types of negotiation
systems supporting stakeholders in conducting a negotiation. However, some of
them are particularly targeted at software requirements negotiation while most
tools provide more general negotiation support. Examples of negotiation tools in-
clude DealMaker, Inspire, MeetingOne, Negoisst, SimpleNS, SmartSettle, and
WebNS. In this section we use the negotiation process and framework to charac-
terize existing negotiation support systems. We have selected four examples: As-
pire is a pro-active negotiation support system supporting bilateral negotiations
which is based on Inspire; EasyWinWin, a system targeted at software require-
ments negotiation; Negoisst, an electronic business-to-business negotiation sys-
tem; and SmartSettle, a commercially available negotiation support system for
complex negotiations.

7.4.1 Aspire

Aspire is a recent extension to the Inspire system and provides pro-active level
support with the Atin software agent [39]. The agent advices the negotiators by
analyzing an ongoing negotiation using rules derived from literature. This could,
for example, involve warning the user about implications of actions he intends to
undertake. The tool [37, 38] is a web-based negotiation support system supporting
asynchronous, dislocated negotiations and is targeted at bilateral negotiations.

Aspire implements a three phase negotiation model comprising pre-negotiation,
conduct of negotiation, and post-settlement. The key activities during the pre-
negotiation phase are the analysis of the current situation regarding issues and op-
tions, and the identification of key stakeholders. In the pre-negotiation phase As-
pire assists stakeholders in understanding the negotiation case by providing a de-
tailed description of the initial situation. Stakeholders are invited to express their
preferences regarding the issues and alternatives. During the negotiation phase the
opponents exchange messages and offers to present their viewpoints. The negotia-
tion ends when an agreement is achieved or one of the opponents stops the nego-
tiation. Aspire supports the opponents by providing capabilities for sending mes-
sages and offers. Also, for analyzing the ongoing negotiation the two opponents
can view a history of the negotiation processes, which is tracked by the tool. The
post-settlement phase is used to analyze and evaluate the negotiation outcomes
and if necessary to re-negotiate an already existing agreement. Based on the pref-
erence information entered in the pre-negotiation phase, Aspire determines if the
current agreement satisfies the preferences of the counterparts. It checks if there is
a better solution possible for one negotiation party, without loss to the other side.
Aspire has a strong support for the solution generation stage by analyzing the ne-
gotiation and giving active hints.

7 Requirements Negotiation 155

7.4.2 Negoisst

The Negoisst system for negotiation has its focus on supporting business-to-
business electronic commerce. Based on theories of communication and informa-
tion systems it combines communication and document management [54]. Teams
can use natural language to exchange semi-structured messages and jointly com-
pose the terms of a complex contract. Negotiation systems for e-commerce trans-
actions typically support general phases of business-to-business e-commerce: find-
ing potential partners; negotiating and finding agreements; and fulfilling the
contractual obligations [53]. In this context, the aim of the Negoisst system is to
support the negotiation phase by providing intuitive, unambiguous, efficient, and
process-oriented negotiation support between human negotiators. Using semi-
structured message exchange the negotiators can choose from various message
types to make intentions explicit. The Negoisst system provides the following
types of messages, which also outline the negotiation process: request, offer,
counter-offer, accept, reject, question, and clarification.

7.4.3 EasyWinWin

EasyWinWin is a requirements negotiation approach that combines the win-win
spiral model of software engineering [9] with collaborative knowledge techniques
and automation of a Group Support System. It is based on Boehm’s negotiation
model [11]. The individual objectives of stakeholders are captured as win condi-
tions. Conflicts among win conditions, risks, and uncertainties are recorded as is-
sues. Options are proposed to reconcile issues. Agreements are developed out of
win conditions and out of options by taking into account the preceding decision
process and rationale. EasyWinWin helps a team of stakeholders to gain a better
and more thorough understanding of the problem and supports co-operative learn-
ing about others’ viewpoints. It is an example of an active negotiation support sys-
tem. The EasyWinWin requirements negotiation approach also includes steps for
elicitation and analysis. For example, in a brainstorming step all stakeholders are
invited to post their ideas. A facilitator analyzes the ideas and forms win condi-
tions jointly with the team of stakeholders. EasyWinWin is based on a Group
Support System (GSS). Within the vast number of groupware technologies Group
Support Systems (GSS) focus on supporting group decision-making. A GSS is not
just a single piece of software, but a collection of computer-based collaborative
tools that a team may use to focus and structure their mental effort as they work
together toward a goal. Extensive research in the lab and in the field reveals that,
under certain circumstances, teams can use GSS to become substantially more
productive than would otherwise be possible. Fjermestad et al. [24] provide an ex-
haustive compendium of GSS field research.

Typical examples of such tools are Electronic Brainstorming tools for support
idea generation, group outlining tools for idea organization, or voting tools for
idea evaluation. In EasyWinWin participants use a multi-criteria polling tool to
prioritize win conditions regarding business importance and ease of implementa-

156 Grünbacher and Seyff

tion. The brainstorming capability is used to gather stakeholder interests. There is
an electronic page for each stakeholder. Whenever a stakeholder contributes a
comment to a page the system takes that page away and randomly replaces it with
a different page containing comments from other stakeholders. As the activity
progresses, the pages swap among the participants, picking up a new comment at
each stop. This process tends to broaden the scope of the discussion, resulting in
breadth, rather than depth. It is a useful way to identify many concepts in a short
amount of time. The major area of application of EasyWinWin is software re-
quirements negotiation. Teams use EasyWinWin throughout the development cy-
cle to develop a shared project vision, high-level requirements definitions, detailed
requirements for features, functions, and properties, requirements for transitioning
the system to the customer and user. The goal elicitation aspect is strongly sup-
ported; the solution generation support is weaker and relies on the help of a facili-
tator. EasyWinWin follows mainly a collaboration-oriented conflict resolution
strategy. There are no limitations with respect to the number of stakeholders and
collaboration situations, although most groups have used EasyWinWin in same
time (synchronous or asynchronous) settings. The level of tool support is active,
the collaborative tools provide an infrastructure for negotiation and the negotiation
model and the explicit process guide stakeholders.

7.4.4 SmartSettle

SmartSettle is a negotiation support system that uses the Internet to enable the in-
teraction among project stakeholders with conflicting objectives that wish to reach
an agreement. A facilitator is required to model the problem and to represent pref-
erences in way that can be used by the adopted optimization algorithms. SmartSet-
tle uses a joint session area to compose a Framework for Agreement with natural
language messages. Preferences can be represented using satisfaction graphs. The
SmartSettle negotiation process further uses optimization algorithms to transform
conflicting objectives into fair and efficient solutions and to generate suggestions
before an agreement is reached. After a tentative agreement is reached, SmartSet-
tle looks to improve the situation by fairly distributing gains to both parties. The
use of these built-in optimization algorithms leads to solutions maximizing the
mutual satisfaction for all stakeholders.

A facilitator guides stakeholders through the stages of the SmartSettle process,
including the following stages: Prepare for negotiation, qualify interests (the elici-
tation of stakeholder objectives and draft of framework for agreement), qualify
satisfaction (preference elicitation), establish equity (suggestion of solutions and
acceptance of tentative agreement), maximize benefits (refinement of preferences
including optimization), and secure commitment.

In Sect. 7.2 we discussed a general negotiation processes and explained impor-
tant activities done during pre-negotiation, the actual conduct of the negotiation,
and during post-negotiation. Table 7.3 shows that specific implementations of this
general process emphasize different stages. For example, Negoisst provides a
strong message model supporting the actual negotiation. EasyWinWin supports

7 Requirements Negotiation 157

both pre-negotiation and negotiation activities but its negotiation model is less
rigorously enforced.

Table 7.3 Comparison of negotiation tools

Dimen-
sion/Tool

Aspire Negoisst EasyWinWin SmartSettle

Pre-
Negotiation
* Negotiation
preparation

Pre-
Negotiation
* Define catego-
ries for negotia-
tion

Pre-
Negotiation
* Define nego-
tiation purpose,
negotiation top-
ics, and glossary
of terms
* Identify suc-
cess-critical
stakeholders
* Elicit win
conditions
* Prioritize win
conditions
* Reveal issues
& constraints

Pre-
Negotiation
* Negotia-
tion prepara-
tion
* Qualify in-
terests
* Qualify
satisfaction

Negotiation
* Conduct of
negotiation (of-
fers and
counter-offers)

Negotiation
* Conduct of
negotiation (re-
quest, offer,
counter-offer,
accept, reject,
question, clari-
fication)

Negotiation
* Identify issues
and options
* Negotiate
agreements

Negotiation
* Establish
equity
* Maximize
benefits

Specific
implementa-
tions of ne-
gotiation
process

Post-
Negotiation
*Post-settlement

Post-
Negotiation
* Definition of
contract

Post-
Negotiation
* QA reviews
* Win-win spi-
ral model itera-
tions

Post-
Negotiation
* Secure
commit-
ments

Conflict
resolution
strategy

Competing Competing Collaborative
compromising

Competing
compromis-
ing

Collabora-
tion situation

* Different time
 different place

* Different time
 different place

* Same time
same place
* Same time
different place

* Different
time dif-
ferent place

Negotiation
support

Pro-active
interventive

Active
facilitative

Active
facilitative

Active
facilitative

Similarly, differences can be seen in the conflict handling dimension: Aspire
supports a conflict-oriented approach where two stakeholders can exchange offers
and counters, whereas EasyWinWin emphasizes a collaborative conflict resolution
based on problem-solving by a team. The chosen negotiation tools support differ-

158 Grünbacher and Seyff

ent time/different place interaction with the exception of EasyWinWin, which is
weaker in this respect and assumes synchronous interaction in most of its negotia-
tion steps. With respect to the degree of negotiation tool support, Aspire is the
only tool that can be classified as pro-active interventive as its Atin agent continu-
ously monitoring negotiations and giving guidance to stakeholders.

7.5 Conclusions

In this chapter our aim was to give an overview of the state-of-the art by explain-
ing important negotiation steps; introducing a three-dimensional framework that
covers the conflict resolution strategy, the collaboration situation of stakeholders
involved, and the degree of negotiation support; and by discussing existing nego-
tiation approaches in the context of this framework. Beyond its value for classify-
ing existing and future research the purpose of the framework is to assist practitio-
ners to understand important issues when implementation negotiation processes.
Although some progress has been made in the area of requirements negotiation by
researchers and practitioners, there are still many open issues requiring further re-
search. The discussion of the requirements negotiation dimensions already defined
some candidate areas. In particular, investigating the complex interdependencies
between the dimensions leads to some interesting questions. For example, finding
the most effective negotiation processes for a given negotiation problem, expected
conflict behavior, collaboration situation, and adopted tools. For the future, we
expect several developments for requirements negotiation which pose some inter-
esting research challenges:

Scalability. Researchers have been developing numerous methods and tools
supporting negotiations. Often, these systems are applicable to small problems
only and do not scale up to real-world situations which are characterized by many
stakeholders and many issues (which is the case in most real-world software pro-
jects).

Integration of fields. Software engineering researchers have been developing
approaches, often not aware of research going on in the NSS community. While
pragmatic approaches such as EasyWinWin work quite well in real-world settings,
complementing it with techniques and tools from the NSS community would be
beneficial. We hope to see the better integration approaches from different fields.

Novel tools. New technological developments will result in more sophisticated
negotiation support. For example, mobile computing enables stakeholders to par-
ticipate in negotiations in new collaboration situations more easily. First proto-
types of such tools have already been developed [55].

 Multi-stakeholder distributed systems. A further challenge comes from the
fact that more and more applications, especially those that are developed and de-
ployed over the web, represent so-called multi-stakeholder distributed systems, “...
in which subsets of the nodes are designed, owned, or operated by distinct stake-
holders.” [30] These nodes are often designed or operated in ignorance of one an-
other or with different, possibly conflicting goals. Negotiation approaches will be-

7 Requirements Negotiation 159

come even more important in such a context as the requirements placed by diverse
stakeholders are often ephemeral and conflicting. Furthermore, details about the
elements of such a dynamic system are largely unknown to single stakeholders
and outside their sphere of control [29].

 Handling cultural differences. Negotiation is a complex decision process
which is influenced by political, psychological, sociological and organizational
aspects and cannot be formally represented. For example, there is currently only
limited understanding of the impact of corporate and national culture on require-
ments negotiation. Some approaches exist [40], but we have mostly only tacit ex-
pertise and anecdotal evidence. A research challenge is to develop negotiation
processes, techniques, and tools that better understand and handle the impact of
corporate and national culture.

References

1. (2002) Workbook on international negotiation. Netherlands institute of international rela-
tions Clingendael, 69p.

2. Beck K (1999) Extreme programming explained: Embrace change. Addison-Wesley
3. Boehm BW (1988) A spiral model of software development and enhancement. IEEE

Computer. 21(5): 61 72
4. Boehm BW (2000) Requirements that handle IKIWISI, COTS, and rapid change. IEEE

Computer. 33(7): 99 102
5. Boehm BW (2000) Spiral development: Experience, principles and refinements. Han-sen

WJ, Editor, CMU/SEI-00-SR-08
6. Boehm BW, Abi-Antoun M, Port D, Kwan J, Lynch A (1999) Requirements engineer-

ing, expectations management, and the two cultures. In: Proceedings of IEEE Interna-
tional Symposium on Requirements Engineering, pp.14 22

7. Boehm BW, Bose P (1994) A collaborative spiral software process model based on The-
ory W. In: Proceedings of Conference on the Software Process, pp.59 68

8. Boehm BW, Bose P, Horowitz E, Lee MJ (1994) Software requirements as negotiated
Win conditions. In: Proceedings of IEEE CS 1st International Conference on Require-
ments Engineering. Colorado Springs, Colorado, USA

9. Boehm BW, Egyed AF, Kwan J, Port D, Shah A, Madachy R (1998) Using the Win-Win
spiral model: A case study. IEEE Computer. 31(7): 33 44

10. Boehm BW, Port D, Al-Said M (2000) Avoiding the software model-clash spiderweb.
IEEE Computer, pp.120-123

11. Boehm BW, Ross R (1989) Theory-W software project management: Principles and
examples. IEEE Transactions on Software Engineering, 15(7): 902 -916

12. Bose P, Zhou X (1999) WWAC: WinWin abstraction based decision coordination. In:
Proceedings of International Conference on Work activities Coordination and Collabo-
ration. San Francisco, California, United States: ACM Press, pp.127 136

13. Briggs RO, de Vreede GJ, Nunamaker JF (2003) Collaboration Engineering with Thin-
kLets to pursue sustained success with group support systems. Journal of Man-agement
Information Systems, 19(4): 31 63

160 Grünbacher and Seyff

14. Briggs RO, Grünbacher P (2002) EasyWinWin: Managing complexity in requirements
negotiation with GSS. In: Proceedings of the 35th Annual Hawaii International Con-
ference on System Sciences (HICSS-35.02). Big Island, Hawaii

15. Curtis B, Krasner H, Iscoe N (1988) A field study of the software design process for
large systems. Communications of the ACM, 31: 1268 1287

16. Damian D (2001) Negotiation behavior and group interaction in face-to-face and dis-
tributed requirements negotiations: four case studies. In: Proceedings of the 6th Austra-
lian Workshop on Requirements Engineering. Sydney, Australia, pp.22 31

17. Damian D, Eberlein A, Shaw M, Gaines BR (2000) Using different communication
media in requirements negotiation. IEEE Software. 17(3): 28 36

18. Damian DE, Eberlein A, Shaw MLG, Gaines BR (2003) An exploratory study of facili-
tation in distributed requirements engineering. Requirements Engineering Journal 8(1):
23 41

19. Deutsch M (1973) The resolution of conflict. Yale University Press, New Haven
20. Easterbrook S (1991) Handling conflict between domain descriptions with computer-

supported negotiation. Knowledge Acquisition: An International Journal, 3: 255 289
21. Egyed A, Grünbacher P (2004) Identifying requirements conflicts and cooperation:

How quality attributes and automated traceability can help. IEEE Software, Novem-
ber/December, pp.50 54

22. Fickas S, Feather M (1995) Requirements monitoring in dynamic environments. In:
Proceedings of 2nd IEEE International Symposium on Requirements Engineering,
pp.140 147

23. Fisher R, Ury W (1983) Getting to yes: Negotiation agreement without giving in. New
York. Penguin Books

24. Fjermestad J, Hiltz R (2000) Case and field studies of group support systems: An em-
pirical assessment. In: Proceedings of 33rd International Hawaii Conference on System
Science, January, Mauii, Hawaii, 1: 4 7

25. Galin A, Gross M, Gosalker G (1993) E-negotiation versus face-to-face negotiation.
What has changed - If anything? , Tel Aviv University: Tel Aviv, Accessed on 3rd De-
cember 2004, http://www.recanati.tau.ac.il/research/IIBR/obhr/amira_miron.doc

26. Grünbacher P, Braunsberger P (2003) Tool support for distributed requirements nego-
tiation. In: Cooperative methods and tools for distributed software processes. De Lucia
A, Gall H (Eds.) FrancoAngeli: Milano, Italy, pp.56 66.

27. Grünbacher P, Briggs RO (2001) Surfacing tacit knowledge in requirements negotia-
tion: Experiences using easy WinWin. In: Proceedings of 34th Hawaii International
Conference on System Sciences, 3-6 January, Maui, Hawaii, Vol.1, pp.1024

28. Grünbacher P, Halling M, Biffl S, Kitapci H, Boehm BW (2004) Integrating collabora-
tive processes and quality assurance techniques: Experiences from requirements nego-
tiation. Journal of Management Information Systems, 20(4): 9 29

29. Grünbacher P, Stallinger F, Maiden NAM, Franch X (2003) A negotiation-based
framework for requirements engineering in multi-stakeholder distributed systems. Re-
quirements Engineering and Open Systems (REOS). Monterey, CA, Accessed on 3rd
December 2004, http://www.cs.uoregon.edu/~fickas/REOS/

30. Hall RJ (2002) Open modeling in multi-stakeholder distributed systems: requirements
engineering for the 21st Century. In: Proceedings of 1st Workshop on the State of the
Art in Automated Software Engineering. U.C. Irvine, Institute for Software Research

7 Requirements Negotiation 161

31. Herlea DE (1998) Computer supported collaborative requirements negotiation. In: Pro-
ceedings of KAW'98. Banff, Alberta, Canada, Accessed on 3rd December, 2004,
http://ksi.cpsc.ucalgary.ca/KAW/KAW98/herlea/

32. Herlea DE (1999) User participation in requirements negotiation. ACM SIGGROUP
Bulletin. 20(1): 30 35

33. In H, Roy S (2001) Visualization issues for software requirements negotiation. In: Pro-
ceedings of Computer Software and Applications Conference, pp. 10 15

34. Jelassi MT, Foroughi A (1989) Negotiation support systems: An overview of design is-
sues and existing software. Decision Support Systems, 5: 167 181

35. Johansen R (1988) Groupware: Computer support for business teams, New York. The
Free Press

36. Keeney RL, Raiffa H (1976) Decisions with multiple objectives: Preferences and value
tradeoffs. J. Wiley & Sons, NY

37. Kersten G (2004) E-negotiation systems: Interaction of people and technologies to re-
solve Conflicts. In: Proceedings of 3rd Annual Form on Online Dispute Resolution 5-6
July, Melbourne Australia

38. Kersten G, Noronha SJ (1997) Negotiation via the World Wide Web: A cross-cultural
study of decision making. An Interim Report, Access on 3rd December 2004,
http://www.iiasa.ac.at/Publications/Documents/IR-97-052.pdf

39. Kersten GE, Lo G (2003) Aspire: Integration of Negotiation Support System and Soft-
ware Agents for E-Business Negotiation. International Journal of Internet and Enter-
prise Management, 1(3): 293 315

40. Kersten GE, Noronha SJ (1999) Negotiations via the World Wide Web: A cross-
cultural study of decision making. Group Decision and Negotiations, 8(3): 251 279

41. Kotonya G, Sommerville I (1996) Requirements engineering with viewpoints. Soft-
ware Engineering Journal, 11: 5 18

42. Lamsweerde Av (2000) Requirements engineering in the year 00: A research perspec-
tive. In: Proceedings of the 22nd International Conference on Software Engineering.
Limerick, Ireland, pp.5 19

43. Lamsweerde Av (2001) Goal-oriented requirements engineering: A guided tour. In:
Proceedings of International Conference on Requirements Engineering’01 Tutorial
Notes

44. Lim LH, Benbasat I (1992-93) A Theoretical Perspective of Negotiation Support Sys-
tems. Journal of Management Information Systems, 9(3): 27 44

45. Nunamaker JF, Briggs RO, Mittleman DD, Vogel DR, Balthazard PA (1997) Lessons
from a dozen years of group support systems research: A discussion of lab and field
findings. Journal of Management Information Systems, 13(3): 163 207

46. Nuseibeh B, Easterbrook S (2000) RE: A Roadmap. In: Proceedings of 22nd Interna-
tional Conference on Software Engineering, Special Issue: ACM-IEEE, pp.37 46

47. Park J, Port D, Boehm BW (1999) Supporting distributed collaborative prioritization. in
Software Engineering Conference, pp. 560 563

48. Pruitt DG, Carnevale PJ (1993) Negotiation in social conflict. Buckingham. Open Uni-
versity Press

49. Rapoport A (1974) Game theory as a theory of conflict resolution. D. Reidel Publ. Co.,
Dordrecht, Holland

50. Robbins S (1989) Organizational behavior: Concepts, controversies and applications.
4th edition, Prentice Hall, NJ

162 Grünbacher and Seyff

51. Robinson WN, Fickas S (1994) Supporting multi-perspective requirements engineer-
ing. In Proceedings of IEEE Conference on Requirements Engineering, pp.206 215

52. Robinson WN, Volkov V (1998) Supporting the negotiation life cycle. Communications
of ACM, 41(5): 95 102

53. Schmid B, Lindemann M (1993) Elements of a reference model for electronic markets.
In: Proceedings of the 31st Hawaii International Conference on System Sciences, IEEE
Computer Society Press, pp.193 200

54. Schoop M, Jertila A, List T (2003) Negoist: a negotiation support system for electronic
business-to-business negotiations in e-commerce. Data & Knowledge Engineering,
47(3): 371 401

55. Seyff N, Grünbacher P, Maiden NAM, Tosar A (2004) RE Tools Go Mobile. In: Pro-
ceedings of the 26th IEEE International Conference on Software Engineering (Re-
search Demo), IEEE Computer Society Press.

56. Sharp H, Finkelstein A, Galal G (1998) Stakeholder identification in the requirements
engineering process. In: Proceedings of 10th International Workshop on Database &
Expert Systems Applications. Florence, Italy, pp.387 391

57. Souren P (2001) Collective memory support in negotiation: A theoretical framework.
In: Proceedings of the 34th Hawaii International Conference on System Sciences,
pp.1 8

58. Standish Group (2001) Extreme CHAOS report. The Standish Group, 196 Old Town-
house Road, West Yarmouth, MA 02673 -- http://www.standishgroup.com

59. Strauss A (1978) Negotiations: Varieties, contexts, processes and social order. Jossey-
Bass Publishers, San Francisco, CA

60. Sutcliffe AG (2002) User-Centred Requirements Engineering. Springer, London
61. Thomas K (1976) Conflict and conflict management. In: Handbook of industrial and

organizational psychology. Dunnette MD (Ed.) Rand McNally College Publishing
Company, Chicago, pp.889 935

Author Biography

Paul Grünbacher is an Associate Professor at Johannes Kepler University Linz,
Austria and a research associate at the Center for Software Engineering (Univer-
sity of Southern California, Los Angeles). He studied Business Informatics and
holds a Ph.D. from the University of Linz. Paul’s research focuses on applying
collaborative methods and tools to support and automate complex software and
system engineering activities such as requirements acquisition and software in-
spections. He is a member of ACM, ACM SIGSOFT, and IEEE.

Norbert Seyff is a Research Assistant at the Johannes Kepler University Linz,
Austria where he received his Master’s degree (Dipl.-Ing.) in Computer Science.
Within the scope of his ongoing Ph.D. research Norbert is developing and evaluat-
ing innovative methods and tools supporting mobile stakeholders and analysts in
acquiring and negotiating requirements.

8 Quality Assurance in Requirements Engineering

Christian Denger and Thomas Olsson

Abstract: This chapter presents a survey of the state of the art for quality assur-
ance for requirements. The meaning of quality in the requirements context is dis-
cussed, as is the influence of the quality assurance during requirements on other
parts of the development. Different quality assurance approaches are categorized
as either constructive (e.g., standards, guidelines, elicitation techniques) or ana-
lytical (e.g., inspections) and discussed with respect to their impact on the re-
quirements quality. Based on the approaches, future challenges are discussed. The
main future challenges lie in investigating the return on investment of quality as-
surance in the requirements context and to provide more empirical results which
approach that effectively prevent or detect which problems.

Keywords: Quality assurance, Requirements, Quality characteristics, Inspections,
Analytical approaches, Constructive approaches.

8.1 The Importance of Early Quality Assurance

Continuously increasing complexity, ever-increasing market pressure, and cus-
tomers’ demands for higher quality require a combination of carefully selected
validation and verification techniques to deliver a software product on time, within
budget and with the desired quality. Requirements engineering is the initial part of
a software development process, and all later steps of the development are influ-
enced by the requirements, making the quality of the requirements an important
factor for the overall quality of the developed system.

Independent of the domain, quality assurance (QA) is an important but elusive
part of software development. Traditionally, QA techniques have mainly focused
on the later development phases such as the implementation phase and the related
testing activities. However, QA can and should start earlier. This chapter ad-
dresses exactly this aspect by discussing QA activities that can be applied in the
requirements engineering phase.

Why it is important to detect defects as early as possible? An issue that origi-
nates in the requirements runs the risk of affecting not only other requirements but
also later phases and can cause follow-up defects in architecture, design, coding
and testing, see Fig. 8.1.

164 Denger and Olsson

Design Code TestRequi. Maintenance
Impact

Origin
Design Code TestRequi. Maintenance

Opportunistic QA

Design Code TestRequi. Maintenance
Impact

Origin
Design Code TestRequi. Maintenance

Origin
Design Code TestRequi. Maintenance

Opportunistic QA

 Fig. 8.1 Impact of requirements issues

If the quality assurance is only performed in the test and maintenance phase,
one is dependent on the ability of the requirements engineers, designers and pro-
grammers to produce good working products, suitable for the rest of the develop-
ment. That is, you rely on their ability not to make any crucial mistakes. However,
this would reflect an ideal case that in almost all cases cannot be achieved (it is
natural that humans make errors). Having no intermediate QA, i.e. a quality gate
for the intermediate work products, it is most likely that the design and implemen-
tation are based on the wrong requirements. This, in consequence, leads to high
rework effort as not only the code but most often the overall system architecture
and design have to be revised due to requirements defects. Nevertheless, it seems
to be quite common to do QA only by means of testing (and maintenance ap-
proaches), which, therefore, is an opportunistic approach.

Many studies show that late, opportunistic QA leads to a stressful and costly
test and maintenance phases. Issues should be resolved in the phase of their origin
to avoid costly testing and rework. Testing and rework can account for up to
40 50 % of the development effort [10]. In addition, removing defects early in the
development process is more cost effective than addressing the defects during test-
ing or maintenance [7]. Correcting a defect late in the process gets more expensive
as development effort has already been spent and more artifacts are affected. A re-
quirements issue can become up to 100 times more expensive if it is detected in
operation, compared to detecting it in the requirements phase [10].

Based on these data, the knowledge that requirements deficiencies are the
prime source of project failures [21], and that over 40% of problems in the soft-
ware development cycle result from low quality requirements [47], QA techniques
for requirements are one of the most promising and cost effective techniques to
ensure successful development and to prevent avoidable rework in later phases.
Independently of whether high quality is required or not, QA in the requirements
phase pays of. But it does, of course, become even more important if high quality
is a key success factor.

The remainder of the chapter discusses quality of and quality assurance for re-
quirements. Techniques to assure the specified quality aspects are discussed and a
framework on how to integrate the different QA techniques is presented (Sect.
8.2). The subsequent sections deal with concrete QA approaches. A general intro-
duction to constructive apaches is described in Sect. 8.3, together with examples
of constructive approaches. The analytical approaches, such as inspections and
early test case creation, are presented in Sect. 8.4. In Sect. 8.3 and Sect. 8.4 the is-
sue of traceability and how it can be used to facilitate QA is elaborated. The final

8 Quality Assurance in Requirements Engineering 165

sections, Sect. 8.7 and Sect. 8.8, summarize the important future work and con-
clude the chapter, respectively.

8.2 Requirements and Quality Assurance

Quality is hard to define as it is a complex concept, dependent on organizational
viewpoints and context characteristics [32]. For example, do fewer defects per
lines of code equal high quality? What if one of these defects causes the loss of
life? Quality has a very different meaning in different situations. In a word proces-
sor, different quality criteria are important than in an electronic control unit of a
car or an airplane.

With requirements, this becomes even more difficult, as the notion of quality
often depends on the opinions of various stakeholders. For example, if you have
not understood the stakeholders’ needs correctly, you are bound to end up with a
system that is not considered to be of good quality as it might not support the user
in fulfilling certain tasks. This section introduces how quality and quality assur-
ance can be defined for requirements and presents aspects of defining a quality
strategy for early QA.

First of all, it is important to define what is meant by a defect in the require-
ments phase. In this chapter, the term issue is used as an umbrella term for all mat-
ters that should be resolved in the requirements context. The terms defects, errors,
faults or problems are other words used with a similar meaning. However, in the
case of requirements, it is sometimes unclear whether an issue really is a defect.
For example, if two stakeholders disagree on one aspect of a requirement, this is
an issue that should be resolved, but would usually not be referred to as a defect in
the traditional sense. If it is not resolved, at least one stakeholder will reject the
system in acceptance test. However, contradicting requirements are closer to the
conventional interpretation of a defect. Therefore, the matters mentioned in the
examples are summarized as requirements issues that need to be resolved through
the QA activities on the requirements.

8.2.1 Quality of Requirements

The quality of requirements is dependent on various stakeholders and their per-
spective. Several different views need to be considered in order to define what
quality means in a certain context [32]. The first view on quality is the transcen-
dental view. Therein, quality is considered as something that we always strive for
as an ideal but we will never be able to implement this ideal. The goal of this
viewpoint is to express the complexity of the concept quality in general. Second,
the user view evaluates the quality of a software product with respect to its fitness
of purpose to fulfill certain user tasks. The third view, the manufacturing view, fo-
cuses on the product view during production and after delivery. It is focused on
the adherence of standards and evaluates whether the product was build right the

166 Denger and Olsson

first time. The fourth view is the product view. The focus for this view is on inter-
nal quality aspects of the product that can be measured. It is assumed that ensuring
certain internal quality aspects has an impact on the external quality and the qual-
ity in use of the product. Finally, the value-based view relates quality to cost. It
considers quality as something the customer is willing to pay for [32].

Mapping these views on the quality of requirements reveals relevant stake-
holders and needed QA for the requirements. The requirements should, for exam-
ple, describe what the user requires of the final system (user-view). Furthermore,
they should be described in a way that allows the developers to produce the soft-
ware effectively and efficiently (product-view). The requirements engineers have
to follow certain standards when specifying the requirements to ensure the quality
of the requirements right from the start (manufacturing view). Finally, the custom-
ers have to decide on the value of each requirement and whether the implementa-
tion cost is motivated (value-based view).

All these aspect have to be considered when discussing the quality of require-
ments. The inherently human based nature of requirements engineering and the
necessity to consider not only technical but also social aspects when eliciting, ne-
gotiating and specifying requirements makes the definition of quality characteris-
tics for requirements even harder. Standards are a starting point for defining the
quality of requirements and requirements specifications [24, 25]. Further, there ex-
ist a number of processes, guidelines, and best practices on how to perform good
requirements engineering [8, 11, 14, 41, 46, 50]. The advocates of these ap-
proaches argue that, for example, adhering to the process facilitates requirement
engineering and minimizes later quality problems. In order to specify an initial set
of quality criteria, the IEEE standard for requirements specification [24] is used as
a starting point (see Table 8.1). The standard is extended to provide a more com-
plete picture of relevant quality aspects of requirements (e.g. [16]), especially to
address customer and user needs (value-based and user view on requirements
quality). Moreover, we extended the definition of the quality attributes beyond the
quality of a requirements specification. In accordance to the different views on
quality in general, the definitions of the quality attributes were adapted (see also
[13]). In consequence, the quality aspects consider technical and human related
aspects, which both are relevant for the overall quality of the requirements.

The information in brackets behind the attribute name specifies whether the at-
tribute is originally defined in the IEEE standard or whether the attribute is part of
the extension (IEEE/new). The second information specifies which view on the
requirements’ quality is addressed with the attribute.

Table 8.1 Quality attributes for requirements (1 of 2)

Quality Attribute Definition
Correctness (IEEE, user-
view)

The requirements that are implemented have to reflect the
expected (intended) behavior of the users and customers.
That is, everything stated as a requirement is something
that shall be met by the final system to fulfill a certain pur-
pose (suitability).

8 Quality Assurance in Requirements Engineering 167

Table 8.1 (cont.) Quality attributes for requirements (2 of 2)

Quality Attribute Definition
Unambiguity (IEEE,
product-view)

The requirements should only have one possible interpreta-
tion. Note that one requirement might be unambiguous to a
certain group of stakeholder but has a different meaning in
another. It is important to involve all stakeholders in the
requirements engineering process to gain a common under-
standing (see Chaps. 2 and 3)

Completeness (IEEE,
product-view)

All important elements that are relevant to fulfill the differ-
ent user’s tasks should be considered. This includes rele-
vant functional and non-functional requirements and inter-
faces to other systems, the definition of responses to all
potential inputs to the system, all references to figures and
tables in the specification, and a definition of all relevant
terms and measures.

Consistency (IEEE, prod-
uct, manufacturing view)

The stated requirements should be consistent with all other
requirements, and other important constraints such as
hardware restrictions, budget restrictions, etc.

Ranked for Importance /
Stability (IEEE, product,
value-based, user view)

Each requirement specifies its importance and/or its stabil-
ity. Stability expresses the likelihood that the requirement
changes, while importance specifies how essential the re-
quirement is for the success of the project (from a value-
based and a user point of view). See also Chap. 5

Verifiability (IEEE, prod-
uct view)

All requirements should be verifiable. That is, there exists
a process for a machine or a human to check (in a cost ef-
fective way) whether the requirement is fulfilled or not.

Modifiable (IEEE, prod-
uct view)

All requirements should be modifiable, that is the structure
of the requirements and the requirements specification al-
low the integration of changes in an easy, consistent and
complete way.

Traceable (IEEE, manu-
facturing view)

All requirements should be traceable, that is, it should be
possible to reference the requirement in an easy way.
Moreover, it is possible to identify the origin of a require-
ment (see also Chap. 4)

Comprehensibility (New,
manufacturing, user,
value-based view)

The requirements are specified and phrased in a way that is
understood by all involved stakeholders.

Feasibility (New, value-
based, product view)

All requirements can be implemented with the available
technology, human resources and budget. Moreover, all re-
quirements contribute to the monetary success of the sys-
tem, that is, they are worth to include in the system.

Right Level of Detail
(New, user, manufactur-
ing, value-based view)

The information given in the requirements is suitable to
gain the right understanding of the system and to start im-
plementation. There are no unnecessary implementation or
design details specified in the requirements.

The IEEE Standard was extended to give a more complete way of describing
the quality of requirements:

168 Denger and Olsson

Comprehensibility is essential, as there are many different stakeholders in-
volved in the requirements engineering process. It is important that the re-
quirements can be easily understood by all of these stakeholders and that they
all have a common understanding of the requirements.
Feasibility is especially important to consider as a requirement and is only of
value if it can be transformed into a design and an implementations with rea-
sonable effort and cost.
Finally, the requirements should be specified on an adequate level of detail,
that is, concrete enough to allow that design and implementation can be started
,but that is on the other hand abstract enough to allow discussion between all
involved stakeholders (which have in many cases technical and non-technical
backgrounds).

Note that there are relationships among the attributes. For example, ambiguous
requirements are also difficult to understand. Further, if the requirements are not
traceable, the verifiability, modifiability and the comprehensibility can be af-
fected. Even though the classification is not orthogonal, each attribute refers to a
special aspect of requirements’ quality that should be considered. A more detailed
analysis is needed regarding how the different quality attributes impact each other
and how this information can be used to balance QA activities on the requirements
(see Sect. 8.5).

8.2.2 Requirements Quality Strategy

Developing software without any defects is impossible (see, for example [32],
specifically the transcendental view of quality). It is, however, possible to achieve
an optimal compromise between the desired quality and available resources, con-
sidering the specific context factors and quality need of a company or a project.
Many factors influence the importance of different quality attributes in a specific
context. For example, in certain domains, it is more important to be the first on the
market than to have high quality products in the sense of few defects. There is a
lot of software being tremendously successful, from a commercial point of view,
which is anything but of high quality. On the other hand, the cost of a single defect
can be fatal and incredibly expensive, for example the Ariane 5 disaster [33].
Thoroughness and budget for quality assurance need to be related to the cost of er-
roneous implementation, leading to financial or human costs.

During the requirements engineering phase, it is important to define a quality
strategy that addresses those quality issues that can easily be verified and validated
in the requirements phase. Other quality aspects that cannot be efficiently ad-
dressed during the requirements phase should be left for later phases.

A quality strategy defines how, when and where different QA approaches, in
combination with other approaches in the software development process, are used
to assure high quality. This includes the planning of resources (which approach is
applied when and how much effort should be spent) and the definition of an opti-
mized combination of the different QA approaches with the aim of achieving the

8 Quality Assurance in Requirements Engineering 169

desired quality at the desired cost. The definition of such a strategy is not a trivial
task. It requires detailed knowledge about the context of the company and the pro-
ject, the required level of assurance of the different quality attributes (i.e. to which
degree we can be sure the requirement are fulfilled) and which QA approaches are
applicable. Figure 8.2 summarizes the elements impacting a quality strategy. At
the top of the picture are context related elements, at the bottom technically ori-
ented elements. There are five context elements relevant for QA strategies:

Available
Resources
Available
Resources

Requirements Engineering
Quality Assurance

Requirements EngineeringRequirements Engineering

Quality AssuranceQuality Assurance

Time
Schedules

Time
Schedules

Organizational
Aspects

Organizational
Aspects

High Quality
Requirements
High Quality

Requirements

Basic QA

Strategies

Basic QABasic QA

StrategiesStrategies
Coverage

Criteria

CoverageCoverage

CriteriaCriteria
Quality Assurance

Techniques

Quality AssuranceQuality Assurance

TechniquesTechniques
Basic QA

Strategies

Basic QABasic QA

StrategiesStrategies
Coverage

Criteria

CoverageCoverage

CriteriaCriteria
Quality Assurance

Techniques

Quality AssuranceQuality Assurance

TechniquesTechniques

RisksRisks

Fig. 8.2 Elements important to define a quality assurance strategy for requirements

1. The quality of requirements specifies the quality criteria for good requirements,
as described in the previous section. These criteria can vary from company to
company and from project to project. They impact the strategy in that they
specify what should be achieved with the quality strategy. It is important to de-
fine optimal and minimal sets of quality characteristics of requirements [32].

2. The available resources describe the available effort, budget, hardware, and
personnel to perform QA during the requirements activities. In addition, the
availability of additional experts has to be considered, as for certain quality as-
surance approaches, certain stakeholders beyond the requirements engineering
processes might be essential (e.g. lead architect during requirements reviews).
The available resources have also a direct impact on the applicable QA ap-
proaches. For example, if only a small effort is available to perform require-
ments reviews it is not possible to fulfill a full Fagan inspection with many par-
ticipants but only a peer review or desk-checking approach [49].

3. Risks related to certain requirements, especially risks of not realizing a re-
quirement or implementing a requirement in the wrong way, are an additional
factor influencing the quality strategy. Risk is defined as not being able to live
up to the quality goals and is an important factor for deciding on which part of
the requirements which QA approach should focus. For example, not meeting a
requirement important to protect human lives bears a high risk and should
therefore be checked extra carefully. Moreover, risks can be used to plan the

170 Denger and Olsson

limited quality assurance resources. For example, with the help of risk analysis,
it is possible to identify the most critical requirements in the sense of loss of
lives or loss of money. The QA approaches should then be focused exactly on
these aspects (see also Chap. 5 for related approaches).

4. The overall time schedule is related to the available resources and defines the
time available for QA in general and within the requirements phase in particu-
lar. Time resources are especially important as they relate the requirements QA
activities with other development activities.

5. Finally, the organizational aspects, such as development process, e.g., plan-
driven or agile development, or product domain, (e.g., desktop software or air-
plane control system) influence the decision on which QA approaches to use.
Moreover, it is important to take the various stakeholders into account. De-
pendent on the domain, different sets of stakeholders are varying importance
(see also Chaps. 2 and 3). These aspects impact the quality strategy in that cer-
tain QA approaches might not be applicable due to the organizational con-
straints. For example, in an agile process, requirements reviews are almost im-
possible to perform as in the most agile processes requirements are not
documented in a way that would allow an inspection (e.g. user stories in ex-
treme-programming often are not longer than one sentence that specifies a gen-
eral feature [5]).

The context elements are important to consider as they define in which way the
QA approaches can be applied and which restrictions and constraints must be ad-
hered to. Beside the context in which the quality strategy is embedded, it is also
important to consider technical aspects of quality assurance:

1. The basic strategies represent those strategies in place in a company or a pro-
ject that define how to perform QA in the requirements phase. In that sense
they represent the current state of the practice in a certain context. Due to the
lack of sophisticated quality strategies, ad-hoc approaches are most frequently
applied. For example, the simplest but also the least systematic strategy is to
state that everything in the requirements specification should be verified or that
all quality issues should be tackled in later development phases. Experience
based strategies give hints on what to address in the requirements based on the
experience of earlier projects. Such basic strategies should be considered when
creating a more sophisticated quality strategy. They provide valuable input on
where to start from and what has paid of in the past.

2. The coverage criteria define which aspects of the requirements should be cov-
ered by the QA approach. One example of a coverage criterion is that all re-
quirements are covered by at least one test case. An aspect related to coverage
that should be considered is the depth of the QA approach [35]. Depth defines
the level of detail to which the requirements are verified or validated or, in
other words, the quality level to be achieved. The greater the depth, the more
resources are required for QA and the more sophisticated QA approaches are
required.

3. The most important element of a requirements quality strategy is the potential
quality assurance approaches and methods that can be used to ensure the dif-

8 Quality Assurance in Requirements Engineering 171

ferent quality characteristics of the requirements. As discussed, the context
elements and the technical elements impact the applicability of QA approaches.
The QA approaches are the technical core element of the quality strategy as
they represent the means of achieving good requirements quality.

Quality Assurance

Constructive
Techniques

Analytic
Techniques

Dynamic Techniques
(Validation, e.g Testing)

Static Techniques
(Verification, e.g Inspections)

Elicitation Techniques

Prototyping

Specification Techniques
(standards, processes)

Fig. 8.3 Excerpt of quality assurance approaches

The framework presented in this section supports the definition of a good qual-
ity assurance strategy. It specifies which elements are important to consider when
talking about quality assurance in the requirements engineering phase. It is impor-
tant that all these elements are considered in the specific context of a specific
company and have to be instantiated accordingly. To instantiate the framework
into a concrete quality assurance strategy, it is essential to stress the continuous
collection of data. Such a measurement approach should address the question
which requirements issues are the most expensive ones and which quality assur-
ance techniques work best in the specific context. The most essential element in
the framework is the QA techniques (QA approaches) that can be applied. This is
the element that should be considered first, i.e. before defining a detailed QA
strategy, it is important to investigate potential approaches to verify the quality at-
tributes of the requirements.

8.2.3 Quality Assurance Approaches for Requirements

In this report the quality assurance approaches are divided into one of two classes:
constructive and analytical approaches. Figure 8.3 provides some examples of QA
approaches of the different classes.

Constructive approaches ensure that mistakes are minimized during the crea-
tion of a work product (e.g. the requirements specification). That is, they prevent

172 Denger and Olsson

issues from being introduced. Examples of constructive approaches in the re-
quirements phase are style guidelines on how to specify requirements, templates
for the requirements specification, elicitation approaches and prototyping.

Analytical approaches are performed on the completed artifact or a self con-
tained part of it with the aim to detect issues. Analytical quality assurance ap-
proaches can be further divided into static quality assurance approaches, dynamic
quality assurance approaches (including formal methods) [36]. The difference be-
tween the two classes is that dynamic approaches require an executable version of
the system. Testing approaches are examples of dynamic quality assurance. Static
quality assurance approaches can be performed without executing code. Inspec-
tions and formal verifications are an examples of static approaches. There is in
most cases no executable code available during the requirements engineering
phase. Hence, usually only static approaches are applicable.

It is important to distinguish between QA in the requirements analysis phase
and in the requirements validation phase [46]. QA in the analysis phase means that
requirements issues are prevented from being introduced (i.e. during elicitation)
with the help of constructive approaches omissions and ambiguous requirements
are addressed. The validation process of requirements is based on a requirements
document and tries to resolve issues within this document. Here, the analytical ap-
proaches are applied.

8.3 Constructive Approaches

Constructive approaches ensure quality during the creation of the requirements. In
that sense, constructive approaches are preventive, as they aim to minimize mis-
takes from being made. These approaches are called constructive as they are ap-
plied while developing the requirements. Different ways constructing require-
ments and eliciting them from the various stakeholders are discussed in Chap. 2
and Chap. 3 of the book. How these approaches contribute to higher quality of the
requirements in this section.

Requirements engineering is largely a human-based activity. Even if formal
methods are used, at some point you will be interacting with customers and other
stakeholders. As we humans are fallible, we are bound to make mistakes. There-
fore, even if constructive methods are applied according to all the rules, there will
still be a need to check the results, that is, apply analytical approaches. In this sec-
tion, the impact of constructive approaches is presented. In Sect. 8.4, the analytical
approaches are presented.

8.3.1 Elicitation Techniques

The elicitation step is important to the overall quality of the requirements and the
acceptance of the final system [35, 46]. During the elicitation step, requirements
are captured from various sources, such as the customer, the users, earlier projects,

8 Quality Assurance in Requirements Engineering 173

market studies etc. In this process, various stakeholders such as the customers, the
technical staff (developers), and end users work together to derive an appropriate
set of requirements. Requirements engineers can apply different techniques to
support the various stakeholders in discovering the requirements, e.g. interviews,
questionnaires, workshops and focus groups (see Chap. 2 for more details).

By means of elicitation techniques, the following quality attributes can be en-
sured:

Comprehensibility: by developing a common terminology and ensuring that the
different stakeholders speak the same language, comprehensibility is improved.
Completeness: if the elicitation is performed correctly, all the (relevant) stake-
holders, and their individual stakes, should be identified. Here, elicitation ac-
tivities contribute to higher quality in that they support the requirements engi-
neers in the identification processes.
Verifiability and feasibility: again, by involving the relevant stakeholders, qual-
ity can be assured. By involving the testers the attribute verifiability is im-
proved, and by involving the developers feasibility is improved.
Correctness: the elicitation process should be driven by the business concerns
[46]. Suitability, as part of correctness, is supported by this, as it is then more
likely that the developed software will bring a real financial benefit in the con-
text of use.

8.3.2 Specification Techniques

The main objective of the specification step is to document the requirement in
such a way that they can be used as a basis for development (see Chap. 3). Usu-
ally, the output of the specification activity is a requirements document that cap-
tures the relevant aspect of the system to be built (i.e. functional, non-functional
aspects, restrictions, etc.). In the section it is outlined how certain specification
techniques, best practices and standards can help to ensure the quality of the re-
quirements.

Standards, such as IEEE 830-1998 and IEEE 1233-1998 [24, 25], describe
which elements a “good” requirements specification should have and which qual-
ity attributes the requirements should fulfill. Templates also provide elements that
should be specified when documenting the requirements. Examples include tem-
plates on how to specify use cases or how to structure the requirements document.

With respect to the quality characteristics defined in Sect. 8.2.1, standards and
templates contribute to better requirements in the following way:

Completeness: in the case that the requirement engineers adhere to the recom-
mendations in the standards and apply the pre-defined templates it can be en-
sured that all relevant aspects of a requirements document are considered, i.e.
completeness of the document.
Understandability and modifiability: the structure provided by templates and
standards ensures that requirements document look similar over different pro-
jects in a company. Standardization of requirements documents prevents ambi-

174 Denger and Olsson

guities within the documents and improves the understandability as well as the
modifiability, as elements that need to be changed can be found more easily.

In addition to standards and templates, there is a huge collection of best prac-
tices showing how different steps in the requirements engineering process should
be performed in order to gain high quality output of each of these steps only to
mention some of them: [8, 11, 14, 17, 25, 35, 41, 46, 50].

Specifying functional requirements using, for example, use cases and related
scenarios ensures also the comprehensibility of the requirements right from the
start, as use cases and scenarios are easy to understand for technical and non-
technical stakeholders. This also supports the attribute right level of detail. In ad-
dition, use cases seem to be valuable source for the definition of acceptance and
system test cases (see Sect. 8.4.2). Therefore, specifying the requirements in a
structured, scenario-oriented way improves their verifiability.

Basically, it would be possible to address almost all of the quality attributes in a
constructive way if certain processes and standards are rigorously followed and
applied. However, practice shows, that such rigorous approaches are not always
reasonable or feasible (e.g. due to time restrictions, budget restrictions, regula-
tions, etc.).

8.3.3 Prototyping

Another constructive approach that can be used to support elicitation is prototyp-
ing. A prototype is an executable version of the system under development,
though restricted in one way or another. For example, a user interface prototype
implements parts of the user interface, the structure and navigation, but will not
have all the functionality, while a performance prototype focuses on memory and
CPU load and might have no user interface at all.

The goal of a prototype is for the stakeholders to be able to try the system and
make improvement suggestions [46]. By doing this, they get a better feeling of
whether the system represents what they required, and thus it helps to identify
missing requirements and detect misconceptions. The most important value of a
prototype is that it crosses the gap between the description and implementation
[17]. Further, a quite common issue with the requirements is that the customer
does often not exactly know what they want.

In general, developing a prototype requires a careful study of the requirements
[46]. A prototype typically target the following quality attributes:

Inconsistencies and incompleteness: the process of developing a prototype will,
in it self, reveals inconsistencies and incompleteness of the requirements and
thus improves their quality.
Correctness: correctness is improved by letting the different stakeholders work
with and evaluate a concrete object rather than the abstract requirements.
Feasibility: by trying out different solutions, already in the requirements phase,
feasibility is improved. A lot of time and money can be saved if dead-ends are
detected at an early stage.

8 Quality Assurance in Requirements Engineering 175

To underline the benefits of prototyping in the context of QA, an experiment
showed that prototyping can significantly reduce requirements and design errors,
especially for the user interfaces [9].

8.4 Analytical Approaches

The analytical quality assurance approaches assess the requirements specification
to check whether the requirements specified in there fulfill the quality criteria
specified. The main challenge of the analytical approaches is that there are no ref-
erence documents against which the requirements can be checked, i.e. there is no
documented source of truth against to compare. This emphasizes that QA of re-
quirements has to involve all relevant stakeholders of the requirements. In the fol-
lowing, two analytical approaches requirements inspections and test case creation
(as a part of acceptance testing) are presented in more detail.

8.4.1 Requirements Inspections

Inspections are a valuable means to ensure the quality of a software product right
after its creation. There are many experimental and industrial results that show the
value of inspection in general and requirements inspection in particular [2, 3, 4, 9,
17, 19, 20, 34, 37, 40, 43, 44, 48, 49]. Inspections in general aim at minimizing the
issues of a certain product being propagated to later phases, as the issues are ad-
dressed in the same phase in which they are introduced. Considering the costs of
an requirement issue (see Sect. 8.1), requirements inspections are one of the most
cost effective QA approaches, as they prevent issues from being propagated from
the requirements to other artifacts and cause follow-up defects and avoidable re-
work [7, 17, 37, 44, 49].

A second important benefit of early QA is that many organizations report an
improved knowledge transfer achieved when performing early QA activities such
as inspections and test case creation. For example, with the help of the reading
scenarios and the checklist questions it is possible to transfer knowledge about de-
fect patterns, best practices and known pitfalls from experts to less experienced
people.

An inspection is characterized by a process, the roles involved in the process,
reading techniques used, and the information on how the results of the inspection
are documented. These elements can be seen as the four dimensions of an inspec-
tion [34].

The Inspection Process
A basic inspection process contains four main steps: planning (managing the or-
ganizational issues of an inspection), detection (inspectors search for issues in the
document under inspection), collection or meeting step (moderated meeting merg-
ing the results of the inspectors into approved defect list) and correction (where
the author has to resolve all the identified issues). These steps are common for al-

176 Denger and Olsson

most all instantiations of the inspection process. However, several inspection
processes mention additional steps such as the overview meeting or the follow-up
meeting [18, 49]

Each phase of the process can be implemented in different ways depending on
the level of detail with which the requirements should be inspected. For example,
in the case that the requirements should be checked only from an abstract view-
point, the individual preparation phase of the process could be skipped and the re-
quirements would be discussed during a meeting with certain experts. According
to the IEEE Standard 1028-1997 [26], such a process would be similar to a walk-
through of the requirements document. The company applying the inspection ap-
proach has to decide to which level of detail the requirements should be inspected
[49]. This mainly depends on the requirements quality strategy as discussed in
Sect. 8.2.2 (see discussion on how different elements of the framework impact the
QA approaches). The above-mentioned process steps are the four most essential
steps that should be performed in case the requirements are to be inspected in a
more detailed way.

Reading Techniques
The most important, but also the most difficult step, in a requirements inspection
is the detection step. In this step, the inspectors identify requirements issues. A
reading technique supports the inspectors in performing this step. A reading tech-
nique represents a series of steps or procedures that guide an inspector in acquir-
ing a deeper understanding of the requirements under inspection and detecting is-
sues in them [34].

There are different kinds of reading techniques that can be used during a re-
quirements inspection: ad-hoc reading (reading without further guidance based on
ones experience), checklist-based reading (using a list of questions to point to po-
tential issues in the requirements) and scenario-based reading (using a step-wise
description to guide the inspector during the defect detection step). Again, depend-
ing on the desired level of depth and coverage, one of these techniques might be
more suitable for verifying the requirements than another. A more detailed sum-
mary of different reading techniques can be found in [34].

Checklist based reading (CBR), as the name indicates, is based on checklists
containing questions that should be answered during the defect detection. These
questions focus on certain quality aspects that are relevant for the requirements
under inspection. The checklist approach tells an inspector what to check. How-
ever, an often cited weakness of CBR is that it provides little support for how to
perform the analysis [34, 48]. The reviewers get no guidance or hints on how to
answer the questions in the checklist.

A checklist for use cases, for example, is presented in [2]. Many other check-
lists for requirements can be found on the Internet. However, it is important to
note that there exist no standard checklist that can be applied in all contexts. A
checklist has to be company- and sometimes even project-specific. Thus, the
checklist has to be tailored to the context and characteristics of the company and
the project. It is important to consider the elements of the requirements quality
framework as it provides input for defining valuable checklist questions (e.g. input

8 Quality Assurance in Requirements Engineering 177

on quality goals, existing checklists (basic techniques), quality characteristics of
importance, organizational restrictions, etc.). In addition, one should consider
known defects or problems and, of course, expert knowledge, as further sources
for checklists questions.

Checklists have three basic weaknesses [34]. First, the checklist questions are
often extremely general. That is, concrete guidance on how to use the checklist is
missing. Further, the checklist questions are often not up to date. To overcome
these drawbacks, alternative approaches were developed. One class of alternative
approaches is called scenario-based approaches. For requirements, the following
scenario-based approaches are applicable: Perspective-based reading (PBR) [4, 34,
43, 45], traceability-based reading [45], defect-based reading [40] and usage-based
reading [48].

The basic idea of the scenario-based reading techniques is that inspectors are
guided by a scenario that tells them what to look for during the inspection and
how to perform the inspection. Furthermore, the scenario guides the inspector to
actively work with the requirements, resulting in a deeper understanding of the re-
quirements and their interrelationships [34, 43]. Having such a deep understanding
of the requirements is a prerequisite for finding more subtle and logical defects,
which are often critical to the final system. Finally, the scenarios focus the atten-
tion of the inspectors on the essential quality aspects and on the essential parts of
the requirements under inspection that need the most thorough investigation [34].
This input should be taken for example from prioritization techniques (see Chap.
5).

The special aspect of PBR is that the requirements are inspected from the view-
point of different stakeholders, see Fig. 8.4. Different stakeholders have different
interests in the requirements. The assumption behind PBR is that the requirements
are of good quality if all stakeholders who use the requirements for their specific
tasks, agree on the requirements quality (find no serious issues in them).

user

designer

tester

Design

Document

domain-

expert

customer

user

designer

tester

Design

Document

domain-

expert

customer

Fig. 8.4 Some perspectives to inspect the requirements

In each company context, the involved perspectives are different. Therefore, the
first essential step when applying the PBR approach is identification of the poten-
tial perspectives and the quality concerns these perspectives are interested in.

During an inspection traceability links (see Chap. 5) can help to guide the in-
spectors through the requirements. For example, the quality attribute of consis-

178 Denger and Olsson

tency (see Sect. 8.2.1) is directly related to the ability to trace one requirement to
another. The problems with inconsistency are well documented and are often one
reason for quality problems and project delays [35]. With well defined links be-
tween the requirements it is possible for the inspector to follow these links and
check that the requirements work together in a consistent and correct way. In that
sense, the defect detection step gets more efficient as the inspectors do not have to
think of potential relationships between requirements but can follow the links be-
tween them. Beside the consistency issue, it is also possible for the inspector to
judge whether certain functions are completely realized with the different re-
quirements described in the specification by following the traceability links and
judging whether the sum of the requirements results in the desired support for the
user. Finally, the traceability links indicate requirements that are highly related to
each other and therefore help the inspectors to judge the maintainability and un-
derstandability of the requirements.

But also without the support of traceability, inspections can address many of
the quality attributes specified in Sect. 8.2.1 (assuming that the inspection is per-
formed thoroughly): correctness, completeness, unambiguity, comprehensibility,
feasibility, modifiability, verifiability. This can be achieved with the right set of
questions in the reading scenarios and checklists.

8.4.2 Requirements-Based Testing

Testing is usually performed at the end of the development process when executa-
ble system parts are available. Test cases are usually defined and run on the sys-
tem to validate whether the system fulfills its specification. For example, the test
cases derived from the requirements are used during the acceptance and system
test phase. Testing is often perceived as the pure execution of the test cases at the
end of the development cycle. This perception has led to the myth that testing can
start only at the end of the software development process [22]. However, testing is
more than running the test cases and looking for failures in the final software. At
least the two steps test planning and test case creation can and should be integrated
in the development process much earlier than they are usually integrated.

It is recommended that test planning and test case creation should be performed
as soon as the requirements, or a self-contained sub-set, are defined [22, 51]. The
idea of early test case creation is similar to the idea of perspective-based inspec-
tions. Through the early construction of the test cases, the test engineers gain a
better understanding of the requirements and are able to identify weaknesses and
potential issues within the requirements. Moreover, test engineers bring in a com-
pletely new perspective on the requirements which also contributes to identify re-
quirements issues during the early test case creation. For example, if the test engi-
neers have difficulties in deriving the acceptance test case from requirements it
might be necessary to refine the requirements, to add missing information or to
remove/restate the requirement as it is not possible to test them.

The principle of early test case creation helps to improve the quality of the re-
quirements by identifying correctness, completeness, ambiguity, consistency and

8 Quality Assurance in Requirements Engineering 179

verifiability issues during the specification of the test cases. If this is done at the
very end of the project, these issues are propagated from the requirements to all
later phases and the test engineers might base their test cases on the wrong re-
quirements, as the requirements are taken for granted (a fixed source of truth
which is different at the beginning of the process).

An overview on requirements based testing approaches can be found in [15].
Special approaches that work on use cases are described in [6, 12, 30, 42]. General
approaches that can be applied on the requirements specification to define detailed
test cases are, for example, defined in [31, 39].

Again, it is possible to use traceability links to facilitate this activity (see Chap.
5). They provide a better understanding of which aspects in the requirements have
to be tested together (e.g. in a test scenario) and which requirements are already
covered by the defined test cases. Depending on the granularity of the traceability
links, it is then possible to judge which requirements as a whole are covered by
one ore more test cases, which test cases test more than one requirement, or
whether there are test cases that cover only a single requirements. This informa-
tion helps to identify points that need further consideration and special attention.
Furthermore, traceability can help to select those parts that need regression testing
by identifying which requirements are affected by a certain change [1, 33].

8.4.3 Automated Approaches and Formal Methods

Due to the abstract and informal nature of most requirements documents it is diffi-
cult to apply any automated tools to ensure their quality. For simple issues, such as
grammar or spelling defects, there are tools available. Removing such issues from
the requirements typically improve their comprehensibility.

For one quality attribute, unambiguity, more tool support is available. The idea
of tools that address ambiguity flaws is the identification of certain patterns and
keywords in the requirements that point to potential risk areas (i.e. areas where
more than one interpretation of the requirements is possible). These tools identify,
based on a glossary, phrases that are marked as weak or subjective, for example,
“if possible”, “may”, “could”, “optionally”, etc. The tools parse the requirements
document based on the pre-defined glossary and provide a list of all occurrences
of the weak-phrases in the document [19, 52]. Even though the tools automatically
detect certain quality issues in the requirements, the applicability of these tools in
industrial practice has to be further investigated.

Further automation is possible when the requirements are defined in a formal
way. The use of formal languages copes with requirements issues by avoiding the
imprecise nature of natural language. Requirements are specified in a semantically
well-defined way, typically mathematically based. Several benefits can be gained
by using formal methods. The communication between the stakeholders is more
precise, and thus, misunderstandings and ambiguities can be reduced. It is possible
to check the completeness and the consistency of the requirements document, and
automated proof of safety properties is possible. Finally, the requirements engi-

180 Denger and Olsson

neer can perform simulations of the future system, when the language is supported
by a tool. Examples for such languages are SCR [23], SDL [27], and VDM [29].

However, formal methods also have drawbacks. They are difficult to learn and
difficult to understand for a person without the necessary background. Specifi-
cally, the customer is often not interested in learning the formal language, and a
compromise needs to be found. The first version of the requirements might be
formulated in natural language, in the language of the customer. The requirements
must then be translated into the formal version.

8.5 Open Research Questions

Based on the current state of the practice, some open questions with respect to
quality assurance in the requirements engineering phase are identified. First, some
open issues with respect to testing are discussed and afterwards, inspections are
further elaborated on.

The survey on existing approaches for early test case creation and the involve-
ment of testing during requirements engineering reveals that there are many prom-
ising approaches and that the need of early tester involvement is clearly recog-
nized. However, the survey also shows that there is a lack of empirical evidence
that the proposed approaches do, in fact, save money, improve the quality of the
requirements, and to improve the overall system quality by means of better accep-
tance and system test cases that are more related to the requirements. Future re-
search should focus on gathering this data as these results are important to transfer
the approaches into industry (convince practitioners of the benefits).

Related to this aspect is the fact that test case creation for system and accep-
tance testing is performed without the involvement of the final system user. Al-
most all of the research papers explicitly mention that the user should be involved
during test case creation but do not state how this should be done. Here, research
is necessary to define ways to involve the system end users in this process in a
most efficient and beneficial way.

Many test case creation approaches provide only little guidance on how to de-
rive the test cases from the requirements or intermediate models of the require-
ments (e.g. sequence or state charts that represent the requirements). Often, there
are only high level descriptions on how to come up with good test cases. There-
fore, more research activities should focus on the relationships between require-
ments and other artifacts such as certain types of models and, of course, test cases.
Guidelines that provide a stepwise approach on how to derive intermediate models
should be defined to further facilitate the test case creation activity and, of course,
any further development steps (e.g., analysis and high level design would also
benefit from such guidelines).

Finally, it is a common fact that within requirements specifications, more and
more various notations are used (e.g., pure text, tables, use case diagrams, se-
quence diagrams, etc.). How to deal with this variety of notations during test case

8 Quality Assurance in Requirements Engineering 181

creation is an unresolved question. Each notation provides relevant input and has
to be considered during test case creation.

Concerning requirements inspections, most of the above-mentioned open issues
with respect to requirements based testing also apply to inspections. Approaches
for inspecting heterogeneous requirements documents need to be developed, and a
process needs to be defined on how to most efficiently integrate the various stake-
holders of the requirements in the inspection process. Here, it is especially impor-
tant to define decision support for inspections that gives guidance on when to in-
clude which stakeholders (e.g., when to include which perspectives) and when it is
necessary to perform which process steps. More research is therefore needed that
investigates the factors influencing a good inspection process and to develop
guidelines to customize the inspections in an optimal way to the quality needs that
should be addressed during requirements engineering.

One part of this decision support should be a guideline on which inspection
technique (checklist, scenario-based reading, including usage based reading, per-
spective-based reading, defect-based reading, etc.) should be used to verify the re-
quirements. Past research focused only on the question of which of the techniques
outperforms the other technique with respect to efficiency and effectiveness of the
inspection process. The more relevant question seems to be how the different
reading techniques should be combined to gain a more efficient inspection of the
requirements. Thus, one should address the question of which of the reading tech-
niques is more suited in detecting certain types of requirements issues. A second
part of such a customization approach should be a guideline that provides hints on
which questions or reading scenarios should be used during the inspection in order
to address certain quality issues in a most efficient way. Therefore, it is up to fu-
ture research to investigate what kind of inspection questions (for requirements)
have an impact on which qualities the customer is interested in.

Finally, the question of tool support for inspections should be further addressed.
With respect to requirements inspections, it should be investigated which quality
issues could be automatically checked by a tool (e.g., application to certain struc-
tural restrictions) and how the inspection of other quality aspects could be facili-
tated, e.g. by providing support in checking certain checklist questions.

The most important open question that should be addressed in future research
activities is how the different quality assurance approaches (constructive and ana-
lytic ones) of the requirements engineering phase can be combined into a compre-
hensive quality assurance strategy. There are some initial results that address this
question [13], but these results need to be further investigated. In [9], it is stated
that different quality assurance approaches help to address different quality issues.
Unfortunately, neither the state of art nor the state of the practice can explicitly
state which approaches are most efficient to address which quality issues, i.e. it is
important to evaluate which of the approaches is more effective and consumes less
effort in addressing certain requirements quality issues. In other words, future re-
search has to investigate which qualities of the final system and the requirements
are most efficiently assured by means of which approach (constructive, testing, in-
spections). Here, especially, more research is needed on the impact of applying
constructive approaches such as certain elicitation techniques or specification

182 Denger and Olsson

techniques on the quality of the requirements. A second important step is the defi-
nition of external or system quality characteristics that should be addressed (e.g.
safety, security, reusability, maintainability, etc.) and how these qualities manifest
in the requirements. If this connection can be drawn, it is possible to customize the
different QA approaches in that way that they focus on those system qualities that
are most relevant for the customer.

These are all cornerstones that need to be investigated for the definition of a re-
quirements quality strategy. And we should force our efforts as a well-defined re-
quirements quality strategy would help to minimize the costs for quality assurance
and, in parallel, increase the effectiveness and efficiency of the different ap-
proaches.

8.6 Conclusion

Quality is an elusive but important subject for requirements, especially since the
quality of the requirements will more or less affect all other artifacts in the devel-
opment. This chapter presents ideas on a framework for quality assurance (QA) in
the requirements phase. The framework describes a set of attributes that are used
to define quality. In addition, the framework describes what has to be considered
when defining a QA strategy, to achieve the defined quality characteristics of re-
quirements and requirements documents.

Further, an overview of state of art constructive and analytical QA approaches
is presented. The theoretical contribution consists of an overview of state of the art
QA approaches for requirements, as well as a more detailed description of a se-
lected set. The QA approaches addressed are inspections, test case creation, and
the impact of elicitation specification, and prototyping on quality. Moreover, some
initial ideas are sketched on when to apply a specific type of QA approach by
means of a mapping the QA approach to requirements quality characteristics.

Looking at the state of the art, it is clear that there are certain gaps in our under-
standing of how high quality requirements can be achieved and how the costs of
the QA activities on the requirements affect the cost of the rest of the develop-
ment. It is, however, a fair amount of research performed on individual QA ap-
proaches, but the combination and wider effects need more investigation.

Acknowledgements

This work has been partly supported by the ForPICS project, funded by the
Provincia Autonoma di Trento, Italy. The authors also would like to thank the
anonymous reviewers, as well as colleagues, specifically Sonnhild Namingha, for
helpful comments on draft version of this chapter.

8 Quality Assurance in Requirements Engineering 183

References

1. Ahlowalia N (2002) Testing from use cases using path analysis technique. In: Proceed-
ings of the International Conference on Software Testing, Analysis & Review, Ana-
heim, CA, USA

2. Anda B, Sjøberg D I K (2002) Towards an inspection technique for UC models. In: Pro-
ceedings of the 14th International Conference on Software Engineering and Knowledge
Engineering (SEKE), Italy, pp 127 134

3. Aurum A, Petersson H, Wohlin C (2002) State-of-the-Art: Software Inspections Turning
25 Years. Journal on Software Testing, Verification and Reliability 12(3): 133 154

4. Basili V R, Green S, Laitenberger O, Lanubile F, Shull F, Sorumgard S, Zelkowitz M
(1996) The empirical investigation of perspective-based reading. Empirical Software
Engineering 1(2): 133–164

5. Beck K (1999) Extreme programming explained. Boston: Addison-Wesley
6. Binder RV (1999) Testing object-oriented systems: Patterns, models and tools. Boston:

Addison-Wesley Object Technologies Series
7. Briand L, Freimut B, Vollei F, (2000) Assessing the cost-effectiveness of inspections by

combining project data and expert opinion. In: Proceedings of the 11th International
Symposium on Software Reliability Engineering, pp.124 135

8. Bittner K, Spence I (2003) Use case modeling. Boston: Addison-Wesley
9. Boehm BW, Gray TE (1984) Prototyping versus specifying: A multi-project experiment.

IEEE Transaction on Software Engineering 10(3):290 302
10. Boehm BW, Basili VR (2001) Software defect reduction top 10 list. IEEE Computer

34(1):135 137
11. Cockburn, A (2001) Writing effective use cases. Boston: Addison-Wesley
12. Collard R (1999) Test design: Developing test cases from use cases. Software Testing

and Quality Engineering July/August 1(4): 31 36
13. Denger C, Paech B (2004) An integrated quality assurance approach for use case based

requirements. In: Proceedings of the German conference of Modellierung, pp.59 74
14. Denger C, Paech B, Benz S (2003) Guidelines -- Creating use cases for embedded sys-

tems. IESE-Report, 078.03/E, Kaiserslautern, Germany
15. Denger C, Medina M (2003) Test cases derived from user requirements specifications:

Literature survey. IESE Report No. 033.03/E, Kaiserslautern, Germany
16. Denger C, Kerkow D, Knethen Av, Paech B (2003) A comprehensive approach for cre-

ating high-quality requirements and specifications in automotive projects. In: Proceed-
ings of the International Conference Software and Systems Engineering and their Ap-
plications, 2-6 December, Paris, France

17. Endres A, Rombach H D (2003) A handbook of software and systems engineering. Em-
pirical Observations, Laws and Theories. New York: Addison-Wesley

18. Fagan ME, (1976) Design and code inspections to reduce errors in program develop-
ment. IBM Systems Journal 15(3):182–211

19. Fantechi A, Gnesi S, Lami G, Maccari A (2002) Application of linguistic techniques for
use case analysis. In: Proceedings of the International Conference on Requirements En-
gineering, pp 157-164, Essen, Germany

20. Gilb T, Graham D (1993) Software inspection. Boston, Addison-Wesley
21. Glass RL (1998) Software runaways. Lessons learned from massive software project

failures. Upper Saddle River, NJ: Prentice Hall

184 Denger and Olsson

22. Graham D (2002) Requirements and testing: Seven missing-link myths. IEEE Software
19(9):15-17

23. Heitmeyer CL, Jeffords RD, Labaw BG, (1996) Automated consistency checking of re-
quirements specifications. ACM Transactions on Software Engineering and Methodol-
ogy 5(3): 231–261

24. IEEE Recommended practice for software requirements specification. IEEE Standard
830-1998, 1998

25. IEEE guide for developing system requirements specification. IEEE Standard 1233-
1998, 1998

26. IEEE standard for software reviews. IEEE Standard 1028-1997, 1997
27. ITU-T (1993) Recommendation Z.100. Specification and description language (SDL)

ITU-International Communication Unit, Geneva
28. Jalote P (1989) Testing of completeness of specifications. IEEE Transactions on Soft-

ware Engineering 15(5): 526 531
29. Jones CB, (1990) Systematic software development using VDM. Upper Saddle River,

NJ, Prentice Hall
30. Kamsties E, Pohl K, Reis S, Reuys A (2004) Szenario-basiertes systemtesten von soft-

ware-produktfamilien mit ScenTED. In: Proceedings of Modellierung, Marburg, Ger-
many, pp.169 186

31. Keese P, Meyerhoff D (2003) Tutorial on requirements-based testing (SQS). Held in
conjunction of the International Conference on Software Testing, Cologne, Germany

32. Kitchenham B, Pfleeger S (1996) Software quality: the elusive target. IEEE Software,
13(1): 12 21

33. Le Lann G (1996) The Ariane 5 Flight 501 Failure - A case study in system engineering
for computing systems. Research report RR-3079, INRIA

34. Laitenberger O (2000) Cost-effective detection of software defects through perspective-
based inspections. PhD Thesis in Experimental Software Engineering; Fraunhofer IRB
Verlag

35. Leffingwell D, Widrig D (2000) Managing software requirements – A unified approach.
Boston: Addison-Wesley

36. Liggesmeyer P (1990), Modultest und modulverifikation – State of the art. Mannheim,
Wien Zürich, BI-Wissesverlag

37. Briand LC, Freimut B, Vollei F (2000) Assessing the cost-effectiveness of inspections
by combining project data and expert opinion. In: Proceedings of the 11th International
Symposium on Software Reliability Engineering, pp 124 135

38. Musa J (1993) Operational profiles in software-reliability engineering. IEEE Software
10:(2): 14 32

39. Ostraned T J, Balcer M J (1988) The category-partition method for specifying and gen-
erating functional tests. Communications of the ACM 31(6):676 686

40. Porter A, Votta LG (1998) Comparing detection methods for software requirements
specification: A replication using professional subjects. Empirical Software Engineer-
ing 3(4): 355 379

41. Robertson S, Robertson JH (1999) Mastering the requirements process. Boston: Addi-
son-Wesley

42. Rupp C, Queins S (2003) Vom use-case zum Test-Case. OBJEKTspektrum, Vol.4
43. Shull F, Rus I, Basili V (2000) How perspective-based reading can improve require-

ments inspections. IEEE Computer 33(7):73 79

8 Quality Assurance in Requirements Engineering 185

44. Shull F, Basili V, Boehm B, Brown AW, Costa P, Lindvall M, Port D, Rus I, Tesoriero
R, Zelkowitz M (2002) What we have learned about fighting defects. In: Proceedings of
8th International Metrics Software Metrics Symposium: p 249ff., Ottawa, Canada

45. Shull F, Travassos G H, Carver J (1999) Evolving a set of techniques for OO inspec-
tions. Technical Report CS-TR-4070, UMIACS-TR-99-63; University of Maryland

46. Sommerville I, Sawyer P (1997) Requirements engineering. A good practice guide.
Chichester: John Wiley & Sons

47. http://www.standishgroup.com/chaos_chronicles/index.php Accessed on 3rd December
2004

48. Thelin T, Runeson P, Wohlin C (2003) An experimental comparison of usage-based
reading and checklist-based reading. IEEE Transactions on Software Engineering,
29(8): 687 704

49. Wiegers K E (2002) Peer reviews in software. A practical guide. Boston: Addison-
Wesley

50. Wiegers K E (1999) Writing quality requirements. Software Development Magazine,
7(5): 44 48

51. Wiegers K E (2000) Karl Wiegers describes 10 requirements traps to avoid. Software
Testing & Quality Engineering Journal, January/February, 2(1)

52. Wilson WM, Rosenberg LH, Hyatt LE (1996) Automated quality analysis of natural
language requirements specifications. NASA Software Assurance Technology Center,
USA

Author Biography

Christian Denger studied computer science at the University of Kaiserslautern,
Germany, with a minor in economics. He received his master in computer science
in 2002. Since then, he has been working as a scientist at the Fraunhofer Institute
for Experimental Software Engineering in Kaiserslautern, Germany. His research
interests are software inspections in the context of defect cost reduction ap-
proaches in early development phases and the combination of quality assurance
techniques in the context of embedded systems. Currently, he is involved in sev-
eral German and international projects as a team member and project leader and is
pursuing a PhD degree at the University of Kaiserslautern.

Thomas Olsson works as a scientist at the Fraunhofer Institute for Experimental
Software Engineering in Kaiserslautern, Germany. He received a Licentiate of
Engineering in Software Engineering in 2002 and a Master of Science in Com-
puter Science and Engineering in 1999, both from Lund University, Sweden. His
research interests lie in heterogeneous information and documentation models, es-
pecially in the context of requirements. Currently, he is leading one European and
one German project, and is at the same time pursuing a PhD degree at Lund Uni-
versity.

Part 2
The Next Practice in Requirements Engineering

This part provides descriptions of some specific ways of addressing the challenges
in requirements engineering as well as presenting various areas where require-
ments engineering plays a key role in the success of a software project. There are
seven chapters in this Part. Chapter 9 addresses the possibility of using goal mod-
eling in requirements engineering and, in particular, how to reason with goals.
Chapter 10 recognizes that software requirements are often represented in natural
language, which results in some challenges when it comes to the management of
large repositories of requirements. Natural language also raises the challenge of
overcoming ambiguity in the wording of requirements. Chap. 11 presents an in-
troduction and some empirical results in relation to ambiguity. Part I has estab-
lished that decision-making is an important aspect of engineering and managing
requirements. Thus Chap. 12 is devoted to decision-support. Requirements engi-
neering is all too often focused on bespoke software development. In many cases,
software is developed for markets. A market-driven approach to requirements en-
gineering is presented in Chap. 13. Software development methods evolve over-
time. One such family of methods is agile methods. The handling of requirements
within agile development is presented in Chap. 14. Finally, requirements engineer-
ing in a web-based context is presented in Chap. 15.

Thus, in summary, this part contains chapters on the following topics:

Chapter 9: Goal modeling
Chapter 10: Use of natural language
Chapter 11: Ambiguity in requirements
Chapter 12: Decision support
Chapter 13: Market-orientation
Chapter 14: Agile methods
Chapter 15: Web-based development

These seven chapters highlight some of the main issues related to engineering
and managing software requirements. The chapters are written by researchers
from around the world that have conducted extensive and reputable research in the
above areas.

The seven chapters are by Collette Rolland and Camille Salinesi from Univer-

sity of Paris, France; Johan Natt och Dag from Lund University, Sweden and Vin-
cenzo Gervasi from University of Pisa, Italy; Erik Kamsties from University of
Essen, Germany; An Ngo-The and Günther Ruhe from University of Calgary,
Canada; Björn Regnell from Lund University, Sweden and Sjaak Brinkkemper
from Utrecht University, The Netherlands; Alberto Sillitti and Giancarlo Succi
from the Free University of Bozen, Italy; Jacob L. Cybulski from Deakin Univer-
sity, Australia and Pradip K. Sarkar from Central Queensland University, Austra-
lia.

9 Modeling Goals and Reasoning with Them

Colette Rolland and Camille Salinesi

Abstract. The concept of goal has been used in many domains such as manage-
ment sciences and strategic planning, artificial intelligence and human computer
interaction. Recently, goal-driven approaches have been developed and tried out to
support requirements engineering activities such as requirements elicitation, speci-
fication, validation, modification, structuring and negotiation. This chapter first
review various research efforts undertaken in this line of research and presents the
state-of-the-art in using goals to engineer requirements. It then presents a particu-
lar goal model, the goal/strategy map, and shows that maps can help with facing
the challenge of new emerging multi-purposes systems, i.e. systems imposing
variability in requirements elaboration and customization in the requirements en-
gineering process.

Keywords: Goal, Goal modeling, Goal specification, Reasoning with goals, Elici-
tation, Variability, User, Scenario.

9.1 Introduction

Goals have long been recognized to be an essential component involved in the
Requirements Engineering (RE) process. In their seminal paper, Ross and Scho-
man stated “requirements definition must say why a system is needed, based on
current and foreseen conditions, which may be internal operations or external
market. It must say what a system features will serve and satisfy this context. And
it must say how the system is to be constructed” [77]. Typically, the current sys-
tem is analyzed; problems are pointed out and opportunities are identified; high
level strategic goals are elicited and refined to address such problems and meet
such opportunities; requirements are then elaborated to meet these goals. Goals are
thus the driving force of the requirements engineering process.

Goal-driven approaches have proved to be an effective way to elicit require-
ments [64, 76] and also to support a systematic exploration of design choices [41,
74, 90] to check requirements completeness [91], to ensure requirements pre-
traceability [26, 66] and to help in the detection of threats [31] such as conflicts
[68] and obstacles [41, 64] and their resolution. The leading role played by goals
in the RE process led to a whole stream of research on goal modeling, goal speci-
fication/formulation and goal-based reasoning for the multiple aforementioned
purposes.

This chapter aims first to provide a state-of-the-art review in the three key top-
ics of goal modeling, goal specification and reasoning with goals. Thereafter, we
will discuss a particular goal model, the goal/strategy map [73] and show how
comprehensive guidelines, drawn from our research and our practical experience,

190 Rolland and Salinesi

help to model and specify maps and to reason with them. A special emphasis will
be put to demonstrate how goal/strategy maps are well suited to deal with new
challenges raised by the emerging conditions of systems development leading to
variability in requirements capture and customization in the requirements process.
Variability is imposed by the multi-purpose nature of software systems of today.
These systems must meet the purpose of several organizations and must be adapt-
able to different usage situations sets of customers. In contrast, earlier software
systems were concerned with the purpose of a single organization and of a single
set of customers. Variability is defined in software development as the ability of a
software system to be changed, customized or configured to a specific context
[87]. Therefore, it can be seen that variability affects both goal models, which
must make variability explicit, and the process of goal-based reasoning that must
help selecting the right variant for the project at hand.

The rest of this chapter is organized in two main sections. Section 2 is an over-
view of the state-of-the-art in using goals to engineer requirements. Section 3 pre-
sents the goal/strategy map model and its contribution to deal with variability re-
quirements.

9.2 State-of-the-Art Review

According to Axel van Lamsweerde [40], RE is “concerned with the identification
of goals to be achieved by the envisioned system, the operationalization of such
goals into services and constraints, and the assignment of responsibilities of result-
ing requirements to agents as humans, devices, and software”. In this view which
is largely shared by the RE community, goals drive the RE process which focuses
on goal centric activities such as goal elicitation, goal modeling, goal operationali-
zation and mapping goals onto software objects, events and operations. This sec-
tion provides an overview of research efforts undertaken in this line. It is organ-
ized in three parts. The first one provides the “big picture”, the second overviews
contributions of goal modeling approaches and the third one discusses their weak-
nesses.

9.2.1 The Big Picture

This section presents a motivation for goal-driven RE, briefly defines what a goal
is and introduces the roles of goals in the RE process and the difficulties encoun-
tered in their use.

9.2.2 Motivation for Goal-Based RE Approaches

Goal-driven RE approaches have emerged as a means to overcome the major
drawback of traditional approaches, that is, to lead to systems technically good but

9 Modeling Goals and Reasoning with Them 191

unable to respond to the needs of users in an appropriate manner. Indeed, several
field studies show that a requirement misunderstanding is a major cause of system
failure. For example, a survey of 800 projects undertaken by 350 US companies
revealed that one third of the projects were never completed and one half suc-
ceeded only partially; poor requirements were identified as the main source of
problems [81]. Similarly, a survey over 3800 organizations in 17 European coun-
tries shows that most of the perceived problems are related to requirements speci-
fication (>50%), and requirements management (50%) [23]. More recently, a 2003
survey of the Meta Group [54] shows even more pessimistic figures attributing 60
to 70% of system failures to poor requirements capture, validation and manage-
ment. If we want better quality systems to be produced, i.e. systems that meet the
requirements of their users, RE needs to explore the objectives of different stake-
holders and the activities carried out by them to meet these objectives in order to
derive purposeful system requirements. Goal-driven approaches aim at meeting
this objective.

The framework of Fig. 9.1 shows that goal-based RE approaches are motivated
by establishing an intentional relationship between the usage world and the sys-
tem world [34]. The usage world describes the tasks, procedures, interactions etc.
performed by agents and how systems are used to do work. It can be looked upon
as containing the objectives that are to be met in the organization and achieved by
the activities carried out by agents. The subject world contains knowledge of the
real world domain about which the proposed system has to provide information.
Requirements arise from both of these worlds. However, the subject world im-
poses domain-requirements, which are facts of nature and reflect domain laws,
whereas the usage world generates user-defined requirements, which arise from
people in the organization and reflect their goals, intentions and wishes.

Subject

World

System

World

Usage

World
Intentional relationship

Representation relationship

System
Environment

Fig. 9.1 Relationships between the worlds of usage, subject and system

The system world is the world of system specifications in which the require-
ments arising from the other two worlds must be addressed. These three worlds
are interrelated as shown in Fig. 9.1. User-defined requirements are captured by

192 Rolland and Salinesi

the intentional relationship. Domain-imposed requirements are captured by the
representation relationship. Understanding the intentional relationship is essential
to comprehend the reason why a system should be constructed. The usage world
provides the rationale for building a system. The purpose of developing a system
is to be found outside the system itself, in the enterprise, or in other words, in the
context in which the system will function. The relationship between the usage
world and the system world addresses the issue of the system purpose and relates
the system to the goals and objectives of the organization. This relationship ex-
plains why the system is developed. Modeling this establishes the conceptual link
between the envisaged system and its changing environment.

Goal-driven approaches have been developed to address the semiotic, social
link between the usage and the system world with the hope to construct systems
that meet the needs of the organization and fulfill their purpose.

9.2.2.1 What Are Goals?
According to Axel van Lamsweerde [43] “a goal corresponds to an objective the
system should achieve through the cooperation of agents in the software to be and
in the environment”. Goals refer to intended or optative [32] properties of envi-
sioned system or of its environment. They are expressions of intent and thus de-
clarative with a prescriptive nature, by opposition to descriptive statements [32]
which describe real facts. For instance, Transport passengers fast is a goal
whereas If doors are closed, they are not open is a descriptive statement. Goals
can be formulated at different levels of abstraction ranging from high-level, e.g.
strategic results that an enterprise wants to achieve, down to low-level, e.g. techni-
cal concerns on precise situations that a system component should help to reach.
Transport passengers safely is an example of a high level goal whereas Keep
doors closed when moving is a goal of a lower level of abstraction.

Goals cover different types of concerns, functional and quality (also called non
functional). Functional goals refer to services that will be provided by the system
or its environment whereas quality goals refer to qualities of the system behavior
in its environment. Provide cash is a functional goal whereas Serve customer
quickly is a quality goal.

Unlike requirements, goals are usually achieved by the cooperation of multiple
agents. The goal Transport passengers safely requires, for example, the coopera-
tion of multiple agents such as the train transportation system, the software sys-
tem, the tracking system and the passengers. A goal under the responsibility of a
single agent in the software becomes a requirement. One important decision in the
RE process is therefore to decide which goals will be automated and which ones
will not. Whereas the actual situations met in the system environment (e.g. physi-
cal laws, regulations, norms and behaviors, etc) are usually not controlled by the
system, it is possible to control the satisfaction of requirements by implementing
them into the system. Maintain doors closed while moving is a goal leading to a
requirement for the system that will ensure its satisfaction whereas Get in when
doors open is an assumption [15] about agents out of the system control. Such a
statement cannot be used as a requirement.

9 Modeling Goals and Reasoning with Them 193

9.2.2.2 Roles of Goals
As a driving force of the requirements engineering process, goals play a number of
roles which are introduced in the following.

Requirements elicitation: goal modeling proved to be an effective way to elicit
requirements [4, 15, 20, 35, 43, 64, 76]. The pros of goal-based requirements
elicitation being that the rationale for developing a system must be found out-
side the system itself, in the enterprise [49] in which the system shall function.
Exploration of design choices: RE assumes that the envisioned system might
function and interact with its environment in many alternative ways. Alterna-
tive goal refinement proved helpful in the systematic exploration of system
choices [30, 43, 64, 74].
Requirements completeness is a major RE issue. Yue [91] was probably the
first to argue that goals provide a criterion for requirements completeness: the
requirements specification is complete if the requirements are sufficient to
achieve the goal they refine.
Requirements traceability: goals provide a means to ensure requirements pre-
traceability [26, 60, 66]. They establish a conceptual link between the system
and its environment, thus facilitating the propagation of organizational changes
into the system functionality. This link provides the rationale for requirements
[11, 56, 64, 77, 80] and facilitates the explanation and justification of require-
ments to the stakeholders.
Requirements negotiation: Stakeholders provide useful and realistic viewpoints
about the system to be. Negotiation techniques have been developed to help
choosing the prevalent one [9, 29]. Prioritization techniques aim at providing
means to compare the different viewpoints on the basis of costs and value [36,
55]. Chapters 7 and 4 respectively provide a more detailed survey of require-
ments negotiation and prioritization methods.

Conflicts detection and resolution: Multiple viewpoints are inherently associ-
ated to conflicts [59] and goals have been recognized to help in the detection of
conflicts and their resolution [41, 68, 70, 78].

9.2.3 Contributions of Goal Modeling Approaches

For goals to play the aforementioned roles, a whole stream of research led to con-
tributions on goal modeling, goal formulation and goal-based reasoning that we
review in turn.

9.2.3.1 Modeling Goals
Goal modeling is central to RE Goal-driven approaches; its benefit are to support
heuristic, qualitative or formal reasoning schemes during the RE process. Goals
are modeled by intrinsic features such as types and by links with other goals or
other elements in the requirements model. We consider them in turn.

194 Rolland and Salinesi

Goal Taxonomies: Goals can be of different types. Several classification schemes
have been proposed in the literature. Functional versus non-functional is the first
one. Functional goals underlie services that the system is expected to deliver
whereas non-functional goals refer to expected system qualities such as security,
safety, performance, usability, flexibility, customizability, interoperability, and so
forth. A rich taxonomy for non-functional goals can be found in [12]. Another dis-
tinction often made in the literature is between soft goals, whose satisfaction can-
not be established in a clear-cut sense [57], and hard goals whose satisfaction can
be established through verification techniques [7, 11, 16]. Soft goals are especially
useful for comparing alternative goal refinements and choosing one that contrib-
utes the “best” to them.

Another classification axis is based on types of temporal behavior prescribed by
the goal. In [15], achieving (respectively cease) goals generates system behaviors;
maintaining (respectively avoid) goals restricts behaviors; optimizing goals com-
pares behaviors to favor those, which better ensure some soft target property. In a
similar way, [82] proposes a classification according to desired system states (e.g.,
positive, negative, alternative, feedback, or exception-repair) and to goal level
(e.g., policy level, functional level, domain level). In [6] Antòn makes a distinc-
tion between objective goals that refer to objects in the system, and adverbial
goals, that refer to ways of achieving objective goals. Goal types and taxonomies
are used to formulate a goal [2, 22, 57, 76] and to define heuristics for goal acqui-
sition, goal refinement, requirements derivation, and semi-formal consis-
tency/completeness checking [2, 5, 12, 15, 82].

Goal Links: Many different types of relationships among goals have been intro-
duced in the literature. They can be classified in two categories to relate goals: (1)
to each other and (2) with other elements of requirements models. We consider
them in turn in the next sub-sections. Chapter 5 of this book deals with similar ex-
pressions.

a) Goal Links Among Goals: The most common form of a goal model is an
AND/OR graph. AND/OR relationships [11, 15, 50, 58, 76] inspired from
AND/OR graphs in Artificial Intelligence are used to capture goal decomposition
into more operational goals and alternative goals, respectively. In the former, all
the sub-goals must be satisfied for the parent goal to be achieved, whereas in the
latter if one of the alternative goals is achieved, then the parent goal is satisfied.
For example, in a book lending system, the goal Satisfy borrower request is
ANDed (has an AND relationship) with Satisfy Bibliography request, Satisfy book
request and Provide long borrowing period. These three goals are sub-goals of the
former that will be satisfied if its sub-goals are themselves satisfied. Maintain as
many copies as needed and Maintain regular availability are alternatives to satisfy
the goal Satisfy customer request. The former is ORed (has an OR relationship)
with the latter and will be satisfied if one of the two alternative goals is satisfied.

In [12, 57, 58], the inter-goal relationship is extended to support the capture of
negative/positive influence between goals. A sub-goal is said to contribute par-
tially to its parent goal. This leads to the notion of goal satisfycing instead of goal

9 Modeling Goals and Reasoning with Them 195

satisfaction. For example, Ensure confidentiality of accounts and Ensure security
of accounts are ANDed to Secure accounts. Both contribute positively to satisfy-
cing the parent goal Secure accounts. By opposition to goal satisfaction, which
can be verified quantitatively, using some criterion [69], goal satisfycing cannot
be established in a clear-cut sense. Goal satisfaction expressed in AND/OR graphs
of hard goals is referred to as the quantitative framework whereas goal satisfycing
expressed with soft goals is part of the so-called qualitative framework. The “mo-
tivates” and “hinders” relationships among goals in [11] are similar in the sense
that they capture positive/negative influences among goals.

In [76], goal-scenario pairs (called requirement chunks, RC) can be assembled
together through composition, alternative and refinement relationships. The first
two lead to AND and OR structures of RCs whereas the last leads to the organiza-
tion of the collection of RCs as a hierarchy of chunks of different granularity.
AND relationships among RCs link complementary chunks in the sense that every
one requires the others to define a completely functioning system. RCs linked
through OR relationships represent alternative ways of fulfilling the same goal.
RCs linked through a refinement relationship are at different levels of abstraction.
The goal Fill the ATM with cash is an example of ANDed goal to Withdraw cash
from the ATM whereas Withdraw cash from the ATM with two invalid code cap-
ture is ORed to it. Finally Check the card validity is linked to the goal Withdraw
cash from the ATM by a refinement relationship.

Conflict relationships are another kind of relationship among goals. These rela-
tionships have been introduced [11][15][59][21] to capture the fact that one goal
might prevent the other from being satisfied. For example, in the book lending
system considered above, Provide long borrowing period which is a sub-goal of
Satisfy borrower request in the AND/OR graph has a conflict relationship with the
alternative goal Maintain regular availability of the parent goal Satisfy customer
request in the same goal graph.

b) Goal Links with Other Elements of Requirements Models: In addition to in-
ter-goal relationships, goals are also related to other elements of requirements
models. In his keynote talk [37], Lamsweerde introduced the magic RE triangle as
composed of goal, scenario and agent. Obviously goals have privileged relation-
ships with the two other concepts of scenario and agent. Many authors suggest
combining goals and scenarios [2, 13, 28, 35, 38, 46, 62, 85]. This is understand-
able because scenarios and goals complement each other. Goals are declarative
whereas scenarios are procedural. Intentions are made explicit by goals whereas
they are implicit in scenarios. Goals are abstract whereas scenarios are concrete.
Combining goals and scenarios can be therefore, seen as a way to mitigate limita-
tions that each concept has when used in isolation. Potts [62] for example, says
that it is “unwise to apply goal based requirements methods in isolation” and sug-
gests complementing them with scenarios. This combination has been used
mainly, to make goals concrete: scenarios can be interpreted as containing infor-
mation on how goals can be achieved. In [14, 33, 46, 61], a goal is considered as a
contextual property of a use case [33] i.e. a property that relates the scenario to its
organizational context. Therefore, goals play a documenting role only. [13] goes

196 Rolland and Salinesi

beyond this view and suggests to use goals to structure use cases by connecting
every action in a scenario to a goal assigned to an actor. In this sense a scenario is
discovered each time a goal is. Clearly, all these views suggest a unidirectional re-
lationship between goals and scenarios. [76] further extends this view by suggest-
ing a “bi-directional relationship between goals and scenarios”. In the forward di-
rection from goal to scenario, the scenario represents a possible behavior of the
system to achieve the goal, and therefore, scenarios help make the goal concrete
and detect unrealistic goals. In the backward direction, from scenario to goal, the
relationship is used to discover new goals using mining techniques. As the sce-
nario represents a concrete, realistic behavior of the system to be, the goals in-
ferred from it should themselves be realistic ones.

As mentioned before, goal satisfaction requires cooperation among agents. Re-
lationships with agents have been emphasized in [89, 90] where a goal is the ob-
ject of the dependency between two agents. Such type of link is introduced in
other models as well [15, 42, 47] to capture who is responsible of a goal. Aside
from the golden relationships with scenarios and agents, goals might have links
with other concepts of requirements models. For example, as a logical termination
of the AND/OR decomposition, goals link to operations which operationalize
them [2, 15, 35, 38]. Relationships between goals and system objects have been
studied in [45] and are for instance, inherently part of the KAOS model [15, 42].
In [11] goals are related to a number of concepts such as problem, opportunity and
threat with the aim to better understand the context of a goal. Finally the interest-
ing idea of obstacle introduced by [62] leads to obstructions and resolution rela-
tionships among goals and obstacles [41, 85].

9.2.3.2 Formulating Goals: Goal formulation is necessary to document the goal
model and to support some form of reasoning. Goal formulation can be informal,
semi-formal or formal. Goal statements are often texts in natural language [7, 13]
and may be supplemented as suggested by [92] with an informal specification to
make precise what the goal name designates.

The motivation for semi-formal or formal goal expressions is to support some
form of automatic analysis. Typical semi-formal formulations use some goal tax-
onomy and associate the goal name to a predefined type [2, 15]. This helps clarify-
ing the meaning of the goal. For instance, in [57] a non-functional goal can be
specified. Accuracy[account.balance] is an example of such a goal formulation.
Similarly, in Elektra [22], goals for change are pre-fixed by one of the seven types
of change: Maintain, Cease, Improve, Add, Introduce, Extend, Adopt and Replace.
Graphical notations [12][57][43] can be used in addition to a textual formulation.
L’Ecritoire [76] proposes to formulate each goal as a clause with a main verb and
several parameters, where each parameter plays a different role with respect to the
verb. For example in the goal statement Withdraw verb (cash)target (from ATM)means,
Withdraw is the main verb, cash is the parameter target of the goal, and from ATM
is a parameter describing the means by which the goal is achieved. The linguistic
approach of Fillmore's Case grammar [24], and its extension [19] was used to de-
fine goal parameters [65]. Each type of parameter corresponds to a case and plays
a different role with respect to the verb, e.g. target entities affected by the goal,

9 Modeling Goals and Reasoning with Them 197

means and manner to achieve the goal, beneficiary agent of the goal achievement,
destination of a communication goal, source entities needed for goal achievement
etc.

Formal specifications of goals like in Kaos [15][43] require a higher effort but
yield more powerful reasoning. Achieve [BookRequestSatisfied]: (bor: Bor-
rower, b: Book, lib: Library) Requesting (bor, b) b.subject lib.coverageArea

 (bc:BookCopy) (Copy(bc, b) Borrowing(bor, bc)) is an example of such
formal specification.

9.2.3.3 Reasoning with Goals: The ultimate purpose of goal modeling is to
support some form of goal reasoning for RE sub-processes such as requirements
elicitation, consistency and completeness checking, obstacle discovery, conflict
resolution and so forth. We consider some of these in the following.

a) Eliciting Goals by Reuse: Although goals can sometimes be spontaneously
expressed by stakeholders and therefore available to requirements engineers at
early phases of the requirements process, most goals are implicit. Therefore, elicit-
ing goals is not always an easy task, and reasoning techniques can be usefully em-
ployed for better performance. Reuse techniques are some of these. Chap. 2 is de-
voted to elicitation problems. For example, Massonet [53] proposes to retrieve
goals that have semantically and structurally similar specifications in a repository
of reusable specification components, and then transpose the specifications found
according to the matching that emerged from the retrieval process. An attempt to
retrieve cases from a repository of process cases was developed in [44]. The soft-
ware tool captures traces of RE processes using the NATURE contextual model
[44] and develops a case-based technique to retrieve process cases similar to the
situation at hand.

b) Eliciting Goals from Scenarios: A goal inductive elicitation technique based
on the analysis of conceptualized scenarios is proposed in [76]. Scenarios can be
conceptualized owing to powerful analysis and transformation linguistic tech-
niques based on a Case Grammar inspired by Fillmore’s Case Grammar [19, 24].
The pay-off of the scenario conceptualization process is the ability to perform
powerful induction on conceptualized scenarios. In [38], a similar approach is de-
veloped that takes scenarios as examples and counter examples of the intended
system behavior and generates goals that cover positive scenarios and exclude the
negative ones. [5] takes similar position to derive goals from use-case specifica-
tions.

c) Eliciting Goals by Refinement: Many approaches suggest formulating goals at
different levels of abstraction. By essence, goal centric approaches aim to help in
the move from strategic concerns and high level goals to technical concerns and
low abstraction level goals. Therefore, it is natural for approaches to identify dif-
ferent levels of goal abstraction where high level goals represent business objec-
tives and are refined in system goals [2, 3] or system constraints [41]. Inspired by

198 Rolland and Salinesi

cognitive engineering, some Goal-driven RE approaches deal with means-end hi-
erarchy abstractions, where each hierarchical level represents a different model of
the same system. The information at any level acts as a goal (the end) with respect
to the model at the next lower level (the means) [48, 67, 88]. In [76] the refine-
ment strategy helps discovering goals at a lower level of abstraction. This is a way
to support goal decomposition. Another obvious technique to perform refinement
is to decompose it by asking the HOW question [39]. Other decomposition based
goal elicitation heuristics have been developed in [50] and [47].

d) Obstacle Driven Elaboration: Goal models seem to be powerful instruments
to perform hazard reasoning. Several RE approaches have already been developed
to deal with obstacles and conflicts [4, 31, 41]. Both concepts relate to the goals
that users have in mind when they use the facilities offered by software systems.
An obstacle is defined as a phenomenon that occurs in the system and/or its envi-
ronment and obstructs the achievement of the goal [4, 41]. A conflict is when the
achievement of two different goals obstructs each other [21, 68]. A similar princi-
ple is used to build misuse case descriptions. A misuse case is as a use case de-
scribed from the point of view of a hostile actor. The goal of this actor is to use the
system functions for a different purpose than the one initially intended [1, 79].

e) Conflict Resolution: Reasoning with goals can also help to resolve conflicts
among stakeholders. A conflict is when the achievement of two different goals ob-
structs each other. [59, 68, 78] explain how conflicts arise from multiple view-
points and concerns. Various forms of conflict have also been studied in [17].
Ivankina [31], and Sutcliffe [83, 84], generalize the notions of obstacle, conflict
and other system menace into the notion of threat because they all correspond to
the partial or total hindering of one or several system goals.

9.2.4 Weaknesses of Goal-Driven Approaches

Despite their contributions to the performance of a number of RE activities, sev-
eral authors [39][2][28] also acknowledge the fact that dealing with goals is not an
easy task. This sub-section discusses weaknesses of goal driven approaches.

Mitigating goal abstractness: Our own experience in several domains such as
air traffic control, electricity supply, human resource management, tool set de-
velopment is that it is difficult for domain experts to deal with the abstract con-
cept of a goal [75]. Scenario authoring is one of the rare ways used in goal
driven approaches to make a goal more concrete. More mechanisms are needed
to mitigate the abstract nature of a goal.
Finding the right goal: It is often assumed that systems are constructed with
some goals in mind [18]. However, practical experiences show that goals are
not given and therefore, the question of where they originate from [2] acquires
importance. In addition, enterprise goals, which initiate the goal discovery
process, do not reflect the actual situation, but an idealized one. Therefore, pro-

9 Modeling Goals and Reasoning with Them 199

ceeding from spurious goals may lead to ineffective requirements [63]. Thus,
finding the right goal is rarely an easy task and more support is needed.
Removing goal fuzziness: The initial goal statement is usually rather imprecise
and sketchy and can be interpreted in many ways. The exact meaning of the
goal gets clearer and clearer as the elicitation process proceeds. However, ex-
perience shows [72] that it is best to make a precise, formal statement of the
goal as early as possible in the RE process and that the informal goal statement
must be brought into a form that is conducive to performing goal analysis. Goal
driven approaches must better support goal formulation avoiding nevertheless
the burden of formal languages.
Supporting goal operationalization: Additionally, it has been shown that the
application of goal reduction methods to discover the components goals of a
goal, is not as straight-forward as literature suggests [15][7]. Our own experi-
ence in the F3 [11] and ELEKTRA [75] projects confirms this. It is thus evident
that help is needed to achieve meaningful goal modeling.
Guiding alternative goals discovery: Finding alternative goals to a parent goal
is crucial for the envisionment of the future system and therefore, crucial to RE.
However, experience shows that the process is manual, adhoc and unsatisfac-
tory. This is similar to observations made in the discovery of use case variants
[13]. Providing automated support is needed to facilitate the discovery of a
large number of alternative designs as an exhaustive generation of alternatives
is very difficult to practice manually.

9.3 Goal/Strategy Maps

In this section, we discuss the case of particular type of goal model, the
goal/strategy map. We first justify the move from traditional AND/OR goal mod-
els to goal/strategy maps as a response to the challenge posed by new multi-
purpose emerging systems and by the need to swerve from goal modeling to
model goal achievement through strategies to fulfill goals. We introduce the con-
cept of map, illustrate it with an ERP system example and discuss how the model
meets the aforementioned challenge. Thereby we consider the customization proc-
ess implied by multi-purpose systems and discuss the way it can be handled with
maps.

9.3.1 Facing the Multi-Purpose System Challenge with Maps

9.3.1.1 Motivations for Maps
Goal modeling approaches have been conceived with the traditional software sys-
tem life cycle in mind: high strategic goals are captured to elicit software require-
ments and build the software functionality that fulfils these requirements. How-
ever, in recent years, development “from scratch” became the exception and a new

200 Rolland and Salinesi

context in which software systems are developed has emerged. Whereas earlier, a
system met the purpose of a single organization and of a single set of customers, a
system of today must be conceived in a larger perspective, to meet the purpose of
several organizations and to be adaptable to different usage situations/customer
sets. The former is typical of an ERP-like development situation whereas the latter
is the concern of product-line development [86], [10] and adaptable software [30].
In the software community, this leads to the notion of software variability, which
is defined as the ability of a software system to be changed, customized or config-
ured to a specific context [87]. Whereas the software community studies variabil-
ity as a design problem and concentrates on implementation issues [8], [10], [86],
we believe like Halmans [27] that capturing variability at the goal level is essential
to meet the multi-purpose nature of new software systems.

Our position is that variability implies a move from systems with a mono-
facetted purpose to those with a multi-facetted purpose. Whereas the former con-
centrates on goal discovery, the multi-facetted nature of a purpose extends it to
consider the many different ways of goal achievement. For example, for the goal
Purchase Material, earlier it would be enough to know that an organization
achieves this goal by forecasting material need. Thus, Purchase material was
mono-facetted: it had exactly one strategy for its achievement. However, in the
new context, it is necessary to introduce other strategies as well, say the Reorder
Point strategy for purchasing material. Purchase Material now is multi-facetted, it
has many strategies for goal achievement. These two strategies, among others, are
made available, for example, in the SAP Materials Management module[72].

The foregoing points to the need to balance goal-orientation with the introduc-
tion of strategies for goal achievement. This is the essence of goal/strategy maps.

A goal/strategy map, or map for short, is a graph, with intentions as nodes and
strategies as edges. An edge entering a node identifies a strategy that can be used
for achieving the intention of the node. The map therefore, shows which intentions
can be achieved by which strategies once a preceding intention has been achieved.
Evidently, the map is capable of expressing goals and their achievements in a de-
clarative manner.

9.3.1.2 The Map Representation Formalism
In this section we introduce the key concepts of a map and their relationships and
bring out their relevance to model multi-facetted purposes. A map provides a rep-
resentation of a multi-facetted purpose based on a non-deterministic ordering of
intentions and strategies. The key concepts of the map and their inter-relationships
are shown in the map meta-model of Fig. 9.2, which is drawn using UML nota-
tions.

As shown in Fig. 9.2, a map is composed of several sections. A section is an
aggregation of two kinds of intentions, source and target, linked together by a
strategy.
An intention is a goal, ‘an optative’ statement [32] that expresses what is
wanted i.e. a state that is expected to be reached or maintained. Make Room
Booking is an intention to make a reservation for rooms in a hotel. The

9 Modeling Goals and Reasoning with Them 201

achievement of this intention leaves the system in the state, Booking made.
Each map has two special intentions, Start and Stop, associated with the initial
and final states respectively.
A strategy is an approach, a manner, a means to achieve an intention. Let us as-
sume that bookings can be made on the Internet. This is a means of achieving
the Make Room Booking intention, and is a strategy. by visiting a travel agency
is another strategy to achieve the same intention.
A section is an aggregation of the source intention, the target intention, and a
strategy. As shown in Fig. 9.2 it is a triplet <Isource, Itarget, Ssource-target>. A section
expresses the strategy Ssource-target using which, starting from Isource, Itarget can be
achieved. The triplet <Start, Make Room Booking, on the Internet> is a section;
similarly <Start, Make Room Booking, by visiting a travel agency> constitutes
another section.

Map

Section

Target
Intention

Source
Intention

Strategy

Intention

Thread
Bundle

Path

Refined by

0..1

1

1 11

* ** 1..*

Fig. 9.2 The map meta-model

A section is the basic construct of a map which itself can be seen as an assem-
bly of sections. When a map is used to model a multi-facetted purpose, each of its
sections represents a facet. The set of sections models the purpose in its totality
and we will see below that the relationships between sections and between a sec-
tion and a map lead to the representation of the multi-facetted perspective. A facet
highlights a consistent and cohesive characteristic of the system that stakeholders
want to be implemented in the software system through some functionality. A
facet in our terms is close to the notion of feature, which can be defined as a
“prominent or distinctive user-visible aspect, quality or characteristic of a software
system or systems”. We believe that a facet is a useful abstraction to express vari-
ability in intentional terms. A map is drawn as a directed graph from Start to Stop.
Intentions are represented as nodes of the graph and strategies as edges between
these. The graph is directed because the strategy shows the flow from the source
to the target intention (see Fig. 9.5).

202 Rolland and Salinesi

Three kinds of relationships can be defined between sections, namely the
thread, path and bundle. These relationships generate multi-thread and multi-
path topologies in a map.
Thread relationship: It is possible for a target intention to be achieved from a
source intention in many different ways. Each of these ways is expressed as a
section in the map. Such a map topology is called a multi-thread and the sec-
tions participating in the multi-thread are said to be in a thread relationship with
one another. Assume that Accept Payment is another intention in our example
and that it can be achieved in two different ways, By electronic transfer or By
credit card. This leads to a thread relationship between the two sections shown
in Fig. 9.3.

It is clear that a thread relationship between two sections regarded as facets
represents directly the variability associated to a multi-facetted purpose. Multi-
faceting is captured in the different strategies to achieve the common target inten-
tion.

Make Room
Booking

Accept
Payment

By electronic
transfert strategy

By Credit Card

The two sections are in a thread

relationship with one another

because they represent two different

ways of achieving Accept Payment

from Make Room Booking.

Fig. 9.3 An example of thread relationship

Path relationship: This establishes a precedence/succession relationship be-
tween sections. For a section to succeed another, its source intention must be
the target intention of the preceding one. For example the two sections <Start,
Make Room Booking, By the Internet Strategy>, <Make Room Booking, Accept
Payment, By credit card> form a path.

Start

Make Room

Booking

Accept

Payment

By electronic

transfert strategyBy Internet strategy

Stop

By visiting a

travel agency

By credit

card strategy

Normally

By customer

retractation

Path 1: <Start, Make Room Booking,

Internet strategy>,<Make Room

Booking, Accept Payment, Electronic

Transfer strategy>, <Make payment,

Stop, Normally>

Path 2: <Start, Make Room Booking,

Internet strategy>,<Make Room Booking,

Accept Payment, Credit Card strategy>,

<Accept payment, Stop, Normally>

Start

Make Room

Booking

Accept

Payment

By electronic

transfert strategyBy Internet strategy

Stop

By visiting a

travel agency

By credit

card strategy

Normally

By customer

retractation

Path 1: <Start, Make Room Booking,

Internet strategy>,<Make Room

Booking, Accept Payment, Electronic

Transfer strategy>, <Make payment,

Stop, Normally>

Path 2: <Start, Make Room Booking,

Internet strategy>,<Make Room Booking,

Accept Payment, Credit Card strategy>,

<Accept payment, Stop, Normally>

Fig. 9.4 The multi-path of the map Make Confirmed Booking

From the point of view of modeling facets, the path introduces a composite
facet whereas the section based facet is atomic. Given the thread and the path rela-
tionships, an intention can be achieved by several combinations of sections. Such
a topology is called a multi-path. In general, a map from its Start to its Stop inten-

9 Modeling Goals and Reasoning with Them 203

tions is a multi-path and may contain multi-threads. Let us assume in our example
that it is possible to Stop either because a customer retracts from making the book-
ing (By customer retraction) or after payment (Normally). Fig. 9.4 shows the en-
tire map with the purpose to Make Confirmed Booking. This map contains 6 paths
from Start to Stop out of which two are highlighted in the Figure.

Clearly, the multi-path topology is yet another way of representing the multi-
facetted perspective. Multi-faceting in this case is obtained by combining various
sections together to achieve a given intention of the map. Consider for instance the
intention Accept payment in Fig. 9.4; there are four paths from Start to achieve it;
each of them is a different way to get the intention achieved and in this sense, par-
ticipates to the multi-faceting. Each path is a composite facet composed of two
atomic facets. This can be extended to the full map which can be seen as com-
posed of a number of paths from Start to Stop. This time these paths introduce
multi-faceting but to achieve the intention of the map which in our example, is
Make Confirmed Booking.

Bundle relationship: Several sections having the same pair <Isource, Itarget> which
are mutually exclusive are in a bundle relationship. The group of these sections
constitutes a bundle. Notice that the difference between a thread and bundle re-
lationship is the exclusive OR of sections in the latter versus an OR in the for-
mer.
Refinement relationship: The map meta model also shows that a section of a
map can be refined as another map through the refinement relationship. The en-
tire refined map then represents the section. Refinement is an abstraction
mechanism by which a complex assembly of sections at level i+1 is viewed as a
unique section at level i. As a result of refinement, a section at level i is repre-
sented by multiple paths & multiple threads at level i+1.

From the point of view of multi-faceting, refinement allows to look to the
multi-facetted nature of a facet. It introduces levels in the representation of the
multi-facetted purpose which is thus completely modeled through a hierarchy of
maps. To sum up:

The purpose of the system is captured in a hierarchy of maps. The intention as-
sociated to the root map is the highest level statement about the purpose. Using
the refinement mechanism, each section of the root map can be refined as a
map and the recursive application of this mechanism results in a map hierarchy.
At successive levels of the hierarchy the purpose stated initially as the intention
of the root map is further refined.
At any given level of the hierarchy, the multi-facetted dimension is based on
multi-thread and multi-path topologies. Multi-thread introduces local faceting
in the sense that it allows to represent the different ways for achieving an inten-
tion directly. Multi-path introduces global faceting by representing different
combinations of intentions and strategies to achieve a given map intention. Any
path from Start to Stop represents one way of achieving the map intention,
therefore the purpose represented in this map.

204 Rolland and Salinesi

9.3.1.3 Illustrating Map with the SAP R3 Material Management Map
In this section we show the use of the Map to capture the multi-facetted purpose of
a system and take the SAP R/3 Materials Management (MM) module to illustrate
this. This module provides automated support for the day-to-day operations of any
type of business that entails the consumption of materials. It consists of five key
components starting from materials planning (MM-MRP Materials Requirements
Planning), through purchasing (MM-PUR Purchasing), managing inventory (MM-
IM Inventory Management), managing warehousing (MM-WM Warehouse Man-
agement), to invoice verification (MM-IV Invoice Verification). It also includes
two support components, MM-IS Information System and MM-EDI Electronic
Data Interchange.

In its totality, the MM module can be seen to meet the purpose, Satisfy Material
Need Efficiently. This is the intention of the root map shown in Fig. 9.5. The map
shows that to meet this purpose two intentions have to be achieved, namely Pur-
chase Material and Monitor Stock. These reflect the conventional view of materi-
als management as “procuring raw material and ensuring effectiveness of the lo-
gistics pipeline through which materials flow” [72]. Evidently, there is an ordering
between these two intentions: stock cannot be monitored unless it has been pro-
cured. This is shown in the Figure by the section <Purchase Material, Monitor
Stock, Out-In strategy >.

.

Stop

Planning
strategy

Start

Purchase
Material

Monitor
Stock

Out-In

strategy
Bill for

expenses

strategy

Reminder

strategy

Quality

inspection

strategy

Inventory

balance

strategy

Valuation

strategy

In-In strategy

Reservation

strategy

Manual

strategy

Financial

control

strategy

Fig. 9.5 The material management map. Intermittent lines represent bundles.

The map of Fig. 9.5 has 25 paths from Start to Stop, 5 following the Bill for ex-
penses strategy, 10 following the Planning Strategy, and 10 following the Manual
strategy. Thus, the map is able to present a global perspective of the diverse ways
of achievement of the main purpose. When a more detailed view is needed, then it
becomes necessary to focus more specifically on the multi-facetted nature of each
intention found in the “global” map. The detailed view of the intentions contained
in Fig. 9.5 is brought out in turn below.

9 Modeling Goals and Reasoning with Them 205

The Multiple Facets of Purchase Material: The multi-facetted nature of Pur-
chase Material is shown in Fig. 9.5 by including three strategies for its achieve-
ment (a) Planning strategy, (b) Manual strategy and (c) Reminder strategy. The
three facets are <Start, Purchase Material, Planning strategy>, <Start, Purchase
Material, Manual strategy> and <Purchase Material, Purchase Material, Re-
minder strategy>. Subsumed in the first facet are two mutually exclusive facets,
one that allows purchase to be made when stock falls to the reorder point and the
other for purchasing as per the planned material need. These two are captured in a
bundle consisting of two strategies not shown in the figure, namely the Reorder
point strategy and Forecast based strategy. The second facet, <Start, Purchase
Material, Manual strategy>, allows the buyer to manually enter a purchase requi-
sition leading to the generation of the purchase order. The third facet is used to
remind the vendor to deliver material when the delivery is not made in due time.
The bundled strategies correspond to the SAP functions of MM-MRP Forecast
Based Planning and Reorder Point Planning respectively whereas the manual
strategy is part of the MM-PUR component. It can be seen that the component
structure of SAP does not directly reflect the alternative functionality of achieving
the same goal.

The Multiple Facets of Monitor Stock: Monitor Stock is the second key inten-
tion of the material management map. The intention represents the management
goal of ensuring proper posting of procured material and effectiveness of material
logistics while maintaining financial propriety. This suggests that Monitor Stock
has three classes of facets (a) the procurement/posting class, (b) the logistics class,
and (c) the financial class. The facets in each class are as follows:

a) Procurement/Posting Facets
Procurement of material can be done either against a purchase order or without a
formal purchase order, directly from the market. In the latter case, material is im-
mediately ready for posting, whereas in the former case, posting is done after de-
livery is made against the purchase order. Thus, we have two facets of this class:

Posting of material delivery against a purchase order
Posting of material procured through direct purchase

These correspond in the map of Fig. 9.5 to the Out-in strategy and Bill for ex-
penses strategy, respectively. In SAP, the facet represented by the section <Pur-
chase Material, Monitor Stock, Out-In strategy> is covered by functions of the
MM-IM and MM-WM components whereas <Start, Monitor Stock, Bill for ex-
penses strategy> is a function of MM-IV, the Invoice Verification component.

The facet <Purchase Material, Monitor Stock, Out-In strategy> is, in fact, a
compound one. It represents the variety of ways in which compliance of delivered
material with the purchase order can be ensured and material posting made. There-
fore, its refinement reveals a complex assembly of facets that can be represented
through a map at a lower level. This refinement is shown in Fig. 9.6. Since <Pur-
chase Material, Monitor Stock, Out-In strategy> does not permit stock posting
unless material delivery complies with the purchase order, its refinement contains

206 Rolland and Salinesi

an ordering of the two intentions, Accept Delivery and Enter Goods in Stock. The
former has four facets, one for the case where delivery is strictly according to the
purchase order and three facets that allow delivery to be accepted within specified
tolerances from that in the purchase order. The four facets are as follows:

The delivery complies with the purchase order
Reconciliation against the purchase order has to be done
Reconciliation between the different units used by the supplier and the receiver
has to be done
Reconciliation of under/over delivery has to be done

These correspond in Fig. 9.6 to the four multi-threads identified by the strate-
gies Okay strategy, Reconciliation by PO recovery, Reconciliation of unit differ-
ence, and Reconciliation of under/over delivery. The nature of the three Recon-
ciliation facets is such that one or more can be simultaneously used. Therefore,
these strategies do not form a bundle but are each represented as a thread.

Reconciliation by
PO recovery

Reconciliation of
unit difference

Out-In storage
based
strategy

Out-In direct
consumption
strategy

Accept
delivery

Start

Enter Goods
in stock

Completeness
strategy

Stop

Reconciliation

of under/over

delivery

Rejection

strategy

Okay

strategy

Fig. 9.6 Refinement of <Purchase Material, Monitor Stock, Out-In strategy>

Now consider the intention Enter Goods in Stock. This displays two facets for
entering goods in stock (a) when delivery is made directly to the consumption lo-
cation and (b) when delivered goods are stored in a warehouse. As shown in Fig.
9.6, these two ways of achieving Enter Goods in Stock correspond to the two
strategies, Out-In direct consumption and Out-In storage based strategy. The tar-
get intention, Monitor Stock, of the facet under refinement is achieved in the map
when the intention Stop is achieved. Evidently, this happens when either the mate-
rial delivered is rejected and no stock entry is made or when, after entering the ac-
cepted delivery in stock, all subsequent housekeeping is done to take into account
the consequences of entering goods in stock. These two facets of Stop are repre-
sented in Fig. 9.6 by Rejection strategy and Completeness strategy respectively.

b) Material Logistics Facets
Facets in this class enter the picture only after initial posting of stock has been
made by the class of procurement/posting facets of Monitor Stock. The interesting
question now is about the movement of stock and how this movement is kept track
of. That is, Monitor Stock has to be repeatedly achieved after each movement

9 Modeling Goals and Reasoning with Them 207

to/from warehouses, to consumption points or for quality inspection. This gives us
the three facets:

Control of material movement to/from warehouses
On-time transfer of material to consumption points
Quality control of the material transferred

These correspond in the map of Fig. 9.5 to the In-In, Reservation, and Quality
inspection strategies. These strategies have Monitor Stock as both their initial as
well as their target intentions. This represents the repeated achievement of Moni-
tor Stock. Of the three foregoing facets, the first, represented by the section
<Monitor Stock, Monitor Stock, In-In strategy> needs further explanation. In fact,
subsumed in this facet are two mutually exclusive facets of Monitor Stock. These
correspond to the cases when the stock to be moved spends a long time in transit
or when immediate transfer is possible. As before, the section <Monitor Stock,
Monitor Stock, In-In strategy> is represented as a bundle of two sections having
strategies One-step transfer and Two-step transfer. The former corresponds to
immediate transfer and the latter to delayed transfer. In SAP, this bundled section
is covered partly by MM-IM and MM-WM and has a relationship with Financial
Accounting, Assets Management, and Controlling.

c) Financial Propriety Facets
The third class of facets of Monitor Stock deals with financial propriety. Not only
must it be ensured that stock on hand is physically verified but also it should be fi-
nancially valued. Thus, we have two facets in this class

Physical stock taking of the material
Valuing the stock for balance sheets

These are represented in the map of Fig. 9.5 by the Inventory balance and
Valuation strategies respectively. As for the material logistics class of facets, these
are also concerned with the repeated achievement of Monitor Stock. Therefore,
both the source and target intentions of these strategies is Monitor Stock. The facet
corresponding to the <Monitor Stock, Monitor Stock, Inventory balance strategy>
section subsumes three different ways of physical stock taking: by periodic inven-
tory verification, by continuous verification and by verifying a sample of the total
inventory. Any of these three can be mutually exclusively deployed. Therefore, we
represent it as a bundle of the three strategies, periodic, continuous and sampling
strategies. This bundle is handled by the MM-IM component in SAP.

The facet represented in Fig. 9.5 by the section <Monitor Stock, Monitor Stock,
Valuation strategy> can itself be treated as a bundle of mutually exclusive facets
represented by strategies such as LIFO and FIFO. In SAP, only LIFO valuation is
available as a function in MM-IM.

Completing Satisfy Material Need Effectively: The complete fulfillment of Sat-
isfy Material Need Effectively requires that the financial aspects of material pro-
curement are properly handled. Thus completion, corresponding to the achieve-
ment of Stop of Fig. 9.5 is done by the Financial control strategy allowing the

208 Rolland and Salinesi

flow from Monitor Stock to Stop. In SAP, this takes the form of the Invoice Veri-
fication component, MM-IV. When a multi-facetted product like the SAP MM is
to be adopted, then the task of the adoption process is to select the facets of the
MM map that are of relevance. This leads us to the issue of the process dimension
which we consider in the next section.

9.3.2 Matching Maps to Support Multi-Purpose System Customization

The multi-purpose view of emerging systems that leads to the representation of
variability in product models has a counterpart on the process dimension which
implies a change of the traditional RE process. Whereas the latter corresponds
merely to a move from an As-Is to a To-Be model (Fig. 9.7a), the former leads to
producing the To-Be model by a model-match centered process. As shown in Fig.
9.7b the organizational goals are expressed in the As-Wished model. The Might-Be
model reflects the functional capability of the multi-purpose system (e.g. an ERP)
and the To-Be model needs to be defined as the best match between the As-Wished
and the Might-Be. This process leads to customizing the Might-Be model to tailor
it to the organizational requirements expressed in the As-Wished model.

As-Is

BM

As-Is

SFM

To-Be

SFM

To-Be

BM
Propagation

(a)

As-Wished
BM

Might-Be
SFM

To-Be
SFM

To-Be
BM

Matching
Process

(b)

Fig. 9.7 Multi-purpose system customization process (BM stands for Business Models,
SFM stands for System Functionality Models)

We believe that maps can help in facing the challenge raised by the customiz-
ing activity required in the RE process of multi-purpose systems in two ways: (a)
by offering a uniform representation of the involved models, namely the As-Is, As-
Wished, Might-Be and To-Be and (b) by providing a formalism to model the
matching process in a multi-purpose dimension. Our position is that the multi-
facetted perspective on product modeling has implications on process modeling as
well. First, there cannot be a mismatch between the process modeling paradigm
and the product modeling paradigm. Instead, the former must be aligned to the lat-
ter. Thus, the process modeling paradigm should be Goal-driven. Secondly, it is
unlikely that product variability can be discovered with a monolithic way of work-
ing. This implies that the process model should provide many different strategies
to achieve the same process goal. The foregoing points to the desirability of the
process to be looked upon as a multi-facetted purpose process. This multi-facet
aspect implies a process model that has the capability to integrate in it the many
strategies found in different methodologies for achieving the same process goal.

9 Modeling Goals and Reasoning with Them 209

For example, to Elicit a Goal, different methodologies follow different strategies,
top-down, bottom-up, what-if, participative etc. These get integrated in one multi-
facetted purpose process model.

Start

Construct

As-Is, As-Wished

& Might-Be maps

Construct

Matched maps

Stop

Abstraction

Might-Be driven

As-Wished driven

As-Is driven

Feed back

To-Be driven

Verification

Start

Construct

As-Is, As-Wished

& Might-Be maps

Construct

Matched maps

Stop

Abstraction

Might-Be driven

As-Wished driven

As-Is driven

Feed back

To-Be driven

Verification

Fig. 9.8 Process model for ERP customization.

This position was confirmed by our experience in different projects where we
observed that people have specific expectations and requirements about these
process models. First, they are facing an issue and have a goal in mind and would
like process models to let them easily situate both and to suggest different alterna-
tive paths to achieve the goal and solve the issue. Second, they want freedom and
flexibility in their ways of working; one single imposed way-of-working is not ac-
ceptable. They expect to learn about the different ways by which each of their
goals can be achieved and each issue can be solved. Third, they want advice on
how to choose between the different alternative solutions that shall be proposed to
solve a given issue. The first two points lead to a multi-purpose driven process
model and the third point raises the requirement of a model able to offer guidance
in process enactment. Maps can be used to model a methodological process and to
capture process goals as map nodes and strategies to achieve those as edges. For
maps to provide guidance we introduced guidelines that can be associated to sec-
tions in a process map to guide the selection of process goals as well as to guide
strategy selection, situation identification and section achievement.

Fig. 9.8 shows a process model that was developed for an ERP customization
project. As the figure shows the process model is represented as a map. The root
purpose of this map is Elicit ERP Installation Requirements. Achieving the pur-
pose leads to the Matched-map which expresses the requirements that the ERP in-
stallation shall be met. Many of the intentions/strategies of the Matched Map are
obtained from the Might-Be map (the ERP map) and match the As-Wished organ-
izational requirements. Others may not be available in the ERP map and will re-
quire in-house development. In such a case, the Matched Map makes them ex-

210 Rolland and Salinesi

plicit. Again, all the intentions and strategies of the ERP map may not be included
in the Matched Map. This corresponds to the ERP functionality that is not match-
ing the requirements in the As-Wished map. Thus, the Matched Map is the input to
the installation process. The multi-facetted nature of the process is shown by the
sub-purposes embedded in the map, namely the two main intentions Construct As-
Is, As-Wished, Might-Be maps and Construct Matched Map and the various strate-
gies to achieve them.

There are three ways of achieving it by three different strategic drives, As-
Wished, Might-Be and As-Is drives. Each drive considers the intentions and strate-
gies of its corresponding map from Start to Stop in order to decide if these (a)
match the requirements exactly and so must be included in the Matched map, (b)
need adaptation before their inclusion in the Matched map, or (c) are irrelevant.

These three strategies have the same initial and target intentions showing that
the target intention can be achieved in a non-deterministic way. This reflects the
possibility that different organizations may interleave these strategies in different
combinations thereby following different processes to Construct Matched Map.
Findings from our experience are summed up as follows:

1. If the context is that of a well-defined business requirements to which the sys-
tem should fit, and in-house development is not a problem, then the As-Wished
driven matching strategy can be used.

2. If on the contrary, the system is less likely to change than the business (e.g. be-
cause customizing the system has become too expensive [72], or if the system
customization is an opportunity to change the business (e.g. because it allows to
generalize its associated best practice in the business) then the matching proc-
ess should be driven by the system. This is what the Might-Be driven strategy
proposes.

3. If it is particularly important to preserve the functionality provided by the exist-
ing system in the To-Be system functionality model, then an As-Is driven
matching is required. We encountered such functional non regression require-
ments when we studied the introduction of software components for selling
electricity in the PPC company at the occasion of European electricity market
deregulation [71].

Construct As-Is, Might-Be, As-Wished maps is also multi-facetted. It can be
achieved in two ways, by the Abstraction strategy or the Feedback strategy. The
latter has Construct Matched Map as its source intention and allows an incre-
mental achievement of Construct As-Is, Might-Be, As-Wished maps. This extends
to As-Is and ERP maps the view of Anthony Finkelstein and colleagues [25] that
starting with complete requirements specification is not always needed in software
package requirements engineering. Finally, the Stop intention achieves completion
of Elicit ERP Installation Requirements through the To-Be driven verification
strategy that verifies the accuracy of the Matched Map.

9 Modeling Goals and Reasoning with Them 211

9.4 Conclusion

Goal-driven requirements engineering are intended to provide the rationale of the
system to be. Beyond this objective, we have seen that there are some other advan-
tages:

Goals bridge the gap between organizational strategies and system require-
ments thus providing a conceptual link between the system and its organiza-
tional context
Goal decomposition graphs provide the pre-traceability between high level stra-
tegic concerns and low level technical constraints; therefore facilitating the
propagation of business changes onto system features
ORed goals introduce explicitly design choices that can be discussed, negoti-
ated and decided upon
AND links among goals support the refinement of high level goals onto lower
level goals till operationalizable goals are found and associated to system re-
quirements
Powerful goal elicitation techniques facilitate the discovery of goal and re-
quirements;
Relationships between goals and concepts such as objects, events, operations
etc. traditionally used in conceptual design facilitates the mapping of goal
graphs onto design specification

We have also discussed the fact that goal driven RE approaches suffer from a
number of weaknesses partly due to the nature of the concept of a goal and partly
to the lack of modeling and support of the goal driven RE process. The belief of
the authors is that goal-driven approaches are now facing the challenge of forth-
coming multi-purpose systems, i.e. systems that incorporate variability in the
functionality they provide and will be able to self adapt to the situation at hand.
The goal/strategy maps have been introduced and discussed as an example of goal
model that has been conceived to meet the aforementioned challenge.

References

1. Alexander I (2002) Initial industrial experience of misuse cases in trade-off analysis. In:
Proceedings of IEEE Joint International Requirements Engineering Conference, 9-13
September, Essen, pp.61 68

2. Antòn AI, Potts C (1998) The use of goals to surface requirements for evolving systems.
In: Proceedings of International Conference on Software Engineering (ICSE’98),
Kyoto, Japan, pp.157 166

3. Antòn AI, Earp JB, Potts C, Alspaugh TA (2001) The role of policy and stakeholder pri-
vacy values in requirements engineering. In: Proceedings of IEEE 5th International
Symposium on Requirements Engineering (RE'01), Toronto, Canada, pp.138 145

4. Antòn AI, Potts C, Takahanshi K (1994) Inquiry based requirements analysis. IEEE
Software 11(2): 21 32

212 Rolland and Salinesi

5. Antòn AI, Carter R, Dagnino A, Dempster J, Siege DF (2001) Deriving goals from a use-
case based requirements specification. Requirements Engineering Journal, 6: 63 73

6. Antòn AI, McCracken WM, Potts C (1994) Goal decomposition and scenario analysis in
business process reengineering. CAISE'94, LNCS 811, Springer-Verlag, pp.94 104

7. Antòn AI (1996) Goal based requirements analysis. In: Proceedings of 2nd International
Conference on Requirements Engineering ICRE’96, pp.136 144

8. Bachmann F, Bass L (2001) Managing variability in software architecture. ACM
SIGSOFT Symposium on Software Reusability (SSR'01), pp.126 132

9. Boehm B, Bose P, Horowitz E, Ming-June L (1994) Software requirements as negotiated
win conditions. In: Proceedings of 1st International Conference on Requirements Engi-
neering, USA, pp.74 83

10. Bosch J, Florijn G, Greefhorst D, Kuusela J, Obbink JH, Pohl K (2001) Variability is-
sues in software product lines. In: Proceedings of 4th International Workshop on Prod-
uct Family Engineering (PEE-4), Bilbao, Spain, pp.22 37

11. Bubenko J, Rolland C, Loucopoulos P, de Antònellis V (1994) Facilitating ‘fuzzy to
formal’ requirements modelling. In: Proceedings of IEEE 1st Conference on Require-
ments Engineering, ICRE’94 pp.154 158

12. Chung KL, Nixon BA, Yu E, Mylopoulos J (1999) Non- functional requirements in
software engineering. The Kluwer international series in software engineering. 1st edi-
tion, Kluwer Academic Publishers

13. Cockburn A (1995) Structuring use cases with goals. Technical report. Human and
Technology, HaT.Technical Report.1995.01, Accessed on 3rd December 2004.
http://alistair.cockburn.us/crystal/articles/sucwg/structuringucswithgoals.htm.

14. Dano B, Briand H, Barbier F (1997) A use case driven requirements engineering proc-
ess. Journal of Requirements Engineering, Springer-Verlag, 2(2): 79 91

15. Dardenne A, Lamsweerde A, Fickas S (1993) Goal-directed requirements acquisition.
Science of Computer Programming, Elsevier.20: 3 50

16. Darimont R, Lamsweerde A. (1996) Formal refinement patterns for goal-driven re-
quirements elaboration. In: Proceedings of 4th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, San Francisco, pp.179 190

17. Darimont R, Lamsweerde A, Letier E (1998) Managing conflicts in goal-driven re-
quirements engineering. IEEE Transactions on Software Engineering, 24(11): 908 926

18. Davis AM (1993) Software requirements objects, functions and states. Prentice Hall,
UK

19. Dik SC (1989) The theory of functional grammar. Part 1: The structure of the clause.
Functional Grammar Series, Fories Publications Dordrecht, Holland

20. Dubois E, Yu E, Pettot M (1998) From early to late formal requirements: a process-
control case study. In: Proceedings of 9th International Workshop on software Specifi-
cation and design. IEEE CS Press, pp. 34 42

21. Easterbrook SM, Finkelstein ACW, Kramer J, Nuseibeh BA (1994) Coordinating con-
flicting view points by managing inconsistency. Workshop on Conflict Management in
Design, International Conference on Artificial Intelligence in Design, Lausanne, Swit-
zerland, pp. 15 18.

22. ELEKTRA consortium (1997) Electrical enterprise knowledge for transforming appli-
cations. ELEKTRA Project Reports No 22927

23. European Software Institute (1996) European user survey analysis. Report USV_EUR
2.1, ESPITI Project

9 Modeling Goals and Reasoning with Them 213

24. Fillmore C (1968) The case for case. In: Universals in linguistic theory, Bach E, Harms
RT (Eds.), Holt, Rinehart & Winston New York, pp.1 90

25. Finkelstein A, Spanoudakis G, Ryan M (1996) Software package requirements and pro-
curement. In: Proceedings of 8th International workshop on Software Specification and
Design, IEEE Computer Society Press, Washington, DC, pp.141 145

26. Gotel OCZ, Finkelstein ACW (1994) Modelling the contribution structure underlying
requirements. In: Proceedings of 1st International Workshop on Requirements Engi-
neering: Foundations of Software Quality, Utrecht, The Netherlands, pp. 71 81

27. Halmans J, Pohl K, (2003) Communicating the variability of a software product family
to customers. Journal of Software and System Modeling, 2(1): 15 36

28. Haumer P, Pohl K, Weidenhaupt K (1998) Requirements elicitation and validation with
real world scenes. IEEE Transactions on Software Engineering, Special Issue on Sce-
nario Management, Jarke M, Kurki-Suonio R (Eds.), 24(12): 11036 1054

29. Hoh P (2002) Multi-criteria preference analysis for systematic requirements negotia-
tion. In: Proceedings of 26th Annual International Computer Software and Applications
Conference, Oxford, England pp.887

30. Hui B, Liaskos S, Mylopoulos J (2003) Requirements analysis for customizable soft-
ware: A goals-skills-preferences framework. In: Proceedings of IEEE Conference on
Requirements Engineering, Monterey Bay, USA, pp.117 126

31. Ivankina E, Salinesi C (2004) An approach to guide requirement elicitation by analyz-
ing the causes and consequences of Threats. In: Proceedings of14th European - Japa-
nese Conference on Information Modelling and Knowledge Bases, Skövde, Sweden

32. Jackson M (1995) Software requirements & specifications – a lexicon of practice. Prin-
ciples and Prejudices, ACM Press, Addison-Wesley

33. Jacobson I (1995) The use case construct in object-oriented software engineering. In
Scenario-Based Design: Envisioning Work and Technology in System Development,
J.M. Carroll (Ed.), pp.309 336.

34. Jarke M, Pohl K (1993) Establishing visions in context: Towards a model of require-
ments processes. In: Proceedings of 12th International Conference on Information Sys-
tems, Orlando (ICIS), Orlando, pp.23 34

35. Kaindl H (2000) A design process based on a model combining scenarios with goals
and functions. IEEE Transactions on Systems, Man and Cybernetic, 30(5): 537 551

36. Karlsson J, Olsson S, Ryan K (1997) Improved practical support for large-scale re-
quirements prioritizing. Journal of Requirements Engineering, 2(1): 51 60

37. Lamsweerde A. (2004) Goal-oriented requirements engineering: A roundtrip from re-
search to practice. In: Proceedings of 12th IEEE International Symposium on Require-
ments Engineering, Kyoto, Japan

38. Lamsweerde A, Willemet L (1998) Inferring declarative requirements specifications
from operational scenarios. IEEE Transactions on Software Engineering, Special Issue
on Scenario Management 24(12): 1089 1114

39. Lamsweerde A, Darimont R, Massonet P (1995) Goal-directed elaboration of require-
ments for meeting schedulers: Problems and lessons learnt. In: Proceedings of the 2nd
IEEE International Symposium on Requirements Engineering (RE’95), pp.194 203

40. Lamsweerde A (2000) Requirements engineering in the year 2000: A research perspec-
tive. In: Proceedings of 22nd International Conference on Software Engineering,
(ICSE’2000): Limerick, Ireland, Invited Paper, ACM Press, pp. 5–19

214 Rolland and Salinesi

41. Lamsweerde A, Letier E (2000) Handling obstacles in goal-oriented requirements engi-
neering. IEEE Transactions on Software Engineering, Special Issue on Exception Han-
dling, 26(10): 978 1005

42. Lamsweerde A, Dardenne B, Delcourt F (1991) The KAOS project: Knowledge acqui-
sition in automated specification of software. In: Proceedings of AAAI Spring Sympo-
sium Series, Stanford University, pp.59 62

43. Lamsweerde A (2001) Goal-oriented requirements engineering: A guided tour. In Pro-
ceedings of International Joint Conference on Requirements Engineering, Toronto,
IEEE, pp.249 263

44. Le TL (1999) Guidage des processus d’ingénierie des besoins par un approche de
réutilisation de cas, Master Thesis, CRI, Université Paris-1, Panthéon Sorbonne

45. Lee SP (1997) Issues in requirements engineering of object-oriented information sys-
tem: A review. Malaysian Journal of computer Science, 10(2)

46. Leite JCS, Rossi G, Balaguer F, Maiorana A, Kaplan G, Hadad G, Oliveros A (1997)
Enhancing a requirements baseline with scenarios. In: Proceedings of 3rd IEEE Interna-
tional Symposium on Requirements Engineering, Antapolis, Maryland, pp.44 53.

47. Letier E (2001) Reasoning about agents in goal-oriented requirements engineering. Ph.
D. Thesis, University of Louvain

48. Leveson NG (2000) Intent specifications: an approach to building human-centred speci-
fications. IEEE Transactions on Software Engineering 26: 15 35

49. Loucopoulos P (1994) The f3 (from fuzzy to formal) view on requirements engineering.
Ingénierie des systèmes d’information, 2(6): 639 655

50. Loucopoulos P, Kavakli V, Prekas N (1997) Using the EKD approach, the modelling
component. ELEKTRA project internal report, UMIST, Manchester, UK

51. Maiden N, Ncube C (1998) Acquiring COTS software selection requirements. IEEE
Software, 15(2): 46 56

52. Maiden N, Kuim H, Ncube C (2002) Rethinking process guidance for software compo-
nent selection. In: Proceedings of 1st Int. Conf. of Component Based Eng, pp.151 164

53. Massonet P, Lamsweerde A, (1997) Analogical reuse of requirements frameworks. In:
Proceedings of 3rd International Symposium on Requirements Engineering, Annapolis,
pp.26 37.

54. META Group (2003) Research on requirements realization and relevance, Meta Group
report

55. Moisiadis F (2002) The fundamentals of prioritising requirements systems engineering.
Systems Engineering, Test & Evaluation Conference, Sydney, Australia, October

56. Mostow J (1985) Towards better models of the design process. AI Magazine, 6: 44 57
57. Mylopoulos J, Chung KL, Nixon BA (1992) Representing and using non- functional re-

quirements: a process-oriented approach. IEEE Transactions on Software Engineering,
Special Issue on Knowledge Representation and Reasoning in Software Development,
18(6): 483 497

58. Mylopoulos J, Chung KL, Yu E (1999) From object-oriented to goal-oriented require-
ments analysis. Communications of the ACM, 42(1): 31 37

59. Nuseibeh B, Kramer J, Finkelstein A (1994) A framework for expressing the relation-
ships between multiple views in requirements specification. IEEE Transactions on
Software Engineering, 20: 760 773

60. Pohl K (1996) Process centred requirements engineering, J. Wiley and Sons.

9 Modeling Goals and Reasoning with Them 215

61. Pohl K, Haumer P (1997) Modelling contextual information about scenarios. In: Pro-
ceedings of the 3rd International Workshop on Requirements Engineering: Foundations
of Software Quality REFSQ’97, Barcelona, Spain, pp.187 204

62. Potts C (1995) Using schematic scenarios to understand user needs. In: Proceedings of
ACM Symposium on Designing interactive Systems: Processes, Practices and Tech-
niques, University of Michigan, USA, pp.247 256

63. Potts C (1997) Fitness for use: The system quality that matters most. In: Proceedings of
International Workshop on Requirements Engineering: Foundations of Software Qual-
ity REFSQ’97, Barcelona, pp.15 28

64. Potts C, Takahashi K, Antòn AI (1994) Inquiry-based requirements analysis. IEEE
Software 11(2): 21 32

65. Prat N (1997) Goal formalisation and classification for requirements engineering. In:
Proceedings of 3rd International Workshop on Requirements Engineering: Foundations
of Software Quality REFSQ’97, Barcelona, Spain, pp.145 156

66. Ramesh B, Powers T, Stubbs C, Edwards M (1995) Implementing requirements trace-
ability: a case study. In: Proceedings of the 2nd Symposium on Requirements Engineer-
ing (RE’95), UK, pp.89 95

67. Rasmussen J (1990) Mental models and the control of action in complex environments.
In: Mental Models and Human--Computer Interaction, Ackermann D, Tauber MJ (Eds.)
North Holland: Elsevier, pp.41 69

68. Robinson WN, Volcov S (1996) Conflict oriented requirements restructuring, Georgia
State University, Atlanta, GA, Technical Paper CIS-96-15, October 8,

69. Robinson WN, (1989) Integrating multiple specifications using domain goals. In: Pro-
ceedings of 5th International Workshop on Software Specification and Design, IEEE,
pp.219 225

70. Robinson WN, Volkov S (1998) Supporting the negotiation life-cycle. Communications
of the ACM, 41(5): 95 102

71. Rolland C (2000) Intention driven component reuse. In: Information Systems Engineer-
ing, Brinkkemper S, Lindencrona, E, Solvberg A (Eds.) Springer, pp.197 208

72. Rolland C, Prakash N (2000) Bridging the gap between organizational needs and ERP
functionality. Requirements Engineering Journal, 4(1): 180 193

73. Rolland C, Salinesi C, Etien A (2004): Eliciting gaps in requirements change. Require-
ments Engineering Journal, 9(1): 1 15

74. Rolland C, Grosz G, Kla R (1999) Experience with goal-scenario coupling. In Proceed-
ings of 4th IEEE International Symposium on Requirements Engineering, Limerik, Ire-
land, pp.74 81

75. Rolland C, Nurcan S, Grosz G (1997) Guiding the participative design process. In Pro-
ceedings of Association for Information Systems Americas Conference, Indianapolis,
Indiana, pp.922 924

76. Rolland C, Souveyet C, Salinesi C (1998) Guiding goal modelling using scenarios.
IEEE Transactions on Software Engineering, Special Issue on Scenario Management,
24(12): 98 27

77. Ross DT, Schoman KE (1977) Structured analysis for requirements definition. IEEE
Transactions on Software Engineering, 3(1): 6 15

78. Easterbrook SM (1994) Resolving requirements conflicts with computer-supported ne-
gotiation. In Requirements Engineering: Social and Technical Issues, Jirotka M,
Goguen J (Eds.) London: Academic Press, pp.41 65

216 Rolland and Salinesi

79. Sindre G, Opdahl L (2001) Templates for misuse case description. In Proceedings of
7th International Workshop on Requirements Engineering, Foundation for Software
Quality (REFSQ'2001): Interlaken, Switzerland

80. Sommerville I, Sawyer P (1997) Requirements engineering. Worldwide Series in Com-
puter Science, Wiley

81. Standish Group (1995) Chaos, Standish Group Internal Report,
www.standishgroup.com/chaos.html

82. Sutcliffe A, Maiden N (1993) Bridging the requirements gap: Policies, goals and do-
mains. In: Proceedings of 7th International Workshop on Software Specification and
Design, IEEE Computer Society Press, pp.52 55

83. Sutcliffe A, Minocha S (1999) Analyzing socio-technical system requirements. CREWS
project Report 98-37, Accessed on 5th December 2004, http://sunsite.informatik.rwth-
aachen.de/CREWS/reports.htm

84. Sutcliffe AG, Galliers J, Minocha S (1999) Human errors and system requirements. In:
Proceedings of 4th IEEE International Symposium on Requirements Engineering, Lim-
erick, Ireland, pp.23-30

85. Sutcliffe AG, Maiden N, Minocha S, Darrel M (1998) Supporting scenario-based re-
quirements engineering. IEEE Transactions Software Engineering, 24(12): 1072 1088

86. Svahnberg M, Gurp J, Bosch J (2001) On the notion of variability in software product
lines. In: Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA 2001) pp.45 55

87. Van Gurp J (2000) Variability in software systems: The key to software reuse. Licenti-
ate Thesis, University of Groningen, Sweden

88. Vicente KJ, Rasmussen J (1992) Ecological interface design: Theoretical foundations.
IEEE Transactions on Systems, Man and Cybernetics, 22(4): 589 606

89. Yu E (1997) Towards modeling and reasoning support for early-phase requirements en-
gineering. In: Proceedings of 3rd IEEE International Symposium on Requirements En-
gineering -RE97, pp.226 235

90. Yu E (1994) Modeling strategic relationships for process reengineering. Ph.D. Thesis,
Department Computer Science, University of Toronto, Canada

91. Yue K (1987) What does it mean to say that a specification is complete? In: Proceed-
ings of 4th International Workshop on Software Specification and Design, Monterey,
CA, USA, pp.34 41

92. Zave P, Jackson M (1997) Four dark corners of requirements engineering. ACM Trans-
actions on Software Engineering and Methodology, 6(1): 1 30

Author Biography

Colette Rolland is Professor of Computer Science and head of CRI at University
of Paris 1 - Panthéon Sorbonne. Her research interests lie in the areas of informa-
tion modeling, object-oriented analysis and design, requirements engineering,
CASE and CAME tools, change management and enterprise knowledge develop-
ment. She has supervised 62 PhD theses and was author/co-author of 5 textbooks
and of over 170 invited and refereed papers. She also has extensive experience in
leading research projects funded by French institutions (CNRS, INRIA, Ministry
of Research and Technology) as well as by ESPRIT programs, including

9 Modeling Goals and Reasoning with Them 217

NATURE (N° 6353) - ESPRIT 3, ELEKTRA (N° 22927), and CREWS (N°
21903) - FRAMEWORK 4.

Dr. Camille Salinesi is a senior lecturer of Computer Science at the University of
Paris 1 Panthéon - Sorbonne. His research works deal with Requirements Engi-
neering, Systems Engineering, and Process Engineering. He has published more
than 40 refereed papers and organized several conferences (OOIS’98, REP’99,
REFSQ’01’02’03, RE’05) in these domains. His recent works showed significant
results on the topics of the use of Use Cases, Goals, and Scenarios in Require-
ments Engineering and about Information System evolution and ERP implementa-
tion. Dr Salinesi was involved in several fundamental research projects such as
ESPRIT NATURE and CREWS, and was consultant for several national and in-
ternational companies. Camille Salinesi is a member of the INCOSE and belongs
to the RE group of the French association of Systems Engineering.

10 Managing Large Repositories of Natural Language
Requirements

Johan Natt och Dag and Vincenzo Gervasi

Abstract: An increasing number of market and technology driven software devel-
opment companies face the challenge of managing an enormous amount of re-
quirements written in natural language. As requirements arrive at high pace, the
requirements repository easily deteriorates, impeding customer feedback and well-
founded decisions for future product releases. In this chapter we introduce a lin-
guistic engineering approach in support of large-scale requirements management.
We present three case studies, encompassing different requirements management
processes, where our approach has been evaluated. We also discuss the role of
natural language requirements and present a survey of research aimed at giving
support in the engineering and management of natural language requirements.

Keywords: Large-scale requirements management, Linguistic engineering, Natu-
ral language processing, Relationships, Redundancy, Duplicates.

10.1 Introduction

Market and technology driven companies developing increasingly complex soft-
ware products eventually face the challenge of dealing with huge information
flows that may overwhelm their management and analysis capabilities. Require-
ments are particularly difficult to manage effectively due to their unstructured na-
ture. The requirements also have a potential to grow to such volumes and arrive at
such rates that specific information and knowledge management challenges
emerge: deterioration of the requirements repository and an increasing difficulty to
identify and maintain requirements inter-relationships.

A major reason for these problems is that requirements are communicated in
natural language, which induces several problems like imprecision, ambiguity, in-
completeness, conflict, and inconsistency, which take time to resolve (see Chap.
11 for a separate discussion on ambiguity). Requirements management processes
may be very different in design. Nevertheless, companies that acknowledge both
customer involvement and their own innovative potential as rewarding means for
discovering successful product services and functionality are faced with a com-
mon challenge: analyzing and evaluating every incoming requirement, customer
wish and technical suggestion as soon and as thoroughly as possible.

In traditional requirements management [49] there is an implicit focus on iso-
lated monolithic requirements specifications. The new challenge of managing
enormous amounts of requirements that continuously must be analyzed, re-
analyzed and consolidated is generally left untouched. This is also reflected by
current requirements management tools, which do provide the functionality to as-

220 Natt och Dag and Gervasi

sign links between requirements, but give no assistance in the actual matching of
thousands of incoming requirements with those already analyzed. Requirements
management tools could do better than providing simple keyword search facilities
to alleviate the manual burden of consolidating large amounts of requirements.

Companies facing these challenges may arrive at a cross-road where the choice
is to reduce the flow of incoming requirements or to assign more resources to han-
dle them [24]. However, seen from a business perspective, neither of these ap-
proaches is particularly rewarding (and in many situations impossible). Choking
the elicitation and invention of new requirements will increase the risk of missing
potential business opportunities [28], and adding more people to do the job has
been shown to be too costly and at times counter-productive [3, 24].

In this chapter we present a linguistic engineering approach that may give con-
siderable support in the continuous management of large amounts of textual re-
quirements. The approach is based on techniques from information retrieval where
similarities between requirements are calculated to indicate the semantic overlap.
This gives a possibility for product managers to more quickly find relationships
between requirements based on their textual content.

In Sect. 2 we will first discuss the general role that natural language require-
ments play in large-scale software development. Section 3 provides an in-depth
survey of the current research in linguistic engineering applied to requirements
engineering and management. Section 4 introduces the idea of calculating similar-
ity between requirements as a means for identifying semantically related require-
ments. In Sects. 5 through 7 we present three case studies conducted at three soft-
ware developing companies, while Sect. 8 concludes the chapter.

10.2 The Role of Natural Language Requirements

A recent survey supports our own research experience that requirements to a very
large extent are written and communicated in natural language (NL) [34]. Still, af-
ter years of rewarding research that has helped us understand and improve the way
requirements may be specified and formulated [Chaps 3 & 11], the state of the
practice is generally that requirements quality guidelines are rarely applied. There
is a large gap between the formal models advocated by many researchers and the
informality that dominates in industry. Several reasons can be identified to why
requirements are initially specified in natural language and in many cases kept in
that form throughout the development process:

NL is the primary communication language, which is shared by all stakeholders
and participants in the development process. Formal languages require specific
training, which is unrealistic to expect from every stakeholder and in particular
from customers or end-users.
Requirements engineering (RE) is a social and evolutionary process where re-
quirements are elicited and specified at different levels of abstraction at differ-
ent points in the development process. NL is universal, meaning that it can be

10 Managing Large Repositories of Natural Language 221

used to talk about arbitrary domains and at arbitrary levels of abstraction. Many
formal languages do not have this strength.
In large-scale development there are comparatively few of the proposed re-
quirements that are actually selected for implementation (see for example Chap.
4 on prioritization and Chap. 13 on market-driven RE). Since not all require-
ments are expected to be implemented, there is little motivation for spending
time formalizing them. In particular, our experience tells us that companies
which value close interaction with their customers and rapid reaction to chang-
ing market conditions do not find it cost-beneficial to translate all requirements
into formal specifications.
Many formal methods do not offer any support for the management and analy-
sis of erroneous, incomplete, or partially-specified requirements. In contrast,
NL techniques adapt naturally to such situations, which in practice make up a
large part of a requirement life cycle.
While formal languages can improve our ability to check internal consistency
and completeness of requirements (a process often referred to as verification),
they cannot capture external properties of the requirements, e.g. correspon-
dence between the requirements and the actual user intentions. It requires good
communication and interaction with the stakeholders to verify such properties
(validation) – and to this end, NL is a more suited language.

Thus, despite its recognized and infamous deficiencies, there are few incentives
to avoid natural language. We should therefore expect that its use cannot be es-
caped. This is also elucidated by M. Jackson stating that RE is where the informal
meets the formal [25]. The gap between the users’ needs and a new release of the
software system must therefore be bridged using methods and techniques that ac-
knowledge, in some form, communication in natural language.

An increasing number of software development companies move away from
isolated contract development projects (also called bespoke software develop-
ment) towards development for a broader market. This is, for example, also indi-
cated by the growing interest in commercial off the shelf (COTS) development in
the RE research community [52]. Companies developing for a broader market face
distinct challenges, of which one crucial is to stay ahead of competitors and reduce
time-to-market [Chap. 13]. After an initial version of a product has been released,
there is a need for a dynamic process of elicitation and prioritization. In this dy-
namic environment where requirements arrive from many different sources and
stakeholders (customers, sales representatives, developers, support personnel), the
decision of which requirements are to be included in the next release of the prod-
uct must in most cases be made based on the NL requirements available in the re-
pository, in addition to the experience and skill of the product manager and certain
nonnegotiable requests by key customers.

In essence, these companies face an information overload problem. But, as we
already pointed out in the introduction, the most apparent solutions (reducing the
inflow of requirements or adding personnel) are not satisfying. Another approach
has therefore been examined, which aims at supporting requirements analysis ac-

222 Natt och Dag and Gervasi

tivities through automation. The proposed solution is to use the techniques from
natural language processing (NLP) [26].

10.3 State of the Research Addressing NL Requirements

As pointed out in the well-referenced paper by Ryan [46], there have been many
unrealistic expectations on NLP techniques given the desire for a system that
could support the currently expensive activities within RE. These expectations are
typically based on misconceptions about what the communication problem in in-
dustrial RE really is and to what extent the requirements on a system are available
in textual form (e.g. see [51] on linguistic problems with requirements elicitation).
Ryan concludes that RE is a social process and that linguistic techniques can suc-
ceed only in a supporting role to this process not by trying to replace it.

A pragmatic approach is suggested by Garigliano, who points out a range of
criteria for applied systems dealing with natural language [18]. The criteria eluci-
date the possible variation points for the usefulness of an NLP-based system. In
essence, it is a matter of systematic cost-benefit analysis.

To relate our work to the current body of knowledge, we present here a survey
of research aimed at supporting RE activities using linguistic engineering tech-
niques, grouped by three major RE process activities addressed:

Domain and requirements understanding, which is a fundamental success fac-
tor in all systems and software development.
Requirements verification and validation, which are carried out to ensure that a
specification is internally consistent and to certify that the requirements are a
correct representation of the users’ intentions [2, Chap. 8].
Requirements management, dealing with storage, change management and
traceability issues. This is within the scope of this paper.

We encourage the interested reader to look into the work of each author. In
many cases the industrial applicability and scalability is yet to be determined
through larger case studies with real data. Also, although most approaches ac-
knowledge ambiguity and inconsistencies, seldom is it reported how any other
pollution in the data is treated (e.g. misspellings and non-information carrying
characters). A combination of different techniques would likely be the most re-
warding and the research surveyed provides an excellent basis for this acquisition.

10.3.1 Domain and Requirements Understanding

A central task in domain and requirements understanding is to identify and under-
stand domain concepts, also called domain abstractions. Domain abstractions are
general concepts that are formed to represent common features of specific in-
stances in the domain. Domain abstractions make communication more efficient
within the domain, but developers must nevertheless take into account not only the

10 Managing Large Repositories of Natural Language 223

general concept, but also the specific instances, in order to fully understand the
abstractions. Domain abstractions are typically represented in NL through sets of
terms (often nouns and noun phrases). Researchers have therefore investigated
linguistic engineering techniques to extract these terms, representing the abstrac-
tions, from the discourse generated from interview transcripts and customer
wishes expressed in natural language. Following is a survey of the major research
efforts addressing abstractions.

Goldin and Berry [21] presents an original approach and a prototype tool for
suggesting requirement abstractions to the human elicitor. Their method compares
sentences using a sliding window approach on a character-by-character basis and
extracts matching fragments that are above a certain threshold in length. The ap-
proach can properly handle arbitrary lengths, gaps and permutations and avoids
some specific weaknesses in confidence and precision when using only parsers or
counting isolated words.

Rayson et al. [44] present two experiments in probabilistic NLP using tools
they have developed (part-of-speech and semantic taggers integrated into an end-
user tool). The results suggest that the tools are effective in helping to identify and
analyze domain abstractions. This is further supported by a later study by Sawyer
and Cosh [47] where ontology charts of key entities are produced using colloca-
tion analysis.

10.3.2 Requirements Verification and Validation

It is generally acknowledged that spending more time in the verification and vali-
dation stages and finding errors early is more rewarding than proceeding too soon
to coding [1, 9, 10]. Therefore, considerable research effort has been put applying
natural language processing to support requirements verification and validation.
The two activities are not carried out separately. Checking a set of requirements
may reveal internal inconsistencies that may as well be external, which must be
resolved with a stakeholder. Therefore, requirements verification and validation
are here addressed together.

Gervasi and Nuseibeh [19] treat validation as a decision problem on whether a
given software model, generated by parsing the requirements text, satisfies certain
properties. Their experiment with the use of lightweight formal methods shows
that even subtle errors, not discovered by human inspection, may be identified.

An approach to improve the quality of written requirements is proposed by The
Goddard Space Flight Center’s Software Assurance Technology Center (SATC)
[53]. They have derived seven quality indicators used for measuring the quality of
requirements specifications. These have been used to develop a tool which is used
by NASA to improve their requirements specifications. Fabbrini et al. [11, 12]
also propose a quality model and have implemented a tool to show the quality
model’s industrial applicability. Fantechi et al. [13] have applied both the tool by
Fabbrini et al. and SATC to evaluate the quality of 100 use cases. They conclude
that although the techniques may support quality evaluation, they are not sufficient
to completely address correctness and consistency. Cybulski and Reed [6, 7] de-

224 Natt och Dag and Gervasi

scribe an elicitation method and a supporting management tool that help in analyz-
ing and refining requirements A set of NLP components are used to force the re-
quirements engineer to rephrase requirements in order to unify the terminology.

Burg and van de Riet [4] have developed an approach and a supporting envi-
ronment for specification, verification, and validation of functional requirements.
Verification is supported graphically, lexically, and logically, while validation is
supported through paraphrasing (transforming models into language readable by
the user or customer) and simulation of the dynamic behavior. In several different
ways they show how the approach enhances the quality of the specification. Park
et al. [42] present an implementation of a requirements analysis supporting sys-
tem, which may help to identify conflicts, inconsistencies, and ambiguities in re-
quirement. Their approach to combine syntactic parsing with a sliding window
method gives more accurate similarity measures than using them separately.

To further adapt the language to formal validation, several researchers have
proposed to explicitly restrict the language used in requirements. The suggested
advantage is that it may be used by domain specialists that want the benefits from
formal languages but who lack the required training. Fuchs and Schwertzel [16]
and Macias and Pulman [31, 32] use a subset of English to forbid the expression
of ambiguous sentences. Cyre and Takar [8] define a syntax and grammar of re-
stricted English. Somé et al. [50] go one step further and restrict the language and
semantics to a scenario style, albeit more understandable by the user than formal
specification. Osborne and MacNish [41] suggest using extensions to a parser with
a wide-coverage grammar in order to identify and present syntactic and semantic
ambiguities to the requirements analyst.

Towards formalization, Fliedl et al. [14] suggest the use of a conceptual pre-
design model to bridge the gap between the NL representations and enable formal
validation. The pre-design model is not as technical as common conceptual model-
ing languages, while still supporting the general principles behind several different
conceptual models (e.g. use cases, state charts, etc.) and the mapping to more for-
mal model.

Nanduri and Rugaber [38] use object modeling technique guidelines and a link
grammar parser for transforming high level specifications into object charts. Al-
though their tool produces object diagrams that may help identify omissions, the
approach suffers from several common problems when trying to transform natural
language requirements into object models: parser limitations, ambiguity, incom-
pleteness and insufficient domain knowledge and transformation rules. A similar
approach is taken by Mich and Garigliano [35]. Rolland and Proix [45] describe a
prototype that aims at providing support to problem-statement acquisition, elicita-
tion, modeling and validation. It has not been validated but likely also suffers from
the common problems listed above. In a recent paper García Flores [17] proposes
to use NLP techniques to extract relevant sentences from and identify inconsisten-
cies within large requirements corpora. The approach uses shallow parsing and
contextual exploration networks, based on the presence of certain textual markers
in the text. It has not yet been evaluated.

10 Managing Large Repositories of Natural Language 225

10.3.3 Requirements Management

As previously noted, large-scale software systems development involves a consid-
erable flow of requirements. Requirements are elicited and arrive from many dif-
ferent sources and constantly change [49]. When numerous requirements arrive
each month, either in bursts of thousands or continuously 3-5 requirements each
day, the importance of proper requirements management activities becomes very
apparent. Although requirements management is intertwined with the traditional
software development process (i.e., where requirements are further analyzed and
successively formalized into specifications, ending in executable and tested code),
there are requirement management activities that take place before actual devel-
opment starts [Chap. 13]. But, although it may be clear what must be done, the re-
quirements management process easily becomes overloaded due to the sheer num-
ber of requirements. Thus, there is a strong need for more supportive tools.

Current requirements management tools provide facilities for storing and recall-
ing requirements, annotating them with metadata (usually consisting in arbitrary
attribute/value pairs, where standard sets of attributes are offered as libraries), and
for managing relationships between requirements. Indexing, keyword-based
search, and search on metadata are normally provided. Unfortunately, the man-
agement of relationships is most often limited to manually establishing links (typi-
cally used for traceability) between pairs of requirements. Some link types can be
declared as fragile, in that any change in one of the linked requirements marks the
link as broken until manually verified and re-established by the user.

Surprisingly, there are, beside the cases presented later on in this chapter, no
specific attempts that directly try to tackle the management challenges by using
natural language requirements processing. In particular, the following specific
hands-on requirements management activities are open for scrutinized research:

Matching incoming (potentially new) requirements to previously elicited,
planned, and already implemented requirements
Maintaining a separation and finding relationships between customer requests
and requirements invented within the organization
Identifying dependencies and other interrelationships between requirements [5]
Supporting the extraction of requirements from the repository that fit strategic
areas (e.g. invoicing capabilities, decision-making features)

Difficulties in performing these activities are a major obstruction in the effi-
cient management of elicited, invented and implemented requirements. Any tech-
nique that may support requirements maintenance and management activities,
even if partially, can be expected to be warmly accepted in industry.

10.4 Requirements Similarity

In this section we introduce a fundamental concept in our discussion, that of re-
quirements similarity. As we will see in the following, a number of problems in

226 Natt och Dag and Gervasi

the management of large volumes of requirements can be solved or at least allevi-
ated by using a measure of how similar two requirements are. Naturally, many dif-
ferent notions of similarity can be used. In most problems, what is needed is a no-
tion of semantic similarity: a measure of whether two requirements convey the
same meaning, and to what extent. However, other notions of similarity can also
be used. A few of these are listed in Table 10.1; more measures can easily be ob-
tained by considering other metadata about the requirements (e.g., priority as-
signed, system version targeted, approval responsibility, implemented status, etc.).

Table 10.1 A listing of some similarity measures

Similarity measures Description
Semantic Similarity in meaning
Syntactic Similarity in grammatical structure
Lexical Similarity in words used
Structural Similarity in sectional structure
Extensional Similarity in size
Argumentative Similarity in rationale
Goal Similarity in objective
Source Similarity in the proponent
Function Similarity in function addressed
Object Similarity in system parts affected
Temporal Similarity in time of origin

Whatever measure is chosen, in order to be applicable to the management of
large repository it must possess a fundamental property: it has to be computable in
a relatively inexpensive way. Any measure requiring significant human interven-
tion will be too costly to be used on large requirement repositories; we are thus
forced to focus on similarity measures that can be computed in a totally automatic
way. Unfortunately, given the current state of the art in natural language process-
ing and in knowledge representation, it is not feasible to extract meaning in a reli-
able way from totally unrestricted natural language text as that found in most re-
quirements. We therefore focus on lexical similarity as a way of approximating
semantic similarity.

On a lexical level, we consider a requirement as a sequence of words. The exact
definition of what a word is varies with the language and the application. More re-
fined approaches distinguish the various lexical (and at times, morphological)
constituents of requirements with more precision, e.g., punctuation (as in “,”),
contraction markers (as the apostrophe in “can’t”), parenthetical structures (as “(“)
etc. can be considered as words on their own. We refer to the process of separating
the lexical constituents of a requirement as tokenization, and each word (in this ex-
tensive definition) is called a token. In the upcoming case studies, a token is re-
garded as sequence of letters and/or digits. Any other characters are regarded as
delimiters and thus discarded.

10 Managing Large Repositories of Natural Language 227

i i

irip

i

irip

vwvw

vwvw

rpsim
22)()(

)()(

),(

Fig. 10.1 The Cosine measure

Tokens can be further processed in various ways. Most typically, tokens are re-
duced to their base form, removing morphological inflections (e.g., reducing plu-
ral nouns to their singular form, or removing person, mood or aspect information
from verbs). This process is called stemming and is usually performed with the
help of general morphological rules, and a dictionary listing exceptions to those
rules. In Case 1 we have used the well-known Porter stemmer [43], but in Cases 2
and 3 we have switched to a newer one, reported to perform better [37].

Another common operation is stop word removal. It consists in dropping from
the sequence of tokens all those words that have a purely grammatical role. The
grammatical information they convey may be stored in some other form (e.g., in
parsing trees) before removing the stop words, if so desired. Again, the details of
the process depend on the language at hand, and on the kind of analysis that is to
be performed on the requirements. In most cases, stop words coincide with so-
called closed class words, e.g. articles and prepositions. Also in this case, a spe-
cial-purpose dictionary can list exceptions. In the presented cases we have used a
stop word list comprising 425 words derived from the Brown corpus [15].

Further various processing steps are possible, but for the sake of brevity we re-
turn now to the problem of measuring requirements similarity. We can formally
consider a requirement r taken from a requirement set � as a finite sequence

miii vvvr ,...,,
21

 of tokens drawn from a given alphabet V={v1, v2, … vn}, which

includes all the tokens that appear in our requirements database. Using the pre-
processing steps described above, V would consequently contain stemmed tokens
that do not appear in the stop word list. If order is not considered important, an al-
ternative representation is possible: a requirement r can be considered as a vector
ar=[wr(v1), wr(v2), … wr(vn)], where wr(vi) denotes the weight, or relative impor-
tance, of the token vi in requirement r. Different weighting schemes are possible.
As requirements expressed in feature style are more focused than literary text, we
assume that the tokens remaining after the preprocessing step are all equally valu-
able. In Case 1, we apply the simplest weighting scheme, assuming that weight co-
incides with frequency. However, as it is considered that the importance of a token
is not linearly proportional to the number of times it occurs, in Cases 2 and 3 we
also use the well-known weighting formula 1+log2(term frequency) [33]. Case 2
explicitly compares the results obtained by using the two schemes.

Once requirements have been encoded as vectors, it becomes possible to apply
standard similarity measures. In Case 1 we chose to compare the performance of
the Dice, Jaccard, and Cosine measures [33]. Their most significant difference is
how they treat different lengths of the compared requirements. In Case 2 and 3,
the Cosine measure was selected as it was considered to generally perform better
than the other two. This measure got its name from calculating the cosine of the
angle between the vectors that represent the requirements in a vector-space model.

228 Natt och Dag and Gervasi

Formally, given two requirements, p and r, we have that the similarity between p
and r is given by the formula in Fig. 10.1 (An example of applying the measure
can be found in [39]). The definition assumes that the vector space employed has a
Euclidean distance, uniform across all dimensions. This is of course a gross over-
simplification: in practice, the presence or absence of certain terms may be much
more important and revealing of true semantic similarity than that of other terms.
However, since we are mainly interested in techniques that work irrespective of
the exact domain and language used, and for the sake of generality, we will accept
this simplification, keeping in mind that more refined techniques can be employed
in specific domains.

In the following sections we present three case studies in which the technique
of calculating similarity between requirements has been evaluated. For the evalua-
tion we utilize the widely adopted measures of recall, precision, and accuracy.
Since their usage and interpretation is dependent on the application we leave the
definitions and explanations of the measures to each individual case.

10.5 Case 1: Keeping the Repository in Shape

Telelogic AB develops a software development environment for real-time systems
called Telelogic Tau, which supports standardized graphical languages and code
generation. Telelogic Tau is marketed globally and requirements are collected
continuously from several different sources (e.g. marketing, support, development,
testing, usability evaluations, and technology forecasting). The requirements are
collected into a repository and assigned the status of “New”. Each requirement
then undergoes a series of evaluations and refinements, such as checking for ap-
propriate detail level, and assignment of cost, impact, and priority. Each require-
ment has a lifecycle progressing through specific states in the development proc-
ess. So, for example, when a requirement has been implemented and verified, it is
assigned the status “Applied”. Thus, all requirements are kept in the repository,
which continuously grows.

In its initial state a requirement is checked for three related properties: (1)
whether or not the requirement is regarded as a duplicate of another requirement
already in the repository, (2) if it is possible to merge the requirement with another
requirement, or (3) if the requirement should be split into two or more require-
ments before further analysis. If a requirement has one of these properties, it is as-
signed the “Duplicate” status and an appropriate action is taken. When a require-
ment is merged, all the information is added to the requirement it is merged with.
When a requirement is split, the information is distributed over two or more new
requirements. When a requirement is a pure duplicate, no further action is taken.

As requirements arrive at an average rate of three per day, and as the require-
ments repository unendingly increases in size, these activities are causing conges-
tion in the requirements process [24]. Automated support in this situation, using
similarity measures to identify duplicates, is suggested to help avoiding deteriora-

10 Managing Large Repositories of Natural Language 229

tion of the repository and enable a quicker way of checking arriving requirements
against the ones stored in the repository.

10.5.1 Case Study Requirements Data

A snapshot of the state of the requirements and the repository by the year 2000 is
shown in Table 10.2. Of the 1,920 requirements in the repository, 130 had been
identified by the analysts as being duplicates, merges, or split sources (i.e. as-
signed the status ‘duplicate’). Example requirements may be found in [40].

Table 10.2 Number of requirements in the database.

New Assigned Classified Implemented Rejected Duplicates Total
406 428 601 252 103 130 1,920

10.5.2 Evaluation

Of the 130 requirements marked as duplicates, we only consider the 101 that were
real duplicates for evaluation purposes, as merges and split sources would match
partially and thus bias the results. Moreover, we use the standard measures of re-
call, precision and accuracy. Let sim(ri,rj) be a function that takes a pair of re-
quirements and gives a similarity measure between 0 and 1, and t be a threshold
value, which acts as a selection criteria. If sim(ri,rj) t then (ri,rj) are considered
to be a suspected duplicate pair. Recall is calculated as the percentage of the actual
duplicate pairs that fall above the similarity threshold. Precision is calculated as
the percentage of actual duplicates above the similarity threshold in relation to all
pairs above the similarity threshold. Finally, accuracy is the percentage of all du-
plicate pairs that fall on the correct side of the threshold (i.e. correctly suggested
duplicate pairs and non-duplicate pairs respectively).

The textual information used to represent each requirement was collected from
the “Summary” field, which corresponds to a short requirement title, and the “De-
scription” field, which corresponds to a further explanation (see the examples in
Table 10.6 and Table 10.7 in the appendix). These fields were then pre-processed
according to the steps described in Sect. 10.4. To investigate the impact of differ-
ent similarity measures we calculated recall, precision, and accuracy curves for the
three different measures in Sect. 10.4. The results are presented in Fig. 10.2,
which shows that recall decreases from around 80% at threshold level 0+ to just
below 20% at threshold level 1. At threshold levels 0+ and 1 the similarity meas-
ures perform exactly the same (as expected considering the formula) but between
these two extremes the curves differ. The Dice measure gives slightly worse recall
compared to the Cosine measure and may thus be discarded. The best choice be-
tween the Jaccard and the Cosine measure is not obvious. The Cosine gives higher
recall but lower precision than Jaccard. The choice would thus depend on the ap-
plication.

230 Natt och Dag and Gervasi

The low precision at threshold level 0+ may at first seem very discouraging.
However to properly evaluate the feasibility of the approach in an industrial set-
ting, a deeper investigation of the requirement pairs is needed. Taking any two
suggested pairs, they may or may not involve the same particular requirements.
For example, the requirement pairs (A, F) and (C, F) share the requirement F. If
the analyzer assigns similarity values above zero to each of these pairs and a simi-
larity value equal to zero to the pair (A, C) it would nevertheless be interesting to
look at the three involved requirements together. We denote these preferred group-
ings of requirements as n-clusters, where n is the number of requirements in the
cluster. The two single pairs in the previous example will thus form a 3-cluster.
The cluster distribution can be derived by calculating the transitive closure of a
graph in which the nodes correspond to requirements and edges correspond to
pairs of requirements (ri,rj) with sim(ri,rj) t.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0+ 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.0

Threshold

R
at

e

Accuracy, Dice

Accuracy, Jaccard

Accuracy, Cosine

Recall, Dice

Recall, Jaccard

Recall, Cosine

Precision, Dice

Precision, Jaccard

Precision, Cosine

Fig. 10.2 Performance of the similarity measures

0 20 40
0

20

40

60

80

100

cluster size

cl

us
te

rs

1 2 3 4 5 6 7 8 910
0

20

40

60

80

100

cluster size
1 2 3 4 5

0

20

40

60

80

100

cluster size
1 2 3 4 5

0

20

40

60

80

100

cluster size

Threshold 0.375 Threshold 0.5 Threshold 0.75 Actual

Fig. 10.3 Requirements cluster distribution using the cosine measure on the Summary and
the Description fields. The three leftmost graphs show the number of clusters of different
sizes for various thresholds compared to the actual cluster distribution on the right

10 Managing Large Repositories of Natural Language 231

The cluster distributions at three different threshold levels are shown in Fig.
10.3. The last graph shows the cluster distribution for the actual duplicates found
by the experts. The graphs show that with increasing threshold the number of clus-
ters of larger size decreases. For example, at threshold level 0.375 there is one
very large cluster involving 42 different requirements.

Noteworthy is that the presented evaluation is made on a snapshot of a reasona-
bly large set of requirements. However, at Telelogic, the requirements arrive con-
tinuously, a few at a time. The similarity analysis can thus be made incrementally
on a smaller set of requirements, avoiding the need for interpreting the results of
similarity analysis of the entire set of requirements at one time. The cluster distri-
bution shows that if we analyze one randomly selected requirements from the da-
tabase (which may represent a newly submitted requirement), the worst case
would be that the analyzer suggests a cluster of 42 requirements to be identical.
This is thus the maximum number of requirements the requirement analyst must
handle simultaneously. As the number may seem too high for the lower thresh-
olds, it is reasonable to suggest that such large clusters may be ignored as they are
probably irrelevant.

Table 10.3 Expert reanalysis of requirements presumed to be incorrectly classified

Relationship Count
Duplicates 28

Similar 13

Related 8

Part of 5

Not related 21

Another interesting issue is whether the automated analyzer reveals duplicate
pairs that the experts missed. To explore this we let an expert analyze 75 require-
ments that were suggested as duplicates using the Cosine measure at threshold
level 0.75, but had not been assigned as duplicates by the experts. Table 10.3
shows the surprising result from the analysis. It turned out that 37% of the sug-
gested duplicate pairs had been actually missed by the experts! For that threshold
level, recall would increase from 25% to 40%, precision from 30% to 56% and the
already high accuracy would become even higher. The analyst did not regard two
requirements in a pair as duplicate or similar if they were to be implemented in
different parts of the software. The table also shows the additional relationships
identified, which thus imply that only 21 of the 75 pairs identified would be com-
pletely wrong. These 21 erroneously identified pairs should be put in relation to
the several thousand potential suggestions. In an industrial setting it is better to
have a few extra suggestions that may be discarded rather than missing any actual
duplicates. Stated differently, it is (to a certain extent) of greater interest to in-
crease recall at the expense of precision.

232 Natt och Dag and Gervasi

10.6 Case 2: Linking Customer Wishes to Product Requirements

Baan, now part of SSA Global, develops large complex applications aimed for en-
terprise resource planning, customer relationship management, supply chain man-
agement, product lifecycle management, and business intelligence. Continuously,
new customer wishes, called Market Requirements (MR), and product require-
ments, called Business Requirements (BR), are inserted into the Baan Require-
ments Database (BRD) upon their receipt or creation, respectively. Periodically,
the company management decides to start a new release project, and a number of
BRs are selected for implementation preferably, in such a way as to maximize
the number of MRs that are satisfied in the new release, compatibly with time and
budget constraints. Customers receive informative messages when a MR is ac-
cepted in the BRD and when it is satisfied in an upcoming release. Thus, establish-
ing complete and correct MRs-BRs links is paramount to maintaining good rela-
tionships with the customers.

MRs and BRs that cover the same underlying functional requirement are linked
to each other in a many-to-many relationship; a single MR can span several BRs
(e.g., to split a huge work package into manageable pieces), and a BR can satisfy
several MRs (e.g., when several customers are requesting the same functionality).
MRs are copied into the BRD as-is, i.e. without altering the original text as speci-
fied by the customer. Linking MRs to BRs and the other way round is a daily rou-
tine for product managers. Each time a new MR is inserted into the BRD, it is first
checked by searching whether there are one or more BRs that already include the
specified functionality. This process is very time consuming, as the current tool
only allows text search in the requirement description. Similarly, when a new BR
is created, the corresponding MRs need to be found in the BRD, since the objec-
tive is to satisfy as many customers as possible. Finding all MRs that are covered
by the BR at hand is virtually impossible, because of the large number of MRs and
due to the time-consuming understanding of MR content. Advanced automated as-
sistance to the MRs-BRs linking can improve the quality of the requirements man-
agement process and save costly man-hours of the product managers.

Given the favorable lexical features of the requirements, that use mostly terms
from a restricted domain, we propose a tool-supported linking process that inte-
grates well with the existing practices and technologies, while at the same time re-
ducing the cost and improving on the effectiveness of manual linking. Based on
the similarity calculations, a tool can suggest which requirements already in the
BRD could be linked to an incoming MR or BR. The human expert can then de-
cide whether to accept these suggestions or not, or can decide to resort to key-
words-based search (as in the original process) for further options. Our expecta-
tion is that relevant suggestions will be provided faster this way than if a human
would have to select several different search terms and, for each of these, search
through the database.

10 Managing Large Repositories of Natural Language 233

10.6.1 Case Study Requirements Data

The total number of business and market requirements elicited at Baan between
1996 and 2002 and manually linked to each other is found in Table 10.4. Overall,
the analyzed corpus contained almost one million words, with MRs contributing
approximately two thirds of the total, and BRs constituting the remaining third.
Representative examples of each of the two kinds of requirements may be found
in [39].

Table 10.4 Requirements elicited and linked at Baan, 1996

Business
Requirements

Market
Requirements Year

Elicited Linked Elicited Linked
1996 0 0 183 113
1997 5 4 683 262
1998 275 169 1,579 388
1999 709 261 2,028 502
2000 669 167 1,270 397
2001 1,000 153 864 224
2002 1,121 340 1,695 514
Total 3,779 1,094 8,302 2,400

In current practice, the association between the two presented requirements
would be found by emanating from the submitted BR in Table 10.9, searching for
the term container among the MRs. Such a search returns 37 hits if searching only
in the label field and 318 hits if searching the description field. Experts would then
have to browse through all the MRs returned by the search. However, historical
data shows that only five MRs were actually linked by the experts (all five were
submitted earlier than the BR).
Of these, four could be found by searching for container, but the last relevant MR
was not returned by the search, and required a new search (for example, on statis-
tics, which however adds another 40 hits on the label field and 99 hits on the de-
scription field to the already daunting set of candidates to examine). Based on this
and similar cases, we estimate that significant time can be saved by replacing the
search procedure based on designated keywords with a more sophisticated one
based on lexical similarity of the requirements.

A potential hurdle to be overcome is the varying linguistic quality of the text of
the requirements. As in Case 1, requirements are often typed in haste, and may
contain acronyms, spelling errors, code snippets, colloquial language, etc. We in-
vestigated these occurrences for a subset of all terms (those starting with “a”),
finding that non-word entities represent around 2 3% of the whole corpus, with
spelling errors (the only real threat to lexical matching) only accounting for 0.3%-
0.4%. We can therefore assume that the calculation of lexical similarity will not be
significantly affected by occasional typing errors in the requirements. The investi-
gation also showed that the two sets of requirements (MRs and BRs) have very
similar composition in terms of statistical features. A more detailed comparison
can be obtained by considering the two lists of distinct term occurrences, ranked

234 Natt och Dag and Gervasi

by frequency. The two lists have a 4,660 terms intersection (most of them in the
topmost ranking positions); 1,899 terms only occur in BRs, with 8,234 terms only
occurring in MRs. Overall, the Spearman rank order correlation coefficient for the
two lists is rs 0,78, significant at the p < 0.00003 level (see [48] and [27] for a
discussion on statistics for corpora comparison). The correlation coefficient gives
a good indication that a shared lexicon is being used in the two kinds of require-
ments. This is not surprising, as both MRs and BRs are discussing issues in a re-
stricted domain. In turn, this gives support to our assumption that in this context
lexical similarity can be a good approximation for semantic similarity.

10.6.2 Evaluation

In order to evaluate how well the approach presented above performs for identify-
ing correct links, we use the links established manually by the various product
managers as the “presumably correct” answer. Our goal is to find out how many
of these links the automatic approach can retrieve.

In our industrial setting, we can expect user interaction to consist in the follow-
ing steps:

1. A new requirement (MR or BR) is submitted to the BRD.
2. A tool computes the similarity score between the new requirement and the pre-

existing ones of the opposite type (i.e., BRs or MRs, respectively), and ranks all
the requirements according to the similarity score.

3. The top-ranking n requirements are presented to the user for manual verifica-
tion and, optionally, for establishing links in the BRD.

4. Optionally, the user can “scroll down” the list, and check the next page of re-
sults.

The size of the top list n will thereby represent our similarity threshold. A top
list size of 7±2 could be a good compromise [36], as such a size would enable the
user to quickly spot one or more correctly related requirements, while taking into
account that we are not able to reach 100% recall or precision anyway. In this
situation it is not critical that a correct suggestion is presented at position 1 but, of
course, the higher the position the better. We could then use the ranked recall
measure [26], but as we would like to relate the recall to a threshold (i.e. the top
list size) we choose to compute recall for different top list sizes. Recall is in this
case the proportion of the target items that a system gets right (i.e., true positives
divided by the total number of answers returned) and we use the following
adapted procedure to compute it:

1. Compute the complete similarity matrix
2. For each requirement of one type, sort the requirements of the other type by

similarity
3. Calculate the overall recall for a top list of size n as the ratio between the num-

ber of correct links identified among the top n ones and the total number of cor-
rect links

10 Managing Large Repositories of Natural Language 235

1 10 100 1,000 10,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top-List Size

R
e
c
a
ll

term weight = term frequency

term weight = 1 + log
2
(term frequency)

Fig. 10.4 Recall for linking a MR to BRs

The recall curve as a function of the top list size is shown in Fig. 10.4. The fig-
ure shows the recall curve for the top lists of suggested BRs for each MR. The
dashed line represents the recall curve for calculating the similarity using just the
term frequency as weight; the solid line represents the recall curve using
1+log2(term frequency), which provides slightly better recall.

The figure reveals that we only reach a maximum recall of approximately 94%
(though with an unreasonable top list of 3,000 requirements). This is due to 204
requirements that have been linked manually but have no terms in common at all.
The 204 links are particularly interesting to look at, as they represent cases where
our assumption about the validity of lexical similarity as an approximation of se-
mantic similarity does not hold. In particular, we found that:

The links comprised 101 BRs and 158 MRs.
The majority of the requirements were sparingly described, consisting of just a
single line of text. In some cases there was no description at all. This is not
necessarily wrong in the Baan RM process perspective (an empty BR is al-
lowed to be created and directly linked to an MR). These special cases do,
however, affect the results negatively.
Some requirements were completely written in languages other than English,
while the requirements they were linked to were written in English. This should
not be allowed without an additional English description, and of course makes
automatic matching practically infeasible.
Some of the linked BRs and MRs seemed to us to describe completely different
things. They could have been erroneously linked, or perhaps be related in a way
that escaped our understanding. For a more thorough analysis of these cases
further work would be required, which is beyond the scope of this analysis.

On the positive side, Fig. 10.4 shows that, for a very reasonable top list size of
10, we reach a recall of 51%, which is good considering the pragmatic approach
taken and the impact on the saving of time that could be made in industry.

236 Natt och Dag and Gervasi

To get an impression of the time that could be saved, we can make a rough es-
timate based on the statistics presented and on another measure reflecting how
many requirements could be completely linked just by browsing a top-10 list. We
found that for 690 of the BRs, the recall rate would be 100% using a top list size
of 10, i.e. every related MR for each of the BRs would be found within a top-10
list. These 690 BRs are linked to 1,279 MRs, giving an average of 1.85 MRs per
BR, but in order not to exaggerate the gain we assume that, in the manual case,
one search term would be enough to find all the links for one requirement. Sup-
ported by the search hit example in [Sect. 10.6.1], we further assume that a search
would return approximately 30 hits. Thus, in the manual setting the average case
scenario would be to browse 30 requirements. With a top list size of 10, the worst
case scenario with automated support would be to browse 10 requirements. Up to
66% effort could consequently be saved. If we assume that it takes about 15 sec-
onds to read a requirement and either accept or reject it as a link, we find that the
overall gain is 57.5 hours.

The critical reader might observe that in a real setting it is not possible to know
when to stop perusing the list, as more relevant links could be found by further
browsing. The same applies to the manual case: searching for more keywords
could yield more links. Nevertheless, the data from our case study show that a
similar level of coverage can be reached more efficiently (i.e., with less effort) by
applying lexical similarity when compared to keywords search. If so desired, the
time saved can be spent in increasing the level of coverage, by examining more
candidates, or devoted to other RE activities if the coverage attained is deemed ac-
ceptable.

10.7 Case 3: Managing Redundant Customer Requests

Sony Ericsson Mobile Communications AB (SEMC) develops mobile phones for
a global market. As such, they must handle requirements from many different
sources in the RE process. SEMC’s primary customers are the mobile phone op-
erators, who sell the phones to the end user, either directly or through a third party.
In order for the operators to acquire knowledge in the technical capabilities of
SEMC’s phones, so called Requests for Information (RFI) are submitted to SEMC
by the operators. Two kinds of RFI’s can be identified: general requests for in-
formation and requests for statement of compliance (SoC). SoCs, which are the
most common ones, comprise specific requirements and are replied upon using
simple standardized statements on whether or not a certain product complies, i.e.
whether or not a stated requirement is fulfilled by the product.

The RFI process is depicted in Fig. 10.5. Each year each operator submits a
couple of RFIs. The RFIs arrive to the Key Account Managers (KAM), one for
each major operator, in different document formats (PDF, Excel, MSWord, etc)
and at different times. The main specification technique for the RFI requirements
is feature style, i.e. function specification in natural language [30]. The KAM
passes the RFI on to a Bid Support Specialist (BSS), who reviews the RFI from a

10 Managing Large Repositories of Natural Language 237

market point of view and decides which products shall be considered when deal-
ing with the RFI. The BSS then passes the documents on to the coordinator, who
analyzes the RFI and accompanying instruction and then distributes relevant parts
of the RFI to Areas of Expertise (AoE). An AoE consists of a Function Group
(FG) and a Technical Work Group (TWG). The TWG works with roadmaps (i.e.
future functions) and the FG works with implementation and testing. When the
AoEs have stated the compliance to each requirement, they send the RFI reply
back to the coordinator. He reviews the answers and sends the replies on to the
Bid Support Specialist, who also checks the answers. If the RFI originates from a
major operator, a meeting is held with Global Product Management, the coordina-
tor, and experts from the AoE in order to discuss the answers which are to be
submitted back to the operator. The RFI reply is then sent back to the operator by
the KAM.

The RFIs play a important role in the operator’s strategic planning. The RFIs
also provide SEMC with vital business intelligence information as the features
prioritized by the operators may be used as a guideline when developing future
phones. The operators thus have a great deal of influence on the final requirements
for a product and a good relationship with the operators, based on timely and cor-
rect replies to the RFI’s, is therefore of utmost concern.

The efficiency of the RFI process, in which requirement are analyzed and
checked against product features, is however severely impeded. The AoE are con-
cerned with their primary assignment in development and testing and have trouble
finding the time required to analyze the RFIs. Furthermore, they get particularly
frustrated as they have to state the compliance to the same or very similar re-
quirements over and over again. Large parts of new versions of RFIs arriving from
the same operator are typically the same as previous versions. Unfortunately, the
revision history of the operators requirements cannot be trusted as there have been
cases where requirement IDs have been reused and where requirements have been
changed without indication. Current requirements management tools give no
automated assistance in merging thousands of requirements. Furthermore, it is of-
ten the case that the same and very similar requirements occur in the RFIs from

RFI
RFI
RFI

RFI
RFI
RFI

Messaging

Memory

Area of Expertise (AoE)

Coordinator

Operator A

Operator B Key Account

Manager

(KAM)

Bid Support

Specialist

(BSS)

Global Product Management

Fig. 10.5 The request for information process at Sony Ericsson

238 Natt och Dag and Gervasi

different operators. Consequently, there is much unnecessary redundant work re-
quired by the AoE.

As the RFIs are written in natural language, we have investigated the possibility
of providing automated support to the RFI process using linguistic engineering
techniques in order to find similar and related requirements. When RFIs arrive
they are converted into a standardized format, where atomic requirements may be
identified using unique identifiers. Of course, there is a desire to get the operators
to use a standardized format when submitting their RFIs. The manual conversion
step could then be removed and more time could be saved –which is of mutual in-
terest for the operators. The standardized RFI is matched against a database of
previous RFIs, which have been analyzed for compliance. For each requirement in
the RFI, matches are provided based on a similarity measure. The KAM or the Bid
Support Specialist may then mark the new RFI requirements as duplicate or simi-
lar, or not at all. The RFIs may then be passed on to the AoEs as before, but this
time the AoEs only have to check those that are marked as similar or not marked
at all. The hypothesis is that it is quicker to judge how similar two requirements
are, than to reanalyze each for compliance. Additional benefits are automatically
provided through this process:

All business intelligence is gathered in one place.
Similarities between different operator requirements may be identified and
maintained.
Contradictions between different operators requirements may be identified
more easily.

At the time of writing, a central repository has been put in place comprising ap-
proximately 11,000 previously collected requirements. The goal is now to give
support in the RFI process as explained above. Furthermore, it has been suggested
that the similarity measuring techniques are used to clean the repository by identi-
fying duplicates as described in Case 1.

10.7.1 Evaluation

The technique of using lexical similarity for matching incoming requirements to
those already in the repository is currently undergoing further investigations. A
support tool, based on our prototype presented in [39] is being developed. The de-
cision to go further was based on an initial pre-study, which is presented here.

At the time of this evaluation, the envisioned repository was unfortunately not
yet in place. This put constraints on the number of requirements that could be used
in the evaluations. Furthermore, due to the resource constraints at SEMC, there
was no possibility to do a full experimentation with experts. SEMC could not al-
low the AoE to perform the same compliance check twice on the same set of re-
quirements. Instead, indication on potential time to be saved using the proposed
approach was made by comparing the work and performance of experts and non-
experts and let the expert’s judgment decide if the approach is worthwhile. For the
case where requirement only were checked for similarity, an expert performed the

10 Managing Large Repositories of Natural Language 239

compliance check both manually and with automated supported, below referred to
as the semi-automatic approach, in which a simple software script was used to
calculate similarity between requirements sets and suggest, for each requirement
in one set, the five most similar in the other set. The evaluation results are shown
in Table 10.5 and discussed in the following.

Run 1. Two revisions of requirements from Operator A were selected to see to
what extent the approach could save time by supporting an early process of sifting
out similar requirements in order to reduce the redundant work currently required
by the AoE. Revision 1 comprised 242 requirements that previously had been
checked for compliance. Revision 2 comprised 434 requirements and was sent to
an AoE for compliance check by experts. They were thus checking compliance on
all requirements in Revision 2 (the revision history from the operator could not be
relied upon). The non-expert used the semi-automatic approach and was within 8
hours able to identify that, compared to revision 1, 209 requirements were new, 50
were changed, and 175 were identical. Only 259 requirements would thus have re-
quired attention by the AoE. However, the AoE estimated that 65% of the re-
quirements were identical or very similar to revision 1, implying that the KAM
and BSS would likely only send 152 requirements to the AoE for compliance
check. Assuming that experts within 8 hours (but likely quicker) would find 282
requirements to be already checked according to revision 1 and thus forward the
remaining 152 requirements for compliance check, 5 hours could be saved (i.e.
20–(8+(152*20/434)) h).

Run 2. Two revisions from two different operators were selected to see how the
approach may support the experts to sift out requirements that had already been
checked for compliance. Furthermore, the requirements were chosen to see how
the approach performs on requirements originating from different sources and
which are thus expected to be stated differently. In this case, an expert made both
a fully manual comparison between the two requirements sets and a comparison
supported by the semi-automatic approach. The evaluation suggests a 33% in-
crease in performance, but as a learning effect is expected the exact figure should
not be taken too seriously. However, a discussion with the expert revealed that the
semi-automatic approach did give relevant support to be valuable in the process.

Given the full picture from the evaluation, knowledge in the requirements, and
an understanding of the non-expert’s lacking domain knowledge, it was concluded
that it was worthwhile to proceed with further studies, which are now in progress.
The lack of a streamlined, user-friendly support tool was identified as a perform-

Table 10.5 Evaluation results from Sony Ericsson

Run RFI # reqs.
Manual

(h)
identical

requirements
Semi-automatic

(h)
1 A rev. 2 434 AoE: 20 175 (40%) Non-expert: 8
 A rev. 1 242
2 B rev. 2 63 Expert: 3
 A rev. 2 434

Expert: 2

240 Natt och Dag and Gervasi

ance killer when using the semi-automatic approach. The next logical step is thus
the development of a tool that interactively supports the initial check for similar
requirements. It has been estimated that 20% of the time spent on checking the
products’ compliance to the RFIs may be saved. Even a lower expectation moti-
vates further investigations and improvements.

10.8 Conclusions

An increasing number of market- and technology-driven companies realize that
requirements are better managed continuously, and therefore best stored, in larger
repositories. Unfortunately, as indicated by the same companies’ struggle with
their requirements repositories, it seems that pure information management chal-
lenges are becoming increasingly apparent in large-scale requirements manage-
ment. This may be an indication that currently available requirements manage-
ment tools do not meet the demands. The presented approach of calculating
similarity between requirements on a lexical level gives reasonably high accuracy,
considering its simplicity. Most importantly, it provides added support to the man-
agement of large repositories of natural language requirements. The support is not
aimed at replacing the current way of working, but to complement it in order to
save time. The simplicity of the technique is a deliberate choice. As such, it is ro-
bust and requires no or little maintenance or attention, which is important for ac-
ceptance in industry. Minor adaptations may be required to align the techniques
with the current tools used and with the requirements process. Still, our experience
from the three case studies is that the major obstacle is on the implementation
level as there are no ready solutions. Until commercial solutions are available, the
cost of adopting the technique would correspond to a general in-house develop-
ment project.

For research purposes, the presented evaluations acts as a baseline to which fur-
ther research may be compared. Based on the three case studies we suggest an in-
cremental improvement approach. Additional research must be made at a linguis-
tic level, e.g. understanding how requirements are written and communicated, in
order to fully understand the limitations and potential of linguistic engineering
support. The current state is that twenty-five years of research in corpus linguistics
has just recently and very briefly touched the new corpus of software require-
ments. The technique, as suggested by the three case studies, is relatively easy to
implement and could be incorporated by most tool vendors. One vendor, Focal
Points AB, already provide a “Find Similar”-functionality based on our earliest re-
sults, and our own recent prototype tool, ReqSimile, is freely available and may be
adapted to fit the needs (http://reqsimile.sourceforge.net). In addition to the activi-
ties presented in the cases, the following other information intensive activities
could be supported by the approach:

Requirements tracing. For several purposes, a requirements traceability matrix
should be maintained. A study by Hayes et al. suggests using similarity measur-
ing techniques for easy “after-the-fact” requirements tracing [22].

10 Managing Large Repositories of Natural Language 241

Defect tracking. As new defects are reported, a similarity check can help testers
to identify if similar defects have been reported earlier, and avoid spending
time on duplicate “bug reports”.
Support issues. Call center personnel browse support issues on a daily basis and
could be supported by similarity measuring techniques.

Linguistic engineering techniques are widely used in information intensive
support systems; for some reason most CASE tools excluded. The techniques are
available and may be successfully adapted and further exploited. With the increase
in the amount of information written in natural language that large software devel-
opment companies need to manage, taking advantage of these techniques is defi-
nitely worthwhile.

References

1. Boehm BW (1976) Software engineering. IEEE Transactions on Computers 25:1226–
1241

2. Boehm BW (1984) Verifying and validating software requirements and design specifica-
tions. IEEE Software 1(1): 75–88

3. Brooks FP, Jr. (1995) The mythical man-month: essays on software engineering, Addi-
son-Wesley, Boston

4. Burg JFM (1997) Linguistic instruments in requirements engineering. Ph.D. thesis, Vrije
Universiteit, Amsterdam, the Netherlands

5. Carlshamre P, Sandahl K, Lindvall M, Regnell B, Natt och Dag J (2001) An industrial
survey of requirements interdependencies in software product release planning. In: Pro-
ceedings of the 5th IEEE International Symposium on Requirements Engineering, Los
Alamitos pp.84–91

6. Cybulski JL, Reed K (1998) Computer assisted analysis and refinement of informal
software requirements documents. In: Proceedings of 1998 Asia-Pacific Software En-
gineering Conference, Los Alamitos, pp.128–135

7. Cybulski JL, Reed K (1999) Automating requirements refinement with cross-domain re-
quirements classification. In: Proceedings of the 4th Australian Conf on Requirements
Engineering. Macquarie University, Sydney, pp 131–145

8. Cyre WR, Thakar A (1997) Generating validation feedback for automatic interpretation
of informal requirements. Formal Methods in System Design 10: 73–92

9. Daly EB (1977) Management of software development. IEEE Transactions on Software
Engineering 3:229–242

10. Davis AM, Jordan K, Nakajima T (1997) Elements underlying the specification of re-
quirements. Annals of Software Engineering 3: 63–100

11. Fabbrini F, Fusani M, Gervasi V, Gnesi S, Ruggieri S (1998) On linguistic quality of
natural language requirements. In: Proceedings of the 4th Workshop on Requirements
Engineering: Foundations for Software Quality, Les Presses Universitaires de Namur,
Namur, pp 57–62

12. Fabbrini F, Fusani M, Gnesi S, Lami G (2001) The linguistic approach to the natural
language requirements quality: benefits of the use of an automatic tool. In: Proceedings
of the NASA Goddard Space Flight Center Software Engineering Workshop, Los
Alamitos, pp.97–105

242 Natt och Dag and Gervasi

13. Fantechi A, Gnesi S, Lami G, Maccari A (2003) Application of linguistic techniques for
use case analysis. Requirements Engineering 8: 161–170

14. Fliedl G, Kop C, Mayr HC (2003) From scenarios to KCPM dynamic schemas: aspects
of automatic mapping. In: Proceedings of the 8th International Conference on Applica-
tions of Natural Language to Information Systems. Bonn, Germany, pp.91–105

15. Francis WN, Kucera H (1982) Frequency analysis of English usage: lexicon and gram-
mar. Houghton Mifflin, Boston

16. Fuchs NE, Schwertel U (2003) Reasoning in Attempto Controlled English. In: Proceed-
ings of the International Workshop on Principles and Practice of Semantic Web Rea-
soning, Lecture Notes in Computer Science 2901, pp.174–188

17. Garcia Flores JJ (2004) Linguistic processing of natural language requirements: The
contextual exploration approach. In: Proceedings of the 10th Anniversary International
Workshop on Requirements Engineering: Foundation for Software Quality, Riga, Lat-
via, Essener Informatik Beiträge, 7-8 June

18. Garigliano R (1995) JNLE editorial. Natural Language Engineering, 1:1–7
19. Gervasi V, Nuseibeh B (2002) Lightweight validation of natural language requirements.

Software: Practice & Experience 32: 113–133
20. Gervasi V, Zowghi D (2005) Reasoning about inconsistencies in natural language re-

quirements. ACM Transactions on Software Engineering and Methodology (to appear)
21. Goldin L, Berry DM (1997) AbstFinder, a prototype natural language text abstraction

finder for use in requirements elicitation. Automated Software Engineering 4: 375–412
22. Hayes, JF, Dekhtyar A, Sundaram SK, Howard S (2004) Helping analysts trace re-

quirements: an objective look. In: Proceedings of the 12th IEEE International Require-
ments Engineering Conference, Los Alamitos, pp.249–259

23. Hearst M (1995) TileBars: visualization of term distribution information in full text in-
formation access. In: Proceedings of the ACM SIGCHI Conf on Human Factors in
Computing Systems, ACM Press, New York, pp.59–66

24. Höst M, Regnell B, Natt och Dag J, Nedstam J, Nyberg C (2001) Exploring bottle-
necks in market-driven requirements management processes with discrete event simula-
tion. Systems and Software 59: 323–332

25. Jackson M (1995) Requirements and specifications: a lexicon of software practice,
principles and prejudices. Addison-Wesley, New York

26. Jackson P, Moulinier I (2002) Natural language processing for online applications: text
retrieval, extraction and categorization. John Benjamins, Amsterdam

27. Kilgariff A (2001) Comparing corpora. Int J Corpus Linguistics 6: 97–133
28. Kristensson P, Magnusson P, Matthing J (2002) Users as a hidden resource for creativ-

ity, findings from an experimental study on user involvement. Creativity and Innova-
tion Management 11: 55–61

29. Landauer TK, Foltz PW, Laham D (1998) An introduction to latent semantic analysis.
Discourse Processes 25: 259–284

30. Lauesen S (2002) Software requirements: Styles and techniques. Addison-Wesley, UK
31. Macias B, Pulman SG (1993) Natural language processing for requirement specifica-

tions. In: Safety Critical Systems, Redmill F, Anderson T (Eds). Chapman and Hall,
London, pp.57–89

32. Macias B, Pulman SG (1995) A method for controlling the production of specifications
in natural language. The Computer Journal 38: 310–318

10 Managing Large Repositories of Natural Language 243

33. Manning CD, Schütze H (2001) Foundations of statistical natural language processing.
MIT Press, Cambridge

34. Mich L, Franch M, Novi Inverardi P (2004) Market research for requirements analysis
using linguistic tools. Requirements Engineering, 9: 40–56

35. Mich L, Garigliano R (2002) NL-OOPS: A requirements analysis tool based on natural
language processing. In: Proceedings of the 3rd International Conference on Data Min-
ing. WIT Press, Wessex, pp 321–330

36. Miller GA (1956) The magical number seven, plus or minus two: some limits on our
capacity for processing information. The Psychological Review 63: 81–97

37. Minnen G, Carroll J, Pearce D (2001) Applied morphological processing of English.
Natural Language Engineering, 7: 207–223

38. Nanduri S, Rugaber S (1996) Requirements validation via automated natural language
parsing. Management Information Systems, 12: 9–19

39. Natt och Dag J, Gervasi V, Brinkkemper S, Regnell B (2005) A linguistic engineering
approach to large-scale requirements management. IEEE Software 22(1):(to appear)

40. Natt och Dag J, Regnell B, Carlshamre P, Andersson M, Karlsson J (2002) A feasibility
study of automated natural language requirements analysis in market-driven develop-
ment. Requirements Engineering, 7(1): 20-35

41. Osborne MC, MacNish K (1996) Processing natural language software requirements
specifications. In: Proceedings of the 2nd International Conference on Requirements
Engineering, IEEE CS Press, Los Alamitos, pp.229–236

42. Park S, Kim H, Ko Y, Seo J (2000) Implementation of an efficient requirements-
analysis supporting system using similarity measure techniques. Information and Soft-
ware Technology 42: 429–438

43. Porter MF (1980) An algorithm for suffix stripping. Program, 14: 130–137.
44. Rayson P, Emmet L, Garside R, Sawyer P (2000) The REVERE project: experiments

with the application of probabilistic NLP to systems engineering. In: Proceedings of 5th
International Conference on Applications of Natural Language to Information Systems,
Lecture Notes in Computer Science 1959. Springer-Verlag, Heidelberg, pp.288–300

45. Rolland C, Proix C (1992) A natural language approach for requirements engineering.
In: Proceedings of the 4th International Conference on Advanced Information Systems
Engineering. Lecture Notes in Computer Science 593, pp.257–277

46. Ryan K (1993) The role of natural language in requirements engineering. In: Proceed-
ings of the IEEE International Symposium on Requirements Engineering. Los Alami-
tos, pp.240–242

47. Sawyer P, Cosh K (2004) Supporting MEASUR-driven analysis using NLP tools. In:
Proceedings of the 10th Anniversary International Workshop on Requirements Engi-
neering: Foundation for Software Quality Riga, Latvia, Essener Informatik Beiträge, 7-
8 June

48. Siegel S, Castellan NJ, Jr. (1988) Nonparametric statistics for the behavioral sciences,
2nd edition. McGraw-Hill, Singapore.

49. Sommerville I (2001) Software Engineering, 6th edition, Pearson Education, Harlow
50. Somé S, Dssouli R, Vaucher J (1996) Toward an automation of requirements engineer-

ing using scenarios. J Computing and Information, 2: 1110–1132
51. Sutton DC (2000) Linguistic problems with requirements and knowledge elicitation.

Requirements Engineering 5: 114–124

244 Natt och Dag and Gervasi

52. Wieringa R, Ebert C (2004) RE'03: Practical requirements engineering solutions. IEEE
Software 21(2): 16–18

53. Wilson WM, Rosenberg LH, Hyatt LE (1996) Automated quality analysis of natural
language requirement specifications. In: Proceedings of the 14th Annual Pacific
Northwest Software Quality Conference, Portland, pp.140–151

Author Biography

Johan Natt och Dag is a Licentiate Engineer in Software Engineering at the De-
partment of Communication Systems of Lund University, Sweden. His main inter-
ests are in requirements engineering, software product management, software
quality, and usability engineering. He received an MSc in Computer Science and
Technology from Lund Institute of Technology. He is a member of the ACM and
of the Swedish Requirements Engineering Research Network.

Vincenzo Gervasi is a Research Associate at the Dipartimento di Informatica of
the University of Pisa, Italy, where he is a member of the Software Engineering
group, and Honorary Associate at the Faculty of Information Technology of the
University of Technology, Sydney. His main interests are in requirements engi-
neering, natural language processing, specification techniques, and design and
evaluation of distributed algorithms. He received his MSc and PhD in Computer
Science from the University of Pisa.

11 Understanding Ambiguity in Requirements
Engineering

Erik Kamsties

Abstract: This chapter illustrates that ambiguity is a serious problem of natural
language requirements documents, which is not limited to simple language prob-
lems such as multiple referents of an “it”. The results of two empirical studies are
presented, which indicate that on one hand ambiguity problems are not solved by
formalization during further software development activities, and, on the other
hand, it is difficult to detect all ambiguities, even if the reader is aware of all the
facets of ambiguity. A combination of the results of both studies indicated that
most ambiguities that slip through formalization can be detected by a previous in-
spection using a tailored reading technique. Based on these results, recommenda-
tions are made on how to live with the inevitable ambiguity in the RE process.

Keywords: Natural language requirements, Ambiguity, Disambiguation, Inspec-
tion, Formalization, Empirical study.

11.1 Introduction

In industrial requirements engineering (RE), natural language is the most fre-
quently used representation in which to state requirements that are to be met by in-
formation technology products or services. Diagrams and other semi-formal repre-
sentations are often used to supplement informal requirements specifications.
Fully formalized requirements specifications are rare. A recent on-line survey in-
dicates that 79% of the requirements documents are written in common natural
language, 16% are written in structured natural language, and only 5% are written
in a formalized language [20].

The use of natural language to specify requirements has many benefits, al-
though it bears also some problems, as Chap. 10 has argued. A major, well-
recognized problem is the inherent ambiguity of natural language. Stakeholders
are often not even aware that there is an ambiguity in a requirement, i.e., the am-
biguity is unintentional. Each stakeholder gets from reading the requirements an
understanding that differs from that of others, without recognizing this difference.
Consequently, the software developers design and implement a system that does
not behave as intended by the users, but the developers honestly believe they have

followed the requirements. Also, components fail to interact properly, because the

same requirement was allocated to different components, and the different devel-

opers of the components have interpreted the requirement differently.

246 Kamsties

Ambiguity is also a feature of natural language. It can be intentionally used,
e.g., to postpone decisions, because they are considered design decisions. This
chapter focuses on unintentional ambiguity.

We distinguish between linguistic ambiguity and software engineering ambigu-
ity. The former is context independent and can be observed by any reader who has
a tone for language. An example, taken from [25], is:

(1) The product shall show the weather for the next 24 hours.

The phrase for the next twenty-four hours can be attached to the verb show or to
the noun weather. Thus, the requirement can be interpreted as the product shall
show the current weather and continue to do so for the next 24 hours or the prod-
uct shall show the projected weather for the forthcoming 24 hours.

A software engineering (SE) ambiguity is context dependent and can be ob-
served only by a reader who has knowledge of the particular project’s domain.
Parnas, Asmis, and Madey give an example of such an ambiguity in a requirement
that happens to be about a continually varying water level in a tank [22]:

(2) Shut off the pumps if the water level remains above 100 meters for more than 4
seconds.

The authors claim that this type of ambiguity is very common in informal re-
quirements documents. One can find four interpretations: Shut off the pumps if the
mean/median/root mean square/minimum water level over the past 4 seconds was
above 100 meters. However, the software engineers did not notice this ambiguity
and quietly assumed the fourth interpretation. Unfortunately, under this interpreta-
tion, with sizable rapid waves in the tank, the water level can be dangerously high
without triggering the shut off. In general, the interpretation of the ambiguity is
very much a function of the reader’s background. For example, in many other en-
gineering areas, the standard interpretation would be the third.

SE ambiguities are more important than linguistic ones. Although a require-
ments sentence may be ambiguous because of multiple word senses, syntactic sen-
tence readings, or referenced items, psycho-linguistic experiments show that there
is often one preferred sentence reading after semantics and the context are consid-
ered [23]. In the requirements documents that we have investigated, SE ambigui-
ties account for the majority of ambiguities, while purely linguistic ambiguities
played a less significant role. The requirements document used throughout the
studies described in this chapter contains 4 linguistic but 34 SE ambiguities.

This chapter provides a comprehensive analysis of ambiguity in requirements
engineering. First, the related work on how to deal with ambiguity in RE is dis-
cussed. Then, a definition of linguistic and SE ambiguity is provided to increase
awareness for the multi-facetted issues of ambiguity. Next, the results of an em-
pirical study on the effect of unintended ambiguity on further formalization during
the RE process are reported. An ambiguity also conveys the intended meaning,
i.e., it is only a potential defect and the question is: which types of ambiguity
really cause problems? Afterwards, a reading technique tailored to ambiguity and
empirical results of its application are presented. Finally, we show that formaliza-
tion accompanied with inspection in the RE process can lead to the conscious

11 Understanding Ambiguity in Requirements Engineering 247

resolution of most of the unintended ambiguities. This chapter concludes with rec-
ommendations how to deal with ambiguity in the RE process.

11.2 Related Work

The most recommended solution to the ambiguity problem is the use of a formal
requirements specification language, such as SCR [11], or a semi-formal require-
ments specification language, such as UML, rather than natural language. Such a
language has a more-or-less well-defined semantics. Thus, the degree of ambigu-
ity in requirements is at least significantly diminished if not eliminated. However,
even when such a language is used, there is no escape from natural language as the
initial requirements are written in natural language. Even if one directly moves to
a formal language, ambiguity may strike when the transition is made. An ambigu-
ous informal requirement ends up becoming an unambiguously right or wrong
formal or semi-formal requirement. A misinterpretation can slip through unde-
tected, because the client’s domain experts are often not able to read the formal or
semi-formal language well enough to detect a meaning different from their experi-
ences or intentions. Finally, it is usually not cost efficient to formalize an entire
specification.

An ambiguous requirement is often defined in the RE literature as a require-
ment that has more than one interpretation. Terms, pronoun references, and certain
sentence structures are shown to be sources of ambiguity [25]. Occasionally, the
broader RE context behind the written requirements has been recognized as a
source of ambiguity [27]. Also, it has been recognized that the RE context can
help to disambiguate a requirement and that a certain amount of contextual knowl-
edge is required from the reader; otherwise every requirement appears ambiguous
[25, 4].

Several inspection techniques have been proposed for spotting ambiguities.
See, for example, references [8, 7, 26]. The most effective approach is to hand re-
quirements to several different stakeholders, to ask each for an interpretation, and
to compare these interpretations afterwards. If the interpretations differ, the re-
quirements are ambiguous [8]. This approach is economically feasible only for
small sets of requirements. Second, specific checklists have been proposed. A de-
tailed checklist of ambiguous words often used in requirements is provided in ref-
erence [7], and a checklist derived from Neuro-Linguistic Programming is pro-
vided in reference [26]. These checklists help to find many linguistic ambiguities,
but they do not address SE ambiguities. Some other inspection techniques assume
that inspectors are able to detect ambiguities just by reading; no guidance is pro-
vided on how to find an ambiguity. There is usually one checklist item asking, “is
the requirement ambiguous?” The major problem of ambiguity is not being aware
of it. Thus, simply asking whether there is an ambiguity is not much help. Ambi-
guities can be detected also by a Natural Language Processing (NLP) tool, but
their use is not without difficulties. First, they sometimes require restricting the
syntax of natural language requirements. Second, they sometimes require expert

248 Kamsties

programming to be made able to parse arbitrary text [9]. Third, they tend to raise
many more ambiguities than are really perceived by a human.

11.3 A New Definition of Requirements Ambiguity

We define a requirement as ambiguous if it has multiple interpretations despite the
reader’s knowledge of the context [14]. It does not matter whether the author unin-
tentionally introduced the ambiguity, but knows what was meant, or he/she inten-
tionally introduced the ambiguity to include all possible interpretations. The con-
text is important to be taken into account, because a requirements document
cannot be expected to be self-contained in a way that an arbitrary naïve reader
could understand it.

Based on this definition, we proposed taxonomy of types of ambiguities that
appear in requirements [14, 3]. In this section we present the linguistic effects that
can make a requirements statement ambiguous, and we classify the SE ambigui-
ties.

11.3.1 Linguistic Ambiguity

Most linguistic ambiguities do not cause trouble, because they can be easily re-
solved by the surrounding requirements, as it is likely the case in Example (1).
Thus, we restrict ourselves to those types of linguistic ambiguity that were not dis-
cussed deeply enough in the RE literature.

Polysemy occurs when a word has several related meanings, e.g., green (the
color green, pleasantly alluring, youthful, vigorous, not ripened, or not matured).
In contrast, a word is homonymous when it has unrelated meanings, e.g., bank (an
establishment for custody, loan, exchange, or issue of money or a rising ground
bordering a lake, river, or sea). In the context of the example,

(3) When the user inserts the paper strip, the Tamagotchi is set to its defaults,

the word Tamagotchi is used both as the name of a toy, i.e., an electro-
mechanical device, as well as a creature simulated by this toy. Thus, Example 3
can mean that the whole toy or just the creature can be set to its defaults.
Polysemies are a much larger problem in requirements documents than are homo-
nyms. The meanings of a polysemy are related, i.e., more detailed contextual in-
formation is necessary to disambiguate it than, e.g., in the case of bank.

Systematic polysemy applies to a class of words. The volatile–persistent ambi-
guity, for instance, arises when a word of a requirement refers to either a volatile
or a persistent property of an object. In the requirement,

(4) When the user presses the L- and R-button simultaneously, the alarm is turned
off,

the phrase turned off can refer to an alarm that is currently sounded by the sys-
tem or to the general ability of the system to raise alarms.

11 Understanding Ambiguity in Requirements Engineering 249

11.3.2 Software Engineering Ambiguity

SE ambiguities arise from the context that must be considered when considering
requirements statement. This context can be subdivided into several domains:

The requirements document of which the considered requirement is part
The application domain, e.g., the organizational environment and the behaviors

of external agents
The system domain, e.g., conceptual models of the software systems and their

behaviors
The development domain, e.g., conceptual models of the development products

and processes
This understanding of context is inspired by the WRSPM (World, Require-

ments, Specifications, Program, and Machine) model [10] and by the Four-World
model [13].

A requirements document ambiguity occurs if a requirement allows several in-
terpretations with respect to what is known about other requirements in the re-
quirements document. A single requirement is rarely self-contained. Usually, it
has implicit or explicit references to other requirements. That is, the reader must
know the related requirements in order to understand a requirement correctly. Re-
quirements document ambiguity can arise from pronoun references, e.g., it, and
definite noun phrases like the one below. The requirement

(5) The product shall show all roads predicted to freeze.

suffers from requirements-document ambiguity. The definite noun phrase roads
can refer to more than one set of roads that are specified earlier in the require-
ments document.

An application domain ambiguity occurs if a requirement allows several inter-
pretations with respect to what is known about the application domain. The re-
quirement of Example (2) is an example of such an ambiguity. As discussed
above, it is observable only to a person who has application domain knowledge.

A system domain ambiguity occurs if a requirement allows several interpreta-
tions with respect to what is known about the system domain. The requirement

(6) If the timer expires before receipt of a disconnect indication, the SPM requests
transport disconnection with a disconnect request. The timer is cancelled on
receipt of a disconnect indication.

is ambiguous. The ambiguity arises from the system domain. It is ambiguous
whether or not the second sentence is part of the if-statement in the first sentence.
This particular requirement could be disambiguated by the application of common
sense; the cancellation of an expired timer probably makes little sense, but the sen-
tence illustrates the issue nicely.

A development domain ambiguity occurs if a requirement allows several inter-
pretations with respect to what is known about the development domain.

(7) The doors of the lift never open at a floor unless the lift is stationary at that
floor.

250 Kamsties

It remains open as to whether the statement is a requirement to be implemented
in the software or the statement can be assumed as already provided by the hard-
ware. That is, the statement can be interpreted as either indicative or optative [12].
In U.S. requirements documents, the word shall is often used to identify require-
ments, in the optative mood, reserving the word will for statements, in the indica-
tive mood, that will be true about the environment in the future. SE ambiguities
are context-specific. Requirements for an information system suffer from SE am-
biguities different from those of requirements for an embedded system. We devel-
oped an approach for systematically identifying the SE ambiguities that are spe-
cific to a particular context, which is described in [14, 3, 5]. This approach leads
to a context-specific refinement of the above-mentioned ambiguity types.

11.4 Ambiguity in RE Processes

This section discusses the sources of ambiguity and the impact of ambiguity on
the progress of the RE process.

11.4.1 Sources of Ambiguity

Requirements engineering can be understood as a process along three dimensions,
specification, agreement, and representation [24]. Initially, requirements are in-
formal, incomplete, and represent personal views. A final requirements specifica-
tion is formal, complete, and represents a common view. We use this model to
discuss sources and impacts of ambiguity.

Ambiguity is a cross-cutting phenomenon, which straddles all three dimen-
sions, specification, agreement, and representation. Ambiguity is typical for the
initial phases of the RE process.

The first source of ambiguity is lack of completeness in specification. Incom-
plete requirements can lead to ambiguity about what is meant [8]. The more com-
plete requirements are the less ambiguous they are. The second source of ambigu-
ity is lack of agreement. Conflicting individual views can result in ambiguity, i.e.,
the diverging expectations and goals of individuals lead to different interpreta-
tions. The third source is representation [8]. Informal requirements are inevitable
ambiguous, while formal requirements are significantly less ambiguous, but still
leave some room for ambiguity. This kind of ambiguity is caused by weaknesses
of the natural language, in particular, in its power to express technical concepts
and the lack of proper usage of the language. The focus of this chapter is on ambi-
guity due to weaknesses in the representation of requirements.

11 Understanding Ambiguity in Requirements Engineering 251

11.4.2 Impacts of Ambiguity

The level of ambiguity decreases when the RE process is making progress. Re-
quirements become more complete, more agreed, and more formal. Thus, the de-
liberate ambiguities are decreasing, but what is about the unconscious ambigui-
ties? We separate several effects of ambiguities and other defects in the initial
requirements on the RE process and the final, formal requirements model:

Identified and removed. The defect was recognized by a specifier and was re-
ported to the customer while reading an informal requirement or while formal-
izing an informal requirement. Based on the customer’s response, the defect is
removed.
Self-resolved. The defect has been removed, but it has not been discussed with
the customer, it has been removed by the specifier, e.g., using his or her back-
ground knowledge.
Forwarded. The same defect of the informal requirements is included in the re-
quirements model. For instance, an incomplete informal requirement has not
been recognized and has become an incomplete statement in the requirements
model.
Transformed. A defect in the informal requirements has been transformed into
another type of defect in the requirements model. For instance, an ambiguous
requirement has been misinterpreted and has become an incorrect statement in
the requirements model.

We present in the remainder of this section an empirical study about the impact
of the unconscious ambiguities on the RE process based on the above classifica-
tion. This empirical study aimed at answering two research questions about the
ambiguities compared to other defects. We restrict ourselves to the representation
dimension of the RE process and analyze the effects on the formalization of in-
formal requirements using some kind of semi-formal requirements specification
language (RSL):
Are there differences in the numbers of conflicts, incompleteness, and ambiguities:

That are found during creation of a requirements model?
That are not found and, thus, are contained in the final requirements model?

In the following we describe the design of the study and the main results.

11.4.3 Design of Formalization Study

We present in this subsection an informal summary of an empirical study, the de-
tailed description of formal hypotheses, experimental design, statistical analysis,
and discussion of threats to validity can be found in [17].

The study as described here was part of a larger effort to compare different
RSLs [16]. Thus, we used several RSLs, namely Focus, SCR, SDL, OCTOPUS,
ROOM, Statemate, and UML. The selection of these languages was driven by the
availability of CASE tools, availability of experts for supervising the subjects, and

252 Kamsties

practical relevance of languages. Furthermore, the languages should represent a
good balance between emerging object-oriented RSLs, and traditional structural
RSLs. All employed CASE tools offer simulation of requirements models or full
code generation.

The task was to develop a requirements model for a given set of informal re-
quirements of a consumer electronics product, namely the Tamagotchi toy [1]. We
limited the types of defects considered in the study to defects that can be identified
without knowledge of the application domain, because we did not expect the sub-
jects to have deep knowledge about the application domain. In particular, we were
interested in incompleteness (only those detectable without domain knowledge),
conflicts, and ambiguities. For the same reason, we did not consider incorrect, un-
realistic, or extraneous requirements.

A requirements document is incomplete if information is missing such as a
function or a definition of a response to particular input data. A requirement is
ambiguous if it has several interpretations as discussed before. An ambiguous re-
quirement can be considered as potentially deficient, because it conveys also the
right meaning. Incompleteness defects and ambiguities can be clearly distin-
guished by the type of required correction activity. The former require adding in-
formation, while the latter just require rephrasing the present information so that a
requirement unambiguously conveys its meaning. Two requirements are inconsis-
tent if they state facts that cannot both be true, or if they express actions that can-
not be carried out at the same time. This type of defect is also called conflict.

The empirical study was performed at the University of Kaiserslautern (UKL)
and the TU München (TUM).

Hypotheses. We assume that there are no significant differences between the
investigated RSLs in spotting defects, because they all address behavioral re-
quirements and provide some state-machine-based language to describe them.
Rather, we expect differences between the defect types, because a RSL forces the
requirements engineer to be precise, i.e., to resolve ambiguities before creating a
requirements model. Thus, ambiguities might be spotted during formalization, but
nevertheless become unambiguously right or wrong statements in a requirements
model. On the other hand, the structure imposed by the RSL on the requirements
helps detecting inconsistencies and incompleteness (recall that we limited the con-
sidered kinds of incompleteness to those that are detectable without domain
knowledge. A requirements model can be inconsistent and incomplete to some de-
gree, even if it is checked by a CASE tool.

There was a difference in the customer participation between the sites UKL
and TUM. At UKL, the customer was involved from the beginning of the formal-
ization process. At TUM, the customer was involved only at the end of the formal-
ization process, when the final requirements model was evaluated by an interview
with the team. This allows us to investigate another hypothesis regarding ambigui-
ties. We expect a significant difference between UKL and TUM in the numbers of
removed and transformed ambiguities. Humans are naturally skilled in resolving
ambiguity. Thus, the ambiguities that were reported at UKL are those that need
clarification. If there is no customer participation, as in the case of TUM, the like-

11 Understanding Ambiguity in Requirements Engineering 253

liness of misinterpretations raises. The general fact that customer and user partici-
pation can influence the RE process and the quality of its outcome was shown by
El Emam et al. in an empirical study [6].

Subjects. Ten computer science students from UKL and nine from TUM par-
ticipated in the empirical study. All students were enrolled in a joint seminar. The
students were from the third year and above and had knowledge of the principles
underlying the RSLs such as finite state machines and object-orientation, but no
experience with the particular languages or CASE tools.

Design. The students worked together in teams of two or three students. This
means that each team performed the same task, the development of a requirements
model based on a set of informal requirements, but using a different RSL. Six
teams were formed such that there is a one-to-one relation between team and RSL.

Instrumentation. The teams received an informal requirements document of
about nine pages. This document described a consumer electronics product, the
Tamagotchi toy, which is an event-driven system (note that all selected RSLs are
well-suited for specifying event-driven systems). The requirements document had
two parts, a problem description of four pages that defines the background of a
fictional software development project, and the customer requirements of five
pages that describe the desired behavior of the Tamagotchi toy. The customer re-
quirements consist of 42 textual requirements; each requirement has on average
two or three sentences. Some requirements were derived from a book describing
the Tamagotchi [1], others were reverse engineered from the original toy, and
some were invented.

The requirements document contained 57 known defects of which 38 were am-
biguities, 13 incompleteness defects, and 6 conflicts. These defects were not
seeded after the document was written; instead they were a result of writing.
Thereby, we relied on the observation that the first versions of a requirements
document contain lots of defects even if they are written carefully [27]. We have
identified the defects through an intensive review by several experts. The docu-
ment may contain more defects. However, the experimenters agreed upon these 57
defects. Only these defects were considered in the data collection.

Data Collection. Data collection was performed in several steps. The teams
were required to write a brief report about each issue they encountered in the in-
formal requirements and received a solution. This solution was not sent to the
other teams. At the end of the seminar, we interviewed each team about its re-
quirements model using the list of 57 known defects in the informal requirements.
For each defect, it was checked whether the defect has been removed, forwarded,
or transformed.

Preparation. During the preparation phase, the students read material about
their RSL and produced a tiny requirements model for a simple event-driven sys-
tem. Then, each team wrote a one-to-two-page essay about the RSL. At the end of
this phase, the students had an opportunity to discuss all the problems they en-
countered with the RSL or CASE tool with their supervisor. The outcome of this

254 Kamsties

phase was the requirements model and the essay. Based on these two deliverables,
the supervisor got an impression of the students’ current understanding of the
treatment. In case a team’s understanding was poor, the team could have discussed
the problems with the supervisor. However, this case actually did not occur.

Execution. In the execution phase, the participants developed a requirements
model of the Tamagotchi toy. All issues and defects that were detected during the
formalization of informal requirements were reported and then answered in such a
way that if two teams encountered the same issue or defect, they received the
same answer.

11.4.4 Results of Formalization Study

The quantitative results are shown in Table 11.1. The before-mentioned difference
in customer participation makes it necessary that we block the analysis of this
study with respect to the site (UKL, TUM). To test our hypotheses, we tested
whether the reported numbers of ambiguities, incompleteness, and conflicts depart
significantly from the expected numbers of those defects (Chi-Square test,

=0.05). Based on the numbers of known defects in the requirements document
(38 ambiguities, 13 incompleteness defects, and 6 conflicts), the theoretical prob-
abilities of detecting an ambiguity, incompleteness, and conflict were 0.67 (38
ambiguities divided by 57 defects in total), 0.23, and 0.1, respectively. The under-
lying assumption is that the difficulty of detecting a defect is homogenous for each
defect type. We were able to show this assumption [14, pp. 47-48] for the given
requirements document. The expected number of defects of a particular type fe(j) is
defined as fe(j) = n pj, where n is the total number of reported defects and pj, is
the probability of detecting a defect of type j.

Table 11.1 summarizes the observed (“O”) and the expected (“E”) numbers of
identified and removed, self-resolved, forwarded, and transformed defects for each
site. Note that the data presented in the table is the average team score, statistical
tests were performed on individual team data.

Identified and Removed Defects. The observed numbers of reported incom-
pleteness defects, ambiguities, and conflicts differ significantly from the expected
ones. The application of a RSL leads to higher numbers of detected incomplete-
ness defects and conflicts and lower numbers of detected ambiguities, as one
would expect based on the defect numbers in the document. A UKL team reported
on average 14% of the known ambiguities, but 39% of the known incompleteness
defects. This result is noticeable. It shows that ambiguities are not detected just
because the informal requirements are formalized. If the requirements engineer is
not aware of an ambiguity while developing a requirements model, then a RSL
does not help to detect the ambiguity. On the other hand, a RSL seems to help de-
tect incompleteness defects and conflicts, because they were reported more fre-
quently than expected.

11 Understanding Ambiguity in Requirements Engineering 255

Self-Resolved Defects. We found a significant difference between the numbers
of defects that are self-resolved and their expected numbers. On average, a UKL
team resolved 57% of the known ambiguities, but it resolved only 16% of the
known incompleteness defects without asking the customer. During the final in-
terviews, it became apparent that the teams often did not recognize ambiguities as
such. Therefore, we conclude that ambiguities are more often unconsciously re-
moved than are other types of defects. Unconscious disambiguation is a serious
problem, because implicit assumptions are more likely than in our study to be
wrong when the system is more complex.

Table 11.1 Aggregated data and results of chi-square tests

Defect Class Site Obs.
Exp.

Incompl. Confl. Ambig. Chi-square Test

O 5.0 1.7 5.3 Identified and
Removed
Defects

UKL

E 2.8 1.2 8.0

significant

O 3.6 1.6 22.0 Self-resolved
Defects

UKL

E 6.3 2.7 18.2

significant

O 7.3 2.3 21.0 Removed
Defects

TUM

E 7.0 3.1 20.5

 Non

 significant

O 2.6 2.3 3.3 UKL

E 1.9 0.8 5.5

significant

O 4.0 3.3 3.0

Forwarded
Defects

TUM

E 2.4 1.0 6.9

significant

O 1.0 0.3 7.3 UKL

E 2.0 0.8 5.8

significant

O 1.6 0.3 14.0

Transformed
Defects

TUM

E 3.7 1.6 10.6

significant

Removed Defects. When a RSL is applied, there is no difference between the
numbers of removed incompleteness defects, conflicts, and ambiguities and what
one would expect based on the defect numbers in the document. 56% ambiguities
and incompleteness defects were removed on average by a TUM team. 72% am-
biguities and incompleteness defects were removed on average by a UKL team if
identified and self-removed defects are counted together.

Forwarded Defects. The observed numbers of forwarded incompleteness de-
fects, ambiguities, and conflicts both at UKL and at TUM differ significantly from
the expected ones. In accordance to our expectation, the application of an RSL
leads to higher numbers of forwarded incompleteness defects and conflicts and to
a lower number of forwarded ambiguities, as one would expect based on the de-
fect numbers in the document. On average, a UKL team forwarded only 9% of the

256 Kamsties

known ambiguities, but it forwarded 21% of the known incompleteness defects. In
the case of the TUM teams, this difference is even bigger. On average, a TUM
team forwarded only 8% of the known ambiguities, but it forwarded 31% of the
known incompleteness defects. This result confirms that the applied RSLs signifi-
cantly reduce the level of ambiguity; however, they do not eliminate ambiguity.

Transformed Defects. The observed numbers of transformed incompleteness
defects, ambiguities, and conflicts at UKL and at TUM differ significantly from
the expected ones. The application of a RSL leads to more transformed ambigui-
ties and fewer transformed incompleteness defects than one would expect based
on the defect numbers in the document. On average, a UKL team (except for the
UML team) transformed 20% of the known ambiguities, but it transformed only
4% of the known incompleteness defects. Again, the difference is bigger for the
TUM teams. On average, a TUM team transformed 37% of the known ambigui-
ties, but it transformed only 13% of the known incompleteness defects.

Customer Participation. There is a significant difference between the num-
bers of removed ambiguities at UKL and TUM. The UKL teams removed 72% of
the known ambiguities, while the TUM teams removed only 55% as shown in Ta-
ble 11.2. Consequently, there is also a significant difference between the number
of transformed ambiguities at UKL and TUM. The TUM teams resolved twice as
many ambiguities, 37%, the wrong way as did the UKL teams. The fact that there
are no significant differences between UKL and TUM in the numbers of for-
warded ambiguities shows the homogeneity of the two groups. Recall that a for-
warded defect is a defect that was not observed. Therefore, the customer par-
ticipation should not have an effect on the numbers of forwarded ambiguities.

We analyzed the single ambiguities that were removed by the two groups. Each
ambiguity that was reported and removed by an UKL team was also recognized
and removed by a TUM team. The difference lies in the frequency; more UKL
teams were able to remove an ambiguity, because they had access to the customer,
than did the TUM teams. Any ambiguity that is removed by one team without a
report, can be misinterpreted unconsciously by another team, and can raise a ques-
tion for a third team. If this question is not answered, the number of transformed
ambiguities grows.

Table 11.2 Effect of customer participation

 Removed
Ambiguities

Forwarded Ambi-
guities

Transformed
Ambiguities

UKL 27.3 (72%) 3.3 7.2 (20%)
TUM 21.0 (55%) 3.0 14.0 (37%)
Chi-square Test significant non-significant significant

Threats to Validity. The investigated requirements document might not be
representative in terms of size, complexity, and numbers of defects. The Tama-
gotchi system already exists, i.e., the requirements were well understood and the
document might expose a different defect profile compared to one describing a
completely new system. However, we strongly believe that our results can be gen-
eralized to other requirements documents describing well understood systems, as

11 Understanding Ambiguity in Requirements Engineering 257

far as ambiguities and incompleteness defects are concerned. The number of con-
flicts in the Tamagotchi requirements document is too low to draw significant
conclusions on them.

Summary of Study. Ambiguities are not detected just because informal re-
quirements are formalized. If not identified, incompleteness defects and conflicts
tend to become forwarded, while ambiguities tend to become transformed (i.e.,
misinterpreted). This behavior of ambiguities is a serious problem, since such a
misinterpretation can slip through undetected, because of the customers' reluctance
to read requirements written in artificial language. Ambiguities, if noticed, need
immediate clarification. Otherwise, the number of misinterpretation rises.

11.5 Detection of Ambiguity in Requirements Inspection

The previous section has illustrated that ambiguity is inevitable and we cannot rely
on formalization to surface all ambiguities. Therefore, we need a technique for
spotting ambiguities before the formal requirements are developed.

Ambiguities depend on the context, i.e., an effective technique must be tailored
towards a particular application domain. We present in this section a reading tech-
nique for event-driven systems.

11.5.1 A Scenario-Based Reading Technique for Ambiguity

Reading techniques help an inspector to detect defects in a software artifact, e.g.,
in a requirements document. Reading is a fundamental technique for achieving
quality software [2]. Usually, ad-hoc, checklist-based, and scenario-based reading
are distinguished. Ad-hoc reading is not really a technique as it does not provide
any instructions for the inspector on how to proceed during defect detection activ-
ity. Thus, it is not well-suited for ambiguities, as the reader is often unaware of
them and needs some kind of support. Checklist-based reading is effective and
frequently used for requirements documents [28].

The previously identified ambiguity types can be mapped easily into a check-
list. We recommend creating a separate checklist for ambiguity and putting impor-
tant types of SE ambiguity into the list. As mentioned before, linguistic ambigui-
ties, except for lexical and referential ambiguity, can usually be resolved by the
reader. Table 11.3 shows an ambiguity checklist.

Checklists provide support for spotting ambiguities, but there are a number of
different and subtle kinds of ambiguity, not all of which fit on an effective check-
list. Therefore, we use scenario-based reading in addition to checklist-based read-
ing. The overall idea of scenario-based reading is to provide an inspector with an
operational scenario, which requires him or her to first create an abstraction of the
product, i.e., the requirements document in our case, and then answer questions
based on analyzing the abstraction with a particular emphasis or role that the in-
spector assumes. For example, the operational scenario requires the inspector to

258 Kamsties

create test cases as an abstraction of the requirements document and a question
could be “Do you have all information necessary to develop a test case?” If there
is information missing, then the inspector may have detected a defect in the re-
quirements document.

Table 11.3 Checklist for Ambiguity

Checklist Item Description
Lexical
Ambiguity

Does a word in a requirement have several meanings? Check for ho-
monymy and polysemy (a word with similar meanings). Be aware
that lexical ambiguity arises in particular from the actual usage of a
word in an RE context (i.e., in the requirements document, applica-
tion domain, or system domain).

Systematic
Polysemy

A systematic polysemy applies to a class of words: (1) The object-
class ambiguity arises when a word in a requirement can refer either
to a class of objects or to just a particular object of the same class. (2)
The process-product ambiguity arises when a word can refer either to
a process or to a product of the process. (3) The volatile-persistent
ambiguity arises when a word refers to either a volatile or a persistent
property of an object.

Referential
Ambiguity

Can an anaphor in a requirement refer to more than one element in-
troduced earlier in the sentence or in a sentence before? Anaphora are
pronouns (e.g., it), definite noun phrases (e.g., the roads), and some
forms of ellipses (e.g., If A... If B ... If not ...).

Domain
Ambiguity

Is the requirement ambiguous with respect to what is known about
the application or development domain?

We use in our reading technique the black-box specification from the Box
Structure Method by Harlan Mills [21] as abstraction. We have selected this for-
malism, because of its conceptual simplicity and its lack of states. Most other for-
malisms for describing event-driven systems have a more complex notation or rely
on state machines. However, the identification of useful states is a non-trivial task
that takes time; black-box specifications allow postponing the identification of
states.

A black-box specification is a completely external view of a system; the behav-
ior of the system is described by assigning a response to every possible stimulus
history. Informally, one can think of a black box as a mechanism which accepts a
sequence of stimuli and, for each stimulus accepted, issues a response [21]. For
any history of stimuli, the next response, that is, the response to the most recent
stimulus, is the value of the black-box function. The function represented using a
table; the skeleton of this table is shown in Table 11.4.

Table 11.4 Black-box table

Tag Stimulus Response Condition Trace
sn r f(s1, s2, …,sn-1)

T7 L-Button and
R-Button pressed

/BuzzerEnabled = no menu=deselected,
BuzzerEnabled = yes

R2,R3

11 Understanding Ambiguity in Requirements Engineering 259

Table 11.5 Scenario for spotting ambiguities

Black-Box Table Scenario
Create a black-box table for the requirements document by using the provided form. The
goal is to detect ambiguities in the requirements. Follow the procedure below to create
the black-box table and answer the provided questions to detect ambiguities.
Step 1: Create Black-Box Table
For each requirement, create one or more transitions. Introduce variables to capture state
data when necessary. For each transition, record the stimulus, response, and condition in
the form. Use previously identified stimuli and responses as much as possible.
Questions:
Stimulus: Can a phrase in a requirement be interpreted as a stimulus in several ways?
This can happen when:

The phrase describes a period of time, not an instant.
The quantifiers, negations, or logical connectives (i.e., and, or) are used to describe a

complex logical condition within a stimulus.
The stimulus is described relative to another stimulus, by using words such as after

and before, and more than one stimulus is referenced.
The name of a stimulus is lexically ambiguous and denotes more than one previously

introduced stimulus.
Response: Can a phrase in a requirement be interpreted as a response in several ways?
This can happen when:

A verb phrase describes a response that can be interpreted as an response that is exe-
cuted (1) once, i.e., it is an action or (2) until the next response, i.e., it is a do-activity.

The name of a response is lexically ambiguous and denotes more than one previously
introduced response.
Condition: Can a phrase in a requirement be interpreted as a historical condition in sev-
eral ways? This can happen when:

Various historical conditions can be derived due to generality or vagueness.
The quantifiers, negations, or logical connectives are used to describe a complex his-

torical condition.
The historical condition ambiguously refers to conditions described in other require-

ments.
Step 2: Check Black-Box Table
Compare the requirements document with your black-box table. Make sure that you have
mapped all requirements to transitions of the black-box table.
Questions:

Are there requirements that you interpret now differently after you have created the
black-box table?

Are there two transitions that are not disjoint? If so, check whether the respective re-
quirements can be interpreted in several ways: (1) Particular properties of the application
domain prevent both conditions from becoming true at the same time. (2) The require-
ments describe non-deterministic behavior, that is, both transitions can occur. (3) In the
case that both conditions are true, both responses are desired.

Each row of a black-box table is called a transition. The tag is a unique ID of a
transition to enable forward traceability. The stimulus is a particular input to the

260 Kamsties

system. The response is the output of the system when this stimulus occurs and
the condition is true. The condition describes the historical conditions under which
the response is generated, i.e., a particular stimulus history. The description of the
condition can be simplified to a great extent by referring to other responses [21].
The trace is used for backwards traceability; it is the ID of the related informal re-
quirement, from which the transition was derived. Thus for the history of stimuli
s1, s2,…,sn giving response r, the row of the table would be as shown in the skele-
ton; f is some function on the history evaluating to a Boolean value.

To make black-box specification more convenient, we assume that each re-
sponse concerns a particular object, e.g., an actuator or a variable. A variable can
be introduced to capture essential state data, e.g., “BuzzerEnabled” captures
whether some buzzer is enabled or disabled. With regard to a response we separate
an action from a do-activity. An action is instantaneous, and a do-activity starts
when the stimulus occurs and stops either by itself or when the next response re-
garding that particular object occurs, whichever comes first. An action is denoted
by “/action name” and a do-activity by “do/activity name”.

The scenario for creating a black-box table and the questions to uncover ambi-
guities are depicted in Table 11.5. The questions were derived from ambiguity that
appears in event-driven systems. How to systematically derive these ambiguity
types is shown in [14, 15]. We call the combination of scenario- and checklist-
based reading extended scenario-based reading (ESBR). The effectiveness of
ESBR is discussed in the following section.

11.5.2 Design and Results of Inspection Study

In this section, we provide descriptive statistics for ESBR introduced in the previ-
ous section. We evaluated several alternative reading techniques for spotting am-
biguities in a series of controlled experiments; ESBR proved most efficient [14].

The data comes from an experiment that was part of the course “Software En-
gineering I” taught by Prof. Julio Leite in English at the University of Kaiserslau-
tern (UKL) in the winter term 1999/2000. From the students enrolled in this
course, 18 applied the ESBR technique. The participants were randomly assigned
to 6 teams. Each team consisted of three subjects. Each subject inspected the
whole requirements document. The experiment required two lectures of 90 min-
utes each during the hosting course. The preparation was done in the first lecture.
The preparation consisted of a motivational lecture explaining why reviewers
should care about ambiguity, an introduction to and a practice run with the ESBR
technique. For the practice run, the subjects received all experimental materials
which were used later in the experiment, except the requirements document. For
training purposes, a small scale requirements document was used. These require-
ments were inspected by the subjects using ESBR. Problems with ESBR and the
ambiguities in the requirements were discussed at the end of the first lecture.

The Tamagotchi requirements document was used also in the inspection ex-
periment, i.e., we are able to compare results between the two studies. The inspec-
tion took 90 minutes. The document was new to all subjects. The subjects received

11 Understanding Ambiguity in Requirements Engineering 261

a printout of the requirements document, the materials for their reading technique,
and a debriefing questionnaire. The participants were told not to report apparent
ambiguities. The reviewers were told that they should spend only 45 minutes on
the checklist. This was necessary in order to ensure that there was enough time for
applying the scenario. These times were communicated to the subjects as a rec-
ommendation. We could not force them to stop with the checklist and to start with
the scenario when these times expired.

Table 11.6 shows the average numbers of defects of different kinds that were
spotted by an individual/team/all reviewers using ESBR. The first interesting ex-
perience was that the inspectors spotted defects that were not observed in the pre-
vious study. The series of experiments with the reading techniques led to the de-
tection of 27 additional defects; most of them were ambiguities. We were
compelled to accept all claims of ambiguity that are not spurious, if there was ad-
mittedly more than one interpretation to each of the concerned requirements, al-
though we, the authors, knew the right interpretation. Actually, a team reported on
average 14.6 ambiguities. However, in order to keep consistency with the first
study we ignore these additional defects in this analysis.

Table 11.6 Results of inspection study

Mean values False
positives

Defects Ambiguities Incomplete-
ness

Conflicts

Individual 7.8 7.6 5.1 2.4 0.1
Team
(3 participants)

17.2 17.9 12.2 5.5 0.2

18 subjects
(# defects)

- 40
(57)

27
(38)

12
(13)

1
(6)

The number of ambiguities reported by a team (12.2 ambiguities) is signifi-
cantly higher than those spotted while formalizing requirements (5.0) [14]. A team
of three reviewers was able to spot 12.2 ambiguities, while a single reviewer de-
tected only 5.1 ambiguities. That is, teams seem to be useful when searching for
ambiguities. However, even 18 reviewers were not able to find all 38 ambiguities,
but only 27. As opposed to the first study, the reviewers reported false positives
although they were told not to do so.

The ESBR technique seems to be useful to identify incompleteness as well, but
ineffective to spot conflicts. The reason could be the black-box table used in
ESBR, which makes it easy to spot certain types of incompleteness.

11.5.3 Combination of Specification and Inspection Results

The results of the inspection study indicate that we cannot expect to spot all ambi-
guities in a requirements document with realistic resources. The inspected re-
quirements document contained 38 ambiguities. Given a team of three reviewers
that spends a total of 4.5 hours, we can expect 12.2 of these ambiguities to be de-
tected if ESBR is applied. However, there is no need to detect all ambiguities; the
formalization study has shown that 72% of the ambiguities were interpreted cor-

262 Kamsties

rectly in the requirements model. Most of the remaining 28% of the ambiguities
were misinterpreted.

The question which arises is: can inspection add to the formalization of re-
quirements? That is, are inspection techniques capable of spotting defects that tend
to become misinterpreted in requirements models? We cross-compared the data of
our two studies to analyze if the inspectors spotted those ambiguities that were ac-
tually misinterpreted by the specifiers. For this purpose, we divided the 38 ambi-
guities contained in the requirements document into two groups. The first group of
ambiguities, termed “never misinterpreted”, contains those ambiguities that were

interpreted correctly by each team of specifiers in the first study. The second

group of ambiguities, termed “misinterpretable”, contains those ambiguities that

were misinterpreted by at least one team of specifiers. For each of the two groups,

we determined how many ambiguities were detected on average by an inspection

team and how many slipped through. Table 11.7 provides a comparison of results.

Table 11.7 Comparison of formalization and inspection results

Average number of ambiguities detected by in-
spection team

not detected by
inspection team

Total

correctly interpreted by specifiers
(“never misinterpreted” and “misin-
terpretable”

2.5 24.8 27.3

actually misinterpreted by specifiers
(“misinterpretable”)

9.7 1.0 10.7

Total 12.2 25.8 38

To answer the above question, those ambiguities are of interest that were misin-
terpreted by the specifiers, but were detected by the inspectors. On average 28%,
i.e., 10.7 ambiguities were not interpreted correctly by at least one team of specifi-
ers. In total, 29 out of the 38 ambiguities in the requirements document were clas-
sified “misinterpretable”. That is, not all of the misinterpretable ambiguities were
really misinterpreted. An inspection team is able to find on average 9.7 ambigui-
ties that are misinterpretable. However, by matter of fact, one cannot say whether
these ambiguities detected by ESBR are a true subset of those 10.7 ambiguities
that would be misinterpreted otherwise or if some portion belongs to those ambi-
guities that still would be correctly interpreted. In the table above, we assumed the
optimistic case that all of those 9.7 misinterpretable ambiguities would be actually
misinterpreted otherwise. Performing an inspection of the requirements document
using ESBR before the document is used for developing requirements models,
33% (9.7 out of 29) of the misinterpretable ambiguities could have been detected.

In conclusion, the performance of ESBR when applied by a team of 3 reviewers
seems to be sufficient to reach the percentage of ambiguities that are actually mis-
interpreted. In other words, up to 91% (9.7 out of 10.7) of the ambiguities actually
misinterpreted by the specifiers could have been detected by the inspectors.

11 Understanding Ambiguity in Requirements Engineering 263

11.6 How to Live with Ambiguity

The first step to improve an RE process is to avoid unconscious ambiguity by dif-
ferent means.

Increasing the Precision of Natural Language. Glossaries, style guides, sen-
tence patterns, and controlled languages increase the precision and decrease the
ambiguity of natural language. A glossary or dictionary defines important terms
and phrases used in a requirements document. Thus, it helps to avoid lexical am-
biguity. It requires considerable effort to create and validate a glossary, but the ef-
fort pays off since it can be reused for future projects within the same application
domain. A style guide helps an author to avoid ambiguities [7]. Sentence patterns
have been proposed to give the requirements author support in articulating re-
quirements, e.g., by Rupp and Goetz [26]. We developed patterns for event-driven
systems [5]. Another approach to increase the precision of natural language is to
use a controlled language, which is a precisely defined subset of natural language
for use in specific environments. The inherent ambiguity of natural language is re-
duced through a restricted grammar and a fixed vocabulary.

Providing More Context Information. “Context gives meaning to descrip-
tions by anchoring them in reality” [18]. Examples, comments, rationales, fit crite-
ria, test cases, inverse requirements, and traceability information support the strat-
egy of providing more context information. A comment can be used to explain the
background of a requirement. A rationale describes why a requirement is needed.
A fit criterion describes a condition that a software product must fulfill in order to
satisfy a requirement. Each fit criterion thus provides contextual information and
leaves less room for interpretation. A test case, a more elaborated form of a fit cri-
terion, describes a possible input and its expected output explicitly. An inverse re-
quirement describes functionality that the software product does not perform. In-
verse requirements are often misused to express non-functional requirements, e.g.,
“the system must not lose user data”, which is actually a reliability requirement.
However, in its essence, an inverse requirement rules out possible interpretations
of one or more functional requirements. Traceability information on the depend-
encies between requirements, i.e., requirements–requirements traceability, also
helps to disambiguate a requirement, if the links help identify closely related re-
quirements that provide enough contextual information.

Setting Up Conventions for Interpretation An example could be The rules of
Boolean logic apply to logical statements in requirements. The conventions must
be clear to both the writer and the reader. Otherwise, misinterpretations may oc-
cur.

Tool support is available to spot particular types of ambiguities. A parser-based
tool such as CIRCE [9] attempts to parse the subject sentences to identify the
component parts. Certainly the existence of more than one parse is a signal of an
ambiguity. A pattern-matching tool searches for instances of a given set of par-
ticular words, phrases, and even lexical affinities considered ambiguous. For ex-
ample, NASA has developed a pattern matching tool for checking requirements
documents [29]. The LOLITA tool [19] identifies lexical ambiguity (concerning

264 Kamsties

the meanings of a word or phrase) and syntactic ambiguity (concerning grammati-
cal structures of sentences). All tools are able to find linguistic ambiguity, but they
are unable to find most SE ambiguities. That is, tools may be used in a first pass,
but inspections are inevitable to spot SE ambiguities. Based on the results of the
inspection study, we make two recommendations.

Inspection of Informal Requirements Before their Formalization. Since
RSLs enforce precision, an ambiguity can become an unambiguously wrong for-
mal requirement, which can slip through undetected, because of the customers' re-
luctance to read requirements written in artificial language. We recommend the in-
spection of informal requirements with an emphasis on ambiguities to avoid these
problems. Inspections should target on SE ambiguities. The size of the inspection
team should be at least two to allow the inspectors to exchange their interpreta-
tions.

Participation of Customers and Users during Formalization. The develop-
ment of requirements models from informal requirements is a task of requirements
engineers, not customers or users. Nevertheless, we recommend participation of
customers and users during the development of these models, not afterwards, in
order clarify observed ambiguities as soon as possible.

11.7 Summary and Conclusion

Requirements ambiguity is not limited to simple linguistic ambiguities such as dif-
ferent readings of a sentence due to prepositional phrase (“She hit the man with
the suitcase”). This chapter emphasized the role of the context in making require-
ments ambiguous and identified the major domains of the RE context, the re-
quirements document, the application domain, the system domain, and the devel-
opment domain. The results of an empirical study were presented on the effects of
ambiguity on the RE process. Ambiguities are reported less often, but are resolved
unconsciously more often than other types of defects. This is a serious problem,
because the contextual knowledge of customers and software developers usually
differ. Thus, implicit assumptions are likely to be wrong when a system is more
complex than in our study. Moreover, ambiguities that were not recognized were
misinterpreted more often than other types of defects. We conclude that a re-
quirements engineer should not rely on the formalization of informal requirements
to assist with spotting ambiguities. Ambiguities cannot be considered potential de-
fects, because they also convey the right meaning, but they are real defects. As our
study shows, a considerable number of ambiguities tend to become misinterpreted
(20% to 37% depending on customer participation). This number is likely to rise if
the domain is more complicated than a simple consumer electronics product the
Tamagotchi toy. The results motivated us to develop a reading technique for re-
quirements inspections targeting at ambiguity. This technique uses a combination
of checklist and scenario-based reading. We presented empirical data indicating
that on one hand one cannot expect that all ambiguities are detected with reason-
able resources. On the other hand, most ambiguities are interpreted the right way

11 Understanding Ambiguity in Requirements Engineering 265

as our first study has shown, i.e., there is no need to find all ambiguities. Our read-
ing technique is capable of finding most of those ambiguities that could be misin-
terpreted otherwise. Finally, we discussed further techniques to reduce ambiguity
and to improve the likeliness of detecting ambiguities.

References

1. Bandai (1997) Das Original Tamagotchi Buch. Tamagotchi & Bandai
2. Basili VR (1997) Evolving and packaging reading technologies. Journal of Systems and

Software, 38: 3–12
3. Berry DM, Kamsties E (2003) Ambiguity in requirements specification. In: Perspectives

on Software Requirements, Leite J, Doorn J (Eds.) Kluwer Academic Pub., pp.7 44
4. Davis A, Overmyer S, Jordan K, et al. (1993) Identifying and measuring quality in a

software requirements specification. In: Proceedings of METRICS’93, Baltimore,
USA, pp.141–152

5. Denger C, Berry DM, Kamsties E (2003) Higher quality requirements specifications
through natural languages patterns. In: Proceedings of the IEEE International Confer-
ence on Software: Science, Technology & Engineering, Herzelia, Israel, pp.80 89

6. El Elmam K, Quintin S, Madhavji NH (1996) User participation in the requirements en-
gineering process: An empirical study, Requirements Engineering Journal, 1(1):4–26

7. Freedman DP, Weinberg GM (1990) Handbook of walkthroughs inspections and techni-
cal reviews, Dorset House, New York, NY

8. Gause DC, Weinberg GM (1989) Exploring requirements: Quality before design. Dorset
House, New York, NY

9. Gervasi V, Nuseibeh B (2000) Lightweight validation of natural language requirements,
In: Proceedings of 4th IEEE International Conference on Requirements Engineering,
June 19-23, Schaumburg, USA, pp. 140–148

10. Gunter CA, Gunter EL, Jackson M, Zave P (2000) A reference model for requirements
and specifications. IEEE Software; 17(3): 37–43

11. Heitmeyer CL, Jeffords RD, Labaw BG (1996) Automated consistency checking of re-
quirements specifications, ACM Transactions on Software Engineering and Methodol-
ogy 5(3): 231–261

12. Jackson M, Zave P (1993) Domain descriptions. In: Proceedings of the 1st International
Symposium on Requirements Engineering, January 4-6, San Diego, pp. 89 98

13. Jarke M, Rolland C, Sutcliffe A, Dömges R (1999) The NATURE of requirements en-
gineering. Aachen, Germany: Shaker Verlag.

14. Kamsties E (2001): Surfacing ambiguity in natural language requirements, Ph.D. Dis-
sertation, Fachbereich Informatik, Universität Kaiserslautern, Germany

15. Kamsties E, Berry DM, Paech B (2001): Detecting ambiguities in requirements docu-
ments using inspections. In: Proceedings of the 1st Workshop on Inspection in Software
Engineering (WISE’01), July 23, Paris, France, pp. 68 80

16. Kamsties E, von Knethen A, Philipps J, Schätz B (1999) Eine vergleichende Fallstudie
mit CASE-Werkzeugen für formale und semi-formale Beschreibungstechniken, Ta-
gungsband des 9. GI/ITG-Fachgesprächs “Formale Beschreibungstechniken für
verteilte Systeme”, pp.103–112.

266 Kamsties

17. Kamsties E, von Knethen A, Philipps J, Schätz B (2004) An empirical investigation of
requirements specification languages: Detecting defects while formalizing require-
ments. In Modelling Methods and Methodologies, Krogstie J, Siau K, Halpin T(Eds.),
IDEA Book Group pp.125 147

18. Kovitz B (2002) Ambiguity and what to do about it. In: Proceedings of the 10th Interna-
tional Requirements Engineering Conference (RE’02), Essen, Germany, pp.213

19. Mich L (2001) On the use of ambiguity measures in requirements analysis. In: Proceed-
ings of NLDB’01, June 28-29, Madrid, Spain, pp. 143 152

20. Mich L, Franch M, Novi Inverardi P (2002) Market research for requirements analysis
using linguistic tools. Technical Report 66, University of Trento,
http://eprints.biblio.unitn.it/view/department/informaticas.html.

21. Mills HD (1988) Stepwise refinement and verification in box-structured systems, IEEE
Computer, 21(6): 22 36

22. Parnas DL, Asmis GJK, Madey J (1991) Assessment of safety-critical software in nu-
clear power plants. Nuclear Safety 32(2): 189–198

23. Poesio AM (1996) Semantic ambiguity and perceived ambiguity. Semantic Ambiguity
and Under specification, Cambridge Univ. Press, No 55 in CSLI LN, Cambridge, UK.

24. Pohl K (1993) The three dimensions of requirements engineering. Technical report
NATURE - 92-11, Informatik V, RWTH-Aachen, Germany

25. Robertson S, Robertson J (1999) Mastering the requirements process. Addison-Wesley
26. Rupp C, Goetz R (2000) Linguistic methods of requirements engineering (NLP), In:

Proceedings of the European Software Process Improvement Conference (EuroSPI), 7-
11 November, Copenhagen, Denmark

27. Schneider GM, Martin J Tsai WT (1992) An experimental study of fault detection in
user requirements documents. ACM Transactions on Software Engineering and Meth-
odology 1(2): 188–204.

28. Sommerville I, Sawyer P (1997) Requirements engineering – A good practice guide,
John Wiley & Sons, UK

29. Wilson WM, Rosenberg LH, Hyatt LE (1997) Automated analysis of requirements
specifications. In: Proceedings of International Conference on Software Engineering
(IASTED), May 17-23, Boston, USA

Author Biography

Dr. Erik Kamsties is senior research assistant in the Institute for Computer Sci-
ence and Business Information Systems (ICB) at the University of Duisburg-Essen
since 2002. As group leader for software product lines, he is working in research
and technology transfer. Prior to that he was leader of the RE competence team at
the Fraunhofer Institute for Experimental Software Engineering in Kaiserslautern.
He received a Ph.D in computer science from the University of Kaiserslautern and
a MS degree (Diploma) in computer science from the Technical University of Ber-
lin, Germany. His research interests include requirements engineering, in particu-
lar natural language requirements, object-oriented analysis, software product fam-
ily engineering, requirements-based testing, and empirical software engineering.
Dr. Kamsties is program co-chair of the Requirements Engineering: Foundation of
Software Quality workshop series.

12 Decision Support in Requirements Engineering

An Ngo-The and Günther Ruhe

Abstract: Decisions are increasingly understood as the crystallization points of
the software development process. Despite the abundance of the requirements en-
gineering (RE) processes, little attention has been given to providing appropriate
support for making RE decisions. In this chapter we analyze current research re-
lated to RE decision making. We study how and when decisions are made in RE
and the underlying methodology. Our focus is not to provide solution approaches
for particular decision problems in RE, but to discuss strategies for improving re-
search and practice in the RE decision making process. We have performed an ex-
tensive analysis of related research. Our findings show the difficulties in RE deci-
sion making and the deficits of current research. We position decision support at
the appropriate approach to handle incompleteness and uncertainty of information
as is mostly the case in RE. Based on this, we propose an agenda for future re-
search.

Keywords: Requirements engineering process, Requirements engineering deci-
sion, Decision making, Decision support, Research analysis, Classification
scheme.

12.1 Introduction

As in any management activity, decision making plays a vital role in the value-
generation process, being a kind of driving engine within the whole development
process. DeGregorio [19], in a recent research at the Software & System Engineer-
ing Laboratory of Motorola Labs, has recognized the need to have an integrated
approach for strategic decision making, requirement management, and road-
mapping processes. According to this analysis [19], the most successful compa-
nies in the future will be the ones which leverage their intellectual capital gener-
ated by the decision making process and would link this process to the essential
supporting information. Their premise would be “Requirements management is
not possible without decision management”.

In this chapter, we study how and when decisions are made in RE and the un-
derlying methodology. There is a broad range of individual decision problems.
However, the focus of this chapter is not to provide solution approaches for par-
ticular decision problems in RE but to discuss strategies for improving research
and practice in the decision making process. Some of the most important RE deci-
sion problems have been addressed in different chapters of this book: require-
ments elicitation (Chap. 2), requirements prioritization (Chap. 4), requirements
negotiation (Chap. 7), and release planning for market driven software products
(Chap. 13).

268 Ngo-The and Ruhe

As extensive research is undertaken to improve the RE process, the awareness
of the role of decision support in the RE process has emerged. We will argue later
in this chapter that requirements decisions are hard because of the uncertainty and
incompleteness of the information available. We will provide arguments that any
notion of strict optimality is not appropriate in this context. Instead, the whole phi-
losophy of providing substantial support to the decision maker is developed as an
approach to qualify the actual (human) decision making.

The importance of decisions in RE is discussed by Evans et al. [21]. The au-
thors emphasize that it is important to recognize requirements as design decisions
in order to achieve a fully integrated software system. Regnell et al. [44] further
develop this idea with the claim “Requirements mean decisions!” and investigate
issues and challenges for both descriptive and prescriptive research. Aurum and
Martin [7, 8] point out the similarity between activities involved in organizational
decision making and those in the RE process. Aurum and Wohlin [9] describe the
fundamental nature of RE activities as a decision making process. They observe
that the RE process is rich in complex decision problems ranging from the organi-
zation level to the project level. They also examine the integration of classical de-
cision making models (Anthony’s organization-oriented model [6], Mintzberg’s
process-oriented model [38]) into Macaulay’s RE process [36]. Ruhe [52] de-
scribes the software planning, development and evolution process as a continuous
problem-solving and decision making activity.

Despite the increasing awareness, decision support in RE is still in its infancy.
More theoretical and empirical research is needed to improve the practice of RE.
In this chapter, we address this issue through an analysis of research related to RE
decisions. The contribution of this chapter is threefold:

Understanding and classification of the current research around decisions to be
made as part of RE
Analysis of the deficits and difficulties in this research
Proposal of an agenda for future research in this field

The chapter is organized as follows. In Sect. 12.2 we present basic concepts of
decision problems in RE. In Sect. 12.3 we discuss the relationship between deci-
sion making and decision support and its implications for making decisions in RE.
In Sect. 12.4, we analyze the literature related to RE decision support. Section
12.5 summarizes and concludes the chapter.

12.2 Basic Concepts

12.2.1 Formulation of Decision Problems

Decision science is a well-established discipline with strong links and interactions
to many other disciplines such as economics, operations research, logic, organiza-
tion theory, psychology and sociology. In this section, we present fundamental
concepts and terminology of decision science to the extent necessary for the un-

12 Decision Support in Requirements Engineering 269

derstanding of the rest of the chapter. There are numerous textbooks devoted to
decision science, e.g., Simon [58]. For a deeper discussion of decision making
models and their integration into RE process models, we refer to [9].

We start with a simple example of decision problem in RE. For that we assume
that after the requirements elicitation phase, the project manager has a list of some
hundred requirements. A rough estimation shows that the available resources are
not sufficient to implement all of them. The project manager (PM) must take an
action (i.e., make a decision) to keep the project on the right track. There are at
least four different alternative actions possible: (a) renegotiate the requirements,
(b) increase available resources, (c) ignore the fact and (d) abandon the project.
The project manager has to evaluate the consequences of each action from differ-
ent perspectives. Finally, he selects one action based on the consideration of all
consequences. Two essential factors in this simple example are: There is a set of
alternatives (if only one action is possible, there is nothing to decide) and a set of
criteria to evaluate the consequences of each action (otherwise, it is just a random
choice, not a decision). In its simplest form, a decision problem can be described
by:

Set A={a1, a2, …} of alternatives (these alternatives are not necessarily de-
scribed explicitly)
Set G = {g1, g2, …,gn} of criteria to evaluate each alternative a A from dif-
ferent perspectives

Roy and Bouyssou [50] distinguish three main categories of decision problems:

Selection (P): Select one alternative a* A or a subset A* A
Triage (P): Assign each alternative a A
to one of the classes C1, C2, …, Ck

Ranking (P): Arrange all alternatives in A according to an order
a1 a2 … (a b means “alternative a is at least as good as b”)

In the above example, the set of alternatives is A = {(a), (b), (c), (d)}, the type
of the problem is P (selection) and the set of criteria can be G = {time-to-market,
cost, schedule, risk}. During the decision process, set A can evolve. The PM
might choose an action that is not initially listed such as “renegotiate first, then in-
crease resources, only when everything fails, consider between ignore the fact or
abandon the project”. We can also observe that the description of a decision prob-
lem is never complete without its context as this factor strongly affects all the ac-
tivities of the decision process.

12.2.2 Structured versus Unstructured Decision Problems

Simon [58] defines two categories of decisions: structured and unstructured. The
former category refers to decisions that are repetitive with a clearly identified
process for reaching a (good) decision. The latter refers to decisions that are novel
and the associated process is still ambiguous. A typical example of structured de-

270 Ngo-The and Ruhe

cision problem in the area of finance is to approve or reject a mortgage loan re-
quest. A bank receives millions of such requests a year and has a well-established
process to handle them. The decision is based on precise information.

A typical example of an unstructured decision is the decision of a software
company to continue with the current software development process or adapt a
new one. Many companies do not exist long enough to face such a decision. Only
few companies face this decision more than once in its lifetime, and finally, no
one has a clear idea of how to handle the problem.

Between these two extremes, there are many decision problems having differ-
ent degrees of structure. In general, this degree depends essentially on our knowl-
edge about the process to handle the problem. In the introductive example, another
possible alternative is to select a subset of the requirements that can be imple-
mented within the available resources (requirements selection problem). Since
there is no established process that is widely accepted to solve the problem, we
consider this as a semi-structured problem. The situation is typical in RE, where
most of the important decision problems are not novel, but the associated proc-
esses are usually ambiguous due to our limited understanding. For many decisions
certain criteria can be identified, but their evaluation and their aggregation are not
straightforward. Therefore, in general, researchers agree that the RE process is a
semi-structured or unstructured complex decision making process [7].

12.2.3 Strategic, Tactical and Operational Decisions

Anthony [6] identifies three levels of decisions: strategic, tactical and operational.
Strategic decisions concern the objectives, the goals of an organization or a prod-
uct. They have a large scope of impact (all the activities in an organization or a
project) and a long-term time horizon (life-cycle of a product, duration of a pro-
ject). A typical example is defining the product strategy (road-mapping) of a com-
pany for the next five years.

Tactical decisions address the planning (resources, time, tasks…) to achieve the
goals (decided at the strategic level). They are usually made at the middle level of
management with a smaller scope of impact and shorter time horizon. A typical
example is “Project planning” and related decisions such as “How much effort
should be allocated to each task?” or “How to schedule the tasks?”

Operational decisions are made at the operative level by requirement engineers,
developers or testers while performing specific tasks to realize the project accord-
ing to the plan. Decisions such as “When to stop testing”, “How to design mod-
ules” or “Which architecture is most appropriate to achieve a target quality” be-
long to this category.

12.2.4 Requirement-Centric versus Activity-Centric Decision Problems

As an RE process consists of artifacts (requirements) and activities (elicitation,
analysis), decision problems in RE can also be seen from two perspectives: re-

12 Decision Support in Requirements Engineering 271

quirement-centric and activity-centric. The requirement-centric perspective might
be the position taken by a researcher in software engineering looking at the deci-
sion theory paradigm. The activity-centric perspective might be the position of a
researcher in decision theory looking at the software engineering paradigm. It is of
no surprise that the former is dominant in the software engineering community
(Evan et al. [21], Regnell et al. [44], Aurum and Wohlin [9]). In this chapter, we
choose the activity-centric perspective, believing that it will shed light on different
aspects of RE decisions, and enrich and reinforce our understanding. The two per-
spectives are not conflicting but complementary. Together, they form a compre-
hensive framework for understanding the problems, contexts and research issues
of RE decisions, as will be discussed in the rest of the section.

12.2.5 The Impact of the Context

The requirement-centric perspective identifies the contexts that are directly related
to requirements. Regnell et al. [44] identify five possible contexts: (a) customer
specific systems, (b) off-the-shelf systems, (c) embedded systems, (d) safety criti-
cal systems and (e) data-base centric systems. In customer specific systems, the
client is an actual person (or group of people). On the other hand, in off-the-shelf
systems, the client is just an abstract entity. This factor strongly affects the way we
can support decision making for certain RE problems such as requirements nego-
tiation. While EasyWinWin [12] can be used to help the negotiation with the client
in a customer specific system, a more complicated approach must be used to con-
sider the client in an off-the-shelf system.

The activity-centric perspective reveals different contexts that are more specific
to the decision process: (f) maturity of the organization, (g) experience of the pro-
ject manager, (h) availability of information, and (i) geographical distribution of
stakeholders. These contexts affect the methodology of the support given to deci-
sion making. For a highly mature organization, it is very likely that requirements
selection problem is considered more structured (than in other organizations) with
a clear guiding procedure to solve it.

12.2.6 A Collection of Requirements Engineering Decision Problems

From the requirement-centric perspective, the identification of decision problems
starts with the requirements. Some examples of the most important decisions are
(Regnell et al. [44]): scope decisions (which requirement is consistent with the
product strategy) and resource decisions (allocation of resources to RE). From the
activity-centric perspective, the identification starts with the activities of the soft-
ware development process and the RE process. Following these activities, as de-
scribed by Kotonya and Sommerville in [35], we can identify decisions such as se-
lection of RE process and requirements prioritization. Decision problems
identified in one perspective are not excluded in the other, but they appear in a dif-

272 Ngo-The and Ruhe

ferent order of importance. In the following, we will mention some typical deci-
sion problems in RE at each level.

Strategic decisions are not frequently encountered and are usually unstructured.

Identification of business goals: This decision defines the scope of a product or
an organization (client of the product). It is among the most important decisions
in RE. Goal-driven RE (Chap. 9) provides a systematic approach in RE based
on goals, showing that goals are the foundation of almost all other activities in
RE. The results, business goals, are used to guide the elicitation process and to
determine if a requirement is relevant. They can also serve as criteria in other
problems such as: requirements prioritization, selection, project and release
planning.
Selection of RE process: This is another important decision to make at the or-
ganization level; still some organizations choose not to face it. This decision is
guided by the business goals of the organization (that produces software prod-
ucts). This decision can have many sub-decisions: “Should the organization
have an established RE process?”, “Should it use an existing process or create
its own process?”, “Which process (among the existing ones) should it use?”,
“How should the selected process be adapted to the organization?”, “Should the
organization change the current process (to face new challenges)?”

Tactical decisions are mainly about planning and usually are semi-structured.
Any project manager is likely to face tactical decisions in every project. This
means that we have certain knowledge about these problems, but not enough to
consider them as structured. For many of these problems, it is not very difficult to
identify the set of alternatives. There is a general agreement about the set of crite-
ria. However, there is no widely accepted procedure to evaluate each alternative
against each criterion and to aggregate them to reach the final decision.

Identification of stakeholders: The participation of stakeholders might be a key
factor for the success of a project. The problem can be formulated as involving
one or some of the following decisions: “Should this person be invited as a
stakeholder?” (Each candidate is considered separately), “Who are stake-
holders?” (All candidates are considered), “What level of participation should
we expect from the stakeholders?”, “Should we prioritize the stakeholders?”.
Requirements selection: The decision here is “Which requirements should be
implemented?” This problem can be formulated as a “requirements prioritiza-
tion problem” (so that the most wanted requirements can be selected), “re-
quirements negotiation problem” (reaching a consensus among stakeholders
about which requirements to implement), or simply “requirements selection”
(picking out a subset of requirements to be implemented using a special proce-
dure or an optimization procedure).
Release Planning: The release planning problem is a generalization of the se-
lection problem with an extended time horizon (two or more releases). The
planning is of high importance, since it materializes long-term vision of the or-
ganization. The complexity of the problem is very high.

12 Decision Support in Requirements Engineering 273

Operational decisions are frequently encountered and concern specific tasks in
the RE process. We expect that they are more structured, less important than deci-
sions at higher levels, therefore easier to handle. However, it is not always the
case. Acceptance testing is an operational decision that is both difficult and impor-
tant. For acceptance testing it is rarely the case that a product is perfect. We have
to accept the product with a certain tolerance. We consider the problem to be
semi-structured.

12.3 Decision Support versus Decision Making

12.3.1 The Two Schools of Thinking

As pointed out by Glass et al. [25], research in software engineering in general
needs more references to other paradigms. While more and more research efforts
in software engineering refer to decision theory, most of them concentrate on the
application of specific methods to RE decision problems. The Analytical Hierar-
chy Process AHP [56] is the most widely referred to technique in RE decision
making. We argue that given the challenge of RE decision making, the methods
and algorithms alone are not enough. We believe that the clear distinction between
decision support and decision making is a fundamental point we can learn from
decision theory. This section gives only a brief description of the issue in the con-
text of RE.

The main obstacle in decision-driven RE research resides in the desire to solve
any problem formally and rigorously. This presumes that each problem can be
properly described by a formal model and is “solved” just using this model. It
equates decision making with finding the optimal solution. According to Roy [51]
and Schärlig [57], such thinking was also once dominant in management science
and operations research. The reality was that despite enormous progress in optimi-
zation and operational research, many questions in the real world could not be an-
swered in a satisfactory way. In many real situations, insisting on establishing the
ideal model and searching for the numerically optimal solution eventually ends in
a deadlock. Such problems have been characterized as “wicked problems” by Rit-
tel and Webber [47].

The above arguments are the starting point of the multi-criteria decision aiding
(MCDA) school of thinking in decision theory. This school emphasizes studying
decision support (or aid) rather than decision making. The following points sum-
marize the main differences between the two schools of thought:

Finding “The” optimal decision versus constructing “A” satisfactory decision:
Decision making believes in the existence and relevance of an optimal solution.
The mission of decision making is to find it or to help the decision maker to
find it. Decision support realizes that such an optimal solution does not exist in
many situations. The mission of decision support is to help the decision maker
find a satisfactory decision for the actual problem.

274 Ngo-The and Ruhe

Descriptive versus explorative model: Decision making relies on models to de-
scribe a reality. The models should only be accepted when they are “good
enough” to solve the problem. Decision support accepts that when no amount
of effort can produce a realistic and “good enough” model, then models should
be used as a means to explore the reality. In decision making we must under-
stand the reality to in order to create the model, while in decision support we
use models to understand the reality.
Process: In decision making, once we have a model, we use it to solve the
problem and obtain the optimal solution. In decision support, the understanding
process continues with the evolution of models until a satisfactory solution is
reached. This means that different models can be used iteratively during the de-
cision process.
Comparing alternatives: In decision making, the belief in the existence of the
optimal solution means that there must exist a way to compare all alternatives
through an evaluation. In decision support, when it is too difficult to compare
two alternatives, it is accepted that they cannot be compared.
Types of decision problems: As discussed in the previous point, decision mak-
ing holds that there must be a way to rank all alternatives in a decision problem.
Therefore, there is no need to distinguish three types of decisions (selection,
triage and ranking) as mentioned at the beginning of this chapter. This distinc-
tion makes sense only for the decision support school of thinking.
Structured versus Unstructured: If a model is proposed to solve a problem, it is
assumed that the problem is already structured. If we have enough understand-
ing, then the problem is structured and we can solve it using the decision mak-
ing approach. When the problem is unstructured, we can still go forward by
adopting the decision support approach and expect to find a satisfactory solu-
tion instead of the optimal solution.

12.3.2 Decision Making versus Decision Support for Software Release
Planning

Coming back to RE decision problems, we see that our situation is not much dif-
ferent from that experienced by management research. This is no surprise since
software engineering, particularly RE, has a strong component of management in
it. To make this discussion more concrete, let’s consider software release plan-
ning. A software release is a collection of new and/or changed features that form a
new product. Release planning for incremental software development assigns fea-
tures to releases such that most important technical, resource, risk and budget con-
straints are met.

In [15], Carlshamre provides an understanding of the release planning problem
in which many points confirm the need to adopt the decision support point of
view. Besides the analysis of the difficulty of describing the best solution (i.e. the
value of a release). In [55] it is argued that neither the subtlety of human judgment
nor the rigid strength of computational model alone is able to provide appropriate
decision support for the wicked problem of software release planning. The advan-

12 Decision Support in Requirements Engineering 275

tage of the human judgment is the ability to handle soft and implicit objectives and
constraints. The advantage of a computational model is exactly where human
judgment fails: to cover a large portion of the solutions space. The computational
complexity of the problem makes it impossible for the decision maker to have a
reasonable perception of the set of possible solutions and to evaluate and prioritize
different solution alternatives.

The approach of [55] provides a decision support where the advantages of both
sides are integrated. This integration of human judgment and a computational
model can be understood in two aspects. First, with the strength of a computa-
tional model, we can expect solutions of formally defined problems of large size
and complexity. Second, decision support needs the inclusion of human judgment
to include tacit and subjective components into the process of selecting the most
promising solutions. Typically, from this involvement, new questions are raised
leading to a better understanding of the project manager about different aspects of
the problem.

12.4 Analysis of Research

12.4.1 Classification Scheme

To understand the current situation and the tendencies of research concerning RE
decision problems, we have conducted a comprehensive but preliminary analysis
of existing research results. For that, we were looking for an appropriate classifi-
cation scheme. We followed the classification scheme proposed by Zave in [63]
proposed for all research in RE. This choice seems reasonable to us since RE deci-
sion support is part of RE. The first two dimensions (problem, solution), suggested
by [63], give us an overview of the research in RE decision problems: which prob-
lems are of concern, and which solutions are proposed. We use an additional di-
mension to characterize the current tendency in research. By analyzing the litera-
ture using this framework and the overview in the previous section, we will try to
clarify the following points:

Decision problems in literature. Which problems receive more attention and
which ones are neglected?
What are the proposed solutions? Which techniques are used?
How much effort is devoted to descriptive research? The question is important
since RE decision making is at its infancy and it is very important to get sub-
stantial knowledge (from descriptive research).

At this level we provide a simple scheme. More details will be provided in the
analysis. The first dimension of our classification scheme involves describing the
problem to be addressed.

276 Ngo-The and Ruhe

(1A) RE decision in general: We put into this category any paper discussing
different aspects of RE decision making, but not any particular decision prob-
lem.
(1B) Specific decision problems: This category includes papers discussing spe-
cific decision problems such as identification of stakeholders or requirements
negotiation.

The second dimension describes the contribution of papers to the solution of
the problem in consideration.

(2A) Proposed process-oriented solution: Papers in this category propose a
method in terms of a process or a guideline to deal with a particular problem.
They do not present formal representation, modeling, or algorithmic manipula-
tion.
(2B) Proposed product-oriented solution: For papers in this category, the par-
ticular problem is formulated using a formal model and solved using some al-
gorithm. A process can still be an essential part of the proposed solution, but a
formal model or a software tool is the core contribution.
(2C) Understanding of RE decision: Papers in this category report on the state
of practice, research or discussion of a topic related to RE decision.

The third dimension describes the characteristic of research from the perspec-
tive of decision theory:

(3A) Descriptive research: Papers in this category describe how RE decisions
are actually made in reality.
(3B) Prescriptive research: Papers in this category describe how RE decisions
should be made.
(3C) Other research: Papers in this category are neither descriptive nor pre-
scriptive.

12.4.2 Scope

The analysis covers publications from the last five years (from 2000) in the fol-
lowing journals: Requirements Engineering, ACM Transactions on Software En-
gineering and Methodology, Annals of Software Engineering, Information and
Software Technology, International journal of Software Engineering and Knowl-
edge Engineering, IEEE Software, and Empirical Software Engineering; and the
following conferences: Software Engineering and Knowledge Engineering
(SEKE), Product Focused Software Process Improvement (PROFES), IEEE Re-
quirements Engineering (ICRE). Since RE decision making is not yet an estab-
lished research topic, we cannot determine the papers using keywords. A paper is
selected if it satisfies at least one of the following three criteria:

12 Decision Support in Requirements Engineering 277

Discussing about decision in RE (e.g. decision process in RE).
A decision question can be identified as the main topic (e.g. how to select re-
quirements to implement).
An issue that is directly involved in making decisions.

From the reading of the selected papers, we identified other papers discussing
decision problems. We go through these new papers using the same criteria to ex-
tend the list of papers in consideration.

12.4.3 Classification

We have identified 44 papers and have classified them according to the three di-
mensions introduced above. The overall distribution of the papers is shown in Ta-
ble 12.1. The list of papers is presented in Table 12.2.

Table 12.1 Distribution of papers along the three dimensions

2A Process-
oriented

2B Product-
oriented

2C General un-
derstanding

Total

 3A 3B 3C 3A 3B 3C 3A 3B 3C 3A 3B 3C
1A 1 0 0 0 0 0 2 2 4 3 2 4 9
1B 0 10 0 0 16 0 4 3 2 4 29 2 35
Total 1 10 0 0 16 0 6 5 6 7 31 6 44

Table 12.2 List of Papers (1 of 2)

Classification
1 2 3

Paper Contribution

A B A B C A B C
[19] Enterprise-wide Requirements, Decision

Management
X X X

[5] Politics in RE X X X
[44] Decisions in RE X X X
[9] Decisions in RE X X X
[11] Political ecology in RE X X X
[24] Socially mediated process in RE X X X
[43] Decision making under uncertainty to RE X X X
[52] Decision Support in SE X X X
[61] Subjectivity in RE decision making X X X
[59] Identification of stakeholders X X X
[2] Requirements negotiation using set diagrams X X X
[4] Requirements elicitation using ethnography

analysis
 X X X

[7] Requirements elicitation with Solo Brain-
storming

 X X X

[8] Stakeholders participation in requirements
elicitation

 X X X

278 Ngo-The and Ruhe

Table 12.2 (cont.) List of Papers (2 of 2)

Paper Contribution Classification
[40] Prioritizing features for Agile X X X
[3] COTS selection with goal-oriented approach X X X
[16] Project planning X X X
[17] Comparison of requirements elicitation meth-

ods
 X X X

[28] New approach to acceptance test X X X
[12] EasyWinWin supporting negotiation X X X
[13] EasyWinWin supporting negotiation X X X
[23] Quantitative risk support decision making in

RE
 X X X

[31] Cost-value trade off in requirements prioritiza-
tion

 X X X

[32] Cost value trade off in requirements prioritiza-
tion

 X X X

[30] Requirements negotiation – optimizing cost-
value

 X X X

[41] Requirements negotiation – soft approach X X X
[53] Requirements negotiation – quantitative

WinWin
 X X X

[10] Algorithm of release planning X X X
[14] Influence diagrams in requirements selection X X X
[15] Release planning – Understanding X X X
[20] Financial approach for release planning X X X
[1] Release planning – case study X X X
[26] Release planning EVOLVE method X X X
[55] Release planning – EVOLVE* method X X X
[42] Release planning support based on effort es-

timation
 X X X

[37] COTS selection - PORE method X X X
[54] COTS selection – COTSIM method – simula-

tion
 X X X

[18] Requirements triage Case studies recom-
mendations

 X X X

[29] Requirements negotiation – Visualization is-
sues

 X X X

[22] Stakeholders’ involvement in RE X X X
[27] Selection of requirements elicitation methods X X X
[33] Comparison of requirements prioritization

methods
 X X X

[34] AHP vs Planning Game for requirements pri-
oritization

 X X X

[45] Case study – prioritization in market-driven
RE

 X X X

12 Decision Support in Requirements Engineering 279

12.4.4 Main Observations

We went through the selected papers to get an insight of research concerning deci-
sion problems in RE and present our observations. Our first four observations
concern the first dimension (problem) that is resumed in Table 12.3.

Table 12.3 Decision problems in consideration

Problem Papers Total
1A General

Non technical issues in RE [5], [11], [24], [61] 4
Decision making in RE [44], [9], [52 3
Others [19], [43] 2

1B Specific
Stakeholder identification [59], [22], [8] 3
Requirements negotiation [2], [12], [13], [30], [41], [53], [29] 7
Requirements elicitation [4], [7] 2
Requirements prioritization [40], [31], [32], [18], [45] 5
COTS selection [3], [37], [54] 3
Planning [16], [23], [14], [15], [20], [1], [26], [53],

[42]
9

Comparison of methods [17], [27], [33], [34] 4
Others [10], [28] 2

1. The importance and challenge of RE decision making have not yet been widely
considered in the RE research community. In all of these journals and confer-
ence publications, searches using the two keywords decision and requirements
engineering gave very few results. These two keywords do not even appear in
many selected papers. Furthermore, despite a large scope review, only 44 pa-
pers have been identified as having a significant relationship with decision
problems.

2. There is a discrepancy between our claim that RE process is full of decisions
(that are supposed to be difficult) and the fact that just a few decision problems
are explicitly formulated in the literature. Perhaps because the perception of re-
quirements as decisions is just recent and many decisions are not yet identified
as important enough to be addressed as an explicit problem.

3. While papers addressing problems such as: project planning (including release
planning), requirements prioritization and requirements negotiation are domi-
nant (21 out of 35 papers addressing specific problems), there is just a modest
number of papers related to requirements elicitation [4, 7], and to strategic de-
cisions [17, 27, 33, 34]. The rarity of papers discussing requirements elicitation
can be explained by that most of the papers addressing the problem discuss
only the process and do not relate to decision making. Even in the two papers
selected the role of decision making in RE is recognized but no specific formu-
lation of a decision problem is mentioned. As an example, Andreou [4] pro-
motes an elicitation process that emphasizes the role of non-technical factors
such as human, social and organization (HSO). With regard to strategic deci-
sions, the four related papers [17, 27, 33, 34] do not directly address any deci-

280 Ngo-The and Ruhe

sion problems, but only contribute some necessary information. There can be
many ways to explain this situation. However, without further research, we
cannot give a reliable explanation. It might be because the awareness of deci-
sion making in RE is recent; or certain decisions are too easy (the guidance in
the process is enough), and others are too difficult (even to formulate).

4. The awareness of the difficulties in RE decision making caused by non-
technical issues [5, 11, 24, 61] has emerged with the awareness of the role of
decision making in RE. Andriole [5] states that requirements management is
indeed a political process. Strigini [61] emphasizes that in many cases, impor-
tant decisions made in the software industry are subjective. Bergman et al. [11]
point out that large-scale system requirements are constructed through a com-
plex decision process in which political ambiguity (non-technical issues) can
play a role that is as significant as that of domain complexity (technical issues).
Galliers and Swan [24] state that RE should be addressed by an approach that
goes beyond technical concerns, a “Socially Mediated Process”.

5. This observation is related to the second dimension (proposed solution) which
is resumed in Table 4. This table concerns only solutions having model/tool
support to solve a decision problem that is explicitly identified, not just a proc-
ess. From the table, the most popular approach is still optimization (maximizing
profit, value, etc.). The application of new techniques such as simulation, artifi-
cial intelligence, and decision support systems is still limited.

Table 12.4 Techniques used in decision problems

Paper Problem Technique

[2] Requirements negotiation Set theory

[12,13] Requirements negotiation Group decision making

[30] Requirements negotiation Optimization

[41] Requirements negotiation Optimization

[53] Requirements negotiation Optimization

[14] Requirements negotiation Influence Diagram

[40] Requirements prioritization Finance

[31,32] Requirements prioritization Cost-value trade off

[16] Planning Artificial intelligence – Experience Base

[23] Planning Risk management

[42] Planning Effort based planning

[15] Planning Optimization

[20] Planning Finance – optimization

[1,26,55] Planning Optimization

[54] COTS selection Simulation

6. Our sixth observation concerns the third dimension (descriptive/prescriptive).
The situation is particularly unbalanced with only seven descriptive papers [5,
18, 19, 22, 27, 45, 61]. DeGregorio [19] describes an enterprise-wide approach
to requirements and decision management in industry. Davis [18], Hickey and
Davis [27] give practical advice about requirements negotiation and elicitation
based on their experience in industry. Andriole [5], Strigini [61] discuss some
difficulties concerning socio-political issues in decisions in RE. Fakun and

12 Decision Support in Requirements Engineering 281

Greenough [22] describe two industrial experiments to measure the influence of
participants in the development of industrial hypermedia applications. Regnell
et al. [45] describe an industrial case study on distributed prioritization. How-
ever, to some extent, some of these papers [19, 22, 45] are not completely “de-
scriptive” since they are designed to validate a process, a method proposed by
the authors. Therefore, they are somewhere between the description of the real
world and the prescription of the model/process in consideration. The four
other papers are not related to a particular experiment in industry. This analysis
shows that the presence of descriptive research in RE decision making is very
modest. Given the fact that research in RE decisions is still in its infancy, de-
scriptive research is particularly important. Without a deep understanding of
how the practitioners currently handle the problems and why they do what they
do (descriptive research), we do not have a solid background to prescribe suit-
able solutions (prescriptive research) that can be accepted by practitioners. This
might be one of the factors widening the gap between researchers and practitio-
ners.

7. The last observation concerns the level of support provided to decision making
in RE. We have seen that only a few problems are explicitly formulated as de-
cision problems, of which release planning is perhaps the most important.
There are many approaches addressing this problem, each of which represents
an understanding from a different angle:

Carlshamre [15] conducts a very comprehensive study to understand the prob-
lem and come to the conclusion that the problem is “wicked”. From our point
of view, this means unstructured.
On the other extreme, Denne and Cleland-Huang [20] propose a model using
financial data (cost and net present value) to solve the release planning problem
by optimizing the return on investment. All we need to do is collect the data,
apply the model and get the optimal solution. The fact that a formal model is
proposed means that the problem is perceived as structured. At least, it can be
true in the context where the method is used (the organization has high maturity
and has enough data and knowledge to estimate the cost of development, as
well as the cash flow of each marketable feature).
In between, Conradi et al. [16] and Ruhe and Ngo-The [55] treat the problem as
semi-structured. In [16], the proposed approach combining different techniques
in artificial intelligence, experience bases, and evolution patterns to support the
planning process.

12.5 Conclusion and Future Research

Decisions on software technologies, processes, resources and tools are the crystal-
lization points to achieve quality of software-dependent products and services
[19]. The impact of better decisions becomes stronger the earlier in the software
life-cycle the decision has to be made. Decisions in software engineering should

282 Ngo-The and Ruhe

be based on both explicitly formulated and implicitly known objectives and con-
straints. The goal of decision support is not to replace human judgment and exper-
tise, but to assist humans in making better decisions.

RE is a decision-driven process impacted by a high degree of uncertainty. Un-
certainty can arise from organizations, people, technologies, functionality, time,
budget, and resources. Under these circumstances, it does not make sense to look
for optimal solutions, but rather to determine reasonable solution alternatives. Any
formalized technique in isolation is unlikely to determine meaningful results be-
cause only a subset of the reality can be taken into account. Human intelligence
provided by domain and/or solution experts is more likely to address hidden fac-
tors that are part of human decision making. This is why we have strongly argued
in this chapter to follow the software engineering decision support paradigm and
to apply it comprehensively in RE.

Based on the comprehensive analysis of research conducted in this chapter, an
agenda for future research is proposed:

Identification and study of further decision problems in the RE process. Re-
searchers and practitioners should work together to identify important decision
problems in the RE process.
Advancing software engineering decision support methodology with emphasis
on decisions under uncertainty. There is an existing portfolio of techniques for
how to approach uncertainty known from other disciplines such as probability
theory, statistics, Bayesian estimation, fuzzy sets and fuzzy logic and rough set
theory.
Development of innovative solution approaches exploiting the specific struc-
ture of requirements decision problems. Especially, there is a substantial lack in
addressing strategic decision problem properly.
Validate the impact of better decisions on software processes and products.
More and qualified research is needed to determine the added value of follow-
ing a more systematic way of making decisions.
Further investigation of the influence of non-technical issues in RE decision
making (political, social, technical, organizational and cultural). More research
in this direction would be helpful for practitioners to deal with non-technical is-
sues.
Empirical studies have to be performed more comprehensively and more fo-
cused. They are excellent means to provide substantial input for decision sup-
port. The decision-prone character of software development and evolution is an
excellent orientation for the selection of the most essential topics and questions
addressed by empirical investigations.

Acknowledgements

The authors would like to thank the Alberta Informatics Circle of Research Excel-
lence (iCORE) for its financial support of this research. Thanks also to all the re-
viewers for their valuable comments.

12 Decision Support in Requirements Engineering 283

References

1. Amandeep A, Ruhe G, Stanford M (2004) Intelligent support for software release plan-
ning. In: Proceedings of PROFES’04, LN on Computer Science, Vol. 3009, 248 262

2. Al-Karaghouli W, Al-Shawi S, Fitzgerald G (2000). Negotiating and understanding in-
formation systems requirements: The use of set diagrams. Requirements Engineering
5(2): 93 102

3. Alves C, Finkelstein A (2002). Challenges in COTS decision making: A goal-driven re-
quirements engineering perspective. In: Proceedings of 14th International Conference
on Software Engineering and Knowledge Engineering, Ischia, pp.789 794

4. Andreou AS (2003) Promoting software quality through a human, social and organiza-
tional requirements elicitation process. Requirements Engineering 8(2): 85 101

5. Andriole S (1998) The politics of requirements management. IEEE Software, Nov-Dec:
pp.82 84

6. Anthony RN (1965) Planning and control systems: A framework for analysis. Harvard
University, Boston, USA

7. Aurum A, Martin E (1998) Requirements elicitation using solo brainstorming. In: Pro-
ceedings of 3rd Australian Conference on Requirements Engineering (ACRE’98), Mel-
bourne, Australia, pp.29 37

8. Aurum A, Martin E (1999) Managing both individual and collective participation in
software requirements elicitation process. In: Proceedings of 14th International Sympo-
sium on Computer and Information Sciences (ISCIS’99), Kusadasi, Turkey,
pp.124 131

9. Aurum A, Wohlin C (2003) The fundamental nature of requirement engineering activi-
ties as a decision making process. Information and Software Technology 45(14):
945 954

10. Bagnall AJ, Rayward-Smith VJ, Whittley IM (2001) The next release problem. Infor-
mation and Software Technology 43(14): 883 890

11. Bergman M, King JL, Lyytinen K (2002) Large-scale requirements analysis revisited:
The need for understanding the political ecology of requirements engineering. Re-
quirements Engineering 7(3): 152 171

12. Boehm B, Egyed A, Port D, Shah A, Kwan J, Madachy R (1998) A stakeholder Win-
Win approach to software engineering education. Annals of Software Engineering 6:
295 321

13. Boehm B, Grunbacher P, Briggs RD (2001) Developing groupware for requirements
negotiation: Lessons learned. IEEE Software, May-Jun pp.46 55

14. Burgess CJ, Dattani I, Hughes G, May JHR, Rees K (2001) Using influence diagrams to
aid the management of software change. Requirements Engineering 6(3): 173 182

15. Carlshamre, P (2002) Release planning in market-driven software product development:
Provoking an understanding. Requirements Engineering 7(3): 139 15

16. Conradi R, Nguyen MN, Wang AI, Liu C (2000) Planning support to software process
evolution. International Journal of Software Engineering and Knowledge Engineering
10: 31 47

17. Coughlan J, Macredie RD (2002) Effective communication in requirements elicitation:
A comparison of methodologies. Requirements Engineering 7(2): 47 60

18. Davis AM (2003) The art of requirements triage. IEEE Computer 36(3): 42 49

284 Ngo-The and Ruhe

19. DeGregorio G (1999) Enterprise-wide requirements and decision management. In: Pro-
ceedings of 9th International Symposium of the International Council on System Engi-
neering, Brighton

20. Denne M, Cleland-Huang J (2004) The incremental funding method: Data-driven soft-
ware development. IEEE Software, May-Jun, pp.39 47

21. Evans R, Park S, Alberts H (1997) Decisions not requirements: Decision-centered engi-
neering of computer-based Systems. In: Proceedings of International Conference on
Engineering and Computer-Based Systems, pp.435 442

22. Fakun D, Greenough RM (2004) An exploratory study into whether to or not to include
users in the development of industrial hypermedia applications. Requirements Engi-
neering 9(1): 57 66

23. Feather MS, Cornford SL (2003) Quantitative risk-based requirements reasoning. Re-
quirements Engineering 8(4): 248 265

24. Galliers RD, Swan JA (2000) There's more to information systems development than
structured approaches: Information requirements analysis as a socially mediated proc-
ess. Requirements Engineering 5(2): 74 82

25. Glass R, Vessay I, Ramesh V (2002) Research in software engineering: An analysis of
the literature. Information and Software Technology 44(8): 491 506

26. Greer D, Ruhe G (2003) Software releasing planning: An evolutionary and iterative ap-
proach. Information and Software Technology 46(4): 243 253

27. Hickey AM, Davis AM (2003) Elicitation technique selection: How do experts do it?
In: Proceedings of 11th IEEE International Conference Requirements Engineering
(ICRE’03), pp.169 178

28. Hsia P, Kung D (1997) Software requirements and acceptance testing. Annals of Soft-
ware Engineering 3: 291 317

29. In H, Roy S (2001) Visualization issues for software requirements negotiation. In: Pro-
ceedings of 25th International conference Computer Software and Applications Confer-
ence (COMPSAC), pp.10 15

30. Jung HW (1998) Optimizing value and cost in requirements analysis. IEEE Software,
Jul-Aug, pp.74 78

31. Karlsson J (1996) Software requirements prioritizing. In: Proceedings 2nd IEEE Inter-
national Conference Requirements Engineering (ICRE’96), pp.110 116

32. Karlsson J, Ryan K (1997) A cost-value approach for prioritizing requirements. IEEE
Software, Sept-Oct, pp.67 74

33. Karlsson J, Wohlin C, Regnell B (1998) An evaluation of methods for prioritizing soft-
ware requirements. Information and Software Technology 39: 939 947

34. Karlsson L, Berander P, Regnell B, Wohlin C (2004) Requirements prioritization: An
experiment on exhaustive pair-wise comparisons versus planning game partitioning. In:
Proceedings of EASE 2004, pp.145 154

35. Kotonya G, Sommerville I (1998) Requirements engineering processes and techniques.
Wiley, Chichester, UK

36. Macaulay LA (1996) Requirements engineering, Springer Series on Applied Comput-
ing, Springer, London, UK

37. Maiden NA, Ncube C (1998) Acquiring COTS software selection requirements. IEEE
Software, Mar-Apr, pp.46 56

38. Mintzberg H, Raisinghani D, Theoret A (1976) The structure of unstructured decision
process. Administrative Science Quarterly, June, pp.246 275

12 Decision Support in Requirements Engineering 285

39. Mumford E (2000) A socio-technical approach to systems design. Requirements Engi-
neering 5 (2): 125 133

40. Nejmeh BA, Thomas I (2002) Business-driven product planning using feature vectors
and increments. IEEE Software, Nov-Dec, pp.34 42

41. Ngo-The A, Ruhe G (2003) Requirements negotiation under incompleteness and uncer-
tainty. In: Proceedings of 15th, International Conference on Software Engineering and
Knowledge Engineering (SEKE'03), pp.586 593

42. Penny D (2002) An estimation-based management framework for enhancive mainte-
nance in commercial software products. In: Proceedings of International Conference on
Software Maintenance, pp.122 130

43. Pomerol JC (1998) Scenario development and practical decision making under uncer-
tainty: Application to requirements engineering. Requirements Engineering 3(3-4):
174 181

44. Regnell B, Paech B, Aurum A, Wohlin C, Dutoit A, Natt och Dag J (2001) Require-
ments mean decisions! – Research issues for understanding and supporting decision
making in requirements engineering. In: Proceedings of First Swedish Conference on
Software Engineering Research and Practice (SERP’01), Ronneby, Sweden, pp.49 52

45. Regnell B, Höst M, Natt och Dag J, Beremark P, Hjelm T (2001) An industrial case
study on distributed prioritization in market-driven requirements engineering for pack-
aged software. Requirements Engineering 6(1): 51 62

46. Regnell B, Karlsson L, Höst M (2003) An analytical model for requirements selection
quality evaluation in product software development. In: Proceedings of 11th IEEE In-
ternational Conference Requirements Engineering, pp.254 263

47. Rittel H, Webber M (1984) Planning problems are wicked problems. In: Developments
in Design Methodology, Cross N (Ed.), Wiley, Chichester, UK, pp.135 144

48. Rolland C, Souveyet C, Moreno M (1995) An approach for defining ways-of-working.
Information Systems 20(4): 337 359

49. Rosca D, Greenspan S, Feblowitz M, Wild C (1997) A decision making methodology in
support of the business rules lifecycle. In: Proceedings of 3rd IEEE International Sym-
posium on Requirements Engineering, pp.236 246

50. Roy B, Bouyssou D (1993) Aide multicritère à la décision: méthodes et Cas.
Economica, Paris, France

51. Roy B (1993) Decision science or decision aid science. European Journal of Operation
Research 66(2): 184 203

52. Ruhe G (2003) Software engineering decision support – Methodology and applications.
In: Innovations in Decision Support Systems. Advanced Knowledge International, Ton-
foni G, Jain L (Eds.) Adelaide, Australia, pp.144 171

53. Ruhe G, Eberlein A, Pfahl D (2002) Quantitative WinWin - A quantitative method for
decision support in requirements negotiation. In: Proceedings of 14th International
Conference on Software Engineering and Knowledge Engineering, Ischia, Italy,
pp.159 166

54. Ruhe G (2003) Intelligent support for selection of COTS products. In: Web, Web-
Services, and Database Systems,. Chaudhri A, Jeckle M, Rahm E, Unland R (Eds.).
Lecture Notes in Computer Science, Springer, Heidelberg, Germany, 2593: 34 45

55. Ruhe G, Ngo-The A (2004) Hybrid intelligence in software release planning. Interna-
tional Journal of Hybrid Intelligent System, 1: 99 110

56. Saaty T (1980) The analytic hierarchy process: Planning, priority setting, resource Allo-
cation. McGraw-Hill, NY, USA

286 Ngo-The and Ruhe

57. Schärlig A (1996) The case of the vanishing optimum. Journal of Multi-criteria Deci-
sion Analysis 5: 160 164

58. Simon HA (1960) The new science of management decisions. Prentice Hall, NJ, USA
59. Sharp H, Finkelstein A, Galal G (1999) Stakeholder identification in the requirements

engineering process. In: Proceedings of 10th International Workshop on Database and
Expert Systems Application, IEEE Computer Society, pp.387 391

60. Sommerville I, Sawyer P (1997) Requirements engineering: A good practice guide.
Wiley, New York, USA

61. Strigini L (1996) Limiting the dangers of intuitive decision making. IEEE Software,
Jan, pp.101 103

62. Wild C, Maly K, Zhang C, Roberts C, Rosca D, Taylor T (1994) Software engineering
life cycle support – Decision based systems development. In: Proceedings of IEEE Re-
gion 10’s 9th International Conference on Computer Technology, pp.781 784

63. Zave P (1997) Classification of research efforts in requirements engineering. ACM
Computing Surveys 29(4): 315 321

Author Biography

Dr. An Ngo-The got his BSc in Mathematics and Computer Science at the Univer-
sity of Ho-Chi-Minh City, Vietnam in 1985 and his MBA at the French-
Vietnamese Center for Management Education (Vietnam) in 1997. He received
his DEA (equivalent to MSc) in Decision Support at the laboratory LAMSADE,
University Paris Dauphine, France in 1998. He got his PhD in Computer Science
(Decision Support in Operational Research) at the laboratory LAMSADE, France
thanks to the scholarship of the ESSEC Doctoral Program. Since October, 2002,
he is a post-doctorate fellow at the laboratory of Software Engineering Decision
Support, University of Calgary, Canada.

Dr. Ruhe is an iCORE Professor holds an Industrial Research Chair in Software
Engineering at University of Calgary. He is following an interdisciplinary research
approach with main results and publications in the areas of software engineering
decision support, software release planning, requirements engineering, COTS se-
lection and project management. He received a doctoral degree in Mathematics
with emphasis on Operations Research from Freiberg University, Germany and a
doctorate habil.nat. degree from both the Technical University of Leipzig and Uni-
versity of Kaiserslautern, Germany. He got an Alexander von Humboldt research
fellowship and was visiting scientist at the IBM Research Center in Heidelberg.
From 1996 until 2001 he was deputy director of the Fraunhofer Institute for Ex-
perimental Software Engineering. Dr. Ruhe is the author of two books, several
book chapters and more than 120 publications. He is a member of the ACM, the
IEEE Computer Society and the German Computer Society GI.

13 Market-Driven Requirements Engineering for
Software Products

Björn Regnell and Sjaak Brinkkemper

Abstract: An increasing part of software development is devoted to products that
are offered to an open market with many customers. Market-driven development
imposes special challenges for the requirements engineering process. This chapter
provides an overview of the special characteristics of market-driven requirements
engineering and describes the most important challenges of the area. Key elements
of market-driven requirements engineering processes are presented together with a
definition of process quality. Requirements state models and requirements reposi-
tories are also described and examples of typical solutions to progress tracking and
data management are provided. The difficult problem of release planning is also
discussed and an industrial example of a release planning process is given.

Keywords: Market-driven requirements engineering, Product software, Release
planning, Requirements selection, Process quality, Process improvement.

13.1 Introduction

An increasing part of the software produced is aimed at being offered to an open
marketplace rather than to one specific customer. This type of software develop-
ment is often called market-driven and refers to the situation where the develop-
ment costs of a generic product are divided among many buyers on an open mar-
ket and where the potential profit is rewarded to the producer. Market-driven
development is different from customer-specific development (also called bespoke
development), where one single customer pays all development costs and the re-
sulting product is specific to the needs and wishes of that one customer. This
chapter explains the specific challenges of requirements engineering in a market-
driven software development context, with focus on process issues and manage-
ment concerns. It also describes some of the solutions provided by recent re-
search in the area of Market-Driven Requirements Engineering (MDRE).

This chapter in particular, and MDRE in general, mainly takes the viewpoint of
the developing organization and focuses on the producer’s requirements engineer-
ing process, which is aimed at aligning the product content with the needs of the
targeted market segments in order to create a profitable software product. There
are a number of basic questions that need to be answered by an organization that is
developing software products for an open market:

How to design and manage a MDRE process? In order to maximize profit it is
vital to outperform the competing software producers at requirements engineer-
ing. The developing organization needs to establish an efficient MDRE process

288 Regnell and Brinkkemper

that defines how to work with the classical RE activities, such as elicitation,
specification and validation, but in a market driven context.
How to design and manage a MDRE repository? The requirements produced
during classical RE are often stored in a document denoted “the specification”.
In MDRE, it is often more useful to store information in a repository that is dy-
namically evolving with past and recent data of varying type and level of ab-
straction, such as: potential and current customer profiles, current and previous
release contents, up-to-date status of both candidate requirements and require-
ments under development.
How to make profitable release planning? A key result of the MDRE process is
the strategic decision of what to deliver when. This decision takes into account
the strategic assets of the developing organization such as the competence of its
engineers, its software architecture investments to date, its current customer
base, and combines this with the overall business strategy of the company in
order to form a list of adequately detailed requirements that are to be released
to the market at a carefully selected point in time.

This chapter has many relations to other chapters of this book. Elicitation
(Chap. 2) is a very important part of MDRE but its focus is shifted from acquisi-
tion of one particular customer’s wishes to a combination of market analysis and
generation of new ideas based on opportunities provided by new technology.
Specification techniques from Chap. 3 can be utilized, but it is important to realize
that in the MDRE situation the set of requirements rapidly may get very large and
not all requirements can be specified in detail. Often natural language is the main
way of describing the major part of the requirements, and how to deal with large
repositories of textual requirements is further discussed in Chapter 10.

Prioritization (Chap. 4) is a key element of decision-making in MDRE, and de-
cision support (Chap. 12) can help in making better re-lease plans. Although each
requirement is treated as a separate element of the MDRE process, intricate de-
pendencies among requirements (Chap. 5) make release planning (Sect. 13.5) and
impact analysis (Chap. 6) increasingly complex. Requirements-based estimations
in general become more uncertain as the overwhelming number or potential de-
pendencies must be excluded from in-depth analysis for practical reasons.

It is recommended that the reader first get a basic knowledge of the state-of-
the-art part of the book (in particular Chaps. 2, 4, 5 and 6) before reading this
chapter. It is also recommended that Chap. 13 is studied in conjunction with
Chaps. 10 and 12, to get a broad view of the challenges and tools within the
MDRE area.

The chapter is organized as follows. Sect. 13.2 is devoted to an in-depth de-
scription of the context and concepts of MDRE and describes what is particular to
the market-driven situation compared to the customer-specific situation. Sect. 13.3
describes the main elements of the MDRE process and discusses various issues in
relation to that process, such as process quality and process capacity, and Sect.
13.4 describes MDRE data management and the relation between requirements re-
finement states and the use of a requirements repository. Section 13.5 provides de-
tails of the special nature of elicitation in the MDRE context. Section 13.6 de-

13 Market-Driven Requirements Engineering for Software Products 289

scribes road mapping and release planning as a vehicle for profitable products. Fi-
nally, Sect. 13.7 concludes the chapter.

13.2 Concepts and Context

This section introduces the MDRE context in more detail. Firstly, a number of
concepts are defined in order to establish a basic terminology for different types of
variants of MDRE. Secondly, a characterisation of the differences between cus-
tomer-specific RE and MDRE is given. Finally, a number of important challenges
in MDRE are discussed.

13.2.1 Basic Concepts

Market-Driven Requirements Engineering (MDRE) covers the classical RE activi-
ties, such as elicitation, specification, and validation, adapted to the market-driven
situation, where a software producer develops a product that is offered to an open
market with many customers. MDRE also covers the specific activities needed in
a market-driven context, such as release management and market analysis. MDRE
is often conducted under the pressure of competition from other producers, and as
the market and product evolve, the MDRE process enacted by a specific software
developing organization also needs to be evolved in order to stay ahead of compe-
tition.

Of course, the buyer of a software product also has to do some careful require-
ments engineering in order to select the right product that matches the specific
needs of that buyer. This selection process is out of direct control of the producer
and a research area of its own (often called COTS selection, see e.g. [24, 18]) and
is out of scope of this chapter. However, it is important for the producer to under-
stand how potential buyers may think in their selection process. This type of in-
formation regarding customer priorities is subject to market analysis, as described
in Sect. 13.4.

There are a number of variants of software products. Table 13.1 provides a
classification and some examples of software products based on two dimensions:
(1) the degree of customization and (2) the hardware/software content. The degree
of customization is divided into three levels. A product is said to be generic if it is
intended to be used as-is, out-of-the-box, perhaps with minor configurations that
are possible to be done by the end-user. A product is said to be customized if the
product is intended to be useful after it has been tailored to one specific cus-
tomer’s needs, e.g. through adding modules via an open application interface. A
product is said to be customer specific if the entire product is developed with one
particular customer’s wishes in mind.

The hardware/software content is divided into three classes: pure hardware de-
notes products that are fixed through its hardware architecture and contains no
software that can make the features of the product flexible; embedded systems im-

290 Regnell and Brinkkemper

ply products consisting of both a hardware platform and accompanying embedded
software; pure software denote a product that is completely comprised of software
and sold independently of its hardware platform(s).

In Table 13.1, the types of software products that are market-driven include ge-
neric/customized and embedded systems/pure software and have shaded cells. The
cells with thick frame are product software (pure generic/customized software).

The acronym COTS (Commercial Off-The-Shelf) is sometimes used to denote
software product, but we have deliberately not used this term subsequently, as it is
overloaded with many meanings, see e.g., [20].

Table 13.1 Examples of variants of hardware and software products

Pure Hardware Embedded Systems
(HW+SW)

Pure Software

Generic Note sticks Mobile phone Firewall

Customized Office furniture Customized car Enterprise resource
planning systems

Customer-Specific Portrait painting Military vehicle Web Site

The distinction between market-driven and customer-specific development is
not strict. For example, it is not uncommon that the developing organisation both
sells a generic product to an open market and at the same time sells consultancy
hours for customizing the product. Some new and costly parts in product evolution
are often developed as a customer-specific feature that is paid by a specific client
and later generalized and included in the generic product to get more revenue from
the investment. In these cases, the software producer has to deal with both MDRE
and bespoke RE, as well as generalisation of custom parts.

There are, of course, other aspects that affect the nature of the MDRE context,
not represented in Table 13.1. One additional aspect is the type of buyer, which
can be divided into enterprise versus consumer. Some products are sold to only
one of these segments, whereas some products are sold to both types. MDRE for
enterprise products may differ in many respects compared to MDRE for consumer
products, e.g. with respect to usability issues, product image, type of marketing
channels and number of customer relations that need to be maintained.

The level of complexity of the user interface is also a factor that affects the
MDRE process. Some products are almost invisible, e.g. an embedded Automatic
Braking System in a car that has a simple user interface including a pedal and a
lamp, but the software itself is very complex. End-users of systems with complex
user interfaces of, for example, desktop applications are probably more likely to
give extensive feedback on user interface issues, whereas transparent embedded
systems perhaps only render attention by end-users when they do not work as in-
tended. This in-turn may have strong implications on the elicitation process and
how to treat software usability in MDRE. (A case study in usability engineering in
a market-driven context is presented in [23].)

13 Market-Driven Requirements Engineering for Software Products 291

13.2.2 Characteristics of MDRE

Empirical evidence from a number of case studies and surveys show that MDRE
is different from the RE that is conducted in customer-specific projects in many
ways [5, 6, 19, 26, 15, 25, 12]. The primary objective of market-driven develop-
ment is to deliver the right product at the right time, while the bespoke situation
often is focused on fulfillment of a contract and compliance to a requirements
specification. In the MDRE case, success is determined by sales, market share,
product reviews etc., while in the bespoke case, customer satisfaction and user ac-
ceptance is directly determining whether the project is a failure or not. The life cy-
cle of a bespoke system is often viewed as divided into development first and then
maintenance. There is often one major release, whereas market-driven develop-
ment often is a long series of releases, and the product is undergoing continuous
evolution rather than maintenance.

In MDRE requirements elicitation is often devoted to innovation of new re-
quirements combined with market analysis, whereas customer-specific elicitation
is focusing on collecting information regarding one organizations wishes through,
e.g., interviews with the known users. In MDRE, some of the features to be re-
leased may be confidential and the eventual users unknown, so elicitation cannot
always rely on interviews with customers and end-users as the main source of in-
formation. Requirements specifications in the MDRE case are often less formal
compared to the bespoke case, and natural language text is the dominating way of
documenting the results of MDRE. (See also Chap. 15 on elicitation issues in
web-based information systems.)

While much effort in bespoke RE is devoted to negotiation and conflict resolu-
tion (see Chap. 7), the MDRE case is more focused on prioritization, cost-
estimation and release planning, and these activities are all conducted by the de-
veloping organization [5]. An example of a case study in market-driven prioritiza-
tion is available in [28] and Chapter 4 includes an in-depth account of prioritiza-
tion techniques.

In the bespoke case, validation can be made continuously through the contacts
between the customer and the developers, but in the market-driven case validation
is often delayed until a late stage in the development, e.g. at expositions during
fairs or during beta tests with selected key customers.

Some of the most important characteristics of a typical MDRE context are
summarized subsequently.

The developing organization makes all decisions but also takes all risks.
There is a continuous flow of requirements throughout the product lifetime.
The requirements volume is potentially very large and continuously growing.
A majority of the requirements are informally described.
The product is evolving continuously and delivered in multiple releases.
Release planning focuses on time-to-market and return-on-investment.

292 Regnell and Brinkkemper

13.2.3 Challenges in MDRE

In a survey on market-driven requirements engineering [15], a number of chal-
lenges were identified. The study results are based on interviews with employees
at five different companies of varying size and maturity. The purpose of the study
is to provide insights into the special RE challenges in market-driven software de-
velopment. Subsequently follows a short explanation of the most salient chal-
lenges found. For more details see [15].

Balancing market pull and technology push. It is necessary to find a good
trade-off between requirements corresponding to perceived user needs and new,
inventive ones that may provide a competitive advantage through ground-
breaking technology. Finding a good balance between technology-driven and
needs-driven requirements may be a delicate challenge.
Chasm between marketing and development. In some companies it can be ob-
served that there is a gap between marketing and developers concerning the
views on requirements engineering. Better communication and collaboration
between these groups are needed, in order to increase the requirements quality
and thereby the quality of the final product.
Organizational instability and market turbulence. Companies without a defined
process take a significant risk if key persons leave the organization, since they
lack the necessary documentation and structure. In times of downsizing or rapid
expansion it is very difficult to install a repeatable process.
Simple tools for basic needs. Some companies requested simple and easy-to-use
techniques for basic activities. For these companies it was a challenge to find
solutions that are not too complex.
Requirements dependencies. Dependencies among requirements make release
planning difficult. Some companies treat dependencies in a basic way by bun-
dling related requirements, but efficient ways of managing at least the most im-
portant dependencies are needed. (See further Chap. 5.) Different types of de-
pendencies are reported in the case study by Carlshamre et al. [7].
Cost-value-estimation and release planning. Release planning relies on accu-
rate estimates; underestimation of cost may result in an exceeded deadline
while over-estimation of cost may exclude valuable requirements; over- or un-
derestimation of value may result in a product that is badly aligned with actual
market needs and thus make the development investment a losing business.
Overloaded Requirements Management. Requirements suggestions from devel-
opers and customers are essential. It is a challenge to prevent the requirements
repository from being flooded with requirements and how to maintain through-
put at times when the number of arriving requirements peak.

The challenges stated above reveal intrinsically difficult problems and it is
unlikely that the challenges can be met by a single, simple solution. The key issue
for a market-driven company is to continuously improve in managing these chal-
lenges in such a way that it stays ahead of competitors.

13 Market-Driven Requirements Engineering for Software Products 293

13.3 The MDRE Process

This section provides a definition of MDRE process quality in terms of decision
outcomes in requirements selection. Process capacity and the importance of hav-
ing a screening function is also discussed.

As described in Sect. 13.1, requirements are continuously generated during the
entire lifetime of the product. The software is released in a series of releases as a
result of product evolution, where new features are added and existing features are
improved according to the advancement of the targeted market. In general, the
MDRE process can be seen as a way of synchronizing the work with the continu-
ous flow of candidate requirements and the work with the discrete release events.
This synchronisation should enable all parts of development from RE to V&V to
work in concert towards the same goals. The main vehicles for communicating
these goals are the strategic roadmap together with the release plan of the product.

When designing an MDRE process for a specific company, it is important to
realize that there are many situational factors that determine what the best concrete
process implementation is. Such factors include: type of development process,
type of distribution channels, price and licensing policy, type of market, what is
the distinguishing customer value, product complexity, nature of competition, cus-
tomer behaviour, requirements on product flexibility and adaptability, user inter-
face complexity, predictions on sales, sales channels, etc. It is obvious that the ma-
turity of the developing organization’s development process with the competence
of the developers, as well as the maturity of the market with customers’ knowl-
edge of how to apply technology for their own benefit, are major determining fac-
tors of what is most important to get right in the MDRE process. A further discus-
sion on maturity issues in MDRE is provided in [16].

13.3.1 Process Quality

When designing a MDRE process that is adapted to a specific organisation’s
needs, it may be valuable to define criteria for process success and thus to have a
concrete notion of process quality. Of course, the process quality is intimately re-
lated to the quality of the artefacts that are produced during the process, and
MDRE processes typically generate requirements descriptions in various forms.
However, a major process quality issue in MDRE is the quality of decisions that
are made about produced artefacts. One way of capturing decision quality is by re-
ferring to the ratio of correct requirement selection decisions that are made during
the recurring release planning activity, as in the alfa/beta model of MDRE selec-
tion quality [29], where the decision outcomes are divided into four cases, as de-
scribed in Table 13.2.

An alfa requirement is a requirement that has such a high inherent quality that
it ideally should be selected. The alfa requirements are thus the “golden grains”
among all candidates that the MDRE process should bring forward. “High quality”
can, for example, be interpreted as the actual added profit that the requirement is

294 Regnell and Brinkkemper

contributing with if included in the product. Correspondingly, beta requirements
are those that ideally should be rejected, as they are of inherently low quality.

Table 13.2 Decision outcomes in requirements selection

Decision

Selected Rejected

alfa

A
Correct

selection ratio

B
Incorrect

selection ratio

R
eq

ui
re

m
en

ts

Q
ua

li
ty

beta

C
Incorrect

selection ratio

D
Correct

selection ratio

In Table 13.2, the ratios of the different decision outcomes can be used to de-
fine metrics that can characterize the product and decision quality [29]. The prod-
uct quality Qp can be defined as Qp=A/(A+C), meaning the share of selected (and
thus implemented) alfa requirements of the total selected requirements. The deci-
sion quality Qd can be defined as Qd=(A+D)/(A+B+C+D), representing the share
of correct decision in relation to the total number of decisions.

The main challenge of the MDRE process is to find and select alfa require-
ments, while rejecting beta requirements, and thus maximizing A and D while
minimizing B and C. However, the problem is that it is not easy to know if a re-
quirement is actually an alfa or a beta requirement, as the cost-benefit trade-off is
very difficult. Estimations of both cost and value are inherently error prone and
dependent on difficult forecasting of market and technology advancements as well
as guesses about actions of competitors. Only post factum, when a product has
been out on the market for a longer period, it is possible to say with some degree
of certainty if it was a correct decision or not to select or reject a specific require-
ment [17]. Nevertheless, it is the quality of this uncertain decision-making that de-
termines winners and losers on a software product marketplace.

The elicitation sub process of MDRE (see further Sect. 13.4) has a major im-
pact on the process quality as it influences the fraction of incoming alfa require-
ments. The better the elicitation process is, the higher the share of alfa require-
ments, and thus representing an effective elicitation process that make the golden
grains come forward. The golden grain ratio, defined as the number of issued alfa
requirements divided by the total number of issued requirements, can thus be used
for characterizing the outcome of the elicitation process.

13 Market-Driven Requirements Engineering for Software Products 295

Fig. 13.1(a) Cost-value diagram with
alfa-requirements (filled) and beta-
requirements (empty)

Fig. 13.1(b) Estimated values are
differing from actual values causing
wrong selection decision

Figure 13.1 illustrates alfa and beta requirements using a cost-value diagram
[13]. In Fig. 13.1 (a) the alfa requirements can be seen as those requirements that
have values that are larger than their costs (filled circles in the figure). This means
that they are above the margin line. If a higher margin of say 20% is requested,
then the slope of the margin line is increased to the proportional factor of 1.2,
which in turn increases the demand for a requirement to be of alfa type. It should
be noted though, that the actual cost and value of a requirement is generally un-
known. Furthermore, he decision-making is only based on uncertain estimates, re-
sulting in the fact that beta requirements may end up above the margin line, as il-
lustrated in Fig. 13.1 (b). Here the value is overestimated and the cost is
underestimated so that a beta requirement is incorrectly judged to be an alfa re-
quirement.

It should be noted that the value and cost of a requirement is not only depend-
ing on the requirement itself, but also on its relation to other requirements. As de-
scribed in Chap. 5, requirements can have many different types of dependencies
between pairs, or more generally among n-tuples of requirements, and the value
and cost of one requirement may change depending on if other requirements are
selected or not [7]. In addition, the value and cost of a requirement may also
change over time, so that, e.g., an unanticipated delay in the implementation of a
requirement may render another cost-value ratio than was expected at the point in
time when the selection decision first was made.

In addition, the concept of “value” can be a complex combination of many dif-
ferent types of contributing values, e.g. value for a certain market segment, value
for the internal architecture to enable future feature development, value for
strengthening company image, value for entering new markets, etc. An example of
how to visualize and balance several value estimates in a distributed marketing or-
ganisation is given in [28]. Examples of optimisation and trade-off analysis for re-
lease planning can be found in [9] and [31]. The alfa/beta model has been used as
a basis for a survey among product managers [29], where it was found that a ma-
jority of the respondents that were able to consistently estimate process model pa-

296 Regnell and Brinkkemper

rameters revealed that most of their implemented product requirements were in-
correctly selected. This result indicates that the potential of process improvement
in MDRE within the surveyed companies is great.

In a case study in MDRE process improvement using a method called PARSEQ
(Post-release Analysis of Requirements SElection Quality) [17], it was shown that
retrospective investigation of selection quality, including a root case analysis of
decisions that were suspected to be wrong based on a re-estimation of cost and
value, revealed many interesting process improvement proposals.

13.3.2 Process Capacity

In empirical studies of the MDRE process it has been found that there is a risk that
the process gets in a state of congestion [27, 15], as a consequence of allowing
more requirements to enter the MDRE process than can be handled with the avail-
able resources. This, in turn, results in throughput problems and eventually a nega-
tive impact on both time-to-market and product quality. The MDRE process ca-
pacity and the risk of overloading have been further studied using both analytical
modelling with queuing theory [29] and discrete event process simulation [10, 1,
30]. These studies show that if the process gets overloaded, the throughput is se-
verely hampered and the mean-time-to-market increases rapidly.

In [30] the alfa/beta quality model was used as a basis for measurement in
process simulation experiments, and the results showed that an important means of
reducing the risk of overloading is the introduction of a screening activity. During
screening a quick assessment of each requirements value and cost is made before
further effort is spent on analysing that requirement. This results in a rough
judgement whether the requirement should be rejected upfront or if it should be al-
lowed to enter subsequent stages of refinement. (See further the requirements state
model in Sect. 13.4). Of course, there is a higher risk of making a wrong rejection
decision based on a quick and rough analysis, but the benefit of not pushing too
many requirements into the further stages of the process and thus avoiding over-
loading may be greater than the loss of a few golden grains, as taking on more
work than the available process capacity allows for may damage the whole devel-
opment and result in an unreasonably long mean-time-to-market [30].

Another means of speeding up MDRE is to support the manual and labour in-
tensive analysis of natural language requirements descriptions by means of lin-
guistic techniques [22, 21], which is further described in Chap. 10.

13.4 MDRE Data Management

This section provides a general description of two typical ingredients in MDRE
data management, the requirements state model used for progress tracking of re-
quirements refinement and the requirements repository where relevant attributes
of candidate requirements are stored. The description here is based on previous

13 Market-Driven Requirements Engineering for Software Products 297

studies of state models and repositories [6, 27] and our observation of industrial
practice, but generalized and simplified in order to provide a broad and not too
specific view of MDRE data management. One should therefore keep in mind that
this perspective is quite different from tailor-made software, where the wishes and
satisfaction of the customer are leading the requirements elicitation and capturing
process. This implies that key principles are not the same in the processes and data
management of MRDE.

13.4.1 Requirements State Model

At the conception of a requirement it is very uncertain whether it will finally get
realized into a product release. Available resources and lead time until the planned
date of the product release into the market limit the realization of any wish into the
software product. Market-driven software implies that the vision and scope of the
product are well established, thereby setting means to discern whether a require-
ment fits the standard or is to be rejected as it is too customer specific.

In keeping stock of the large volumes of requirements through the stages of the
development a requirements state model is indispensable (see Fig. 13.2). We call
this state model the requirements salmon ladder referring to the uncertainty of a
salmon to get back upstream to the breeding currents.

Fig. 13.2 Requirements state model, or requirements salmon ladder

Requirements are received at any time, but the development of a product is made
in releases that are produced at discrete points in time. We therefore distinguish
two modes: continuous mode and release mode. In the continuous mode, require-
ments are received and registered by the product manager from all kinds of sub-
mitters internal or external to the company, such as customers, sales representa-
tives, or development teams.

The development of product releases is initiated at designated times according
to the roadmap planning (see Sect. 13.6), and the requirements management ac-
tivities are in release mode. During release development the product manager is in
touch with other roles in the development team: project manager, software engi-

Candidate

Approved

Specified

Planned

Developed

Released

Verified

Discarded

Continuous mode

Release mode

Candidate

Approved

Specified

Planned

Developed

Released

Verified

Discarded

Candidate

Approved

Specified

Planned

DevelopedDeveloped

Released

Verified

DiscardedDiscarded

Continuous mode

Release mode

298 Regnell and Brinkkemper

neers, testers, technical authors, translators, etc. In release mode the content of the
next release, also called the release scope, is then frozen in order to manage the re-
lease development project properly. Changes to the scope are then decided
through a scope change procedure.

In order to monitor the progress of the work on the requirements the following
statuses of the requirements salmon ladder are usually distinguished.

Candidate: Each requirement received gets the status of “Candidate”. It is pre-
ferred that the description of the requirement follow the wording of the submitter
as precisely as possible in order to keep commitment from the submitting party to
the requirement. (For an overview of the requirements sources and elicitation, see
Sect. 13.5.)

Approved: At regular time intervals the requirements with status Candidate are
being reviewed for a possible inclusion into the future product releases. Accepted
requirements get the status “Approved”. This judgement process is a very difficult
and responsible task. First, a long term vision of the product is required, which is
usually expressed in product roadmap documents (see Sect. 13.6). Then a thor-
ough functional and technical understanding of the product is required to deter-
mine the meaning and consequences of the often very detailed requirements of the
existing customer base. Finally, the product managers should be able to cope with
the political and strategic issues brought in by possible new contracts, important
customers, and insisting sales people.

Specified: As the original description of the requirements is likely not very
suitable for planning and development purposes, normally a more elaborate speci-
fication is created and linked to this requirement. The documentation type of the
specifications may vary. In some organisations a text explaining the requirement
in more depth is created, whereas in others a complete design document with Use
Cases and Class diagrams is made. When the specification document is available
the requirement gets the status “Specified”.

Discarded: Rejected requirements get the status Discarded. A notification with
the motivation of the rejection is send to the submitter. Discarded requirements are
not deleted from the requirements database to enable future inquiries and analyses.

Planned: The planned release date and the available personnel resources de-
termine the number of person days available for development, testing, and product
completion. The product release planning can accommodate a maximum number
of requirements based on the effort estimates and a prioritization. All requirements
selected get the status “Planned”, and are input for the design and coding proc-
esses. As the estimates are usually too optimistic, some of the planned require-
ments have an indication of lower priority and may be candidate to be taken out of
the release plan in case of shortage of time to complete the release.

Developed: Development entails technical design, coding, unit tests, and pro-
duction of collateral materials, such as brochures, marketing campaign, and train-
ing material. When all these activities have been successfully completed, the re-
quirement gets the status “Developed”. Note, that de-scoping, i.e. taking a
requirement out of the release plan, can happen anytime, even when development
is substantially under way. In this case the code has to be brought back to a state

13 Market-Driven Requirements Engineering for Software Products 299

where the requirement was included. De-scoping usually happens if time runs out,
or due to changing priorities.

Verified: Several tests are likely to be necessary in order to ensure an adequate
level of quality before a developed requirement is released. Typical types of test
are: functional unit tests for the small units performed by a tester not part of the
development team; integration test focusing on dependencies between modules;
system test for the complete software system; acceptance test for the complete
product (software and collateral); and a final test of the installation files.

Released: When all activities for the product release have been completed the
requirement finally gets the status of “Released”, and the submitter is given a noti-
fication. Also released requirements are kept in the requirements repository for
further analysis.

Most commercial requirement management tools allow the addition and defini-
tion of own statuses. The correspondence of status transfers with activities in the
development, such as linkage to design and test documentation, can usually not be
enforced by the tools, but require manual operation.

Table 13.3 Outline of a typical MDRE repository

Attribute Value Assigned in State

State C / A / S / Di / P / De / V / R -

ID Unique identity Candidate

Submitter Who issued it? Candidate

Company Submitter’s company Candidate

Domain Functional domain Candidate

Label Good descriptive name Candidate

Description Short textual description Candidate

Contract Link to sales contract enforcing requirement Candidate

Priority Importance category (1,2,3) Approved

Motivation Rationale: Why is it important? Approved

Line of Business Market segment for which requirement is important Approved

Specification Links to Use Case, Textual Specification Specified

Decomposition Parent-of / Child-of – links to other req’s Specified

Estimation Effort estimation in hours Specified

Schedule Release for which it is planned for Planned

Design Links to design documents Developed

Test Links to test documents Verified

Release version Official release name Released

300 Regnell and Brinkkemper

13.4.2 Requirements Repository

In order to register the requirements properly many development teams use some
kind of requirements repository. For smaller development efforts a simple spread-
sheet may be sufficient. Larger-scale development is unlikely to be successfully
executed without a requirements management tool due to the volume of require-
ments. Monolithic requirements specification documents are also considered prob-
lematic, as the document structure hinders the concurrent elaboration of different
requirements by distinct teams. Individual registration of the requirements in an
MDRE repository is indispensable. We present in Table 13.3 an outline of a typi-
cal MDRE repository in relation to the salmon ladder.

Aside from these generic attributes there are more attribute categories that are
needed for specific markets. Country data is required for products that are sold in-
ternationally. Various countries have legal or financial rules that are required by
law. Products sold on different technical platforms, such as operating systems, da-
tabases or multi-modal user interfaces, usually require specific requirements to ca-
ter with the particularities of these platforms. Some platforms may provide facili-
ties that can be incorporated, whereas for other platforms these have to be
completely developed.

Products with different product lines or being sold to different markets (line of
business) require specific attributes related to the addressed functional domains.
This is the case for products being sold in markets where safety is an important is-
sue, such as the health care industry and in the avionics industry.

Tracing and tracking of requirements into the designs, code, and test reports is
mainly an administrative task requiring proper support tools. As long as the tools
employed in the requirements management and development lack proper means
for interoperation, the tracing and tracking is condemned to be a labor-intensive
error-prone manual task. Given the fact that developers often work at one re-
quirement at a time, the tracing of changes made in the various work products
would automatically provide insight into the requirements tracing process.

13.5 Market Analysis and Requirements Elicitation

Sources for requirements are numerous. When a new product is started, existing
literature on the subject matter may provide insight in the domain. An efficient
way to collect requirements in a structured manner is through the collaboration
with key customers. In return for early knowledge transfer the key customer assist
in requirements specification and in on-site testing. Care has to be taken that the
focus of the product remains the full width of the market, and not deteriorate into a
narrowing view of those key customer.

For larger enterprise applications markets, such as Enterprise Resource Plan-
ning (ERP) or Customer Relationship Management (CRM), analyst companies
(e.g. Gartner, Forrester) provide functional and technical overviews of the under-
lying domains. A side effect of the analyst reports is the unification of the termi-

13 Market-Driven Requirements Engineering for Software Products 301

nology in a domain. The positioning of the current product release on the complete
domain overview is a good source for additional requirements.

Recently, facilitated workshops were proposed as a means for effective and ef-
ficient elicitation of requirements. In this setting a group of domain experts is
brought together in an intensive work setting to specify the requirements managed
by a facilitator. Schalken et al. [32] reported an investigation into the advantages
of facilitated workshops compared to traditional one-on-one interviews. The com-
parison was in terms of required effort, in terms of calendar time required, and in
terms of the quality of the requirements. About 50 projects in both categories in a
large financial company in the Netherlands were analyzed. It turned out that re-
quirements’ gathering with facilitated workshops is less effective for small pro-
jects, but for large projects it is more effective. Surprisingly, the customers were
less satisfied with the quality of the resulting requirements. Time and group pres-
sure of the facilitated workshop might be reasons for this.

Customer involvement in requirements specification is to be performed in a
careful manner. Expectations have to be managed as the development of the re-
quirements may be spread over various releases and years. Some companies have
organized Customer Working Groups (CWG). A CWG is a team of customer rep-
resentatives together with product managers, which develops a specification
document for a whole new functional area. The customer representatives are ex-
perts in the domain, who can also judge the priorities of the must-have and the
nice-to-have requirements very well. Establishing a CWG in an area also sets ex-
pectations regarding the future availability in releases. Strategic roadmap changes
that exclude the CWG theme from the roadmap may set pressure on the vendor-
customer relationship.

13.6 Roadmapping and Release Planning

A roadmap is a document that provides a layout of the product releases to come
over a time frame of three to five years. Customers want to be sure that the future
of the software product on which they depend is in line with their future plans. Es-
pecially in markets where the costs and consequences of a vendor change are
large, the customer wants to have a stake in the roadmap decision-making.

Roadmaps are available in several segments of society to support decision
makers in the route to innovation [3]. Based on a variety of roadmaps reported in
the literature, Schaller [32] has established a taxonomy that classifies roadmaps
according to their location in an applications-objectives space. This taxonomy
scheme classifies the roadmaps broadly into the following four categories:

Science and Technology Roadmaps
Industry Technology Roadmaps
Corporate or Product-Technology Roadmaps
Product or Portfolio Management Roadmaps

302 Regnell and Brinkkemper

The Product-Technology Roadmaps is the type of roadmap of the software in-
dustry according to the taxonomy. Software development is a technology devel-
opment and a roadmap is made for each of the products. A technology roadmap is
the document that is generated by the roadmapping process. It identifies the criti-
cal system requirement themes, the product and process performance targets and
the technology alternatives and milestones for meeting these targets [8]. The
roadmap helps identify precise objectives and helps focus the required resources
on meeting those objectives. Roadmapping has several potential uses and resulting
benefits at both the individual corporate and industry levels. According to Garcia
[8] the three major uses of roadmapping are:

Development of a consensus about a set of needs and the technologies required
to satisfy those needs
Provision of a mechanism to help experts forecast technology developments in
target areas
A framework to plan and coordinate developments either within an organiza-
tion or in an entire industry

Investment
plan

Revenues

Product
Roadmap

Sales &
Services

Product
Requirements

Product
Release

Design
Software

Build

Corporate
strategy

Product
strategy

Release
process

Development

process

Investment
plan

Revenues

Product
Roadmap

Sales &
Services

Product
Requirements

Product
Release

Design
Software

Build

Corporate
strategy

Product
strategy

Release
process

Development

process

Fig. 13.3 Product roadmap in the investment cycle

The determination of the product roadmap in a MDRE context cannot be seen
independent from the overall strategy of the company. As shown in Fig. 13.3 it
serves best to distinguish a cyclic, four layer structure to stratify from strategy
making to the development of the software product. First, on an annual basis the
investment plan is devised based on revenues and forecast plans of the current
product lines: an extension of the product line with a next release, a start of a new
product line, and the termination of a product line. These plans also include the

13 Market-Driven Requirements Engineering for Software Products 303

investment levels in terms of money or headcount, and some strategic issues re-
garding the content of the products.

The investment plan is then input for the management of the product develop-
ment unit to create or update the current product roadmaps. In several product
companies the main manager responsible for the product roadmap is called Chief
Technology Officer. The roadmaps are created taking the views of the units for
sales and consulting services into account, as these units know best what the
strengths and weaknesses of the current products are, and what kind of market
trends and functionality is appreciated by current and prospective customers.

Phase 1: Initiation Phase

Phase 2: Preparation Phase

Phase 3: Finalization Phase

Phase 4: Follow-up Phase

1. Form a roadmap team
2. Determine the strategy

3. Determine pre-conditions
4. Set context

1. Prioritize themes

2. Select themes
3. Determine time schedule

4. Create roadmap

1. Validate roadmap
2. Communicate internally

3. Communicate externally

1. Periodically review and update
roadmap

Phase 1: Initiation Phase

Phase 2: Preparation Phase

Phase 3: Finalization Phase

Phase 4: Follow-up Phase

1. Form a roadmap team
2. Determine the strategy

3. Determine pre-conditions
4. Set context

1. Prioritize themes

2. Select themes
3. Determine time schedule

4. Create roadmap

1. Validate roadmap
2. Communicate internally

3. Communicate externally

1. Periodically review and update
roadmap

Fig. 13.4 Roadmap processes

Product managers are responsible for the release process at the next layer of
operation. They elaborate the product roadmap into a set of product requirements
for the various releases. Either they select the suitable requirements from the
available candidate requirements in the requirements database (see Fig. 13.3), or
they look for additional requirements (see Fig. 13.4) from various sources in the
product domain. This step is especially needed when new product lines are initi-
ated or when an existing product line is expanded with a new functional area. The
set of product requirements is then input for the development process, which re-
sults into the kernel of the software product, the software build. The software
build together with the auxiliary materials, such as user manuals, training material,
marketing collateral, is then packaged as a new product release.

304 Regnell and Brinkkemper

Example: Roadmapping at Baan
Recently, the roadmapping processes of Baan (now SSA Global) were evaluated
and redesigned [3]. The process flow of the roadmap process, which resulted from
this effort, is shown in Fig. 13.4 and explained subsequently.

The roadmapping effort starts in Phase 1 with the formation of the roadmap
team. Obviously, some senior employees with in-depth product knowledge and
access to the key people are candidates for this role. The strategy and precondi-
tions are usually laid out by corporate management, e.g. time line (three or five
years), products in scope, range of investment, and release frequency. The team
then formulates its own plan and context. In the next phase the themes for func-
tional and technical extension to the products are identified and prioritized.
Themes can be seen as high-level requirements, usually well known generic issues
in the product domain. The themes are elaborate in a set of coherent requirements
to be planned in one or subsequent releases. Typical themes are “Enabling for
Workflow”, “Porting to Linux platform”, and “Extensions for a new market”.
Themes should be so well defined and attractive, that they are candidates for the
functional extensions to be listed on the brochures that cover the release products

Schedules of roadmaps are often expressed in quarters of a year. A timeline
shows the various product lines with the releases plotted. The release frequency is
dependent on the size of the product. For Baan ERP the frequency was about 1.5
year as the market is not receptive for too many disruptive system upgrades.
Bookkeeping software is usually upgraded once a year. Changed legislation re-
quires that the financial processes are brought up-to-date. When the roadmap has
been drafted, it requires to be validated by the various stakeholders groups: gen-
eral management, large customers, sales and consultancy teams, and development
teams. Comments and feedback is integrated, and the roadmap is handed over to
the general management, who is the owner and communicator of the roadmap.
The formal communication of the roadmap is often launched at some large event
where many customers meet.

Finally, in the Follow-up phase the roadmap team is thanked for its efforts and
dissolved. Some product managers remain responsible for the maintenance of the
product roadmap documentation and the updating with new themes. After about
three years a new roadmap team is formed and the cycle of phases is repeated.

13.7 Conclusion

When the requirements engineering process is enacted in a market-driven context
the developing organization faces special challenges. Continuously arriving re-
quirement candidates provide input to the decision-making that should result in a
strategic roadmap and a prioritized release plan. A major challenge is to cope with
the potentially enormous amount of information and to represent and organize it in
an efficient way so that it can provide a good basis for efficient and effective deci-
sion-making, which in-turn provides the basis for a profitable software business.

13 Market-Driven Requirements Engineering for Software Products 305

This chapter offers input to the design of a competitive MDRE process through
the following elements as explained previously:

A process quality model for assessing the goodness of requirements selection
A typical requirements state model to be used in progress tracking
A typical requirements repository to be used in data management
An example of an industrial release management process

The MDRE has to be adapted to its specific context. The maturity of the or-
ganization and its products, as well as the market and its customers, are critical pa-
rameters that have to be considered when formulating and establishing a well-
balanced process. It is also important that there is a built in mechanism for learn-
ing and improving in order to stay ahead even as the competition gets smarter. In
[2], the following four research topics were identified based on a systematic as-
sessment of research contributions in relation to the Capability Maturity Model In-
tegration [4]:

Release planning: means to select requirements for the next release based on
priority, development effort estimates, and expected revenues
Experience evaluations of industrial requirements management processes: a
study in MDRE efforts in a variety of companies
Tracking and tracing: tools to track and trace the requirements over the various
work products of the development process, such as designs, code, tests, and
manuals;
Measuring requirements management efficiency and effectiveness: develop-
ment of measurements to provide means to assess the efficiency and effective-
ness of the requirements processes

Other important areas providing challenges to RE researcher in the market-
driven context are: accurate prioritization, efficient management of dependencies,
and tool support for handling very large requirement repositories, as well as the
general area of RE decision support (see further Chaps. 4, 5, 10 and 12 respec-
tively). Both descriptive and prescriptive research is needed to provide both a
deeper understanding of the nature of MDRE as well as to offer solutions to indus-
trial problems in combination with scientific evidence on how to best apply them.

Acknowledgements

We would like to thank all researchers that have been involved in the many pro-
jects that have formed the basis for this chapter. Special thanks to Johan Natt och
Dag and Lena Karlsson, both at Lund University, who have during their PhD stud-
ies actively participated in the advancement of the research frontier within market-
driven requirements engineering. We would also like to thank Dr. Joachim Karls-
son and Per Beremark for providing rewarding opportunities of industrial collabo-
ration. Thanks also to the product managers of Baan (now SSA Global) who par-
ticipated in the company-wide requirements management processes. Especially

306 Regnell and Brinkkemper

thanks to Pierre Breuls, Mike Chouinard, Wim van Rijswijk and Shirley Bode-
graven for their time and involvement.

References

1. Booth R, Regnell B, Aurum A, Jeffery R, Natt och Dag J (2001) Market-driven re-
quirements engineering challenges: An industrial case study of a process performance
declination. In: Proceedings of 6th Australian Workshop on Requirements Engineering
(AWRE'01), Sydney, Australia, pp.41 47

2. Brinkkemper S (2004) Requirements engineering research the industry is (and is Not)
waiting for. In: Proceedings of the 10th Anniversary International Workshop on Re-
quirements Engineering: Foundation of Software Quality, Regnell B, Kamsties E, Ger-
vasi V (Eds.), Essener Informatik Berichte, 9:251-264, ISBN 3-922602-91-6

3. Bodegraven S, Brinkkemper S (2004) Product software roadmap determination process:
Where marketing and technology come together. Technical report, ICS, Utrecht Uni-
versity

4. Chrissis MB, Konrad M, Shrum S (2003) CMMI: Guidelines for process integration and
product improvement. Addison-Wessley, ISBN: 0-321-15496-7

5. Carlshamre P (2002) A usability perspective on requirements engineering – From meth-
odology to product development. Dissertation No. 726, Linköping University, Sweden

6. Carlshamre P, Regnell B (2000) Requirements lifecycle management and release plan-
ning in market-driven requirements engineering processes. International Workshop on
the Requirements Engineering Process: Innovative Techniques, Models, and Tools to
support the RE Process (REP’00), September 6-8, Greenwich UK, pp.961 965

7. Carlshamre P, Sandahl K, Lindvall M, Regnell B. Natt och Dag J (2001) An industrial
survey of requirements interdependencies in software product release planning. In: Pro-
ceedings of 5th IEEE International Symposium on Requirements Engineering (RE’01),
August 27-31, Toronto, Canada, pp.84 92

8. Garcia M, Bray O (1998) Fundamentals of technology roadmapping. Sandia National
Laboratories, Technical Report, http://www.sandia.gov/Roadmap/home.htm

9. Greer D, Ruhe G (2004) Software release planning: an evolutionary and iterative ap-
proach. Information & Software Technology 46(4): 243 253

10. Höst M, Regnell B, Natt och Dag J, Nedstam J, Nyberg C (2001) Exploring bottlenecks
in market-driven requirements management processes with discrete event simulation.
Journal of Systems and Software, 59(3): 323 332

11. Hermann K, Brinkkemper S, Bubenko JA Jr, Farbey B, Greenspan SJ, Heitmeyer CL,
Leite JCS, Mead NR, Mylopoulos J, Siddiqi J (2002) Requirements engineering and
technology transfer: Obstacles and incentives. Requirements Engineering,
7(3):113 123

12. Kamsties E, Hörmann K, Schlich M (1998) Requirements engineering in small and me-
dium enterprises. Requirements Engineering, 3, pp.84–90

13. Karlsson J, Ryan K (1997) A cost-value approach for prioritizing requirements. IEEE
Software, Sept/Oct pp.67 74

14. Karlsson J, Wohlin C, Regnell B (1998) An evaluation of methods for prioritizing soft-
ware requirements. Information and Software Technology, 39(14-15): 939 947

13 Market-Driven Requirements Engineering for Software Products 307

15. Karlsson L, Dahlstedt ÅG, Natt och Dag J, Regnell B, Persson A (2002) Challenges in
market-driven requirements engineering - An industrial interview study. In: Proceed-
ings of 8th International Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ’02), September 09-10th, Essen, Germany, pp.37 49

16. Karlsson L, Regnell B (2004) Aligning the requirements engineering process with the
maturity of markets and products. In: Proceedings of 10th International Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ’04), June 7-8,
Riga, Latvia, pp.69 74

17. Karlsson L, Regnell B, Karlsson J, Olsson S (2003) Post-release analysis of require-
ments selection quality - An industrial case study. In: Proceedings of 9th International
Workshop on Requirements Engineering: Foundation for Software Quality
(REFSQ’03), June 16 -17, Klagenfurt/Velden, Austria, pp.47 56

18. Lauesen S, Vium JP (2004) Experiences from a tender process - The customer's dreams
and the supplier’s frustrations. In: Proceedings of 10th International Workshop on Re-
quirements Engineering: Foundation for Software Quality (REFSQ’04), June 7-8, Riga,
Latvia, pp.29 46

19. Lubars M, Potts C, Richter C (1993) A review of the state of the practice in require-
ments modeling. In: Proceedings of IEEE International Symposium on Requirements
Engineering (RE93), Los Alamitos, USA. IEEE Computer Society Press, pp.2–14

20. Morisio M, Torchiano M (2002) Definition and classification of COTS: A proposal. In:
Proceedings of 1st International Conference on COTS Based Software Systems
(ICCBBS), Orlando, February 4-6, pp.165 175

21. Natt och Dag J, Gervasi V, Brinkkemper S, Regnell B (2004) Speeding up requirements
management in a product software company: Linking customer wishes to product re-
quirements through linguistic engineering. In: Proceedings of 12th IEEE International
Conference on Requirements Engineering (RE’04), Kyoto, Japan, pp.283 295

22. Natt och Dag J, Regnell B, Carlshamre P, Andersson M, Karlsson J (2002) A feasibility
study of automated natural language requirements analysis in market-driven develop-
ment. Requirements Engineering, 7(1): 20 33

23. Natt och Dag J, Regnell B, Madsen OS, Aurum A (2001) An industrial case study of
us-ability evaluation in market-driven packaged software development. In: Proceedings
of 9th International Conference on Human-Computer Interaction (HCII'2001), August
5-10, New Orleans, USA, pp.425 429

24. Maiden NA, Ncube C (1998) Acquiring COTS software selection requirements. IEEE
Software, March/April, pp.46 56

25. Novorita RJ, Grube G (1996) Benefits of structured requirements methods for market-
based enterprises. In: Proceedings of 6th Annual International INCOSE Symposium.
Seattle, USA, INCOSE

26. Potts C (1995) Invented requirements and imagined customers: Requirements engineer-
ing for off-the-shelf software. In: Proceedings of Second IEEE International Sympo-
sium on Requirements Engineering (RE’95), pp.128–130 Los Alamitos, USA

27. Regnell B, Beremark P, Eklundh O (1998) A market-driven requirements engineering
process: Results from an industrial process improvement programme. Requirements
Engineering, 3(2):121 129

28. Regnell B, Höst M, Natt och Dag J, Beremark P, Hjelm T (2001) An industrial case
study on distributed prioritization in market-driven requirements engineering for pack-
aged software. Requirements Engineering, 6(1):51 62

308 Regnell and Brinkkemper

29. Regnell B, Karlsson L, Höst M (2003) An analytical model for requirements selection
quality evaluation in product software development. In: Proceedings of 11th IEEE In-
ter-national Conference on Requirements Engineering, (RE’03), September 8-12, Mon-
terey Bay, California USA, pp.254 263

30. Regnell B, Ljungquist B, Thelin T, Karlsson L (2004) Investigation of requirements se-
lection quality in market-driven software process using an open source discrete event
simulation framework. In: Proceedings of 5th International Workshop on Software
Process Simulation and Modeling (ProSim 2004), May 24-25, Edinburgh, UK

31. Ruhe G, Eberlein A, Pfahl D, (2003) Trade-off analysis for requirements selection.
Software Engineering and Knowledge Engineering, 13(4): 345 366

32. Schalken J, Brinkkemper S, van Vliet H (2004) Assessing the effects of facilitated
workshops in requirements engineering. In: Proceedings of 8th IEEE International Con-
ference on Empirical Assessment in Software Engineering (EASE2004), pp.135 144

33. Kostoff RN, Schaller RR, (2001) Science and technology roadmaps. IEEE Transactions
on Engineering Management, 48(2): 132 143

Author Biography

Dr. Björn Regnell is associate professor in Software Engineering at the Depart-
ment of Communication Systems, Lund University, Sweden, and senior member
of the Software Engineering Research Group (SERG). Dr. Regnell is the project
leader of the requirements engineering research at SERG. His research interests
include empirical software engineering, requirements engineering, and market-
driven software development. He has published one book and more than 40 refe-
reed papers in these areas. He was program co-chair of the International Work-
shop on Requirements Engineering – Foundation for Software Quality (REFSQ)
in 2002–2004, and he is a member of the program committee of the International
Conference on Requirements Engineering (RE) since 2002.

Dr. Sjaak Brinkkemper is professor in Organization and Information at the Insti-
tute of Information and Computing Sciences of the Utrecht University, the Nether-
lands. Previously he was a consultant at the Vanenburg Group and a Chief Archi-
tect at Baan Research and Development, where he was responsible for overall
software process improvement initiatives in Requirements Management, Architec-
ture and Design. He has published five books and more than 90 papers on soft-
ware product development and information systems methodology. He is a member
of the Editorial Board of the Requirements Engineering Journal, Journal of Data-
base Management, and Journal on Information Systems and e-Business Manage-
ment.

14 Requirements Engineering for Agile Methods

Alberto Sillitti and Giancarlo Succi

Abstract: Collecting, understanding, and managing requirements is a critical as-
pect in all development methods. This is true for Agile Methods as well. In par-
ticular, several agile practices deal with requirements in order to implement them
correctly and satisfy the needs of the customer. These practices focus on a con-
tinuous interaction with the customer to address the requirements evolution over
time, prioritize them, and deliver the most valuable functionalities first. This chap-
ter introduces Agile Methods as the implementation of the principles of the lean
production in software development. Therefore, Agile Methods focus on continu-
ous process improvement through the identification and the removal of waste,
whatever does not add value for the customer.

Keywords: Agile methods, Lean management, Process management, Require-
ments management, Variability management.

14.1 Introduction

Agile Methods (AMs) are a family of software development processes that have
become popular during the last few years [1, 7, 14]. Their aim is to deliver prod-
ucts faster, with high quality, and satisfy customer needs through the application
of the principles of the lean production to software development [25].

Lean production [36] has been conceived during the ’50s at Toyota [23]. It in-
volves several practices that are now part of most manufacturing processes, such
as just-in-time development, total quality management, and continuous process
improvement. The principle of lean production is the constant identification and
removal of waste (muda in Japanese), that is, anything that does not add value for
the customer to the final product. Being rooted on lean production, AMs focus on:

1. Delivering value for the customer
2. Ensuring that the customer understand such value and be satisfied by the pro-

ject

Delivering value to the customer implies that the development team has to pro-
duce only what provides value and remove (or at least reduce to the minimum)
everything else. AMs pose a lot of emphasis in producing and delivering to the
customer only those features that are useful. Producing anything that is not re-
quired is considered a mistake. Adding a feature that is not needed not only con-
sumes effort without adding customer value but also creates extra code, which
may contain errors and make the code longer and more complex to maintain, to
correct and to improve. This waste includes general architectures that are used

310 Sillitti and Succi

only partially or reusable components with functionalities that are likely to be
never used [25].

To achieve such elimination of waste, AMs claim to be [7] (a) adaptive rather
than predictive, and (b) people-oriented rather than process-oriented. To ensure
customer satisfaction, a close collaboration between the development team and the
customer is sought, so that:

Requirements are fully identified and correctly understood
Final products reflects what the customer needs, no more and no less

Overall, requirement engineering is of paramount importance for AMs. This
chapter introduces AMs and describes their approach to requirements engineering.
It is mainly related to:

Chapter 2: most of the techniques for requirements elicitation do not change
much in an agile environment.
Chapter 4: the prioritization of requirements is of paramount importance, since
AMs focus on the implementation of the most valuable features for the cus-
tomer.
Chapter 5: in order to implement only high priority features, the identification
of the interaction among features and their decoupling is extremely important.
Chapter 7: the identification of the requirements to include in a single iteration
is based on the negotiation between the customer and the development team.

The chapter is organized as follows: Section 14.2 briefly introduces Agile
Methods. Section 14.3 identifies common problems in requirements engineering.
Section 14.4 describes the agile approach to requirements engineering. Section
14.5 deals with the role and responsibility of customers, managers, and developers
in an Agile environment. Section 14.6 briefly introduces tools for requirements
management in Agile Methods. Section 14.7 draws the conclusions.

14.2 Agile Methods

AMs are a family of development techniques designed to deliver products on time,
on budget, and with high quality and customer satisfaction. This family includes
several and very different methods. The most popular include:

eXtreme Programming (XP) [6]
Scrum [28]
Dynamic Systems Development Method (DSDM) [32]
Adaptive Software Development (ASD) [17]
The Crystal family [12]

14 Requirements Engineering for Agile Methods 311

14.2.1 The Agile Manifesto

The promoters of AMs have realized that the wide variety of such methods may
refrain potential adopters, as they could not determine what to apply in their own
operations [9, 15].

As a results, such promoters have analyzed the root of lean management and
have defined a document containing a set of basic values common across all AMs.
Such document is called “Agile Manifesto” [7]. Being rooted in lean management,
such values focus on human resources and process management:

1. Individuals and Interactions over Process and Tools: The Agile approach
emphasizes the importance of people and their interactions rather than focusing
on structured processes and tools.

2. Customer Collaboration over Contracts: The relationship between the de-
velopment team and the customer is regulated through the involvement of the
customer in the development process rather than through detailed and fixed
contracts (usually, contracts in agile projects are variable price-variable scope
and not fixed price-fixed scope).

3. Working Software over Documentation: The goal of the development team
is delivering working code, which is the artifact that provides value to the cus-
tomer. Well-written code is self-documented and formal documentation is re-
duced to the minimum.

4. Responding to Change over Planning: The development team has to react
quickly to requirements variability. Binding decisions affecting this ability are
delayed as long as possible and the time spent in the planning activity is limited
to what the customer needs. Any attempts to forecast future needs are forbid-
den.

From such values, a set of common practices and behaviors are identifies. The
underlying claim is that they are not inventions of the Agile Community, but that
they are the results of rationalizing the experience of successes and failures in
software development. Some of these practices and behaviors are listed here be-
low:

Adaptability: Practices have to be adapted to the specific needs of both the de-
velopment team and the customer. There is no one size fits all solution.
Incremental Development: The different phases of software development
(analysis, design, code, and testing) are compressed in very short iterations
(from 2 weeks to 2 months) in order to focus on a few, well-defined problems
that provide real value to the customer (Fig.14.1).
Frequent Releases: At the end of every iteration, the application is released to
the customer that tests it and provides feedback. This approach produces sev-
eral benefits such as: (1) the customer can use the application very early, allow-
ing the identification of potential problems in time for improving the product
limiting the effect on the schedule; (2) the customer feels in control of the de-
velopment process, since progresses are always visible; (3) the trust between

312 Sillitti and Succi

the customer and the development team increases, since the team is considered
reliable because it able to deliver working versions of the application early.
Requirements Prioritization Before Every Iteration: Before every iteration,
the customer and the development team identify new requirements and reassign
priorities to the old ones on the base of the customer actual needs.
High Customer Involvement: The customer is involved in the development
process through a continuous request of feedback in order to identify potential
problems early in the development. In some cases, the customer is even a
member of the development team (customer on site practice) and is always
available to interact with the team and clarify requirements-related issues.

Constant feedback

Analysis

Design

Coding

Testing

Development

Team

Customer

Fig. 14.1 Agile development cycle

As mentioned, the basic values and practices of all the AMs are very similar.
Still, by “Agile Methods” we identify a diverse family of development method-
ologies with different focuses and related strengths and weaknesses. There are dif-
ferent levels of “agility” in AMs. A development methodology is more “agile”
than another one if it requires less overhead, which is whatever does not produce
value for the customer [12].

14 Requirements Engineering for Agile Methods 313

In each methodology, the development team has different priorities, processes,
levels of overhead for the interaction of the team members, etc. Therefore, there is
no single solution for all the contexts. AMs provide only guidelines and a basic
background of practices and behaviors that have to be adapted to the specific
problem [6, 9]. The applicability of the AMs is still a matter of research [4, 34].
Issues currently being discussed include:

1. The size of the problem that can be addressed
2. How people are managed in AMs
3. The application domains in which AMs are profitable.

14.2.2 Team Size in Agile Methods

Most AMs are specifically targeted to small teams, with up to 16 developers (e.g.,
eXtreme Programming). However, there are AMs supporting a wider range of
team size (e.g. the Crystal family), but there are many problems under investiga-
tion, including the use of such methods and practices in a distributed environment
[14].

The level of agility is often related to the size of the development team. Direct
communication and limited documentation is possible only in small teams. On the
contrary, when the team grows, the level of overhead grows as well. This over-
head includes: (1) documentation and (2) mediated communication. More docu-
mentation is required to share knowledge and trace the status of the project be-
cause direct, many-to-many interaction is not possible anymore [12]. Therefore,
the importance of the documentation increases and it becomes a way to improve
knowledge sharing. In this case, the code itself is not enough and the direct com-
munication between the development team and the customer is not possible with a
large team.

Table 14.1 The Crystal family

Methodology Team (Number of people)
Crystal Clear 2-6

Crystal Yellow 6-20

Crystal Orange 20-40

Crystal Red 40-80

For these reasons, small teams are more agile than large teams. However, the
basic principles of the lean management are still valid and most of them can scale.
One of these is the continuous process improvement through the reduction of
waste. This principle is useful regardless the size of the development team. The
Crystal family of AMs points out this concept [12]. Crystal includes different
AMs fitting the needs of teams with different sizes (Table 14.1). The different lev-
els of the Crystal family focus on different practices in order to manage the scal-
ability. A limited scalability is achieved reducing the level of agility.

314 Sillitti and Succi

Developing large systems using AMs is difficult or even impossible. At pre-
sent, the research effort in AMs focuses on small and medium size projects, since
even in this area their effectiveness is sill under investigation. Many agile prac-
tices simply do not scale, others can. AMs are adaptive [7], therefore project man-
agers have to identify the practices to use according to the specific environment.
This decision is highly affected by the size and the domain of the problem.

14.2.3 Managing People in Agile Methods

AMs focus on the value of people to solve problems and share information [11],
not on the process and a massive amount of documentation [2]. However, the peo-
ple-orientation can represent a main weakness for AMs since skills required to
build good agile teams are not common [11].

Team members have to be excellent developers, able to work in teams, com-
municate and interact with colleagues and customers, etc. All these skills are re-
quired, since the team is self-organizing and cannot refer to a predefined and de-
tailed process to solve problems and share knowledge [10].

14.2.4 Applicability of Agile Methods across Application Domains

A key question is whether AMs can be applied in all application domains. This
problem is still under investigation [4, 9, 34]. In particular, how and when using
specific practices results in benefits [2, 8, 27]. In general, it seems that AMs are
valuable for building applications that are not mission-critical and with a limited
size. Researchers are studying other areas such as the embedded systems (e.g.,
mobile phones and PDAs) where performances, real-time behavior, and memory
constraints are common problems.

AMs focus on producing only what provides value to the customer, which does
not mean that building reusable artifact such as components. If the goal of the pro-
ject is to develop a reusable artifact, the development team focuses on this prob-
lem and use AMs to address it. Reusable artifacts are not developed in projects
with a different aim because developers have to include features that are not useful
for the ongoing project. This approach is compliant to the principles of the AMs
[7]. AMs are not the solution for developing every product. Their application is
extremely hard or even impossible in many areas, such as safety-critical or very
large and complex applications.

Several areas that have been analyzed in deep in traditional environments are
not well understood in AMs. Often, there is a lack of research effort, especially in
the area of requirements engineering [24, 34].

14 Requirements Engineering for Agile Methods 315

14.3 Traditional and Agile Requirement Engineering

Requirements are the base of all software products and their elicitation, manage-
ment, and understanding are very common problems for all development method-
ologies. In particular, the requirements variability is a major challenge for all
commercial software projects [29]. According to a study of the Standish Group
[31], five of the eight main factors for project failure deal with requirements (Ta-
ble 14.2) which are incomplete requirements, low customer involvement, unrealis-
tic expectations, changes in the requirements and useless requirements.

Table 14.1 Main causes of project failure

Problem %

Incomplete requirements 13.1

Low customer involvement 12.4

Lack of resources 10.6

Unrealistic expectations 9.9

Lack of management support 9.3

Changes in the requirements 8.7

Lack of planning 8.1

Useless requirements 7.5

Engineering requirements for software systems has been perceived as one of
the key steps in a successful software development endeavor, since the early days
of software engineering. As a result, traditional development processes have
elaborated several standards, including:

IEEE Standard 830: Recommended Practice for Software Requirements Speci-
fications [18]
IEEE Standard 1233: Guide for Developing System Requirements Specifica-
tions [19]
IEEE Standard 1362: Guide for Information Technology – System Definition –
Concept of Operations Document [20]

A detailed discussion of this topic is in Chap. 8. AMs do not rely on these stan-
dards for requirements elicitation and management but they have adapted many of
the basic ideas to the new environment [3, 13, 16, 21, 24, 30, 37]. For instance, in
AMs the whole development team is involved in requirements elicitation and
management, while in traditional approaches often only a subset of the develop-
ment team is involved.

This approach is feasible only if the size of the problem is limited. Only a small
development team can interact directly with the customer. If the problem is bigger,
the team can use other techniques for eliciting and managing requirements, as de-
scribed in Chaps. 2 and 8. This is a strong limitation of AMs.

AMs are aware that requirements variability is a constant problem in nearly all
software projects; therefore, the support to such changes is included in the process

316 Sillitti and Succi

as a key strength [33]. Moreover, AMs do not try to forecast changes or future
needs, they focus only on the features for which the customer is paying. This ap-
proach avoids the development of a too general architecture that requires addi-
tional effort [6]. The understanding of requirements variability has a strong impact
on the ability of AMs to be “lean”. Often, a larger and more comprehensive archi-
tecture is expected to handle better the variability of requirements that can be fore-
casted in advance. However, a more complex architecture costs more not only for
the development but also for the maintenance and bug fixing. Therefore, such lar-
ger architecture may end up being an inhibitor of handling the variability in re-
quirements that cannot be forecasted in advance. Not to mention that it is usually
difficult to make correct predictions, therefore many features included in the early
stages of the project are not used in the final product and new ones, not identified
at the beginning, are required. This approach is likely to generate useless features
that are waste and generate additional waste due to the increased complexity of the
code and the additional effort required to the maintenance [6, 17]. AMs focus on
the development of the minimal application able to satisfy all the needs of a spe-
cific customer. Developing reusable components or framework including func-
tionalities that are not used in the current project is considered a mistake [6].

14.4 Agile Approaches to Requirements Engineering

AMs include practices focused on the key factors listed in Table 14.2 to reduce the
risk of failure. In particular, the aim of incremental development, frequent re-
leases, requirements prioritization before every iteration, and customer involve-
ment is to address the main risk factors.

14.4.1 The Customer

In AMs, the customer assumes a paramount role. Usually, the term “customer”
identifies a set of stakeholders that belongs to the organization that is paying for
the development of a software product. In this case, the interaction between the
development team and the stakeholders is complex due to the different perceptions
of the problem that the stakeholders have [5].

In AMs, the problem of multiple stakeholders is solved reducing their number
to one, a single person that represents all the stakeholders involved in the project.
This customer should be a domain expert and able to make important decisions
such as accepting the product, prioritize requirements, etc. In the case of mass-
products for which there are no organizations paying directly for the product, the
development team has to identify an expert in the area (e.g., a marketing expert)
that is able to act as the customer and participate in the development of the prod-
uct. This approach is feasible only if the size of the problem is limited and a single
person can act as customer, representing all the stakeholders. If the size of the
problem does not allow this approach, the team has to use other techniques to

14 Requirements Engineering for Agile Methods 317

elicit and manage requirements, as described in Chaps. 2 and 8. In some AMs, the
customer on site practice is common. This means that the customer is a member of
the development team, is co-located with the team, and is always available to dis-
cuss issues related to the project with any team member [6]. The customer-on-site
practice defines some specific requirements for the customer:

1. Availability: The customer has to be always available to answer questions
coming from the development team. Any delay in the answer delays the devel-
opment of the product.

2. Complete Knowledge: The customer is the representative for all the stake-
holders. Therefore, he is able to answer all questions, since he is the domain
expert and knows how the application should work and the input/output data
required. Again, this is possible if the size of the project is limited.

3. Decision Power: The customer is able to make final decisions and commit-
ments. Changes in requirements, acceptance of the features implemented, etc.
can be decided directly by the customer, allowing a fast decision making proc-
ess.

Having access to a customer able to satisfy all these requirements is not easy
[26], since he has to be a very valuable member of staff. The availability of this
kind of customer is of paramount importance in AMs, since most of their benefits
(e.g., reduction of documentation, incremental delivery, etc.) are tightly coupled
with the customer involvement [35]. However, there are attempts to extend re-
quirements collection to involve more customers [22].

14.4.2 Waste in Requirements

AMs focus on the identification and reduction of waste in the development proc-
ess [25]. In particular, identifying and reducing the waste from requirements as-
sume a paramount role to avoid the creation of waste later in the process. In lean
practices, the reduction of waste is extremely important because waste always
generates further waste [23, 36]. For instance, if a factory produces more goods
than required by the customers (first piece of waste) the system produces the fol-
lowing further waste:

A warehouse
People and processes to manage the warehouse
People and processes to manage the interaction between the factory and the
warehouse, etc

The introduction of waste in the early phases of the process causes the creation
of further waste later on, the increment of the complexity, and the drain of re-
sources available for the core business of the company. For this reasons, the opti-
mization of a single activity produces more savings than the direct saving from the
activity itself and contributes to the optimization of the whole process. Require-
ments engineering in AMs focuses on [7]:

318 Sillitti and Succi

1. Reduction of waste from requirements
2. Managing the requirements evolution

Waste in requirements deeply affects the development process and the ability to
deliver a product able to satisfy the real needs of the customer. The main effects of
waste in this area include:

More source code to write and higher cost
Increased complexity of the source code
Delayed delivery of the final version of the application with all functionalities
More complex and costly maintenance
More resources required by the application, including: memory usage, process-
ing power, network usage, etc
Increased complexity of the application from the point of view of the customer
(e.g., more complex user interface, more effort to learn how to use the applica-
tion, etc.)
Savings produced by the application in the production process of the customer
are delayed

At the end, all the waste generated is a cost for the customer both directly and
indirectly. Such costs are likely to generate further waste inside the customer or-
ganization due to the reduced amount of money available to its core business and
the reduced revenues. Waste in requirements includes both wrong and useless re-
quirements. A misunderstanding between the customer and the development team
causes wrong requirements. In order to reduce the probability of such misunder-
standing, AMs adopt several techniques focused on the interaction between the
customer and the development team:

The whole Development Team Collects Requirements from the Customer:
Requirements elicitation (Chap. 2) is an activity in which the whole team is in-
volved. In this way, the usage of documents to share the knowledge is reduced
to a minimum and the probability of misunderstandings decreases.
Requirements are Collected using a Common Language: Requirements are
collected using the language of the customer, not a formal language for re-
quirements specification. This means that developers have to be introduced to
the domain of the customer in order to understand him/her.
Direct Interaction Between the Development Team and the Customer:
There are no intermediaries between the development team and the customer.
This approach reduces both the number of documents required and the prob-
ability of misunderstanding due to unnecessary communication layers.
Requirements Splitting: If the development team considers a requirement too
complex, this technique helps the customer to split it in simpler ones. This split-
ting helps developers to understand better the functionalities requested by the
customer (Chap. 5).

This approach does not scale, it is feasible only if the size of the development
team is limited. Otherwise, the introduction of a representative and additional
documentation is required. This means that if the team size grows, some agile

14 Requirements Engineering for Agile Methods 319

practices cannot be used anymore while others are still useful. In case of large pro-
jects, AMs do not provide any specific solution. Even if the customer is an expert
in its own domain, identifying the features that he really needs is not easy. Often,
customers over specify the application, including a wide range of features that are
not providing a real benefit for their business. Such requirements are useless,
therefore, they are a source of waste. In order to reduce this kind of waste, AMs
use the following techniques:

Requirements Prioritization: The customer and the development team assign
priorities to each requirement in order to identify more important features that
have to be implemented first (Chaps. 4 and 7).
Incremental Releases: Functionalities are released in small but frequent
bunches (from 2 weeks to 2 months), in order to collect feedback from the cus-
tomer.

After the identification of the functionalities to include into the system, the cus-
tomer and the development team assign priorities to them. The prioritization activ-
ity is performed in four steps:

1. The development team estimates the time required to implement each function-
ality. If the effort required is too high, the requirement is split into simpler ones
that can be implemented with less effort.

2. The customer specifies business priorities for each functionality.
3. According to the business priorities, the development team assign a risk factor

to the functionalities.
4. The customer and the development team identify the functionalities to imple-

ment in the iteration.

The development team and the customer repeat requirements elicitation and
these four steps at the beginning of every iteration. In this way, it is possible to
identify requirements that do not provide enough value to the customer in order to
discard them and focus on the most important ones.

14.4.3 Requirements Evolution

AMs assume that it is very hard to elicit all the requirements from the user up-
front, at the beginning of a development project. They also assume that such re-
quirements evolve in time as the customer may change its mind or the overall
technical and socio-economical environment may evolve. Therefore, Agile com-
panies are aware that changes are inevitable and they include the management of
variability into the development process. AMs base the requirements collection
and management on three main hypotheses [6]:

Requirements are not well known at the beginning of the project
Requirements change
Making changes is not expensive

320 Sillitti and Succi

In particular, AMs assume that the cost of introducing changes in a product is
nearly constant over the time (Fig. 14.2), but this hypothesis is not true in every
context. Usually, the cost of implementing changes grows exponentially over the
time. On the other hand, if development phases are grouped together in very short
iterations (Fig. 14.1) and binding decisions are taken as late as possible, the grow-
ing of the costs is limited [6].

Time

Cost

Fig. 14.2 Cost of changes

In order to manage requirements evolution, AMs use variable scope-variable
price contracts [25]. This means that the features really implemented into the sys-
tem and its cost evolve as well. Therefore, requirements are not specified in details
at contract level but defined step by step during the project through a negotiation
process between the customer and the development team. Managing variability is
a challenge that AMs approach in two ways:

1. Decoupling Requirements: Requirements have to be as independent as possi-
ble in order to clearly identify what to implement and make the order of their
implementation irrelevant.

2. Requirement Elicitation and Prioritization: At the beginning of every itera-
tion, there is a requirements collection and prioritization activity. During that,
new requirements are identified and prioritized. This approach helps to identify
the most important features inside the ongoing project. Typically, if a require-
ment is very important is scheduled for the implementation in the upcoming it-
eration, otherwise it is kept on hold. At the following iteration, the requirements
on hold are evaluated and, if they are still valid, they are included in the list of
the candidate requirements together with the new ones. Then, the new list is
prioritized to identify the features that will be implemented. If a requirement is
not important enough, it is kept on hold indefinitely.

This approach is able to identify the most important requirements during the
whole project, not just at the beginning. Requirements that are not considered very
important at the beginning may become relevant at some stage of the project.
Moreover, the decoupling of the requirements allows the implementation of the

14 Requirements Engineering for Agile Methods 321

features in nearly any order; therefore, features are implemented mainly according
to their prioritization, not to their functional dependences.

14.4.4 Non-Functional Requirements

AMs do not provide any widely accepted technique for eliciting and managing
non-functional requirements [24]. Such requirements are collected implicitly dur-
ing the requirements collection activity. The need of specifying non-functional re-
quirements is less important than in other context due to the continuous interaction
with the customer. After every iteration, the product is released and the customer
is able to test the product. If he identifies problems related to non-functional quali-
ties, the team can adapt the system to meet such requirements in the subsequent it-
eration without affecting the schedule too much.

Often, the customer does not perceive as high impact many non-functional re-
quirements (e.g., scalability, security, etc.). This may affect deeply the release of
the final version of the application, therefore the development team has to guide
the customer in order to identify such hidden needs. This approach to non-
functional requirements may represent a major risk for AMs, since they lack spe-
cific techniques for their management.

14.5 Role and Responsibility of Customers, Developers, and
Managers

AMs require a high level of interaction among customers, managers, and develop-
ers. Usually, such interaction is unmediated and all the stakeholders meet fre-
quently in working sessions to improve the mutual understanding, the quality of
the final product, and keep the project under control (on time and on budget).

Roles and responsibilities of customers, managers, and developers assume a
paramount importance and have a broad impact on the evolution of a software
project.

14.5.1 The Customer

The customer is highly involved in the development process and often a member
of the development team. The customer’s presence is extremely important in
AMs, since the amount of documentation is reduced to the minimum and the de-
velopment team often asks for clarification regarding requirements. The constant
presence of the customer replaces most of the documentation required to describe
requirements in details and his/her contribution is a key factor for the success of
the project. The customer provides feedback to the development team in order to
identify potential problems early in the development and avoid a major impact on
the project schedule.

322 Sillitti and Succi

As stated in Sect. 14.4.1, the customer-on-site practice has several benefits, but
it is very difficult to implement. A poor implementation of this practice may re-
duce the effectiveness of several AMs, since many of them are tightly coupled
with the involvement of the customer.

14.5.2 Developers

The whole development team is highly involved in the customer management col-
lecting and negotiating requirements. Developers have to interact closely with the
customer providing working software and collecting valuable feedback. For these
reasons, the skills required by developers in agile teams are not common. They
have to be very good developers, be able to work in teams, and interact with the
customer using his/her own language [11]. Since AMs focus on this interaction,
the development team has the responsibility to educate the customer. AMs require
a high commitment of the customer in the project due to the frequent feedback re-
quired.

The trust between the development team and the customer assumes a para-
mount role. The team has to provide working and high quality software to the cus-
tomer at every iteration in order to collect valuable feedback. This approach is
valuable for both developers and customers. Developers can collect useful infor-
mation to avoid the implementation of useless features that increase the level of
waste; customers can use (or at least test) the product a few weeks after the project
start.

14.5.3 Managers

In AMs, managers have to create and sustain a framework for the establishment of
a productive interaction between the development team and the customer. They
can achieve this goal identifying the best people to be included in an agile team,
promoting collaboration, and negotiating contracts with the customer.

Usually, agile teams work with variable scope-variable price contracts rather
than fixed price-fixed scope ones. This approach relies on the ability of the man-
ager in the contracts definition in order to satisfy the customer and allow the
maximum flexibility in the development process, as required by AMs.

14.6 Tools for Requirements Management in AMs

The most popular tools for requirements engineering in several AMs are paper,
pencil, and a pin board. For instance, in Extreme Programming (XP) requirements
are collected through user stories. User stories are extremely short descriptions of
a single functionality that the development team has to implement. They are writ-
ten on small pieces of paper with the size of a postcard and hang on a pin board.

14 Requirements Engineering for Agile Methods 323

The pin board is divided in three sections: user stories to be implemented, user
stories under implementation, and user stories completed. This layout provides a
visual representation of the project status. Even if many Agile teams do not use
computer-based tools, some of them are useful. Among these, there are standard
applications not focused on AMs and ad-hoc applications developed specifically
to support some agile practices. Among the general purpose tools there are:

UML Modeling Tools: Such tools are used in two ways: (1) to write a high
level description of the application; (2) to reverse engineer the code to create
documentation.
Requirements Negotiation Tools: This kind of tools helps developers and cus-
tomer to identify, prioritize, and manage requirements in different environ-
ments, including the Agile one (Chap. 7).
Instant Messaging Tools: These tools are useful to keep in touch with the cus-
tomer in order to discuss requirements when he is not on-site.

Among ad-hoc applications there are:

Project Management Tools: Such tools focus on specific practices used in
AMs and helps to store and retrieve requirements documents (e.g., user stories)
in an electronic format.

14.7 Conclusions

This chapter has presented an introduction to the AMs and to their approaches to
requirements elicitation and management. Since these methods are new, the sub-
ject is still evolving and many techniques are under investigation. AMs seem to be
a valuable approach to software development for a relevant subset of projects, but
their limits are not well defined yet.

The main difference between agile and traditional methods is the involvement
of the customer in the development process. Both approaches present benefits and
drawbacks. In particular, AMs seem to manage effectively requirements in small
projects but not in large ones. AMs focus on the production of value for the cus-
tomer reducing whatever does not add value from his point of view. Therefore, the
involvement of the customer is of paramount importance to achieve this goal. On
the contrary, traditional methods are able to manage effectively large project but
their overhead is not suitable for smaller ones. At present, the research in this area
is very active with several papers discussed in major software engineering confer-
ences and two specific conferences: XP200x and Agile Universe.

Acknowledgements

This study has been partially funded by the Italian Ministry of Education, Univer-
sity, and Research under the Program FIRB, Project MAPS.

324 Sillitti and Succi

References

1. Abrahamsson P, Salo O, Ronkainen J, Warsta J (2002) Agile software development
methods: Review and analysis. EPSOO 2002, VTT Publications 478

2. Ambler S (2001) Agile documentation. Accessed on 5th December 2004.
http://www.agilemodeling.com /essays/agileDocumentation.htm

3. Ambler S (2002) Lessons in agility from Internet-based development. IEEE Software,
19(2): 66 73

4. Ambler S (2002) When does(n’t) Agile modeling make sense? Accessed on December 5,
2004, http://www.agilemodeling.com/essays/whenDoesAMWork.htm

5. Bailey P, Ashworth N, Wallace N (2002) Challenges for stakeholders in adopting XP. In:
Proceedings of 3rd International Conference on eXtreme Programming and Agile Proc-
esses in Software Engineering (XP2002), Alghero, Italy, 26-29 May

6. Beck K (1999) Extreme programming explained: Embrace change. Addison-Wesley, UK
7. Beck K, Beedle M, Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J,

Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin RC, Mellor S, Schwaber K,
Sutherland J, Thomas D (2001) Manifesto for Agile software Development. Accessed
on 5th December 2004, online at: http://www.agilemanifesto.org/

8. Cockburn A, Williams L (2000) The costs and benefits of pair programming. In: Pro-
ceedings of 1st International Conference on eXtreme Programming and Agile Processes
in Software Engineering (XP2000), Cagliari, Italy, 21-23 June

9. Cockburn A (2000) Selecting a project’s methodology. IEEE Software, 17(4): 64 71
10. Cockburn A, Highsmith J (2001) Agile software development: The business of innova-

tion. IEEE Computer, September, pp.120 122
11. Cockburn A, Highsmith J (2001) Agile software development: The people factor. IEEE

Computer, November, pp.131 133
12. Cockburn A (2002) Agile software development. Addison-Wesley, London, UK
13. Duncan R (2001) The quality of requirements in extreme programming. The Journal of

Defence Software Engineering, June 2001 issue
14. Cohen D, Lindvall M, Costa P (2003) Agile software development. DACS State-of-the-

Art Report. Accessed 5th December 2004, http://www.dacs.dtic.mil/techs/agile

/agile.pdf
15. Cohn M, Ford D (2002) Introducing an Agile process to an organization. Access on 5th

December 2004 http://www.mountaingoatsoftware.com/articles/IntroducingA-
nAgileProcess.pdf

16. Glass R (2001) Agile versus traditional: Make love, not war. Cutter IT Journal, Decem-
ber, 6(1): 12 18

17. Highsmith JA (1996) Adaptive software development. Dorset House Publishing, UK
18. IEEE Standard 830 (1998) IEEE recommended practice for software requirements
19. IEEE Standard 1233 (1998) IEEE guide for developing system requirements specifica-

tions
20. IEEE Standard 1362 (1998) IEEE guide for information technology: System definition,

concept of operations document
21. Lee C, Guadagno L, Jia X (2003) An Agile approach to capturing requirements and

traceability. In: Proceedings of 2nd International Workshop on Traceability in Emerg-
ing Forms of Software Engineering, Montreal, Canada, 7 October

14 Requirements Engineering for Agile Methods 325

22. Nawrocki J, Jasinski M, Walter B, Wojciechowski A (2002) Extreme programming
modified: Embrace requirements engineering practices. In: Proceedings of International
Conference on Requirements Engineering, 9-13 September, Essen, Germany

23. Ohno T (1988) Toyota production system: Beyond large-scale production. Productivity
Press Cambridge, Mass

24. Paetsch F, Eberlein A, Maurer F (2003) Requirements engineering and Agile software
development. In Proceedings of 8th International Workshop on Enterprise Security,
Linz, Austria, 9-11 June

25. Poppendieck T, Poppendieck M (2003) Lean software development: An agile toolkit for
software development managers. Addison-Wesley, London UK

26. Rasmusson J (2003) Introducing XP into Greenfield projects: Lessons learned. IEEE
Software, May/June, 20(3): 21 28

27. Ronkainen J, Abrahamsson P (2003) Software development under stringent hardware
constraints: Do Agile methods have a chance. In: Proceedings of 4th International Con-
ference on eXtreme Programming and Agile Processes in Software Engineering
(XP2003), Genoa, Italy, May 2003, pp.25 29

28. Schwaber K, Beedle M (2001) Agile software development with scrum. Prentice Hall
PTR, Australia

29. Sommerville I, Sawyer P, (2000) Requirements engineering: A good practice guide.
John Wiley & Sons, UK

30. Smith J. (2001) A comparison of RUP and XP. Rational software white paper. Ac-
cessed 5th December 2005 http://www.isk.kth.se/proj/2003/6b3403/sa3/www/Ration-
alUnifiedProcess/papers/rupxp.htm

31. Standish Group, CHAOS Report 1994. Accessed 5th December 2004.
http://www.standishgroup.com/sample_research/chaos_1994_1.php

32. Stapleton J (1995) DSDM Dynamic system development method. Addison-Wesley,
UK

33. Tomayko JE (2002) Engineering of unstable requirements using Agile methods. In:
Proceedings of International Conference on Time-Constrained Requirements Engineer-
ing, Essen, Germany, 9-13 September

34. Turk D, France R, Rumpe B (2002) Limitations of Agile software processes. In: Pro-
ceedings of 3rd International Conference on eXtreme Programming and Agile Proc-
esses in Software Engineering (XP2002), Alghero, Italy, 26 - 29 May

35. Wells D (2003) Don’t solve a problem before you get to it. IEEE Software, May/June,
20(3): 44 47

36. Womack JP, Jones DT (1998) Lean thinking: Banish waste and create wealth in your
corporation, Simon & Schuster.

37. Young R (2002) Recommended requirements gathering practices, Accessed 5th De-
cember 2004, http://www.stsc.hill.af.mil/crosstalk/2002/04/young

Author Biography

Alberto Sillitti is Assistant Professor at the Free University of Bozen, Italy. His re-
search areas include empirical software engineering, component-based software
engineering, integration and measures of web services, and agile methods.

326 Sillitti and Succi

Giancarlo Succi, Ph.D., PEng is Professor of Software Engineering and Director
of the Center for Applied Software Engineering at the Free University of Bozen.
His research areas include agile methods, open source development, empirical
software engineering, software product lines, software reuse, and software engi-
neering over the Internet. He is author of more than 100 papers published in inter-
national conferences and journals, and of one book.

15 Requirements Engineering for Web-Based
Information Systems

Jacob L. Cybulski and Pradip K. Sarkar

Abstract: This chapter overviews the existing methods of requirements analysis
as prescribed by some of the best-known web-development methods. It also dis-
cusses the pre-eminent importance of stakeholder analysis, identification of stake-
holder views and concerns, and the processes governing elicitation of web systems
requirements. The chapter finally derives a model of concern-driven requirements
evolution from several case studies undertaken in the area of web-enabled em-
ployee service systems.

Keywords: Requirements engineering, Requirements evolution, Web-based in-
formation systems, Stakeholder analysis.

15.1 Introduction

Web-based information systems (WBIS) are often claimed to have a development
process quite different to that of traditional software systems [10, 25, 65, 78, 79].
Requirements identification is one of the developmental stages where this differ-
ence is especially pronounced [54].

What makes web systems so different from the traditional software systems that
their planning and construction requires a unique development process? The an-
swers to this question are many, perhaps as many as the number of distinct types
of WBISs themselves. Lawrence, Miletsky and their colleagues identify four ma-
jor types of WBIS models, i.e. to deliver advertising and promotion, to assist busi-
ness workflows, to facilitate inter-organizational interaction, and to support multi-
participant trading (see Chap. 2 in [35] and Chap. 2 in [46]). Each kind of WBIS
model emphasizes distinct aspects of site design depending on its purpose [16].
Some focus on supporting business to business transactions, the construction of
online metaphors for business activity, and providing customer assistance, others
look at promoting organizational brand, building market trust and credibility, yet
some simply accentuate web contents, layout, navigation and search for organiza-
tional information. In the richness of web design issues, many directly concern
WBIS customers and thus necessarily absorb requirements engineers. The cus-
tomer preferences and wants, going well beyond the system function and perform-
ance, touch upon business organization and alliances, inter-organizational interac-
tions, flow of supplies and products, business presence and access to customers
(see Chaps. 4, 8-12 in [46]). In all of this business/system quagmire, marketing is-
sues become dominant factors impacting web site’s design frequently ahead of
its function which includes web pages’ style and color scheme, typography,
graphic impression and multimedia, accessibility, internationalization and person-

328 Cybulski and Sarkar

alization, to name just a few (see Chaps. 9-14 in [43]). The WBIS development
team often reflects the many issues that need to be taken into consideration during
the system planning (see Chap. 5 in [46]). Apart from the obvious project stake-
holders, such as sponsors, customers and users (see Chap. 2), the parties involved
also include contents developers and copyright consultants, marketing and public
relation specialists, media planner and strategies, creative and art directors,
graphic designers, multimedia and interaction developers, and great many others,
who are not often considered by requirements engineers as having input into the
specification of a traditional software system. The fact that project stakeholders
commonly hold conflicting opinions is well-known to the requirements engineer-
ing community (see Chaps. 4 and 7). In WBIS systems, however, these conflicts
are firmly embedded not only in the needs of the software systems to be developed
but rather in the business processes and objectives of online buyers and sellers,
and in the constraints imposed on the system by agencies regulating the financial
transactions or determining compliance with the laws of the land and international
treaties (see Chap. 5 in [80]).

While the scope of concerns to be considered in the earliest stages of web site
construction can be significantly enlarged, due to the marketing-driven develop-
ment process (also see Chap. 13), the delivery cycle for web-enabled applications
is commonly very short, i.e. less than 3 month [17], which leaves very little time
for any formal requirements gathering and their consolidation. The adequate de-
velopment time-frame, so lacking in WBIS, is nevertheless critical for coping with
the sheer diversity of web system users, in terms of their geographical locations,
cultural and linguistic background, computer proficiency, and varying knowledge
of business rules [10, 52, 78, 79]. Gordijn and associates [25] therefore criticize
the currently practiced process of requirements gathering as largely inadequate for
web development, failing requirements analysts in identification and characteriza-
tion of the potential system users, their needs and preferences, and the features re-
quired of the web systems under development [65]. All of these present major im-
plications for the analysis of web systems requirements. Development of web-
based information, thus, commonly relies on a step-wise prototyping approach
[24, 74, 77] (see Chaps. 2 and 14). The iterative process of design, prototyping
and evaluation is usually observed, and it commonly involves activities ranging
from exploration, refinement, production, implementation, launch, maintenance
and discovery (see Chaps. 3-5 in [16]). While prototype-based development re-
sults in a shorter time to the market, due to the use of ad-hoc and unstructured de-
velopment methods, it also leads to poor quality of web systems and services, and
ultimately results in a great number of unsatisfied users [9, 17, 27, 79].

While acknowledging the necessity for requirements identification in the face
of the continuing change of the web products [84], few of the established meth-
odological approaches to WBIS development sheds much light on how require-
ments for the web system could be fine-tuned and evolved along the various
stages of system prototyping to improve the WBIS quality. To this end, Sarkar and
Cybulski [68], as will be further elaborated in this chapter, emphasize the impact
of stakeholder views and opinions on requirements evolution in web development.
A stakeholder in this context is considered to be any individual, group, or organi-

15 Requirements Engineering for Web-Based Information Systems 329

zation whose actions can influence or be influenced by the development and use
of the system whether directly or indirectly [55]. In case of information systems
development process, the direct stakeholders are of special importance [73], and
so Sarkar and Cybulski [69] place a particular attention to the concerns of users,
developers, decision-makers and project initiators as the main drivers of the re-
quirements establishment process. The remainder of the chapter is organized as
follows. Section 15.2 outlines different approaches to requirements engineering to
web development, with a special emphasis on the stakeholder issues. The follow-
ing Sect. 15.3 discusses the significance of dealing with stakeholder concerns in
the earliest stages of web development and the impact of these concerns on re-
quirements engineering process. Special attention is placed on technical, organiza-
tional and inter-organizational impacts of stakeholder concerns. A model of con-
cern-driven requirements evolution is subsequently developed in Sect. 15.4 based
on the empirical study of several WBIS projects in the domain of employee ser-
vice systems (ESS). Section 15.5 summarizes and concludes the chapter.

15.2 Approaches to RE for Development of WBIS

Review of WBIS literature reveals that the most commonly adopted development
approach is incremental prototyping [28], which is often supplemented with a pilot
development, in order to gather user feedback before the major development effort
commences [22]. Subsequently, the web system prototype typically undergoes
continuous evolution until it eventually becomes a fully-fledged web system [24,
74, 77]. The relative newness of WBIS, the incremental nature of the development
approach, the rapid evolution of the underlying technology and the competitive
pressure from other business units all seem to create a situation in which the re-
quirements are in an almost constant flux [17] (also see Chap. 6).

Although there is no shortage of suggestions for the adoption of good WBIS
design practices [see Chap. 4 in [35]), the fact that they are heavily interweaved
with business strategy and marketing planning (see Appendix B in [46]), makes
the disparate methods confusing in their vexed space of organizational, technical
and social concerns. In recent times, however, the more systematic WBIS-specific
methodologies have been slowly emerging. For example, Web Engineering [24],
Relationship Management Methodology (RMM) [31], Howcroft’s methodology
[28], Internet Commerce Development Methodology (ICDM) [76] and Web IS
Development Methodology (WISDM) [84] have all been proposed to deal with
problems of web and e-commerce development.

15.2.1 Web Engineering

Ginige [24] argues that web development should be recognized as a process with
all its structure and complexity, and not just as an atomic event considered by
many web practitioners. In fact, the founders of the web-engineering concept [24,

330 Cybulski and Sarkar

51] go further to stress the importance of following a process where new function-
ality and information resources are iteratively added to the system over time. Fur-
thermore, they assert that most of the current difficulties, with respect to the de-
velopment of large web sites, can be attributed to a lack of suitable process models
for the project teams to follow, suitable architecture, or a product model for the
development of web-enabled applications. Another key aspect is that users could
also be treated an integral part of a WBIS. Thus, when developing such systems, it
is essential to have appropriate measures built into the development process that
allow developers to cater for user related issues. One of the most significant
points, at least from the point of view of this work, presented by Ginige [24] as a
new and emerging trend associated with the development and evolution of web-
enabled services, is the acknowledgement of the importance for project teams to
improve by learning through experience.

15.2.2 Relationship Management Methodology (RMM)

RMM was introduced by Isakowitz [31] as a methodology for the development of
hypermedia systems. RMM involves seven steps, of which the first three focus on
design issues using entity-relationship diagrams. While acknowledging the impor-
tance of requirements analysis, RMM sheds little light on its mechanisms. More-
over, the steps prescribed by the methodology require a high level of specialized
technical skills, which may not be a motivating factor for its adoption by web de-
velopers [65]. Another approach, proposed by Balasubramanian [4], an extension
of RMM, is also a seven-stage iterative methodology. Though the methodology
recognizes the complexity of stakeholder issues and consequent requirements set-
ting, again as in RMM, it hardly sheds any light on the establishment of require-
ments, and focuses on document management over the web instead.

15.2.3 Howcroft’s Methodology

In Howcroft’s methodology [28], the first phase begins with a thorough analysis
of the organizational web and competitive strategy. The project members need to
be deeply involved with the formulation of the organization’s strategies regarding
the use of the web infrastructure. In the subsequent step the objectives or the busi-
ness needs that are to be met through the adoption of the web infrastructure are de-
fined. In the third step of the analysis phase, stakeholder analysis is conducted.
Through Information Analysis, static and dynamic information required by the
target users are identified. This is followed by an analysis of the skills of the pro-
ject members, which are commonly multidisciplinary. The most critical process
element, however, is the User Analysis, which for the most part is a complex
process itself, as the intended users of the system have to be identified and analy-
ses of their needs and characteristics carried out in advance. This step also in-
cludes an analysis of project risks.

15 Requirements Engineering for Web-Based Information Systems 331

Despite its thorough coverage of organizational objectives, business needs and
user needs, the methodology does not propose any concrete means of how web
developers could incorporate stakeholder issues into their work. Furthermore,
there exists a dearth of empirical evidence about the experience of web developers
with regards to their consideration of stakeholder issues.

15.2.4 Internet Commerce Development Methodology (ICDM)

Internet Commerce Development Methodology (ICDM) was proposed by Stand-
ing [76, 77]. ICDM combines the elements of business analysis as well as system
development. Standing [77] contends that traditional information systems meth-
odologies cover only the more technical aspects of information system develop-
ment and do not look into the business aspects. Internet commerce is one of those
fields, that necessitate intense business activity as part of their systems develop-
ment, and thus it requires a thorough analysis of its place in the overall business
strategy. Customers and suppliers (users of the systems) are encouraged to be in-
volved at various stages of the e-Business operations, and participate in periodic
reviews. Customer input is essential at the strategy development and business
analysis stages and may involve the use of market research teams to obtain infor-
mation on what customers require and on the potential barriers to using the web.
More detailed requirements can be obtained in Group Requirements Sessions
(GRS), telephone interviews or questionnaires. Customers can be involved in
evaluating design issues through the use of prototype web systems and they should
be included in testing and evaluation of the web site. Feedback is obtained from
users once the web site is “live”. The two requirements gathering techniques
commonly used in ICDM are brainstorming and the Group Requirements Sessions
(GRS). Standing [78] claims that brainstorming techniques are used to define al-
ternative ways of undertaking Internet commerce, while GRS comprises of obtain-
ing the detailed requirements within a relatively fast time frame with the involve-
ment of customers, suppliers and internal staff [76-78].

Standing [76] also suggests that organizations implementing e-Business ven-
tures should foster learning environments that enable the project executives to
"learn" from the successes and failures of other organizations that have already
adopted such ventures. This necessitates organizations investing in training pro-
grams for their staff. In fact, a web venture will not succeed if the users are not
provided training in the usage of the system. Although clearly acknowledging the
importance of stakeholder issues and “learning from experience” in requirements
establishment for WBIS, ICDM is not prescriptive as to the use of any specific
model or a process where these issues could be addressed.

15.2.5 Web Information Systems Development Methodology (WISDM)

The methodology, proposed by Vidgen [83], is an application of MultiView [3] to
the development of web applications. WISDM was employed with the aim of

332 Cybulski and Sarkar

evaluating the effectiveness of a pre-web methodology, such as MultiView, to a
web-based application. The WISDM/MultiView approach begins with a thorough
analysis of the system-hosting (owning or initiating) organizations to understand
and articulate the strategic programs of the initiator. In the words of the author,
"the overall aim of organizational analysis is the consideration of how value will
be created." In the Information Analysis stage, the capture of system requirements
is meant to take place; however, the recommended approach describes this devel-
opment stage from a perspective of technical rationality.

The empirical testing of the WISDM methodology, actually on an electronic
commerce project, indicates RAD (rapid application development) and prototyp-
ing as an effective approach to the WISDM project development. With this in
mind, WISDM-developed websites are updated in an incremental manner to en-
hance them with new features. Disappointingly, WISDM, in its current form of
definition, does not lay any explicit recommendations on the identification and
analysis of stakeholders and their viewpoints and the project team’s experience in
dealing with user issues, though there is a clear indication of the future employ-
ment of an instrument (WebQual) to assess user satisfaction [82].

It is worth noting that other approaches to web design have also gained promi-
nence in recent years, e.g., the object-oriented hypermedia development method-
ology (OOHDM) by Rossi [63]. Such methodologies are beyond the scope of this
study as their primary focus is on the technical aspects of web systems rather than
on stakeholder issues. Since we are dealing with the issue of stakeholder needs,
examination of literature on stakeholder analysis in the disciplines of manage-
ment, IS, and Requirements Engineering (RE) was warranted.

15.2.6 Comparison of Approaches

All the methodologies, with the exception of RMM, consider the organizational
context to be a prime aspect associated with the adoption and implementation of
WBIS. Furthermore, it can also be easily noted that by large the development of
WBIS is iterative and incremental in nature. RMM is once again an approach that
is structurally inclined. The importance of stakeholder issues is acknowledged in
most of the discussed methodologies. However, none of the approaches explicitly
incorporates stakeholder issues in the WBIS implementation process. Some of
these proposed approaches have been offered in the form of mere suggestions [4,
24, 31], others have been evaluated by experts [28] or by focus groups [77].
WISDM has been empirically tested through an action research study [82], how-
ever, in the currently reported form of WISDM, the consideration of stakeholder
issues has not been fully dealt with.

With regards to the existence of a mechanism for learning from experience,
Ginige [24] (web engineering) and Standing [76] (ICDM) have mentioned that
owing to the newness of web services dissemination within enterprises, project
teams can reuse relevant aspects of their past experience or consult the experi-
ences of their counterparts involved with similar projects in other institutions.

15 Requirements Engineering for Web-Based Information Systems 333

It should also be noted that the approaches discussed above, being methodolo-
gies, are naturally prescriptive, even to the extent that they could erect obstacles
for project teams working in highly stressful and complex conditions [86]. Avoid-
ance of such obstacles could possibly be the reason for the reviewed methodolo-
gies not to deal with the issue of stakeholders in a very structured, and thus restric-
tive manner. Web development methodologies, nevertheless, do act as frameworks
guiding the construction of WBIS and are commonly found to be useful especially
in organizations undertaking web projects across different organizational contexts,
and which have different goals and thus distinct problems [28]. This trend is also
reflected in a number of field studies where methodologies were adapted in order
to cater to a particular organizational context [21, 66]. This is where the practical
importance of project teams’ consideration of the WBIS stakeholder needs is es-
pecially highlighted, though not adequately discussed in the existing methodolo-
gies. This very situation thereby triggered the motivation for this study to under-
take further empirical investigation of real-life web projects.

Review of research into the development of web-enabled applications, and the
implementation of web services, have uncovered a number of relevant facts and
inadequacies, which are given in the following list.

Key Points:

WBIS are acquired by organizations, from vendors, in order to web-enable
(both intra-and inter-organizational) workflows.
WBIS are developed or configured in an incremental manner using the evolu-
tionary prototyping approach.
New features are added to the WBIS with each development cycle iteration.
The time frame for the development of WBIS is very short, i.e. about 3 months.
A diverse and broad base of stakeholders are the potential users of web ser-
vices, but it is not always possible to anticipate the constituent groups.
The stakeholders are external to and thus beyond control of the project initiator.
Due to this unanticipated large and relatively heterogeneous groups of stake-
holders, system requirements for web applications are often “created from
scratch”, rather than elicited.
The existence of a mechanism that enables web teams to learn from past ex-
perience, can aid the establishment of system requirements.

Issues inadequately covered by the current approaches

Identification and description of stakeholders and their needs in the process of
development and implementation of WBIS.
Dealing with the needs and concerns expressed by a diverse and relatively large
WBIS stakeholder base.
Impact of the stakeholder needs and concerns on the requirement-driven fea-
tures associated with the WBIS.
Explanation of how the needs of the various potential users are inculcated in the
further evolution and roll-over of web services.

334 Cybulski and Sarkar

The four issues pointing at the methodological inadequacies, as stated above,
are associated with the existing research in the field of web-enabled workflow ap-
plications. Such issues fuel the need to probe further into the phenomenon of in-
terest, as clearly outlined in the research objectives of this research. Thus, owing
to the prominence of stakeholder issues in WBIS requirements engineering, as-
pects of stakeholder analysis, and the analysis of their viewpoints and concerns
needs further elaboration.

15.3 Significance of Concerns in Requirements Engineering

The impetus for our research at this juncture came from the field of stakeholder
and viewpoint analysis. In view of the impact of stakeholders concerns on the evo-
lution of web systems, the review of relevant works of research was driven by the
analysis of stakeholders and their needs and wants with regard to their future in-
volvement with the system. The examination of stakeholder requirements and
concerns led to the study of viewpoints or multiple perspectives in Requirements
Engineering. The investigation of the concepts associated with the development
and maintenance of multiple perspectives in the various disciplines, most notably
in organization behavior and management, information systems, and requirements
engineering, led to the revelation of an underlying body of knowledge about
stakeholder resistance and conflict. The literature review moves to a discussion of
conflict and stakeholder resistance in the context of information system develop-
ment (ISD) and implementation.

15.3.1 Stakeholder Analysis

A review of literature in information systems development (ISD) and project man-
agement reveals that one of the major causes of project failures can be attributed
to the dissatisfaction of stakeholders with either the way the project is undertaken
or the final product of the project [6, 61, 62]. Indeed, stakeholder resistance to new
technology adoption and their concerns over their association with it, and the pre-
vailing power structures have a great impact on actual implementation of techno-
logical artifacts within the organization [40]. This fact has also been echoed by
practitioners [41], who further assert that system development projects often fail
because developers do not know who the "real" stakeholders are. The elevation of
stakeholder analysis in system development projects, thus, seems imperative.

Stakeholder analysis originates from strategic management. Perhaps one of the
most prominent works in the area is by Freeman [23], who argues that a prerequi-
site to effective strategic planning is the identification and analysis of those parties
who can affect the implementation of the organization’s strategic programs or be
affected by them. This claim is strongly supported by Richardson [59], who af-
firms that stakeholder analysis should be carried out in business planning. Busi-
ness stakeholders, or organizational members participating in common business

15 Requirements Engineering for Web-Based Information Systems 335

processes, hold different perspectives on matters such as the setting of a group,
organizational goals and values, allocation of resources, distribution of rewards,
policies, procedures, and task assignments [23, 58, 72]. This reveals the idea of
multiple perspectives held by the different stakeholders involved in organizational
ventures. Freeman's [23] use of the concept enables an investigator to examine the
external environment of an enterprise and to study how the enterprise manages
multiple stakeholder relationships. In this way, a more comprehensive view is
gained of the complexity of the business problems. Carroll and Nasi [8], on the
other hand, stress the importance of considering multiple perspectives of stake-
holders on moral grounds. In other words, the stakeholder analysis should be done
not only to ensure the organization's survival and its profitability, but also because
it is ethical to look into the viewpoints of the stakeholders who are affected or will
be affected by the strategic decisions of the organization [14].

Over the years, information system researchers have discovered that the success
of system development projects depends largely on the participation of all system
stakeholders [40]. Ruohonen [64] argues that owing to the specialization in an en-
terprise, the existence of multiple perspectives with regard to system development
and implementation projects is apparent. Therefore, as different stakeholders have
different expectations with regards to an information system, the success or failure
of the development project depends on how effectively managers address these
expectations [6, 33]. Perhaps, the greatest proponents of the active involvement of
end users in the development of information systems are Mumford and Weir [49].
In their approach to socio-technical system design, entitled the ETHICS (Effective
Technical and Human Implementation of Computer-based Systems) approach, the
authors contend that the effectiveness of system development projects can be
brought about by the participation of stakeholders. A strong argument is put for-
ward in favor of stakeholder participation in system development projects by
warning that “systems designed without the active involvement of users may ini-
tially appear to be cost-effective on technical criteria, but in fact often incur high
social costs, such as resistance to change, poor equipment utilization, high turn-
over, and absenteeism.” Hence, the underlying premise behind ETHICS is the fact
that for a system development project to be successful, there should be a close fit
of the technology with social and organizational factors. Hwang and Thorn [29]
speak in a similar strain with their assertion that stakeholder participation in the
development of information systems can lead to higher levels of user satisfaction,
system quality, and system usage. In a similar way, the socio-technical issues are
prevalent in the analysis of human activity systems, as proposed by Checkland and
Scholes [12] in their prominent work, Soft Systems Methodology in Action, in
which identification of stakeholders and consideration of multiple perspectives is
one of the most important aspects.

The concept of stakeholders with multiple perspectives is also relevant in the
literature on inter-organizational systems (IOS). According to Cavaye [11], there
are two key stakeholder perspectives in an IOS, namely those of the sponsor and
of the adopter. Sponsors are firms leading the development and implementation of
the IOS, while adopters are the intended users of IOS. Sponsors and adopters are
referred to as hubs and spokes, respectively, by Murchland [50], and as initiators

336 Cybulski and Sarkar

and followers, respectively, by Riggins and Mukhopadhay [60]. Even though a de-
tailed look into IOS literature is beyond the scope of the study, we have adopted
the term “initiator” to denote organizational units spearheading the implementa-
tion of WBIS.

One of the most significant contributions to the application of stakeholder the-
ory in information system is by Pouloudi [55], who reiterates that the considera-
tion of multiple stakeholder viewpoints will expose conflicting perspectives, and
thus generate a greater understanding of stakeholder issues. This, in turn, will pave
the way for the effective development and implementation of information systems.
Pouloudi [57] proposes, within a specific organizational or inter-organizational
context, a process of stakeholder identification and analysis that is iterative and
evolutionary, thereby enabling a longitudinal and continuing approach of examin-
ing stakeholders and their viewpoints.

While placing considerable emphasis on the identification and analysis of
stakeholders in information system development, how the multiple perspectives of
stakeholders are examined in the process of building applications for organiza-
tional (or inter-organizational) workflows, and their reflection in the various soft-
ware artifacts generated in the project is insufficiently explained. This indicates
the value of a further investigation into the application of stakeholder theory and
the resultant “multiple perspectives” to the requirements elicitation.

15.3.2 Viewpoint Analysis

Requirements engineers adopted the concept of stakeholder analysis for the pur-
pose of identifying information sources and their characteristics, and the subse-
quent elicitation of requirements. This paved the way for the emergence of the
concept of stakeholder viewpoints in RE. The concept of viewpoints was first in-
troduced by Mullery [48] in his Controlled Requirement Specification (CORE)
method. CORE recognizes the need for taking into account multiple perspectives
of a system in the expression of requirements. The viewpoint approaches recog-
nize that the development of a system involves the participation (in the form of
expressing requirements) of multiple stakeholders with different perspectives, and
conflict may erupt between these different perspectives

Finkelstein [20] and Nuseibeh [53] support the concept of multiple stakeholder
perspectives with the statement that any requirements engineering activity in a
project is likely to involve a "multiple development participants" with "multiple
perspectives" on the system. They build on the concept of viewpoints as “a
framework to structure, organize, and manage these perspectives” [20]. In their
work, viewpoints are concerned with the role and responsibility of a particular
participant or stakeholder in a software development process [19].

According to Leite [36] a viewpoint is a standing or mental position adopted by
an observer of a phenomenon, with respect to his or her role in the observed situa-
tion. The viewpoints approach that is relevant to our research, in view of its dispo-
sition towards the organizational and human aspects of information systems de-
velopment, is the PREview (Process and Requirements Engineering Viewpoints)

15 Requirements Engineering for Web-Based Information Systems 337

[75]. PREview provides an iterative process, based on the spiral model by Boehm
[7], of identifying essential viewpoints, emergence of new requirements, and fine-
tuning of existing ones with each cycle of the process. PREview places a signifi-
cant emphasis on taking the strategic goals of an organization into account at the
outset of the development process. These strategic issues affect every aspect of the
system to be developed and are referred to as concerns, defined as a non-
negotiable requirement, the compliance with which is critical to the success of the
development process. Concerns reflect the goals of the organization, business ob-
jectives, beliefs, and policies, and can be represented with natural language state-
ments. Thus, concerns need to be considered while designing a system. Concerns
may impose constraints on requirements or translate into obligatory requirements.

Another prominent approach, which deals with multi-perspectives of stake-
holders in Information Systems Development (ISD), is MultiView [2]. It com-
prises of a hybrid process involving both IT experts and users, thereby looking at
both the technical and human aspects of ISD. The authors reiterate that the ISD
should be considered as a social process, and be examined from a number of dif-
ferent perspectives, namely technical (system analysts), organizational (societal),
and personal (individual) [Also see 37]. Organizational and personal perspectives
reflect the human and social factors inherent in complex situations surrounding
ISD projects [88]. Hence, an organization in which the IS project is being under-
taken, can also hold a perspective, which essentially reflects its strategic goals and
objectives. In this regard, it can be induced that the organizational viewpoint is
similar to the notion of the concern offered by Sommerville [75].

At this juncture, it is appropriate to reflect on the fact that over time, while dis-
tinct stakeholders develop multiple viewpoints, the resulting divergence of views
and objectives creates the potential for conflict [18, 53] (also see Chap. 7). In IS
development, conflict is essentially a consequence of the scant attention paid by IS
project managers to the resistance expressed by stakeholders [39] and when the
needs and expectations of stakeholders are not being addressed [56], both of
which are common in the realm of WBIS implementation [67].

15.3.3 Concern Analysis

It can be seen from the discussion so far that WBIS project could only be success-
ful in terms of stakeholder satisfaction when the needs and expectations of the dis-
tinct (and non-homogenous) stakeholder groups could be complied with. Should
the compliance not be achieved, the stakeholders will claim this situation as of
great concern to them and perceive it as a serious problem. A clear distinction be-
tween the terms “concerns” and “problems” needs to be clearly articulated. Met-
calfe [44] signals a warning against the use of the word “problem” to objectify
facts. The objectification of facts to state problems implies an independence from
human problem-owners, thereby legitimizing the universality of the issues, and
thus preventing the subsequent claim by elite figures to be the sole producers of
viable problem solutions, an argument strongly presented by Saul [71]. In reality,
a problem does not exist independently of the problem-owner. According to

338 Cybulski and Sarkar

Landry [34], problems are perceptions in the minds of humans. Thus, it is more
appropriate to refer to such issues as “concerns” rather than problems, as the for-
mer closely associates the issues with an owner. Furthermore, referring to issues
as concerns also aligns the notion with the multiple perspectives or viewpoints ap-
proaches [88].

From this it can be induced that all stakeholders have concerns, which are ex-
pressed through their respective viewpoints. Similarly, the project team also has
its own concerns, which are basically aligned with the related strategic concerns of
the organization [15, 30, 32]. At this stage, one may wonder – if concerns are ex-
pressed through the different viewpoints of multiple stakeholders, how do we
know that they are focused on the same issue? Churchman [13] enlightens us in
this regard by advocating the splitting of the problem issue from the person who
perceived it as such (i.e. separating the concern from the person who expressed it),
and then asking other people to express their concerns over the problem issue. A
stakeholder may express a range of concerns pertaining to a particular problem is-
sue. Ultimately, the concerns can be analyzed and reconciled with the aim of gen-
erating a collective viewpoint on the problem, a perquisite to producing a collec-
tive solution [44]. Such an undertaking is in line with the Theory of
Communicative Action by Habermas [26], who reiterated that members of society
will jointly pursue actions to reach a rational consensus and mutual understanding,
thereby bringing about the evolution of society. It should also be noted that if this
consensus and mutual understanding cannot be reached, the concerns can poten-
tially intensify [87], and result in full-blown conflict. Therefore, in concerns can
be detected the seeds or antecedents of conflict [67].

Landry [34] and Metcalfe [44] supports the importance of stakeholder concerns
in IS projects by maintaining that the perceptions of stakeholders with regards to
the proposed information system are formed on the basis of their concerns. There-
fore, project managers' understandings of the concerns of stakeholders are central
to the “good design” of information system [45]. Metcalfe and Powell [45] further
add that concerns provide the primary “lens” by which people process multitudes
of information. In other words, they assign priorities to the messages on the basis
of their concerns. Baskerville and Wood-Harper [5] employ the term “areas of
concern”, which warrants attention at the outset of an IS development process.

Our definition of a stakeholder concern is an amalgamation and an expansion
of the previously discussed concepts, accordingly:

A concern is an issue voiced by a particular stakeholder with regards to some
aspect of the proposed information system, which impacts the stakeholder’s
involvement in this system and which when addressed will determine the need
for further evolution of the system.

In a sense, concerns are related, albeit not directly, to the expectations and
goals of stakeholders [38] (see also Chap. 9), i.e. both concerns and expectations
are undoubtedly linked to their beliefs regarding what aspects of the proposed in-
formation systems will (or will not) motivate their involvement. Mazur [42] ad-
vises project managers to prompt customers and users to convey their main con-
cerns regarding issues that prevent them from achieving their work-related and

15 Requirements Engineering for Web-Based Information Systems 339

personal goals. They are also asked to state opportunities they are currently unable
to avail, or reveal issues that consolidate their social position in the organization.

Key Points:

Referring to issues of contention as “problems” objectify these issues, thereby
ignoring the perspectives of people who expressed them and subsequently, re-
stricting resolution in the hands of the elite.
These issues are considered problems because people perceive them as such.
Thus, the term “concern” is more appropriate as it relates the issue to the origi-
nal perspective/viewpoint of the person.
Concerns are expressed through the perspectives/viewpoints of stakeholders.
Splitting the actual issue of concern from the perspective/viewpoint can enable
other stakeholders to voice their concerns over the issue.
Ultimately, concerns need to be analyzed and reconciled with the aim of gener-
ating a collective viewpoint on the problem and its solution.
If the consensus and mutual agreement is not reached, the collective solution
becomes impossible, thereby intensifying the concerns, and leading to conflict.
Highly intense concerns signal the antecedents of conflict.
Project managers’ understandings of the concerns of stakeholders are central to
the “good design” of information system.
A concern is an issue voiced by a particular stakeholder with regards to some
aspect of the proposed information system, which impacts the stakeholder’s in-
volvement in this system and which when addressed will determine the need
for further evolution of the system.
In line with the progression of a project, stakeholder concerns move from one
stage to the other.

15.4 A Model of Concern-Driven Requirements Evolution

The impact of stakeholder concerns on the process of requirements elicitation in
the development of WBIS has been studied by conducting a domain-wide study of
six Melbourne-based organizations engaged in implementing web-based Em-
ployee Service Systems (ESS) [70]. Four of these organizations were universities
and the other were the only two outsourced payroll companies in Melbourne
adopting web technology to provide payroll services to their clients. In typical
ESS projects, the stakeholders include project initiators, namely the HR divisions
of the universities and the outsourced payroll providers, IT personnel (if separate
from HR), clients of outsourced payroll companies, employees, and supervisors.
Our interests were on project managers’ experiences in dealing with concerns of
the prime web-system stakeholders in the Human Resources (HR) environment
and the impact of these concerns on the system requirements.

A set of semi-structured interviews were conducted with the participants who
headed web projects. The interview protocol used for the interviews consisted of

340 Cybulski and Sarkar

questions that were targeting elicitation of project managers experiences with the
implementation and continual evolution of ESS, due to strategic initiatives of the
organization and its business needs for a WBIS, characteristics of the baseline
stakeholders, and the roll-over of the web-based solution. The questions were also
directed at obtaining information about the project manager’s experience with the
concerns of stakeholders, their viewpoints regarding the issues of dissonance
voiced by the users and the various players in the organization’s power structures,
as well as the perceived consequences of measures taken by the project team to al-
leviate discord or lessen user resistance toward the usage of web-enabled HR ser-
vices. In companies that provided outsourced payroll services, the protocol also
focused on the experience of project managers with the impact of promotional
campaigns and incentives offered to clients in order to motivate their signing up
for web services. In some cases, follow-up interviews were conducted either in
person or by email communication to seek clarifications on narratives or to urge
additional information.

As the primary focus of this study was views and opinions of individual project
managers, the process of data collection and analysis followed phenomenological
tradition [47, 81]. The phenomenological analysis has been employed in the study
in order to fathom out the whole, and the relationship between stakeholders (pro-
ject teams and the user-stakeholders), the organizations, and the web-enabled ser-
vices. Through iterative reading and analysis of the transcribed interviews, a num-
ber of statements covering all explanations of the phenomena of interest were
generated. When the iterative (hermeneutic) process was deemed to be complete,
the statements were subjected to phenomenological reduction and elimination in
order to identify their invariants. Statements that were irrelevant to the experience
of the phenomena, overlapping, repetitive, or vague were removed, and the rest
presented themselves as the textural meanings and invariant constituents. Through
clustering and thematizing the invariants, forming the core themes of the experi-
ence, were generated. These included project manager’s experience with stake-
holder concerns in requirements establishment and system evolution, especially
when dealing with WBIS data entry, workflow and other critical system function-
ality. The multidimensional account of project managers’ experiences with the
implementation of ESS revealed the social obstacles and fragility of intra-
organizational relationships that demanded a cautious and tactful approach from
project management.

15 Requirements Engineering for Web-Based Information Systems 341

Fig. 15.1 The enhanced conceptual framework

The phenomenological method applied to this study led to the induction of fac-
tors that provide insights into the realm of ESS projects, and WBIS projects in
general, especially with regards to the interactions between project managers and
the other stakeholders as well as to the nature of the stakeholder concerns. Such
insights indeed lead to the expansion and enhancement of the conceptual frame-
works previously presented as part of stakeholder, viewpoint and concern analysis,
as presented in Fig. 15.1.

Interestingly, the notion of concern-driven requirements evolution fits the con-
ceptualization of the Concerns Based Adoption Model (CBAM), which originated
from educational research in the 1970’s and 1980’s [1]. The CBAM model was
aimed at conducting an in-depth study into the process of change as experienced
by school teachers involved in the implementation of new curriculum and modes
of teaching. One of the prime components of the model is the concept of the
Stages of Concern (SoC), which provides a framework for elaborating the “feel-
ings and motivations” of teachers with regards to the change in curriculum and in-
structional practices at different junctures in the implementation of new educa-
tional programs. The parallels between WBIS system requirements and
educational curriculum are indeed striking. And so, the curriculum can be thought
of as a specification of teaching practice, teachers as stakeholders, educational
management as project managers, curriculum adoption as requirements refine-
ment, etc. While the two models are not identical, the similarities provide oppor-

342 Cybulski and Sarkar

tunities to focus and guide the emerging model characteristics, and so we analyzed
the WBIS requirements evolution process in terms of SoC stages of dealing with
concerns, which include raising stakeholders’ awareness of change, stakeholders’
informational pursuits, personal and management engagement in the implementa-
tion, dealing with the consequences of change, collaborative improvement over
change, and its possible refocusing.

In Fig. 15.1, the concept of stakeholders extends over the notions of an “organ-
izational stakeholder” and “developer”. The developer could either be the in-house
IT division or the vendor from which the WBIS has been purchased. IT divisions
have been also found to be the holders of WBIS project viewpoints, referred to in
the figure as “vp. Dev”, which are involved in the establishment of system re-
quirements. However, it has not been affirmed from the phenomenological inves-
tigations in ESS that vendors make known their viewpoints with regards to the
projects of their clients. However, vendors do play a role in the establishment of
initial requirements as indicated by the arrow from the Developer to the Require-
ments.

Project managers, as revealed by the phenomenological inquiry of their experi-
ences with ESS, are responsible for the entire process of implementation, and
specify an initial set of system requirements for the WBIS, driven by their per-
sonal and management concerns [1]. These initial requirements are validated by
the stakeholders through the feedback mechanism. Thus, the viewpoints “vp. A”,
“vp. B” and “vp. C” are expressed with regards to the requirements. However, the
findings of the study uncovered the fact that the underlying concerns behind the
viewpoints were linked to the actual or projected consequences of the require-
ments rather than the requirements themselves [1].

This is evident in Fig. 15.1 where the entire process of user validation is related
to the consequences of the initiator requirements. In other words, stakeholders
were primarily concerned with the situations resulting from the effects of the ini-
tiator requirements. Thus, they resist the initiator requirements in anticipation of
such situations. To minimize the resistance, project managers interact and negoti-
ate with the stakeholders, which is shown by the Action meeting the Resistance ar-
row in the figure (also see Chap. 7). This can give rise to collaboration concerns
on the part of the project managers [1]. It is during these interactions that project
managers should be able to detect the existence of conflict antecedents. As illus-
trated in the figure, the resistance is driven by the concerns of the stakeholders.
Whenever project managers do not adequately address the concerns, the resistance
may intensify, thereby increasing the likelihood of the antecedents manifesting
into a full-blown conflict. On the other hand, project managers can alleviate the
concerns and reduce resistance by introducing new requirements or enhancing or
modifying the existing requirements, hence engaging in project and requirements
refocusing [1]. This is indicated by the arrow leading back to the Requirements
from the Stakeholder Concerns in Fig. 15.1. Evidently, the consequences of some
of the new and enhanced/modified requirements are perceived negatively by the
project managers, and give rise to their own concerns (arrow from Consequences
back to Initiator concerns). Thus, the iterative nature of WBIS projects is demon-
strated. It should be noted that the first two stages of concerns in the CBAM ap-

15 Requirements Engineering for Web-Based Information Systems 343

proach, namely awareness, and informational, could not be ascertained from the
ESS managers’ own experiences, though they implied that such concerns were
voiced by some of the user groups.

The Experience Base, however implicit or semi-institutional, provides assis-
tance to the IT developers and project managers alike. The arrow is double-headed
to suggest the dual flow of information between the experience base, and the pro-
ject managers and the developers, i.e. they also feed and augment the experience
base with what they learnt from the current project, while availing the assistance
provided by the knowledge infrastructure.

It is clear from the empirical data that stakeholder concerns, in this enhanced
model of WBIS requirements evolution, are clearly the elemental precursors of
system requirements.

It is therefore inconceivable that in the development of WBIS, and other similar
software systems, stakeholder concerns should be left uncollected, unprocessed
and unwanted. Requirements engineering methods must therefore be significantly
enhanced and analysts retrained to place a special focus to their work with system
requirements and stakeholder concerns.

15.5 Summary and Conclusion

Over an IS project duration, while distinct interdependent stakeholders develop
multiple viewpoints, the resulting divergence of views and objectives creates the
potential for conflict. The empirical evidence, as documented in the employee ser-
vice system (ESS) projects described in this chapter, confirms that participation of
stakeholders with multiple viewpoints can indeed lead to conflicts in requirements
engineering for web-based information systems (WBIS).

The ESS case studies contribute to the formulation of a process governing the
WBIS requirements evolution in response to stakeholder concerns, thereby creat-
ing the opportunity for the creation of a comprehensive, end-to-end, web devel-
opment methodology. The studies also identify an explicit link between the stake-
holder concerns, stakeholder resistance to change and the potential of conflict
developing between concerned stakeholders and unresponsive project initiators.
Web-based information systems are inherently complex, involving technological,
enterprise and social concerns, and thus, a suitable iterative requirements engi-
neering process model could enable WBIS project organization into more man-
ageable, yet coherent, phases. The model of concern-driven web requirements
evolution can be used as a solid basis for such a process model. Web engineering
encompasses a number of activities from system conception and development to
implementation, performance evaluation, and continual refinement. The enhanced
conceptual framework of WBIS projects, covering prominent stages from strategic
concerns to the formulation of business needs, and subsequent translation into sys-
tem requirements and stakeholder validation of requirements, can indeed contrib-
ute in-depth substance to the web development methodology.

344 Cybulski and Sarkar

The advent of web-based information systems, quite unique in their features
and development requirements, is only indicative of the new generation of soft-
ware systems, as represented by enterprise-wide systems, commercial off-the-shelf
systems, and reuse/component-based systems (also see Chap. 20). Such new types
of software systems commonly involve the sophisticated enabling infrastructure,
high business impact, short time to market and high level of stakeholder concerns.
The new generation of software systems redefine the role of a requirements engi-
neer and shift his or her attention from requirements management to stakeholder
and concern management. By paraphrasing Wallnau’s statement about compo-
nent-based system paradigm [85, p 47], we observe that:

We cannot easily separate the real requirements from other desirable character-
istic of the system. In fact, having collected the system requirements, the re-
quirements engineer of the new generation systems, such as WBIS, still has a
considerable task to accomplish. While the remainder of stakeholder needs
may be no more than expression of preference, they still represent a large part,
perhaps the majority, of the stakeholders' wants. These preferences will have
conflicts, these preferences will have different communities that desire them,
and most important, these preferences will be met in varying degrees by the
delivered system.

This leads to an interesting requirements engineering paradox, again paraphras-
ing and refocusing Wallnau’s original statement on the issues of concerns [85]:

The new requirements engineer now must spend a considerable amount of ef-
fort in dealing with nonrequirements. His traditional province stakeholders'
expression of what they wanted, what they needed, what would make their
work improve - deals with those same needs, yet most of these things are now
concerns.

And so ENTER the new generation of requirements engineers!

References

1. Anderson SE (1997) Understanding teacher change: Revisiting the concerns based adop-
tion model. Curriculum Inquiry. 27(3): 331 367

2. Avison DE, Wood-Harper AT (1990) Multiview: An exploration in information systems
development. Oxford, Blackwell Scientific Publications

3. Avison DE, Wood-Harper AT, Vidgen R, Wood JRG (1998) A further exploration into
information systems development: The evolution of multiview 2. Information Technol-
ogy & People. 11(2): 124 139

4. Balasubramanian V, Bashian A (1998) Document management and web technologies:
Alice marries the mad hatter. Communications of the ACM, 41(7): 107 115

5. Baskerville R, Wood-Harper AT (1998) Diversity in information systems action research
methods. European Journal of Information Systems, 7: 90 107

6. Bennet S, McRobb S, Farmer R (1999) Problems in information system development.
Object-Oriented Analysis and Design using UML. McGraw-Hill Publishing Company

15 Requirements Engineering for Web-Based Information Systems 345

7. Boehm B (1986) A spiral model of software development and enhancement. Software
Engineering Notes, 11(4): 22 32

8. Carroll AB, Nasi J (1997) Understanding stakeholder thinking: Themes from a Finish
Conference. Business Ethics, A European Review, 6(1): 46 51

9. Carstensen PH, Vogelsang L (2001) Design of Web-based information systems: New
challenges for systems development. In: European Conference on Information Systems,
Bled, Slovenia, pp.536 547

10. Carter J (2002) Developing E-commerce systems. Prentice-Hall, Sydney Australia
11. Cavaye ALM (1995) The sponsor-adopter gap - Differences between promoters and po-

tential users of Information Systems that link organizations. International Journal of In-
formation Management, 15(2): 85 96

12. Checkland P, Scholes J (1990): Soft Systems Methodology in Action. Chichester: John
Wiley & Son, Australia

13. Churchman CW (1971) The design of inquiring systems. New York, Wiley
14. Clarkson MBE (1995) A stakeholder framework for analyzing and evaluating corporate

social performance. Academy of Management Review, 20(1): 92 117
15. Davenport TH (1993) Process innovation: Reengineering work through information

technology. Boston, Harvard Business School Press
16. Duyne DK, Landay JA, Hong JI (2003) The design of sites: Patterns, principles and

processes for crafting a customer-centered web experience. Boston, Addison-Wesley
17. Earl M, Khan B (2001) E-commerce is changing the face of IT. MIT Sloan Manage-

ment Review. 43(1): 64 72
18. Easterbrook S (1991) Handling conflict between domain descriptions with computer

supported negotiation. Knowledge Acquisition: An International Journal, 3(4):
255 289

19. Finkelstein A, Kramer J, Goedicke M (1990) ViewPoint oriented software develop-
ment. In: Proceedings 3rd International Workshop on Software Engineering and its Ap-
plications. Toulouse, France

20. Finkelstein A, Kramer J, Nuseibeh B, Finkelstein L, Goedicke M (1992) Viewpoints: A
framework for integrating multiple perspectives in system development. International
Journal of Software Engineering and Knowledge Engineering, 2(1): 31 58

21. Fitzgerald B (1997) The use of system development methodologies in practice: A field
Study. Information Systems Journal, 7(3):201 212

22. Fraternali P (1999) Tools and approaches for developing data-intensive web applica-
tions: A survey. ACM Computing Surveys, 31(3): 227 263

23. Freeman RE (1984) Strategic management: A stakeholder approach. Boston, Pitman
24. Ginige A (1998) Web engineering: Methodologies for developing large and maintain-

able web-based information systems. In: Proceedings of IEEE International Conference
on Networking India and the World Ahmedabad, India

25. Gordijn J, Akkermans H, van Vliet H (2000) Value based requirements creation for
electronic commerce applications. In: Proceedings of the 33rd Hawaii International
Conference on Systems Sciences. Hawaii, pp.1915 1924

26. Habermas J (1984): The theory of communicative action. Cambridge, Polity Press
27. Hammar-Cloyd MH (2001) Designing user-centered web application in web time. IEEE

Software. 18(1): 62 69
28. Howcroft D, Carroll J (2000) A proposed methodology for web development. In: Pro-

ceedings of 8th European Conference in Information Systems (ECIS), Vienna, Austria

346 Cybulski and Sarkar

29. Hwang MI, Thorn RG (1999) The effect of user engagement on system success: A
meta-analytical integration of research findings. Information and Management. 35(4):
229 236

30. Irani Z (2002) Information systems evaluation: Navigating through the problem do-
main. Information and Management. 40(1): 11 24

31. Isakowitz T, Stohr EA, Balasubramanian V (1985) RMM: A methodology for struc-
tured hypermedia design. Communications of the ACM 38(8): 34 44

32. Jacobson I, Christerson M, Jonsson P, Overgaard G (1992) Object-oriented software
engineering: A use case driven approach. Addison-Wesley, UK

33. Lacity MC, Hirschheim R (1995) Benchmarking as a strategy for managing conflicting
stakeholder perceptions of information systems. Journal of Strategic Information Sys-
tems, 4(2): 165 185

34. Landry M (1995) A note on the concept of problem. Organizational Studies, 16(2):
315 327

35. Lawrence E, Newton S, Corbitt B, Braithwaite R, Parker C (2002) Technology of inter-
net business. MIlton, Qld, Wiley & Sons, Australia

36. Leite JCSP, Freeman PA (1991) Requirements validation through viewpoint resolution.
IEEE Transactions Software Engineering, 17(12): 1253 1269

37. Linstone HA (1989) Multiple perspectives: Concept, applications and user guidelines.
Systems Practice. 2(3): 307 331

38. Lyytinen K, Hirschheim R (1987) Information system failures - A survey and classifica-
tion of the empirical literature. Oxford Surveys in Information Technology, 4: 257 309

39. Marchewka JT (2003): Information technology project management: Providing measur-
able organizational value. John Wiley & Sons, UK

40. Markus ML (1983) Power, politics and MIS implementation. Communications of the
ACM, 26(6): 430 444

41. May LJ (1998) Major causes of software project failures. Crosstalk, July
42. Mazur G (2003) Voice of the customer (define): QFD to define value. In: Proceedings

of the 57th American Quality Congress. Kansas City, USA
43. McCracken DD, Wolfe RJ (2004) User-centered website development: A human-

computer interaction approach. Upper Saddle River, NJ: Pearson-Prentice Hall
44. Metcalfe M (2000) Concern solving: Emancipating problem solving. Working Paper,

University of South Australia, School of Accounting and Information Systems, Ade-
laide, Access 5th December 2004 http://business.unisa.edu.au/cobra /documents/con-
cerns_IT&P.pdf

45. Metcalfe M, Powell P (1995) Perceiver’s concerns: On the nature of information. Euro-
pean Journal of Information Systems, 4: 121 129

46. Miletsky J (2002) Planning, developing and marketing successful web sites. Australia:
Thomson

47. Moustakas C (1994) Epoche, phenomenological reduction, imaginative variation, and
synthesis. In: Phenomenological Research Methods. SAGE Publications, UK

48. Mullery GP (1979) CORE - A method for controlled requirements expression. In: Pro-
ceedings of 4th International Conference on Software Engineering. Munich, Germany,
pp.126 135

49. Mumford E, Weir M (1979) Computer systems in work design, the ETHICS method:
Effective technical and human implementation computer systems: A work design exer-
cise book for individuals and groups. London: Associated Business Press.

15 Requirements Engineering for Web-Based Information Systems 347

50. Murchland P (1995) Inhibitors to adoption of electronic commerce. Electronic Mar-
kets(16-17): 11 12

51. Murugesan S, Deshpande Y, Hansen S, Ginige A (1999) Web engineering: A new dis-
cipline for development of web-based Systems. In: Proceedings of 1st ICSE Workshop
on Web Engineering. Los Angeles, pp.1 9

52. Nazareth DL (1998) Designing effective websites: Lending structure to a chaotic proc-
ess. In: Proceedings of 4th Americas Conference on Information Systems. Baltimore,
Maryland, pp.1011 1013

53. Nuseibeh B, Finkelstein A, Kramer J (1994) A framework for expressing the relation-
ships between multiple views in requirements specification. IEEE Transactions on
Software Engineering, 20(10): 760 773

54. Overmeyer SP (2000) What’s different about requirements engineering for web sites?
Requirements Engineering Journal, 5(1): 62 65

55. Pouloudi A (1999) Aspects of the stakeholder concept and their implications for infor-
mation systems development. In: Proceedings of 32nd Hawaii Conference on System
Sciences. Hawaii

56. Pouloudi A, Whitley EA (1996) Discussing the role of information systems in the mani-
festation of organizational and inter-organizational conflict. The Systemist, 18: p.
217 238

57. Pouloudi A, Whitley EA (1997) Stakeholder identification in inter-organizational sys-
tems: Gaining insights for drug use management systems. European Journal of Infor-
mation Systems, 15(2): 85 96

58. Putnam L, Poole M (1987) Conflict and negotiation. Handbook of Organizational
Communication: An Interdisciplinary Perspective, Porter L (Ed.), pp.549 599

59. Richardson B, Richardson R (1992) Business planning: An approach to strategic man-
agement. Pitman, USA

60. Riggins FJ, Mukhopadhyay T (1999) Overcoming adoption and implementation risks of
EDI. International Journal of Electronic Commerce 3(4): 103 115

61. Robey D, Farrow DL (1982) User involvement in information system development: A
conflict model and empirical test. Management Science, 28(1): 73 87

62. Robey D, Farrow DL, Franz CR (1989) Group process and conflict in system develop-
ment. Management Science, 35(10): 1172 1191

63. Rossi G, Schwabe D, Garrido A (1997) Design reuse in hypermedia application devel-
opment. In: Proceedings of 8th ACM Conference on Hypertext Technology (Hyper-
Text’97). Southampton, Inglaterra, ACM Press

64. Ruohonen M (1991) Stakeholders of strategic information systems planning: Theoreti-
cal concepts and empirical examples. Journal of Strategic Information Systems. 1(1):
15 28

65. Russo NL (2000) Developing applications for the web: Exploring differences between
traditional and world wide web application development. In: Managing Web-Enabled
technologies in Organizations: A Global Perspective, Khosrowpour M (Ed.). Idea
Group Publishing, pp.23 35

66. Russo NL, Wynekoop J, Walz D (1995) The use and adaptation of system development
Methodologies. In: Proceedings of the Information Resources Management Association
International Conference, Khosrowpour M (Ed.). Idea Group Publishing: Hershey, PA,
USA

348 Cybulski and Sarkar

67. Sarkar PK, Cybulski JL (2002a) Analysis of stakeholder concerns with a view to avoid
organizational conflict in B2B Systems. In: Proceedings of the 15th International Con-
ference in Electronic Commerce. Bled, Slovenia

68. Sarkar PK, Cybulski JL (2002c) Consideration of stakeholder concerns in the develop-
ment of web-enabled systems. In: Proceedings of the IADIS International Conference
WWW/Internet. Lisbon, Portugal, pp.774 779

69. Sarkar PK, Cybulski JL (2003a) Process of requirements evolution in web-enabled em-
ployee service systems. In: Proceedings of 12th International Conference in Informa-
tion System Development (ISD). Melbourne, Australia

70. Sarkar PK, Cybulski JL (2003b) Applying domain analysis to the investigation of web-
enabled human resource Projects. In: Proceedings of 14th Australasian Conference in
Information Systems (ACIS). Perth, Australia, paper No: 270

71. Saul JR (1997) The unconscious civilization, Penguin, UK
72. Schermerhorn Jr. JR, Hunt JG, Osborn RN (1997) Conflict and negotiation. In: Pro-

ceedings of Organization Behavior. John Wiley & Sons, Inc. pp. 377 398
73. Sharp H, Finkelstein A, Galal G (1999) Stakeholder identification in the requirements

engineering Process. In Proceedings of Database and Expert Systems Applications
(DEXA 99). Florence, Italy, IEEE Computer Society Press, pp.387 391

74. Siau K (1998) Method engineering for web information systems development: Chal-
lenges and issues. In: Proceedings of Fourth Americas Conference on Information Sys-
tems. Baltimore, Maryland, pp.1017 1019

75. Sommerville I, Sawyer P, Viller S (1997) Viewpoints for requirements elicitation: A
practical approach. In: Proceedings of 3rd IEEE International Conference on Require-
ments Engineering. CO, USA, pp.74 81

76. Standing C (2000) Internet commerce development: Artech House Inc., USA
77. Standing C (2001) The requirements of methodologies for developing web applications.

IN: Proceedings of European Conference on Information Systems, Bled, Slovenia,
pp.548 556.

78. Standing C (2002) Methodologies for developing web applications. Information and
Software Technology, 44(3): 151 159

79. Stevens KJ, Timbrell GT (2002) The implications of E-commerce for software project
risk: A preliminary investigation. In: Proceedings of IFIP, Copenhagen, Denmark

80. Treese GW, Stewart LC (2003) Designing systems for Internet commerce. Addison-
Wesley, Australia

81. van Manen M (1990) Researching lived experience. New York, USA University of
New York Press

82. Vidgen R (2002) Constructing a web information system development methodology.
Information Systems Journal, 12: 247 261

83. Vidgen R (2002) What’s so different about developing web-based information systems?
In: Proceedings of European Conference in Information Systems. Gdansk, Poland,
pp.262-271

84. Vidgen R, Avison D, Wood B, Wood-Harper T (2002) Developing web information
Systems. Elsevier, Amsterdam

85. Wallnau KC, Hissam SA, Seacord RC (2002) Building systems from commercial com-
ponents. Addison-Wesley, Boston

15 Requirements Engineering for Web-Based Information Systems 349

86. Wastell DG, Newman M (1993) The behavioural dynamics of information systems de-
velopment: A stress perspective. Accounting, Management and Information Technol-
ogy, 3: 121 148

87. Wilson P (1983) Second hand knowledge. Greenwood Press, Westport, Connecticut,
USA

88. Wood-Harper AT, Corder S, Wood J, Watson H (1996) How we profess: The ethical
system analyst. Communications of the ACM, 39(3): 69 77

Author Biography

Associate Professor Jacob L. Cybulski is an Associate Head of School (Research)
in Information Systems at Deakin University. His professional interests include
requirements engineering, knowledge management and domain analysis. Jacob
works as a consultant with organizations willing to introduce novel approaches to
their development methods, e.g. domain analysis, design patterns and life-cycle
support tools. Jacob's past projects range from mechanical engineering and tele-
communications applications to developing software productivity environments
and toolkits. Jacob also acted as an expert witness in the area of software devel-
opment methodologies and process quality. His current work focuses on informa-
tion systems alignment, e-commerce and web development.

Dr Pradip K. Sarkar is a Research Assistant in the School of Business Systems at
Monash University. His research is aimed at improving current methods of re-
quirements engineering for web-based application development to better service
the diverse needs of a global user. In the past, Pradip has also worked in India,
Thailand and Australia in the software industry and academia, which has given
him the unique opportunity to gain first-hand experience with software develop-
ment practices across national, language and cultural boundaries.

Part 3
Studies and Industrial Experience

Part 3 concludes the book with chapters on specific practical/industrial examples,
empirical studies and an examination of trends in requirements engineering. Chap-
ter 16 presents practical experiences from requirements engineering in the public
sector. Chapter 17 discusses the experiences of a company using a tailored variant
of the Rational Unified Process and, in particular, their experiences with require-
ments engineering. Chapter 18 present a study on requirements engineering across
six different companies. A lot can be learned by trying to combine results obtained
in different studies. One such attempt is presented in Chap. 19, where an analysis
of surveys in requirements engineering is provided. Finally, this part is concluded
with a chapter discussing possible solutions and trends in requirements engineer-
ing (Chap. 20).

Thus, in summary this part contains chapters on the following topics:

Chapter 16: Requirements engineering in the public sector
Chapter 17: Experiences from one company
Chapter 18: A study of requirements engineering at six companies
Chapter 19: A analysis of published surveys in requirements engineering
Chapter 20: Solutions and trends

This part concludes with an outlook into the future trends in requirements engi-
neering.

The five chapters are by Nigel Martin from Department of Defense, Australia
and Shirley Gregor from Australian National University, Australia; Nur Yilmaz-
türk from ABB Corporate Research, Sweden; Tony Gorsheck and Mikael Svahn-
berg from Blekinge Institute of Technology, Sweden; Barbara Paech and Lars
Borner from University of Heidelberg, Germany, Tom Konig from Fraunhofer In-
stitute for Experimental Software Engineering, Germany, and Aybüke Aurum
from University of New South Wales, Australia; Christof Ebert from Alcatel,
France and Roel Wieringa from University of Twente, The Netherlands.

16 Requirements Engineering: A Case of Developing
and Managing Quality Software Systems in the Public
Sector

Nigel Martin and Shirley Gregor

Abstract: This chapter describes the managerial processes and governance
frameworks that are used to develop software applications and software-intensive
systems at the Australian Bureau of Statistics (ABS). The chapter focuses on the
software requirements development activities against the backdrop of a dynamic
operating environment and technically challenging Information and Communica-
tion Technology (ICT) infrastructure. Recognition of the importance of software
requirements engineering at a strategic level is evident, supported by senior man-
agement and with ongoing user involvement and consultation An enterprise archi-
tecture provides a framework for the integration of requirements engineering with
business drivers and subsequent development practices. The software and ICT
outcomes are benchmarked at or near best practice and are accompanied by above
average ABS corporate performance. The ABS practices show congruence with
theoretical frameworks and international standards.

Keywords: Software development process, Enterprise architecture, Management
involvement, Phases, Activities, Tasks, Prioritization.

16.1 Introduction

The Australian Bureau of Statistics (ABS) is Australia’s official statistical organi-
zation, with a corporate charter to assist and encourage informed decision-making,
research and discussion with governments and the community. It aims to provide
high quality and objective statistics products and a responsive statistics service.
The ABS organization is focused on understanding and attending to their clients’
business requirements, providing a clear explanation of what clients must provide
in order for the ABS to meet their information needs, and assisting the clients to
understand ABS statistics. In a broader sense, the ABS is involved in delivering
client services in the areas of current and historical statistics research; survey,
sample, and questionnaire design; statistical training; and survey evaluation and
methodology reviews.

The aim of this chapter is to examine and analyze the software requirements
engineering practices within a public sector organization. The ABS was selected
for its exemplary performance as a business agency of the Australian government,
and its continuing outstanding record of achievement in the development and
management of high quality ICT systems, particularly software required for deliv-
ering statistics products. The ABS is a unique government organization that inter-

354 Martin and Gregor

nally generates sixty percent of its business software. The software generation ef-
fort includes the development of new software systems (where required), and the
adaptation and integration of commercial and specialist statistics processing soft-
ware packages into the existing ABS ICT infrastructure. The other elements of the
ABS suite of software are commercially available ready-use products, such as op-
erating systems and desktop productivity applications (e.g. word processors,
spreadsheets, and electronic presentations).

The ABS data and information presented in this case study was gathered as part
of a larger doctoral study in information systems, specifically the use of Enterprise
Architectures in government agencies. The study used a qualitative research
method, which included several data collection techniques, with the ABS organi-
zation as one case study. The opportunity was taken to speak directly with senior
management and executives in semi-structured and unstructured interviews, col-
lect and analyze archival documents and parliamentary reports, study public an-
nouncements and executive presentations, and participate in system demonstra-
tions. The data collected include interviews with the ABS Director responsible for
the Software Development Process (SDP) (including the Requirements Engineer-
ing phase) and a ‘hands-on’ test run of the Input Data Warehouse software appli-
cation.

While this first section has provided a brief introduction, the balance of the
chapter is organized as follows. In Sect. 16.2 the case background that describes
the ABS organization and what it does, the ABS ICT systems, and how the ABS
case has been evaluated from the specific quality and organizational perspectives
is presented. In Sect. 16.3 the practical workings of the governance frameworks
from the requirements engineering perspective, a discussion of the social mecha-
nisms used to engineer requirements, and a view on how architecture can be used
in drawing together and managing software requirements is presented. In Sect.
16.4 the ABS software development process, including a description of the five
core development phases, is detailed. In Sect. 16.5 the requirements phase of the
software development process, including contrasts with theory and internationally
recognized standards, is discussed. In Sect. 16.6 three examples of ABS software
requirements elicitation are presented. In Sect. 16.7 the chapter concludes with a
summary of what has been observed about the requirements phase in the ABS
case, including the connections with strategic and resource planning, the require-
ments engineering method and relationship with quality assurance, and how social
mechanisms form an important part of the requirements phase.

16.2 The ABS Case Study Setting

The ABS is a unique agency of the Commonwealth government of Australia in
that it is a public provider of statistical products, goods and services to the local
and international community. The ABS mission, shows a concentration on the im-
portant service provider aspects of the agency [5], and is stated as follows: “As-
sisting and encouraging informed decision-making, research and discussion within

16 Requirements Engineering: A Case of Developing and Managing 355

governments and the community, by providing a high quality, objective and re-
sponsive national statistical service”.

The ABS is an organization of 3,002 personnel covering the employment disci-
plines of mathematics, economics, statistics, information technology, finance and
general business administration. In 2002-2003, the ABS expended over $272 mil-
lion in primarily employee, and goods and service supplier costs. As a proportion,
approximately 17 per cent of staff are engaged as ICT professionals, while around
20 per cent of the annual expenses are attributable to ICT activities and initiatives
[11, 12]. The ABS offers statistical publications in the two major areas of eco-
nomic (e.g., trade, business, national accounts, manufacturing, agriculture) and
population (e.g., census, demography, labor, social conditions, crime) statistics,
information consultancy services, statistical consultancy services, user funded sur-
veys, and other products and services to local and international customers. The
ABS delivered over 170 economic-statistic and over 160 population-statistic pub-
lication titles, covering over 690 separate publication releases, in the 2002-2003
period [10]. The statistics business has proven to be lucrative for the ABS with
over AUD$26.1 million raised from statistics based operations in 2002-2003 [9].

In supporting these expansive business operations, the ABS is a diverse user of
ICT with a complex array of software and hardware infrastructure that is primarily
directed at meeting business needs and solving business-related problems. The
ABS ICT environment is characterized by a desktop environment that includes a
Windows XP operating system, Lotus Notes, Lotus SmartSuite, and 500 commer-
cial software products, with a network of over 3,400 personal computers and over
1,100 laptop computers. The ABS network is built on a distributed client-server
computing arrangement [13, 21].

ABS Hewlett Packard ProLiant servers provide the file, print, directory and
naming services, with Transmission Control Protocol-Internet Protocol (TCP/IP)
deployed over 100 Mbps switched Ethernet Local Area Networks (LANs) and
Wide Area Network (WAN) IP. The ABS will operate a solely mid-range envi-
ronment by 2006. The mid-range environment is based on Sun Microsystems
servers and the Solaris operating systems. The majority of systems are deployed as
Oracle database servers using SQL.NET over TCP/IP, including 20 Oracle data-
bases that support over 150 software applications. The information storage solu-
tion is based on an IBM FastT900, 3584 Tape library and Tivoli Storage Manager
Software [13, 21]. Some specific examples of agency software include security
and encryption services software for external network devices, messaging soft-
ware for conducting virtual meetings across the WAN, time series and tabulated
data analysis software applications, and survey interview assistance software.
Some further discussions on the requirements for time series analysis, survey in-
terview assistance, and data warehousing software will follow later in the chapter.

The ABS aims to ensure that no matter how diverse its software needs, the re-
quirements engineering and management phase, including all associated activities
and component tasks, remain constant across ABS ICT activities. The ultimate
goal of the ABS is to create software that enables business processes and the con-
duct of its three-year rolling-work programs. This approach to developing soft-
ware, which is driven primarily by agency business requirements, is typified in the

356 Martin and Gregor

ABS business practices and processes [14]. One of the core ABS beliefs provides
a pointer as to how software requirements should be developed: Never lose the
business focus. All information technology should a have a direct or indirect busi-
ness value [31]. This is potentially a good axiom for all organizations whether
they are in the private or public sector of business.

The ABS works with the community, the private sector and other government
agencies in the three jurisdictions to develop and deliver information products and
services. As examples, the ABS works with representatives from the community
and health sector to develop statistical products, surveys and reports on Australia’s
national health industry sector, while also working with the Australian Taxation
Office and Department of Family and Community Services to exchange collected
government information and develop products related to business and social con-
ditions statistics. The structured management of software requirements, and the
associated delivery of business systems and outcomes, has seen the ABS attain a
level of ICT systems performance that is comparable to many private and public
sector organizations. Since mid 1994, the ABS Technology Services Division
(TSD) has contracted the Gartner Group to benchmark a large range of functional
areas within TSD, as part of a quality improvement program, and to test the effi-
ciency of TSD against peer groups of selected similar organisations.

The ABS advised the Australian Parliament that by the end of 1999–2000, over
80 per cent of TSD activities have been covered by the benchmarking work, in-
cluding applications and ICT infrastructure development work. The Gartner stud-
ies compare ABS TSD functions with a large number of other government and
non-government organisations internationally, showing that the ABS information
technology operations rate well above average in most areas, and above average in
all areas [2]. This was followed up in 2000-2001 with a further report to the par-
liament that ongoing benchmarking studies with Gartner show that the ABS is
“very efficient in its management and use of technology” [4]. The ABS case will
be evaluated from two perspectives. First, we look at requirements engineering
from the corporate management viewpoint, and examine how software require-
ments engineering assists the ABS in meeting its overall business objectives. Sec-
ond, we look at the requirements engineering phase in more detail, and determine
what this phase delivers to successful ABS software projects. The ABS was se-
lected as an exemplary public organization that develops its software taking a stra-
tegic view, rather than developing stove-piped software solutions on a project-by-
project basis.

16.3 Governance of ABS Software Development

In order to understand the more tactical requirements phase of software develop-
ment, we consider that it is important to recognize that strategic management is-
sues drive the business. The creation of software requirements does not simply
start when an organization decides to buy a new desktop tool or operating system.
The seeds of new software systems are sown very early in the higher levels of

16 Requirements Engineering: A Case of Developing and Managing 357

management. The non-executive Australian Statistics Advisory Councilors and
senior ABS executive group members play a pivotal role in the early definition of
core business needs and drivers.

The two most senior management groups in the ABS set the corporate directions
that shape the business processes and the scope of the ICT systems, including
software, that are to be developed during the rolling three-year forward-work Pro-
gram. This means that the software requirements have their genesis and support in
the executive ranks of the ABS. The management groups have directed that sub-
stantial user group consultations occur to ensure that business requirements are
elicited, identified, and prioritized for action and development. These consultation
processes are aimed at assisting the compilation of requirements that are consis-
tent, feasible and testable [2]. ABS practices in the area of user consultation and
advisory show that over 57 external advisory working groups and consultative
committees are activated each year to test business directions, processes and prac-
tices. Corporate user groups are represented on project management boards, archi-
tecture panels (i.e., business managers and ICT architects), and the critical busi-
ness unit customer groups [13, 15, 20]. User groups have an additional role later in
the software development process test phase when the ABS conducts user testing.
The ABS uses Hiser group documentation and user test protocols to conduct user
testing and review of prototype and production systems, including software func-
tionality. The Hiser Group is an ICT consultancy firm based in Melbourne, Aus-
tralia that specializes in assisting organizations with the development and testing
of user-centered information systems, particularly web-based applications, user in-
terfaces and systems [18].

Importantly, the definition and development of requirements at the strategic and
tactical levels of the ABS organization is evident. This approach suggests that
non-executive boards and/or councils, government executives and operational
managers should assume joint responsibilities for the development of ICT systems
for the business. The vertical flow down of requirements from top level “business”
to lower level “software” also provides the ABS with a traceability pathway that is
defined in the relevant software standards and specifications. Software require-
ments must be traceable to the business needs, systems requirements and the sys-
tem design objects [28].

The ABS Enterprise Architecture realizes the ABS vision for ICT, providing an
integrative framework for business goals and the accompanying software and in-
frastructure related activities. The Enterprise Architecture is a description of all
the elements of the ABS organization including the connective relationships be-
tween the various elements. These elements include the business process taxono-
mies, technologies and toolsets, software application architecture, data manage-
ment architecture, and information technology infrastructure [13]. The Enterprise
Architecture is driven by the business goals, strategies and corporate financing,
and includes the taxonomy of human resources and systems that enable the con-
duct of agency work outputs. The architectural method shows a vision for the
creation of an organization that has management decisions, business drivers and
needs, and required ABS products (goods and services) as critical inputs and con-
siderations [17] (see Fig. 16.1).

358 Martin and Gregor

Fig. 16.1 ABS enterprise architecture method [17]

The Enterprise Architecture imposes strict strategic and tactical rules on the de-
velopment of software systems. The architecture mandates that the agency “should
assemble, before it buys, before it builds” new software systems. Project software
programmers are encouraged to snap lock pre-developed or commercial software
components together using service interfaces, rather than creating new software
systems. Also, project managers are instructed to look at currently deployed soft-
ware technologies in order to maintain technology control and discipline [13].

The architecture method enables the proliferation and evolution of an Enter-
prise Architecture (i.e., current to target architecture) where the ABS invests in
hardware, software and infrastructure systems to serve the agency and its business
needs. ABS software assets are intrinsic to the agency and its architecture and, at
the strategic level, provide a source of competitive advantage in delivering goods
and services to the community. Importantly, as we see in this case, software re-
quirements have a strategic dimension that is often forgotten when placed in the
frame of an individual ICT project.

16.4 The ABS Software Development Process

The effective engineering and dynamic management of software requirements is
of critical importance in any organization that depends heavily on software sys-
tems for its business. In the past twenty years, the Australian Bureau of Statistics
(ABS) has generated internally over sixty percent of its business software [9]. In

16 Requirements Engineering: A Case of Developing and Managing 359

order to bring a greater level of consistency, uniformity and overall quality to the
development of software at the ABS, a business quality project was initiated and
placed under the leadership of a senior ICT Director in mid 2001. The ABS SDP
was officially launched and adopted in September 2002, effectively formalizing
twenty years of software development practice at the ABS [8, 31] (Fig. 16.2).

Fig. 16.2 ABS software development process [8, 31]

Some important terminology is briefly explained as follows. The ABS has pur-
posefully adopted a specific hierarchy of phases, activities and tasks for the SDP.
The software development process consists ideally of the five core phases with
each phase broken into a series of integrated activities. The activities are then fur-
ther sub-divided into a set of inter-related tasks [8]. The SDP consists of five ma-
jor phases. First, the client requirements are identified, recorded, reviewed and
prioritized. Second, an architecture panel consisting of business and technical rep-
resentatives is initiated, the software analysis and design is conducted, and a speci-
fication of the system implementation is prepared. Third, all software units or
components are selected or created (if necessary), and documentation is prepared,
including the test plans. All unit software modules and procedures are individually
tested. Fourth, the software systems and procedures are placed in a partitioned test
and development environment for integration, prototype building, and system test-
ing. User acceptance testing and client feedback on the prototype systems is also
initiated. Systems changes are progressed in accordance with client feedback.
Fifth, the software is released into the production environment. Users are trained
and a post-implementation review conducted [8]. While this chapter deals specifi-
cally with the initial software requirements phase of the process, earlier in the

360 Martin and Gregor

book we saw that software requirements quality assurance can deliver significant
business and ICT development benefits, such as an optimized system maintenance
phase and the creation of good business conditions (see Chap. 8). Operating as a
national statistics organization is a specialized business requiring specific skills,
people and systems. Accordingly, the ABS has not been able to simply purchase
and install commercial software to meet its role as a national statistics provider.
The ABS has developed a process for software development, in particular engi-
neering and managing requirements, in order to implement a consistent and uni-
form approach to software development projects across the ABS organization.
However, of potentially greater significance is the improvement of software qual-
ity processes at the ABS corporate level. The ABS software development process
enables coherent and integrated development processes while providing opportu-
nities for collaborative and communicative software project work across the ABS
enterprise.

The ABS ICT vision is enhanced by a complete and integrative Enterprise Ar-
chitecture that combines a taxonomy of business processes and resources, various
sub-architectures (eg, applications, data management, security, components and
technologies), and a sound ICT infrastructure [13]. Software development is inte-
gral to this vision with the requirements engineering and management processes
forming the primary means for addressing the systems requirements including
business, technical, user, design, operations and maintenance aspects.

16.5 The ABS Software Requirements Phase

The software requirements phase is composed of the core identification, recording,
reviewing and prioritization activities. The subordinate tasks can include identify-
ing important inputs, outputs and functions, defining maintenance needs, re-
cording dates, times, scopes or providers, checking consistency, and grouping or
categorizing of requirements [8]. The core requirements activities are defined as
follows:

Identification of the software requirements (in accordance with the defined sys-
tem requirements)
Recording the software requirements
Reviewing the software requirements with stakeholders
Prioritization of the software requirements for development action

These activities not only form part of the software development process but
also the larger ABS Enterprise Architecture. The context diagram is depicted in
Fig. 16.3. The software development process phases play a vital part in building
the ABS portfolio of systems and enabling the realization of the core business
processes in statistics collection, processing, management, storage, production and
service delivery. In employing best practice, the ABS uses a structured process of
requirements engineering and management activities and tasks, for creating and
managing its software requirements, which are discussed in the following sections.

16 Requirements Engineering: A Case of Developing and Managing 361

Fig. 16.3 ABS software development context [8, 13]

Identify Requirements
In developing software, the users or business unit customers are integrated into fo-
cus groups and user group workshops that are aimed at identifying the user speci-
fications (e.g., inputs, outputs, functions). Use case models and analysis, under-
taken with Unified Modeling Language (UML) tools such as Simply Objects, are
also used in the requirements elicitation and communication process. The ABS
sees the agency business units and client managers as paying customers who must
identify and define “what they want the software system to do”. There is an ex-
plicit consideration that the software products must represent “value for money” to
the customer [8, 13].

Record Requirements
In ABS software projects, the project manager is responsible for recording the
software system requirements on a Lotus Notes database application. The re-
quirements database provides an up to date listing of the project requirements, in-
cluding additional information such as the requirement identification number, pro-
posing client, requirement priority, and cross reference to the software system

362 Martin and Gregor

specification. The project requirements database is the master record for all soft-
ware system requirements [8].

Review Requirements
The follow-on software requirements review allows the customer’s requirements
to be objectively examined and amended, if required. The review activity typically
includes business and financial trade-off analyses by stakeholder representatives
on the project board and architecture panel. Users and their representatives can
also be offered the opportunity to review the software requirements in the critical
design phase; however, business customers tend to be more actively engaged in
the requirements validation activity as part of the test phase of the software devel-
opment. It is emphasized that the ABS deploys user-centered design practices and
facilities (e.g., Hiser group techniques) for client feedback and review, particularly
in the areas of web applications, services and user interfaces [18].

Prioritize Requirements
The final workflow activity is the prioritization of software requirements where
the business critical requirements take precedence over what are commonly
termed “the nice to haves” or optional requirements. Users give a higher priority
to those requirements that are critical to the business delivery compared with the
less important or optional functions. Typically, requirements are prioritized into
critical, standard and optional categories. The critical and standard requirements
are progressed into the design phase, while the optional requirements are held over
for further client review and/or future software releases [8].

While the ABS software requirements phase appears to be built on sound prac-
tices and processes, it would be valuable to contrast their approach with peer in-
puts from practitioners, academics, and standards organizations. In particular, we
consider there to be some value in contrasting ABS practice with a well-
established requirements engineering process model [29], the views of academics
who specialize in system requirements engineering [23, 41], and the content of
recognized international software related standards [26, 27]. Requirements engi-
neering has evolved as a distinct and important discipline, not just in the area of
software, but in all forms of ICT systems. The “requirements” discipline has
grown substantially in recent years, forming a body of knowledge that attracts
regular and consistent inputs from academics and practitioners. Although dating
back to the mid-1990s, the requirements engineering model developed by Lou-
copoulos and Karakostas (1995) is well established in requirements literature and
uses an interactive process of elicitation, written specification, and a review or
validation of the requirements products (see Fig. 16.4). The framework empha-
sizes the continuous interactions and inputs from system users and the importance
of understanding the use case models that flow from the complete process. The
ABS requirements phase encapsulates all of this theoretical framework’s activities
and tasks, including the discrete ABS requirements prioritization activity (as part
of the specification activity). Importantly, the theoretical requirements framework
and the ABS requirements phase show a high regard for proactive and continuous

16 Requirements Engineering: A Case of Developing and Managing 363

user involvement, and are wholly consistent with the user requirements elicitation
processes outlined earlier in the book (see Chap. 2).

While some have considered customer-focused requirements a state of nirvana
[36], other academic researchers have long championed the input from users and
customers [27, 30, 33, 41]. Zowghi and Offen (1996) typified this view noting that
“when aspects of the applications domain are being explored, the social order has
to be biased towards the users beliefs since their understanding of the business
domain is more valid that that of the requirements engineers”. Earlier in the book,
we noted the importance of this stakeholder communication, negotiation and col-
laboration from the business and technical perspectives (see Chap. 2). The ABS
customer involvement activities, such as use case analysis and group work, clearly
follows best practice in this aspect of requirements development.

Fig. 16.4 Requirements engineering process model [31]

A more emergent element of the Requirements Engineering process is the pri-
oritization of requirements in order that they meet the most important customer
needs [25, 34]. This aspect was stressed by Siddiqi and Chandra Shekaran [34]
who noted “competitive forces have reduced time to market, causing development
organizations to speed development by deliberately limiting the scope of each
(software) release. This forces developers to distinguish between desirable and
necessary (and indeed, between levels of needed) features of an envisioned sys-
tem. Further, modifying certain non-critical requirements may enable an envi-
sioned system to be realized using one or more off-the-shelf components”. Hof-
mann and Lehner [25] held a similar view on the value of software requirements
prioritization noting that “requirements prioritized by stakeholders drive success-
ful Requirements Engineering teams. This allows the Requirements Engineering
team to decide which requirements to investigate when and to what degree of de-

364 Martin and Gregor

tail. To specify prioritized requirements, the Requirements Engineering team de-
velops various models together with prototypes”.

Earlier in the book the importance of prioritizing the requirements in order to
make the right decisions and gain maximum value in the complex problem space
was noted (see Chap. 4). In keeping with this theme, the ABS takes a strong posi-
tion on the prioritization of requirements, using numerical assignment classifica-
tions and outputs from trade off analyses, albeit driven to some extent by ICT fi-
nance restrictions and human resource efficiencies. Prototype systems reflect the
critical and standard priority requirements, while optional software requirements
are identified for further client reviews, future software releases, and forward
agency work programming. Interestingly, the evolving focus on requirements pri-
oritization suggests that in some respects the software requirements specification
will remain in a state of incompleteness. Some conventional thinking directs that
“coping with incomplete requirements” is a reality for all practitioners, noting that
more resources might be expended on developing techniques and tools that assist
the determination of “stopping conditions” when the organization’s critical or
mandatory needs are met [34].

The family of IEEE and IEEE/EIA software standards, particularly the IEEE
830 and IEEE/EIA 12207 grouping of standards on software specification and
lifecycle processes, provides a prescriptive regime of processes and activities for
the specification and lifecycle management of software. As an example, the soft-
ware requirements specification process states that the developer must include de-
scriptions of inputs, outputs and performed functions [26]. Also, the software re-
quirements analysis process states that the developer must define and document
requirements, evaluate the requirements, jointly review requirements with custom-
ers, and finally establish a requirements baseline [27]. This standards-based ap-
proach is mirrored in the ABS requirements phase. Indeed, the ABS software de-
velopment process is similar in scope to the IEEE 830 and IEEE/EIA 12207
standard processes, particularly the definition and analysis of software require-
ments, and confirms the rigor and discipline exercised by the ABS in software de-
velopment activities. A further internationally recognized standard is the software
Capability Maturity Model (CMM) developed by the Software Engineering Insti-
tute of Carnegie Mellon University [33, 35]. Specific to requirements manage-
ment, level two on the maturity scale requires organizations to establish and main-
tain an agreement with the customer on the requirements for the software project.
The business and technical requirements of the software project must be ad-
dressed, documented, controlled and managed [33]. In accordance with the CMM
principles, the ABS ensures that the project requirements are reviewed with the
clients through project board and architecture panel processes, while any changes
to requirements are reflected in software plans, work activities and tasks [8].

What the comparative analysis shows is that the ABS requirements phase not
only conforms to current academic and practitioner viewpoints, but also possesses
the rigorous processes of well-established theoretical frameworks and interna-
tional standards. The ABS has a practical approach to requirements engineering
and management with high quality business processes that are grounded in well-
established theory and widely adopted standards. The study suggests supports the

16 Requirements Engineering: A Case of Developing and Managing 365

view that this type of software requirements approach is valid for any organization
whether they operate in the private or public sector.

16.6 Some Examples of ABS Software

While we have reviewed the software requirements process, and provided a con-
trast with theory and practice, we also consider it important to examine practical
examples of business requirements and more specific lower level software re-
quirements that have been developed by the ABS. The examples we have chosen
are software used for computer assisted survey interviews, seasonal adjustment of
statistics, and a data warehouse facility. The following sections provide some
typical examples of business and technical requirements that have been developed
for ABS software applications.

Computer Assisted Interviewing (CAI) Software
Our first example is the ABS adoption in 1994 of Computer Assisted Interviewing
(CAI) software for conducting field survey work. In the software selection proc-
ess, ABS field staff participated in focus groups that identified what the required
CAI software should do and what benefits it should deliver.

During the elicitation process, ABS staff stated that CAI software should im-
prove data quality and timeliness. Staff considered that the software should con-
tribute to improved data quality through fewer transcription errors (greater than
20% reduction) and the single (one-off) entry of data into the computerized data-
bases. ABS staff also stated that CAI software should lead to survey resource sav-
ings. Staff considered that the software should enable data collection and process-
ing efficiencies. ABS staff stated that CAI software must be able to be introduced
to an interviewer workforce with little computing experience. Most field staff
were used to the manual collection of statistics data, and were unfamiliar with lap-
top computer data collection processes. From the operational perspective, ABS
staff stated that CAI software must not cause concern to those being interviewed.
Field staff were concerned that the use of laptop computers might frighten or in-
timidate some data providers. These requirements illustrate some of the typical
needs of the user community. While the field user group identified the business
requirements for CAI, the software also needed to meet some specific technical
and functional requirements. For example, for ease of operations, maintenance and
upgrade, ICT managers stated that the CAI software had to be written in a simple
syntax and block structure language. Further, the CAI software data structures had
to allow the data to be processed, transferred and shared among all ABS software
tools. In order to support the previous data-sharing requirement, ICT management
specified that the CAI software had to also possess data and metadata conversion
interfaces as standard features.

Following a period of review and a design-based evaluation of the Blaise III
software, the ABS took the decision to adopt Blaise as the data collection tool for
CAI. Blaise was trialed by a field user group in July 1994 using a Household Ex-

366 Martin and Gregor

penditure Survey with 800 questions, 12,000 software code lines of Blaise, and
platformed on a 486 processor laptop computer. The trial was conducted across
450 households using 10 field interviewers and included electronic mail data
transmissions. Since this successful trial, Blaise III has been adopted for other sur-
vey work including population and employment related work programs, and has
been successfully integrated into the use of telephone survey work [39].

Seasonal Adjustment Software
In 1983, the ABS adopted the X-11 Arima software package (the Statistics Canada
variant), a knowledge-based seasonal analysis and adjustment tool, for adjusting
estimated seasonal and calendar influences on an original statistical time series.
The software was renamed “Seasonal Analysis to ABS Standards” or simply
SEASABS, and includes a core X-11 processing system. SEASABS is one part of
the ABS seasonal adjustment system that includes the ABSDB (ABS information
warehouse) and FAME (Forecasting, Analysis and Modeling Environment) that is
used to store and manipulate time series data. Before selecting the X-11 Arima
software package, the business users were canvassed during workshops and were
requested to define some of their more important requirements. For instance, the
primary requirement for SEASABS was that it must be capable of adjusting any
designated ABS time series for seasonal and other calendar-related influences.
Business users also stated that ABS staff must be able to operate SEASABS with
little, or no, detailed knowledge of the X-11 software package. This operator re-
quirement was coupled to technical features where it was specified that the
SEASABS software must possess an intelligent user interface (eg, specific input
relationships, and screen, data and command formats) that guides users through
the seasonal analysis process. Users also mandated that SEASABS must possess a
function to store and perform diagnostics on previously collected and processed
time series analyses. The SEASABS software had to meet some stringent business
and technical requirements before deployment in the ABS environment [3, 19,
40]. Since its adoption, SEASABS has undergone evolutionary upgrades to im-
prove the adjustment process and user functionality, including filter enhancements
and graphical user interface developments (i.e., windows screen formats). After
more than twenty years operation in a production environment, SEASABS is still
successfully meeting users’ needs, and forms the analytical backbone of the ABS
statistical time series adjustment process [1, 3, 6, 19, 40].

Input Data Warehouse Software
In 2001, the ABS commenced the development of an Input Data Warehouse
(IDW) facility to complement the ABS information environment, including the
ABS Information Warehouse that is used for the production of ABS goods and
services. The IDW was developed using a three phase process that included the
construction of a “production pilot” warehouse, a “pilot” warehouse, and a “full
production” warehouse that was completed in June 2004. The creation of an IDW
was primarily aimed at capturing and aggregating statistical inputs for movement
to the managed output/dissemination store (ABS Information Warehouse).

16 Requirements Engineering: A Case of Developing and Managing 367

While it was expected that a high quality database management system would
be an important component of the IDW, the ABS project team and business user
groups were canvassed in focus groups and project workshops to elicit their key
requirements. The new IDW was to enable reduced statistics provider workloads.
Providers must have a single (one) database structure for data collection, hence
reducing the multiple database workloads of the past. Also, the IDW was to inte-
grate the previously separate data stores, enabling data integration beyond the sin-
gle statistical unit integration to the three (3) sub-units of data definitions, con-
cepts and items at the unit record level. The business users also specified that the
new IDW should improve the capacity to support future analytical outputs and
products. Ideally, the IDW was to support the delivery of current and future ABS
products and publications. From the technical perspective, ICT management
specified that the IDW software must be capable of accessing (linking) metadata
from the Corporate Metadata Repository (CMR), and must include the three (3)
mandatory update, query and data matching functions.

In meeting the various business and technical requirements for the IDW soft-
ware, the ABS selected an SAS database product. The successful warehouse de-
velopment holds over 400 million records and was put into full production in mid-
2004. SAS is one of the key ICT suppliers to the ABS and provides products for
the integrated portfolio of corporate databases and applications under the agency’s
Enterprise Architecture [13, 16, 18].

Summary
The three examples of ABS software shows that it is possible to combine high
level business and more specific software requirements into an integrated set of
requirements that enable software developments to be directed at the solving of
important business problems. This approach to software is deliberate and lasting
(over twenty years of quality practices), while being clearly underpinned by ex-
ecutive mandates and quality decisions. It was also observed that the ABS culture
of teamwork and sharing views and experiences in the workplace plays an impor-
tant role in governing the creation of business-oriented software systems [15].

16.7 What can We Learn From the ABS?

Having seen how the ABS works to develop its software requirements, there are a
number of important observations that can be highlighted from this case study. A
strengthening of the software development process capability is an important
driver of the agency strategy and architecture. The ABS firmly believes that it
cannot build future generations of ICT systems without fully understanding its
current and future business requirements. ABS executives and management rec-
ognize that in order for the software applications to enable the business processes
and outputs, the business and technical requirements must be clearly understood.
Over the period 1999 2001, the ABS launched its Enterprise Architecture pro-
gram to baseline its current business and system states and look to shaping its fu-

368 Martin and Gregor

ture through sound strategic planning, enlightened resource management, and dis-
ciplined corporate governance. Quality software development forms part of this
larger program [7].

The ABS views software development as a key activity in the technical domain
and has invested substantial human and financial resources in developing and im-
plementing a well defined and end-to-end software development process. Software
requirements development and on-going management is seen as a critical first step
in the software journey, specifically the identification, recording, reviewing and
prioritization of all user requirements. In the context of the broader organization,
we have seen that the ABS software development process forms part of the fabric
of an Enterprise Architecture, which assists with the shaping of the future state of
ABS business and software systems.

The development of a rigorous software development process is also aimed at
dealing with organizational dynamism and technical complexity. As we have seen,
the ABS is a dynamic organization operating in a challenging technical environ-
ment, with a large base of demanding and varied business customers. The ABS
deploys a large and complex ICT environment based on a client-server network
coupled to a vast array of database storage devices and facilities. The annual pub-
lication rate of over 700 products, and the requirement to service customers across
physical and electronic channels, has meant that the ABS has concentrated its ef-
forts on carefully developing software and other technical systems that are inte-
grated and aligned with the business requirements and delivery functions. Ulti-
mately, the ABS has learned that its software intensive systems are a critical
enabler of business value. While there has been a clear emphasis on establishing
development processes that match the organization, the building of software re-
quirements at the ABS is reflective of the organization’s quality and the best prac-
tices across the public and private sector. When we compare ABS software re-
quirements development and management practices with well established software
process models (e.g., Loucopoulos and Karakostas [16]), academic literature (e.g.,
Siddiqi and Shekaran [34]), and the IEEE and IEEE/EIA families of software re-
lated standards, a consistent quality and standards-based approach emerges. One
of the key lessons learned in studying ABS software practices is that the “prioriti-
zation of requirements’ is very much about “the trade off of business and technical
needs”, “a focus on resource efficiency” and “the acceptance that a software speci-
fication may never be complete in all respects”. The approach to software re-
quirements development observed at the ABS serves as a practical example to
other public and private sector organizations.

In some instances, organizations fail to recognize that building ICT systems,
particularly those involving software, starts long before any programmers are
hired or code is cut. The ABS displays a bi-directional governance process that
draws together the high level business directions and executive decisions, with the
more socially based working level processes and practices that form the corner-
stone of software requirements documentation and user agreement. As we read
earlier, the overall vision for ICT at the ABS is ultimately shaped by its Enterprise
Architecture that integrates and aligns the business and technology domains of the
agency. Other Australian government agencies, like the Centerlink social services

16 Requirements Engineering: A Case of Developing and Managing 369

agency and Department of Defense, have attempted to emulate the ABS with vari-
ous levels of success [24, 38]. The examples of software application development
show that the ABS has mastered the ability to combine business and technology
requirements in order to meet internal and external customer demands. Much like
the ABS, private companies and organizations of today will need to understand
the intricacies of developing software using top-down and bottom-up perspectives
and processes (see examples in Chap. 18).

In concluding this chapter, the software development practices and processes at
the ABS meet world class performance benchmarks according to successive Gart-
ner Group comparative surveys, confirming that organizational ICT systems, es-
pecially the software, meets “best practice” guidelines. In a very clear vote of
confidence, peer international statistics agencies have judged the ABS to be one of
the world’s best organizations in its business class [36, 38]. These accolades were
also confirmed by the Australian Auditor General who found the work of the ABS
to be high quality in terms of practice, process and systems [22]. Good software
development has become great software development over the years at the ABS.
Today executive management understands that ICT, particularly software, exists
to serve the business and deliver the outputs and outcomes required by govern-
ment. With a sound software development process, and requirements development
approach to match, agency software is helping to shape and enable the ABS busi-
ness of the future.

References

1. Australian Bureau of Statistics (1998) Balance of payments and international investment
position, Australia: Concepts, sources and methods. Chapter 4. Detailed and supple-
mentary tables. ISBN: 0 642 25670 5. Accessed on 6th December 2004.
http://www.abs.gov.au/Ausstats/abs@.nsf/66f306f503e529a5ca25697e0017661f/50818
1cf2562d200ca25697e0018fdb1!OpenDocument

2. Australian Bureau of Statistics (2000) Annual report 1999-2000. Technology services di-
vision benchmarking. (ISSN 0314–0008. ISBN 0 642 25752 3) 52. Accessed 1st De-
cember 2004 http://www.abs.gov.au/Websitedbs/D3110126.NSF/0/7bc8d0774f3

9e898ca 2569040015e039/$FILE/10010_1999-00.pdf
3. Australian Bureau of Statistics (2000) Australian national accounts: Concepts, Sources

and Methods. Appendix 3 - Seasonally adjusted and trend estimates, November 2000
ISBN 0 642 54212 0. Accessed 26th November 2004.
http://www.abs.gov.au/Ausstats/abs@.nsf/66f306f503e529a5ca25697e0017661f/31377
8ba8bd656fcca2569a40006165c!OpenDocument

4. Australian Bureau of Statistics (2001) Annual report 2000-2001. Performance informa-
tion, cost effective inputs. (ISSN 0314–0008, ISBN 0 642 47736 1), 80. Accessed 26th
November 2004. http://www.ausstats.abs.gov.au/Ausstats/free.nsf/Lookup/

D9E50335A060BDDDCA256C540006B320/$File/10010_2000-01.pdf
5. Australian Bureau of Statistics (2001) Corporate plan, 1. Accessed on10th November

2004. http://www.abs.gov.au/websitedbs/d3310114.nsf/51c9a3d36edfd0dfca256acb001

18404/b1042c4ee5af9c71ca256a46008278d9!OpenDocument

370 Martin and Gregor

6. Australian Bureau of Statistics (2001) Household Expenditure Survey (Cat. No. 6527.0),
Australia: User Guide Chapter 3. Survey methodology. November 2001 (ISBN
0642542996). Accessed 10th November 2004 http://www.abs.gov.au

/Ausstats/abs@.nsf/Lookup/D47FE4DF1A190335CA256B04007F53F5
7. Australian Bureau of Statistics (2002) Annual report 2001-2002. Information technology

developments. (ISSN 0314–0008, ISBN 0 642 47834 1), 29. Accessed on 1st Septem-
ber 2004. http://www.ausstats.abs.gov.au/Ausstats/free.nsf/Lookup/8C2BB8FE7538
7EE4CA256C0E007FDCDD/$File/10010_ABS%20200102%20Annual%20Report.pdf

8. Australian Bureau of Statistics (2002) Enterprise architecture, software development
process Version 1.0, June 2002. Internal agency document available from authors on re-
quest.

9. Australian Bureau of Statistics (2003) Annual report 2002-2003. Revenue raised from
statistics, (ISSN 0314–0008), 23. Accessed on 5th December 2004
http://www.ausstats.abs.gov.au/Ausstats/free.nsf/Lookup/B1EE428F95070BD7CA256
DBB0003C7A1/$File/10010_2002-03.pdf

10. Australian Bureau of Statistics (2003) Annual report 2002-2003, ABS Outputs, (ISSN
0314–0008), 104 and 120. Accessed 5th December 2004 http://www.ausstats.abs.
gov.au/Ausstats/free.nsf/Lookup/B1EE428F95070BD7CA256DBB0003C7A1/$File/10
010_2002-03.pdf.

11. Australian Bureau of Statistics (2003) Annual report 2002-2003. Financial statements,
(ISSN 0314–0008), 178. Accessed 5th December 2004 http://www.ausstats.abs.gov.au
/Ausstats/free.nsf/Lookup/B1EE428F95070BD7CA256DBB0003C7A1/$File/10010_2
002-03.pdf.

12. Australian Bureau of Statistics (2003) Annual report 2002-2003. Staffing overview,
(ISSN 0314–0008), 187-189. Accessed 4th November 2004 http://www.ausstats.abs.
gov.au/Ausstats/free.nsf/Lookup/B1EE428F95070BD7CA256DBB0003C7A1/$File/10
010_2002-03.pdf.

13. Australian Bureau of Statistics (2003) Enterprise architecture Version 2.0, March 2003.
Available on http://www.agimo.gov.au/resources/events/2003/ent_arch.

14. Australian Bureau of Statistics (2003) Enterprise architecture. Business process taxon-
omy, Version 2.0, March: 4-10. Access 3rd December 2004 http://www.agimo.gov.au/
resources/events/2003/ent_arch.

15. Australian Bureau of Statistics (2003) Enterprise architecture. Information technology
governance, Version 2.0, March 11. Access 3rd December 2004 http://www.agimo.
gov.au/resources/events/2003/ent_arch.

16. Australian Bureau of Statistics (2003) Enterprise architecture, input data warehouse,
Version 2.0, March: 26-29. http://www.agimo.gov.au/resources/events/2003/ent_arch.

17. Australian Bureau of Statistics (2003) Enterprise architecture, maintaining and using the
ABS enterprise Architecture, Version 2.0, March: 13. Access 3rd November 2004.
http://www.agimo.gov.au/resources/events/2003/ent_arch.

18. Australian Bureau of Statistics (2003) Enterprise architecture, technologies and toolsets,
Version 2.0, March: 19. http://www.agimo.gov.au/resources/events/2003/ent_arch.

19. Australian Bureau of Statistics (2003) Time series analysis: seasonal adjustment meth-
ods, March 2003. Accessed 5th December 2004. http://www.abs.gov.au/Websitedbs/

D3310114.NSF/0/C890AA8E65957397CA256CE10018C9D8?Open

20. Australian Bureau of Statistics (2004) Forward work program 2004-2007, March: 6-7.
Accessed 3rd November 2004 http://www.abs.gov.au/Websitedbs/D3310114.NSF
/0/19fe4d5d3ab1189aca2567400012da51/$FILE/FWP-200405%202005-06.pdf

16 Requirements Engineering: A Case of Developing and Managing 371

21. Australian Bureau of Statistics (2004) Introduction to the ABS and its IT environment,
March 2004. Accessed 3rd September 2004 http://www.abs.gov.au/websitedbs

/d3310114.nsf/51c9a3d36edfd0dfca256acb00118404/b9043642361d7a66ca256b59007
bdae7/$FILE/Vendor%20Information%20Pack%20Jan04_1.pdf.

22. Australian National Audit Office (1997) Performance audit of the 1996 census of popu-
lation and housing, Audit Report No.35, 1996-97: 4-5. Accessed 1sr December 2004.
http://www.anao.gov.au/WebSite.nsf/Publications/4A256AE90015F69B4A25690D002
430ED

23. Dawson LL, Swatman PA (1996) Investigating the efficacy of object-oriented methods
for RE. In: Proceedings of the First Australian Workshop for Requirements Engineer-
ing, Melbourne, September, pp. 1 21

24. Hannan P (2003) Leading defense to enterprise architecture presentation, NOIE Semi-
nar Program, Enterprise Architecture: Integrating Business and Technology across the
APS, March 2003. Accessed 1st December 2004
http://www.agimo.gov.au/resources/events/2003/ent_arch.

25. Hofmann HF, Lehner F (2001) Requirements engineering as a success factor in soft-
ware projects. IEEE Software, July-August, pp. 58 66

26. Institute of Electrical and Electronics Engineers (1998) IEEE 830:1998, IEEE Recom-
mended Practice for Software Requirements Specification, June: 13-14 and 16

27. Institute of Electrical and Electronics Engineers/Electronic Industries Alliance (1998)
IEEE/EIA 12207:1996, Software Life Cycle Processes, Software Requirements Analy-
sis, March, pp. 17 18

28. Institute of Electrical and Electronics Engineers/Electronic Industries Alliance (1998)
IEEE/EIA 12207:1996, Software Life Cycle Processes, Software Requirements, System
Requirements, Software Design, Software Integration, March, pp. 19 20

29. Loucopoulos P, Karakostas V (1995) System requirements engineering. McGraw-Hill
Book Company Europe

30. Mylopoulos J, Chung L, Liao S, Wang H, Yuy E (2001) Exploring alternatives during
requirements engineering. IEEE Software, January-February, pp. 92 96

31. Paviour A (2003) ABS IT governance and project management. Lecture notes on Issues
in IT Management, University of Canberra, August 2003. Notes available from authors
on request

32. Reifer DJ (2000) Requirements management: The search for Nirvana. IEEE Software,
May-June, pp.45 47

33. Sallis PJ, Tate G, MacDonell SG (1995) Software engineering: Practice, management
and improvement. Addison Wesley Publishing Company Australia

34. Siddiqi J, Chandra Shekaran M (1996) Requirements engineering: The emerging wis-
dom. IEEE Software, March, pp.15 19

35. Paulk MC, Curtis B, Chrissis MB, Weber CV (1993) Capability maturity model for
software. Version 1.1, Technical Report CMU/SEI-93-TR-24, Software Engineering
In-stitute, Carnegie Mellon University, February 1993

36. The Economist (1991) The good statistics guide. July, 320, 7723: 88
37. The Economist (1993) The good statistics guide. November, 328, 7828: 65
38. Treadwell J (2003) Centrelink Capabilities and Connections Presentation, NOIE Semi-

nar Program, Enterprise Architecture: Integrating Business and Technology across the
APS, March 2003. Accessed on 13th December 2004.
http://www.agimo.gov.au/resources/events/2003/ent_arch

372 Martin and Gregor

39. Wensing F (1995) Update from Down Under: History, Plans and Functions we’ve
(ABS) built for CAI and Blaise in Australia, 3rd International Blaise Users Conference,
July 1995: 202-213. Accessed on 13th December 2004 http://www.blaiseusers.org/
Ibucpdfs/1995-1998/wensin95.pdf

40. Zhang M, Sutcliffe A (2001) Use of ARIMA models for improving revisions of X-11
seasonal adjustment, ABS Staff Paper, November 2001. Accessed on 13th December
2004. http://www.abs.gov.au/websitedbs/D3110122.NSF/0/10b42cd292e88668ca256

bbf000064f3/$FILE/Nov2001_2.pdf
41. Zowghi D, Offen R (1997) A logical framework for modeling and reasoning about the

evolution of requirements. In: Proceedings of the 3rd IEEE International Symposium
on Requirements Engineering (ISRE1997), Annapolis, USA, pp.247 257

Author Biography

Nigel Martin is a federal government manager and a doctoral candidate in infor-
mation systems at the Australian National University. His principal research inter-
ests are in the areas of Enterprise Architecture, Requirements Engineering, Infor-
mation Systems Governance and Electronic Government.

Professor Shirley Gregor heads the Electronic Commerce Research Centre and is
Professor of Information Systems and Associate Dean Research for the Faculty of
Economics and Commerce at the Australian National University. Professor Gregor
has led several large projects in the electronic commerce area funded by the Meat
Research Corporation, the Department of Communications, Information Technol-
ogy and the Arts, and the Australian Research Council. Professor Gregor spent a
number of years in the computing industry in Australia and the United Kingdom
before beginning an academic career.

17 “Good Quality” Requirements in Unified Process

Nur Yilmaztürk

Abstract: As supported by many empirical evidences since early 1970s, “good
quality” requirements are the leading factor for a successful software development
project that delivers a “good quality” product with originally specified features
and functionalities, on time, and within the originally estimated budget. The chal-
lenge gets tougher and more critical when the competition in the market is severe,
the number of customers on the world is rather limited and static, and the cus-
tomer demands are high. As functioning in such a market, with the main goal to
maintain the leading position of the previous versions of its Stressometer®, ABB
has adopted a RUP®1-based software development process in the new generation
Stressometer systems development projects. Stressometer Unified Process (SUP)
integrates the RUP essentials with some features of agile processes such as heavy
involvement of various stakeholders, preparation of test cases before coding, and
continuous testing during development. This chapter describes the essential qual-
ity characteristics of requirements –both individual and aggregates such as embod-
ied in a use-case model or in a specification, analyses the relations among them,
evaluates RUP regarding the means it provides or lacks for developing “good
quality” requirements, and discusses how ABB Stressometer projects have tackled
these shortcomings via SUP.

Keywords: Quality attributes of requirements, Requirements quality metrics, Re-
quirements engineering and management via Rational Unified Process, Use-cases,
Use-case model, Measuring quality of requirements.

17.1 Introduction

“Good quality” software requirements are prerequisite for “good quality” software
products. Results of the research by Standish Group [23] verify our theory. The
Standish Group’s CHAOS report that covers the findings from study of 8380 IT
projects illustrates that 31.1% of projects are cancelled before they are completed.
The results indicate 52.7% of projects cost 189% of their original estimates, and
still deliver fewer features and functionalities than originally specified. Only
16.2% of software projects are completed on time and on budget. Among the pro-
jects completed by the large companies, only 42% of them comprise the originally
proposed features and functions. The top three factors on challenged projects are
lack of user input (12.8%), incomplete requirements and specifications (12.3%),
and changing requirements and specifications (11.8%). Finally, the major reason
for projects cancellation is reported as incomplete requirements (13.1%).

1 Rational Unified Process®

374 Yilmaztürk

Cost of “bad quality” requirements have been studied since early 1970s.
Boehm’s study of 63 software projects from three companies, namely GTE, TRW,
and IBM, illustrated that the cost of change grows exponentially as the project
progresses [2]. [4] reiterates this result by stating that the relative cost of repair is
two hundred times greater in the maintenance phase than if it is detected in the re-
quirements phase. Further, it bases the escalation in cost on two factors: (i) the de-
lay from when the defect was introduced until it was detected, (ii) the amount of
rework needed to correct both the original defect as well as the consequent defects
in the later stages. As referred to by [4], DeMarco states that 56% of the bugs de-
tected during testing can be traced to the requirements errors.

Iterative nature of RUP assists in eliminating above mentioned risks by inte-
grating a software product progressively throughout its development life cycle, by
managing requirements change and “creep” in a controlled manner, by learning
early and improving incrementally, and by detecting flaws early thus, building
higher quality over several iterations. Yet, RUP is a generic process and it is inevi-
table to tailor it according to the needs of a particular project or the projects of a
specific department for better efficiency and effectiveness. In an attempt to estab-
lish a balance between delivering good quality software products and delivering
them on time, ABB’s Stressometer product line adapted RUP in an agile fashion
while adhering to the RUP essentials.

The main aim of this chapter is to evaluate a use-case driven, iterative software
development process during which modeling is done via UML2, within the context
of requirements development and management, against the quality of the require-
ments established during such a process. To this end, Sect. 17.2 provides back-
ground information about ABB and the Stressometer product line. Section 17.3
presents the requirements management and engineering activities involved in
ABB’s RUP-based software development process, SUP. Section 17.4 describes
the characteristics of “good quality” requirements, elaborates on the relations
among the characteristics, and further discusses how ABB Stressometer projects
managed to achieve “good quality” requirements, supplying the discussions with
experiences from the three major projects at ABB. Finally, Sect. 17.5 concludes
the chapter.

17.2 Background

ABB (Asea Brown Boveri Ltd.) began operations in 1988 following a merger of
two parent companies namely, ASEA AB and BBC Brown Boveri Ltd, each of
which has been in business for more than a century (www.abb.com). Today, with
about 105000 employees in around 100 countries, the ABB Group of companies
functions in two core business areas, automation and power technologies that en-
able utility and industry customers to improve performance while lowering envi-
ronmental impact.

2 Unified Modelling Language

17 “Good Quality” Requirements in Unified Process 375

ABB Power Technologies serves industrial and commercial customers, as well
as electric, gas and water utilities, with a broad range of products, services and so-
lutions for power transmission and distribution. The portfolio includes transform-
ers, switchgear, breakers, capacitors and cables, as well as high- and medium-
voltage applications, many of which are also sold through external channel part-
ners like distributors, system integrators, contractors and original equipment
manufacturers. ABB Automation Technologies serves the automotive, building,
chemicals, consumer, electronics, life sciences, manufacturing, marine, metals,
minerals, paper, petroleum, transportation, turbo-charging and utility industries.
Key technologies include control, drives, enterprise software, instrumentation,
low-voltage products, motors, robots and turbochargers. These offerings are sup-
ported by field maintenance and asset management services, and are sold both di-
rectly and through channel partners.

As a part of the ABB Automation Technologies, Force Measurement unit sup-
plies products, systems, and services for measurement and control in a broad range
of application from steel making to paper conversion. Stressometer is a Force
Measurement product line that involves software intensive systems, which have
been providing rolling mills with accurate online control of the flatness of cold
rolled strips for more than 30 years. Stressometer system measures flatness, ana-
lyzes and stores flatness data, generates output for automatic flatness controls, and
presents data in informative displays. Stressometer systems are designed for
minimum maintenance and maximum uptime to ensure undisturbed continuous
production and minimized scrap levels. Over the years, ABB has been continu-
ously improving the Stressometer product line parallel to the technological pro-
gress in software engineering in an attempt to keep its number one position in the
market [26].

17.3 Practice

New generation Stressometer systems are implemented by using SUP that is RUP
tailored to fit the needs of the Stressometer department’s development projects.
The major issue considered during such tailoring is being agile by involving
stakeholders with different profiles external customers as well as the internal
ones –actively and heavily throughout the development life cycle, preparing the
test cases before coding, and having continuous testing during development. SUP
facilitates agile, use-case driven, iterative development during which modeling is
done via UML [26]. This section presents the requirements management and engi-
neering activities that are involved in the SUP. For a comprehensive discussion on
agile methods, and particularly, requirement engineering via agile methods readers
should refer to Chap. 14 in this book.

The first step in the requirements engineering process via SUP is to elicit in-
formation from the stakeholders in order to understand their needs. SUP imposes
the involvement of external customers with business knowledge and internal cus-
tomers with technical domain knowledge, in this activity. It recommends inter-

376 Yilmaztürk

views and requirements workshop as the techniques to elicit the needs. The find-
ings are used as primary inputs to defining the features of the prospective product
hence, the high-level requirements that are described in a Vision document. A Vi-
sion may include features that do not fit in the project scope or the existing busi-
ness plans yet, should be kept for future references. Accordingly, the stakeholders
prioritize the features based on pre-agreed attributes in order to identify the final
set to be attended by the particular iteration of the project. Before moving to the
lower level requirements identification, the complete Vision document and the
prioritization results are reviewed and approved by all the stakeholders who took
part in the elicitation. Eventually, approved Vision together with the prioritization
matrix is checked into the configuration management database, and is labeled as
“Approved IterX”. As the next activity, the same group of stakeholders gathers at
a use-case workshop to define the functional requirements of the system. Initial
group of actors and use-cases derived from appropriate features are compiled in a
use-case model and illustrated in use-case diagram(s) during the meeting by using
a tool. Brief descriptions for each actor and use-case are also entered. The results
are further documented in a Use-Case Model Survey. A few review meetings with
the same attendees follow in order to finalize an approved version. Features that
could not be traced to functional requirements in use-cases, for example those that
imply non-functional requirements such as performance requirements, are re-
visited in order to compile a Supplementary Specifications document. As any
other formal artifact in the process, Supplementary Specifications document is
also reviewed, approved by the stakeholders, and eventually, version controlled.

The identified use-cases are prioritized according to a set of pre-agreed attrib-
utes in a separate session by the same requirements team. Those use-cases as-
sessed as high priority to attend are assigned to the requirements specifier for de-
tailing.

The requirements specifier with assistance of the end-users from both external
and internal customers describes the flows of each use-case under concern in de-
tail in separate specification documents. She/he also writes the supplementary re-
quirements to the level of detail needed to hand off to the next stages in the devel-
opment. If required, she/he can prepare sub-supplementary specifications. For
example, user-interface descriptions, control algorithms, digital and analogue sig-
nal descriptions are detailed in separate sub-supplementary specification docu-
ments. As soon as the first version of a specification is ready, it is passed to the
test designer(s) for test case preparations. Each specification is reviewed by a
group that includes the external customers with business knowledge, internal cus-
tomers with technical domain knowledge, requirements specifier, end-users that
assisted during detailing the requirements, software architect, designer, and test
designer. Upon approval, each document is checked into the configuration man-
agement database and labeled as “Approved IterX”. Subsequently, the design
team starts working on the architectural and detailed design of the requirements.
The test cases are updated according to the final changes in the related require-
ments specifications, reviewed and approved by the requirements specifying team
and the test team before they are version controlled and passed to the attention of

17 “Good Quality” Requirements in Unified Process 377

the test team. Parallel to the above activities, the project team also continuously
gathers terminology in a project Glossary.

17.4 Evaluation

Quality of requirements can be characterized by a number of attributes. We collect
those that are commonly discussed by the academia and the industry, and merge
them into a set of 26 quality attributes in Table 17.1. During our study of these at-
tributes, we encountered the following inconsistencies: (i) Different references
may use different terms for the same attribute. For example, the first attribute in
the table is termed “Attainable” in [11], “Feasible” in [24], and “Achievable” in
[11]. In such cases, we either include all different terms found in the literature, or
refer to all of them by using the most common one; (ii) Content of an attribute
may differ from reference to reference. For example, [12] and [5] define “Correct”
as what is termed “Necessary” in [24], which also presents “Correct” as a separate
requirements quality attribute but with a definition that differs from the one found
in [12] and in [5]. In such cases, we keep both attributes and assume a positive re-
lation between the two attributes; (iii) No clear distinction between quality attrib-
utes that are applicable only to individual requirements and quality attributes that
are applicable only to the aggregate requirements. In most of the cases, the defini-
tion of an attribute presented as an attribute of an aggregate implies dependency
on the individual requirements of the aggregate constituting the same quality.
Moreover, one can hardly find a consensus between different references on
whether an attribute is applicable to an individual requirement or to an aggregate.
For example, “Complete”-ness is claimed to be an attribute of an aggregate by [4]
and [5] whereas, it is suggested to be applicable to an individual requirement by
[9], and to both an individual requirement and an aggregate by [24]. In our evalua-
tion, we disregard such distinction and use the attribute to measure both individual
requirements and aggregates, unless there is common consensus on the applicabil-
ity of an attribute for example as in the case of “Achievable/Feasible/Attainable”,
“Clear/Precise/Meaningful” etc.

These attributes are not independent: (i) It is not possible to achieve a certain
quality unless another one exists. For example, if a requirement is not “Unambi-
guous” it cannot be “Verifiable”. Naturally, there is no means to verify a require-
ment if multiple interpretations exist for it [4, 5, 24, 12]. (ii) An attribute may af-
fect achievement of another attribute depending on the way the affecting attribute
is achieved. For example, if we try to make a requirement more “Unambiguous”,
more “Verifiable”, “Complete”, and “Consistent” by using extremely formal nota-
tions, we definitely decrease the level of “Understandability” by especially the
non-computer specialist stakeholders [4]. Whereas, on the other hand, by no
means “Unambiguous”, “Verifiable”, “Complete”, and “Consistent” requirements
are un”Understandable”. On the contrary, “Unambiguous”ness, “Complete”ness,
and “Consisten(t)”cy enhance “Understandabl(e)”ity when achieved via less for-
mal means such as by using Natural Language augmented with more formal mod-

378 Yilmaztürk

els [5]. (iii) Existence of an attribute jeopardizes achievement of another attribute.
For example, if all use-cases included in a use-case model were “Necessary” then
why would we need to “Rank”ing one or more of them as optional “by relative
importance”? We have summarized our findings from experiences with relations
between various quality attributes in Tables 17.2(a) and 17.2(b).

Finally, most of the requirements attributes are subjective. In such cases, it can
be difficult to measure a quality objectively via metrics; it may require performing
expert reviews for the ultimate assessment. Still, it is possible to associate those
characteristics with indicators that point at existence or absence of the quality un-
der concern.

Our experiences at ABB have proven that the level of quality achieved in re-
quirements produced during a software development project highly depends on the
process adopted. A feature of a process can influence a specific quality by leading
to an improvement in the quality, by detracting from the quality, or by doing both
hence, a trade-off situation; as well as a process might not address the quality at
all. An individual requirement or an aggregate of requirements created via RUP
would score very well across most of the quality attributes, whereas fare rather in-
sufficiently on others. Tailoring the standard RUP practices to fit a specific soft-
ware development project’s needs helps enhancing the poor quality but mainly
those attributes that matter most to the project. In the following sub-sections, we
describe those quality characteristics that were deemed important by the Stres-
someter projects at ABB, elaborate on their relations with other characteristics,
discuss the indicators of strengths and weaknesses, evaluate how the projects at-
tempted to achieve the quality, and specify the metrics for measuring the quality
where applicable.

17 “Good Quality” Requirements in Unified Process 379

Table 17.1 Quality attributes of requirements

Quality Attributes
[4] [5] [9] [11] [12] [14] [19] [24] [25]

Achievable/Feasible/Attainable I I I I

At the Right Level of Detail I, A I

Clear/ Precise/Meaningful I I I

Complete A A I A I, A A I, A A

Concise A A I I

Correct I, A I, A I, A I A

Cross-Referenced A

Design Independent I, A I, A I

Electronically Stored A

Executable/Interpretable A

Externally Consistent A A A

Forward Traceable I, A I, A I, A I I, A I

Implementation Independent I

Internally Consistent A A A A A A

Modifiable A A A A A

Necessary I I I

Not Redundant I, A

Organized A A

Prioritized/Ranked/Annotated
by Relative Importance

I I, A I, A I I, A

Prioritized/Ranked/Annotated
by Relative Stability

I I, A I, A I, A

Prioritized/Ranked/Annotated
by Version

 I, A

Reusable A

Traced/Backward Traceable I, A I, A I, A I I I

Unambiguous I, A I, A I I I, A I I I I

Understandable A I, A A

Verifiable I, A I, A I I, A I I I, A

I= Applies to an individual requirement; A=Applies to aggregate requirements such as a
complete SRS, a use-case model, a use-case specification etc.

 T

ab
le

 1
7.

2(
a)

 R
el

at
io

ns
 b

et
w

ee
n

qu
al

ity
 a

ttr
ib

ut
es

 o
f

re
qu

ir
em

en
ts

Achievable/ Fea-
sible/ Attainable

At the Right
Level of Detail

Clear/ Precise/
Meaningful

Complete

Concise

Correct

Cross-Referenced

Design Independent

Electronically Stored

Executable/ Inter-
pretable

Externally Consistent

Forward Trace-
able

Implementation
Independent

Internally Consis-
tent

A
ch

ie
va

bl
e/

Fe
as

ib
le

/A
tta

in
ab

le

A
t t

he
 R

ig
ht

 L
ev

el
 o

f
D

et
ai

l

C
le

ar
/ P

re
ci

se
/M

ea
ni

ng
fu

l
+?

+

C
om

pl
et

e

+

C
on

ci
se

+

-?

+

+

C
or

re
ct

+

+
+

C
ro

ss
-R

ef
er

en
ce

d

+

D
es

ig
n

In
de

pe
nd

en
t

E
le

ct
ro

ni
ca

ll
y

St
or

ed

+?

E
xe

cu
ta

bl
e/

In
te

rp
re

ta
bl

e

E
xt

er
na

lly
 C

on
si

st
en

t

+

F
or

w
ar

d
T

ra
ce

ab
le

+

Im
pl

em
en

ta
ti

on
 I

nd
ep

en
de

nt

In
te

rn
al

ly
 C

on
si

st
en

t

+

+?

T
ab

le
 1

7.
2(

a)
 R

el
at

io
ns

 b
et

w
ee

n
qu

al
ity

 a
tt

ri
bu

te
s

of
 r

eq
ui

re
m

en
ts

 (
co

nt
.)

Achievable/ Fea-
sible/ Attainable

At the Right
Level of Detail

Clear/ Precise/
Meaningful

Complete

Concise

Correct

Cross-Referenced

Design Independent

Electronically Stored

Executable/ Inter-
pretable

Externally Consistent

Forward Trace-
able

Implementation
Independent

Internally Consis-
tent

M
od

if
ia

bl
e

+
+

+

N
ec

es
sa

ry

N
ot

 R
ed

un
da

nt

O
rg

an
iz

ed

P
ri

or
it

iz
ed

/R
an

ke
d/

A
nn

ot
at

ed

by
 R

el
at

iv
e

Im
po

rt
an

ce

P
ri

or
it

iz
ed

/R
an

ke
d/

A
nn

ot
at

ed

by
 R

el
at

iv
e

St
ab

ili
ty

P
ri

or
it

iz
ed

/R
an

ke
d/

A
nn

ot
at

ed

by
 V

er
si

on

R
eu

sa
bl

e

T
ra

ce
d/

B
ac

kw
ar

d
T

ra
ce

ab
le

+

U
na

m
bi

gu
ou

s

+?

+?

U
nd

er
st

an
da

bl
e

+

+

V
er

if
ia

bl
e

+
+

+

=
 S

tr
en

gt
he

ns
 th

e
re

la
te

d
at

tr
ib

ut
e;

 -
 =

 W
ea

ke
ns

 th
e

re
la

te
d

at
tr

ib
ut

e;
 =

 N
o

re
la

ti
on

;
-?

 =
 M

ay
 s

tr
en

gt
he

n
th

e
re

la
te

d
at

tr
ib

ut
e;

 +

?
=

 M
ay

 w
ea

ke
n

th
e

re
la

te
d

at
tr

ib
ut

e

 T

ab
le

 1
7.

2(
b)

 R
el

at
io

ns
 b

et
w

ee
n

qu
al

ity
 a

tt
ri

bu
te

s
of

 r
eq

ui
re

m
en

ts

Necessary

Not Redundant

Organized

Prioritized/Ranked/
Annotated by Rela-
tive Importance

Prioritized/Ranked/
Annotated by Rela-
tive Stability

Prioritized/Ranked/
Annotated by Ver-
sion

Reusable

Traced/Backward
Traceable

Unambiguous

Understandable

Verifiable

A
ch

ie
va

bl
e/

Fe
as

ib
le

/A
tt

ai
na

bl
e

A
t t

he
 R

ig
ht

 L
ev

el
 o

f
D

et
ai

l

C
le

ar
/ P

re
ci

se
/M

ea
ni

ng
fu

l

+

C
om

pl
et

e
+

+

+

C
on

ci
se

+

C
or

re
ct

+

+

C
ro

ss
-R

ef
er

en
ce

d
-

D
es

ig
n

In
de

pe
nd

en
t

E
le

ct
ro

ni
ca

lly
 S

to
re

d

E
xe

cu
ta

bl
e/

In
te

rp
re

ta
bl

e

E
xt

er
na

lly
 C

on
si

st
en

t

+

Fo
rw

ar
d

T
ra

ce
ab

le

Im
pl

em
en

ta
tio

n
In

de
pe

nd
en

t

In
te

rn
al

ly
 C

on
si

st
en

t
+

+?

T
ab

le
 1

7.
2(

b)
 R

el
at

io
ns

 b
et

w
ee

n
qu

al
it

y
at

tr
ib

ut
es

 o
f

re
qu

ir
em

en
t (

co
nt

.)

Necessary

Not Redundant

Organized

Prioritized/Ranked/
Annotated by Rela-
tive Importance

Prioritized/Ranked/
Annotated by Rela-
tive Stability

Prioritized/Ranked/
Annotated by Version

Reusable

Traced/Backward
Traceable

Unambiguous

Understandable

Verifiable

M
od

if
ia

bl
e

+

-?

-?
-?

+

N
ec

es
sa

ry

-?

+

N
ot

 R
ed

un
da

nt

O
rg

an
iz

ed

Pr
io

ri
tiz

ed
/R

an
ke

d/
A

nn
ot

at
ed

by

 R
el

at
iv

e
Im

po
rt

an
ce

-

+?
/

-?

-?
-?

Pr
io

ri
tiz

ed
/R

an
ke

d/
A

nn
ot

at
ed

by

 R
el

at
iv

e
S

ta
bi

lit
y

+?
/

-?

-?
-?

Pr
io

ri
tiz

ed
/R

an
ke

d/
A

nn
ot

at
ed

by

 V
er

si
on

+?

/
-?

-?

-?

R
eu

sa
bl

e

T
ra

ce
d/

B
ac

kw
ar

d
T

ra
ce

ab
le

U
na

m
bi

gu
ou

s

U
nd

er
st

an
da

bl
e

-?
+

+?

/
-?

V
er

if
ia

bl
e

+

+

=
 S

tr
en

gt
he

ns
 th

e
re

la
te

d
at

tr
ib

ut
e;

 -
 =

 W
ea

ke
ns

 th
e

re
la

te
d

at
tr

ib
ut

e;
 =

 N
o

re
la

ti
on

;

- ?

 =
 M

ay
 s

tr
en

gt
he

n
th

e
re

la
te

d
at

tr
ib

ut
e;

 +

?
=

 M
ay

 w
ea

ke
n

th
e

re
la

te
d

at
tr

ib
ut

e

384 Yilmaztürk

17.4.1 Achievable/Feasible/Attainable

A requirement or an aggregate is achievable/feasible/attainable if and only if there
exists at least one system design and implementation that correctly implements the
requirement or all the requirements stated in the aggregate [5] at a definable cost
[14].

There are no particular means utilized or recommended by RUP to ensure or to
measure the achievability of all kinds of requirements involved in a development
project at an early stage of a software development project. Only standard RUP
activity that have relevance to ensure feasibility is constructing architectural-
proof-of-concept, which helps with determining whether there exists, or is likely
to exist, a solution that satisfies the architecturally-significant requirements, i.e.
the activity does not cover all the requirements.

Yet, for an industrial company that launches a software project with consider-
able amount of investment, tight time-to-market constraints, and severe competi-
tion, it is vital to know: (i) whether it is technically possible to achieve the identi-
fied requirements; (ii) whether it is possible to achieve the requirements within the
limitations imposed by time and budget. At ABB, we ensure the first concern by
including the developers in the reviews of the requirements artifacts. In the Vision
document, which comprises the high-level requirements, feasibility is not a high
priority quality to achieve; yet if a feature or a need is determined to be infeasible
with today’s technical knowledge, it is noted during the review meeting to be ne-
gotiated with the stakeholders. If the stakeholders insist keeping the requirement
in the Vision, the requirement is annotated with “not to be included in an immedi-
ate release”. Accordingly, infeasible requirements may stay in the Vision but they
are not traced forward to any use-cases or any lower level supplementary require-
ments, at least not until the next iteration or until a new technological improve-
ment in the area. It is higher importance to achieve feasibility nature in the lower
level requirements, i.e. in the use-case model, in the supplementary specifications
documents, and in the use-case specifications, because the actual work is defined
based on these artifacts. The first concern, i.e. technical feasibility, is achieved via
reviews and including not only the stakeholders but also the software architect(s),
and designer(s) in the reviews. The second concern, i.e. financial feasibility, is en-
sured by preparing a number of scenarios, and computing the project length and
cost in the case of each scenario (see Table 17.3). The calculations are performed
to view the worst possible case, the best possible case and three optimal cases that
demonstrate the probable, very probable, and most probable proceeding of the
project. These states differ from each other based on the number of weeks per it-
eration, number of developers that can be involved throughout the development
process, number of use cases identified for the whole system, number of weeks to
be spent on the development of each use case, and the characteristics of each de-
veloper during the development process. Our method is adapted from “Use-Case
Points” of Gustav Karner [15], [20]. We ignore the weight of actors in the calcula-
tions. We consider our “supplementary requirements” as the technical factors, and

17 “Good Quality” Requirements in Unified Process 385

include their effect in the calculations indirectly via the complexity of use-cases.
Finally, we decide on complexity of use-cases by ranking them on a 5-point scale,
5 illustrating the highest complexity.

Table 17.3 Financial feasibility scenarios

No. weeks
/iteration (3..8)

L 8 7 6 5 5

No. of developers N 2 3 4 4 4

No of use cases K 15 15 15 15 15

No. weeks/use
case

T 6 5 4 4 5

Efficiency per
user (0..1)

U 0.5 0.6 0.5 0.5 0.7

 Worst Best Optimal 1 Optimal 2 Optimal 3
Developer effort
(dev/iteration)

E 8 13 12 10 14

No of iterations M 11.25 6 5 6 5

Project length
(weeks)

S 90 42 30 30 27

Project costs
(men* week)

P 90 75 60 60 75

The computations are done by using the following formulas:
E = U*L*N
M = T*K / (U*L*N) = T*K/E
S = T*K / (U*N) = M*L
P = S*N*U

Upon completion of computations, we compare the existing situation in the
project with the results of different scenarios, and determine whether the project is
too optimistic about the number and content of the requirements to be fulfilled by
the final product. Measurement of requirements attainability is done at least once
by the beginning of a project. Depending on the volatility of the requirements and
changes in the environmental factors for the team, it may be repeated by the be-
ginning of each iteration.

17.4.2 Clear/ Precise/Meaningful

A requirement or an aggregate is clear/precise/meaningful if and only if (a) nu-
meric quantities are used whenever possible, and (b) the appropriate levels of pre-
cision are used for all numeric quantities [5]. Keeping a proper scope in the sense
of providing a definite amount of information, avoiding “motherhood” statements
like “shall provide a continuous service”, “shall ensure the highest system secu-
rity” is vital for clarity [9].

386 Yilmaztürk

Executable requirements are Clear requirements. A requirement that is written
in a formally defined computer executable, rather than a natural language, pro-
vides a more precise description. For example, the MATLAB simulation of the
automatic mode of our cluster type control system operation provided more pre-
cise and validated requirements input into the design phase of the development.
Moreover, Unambiguousness enhances Clarity of requirements. If we take an ex-
ample to ambiguous requirements from one of our Stressometer projects at ABB,
initially what the marketing department desired was “The system shall have a fast
computation time”. Such a requirement was rather vague and too general to work
with for the development team. There were questions as “How fast is good
enough?”, “We can have various configurations of the system, which configura-
tion are we talking about? The speed of computation time differs depending if it is
a monolithic system or a distributed one; if it is a measurement only or a full con-
trol system; etc.” Eventually, the requirement had to take a clearer format as “A
full computation of the main functions, from the time the Base Measurement Sys-
tem TCP/IP signal is received until an output is issued (external communication
not included), for a reversible mill single node flatness measurement system with
64 measurement zones, shall not be greater than 6.0 ms”. The problem with this
requirement was not only that it was ambiguously stated but also that there was
quite a lot vital information missing. Accordingly, we can infer that incomplete-
ness may lead to unclear requirements; or in other words, completeness may in-
crease the possibility of having clear requirements.

RUP supplies templates and examples, which provide structure and guidance
for content of different types of requirements thus assists in preparing
clear/precise/meaningful requirements. Further, it recommends review of these ar-
tifacts against checkpoints, which include criteria for fulfilling the attribute. Some
examples to the checkpoints for requirements clarity are “It is clear how and when
the use case's flow of events starts and ends” “It is clear who wishes to perform a
use case” “The purpose of the use case is also clear.” “The actor interactions and
exchanged information are clear.” “The use case model clearly presents the behav-
ior of the system.” “The Introduction section of the use-case model provides a
clear overview of the purpose and functionality of the system.”

SUP did not add any new means to what is already suggested by the general
RUP. In our Stressometer projects, we did not measure requirements clarity di-
rectly but rather ensured a common agreement on existence of it through reviews
by the stakeholders that constituted the domain experts, representatives of the ex-
ternal customers who bought the system, and representatives of the internal cus-
tomers who used the requirements in the subsequent steps of the development life-
cycle.

17.4.3 Complete

A requirement is complete if it is capable of standing alone when separated from
other requirements and does not need further amplification [14]. An aggregate of
requirements is complete if and only if (a) It includes all significant requirements,

17 “Good Quality” Requirements in Unified Process 387

whether relating to functionality, performance, design constraints, attributes, or
external interfaces. In particular, any external requirements imposed by a system
specification should be acknowledged and treated. (b) It involves all responses of
the software to all realizable classes of input data in all realizable classes of situa-
tions –including responses to both valid and invalid input values. (c) All figures,
tables, and diagrams in the aggregate are fully labeled and referenced; all terms
are defined; units of measure are provided [12]. (d) No sections are marked “To
Be Determined (TBD)” [4]. (e) It covers all allocations from higher level [14]. (f)
It must not include situations that will not be encountered or unnecessary capabil-
ity features [25].

Organizing the requirements in a logical way, for example by following a tem-
plate recommended by a specific process or by a standard, helps readers under-
stand the structure of a functionality described in a use-case or in a standard re-
quirements specification document, and makes it easier for them to identify if
something is missing; hence, complete requirements. In similar sense, executing
requirements via prototyping or via simulation during requirements analysis gives
the stakeholders opportunity to validate the requirements as well as reflect on the
missing ones, leading to a more complete set of requirements and more complete
definition of requirements. Further, considering the condition (f) in the above
definition, we can conclude that for requirements to be complete they have to be
necessary. In other words, preparing an immense use-case model with “golden
plating” use-cases omitting the necessary functionalities does not make the use-
case model more complete. In fact, if we refer to the condition (e) in our defini-
tion, we determine that it is essential to establish backward traceability from the
use-case model to the higher-level requirements specification, for example in
ABB’s case, to the vision document that includes all the features and user needs of
the prospective software system.

Focusing on user tasks instead of system functions during requirements elicita-
tion avoids overlooking the requirements as well as including requirements that
are not necessary [24]. To this end, using use-cases for capturing requirements are
the ideal means. In addition, semi-formal nature of use-cases makes it easy for the
stakeholders to read and understand a requirements document, and eventually,
provide a feedback on the missing parts. Further, using a standard specification
format, a template, can reveal omissions and prevent loss of requirements [10].
Moreover, iterative development of RUP brings about assessment of and maturing
accordingly the quality of artifacts throughout the development life cycle. Every
iteration results in an executable release, which facilitates identification of missing
requirements that can be dealt with in the subsequent iterations.

During our projects at ABB, we considered completeness of requirements as
one of the primary quality characteristics. SUP mainly utilized the strategies and
tools provided by the RUP. Further, we ensured that the release produced by the
end of an iteration was executed and continuously tested in an environment that
simulated a typical final customer environment. Watching real life scenarios in-
creased the interest level, the concentration, and the comprehension of the stake-
holders thus opened new discussions, which led to identification of new, insuffi-
ciently described, or missing requirements. Even though, we highly depended on

388 Yilmaztürk

qualitative means as stakeholders’ judgment, compliance with templates and
guidelines, we also used the metrics listed in Table 17.4 in an attempt to quantify
the maturity of completeness of different requirements artifacts by the end of each
iteration:

Table 17.4 Completeness metrics

Metric Related Requirement Artifact and Implications
Number of Use-Cases Traced Back
to Features/Total Number of Use-
Cases

Completeness of Use-Case Model. Low value indi-
cates existence of use-cases without any origin.

Number of Supplementary Re-
quirements Traced Back to Fea-
tures/Total Number of Supplemen-
tary Requirements

Completeness of Supplementary Specifications.
Low value indicates existence of non-functional re-
quirements without any origin.

Number of Incompletes in a Use-
Case Specification

Completeness of a Use-Case Specification. SUP
recognizes incompletes such as TBD, TBS, Not de-
fined, Not determined etc. as risk indicators for re-
quirements completeness. SUP imposes minimizing
the usage of incompletes, allows usage of such
terms if and only if they are followed by informa-
tion regarding when and by whom the incomplete
portion will be attended, and considers it as high
risk for the project if the number of incompletes
were not decreased after two consequent iterations.

Number of Incompletes in a Sup-
plementary Specification

Completeness of a Supplementary Specification
document. Implications apply as in the case of use-
case specifications.

17.4.4 Concise

A requirement or an aggregate is concise if it is as short as possible without ad-
versely affecting any other quality [5].

Generally, conciseness is measured in terms of size. Going overboard with
completeness may easily increase the size, and consequently, jeopardize the con-
ciseness of the requirement or the aggregate. A requirement, no matter in which
format it is, must only state what is required and not how it shall be met in terms
of design or implementation. Obviously, including such unnecessary information
will bring about unnecessary increase in size hence, less concise. Besides, re-
quirements can be stated at different levels of abstraction highly depending on the
preferences of different projects. For example, [3] has defined two different use-
case specification formats, namely casual and fully dressed, both of which are
valid but may differ in size and thus, in conciseness. Finally, in order to increase
understandability, requirements specifiers often use redundancy, which is not an
error itself [12, 4, 5], yet can easily lead to problems in achieving other qualities
one of which is conciseness.

17 “Good Quality” Requirements in Unified Process 389

RUP does not provide any particular assistance for conciseness. During our
projects at ABB, we were mainly concerned about the size of the use-case models
increased with the number of use-cases, number of included use-cases, number of
extending use-cases, and number of each type of relations. Besides, writing exten-
sive use-cases by keeping a low level of abstraction was a topic discussed at al-
most every review meeting. Yet, the first two projects proved that conciseness of
the use-case model or the conciseness of use-case specifications did not constitute
a high risk for the project or for the quality of the final product. Accordingly, it
was not addressed in the subsequent projects by the SUP.

17.4.5 Correct

A requirement is correct if it accurately describes a functionality to be delivered
[24]. An aggregate is correct if and only if every requirement stated therein is one
that the software shall meet [12].

As mentioned earlier in Sect. 17.4.3, executing requirements enables the stake-
holders to validate the specified requirements, thus, to ensure the correctness of
the requirements. Externally and/or internally inconsistent requirements hinder es-
tablishing correctness for it can be difficult to know which one of the conflicting
requirements is correct if there is any. Further, regarding our definition of cor-
rectness it is explicit that a requirement or an aggregate of requirements is always
correct if it is necessary. Finally, based on the relations both with external consis-
tency and with necessity, we can infer that a requirement is correct if it can be
traced back to its source at a higher-level –naturally, on the condition that the
higher-level requirement itself is correct.

RUP suggests involvement of end users in the requirements review meetings
only if possible. It provides guidelines for test case generation from the require-
ments, but leaves the preparation of the test cases until the implementation work is
scheduled for them. It does not require review of test cases either. By recommend-
ing usage of UML, and tools that do not provide any facilities for internal or ex-
ternal consistency checks of requirements, RUP hinders achievement of correct-
ness. Yet, the iterative nature of the process enables continuous learning and
improving throughout the development life cycle, and accommodating corrective
changes in requirements as a result of such learning, any time during the project.
On the other hand, we believe it is only the end users who can determine the cor-
rectness of user requirements. Accordingly, SUP process imposes involvement of
representatives of both external users that work at the customer site and the inter-
nal users that customize, install, and maintain the system, in the review of use-case
model, use-case specifications, and supplementary specifications. Further, accord-
ing to the SUP, test cases should be derived from the requirements and parallel to
the specification of the requirements so that any errors in the requirements can be
revealed and corrected before the design activities start. The test cases should be
reviewed by the requirements reviewers. Finally, continuous execution and testing
of incremental releases in an environment that simulated a typical final customer

390 Yilmaztürk

site provides continuous and realistic feedback to the development team about the
requirements that conflict with customer expectations.

17.4.6 Design Independent

A requirement or an aggregate is design independent if and only if there exists
more than one system design and implementation that correctly implements the
individual requirement or the requirements in the aggregate [5].

RUP provides only assistance for design independence via brief information
about how to distinguish “what” from “how” in the use-case model guidelines.
Templates and examples provided are also useful but not sufficient. In order to en-
sure design independence of the requirements, SUP imposes including the soft-
ware architect and designers in the review of requirements artifacts so that they
can point out those details that may limit their ability to consider alternative de-
sign possibilities in order to synthesize the most optimal one.

17.4.7 Externally Consistent

An aggregate is externally consistent if and only if no requirement stated therein
conflicts with any already baselined project documentation [5].

Traditionally, external consistency is defined in terms of compliance with the
preceding documents [4] and in most of the cases, those that include higher-level
requirements [24]. Yet, considering the importance of configuration and change
management during the whole lifecycle of software development, especially when
following an iterative and incremental approach, at ABB we preferred to adopt a
definition that emphasizes the importance of promoted baselines. In this way, we
aimed to: (i) handle inconsistencies as a part of our formal change management,
(ii) extend the context of external inconsistency to include project artifacts other
than the high-level requirements documents such as project plan, a baselined re-
lease from the previous iteration, etc. Traceability is the only characteristic that we
have experienced to affect the external consistency. If there is a link from every
low-level software requirement, for example a use-case in the use-case model, a
supplementary requirement in a supplementary specifications document, to a
higher-level requirement, for example a feature or a need in the vision document,
i.e., backward traceable then the aggregate including these requirements is exter-
nally consistent with the high-level requirements. In the same manner, if there is a
link from each requirement to at least one lower-level requirement or to a further
development artifact such as a sequence diagram, a class diagram, a test case, i.e.
forward traceable then the aggregate including these requirements is in agree-
ment with the lower-level documentation thus externally consistent with the par-
ticular documentation.

RUP provides well-defined requirements management activities, which in-
cludes detailed guidance for establishing and maintaining implicit and explicit
traceabilities to and from requirements at different levels, and for managing

17 “Good Quality” Requirements in Unified Process 391

changing requirements, and change management activities. Further, it presents
Requisite Pro to facilitate its requirements management practice. Yet, as being a
UML-based software development process, both RUP and SUP suffer inter- and
intra-model inconsistencies. For example, during our projects at ABB we experi-
enced difficulties in keeping the use-case models of different sub-systems consis-
tent with each other. Eventually, we decided to use one common use-case model,
which was in the end too large to manage. Besides, without any support for auto-
matic consistency checks from Rational Rose, it required considerable amount of
manual effort to ensure consistency even among the elements of the same model.
Similar situation applied in preserving the existing consistencies between different
models during model transformations, for example while reflecting changes in the
implementation model to the design model and eventually to the relevant use-case,
actor, or portion of the specification of a use-case in the use-case model.

17.4.8 Forward Traceable

A requirement or an aggregate is forward traceable if and only if it is written in a
manner that facilitates the referencing of the requirement or each individual re-
quirement of the aggregate in future development or enhancement documentation
[5, 12].

Common methods used for explicit traceability includes numbering every para-
graph hierarchically, numbering every requirement with a unique number, using a
convention to indicate a requirement and using a tool to extract and uniquely
number all sentences that comply with the particular convention [4]. To this end, it
will be much easier to achieve forward traceability if the requirements are elec-
tronically stored by using a tool that facilitates numbering and/or extracting sen-
tences according to a defined convention. Besides explicit traceability, there is
certain amount of traceability implicit in every development process [21]. For ex-
ample in the case of projects that follow RUP, such traceabilities are achieved via:
(i) Naming Conventions, (ii) The construction of mappings between the models,
(iii) Relationships between the model items themselves, (iv) The creation of dif-
ferent perspectives illustrating how the elements of one model satisfy the demands
implicit in the elements of another model. Some of these are easier to fulfill by
electronically storing the requirements in a tool that has the UML meta-model de-
fined in it, such as Rational Rose. A detailed discussion about forward traceability
can also be found in Chap. 5.

One of the best practices with RUP is managing requirements [18]. As a major
part of the requirements management, RUP puts specific emphasis on establishing
traceabilities among different levels of requirements and from the requirements to
the rest of the software development artifacts. It provides information about and
guidance for various possible traceability strategies, most common of which are
No Use-Case Model; Use-Case Model Only; Features Drive the Use Case Model;
The Use-Case Model is an interpretation of the Software Requirements Specifica-
tion; The Use Case Model reconciles multiple sets of traditional software require-
ments [21]. Further, RUP facilitates building and utilizing these strategies via tool

392 Yilmaztürk

support. For example, it recommends Rational RequisitePro as a tool for defining,
capturing, and tracking the traceability links. Whereas, on the other hand, as being
a UML-based software development process, RUP employs a "use-case driven
approach", meaning use cases that can only describe the functional requirements
are the basis for the entire development process [18]. It describes the activities to
move from specifications of use-cases to the realization of use-cases subsequently
to the implementation and testing of use-cases, in detail. It provides no similar as-
sistance for the non-functional requirements, which must also be provided to the
customer in the final product together with the functionality thus, must be de-
signed and tested together with the functionality.

Table 17.5 Forward traceability metrics (1 of 2)

Metric Related Requirement Artifact and Implications
(Number of Features Traced to Use-
Cases) + (Number of Features
Traced to Supplementary Specifica-
tions)/Total Number of Features

Forward Traceability of Vision. This metric is
mainly used before lower level requirements speci-
fications are prepared. Low value may suggest un-
satisfactory quality in various areas. It directly illus-
trates poor forward traceability from the high-level
requirements to the lower level ones. In addition, it
may imply inconsistency between the high-level re-
quirements and the lower level requirements. It may
indicate incorrect requirements at the lower level. It
may signal incompleteness unless the Vision in-
cludes requirements to be fulfilled in the long-term,
as it was the case in our projects.

(Number of Features Traced to Use-
Case Specification Sections) +
(Number of Features Traced to
Supplementary Requirements)/Total
Number of Features

Forward Traceability of Vision. This metric can be
used after starting to prepare the lower level re-
quirements specifications. The implications are of
the same nature as described regarding the previous
metric; yet it provides results that are more accurate
thus, facilitates identifying the root causes.

Number of Use-Case Specification
Sections Traced to Sequence Dia-
grams / Total Number of Use-Case
Specification Sections to be Traced
to Sequence Diagrams

(Previously: Number of Use-Case
Specification Flows Traced to Se-
quence Diagrams/Total Number of
Use-Case Specification Flows)

Forward Traceability of Use-Cases to the Design
Model. Low value indicates low traceability to the
sequence diagrams. All development cases prepared
according to the SUP principles imposes one-to-one
relation between the flows of a use-case specifica-
tion and of a use-case realization specification. Yet,
as it was observed in some projects, it might be eas-
ier, less redundant, more concise, and more under-
standable to describe the design of more than one
flow in the same sequence diagram. Besides, due to
the iterative nature of the projects, not all flows
might be considered for a design in a particular it-
eration. Further, occasionally, we encountered the
need to design use-case specification sections other
than the flows via sequence diagrams. Accordingly,
we adjusted our initial metric.

17 “Good Quality” Requirements in Unified Process 393

Table 17.5 (cont.) Forward traceability metrics (2 of 2)

Metric Related Requirement Artifact and Implications
Number of Use-Case Specifications
Traced to Class Diagrams/Total
Number of Use-Case Specifications
to be Traced to Class Diagrams

(Previously: Number of Use-Case
Specification Flows Traced to Class
Diagrams/Total Number of Use-
Case Specification Flows)

Forward Traceability of Use-Cases to the Design
Model. Low value indicates low traceability to the
class diagrams thus, eventually quality problems in
the code. In the very first project, it was decided to
illustrate each use-case flow with one class diagram
in the design model. By doing so, we experienced
difficulties in keeping the diagrams consistent, and
the design model and the use-case realization
documents concise. Accordingly, we adjusted the
development case and our initial metric.

Number of Use-Case Scenarios
Traced to Functional Test
Cases/Total Number of Use-Case
Scenarios to be Traced to Test
Cases

Forward Traceability of Use-Cases to the Test
Model. Low value indicates low traceability to the
test cases thus, insufficient testing.

RUP does not recognize any explicit link between the use-cases and the sup-
plementary, i.e. the non-functional, requirements, either. In brief, even though
some of the traceability strategies include links from the Supplementary Specifica-
tions to the subsequent artifacts, there exists no particular RUP guidance for how
to establish such traceabilities.

During our projects at ABB, we used “Features Drive the Use Case Model”,
which is the default strategy recommended by the Rational Unified Process. The
Use-Case Model and Supplementary Specifications form a complete software re-
quirements specification. Features are documented in the Vision Document and
are traced to use cases. If they are not reflected in the Use Case Model then they
are traced to supplementary requirements in the Supplementary Specifications
[21]. Accordingly, we handled the tracing from features to the use-case sections
and to the supplementary requirements, from use-case specifications to the use-
case realizations, to the functional test cases and eventually to the test procedures
whereas, we managed the linkage from the supplementary requirements to the use-
case realizations and to the test procedures in an ad hoc manner. For example, we
could easily point at which test case realized which part of which use-case in the
test model; whereas, supplementary specifications were directly entered into the
test procedures, and in most of the cases to a degree depending on the initiative of
the test designer. Table 17.5 includes the forward traceability metrics we used in
our projects run according to SUP:

17.4.9 Internally Consistent

An aggregate is internally consistent if and only if no subset of individual re-
quirements stated in it conflict [12]. The same term is used for the same item in all
requirements of the aggregate [14].

394 Yilmaztürk

When an aggregate is not organized, it may be difficult to identify the inconsis-
tencies [14]. Therefore, it should be preferred to organize the requirements accord-
ing to a standard or by using a template recommended by the process used. In ad-
dition, we often use redundancies in documentation in order to increase the
readability, while causing a risk for internal inconsistency. When altering one oc-
currence of a requirement we may forget to do so with other occurrences; hence,
internal inconsistency; yet, we can decrease the risk by using cross-references. Fi-
nally, better consistency can be achieved with executable requirements depending
on whether the tool used has a consistency check facility and how sophisticated
the facility is. For example, [7] describes a consistency algorithm for the live se-
quence charts of the “play engine” [8] mentioned earlier. By adopting such an al-
gorithm in the “play engine”, it is aimed to automatically detect inconsistencies in
a specification, enable a user to track the reason for inconsistencies via play out,
suggest a consistent scenario with “good” order of events whenever there is one,
and avoid abnormal abortion of play outs due to inconsistencies [8]. [4] identifies
four types of inconsistencies: (i) Conflicting behavior; (ii) Conflicting terms; (iii)
Conflicting characteristics; (iv) Temporal inconsistency.

RUP recommends developing a Glossary during the early phases of a project,
in order to ensure consistent usage of the terms throughout the whole development
life cycle hence, assistance to avoid conflicting terms. Even though, as our experi-
ences showed, it might occasionally be difficult to keep the Glossary itself consis-
tent, it is helpful to have one Glossary. On the other hand, both RUP and SUP rely
highly on the reviews for detecting the conflicting behavior, conflicting character-
istics, and temporal inconsistencies. Tracing such inconsistencies manually in a
large, evolving use-case model or supplementary specifications can be hard and
error prone.

17.4.10 Modifiable

An aggregate is modifiable if and only if its structure and style are such that any
changes to the requirements can be made easily, completely, and consistently
while retaining the structure and style [12].

Our experiences from software development projects at ABB have illustrated
high importance of requirements modifiability for: (i) requirements change; (ii)
concerns other than but affecting software requirements change; (iii) requirements
evolve; (iv) requirements can be wrongly stated due to various inadvertent rea-
sons. In such cases, it is easier to identify and subsequently, apply the modifica-
tions if (i) the requirements are organized in a coherent and easy-to-use way; (ii)
redundancy is kept to minimum; (iii) cross-references are used where necessary;
(iv) the requirements are uniquely labeled to ease both forward and backward
traceabilities; and (iv) the requirements are electronically stored. On the other
hand, ranking requirements by importance, stability, or version may inhibit modi-
fiability if the aggregate is organized according to the ranking instead of according
to some logical grouping recommended by a standard, or by a template provided

17 “Good Quality” Requirements in Unified Process 395

by the process followed, or chosen by the project in order to keep the related con-
cerns together and unrelated ones separate.

RUP iterative life cycle allows changes to the requirements at almost any point
in the development. Besides, since development is done incrementally, it is easier
to detect the effects, estimate the cost of, and eventually carry out a suggested
modification. RUP distinguishes between different types of requirements, and
provides templates for organizing each type of requirements. It recommends using
Rational Rose to electronically store the use-case models and diagrams, and sup-
plies specification templates ready to be used in Microsoft Word, Adobe Frame-
Maker, and HTML formats. SUP inherits the advantages of the generic RUP as
described above.

17.4.11 Necessary

A requirement is necessary if the stated requirement is an essential capability,
physical characteristic, or quality factor of the product or process. If it is removed
or deleted, a deficiency will exist, which cannot be fulfilled by other capabilities
of the product or process [14].

One common way suggested by the literature to decide on the necessity of a re-
quirement is to trace the requirement back to its origin, for example in the case of
our projects, which use RUP as the software development process, to trace a use-
case back to a feature or a need in the vision. If it cannot be traced it may not be
necessary. All definitions of necessity introduce the characteristic as a primary
condition for a requirement to qualify for being included in the final product [11],
[14], and [24]. Yet, depending on the scheme we use, ranking a requirement for
importance may conflict with the necessary nature of the requirement. For exam-
ple, [12] suggests ranking requirements based on a degree of necessity that distin-
guishes classes of requirements as essential, conditional, and optional. According
to the scheme, essential requirements are those that must be provided for the final
product to be accepted, hence necessary requirements. Whereas, conditional re-
quirements are those that would enhance the final product but would not make it
unacceptable if they are absent, and optional requirements are those that may or
may not be worthwhile, hence not necessary requirements.

Table 17.6 Necessity metrics

Metric Related Requirement Artifact and Implications
Number of Use-Case Sections
Traced Back to Features/Total
Number of Use-Case Sections

Necessity of Use-Cases. A value other than 1 indi-
cates existence of not required use-case flows, spe-
cial requirements, post, or pre-conditions.

Number of Supplementary Re-
quirements Traced Back to Fea-
tures/Total Number of Supple-
mentary Requirements

Necessity of Supplementary Requirements. A
value other than 1 indicates existence of unneces-
sary non-functional requirements.

RUP describes specific and detailed activities for requirements elicitation. It
suggests methods to follow for identifying what the stakeholders require. It en-

396 Yilmaztürk

hances the assistance with guidelines where appropriate. It also provides related
checkpoints to be adopted at the review meetings. As a part of its requirements
management practice, RUP suggests various traceability strategies, which provide
guidance on keeping links between requirements at different levels. Finally, the it-
erative nature of RUP allows continuous learning and improving the requirements
throughout the development life cycle. SUP requires involvement of representa-
tives of all types of stakeholders in the requirements elicitation and identification
process. Besides, it uses well-defined traceability procedures between high level
and lower level requirements. Accordingly, the risk with identifying requirements
that do not contribute to the satisfaction of some customer needs is minimized.
SUP also suggests collecting the metrics identified in Table 17.6 and discussing
the results in the relevant review meetings.

17.4.12 Organized

An aggregate is organized if and only if its contents are arranged so that readers
can easily locate information and logical relationships among adjacent sections are
apparent [5].

RUP recommends organizing the functional requirements using use-cases. In-
stead of a traditional bulleted list of requirements, RUP suggests organizing them
in a way that tells a story of how someone may use the final product [18]. Further,
it provides templates complemented with guidelines and examples to assist in
documenting the needs and features in Vision document, and lower level require-
ments in Use-Case Model survey, Use-Case Specifications, and Supplementary
Specifications, in an organized manner. SUP adopts generic RUP means, with mi-
nor adaptations according to the ABB instructions. The “organized” nature of re-
quirements is ensured via the checkpoints at the review meetings.

17.4.13 Prioritized/Ranked/ Annotated

A requirement is prioritized/ranked/annotated by relative importance if the re-
quirement is assigned an implementation priority to indicate how essential it is to
include it in a particular product [24]. An aggregate is prioritized/ranked/annotated
by relative importance if each requirement in it has an identifier to indicate the
importance of that particular requirement [12].

A requirement is prioritized/ranked/annotated by relative stability if the re-
quirement is assigned an identifier to indicate the stability of the particular re-
quirement [5]. An aggregate is prioritized/ranked/annotated by relative stability if
each requirement in it has an identifier to indicate the stability of that particular
requirement [12]. A requirement or an aggregate is prioritized/ranked/annotated
by version if a reader can easily determine whether the particular requirement or
which requirements of the aggregate will be satisfied in which version of the pro-
spective product [5].

17 “Good Quality” Requirements in Unified Process 397

The characteristics that may hinder from achieving prioritized/ranked/annotated
by relative importance are those that are related to the organization of require-
ments in the aggregates. If it is preferred by the project to organize the require-
ments to be modifiable, or to rank by relative stability, or to rank by version, then
prioritization by relative importance cannot be performed in the structure of the
aggregate. Yet, by extracting the requirements into another means such as a work-
book or a database, the project can still rank the requirements by relative stability
and by version without adversely affecting the ranking by relative importance na-
ture of the original aggregate. Besides, if an aggregate is organized by following a
standard or a template provided by the process adopted, it cannot be organized ac-
cording to the ranking of its requirements by relative importance. Similar situa-
tions also apply to achieving prioritization of requirements by relative stability and
by version. Finally, if a requirement is necessary, it represents functionality, a ca-
pability, a physical characteristic, or a quality factor essential for the final product;
therefore, it cannot be ranked to a level that degrades its necessity.

Traditionally, it is suggested to establish ranking according to relative impor-
tance, stability, or version in the organization and the structure of an aggregate.
Accordingly, an aggregate organized to be modifiable would have a negative im-
pact on this characteristic. However, in SUP, it is suggested to extract the re-
quirements from the aggregate into a workbook, execute the rankings based on the
attributes chosen beforehand, and eventually, sort and save the matrix in separate
datasheets per each ranking. In this way, the project could keep the original or-
ganizations of the use-case model, supplementary specifications, and the vision
while at the same time it could refer to the rankings when needed, for example for
(re-)planning by the beginning of an iteration. In this way, it was also possible to
generate different combinations of rankings in summary tables depending on the
aim of the planning. For example, if it was decided that we should plan the itera-
tion to develop the use-cases with the critical benefits, and to stabilize the archi-
tecture, then it would be necessary to view the matrix sorted first by relative im-
portance and then by stability on one worksheet. Table 17.7 illustrates a portion of
a use-case matrix resulted from such combined ranking during one of our projects
at ABB.

As a part of its Requirements Management activities, the generic RUP recom-
mends defining the attributes to be tracked for each type of requirement. Examples
to such attributes are Stability, Effort to implement, Risk to the development ef-
fort, etc. It provides detailed guidelines how to identify, store, and review the at-
tributes. Further, it supplies a tool mentor to facilitate these activities via Requi-
sitePro, which enables defining attributes for different types of requirements,
storing the requirements together with the attribute values, and retrieving and or-
ganizing the requirements by attribute values via filtering or sorting in views. In
conclusion, RUP excels the “prioritization” related quality attributes by delivering
the means for sophisticated groupings of requirements.

398 Yilmaztürk

Table 17.7 Example use-case attribute matrix

Use-Case No Status Benefit Effort

Technical

Risk

Architectural

Impact Stability Priority

Scheduled

for the

Current

Iteration

Responsible

Party

UC-20 Proposed Critical High Medium Extends High High Yes Christer

UC-23 Proposed Critical High Medium None Medium High Yes Olle

UC-51 Proposed Critical Medium Medium None Medium High Yes Olle

UC-21 Proposed Critical Medium Medium None High Medium Yes Christer

UC-49 Proposed Critical Medium Medium None High Medium Yes Christer

UC-33 Proposed Critical Medium Low None High Low Yes LEM

UC-55 Proposed Critical Medium Low None High Low

For a more detailed survey on requirements prioritization and requirements pri-
oritization techniques, readers should also refer to Chap. 4 in this book.

Table 17.8 Backward traceability metrics

Metric Related Requirement Artifact and Implications
Number of Use-Cases
Traced Back to Fea-
tures/Total Number of Use-
Cases

Backward Traceability of Use-Case Model. A value
other than 1 indicates poorly traced use-cases. It also
suggests existence of use-cases without any origin.

Number of Use-Case Speci-
fication Traced Back to Fea-
tures/Total Number of Use-
Case Specification Sections

Backward Traceability of a Use-Case. A value other
than 1 indicates poorly traced use-cases. It also sug-
gests existence of use-case sections, such as pre or
post conditions, or special requirements, without any
origin.

Number of Supplementary
Requirements Traced Back
to Features/Total Number of
Supplementary Require-
ments

Backward Traceability of Supplementary Specifica-
tion. A value other than 1 indicates poorly traced sup-
plementary specification and supplementary require-
ment. It also suggests existence of supplementary
requirements without any origin.

Number of Sequence Dia-
grams Traced Back to Use-
Case Specification Sec-
tions/Total Number of Se-
quence Diagrams

Backward Traceability of Design Model to the Use-
Cases. A value other than 1 indicates poorly traced
sequence diagrams. It signifies existence of design
elements without any origin. It may also suggest in-
consistencies between what the end customer expects
and what is being developed.

Metric Related Requirement Artifact and Implications
Number of Class Diagrams
Traced Back to Use-Case
Specification Sections/Total
Number of Class Diagrams

Backward Traceability of Design Model to the Use-
Cases. A value other than 1 indicates poorly traced
class diagrams. It signifies existence of design ele-
ments without any origin. It may also suggest incon-
sistencies between what the end customer expects and
what is being developed.

Number of Functional Test
Cases Traced to Use-Case
Scenarios/Total Number of
Functional Test Cases

Backward Traceability of Test Model to the Use-
Cases. A value other than 1 indicates poorly traced
test cases. It suggests existence of test cases without
origin. It also signifies that necessary functionalities
were not tested and/or extra functionality was imple-
mented without informing the requirements team first.

17 “Good Quality” Requirements in Unified Process 399

17.4.14 Traced/Backward Traceable

A requirement or an aggregate is traced/backward traceable if the origin of the re-
quirement or of each requirement of the aggregate is clear [5].

The discussion about the explicit and implicit traceability and the influence of
electronically stored characteristics on the forward traceability (see Sect. 17.4.8)
also applies to the backward traceability. Further, the discussion about the support
by the generic RUP and SUP for establishing traceability in the same section
should also be considered here. Yet, what differs is the metrics we used in our pro-
jects in order to measure the degree of backward traceability achieved thus, detect
possible risks and flaws in the projects:

17.4.15 Unambiguous

A requirement or an aggregate is unambiguous if different readers with similar
backgrounds would be able to draw only one interpretation of the requirement [9,
24] or of each requirement in the aggregate [12]. As discussed in detail earlier in
Chap. 11, natural language is inherently ambiguous. In order to decrease the am-
biguity thus increase the unambiguousness, one can use more deterministic meth-
ods and languages with well-defined semantics, such as state machines, predicate
calculus, prepositional calculus, petri nets. Most of these methods and languages
are supported by software tools that can automatically detect lexical, syntactic,
and semantic errors. Accordingly, electronically stored and/or executable require-
ments may constitute less ambiguity.

RUP is a UML-based software development process. UML has limited notation
to express different types of requirements. In fact, it only helps visualizing the ac-
tors and the use-cases that constitute the lower level functional requirements.
UML does not provide support for detailing the use-cases. Even though RUP sug-
gests using sequence diagrams to show how an actor interacts with a use-case, or
using activity diagrams or state charts to describe a single use-case in order to
formalize use-cases, the common means to describe use-cases is Natural Lan-
guage. In addition, use-cases are not the only requirements of a software product.
RUP uses Vision documents for specifying the high-level requirements, and Sup-
plementary Specifications to describe the non-functional requirements. Both Vi-
sion and Supplementary Specifications are created also by using Natural Lan-
guage. Natural Language has inherent ambiguity. Yet, RUP defines a common
vocabulary in order to decrease ambiguity among team members. It recommends
checkpoints to be used during the review of requirements specification documents.
Such checkpoints are too general and insufficient to ensure a satisfying level of
unambiguousness in the requirements artifacts.

Active participation of all types of stakeholders in the elicitation and review of
the requirements and preparation of test cases parallel to the preparation of the
use-cases are the main means that SUP recommends in order to decrease the am-
biguity in the requirements. It recognizes a list of weak phrases that may cause
uncertainty and lead to multiple interpretations, such as flexible, fault tolerant,

400 Yilmaztürk

adequate, as appropriate, maximize, minimize, at a given time, up to etc., and op-
tions that give the developers freedom to satisfy the related requirement by follow-
ing more than one way such as can, may, optionally etc. During review meetings,
checks are done in order to detect usage of these words. In addition, the following
metrics in Table 17.9 are used to measure the ambiguity level in a specification.

Table 17.9 Unambiguousness metrics

Metric Related Requirement Artifact and Implications
Number of Weak Phrases + Num-
ber of Options in a Use-Case
Specification

Unambiguousness of a Use-Case Specification.
Values other than 0 indicate ambiguity in the speci-
fication.

Number of Weak Phrases + Num-
ber of Options in a Supplementary
Specification

Unambiguousness of a Supplementary Specifica-
tion. Values other than 0 indicate ambiguity in the
specification.

17.4.16 Understandable

A requirement or an aggregate is understandable if all classes of readers can easily
comprehend the meaning of the requirement or all requirements in the aggregate,
with a minimum of explanation [5].

Naturally, an unambiguous requirement or aggregate is clearer/more precise
and more meaningful thus more understandable. On the other hand, if the unam-
biguousness is achieved by using formal notations, understandability of the re-
quirements by non-technical stakeholders will decrease. In addition, redundancy
increases readability thus may increase understandability of requirements. More-
over, it is easier to comprehend behavior by seeing it in action than by reading
about it in a document. Accordingly, executability/interpretability of requirements
enhances the understandability of them. Further, organizing the requirements ac-
cording to a standard or by using a template recommended by the process fol-
lowed or according to another logical grouping accepted by the project will in-
crease the understandability of the requirements. The iterative nature of the RUP
process enables continuous learning and improving throughout the development
life cycle. Every iteration results in an executable release, which improves effec-
tive understandability. Besides, our experiences have illustrated that organizing
functional requirements by using use-cases leads to greater completeness and bet-
ter understanding of the requirements hence, support by RUP for better under-
standability of requirements. In addition, RUP provides templates to organize the
high-level requirements and non-functional requirements in logical groupings.

In the projects that follow SUP, since all types of stakeholders, i.e. representa-
tives of end users, representatives of actual buyers of the system, architect, and de-
signer of the system, those who do the installation and maintenance of the final
product, and take part in the review of the requirements problems with under-
standing the requirements can easily be revealed and solved.

17 “Good Quality” Requirements in Unified Process 401

17.5 Conclusions

The Stressometer products have been providing rolling mills with accurate online
control of the flatness of cold rolled strips for more than 30 years. As the early
generation, PLC-based Stressometer systems have been migrated to a Java-based
platform, ABB has faced a need for change in the way it works to continue provid-
ing value to its customers and ensuring customer satisfaction in a controlled man-
ner. Accordingly, it adopted RUP in an agile fashion mainly by maintaining active
and heavy involvement of stakeholders that include both external and internal cus-
tomers, preparing the test cases before coding, and continuously testing during de-
velopment. The resultant development process namely SUP has been applied in
three projects and has presented satisfying results regarding the achievement of
“good quality” requirements.

The Stressometer projects received major gains from the disciplined nature of
RUP in traceability, completeness, and necessity attributes via well-defined trace-
ability strategies that were provided as a part of thorough requirements manage-
ment. Templates and examples together with the associated guidelines and check-
points helped to achieve the organized, modifiability, and clarity qualities in the
requirements. Further, iterative nature of RUP gave a considerable support in
achieving completeness, modifiability, and understandability. On the other hand,
standard RUP means was insufficient for ensuring achievability. Accordingly, in
SUP we introduced financial feasibility scenarios and imposed active communica-
tion of the development team with the rest of the stakeholders including the exter-
nal as well as the internal customers.

Tool support by RUP to “ease” achieving the prioritization related attributes
was found not enough value providing to invest time and effort. Instead, in the
SUP, simpler guidelines to follow were defined and usage of worksheets was sug-
gested. Active involvement of the end users in the creation and review of the re-
quirements artifacts, as imposed by SUP, proved to be an invaluable means to
achieve correctness, and unambiguousness.

Completeness and correctness qualities were further excelled by producing an
executable release by the end of every iteration, and allowing the external and the
internal customers to interact with it in an environment, which simulates a typical
final customer site, mainly as a part of continuous testing.

Including the architects and the designers in the review of requirements arti-
facts even though it is not required by the standard RUP procedures ensured de-
sign independence of the requirements. Preparing the test cases early in the devel-
opment, parallel to the requirements specification, and having them reviewed by
the stakeholders supported achievement of most of the quality attributes; however,
the main benefits were perceived regarding the requirements correctness.

The projects had to put considerable amount of manual effort and had to main-
tain a close communication within the development team in order to ensure inter-
nal and external consistency. This was not a satisfactory practice and accordingly,
was considered to be improved in the future.

402 Yilmaztürk

References

1. Basili V, Weiss D (1981) Evaluation of a software requirements document by analysis of
change data. In: Proceedings of 5th IEEE International Software Engineering Confer-
ence, March 9-12, 1981, San Diego, California, United States, pp.314 323

2. Boehm B (1981) Software engineering economics. Prentice Hall: Englewood Cliffs, New
Jersey

3. Cockburn A (2001) Writing effective use cases. Addison-Wesley: Boston, Massachusetts
4. Davis AM (1993) Software requirements: Objects, functions, and states. Revision. PTR

Prentice Hall: Englewood Cliffs, New Jersey
5. Davis A, Overmyer S, Jordan K, Caruso J, Dandashi F, Dinh A, Kincaid G, Ledeboer G,

Reynolds P, Sitaram P, Ta A, Theofanos M (1993) Identifying and measuring quality in
a software requirements specification. In: Proceedings of 1st International Software
Metrics Symposium, Baltimore, Maryland, United States, pp.141 152

6. Grieskamp W, Lepper M (2000) Using use cases in executable Z. In: Proceedings of
IEEE Conference on Formal Engineering Methods, September 4-7, York, England,
pp.111 120

7. Harel D, Kugler H (2002) Synthesizing state-based object systems from LSC specifica-
tions. International Journal of Foundations of Computer Science (IJFCS), 13(1): 5 51

8. Harel D, Marelly R (2002) Specifying and executing behavioral requirements: The play-
in/play-out approach. Technical Report MCS01-15, The Weizmann Institute of Science

9. Harwell R, Aslaksen E, Mengot R, Hooks I, Ptack K (1993) What is a requirement? In:
Proceedings of 3rd International Symposium of the NCOSE, July 26-28, Arlington,
Virginia, United States, 1: 17 22

10. Hooks I, Farry K (2000) Customer-centered products: Creating successful products
through smart requirements management. American Management Association: New
York, New York

11. Hooks I (1993) Writing good requirements. In: Proceedings of 3rd International Sym-
posium of the INCOSE, July 26-28, Arlington, Virginia, United States, 2: 197 203

12. IEEE (1998) IEEE Recommended practice for software requirements specifications,
IEEE Std. 830-1998

13. (2004) http://www.ilogix.com/fs prod.htm. Last accessed: 2004-09-09
14. Kar P, Bailey M (1996) Characteristics of good requirements. In: Proceedings of 6th In-

ternational Symposium of the NCOSE, 7-11 July, Boston, Massachusetts, USA 2:
284 291

15. Karner G (1993) Metrics for objectory. Diploma thesis, University of Linköping, Swe-
den, No LiTHIDA-Ex-9344:21

16. Kruchten P (1999) The rational unified process. Addison-Wesley: Reading, Massachu-
setts

17. Oberg R, Probasco L, Ericsson M (2000) Applying requirements management with use-
cases. Rational Software White Paper, Technical Paper TP505 (Version 1.3),
http://www.pureproject.com/reqs_mgmt_usecases.htm

18. Rational Sofware Corporation (2002) Rational unified process software. Version
2002.05.00

17 “Good Quality” Requirements in Unified Process 403

19. Rosenberg L, Hyatt L, Hammer T, Huffman L, Wilson W (1998) Testing metrics for
requirements quality. In: Proceedings of 2nd International Software Quality Week, 9-13
November, Brussels, Belgium. Access on 13th December 2004.
http://satc.gsfc.nasa.gov/support/

20. Schneider G, Winters J P (1998) Applying use-cases - A practical guide. Addison-
Wesley: Reading, Massachusetts

21. Spence I, Probasco L (2000) Traceability strategies for managing requirements with use
cases. Rational Software White Paper, Access on 13th December 2004.
http://www.isk.kth.se/proj/2003/6b3403/sa3/www/RationalUnifiedProcess/papers/trace
ability.htm

22. (2004) http://www.mathworks.com/. Last accessed: 2004-11-12
23. (2004) http://www.standishgroup.com/. Last accessed: 2004-11-10
24. Wiegers KE (1999) Writing quality requirements. Software Development Magazine,

May, http://www.sdmagazine.com/
25. Wilson WM (1997): Writing effective requirements specifications. In: Proceedings of

9th Annual Software Technology Conference, 27 April–2 May, Salt Lake City, Utah,
USA

26. Yilmaztürk N (2003) RE in flatness measurement and control systems development at
ABB. In: Proceedings of 11th IEEE International Requirements Engineering Confer-
ence, 8-12 September, Monterey Bay, California, USA, pp. 293

Author Biography

Nur Yilmaztürk is a computer scientist in the Software Architecture and Processes
(SWAP) Group of the Automation Technologies department at ABB Corporate
Research. She worked in different roles including process and project manage-
ment during development of new generation Stressometer systems at ABB. Her
research interests involve software development processes mainly model-driven
development, and iterative and incremental development, conceptual modeling,
architectural visualization and analysis, and object oriented technologies. She re-
ceived her bachelor’s degree in mathematical engineering from Istanbul Technical
University (ITU) in Turkey, and her MSc and PhD in computer science from the
University of Manchester Institute of Science and Technology (UMIST) in UK.

18 Requirements Experience in Practice: Studies of Six
Companies

Tony Gorschek and Mikael Svahnberg

Abstract: To understand how to apply different requirements engineering prac-
tices and where difficulties may arise when implementing a set of requirements
engineering practices, it is often useful to consider how others have done and the
troubles they have encountered. This chapter describes six industry cases of ap-
plied requirements engineering, with a focus on areas where further improvements
are desired by or recommended to the companies. Many of these improvement ar-
eas are also identified by other, independent, requirements engineering state of
practice surveys, and thus indicate areas that warrant special attention when con-
structing a requirements engineering process for an organization.

Keywords: Requirements engineering, Process assessment, Model-based assess-
ment, Inductive assessment, Software process improvement, State of practice.

18.1 Introduction

In Parts 1 and 2 of this book, different aspects of requirements engineering are
presented, ranging from requirements elicitation, specification, analysis, prioritiza-
tion, negotiation and requirements management. One question that may arise is
whether industry in fact uses everything presented. In this chapter we present stud-
ies of the requirements practices at six companies. The purpose of this presenta-
tion is to show a sample of what requirements practices industrial companies have
implemented, and what practices the companies have hitherto not yet adapted.

Gaining insight into how companies in fact use different requirements engi-
neering practices enables an understanding of how to balance different needs.
Moreover, it gives an overview of areas within requirements engineering that are
well understood and, more importantly, those areas that industry still finds too
immature or lack sufficient training to implement. From this perspective, this
chapter points towards areas within requirements engineering where further efforts
are required to either develop the practices to suit industry needs or to focus re-
quirements engineering training.

Please note that this chapter presents a series of case studies. As with all case
studies, the findings may not be generalizable to a larger sample. However, this is
not the intention of the presentation. The intention is, as mentioned earlier, to give
an overview and some examples of which requirements engineering practices that
are applied in industry and, more importantly, which practices that are not applied.
Please also note that since the assessment efforts presented in this chapter are parts
of software process improvement efforts, the assessments naturally tend to focus
on areas that are in need of change and improvement. This does not imply that the

406 Gorschek and Svahnberg

requirements engineering processes of the companies are totally dominated by
shortcomings.

The remainder of this chapter is organized as follows. In Sect. 18.2 a brief
overview is given of the companies involved in this study. In Sect. 18.3 the meth-
odology used to study (assess) the companies is described. Sect. 18.4 presents the
findings of the assessments, i.e. the state of practice in the studied companies. In
Sect. 18.5 a number of states of practice surveys are presented and how their re-
sults relate to the findings of our assessments. The chapter is discussed in Sect.
18.6 and concluded in Sect. 18.7.

18.2 Studied Companies

Understanding how requirements engineering practices are implemented to suit
different companies’ needs also entails having knowledge of the companies them-
selves (or, for some of the companies, the projects studied). In this section we de-
scribe the studied companies further. Because of confidentiality issues, we refer to
the companies as company Alpha to company Zeta. The purpose of this brief pres-
entation of the companies is to present the reader with an overview of the context
for the study of requirements engineering practices detailed in Sect. 18.3. Com-
pany Alpha to Gamma were selected so that two larger companies (>150 employ-
ees) and two smaller companies were represented, and company Epsilon and Zeta
were studied as a part of a larger research project in which they are partners. All
contacted companies agreed to participate in the studies.

Company Alpha. In this company we studied a project scoping 11,000 person-
hours, entailing a partially-finished standardized system solution for logistics and
warehouse management. The company is highly specialized in the domain, as are
the company’s typical customers. Accordingly, the customer of the studied project
has extensive system knowledge. They have used similar systems before, have
considerable domain knowledge, and know what they want.

Company Beta. The project studied in this company developed a web based
system for a government agency. The system assists companies that are FDA
(Food and Drug Administration) regulated to capture data that will aid in the con-
tinued upkeep of their FDA status. The requirements engineering part of this pro-
ject comprised 350 person-hours. The company’s expertise includes the pharma-
ceutical domain and FDA approval and certification process. The company is
primarily involved in bespoke development efforts aimed at large clients and gov-
ernment agencies.

Company Gamma. Studied in this company is a 1600 person-hours project
developing a web based system designed to manage training activities for a spe-
cific medical device company, i.e. to keep track of courses available with regards
to certification and education of medical practitioners and professionals. Bespoke
projects dominate the development efforts.

Company Delta. The project studied in this company was an 18000 person-
hour project. The project developed an application support system for a govern-

18 Requirements Experience in Practice: Studies of Six Companies 407

ment agency. The system was based on a previous mainframe system. The project
developed a downsized, modernized (e.g. updated functionality and implemented
in an object-oriented programming language), and a graphical user interface was
added. The company has considerable experience in the application domain of the
studied project.

Company Epsilon. This company has over 30 years of experience developing
hardware and software solutions within the domain of automated manufacturing
support. The company has a mixture of large and small customers ranging from
equipment manufacturers to end users worldwide. Approximately 200 persons
work in the company developing products (both software and hardware) in a
product line environment.

Company Zeta. This company is world leading within a specific area in the
domain of guidance and navigation software. The company employs approxi-
mately 100 employees, of which 20 25 are software engineers. The company has
a wide product portfolio in its niche of the overall domain, as they consider it im-
portant to be able to offer partners and customers a wide selection of general vari-
ants of hardware and supporting software. Tailoring and especially minor cus-
tomer adaptation often follows the procurement and subsequent installation of one
of their systems. This, in addition to development of new software and hardware,
makes it necessary to plan, execute and manage a wide range of projects.

18.3 Methodology

The study of the companies consists of two parts. In the first part, we study all six
companies using a lightweight model-based requirements engineering evaluation
tool, the REPM (Requirements Engineering Process Maturity) model. This model
is further described in Sect. 18.3.1. Two of the companies, i.e. companies Epsilon
and Zeta, are studied in further detail using a more in-depth assessment method
where e.g. data from different sources of the requirements engineering process are
triangulated against each other. This approach is described further in Sect. 18.3.2.
For a more thorough description of the investigation tools, please see [12, 14].

18.3.1 Model-Based Process Assessment

Model-based process improvement is a prescriptive approach which is based on a
collection of best practices describing how, e.g., software should be developed.
The prescriptive nature of such models lies in the fact that one set of practices is to
be adhered to by all organizations. No special consideration is taken to an organi-
zation’s situation or needs other than how the development process (at the organi-
zation subject to software process improvement) is in comparison to the one of-
fered through the prescribed model [6, 35]. A general trait common for most
model-based assessment methods is that the assessments are performed as a
benchmarking against the set of practices advocated by the model in question.

408 Gorschek and Svahnberg

This means that the techniques used, e.g. interviews, questionnaires, etc., are de-
signed with a focus towards benchmarking rather than deeper root cause investiga-
tions. The Requirements Engineering Process Maturity Model (REPM model) is
constructed to fill the need for a lightweight process assessment method focused
towards requirements engineering. Although there exist several other methods for
assessing software development processes, (e.g. CMM [26] and ISO9000 [3]), few
models focus on requirements engineering, and those that do to some extent (e.g.
Sommerville & Sawyer [31,33], CMMI [7] and SPICE [34]) are large and demand
a fair amount of resources in order to be used. The use of the REPM model to
benchmark the RE process, on the other hand, takes approximately 40 person-
hours in total (including analysis of the data collected through structured inter-
views and documentation).

The content of the model was inspired mainly by the work done by Somerville
et al. in the REAIMS project [28] but also other existing work, such as Sommer-
ville and Sawyer [21, 31, 33] CMM [1,2], ISO9000 [18], and Jirotka and Goguen
[19]. The REPM model was constructed by combining these sources with personal
industrial experiences and was validated by additional experts from academia and
industry in the model construction and validation process.

Overview of the REPM Model
The REPM is structured in a hierarchical manner. Three Main Process Areas
(MPA) are at the top of the structure, i.e. Elicitation, Analysis & Negotiation, and
Management. Under each of these MPAs several Sub-process Areas (SPA) resides
covering best practice areas like e.g., quality assurance, verification & validation,
and so on. The bottom and smallest constituents of the REPM model are called
Actions. Actions are designed to establish if and how certain activities are per-
formed during requirements engineering –directly indicating if and to what extent
best practices are covered, i.e. offering a benchmarking of the same type found in
other model-based assessment methods.

Another dimension of the REPM model is maturity. Every Action resides on a
certain Requirement Engineering Process Maturity level (REPM level) spanning
from 1 to 5, where level 1 represents a rudimentary requirements engineering
process and level 5 represents a highly mature process. The Actions on each level
ensure a consistent and coherent requirements engineering process for the particu-
lar maturity level, i.e., to obtain REPM level 1 you have to complete all Actions
deemed to be on level 1 in the model. The maturity levels enable an evaluation of
companies with respect to requirements engineering with a better accuracy. By
“base-lining” the Actions into maturity levels it is possible to assess a particular
company’s potential for a certain maturity in its requirements engineering proc-
esses, and it shows what Actions should be focused on to achieve the particular
maturity level, enabling smaller and step-wise improvements one maturity level at
a time.

Based on the REPM model a checklist was constructed, which was used to
guide structured interviews, i.e. the assessment tool. The checklist takes each Ac-

18 Requirements Experience in Practice: Studies of Six Companies 409

tion and formulates it as a question which can be answered with one of the three
ways: completed, uncompleted and satisfied-explained.

The purpose of the satisfied-explained category is to take model compatibility
into consideration. Companies carrying out projects in special environments
unlike the traditional customer-developer environment may deem certain Actions
unnecessary and have compelling reasons for this opinion. An example can be a
company where the developer and the customer both are specialists in a certain
domain and hence “speak the same language”. The need for extended clarification
and validation of requirements may not be needed, e.g. the construction of proto-
types can be omitted. Satisfied-explained thus denotes an Action that is not com-
pleted but the organization targeted by the evaluation in cooperation with the as-
sessors deems the Action not applicable to their project and answers that it is to be
considered satisfied-explained in regards to the assessment. It is important to no-
tice that an Action should not be deemed satisfied-explained for reasons like lack
of time, lack of money, lack of know-how or just “did not think of it”, but rather
when Actions (best practices) are inapplicable with the industry environment in
which the company being assessed resides. The REPM model is prescriptive in
nature (like all assessment methods based on a list of best practices) but it is how-
ever not static. It is possible to add both process areas and Actions to the model if
needed to ensure that it fits the situation of e.g. a specific domain. Expansion of
the REPM model should however be done with extreme caution as adding to the
model without careful consideration may result in the model becoming a “jugger-
naut” as size and complexity increases. In addition, by adding to the model in an
attempt to establish one-size-fit-all will erode the lightweight nature of the REPM
model and create another very large assessment model like e.g. CMMI, whose size
and coverage is not purely a positive trait [29]. Further information about REPM
structure and expansion etc will not be discussed here as it is not within the pri-
mary focus of this chapter. For further information please see [13].

The results of a project evaluation are presented as four tables, one for each
MPA and one summarizing all of the results. An example of such a table is found
in Table 18.1. This table is an example of a summary table for all three MPAs for
one project evaluation. In Table 18.1 Actions for each REPM level are listed sepa-
rately, and that e.g. REPM level 2 contains a total of 14 Actions, of which 9 are
completed and 4 are satisfied-explained (14 – (9+4) = 1 is uncompleted).

Table 18.1 Example of project evaluation result

REPM level Total Actions Completed Actions Satisfied-explained
1 10 8 2
2 14 9 4
3 19 11 4
4 11 4 2
5 6 1 4

To assist in the interpretation of the results graphs are also used, as the example
in Fig. 18.1. In this graph, the solid gray line represents the total number of Ac-
tions, the solid black line represents a summary of all Actions that are completed

410 Gorschek and Svahnberg

and satisfied-explained. The dashed line represents the Actions that are actually
completed. The area between the dashed line and the solid black line denotes to
what extent the REPM model is inapplicable to the project being evaluated (called
model lag), the area between the solid black line and the gray line represents the
area of possible improvement of the RE process for the assessed project.

Total Actions / REPM level

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5

REPM level

A
c
ti

o
n

s
 (

n
u

m
b

e
r)

Total Actions Completed Satisfied-Explained

Fig. 18.1 Example of assessment result summary diagram

The tables and graphs are interpreted as follows. Starting with the first REPM
level, if all Actions are completed or satisfied-explained, i.e., the solid black line
overlays the solid gray line, this level of maturity is achieved. This would mean, if
no more REPM levels are achieved, that the company has a consistent and com-
plete requirements engineering process of a low maturity level. This is then re-
peated for each of the REPM levels. Note that all lower REPM levels must also be
completed before a certain REPM level is achieved. In Table 18.1 and Fig. 18.1,
for example, we see that REPM level one is achieved and only one Action more is
required to achieve REPM level two, whereas four more are required to achieve
level three. Strictly speaking, this project would be considered to be on REPM
level 1, but as only one Action is necessary to get it up to level two this is the level
that we think this company should aim for in a first step of improvement. This
would ensure a consistent requirements engineering process that is fairly basic but
may be sufficient for this company’s needs.

The points distinguishing the REPM model from other model-based assessment
methods can be summarized in three main points, which also were the basis for
choosing the REPM model for the assessments presented in this chapter:

Complete focus on requirements engineering –with contents taken from multi-
ple sources and validated by experts both in academia and industry
Lightweight and low cost

18 Requirements Experience in Practice: Studies of Six Companies 411

Non-deterministic, i.e., allowing for inapplicability between best practices of
the model and the reality of industry environments

Companies Alpha through Zeta (all six companies) were assessed using the
REPM model. For each of the companies at least one project was assessed. The
projects subject to the assessment were selected with regards to finding “typical”
projects for each company, and in the case of company Epsilon and Zeta three
projects were evaluated for each company (as one type of project could not be said
to be typical).

The interview subjects that were directly involved in the structured interviews
used in the assessment were chosen with regards to their roles in the projects as-
sessed. Two roles were present, project managers and requirements engineers (or
rather the role responsible for requirements engineering). In some instances this
implied one physical person (e.g. if the project manager was also responsible for
requirements engineering). The interviews were conducted as closed-ended inter-
views using the checklist described above. Each interview took approximately one
hour.

18.3.2 Inductive Process Assessment

Whereas the REPM model (or other model-based assessments) can be used to get
a quick overview of the requirements engineering process in a company and iden-
tify the need for improvements, it is not sufficient to exactly pinpoint the root
causes of problems in the requirements engineering process, nor does it identify
priorities among the improvement suggestions. To this end, a more in-depth as-
sessment method is needed. As a consequence of this, an inductive process as-
sessment was used for two of the cases. The idea with this assessment method is to
use experiences from practices in currently executing projects to base improve-
ments on, rather than a prescriptive checklist of (best) practices. An example of a
well known inductive method is Basili’s well-known QIP (Quality Improvement
Paradigm) [4] which is based on a bottom-up approach that is inductive in nature,
i.e. what is to be performed in terms of improvements is based on a thorough un-
derstanding of the current situation (processes) [10].

The Inductive Process Assessment method used for the in-depth assessment of
company Epsilon and Zeta is inspired by other inductive methods like QIP, but in
addition uses data point triangulation to identify potential improvement sugges-
tions (issues that are lacking/need to be addressed in the process). Data point tri-
angulation in the context of the assessment implies use of multiple data sources
and methods (e.g. interviews and documentation) from multiple views (e.g. project
and line organization) in order to identify and confirm (triangulate) improvement
proposals.

412 Gorschek and Svahnberg

Fig. 18.2 Data point triangulation of improvement suggestions

Fig. 18.2 shows the four major data sources, (A) data from case study inter-
views, (B) data from project documentation, (C) data from line interviews, and
(D) data gathered from line documentation. (A) and (B) together comprise the pro-
ject study, i.e. interviews and project documentation from one or several projects.
(C) and (D) are interviews and documentation from the line, i.e. the remaining or-
ganization supporting development projects. The idea is not to use all of the data
sources solely for the purpose of getting more data, but rather to have a confirma-
tion (validation) of the individual issues identified. This is achieved through trian-
gulation. One issue is identified and specified, then checked against the other data
sources for confirmation. An additional benefit is that this usage of different
sources enables several perspectives, decreasing the possibility of missing crucial
information.

In addition to the horizontal division of the data collected there is a vertical dis-
tinction to be made. Data gathered from the interviews, (A) and (C), are comple-
mented and/or verified (occasionally contradicted) by the data gathered from the
documentation, (B) and (D). The result of the assessment is an in-depth evaluation
of the current state-of-practice regarding requirements engineering in an organiza-
tion, as well as a list of tangible improvement proposals which can be used as in-
put to an improvement activity. In addition, these proposals are not based solely
on project assessments, since the line organization is also targeted. Using multiple
sources, one need not rely on a single source, and thus a higher level of validity
can be achieved [5].

Companies Epsilon and Zeta were assessed using the Inductive Process As-
sessment as described above. Three separate projects were assessed for each of the
companies as parts of the line study (see data points (A) and (B) in Fig. 18.2), i.e.
six projects in total for both companies. For every project a number of key roles
were identified and interviews were conducted with representatives for these roles
(see data point (A) in Fig. 18.2). In addition to this, interviews were conducted
with line-personnel supporting the project organizations, e.g. representing roles
like system testers and marketing (outside projects). All interviews for each com-
pany together with both project and line documentation served as input to the im-

18 Requirements Experience in Practice: Studies of Six Companies 413

provement proposal triangulation. The interviews were conducted as open-ended
exploratory or confirmatory interviews.

18.3.3 Relation Between the Two Assessment Techniques

Because the REPM model is conducted in the form of a structured interview, there
is a risk that vital information is not found if the REPM model’s set of best prac-
tices is inappropriate. Although several tests and validations of the model were
conducted before the REPM model was applied in industry, there may still be ar-
eas where the model does not completely cover the activities in the studied com-
panies. This is a risk with all model-based assessments, and this is also the reason
why the in-depth studies use a different inductive approach with open-ended in-
terviews and multiple sources.

Conversely, a model-based approach can give information about practices not
known to the company being assessed, thus being beneficial over inductive meth-
ods which base their results largely on the information and knowledge already
present in the assessed company (see e.g. the Quality Improvement Paradigm [4]).
However, there is a risk that using a model-based assessments imposes a specific
set of practices that might not be perfectly suited for the organization in question
[6, 35]. The risk is that rather than understanding the actual needs of the organiza-
tion, a model-based approach prescribes a particular solution (based on a set of
best practices). This is another reason why an inductive process assessment tech-
nique was used for the in-depth assessments for two of the companies, tuned to
understanding the underlying needs of the companies rather than just prescribe a
certain solution.

To come to terms with the liabilities of both the model-based and the inductive
assessment method, and to utilize the benefits of the two, the assessments de-
scribed in Sect. 18.4 use a combination of both methods.

18.4 Assessment Findings

In Sect. 18.4.1 a composite overview of the results from the model-based REPM
assessments for company Alpha to Zeta is presented. Following this, Sect. 18.4.2
presents results from the inductive in-depth assessments of company Epsilon and
Zeta. Section 18.5 offers a comparison with state of practice surveys. Combining
and comparing the results and identifying similarities are done in Sect. 18.6,
summarizing the state-of-practice in the six companies studied.

A detailed account of the results can be viewed in [12, 13] for the REPM as-
sessments, and in [14, 15] for the inductive in-depth assessments.

414 Gorschek and Svahnberg

18.4.1 Model-based Assessment Results

The results in this section are based on the extent the assessed companies have
adopted and performed the recommended practices presented in the REPM model
on the first three maturity levels. REPM level 3 represents a requirement engineer-
ing process that is fairly advanced and not just the bare basics, while still being
streamlined and suitable for many software organizations. In essence, the assess-
ments constitute a benchmarking against this level in the REPM model.

Practices on level 4 and 5 are not considered unless they positively distinguish
the companies, i.e. give indications of instances where advanced practices are
adopted in the RE process and performed during development.

Studying the model-based assessments of the six companies, identifying those
areas where 50% or more of the companies leave room for improvement of the re-
quirements engineering practices, the following areas can be discerned:

Requirements Specification and Description. Requirements were found to be
heterogeneously specified in and across requirement specifications as no standard-
ized template or minimum set of attributes for specifying requirements were used.
Chapters 3 and 10 discuss some aspects of this topic in further detail.

Quantification of Requirements. Quality (non-functional) requirements were
seldom expressed in a testable form, e.g. with a quantified fit-criterion. Chapters 3
and 10 discuss some aspects of this topic in further detail.

Requirements and Decision Rationale. The rationale behind requirements,
providing answers to e.g. why a requirement is relevant, was seldom specified. In
addition, decisions taken by e.g. engineers and management with regards to re-
quirements were seldom documented and spread to all parties in the development
group. An example of this is that the reason for e.g. rejecting a requirement was
not documented. Chapter 12 discusses some aspects of this topic in further detail.

Traceability. Policies and structures for tracing requirements were often lack-
ing, e.g. tracing requirements to e.g. design components, or design components to
requirements. Moreover, versioning and version traceability was at best on docu-
ment level (having versions of the requirements specification). Versioning of the
requirements themselves was rare. Chapters 5 and 11 discuss some aspects of this
topic in further detail.

Risk Assessment and Identification of Volatile Requirements. Risk assess-
ment based on requirements was not premiered, as a result of this there was no ac-
tive effort to identify and monitor volatile requirements (e.g. requirements prone
to much change and/or requirements demanding implementation of new or unfa-
miliar technology). Chapter 12 discusses some aspects of this topic in further de-
tail.

Requirements Review. After the initial specification requirement reviews were
not common practice. This was true for all types of reviews, from informal re-
views (e.g. walkthroughs) to formal reviews (e.g. inspections). Chapter 8 dis-
cusses some aspects of this topic in further detail.

Table 18.2 presents overview of the areas mentioned above, indicating which
companies have room for improvement in specific areas (denoted with an “x” in
the table).

18 Requirements Experience in Practice: Studies of Six Companies 415

Table 18.2 Overview of assessed companies’ representation in the areas

Alpha Beta Gamma Delta Epsilon Zeta Total
1.Requirements specifica-
tion and description

 x x x x x 5

2.Quantification of re-
quirements

x x x x x 5

3.Requirements and deci-
sion rationale

 x x x 3

4.Traceability x x x x 4
5.Risk assessment and iden-
tification of volatile re-
quirements

x x x x 4

6.Requirements review x x x x x 5

In contrast to the areas described above, there were other areas in which the as-
sessed companies were proficient in adopting and performing practices:

Domain Consideration. As requirements are elicited and specified, issues of
the system’s target domain are taken into account. This includes e.g. taking tech-
nical aspects into account regarding the future operating environment of the sys-
tem, looking at interactions with other systems and personnel, as well as con-
straints put up by factors of e.g. environment and laws and regulations. Chapter 2
discusses some aspects of this topic in further detail.

Requirements Prioritization. All of the companies performed prioritizations
of requirements. This is not to say that any formal prioritization method was
adopted (e.g. AHP [30] or the 100-points method [23]), but rather that prioritiza-
tion took place giving requirements some kind of attribute denoting its importance
in development. The methods used, as well as the regularity of these prioritiza-
tions varied greatly, from having a formal control group (involving customers)
performing prioritization, to ad-hoc practices where a manager took the final deci-
sions. Chapter 4 discusses some aspects of this topic in further detail.

Requirements Validation through Models. The use of models to elicit and
validate requirements was fairly common, although primarily from a technical
perspective, e.g. using architectural models of to view the entire system, its sub-
systems, and links between them. Chapters 3 and 8 discuss some aspects of this
topic in further detail.

18.4.2 Inductive Assessment Results

The results presented in this section are based on the inductive in-depth assess-
ments performed at company Epsilon and Zeta. It should be noted that the induc-
tive assessment’s goal was to find improvement issues as input to a software proc-
ess improvement initiative for each company. In this chapter we only present the
findings relevant for establishing an indication of state-of-practice. For example,
this means that findings only identified at one company are not discussed unless
they are confirmed by the model-based assessment results presented in Sect.
18.4.1. In total, this amounts to eight findings, presented in further detail below:

416 Gorschek and Svahnberg

Abstraction Level and Contents of Requirements. The level of abstrac-
tion/contents/detail of requirements varied between documents of the same type,
and even inside the same document. Chapters 3 and 10 discuss some aspects of
this topic in further detail.

Requirement Context, Benefit and Rationale. The specification of this at-
tribute was felt to be logical step in asking “why” a requirement should be speci-
fied, something that was often missing. By stating information about the context
of a certain requirement and why it was stated, as well as specifying non-obvious
benefits to stakeholders a more complete understanding can be offered to all inter-
ested parties reading the requirements post specification. Chapters 2, 10 and 11
discuss some aspects of this topic in further detail.

Requirements Traceability. This was considered lacking in both company
Epsilon and company Zeta. Several types of traceability can be identified in re-
quirements engineering [13], although we only consider two types, i.e. Backward-
from traceability denoting a link from requirement to their source in other docu-
ments or people, and Forward-from traceability denoting a link from requirements
to the design and indirectly to the implemented components [13, 33]. Chapters 5
and 11 discuss some aspects of this topic in further detail.

Requirements Reviews and Review Support. It was realized by both compa-
nies that fixing defects early in the development process saves time and effort at
later stages in the process (as supported by literature [33]); however routines and
structure was lacking. It was identified that support and routines needed to be con-
structed and made available to enable review work to take place. Examples of
support and routines include training of reviewers and moderators, formal check-
lists and methods for how and when different reviews should be conducted. Chap-
ter 8 discusses some aspects of this topic in further detail.

Roles and Responsibilities in the Requirements Engineering Process. The
need to explicitly identify roles and responsibilities (and making them a recog-
nized part of the requirements engineering process) was identified, since a clear
definition of these was lacking. Chapter 2 discusses some aspects of this topic in
further detail.

Verification and Validation against Requirements. Testing (primarily func-
tional testing [27]) was not always conducted based on the relevant requirements,
but sometimes conducted ad-hoc, and sometimes based on functional specifica-
tions supplied by developers. It was identified as crucial that the system be tested
against requirements, which in turn had to be kept up-to-date during development.
In addition, it was deemed important that the requirements are made available to
the system testers prior to entering the testing phase in order for test plans and test
cases to be developed. Chapter 6 discusses some aspects of this topic in further de-
tail.

Maintaining Requirements and Decision History. As many requirements
were handled in multiple projects, spanning multiple products, the decisions taken
in regards to these requirements were not systematically or regularly documented
(or explicitly linked to the relevant requirement(s)). The implication of this was
that some requirements were scrutinized several times, e.g. had to be dismissed
more than once. Another implication was that information regarding analysis (de-

18 Requirements Experience in Practice: Studies of Six Companies 417

cisions) about requirements was not easily accessible by e.g. developers. Chapter
10 discusses some aspects of this topic in further detail.

Requirements upkeep (During and Post Project). Frequently, as the actual
requirements changed during the development life-cycle, the specifications of the
requirements were not changed to reflect this. Changes in design did not lead to
updates in the requirements specification, eventually causing the requirements
specification to not reflect the current state of the system. Chapter 10 discusses
some aspects of this topic in further detail.

Table 18.3 summarizes the findings described above. An “x” denotes that the
issue was found in the company. An “x” in the REPM-column signifies that the is-
sue was also found among some of the companies Alpha, Beta, Gamma or Delta
in the model-based assessment presented in Sect. 18.4.1.

Table 18.3 Overview of in-depth assessment findings and relation to the model-based as-
sessment results

Epsilon Zeta REPM
Finding 1: Abstraction level & contents of require-
ments

x x x

Finding 2: Requirement context, benefit & rationale x x x
Finding 3: Requirements traceability x x x
Finding 4: Requirements reviews & review support x x
Finding 5: Roles and responsibilities RE process x x
Finding 6: Verification and validation against re-
quirements

x x

Finding 7: Maintaining requirements and decision
history

 x x

Finding 8: Requirements upkeep (during & post pro-
ject)

x x

As in the case of the model-based REPM assessment several areas were identi-
fied as strong points regarding requirements engineering during the inductive in-
depth assessment of companies Epsilon and Zeta. The most notable are:

Domain Knowledge and Consideration. Companies Epsilon and Zeta had an
advanced knowledge regarding the technical and organizational aspects of the cus-
tomers. This implied that issues of the human domain area could be taken into ac-
count, realizing that political and organizational factors may influence the re-
quirements. Chapters 2, 10 and 11 discuss some aspects of this topic in further
detail.

Technical Domain Expertise. As both companies Epsilon and Zeta are experts
at the systems (hardware and software) that they develop they also have been
forced to gain a deep understanding of the customers’ environment, i.e. the sys-
tems operational environment. Chapters 2, 10 and 11 discuss some aspects of this
topic in further detail.

418 Gorschek and Svahnberg

18.4.3 Inductive versus Model-based Assessment Results

Comparing the Inductive and the Model-based assessment findings there are both
similarities (see Findings 1-4, and 7 in Table 18.3) but also differences, i.e. some
findings were only identified during the Inductive assessments (see Findings 5,6,8
in Table 18.3). Two reasons for this may be found. First, the companies evaluated
were different, i.e. issues found in companies Epsilon and Zeta may not have been
present in companies Alpha through Delta. This would effectively explain the dif-
ference in findings between the Inductive and the Model-based assessments and
list differences between the companies as the cause. Second, there are differences
between the assessment methods themselves. As indicated in Sect. 18.3 the REPM
model assessment is lightweight in nature and shallower than the Inductive as-
sessment, i.e. there could be a risk that issues were missed by the REPM model as
it is not as thorough. The thoroughness of the REPM model is also directly associ-
ated with the best practices covered by the model, i.e. if a part (Actions) is missing
from the REPM model chances are that issues relating to the missing parts will not
be caught. Nevertheless, as indicated above, there is considerable overlap between
the findings of the two assessment methods.

18.5 Comparison with State of Practice Surveys

In this section we present surveys of state of practice in requirements engineering
and compare the findings from these surveys with the findings from the case stud-
ies described in Sect. 18.4. It should be noted that the scope of the assessments
performed to gather the data in Sect. 18.4 differs from the scope of the surveys
discussed in this section. The assessments underlying Sect. 18.4 have all been cre-
ated with the intention to present the results to the specific companies and insti-
gate process improvement efforts, whereas the surveys discussed in this section
focus on describing the state of practice for a wider audience of researchers and
practitioners spanning multiple companies.

An early survey with focus on requirements engineering is Curtis et al. [8]. This
study of 10 organizations is in fact a generic software engineering survey, but it
focuses on “how requirements and design decisions were made, represented,
communicated, and changed, as well as how these decisions impacted the subse-
quent development process”. The survey is prescriptive in nature, identifying good
or bad practices. The main findings from this study are that accurate knowledge of
the application domain is crucial, that requirements fluctuate and conflict each
other causing difficulties during development, and that communication and coor-
dination frequently breaks down.

The companies in our assessments had extensive domain knowledge as this was
actively recognized as a crucial competitive advantage. In many cases the knowl-
edge of the developing companies surpassed the customers’ knowledge. Unlike
the few “super-designers” mentioned in Curtis et al., [8], the overall knowledge
level of the studied companies in our case was high when compared to the cus-

18 Requirements Experience in Practice: Studies of Six Companies 419

tomers. In other words, albeit still acknowledged as a crucial factor, the companies
were not directly dependent on a few “heroes”.

As indicated by the assessments’ findings risk assessment and the explicit iden-
tification of volatile requirements was often neglected in the requirements engi-
neering process. However the assessments do indicate a need for explicit risk
analysis, thus confirming the findings from Curtis et al., [8]. The desire for ex-
plicit and well defined roles and responsibilities, as well as documented require-
ments and decision history and rationale can be seen as an effort to improve com-
munication and the spreading of information regarding requirements over the
entire development organization. In other words the assessments hint at communi-
cation breakdowns still being a problem.

Lubars et al., [24] studied requirements engineering ten US corporations. This
study confirms the need for domain knowledge to avoid requirements misunder-
standings. Identifying the customer (or stakeholders) is identified as an issue that
many projects find difficult, as is requirements prioritization and requirements
documentation (including specifying assumptions and requirements rationale).
However, most companies in this survey seemed to have a requirements template,
a DOD standard template, although many of the companies had difficulties know-
ing what to write in the different fields of the template. Moreover, most companies
in the study have some organizational approach to requirements validation. Prob-
lems stemming from frequent requirements changes were identified in this survey
too, influencing writing, interpretation, management, and design from require-
ments. The major conclusions from this study are that organizational solutions are
preferred over technological solutions, and general-purpose tools are more com-
mon than special purpose requirements engineering tools.

This study [24] does not seem to confirm our assessments to a large extent. The
only finding directly confirmed is the insufficiencies in documenting require-
ments, assumptions, and rationale. Contradicting the Lubars study, the companies
in our assessments have a good grasp of their customers and their domain re-
quirements, perform prioritization of requirements, do not consistently use any re-
quirements template, and lack adequate routines and support for requirement re-
views.

El Emam et al. [9] studies 60 cases and identifies seven key issues for success-
ful requirements engineering. The issues are: Package Consideration (re-use of
software and requirements), managing the level of detail of functional process
models, examining the current system, user participation, managing uncertainty,
benefits of CASE tools, and project management capability (necessary skills of
project managers). These key issues are illustrated using statements from the case
studies.

Some of these findings corroborate the findings of the assessments to some ex-
tent, although a detailed comparison is difficult due to the difference in abstraction
level of the recommendations/findings, e.g. “examining the current system” could
be construed as taking technical domain issues of the customer into account,
which the assessments in Sect. 18.4.1 show as being done. “Managing uncer-
tainty”, on the other hand, is related to risk analysis, which, as mentioned before,
could be improved.

420 Gorschek and Svahnberg

Nikula et al., [25] describes a survey of 12 Finnish companies. The study inves-
tigates 35 issues in requirements engineering, of which 19 issues are related to
documentation style, 4 are related to tool usage and 12 pertain to general require-
ments engineering practices. The findings include that few of the studied compa-
nies use requirements management tools, templates, checklists or metrics. The
study concludes that the most pressing needs requested by the companies in the
study are: development of own requirements engineering process adaptations, re-
quirements engineering process improvement, and requirements engineering tool
adoption. Moreover, a strong need for requirements completeness and support for
requirements change management is expressed by the companies.

Using inductive assessment methods seem to be preferable over model-based
prescriptive process improvement activities, as indicated by the willingness to im-
prove, but preferring tailored solutions over prescriptive model-based practices.
This is not directly related to requirements engineering state of practice in indus-
try, however it does indicate the way in which companies prefer to improve their
requirements engineering process, and their willingness to improve.

Other confirmed findings include the need for requirements completeness, re-
quirements templates, and validation checklists (see Sect. 18.4).

Hofmann and Lehner [17] present a survey of 15 projects, identifying that an
average of 6.2 persons are involved in requirements engineering per project, iterat-
ing the requirements engineering process three times for each project. Generally,
the projects in this study follow an ad-hoc requirements engineering process, and
have problems with rapidly changing requirements. Most projects verify and vali-
date requirements with multiple stakeholders and are satisfied with their require-
ments specifications’ consistency. However, the projects complain over a lack of
traceability, and have problems with prioritizing the requirements. Based on this
survey of requirements engineering practices a number of best practices are out-
lined in this article.

This survey [17] both confirms and confutes the findings in the assessments
presented in Sect. 18.4. Rapidly changing, i.e. volatile, requirements and lack of
traceability in the requirements engineering process are recognized in both studies.
On the other hand, verification and validation efforts were not widespread in our
assessments. Moreover, as mentioned earlier, prioritization of requirements was
performed in our assessments, thus contradicting Hofmann and Lehner.

Juristo et al., [20] study the state of requirements engineering practice in
Europe with a focus on tool usage, finding that most organizations use tools such
as word processors for specifying requirements. For larger projects with more than
1000 requirements this causes problems, and organizations in the study that do use
requirements tools in general work with larger applications. The companies also
report general problems related to traceability, confirming earlier findings [17]
and the assessments in Sect. 18.4.

18 Requirements Experience in Practice: Studies of Six Companies 421

18.6 Discussion

Looking at the assessments performed, several issues regarding state of practice in
requirements engineering are identified in both the model-based and the inductive
assessments (sometimes also found in the state of practice surveys discussed in
Sect. 18.5):

Specification (Description) and Abstraction Level of Requirements. This
consists of several aspects of how requirements are specified. For example, the at-
tributes used (e.g. name, description, ID etc), and the level of detail of each of
these attributes. Closely related is the level of abstraction, which conveys what ab-
straction level a requirement is specified on, e.g. “support for multiple languages
in GUI” is more abstract than “support for European languages”. The two are of
course related as one puts demands on the other. A very abstract requirement
would probably not have a detailed technical description, while a requirement on a
lower level of abstraction could be described in further detail. The level of abstrac-
tion a requirement is specified on (and thus how it is specified regarding attributes
and level of detail) depends on the needs of the users of the requirements and the
intended use of the requirements, as well as the original description of the re-
quirement when it was first posed. As is known among practitioners, requirements
come in all “shapes and forms” depending on e.g., the source. The important thing
is that requirements for a certain purpose, e.g., a specification that is to be used as
a basis for design, are homogenous and on an appropriate abstraction level for the
intended use. An example of this could be the practice of prioritizing require-
ments. If a specification consists of heterogeneous requirements, (for example re-
quirements on multiple abstraction levels) it is difficult to compare the require-
ments and make a distinction that one is to be prioritized over the other.

Exactly what attributes to use and what level of detail to describe the require-
ments on is up to each organization, as long as the choices as explicit and the re-
quirements specified accordingly. See Gorschek [11] for additional information
about requirement abstraction.

The reality shown through the assessments was of a mix of very abstract and
very detailed technical requirements in most specifications, regardless of the in-
tended use of the requirements or the requirements specification. In addition, re-
quirements were often specified incompletely, resulting in inadequate require-
ments. These findings were also supported by the findings of Juristo et al., [20].

Requirements Context and Rationale. Requirements rationale anchors a cer-
tain requirement to reality, i.e. contains information about why the requirement
was specified in the first place and helps the user of the requirement to understand
the underlying motivation of each requirement. This item is clearly related to
Specification (Description) and Abstraction Level of Requirements as it denotes
how a requirement should be specified, e.g. that there should be one or more at-
tributes holding information about the context and rationale of the requirement.
Several of the surveys mentioned in Sect. 18.5, e.g. Lubars et al., [24], Curtis et
al., [8], Nikula et al., [25], indicate problems with communication breakdown dur-
ing the requirements engineering process as well as incompletely specified re-

422 Gorschek and Svahnberg

quirements. By specifying the context of, and the rationale behind a requirement,
the understanding of a requirement may be increased. This was the explicit view
expressed during the assessments presented in Sect. 18.4.1, and especially during
the assessments presented in Sect. 18.4.2. In so doing, the underlying understand-
ing of the requirements, e.g. why a requirement was specified, could be provided
throughout the specification. It may not be necessary to provide a rationale for all
requirements, but it should be provided at least for those requirements that may
give cause for misunderstandings or where the rationale may facilitate an in-
creased understanding of the system being built.

Documenting Decision Rationale and Maintaining Decision History. By ex-
plicitly documenting decision information pertaining requirements and linking it
to the relevant requirement(s), the finding of potentially important information is
facilitated. This enables the rationale of a certain decision to survive indefinitely
after the meeting where the decision was taken. The obvious benefits are that pre-
vious mistakes are not repeated, doing the same work all over again is avoided,
and developers are able to see why a change was made to a requirement without
the need to find people who can be hard to find and/or get access to. This issue re-
lates to the previous two in terms of being a part (indirectly) of the specification of
requirements.

Requirements Traceability. Traceability of requirements and its attributes (if
e.g. “source of a requirement” is seen as an attribute) as well as putting require-
ments under configuration management with regards to version and change con-
trol [16]is an issue identified by both Nikula et al. [25]and Juristo et al., [20] in
addition to the assessments in this chapter. During the assessments it was never
proposed that any sort of ”perfect” or “total” traceability was necessary or even
wanted, rather that three main traceability areas should be satisfied. Backward-
from traceability, denoting a link from requirement to their source in other docu-
ments or people, was considered important as this provides information of where a
requirement comes from. For example, a requirement could originate from a pre-
study document, and knowledge of this could be used by developers working with
the requirement, e.g. by going back to the pre-study in its entirety rather than just
working with the extracted requirement.

Forward-from traceability denoting a link from requirements to the design and
indirectly to the implemented components was considered important primarily for
the reasons of verification and validation, i.e. faults found when executing test-
cases (based on requirements) could be traced to the area causing the fault faster
than without this sort of traceability.

Version control of requirements (not only the requirement document) was con-
sidered greatly beneficial, and was primarily identified as an issue during the in-
ductive assessments. Increased control over change, as well as version traceability
were the main benefits voiced during the assessments.

Requirements Review and Review Support. As mentioned earlier (see Sects.
18.4.1 and 18.4.2) reviews of requirements were not common practice, mainly due
to cost and time constraints during development. In addition to this there were in-
sufficiencies in the “review-infrastructure” in terms of trained people to plan and
perform reviews as well as availability of materials such as checklists, etc.

18 Requirements Experience in Practice: Studies of Six Companies 423

The overall most significant benefits of inspections is that between 50 and 90%
of the defects can be caught [22] and, equally important, they can be caught in the
early stages of development thus reducing the cost of rework. This is the main rea-
son why there is a general consensus amongst most experience reports and re-
search that requirements inspection is very beneficial [27, 32]. The recommenda-
tion given to organizations with limited resources for reviews and inspections is to
prioritize requirements inspections over e.g. design and code inspections [22, 27],
mainly due to the filtering-down effect of defects in requirements. In other words,
the earlier problems like incompleteness, ambiguity, errors, conflicts, etc. can be
caught, the less effort it costs to fix the problems and rework parts that have been
influenced by the problems in question.

18.6.1 Other Issues

In addition to the aforementioned issues there are issues that are only found in one
of the assessments (either model-based or inductive) which should be mentioned:

Risk Assessment and Volatile Requirements Identification. As requirements
are prone to change and fluctuation during development, explicit risk analysis (in-
cluding identifying volatile requirements) was considered important during the as-
sessments, but seldom performed in practice. The importance of this issue was
supported by Curtis et al., [8], El Emam et al. [9], and, Nikula et al. [25], who ex-
pressed concerns regarding the volatile nature of requirements, and that it was im-
portant to manage uncertainty.

Verification and Validation Against Requirements. Basing test-cases (essen-
tially the entire process of functional testing) on either out-of-date requirements
(see Requirements Upkeep During and Post project below), or on functional speci-
fications supplied by developers (or often a combination of both), was commonly
indicated during the assessments.

Roles and Responsibilities in the Requirements Engineering Process. In
most of the assessments there were some descriptions of roles and even (in some
cases) responsibilities pertaining to the requirements engineering process. These
roles were, however, seldom used or known to the entire organization. Confusion
about responsibilities and whom to elicit information from, as well as uncertainty
regarding executive power over requirements, gave rise to confusion and loss of
momentum during development. Curtis et al. [8] discuss that communication and
coordination frequently breaks down. Having adequate roles and responsibilities
may improve this situation.

Requirements upkeep During and Post Project. As earlier mentioned, re-
quirements are prone to change. Making the requirements reflect these changes
was considered crucial for several reasons. First and foremost, it is a prerequisite
for being able to conduct tests based on the requirements. Furthermore, in order to
achieve any reuse or re-prioritization of requirements, the issue of keeping re-
quirements up-to-date has to be resolved. In the studied projects and companies,
outdated requirements that poorly reflected the current state of the system was un-
fortunately frequent.

424 Gorschek and Svahnberg

18.7 Conclusions

A description of state of practice serves several purposes. For a researcher, it out-
lines areas where further research may or may not be needed. For an educator, it
may outline areas where training programs can be designed. For a practitioner, it
outlines areas where care must be taken to obtain a working, consistent, and co-
herent set of practices. Moreover, it shares the experiences from other practitio-
ners of what is working and what is not.

In this chapter we study the state of practice in six companies using two differ-
ent study methods, i.e. a model-based process assessment method and an inductive
process assessment. The assessments reveal several issues where the studied com-
panies have room for improvement, as presented in Sects. 18.4.1 and 18.4.2. In
Sect. 18.6 we then combine the findings of the two assessment methods and iden-
tify a set of improvement issues that are found using both methods in several of
the six studied companies. It should be emphasized that since the assessments
were performed as a part of a software process improvement effort at the compa-
nies, the assessments presented in Sect. 18.4 are intentionally focused on finding
problems in the requirements engineering process. Nevertheless, some positive
aspects regarding state of practice are also observed. The most prominent of these
is the extensive domain knowledge present in the assessed companies, as well as
the fact that the assessments found the companies going to great lengths to take
domain issues of technical, application, political (human), and organizational type
into consideration during the process of specifying and implementing require-
ments. This is despite the fact that other state of practice surveys [8, 9, 24] men-
tion these issues as problematic for companies. One explanation for this could be
that many of the companies in our assessments, especially companies Alpha, Epsi-
lon, and Zeta, have specialized themselves within a specific and narrow domain,
thus making it possible for them to be experts.

To conclude, the assessments reveals positive aspects of requirements engineer-
ing state of practice, i.e. areas that are mastered by the companies, as well as sev-
eral negative aspects where further research and training is necessary and where
the studied companies have room for improvement.

References

1. (2004) http://www.sei.cmu.edu/cmm/ipd-cmm.html. Last Accessed: 2004-04-11
2. (2004) http://www.sei.cmu.edu/cmm/cmm.html. Last Accessed: 2004-04-11
3. (2002) http://www.tickit.org/. Last Accessed: 2002-10-01
4. Basili VR (1985) Quantitative evaluation of software methodology. Technical report TR-

1519, University of Maryland, College Park, Maryland, USA
5. Bratthall L, Joergensen M (2002) Can you trust a single data source exploratory soft-

ware engineering case study? Empirical Software Engineering 7 (1): 9 26
6. Briand L, El Emam K, Melo WL (1995) An inductive method for software process im-

provement: concrete steps and guidelines. In: Proceedings of ESI-ISCN'95: Measure-
ment and training based process improvement, ISCN. Vienna, pp.34 49

18 Requirements Experience in Practice: Studies of Six Companies 425

7. CMMI-PDT (2002) Capability maturity model integration (CMMI), Version 1.1. CMMI
for systems engineering, software engineering, integrated product and process develop-
ment, and supplier sourcing version 1.1 (CMMI-SE/SW/IPPD/SS, V1.1), Pittsburgh

8. Curtis B, Krasner H, Iscoe N (1998) A field study of the software design process for
large systems. Communications of the ACM 31 (11): 1268 1287

9. El Emam K. Madhavji NH (1995) A field study of requirements engineering practices in
information systems development. In: Proceedings of the 2nd IEEE international sym-
posium on requirements engineering, IEEE Computer Society. Los Alamitos CA,
pp.68 80

10. El Emam KE, Madhavji NHE (1999) Elements of software process assessment & im-
provement. Wiley-IEEE, Los Alamitos CA

11. Gorschek T (2004) Software process assessment & improvement in industrial require-
ments engineering. Licentiate thesis No. 2004:07, ISBN 91-7295-041-2. Blekinge Insti-
tute of Technology, Ronneby, Sweden

12. Gorschek T, Svahnberg M, Tejle K (2003) Introduction and application of a lightweight
requirements engineering process evaluation method. In: Proceedings of the 9th inter-
national workshop on requirements engineering: foundation for software quality
(REFSQ'03), Universität Duisburg-Essen. Essen, Germany, pp.101 112

13. Gorschek T, Tejle K (2002) A method for assessing requirements engineering process
maturity in software projects. Master thesis in computer science. Thesis No: MCS-
2002:2. Blekinge Institute of Technology, Ronneby, Download at
http://www.bth.se/fou/cuppsats.nsf/

14. Gorschek T, Wohlin C (2003) Identification of improvement issues using a lightweight
triangulation approach (Eurospi'03). In: Proceedings of European software process im-
provement conference (EuroSPI'2003), Verlag der Technischen Universität. Graz, Aus-
tria. Download at: http://www.bth.se/fou/Forskinfo.nsf/, pp.VI.1-VI.14

15. Gorschek T, Wohlin C (2004) Packaging software process improvement issues: A
method and a case study. Software: practice & experience 34 (14): 1311 1344

16. Hass AMJ (2003) Configuration management principles and practice. Addison-Wesley,
Reading MA

17. Hofmann HF, Lehner F (2001) Requirements engineering as a success factor in soft-
ware projects, IEEE Software 18(4): 58 66

18. (1998) http://www.sei.cmu.edu/iso-15504/. Last Accessed: 2004-01-07
19. Jirotka M, Goguen JA (1994) Requirements engineering social and technical issues.

Academic press, London
20. Juristo N, Moreno AM, Silva A (2002) Is the European industry moving toward solving

requirements engineering problems? IEEE Software 19(6): 70 78
21. Kotonya G, Sommerville I (1998) Requirements engineering: processes and techniques.

John Wiley, New York
22. Laitenberger O, Beil T, Schwinn T (2002) An industrial case study to examine a non-

traditional inspection implementation for requirements specifications. In: Proceedings
of the 8th IEEE symposium on software Metrics, IEEE Computer Society. Los Alami-
tos CA, pp.97 106

23. Leffingwell D, Widrig D (2000) Managing software requirements: a unified approach.
Addison-Wesley, Reading MA

24. Lubars M, Potts C, Richter C (1992) A review of the state of the practice in require-
ments modeling. In: Proceedings of IEEE international symposium on requirements En-
gineering, IEEE. Los Alamitos CA, pp.2 14

426 Gorschek and Svahnberg

25. Nikula U, Sajaniemi J, Kälviäinen H (2000) A state-of-the-practice survey on require-
ments engineering in small-and-medium-sized enterprises, Technical report
(Http://www.Cs.Ucl.Ac.Uk/Research/Renoir/Tbrc_Rr01.Pdf). Lappeenranta University
of Technology, Lappeenranta, Finland

26. Paulk MC (1995) The capability maturity model: guidelines for improving the software
process. Addison-Wesley, Reading MA

27. Rakitin SR (2001) Software verification and validation for practitioners and managers.
Artech House, Boston MA

28. (2003) http://www.comp.lancs.ac.uk/computing/research/cseg/projects/reaims/index.h
tml. Last accessed: 2003-05-01

29. Reifer DJ (2000) The CMMI: It's formidable. Journal of Systems and Software 50(2):
97 98

30. Saaty TL, Vargas LG (2001) Models, methods, concepts & applications of the analytic
hierarchy process. Kluwer Academic Publishers, Boston MA

31. Sawyer P, Sommerville I and Viller S (1999) Capturing the benefits of requirements
engineering, IEEE Software 16 (2): 78 85

32. Shull F, Rus I, Basili V (2000) How perspective-based reading can improve require-
ments inspections. Computer 33 (7): 73 79

33. Sommerville I, Sawyer P (1999) Requirements engineering: a good practice guide. John
Wiley & Sons, Chichester UK

34. (2003) http://www.sqi.gu.edu.au/spice/. Last accessed: 2003-09-11
35. Zahran S (1998) Software process improvement: practical guidelines for business suc-

cess. Addison-Wesley, Reading MA

Author Biography

Tony Gorschek is a PhD Student in Software Engineering from Blekinge Institute
of Technology, Sweden, at the Department of Systems and Software Engineering
within the School of Engineering. His research areas include primarily Software
Process Assessment and Improvement and Requirements Engineering. Tony Gor-
schek works and conducts research in close cooperation with industry.

Mikael Svahnberg received a PhD in Software Engineering from Blekinge Insti-
tute of Technology, Sweden. He is an assistant professor in software engineering
in the Department of Systems and Software Engineering within the School of En-
gineering at Blekinge Institute of Technology in Sweden. His current research ac-
tivities include software architectures, quality requirements and software engineer-
ing decision support methods.

19 An Analysis of Empirical Requirements
Engineering Survey Data

Barbara Paech, Tom Koenig, Lars Borner and Aybüke Aurum

Abstract: The gap between research and practice in requirements engineering is
immense. To understand practice and the reasons for this gap, empirical evidence
about requirements engineering practice is needed. In the last ten years a number
of empirical studies have been conducted to gather such data. This chapter gives
an overview focusing on broad surveys. The aim of this overview is to understand
the following three issues: (1) what kind of questions can and should we ask to
understand practice, (2) what evidence do we have about practice, (3) what further
evidence do we need about practice. To further illustrate the issues, we provide
findings of new studies conducted by the authors in Germany and Australia. Alto-
gether this chapter aims at establishing a basis for further empirical research on
requirements engineering.

Keywords: Empirical software engineering, Requirements engineering practice,
Survey.

19.1 Introduction

The gap between research and practice in requirements engineering (RE) is im-
mense. Even base practices such as numbering requirements are not yet well es-
tablished in industry. Many popular techniques in the research community such as
formal modeling [23] or QFD [20] are almost unknown in industry. This gap has
been investigated by leading researchers in [26]. They recommend in particular a
two way transfer between industry and university emphasizing the knowledge
transfer from industry to research. In the last 10 years more than 20 broad studies
of RE practice have been conducted. Furthermore, the basics of empirical ap-
proaches to software engineering have been collected in books such as [57]. How-
ever, so far the results of the empirical RE studies have not been collected.

It is the purpose of this chapter to provide such a collection of broad studies on
RE. The collection aims at giving an overview, i.e. it aims at describing the “land-
scape” of studies, the questions asked and the major results. This overview is used
to understand: (1) what kind of questions can and should we ask to understand
practice, (2) what evidence do we have about practice, (3) what further evidence
do we need about practice. In addition, we sketch findings of new studies con-
ducted by the authors in Germany and Australia. The main purpose of this presen-
tation is to illustrate typical findings and issues in the interpretations of such find-
ings. The results will be discussed in the light of previous studies. Altogether this
chapter aims at establishing a basis for further broad studies on RE.

428 Paech, Koenig, Borner and Aurum

The chapter is structured as follows: In Sect. 19.2 we provide some basic ter-
minology on empirical software engineering and motivate the need for empirical
evidence in RE. Section 19.3 introduces the broad studies collected and analyses
issue (1), namely what we can ask to understand practice. Thereby it provides a
framework for questionnaires on RE. The outcomes of the studies are summarized
in Sect. 19.4. This answers issue (2), namely what evidence we have so far about
practices. Thus, it establishes the current state of large-scale empirical evidence on
RE practice. Section 19.5 provides data from new RE practice studies conducted
by the authors and thus illustrates typical findings of such studies. In Sect. 19.6 we
briefly discuss the role of other types of empirical studies on RE, such as experi-
ments. We conclude in Sect. 19.7 with an outlook on future empirical evidence
needed in RE.

19.2 Empirical Research

This chapter provides some basic terminology on empirical research and motivates
the need for empirical evidence on RE. We follow the terminology of Creswell
[7]. Although some researchers e.g., Blake [1] may consider the following de-
scription relatively simplistic, Creswell is highly regarded and frequently cited in
software engineering books. Creswell identifies three elements for empirical re-
search design: the knowledge claim, the strategy of inquiry and the specific
method for data collection and analysis.

The knowledge claim comprises the assumptions on how and what one will
learn during the research. Creswell distinguishes the postpositive claims starting
with a theory and continuously refining this theory through the research, the so-
cially constructed knowledge claim looking for the complexity of views and de-
veloping a theory or pattern of meaning through the research, the advo-
cacy/participatory claim extending the socially constructed approach by an action
agenda for reform, and the pragmatic knowledge claim focusing on the problem
and pluralistic approaches to derive knowledge.

There are seven basic strategies for inquiry: A survey gathers data (typically in
retrospect) from a representative sample through interviews or questionnaires and
tries to generalize this data to the whole population. An experiment is done in a
laboratory environment where specific subjects are assigned to different treat-
ments and their performance is measured. The objective is to manipulate specific
variables and control all the other ones. A case study gathers data (typically moni-
toring projects) over a sustained period of time and tries to understand in more de-
tail a specific factor and its relationship to other factors. In grounded theory multi-
ple stages of data collection from different groups are employed in order to
maximize the similarities and the differences and to compare the data with emer-
gent categories. Ethnography focuses on observational data collected in a natural
setting about an intact cultural group. Narrative research studies the lives of indi-
viduals and re-stories the information into a narrative chronology. Phenomenol-

19 An Analysis of Empirical Requirements Engineering Survey 429

ogical research studies the lived experiences of a small number of subjects to
identify the essence of these experiences concerning a phenomenon.

There are also different strategies for data collection and analysis, varying in
“their degree of predetermined nature, their use of closed-ended vs. open-ended
questioning and their focus for numeric vs. non-numeric data analysis” [7]. One
can distinguish three kinds of combination of these elements:

Quantitative studies are typically based on post-positivist claims, use surveys
and experiments and employ predetermined, close-ended questioning and nu-
meric data analysis. However, they can involve open-ended and non-numeric
analysis as well.
Qualitative studies typically involve the constructivist and advo-
cacy/participatory perspective, use the other five basic strategies of inquiry, and
employ emergent, open-ended questioning and non-numeric analysis, but again
can involve close-ended and numeric-analysis.
Mixed methods are based on pragmatic knowledge claims and employ multiple
strategies of inquiries and data collection and analysis methods. ,

In contrast to e.g. social science, so far, most research in software engineering
does not involve empirical methods, but toy examples instead. Clearly, this does
not demonstrate anything about applicability in practice. Endres and Rombach
[16] argue that we need observations of the practice, which help to surface laws
explained by theories. Only empirical research can produce valid observations,
laws and theories. Unfortunately, the complexity of software engineering (SE) is
often used as an excuse for omitting empirical research, as it is very difficult to
identify general observations in SE. Nevertheless, there is successful empirical SE
research. Endres and Rombach have collected the available SE laws and theories
based on case studies and experiments. In particular, this gives evidence on the
usefulness of specific techniques like e.g. patterns or prototypes. Juristo et al., [25]
give a recent comprehensive overview on testing technique experiments.

In this chapter we focus on empirical research in RE and on the current state of
the practice, not on the usefulness of specific techniques. The studies collected are
presented in the next section.

19.3 Classification of Existing Broad RE Studies

In this subsection we first present the studies we have collected and then classify
the kind of questions asked in these studies.

Table 19.1 to Table 19.3 list the studies we found in the literature on RE such
as the international RE conferences, the RE journal, IEEE software or related con-
ferences such as ECBS. We are aware that there are related studies in information
and management sciences which are not covered. It is a topic of further research to
include these studies too.

430 Paech, Koenig, Borner and Aurum

Table 19.1 Broad studies on the RE process in general

 Year Mechanism Sample Topic
[8] 1986 Interviews 9 companies, 97

staff
Software design process for
large systems

[30] 1992 Interviews 10 companies,
87 staff

State of the practice

[13] 1994 Interviews
questionnaire

52 staff Success criteria for RE

[12] 1994 Interviews
documentation

17 staff Problems and best practices

[15] 1996 Questionnaire 39 projects User participation and RE
success

[37] 1997 Workshop 26 staff Industrial uptake of RE
R&D

[14] 1998 Measurement
questionnaire

70 assessments,
691 process in-
stance

Relationships assessment
score, project performance

[27] 1998 Workshop 10 companies RE in SME
[19] 2000 Focus groups 12 companies,

200 staff
Problems

[21] 2000 Interviews
questionnaires

15 companies,
76 staff

Impact of RE on project
success

[40][41]
[42]

2000 Interviews 12 companies,
15 staff

RE in SME

[24]
[51][53]

2000 Questionnaire 11 companies,
150 staff

Progress in RE practice

[36][35] 2001 Interviews
questionnaire

25 staff RE for time to market pro-
jects

[39] 2002 Questionnaire 194 staff State of the practice

From this literature we collected surveys and grounded theory studies with a
sample of at least around 10 individuals, but not experiments or the other quantita-
tive studies focusing on specific individuals, cultures or phenomena. We call these
studies broad RE studies in the following. They employ interviews, questionnaires
or group discussions and different methods for data collection and analysis. We
have divided the studies into three groups (as can be seen from the tables) depend-
ing on the focus of RE in general, SE in general or RE specifics. These distinc-
tions will be explained in detail when we present the results in Sect. 19.4.

Table 19.2 Broad studies on SE in general

 Year Mechanism Sample Topic
[22] 1995 Questionnaire 3805 per-

sons
Problems and training
needs

[11] 1995-1997 Questionnaire 397 staff Adoption of best practices
for SW management

[54] Since 1994 Questionnaire 13522 IT
projects

Status of IT project man-
agement

[9] 2001/2002 Questionnaire 104 projects Worldwide SW develop-
ment

19 An Analysis of Empirical Requirements Engineering Survey 431

Table 19.3 Broad studies of specific RE phenomena

Year Mechanism Sample Topic
[28] 1991 Meeting minutes,

videotape
3 companies, 41
meetings

Content of require-
ments document

[18] 1993 Focus groups, 2-
stage questionnaire

100 staff Requirements
traceability

[46] 1994-
1997

Interviews, focus
groups, case study

26 companies,
138 staff

Requirements trace-
ability

[20] 1994 Interviews 37 companies Software quality
function deployment

[60][61
]
[62]

1995-
2001

3 studies, inter-
views, question-
naires

9 / 71 / 52 staff Requirements vola-
tility

[3][4] 1995 3 questionnaires 74 companies,
72/34/35 staff

Requirements cap-
ture and analysis

[56] 1997 Interviews Roughly 20 Scenario usage
[29] 2002 2 pre-studies

questionnaire
45 staff Software documen-

tation
[5] 2002 Questionnaire 226 staff Software reviews

As can be seen from the tables, in the last ten years more than twenty broad
studies have been conducted on RE practice. In the following we characterize the
kind of information sought by them. We are not aware of any other such charac-
terization besides [51]. In that report surveys are characterized according to pur-
pose, mechanism of data capture and analysis method. We keep these categories,
but go into much more detail on what kind of information is captured in these
studies. We distinguish the following categories:

1. Set up of the study
Purpose
Sample population
Mechanism
Analysis

2. Information on the context and background of the sample
Personal context
Company context
Project context

3. General information on RE process
General facts
Problems with RE process
Success factors for RE

4. Information on specific parts of the process, e.g. tool, practice, activity X
Performance of X
Experience with X

432 Paech, Koenig, Borner and Aurum

These categories are explained in the following. Thereby we answer issue (1):
what questions can and should we ask to understand practice. It is intended as a
framework for questionnaires or interviews on RE.

19.3.1 Set up of the Study

The first category defines how the broad study is to be conducted. Of course, first
the purpose of the study has to be determined. We adapt the distinction of [24]:

Descriptive study: Tries to understand what is done in general or a specific
practice, e.g., whether a RE tool is used, how requirements capture is carried
out or what impact requirements volatility has on the overall project success.
Prescriptive study: Tries to make a judgment. Thus it aims at identifying suc-
cessful practices, or success factors and obstacles for a specific practice. In [57]
this is called an explanatory study, as it tries to identify reasons for actions.
Prospective study: Tries to identify future needs in industry.

Wohlin et al. [57] distinguishes in addition, explorative studies which are used
as pre-studies to a more thorough investigation. We do not explicitly deal with
such pre-studies here. The different RE topics investigated in the studies are men-
tioned in detail below in terms of the information sought from the participants.
One can distinguish two general directions: on the one hand studies explore the
state-of-the-practice (i.e. what practice is doing) on the other hand they explore
more specifically the relationship between the state-of-the-art and the state-of-the-
practice (i.e. what practice knows about research).

Depending on the purpose the sample population of the study has to be deter-
mined. The main facets are:

Number: The typical number of participants ranges from 10 to 500 or more.
Heterogeneity: For large studies participants are typically sought just by adver-
tisement in the community (e.g. through the web). Sometimes specific address
databases (e.g. university graduates) are used. For small studies, participants
are filtered according to specific criteria, often participants are known to the
study authors.

Clearly, a small sample is not suited for prescriptive studies in general, as only
few data points cannot demonstrate the necessary generality. The same holds for
low heterogeneity of participant backgrounds and contexts. On the other hand, it is
very difficult, particularly in RE, to identify principles which apply to all kinds of
environments. A possible mixture is to do a small study with the aim to be pre-
scriptive (to give advise) for the involved population e.g. [27]. Several studies also
use a multi-stage approach, starting with small descriptive study to understand the
issue and later involving a large number of participants to establish general princi-
ples in a prescriptive study. In parallel with the sample population the mechanism
for capturing data is determined. There are three typical choices:

19 An Analysis of Empirical Requirements Engineering Survey 433

Questionnaires: a pre-determined list of open or closed questions. An example
for the former is: what kind of RE tool do you use? Examples for the latter are
yes/no-answers (e.g., do you use MS Word for requirement specification) or
multiple-choice-answers (e.g., which of the following tools do you use) or pri-
oritization-answers (e.g., prioritize the importance of budget, time and quality
in your project). These questionnaires are typically distributed online or by mail
to be filled in by the participants. Furthermore, they can be filled in jointly by
an interviewer and the interviewee.
Direct interaction: The list of questions is not fully pre-determined, instead the
participants can influence the kind of information gathered. Examples are semi-
structured interview or work observation. To involve more participants a work-
shop can be conducted.
Measurement data: Data is not captured specifically for the study, but is avail-
able through a measurement program or an assessment.

Obviously, the choice depends on the sample and the amount of time available
for data capture and analysis. Capturing measurement data needs the most effort,
and thus, this data is very often not available. For a large sample, questionnaires
are much easier to handle, but direct interaction gives more detail and more reli-
able information (as misunderstandings can be avoided). So the latter is often
more suited for descriptive and prospective studies. In parallel with the mecha-
nism the data analysis approach has to be determined. As mentioned in Sect. 19.2
the main alternatives are a numeric or non-numeric analysis. Clearly, a small sam-
ple does not allow valid numeric analysis and a large sample cannot be handled by
non-numeric analysis.

19.3.2 Information on the Context and the Background of the Sample

To be able to analyze RE data it is important to understand the context and the
background of the participants. Typically, RE practices depend very much on this
context [4]. Unfortunately, there are no standards on how to capture which context
factor. This makes the comparison between different studies very difficult. Here
we distinguish three kinds of contexts: personal, company and project. The per-
sonal context determines the viewpoint of the participant. The following facets are
typical:

Region: This determines the cultural context. Several studies are only within
one country. There has been no RE study so far which explicitly analyzes cul-
tural differences. Cusumano et al. [9] discusses differences in the adoption of
CMM practices between Europe, US/Canada, Japan and India.
Current role: This determines the viewpoint and the involvement in the RE
process. Typical roles are user, developer, quality expert, project manager, sen-
ior management, consultant and academic.
Past professional experience: This determines whether the participant can only
report preliminary insights or sustained experiences. Experience has so far only

434 Paech, Koenig, Borner and Aurum

rarely been captured. It can be measured by the number of years of professional
experience or the number of projects involved.

Clearly, there are much more facets influencing the participants viewpoints,
e.g. the education. It is, however, very difficult to define meaningful categories.
The company context determines the setting for the SE processes. The typical fac-
ets are:

Size: The number of employees involved in SE makes a big difference for the
processes. The main distinction is between small and medium enterprises
(SME) and large enterprises, where the boundary size of an SME typically is
assumed to be 500, on sometimes 100 or 300. Also sometimes other indicators
for size are used such as age of the company or annual budget.
Business: Similarly, the business the software is aimed at makes a big differ-
ence. On the one hand one distinguishes primary industry, which has software
as its main business, and secondary industry, where software is part of a prod-
uct. On the other hand the product supports different business sectors such as
finance, public, telecommunication, manufacturing, transportation, logistics and
health. This also implies software types such as information systems or embed-
ded systems. Unfortunately, there are no standard categories for business and
software types. Thus, data of different existing studies cannot be compared.

To be able to ask specifics of the RE process also information on the typical
project context is important. Often the interviewees are asked to choose one typi-
cal project to report on. The main facets are:

Customer/user: The customer/supplier relationship has a big influence on RE
practices. Therefore, it is important to distinguish whether the project produces
bespoke software or commercial off the shell software. Orthogonal is the dis-
tinction whether the customer is internal or external. Furthermore the number
of users is important and the sources of the requirements.
Size: The size of the company does not fully determine the size of the project.
The latter is measured by the number of staff involved, the number of person
months and the duration of the project. Another important characteristic is the
main project constraint in terms of budget, time or quality.
Software: The size of the software not always agree with the size of the project.
Thus, it is important to get information on the size of the code and the number
of requirements. Also the price of the software is rarely captured. Of course,
there are numerous other software characteristics of interest. So far studies have
asked for specific properties such as the platform used, the number of variants
involved or the reliability level required.

Clearly, many other facets of a project could be relevant, such as more detail on
the project management or the standards in the companies. The process facts of
the project are discussed in the following paragraph.

19 An Analysis of Empirical Requirements Engineering Survey 435

19.3.3 General Information on the RE Process

Many studies are concerned with the process as the whole: general facts, problems
experienced with this process and benefits for success. Sometimes these general
questions are only used as background information for more specific questions.
Terminology specific to RE is an issue here (e.g. for documents and activities) as
developers often use their own terminology. The general facts capture whether
there is a defined RE process at all, how it was adopted, and how it is performed.

Defined RE process: Besides asking for the existence of a process standard,
studies ask for the adherence to certain development paradigms or lifecycles
and for the existence of a role which is responsible for the RE activities in a
project. Furthermore, the size of the process definition is important and the ex-
tent to which the defined process is adhered.
The extent of the requirements documentation is an important indicator for the
level of detail of the RE process.
Performance is concerned with effort, tools, team characteristics and knowl-
edge or use of established practices such as REAIMS or VOLERE. The effort
can be measured for RE as a whole or for the individual activities. Besides ask-
ing for percentages one can also ask whether the activities are performed im-
plicitly or explicitly.

Concerning the problems: Typically the studies ask for problems, categorize
them and then compute the most common problems. The first example of such a
study was [8] which was not confined to RE. Hall et al. [19] provide the only de-
tailed study focusing solely on RE problems. Analyzing success is much more dif-
ficult. The first issue is how success can be measured at all. The next issue is how
specific factors for success can be found.

Measuring success: Here we distinguish the overall project performance and
the quality of the RE products and services. As discussed in El Emam and Birk
[14] successful project performance can be measured through 6 variables: cus-
tomer satisfaction, fulfillment of requirements, and cost within budget, duration
within schedule, staff productivity and staff morale. The first variable can be
measured through fitness for use and ease of use and the numbers of defects re-
ported by the customer [8]. Because of the diversity of activities during RE it is
even more difficult to measure the quality of the RE products and services. El
Emam and Madhavji [13] present an empirical validated list of 34 criteria for the
quality of RE products and services. These criteria can be used for two purposes:
on the one hand they are an instrument for measuring success; on the other hand
they can be used as a checklist of important characteristics of good RE processes.

19.3.4 Information on Specific Parts of the RE Process

Many studies are interested in a specific activity X performed or specific tech-
nique X used during RE. This comprises two issues: facts on the performance and
experiences on performing X.

436 Paech, Koenig, Borner and Aurum

Facts on the performance: As for the whole process, facts capture effort and
performance, e.g. the number of iterations during capture and analysis.

Experiences during performance: As for the whole RE process, problems and
success factors for X are identified. This also includes the impact of X on the
whole RE process or on the whole project. Furthermore, the impact of other fac-
tors on X is studied.

Summary
Not all studies ask for all information mentioned in categories 2 4. The detailed
choice of course depends on the purpose and to some extent on the mechanism.
However, in general we recommend cover all three categories. Information on the
context is often difficult to evaluate, it is however, important to understand the
plausibility of the answers. Sometimes it can be used to find patterns in the infor-
mation on RE, e.g. a difference between RE processes of large or small compa-
nies. Similarly, information on the general RE process is helpful to understand the
plausibility of the answers. It is interesting to try to exhibit patterns in the informa-
tion on the RE specifics, e.g. differences between technique usage between com-
panies with a defined process or without a defined process.

To allow the combination of data from different studies it is necessary to have
standard questions. Such standard questions have not yet been established. They
seem feasible for the context and the general RE process information, however, as
illustrated in Sect. 19.5. It is very difficult to identify all context factors relevant to
RE practice. Thus, this is an issue for further research.

19.4 Broad Studies Outcomes

The collected studies are very heterogeneous with respect to the study set up and
the information captured on the sample, so it is not possible to aggregate their
data. We summarize the important findings according to the above categories and
indicate when studies have similar results. This answers issue (2): What evidence
do we have about practice? So, what do we know about the RE process in general
and about the specific activities?

19.4.1 Set up and Context of the Studies

The set up and context of the studies is quite diverse. Tables 19.1 19.3 list the
year they were conducted, the sample size, the mechanism and the main topic.
Due to the lacking standard of context description, it is not possible to summarize
the context in the tables. Most studies are confined to US, Canada and UK, but
some also span several countries in Europe. Most samples also cover several roles
of the participants, several kinds of business and system types, as well as different
project types, sizes of the companies and their software.

19 An Analysis of Empirical Requirements Engineering Survey 437

19.4.1.1 General Information on the RE Process
Here we summarize the findings of the studies of Table 19.1 and Table 19.2.

General Facts
Defined RE process standard: The percentage of companies with a defined
standard evolved from only few [30], through 50% [21] and roughly 30% for
SMEs [40] to 60% in general [39]. Interestingly, 70% of companies without
process are happy with RE product quality [39]. More information on the proc-
ess, e.g., the size of the documentation, has only been captured in the studies
discussed in Sect. 19.5.
Explicit requirements document: The existence of documents is an issue. It var-
ied widely between the SMEs in [27]. Recently, 85.6% worldwide reported
about explicit RE documents [9]. However, the sample of the last study consists
mainly of large companies with explicit contact to academia. The studies dis-
cussed in Sect. 19.5 capture detailed data on the kind of RE documents.
Performance: The effort spent on RE was only noted twice. 14% of overall pro-
ject effort was the mean in [15] and 15.7% in [21]. 38.6% of project duration
was found in [21]. They also found that the ideal effort for RE in their context
is estimated at 15 30%. 25% is the estimate for the ideal effort in [36]. Fur-
thermore, one can distinguish the effort spent on individual activities. Success-
ful teams allocate 11% of project effort on elicitation, 10% of project effort on
modeling and 7% on validation and verification [21]. This distribution of the
RE effort has been roughly confirmed in [32], which is discussed in Sect. 19.5.
In these studies activities are also characterized as being performed explicitly or
implicitly.

The information on overall cost and time adherence indicates heavier time
overrun: little cost but significant time overrun [21], 35% cost and 44% time over-
run [39]. The well known CHAOS report indicated for 2003 43% projects with
cost overruns and 82% with time overruns [54].

Average RE team size is 6.2 [21] and 7 [15]. Team skill is an issue. Curtis et al.
[8] found thin spread of application domain knowledge, [30] confirmed particu-
larly for market-driven projects. In contrast, Hoffmann and Lehner [21] found that
team knowledge is rated “good”.

RE-Tool usage is not widespread: Typically general purpose tools prevail [30].
Even for SMEs only 30% use standard word processor and commercial RE-tools
are not used at all [40]. Another study found 30% using only word processors, but
for large projects mostly RE tools (inhouse, commercial) [24]. Most recently, 29%
tracing tool usage was found in [11].

Little is known about the Adoption of new RE process: For SMEs reasons for
process improvements are schedule overruns due to high effort for testing/rework
and ISO 9001 certification [27]. Juristo et al. [24] found that more than half of the
participants had recently improved RE. It was noted very early that organizational
RE problem solutions are preferred over technology [30].

Still, the importance of RE for project success is recognized: The CHAOS stud-
ies give a good overview on IT project success in general [54]. According to the

438 Paech, Koenig, Borner and Aurum

2003 summary, IT project success evolved from 16% successful projects in 1994
to over 26% in 1998 to 34% in 2003. RE is very often identified as major con-
tributor to problems: requirements specification and managing customer require-
ments exhibit the most problems in SW development in [21]. Similarly, RE prob-
lems had the highest share (48%) of development problems mentioned in [19].
This fact is confirmed in [54], however, to have downward trend. In 1994 re-
quirements problems scored high in the top ten. In 1998 user involvement got
again the highest mark, but firm basic requirements scored only in the lower half
after being third in 1994. Still, 80% of the SMEs found RE of strategic importance
in [40]. Seventy percent indicated that not enough time is spent on RE in [36], and
this number was reconfirmed in [39].

Expectations on academia are training and technology transfer, particularly
templates [40].

Problems with the RE Process: The three problems identified in the very first
study [8] have been confirmed over and over.

Thin spread of application domain knowledge: This has been confirmed in [30],
particularly for market-driven projects. Inappropriate skills are a problem in
[19].
Fluctuating and conflicting requirements: Managing uncertainty was raised in
[12], vague initial requirements, requirements growth and complexity of appli-
cation was mentioned in [19], completeness, change management, and trace-
ability were the main problems in [40].
Communication and coordination breakdown: User participation and project
management capabilities were raised in [12]. Organizational process problems
are two thirds of the RE related problems [19]. Particularly, developer commu-
nication, inadequate resources, staff retention and user communication was
mentioned, as well as the undefinedness of the RE process [19]. Identification
of requirements sources was a problem in [24] and the main problem in [36]
was communication.

The two other typical problems are tools and documentation:

Tools are a problem because benefits are not clear [12], and because of tool in-
tegration, tool selection [24] and tool adaptation [40].
Documentation often does not exist [24, 27]. If it exists, management is a prob-
lem [30], the detail of the functional process model [12] and prioritization [21],
or missing template [40].

Other important problems noted are the increasing importance of the market-
driven segment [30], COTS usage [12], the detail of the examination of the current
system [12], own RE adaptations [40] and quantitatively establishing dependabil-
ity [24]. Problems for industrial uptake of RE R&D are training, inherent com-
plexity, integration into internal business, and business culture [37].

19 An Analysis of Empirical Requirements Engineering Survey 439

Success Factors for RE: El Emam and Madhavji [13] have exhibited the most
refined list of success criteria. It can be structured into the following five areas.
Some of them have been confirmed several times.

Fitness of recommended solution (change culture, strategic adequacy, manage-
ment support for change, fitness to business and technology).
User satisfaction and commitment (user buy in, user consensus, fitness to user
work, adequacy of first release). User involvement and team relationships were
confirmed [20].
Quality of requirements architecture (clear business processes, correct re-
quirements, links from objectives to models, valid business cases). Related fac-
tors were identified in [21]: coverage of requirements sources, usage of tem-
plates, prioritization, combination of prototypes and models, traceability
matrix, user peer reviews, scenarios, and walk-throughs. Similarly, unambigu-
ous specification, prioritization for projects with short time to market (TTM),
and change management of non-TTM were identified in [36].
Quality of cost/benefit analysis (management support, high business priority,
accurate benefits and cost estimates for intangible benefits).
Cost-effectiveness of RE process (compared to similar projects and to overall
project effort, little change, usefulness of deliverables).

This list shows that as for the problems many factors are organizational. Ade-
quate team skills were identified as a further success factor in [21]. El Emam et al.
[15] also investigated the relationship between user participation, uncertainty and
RE success. They found that in presence of uncertainty user participation enhances
the first two categories (called RE service success) and vice versa that user par-
ticipation has less impact on RE service success if uncertainty is low. The rela-
tionship to the other three categories (dealing with RE product quality) could not
be established. It also has been established several times that RE makes a differ-
ence for project success: Adoption of SPICE RE practices has positive impact on
project productivity for large companies (impact on team morale, budget and
schedule, customer satisfaction and fitness to requirements could not be shown)
[14]. RE problems are reduced for higher CMM maturity levels [19]. Main impact
of RE are common goals and scope according to [36]. A more complete functional
specification increases productivity (in terms of code produced per day) [9]. How-
ever, the latter also found that the incompleteness of the specification can be com-
pensated through techniques to generate early feedback on product performance
such as prototypes or testing.

19.4.1.2 Specific Parts of the RE Process
Some broad studies of Table 19.1 and Table 19.2 have also captured data on the
usage of established best practices. For SMEs, only 33% have standard document
structure, even less use a modeling language as standard, formal methods are
never used, scenarios are rarely used, requirements are numbered only in 15% of
the companies, only a quarter had more than marginal use of the top 10 REAIMS
practices [40].

440 Paech, Koenig, Borner and Aurum

In general, the following has been found: tool and method is not distinguished
and elicitation techniques are not known [24]. Scenarios/use case are the best
known practice in [36]. Also according to [39], 50% apply scenarios or use cases,
but better known techniques are prototyping (60%) and inspections (59%). Less
well known techniques are OOA (30%), focus groups (30%), informal modeling
(30%) and, even in large companies only, 7% use formal models [39]. This might
often still be related to missing knowledge as known techniques are more likely to
be perceived as useful [36]. The adherence to very traditional processes is also
confirmed by the fact that 35% of the companies still use waterfall [39].

However, it is important to note that large studies found that best practice adop-
tion in general varies greatly: In Hoffmann and Lehner [21] the estimated use of
practices varied by 30% depending on the role of the interviewee. In Dutta et al.,
[11] a variation of management practices from 65% to 32% between countries and
similarly from 60% to 36% between business sectors was found. This phenome-
non was observed in three consecutive studies from 1995 to 1997. The variation in
[9] for a specific development practice was up to 70% between the countries. In
that study the relative importance of the different practices did not vary much. So,
for example, the creation of a functional specification was one of the most adopted
practices in all countries.

McPhee and Eberlein [36] asked for the main features a new RE technique
should have: easy to use, facilitates good communication, complete requirements,
and traceability. Other broad studies have investigated specific activities. They are
listed in Table 19.3. In addition the broad study on general RE [30] gives some in-
sight on specific phenomena. Each specific phenomenon besides traceability has
only been studied once in depth. Here we just list the main results:

Requirements documents should focus on what and how as this is what design-
ers want to know. Typically they want to know how a user will realize this task
with the system functionality. This importance remained stable in very different
company settings [28].
Traceability is a problem because of lack of common definition and inadequate
pre-traceability. The latter is due to problems for the providers (e.g., extra
amount of work) and users of traceability information (e.g., reliance on per-
sonal communication) [18]. Sixty percent are high-end traceability users with
more than 10,000 requirements and elaborate traceability schemes in [46].
Quality Function Deployment is a front-end requirements elicitation technique.
It improves user involvement, management support and involvement, team in-
volvement and shortens the development lifecycle [20].
Requirements volatility consists of instability, missing analyzability and diver-
sity. It is related to the size of the requirements, project cost and most signifi-
cantly project delay. Furthermore, developer capability has negative impact on
volatility; volatility has no relationship with code quality and project manage-
ment quality. High volatility is related to missing customer satisfaction. A de-
fined methodology, frequent user communication and inspections induce vola-
tility, while user representatives reduce volatility. Traceability could not be
shown to account for the latter [60, 61, 62].

19 An Analysis of Empirical Requirements Engineering Survey 441

Requirements capture and analysis is an iterative process, where more than half
of the projects have 3 or more iterations. The number of iterations depends on
the project characteristics, the methodology and the tools. In half of the projects
original plans had to be changed due to lack of information, need for validation
and verification, changes in requirements and inexperienced project managers.
Some recommendations can be given based on the project characteristics [3, 4].
Scenarios/use cases can be used in many different ways. They are particularly
useful in combination with prototyping and glossaries. They help to comple-
ment abstract dynamic models and static models, to reduce complexity and to
reach partial agreement and consistency. Issues are partial views, managing dis-
tributed scenario development, reviews, test case derivation, traceability and
evolution [56].
Software documentation is mainly needed to learn about software (61%), to test
software (58%), work with new software (54%), to answer questions in case of
problems (50%). Maintenance was only important for 35%. High-level docu-
mentation is also useful when out-of-date. Requirements are updated less fre-
quently than all other documentation, while testing documentation is updated
most frequently [29].
Requirements reviews are slightly more common (42%) than design reviews
(49%) for those companies who have documentation. Often (60%) reviewers do
not have time for review preparation. When there is time, checklists (50%) are
more common than ad-hoc (35%). Only 25% collect data during review and use
this for improvement [5].

Summary
The studies collected show a quite interesting picture of RE practice. They con-
firm the evidence from CMM measurements of general SE [55] that process per-
formance and practice adoption vary extremely between different companies. This
is also obvious from Chap. 18 which shows differences between companies and
some agreement and some disagreement of their findings with the findings of the
general studies collected here. Thus, in particular, it seems not valid to generalize
quantitative results (percentages) found in one study to all companies. This can
only be done based on a careful analysis of all context factors. Taking into account
the context factors the data of large studies can be used to find patterns of practice
usage as in [11, 21].

The qualitative results, however, indicate some trends. For instance, an explicit
RE process standard was more often found today than in earlier studies. Many
broad studies establish the importance of RE. On the one hand RE scores high in
the general SE problems and on the other hand positive impact of RE on project
productivity has been established. It would be very beneficial to study more such
relationships between RE in general or specific RE practices and overall project
success or problems. The identified problems within RE seem to be quite stable,
namely thin spread of application domain knowledge, fluctuating and conflicting
requirements and communication and coordination breakdown. As discussed in
Chap. 18 the first is less of an issue as companies specialize in certain domains.

442 Paech, Koenig, Borner and Aurum

The other two problems were confirmed in the studies of Chap. 18. Similarly,
some success factors for RE have been established several times, namely user sat-
isfaction and commitment (in particular in the presence of uncertainty) and quality
of the requirements process. Thus, there is sustained evidence on the general RE
needs of companies. It seems worthwhile to focus future studies on the details of
these needs. The studies on requirements volatility exemplify such detailed inves-
tigations into the problem of requirements fluctuation.

19.5 Requirements Engineering Practice: A New Study

In this subsection we present new data on RE practice collected in Germany and
Australia. This serves to further illustrate findings and issues in the interpretation
of such studies and their aggregation. In addition, it shows some type of questions
not found in the other studies. It is, however, not a complete presentation of the
studies. Full presentations are referenced.

The work started 1999 with a pre-study in Germany. A small group in the RE
special interest group of German computer science society (GI) collected nine two
hour interviews on general RE process characteristics and experiences. The main
purpose was to test whether the RE process questions are meaningful and to col-
lect best practices. The latter did not work as the interview time was already con-
sumed through the RE process questions. The former however was confirmed, as
the questions were found very useful to characterize the RE process.

Based on this pre-study, the work commenced into two directions: In 2002 at
the Fraunhofer Institute Experimental Software Engineering (Fh IESE) a ques-
tionnaire was created where participants get feedback on their RE process (in
terms of recommendation of specific practices) based on the data submitted on the
RE process. For that purpose the questionnaire has been extended with questions
on perceived problems. The main difference to the prior investigation of problems
is that the problems are related to different roles, e.g., problems of the tester or the
project manager with the requirements documents, or problems of the person re-
sponsible for RE with the RE process. This questionnaire answered by 33 German
companies by the end of 2003. It is still available under http://www.iese.fhg.de/re-
checkup/. Participants were mainly project managers and people responsible for
RE as these people actively sought advice in the area of RE. The main outcome
has so far only has been published in Germany [43].

In Australia, at the University of New South Wales, the original questionnaire
was used for four in-depth-studies [32, 34, 44, 58]. The data is collected from 11
multi-national companies including the banking industry, pharmaceutical and the
healthcare industry, telecommunications industry and food industry included 23
projects. People who participated in the interviews were project managers, busi-
ness and systems analysts. The objectives of these studies were (a) to investigate
the state of the art RE practice in these industries which included identifying the
state of RE process in project life cycle, the degree of awareness about this proc-
ess and whether there is a structured approach towards RE in each project, and

19 An Analysis of Empirical Requirements Engineering Survey 443

identifying responsible role for RE as well as roles assigned to different RE activi-
ties, (b) to examine the RE activities, (c) to explore the amount of effort used in
each RE activity and identify implicit and explicit activities in each project, and
(d) to construct high-level process models that describe RE process models on the
projects. Some of the results are published in [33, 45].

In the following we report on the general RE process data of all three studies
(combined and individually) and on the problems found in the Fh IESE study. As
will be seen there is some difference between the data. This can be attributed to
the small sample sizes and to cultural differences. In addition, it is important to
note that by chance the study participants had very different company context: In
the pre-study two third of the participants came from companies with more than
10,000 employees. At UNSW mainly companies with more than 100 employees
have been interviewed, with more than 50% over 1000. At Fh IESE two third had
less than 100 employees and 18% between 100 and 1000. Furthermore, the sample
of Fh IESE consists of participants actively looking for feedback to their RE proc-
ess. All the three together provide a very good variety with 20% each for less than
20, less than 100, less than 1000, less than 10,000 and more than 10,000 employ-
ees.

RE - activities performed (ALL)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

El ici tation Documentation Ver i f ication

and Val idation

Change

Mangement

RE Tr acabi l i ty

expl ici t

impl ici t

No

Fig. 19.1 RE activities

General Facts:
The three studies confirm the trend (noted in the summary of 19.4.) to an RE
process standard: Of the combined data 72% had a standard. These standards
have quite considerable length. In the UNSW study all were over 6 pages, and
were two thirds over 25 pages. In the IESE study, one-third was below 6 pages
and half between 6 and 25 pages. Altogether, more than two third were over 6
pages. Almost all companies confirm that the real processes adhere to this stan-
dard.

444 Paech, Koenig, Borner and Aurum

The studies did not investigate the effort for different RE activities, but instead
investigated whether RE activities are performed explicitly, implicitly or not at all
(see Fig. 19.1). This is easier to estimate for the participants than the effort. Figure
19.2 shows that elicitation, documentation and V&V are almost equally important.
However, looking at the explicit activities in each study separately, one can see a
high variation (Fig. 19.2). The SMEs in the IESE study do not perform so many
activities explicitly, while in the GI pre-study many perform all activities explic-
itly. In all studies all company have at least one explicit activity.

More than half of the combined data have an explicit RE responsible role. In-
terestingly, for Fh IESE data this is even more than 70%, although these are
mainly small companies. This does not seem to be due to cultural reasons, as in
both the UNSW study and the German pre-study only 30% have such a role.

Explicit activities performed

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elicit at ion Document at ion Ver if icat ion

and Validat ion

Change

Mangement

RE Tracabilit y

Aust ralia

Pre-st udy

IESE

All

Fig. 19.2 Explicit activities performed

As shown in Fig. 19.3 the companies use different kinds of RE documents: Cus-
tomer and developer requirements are most popular, and, if one is created, then the
other is also created. However, as for general practice adoption (see the summary
of 19.4.), the level of adoption varies by more than 30% between the samples.

To get a better understanding of this variety, we also investigated the relation-
ship between the context factors (like company size, business sector) and the RE
process characteristics (such as the existence of a process standard or the kind of
RE documents created). The only significant relationship we found is between
project size and the number of RE activities pursued explicitly and the number of
different roles involved in RE. This relationship is quite obvious. So the context
factors listed in Sect. 19.3 are not sufficient to explain the variety of processes. In
the Fh IESE study we also investigated the main RE problems. In particular we
asked whether the different roles (customer, RE responsible person, developer,
tester, project manager) have problems with the RE process or its outcomes. The
results confirm the findings on problems discussed in the last section. Problems

19 An Analysis of Empirical Requirements Engineering Survey 445

are mainly related to project management and change management. It is stated that
cost estimation is a problem (48%), that requirements are not stable (45%) and the
need for change is detected too late (42%). The communication between RE and
design is a problem for only 33%.

Document s i n RE - pr ocess

0 %

2 0 %

4 0 %

6 0 %

8 0 %

10 0 %

UNSW Pr e-study IESE Al l

Business pr ocesses

Glossar y

Customer Requi r ements

Developer Requi r ements

Jur idical

Risk l i st

Vison

 Fig. 19.3 Documents created

We tried to establish relationships between context, general RE process and
problems. Only a few relationships could be established: Creation of business
processes reduces the number of problems with the finished system. It also im-
proves communication between the tester and designer. Also, the existence of cus-
tomer requirements reduces problems for tester, and the existence of developer re-
quirements reduces the problems of the designers and the RE engineers. These
relationships are not really surprising, but they support the plausibility of the data
and give more detail to the fact also observed in [9] that creation of requirements
documents is of benefit for the overall project.

Altogether the studies confirm the general findings on problems and success
factors. Again, they show the great variation between different projects. They also
give examples for more detailed questions on the RE process such as the different
documents or the problems for the different roles. Unfortunately, they also show
that it is difficult to find patterns relating project context and general process or
problems. At least the context data captured in these studies is not sufficient to ex-
plain the differences.

19.6 Remarks on Empirical RE Research

During our literature survey we have made some observations on the broad studies
which might be helpful for further studies:

Several studies indicate that facts about RE practice depend heavily on the con-
text. Thus, we recommend capturing the context factors carefully and to inves-
tigating thoroughly the relationship between the context, the general RE proc-

446 Paech, Koenig, Borner and Aurum

ess and the observed RE phenomenon (see the summary of 19.4. and last sec-
tion). This investigation would be alleviated through a more careful selection of
the study sample. An example of a very careful quantitative analysis of the rela-
tionship between different process factors is [31].
It is difficult to assess practice progress over time as the different studies have
used quite different questions. It would be helpful when, at least partly, a
framework such as the one proposed here is used in all studies. Also, recently
benchmarks for SE have been proposed [52]. It is, however, an open questions
whether the benchmarking paradigm can be applied to RE because of the high
involvement of humans [1].
There is a high risk of misunderstandings in standardized questionnaires. At
least a glossary of terms should be provided in questionnaires.

The broad studies discussed so far can inform research on general constraints
and urgent problems in practice. A thorough understanding of specific phenomena
or situations can be better achieved through in-depth studies. It is out of the scope
of the paper and a topic of further research to provide an overview of these in-
depth studies on RE, such as case studies in one company or experiments. Chapter
16 is an example of an in-depth study of one company. Chapter 18 provides fur-
ther examples based on what is called inductive process assessment. In the follow-
ing we just give some examples of existing literature with no claim of complete-
ness whatsoever.

Experiments have so far mainly studied requirements inspection and, much less
frequently, modeling techniques. Cox et al., [6] replicate an experiment on use
case guidelines, while Regnell et al. [47] and Sandahl et al. [49] replicate experi-
ments on different reading techniques for requirements inspection. Moynihan [38]
has compared object-oriented and functional decomposition as paradigms for
communicating system functionality to users [37]. Similar comparisons can be
found at the EMMSAD workshops during the annual CAISE conferences. The
most established results of SE in-depth studies have been collected in [16]. They
are mainly based on case studies. One example for a recent case study has investi-
gated RE in multi-site development projects. This case study has confirmed the
problems reported in Sect. 19.4 [59]. Another recent case study has investigated
the benefits of RE process improvement [10]. These in-depth studies give very
valuable insights in the RE process. So far, replications of these studies typically
have not completely confirmed previous results. This indicates that not all vari-
ables (very often related to the individuals) are completely understood. Thus, we
are far from a standard process for empirical RE research.

19.7 Conclusion

Neither the state of the practice nor the state of the knowledge about the practice is
satisfying. Sects. 19.4 and 19.5 have collected the results of different studies. As
summarized in 19.4, it is so far not possible to come up with numbers characteriz-
ing RE practice adoption uniformly. But there are repeated findings on problems

19 An Analysis of Empirical Requirements Engineering Survey 447

and success factors. So what does this tell about future empirical research ques-
tions, and what should we find out about practice?

Given the broad consensus about the problems encountered in practice, it seems
to be time to study these particular problems in more detail. As there is less evi-
dence of success factors, studies should be conducted to confirm the success factor
list provided in [13]. In particular, it seems important to find out why a specific
technique such as, e.g., scenarios has been quite widely adopted, while another
such as e.g. QFD is not adopted in spite of positive evidence. Another important
point is to integrate studies from the information systems community which focus
on strategic requirements and success in terms of strategic change in contrast to
SE studies, which focus on more operational requirements (for a detailed discus-
sion of these levels see also Chap. 1). An example for such a study is [50].

As argued before, understanding of the context and the general RE setting is
important, but hindered by the diversity of terminology and the great variety of
factors. Thus, we should do interdisciplinary research to get a better understanding
of context factors relevant for SE projects and also to provide standard terminol-
ogy for capturing this context. Standard RE terminology could be achieved
through certification schemes, such as, e.g., the certified tester programs offered
by ISTQB. This would greatly alleviate more standardized RE education, which
seems essential to widespread adoption of RE practices.

The standardization would also help replication of studies. Replication is im-
portant for insights on practice progress over time. We also believe that it is im-
portant to combine the practice analysis with improvement actions. Reifer [48] has
collected critical success factors for industrial uptake of a specific technique: It
must have been proven feasible in a number of projects, the related body of
knowledge must have been codified and the related rules must have been docu-
mented, tools and training must be available, and hard data has been collected.
Furthermore, people other than the inventors are promoting its use and the organi-
zation is prepared for the change. From this it follows that clearly there is a hen
and egg problem, if industry is only willing to use a practice which is already
proven. However, a set of several studies would come close to this model. First a
broad study is conducted. Thereby, some companies and improvement actions are
identified that are likely to be successfully adopted according to the scheme
above. The execution of these actions would be the subject of empirical studies on
their progress problems and success factors. The evidence of these studies can be
used to find participants for in-depths studies of specific factors, such as experi-
ments, or to find further participants for empirical studies. In-depth studies of RE
improvement in specific companies can be found in the ESSI trials [17]. However,
they have not been accompanied by broad studies and the findings have not been
carried over to other companies.

Overall, it is good to see the increasing number of empirical studies in RE.
However, we see the need for a more sustained approach for empirical research in
RE.

448 Paech, Koenig, Borner and Aurum

Acknowledgements

We thank the authors of many studies for providing more detail on their data. We
also thank the anonymous referees for many valuable comments.

References

1. Blaike N (2000) Designing social research: The logic of anticipation. Blackwell Pub-
lishers, Oxford, UK

2. CERE, Workshop Comparative Evaluation in Requirements Engineering,
http://www.di.unipi.it/CERE03/

3. Chatzoglou P, Macaulay L (1996) Requirements capture and analysis: A survey of cur-
rent practice. Requirements Engineering Journal (1): 75 87

4. Chatzoglou P (1997) Factors affecting completion of the requirements capture stage of
projects with different characteristics. Information and Software Technology 39(9):
627 640

5. Ciolkowski M, Laitenberger O, Biffl S (2003) Software reviews: the state of the practice.
IEEE Software 20(6): 46 51

6. Cox K, Phalp K (2000) Replicating the CREWS use case authoring guidelines experi-
ment. Empirical Software Engineering 5(3): 245 267

7. Creswell JW (2003) Research design: Qualitative, quantitative and mixed methods ap-
proaches. Sage Publications, Thousand Oaks California

8. Curtis B, Krasner H, Iscoe N (1988) A field study of the software design process for
large systems. Communications of the ACM 31(11): 1268 1287

9. Cusumano M, MacCormack A, Kemerer Ch, Crandall B (2003) Software development
worldwide: The state of the practice. IEEE Software 20(6): 28 34

10. Damian D, Zowghi D, Vaidyanathasamy L, Pal Y (2004) An industrial case study of
immediate benefits of requirements engineering process improvement at the Australian
center for Unisys software. Empirical Software Engineering (9): 45 74

11. Dutta S, Lee M, Wassenhove L (1999) Software engineering in Europe: A study of best
practices. IEEE Software 16(3): 82 -89

12. El Emam K, Madhavji NH (1995) A field study of requirements engineering practices
in information systems development. In: Proceedings of the 2nd International Sympo-
sium on Requirements Engineering. York, England, pp.68 80

13. El Emam K, Madhavji NH (1995) Measuring the success of requirements engineering
processes. In: Proceedings of the 2nd International Symposium on Requirements Engi-
neering. York, England, pp.204 211

14. El Emam K, Birk A (1999) Validating the ISO/IEC 15504 measure of software re-
quirements analysis process capability. In: IESE Report 003.99/E

15. El Emam K, Quintin S, Madhavji NH (1996) User participation in the requirements en-
gineering process: an empirical study. Requirements Engineering Journal (1): 4 26

16. Endres A, Rombach D (2003) A Handbook of Software and Systems Engineering –
Empirical Observations, Laws and Theories. Pearson Education Limited

17. ESSI, http://www.cordis.lu (Last access 9th January 2005)

19 An Analysis of Empirical Requirements Engineering Survey 449

18. Gotel OCZ, Finkelstein ACW (1994) An analysis of the requirements traceability prob-
lem. In: Proceedings of IEEE International Conference on Requirements Engineering.
Colorado Springs, CO, USA, pp.94 101

19. Hall T, Beecham S, Rainer A (2002) Requirements problems in twelve companies: an
empirical analysis. IEE Proceedings Software 149(5): 153 160

20. Haag S, Raja M., Schkade LL (1996) Quality function deployment usage in software
development. Communications of the ACM 39(1): 41 49

21. Hoffmann HF, Lehner F (2001) Requirements engineering as a success factor in soft-
ware projects. IEEE Software 18(4): 58 66

22. Ibanez M, Rempp H (1996) European user survey analysis, ESPITI, ESI TR 95104,
http://www.esi.es/VASIE/Reports/All/11000/Download.html

23. Jones S, Till D, Wrightson AM (1998) Formal Methods and Requirements Engineering:
Challenges and Synergies. Journal of Systems and Software (40): 263 273

24. Juristo N, Moreno A, Silva A (2003) Is the European industry moving toward solving
requirements problems? IEEE Software 19(6): 71 77

25. Juristo N, Moreno AM, Vegas S (2004) Reviewing 25 years of testing technique ex-
periments. Empirical Software Engineering, (9):7 44

26. Kaindl et al. (2002) Requirements engineering and technology transfer: obstacles, in-
centives and improvement agenda. Requirements Engineering Journal (7): 113 123

27. Kamsties E, Hörmann K, Schlich M (1998) Requirements engineering in small and me-
dium enterprises. Requirements Engineering Journal (3): 84 90

28. Kuwana E, Herbsleb JD (1993) Representing knowledge in requirements engineering:
an empirical study of what software engineers need to know. In: Proceedings of IEEE
International Symposium on Requirements Engineering. San Diego, CA, USA,
pp.273 276

29. Lethbridge TC, Singer J, Forward A (2003) How software engineers use documenta-
tion: the state of the practice. IEEE Software 20(6): 35 37

30. Lubars M, Potts C, Richter Ch (1992) A review of the state of the practice in require-
ments modeling. In: Proceedings of IEEE International Symposium on Requirements
Engineering. San Diego, CA, pp.2 14

31. MacCormack A, Kemerer ChF, Cusumano M, Crandall B (2003) Trade-Offs between
productivity and quality in selecting software development practices. IEEE Software
20(5): 78 85

32. Martin S (2002) Requirements Engineering Processes in Australian Practice. Honours
thesis, School of Information Systems, Technology and Management, University of
South Wales, Sydney, Australia

33. Martin S, Aurum A, Jeffery R, Paech B (2002) Requirements engineering process mod-
els in practice. In: Proceedings of the 7th Australian Workshop on Requirements Engi-
neering. Deakin University, Melbourne, Australia, pp.41 47

34. Masya KK (2003). Requirements Engineering in Australia’s Banking Industry. Honours
Thesis, School of Computer Science and Engineering, University of New South Wales,
Sydney, Australia

35. McPhee Ch (2001) Requirements Engineering for Projects with Critical Time to Mar-
ket. Master thesis, University of Calgary, Canada

450 Paech, Koenig, Borner and Aurum

36. McPhee C, Eberlein A (2002) Requirements engineering for time-to-market projects.
In: Proceedings of 9th Annual IEEE International Conference on the Engineering of
Com-puter Based Systems (ECBS 2002), Lund, Sweden, pp.17 26

37. Morris Ph, Masera M, Wilikens M (1998) Requirements engineering and industrial up-
take. In: Proceedings of the 3rd Third International Conference on Requirements Engi-
neering. Colorado Springs, CO, USA, pp.130 137

38. Moynihan T (1996) An experimental comparison of object-orientation and functional
decomposition as paradigms for communicating system functionality to users. Journal
of Systems Software (33): 163 169

39. Neill CJ, Laplante PhA (2003) Requirements engineering: the state of the practice.
IEEE Software 20(6): 40 45

40. Nikula U, Sajeniemi J, Kalviane, H (2000) A State-of-the-Practice survey on require-
ments engineering in Small-and-medium-Sized-Enterprises. Technical report, Telecom
Business Research Ctr., Lappeenrata University of Technology

41. Nikula U, Sajeniemi J, Kalvianen H (2000) Management view on current requirements
engineering practices in small and medium enterprises. In: 5th Australian Workshop on
Requirements Engineering (AWRE 2000). Queensland University of Technology,
Brisbane, Australia, pp.81 89

42. Nikula U, Sajeniemi J, Kalvianen H (2000) A State-of-the-Practice Survey on Require-
ments Engineering: Industry education and technology transfer. In: Fifth International
Conference on Software Process Improvement Research, Education and Training
(INSPIRE). The University of North London, London, Great Britain, pp.13 24

43. Paech B, Koenig T (2004). Charakterisierung und Probleme von Anforderungsprozes-
sen deutscher Unternehmen – Auswertung einer Erhebung. In: Proceedings of 3rd
HOOD Requirements Engineering Conference (www.reconf.de). Munich, Germany,
pp.86 90

44. Prakash S (2003) Analysing Requirements Engineering Practices for Mission and
Safety Critical Systems in the Pharmaceutical and Healthcare Industry. Honours thesis,
University of South Wales, Sydney, Australia

45. Prakash S, Aurum A, Cox K (2004) Benchmarking a Best Practice Requirements Engi-
neering Process for Pharmaceutical and Healthcare Manufacturing. In: Proceedings of
11th Asian-Pacific Conference on Software Engineering, 30 Nov -3 Dec, Busan, Korea

46. Ramesh B (1998) Factors influencing requirements traceability practice. Communica-
tions of the ACM 41(12): 37 44

47. Regnell B, Runeson P, Thelin Th (2000) Are the perspectives really different? – Further
experimentation on scenario-based reading of requirements. Empirical Software Engi-
neering 5(4): 331 356

48. Reifer D (2003) Is the software engineering state of the practices getting closer to the
state of the art? IEEE Software 20(6): 78 83

49. Sandahl K, Blomkvist O. Karlsson J, Krysander Ch, Lindvall M, Ohlsson N, (1998) An
extended replication of an experiment for assessing methods for software requirements.
Empirical software engineering 3(4): 327 354.

50. Seddon PB, Staples DS, Patnayakuni R, Bowtell M (1999) Dimensions of IS Success.
Communications of the AIS. 2(20). http://www.dis.unimelb.edu.au/staff/peter/publica-
tions.htm

51. Silva A, Morris Ph (1998) Analysis of recent surveys and survey methods. Deliverable
D1.1, RESUME project

19 An Analysis of Empirical Requirements Engineering Survey 451

52. Sim S, Easterbrook S, Holt R (2003) Using benchmarks to advance research: a chal-
lenge to software engineering. In: Proceedings of 25th International Conference on
Software Engineering. Portland, Oregon, pp.74 83

53. Silva A, Morris Ph (1999) Final report, Deliverable D6.1., RESUME project.
54. Standish group international inc. (2000) Extreme CHAOS, www.standishgroup.com
55. Thomas M, McGarry F (1994) Top-Down vs. Bottom-Up Process Improvement. IEEE

Software, 11(4): 12 13
56. Weidenhaupt K, Pohl, K, Jarke, M, Haumer P (1998) Scenario usage in system devel-

opment: a report on current practice. IEEE Software 15(2): 34 45
57. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslen A (2002) Experimen-

tation in software engineering: An Introduction. Kluwer Academic Publishers, Boston,
Dordrecht, London

58. Yu J (2003) Requirements engineering in mission critical systems. Honours Thesis,
School of Computer Science and Engineering, University of New South Wales, Syd-
ney, Australia

59. Zowghi D, Damian D, Offen R (2001) Field studies of requirements engineering in a
multi-site software development organization: research in progress. In: Proceedings of
6th Australian Workshop on Requirements Engineering, Sydney Australia, pp. 14 21

60. Zowghi D, Nurmuliani X (2002) A study of impact of requirements volatility on soft-
ware project performance. In: Proceedings of the 9th Asia Pacific Software Engineering
Conference. Gold Coast, Australia, pp.38 48

61. Zowghi D, Offen R, Nurmuliani X (2000) The impact of requirements volatility on the
software development lifecycle. In: Proceedings of the International Conference on
Software Theory and Practice, Beijing, China, pp.19 27

62. Zowghi D, Nurmuliani X (1998) Investigating requirements volatility during software
development: research in progress. In: Proceedings of the 3rd Australian Conference on
Requirements Engineering. Geelong, Victoria, pp.14 21

Author Biography

Barbara Paech holds the chair “Software Engineering” at the University of Hei-
delberg. Untill October 2003 she was department head at the Fraunhofer Institute
Experimental Software Engineering. Her teaching and research focuses on meth-
ods and processes to ensure quality of software with adequate effort. For many
years she has been particularly active in the area of requirements and usability en-
gineering. She has headed several industrial, national and international research
and transfer projects. She is spokeswoman of the special interest group “Require-
ments Engineering” in the German computer science society.

Tom Koenig received his MSc in computer sciences from the University of
Kaiserslautern, Germany. He has been working as a scientist at the Fraunhofer In-
stitute Experimental Software Engineering (IESE) since 2003, in the department
of Requirements and Usability Engineering. His work areas include e-government
and requirements engineering, more specifically elicitation and specification of
requirements, as well as business process modeling. He is currently involved in
several research and transfer projects in these areas.

452 Paech, Koenig, Borner and Aurum

Lars Borner has studied computer science at the University of Dresden from Oc-
tober 1998 till October 2003. Since December 2003 he has been a staff member of
the “Software Engineering” chair at the University of Heidelberg.

Aybüke Aurum is a senior lecturer at the School of Information Systems, Tech-
nology and Management, University of New South Wales. She received her BSc
and MSc in geological engineering, and MEngSc and PhD in computer science.
She is the founder and group leader of the requirements engineering Research
Group (ReqEng) at the University of New South Wales. She also works as a visit-
ing researcher in National ICT, Australia (NICTA). She is on the editorial board
of Journal of Requirements Engineering published by Springer. She edited three
books, including “Managing Software Engineering Knowledge” and “Value-Based
Software Engineering”, and published over 70 articles. Her research interests in-
clude management of software development process, software inspection, re-
quirements engineering, decision making and knowledge management in software
development. She is on the editorial boards of Requirements Engineering Journal
and Asian Academy Journal of Management.

20 Requirements Engineering: Solutions and Trends

Christof Ebert and Roel J. Wieringa

Abstract: This last chapter of the book describes solutions and trends in the disci-
pline of RE. Starting from a wrap-up of what was presented throughout this book,
it suggests a framework of requirements engineering and indicates what current
solutions are available in this framework. Beyond providing a short overview of
the state of the practice, this chapter also summarizes current trends in RE. Four
trends are evaluated, namely the growing usage of commercial off-the-shelf com-
ponents and systems and how RE activities need to be adjusted; the evolving focus
on product lifecycle management and the need to collaborate amongst very het-
erogeneous communities; the wish to learn and to share experiences on effective
ways to implement RE in an organization and the growing interest in requirements
engineers’ skill sets. We finally provide an outlook into where requirements engi-
neering is heading for.

Keywords: Systems engineering, Implementing requirements engineering, Prod-
uct life cycle management, COTS

20.1 Introduction

Requirements engineering (RE) is the branch of systems engineering concerned
with the desired properties and constraints of software-intensive systems, the goals
to be achieved in the software’s environment, and assumptions about the environ-
ment. It deals with these aspects of systems engineering from the problem analysis
stage to the system implementation and maintenance stages. RE is both a problem-
oriented and a solution-oriented discipline. As a problem-oriented discipline, RE
interfaces with systems engineering in that it analyzes the software problems that
exist in the socio-technical system in which the software is to play a role. Prob-
lem-oriented RE borrows from product management and psychology; it deals with
goals to be achieved, the stakeholders who have these goals, and the problems to
be solved within given business constraints. As a solution-oriented discipline, RE
interfaces with software engineering in that it specifies the desired functions, qual-
ity attributes, and other properties of the software that is to be built or assembled.
Because both views of RE are valid, RE is a discipline that maps needs to solu-
tions (see also Chap. 1).

In this last chapter of the book we take a solution-oriented view of RE. Thus,
we describe solutions and trends in the discipline of RE. This chapter is not so
much backwards looking or trying to provide a tutorial summary, but rather indi-
cating what’s next and what’s relevant in the discipline of RE.

We first describe a common framework of solution-oriented RE. This frame-
work covers the activities of collecting, analyzing, allocating, specifying, verify-

454 Ebert and Wieringa

ing and managing requirements. Within this framework we embed a description of
currently successfully used processes and methodologies. A short summary of the
mainstream tools and their usage is included to provide concrete guidance.

Beyond providing a short overview of the state of the practice, this chapter also
summarizes current trends in RE. These trends indicate close collaboration be-
tween industrial needs and research at both universities and enterprises. We look
into the growing usage of commercial off-the-shelf components and systems and
how RE activities need to be adjusted. The second major trend is the evolving fo-
cus on product lifecycle management (PLCM) and the need to collaborate
amongst very heterogeneous communities. PLCM with respective engineering
workflow support facilitates collaboration across the boundaries of companies
(e.g., suppliers of components amongst each other and with integrators) and across
countries and regions (e.g., offshoring). We discuss the needs and what solutions
are practically available. Another trend we observed is the wish to learn and to
share experiences on effective ways to implement RE in an organization. We dis-
cuss the needs and what solutions are practically available. Another trend we ob-
served is the wish to learn and to share experiences on effective ways to imple-
ment RE in an organization. We describe current best practices to introduce RE,
both the processes and the underlying tools. A fourth trend is the growing interest
in requirements engineers’ skill sets. In the context of large systems, a require-
ments engineer must be able to identify and understand problems related to policy
planning and business strategy, marketing and finance, systems integration, and
product development. Academic programs alone cannot create and shape these
skills. They must be acquired through years of practice and reflection on effective
practices in various contexts. Different answers are available starting from guided
skill evolution up to certification trials.

A last section provides an outlook into how we portray the evolution of the RE
discipline. It rounds off this book insofar as it summarizes many of the described
open issues and needs that we still face to better integrate RE into the successful
inception, definition, creation, marketing and sales of innovative software-driven
products and solutions.

20.2 A Requirements Engineering Framework: Available
Solutions

To fit risks and solutions to a comprehensive understanding of requirements engi-
neering, let us briefly summarize key terminology and from there derive a frame-
work of existing solutions.

A requirement is a “condition or capability needed by a user to solve a problem
or achieve an objective” [18]. Requirements are typically broken down into differ-
ent types that are implemented and traced with different techniques (Fig. 20.1).
We distinguish process versus product requirements. Amongst the product re-
quirements we classify functional requirements and nonfunctional requirements
(also called quality attributes). For the product-related requirements we can see a

20 Requirements Engineering: Solutions and Trends 455

second dimension, namely internal (or development-oriented) versus external (or
user-oriented) requirements. The on-line dictionary of computing is more to the
point, claiming “a common feature of nearly all software is that the requirements
change during its lifetime” [13].

Requirements

Process
- Cost
- Marketing

- Lead time
- Distribution
- Organization

- Documentation

Product

Functional Nonfunctional

for User
- User interface
- Use cases

- Services

for Developer
- Architecture
- Load balancing

- Power supply

for User
- Performance
- Reliability

- Usability

for Developer
-Testability
- Maintainability

- Libraries and tools

Requirements

Process
- Cost
- Marketing

- Lead time
- Distribution
- Organization

- Documentation

Product

Functional Nonfunctional

for User
- User interface
- Use cases

- Services

for Developer
- Architecture
- Load balancing

- Power supply

for User
- Performance
- Reliability

- Usability

for Developer
-Testability
- Maintainability

- Libraries and tools

Fig. 20.1 A classification of different types of requirements

Requirements engineering is the systematic approach to collecting, specifying,
analyzing, verifying, allocating, tracing and managing the requirements (func-
tional, non-functional, process) of the system, and establishing and maintaining an
agreement between the customer/user and the project team on the changing re-
quirements of the system (Fig. 20.2).

A problem to be dealt with by RE is that requirements are uncertain. That’s al-
most by definition, which is captured by an old requirements analyst slogan, “I
know it when I see it”. These uncertainties are increasing in fast changing mar-
kets, as we observe in various industries. Requirements uncertainties originate
from various causes, such as cognitive limitations (i.e., users find it hard to imag-
ine the product and state their requirements and their opinions about their own re-
quirements evolve by the very exercise of requirements elicitation) or changing
circumstances so that requirements change (e.g., introducing the system changes
the situation too, and therefore changes requirements!), but yield similar results.
Projects are delayed and do not fulfill the original expectations.

The discipline of RE is heavily impacted by this uncertainty. It explains why
RE is not as “precise” and “well-bounded”, as for instance, software testing or
project management.

A clear relationship between requirements management and project success has
been reported since the 1970s from various empirical research and surveys, typi-
cally putting insufficient requirements management (covering both development
and change management of requirements) on top of the list of factors contributing
to project failures [19, 36, 6, 32, 27] (see also Chaps. 18 and 19).

456 Ebert and Wieringa

Requirements

Engineering

collection analysis allocation

tracing / change management

specification / verification

Requirements

Engineering

collection analysis allocation

tracing / change management

specification / verification

Fig. 20.2 The activities of requirements engineering

Handling software requirements represents an ill-defined problem [5] because
within a software system, requirements are not fully known until it is practically
used [27]. However, not managing this problem results in requirements instability
[5, 7], which means project delays [19, 36, 6, 32]. Typical results from poor RE
are insufficient project planning, continuous changes in the project, delays, con-
figuration problems, defects, and overall customer dissatisfaction due to not keep-
ing commitments or not getting the product they expect (see also Chaps. 2 and
11).

As a recent example, the 2003 Chaos report of IT project failure shows that,
based on data from over 13,000 cases, only 34% of IT projects were considered
successful [36]. 15% of projects were complete failures and the balance of 51%
was what is referred to as challenged. Challenged in this context means, a project
overruns on time and/or cost. Data from the evaluated projects showed that only
52% of the originally allocated requirements appear in the final released version.

We can identify several risks that characterize RE [23]:

Overlooking a crucial requirement
Inadequate customer representation
Modeling only functional requirements
Not inspecting requirements
Attempting to perfect requirements before beginning construction
Representing requirements in the form of designs

Following the above described framework of RE (Fig. 20.2; see also Chaps. 2,
4, 5 and 6), and based on our experiences in systems engineering projects, these
risks are most effectively addressed during collection, analysis and specification
by:

Categorizing requirements (i.e., grouping requirements, permitting a higher-
level understanding of relationships and dependencies, consistently applying a
specification template).

20 Requirements Engineering: Solutions and Trends 457

Organizing requirements (i.e., using automated tools to assist in understanding
and tracing of requirements from inception to allocation to delivery, applying
strict change management)
Prioritizing requirements (i.e., determining the order of consideration based on
criticality of need and level of associated risk, implementing in increments fol-
lowing the priorities, de-scoping those requirements with lowest priority).

Many standards have been set up over the last two decades to facilitate a sound
RE. Life cycle processes are currently driving the underlying specific standards.
ISO 15288 summarizes the system life cycle processes, while ISO 12207 is the
standard for software life cycle processes. Both ISO and IEEE currently work
heavily to aligning underlying process standards with these life cycle standards.
From an overall process viewpoint formal approaches to guarantee quality prod-
ucts have lead to international guidelines (e.g. ISO 9001-2000) and currently es-
tablished methods to assess the product/solution engineering processes of suppli-
ers (e.g. SEI CMM and CMMI). The systems engineering process is described in
IEEE 1220. Distinct standards for requirements management, such as IEEE 1233
and IEEE 830, focus on generic techniques to ensure that customer needs are re-
corded and traced throughout the development life cycle. The key standard cover-
ing nonfunctional requirements and classifying generic quality attributes is ISO
9126.

RE research has focused on two major questions, namely how to extract the
“right” requirements and how to deal with changing requirements (see also Chap.
8). We find several approaches how to extract the right requirements, such as:

Elicitation and analysis techniques (e.g., creating scenarios and use cases, in-
terviewing different stakeholders, extracting requirements from an existing sys-
tem, synthesizing requirements from user needs and behaviors, uncovering re-
quirements by experiments or prototypes, determining problem frames) [6, 14,
26, 16, 17]
Psychological techniques for identifying weaknesses (e.g., context-free ques-
tioning, workshops, analyzing different viewpoints and interaction schemes, in-
teraction theory, protocol analysis) [16, 35]

For dealing with continuous requirements changes, the key techniques are:

Evolutionary life cycles and prototyping (e.g., JAD, incremental development,
various agile methods) [30]
Sensitivity analysis (i.e., determining the localization, scope and impacts of
changes, portfolio management) [10, 5, 33]
Practical risk management (e.g., traceability, impact analysis, improved main-
tainability, modularity, isolating features that are subject to changes) [3, 22, 32,
8, 27].

These solutions are, however, not widely used in industry. In fact, we realized
in our own projects but also in discussions during previous RE conferences that
except of iterative development, none of above-mentioned techniques really made
it to mainstream usage. Using a specific elicitation technique from the broad range

458 Ebert and Wieringa

described before is insufficient due to the inherent weaknesses of each single
technique [14, 17]. In fact, experienced analysts use them rather mixed, but with-
out specific rules one could pass on to practitioners [17].

Table 20.1 A selection of tools for RE [25, 39, 41], sorted alphabetically

Tool Supplier Key features Entry-
level cost

Caliber-
RM

Borland
(www.borland.com)

Lifecycle-oriented, large systems, trace-
ability, TestDirector, Borland Star
Team, MS Project

High

C.A.R.E. Sophist Technologies
(www.sophist.de)

Database-like view, requirements-
centric, UML-Tools, MS Office, Lotus
Notes

Low

DOORS Telelogic
(www.telelogic.com)

Integrated management, large projects,
PLM, UML-Tools, XML support, MS
Project, API available. Imports re-
quirements in a big variety of formats.
Strong interfaces into third-party
change management tools

High

IRqA (In-
tegral
Requisite
Analyzer)

TCP Sistemas & In-
geniería
(www.tcpsi.es/irqa/in
gles/irqa.htm)

Requirements classification, OO analy-
sis and ER, traceability, test support,
XML support, MS Office

Medium

Reqtify TNI-Valiosys
(www.tni-
valiosys.com)

Traceability and impact analysis, text
processing, office tools, Simulink

Low

Requisite
Pro

IBM Rational
(www.rational.com)

Change management, traceability, MS
Word, XML support, Rational Rose,
TeamTest, MS Project, Internet.

High

RM Trak RM Trak
(www.rmtrak.com)

Entry-level requirements management,
MS Office, SQL interface

Low

RTM
Work-
shop

Integrated Chipware
(www.chipware.com)

Multiuser distributed projects, model-
ing, UML-Tools, test tools, SQL, API
available, information modeling, inter-
faces to third-party reporting tools.
Stands out with support of multiple dis-
tributed repositories.

High

Truereq Truereq
(www.truereq.com)

Lifecycle-oriented, team-centric, entry
level, XML support, Web browser
forms

Low

Vital
Link

Compliance Automa-
tion
(www.complianceaut
omation.com)

Database-centric, large projects, SQL,
API available, Adobe Framemaker

Medium

Evolutionary techniques combined with repetitive risk management, specifi-
cally prototyping, which was always claimed as the best way to deal with re-
quirements uncertainty, are rarely used in practice [36]. Changes are addressed

20 Requirements Engineering: Solutions and Trends 459

primarily ex post facto [5]. This is increasingly done with good tools support to
visualize and manage requirements changes [8, 16, 17].

In line with [14, 26] we claim that poor usage of available solutions in RE is of-
ten a problem of technology transfer. A single technique as it is mostly described
in above references will not help because it remains unclear for the practitioner
how to introduce it and what (other) environmental characteristics she needs to
observe. We will come back to this problem when discussing the requirements en-
gineer’s skill set. This book tries to support effective technology transfer towards
better project results with improved RE.

Numerous tools are available to support RE. They fall into three main areas:

1. Requirements databases (i.e., requirements should be managed in a secure,
managed data store)

2. Change management tools (i.e., assuring the process of change management is
a workflow process whose stages can be defined and information flow between
these stages partially automated)

3. Traceability management tools (i.e., automated retrieval of the links between
requirements and from requirements to other product or project artifacts)

Table 20.1 lists some selected tools. It provides the current supplier (supplier
names change sometimes, but tool names typically remain), a URL, some key dis-
tinguishing features as the authors sees it, and an entry-level cost (based upon
[39]). This is a non-exhaustive and subjective selection and description, which the
authors compiled with own experiences. The difference between low and high cost
is at least one order of magnitude. Some low-cost tools offer free licenses for re-
stricted purposes. A more complete reference to such tools can be found in the
Internet resources at the end of the chapter. The market at the high end is equally
split between Telelogic and IBM-Rational [15]. Together with Borland these three
vendors represent the majority of the market with around 75% of the installed base
[25]. We are beginning to see an evolution of these RE tools towards integrating
with other development tools (i.e., so-called IDEs) and moving towards product
life-cycle management (PLM) from a systems engineering perspective.

At a minimum, these RE tools must support:

Capturing of individual requirements and identification
Classifying requirements and sorting
Associating requirements with further information, such as different type of re-
quirements (customer, system, software) or with test cases
Baselining and configuration management (e.g., to preserve time-stamped
status summary)
Open application interfaces to connect to other tools

At the high-end one expects also traceability support, not only between differ-
ent types of requirements in the same database (see above), but also with various
other artifacts (e.g., design documents, test cases, project plans).

Most companies start their own RE tool support on the basis of word process-
ing tools or spreadsheets. The evolution then often goes towards a “small data-

460 Ebert and Wieringa

base” in a second step. When demands are still growing companies realize that
any home-made tool will ultimately mean lots of recurring effort, and they start
looking to commercial tools. Changing that late in the usage life-cycle often
means that their own users (i.e., system analysts, product managers, software en-
gineers) ask to preserve all this nice home-made functionality. Though vendors of
commercial tools normally like such tailoring, as it generates recurring income for
them, we recommend being careful and selecting a commercial tool that is close to
the typical usage needs and then not to change it, except for report layout and rout-
ing or status parameters. This keeps lifecycle cost of such tool manageable.

20.3 Trends in Requirements Engineering

This section explores four current trends in RE, namely:

1. The growing usage of commercial off-the-shelf components and systems and
how RE activities need to be adjusted.

2. The evolving focus on product life cycle management and the need to collabo-
rate amongst very heterogeneous communities.

3. Effectively introducing RE into an organization, both the processes and the un-
derlying tools.

4. The growing interest in requirements engineers’ skill sets.

20.3.1 Commercial Off-the-Shelf Components and Systems

A commercial off-the-shelf (COTS) product is a commercially available piece of
software that a software project can reuse and integrate into their own products
[37]. It includes (packaged) open source software (OSS), which gains increasing
relevance in the COTS domain [31]. COTS products are developed for a market,
and users of COTS products are engineers, who want to incorporate the COTS
product as a component into their own system. A system containing COTS com-
ponents is called a COTS-based system, and a development project of a COTS-
based product is called COTS-based development. A COTS-based system may it-
self be a product to be brought to the market, or it may be a system developed and
used by one particular customer. Today, most development is COTS-based, and an
increasing number of development projects consist only of combining COTS prod-
ucts.

The motivation for doing COTS-based development, i.e. for using products de-
veloped elsewhere in your own product, is that this speeds up development of the
COTS-based product and therefore reduces the time to market. Also, COTS-based
products are easier to develop, because some or even all of the components come
ready-made.

However, software engineering principles for COTS-based systems differ from
those of custom-made systems. Experience shows that there are frequent changes
in COTS products, over which the COTS user has little control, because they are

20 Requirements Engineering: Solutions and Trends 461

driven by the market, not by any particular user. An average COTS product goes
through a new release every 8 to 9 months, with support provided only for the lat-
est three releases [1]. The changes in each release may cause the functionality of
the COTS product to evolve to what you don't need, and this in turn may force you
to write costly wrappers around the COTS source code. Maintaining this code is
three times as expensive per line of code than maintaining custom code [29].
Some reasons for this are that the maintainer has to deal with fixes and patches for
the COTS product and with glue that connects it to other systems, and with as-
sumptions made by the COTS product that are not satisfied by the COTS-based
system in which it is incorporated [31].

We distinguish such vendor, or supplier-driven changes fully from modifica-
tions as part of the product development, inside the project. Unfortunately, and es-
pecially with availability of source code (e.g., with GNU and other license
schemes), some big customers have a nasty habit of taking a COTS product and
asking for so many modifications that the risk is driven up immeasurably. We
suggest that practitioners who use COTS software need to be acutely aware that
making modifications increases the risks to levels that may approach new software
developments. This has to do with reducing maintainability, portability or effi-
ciency. In this type of environment, requirements and risks need to be managed
with high levels of discipline. Recently, research in COTS-based software engi-
neering has picked up steam. The Software Engineering Institute has started a re-
search program on COTS-based systems [4].1 In 2002, the International Confer-
ence on COTS-Based Software Systems was started2 and in 2003, the
International Workshop on Requirements Engineering and COTS Components
was started.3 This research has yielded first insights in the peculiarities of RE for
COTS-based systems, which are summarized here.

The basic insight is that it makes no sense to first collect all requirements for
COTS products, and then search for a product that satisfies these requirements [2,
4, 24]. No product is going to satisfy all these requirements, because they are all
developed for a market and will not satisfy requirements that are specific to the
COTS-based system your are developing. And they certainly will not be adapted
to specific requirements, if they are not already built in. Open source software
might be exceptional here, as it allows building specific functions, since the source
code is openly available (however, see above our warnings not to do so despite
the possibility). Given the general kind of system you need, such as a middleware
system or a database management system, all COTS products on the market will
more or less provide the same functionality with more or less the same quality.
These products compete with each other and products in the same market niche
and will have similar properties.

The way to approach requirements is to first determine them on a general level,
specific enough to determine the market in which you will search for the product,
but without specifying detailed functions and quality attributes. Once you know in

1 http://www.sei.cmu.edu/cbs/overview.html
2 http://www.iccbss.org/
3 http://www.lsi.upc.es/events/recots/04/general.html

462 Ebert and Wieringa

which part of the market to search, you compare the available products on the
properties that discriminate them, not on the properties that they all share. There-
fore, you need to specify only the detailed requirements that differentiate the prod-
ucts from each other.

Once you have specified the general requirements of a COTS product, three
processes are performed in parallel [4]:

Requirements engineering
Market research
Architecture design

These three processes will mutually influence each other. Requirements deter-
mine the direction in which we look for products, but conversely, a requirement
that is not satisfied by any of the products on the market will be dropped. The ar-
chitecture of the COTS-based system constrains which COTS products we can
use, but conversely, an architecture that is incompatible with any of the products
on the market, will be changed. Continuous trade-offs occur between these three
processes. Maiden, Ncube and Moore [24] recommend sorting products on dis-
criminating requirements. Each requirement will determine an ordering of COTS
products. Different requirements may determine different orderings, but standard
multi-attribute decision theory should help to select a COTS product that best fits
the requirements. However, Torchiani and Morisio [37] observed in several pro-
jects that in practice, developers seldom use requirements to select COTS prod-
ucts: Familiarity with the product or with its generic architecture was the overrid-
ing factor in the selection. Furthermore, the architecture of the COTS-based
system was often decided upon based on the COTS products to be incorporated,
and this then placed constraints on the detailed requirements of the COTS-product.
These findings may be explained by the type of COTS-based system development
projects studied by Torchiani and Morisio: large infrastructural systems such as
integrated phone and Internet voice services, workflow management systems and
a web-based search service with a public as well as private interface. More re-
search is needed on the different kinds of COTS-based systems and interplay be-
tween requirements, architecture and market in COTS-product selection for these
systems.

An initial classification is given by Lauesen [20], which we slightly enhance for
completeness:

Standard COTS applications, software components or frameworks that are used
without any change. They are typically embedded into a broader system and the
value-add stems from specific tailoring, adaptations, parameterizations or
wrapping the system into a more complex functionality. Examples include us-
ing standard-middleware with enhancements (e.g., MySQL), using specific
components of a standard middleware to build a new system (e.g., with Dot-
GNU, J2EE, .NET or CORBA) or embedding a standard operating system into
an embedded system (e.g., Linux). In this category one has to accept what is
delivered by the supplier and ensure that new releases are carefully checked be-
fore accepting as a baseline for the product built on top of them. It is helpful not

20 Requirements Engineering: Solutions and Trends 463

to expect for such mainstream components or middleware specific evolution
streams, or there will be uncontrollable dependencies on specific vendors.
In-house COTS-based systems are developed for and used by one organization.
The developers of this system look around for COTS products to use in this
system. Examples are the infrastructural systems studied by Torchiani and
Morisio. Community source components (i.e., proprietary software for a closed
community developed and maintained following the OSS principles) fall into
that category.
Complex COTS-based products are software products to be brought on the
market. The COTS-based product will itself contain a number of COTS prod-
ucts obtained from other software vendors. An example is a requirement man-
agement tool that incorporates a database management system.
COTS-based application systems are COTS applications obtained from soft-
ware vendors, customized for a single company and integrated with other ap-
plications used by the company. Examples are ERP systems and banking sys-
tems.
Tendered COTS-based systems for public organizations are large systems ob-
tained through a tender process. In the EU, public acquisitions above a certain
amount (roughly 150,000 Euro) have to be selected through a public tender
process. Although these may fall under one of the categories above (COTS-
based systems or COTS-based application systems), their size places them in a
different category as far as requirements engineering is concerned.

A useful requirements acquisition and product selection technique for COTS-
based application systems is the task and support method [21,22]. In this style, one
does not support product requirements at all: One specifies the tasks to be sup-
ported by the products and, possibly, specific problems to be solved by the prod-
uct. These descriptions are then sent to COTS product suppliers, who then indicate
how they would support the tasks and solve the problems. This nicely focuses the
selection process on the product properties that discriminate the products, and in
particular on those differentiating properties that are relevant for the customer, be-
cause they solve his problems. It also directs the attention of the supplier to his
customer's needs and it may surface ways of using the product not immediately
apparent to the customer but known to the supplier from other customers of the
product.

Tendered COTS-based systems for public acquisition have special problems
due to their size. They are too large to ask for a trial version, because installing
them may take weeks and learning how to use them may take additional weeks.
Discovering experiences of other users does not help either, because different in-
stallations have too many differences. Lauesen [20] proposes to let the customer
state soft requirements in the form of the goal to be achieved by the system, rather
than the precise functionality required of the system. The vendor is then asked to
explain how his system would achieve this goal. This is a generalization of the
task and support method and has the same advantages. Another property of COTS
product selection is that they have fuzzy boundaries [20, 24]. A COTS product
may require additional products to be able to run, and it may require changes in in-

464 Ebert and Wieringa

terfaces of other systems already used by the customer. In addition, required
COTS product functionality, even at a general level, may have fuzzy boundaries.
Should it use the middleware owned by the client or should it include its own
middleware? Should we implement different functionalities by means of different
COTS product, each the best of its breed, or should we implement all required
functionality using one big COTS product? In the first case we may have serious
interfacing problems and we must deal with evolution of different COTS products
with a different release frequency. In the second case we may get a suboptimal so-
lution for each business goal, and are tied to one supplier. The choice where to put
the COTS product boundary is not made in advance of a market search, and the
customer cannot therefore give clear-cut requirements to the vendor. The solution
proposed by Lauesen [20] is, again, to state business goals only and let the vendor
suggest possible solutions to these goals.

A final property of COTS–based system development that we discuss here is
that the vendor of the COTS product vendor finally incorporated in the
COTS based system, obtains a monopoly on part of the COTS-based system [38].
Even if a vendor claims to comply with open standards, it can keep the details of
API interfaces secret so that the customer is hooked to this supplier [20]. Two so-
lutions were observed in practice by Torchiani and Morisio [37]:

The customer can buy shares in the COTS product supplier, to the extent of
completely taking over the supplier.
If there is a single large customer in a niche market, then this customer can ex-
ert considerable influence on suppliers who would otherwise behave monopo-
listically.

20.3.2 Product Life Cycle Management

RE is a process throughout the product life cycle. No wonder that product life cy-
cle management (PLM) is increasingly linked with RE. The major drivers for em-
bedding RE into PLM are:

Mastering requirements uncertainty and requirements changes
Managing configurations and product lines
Bringing multiple disciplines together for effective collaboration

Requirements change heavily during the product life cycle. The traditional rule
of thumb indicates a change rate 1 3% per month in terms of effort related to the
allocated requirements [10, 19, 30]. This translates into more than 30% overall re-
quirements change rate in terms of total project effort for a project duration of two
years. With product managers, analysts and engineers becoming paranoid about
these ever-lasting requirements changes, we observed an increasing duration of
the analysis (or elaboration) phase of a project that is, before the actual project
start. This syndrome of trying to resolve all uncertainties and fixing all require-
ments (which of course is hardly possible and a waste of lead time), often called
“paralysis by analysis” contributed to project duration and cost, but did not really

20 Requirements Engineering: Solutions and Trends 465

improve much on the side of reducing or coping with requirements changes. We
observed the following root causes:

Requirements management and specifically formal elicitation and analysis
techniques are perceived as overly “technical”. Stakeholders, especially outside
the engineering domain, have little understanding for the process steps and in-
termediate results.
Uncertainties tend to “disappear” at the interface of marketing, product man-
agement and engineering. This is typically caused by the need to achieve con-
sensus over well-defined and accessible contents. Often the prevailing attitude
is to start and fix it later, resulting in delays as we will see.
Customers have not much time and resources to actively contribute to projects
beyond what is necessary for contracting and monitoring. Agile and evolution-
ary techniques thus have their limits in getting sufficient customer support.
Due to not getting all requirements specified in sufficient detail, engineers and
project managers tend to guess actual needs and thus give wrong answers to
uncertainties.
Product managers and project managers focus on those risks that are meaning-
ful to them. Certain types of risks (e.g. marketing) are not dealt with as they
cannot be approached with product or project management “language”.
Prototyping and evolutionary development is considered theoretical and thus
rarely practiced except the domains of user interfaces and hardware innova-
tions. It is considered difficult to plan (i.e. when will the prototyping cycles be
closed?) and it creates configuration risks. What we increasingly see is plain it-
erative development as a form to mitigate risks of delays.

Projects

Requirements at
start of project

Requirements at
end of project

0

5

10

15

20

25

30

35

A B C E F G H I J K L M N O P

R
e

q
u

ir
e

m
e

n
ts

Projects

Requirements at
start of project

Requirements at
end of project

Requirements at
start of project

Requirements at
end of project

0

5

10

15

20

25

30

35

A B C E F G H I J K L M N O P

R
e

q
u

ir
e

m
e

n
ts

0

5

10

15

20

25

30

35

A B C E F G H I J K L M N O P

R
e

q
u

ir
e

m
e

n
ts

Fig. 20.3 A project survey of 15 projects with respective requirements evolution during
project duration

As a practical example let us look into a concrete snapshot of 15 projects in a
single product line that were developed in 2002 (Fig. 20.3). We found that 73% of
a project’s requirements are changing in average (median: 50%). Typically one
third of the changes are of technical background (e.g. a specification was infeasi-
ble for design), while two thirds are of commercial background (covering the ma-
jority of requirements uncertainties). The perceived flexibility of software-driven
products often results in an amount of variants and local evolutions which make it

466 Ebert and Wieringa

impossible to synchronize development activities, be it corrective or additive. The
absence of clear linkages to business value invites over-engineering that is, im-
plementing functions that may only rarely be used or adding excessive functions
that are not necessary to attain the desired business results.

Such over-engineering not only wastes resources, but more importantly, it pro-
duces a proliferation of variants and complexity, as each further enhancement has
undesired side effects with other features. We faced this evolution in a product
that was customized for a multitude of markets, but not synchronized in the way it
was customized. As each customization reused big portions of software in a white
box approach (i.e. minor internal changes to the reused components which are
embedded), any major change to the architecture would foster generic evolution of
the product creating huge overheads, specifically for retesting existing functional-
ity. No customer is willing to pay these costs. The only resolution to this problem
is to stubbornly stick to the principle that engineering change requests must be
based on allocated requirements. To support management of variants we recom-
mend product line scenarios where some of the tools we recommend later on can
help with managing the baseline of reused and reusable requirements as well as
those that are market-specific. Linking those requirements to test cases reduces the
overheads in managing the evolution of variants.

Software development involves profound technological knowledge, teamwork,
processes, methods and tools. To reduce complexity, it looks just as rational to put
all engineers at one place, share the objectives, agree on one process and technol-
ogy to apply, and let the project run. Reality is different, especially in times of
global development of solutions with lots of different players, components, inter-
faces, and anything else that could possibly increase complexity.

Today’s global software engineering, with short project cycles, interacting
product lines, and product and solution development from many sources, has ad-
vantages but also drawbacks. While the positive side accounts for faster cycle
time, time-zone effectiveness or reduced cost in various countries, we should not
close our eyes in front of the severe disadvantages. For instance, working in a
globally distributed project means overheads for planning and managing people. It
means language and cultural barriers. It creates jealousy between the more expen-
sive engineers being afraid of losing their jobs, while forced to train their much
cheaper counterparts.

As an example, let’s look into the development of web-based information sys-
tems (see also Chap. 15). Especially requirements elicitation of web-based sys-
tems shows differences to more conventional approaches as described earlier in
this chapter. Often requirements for web-based information systems are “created
from scratch” by developers themselves rather than being discovered through the
normal process of identifying system stakeholders and gathering their require-
ments. Such ad hoc elicitation along the way of development necessarily has life-
cycle impacts. Evolutionary life-cycles dominate, often used in an explorative ap-
proach. The development cycle for a web-enabled application is short, i.e. only
few months and highly iterative [9], which leaves very little time for any formal
requirements gathering and their consolidation. In such compressed timeframe,
adaptations of web applications to different geographical locations, cultures or

20 Requirements Engineering: Solutions and Trends 467

varying knowledge and background (i.e., skill level) of prospective users, is done
by explorative development. Based on such explorative product life-cycle, web-
based information systems first prototypes a running solution which serves as
simplified executable for exploring more requirements or constraints. Unfortu-
nately, such iterative approach without a full view on architectural impacts and
business rules to govern future usage often yields inadequate quality, ultimately
[9].

Of growing importance in such ever-changing environments is effective col-
laboration across the entire product life cycle. To benefit from improved business
processes, the different functions of the enterprise plus potential external partners
(e.g., outsource manufacturing) need to agree on processes, tools and practices.
They need to apply common access to knowledge, performance metrics and deci-
sion-making protocols. They need to share information, communication, and un-
derlying resources. The barriers to such harmonization and cooperation are not to
be underestimated. They range from language barriers to time zone barriers to in-
compatible technology infrastructures to clash-in product line cultures and not-
invented here syndromes. An obvious barrier is the individual profit and loss re-
sponsibility that in tough times means primarily to focus on current quarter results
and not to invest in future infrastructures. Incumbents perceive providing visibility
a risk, because they become accountable and more subject to internal competition.

Practitioners do not look for heavy process documentation, but rather for proc-
ess support, that exactly describes what they have to do at the moment they have
to do it. Modular process elements must be combined according to a specific role
or work product to be delivered. Still the need for an organizational process, as de-
scribed by CMM L3 is strongly emphasized and reinforced.

The need for workflow management stems from the heterogeneity of underly-
ing engineering tools and detailed processes that overlap considerably, such as
logon procedures, document management and product data management. Given
current focus on PLM and collaborative product commerce (CPC), specifically
from an end-to-end perspective, software engineering processes must integrate
with interfacing business processes. For instance, configuration management for
software artifacts belonging to a single product line and reused in a variety of
products must relate to the overall product data management (PDM). Or software
defect corrections must relate to overall service request management as part of the
customer relationship management (CRM) solution.

While PLM tools interwork with many HW design and manufacturing tools,
they only recently started to look into specific software engineering environments.
Examples include MatrixOne4, Agile5 or PTC6, which try to interwork with spe-
cific software engineering tools, such as Telelogic’s Synergy7 or IBM Rational’s
Clear-DDTS8. More generic enterprise resource management (ERM) would not

4 http://www.matrixone.com/
5 http://www.agile.com
6 http:// www.ptc.com
7 http://www.telelogic.com/products/synergy
8 http://www.rational.com/products/clear_ddts

468 Ebert and Wieringa

sufficiently support software engineering on the more specific workflows. CRM
environments have recently integrated with defect tracking tools, but more is
needed to also support requirements engineering end to end (e.g., a defect often
results in a new requirement). Their scope is limited to various front-end proc-
esses. However, all mentioned tools could be extended to facilitate interworking,
as they are event-driven.

Interworking with legacy and proprietary tools can be achieved by deploying an
object request broker to give to such tools an open interface. However, the trans-
actional interface between such tools often does not adequately support the fine-
grained integration of data thus avoiding as much as possible replication of data.
For example, the product life cycle view must include data from the PDM system,
software documentation system, the defect tracking system, the personnel data-
base (for the actors), the process assets library, and the authorized tools list, all in
one view. For that reason Eclipse9 is increasingly used as reference platform to in-
tegrate existing (legacy or proprietary) tools with COTS tools.

The availability and empowerment of key stakeholders must be ensured
throughout the product life cycle for effective RE. Three roles must be present in
this core team, namely a product manager, a marketing manager and a technical
project manager. They represent not only the major internal stakeholders in prod-
uct or solution development, but also sufficiently represent the sales and customer
perspective. This core team must have a clear mandate to “own” the project. We
found that if such core team is available but underlying commitments are not base-
lined, it is of no value. Life cycle management based on RE protects and guides
both the supplier and the customer. The supplier should:

Express disagreement and unrealistic conditions openly
Offer compromise approaches, once needs are understood
Have a signed contract with requirements: Agree on clear and reasonable ac-
ceptance criteria
Include a software key that will operate after the date of contracted software
acceptance
State in the contract that the supplier owns the software until final payment
Clearly agree on liabilities and support after handover

For the client or customer it is relevant to:

Clearly state that payment will be provided only for systems that meet the
agreed upon functionality
Require milestone presentations of progress for continued funding
provide a realistic and precise expectation of functional and nonfunctional re-
quirements (e.g. reliability)

The product life cycle must be mandatory for all projects. This implies that it is
sufficiently agile to handle different types of projects. Standardized tailoring of the
life cycle to different project types with predefined templates or intranet web

9 http://www.eclipse.org

20 Requirements Engineering: Solutions and Trends 469

pages simplifies usage and reduces overheads. Its mandatory elements must be
explicit and auditable. Some online workflow support facilitates ease of imple-
mentation and correctness of information. Gate reviews (decision reviews) must
be well prepared. They must not result in lengthy meetings, but are rather prepared
with online checklists so all attendees are prepared and can decide in short time
the go/no go for next phase. Project information should generally be available
online.

A useful product life-cycle has to acknowledge that requirements may never be
complete and may indeed be in a “continuum” state. Sometimes requirements be-
ing purposefully incomplete (see Chap. 16) and RE must deal with such situation.
The product life-cycle should guide with defining stopping criteria, i.e., determin-
ing what is good enough or stable enough.

Requirements must be evaluated by the entire core team to ensure that different
perspectives are considered. While each single requirement must be justified to
support the business case and to allow managing changes and priorities, a Pareto-
based evaluation is recommended to focus on where it makes sense. For instance,
the heaviest requirements in terms of cost or impact or business value are selected
and analyzed more specifically on the value proposition. Often a business case is
done and impact analysis is done for a group of requirements. If those start chang-
ing later on, it is very difficult to assess what is really necessary and what was a
lower priority or maybe only an enhancement to existing features.

Underlying financial figures must be correct. This holds for both sides of the
equation, cost and value. Often business cases are flawed on the value side and
never followed through to see if a single requirement actually contributed as much
to value creation as was expected by those who asked for it.

Impact analysis is based on requirements, as well as priority setting and portfo-
lio management. What are the requirements? How do they relate between markets
and correlate with each other? What is their impact? What markets have asked for
it and for what reason? Are they necessary for a solution or just inherited from an
incumbent approach perhaps becoming obsolete in meantime? To address these
questions requirements must be documented in a structured and disciplined way.
They must be expressed allowing both technical as well as business judgment.
Any incoming requirement should be reviewed with the product catalog and
global product evolution in mind to also evaluate marginal value versus marginal
costs.

By definition all requirements must be accessible online together with other
relevant product and project information. Different tools can be used, starting with
simple spreadsheets. We have seen agile project using one spreadsheet to manage
the entire project. Such a spreadsheet has all requirements, their status, effort, re-
sponsible and mapping to increments, test cases and work products. Reporting can
be generated directly from such spreadsheet. For bigger projects we recommend
online accessible vaulting systems to trace requirements to work products. A re-
quirements database helps with this effort. Contents include requirements, imple-
mentation status of each requirement, priorities, estimated cost, value assessment,
mapping to releases (especially future releases to communicate the roadmap) rela-

470 Ebert and Wieringa

tionships between requirements, and links to related implementation and test de-
tails.

Having a project plan that is directly linked with requirements is mandatory for
all projects. If there is a change to plan or contents, both must be synchronized and
approved by the entire core team.

Data quality of project information and requirements lists is key. A minimum
quality assurance is necessary to check for completeness and consistency of re-
quirements and the traceability to work products. Inconsistencies and errors in re-
quirements are often found best by testers because they think in terms of testabil-
ity. If there are inconsistent or vague requirements, they should be corrected on
the spot. If detected during the project, it is a requirements change, which has to
be approved by the core team. Project information builds an online accessible his-
tory database to base further impact analysis and project planning upon.

Properly expressed requirements form a high-level abstraction of the functional
and nonfunctional behavior of the product. Formalizing such a description helps in
identifying reusable aspects of systems at a level independent of any particular so-
lution or component structure.

In product-line scenarios with many variants, requirements must be explicit per
release and still linked with each other across the entire family of domain and ap-
plication projects. To provide access to what solutions already exist for a given
need, it is mandatory to keep all requirements and their variants in one database.
For managing requirements, features and portfolio, we use interacting tools. A tai-
lored commercial tool should be used in such scenario for the feature catalogue,
traceability and release mapping.

20.3.3 Introducing Requirements Engineering into an Organization

A persistent issue for requirements practitioners is about introducing RE in their
organization. This problem has not yet been studied in academia nor been system-
atically reported about, so our remarks here can only be based upon anecdotal evi-
dence and our own experience.

One open issue is how we can classify organizations with respect to their RE
maturity. A large aerospace corporation developing a new satellite system for tele-
com applications has a different level of maturity with respect to requirements en-
gineering than a small company looking to buy a customer relationship manage-
ment system. Our remarks below are independent from the type of organization,
but we here note that an empirical study of maturity levels in different kinds of or-
ganizations is indispensable to overcome with the problem of introducing RE into
any individual organization.

The standard ingredients of any business case have been neatly summarized by
different sources, such as Firesmith [12] or Ebert et al. [10]:

Different empirical studies performed in variety of organizations time and
again show that the percentage of defects in a final product that originated dur-

20 Requirements Engineering: Solutions and Trends 471

ing RE is estimated around 50%, with low estimates around 40% and high es-
timates around 60%.
Defects introduced in RE have an impact on almost all other development and
deployment activities, including scoping the system, system architecture, de-
sign and implementation, testing, and nonfunctional properties such as security
and safety, reuse and training.
Repairing defects introduced during RE cost at least 10 times as much to repair
once the system is fielded than they cost to repair during RE itself. Some esti-
mates go up to 100 or 200 times as much
Reworking requirements defects in a development project may take 40% of the
total project cost, with some estimates going up to 80% of the project cost.

Despite these estimates, RE is often viewed as a foreign activity outside the in-
terests of engineers, and as a waste of time by managers. If requirements are speci-
fied at all, then requirements management often goes the same way as documenta-
tion: An activity to be done later, when the “real work” is finished. Managers
often view RE as an unproductive activity distinct from development.

Strangely enough, the same perspective is shared by sales, marketing or product
management. RE clearly is an interdisciplinary engineering activity, and this often
adds to, rather than reduces, the difficulties with introducing a standard process
across a company. Often engineers and organizations familiar with the CMM will
approach RE as a process that is part of standard technical project management.
the difficulties arise latest when looking into the intergroup coordination aspects,
which are very heavy for RE. If not agreed with the sales function, there will al-
ways be tensions because engineers try to analyze before commitment, while sales
emphasizes flexibility and speed. Clearly shorted lead-time in industry is achieved
with very rigid RE processes, immature sales and product management organiza-
tions feel a defined and managed RE process as overhead. Training across the dif-
ferent organizational functions is key. Often only a dedicated orchestrated im-
provement project will help to overcome legacy perceptions on what RE is or
should be.

These and other observations motivate the claim that in order to introduce RE
in an organization, requirements engineers with their own skills set must be in-
cluded in a project, and that the practice of RE should have explicit and permanent
management support. Obtaining management support starts with awareness of the
arguments given above, but a real business case should also consist of a success
story in the form of a successful pilot project in the organization.

20.3.4 The Requirements Engineer’s Skill Sets

Recently, attention has grown for the skill set of requirements engineers. Stoewer
[34] places requirements engineering in the context of systems engineering and
identifies system engineering skills relevant for requirements engineers. Young
[40] summarizes the roles and skills of requirements engineering based on his ex-
perience in directing a large number of engineering processes. Both these propos-

472 Ebert and Wieringa

als are based on practice, and there is room for a more systematic study of roles
and skills of successful requirements engineers. Here, we give an initial list based
on these two sources and our own experience.

We distinguish technical skills, which are skills that can be learned and applied
in a reproducible way across different persons, from personal skills, which are
unique to each person. Both kinds of skills can be developed, but the development
of personal skills requires a reflection by the requirements engineer about one's
own person that is not needed for the development of technical skills.

Technical skills::

RE skills: The standard division of RE tasks in elicitation, specification and
validation is a useful frame to classify technical skills. To do elicitation, the re-
quirements engineer must master interview techniques, observation techniques,
etc. Specification requires skills in modeling, and validation requires skills in
empirical validation as well as formal validation. This list of skills is obviously
incomplete, but it gives an impression of what needs to be taught in any RE
curriculum.
Systems engineering skills: RE takes place in the context of a larger systems
engineering process, in which hardware and other software are developed and
in which business processes and organization structures may be changed or de-
veloped. Systems engineering skills include managing traceability, determining
priorities and performing trade-offs, product innovation, and system integration
skills.
Management skills: Requirements engineers must at least be knowledgeable of
a number of management skills, including policy planning, product strategy,
product marketing, financing, and project management.

Personal skills:.

Communication skills: Characteristic of every practicing engineer is the need to
communicate with engineers and domain specialists from other disciplines.
Communication across disciplinary boundaries may take up to 70% of an engi-
neer's time. For requirements engineers, this activity arguably takes up 100% of
their time. Skills needed to do this successfully include listening, questioning,
presentation skills and technical writing skills.
Cognitive skills: Requirements engineers are bridge builders, because they
must connect the world of the user with that of the system developer. This
means that they must be able to learn the outlines of a new knowledge domain
quickly. They must be able to handle large volumes of documentation and ab-
stract the essence from a mass of details. They need to build a holistic view of
the system and its context, and know when to omit details.
Social skills: Like all practicing engineers, requirements engineers work in
teams. But even more than other engineers, requirements engineers must close
differences and bring people with different backgrounds together. The require-
ments engineer must be a team player. At the same time, the requirements en-
gineer must be able to handle and smooth out conflicts, and be able to negotiate

20 Requirements Engineering: Solutions and Trends 473

requirements and their priorities with stakeholders that may have conflicting in-
terests.

20.4 Conclusions and Outlook: Where is Requirements
Engineering Heading?

This final section provides an outlook into how we portray the evolution of the RE
discipline. It rounds off this book insofar as it summarizes many of the described
open issues and needs that we still face to better integrate RE into the successful
inception, definition, creation, marketing and sales of innovative software-driven
products and solutions. The followings highlight several issues.

Better to predict changes to requirements on an individual level. Which re-
quirements are most volatile and at same time exposing the project to highest
risk? How can they be addressed by sufficiently flexible solution architecture?
Focus on value-oriented requirements engineering, i.e. improving the evalua-
tion of requirements within a business case from a portfolio management per-
spective. What is the business case behind the collected requirements? Is the
business case valid? What is the contribution of requirements to this business
case?
Reduce the time to project start (e.g., what is good enough for requirements
analysis? Which level of change is feasible to cope with in given scenar-
ios/markets?).
Introduce knowledge management techniques for simulative collection, evalua-
tion, modeling and retrieval of requirements and underlying decisions.
Further develop a systems engineering perspective in RE, covering for instance
the usage of commercial components, including a variety of partners or suppli-
ers, managing the quality delivered by such external partners, adapting systems
quality requirements as our business needs change.

To conclude this chapter, we briefly summarize the major focus points. First we
gave a framework on what is RE in the context of an evolving discipline. We
looked into some specific project risks as they materialize and frequently point
towards RE as being inadequate for professional software and system engineering.
Requirements elicitation was described as a major area that needs further im-
provement to better manage uncertainties and thus mitigate project risks. The ex-
ample of web solutions was discussed briefly to underline the need to deal with
uncertainties both in the dimension of product or solution usage and also in not
knowing stakeholders or potential users. To show where the discipline is heading,
we summarized and explained four current trends in RE, namely the growing us-
age of commercial off-the-shelf components and systems and how RE activities
need to be adjusted; the evolving focus on product life cycle management and the
need to collaborate amongst very heterogeneous communities; effectively intro-
ducing RE into an organization, both the processes and the underlying tools; the
growing interest in requirements engineers’ skill sets.

474 Ebert and Wieringa

References

1. Basili VR, Boehm BW (2001) COTS-based systems top 10 list. Computer, 34(5): 91 93
2. Boehm BW, Abts C (1999) COTS integration: plus and pray? Computer, 32(1): 135 138
3. Boehm BW (1988) A Spiral model of software development and enhancement. IEEE

Computer, 21(5): 61 72
4. Brownsword L, Oberndorf T, Sledge CA (2000) Developing new processes for COTS-

based systems. IEEE Software, 17(4): 48 55
5. Bush D, Finkelstein A (2003) Requirements stability assessments using scenarios. In:

Proceedings of 11th international conference on requirements engineering RE03, IEEE
Computer Society Press, Los Alamitos, USA, pp.23 32

6. Davis GB (1982) Strategies for information requirements determination. IBM Systems
Journal, 21(1): 3 30

7. DeMichelis G, Dubois E, Jarke M, Matthes F, Mylopoulos J, Papazoglou M, Pohl K,
Schmidt J, Woo C, Yu E (1997) Cooperative information systems: a manifesto. In: Co-
operative Information Systems: Trends and Directions, M. P. Papazoglou and G.
Schlageter (Eds), Academic Press, pp.315 363

8. Doernemann H.(2002) Tool-based risk management made practical. In: Proceedings of
International Conference on requirements engineering, RE02, IEEE Computer Society
Press, Los Alamitos, USA

9. Earl M, Khan B (2001) E-commerce is changing the face of IT. MIT Sloan management
Review 43(1): 64 72

10. Ebert C, Dumke R, Bundschuh M, Schmietendorf A (2004) Best practices in software
measurement. Springer, New York, Heidelberg

11. Ebert C (1997) Dealing with nonfunctional requirements in large software systems. An-
nals of Software Engineering, 3: 367 395

12. Firesmith, D (2003) The business case for requirements engineering. In: Proceedings of
11th IEEE International requirements engineering conference, September 2003, Mon-
terey Bay, California, USA. http://www.sei.cmu.edu/programs/acquisition-support/

presentations/firesmith/business-case/business-case.pdf
13. Free On-Line Dictionary of Computing. Accessed on 07 July 2004.

http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?query=requirement&action= Search.
14. Galetta DF, El Loudadi M (1995) L’effet de l’incertidue et des strategies de determina-

tion des besoins de l’utilisateur sur les projets d’informatisation. Canadian Journal of
Administrative Systems 12(1): 56 76

15. Gartner Dataquest: Market Share: Requirements Management, Worldwide, 2003. Avail-
able through www.gartner.com. Accessed 23 June 2004

16. Giesen J, Voelker A (2002) Requirements interdependencies and stakeholder prefer-
ences. In: Proceedings of international conference on requirements engineering, RE02,
IEEE Computer Society Press, Los Alamitos, USA

17. Hickey AM, Davis AM (2003) Elicitation technique selection: How do experts do it?
In: Proceedings of 11th International conference on requirements engineering RE03,
IEEE Computer Society Press, Los Alamitos, USA, pp.169 178

18. IEEE Standard 610.12-1990. IEEE Standard glossary of software engineering termi-
nology. IEEE, New York, NY, USA. ISBN 1-55937-067-X (1990).

19. Jones C (2001) Software assessments, benchmarks, and best practice. Addison Wesley,
Reading

20 Requirements Engineering: Solutions and Trends 475

20. Lauesen S (2004) COTS tenders and integration requirements. In Proceedings of 12th
IEEE International requirements engineering conference, 6-10 September 2004, Kyoto,
Japan

21. Lauesen S (2002) Software requirements: styles and techniques. Addison-Wesley, UK
22. Lauesen S (2003) Task descriptions as functional requirements. IEEE Software, 19(2):

58 65
23. Lawrence B, Wiegers K, Ebert C (2001) The top risks of requirements engineering.

IEEE Software, 18(6): 62 63
24. Maiden NAM, Ncube C, Moore A (1997) Lessons learned during requirements acquisi-

tion for COTS systems. Communications of the ACM, 40(12): 21 25
25. Meta Practice: Mastering the requirements of requirements management. Practice re-

port 2020. Available through www.metagroup.com. Accessed 16 April 2003
26. Naumann JD, Jenkins AM, Wetherbe JC (1983) The information requirements deter-

mination contingency model: An empirical investigation. University of Minnesota,
Minneapolis, MIS Research Center, Report pp.83 15

27. Parnas DL (1979) Designing software for ease of extension and contraction. IEEE
transaction on software engineering, 5(2): 128 137

28. Ramesh B, Jarke M (2001) Toward reference models for requirements traceability.
IEEE transactions on software engineering, 27(1): 58 93

29. Reifer DJ, Basili VR, Boehm BW, Clark B (2003) Eight lessons learned during COTS-
based system maintenance. IEEE Software, 19(5): 94 96

30. Royce W (1999) Software Project Management, Addison Wesley, Reading
31. Ruffin M, Ebert C (2004) Using open source software in product development: A

primer. IEEE Software, special issue on developing with open source software. 21(1):
82 86

32. Saarinen T, Vepsalainen A (1993) Managing the risks of information systems imple-
mentation. European Journal of Information Systems. 2(4): 283 295

33. Schmid K (2002) A comprehensive product line scoping approach and its validation. In:
Proceedings of 24th International conference on software engineering ICSE’02, IEEE
Computer Society Press, Los Alamitos, USA, pp.593 603

34. Stoewer, H (2003) Modern systems engineering-A driving force for industrial produc-
tivity. Keynote delivered at the 11th IEEE International Requirements Engineering
Conference (RE 2003), 8-12 September 2003, Monterey Bay, California USA

35. Strens MR, Sugden RC (1996) Change analysis: A step towards meeting the challenge
of changing requirements. In: Proceedings of the IEEE Symposium and Workshop on
Engineering of Computer Based Systems (ECBS’96), IEEE Computer Society Press,
pp.278 283

36. The Standish Group International Inc.: CHAOS Chronicles v3.0. http://www.standish-
group .com/chaos/toc.php. West Yarmouth, USA, 2003

37. Torchiani M, Morisio M (2004) Overlooked aspects of COTS-based development.
IEEE Software, 21(2): 88-93

38. Voas J (1998) COTS software: the economical choice? IEEE Software, 15(2): 16 19
39. Wieringa R, Ebert C (2004) Practical requirements engineering solutions. Guest editor

Introduction for special issue. IEEE Software, 21(2): 16 18
40. Young RR (2004) The requirements engineering handbook. Artech house publishers,

UK

476 Ebert and Wieringa

41. Yphise: Software Assessment Report: Requirements management tools. Executive Vol-
ume. Available through www.yphise.com. October 2002

Internet Resources

Requirements Engineering summary sites:
 http://www.shu.ac.uk/tfre/web.links.html
 http://www.cc.gatech.edu/computing/SW_Eng/hotlist.html#requirements
IEEE Task Force on Requirements Engineering
 http://www.shu.ac.uk/tfre/welcome.html
RENOIR (Requirements Engineering Network Of Int. cooperating Research groups):
 http://www.cs.ucl.ac.uk/research/renoir/
Requirements Engineering Journal: http://rej.co.umist.ac.uk/
Intern. Council on Systems Engineering Requirements Working Group:
 http://www.incose.org/rwg/
Guidance to select a requirements management tool:
 http://www.incose.org/toc.html, www.volere.co.uk/tools.htm
Self ranking of the tools suppliers versus a rich set of requirements:
 http://www.incose.org/tools/tooltax.html
Practical examples for requirements documents, inspection checklists, requirements priori-

tization:
 http://www.processimpact.com
Estimation tools (and more):
 http://www.methods-tools.com
COTS-based systems overview:
 http://www.sei.cmu.edu/cbs/overview.html
International Conference on COTS-Based Systems:
 http://www.iccbss.org/
International Workshop on Requirements and COTS Components:
 http://www.lsi.upc.es/events/recots/04/general.html

Author Biography

Christof Ebert is Alcatel’s director of R&D Processes and Tools, where he drives
world-wide R&D innovation and improvement programs. He also lectures at the
University of Stuttgart, Germany, on real-time systems. He is a senior member of
the IEEE and IEEE Software’s associate editor in chief for requirements.

Roel Wieringa is full professor of information systems at the University of
Twente, The Netherlands. He also chairs the Steering Committee of the IEEE In-
ternational Requirements Engineering Conference.

Index

activities, 358
Agile Methods, 309
ambiguity, 242
analytical approaches, 170
approaches, 24
architectural slicing, 126
business requirements, 8
challenges, 39
change management, 456
change management tool, 136
Chaos report, 454
classification scheme, 273
CMM, 455
CMMI, 455
cognitive skills, 471
collaboration, 147
collaborative product commerce, 465
commercial off-the-shelf, 458
communication skills, 470
conflict resolution, 147
constructive approaches, 170
COTS. See commercial-off-the-shelf
COTS-based development, 458
CPC. See collaborative product

commerce
CRM. See customer relationship

management
customer relationship management, 466
decision making, 265
decision support, 69, 271
dependency analysis, 118, 124
design documentation, 127
design rationale, 128
direct impact, 119
disambiguation, 252
duplicates, 225
elicitation, 20, 195
empirical software engineering, 426
empirical study, 248
enterprise architecture, 356
formalization, 248
functional requirements, 452
goal, 190
goal modeling, 191
goal specification, 195
IEEE 1220, 455
IEEE 1233, 455

IEEE 830, 455
impact analysis, 116
impact analysis strategies, 123
impact analysis tool support, 136
impact set, 118
implementing requirements engineering,

451
indirect impact, 119
inductive assessment, 409
inspection, 174, 244
interview developers, 128, 138
introducing requirements engineering,

468
ISO 12207, 455
ISO 15288, 455
ISO 9001-2000, 455
ISO 9126, 455
issues, 35
large-scale requirements management,

236
lean management, 311
linguistic engineering, 219
management involvement, 367
market-driven requirements engineering,

288
measuring quality of requirements, 372
meta-models, 48
metrics, 130
model transformation, 58
model-based assessment, 405
modeling, 48
natural language processing, 219
natural language requirements, 244
negotiation, 142
negotiation process, 144
negotiation tools, 153
nonfunctional requirements, 129, 452,

455
open source software, 458
OSS. See open source software
outlook, 471
PDM. See product data management
personal skills, 470
phases, 358
PLM. See product life cycle

management
portfolio management, 471

478 Index

primary change, 119
prioritisation, 359
process assessment, 405
process improvement, 295
process management, 311
process quality, 292
product data management, 466
product life cycle, 462, 467
product life cycle management, 462
product management, 451
product requirements, 8
product software, 289
program slicing, 126
project requirements, 9
propagation of change, 118
quality assurance, 170
quality attributes, 452
quality attributes of requirements, 378
quality characteristics, 165
Quality Function Deployment, 129
quality requirement, 129
reasoning with goals, 195
redundancy, 233
relationships, 222
release planning, 304
requirement coupling, 95
requirements, 18, 46, 162, 452
requirements analysis, 85
requirements dependencies, 95
requirements engineering, 330, 403,

451, 453
requirements engineering and

management via Rational Unified
Process, 390

requirements engineering decision, 265
requirements engineering practice, 440
requirements engineering process, 265
requirements engineering tools, 456
requirements engineering trends, 452
requirements engineers, 470
requirements evolution, 340
requirements instability, 454
requirements interdependencies, 97
requirements management, 9, 322
requirements prioritization, 69
requirements quality metrics, 386
requirements risks, 454
requirements selection, 292

requirements taxonomy, 4
requirements traceability, 96
requirements-driven impact analysis,

134
research, 455
research analysis, 266
ripple effect, 119
scenario, 193
scenario-based assessment, 130
secondary change, 119
SEI CMM, 455
side effect, 119
skill set of requirements engineers, 470
social skills, 471
software architecture, 119
software change, 116
software development process, 358
software life-cycle object, 118
software process improvement, 405
software product planning, 69
specification, 47
stakeholder analysis, 331
stakeholder win-win, 154
stakeholders, 6
state of practice, 416
survey, 19, 426
systems engineering, 451
tasks, 358
technical skills, 470
techniques, 24
technology transfer, 456
tools, 34, 456
traceability analysis, 118, 124
traceability management, 456
traceability matrix, 125
traceability semantics, 126
trade offs, 69
trends, 37
uncertainty, 453
usage scenario, 130
use-case model, 375
use-cases, 375
user, 189
value-oriented requirements

engineering, 471
variability, 198
variability management, 319
web-based information systems, 328

