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PREFACE

by PROF. Dr. VICTOR F.B. De MELLO
President International Society for Soil Mechanics and Foundation Engineering 1981—1985

In the continuum of persistent change which characterizes the professional
quest for scientific and engineering solutions, there is an absolute need for
pauses and movement by steps. Such a need is felt all the more intensely
as all social and technological factors have made the continuum of change
more and more accelerated.

Man, and especially the Engineer, cannot shy away from the discontinuity
imposed by a yes vs. no decision: maybe does not exist, because its imple-
mentation would be as maybe-yes or maybe-no. Both right and wrong,
however arbitrary and nominal, must be allowed to stand long enough to
permit the experience cycle to close, starting with a given set of data, hypo-
theses, calculations and decisions, and reaching a certain set of observations
on the constructed product under operational conditions.

Far too much of the modern production of technical literature is con-
ditioned by the eureka complex, especially in the respected advanced tech-
nological centers. Yet, Man’s and Society’s time cycle of experience is still
deeply conditioned by an animal life cycle, even if somewhat altered by
physiological and social evolutions. A house is intended to be a home, and
its life cycle should respect a span roughly between twenty and eighty
years; public works should serve a couple of generations. It is not only
materially but also socially that from the solutions of one generation or
period arise the plagues of a following generation.

The appropriately named book, Practical Problems in Soil Mechanics and
Foundation Engineering by Sanglerat, Olivari and Cambou, comes to fulfill
a very important need of thousands of practicing engineers in the geotech-
nical profession. It sets a modern, practical milestone for reference, and is
almost unique in doing this with its emphasis on calculations, the principal
working tool of engineers. The analysis and calculation procedures presented,
which encompass the great proportion of geotechnical problems, are simul-
taneously both the indication of accepted practice and the reminder that
such accepted practice is based on hypotheses: both the hypotheses and the
rules developed from them must always be clearly stated, not only so that
exceptions may be distinguished, but also so that the consequences of a
given practice may be used to establish a modicum statistical universe of
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case histories for judging the results achieved and for subsequent iterative
adjustment.

Solutions in engineering are immediately recognized to be wrong if a
patent or catastrophic failure ensues. Time, however, reveals the other
extreme of the histogram of failures of engineering solutions, when they
conceal a condition of being too safe and relatively less economical than
desirable or acceptable. The authors are to be thanked for having offered a
good up-to-date reference for appraising both ends of the spectrum. Engin-
eers should be enjoined to state clearly the design procedures according to
which their projects of a given period were calculated. This book augurs
well to stand as a guide for many, many such calculations.
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INTRODUCTION

Guy Sanglerat has taught geotechnical engineering at the “Ecole Centrale
de Lyon” since 1967. This discipline was introduced there by Jean Costet.
Since 1968 and 1970, respectively, Gilbert Olivari and Bernard Cambou
actively assisted in this responsibility. They directed laboratory work,
outside studies and led special study groups.

In order to master any scientific discipline, it is necessary to apply its
theoretical principles to practice and to readily solve its problems. This holds
true also for theoretical soil mechanics when applied to geotechnical engin-
eering.

From Costet’s and Sanglerat’s experiences with their previously published
textbooks in geotechnical engineering, which contain example-problems and
answers, it became evident that one element was still missing in conveying
the understanding of the subject matter to the solution of practical problems:
problems apparently needed detailed, step-by-step solutions.

For this reason and at the request of many of their students, Sanglerat,
Olivari and Cambou decided to publish problems. Over the years since 1967
the problems in this text have been given to students of the “Ecole Centrale
de Lyon” and since 1976 to special geotechnical engineering study groups of
the Public Works Department of the National School at Vaulx-en-Velin,
where Gilbert Olivari was assigned to teach soil mechanics.

In order to assist the reader of these volumes, it was decided to categorize
problems by degrees of solution difficulty. Therefore, easy problems are
preceded by one star (*), those considered most difficult by 4 stars (%kkx),
Depending on his degree of interest, the reader may choose the types of
problems he wishes to solve.

The authors direct the problems not only to students but also to the
practicing Civil Engineer and to others who, on occasion, need to solve geo-
technical engineering problems. To all, this work offers an easy reference,
provided that similarities of actual conditions can be found in one or more
of the solutions prescribed herein.

Mainly, the S.I. (Systeme International) units have been used. But, since
practice cannot be ignored, it was deemed necessary to incorporate other
widely accepted units. Thus the C.G.S. and English units (inch, foot, pounds
per cubic foot, etc.) have been included because a large quantity of literature
is based on these units.

The authors are grateful to Mr. Jean Kerisel, past president of the Inter-
national Society for Soil Mechanics and Foundation Engineering, for having
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written the Preface to the French edition and allowing the authors to include
one of the problems given his students while Professor of Soil Mechanics at
the “Ecole Nationale de Ponts et Chaussées” in Paris. Their gratitude also
goes to Victor F.B. de Mello, President of the International Society for
Soil Mechanics, who had the kindness to preface the English edition.

The first problems were originally prepared by Jean Costet for the course
in soil mechanics which he introduced in Lyon.

Thanks are also due to Jean-Claude Rouault of “Air Liquide” and Henri
Vidal of “Reinforced Earth’ and also to our Brazilian friend Lucien Decourt
for contributing problems, and to Thierry Sanglerat for proofreading manu-
scripts and printed proofs.



NOTATIONS

XIII

The following general notations appear in the problems:
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: Skempton’s second coefficient (sometimes A refers also to

cross-sectional area).

: value of A at failure
: footing width (sometimes B refers also to Skempton’s first

coefficient).

: soil cohesion (undifferentiated)

: effective cohesion

: reduced cohesion (slope stability)

: undrained cohesion

: consolidated-undrained cohesion

: compression index

: uniformity coefficient, defined as dgo /d ¢

: coefficient of consolidation

: soil particle diameter (sometimes: horizontal distance

between adjacent, similar structures, as in the case of sub-
surface drains)

: equivalent diameter of sieve openings in grain-size distri-

bution

: depth to bottom of footings (sometimes D refers to depth

to hard layer under the toe of a slope).

: void ratio (sometimes: e refers to eccentricity of a concen-

trated force acting on a footing)

: maximum and minimum void ratios

: Young’s modulus

: pressuremeter modulus

: friction ratio (static penetrometer test)

: acceleration due to gravity (gravie)

: shear modulus

: hydraulic head

: soil layer thickness (or normal cohesion: H = ¢ cot p)
: hydraulic gradient

: critical hydraulic gradient

: plasticity index

: coefficient of permeability

: active earth pressure coefficients due to overburden, sur-

charge and cohesion, respectively
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: relative density (€., — €)/(€max — €

: well radius (or polar radius in polar coordinate system)
: end-bearing on the area of a static penetrometer (cone
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: passive earth pressure coefficients

: active earth pressures perpendicular to a given plane
: passive earth pressures perpendicular to a given plane
: soil reaction modulus

: bulk modulus (K of soil structure, K,, of water)

: coefficient of earth pressure at rest

: width of an excavation

: length of an excavation

: coefficient of compressibility

: driving moment

! resisting moment

: bending moment

. porosity

: stability coefficient (slope stability problems)

: bearing capacity factors for foundation design

: concentrated (point) load

: limit pressure (pressuremeter test)

! creep pressure (pressuremeter test)

: uniformly distributed load (or percolation discharge)
: discharge (or load acting upon a footing)

: friction force of pile shaft (total skin friction force)

: end-bearing force of pile (total)

: ultimate bearing capacity of soil under a footing or pile
: allowable bearing capacity of a footing or pile

: radius of a circular footing (or radius of drawdown of a

well)

min)

resistance)

: curvilinear abscissa (or cross-sectional area of a thin wall

tube, or settlement) .

: cross-sectional area of a mold or a sample

: specific gravity

: degree of saturation

: time

: shear

: time factor

: porewater pressure

: degree of consolidation (or resultant of pore-water pressure

forces)

: rate of percolation
: volume
: weight of a given soil volume
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. water content or settlement
: liquid limit, plastic limit
: Cartesian coordinates, with Oz usually considered the verti-

cal, downward axis

: angle between orientations, usually reserved for the angle

between two crystal faces. Also used to classify soils for the
purpose of their compressibility from static cone penetro-
meter test data C.P.T.

: slope of the surface of backfill behind a retaining wall

(angle of slope)

: unit weight of soil (unspecified)

: soil particles unit weight (specific gravity)

: saturated unit weight of soil

: wet unit weight of soil

: unit weight of water = 9.81 kN/m?.

: dry unit weight of soil

: effective unit weight of soil

: shear strain, twice the angular deformation in a rectangular,

3-dimensional system

: angle of friction between soil and retaining wall surface in

passive or active earth pressure problems, or the angle of
inclination of a point load acting on a footing

: dynamic viscosity of water

: axial strains in a rectangular, 3-dimensional system

: principal stress

: volumetric strain

: angle of radius in polar coordinates system (sometimes:

temperature)

: Poisson’s ratio

: effective normal stress

: total normal stress

: normal stresses in a rectangular, 3-dimensional system
: major principal stresses

: average stress

: shear stress

: average shear stress

: shear stresses in a rectangular, 3-dimensional system

: angle of internal friction (undefined)

: effective angle of internal friction

: reduced, effective angle of internal friction (slope-stability

analyses)

: angle of internal friction, consolidated, undrained
: slope of a wall from the vertical
: auxiliary angles defined by sin w4 = sin §/sin ¢ and

sin wg = sin 8 /sin ¢
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: 3.1416
: distance from origin to a point in polar coordinate system
: angle of major principal stress with radius vector (plasticity

problems)

<« 3
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ENGINEERING UNITS

It is presently required that all scientific and technical publications resort
to the S.I. units (Systéme International) and their multipliers (deca, hecta,
kilo, Mega, Giga). Geotechnical engineering units follow this requirement
and most of the problems treated here are in the S.I. system.

Fundamental S.I. units:

length : meter (m)
mass : kilogram (kg)
time : second (s)

S.1. Units derived from the above

surface : square meter (m?)

volume : cubic meter (m3)

specific mass : kilogram per cubic meter (kg/m?)
velocity (permeability) : meter per second (m/s)
acceleration : meter per second per second (m/s?)
discharge : cubic meter per second (m?3/s)
force (weight) : Newton (N)

unit weight : Newton per cubic meter (N/m?)
pressure, stress : Pascal (Pa) 1Pa=1N/m?

work (energy) :dJoule(dJ) 1J=1Nxm
viscosity : Pascal-second™ Pa x s

However, in practice, other units are encountered frequently. Table A
presents correlations between the S.I. and two other unit systems encoun-
tered worldwide. This is to familiarize the readers of any publication with
the units used therein. For that purpose also, British units have been adopted
for some of the presented problems. '

Force (pressure) conversions

Force units : see Table B
Pressure units : see Table C
Weight unit : 1kN/m3 = 0.102 tf/m?3

*This unit used to be called the “poiseuille”, but it has not been officially adopted.
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TABLE A
Correlations between most common unit systems
Systeme International Meter-Kilogram system Centimeter-Gram-
(8.1.) (M.K)) Second system
(C.G.S))
units common  units common units common
multiples multiples multiples
Length meter (m) km meter (m) km cm m
Mass kilogram (kg) tonne (t) gravie* — g —
Time second (s) — second (s) - s -
Force Newton (N) kN kilogram force tf dyne —
(kgf)
Pressure Pascal (Pa) kPa kilogram force t/m2 barye bar
(stress) MPa per square kg/em? (10'S baryes)
meter (kgf/m2 )
Work Joule (J) kd kilogram meter tf.m erg Joule
(energy) (kgm) (107 ergs)

*Note that 1 gravie = 9.81 kg (in most problems rounded off to 10).

The unit weight of water is: v, = 9.81kN/m3 but it is often rounded off
to: v, = 10 kN/m3.
Energy units:

1Joule = 0.102kg.m=1.02x107% t.m
1 kgf.m = 9.81 Joules
1tf.m = 9.81 x10% Joules

Dynamic viscosity units:

1 Pascal-second (Pa.s) = 10 poises (Po).

British units:

1 inch = 0.0254m 1m = 39.3701in.

1 foot = 0.3048m 1m = 3.280 8 foot
1 square inch = 6.451 6 cm? 1cm? = 0.1555q. in.
1 square foot = 144sq. in. = 0.092 9 m?

1m? = 10.764 sq. ft.

1 cubic inch = 16.387 cm? 1cm3 = 0.061 Ocu. in.
1 cubic foot = 1728 cu. in. = 0.028 317 m?3

1m3 = 35.314 cu. ft.

1 pound (lb) = 4.449 7 Newton = 0.453 59 kgf

1 Newton = 0.2251b = 0.112 4 x 1073 sh. ton. (1 sh. ton. = 2 kip)

=1.003 x 10 ton.
11b/cu. in. = 270.27 kN/m3
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1 Ib/cu. ft.
1kN/m3

11b/sq. in. (p.s.i.)
1 Pascal

100 kPa

= 0.156 99 kN/m?

= 8.7 x1073 Ib/cu. in. = 6.37 Ib/cu. ft.
= 6.896 55 x 10° Pa

= 14.50 x 1075 p.s.i.

= 1 bar = 14.50 p.s.i.

XIX



TABLE B

Force units conversions

Value
of . .
1 d Newton Decanewton Kilonewton Kilogram Tonne Dyne
expresse force force
/ in—>
-1 3 - 107 10°

Newton 1 10 10 1.02 x10 1.02 X - .
Decanewton 10 1 1072 1.02 ) 1.02x 1077 100
Kilonewton 10° 102 1 , 1.02 x 10 1.02 X 10 10 s
Kilogram 9.81 9.81x 107} 9.81 X 10 1 10 9.81 x 10

force 2 3 8
Tonne force 9.81 x 10° 9.81x 10 9.81 10 y 1 . 9.81 x 10
Dyne 107° 107¢ 1078 1.02 x 10 1.02 X 10 1
TABLE C
Pressure units conversions
Value
£
1) xpressed Pa kPa bar hbar barye kg/em? kg/mm? t/m? cm of water atm.

in >

Pasca. 1 107 107° 1077 10 1.02x107° 1.02x107  1.02x107%  1.02x107 9.869x 1077
Kilopascal 10° 1 1072 107 10* 1.02x1072 1.02x107%  1.02x107" 10.2 9.869 x 1072
Bar 10° 102 1 1072 10° 1.02 1.02 x 1072 10.2 1.02x10° 09869
Hectobar 107 104 10? 1 10® 1.02x 102 1.02 1.02 x 10° 1.02x 10 9.869 x 10!
Barye 0.1 107 107¢ 1078 1 1.02x 10 1.02x107% 1.02x107° 1.02x107°  9.869 x 1077
kg/em? 9.81 x 10* 9.81 x 10! 0.981 9.81 x 10° 9.81 x 10° 1 1072 10 10° 0.968 1
kg/mm? 9.81 x 10° 9.81x1073 9.81 x 10" 0.981 9.81 x 107 10? 1 103 10° 9.681 x 10’
t/m? 9.81 x 10° 9.81 981x 10 9.81x10™* 9.81 x 10* 0.1 1073 1 10? 9.681 x 1072
cm of water 9.81 x 10 9.81x107% 981x10™% 9.81x107° 9.81 x 107 1072 107° 1072 1 9.681 x 107*
Atmosphere 1.0133x10°  1.0133x10% 1.0133 1.0133x1072 1.0133x 10° 1.033 1.033x 1072 1.033 x 10’ 1.033 x 10> 1




Chapter 1

PHYSICAL CHARACTERISTICS OF SOIL

Problem 1.1 Water content

A saturated clay sample has a mass of 1526 g. After drying, its mass is
1053 g. The solid constituant (soil particles) has a specific gravity of 2.7.
Find:

— water content, w
— void ratio, e

— porosity, n

— wet unit weight, v,
— wet density, Yn/Vw -
Take g = 9.81 m/s>.

Solution

The weight of the clay sample is: 1.526 x 9.81 = 14.97N.
The dry weight is: 1.053 x 9.81 = 10.33 N.
The weight of water contained in the sample is: 14.97 — 10.33 = 4.64 N.
The water content: w = weight of water/weight of dry soil = 4.64/10.33 =
0.45.
The void ratio is: e = volume of water/volume of soil particles.
Since the soil is saturated, the voids between soil particles are filled with
water and the volume of voids is equal to the volume of water (Fig. 1.1).
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Fig. 1.1.

The volume of water is:
weight of water 4.64
T 9.81 x 10°

= 0.473x103m3 = 473 cm3.
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The unit weight of the soil grains is:

Vs = Ts XYw = 2.7x9.81 = 26.5kN/m3 = 26.5x 10° N/m3.
Vw

The volume of the soil grains is:

weight of soil grains 10.33
8 B S - = 0.390x107% m® = 390cm?.
Vs 26.5 x 10°
. .. 473
The void ratio is then: e = — = 1.21.
390
i volume of voids 473 473
Porosityn = = = = 0.55.
total volume 473 + 390 863

The saturated unit weight v, , is:

weight of saturated sample 14.97 3 3
T = = — = 17.34 x10° N/m
volume of saturated sample 0.863 x1073

17.34 kN/m3.
The saturated density v, /v, = 17.34/9.81 = 1.77

Summary of answers
w = 0.45;e=1.21;n = 0.55; v, = 17.34 kN/m?3; v, /v, = 1.77.

*Problem 1.2 Water content, degree of saturation

A soil sample has a mass of 129.1 g and a volume of 56.4cm?3. Mass of
the soil grains is 121.5 g. The soil grains specific gravity is 2.7. Find:
— the water content, w
— the void ratio, e
— the degree of saturation, S,.
Take g = 9.81 m/s?.

Solution

The weight of the sample is: 0.1291 x 9.81 = 1.2665 N.

The weight of the dry soil (soil grains) is: 0.1215 x 9.81 = 1.1919 N.

The weight of the water is the difference between the two calculated weights:
1.2665—1.1919 = 0.0746 N

and the water content:

w = (weight of water)/(weight of soil) = 0.0746/1.192 ~ 0.063, or w = 6.3%.
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The void ratio is:

e = volume of voids (water + air)/volume of soil grains = V,/V, (Fig. 1.2)

— n
e —— ‘water — 7 I§,n

.~ Grains 7 .

Fig. 1.2,

The volume of voids is equal to the total volume less the volume of grains.
The total volume is known: 56.4 cm?.

weight of grains

The volume of the grains is: — -
unit weight ()

Since specific gravity

S.G. = v/ve = 2.7

wherey,, = pg = 9.81kN/m® and v, = 2.7 x 9.81 x 10> N/m?.
The volume of grains V is:

V, = 1.1919/2.7x9.81 x10®> = 4.5x10° m®> = 45cm?

and the volume of voids is:

V, = 56.4—45 = 11.4cm?.

The void ratio: e = 11.4/45 = 0.253, say e = 0.25.
The degree of saturation S, is given by:

volume of water/volume of voids

The volume of water: V, = weight of water/density of water
=0.0746/9.81 x 10°> = 7.6 x 10°m? or V,, = 7.6 cm?.
The degree of saturation is: S, = 7.6/11.4 = 0.666, say 67%.

Summary of answers:
w=6.3%;e = 0.25; S, = 67%.
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*Problem 1.3 Unit weight and density

A quartzitic sand weighs, in a dry condition, 15.4 kN/m?3. What is its wet
unit weight (v, ) and its wet density yn/v. When it is saturated?
Assume: specific gravity of sand: S.G. = 2.66, acceleration due to gravity:
g = 9.81 m/s?, unit mass of water: p = 103 kg/m3.

Solution
The unit weight of the sand grains is:

Y = 8.G.xv, = S.G.xpxg = 2.66-103-9.81 N/m3® = 26.10 kN/m?3.

A cubic meter of dry sand contains 15.40/26.10 = 0.59 m?® of grains and,
consequently, 1 — 0.59 = 0.41 m3 of voids.

When this sand is saturated, the voids are completely filled with water. The
weight of the void water is then:

0.41x7, = 0.41x9.81 = 4.02 kN.

The weight of a cubic meter of saturated sand is thus 15.4 + 4.02 = 19.42 kN
or v, = 19.42 kN/m3.
The density of sand v, /v, = 19.42/9.81 = 1.98.

Summary of answers:
Y = 19.42 kKN/m3; v, /v, = 1.98.

*Problem 1.4 Unit weight and density; saturation and water content

A clay sample is placed in a glass container. Total mass of clay sample and
container is 72.49g. After drying in an oven, the dry mass of the clay and
container is 61.28 g. The mass of the container is 32.54 g. A specific gravity
test by the picnometer method has determined that S.G. of the soil constitu-
ant is 2.69.

(a) Assume the sample to be saturated, find:

- the water content, w

~— the porosity, n

— the void ratio, e

— the wet density (Yn/Yw)

— the dry density (Ya/Yw)

— the buoyant density (Y/Yw ).

(b) Before drying the sample, its volume V was determined by immersing
the soil in mercury (V = 22.81 cm3). What is the actual degree of saturation
and what are the new values of the densities determined in (a)?

Solution
(a) The mass of water contained in the sample is: 72.49 —61.28 =11.21g.
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The mass of dry soil particles is: 61.28 — 32.54 = 28.74 g.
The water content w = weight of water/weight of dry soil = mass of water/
mass of dry soil = 11.21/28.74 = 0.39, w = 39%.

Porosity n = volume of voids/total volume.

Since the sample is assumed to be saturated, the volume of voids is equal to
the volume of water or 11.21 cm? (the unit mass of water is p = 1g/cm?).

V, = mass of dry soil grains/specific gravity of soil = 28.74/2.69 ~ 10.68cm?.

Therefore,n = (11.21)/(11.21 + 10.68) ~ 0.512, say n = 0.51.
The void ratio is e = volume of voids/volume of soil grains = 11.21/10.68 =
1.049, say e >~ 1.05.

Since the unit mass of water is 1 g/cm3, densities are of the same numerical
values as the unit masses. The mass of the wet sample is, therefore: 72.49 —
32.54 = 39.95¢.

The total volume of the clay sample is: 11.21 + 10.68 = 21.89cm?.

The wet unit mass is: 39.95/21.89 = 1.825g/cm?, say 1.83g/cm3, and the
wet density v, /v, thus 1.83.

The mass of the dry soil is 28.74g. Its dry unit mass is: 28.74/21.89 =
1.313 g/cm3, say 1.81 g/cm?3, the dry density v4/7,, = 1.31.

In order to obtain the buoyant density, the weight of water displaced by
the submerged mass of the soil grains must be subtracted from the soil
weight. The volume of the grains is 10.68cm?®. Their mass in water will
then be: 28.74 -10.68 = 18.06g, and the buoyant unit mass is: 18.06/
21.89 = 0.825g/cm?; say 0.83g/cm3. (Another, most commonly used way
of determining buoyant unit mass, is from the relation:
buoyant unit mass = saturated unit mass — unit mass of water).

(b) The volume of the samples being 22.31 cm?® proves that the clay is
not saturated. Part of the voids is filled with air. The air volume is: 22.31 —
21.89 = 0.42cm?.

The degree of saturation, S, = volume of water/total void volume.

The volume of water calculated in (a) is 11.21 cm?, the volume of void =
11.21 + 0.42 =11.63cm?® then S, = 11.21/11.63 = 0.963, say S, = 0.96.

The total soil sample volume is 22.31 cm?®. The corrected densities are
thus: for the wet density: v, /v, = 39.95/22.31 = 1.79 and for the dry den-
sity: va/vw = 28.74/22.31 = 1.29.

Since the concept of buoyant mass is applicable to saturated soils only, it
should not be calculated in this instance.

Summary of answers

(a) w = 39%;n = 0.51;e = 1.05; Yn/vw = 1.83; Ya/7w = 1.31;7'/v. = 0.83.
(b) S, = 96%; Yn/Yw = 1.79; Ya/7w = 1.29. (¥'/7. has no meaning in the
second part of the problem because the soil is not saturated.)
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*Problem 1.5 Grain-size distribution: effective diameter and Hazen’s
coefficient

A grain-size analysis is performed on 3500 g of dry sand from the Sadne
valley. No soil is retained on the 12.5-mm openings sieve. A nest of six sieves
is subsequently used to separate the various sand sizes. The openings of the
sieve meshes are, from top to bottom; 5, 2, 1, 0.5, 0.2 and 0.1 mm. The soil
masses remaining on each of the six sieves are 217g, 868g, 1095g, 809g,
444 g, 39 g, and the amount of soil in the bottom pan is 28 g.

Draw the grain-size distribution curve and find the effective diameter and
the uniformity coefficient (Hazen’s coefficient) of this sand.

Solution

Drawing the grain-size distribution curve consists of connecting the points
on a graph which represent the cumulative mass percentages passing down
to the sieves size. v

As shown in Fig. 1.3, the soil passing sieve n = soil passing sieve (n — 1)
minus the soil retained on sieve n, or T,, = T,, -y — R,,, where T, is the
weight passing sieve n.

]

Sieve {n~-1)

Sieve n

i
1
1
{
[}
'

e, e

Nest of sieves

Fig. 1.3. A nest of sieves.

Since the initial sieve (12.5-mm openings) retained no soil, T, = 3500¢.

The soil retained on the top sieve of the nest is 217 g, therefore T, =
3500 —217g = 3283g, T3 = 3283 — 868¢g = 2415, and so on.

A table, such as the one shown below, is constructed to give the calculated
values of the percents passing. The values in the last column are plotted on a
semi-log grid (see Fig. 1.4).
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TABLE 1A

Sieve Sieve openings Soil retained Soil passing Percent passing
no. (mm) (g) (s)

1 12.5 0 3500 100

2 5 217 3283 94

3 2 868 2415 69

4 1 1095 1320 37.7
5 0.5 809 511 14.6
6 0.2 444 67 1.92
7 0.1 39 28 0.80
Rest — 28* —

*The masses retained should always (very nearly) add up to the amount of the whole
sample tested.

]

The Hazen coefficient, or uniformity coefficient is, by definition C,
dgo/dio- From Fig. 1.4, the 10% passing corresponds to a diameter of d
0.37mm (effective diameter) and d¢ = 1.60 mm. Therefore, dy/d;, =
1.60/0.37 = 4.3.

The sand is well-graded since its coefficient is larger than 2.

I

Summary of answer
Effective diameter, d,, = 0.37 mm; Hazen’s coefficient d¢,/d ;o = 4.3.

*Problem 1.6 Classification H.R.B.

Atterberg limits and sieve tests were performed on five soil samples ident-
ified in Table 1B as a through e. Classify the soils according to the Highway
Research Board Classification (H.R.B. ).

TABLE 1B
Sample Atterberg limits Passing (%)
wi, wp 2mm 0.4 mm 80 um
a — - 97 59 0.1
b 24 16 99 93 73
c 28 17 99 76 57
d - — 84 8 1
e 23 16 100 85 28
Solution

The H.R.B. classification is summarized in Table 1C.
From this data, the soils can be classified as follows.



TABLE 1C

Summarized H.R.B-classification

Less than 35% passing 80-U sieve

More than 35% passing 80-U sieve

Aja Ay Aj Aryq  Ayps Ay Ay Ay As Ag Ars A
Percent passing:
2-mm sieve <50
0.4-mm sieve <30 <50 =51
80-um sieve <15 <25 <10 <35 <35 <35 <35 >36 =36 =36 =36 =36
N—— e
Characteristics of portions
passing the 2-mm sieve:
— plasticity index <5 no test <10 <10 =11 =11 <10 <10 >=11 >11 =11
— liquid limit no test — <40 =241 <40 =41 <40 =41 <40 =41 =41
— group index 0 0 0 <4 <8 <12 <16 <20 <20
\__\/——/
— general name cobbles fine mixture of silty gravel or silty soils clayey soils
gravels sand clayey gravel with silty
sands or clayey sand

9'T WATd0dd
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Sample a. (1) The percent passing the 80 um = 0.1%, the soil must be
classified as granular soil. (2) The percent passing 0.4 mm is more than half,
it is 59%. The soil is a fine sand of type A; (non plastic).

Sample b. (1) The percent passing the 80 um: 73% > 35%; it is therefore
a fine-grained soil. (2) The plasticity index I, = wy —w, =24 —16 =
8 < 10%: the soil is silty. (3) The liquid limit w;, = 24 < 40%: the classifi-
cation is type A,4: a silt.

Sample c. (1) Percent passing 80 um: 57% > 35%: a fine-grained soil. (2)
plasticity index: I, = wy, —w, = 28 —17 = 11%: a clayey soil. (3) wy, =
28 < 40%; this soil is of type A4, clay.

Sample d. (1) Percent passing 80 um: 1% < 35%: a coarse-grained soil.
(2) Percent passing the 0.4 mm: 8% < 30%. (3) Percent passing the 2 mm:
84% > 50%: this is the type A, soil, a gravelly sand.

Sample e. (1) Percent passing 80 um: 28% < 35%: a coarse-grained soil;
(2) Plasticity index I, = wy, —w, =23~ 16 =7 <10%. (3) Liquid limit
wy, = 23 < 40%: this is a type A,_4 soil, a silty sand.

Summary of answers
Samples a: type A;, b: type Ay, c: type Ag, d: type Ay, e: type Ay—4.

*kProblem 1.7 Atterberg limits

An Atterberg limits test on soil samples gave the results shown in Tables
1D and 1E.

TABLE 1D

Liquid limits (masses in grams)

Number of blows 17 21 26 30 34

Test nr. la 1b 2a 2b 3a 3b 4a 4b 5a 5b

Total wet mass 9.35 9.68 13.69 12.16 10.11 9.27 10.31 11.08 11.50 9.59
(soil + tare)
Total dry mass 8.79 9.20 11.35 10.19 8.67 8.02 8.84 9.42 9.78 8.31
(soil + tare)
Tare mass 7.11 7.97 4.05 4.05 4.10 4.07 4.10 4.10 4.07 4.05

TABLE 1E

Plastic limits (masses in grams)

1st test 2nd test
Container nr. A B E F
Total wet mass 6.32 6.56 6.54 6.36
Total dry mass 5.94 6.15 6.12 5.97
Tare mass 4.06 4.10 4.07 4.05
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Calculate the liquid limit wy, and the plastic limit w, of the soil. What is
the plasticity index? Compare the results of wy, with those given by the
following (approximate) mathematical relation: wy, = w (N/25)°-121,

Classify the soil in accordance with Casagrande’s A-line.

Solution
By definition,

weight of water mass of water

weight of dry soil mass of dry soil

The mass of water = total wet mass — total dry mass; the mass of dry soil =
total dry mass — tare mass.

The average of two values in each column is taken to make a new tabu-
lation as shown in Table 1F.

TABLE 1F

Liquid limits (wy,)

Number of blows 17 21 26 30 34

Test nr. la 1b 2a - 2b 3a 3b 4a 4b Ba 5b
Mass of water 0.56 0.48 2.34 197 1.44 1.25 1.47 1.66 1.72 1.28
Mass of soil 1.68 1.43 7.30 6.14 4.57 3.95 4.74 5.32 571 4.26
Water content 33.30 33.60 32.10 32.10 31.50 31.60 31.00 31.2 30.10 30.00
Averages =33.5 32.10 =~31.6 31.1 =30.1

The average values of the water contents are plotted against their corre-
sponding numbers of blows on the graph of Fig. 1.5. By definition, the
liquid limit w;, is the water content corresponding to 25 blows. So wy, =
31.6%, say 32%.

2 33 .

2 g

b=

g 32 S <

s W Ny

(0] —~

. b

o 3 1 \‘ﬁ

9 L N
N\};

30 L L
15 20 25 30 35

Number of blows

Fig. 1.5. Average water contents plotted against number of blows.
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Table 1G compares the values of w; obtained from the laboratory test
versus those obtained by the use of the empirical formula w;, = w(N/25)°-121,

The laboratory determination of w; entails an error estimated to be half
a point of the value of w; or: 0.5/31.6 = 1.6%.

The empirical method yields an average value of 31.6 with a maximum
error of 0.4 point. The two methods are acceptable to the same degree of
accuracy for this particular soil.

For the plastic limits, w,, Table 1H, similar to the previous one, can be

made up.

TABLE 1G

N N/25 (N/25)°12% w wy,
17 0.68 0.954 33.5 ~39
21 0.84 0.979 32.1 31.4
26 1.04 1.005 31.6 31.7
30 1.20 1.022 31.1 31.8
34 1.36 1.038 30.1 31.2
TABLE 1H

Plastic limits (wp)

1st test 2nd test
Container i.d. A B E F
Mass of water (g) 0.38 0.41 0.42 0.39
Mass of dry soil (g) 1.88 2.05 2.05 1.92
Water content (%) 20.2 20.0 20.5 20.3
Averages (%) 20.1 20.4

The plastic limit is 20%, the nearest whole number of the experimental
results. Therefore: w;, = 32%, w, = 20%, I, = wy, —w, = 12%.

Casagrande’s A-line graph shown in Fig. 1.6 with the results plotted on it
indicates that the soil is an inorganic clay of medium plasticity.

*kkProblem 1.8 Correction of a grain-size distribution curve: scalping and
mixing of soils

The sieve analysis of an alluvial gravelly soil sample gave the following size
distribution:
digo =100 d,s =50 dgs =20 dyg =10 d3s =95

dye = 2 dyy =1 dps =05 d;p=0.2 d3=0.08
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(1) Determine whether this material would meet the gradation require-
ment of an acceptable foundation soil as defined by the limit curves shown
in Fig. 1.7.

(2) It is desirable to reduce the sand content by 5% between 0.2 and 0.5,
which is, in its present quantity, considered detrimental for achieving proper
compaction. However, the percentages of sizes over 10 mm should not be
changed. Recommend a procedure to correct the grain-size distribution. All
values of d, are in millimeters.

Solution

(1) The grain-size distribution curves for the upper and lower limits as well
as the averages between them and for the soil sample are shown in Fig. 1.8.
The curve for the sample is contained entirely within the specified limits.

The soil is an acceptable material for the foundation. It is noticed how-
ever, that its grain-size distribution deviates substantially from the average
between the upper and lower limits and shows a ‘hump’ in the sand range
between d = 0.2 and d = 2. This hump is also evident in the histogram
plotted in Fig. 1.9, which shows the individual (as opposed to the cumu-
lative) percentages for each consecutive sieve-size opening range. The average-
curve histogram is also shown. The ‘hump’ in the sand fraction is seen to
occur more precisely between sieve sizes 0.2 and 0.5.

(2) To reduce the amount of sand in the range 0.2--0.5 by 5% may be
interpreted to mean that the quantity of the size corresponding to 15% must
be lowered to 10%. Furthermore, there is the requirement not to change the
percentages of sizes equal to or greater than 10 mm. In order to achieve this,
an amount p of a soil of an as yet undetermined grain-size distribution must
be mixed with the alluvial gravelly soil to bring the 0.2—0.5 range of the
mixture down to 10%.

For, let us say, 100 kg of gravel G, the weight p to be added, is:

15 = 10/100(100 + p) or p = 50Kkg.

Since all sizes equal to or greater than 10 mm amount to 25+ 30 + 7 =
62% of the weight of the original sample, it is necessary to add a pro-
portionate part, or 0.62 x 50 kg = 31 kg of material scalped from the gravel
retained on sieves 10 mm and above. This only leaves 50 — 31 = 19kg to
add a material that has the gradation of ‘fine gravelly sand’ (maximum
diameter smaller than 10 mm) but is coarse enough not to have sizes less
than 0.5 mm.

From the histogram of Fig. 1.9, it is evident that the amount of gravelly
sand in the range 0.5—5.0 mm is below the average gradation of the two
allowable limits. One possible solution to lower d;; would be to add 19 kg
of gravelly sand with a gradation between 0.5 and 5. Such a sand (with a
distribution d,go = 5mm, dyy = 2mm and d3;, =1 mm) is plotted in Fig.
1.10 as sand S. Hence Table 11 is obtained.
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Fig. 1.11 shows the corrected curve G' obtained on the data of Table 1J.
The boxed-in figures of that Table indicate that the requirements of the
problem have been met.

The corrected curve G' (see Fig. 1.11) is based on the following figures.

TABLE 11

Sieve Percent Constituent Weight for

size passing part 19 kg of sand S
5 100 10 1.9

2 90 60 11.4

1 30 30 5.7

0.5 0 Z2=19.0
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Fig. 1.10. Grain-size distribution of sand S.

TABLE 1J
Sieve Weight in kg at various Constituent %
sizes constituents for 150 kg of G’ parts (%) passing
100 100
256 x1.56 = 37.50 25%
50 75
30 x1.56= 45.00 30%
20 45
7x1.5= 10.50 7%
10 38
4.00 2.6%
5 35.4
4+19= 5.90 3.9%
2 31.5
1+114= 12.40 8.3%
1 23.2
0.5 4+5.7= 9.70 6.5% 167
. 6.
[ 10% ] o
6.00 4%
0.1 2.7
1.00 0.7%
0.08 2
3.00 2%
0
2 =150kg

The values in Table 1J show that the imposed conditions are verified:
% of dy, > 10 unchanged
% of 0.2 <d, < 0.5 decrease to 10%
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Conclusions. The natural gravel sample has to be scalped on a 10-mm size
screen. Retained material must be mixed with a gravelly sand soil meeting
the gradation of material S.

For each ton of gravel G, 310kg of the scalped material and 190 kg of
sand S will have to be added, to meet requirements. In actual practice the
solution of the problem could read: add 300 kg of scalped material for each
ton of gravel and add 200 kg of sand S for each ton of gravel G.

skk Problem 1.9 Compaction, Proctor diagram and saturation curve

(a) A modified Proctor-test yielded the following values for water content
and densities of a clayey gravel.

w(%): 3.00 4.45 5.85 6.95 8.05 9.46 9.90
YalYw: 1.94 2.01 2.06 2.09 2.08 2.06 2.05

Draw the Proctor compaction curve and determine values at optimum
condition. Calculate the degree of saturation corresponding to the optimum
condition, assuming the soil specific gravity to be 2.65.

(b) Calculate the percentage of air for a given porosity n and degree of
saturation S,. On the dry density-—moisture content graph, find the equation
of the curve connecting points of equal degree of saturation (or equal per-
centage of air voids). From this, determine the equation of the curve for
100% saturation. What are the characteristics of this curve?

(c) Consider an equilateral triangle ASW whose height is Aa or Ss or Ww.
Show that the conditions of a soil regarding the volumes of air, of soil grains
and of water can be represented by a point M located inside the triangle in
such a manner that the perpendicular distances from point M to each of the
triangle sides are proportional to three volumes, V,, V,and V.

—draw in the triangle curves of equal air- void percentage;

— what does the saturation curve of the Proctor-diagram represent?

— show that the set of straight lines from point S correspond to the lines
showing the state of soils for a constant degree of saturation;

— draw in this diagram the Modified Proctor-compaction curve of question
(a) above;

— on a random curve C, analogous to the test curve, consider two points M,
and M, so that M\ M, is parallel to AW. What can be said about the state of
soils at points M, and M, ?

Solution

(a) The test results may be plotted directly on a graph such as that of
Fig. 1.12. With the dry density as ordinate and water content as abscissa.
The coordinates at maximum dry density correspond to the optimum dry
density and optimum water content (the so-called modified Proctor line),
are: (Ya/Ywlopt = 2.09, Wy = 7.5%



AN
ANANAN
NN
AN
22 \
ANEAN
N\
N\ N
Rl AN
E e S AN
~ L7 N\
2 — -~
= 1 1_ 1. 7 i N
g’ 20 L ;/ \\ \‘\ N
2 S o S S S \ AN
3 . < A S I A AN N
< - AR R N \
T 9 ‘\ \\\ N
> o e b— SRR SR S - AN
e N
z I S ) A . NN .
- 1 - N N\
18 \\ \6,‘\\/
T — N Ny
S S RS N ‘\Shr .
7 SN R S i i - Y . &\\354
L R . A
) S S W S A B NN ;
A N N SN
N —— - RS N ‘,XA, ™~
16 ‘ < .
| N S S P * SN DS SR R _ I T M
B N e | i N B Wt ) *yg_j_j,[fff\\ \
! L ~
15 ) 1T [ A A N O A A T

0 5 10 15 20
Water content W (%)

Fig. 1.12. Modified Proctor Test, C.B.R mold. 74 ops = 20.9 kN/m?. Wopt = 7.5%. Test made on fraction 0—20 mm.

6'T NITd04d

12



22 PHYSICAL CHARACTERISTICS OF SOIL

€S Yw

Vs

Since W = and v4 = v,/(1 + e), then S, = (w/e) x (Ys/Vw)

and e = (7s/74) — 1.
1

Therefore: — = v4/(vs — Ya)-
e

At optimum condition the degree of saturation will be:

2.09
Sr(opt) = wopt X (’Ys/’Yw) X 'Yd(opt)/(')'s - 7d(opt)) = 7’5 X 2’65 X 2.65 _ 2.09

~ 74%

(b) Fig. 1.13 is a graphic representation of a unit soil volume, where ¢ =
volume ofair=1—nS, —(1—n) or a=n(—38,).

|
o b

Fig. 1.13.

The following relationships exist: ¢ = 1 —volume of grains —volume of water;
volume of grains = (weight of grains)/y, = v4/7;

volume of water = weight of water/y,,

weight of grains

= (weight of water)/(weight of grains) x = wva/vw)
thena =1 ——z‘i—wz‘i.
Vs Yw

Since for any soil at a particular moisture content 7s and v, are constants,
all points representing states of soil for a given percentage of air voids are on

one curve whose equationis 1 — Ya _ w Ya _ a (constant)

s Ve
Ya _ (A —a)y
Yo o YWty

or:
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This is a portion of a hyperbola with w >0, whose asymptote is the w-axis,
passing through w = 0, such that y4 = (1 —a)y, (see Fig. 1.14).
If a = 0, the volume of air is zero and the soil is saturated. The saturation

curve then is represented by the equation: L - .
Tw VW FVw
Note: The same result is obtained by determining the equation of a family
of curves of equal saturation S, :

volume of water

volume of air + volume of water
or, for a unit volume:
volume of water w(va/vw)

S, = =
r 1 — volume of soil grains 1—(va/lvs)

w S,
or: Y4 —+’7 = 8§,
w S

Ya _ S s

Yw wys +Sivw

The curves are also hyperbolas with the w-axis as an asymptote. Only the
sections corresponding to w > 0 have a physical meaning.
If w = 0, all the curves pass through point vy, (see Fig. 1.15).If S, = 1 in

A

Ts

T A

Ts

" -

T

(1-a;)

Ty=

|
g
1

Figs. 1.14 and 1.15
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the above formula, the full saturation equation is obtained which is identical
to the first one.

(c) A soil is a three-phase system defined by the respective fractional
volumes of air, water and soil adding up to a unit volume, so that:

V,+V, +V, = 1(Fig. 1.16)

Ingenera: 0SSV, <1,0<V,<1,0<V,<1.
1f we now consider an equilateral triangle and a point M inside that triangle
(Fig. 1.17) it can easily be shown that the sum of the perpendiculars from M

V. (
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to the three sides is equal to the height of the triangle. From Fig. 1.17:
Ha = Mm,

Km, = 1AK

PM, = PM+Mm, = KM+ Mm, = AP

KM, + KM + Mm,, = Mmg + Mm, = 1(AK + AP) = AH

hence: Mmg + Mm, + Mm, = AH+ Ha = Aa = 1.

If the height of the equilateral triangle is unity, the perpendiculars from M
represent the volumes of the three phases (soil, water and air).
— The curves of equal air void volume (V, = constant) are straight lines
parallel to the side SW (for example X' X).
— The saturation line of the Proctor-diagram is given by side SW (V, = 0).
— Let N be any point on line SM where the projections on SW and SA are na
and n,, , respectively, then the similarity of the triangles SMm,, and §'Nn,,
gives:
Ve SM Va SM
— = —— and - = .
Ve SN Va SN

By definition S, = V,, /(V, + V,,).

The degree of saturation represented by point N is:

g = v, _ (SM/SN)V, _ g
Y V. + V., (SM/SN)(V, + V,,) Y

The straight lines from S are therefore lines of equal degree of saturation
and we have: Vs = ’Yd/’)lsa Vw = (7d/’7w)w’ Va =1— (Vs + Vw)
Going back to the Modified Proctor-test results, Table 1K can be made up:

TABLE 1K

w% 3.00 4.45 5.85 6.95 8.05 9.46 9.90

YalYw 1.94 2.01 2.06 2.09 2.08 2.06 2.05

Vs 0.732 0.758 0.777 0.789 0.785 0.777 0.774
Va 0.058 0.089 0.121 0.145 0.167 0.195 0.203
Va 0.210 0.153 0.102 0.066 0.048 0.028 0.023

Fig. 1.18 shows the modified Proctor-curve in the ASW triangle.

Points M, and M, correspond to the soil states existing at constant
dry unit weight (see Fig. 1.19): (va)u, = (Ya)m, and, therefore, a constant
void volume. The voids are filled in part by incompressible water and com-
pressible air. However, the proportionate parts of water and air at M, and
M, are not the same:
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f Air
1 Air =
1 water | |1
ijvi;ter B
S REE R Y,
My Mz
Fig. 1.19.

— In order to improve the mechanical properties of the soil in condition M,
its water content will have to be increased to within a close range around the
optimum moisture content, then the soil will have to be compacted to in-
crease its dry unit weight;

~- on the other hand, in order to increase the mechanical properties of the
same soil at point M,, the moisture content should be decreased to a value
beneath w,,, (by drying) and the soil then compacted.

It will be noticed that the water content at M, is near 100% saturation.
Compacting this soil at that moisture content would tend to bring the soil
close to complete saturation and would likely lead to pumping, causing
excessive deformations of the soil. It would not be possible to use the com-
pacted material, for instance, for a stable pavement subgrade.
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*kProblem 1.10 Void ratio of an organic soil

Let us assume that the unit weights of the soil, v, ,and organic matters,
Yso are known. Then:

(1) What is the unit weight of the combined dry organic soil whose organic
content is Mo(*)?

(2) What is the void ratio of this soil, if it is known that its water content
is w and its degree of saturation is S,?

Solution

We use the following definitions (Fig. 1.20):

) . volume of voids
for void ratio: e = - —, (1)
volume of soil grains

. volume of water
for degree of saturation: S, = -, (2)
volume of voids

weight of water
for water content: w = - -, (3)
weight of dry soil

) dry organic matter weight
for organic content: My = - (4)
total dry sample weight

for a unit weight of dry soil we have: M, = weight of organic matter,
1 — M, = weight of mineral matter,

My /v = volume of organic matter,

(1--My)/Ysm = volume of mineral matter.

TR
Air
e ~—
Water Organic part

Hf "4 Soil part

1 ISR

Y Pt

Fig. 1.20.

*Note: The organic content is the percentage by weight, of the dry organic constituent
of the total dry weight of sample for a given volume,
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The total unit weight, v,, of the dry soil is the weight of a unit volume:

1
fy =
® (M0/750)+ [(1_M0)/7sm]
_ Yso X ¥Ysm
or: Ys =

M0(7sm ~ Yso) T Vo

v is a function of the form Y =a/(bx + ¢), meaning that the curve rep-
resenting Y as a function of M, is a part of a hyperbola (see Fig. 1.21). Since
Ysm (= 26.5 KN/m?) is always a greater value than 7,,, the curve, which is
only real for value where 0 < M, < 100%, decreases and varies between the
limit values v, , for M, = 0, and 7,,, for M, = 100% (see Fig. 1.21).

.
°)

Tsm

Ts

'O

.

!
|
{
0 o
0 M%)

Fig. 1.21.

The expression for S, can be transformed to give:

volume of water

volume of voids =

Sy
but we know also that:
weight of water (weight of dry matter)
volume of water = = wx
7W 7W
From (1):
w 1

Sr7w . (M0/7so) + [(1 _MO)/7sm]
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or:.
w_ . Yso Ysm
SeYw MO (Ysm ™ Yso )+ Tso

e:

Summary of answers

- Yso X Vsm
Mo(Yem — ¥s0) T ¥so

s

w « : ¥soVsm
S:%w  Mo(Ysm — Vso) T Yso

*kProblem 1.11 Hydrometer analysis

A hydrometer analysis is performed on a 2000cm? solution containing

50g of dry soil. The solution concentration at a depth of 5cm is 5g/l after
a sedimentation time of 80 minutes. Find:

(a) the maximum diameter d, of the particles at that depth and time;

(b) the percentage of dry soil of particles having a diameter equal to or
smaller than dy.

Assume n = 1 cPo (dynamic viscosity of water at 20°C) and v4/v,, = 2.65.

Solution

(a) The maximum diameter d, is that of the soil particles which at time
zero were at the surface of the solution and at time ¢t = 80 min., have trav-
elled 5 cm.

SETI
Ys —Yw ¢

In the C.G.S. system:

t =80x60=4800s
H=5cm
n=1cPo=1-10"2Po

Ys = 2.65 x 9.81 dynes/cm?
Yw = 1x9.81 dynes/cm?

dy, =

/ 18:102 x5
dy = '\/ . R 3
9.81(2.65 —1.00) x 4.8-10
(b) The density of the solution at 5 cm after 80 min. is:

= 3.4+1073 cm (or 34 um).
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5
+ —_—
5 (1000 2.65) x 1

r=2 = = 1.003
Yw 1000 x 1
The percentage of weight is:
V YYw 2000 2.65 x 1.00
y = ———(r—1) = X (1.003 — 1) = 0.19
DY Yw 50 2.65—1.00

y =19%

where V is the volume of the solution and p the weight of the soil.

Summary of answers
d, =3.4°107° cm; y = 19%.

*kProblem 1.12 Relative density (English units)

Determine the relative density of a calcareous sand (vs; = 146.3 Ib/cu. ft)
and that of a quartzitic sand (., = 165.6 Ib/cu. ft) whose void ratios are:
— for the calcareous sand: ey, = 0.89, ey = 0.62;
— for the quartzitic sand: €max = 0.98, enin = 0.53.

The measurement of the above void ratios was made in a Proctor-mold
(0 =4in., H=4.59in.) filled with following weights: P, = 2.868 Ib of dry
calcareous sand, P, = 3.254 Ib of dry quartzitic sand.

Solution

. . €max ~ €

Relative density is: D, = Iy =
€max ~ €min

The void ratio of the calcareous sand is:

TH@? /4 — P, /vs; _ (3.14 x 4.59 x42/4) — (2.868/146.3) x 123

e, = = 0.70
Pi/va 2.868 x 123/146.3
and that of the quartzitic sand is:
nH?/4 — P, v, (3.14x4.59 x4%/4) — (3.254 x 123/165.6) 0.70
e2 — = = . .

Pylver 3.254 x 123/165.6

It will be noticed thate, = e,.
The relative density for each of the sands is: -

0.89—0.70
i1 = —————— = 0.70 calcareous sand
0.89 — 0.62
0.98 —0.70 o
D,, = ———— = 0.62 quartzitic sand.

0.98 — 0.53
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The two sands, even though they have the same in place void ratio, have
different relative densities, which indicates that the grains of the calcareous
sand are more tightly packed than those of the quartzitic sand. This cannot
be concluded either from the void ratio or from the dry unit weights.

It is to be noted that the dry unit weight is greater for the soil with lower
relative density:

Ys1 146.3
= = = 86.11b/cu.ft (D,, = 0.70
(Yah 1+e, 1+ 0.7 /cu (D )
Ys2 165.6

(Ya)2 = = 97.4 lb/cu. ft (D,, = 0.62).

l+e, 1407

Summary of answers
(Ip) = (D), = 0.70; (Ip)y = (D), = 0.62.

sk Problem 1.13 Design of an optimum grain-size distribution by mixing soils

Three soils are available. One consists of a gravel, another of a sandy gravel
and the third of a sand. Their individual grain-size distributions are shown in
Fig. 1.22 (curves 1, 2 and 3).

It is desirable to mix the three soils in such a way that the combined grain-
size distribution would closely approximate the average theoretical curve
representing the mean of the upper and lower acceptable limits (see curve 4
of Fig. 1.22)

Calculate the relative parts, in percent, «, (8 and 7y of the three soils in order
to achieve the average size-distribution.

Solution

The method to use is the least-squares method applied to the deviations
between randomly mixed material sizes and the average optimal curve for
selected grain diameters.

Let T, ti;, ty, t3; be the accumulated amounts of optimal material and
materials 1, 2, 3 passing through sieve number i, and «, 3, v the amount by
weight of each material in the mix.

The square of the deviation of the optimal curve and that actually ob-
tained, down to sieve size i, is:

A = [Ty — (aty + Bty + vt3)]2.
The sum of the squares of the deviations (sum over the first 10 sieves) is
i=10

A:ZAI

i=1

We also know that a+ f+vy=1,0ory = 1— (ax + ).
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10
Hence: A = Y [T, — (aty; + Bty) — {1 — (e + B)}t3]2
1

10
A= ? LT —t3;) — oty —t5) — Bty — t33)]12.

If welet: Uy = T; —t3;, uy = ty; — tag, Uy = £y; — b3,

10
wehave: A = Y U, —auy,; —fuqy]?.
1

The sum A must be a minimum, or its partial derivative with respect to «
and $, must be zero:

A 10
%x_ N ; 2U; —auy —Puy) xuy; = 0
dA 10
—a—-B— = lz Z(Ui_auli_BuZi)XuZi =0
or:

10 10
o lzu%i +8 Zunuzi = Z Uiuy
1

10 10
o zuliu2i+6 lZu%i = Z Uiu,;
1

This is a linear set of equations for which «, 8, and v may be determined
knowing that: v =1 — (a + ).

Tables 1L and 1M summarize the percentages and sizes of the curves
of Fig. 1.22 and the coefficients of the linear set of equations. From these
the following equations are obtained: 49,413+ 16,8463 = 35,321; 16,846«
+ 8,066 = 12,715, resulting in o = 62%, f = 29%, v = 9%.

Hence the amount of mixed soil passing through sieve number i is:

T = aty + Bty + vits;.

Table 1N summarizes the calculation for different percentages of soil
retained in order to construct the grain-size distribution curve of the mixed
soil, curve 5 of Fig. 1.23.

If the three soils are mixed in the proportions shown above, the grain-size
distribution (curve 5 of Fig. 1.23) is obtained, which corresponds to the first
ten sieve-sizes.
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TABLE 1L
Sieve Opening Percent passing (%)
number size
(mm) T t ta ts
optimum (4) gravel (1) gravel (2) sand (3)
1 100 100 100 100 100
2 50 82 85 100 100
3 20 56 35 100 100
4 10 44 15 95 100
5 5 37 8 81 100
6 2 30 4 59 100
7 1 24 1 45 100
8 0.5 18 0 37 89
9 0.2 11 0 28 44
10 0.08 4 0 22 20
TABLE 1M
1 Ui: Urs Un: U: Xuq; U: XUq; 2, 2 . .
T, — t3 1i 2i i 1i i 2i uyj Uzi Uyj Uzj
1 0 0 0 0 0 0 0 0
2 —18 —15 0 +270 0 +225 0 0
3 —44 —65 0 +2860 0 +4225 0 0
4 —56 —85 —5 +4760 +280 +7225 +25 +425
5 —63 —92 —19 +5796 +1197 +8464 +361 +1748
6 —70 —96 —41 +6720 +2870 +9216 +1681 +3936
7 —176 —99 —55 +7524 +4180 +9801 +3025 +5445
8 —71 —89 —52 +6319 +3692 +7921 +2704 +4628
9 —33 —44 —16 +1452 +528 +1936 +256 +704
10 —16 —20 +2 +320 —32 +400 +4 —10
2 = 35,321 12,715 49,413 8056 16,846
TABLE 1N
i Xty B xta Y Xt T; (5)
1 62 29 9 100
2 52.70 29 9 91
3 21.7 29 9 60
4 9.3 27.55 9 46
5 4.96 23.49 9 37
6 2.48 17.11 9 29
7 0.62 13.05 9 23
8 0 10.73 8.01 19
9 0 8.12 3.96 12
10 0 6.38 1.80 8
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*kProblem 1.14 Study of a soil structure by means of two-dimensional
theoretical packing (small-cylinder analogy)

Let us consider an analogical model of a soil medium formed by an as-
sembly of thin cylinders. The problems to be solved, are:

(1) What regular, stable packing may be made if all the thin cylinders have
the same diameter D? Determine the void ratio and the dry unit weight for
these different assemblies (v, = 27 kN/m?3).

(2) What is the maximum diameter d of other cylinders which could be
introduced in the voids of the D-size packing?

For each of the original packing, determine the grain-size distribution of
D- and d-sizes leading to maximum densities. Calculate also the void ratios
and the dry unit weights of the mixtures at maximum compactness.

Which combination leads to maximum packing? In order to draw the
grain-size curves, assume D = 5 mm.

Solution

(1) The two stable, regular packing arrangements correspond to square
(2-dimensional) and equilateral triangle configurations as shown in Fig. 1.24.
Hexagonal packing is very improbable because it is very unstable.

Equilateral triangle

Square

Fig. 1.24.

The void ratio for the square arrangement is:
_ D?(1—7/4) 44—
wD?*/4 T

= 0.273.

If we assume the unit weight of the cylinders to bey, = 27 kN/m?, we have:
_ (7D?/4) x v,

T
D2 = 27 x - 21.2 kN/m?3.

Y4

For the triangular arrangement, the values of e and v, are:
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(v/8 D?*/4) — (nD?*/8) 2./8—m
e =

= = 0.102
wD?/8 T
(mD?/8), T
Y4 = — == = 2T x = 24.5 kN/m3.
© (V3/4)D? 2/3

(2) Arrangement for the square packing: the size of a cylinder that could be
introduced in the void will have a diameter d = D(/2 — 1).

In order to obtain maximum packing with cylinders D and d, all the
elements of the mass should have the shape of that shown in Fig. 1.25, a.

V.V

Fig. 1.25. a. Square element of mass. b. Triangular element of mass.

In each element there is one cylinder of diameter D and one of diameter d.
This corresponds to weight percentages of:

D = D’ = 1 = 0.85
D? +4d? D*[(1 + (/2 — 1)?] 1+ (/2 —1)? '

for particle of diameter D and

>  (W2-1p 15
2 2 12 0.
D? +d 1+(/2—1)

for the d-size particles.

The mixture, therefore, will have the grain-size distribution curve as
shown in Fig. 1.26. At maximum compaction, the mixture will look exactly
like the element of Fig. 1.25, a. Therefore:

D*(1—w/4) — D*(\/2 — 1)*(n/4)
e =

2
2l + Z—12)

= 0.087
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D2
e (LR VERE VIV
Ya = o = 24.8 kN/m3.

For the arrangement of triangular packing, the distance between the
center of particles D and d is equal to: (2D/3)(/3/2) = DA/3. The size of
the cylinder that can be introduced in the central void will have a maximum
diameter of d = 2(DA/3 — D/2) = D(2/A/3 — 1).

In order to obtain maximum packing of rods D- and d-sizes, each element
of mass will have to look like Fig. 1.25, b. In each element of mass, there will
be half a particle of size D and one of size d.

The percentage of weights of the size-D particle is:

D’ 1 0.956
D? + 24?2 1+ 2(2/v/3—1)? DR

The percentage by weight of the size-d particles is 0.044. So: 95.6% of
D-size and 4.4% of d-size particles make up the mass. The mix will have a
grain-size distribution as shown by the curve of Fig. 1.26. The mixture will
have maximum compactness when its mass will have elemental sections
identical to that of Fig. 1.25, b and

(v/3 D*/4) — (wD?*/8) — wD*/4(2/3/3 —1)?
e =
(wD?*4)[1/2 + (2/+/3 — 1)?]

_ (@D¥4)[1/2 + (2/v/3—1)* ],
Ya = V3 D4

The maximum packing arrangement is that of the equilateral configuration.

= 0.052

= 25.6 kN/m3.
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Chapter 2

WATER IN THE SOIL

*Problem 2.1 Permeability of sand

A coarse-sand sample is 15 cm high and has 5.5 cm diameter. It is placed in
a constant-head permeameter. Water passes through the sample under a con-
stant head of 40 cm and after 6 sec, 40 g of water has been collected. What is
the coefficient of permeability of the sand?

Solution
The flow of water through a soil is governed by Darcy’s law
v = ki (1)
The amount of water percolated is ¢ = v x s, the rate percolation is:
_q_ 49 _ 4 x 40 _
YT s a2 6 x m™x 5.5% 0.28 cm/s

The hydraulic gradient i = h/l = 40/15 = 2.66
From equation (1): 2 = v/i = 0.28/2.66 = 0.105, say 0.11 cm/sec.
Answer

kB = 0.11cm/sec.
*Problem 2.2 Permeability of clay

A clay sample is 2.5 cm high and has a diameter of 6.5 cm. It is placed in
an oedometer with a variable-head permeameter. The water percolation
through the sample is measured in a standpipe whose inner diameteris 1.7 mm.
The tube is graduated in centimeters from the top to the bottom. The top
graduation is zero and is located 35 cm above the base of the oedometer. The
overflow in the oedometer is 3 cm above its base. At the start of the test, the
water level in the tube is at zero; 6 mins and 35 secs later, the water level has
dropped to graduation 2. What is the coefficient of permeability of the clay?

Solution

It is assumed that after achieving saturation of the sample, the flow of
water is sufficiently slow to apply Darcy’s law for each time increment
during which the water flows (¢, t + dt).

The hydraulic gradient (see Fig. 2.1)is i = h/I
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Fig. 2.1.

Since v = ki (Darcy’s law), the quantity of water is ¢ = Akh/l , where A =
cross-sectional area of the clay sample. Since the volume of water permeating
through the sample is equal to the volume of water which left the standpipe,
we have:

qdt = (Akh/l) = dt = —adh
where a = the cross-sectional area of the standpipe.
Then:

a dh
kdt = 2 l h
Integrating this value between height 4, and 2, of the standpipe gives:
RT = —%llog (hy)/h, or:

a l h md? nD?
kR =23—-—-1 —1 = =

23AT og(hz), but a 1 and A 1

therefore, & = 2.3 (d/D)? EI log (h, /h,).

Numerical application: d = 017cm, D=6.5cm, | =2.5¢cm,
T = 6min 35s = 395s,h; =35—3=32cm,h, =32—2=30cm

k]

2.8 * 1077 cm/s.

X (6] -
395 ° 30

0.17\> 25 32
ik o= 2. —_— — log .-~ =
so 2.3 x (6.5)
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Answer

k= 28+10"7 cm/s.

*Problem 2.3 Permeability of sand

A well graded sand sample containing well-rounded grains has a void
ratio of 0.62 and a coefficient of permeability of 2.5 + 10~ ? c¢m/s. Estimate
the coefficient of permeability for the same sand with a void ratio of 0.73,
using the Casagrande and Terzaghi formulas.

Solution
Casagrande’s formula is k = 1.4k, 45 (€)?,

therefore: ko 4, = 1.4kg g5 0.622and k. 43 = 1.4k, g5 0.732

9_.732
0.62 6’@
= 3481072 =3.510"2 cm/s.

Therefore, 5 . = p = 2.5+107%2x (1.18)2

Terzaghi’s formula is:

_c @013
n J1—n 10°

For specific test conditions, the ratio ko 73/Ro.¢2 may be calculated because
the value of viscosity, 7 would be the same in both instances.

ko.7;3 _ (Mo.73 = 0.13)° X V1-—nge
Ro.62 (.62 ——0.13)* " J1 — Ng.73

wheren = ¢/(1 + e), hence e = 0.62 corresponds to n = 0.62/1.62 ~ 0.38,
e = 0.73 corresponds ton = 0.73/1.73 ~0.42

0.29) 2 0.62
__._) . 3 = 2.5+1072x 1.346x 1.022

0.25 0.58
ko.73 = 3.44+1072 > 3.4+ 10 2cm/s.

Ro73 = 2.5+ 1072 x (

Terzaghi’s formula gives a value of permeability slightly lower than that of
Casagrande.

Summary of answers
Casagrande’s formula kg ,; = 3.5 - 10”2 cm/s, Terzaghi’s formula kg .3 =
3.4°102cm/s, then 3.4 102 cm/s <k, .3 <3.5°+1072 cm/s.
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sk Problem 2.4 Average coefficient of permeability of a layered system

A sand deposit contains three distinct horizontal layers of equal thick-
nesses. The coefficient of permeability of the upper and lower sand is 1073
cm/s. That of the middle layeris 10~% cm/s.

What are the horizontal and vertical coefficients of permeability of the
three-layered system, and what is their ratio.

k
Pl I

I T

7 d 4 v o - r °, f -0

~ 0 B @ . o >
T °

I_‘._ ..'..?..'.. ._" 900 x
Fig. 2.2.
Solution

Let us consider first an horizontal flow. It is parallel to the layers. We
assume that all three layers have the same hydraulic gradient, i, (see Fig.
2.2),then: vy = ki, v, =k,i, vy =k,i.

Let us consider the amount of water passing through an imaginary vertical

plane through the three layers, of unit width; it could be seen that the
average value of the rate of seepage is:

1 i
v = I__i(lel +v,H, tv3H;) = E (kyH, + k,H, +k3H;).
By definition;

1
v = kHl, and kH = E(lel + k2H2 + k3H3).

H
For this particular problem H; = H, =H; = ?: and k; = k5, therefore:

1 1
ku = (2ky +hs) or: ky = £(2:107+10?) = 0.004, or:

4 +1073 cm/s.

For the vertical flow of water, in the perpendicular direction to the three
beds, the principle of continuity requires that the rate of discharge at each
layer boundary be the same.
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Therefore: v==~k,i=Fk,;i; =k,i, =k3i3; thus the hydraulic gradient, i, is
h hy+h,+hy
equal to H = —T—Where hy, h,, and h; correspond to the head

losses across each of the layers and 4 is the total head loss.

H,i, + H,i, + H;i,4

Then:v = k,i = k

v

H
_ . Hi(W/ky) + Hy (v/ky) + Hj (v/ks3)
Y H
and:
_ H
Y H,/ky + H,/k, + Hj/k,
. H
Since: H, = Hy = gand Ry = ks,
3 kik +1073 - 1072
we have: k, = = 31y = 8- 10 10
2/k1 + 1/k2 2k2 + kl 2 ¢ 10_2 +10_3
=143-10"%cm/s ~ 1.4 1073 cm/s.
and
ky 41073

k—v_ = m = 2.86=>=2.9.

Summary of answers

ky = 4+103cm/s; k, = 1.4-103cm/s; ky/k, = 2.9.

“xProblem 2.5 Coefficient of permeability determined by pump-out test

A pump-out test is carried out in a perforated well of 30 cm in diameter,
extending into an impervious zone, and through an aquifer 17 m thick from
the ground surface. The phreatic line is at 4 m below ground-surface level
(see Fig. 2.3). After 24 h of continuously pumping water out of the well,
equilibrium has been reached. The discharge of the pump is 5.4 m3/h and the
drawdown is 4 m. The effective porosity of the soil tested was estimated
to be 0.29.

Determine the radius of influence R of the well and the average coeffi-
cient of permeability k.
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_leg30em

Substratum

Fig. 2.3.

Solution
Once flow equilibrium is reached, after 24 h of pumping, Dupuit’s equation
becomes applicable:

H2 — h2
q = Th ———— (1)
In (R/7)
or:
2 hz ,
q = 1.365k ————— (1)
log (R/1)
where g = discharge at pump, k& = coefficient of permeability of soil mass,

H = thickness of the aquifer, h = height of water in the well, R = radius
of influence, and r = well radius.

Equation (1) contains two unknowns, namely R and k. It is valid only for
t>224h. For t < 24 h there is another formula for the radius R which is
applicable only to non-equilibrium condition. It is:

R = 1.5\/(kH/n)t (2)

where: R = the radius of influence at time ¢, k& = coefficient of permeability
of the soil mass, H = aquifer thickness, and n = effective porosity of soil.

For t = 24 h both eqgs. 1 and 2 are applicable (see Fig. 2.4) and we dispose
now of two equations with two unknown factors, R and k.
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RA >

o
O
6’\"\ - Equilibrtum condition

"y

0 244

Fig. 2.4.

The solution may be either solved graphically or by numerical iteration,
since one of the equations is transcendental. For this example, a graphic
solution has been chosen and is accurate for the purpose.

Equation (2) can be written as:

B nR?
2.25tH

and eqn. (1) as:

H2 _h2
logR —logr = 1.365k ——

from which:
n(H?* —h?)
logR = 0.607 —————— R? +logr (3)
qtH

The intersection of the two plotted curves (Fig. 2.5), one the function
log R and the other a parabola with an Oy axis, yields the solution.

Numerical application (see Fig. 25); n=029, H=17—4=13m, h =
13—4=9m,q =54m3/h, t=24h,r =0.15m, log r = 1.176 = 0.824.
Equation (3) may be written as:
log R =0.009 19R? —0.824. The only realistic solution is: R = 15m.
Transposing this value of R to calculate %:

log (R/r 5.410g100 ’
B o= q log (R/r) ~ og = 9-:10"2m/h = 2.5x1073 cmy/s.
1.365(H* —h?) 1.365x 88
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Summary of answers
R = 15m; k = 25-103cm/s.

Remarks
(a) R should be expected to fall within the range of 100r to 300r or
15—45 m, which is the case.

Y

1146 1244

y'=0.00919 R2-0.824
0824

Fig. 2.5.

(b) The Sichardt formula for R is: R = 3000 (H —hW/k
and would yield:

R=3-10%x (13— 9)v/2.5-107° =12x 4/2.5-10° - 1075 = 60m.

The radius is 4 times greater. The large differences can be accounted for
when considering that the formula R = 1.51/(kH/n)t is only valid for the
logarithmic approximation of the solution of the equation. This assumes a
relatively small drawdown, which is not the case here (drawdown is 4 m for
a height of 13m, or 30%). In practice, the radius of influence would be
much greater than found in the problem.

*Problem 2.6 Effective stress in sand

The ground-water level in a thick, very fine sand deposit is located 1.20 m
below ground surface. Above the free ground-water line, the sand is saturated
by capillary action. The unit weight of the saturated sand is 20.3 kRN/m?3.
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What is the effective vertical stress on a horizontal plane located 3.60 m
below ground surface?

Solution
The pore-water pressure at M (see Fig. 2.6) is:

u=+v,H—h) or u = 10(3.60—1.20) = 24 kPa.
Since the sand is saturated above the water table, due to capillary action,

the total vertical stress at M is: g, = 3.60x 20.3 = 73 kPa.
and the effective stress at M is: 0, = (0, —u) = 73 — 24 = 49kPa

L Water level

Fig. 2.6.
*Problem 2.7 Effective stress in a clay

A submerged clay layer is 15 m thick. Its water content is 54%. The density
of the soil particles is 2.78. What is the effective vertical stress due to the
weight of soil at the base of the layer?

Solution
The effective vertical stress at M (see Fig. 2.7) is: ¢’ = ¥'h. Since the clay is
saturated and submerged, the water content is w = ey, /7,

oo h=15m . ' Ciay W=54r

Fig. 2.7.
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2.78
from which e = w ;7— = 0.54 x == = 1.50
We also know that:
Y = (v¢ — 7)1 —n) = LER L Ys/vw = 2.78is given,
) v 1+te

therefore v, = 27.8kN/m?® andy,, = 10kN/m3.

Substituting: 7' = 010 _ oo kN/me.
1+1.50

For the total thickness: ¢' = 7.12x15 = 107 kPa

Answer

¢ == 107 kPa.

*Problem 2.8 Critical hydraulic gradient of sands at various densities

The specific gravity of sand particles is 26.6 kN/m3. The porosity of the
sand mass in both its least and maximum compactness is 45% and 37%,
respectively. What are the critical hydraulic gradients in these two cases?

Solution

The critical hydraulic gradient, i, corresponds to a condition wherein
the effective vertical stress is zero.
' = (v —ivy)z, therefore i, = -77— )
We know that ¥' = (1-—n) (¥, =7, ). For the loose sand n, = 0.45, vy =
(1 —0.45) (26.6 —10) = 9.13 = 9.1 kN/m?.
For the dense sand: n, =0.37, v, = (1 —0.37) (26.6 — 10) = 10.45 =
10.5 kN/m?3.
Since v, = 10kN/m?, we have i, = 0.91, iy, = 1.05.

*kkProblem 2.9 Blow out and piping

A large-sized excavation is made in a stiff clay whose saturated density
is 1.76. When the depth of the excavation reaches 7.5 m, cracks appear and
water begins to flow upward to bring up sand to the surface. Subsequent
borings indicate that the clay is underlain by sand at a depth of 11 m below
the original ground surface.

What is the depth to the water table outside the excavation below the
original ground level?
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Solution

Making an excavation in the clay, creates a hydraulic gradient between the
top of the sand layer and the bottom of the excavation. As a consequence,
water starts seeping in a vertical, upward direction from the sand layer
towards the excavation floor. Because the clay has a very low permeability,
flow equilibrium can only be reached after a long time period.

The solution must be considered over a short time interval. Two phases
appear successively.

(1) First phase: clay fissuration

The floor of the excavation is stable only if the water pressure p, at the
top of the sand layer (see Fig. 2.8) is counterbalanced by the weight P of
the clay above it, disregarding shear strength of the clay. Stability condition
therefore is:

WH—f) > v, (H—d)
or:
' +vw) H—f) > vo(H—d)
or:
YH=F) > yu(f—a)
When incipient failure conditions occur, then:
YH=F) = yw(f—a)
from which:

fyw —(H—F)Y

Yw

d =

or:

d = 7.50x1—(11.00--7.50)x 0.76 = 4.84m.

1z
[
T

. Excavation E ///;/// ’d'_/

£ 3 =
Z B ! Cbems i K/m3

T e
N T .TT,T' TTTTTTT '.;i

.. "r Sand - p

Fig. 2.8.
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(2) Second phase: uplift of sand (quick sand)

A steady flow of water rising vertically through the cracks has been reached,
the top of the sand layer and the bottom of the excavation being equi-
potential lines (see Fig. 2.8). Depending on the value of the hydraulic
gradient, piping may occur.

The head at point A (Fig. 2.9) is:
h, = LLA—*}‘ZA IM:H—d
Yw Yw

and at point B:

u
hg = -B +25 = H—f becauseug = 0

Yw
with reference to the top of the sand layer.
The hydraulic gradient is constant from A to B and is:
hy —hg f—d

AB H-—-f

Its critical value is ic,;y = ¥'/Yw and a blowout would occur when

fﬁ_d _ VYsat ~ Yw

H=f 9,
(7Vsat is the unit weight of sand, assumed to be 20 kN/m?3).
or:
7.50 —d
- . ————-- =1, therefored =7.50—3.50x1=4.00m.,
11.00 — 7.50

In order to bring up sand through the cracks, the depth, d to the water
table must be d = 4.0 m.

Notes

(1) In either case the results are the same if the unit weights of the clay and
the sand are identical.

— for the first phase, the shear strength of the clay was not taken into
account;

— for the second phase, shear strength of clay was also implicitly neglected
and it was assumed that the cracks in the clay would permit passage of the
sand grains.

(2) Neglecting the shear strength of clay is reasonable if the width of excava-
tion is large enough with respect to the thickness of the clay layer at the
bottom of the excavation. This layer acts like a slab with a uniform load
acting upward from beneath and it is in tension, which results in fissures
through the clay. The fissures eliminate shear-strength consideration. (see
Fig. 2.9 and 2.10).
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Excavation =
7 T therd%v///4

Fi Lo

//.‘4 issures C.I = // -
o
8 Y

N

7

Fig. 2.9. Fig. 2.10

sk Problem 2.10 Calculate capillary rise, from laboratory test

A soil sample is placed in a “kh mold™. Its porosity is n = 0.34. The
volume of water absorbed is measured by weighing the sample. The volume
increases are as follows, as a function of time.

t (h) ’ 1 2 4 7 25 49

V(cm?3) l 109 137 176 219 376 509

(1) Calculate kh. Assume the coefficient of permeability of the soil is
1077 em/s (relative to its capillarity ). Calculate the capillary rise, h.
(2) Water had risen to height z just before the sample weighing after 49 hs.

— z/h) in the kh

What is the relative error € made in the formula: (ln 1 T
-z
mold theory?

Solution

(1) Plot the experimental data on a graph where the abscissa is the square
root of time, in hours, and the ordinate is volume of water absorbed in cm?
(see Fig. 2.11). Experimental points fall on a straight line and V, may be
evaluated at 50 cm?® from the intersection of this line at time 0.

4‘ v cm?

600

Vo - \/t (hours)

12 4 79 25 &

Fig. 2.11

! This deviee is commonly used in France;its diameter is 15 cm.
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To obtain a more accurate value, we may write, since the product kh remains

constant:
V, — Vo)2 1 (Vy — Vo)2 1
A? X 2nt, B A? X 2nt,
or:
%—:—% ~ VBTG = VL = T
or:
V, = Vo = T(Vy — V)
then
v, - TV, —V,
6
Therefore: V, = M@ = 42.3 # 42cm3.
Since the diameter of the mold is 15 cm:
_ wx15?
4

from which:

2
- (V7 —Vo) 1

X
A 2 nt,
2 1
kh = 467x 4 X ————— = 0.21cm? /h.
T x 152 2x 0.34x 49

and therefore: 0.1 <kh <1

This value of kh shows that we have, in this case, a soil with an average

capillary rise.

If the coefficient of permeability, relative to capillarity, is 10~7 cm/s,

we then have:
_ 0.21
3600x 1077
or:h = 5.80m.

= 5.8 +10%cm
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z

1
1—2z2/h h
We are seeking the relative error € = AA/A made in the kh mold theory. This
theory assumes 2/h is small and a niperian logarithm series is developed in
which terms over 2 are not taken into consideration. Therefore, the error
is of the order of the first term not considered of (z/h)3.
Say that: 2/h = x

1/1—x) = 1+x+x? +x3 +0(x%)

(2) Let A be equal to: In

from which:

2
= x+xE+R3(x)

log 1 — =
with:
3l

_x sy - o3l X 2
R3(x)—<é—+Z+0(x)—x E+z+0(x)

therefore: R3(x) <x3 [1 +x 4+ 0(x?)] or: R3(x) <x3/(1 —x).

On the other hand, we have: R;(x) > x3/3,and AA = R;(x)and A =~ x%/2
therefore: 2/3x < AA/A <2x/(1 — x).

In the present example we have:

A/2kh ; 2x 0.21 49
2 = —— = X o~
" 034 7.8cm

therefore: x = 2/h ~7.8/580 ~1.35x 1072;0.9% < AA/A <2.74%
or, rounding off: 1% <e < 3%.

Summary of answers:

kh=0.21cm?/h;h =5.80m; 1% < e < 3%.
*Problem 2.11 Hydraulic gradient and discharge of a subsurface toe drain

A homogenous slope of infinite length, making an angle 3 with the hori-
zontal is composed of a soil with a permeability k. Water seeps through the
soil in uniform, rectilinear flow inclined at an angle o to the horizontal near
the drainage blanket. The face of the slope intersects the water-free surface
at point O, which corresponds to a height H above the toe of the slope. A
drainage system consists of a sloped drainage blanket and a subsurface drain
located at the toe and parallel to the slope face (see Fig. 2.12).
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(1) What is the hydraulic gradient of the water seeping in the soil near
the drainage blanket? Can this gradient be assumed constant all over the
flow net?

(2) What is the discharge of the drain if it is assumed that the length of the
slope is 100 meters? (Assume: H=10m, a = 20°, B = 34°, (slope 1} to 1),
E=5x10"%cm/s.)

pDrainage blanket

Fig. 2.12.

Solution

(1) Let A be a point in the flow near the drainage blanket which intersects
the face of the slope at point B. The equipotential line through A is the line
perpendicular to the flow line. It intersects the slope face at point A’ (see
Fig. 2.13). The permeability of the drainage blanket facing the slope is very
large with respect to that of the soil in the slope. We can, therefore, assume
that points A" and B are at atmospheric pressure and thus: u, = ug = 0.

Reference

' (&) Equipotential

Fig. 2.13.

Since A and A’ are on an equipotential line, the total heads are equal and
u '
hy = hy = A 4 Zp = 2p,sinceu, = 0.
Yw
By the same token: hp = ug/y, + 2 =z with respect to an arbitrary
horizontal plane through O.
The head loss between A and B is thus equal to the difference in elevation
between A’ and B: dh=h, —hg =z, —zp = B'B.
The hydraulic gradient at A is therefore:

i = _Ei_h— = —-EIB» b t B_’Bi — :
di AB Ut 4ip = sinf and
ABJA'B=cos(8—a), andthus i = ——-S0B_

cos (B — )’
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Let us now consider a point A of the flow net at a great distance to the
drainage blanket. The equipotential line through A no longer intersects
the face of the slope O, 0, (see Fig. 2.12), but the top flow line.

A simiiar procedure leads to:

i = —sin«

Therefore, it is not possible to assume a uniform, rectilinear flow all over the
embankment. The real flow net consists of parabolic shaped flow lines.

(2) From continuity of discharge, the computation can only be made
in the area near the drainage blanket, where the gradient is assumed to be
constant as a first approximation.

The discharge passing through an imaginary surface perpendicular to
the flow linesis: ¢ = vS =k |i|S.

For a length b of the slope, the surfaceis S = b x O,H,,

H
0.4, = sin(f—a) and H_ = sin f8

but:
0,0, 0,0,

therefore, 0, H, = H Sﬂg —a)
sin

The total discharge, @, which will pass through the toe drain will then be:
sin sin (§ — o)

cos (§—a) sin 8

or: @ = kLH tan (f — ).

Numerical application: k=5+10"%cm/s=5+10"°m/s, L =100m, H =

10m, B=34°, a=20°, therefore tan (8 —a)=0.249 from which @ =
5+10° - 10% x 10 x 0.249 = 1.245 x 1073 m3/s, say 1.251/s.

Q = kli|lLx O,H, =k

¥odkProblem 2.12 Flow net and discharge of seepage through a dam on a
homogeneous anisotropic soil foundation

A dam has a width B of 50 m. The cross-section is shown on Fig. 2.14. It
is supported by an alluvial deposit 6 m thick overlaying on impervious bed-
rock. The central part of the dam is 12 m wide at an elevation of — 2.00m
below the river bed elevation. Upstream pool elevation is at + 7.00 m and
downstream is + 0.50 m.

The alluvial material is anisotropic and its coefficients of permeability in
the horizontal and vertical directions are: ky = 1.44 10 %cm/s, k, =
1.60-1073cm/s.

(1) Referring to typical flow nets of Fig. 2.15 and taking into account
boundary conditions, draw an approximate flow net applicable to the given
geometry of this problem. The drawing of the flow net can be improved by
using the finite difference method.
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Impermeable substratum

Fig. 2.14. Dam on anisotropic soil

(2) From the flow net, find: (a) the discharge through seepage, and (b) the
uplift pressure on the bottom of the dam. What are the consequences of the
uplift pressures?

Solution
For a two-dimensional anisotropic medium, Darcy’s law is:

v=—"F grad h, where % is the tensor of permeability,

Fig. 2.15. Typical flow nets
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. oh
vy = — —
theref " ox
erefore
3h (1)
v, = —k, —
0z

The requirement of the principle of continuity for a two-dimensional system
is:

dv, 07,

0ox 0z (2)

therefore, from eqn. (1) and for an anisotropic soil, we have:

h O

k v —~
" 9x2 022

=0 (3)

It is important to note that the latter equation is not similar to a Laplace
equation. The flow net is no longer made up of orthogonal curves. In order
to solve the problem, we must resort to a transformed section which is
obtained by assuming that the foundation alluvium is isotropic but of a
different geometry. In order to accomplish this, the x and y directions must
be transformed to new values in accordance with the following relationships:

[X = x\/ky/ky
Z =z
Therefore:
0X /}ﬁ
d0x k,’
. 2*h Rk, 3%h 3*h _ 9%h
from which: o ;"'h Ix? and 322 ~ 372
Equation (3) then becomes:
0%h 0%h ,

ax? 3z
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Upstream

Downstream

Transformed section (r =
Isotropic medium

Fig. 2.16.

Conclusion

The transformed section allows one to consider an isotropic condition
with the ratio \/k,/ky. In this case, where k, = 1.6x 1073 cm/s, kb, = 14.4
x 1073 cm/s and r =+/k,/k, =+/1/9 =1/3, Fig. 2.16 shows the anisotropic
section at a scale of 1 : 400 (axes x, z) and the transformed section with a
ratio of 1 : 3 (axes X, Z).

Drawing the flow net

Since the transformed section represents a fictitious isotropic condition as
far as permeability is concerned, the orthogonal net exists with equipotential
and flow lines.

The net may be drawn by reference to the typical nets given in the prob-
lem and by observing the following:

(a) The geometry of the soil foundation is symmetrical with respect to
axis OO'. Therefore only half of the need be drawn, say to the left of OO’
(see Fig. 2.17).
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(b) The interface soil-water upstream, denoted by line AA' on Fig. 2.16 is
an equipotential line. The same is true for line FF' downstream. By symme-
try, the OO' must also be an equipotential line.

(c) When meeting an impervious boundary, water cannot flow through it
and the rate of percolation perpendicular to the boundary is zero. If deriva-
tives are taken in the perpendicular and tangential direction at such a bound-
ary then:

99 _
on

a_w:

0
at

0 = —v,,

(y: conjugate function of ¢), therefore an impervious boundary is parallel
to the flow direction.

Fig. 2.17.

So, in this problem ABCODEF (Fig. 2.16) is a flow line and PO'P’ is a flow
line. We know that a flow line must be perpendicular to an equipotential
line, as AA and O'O. (Fig. 2.17). These flow lines are progressively deformed
from the straight line PO'P’ to the broken line ABCO (Fig. 2.16).

The net should be started to be drawn from the axis of symmetry at
00’, choosing an arbitrary number of flow lines (between 5 and 10). It is
in this zone that the figure between two adjacent flow lines and two adjacent
equipotential lines approximates the most a square (see Fig. 2.18).

. A%/Jr

P o e
Fig. 2.18.

By using the finite-difference method the flow net can be improved. The trial
flow-net (Fig. 2.19) gives the first potential values at the nodes of the grid.
The computation is made by a successive relaxation method. Results are
given in Fig. 2.19.
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7 -

Fig. 2.19. Flow net and grid used for the finite (;ifference method. Note: The potential
has been arbitrarily chosen equal to 100 along AA’ and to zero along 00,

Percolation discharge. At any one point of the anisotropic section, we have

dg = v, dzdy + v, dx dy

oh
v = ~VEnk o5

but
oh
Y
In the plane of symmetry OO’ we have v, = 0,
then:
dg = knk, 3% . X

and the equivalent permeability k is obtained: & = VEknky
Earlier, it was shown that k, = 9k, ork = 3k,,ork = 4.8 - 1073 cm/s.

The discharge is given by the formula: ¢ = kx AH x Ny/Ny,
where AH = total head loss between the upstream and downstream equi-
potential lines, Ny = number of flow channels, Ny = number of equipo-
tential intervals from which:

g = 48x107°x 6.5x (6/20) x 3.6 x10° = 3.37x 107! m?/h

or ¢ = 0.34m3 /h for a 1 meter wide slice through the dam. The dam width
is 50 m; therefore, the total percolation loss is @ = 17 m?3 /h.
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Remark. Considering a horizontal plane (at the beginning or the end of the
net), we have v, = 0.

oh 3h  oh
Then: dg = —k, Pgxyx 1 0 _ 0h
en: dq v 37 L 3z T 5

and after changing the variable:

/ oh
dx = dX h =— =
x = then dg k”az dXxl —/knk aZdXxl

Uplift pressures. Let the top of the foundatlon soil layer be the reference
plane of Fig. 2.20. The head at any random point is h = uj/v, +z where z
is the elevation of the random point with respect to the reference plane.
There are 20 equipotential drops. The total head loss is:

AH =h, —hy = 7.00—0.50 = 6.50m
The head drop between any two consecutive equipotential lines is:

Ah = AH/N = 6.50/20 = 0.325m.

Unit pressure =10° Pa

6.40m |26°$‘|
|
z 0.43 |
“ 0.16 ‘o.m
E F
D
A4 Reference plane
7777, 7 77777777 7 7,

Fig. 2.20. Schematic representation of uplift pressures

At point A:
7.00
hy = 2 44, = — +6.00 = 13.00m, u, = 70kPa.
Yo

At point M (equipotential line number 5, see Figs. 2.19 and 2.20):

u
hy = = 4z = M 16 = h, —4Ah

Yw Yw
= 13—4x0.325 = 11.70m

— = 11.70—6.00 = 5.70m, uy = 57kPa.
Yw
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At M’ (equipotential line number 6):

u
byt = ~2 42y = 24500 = hy —5Ah = 11.375m
Vo Vo

u
M =~ 11.375—5.00 = 6.375m, u) = 64kPa.

At point O (equipotential line number 11):

Uo Uo

Tw Yw
4o
Tw

The uplift pressure (see Fig. 2.20) may be computed in this manner for
each equipotential line. Planes BC and ED of the dam foundation are under
horizontal pressures of opposite directions. The resultant of these horizontal
pressures is a net pressure-acting downstream.

The vertical uplift pressure resultant for a 1 m slice of the dam is:
for length AB:

9.75—4.00 = 5.75m, up = bHT7.5kPa.

0.70 + 0.57 0.57 + 0.54
102 x (4.30 x 1.00 x —2——+ 4.70 x 1.00 x ——) ~ 530 kN
for length CD:

0.71 + 0.43

102 x (12.00 x 1.00 x ————) ~ 680kN
for length EF:

0.16 + 0.14 0.14
10% x [6.40 x 1.00 x T+ 2.60 x 1.00 x 5 ~ 110kN

Total = 1320kN

Since the length of dam is 2x 9.00 + 12 =30m and assuming a unit
1320

weight of concrete of 23 kN/m3, an average height of at least ——————
23 x 1.00 x 30

= 1.9 mof concrete is needed to balance the uplift pressure.

%k Problem 2.13 Earth dam: quick-sand condition; drainage blanket;
discharge by percolation

Consider an earth fill dam supported on a stratified, heterogeneous foun-



PROBLEM 2.13 65

dation whose cross-section is shown on Fig. 2.21. (The grain-size distribution
of the sand is shown on Fig. 2.22 by the curve S.)

(a) Show that quicksand occurs at the toe of the dam.

(b) Determine the thickness of a drainage blanket required to be placed
over the sand to avoid quicksand. Find also the percolation discharge.
Assume the gravel permeability k, = 1 cm/s and the gravel layer thickness is
constant throughout. The unit weight of sand is vy = 16 KN/m? and its
permeability is k, = 1072 cm? /s. The unit weight of the drainage blanket in
place is v, = 19 kN/m3.

Sand S
Cl
(ero%\ et
A o )
/@ ’.nl \ “ c 3 m/
'?'DA ””’”///////////////// //////////////////,,,

7, 77777,
o! ’
9| B
Gravel a 3.00m

lj=50m ‘

Clay
Fig. 2.21 Dam on stratified soil

Solution

(a) The flow net for this problem is entirely different than for the pre-
ceding example. The seepage of water is uniform throughout the gravel layer
between points A and B. There is also a uniform flow in the upward, vertical
direction from point B to point C in the sand layer. In the gravel zone be-
tween B and D, no flow occurs although ground water is present. Since the
horizontal distance of 3.00 m between the ends of the clay layer is equal
to the thickness of the gravel layer, and by virtue of the principle of conti-
nuity, the rate of percolation (or discharge) through the sand layer is equal
to the rate of percolation of water through the gravel layer. Therefore:

v = kyly = kyiy, Ry(hy/ly) = ky(hy/ly)
k, = 1lcem/s, I, = 50m, k, = 107%2cm/s, I, = 4.00m

and

k, I 1072 50
hy = h,x = x = = x —h, = 0.125h,.
Ry I, 1 4

The total head loss H = h; + h, is equal to 6.50 m. Therefore: 1.125h, =
6.50 and h, = 5.78 m (head loss through the sand layer). The hydraulic

h .
gradient is: i, = ;2 = 5f’478 = 1.45.
2
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Quicksand condition in the sand would be:

!
L s 9 _ YT UM
2y = v —SI— 7—:, but: vy = 16 kN/m?, and

Ys = 27kN/m?, hence iy =~ 1.01, so i, = 1.45>1.01,

i.e. quicksand would occur.

(b) Consider the sand column element dS of height Z in Fig. 2.23.

This element is being acted upon, downwardly by its buoyant weight W' =
v'Zd8 and upwardly by the percolation water force F = i.y,, ZdS.

We have shown ‘that quicksand occurs, therefore we know that F > W', In
order to avoid quicksand, a weight acting downward must be added to the
sand in order to have ¢'dS + W'+ F >0 so that the resultant is acting
downward (positive direction). Therefore:

q'dS ++'Z2dS —iy,ZdS>0, or q' > (iv, —7)Z

Fig. 2.23

The maximum value of Z must be selected, i.e.: Z =1, =4m, Y4 sang =
16 kN/m3 or Ys,nq = 10.1 kN/m3,
We need ¢’ > (14.5—10.1) x 4.00 or ¢’ > 17.6 kN/m?3.

Water will rise up into the filter blanket to level + 0.50.
Therefore: ¢' = ¥ gicer X 0.50 + (Vg )siager X H = 17.6 kN/m?2,

(’Yd)ﬁlter = 19kN/m3,

. " Tw 1.7
from which: Yfer = X7 Y¢ = —-x19 = 12kPa
s 2.7
andg = 12x 0.50 +19x H = 17.6 kN/m3. Finally:
176 —6
H=——— = 061lcm.
19

In view of the simplifying, conservative assumptions made (constant hy-
draulic gradient in the sand), a lower safety factor may be accepted and
the value of H = 80 cm adopted.

The drainage blanket would be composed of two layers in accordance
with the design criteria for filters.
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4-5dlSsubgrade < dlSﬁlter < 4.5 dSSSubgrade

The layer immediately on top of the sand (material G, on grain-size
curves of Fig. 2.22) would be 50 cm thick, layer G, would be 80 cm thick.

From the grainsize curves of the sand we get: d;s = 0.2 mm and dgs =
1mm, giving, for instance, for material G, : (dls)F1 = 2mm, (dSS)F1 =
20 mm and for G, : 9mm < (d;5)r, <90mm.

The larger sizes should be placed on the upper side of G, material (on
top of the filter blanket).

Percolation discharge: q = vS = k,(h,/l,)S. The cross-sectional area of the
gravel layer S =3.00 x 1.00 = 3m? per linear meter of dam length, and
q = 0.44 1/s per linear meter of length, but B = 50 m, hence @ = 50 x 4.35 *
107 x 3.6 * 103 ~ 78.5m3/h.

“kProblem 2.14 Capillary rise in a homogeneous soil, effective stresses

A dense silt layer has the following properties: void ratio e = 0.40, effective
diameter d, = 10 um, capillary constant C = 0.20 cm?.

Free ground-water level is 8.00 m below surface. Find:
(1) the height of capillary rise in the silt; (2) the vertical effective stress at
depths of 5m and 10 m. Assume 7y, = 26.5 kN/m? and that the soil above
the capillary rise and ground surface is partially saturated at 50%.

Solution
(1) The capillary rise is calculated from the formula h = C/ed 1

where h and d are in cm and C in cm?2,

0.20

Therefore: diy =10 =103cm, and h = ————
relore 10 Mm cm, an 0.40 x 102

= 0.5 x 103 cm,

orh=15m,
(2) For the vertical effective stress at any depth above the free ground

water (see Fig. 2.24), consider a unit area water column. It is in static
equilibrium, hence: u = —+v,, Z.

Wet soil ~ . ¥ o TF T T T
- 50°, . i3m. R S R S
Sr=50% . ifam @) L
Capillary ="} | o gl i(cr‘h_ RS S e
f_L TP o _ Free water
BTN D ~ level
saturated & a i lew, Tl

soil

Fig. 2.24.
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Pore-water pressure is negative above the free ground water table, in the
capillary rise area. Hence Terzaghi’s equation ¢ = ¢’ + u, can be written as:
o=0¢ —jul or o =0+ ul.

At a depth of 5 m, the total vertical stress is: (0y)s =h;vn + (By —2)Vsat»
but u = —z.7,,, from which: (6,)s =h;yn + (hy —2)Vg + 27w -

1+w

Let us calculate yg,¢: Ysat = Vs 1+o° e = 265w
(2.65 + 0.40) 3

and vy, = 2656 x —————— = 21.8kN/m°.
2.65x 1.40

Let us now calculate v, . Above ground water, S, = 50%, so
S Vw 0.40 x 0.50 x 10
e—= = —

w = = 7.5%
Vs 26.5
from which:
1+w 1.075 3
Yo = ¥s T = 26.5x = 20.4kN/m
1+e

and: (0,)s = 3.00x 20.4+2.00x 21.8+ 3x10 = 134.8kPa,
say 135 kPa.

At a depth of 10 m, the effective stress (04)10 = R;1Vn + hy¥sar + 1217 =
3.00x 204 + 5.00 x 21.8 + 2.00 x 11.8 = 193.8 kPa.

Summary of answers

h = 5.00m; (0))s =~ 135kPa; (0,);0 =~ 194 kPa.

ok Problem 2.15 Capillary rise in an analogous soil model

A poorly graded sand may be idealized by stacking of spheres of identical
diameters. Find the capillary rise in this theoretical model assuming that the
spheres are stacked in the loosest packing arrangement (n = 0.48). The
surface tension of water is 75dynes/cm and assumed acceleration due to
gravity is g = 1000 cm/s*. Compare the result with the result of the em-
pirical formula h = C/ed .

Solution

In its loosest state, a stacking of spheres looks like the diagram of Fig.
2.25. Let us study the static forces acting on a column of capillary water
as shown in Fig. 2.26. Let us first find the maximum capillary tension due
to surface tension at the contact between water and a sphere (at the meniscus),
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as shown in Fig. 2.27. This figure makes clear that the contact curve is made

up of four } circles of radius r. But r = R cos § where R is the radius of one
of the spheres.

al Mu

Plan view Etevation AA

Capillary water

Fig. 2.26.

Let o be the wetting angle (between the two tangents of the meniscus and
of the surface particle s at the point of contact), then the vertical com-
ponent of the capillary force is: T, = 2arT cos (« + 8) = 2aRT cos § cos
(x + B).

The maximum value will occur when § = — @/2:
Tmax = 2TRT cos? a/2.

Contact circle

Contact of meniscus

curve of
meniscus

Plan view Detail of contact
circle

Fig. 2.27.
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Let us now assume a = 0. In this case the capillary maximum force
will occur when the meniscus contacts a row of spheres along a plane through
the center of these spheres. The vertical force due to capillary action will be
balanced by the weight of a water column of height h, whose cross-sectional
area, Sp, is yet to be determined. Let us consider one row of spheres of
height d = 2R. The void ratio, for one element of mass (4 spheres) is calcu-
lated from:

nd?
volume of voids: V, =8, x d, volume of grains: V, = gwR3 =——é-——,
3 d2
and: e =V /V,, from which:d x S, = e7r£16— or S, = e Eé-

The weight of the water column of height h and of section S,, is then:

W = emw(d?/6)hv,, . This weight is supported by the capillary force which is,
d2

for a=0: T, = #dT. Therefore: ndT =enw Y hy, or h=6T/edv,.

If we take T = 75dynes/cm and g =1000cm/s?, which gives v, =
1000 dynes, then:
_ 6x75 045
1000 ed ed ’

Since all the spheres have the same diameter, d =d,,, the empirical
formula is proven: h = C/ed,, (h and d,, are in cm) in which C varies be-
tween 0.1 and 0.5 cm?, depending on the soil type.

Remark: In reality the wetting of the grain is far from ideal, therefore
angle ais different from zero, which yields:

p = 87 cos’(c/2)

The corresponding value of C is lower but remains in the range 0.1—0.5 cm?.
*dokProblem 2.16 Water table drawdown by vertical drains

(1) Assuming that Dupuit’s hypothesis is applicable to the problem, find
the discharge and the equation of the free ground-water surface of a drainage
trench of infinite length excavated to an impervious substratum through a
soil of permeability k (assumed to be isotropic) and in which the static, free
ground-water height is H above the substratum. Let R be the horizontal dis-
tance from the side of the trench to a location where the drawdown is zero,
(analogous to the radius of influence of a pump-out well). Assume that the
ground-water table is replenished by two infinite sources on each side of
the trench whose horizontal distance from the trench is larger than R.

(2) Vertical drains consist of tubes of small diameter (from 5 to 8cm)
perforated at the base. They are usually installed by jetting, when spaced



72 WATER IN THE SOIL

about 1 m on center. Assume that one row of drains is equivalent to a drainage
trench. The vertical drains are connected at the surface by a collector pipe
attached to a pump.

In order to install a sewerline, it is necessary to excavate a 4 m deep trench
through a silty sand of permeability k=2 x 1073 cm/s. The axis of the
trench is located parallel to a river bank at 55 m distance. The impervious
substratum is at 7m below the existing ground surface. A row of vertical
drain is installed 5m away from the axis of the sewer. The free ground-
water, prior to excavation of pumping is at 0.50 m below ground surface.
See Fig. 2.28.

The vertical drains are jetted to the depth of the substratum. The length
of the trench is 150 m. Find the discharge required to draw the water table
down to a depth of 0.5 m below the bottom of the trench. Assume R = 50 m.

z

[ Trench of infinite length

Linear source

(line source feeding
the ground water
table)

Fig. 2.28

(3) The silty sand through which the water table is drawn has e = 0.60,
dip = 15um, e = 20.4RN/m3. Its wet unit weight, above the capillary
rise is estimated to be 7y, = 17.6 kRN/m?>. Find the change in effective stress
during the drawdown, acting on a horizontal surface element located 10 m
horizontally from the trench at a depth of 5m. What is to be concluded?
Assume C = 0.3 cm? for the capillary rise empirical formula.

Solution
(1) Let M be a point on the free ground-water surface along the drawdown
curve. The hydraulic gradient at that point is i = — Ah/Al.
Since M is at the free water surface, the pore pressure is zero and if M’ is
located an incremental distance away from M on the free surface, then:
dz

Ah = hy —hy = —dz and i = i
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where s is the abscissa along the curved line of the free surface oriented from
M towards M'. If the direction of orientation of the curvilinear abscissa is
changed towards O, then i = dz/ds.
The rate of discharge, according to Darcy’s Law is v = k(dz/ds). The hori-
zontal component of this velocity is (see Fig. 2.29)
dx dz dx dz (dx) 2
Uy = vecosx = v—, v, =kRh— — =hkhr— [|—
ds ds ds dx \ds
Since the slope of the free water surface is low, Dupuit’s hypothesis is
applicable. So:

dx o? 1 (dz)’ dx\? dz\ *
— =cosq =21 —-——=2]——|— and |— ~1—|—
ds d dx

Fig. 2.29.

. dz dz) ? dz
from which:v, = k— [1—[|-— ~ k—
dx dx dx

if we neglect the third order term.

Assuming that the water flow is laminar (Dupuit) v, is the average value
of the discharge rate across a vertical plane located at a distance x. The dis-
charge across that plane passing by point M, parallel to the trench axis over a
length b of the trench is:

dz
g = v..8 = v,bz = kRbz — .
dx
Since water is incompressible and a steady flow is ultimately obtained,
this unit discharge is half that flowing from both sides of the trench. There-
fore we have the differential equation: gqdx = kbzdz, and, integrating it
between points O and R, we have:
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The discharge pumped out for a unit length of trench (b = 1) is:

a? —h%,)

Q=2q=k(- = (1)

Integrating between O and x yields:

22 —h3 1 _ H®—h}
gx = kb( 5 ) and from eqn. (1): K- %R

2qx
from which: 22 —h2 = —Z—(forb = 1)

hen: 22 = h?, + %
then: z wTh

(H?* —h3) (2)
(2) Numerical application: vertical drains:
R =50m,k = 2x103cm/s = 2x10 % m/s,H = 7T—0.50 = 6.50m.

and along the axis of the sewer trench:

x = 500m, 2z = 7.00—4.50 = 2.50m.
Equation (2) gives: 2.502 = 2 + 5—50 (6.502 — h2).

from which h, ~ 1.50m.
Equation (1) yields then:

. 650% —150° L,
Q=2x105x——-—50—-—-—=1.6x10 m?3 /s

per meter length of trench.
For a 150 m long trench,

Qr = 1.6x107% x 150 x 3.6 x 10°> = 8.64m3/h (or 2.4 1/s).
(3) The capillary rise in the sand, in cm, is calculated from h = C/ed,,
for:e = 0.60,C = 0.3cm? andd,;, = 50um = 50 x 107> mm =

_ 0.3
0.60x 5x 1073

5x 1073 cm, we get: h = 100 cm.

The capillary height above the free ground-water level is 1.00 m. The unit
weight of soil to be applicable to this capillary zone is the saturated unit
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weight v, = 20.4kN/m>. Above the capillary rise, v, = 17.6 kN/m? as
given in the problem.

Let us calculate the level of the drawdown at equilibrium 10 m away from
the trench:

— 10 —— —— .
2? = (1.502)+%(6.502—1.502) from which z; = 3.20m.

The total stress at 5 m depth and 10 m from the trench, before the draw-
down, was: (0,); = 5y, = 20.4 x 5 = 102kPa and the pore-water pressure
was: (u); = 4.5v,, = 45kPa.

The effective stress, prior to drawdown was: (0,); = 102 — 45 = 57 kPa.
After equilibrium has been reached with full drawdown:

(0y); = Ysat(4.20 —2) + 4, (7T—4.20) = 204 x220+17.6x 2.8 =
94.2kPa. (u); = y4(3.2—2) = 12KkPa,
from which (0,); = 94.2 —12 ~ 82kPa.

Drawing the water down causes an increase in effective stresses Ao, =
25 kPa. This is a considerable amount as it is greater by:

Ao, 25
(0v)i 57

~ 44%.

Il

This increase in stress is sufficiently large that consideration would have to
be given to settlements resulting from a dewatering operation occurring in
compressible soils.

*kProblem 2.17 Piping conditions in a fractured rock mass

Consider the dam whose cross-section is shown on Fig. 2.30. An unlined
drainage gallery was excavated in the rock downstream of the dam. The
gallery intersects a fracture filled with pervious soil. The thickness of rock
above the center line of the gallery is x, at the location of the fracture. The
level difference between the reservoir pool and the grade where the fissure
intersects the ground surface is Z. If we know that the unit weight of the
fracture fill material is v, = 26.5 kN/m3, determine what values of x and z
and of porosity n, would cause piping in the fracture.

Calculate x in terms of z, for n = 40%.
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Fig. 2.30. Piping in fractured rocks.

Solution

Piping occurs where soil is carried away by water flowing upward and
exerting a force greater than the buoyant weight of the soil particles. The
consequence of piping is excessive loss of water and partial caving of foun-
dation materials and possibly disastrous damage to the dam structure. In '
the case of rock, as in this problem, the only probable consequence would
be excessive leakage through the foundation.

Piping would occur when at a point in the fracture, the weight of the
soil is balanced by an upward force of the-water flow. If it is assumed that
the head gradient is constant throughout the length of the fracture, piping
will occur when the pressure at the bottom of the fracture isu = (2 +x) vy,
and equal to the total stress which is 0 = x7yg;, therefore when u = (z + x)7y,,
=XYsa =%(y + vy) or when 2y,, = x7'.

To avoid piping we must maintain the condition zvy,, <x7v'. We know
that the buoyant unit weight of the soil material in the fracture is: y' =
(Ys = Yw)(1 —n) from which: x/z > v4,/(7s — 7w )(1 —n).

Conditions for piping are realized then, when x/z > 10/16.5(1 — 0.40) or
x/2>1/0.99 ~1,

To avoid piping, the rock thickness above the gallery would have to be
greater than 2.

*kProblem 2.18 Permeability

A test is set up as shown in Fig. 2.31. A cylindrical mold of 4in. in
diameter (D =4in.) is filled to height h, = 0.2 ft with silt whose perme-
ability is k, = 5.3°10™* ft/min.

A second coaxial mold is placed on top of the first mold whose inside
diameter is d = 1.5in. eand whose height is h, = 0.3 ft. Its thickness is
negligible. The inside of this second mold is filled with the same silt, but the
anular ring outside the small tube and outer tube is filled with sand whose
permeability is k, = 21073 ft/min.

The test set-up is a permeameter of constant head. Water is placed in the
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mold and maintained at a level Z = 1.25 ft above the level of the outlet.
It may be considered that altogether the system consists of a fictitious soil
of thickness H=h, + h, and of permeability k;.

(1) Find the value of ks. (2) Determine the volume of water which perco-
lated after 30 min.

L0 -
Water ] 7/ K
z
(o — h,
< H
_—'ﬁF
h,
i
I Ly
\ Water
ﬁ Porous stone
Fig. 2.31.
Solution

(1) The radius of frozen soil R; around a liquid pipe can be calculated,
through the anular space g, and through the inner mold g, . The hydraulic
gradient in both instances is Z/H. Find q, from Darcy’s law, where v = ki:

. 4 . Z d?
vy = Ryl = kzﬁ from which ¢, = V,8, = kzﬁnz.

. Z D*—d?
The same applies to: g, = kvE 7T—4—— (1)

but here, k, is the equivalent permeability corresponding to the 2-layer

H hy hy
system, therefore: — = — + — ,
ky ki ke
ki, H kik,H Z D? —d?
from which: &, = —12=  and g, = . (2)
ki hy + Ryh, kR hy +khy H 4
The total discharge at the outletisq = ¢q; + q,. (3)
Z D?
We also have: ¢ = ks— xm—. (4)

H 4
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Rearranging equations (1), (2), (3) and (4):

d? ki ko, H D? —q?
kf - kz— X 2
D? R h,+ k,yh, D
Therefore:
(1.5)? 2:1073%x5.3:107% x 0.5 4* —1.52

ke = 5.3:107 N
f “4)?  2-10°x02+53-10%x03 42

Thus: k; = 8.9-107% ft/min or £y = 1.06 1072 in./min.

2) The total disch is: g =k z WDZ' D=4j —}ft
(2) The total discharge is: q = fox 1 = m.—3 .
., 125 7 1 _ .
qg =89x107%x x— x— =1.94 x107% cu. ft/min
05 4 9

or g == 0.33 cu. in./min.
The volume of water collected at the bottom is: V3, = 0.33 x 30 = 9.9 cu. in.

Summary of answers
ke =8.9-107 ft/min (=4.51+107% cm/s); V3, = 9.9 cu. in. (or 162 cm?).

*kk Problem 2.19  Practical application of soil freezing; design of an ice wall

Let us assume that it is necessary to construct a 5-m diameter well in
sandy soil whose properties are: water content w = 30%, unit wet weight
Tn = 20 kN/m3, specific heat C, = 1400 J/kg/°C (assumption B of Fig. 2.32).

Also given is the radius of freezing as determined from the graph of Fig.
2.23. It is assumed that freezing is 1.5 times slower around a nitrogen gas
pipe than around a liquid nitrogen pipe.

(1) Determine the pipes spacing if the freezing from one pipe to the next
has to occur in 48 h.

(2) Estimate the volume of soil frozen after 3 days.

(3) Using the graph of Fig. 2.33, determine the average temperature of the
frozen wall. Evaluate the liquid nitrogen consumption per m? of soil frozen,
assuming an efficiency of 80%.

(4) Determine the diameter of a circle around which the pipes would
have to be installed and calculate the consumption per meter of well. Read

the technical note presented at the end of this problem before starting the
solution.

Solution

(1) The radius of frozen soil R, around a liquid pipe can be calculated,
in cm, from the following equation, derived from Fig. 2.32: R, = 30 +
0.7(¢ — 20) valid for any time ¢ larger than 20 (in hours).
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Fig. 2.32. Isotherm 0°C evolution with time along an axis perpendicular to the pipe

alignment,

The freezing radius R, around a nitrogen gas pipe will be R, = 20 +
0.47(t — 20) and at the end of 48 hours: R, + R, = 49.6 + 33.2 = 82.8 cm.

This distance corresponds to the theoretical spacing because at the end of
this time the two radii would touch and the freezing circles would be tangent.

(2) At the end of 72 h, the respective frozen soil radii will be R, =66.4 cm
(circle area = 1.38 m?), R, = 44.6 cm (circle area = 0.62 m?). If the excess
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freezing, occurring due to the overlap of the two circles, is neglected, the
total soil volume frozen is 2.00 m3/2 = 1 m? for a length of travel of 0.83 m
and for a depth of pipe of 1 m. The average thickness of frozen wall is
therefore 1.2 m,

(3) With assumption B, from Fig. 2.33, at the end of 72h, the average
wall temperature is 240° K or —33°C. The amount of liquid nitrogen needed
to lower the soil to that temperature can be calculated: the energy required

2801 L
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W
W

Temperature in degrees K
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o
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250 S
245 N Assuznptlon
o]
3
240 1™ ]
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235

0 10 20 30 40 50 60 70 80

Fig. 2.33. Average wall temperature (°C = 273° K).
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to cool 1 m? of soil (water excluded) from +12°C to —33°C (AT = 45°C) is:
2000 kg x 1400 J°C~! kg™! x 45 = 126,000,000 J.

One m? of soil with a water content of 30% contains 460 1 of water. In
order to freeze the water, the energy required will be 80 x 4.18 x 460,000 =
153,824,000d, and the total energy need for both soil and water is:
279,824,0004.

But 11 of liquid nitrogen has a mass of 800g and 1g provides 400d/g
when changing phase (vaporizing) to raise its temperature to the ambient one.
If the efficiency of this process is 80%, then 11 of liquid nitrogen provides
256,000 J. Therefore, the liquid nitrogen demand is:

279,824,000
256,000

(4) It was shown that the radius of the frozen ground around the liquid
pipe is 66.4 cm after 72 h. The minimum radius of a circular layout of pipes
would then be 5.00m + 2 x 0.664 = 6.33 m, giving a perimeter of 19.87m
and a number of pipes of 19.87/0.83 = 23.9, say 24 pipes.

These pipes will be placed along the perimeter of a circle whose diameter
is 6.35m. The frozen ground volume will be, per lineal meter of pipe:
6.35x 3.14 x 1.20 = 23.9m? (thickness of 1.20m is average frozen thick-
ness already computed).

The construction of the frozen wall will require: 23.9 x 1093 = 26,123 1
of liquid nitrogen per meter of well.

= 1093 1 liquid nitrogen per m3 of ground to freeze.

Appendix of Chapter 2
Technical note about freezing of soils

1. Principle of computation

Usually, the placement of pipes carrying the cooling agent is determined by the
geometry of the area to be excavated. It is necessary to determine the spacing between
the pipes. The diameters of the pipes are standard for this type of ground preparation
and usually consider the following:

— for large excavations pipe lengths greater than 10 m, the outside pipe diameter is of
the order of 3 inches;

— for smaller works, such as in localized areas and for short lengths of pipe, the pipes may
be of the order of 2 inches (50 to 60 mm).

The following assumptions can be made: the pipe temperature is fixed at say 0, only
slightly warmer than the temperature of liquid nitrogen along the liquid pipes. It is
variable along the length of the pipe when nitrogen gas is used.

If thermal losses through the pipe walls are omitted, the following equations apply:

00 (aze 1 96
Gf -

—_ = — heat transfer in frozen ground)
ot or? r ar) ( &
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dr
= “p°L- £ (freezing at isothermal OOC)
o a+ 100 100 dt

29 _

020 1 o0
t\ew t— (heat transfer in unfrozen ground)
ot or 2 odr

where: 0 = temperature, t = time, r = radius, r, = freezing radius, A = conductivity,
a = N/p. = diffusion, p = unit mass, ¢ =specific heat, f = frozen, nf = not frozen,
L = phase change heat of water (freezing).

The limit conditions are:

{ 6 =0, (forr = pipe radius)
t=20

6 =0 initial temperature of the ground (for r > pipe radius)

r=re g, =0°C
r = oo 0=00

A graphic interpretation is best used for the solution of the equations (method of
Binder-Schmidt) or by computer.

(a) The following simplifying assumptions may be made:
§—6s _ Inrirg

Heat flows according to: = :
0o —0s  Inry/rg

where s = pipe subscript; ro = radius beyond which temperature changes are negligible;

01‘0 ~00;

fo
rog = rg exp In(re/rg)] .

0 s
Gf - 05
Instead of mental calculation which would imply too crude an assumption, the previous
hypothesis allows us to calculate the average temperature of a frozen block as a function
of two parameters: pipe temperature and freezing radius. From there on it is easy to
determine the amount of liquid nitrogen which is needed to reach this freezing radius.

Example

Consider a 3-in. outside-diameter pipe (D = 88.9 mm) at a temperature of —133 C
(140° K). For a 45-cm freezing radius (re/rg = 10) the average temperature will be —42°C
(see Fig. 2.34). If the soil has the following properties: 5 = +12°C, w = 30%, then L =
3

334 x 30 = 77,000 Joules/dm>, p = 1.8 kg/dm®, C = 1400 J*kg™' *K !, the energy
required to lower the temperature of the ground from +12 to 0°C to freeze it and to
decrease the temperature from 0°C to —42°C will be: 1.8[77,000 + 1400(42 + 12)] =
274,000 J per m3® of ground; this corresponds to a nitrogen demand, at 80% efficiency
(0 outlet =—170°C) of 1.07 liters per m3 of ground. (See Fig. 2.35). If the nitrogen gas
pipe, next in line after a liquid nitrogen pipe, has an average between outlet and inlet
temperature of —100°C, the average temperature of the frozen ground bloc of 45 cm of
radius will be —32°C (see Fig. 2.33). The amount of energy required then is:
1 8[77 000 + 1400(32 + 12)] = 249,000 J per m? of ground, or 0.97 liters of nitrogen
per m3 of ground.

By and large, it is seen that nitrogen consumption will be about 1 m? of liquid nitrogen
per m3 of ground to freeze.
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The simplifying assumptions neglect: (1) Cooling of the ground beyond the frozen
radius, which in fact reduces consumption by 3 to 5%; (2) the effect of alternating liquid
and gaseous nitrogen pipes which increase nitrogen consumption by about 10% (the
average temperature is, in fact, higher).

(b) Soil information.

Heat conductivity: Heat conductivity of the soil depends primarily on the following
factors: water content (first of all); grain-size distribution, compactness.

The value of A is different for a frozen and a thawed soil (see Fig. 2.36 for this and for
thermal conductivities).

Specific heat: We know that Cyper = 1 cal-g ! *K ' =4.18J-g' K and Cje =
0.5cal*g '* K1 =209d°g! *K™!. It can be assumed that:

Corain = 0.17 cal* g K = 0.76d-g7'+ K™ (average value for any type of soil grains).

The specific heat for unfrozen soil is: C;, = v4(0.17 + w) = %—— (0.17 + w)
Sw w
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Fig. 2.36. Thermal conductivity of soils (after Kersten). Yq4(lb/cu.ft = 0.016¢ km?);
K = A = conductivity (BTU/ft™' h™' OF! =1 73 wm™/°K™!; Ku = conductivity of non-
frozen soil; K; = conductivity of frozen soil.
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and for frozen soil: C; = S - (0.17 + 0.5 w).
Tsw t Yy
o . . . . Ysw
Specific heat of soil when changing phase (freezing) is L = ———— L ater,
Ys + Y

from which Table 2A is made up and on the values of which the curves of Fig. 2.35 were
based.

TABLE 2A

Conductivity of soils

w% Cu cg L
cal/em’/K Jlem?/K cal/em®/K Jjem3/K cal/cm’® J/em?/K

0 0.46 1.92 0.46 1.92 0 0
10 0.57 2.38 0.47 1.96 17 71
20 0.65 2.72 0.47 1.96 28 117
30 0.70 2.93 0.48 2.01 36 150
40 0.74 3.09 0.48 2.01 42 175
50 0.77 3.22 0.48 2.01 46 192
100 0.85 3.55 0.49 2.05 58 242

2. Example of results from computer application.

The diameters of the pipes are 80/88.9. Temperatures were chosen to account for the

actual performance of the first pipe with liquid nitrogen.
Other givens are: pipe equivalent to square section of 70 mm side; initial temperature
285° K; liquid nitrogen pipe temperature 95° K; gaseous nitrogen pipe temperature 180°K.
Other assumptions regarding the soil:

A =2wm K™
w =20%
p =2000kgm >

cp =1400J kg K™!

A =2wm K™

w = 30%

p =2000kgm™>

cp = 14003 kg™ ' K™

A =2wm'K™!
w = 20%

p =1800kg m™3

¢p =1000J kg K71,
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Results are presented on the graphs of Figs. 2.32, 2.33 and 2.35. Fig. 2.32 gives the
frozen radius along an axis through a liquid nitrogen pipe and perpendicular to the line of
pipes. Not only have the curves the same shape, but it will be noticed that they appear
closely grouped. This means that the rate of freezing does not change much for different
soil conditions. Also the order of magnitude of R (in em) is 30 + 0.7t (¢t — 20) for ¢
in hours greater than 20.

Fig. 2.33 shows the average frozen-wall temperature. This result is in good agreement
with the curve giving the freezing radius. It should be noted that the average temperature

varies little in different soil types. The order of magnitude is from —20°C to —28°C after
60 hours.
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Chapter 3

PRACTICAL SETTLEMENT CALCULATIONS — COMPRESSIBILITY
AND THEORY OF CONSOLIDATION

*kProblem 3.1 Oedometer test on sand

An oedometer test performed on a sand sample gave the following results:

loading (in kg) in frame 0 24.52 73.56 171.70 367.90
settlement (in mm) 0 0.04 0.12 0.25 0.41

The oedometer ring area is 38.5cm?, the sample has an initial height of
24 mm.
(a) Draw the compression curve and find the consolidation moduli (in
(daN/cm) corresponding to the load intervals.
(b) Calculate the slope of the compression curve for the last two load in-
crements and compare it to the compression moduli.

Solution
The compression curve for the sand is plotted from the strain values

Ah
e = (hy — h)/hy and corresponding load stresses. (Fig. 3.1). These are
0

presented on Table 3A.
The oedometric modulus for a load increment Ao = 0, — 0, by definition
is:

B = Ao
Ah/h
TABLE 3A
2 h—hy,
Masses (kg) o (daN/em?) h — hgy (mm) —h—-
0
0 0 0 0
24,52 0.64 0.04 0.167
73.56 1.91 0.12 0.50
171.70 4.46 0.25 1.04

367.90 9.53 0.41 1.71
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Fig. 3.1. Consolidation test for sand.
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where h is the sample height for 6 = 0,, Ah is the settlement of the sample
under a load of Ao.

Table 3B summarizes the oedometric moduli for each load increment

TABLE 3B

o (daN/em?) Ao (daN/em?) h (mm) Ah Ah(R (%) E'(daN/em?)
8 6t 0.64 gg'gg 0.04 0.167 383

191 1.27 23 88 0.08 0.334 380

o 2.55 93.75 0.13 0.545 469

053 5.07 23 59 0.16 0.675 752

The slope of the compression curve is:

. Ao _ Ao Ao
h2—ho_h1_ho hy —h,y Ah
ho ho ho ?0

and since h, > h, the value of this slope is slightly greater than the oedo-
metric modulus.
For the last two load increments we have:

(a) 1.91<0<4.46, Ao = 2.55,

from Table 3A:

h, —h hy—h

2% = 104%, and ——2 = 0.50%
hy ho

and the slope is:

Ao 2.55 2550 . ,
— - = = 472 instead of 469 for £
Ahlhg 0.54/100 5.4

(b) 446 <0< 9.53, Ao =5.07.

h, —h h, —h
Similarly: ——2° = 1.71% and ———— = 1.04%

hg ho

from which the slope is: 5070/6.7 = 757, instead of 752 for E'. 1t will be
noticed that the two values are very close and the difference is less than
inaccuracies due to test errors.
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sk Problem 3.2 Consolidation test on clay

A clay sample is tested in an oedometer with the following results:

stress (daN/cmz) settlement (mm)
0 0
0.1 0.2
0.2 0.03
0.4 0.05
0.8 0.10
1.6 0.19
3.2 0.43
6.4 1.09

12.8 1.78
1.6 1.58
0.4 1.43
0.1 1.22

At the start of the test, the sample height was 25 mm and its void ratio
was 1.01. Draw the compression curve (e vs 1g ¢) and calculate the com-
pression index C, and the oedometric modulus corresponding to the load
increment 6.4 daN/cm? to 12.8daN/cm? (loading). Compare this modulus
with the secant modulus for point load at 6.4 daN/cm?.

The consolidation pressure 0, may be determined from the classical
method on the e —log ¢ curve and the In(1 +e)— log o diagram as rec-
ommended by Butterfield (Fig. 3.2b).

Solution

Since the volume of soil grains remains constant throughout the test, we
have:

Ah Ae
for ho = 25 mm and e, = 1.01, and calculating Ae, if Ak is in mm:
1+eg 2.01 _
Ae = Ah = —— Ah = 8.04 x107% x Ah.
ho 25

The values of void ratio e change, corresponding to the settlements ob-
served during the test, and are given in Table 3C.

The compression index C, is the slope of the straight line portion of the

compression curve for 0 > 0. (see Figs. 3.2a and 3.2b) (0, = consolidation
stress)

_Ae
Alogo’

C. =

The diagram may be approximated to a straight line for the interval
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TABLE 3C

o (daN/em?) Ah (mm) Ae e

0 0 0 1.010
0.1 0.02 16.1 x107¢ 1.008 4
0.2 0.03 24.1 x107% 1.007 6
0.4 0.05 40.2 x107* 1.006
0.8 0.10 80.4 x107* 1.002
1.6 0.19 152.8 x107% 0.995
3.2 0.43 345.7 x10™4 0.975
6.4 1.09 876.4 x1074 0.922

12.8 1.78 1431.1 x107* 0.867
1.6 1.58 1270.3 x107* 0.883
0.4 1.43 1149.7 x 1074 0.895
0.1 1.22 980.9 x 1074 0.912

3.2<0<12.8daN/cm?, and:
_0.867—0.975  0.108 0.108

= = = ~ (.18.
log 12.8 —log3.2 log4 0.602

The oedometric moduius E' corresponding to the stress interval 6.4 to
Ao
Ah/h

12.8 daN/cm? is given by: E' = —

where h is the height of the sample when ¢ = 6.4 daN/cm? and Ah rep-
resents the settlement occurring when the load is increased from 6.4 to
12.8 daN/cm?.

h =25.00—1.09 = 2391 mm, Ah = —(1.78—1.09) = —0.69mm, Ag =
12.8 — 6.4 = 6.4 daN/cm?

from which: oh_ 069 =--0.0288, E' =— 222 daN
" h 23.91 R T 0.0288 alN/em.
Th t modulus at int is: £/ g
e secant m ulus at any one point 1s: = —
s 0 s y p s Ahhe

where h, is the initial height of sample, Ah is the settlement under ¢ and
therefore:

, 6.4 640
Es = -_ =
—(1.09/25)  4.36

= 147 daN/cm?.

In this instance, the difference between the two moduli is substantial.
The consolidation pressure of about 2.4 daN/cm? is obtained by simply
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Fig. 3.2a. Curve of compression in clay.
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drawing the intersection of the tangents to the consolidation curve on the
e -~ log o graph, as indicated on Fig. 3.2a. On the other hand, if we use the
Butterfield construction (see Geotechnique, 29: 469—479), we find a
consolidation pressure of 2.5daN/cm? (see Fig. 3.2b). Butterfield’s con-
struction appears to be simpler and avoids errors of estimating from the
graphical construction.

Summary of answers

C. = 0.18, 0. ~ 2.5daN/cm?

and
E' = 222daN/cm? for 6.4< 0 < 12.8daN/cm?
E' = 147daN/cm? for o = 6.4daN/cm?.

sk Problem 3.3 Approximate evaluation of the compression index C, and of
the settlement of a normally consolidated clay

Borings were made for a construction project. They showed that sub-
surface soils consist of a layer of fine sand 10.60 m thick, overlaying a soft
clay layer 7.60m thick. The free ground-water table is at 4.60 m below the
ground surface (see Fig. 3.3).

The buoyant unit weight is 1.04. The wet sand density is 1.76 above the
water table. The water content of the normally consolidated clay is w = 40%,



94 PRACTICAL SETTLEMENT CALCULATIONS

its liquid limit wy, = 45% and the soil particles unit weight of the soil con-
stituent is 2.78 RN/m3. The proposed construction will impart a net stress of

1.2daN/cm?.
Find the average settlement of the clay layer (determine the compression

index C, by Skempton’s formula and start from the initial vertical stress in
the middle of the clay layer).

Solution
Skempton’s formula for the compression index is C, = 0.009(wy;, — 10),

and for this problem, it is: C, = 9 x1073(45 — 10) = 9 x 35 x 1073 =
315 x1073 = 0.32.
The settlement is given by the formula:

Ah C. Ao
—_— = — log|1+—).
h l1+e o

Since the clay is saturated, its initial void ratio is:

e = w2 = 0.40 x 2.78 = 1.11.

Yw

(This value corresponds to a soft clay.)
The vertical stress acting at mid-height in the clay layer is:

° !

¢ = 4.60x17.6+6.00x10.4 + X Y
Tl s R 76k som - -
‘Water table R = 10 wsomp s
: D 25=104 kN/m?3 R S ,

Normally /
/| consolidated 760m
- clay
y
Fig. 3.3.

where v’ is the buoyant weight of the clay:

= Yeteve ZISFILL 04184 "= 8.4kN/m?
1+e 21.1 At =Ie4, 80y = 8.4 kN/m®.

Th
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The vertical stress then is:
0 = 460%x17.6 +6.00x10.4+ 3.80x 8.4 = 175.3kPa

o, A 032 (. 12} . T60x082 oo

nd — = — o — = — = s ) = 0.
7.60 211 B\t T i) 211 8

or Ah ~ 26 cm.

Summary of answers
C. = 0.32; settlement: 26 cm.

*kProblem 3.4 Approximate evaluation of settlements and of preconsoli-
dation pressure for an overconsolidated clay

An area under consideration is known to have been a lake at the beginning
of the Quaternary era. The lake bottom consisted then of a sand layer 55.70 m
thick overlaying a clay layer of 7.6 m in thickness (see Fig. 3.4). With time,
the lake disappeared and the lake bottom became a plateau through which a
river eventually carved a deep valley. The plateau is now some 45 m above
the bottom of this valley. The water in the river is 1.5 m below the level of
the valley (see Fig. 3.5).

The sand layer has the following characteristics: buoyant unit density:
1.04, wet density above the water table: 1.76.

- - - gl_ake

srom 0 '. - Sand

. . . . . . . " . - '/
Cla
// 760m /x o

Fig. 3.4.

The clay layer properties are: natural water content 35%, liquid limit 45%,
specific gravity of soil particles 2.78.

(a) Find the pre-consolidation pressure (neglect the weight of the clay).

(b) Evaluate the settlement range which could occur due to consolidation
of the clay if a building is constructed which would impart a stress of 0.9

daN/cm? to the clay layer.
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goao
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v pop
n 77
60m
Fig. 3.5.
Solution

(a) By definition, the pre-consolidation pressure is the largest effective
vertical stress ever experienced by the soil during its geological history. At
the time when the lake existed, the effective overburden pressure was, at the
top of the clay layer: ¢’ = 55.70 x10.4 = 579 kPa.

If the water level remained at the ground surface during the erosional
process, the largest overburden pressure was the one calculated above,
therefore: o, = 580 kPa, or 0, = 5.8 daN/cm?.

Remarks

For the case corresponding to the conditions summarized in Fig. 3.6,
which would correspond to a long dry period before the erosional process
started, the stress at the top of the clay layer would be: ¢’ = (65.70—H,)vy
+ (Hy —Hy)vee + Hyv'

s570my '
4/
water table

S . - - . e

o Hy . | H;
;Z Clay

Level of capillary water

Fig. 3.6.

If we assume the following values: H, = 45.70 m, H, =45.00 m, then ¢’ =
(55.7 — 45.7) x 17.6 + 0.70 x 20.4 + 45.00 x 10.4 = 176 + 14.3 + 468 =
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658.3 kPa = 6.6 daN/cm?, which is considerably larger than the preconsoli-
dation pressure.

(b) Let us calculate the vertical in-situ stress o, at the mid-height of the
clay layer before construction of the building. We must first know the unit
weight of the clay.

‘We know:

1+w
1+e

Because the clay is saturated: v, = 27.8(1.35/1.973) ~ 19 kN/m?, then
Yl = 0.9.

The unit weight of the saturated sand in the capillary rise zone is 20.4kN/m3 .
The thickness of this layer is 1.5m. We then have: ¢4 = 1.50 x 20.4 +
(55.70 — 46.50) x 10.4 + 3.80 x 9 = 160.5 kPa or 0, = 1.6 daN/cm?.

This stress is smaller than the pre-consolidation pressure (04 < g, ), so the
clay is overconsolidated.

The weight of the structure will increase the stress on the clay layer by an
amount of Ao =0.9daN/cm?, but 6, —0, =5.7—1.6 =4.1daN/cm?, there-
fore: Ao = 0.9 daN/cm? < i(0, — 0p).
If we let Ah be the settlement of a normally consolidated clay layer of equal
thickness and equal liquid limit, we would approximately have, for the
settlement, s, of the overconsolidated clay: Ah/10 <s <Ah/4 and for a
normally consolidated clay, Skempton’s formula for the compression index
gives: C, = 0.009(wy, —10) = 0.009 x 35 = 0.315 ~ 0.32.

If the clay were normally consolidated, the settlement would be:

Ah C, Ao\  0.32 0.9\ 0.32
— = log |1+ = |= ———log|1+-—|~—"=log 1.58
R 1l+e o) 1.973 156/ 1.97

TTn T Vs , € = w(ys/vw) = 0.35x2.78 = 0.973.

~ 3.21x 1072
Ah = 760x 3.21x 1072 = 24.4cm.

For the overconsolidated clay then: Ah/10 ~ 2.4 cm, Ah/4 = 6 cm hence
24<s<6cm.

Summary of answers
0, ~ 580kPa; 2.4<s<6cm.

sk Problem 3.5 Stresses at depth below shallow footings

A shallow footing is 12m square and 20cm thick. It supports a load
whose intensity is 0.78 daN/cm?. Assume concrete unit weight to be 2.5.

Determine the vertical stresses due to the footing and its load, at a depth
of 24 m below the ground surface and on verticals from points A, C, E and F
as shown in Fig. 38.7. Compare these values to those obtained if it were
asssumed that all loads are concentrated at point C.
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A 2m G 2m E

Fig. 3.7.

Solution

The stress due to the footing weight is: 0.20 x 1.00 x 25 = 5 kPa or about
0.05daN/cm?. The uniform stress below the footing is: ¢ = 0.78 + 0.05 =
0.83 daN/cm?.

(a) Let a, c, e and f (Fig. 3.7) be the orthogonal projections of A, C, E and
F on the horizontal plane at 24 m below ground surface. The stress increase
at a due to the footing is obtained from the graph of Fig. 3.7a. for L/B = 1.

(@]

5 10 15 20 25 0
T T T T Nand ‘E‘( iy

O ON O U A W N O

Fig. 3.7a. Stress below a corner of a shallow footing.

We have: z/B = 24/12 = 2 and L/B = 1, which gives Ao/q = 8.5% there-
fore Ac = 0.83 x 8.5% ~ 7-1072 daN/cm?.
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The increase in vertical stress at ¢ is obtained by subdividing the footing
into four equal auxiliary squares. Using Fig. 3.7a, we have for each of these
squares: z/B = 24/6 = 4; L/B = 1 from which Ag;/q ~ 3%, hence:

Ao; = 0.83 x 3% == 2.5 x 1072 daN/cm?
Ao = qU+1, +1, +1,) = 4ql, = 4 Ao,
Ao = 4x25:1072 = 10:107% daN/cm?.

The same procedure is followed for stresses at e and f, by using auxiliary
rectangles and squares. To determine the increase in vertical stress at e,
consider the rectangle AEHD and the square GEHB (Fig. 3.7). For rectangle
AEHD: z/B=24/12 =2, L/B = 24/12 = 2 from which Ac;/q = 12% and
Ac; = 0.83 x 12% = 10+107%2 daN/cm?.

For square A GBD, using the same method as above, Ag, = 7+107? daN/cm?
and Ao = q(I, —I,) = Ao, — Ao, = 3°107?2daN/cm?.

To determine the increase in stress at f, the following auxiliary surfaces
must be considered:

square 1: AEFI coefficient of influence: I,
rectangle 2: GEFJ coefficient of influence: I,
rectangle 3: DHFI coefficient of influence: I3 = I,
square 4: BHFJ coefficient of influence: I,

AO = q(Il _212 +I4).

To calculate Ag,: 2/B =24/24 =1, L/B =1, from which: I, = Ag,/q =
18% and Ao, = 0.83 x18% =~ 15-1072 daN/cm?.

For Ao,, using the preceding procedures, I, ~12%: Ao, = 10:1072
daN/cm?.
For Aoy, I, = 8.5%, Ag, = 71072 daN/cm?.
Thus, the total is: Ag = (15— 20+ 7)1072 = 2:107? daN/cm?.

(b) Assume now that the entire loading is concentrated at point C, the
centre of the footing. In this case:

3P

Ao=2 5 cos® 0, P=0.83x12x12=119.5-10° N, 2z =24m,
Tz

from which:
3x119.5-10° s ) 4 s 5
Ag = ————— cos 6 N/m* = 0.99:10% x cos®> § N/m
27 x 24
= 9.9 x cos® 6 1072 daN/cm?.

Table 3D summarizes the computations.
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TABLE 3D

Point r cos O = z/r cos® 0 A0(1072 daN/em?)
A 25.46 0.943 0.745 7.4

C 24 1 1 9.9

E 30.6 0.784 0.296 2.9

F 35 0.686 0.1562 1.5

Summary of answers

TABLE 3E

Vertical stress increase (in 1072 daN/cm?)

Points Surface loads Concentrated load
A 7.0 7.4
C 10.0 9.9
E 3.0 2.9
F 2.0 1.5

It is clear that the differences are small. This is due mainly to the fact that
the depth at which the stresses are calculated is twice the width of the foot-
ing. Had the depth been smaller, the differences would be more significant.

*kProblem 3.6 Settlement under a point load in a clay layer

A load of 3200 kN bears upon a thick sand layer (assumed incompressible)
in which there is a compressible clay layer at a depth of 8 m from the surface
(see Fig. 3.8). This clay layer is 4.80 m thick. The oedometric modulus of

3200 kN lF’

sand T . T 7| aoom

. / - Lo v P
Clay ///El= 23 daN,(;m/ ///

=

Sand

Fig. 3.8.
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the clay is estimated to be 23 daN/cm? in the upper half of the clay layer
and 29daN/cm? in the lower half. Determine the vertical settlements of the
load assumed to be concentrated at one point.

Solution

Assume that the load of 3200 kN is transmitted to the foundation soil
through an isolated footing at the surface of the soil mass. The stress distri-
bution in the soil may then be compared to that of a point load at P acting
on a semi-infinite elastic and homogenous mass.

Under these conditions, at depth z (Fig. 3.9) on a vertical from P, the
vertical stress on the horizontal plane is determined by Boussinesq’s formula:
0 = (3P/27mz?) cos® 0 in which: § = 0, therefore: ¢ = 3 P/2 722.

To determine the settlement, the clay layer may be divided into two sub-
layers of equal thicknesses. At mid-height of the upper clay layer, o is:

3 x 3200
(0), = X = 18.1kPa, or 0.18daN/cm?.
27 x (8 + 1.20)2

At mid-height of the lower clay layer, o is:

(0), = 3 x 3200 = 11.4kPa, or 0.11daN/cm?.
27 x (8 + 3.60)?

Let 2h be the thickness of the clay layer, then the settlement directly under
point P will be:

o o g),h o),h
S:[()ldz_l_f()z ()1’+()2'
o Ei E, E;
or:
0.18 x 240 0.11 x 240
s = + = 2.79cm =~ 2.8cm.
23 29
Remarks

(1) The Boussinesq formula corresponds to a concentration factor of n = 3.
Frohlich’s formula, with a concentration factor of n = 4, gives:

0 = 4P/27z*, or: (0);1 = %(0)1 ’ (0)2¢ = % (0),
and
s =3 xs = 3.7cm.

(2) In order to evaluate the accuracy of the hypothesis (load assumed to be
concentrated at one point), it is necessary to assume certain values as shown
below. Let v = 17 kN/m?® and ¢ = 30° be the properties of the sand. If the
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Ao

Fig. 3.9.

footing is square, and its side is B, the bearing capacity will be:
B B
qq = 0.8 7EN7 +YDN, +1.2¢N, = 0.8 7EN7’ because D = 0 and ¢ = 0.

Therefore, P = q4B? /3 with a safety factor of 3
or: 9600 = 0.4 x 17 x 21.8 x B?, since N,, = 21.8 for ¢ = 30°,
from which B~ 4m, and q,q4 ~ 2daN/cm?.

At mid-height of the upper clay layer, ¢ will be, from Fig. 3.7a:

(o) ~ &2 0.13 dajom? e _ 920 _
0); ~—q.q = 0.13daN/cm — = — = 23}.
1 100 %24 B 4.00

At mid-height of the lower clay layer:

(0), ~— 0.10 daN/cm? 2 _ 1160,
0), ~——q.q = O. aN/cm — = ——— = 29].
27100 2 B 4.00

The total settlement will be:

0.13 x 240 + 0.10 x 240
s =
23 29

= 2.18cm ~ 2.2cm.

In this particular instance, the settlement is overestimated if the load is
assumed to be concentrated rather than acting as a footing. The overestimate
is As/s = (2.8 — 2.2)/2.2 =~ 27%.

Since the settlement is overestimated, it is on the safe side.
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Remark.

It could be expected that the difference would depend to a great extent
on the arbitrarily chosen value of ¢ of the sand. We know indeed that the
coefficient N, is very sensitive to changes in p. However, in the formula for
B above, this factor appears as a cubic root and its effect is therefore greatly
reduced. As an example, for ¢ = 25°, the relative error is As/s = 22% and for
¢ = 35° the relative error is 40%. The order of magnitude of about 30%
of error is still maintained.

Summary of answer
s = 2.8 cm.

*kProblem 3.7 Determination of the modulus of subgrade reaction, &

A plate bearing test was performed on a 45-cm diameter plate. A seating
load of 0.7 daN/cm?® was applied initially after which the load was lowered
to 0.1 daN/cm?®. The strain gages read 55, 103 and 72 hundreds of a mm.
The load was then increased to 0.7 daN/cm? and the gages read 70, 118 and
86 hundreds of mm. Determine the reaction modulus kg for a plate diameter
of 75 cm.

Solution
The soil reaction modulus calculated from Westergaard’s equation is:

g 01— 0p .
k, = — = ——— (Fig. 3.10)
S $1 — 8
o0 G
O1daN/cm? Q7daN/cm?
0 T — > o
s, B|

4n

c

|
|
|
|
1
A
|
\
|
1

Fig. 3.10.
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ks is inversely proportional to the radius R of the plate. For the 75-cm
radius plate, and expressing ¢ in daN/cm?, we get:

0.6 45 0.36
— = =
§1—8o 15 $1 73S0

Ryorsy =

in which s; and s, are in cm and kg in daN/cm3.
After the first loading cycle, the average of three gage readings is:

55+ 103 + 72
(Sg)av = 3 = 76.7 hundreds of mm.
After the second load increment, this average is:
70 + 118 + 86
(S1)av = -3— = 91.3 hundreds of mm.

The permanent settlement is therefore: 91.3 — 76.7 = 14.6 hundreds of
mm and the modulus is:
0.36

Rsors)y = 116 = 24.6 daN/cm?, say 24 daN/cm?.

Answer
ky, = 24 daN/cm?.

*Problem 3.8 Time of consolidation of a clay layer with double drainage

An 8m thick clay layer, which has two drainage boundaries is being
consolidated. The coefficient of permeability of the clay is 3*107° cm/s.
Its oedometric modulus is 400daN/cm?. What is the time required to
achieve a degree of consolidation of 40%, and of 80%?

Solution
From the Terzaghi and Frohlich theories, the degree of consolidation is

dependent on the time factor T, :

T, = (e, /h*)t.

TABLE 3F: U(T,)

T, U T, U T, U
0.02 0.160 0.3 0.613 0.8 0.887
0.06 0.276 0.4 0.697 0.9 0.912
0.10 0.356 0.5 0.764 1 0.931
0.15 0.437 0.6 0.816 2 0.994
0.20 0.504 0.7 0.856 oo 1.000
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TABLE 3G: T, (U)

U 10% 20% 30% 40% 60%

Ty 0.008 0.031 0.071 0.127 0.289

The functions U = f(T,) and T, = ¢ (U) are given in Tables 3F and 3G.
From these tables we get T, = 0.127 for U = 40%, but Table 3G does not
show a value for U = 80%. We only know that T, for 80% consolidation is
between 0.5 and 0.6. The approximate relationship of Brinch Hansen gives:

o/ T3 Ue 0.8°
U = JJ———— from which: T3 = = —— = 0.178,
T3+ 05 v 21— U®)  2(1—0.89)

and T, = 0.56.

h? kE' h%y,
Therefore: t,95, = 0.127— and becausec, = —, {4056 = 0.127 vE
Cy Y
R’y
By the same token, tgoq = 0.56 T
kE
Numerical application:
h = half thickness of clay layer (open layer) = 4m
k. =38x10"cm/s =3 x107" m/s
E' = 4x10%daN/cm? =4 x107 Pa

Yo = 9.81x10% N/m?3

0.127 x16 x 9.81 x 103 .
ta0% = = = 0.127 x13.08 x10" sec
3 x107 x4 x107

t 0.127 x 2 08
= . X
0% 0.864

x 10 days = 192 days = 6 months and 11 days

0.864

tgoo = 0.56 x x 102 days = 848 days = 2 years, 3 months, 27 days.

Summary of answers
6 months, 11 days; 2 years, 3 months, 27 days.
*Problem 3.9 Coefficient of permeability

The void ratio of clay A decreases from 0.581 to 0.512 when the applied
stress is changed from 1.1 to 1.7daN/cm?. That of clay B decreases from
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0.609 to 0.596 under the same load transfer. The thickness of sample A
is 50% greater than that of B. Nevertheless, sample B requires 3 times the
amount of time needed for A to reach 50% consolidation under identical
boundary drainage conditions. What is the ratio of coefficients of permea-
bility of the two clays?

Solution
From Terzaghi and Frohlich’s theory, the coefficient of consolidation of a

clay is:

¢y = RE'[vy, (1)
the time factor is:
T, = (¢ /H)t. (2)

For a given degree of consolidation, the time factor is the same for both
samples, therefore:

cVAt _ Cug t
H? 50A H2 508
or:
2 2
Cva H, tsoB 3 27
= =2 x 22 =[] x3="=.
Cvg Hyg ts0a 2 4
¢ kE,
From eqn. (1), we have: A _ A ;‘*
CVB kBEB

The oedometric modulus is a function of void ratio:

Ao Ae , Ao(1 +e)
— = — or £ = ————o,
E 1+e Ae

For a given stress increase, Ag, of 1.1 to 1.7 daN/cm? we have:

Ep  Aea(l+eg) _ 0.069 x1.609
Ey  Aeg(l1+e,) 0013x1.581

kA cVA Eé 27
from which: — = — x — = — x54 = 364 Ralkg = .
. ey Ei 1 X or R,/kg 36

Remark
The given of U = 50% is redundant. Sample B takes 3 times as much
time to consolidate than A regardless the value of U.
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*Problem 3.10 'Time of consolidation

An oedometer test is performed on a 2-cm thick clay sample. After 5
minutes, 50% of consolidation is reached. After how long a time would
the same degree of consolidation be achieved in the field where the clay
layeris 3.70 m thick?

Assume the sample and the clay layer have the same drainage boundary
conditions.

Solution

The time factor function is: T, = ¢, * t/h? where ¢, = RE'/v,, .

For double drainage conditions, h represents half the thickness of the
layer (drainage path length). In single drainage condition, & would represent
the total clay layer thickness. (see Fig. 3.11). Let k' be the length corre-
sponding to the field condition and t' the time required for the layer to reach
U degree of consolidation. Since the clay and drainage conditions are the
same as those of the laboratory test, the time factor for both is the same as
is the coefficient of consolidation ¢, . Therefore:

2

et eyt , h'
T, = 7 T 5, SO I = tx —) .
h h h

R A AR 3 s
0 U 0 IR PRV "a
0 (, Perwous Iayer

D,‘pb,"d- y2..@ .’

Perwous Iayer
g '

.-v

=

Perwous Iayer
B A N S R A 0'.,

Double drainage
Fig. 3.11.

Numerical application

-+ +—«-4—-+ ++-0-+—0--0-—1-
: Impervious substratum f"“’
+ ot 4+ -f-—-f-o--l-“"f‘—f—"—'f

Single drainage

t = 5 minutes = 5 x 60 seconds, A’ = 370cm, h = 2cm

370\ 1
1 day = 86,400 seconds and t = 5 x 60 x X

2 86400

t = 118.8, say 119 days or 4 months.
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Remark:
The given U = 50% is redundant, the answer is independent of U.

Summary of answer
t = 4 months.

*dkProblem 3.11 Compressibility and consolidation curves; settlement calcu-
lation; preloading requirements

A highway embankment 2.40m high is to be constructed over a satu-
rated, homogeneous clay of thickness 2H = 4 m. The clay is underlain by a
sandy gravel which, for all practical purposes, is incompressible. The water
table is at ground surface. The density of the embankment is 2.1 (see Fig.
3.12).

A sample of clay is recovered from a depth of 2 m and a consolidation test
performed whose results are summarized in Tables 38H and 3I. The initial
sample thickness is 2hy, = 24.0 mm. The initial water content is w = 69%
and the density of the soil particles is 2.7.

(a) Draw the compression (e —log o) curve and the consolidation (e —logt)
curve. Determine the approximate value of the preconsolidation pressure, 0.,
and of C, and c,.

(b) What is the total settlement of the embankment? After how long a
time will this settlement be obtained?

(¢) Determine the total thickness of the embankment and surcharge to
attain the expected total settlement under the design embankment height
after a period of 4 months.

R EY

CFTST e s
Sandy gravel .- >
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TABLE 3H: Consolidation TABLE 3I: Compression
(each load is maintained for 24 h) (from 0.4 to 0.8 daN/cmz)
Stress Void Time Void
(daN/cmz) ratio (min) ratio
0.05 1.82 0.1 1.700
0.2 1.690
0.1 1.81 0.3 1.683
0.5 1.675
0.2 1.80 1 1.650
2.5 1.600
0.4 1.74 5 1.550
10 1.504
0.8 1.40 20 1.451
50 1.432
1.6 0.80 100 1.421
200 1.418
3.2 0.16 500 1.409
1400 1.400
Solution

(a) Tables 3H and 31 provide the data to construct the curves. The com-
pression curve is shown on Fig. 3.13. The initial void ratio for a saturated soil
is: eqg = w(vs/Yw) Orey, = 0.69 x 2.7 = 1.86.

Table 31 gives the data needed to plot the compression curve as a function
of time (e —logt) for a constant stress of 0.8 daN/cm?, after the sample
has consolidated under the stress of 0.4 daN/cm?. This curve is plotted on
Fig. 3.14.

The preconsolidation stress is the maximum effective overburden stress
to which the clay was ever submitted. It can be evaluated from the con-
struction shown on the curve of Fig. 8.13; it is o, ~ 0.50daN/cm?. The
compression index, C,, is the slope of the straight line BC in Fig. 3.13 and
corresponds (after Casagrande’s construction) to:

—Ae
A log o'
We have:
o, = 0.80daN/cm?, e, = 1.40, 05 = 3.20daN/cm?, e, = 0.16.

c

Ae =0.16 —1.40 = —1.24,

Alogo' =logo, —logo, =lo gz=lo §§___10 4
g g0, g0, goll g0.8 g

from which: C, = —(-—1.24/0.602) ~ 2.06, C. =2.1.
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Consolidation coefficient

The coefficient of consolidation, ¢,, is determined by the following
method:

(1) Determination of the void ratio at 100% consolidation. The inter-
section of the two tangents determines €190 corresponding to the end of
the primary consolidation (Fig. 3.14).

(2) Determination of the initial void ratio ¢o. The following procedure
is used (see Fig. 3.15): Choose a time near the origin, in the example ¢, =

0.1 min, and another time 4 times longer so that t, = 4t,, = 0.4 min (in the
example).
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The consolidation curve is drawn on a t-e graph of arithmetic scale for the
time axis.

We have then: e; =1.700 for t =t (direct reading), e, = 1.678 for t = ¢,
(interpolated reading).

By approximating the curve to a parabola with a horizontal axis near
the origin and from the geometric properties of a parabola, the following
relationships exist: eq. —e, = e, —e, from which ey, = 1.721.

Fig. 3.14 gives: e;o, = 1.430, ti00 =~ 32.5min
from which:

eoe + €100 1.721 + 1.430 ,
€50 — 9 = 2 = 1.576, tso =~ 3.7 min.

The height of the sample at the start of consolidation under the 0.8 daN/cm?
load is 2k and we have:

2h 2k,

1+ eq, 1+e,

from which:

1+ eq, 2.721
h = hyg— = 120« = 11.4 mm.
1+eg 2.860

The coefficient of consolidation c, is: 0.197 h?/tso,
s0: ¢, = 0.197 x (1.14)2/(3.7 x 60) =~ 1.15 x 1073 cm?/s.

Total settlement of embankment

Because the thickness of the compressible clay layer is rather small com-
pared to the width of the embankment (for highways, this width is seldom
less than 25 m), it may be assumed that the stress distribution in the clay due
to the load imposed by the embankment is uniform (Fig. 3.16). We thus
have: Ao’ = 2.40 x 21 = 50 kPa = 0.50 daN/cm?.

The vertical, initial stress at point M, at mid-height in the clay layer is:
0o = Hx 7élay . :

To find %lay, we proceed as follows:

! ’YS - ’YW ’YS

= X s = .
Y ™. Ya, Ya 1+e,

Earlier it was found that e, = 1.86, therefore Y/vs = (v — Yw )/ (1 + €4) =
(2.70 —1.00)/2.86 = 0.594 and 0y = 2.00 x 5.94 =11.9kPa#0.12 daN/cm?.
We found, in the previous section, that the preconsolidation pressure is



112 PRACTICAL SETTLEMENT CALCULATIONS

05

t (minutes)

-« ©,= 1678
[

t, = 4,

Q4
\

0.3
o

b

Casagrande construction
for ¢, calculation

02

1675
Fig. 3.15.

9 0i1BJ PIOA m



PROBLEM 3.11 113

UL

gravel

o’

Fig. 3.16.

0, = 0.50 daN/cm?. The existing effective vertical stress at the mid-height of
the clay layer is less than the preconsolidation pressure: the clay is over-
consolidated.

After construction of the embankment, the effective vertical stress at
the mid-height of the layer will be (see Fig. 3.17): g, + A¢’ = 0.12 + 0.50 =
0.62 daN/cm? which leads to: 0, + Ac’' > o,.

From the compression curve of Fig. 3.13, we have for:
0y = 0.12daN/cm?,e = 1.80 and: 0, = 0.62daN/cm?, e = 1.56 and from:
Ah/h = Ae/(1 + e) we get:

1.80—1.5
Ah = 400><—?0—6 = 34.3cm, say 34cm.

It would be necessary, in this case, to check the stability of the embank-
ment for foundation failure. The stability is satisfactory if in this case,
¢, = 40 kPa.

Thickness of embankment surcharge to reach the total settlement in

4 months
What would be the time required for the clay layer to consolidate 34 cm?

e 4\
i C¢ B
Ce
o
DT’
«— L L »
5 —»
[\rel a’ 0, + AT o' (log scale)

Fig. 3.17.
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Theoretically, this time is infinite, but in practice, it is considered that 100
percent of the settlement is obtained when T, = 2, which corresponds
to U = 99.4%.

Since T, = (c,/h?)t and since the drainage of the clay layer is in both
directions: h = H/2

h y o= 2 x (200)?
ence: 1.15x 1073
1
and: t = x 107 x T ia s 805 days
15 8.64 x 10

or 2 years, 2 months, 15 days.
To decrease the settlement time to 4 months, (120 days), the time factor
T, must be:

_ 1.15x1073x120 x 8.64 x10*

", = 0.298 ~0.30
(200)>2

The corresponding U value is U = 0.613 (see Table 3F). This means that the
settlement of 34 cm corresponds to 61.3% of the settlement S that would be

obtained under a heavier surcharge, which settlement would be: 0.34/0.613 =
0.55m.
The following equation for S gives the surcharge needed:

C 0o + Ag'*
S = Hx °1og(°,o).
1+e O,
oo + Ac'* 55 x 2.86
Ifwelet x = 0—,—, then: logx = S 0.187,
O 400 x 2.1

and x = 1.54, from which
Ao'* = 1.54 x 0.50 — 0.12 = 0.65 daN/cm?
Ad'* = 65kPa(*).

The corresponding embankment height is: H =65/21 = 3.10m, and the
surcharge needed would be: AH = 3.10 —2.40 = 0.70 m.

This example shows that it is possible to quickly stabilize an embank-
ment, if the time needed for preconsolidation by surcharge is programmed.
A surcharge of 70cm, left in place for 4 months and then removed would
eliminate any significant embankment settlement thereafter.

*This value could also have been obtained from the e — log J graph.
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Summary of answers
(a) see Figs. 3.13 and 3.14: o, = 0.5daN/cm?®; C, =2.1; ¢, =1.15x1073
cm?/s; (b) s = 34 cm after 2 years, 2 months and 15 days; (c) about 310 cm.

sk Problem 3.12 Oedometric moduli: behavior of an overconsolidated clay

From the givens of problem 3.11:

(a) Calculate the oedometric modulus E' of the clay in the section BC of
the compression curve corresponding to the stress increase due to the em-
bankment load (Fig. 3.12), at mid-height in the clay layer. Compare the
result with the modulus obtained by the approximate formula:

1+e
C.
(b) Find the compression index C, of the linear portion AB of the com-
pression curve corresponding to a stress level less than 0.20 daN/cm? (Figs.

3.13 and 3.19). Find the corresponding oedometric modulus.
(c) What can be inferred about the clay from this? What are some practical

conclusions?

E' =230

Solution

(a) From the answer of problem 3.11, the initial effective stress at mid-
height in the clay layer is: 04 = 0.12daN/cm?. The increase in stress due to
the weight of the embankment is: Ac’ =0.92 daN/cm?. The pre-consolidation

stress of the clay was found to be o, = 0.5 daN/cm?.
In order to calculate E’, the initial point on the compression curve, to

start from, is the pre-consolidation stress o,. Therefore:
Ao’ = 0.92 —0.50 = 0.42daN/cm?
1+e Ao’
T C, log(l + (Ad'/a)))
where e is the void ratio at o', or e = 1.68 (read on the compression curve),
and:

, _1+1.68
B’ = — —— x0.42/[log(1 + (0.42/0.50)] = 1.84

1

log 1.84 = 0.265
E' = (2.68/2.1) x (0.42/0.265) = 2.02daN/cm?(*) or: 2.00daN/cm?.

*E' could also be calculated from the compression curve by writing: Ah/h = Ae/(1 +e)
and E' = AG'/(Ah/h).



116 PRACTICAL SETTLEMENT CALCULATIONS

The approximate formula gives: E' = 2.3 x 0.5 x (2.68/2.1)
= 1.47daN/cm?. This approximation is not very good because A¢' is too
large in comparison to 0,. The value of E' = 2.00 daN/cm? corresponds to
that of a soft clay.

(b) The compression index C. is found from the relation: C, = —Ae/
Alog o', where: e, =1.82, 0, = 0.05daN/cm?, log 0; = 2.699 = —1.301;
e, = 1.80, 0; = 0.20 daN/cm?, log 0, = 1.301 = —0.699 from which:

, _ —(1.80—1.82)  0.02
¢ —0.699+1.301 0.602

>~ 0.033.

The oedometric modulus is:
_1+e Ad’
C. log(1+ (Ad'/ol))’

E!

As an example, we can take Ac’ = 0.10daN/em? in order to remain on
the AB portion of the curve (Fig. 3.18), which corresponds to stresses less
than o,.

0, = 0.10daN/cm?,e, = 1.81 (from the given)
2.81 0.10 0.281

E' = X = = 28.3daN/cm?.
0.033 log2 0.033 x 0.301

This value corresponds with that of a stiff clay.
(c) The results show that for small increases in stress Ac’, the clay is stiff
(see Fig. 3.18).

e4

—»
logG”’

Fig. 3.18.

On the other hand for larger stress increases (0, + Ao’ > 0.) the over-
consolidated clay initially behaves as a stiff clay (as long as the stress is
smaller than 0,), and as a soft clay as soon as the stress level increases
beyond the value of o.,.

The clay behavior in consolidation therefore depends on the level of
stresses. The qualifications ‘soft’ or ‘stiff’ must be viewed with respect to
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the imposed loads and cannot be based only on visual inspection in an
open pit.

Yok Problem 3.13 Consolidation with vertical sand drains

Referring once again to the geometry of problem 3.11, it is now desired to
decrease the settlement time by accelerating the clay consolidation with
vertical sand drains, going through the compressible layer to the underlaying
gravel (shown in Fig. 3.19).

Fig. 3.19. Plan view.

The center to center distance between the two adjacent drains is 2 R, the
drain diameter, 2r. The drains have equal diameters. Under these conditions,
it can be assumed that the clay drainage during the consolidation consists
of the superposition of a vertical drainage, characterized by c,, k., U, and
T, and of a horizontal, radial drainage characterized by ¢y, kn, U, and T,
with: T, = (cy,/h?)tand T, = [c,./(2R)*] t.

The coefficient of radial consolidation c,, is further defined by the
equation: Cy,./cy, = ku/ky.

Under these conditions the degree of consolidation U is given by: 1 —U =
(1 —U)(1—U,)

The degree of radial consolidation U,, function of T, and of the geometry
of the drains, is presented in Table 3J.

Assuming that we have a condition where ky = 5k, recommend drain
spacing and drain diameter to obtain all settlements in 4 months, taking into
account current practice i.e. drain diameters vary from 0.3 to 0.8 m and
spacing goes from 2.5 to 7.5 m.

Solution

Since k, = bk,, we can determine immediately: ¢,, = 5x 1.15* 1073 =
5.75+1073 cm?/s.

From the previous solution of problem 3.11 we know that U, = 61.3%.
Since we must realise the settlement in a period of 4 months, we also know
U =99.4%.

Therefore:

1—U 1—0.994
1—U, = =

1—-U, 1—0613

= 0.984 ~ 0.99.

=~ 0.016, then U, =1 —0.016



TABLE 34

Radial drainage, equal vertical strains (after Leonards)

Degree of Time factor
consolidation
Ur (%) ? =5 10 15 20 25 30 40 50 60 80 100
5 0.006 0.010 0.013 0.014 0.016 0.017 0.019 0.020 0.021 0.023 0.025
10 0.012 0.021 0.026 0.030 0.032 0.035 0.039 0.042 0.044 0.048 0.051
15 0.019 0.032 0.040 0.046 0.050 0.054 0.060 0.064 0.068 0.074 0.079
20 0.026 0.044 0.055 0.063 0.069 0.074 0.082 0.088 0.092 0.101 0.107
25 0.034 0.057 0.071 0.081 0.089 0.096 0.106 0.114 0.120 0.131 0.139
30 0.042 0.070 0.088 0.101 0.110 0.118 0.131 0.141 0.149 0.162 0.172
35 0.050 0.085 0.106 0.121 0.133 0.143 0.158 0.170 0.180 0.196 0.208
40 0.060 0.101 0.125 0.144 0.158 0.170 0.188 0.202 0.214 0.232 0.246
45 0.070 0.118 0.147 0.169 0.185 0.198 0.220 0.236 0.250 0.291 0.288
50 0.081 0.137 0.170 0.195 0.214 0.230 0.255 0.274 0.290 0.315 0.334
55 0.094 0.157 0.197 0.225 0.247 0.265 0.294 0.316 0.334 0.363 0.385
60 0.107 0.180 0.226 0.258 0.283 0.304 0.337 0.362 0.383 0.416 0.441
65 0.123 0.207 0.259 0.296 0.325 0.348 0.386 0.415 0.439 0.477 0.506
70 0.137 0.231 0.289 0.330 0.362 0.389 0.431 0.463 0.490 0.532 0.564
75 0.162 0.273 0.342 0.391 0.429 0.460 0.510 0.548 0.579 0.629 0.668
80 0.188 0.317 0.397 0.453 0.498 0.534 0.592 0.636 0.673 0.730 0.775
85 0.222 0.373 0.467 0.534 0.587 0.629 0.697 0.750 0.793 0.861 0.914
90 0.270 0.455 0.567 0.649 0.712 0.764 0.847 0.911 0.963 1.046 1.110
95 0.351 0.590 0.738 0.844 0.926 0.994 1.102 1.185 1.253 1.360 1.444
99 0.539 0.907 1.135 1.298 1.423 1.528 1.693 1.821 1.925 2.091 2.219

81T
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Table 3J gives the values of T, as a function of U, and of the geometry of
the drains (R/r).

Cor 5.75x1073x1.2 x8.64 x10°

On the other hand, we have T, = =
(2R)? 4 R?*x10%
Therefore: T, = 1.49/R?.

Now one has to make a choice between various theoretical solutions.
Let us say, for instance, that R/r = 10. Table 3J gives then T, = 0.907 and
therefore: R? =1.49/0.907 =1.64or R =1.28 m and r = 0.128 m.

In this case the distance between two drains is: D = 2 R = 2.56 m, and drain
diameter is: ¢ = 2r = 25.6 = 26 cm.

If we take R/r =5, then T, = 0.539, therefore R? = 1.49/0.539 = 2.77,
R=166m and r = 0.33m, which corresponds to a distance between
drains of D =2R ~3.30m and a drain diameter of ¢ = 2r~0.65m =
65 cm.

The latter assumption is the better one because it is more in line with
common practice as stated in the given of the problem. The geometry is

shown in Figs. 3.20 and 3.21.

T
Fitl Sand

Fig. 3.20. Fig. 3.21. Plan view.

Summary of answers
drain spacing: D = 3.30 cm; drain diameter: ¢ = 65 cm.

sk Problem 3.14 Consolidation of a multi-layered system, Absi’s theory;
surcharging

An embankment similar to the one of problem 3.11 (see Fig. 3.12) has

been constructed on a two-layer foundation. The characteristics of the two
layers are:
— the upper layer consists of clay, 1.50 m thick having c,; =1.15 x1073 cm?/s.
— the lower layer (also clay) is 2.50 m thick: coefficient of consolidation is
Cyr =4.5x10"%cm?/s.

Assuming that both layers have the same oedometric modulus, what is the
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difference between this condition and that of problem 3.13. Refer to Absi’s
theory [1].

Solution

If the oedometric moduli and densities are the same, the total settlement
is the same as that of problem 3.11, s, = 0.34 m. But because of the two-
layer system, the time of consolidation will be different.

According to the theory of Absi, the two-layer system may be equated to
a system of a single layer of thickness H' = 4.00m (H' = 2h’) and with an
apparent coefficient of consolidation ¢,, such that:

H2 H2
Cva — D) = 5
Z _ﬁl_ Hl + Hz
i vV Cyj V Cyi V Cv2
4 x10%)? 1.6
Cya = (4 x ) >~ x1073
1.50 x 102 N 2.50 x 102 ) 1.5 N 2.5
VII5x1073 /450 x107 3.39 212
1.6
Cyp = ——————=x 1073 =~ 0.99 x1073 cm?/s.

0.442 +1.179
finally: H' = 2h' = 4.00m, c¢,, = 9.9 x 10™* cm?/s.

To decrease the settlement time to 4 months, a larger surcharge than
placed in the case of problem 3.11 will have to be considered here, because:

Cva, _ 9.9x107%x1.2x8.64x10°
h'? 4-10%

T, = = 0.256 > 0.26

T, = 0.26 which gives, after Terzaghi’s approximation,
U=1.128+0.26 = 0.575.

Therefore: § =s, x1/0.575 = 0.34/0.575 = 0.59m

59 x 2.86 .
logx = — = 0.201, from whichx = 1.59;
400 x 2.1

Ao’ = 0.50 x1.59 —0.12 = 0.68 daN/cm?.

Thus, the total embankment height is: 68/21 = 3.24m.

A temporary surcharge, left in place for 4 months, of wet density equal
to v, = 21 kN/m3 will have a height of 3.24 —2.40 m = 0.84 m.

Note. The theory of Absi is only an approximation. It does not take into
account the continuity across the two-layer faces. A more accurate but also

more time-consuming solution would be the use of the finite-difference
method (see problem 3.19).
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Answer

In order to obtain a total settlement in 4 months, a surcharge of 0.84 m
must be placed.

sk Problem 3.15 Consolidation test on an overconsolidated clay

A saturated clay sample obtained from a depth of 4m is tested in the
oedometer. The results are summarized in Table 3K.

At the end of the test, the sample wet weight is 0.8738N and its dry
weight 0.7399N.

The density of the soil constituant is 2.65.
(a) What is the final void ratio after testing?
(b) Establish a simple relation between void ratio and sample thickness h.
(c) Draw the compression curve, e —log o'. What is the compression con-
dition of the clay?

What can be inferred as to the maximum loading the clay layer has under-
gone in the past? Assume that elevation of the water table corresponds to
ground surface.

TABLE 3K
Stress (kPa) Sample height (mm)
100 11.99
200 11.85
400 11.63
800 11.05
1600 10.40
400 10.54
100 10.76
Solution

(a) At the end of the test, the water content of the clay is:

W—W, . 0.8738—0.7399
w = = ~ (0181 = 18.1%.
W, 0.7399

The soil, being saturated, we know the void ratio, e = w(ys/vy), or e =
0.181 x 2.65 =~ 0.48. Thus, at the end of the test, the final void ratio is:
ey = 0.48.

(b) The volume of the soil grains within the sample for a unit cross-section
area has not changed and therefore is h(1 + e). Thus: A/(1 + e) = h: /(1 + €;)
where h; = is the height of the sample at the end of the test. The following
relation then applies: 1 +e=h(1 +e;)/h; =1.48/10.7T6h or 1+e=
0.1375h from which: e = 0.1375h —1 (h in mm).
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(c) This relation is the basis for Table 3L which presents void ratios as a
function of the vertical stress applied to the sample. From the data in that
Table, it is possible to draw the compression curve (e —log ¢’) as presented

in Fig. 3.22.
The preconsolidation pressure o¢,, estimated from this figure, is about

300 kPa.
Now, we have to calculate the effective vertical stress to which the soil

sample was submitted in situ.

£0.$0
3

060 po .

\Loaded

0.48
Qf\
0.45 — — Um,oiieij>\ to'“ _
,\\%*E
0.40 —
10 100 200 500 1000 2000 loga’
Pressure (kPa)
Fig. 3.22.
TABLE 3L
o (kPa) e
100 .. 0.65
200 .. 0.63
400 ... 0.60
800 . ... . 0.52
1600 . ... ... 0.43
400 .. ..., 0.45
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We have: 05 =7v'xh with ¥ =74 = Vw; Ysar = ¥(1 + w/1 + ¢), and
e =2.65w.

The in-situ saturated unit weight can be estimated from 7,,; at the start of
the test, and therefore:

_ ., 285%c 2654065 _ oo
Yeat = Vs o 65(1 + e) 165 fm

and finally: 4" = 20 — 10 = 10 kN/m?3. Then 0y =10 x 4 = 40kPa. This
stress is considerably less than o, : the clay is overconsolidated.

Since the preconsolidation pressure corresponds to the highest effective
stress ever applied to the clay throughout its geologic history, this weight
may have been caused by an overburden since then eroded, ora glacier.

Because the actual pressure is o, the difference, o, — 0o, =300 —40 =
260 kPa is the weight of that past overburden. In this case, where soil buoy-
ant density v’ = 10 kN/m3 and that of i ice, ¥; = 9.17kN/m?3, the stress differ-
ence may mean a soil erosion thickness of 260/10 = 26m or a glacier ice
thickness of 260/9.17 = 28 m.

sk Problem 3.16 Determination of C, and m, and the settlements of a satu-
rated clay; degree of consolidation

An undisturbed clay sample of 20 mm thickness is tested in an oedometer
and the following results are obtained:

effective stresses applied (kN/m? ): 50, 100, 200
sample thicknesses, h(mm): 20, 19.62, 19.24

The initial water content is 40%, the density of soil grains is 2.7.

(a) What is the compression index C, and the coefficient of volumetric
compressibility m, for each of the stress increments?

(b) The sample was recovered from a clay layer 4 m thick located over an
impervious rock base and overlain by a sand layer. The average vertical
effective stress in the clay layer is 75 kN/m?. This stress is ultimately in-
creased to 150 kN/m? as a consequence of a surface load placed at the ground
surface. Calculate the total settlement of the clay layer due to this new
condition, using the appropriate C, value.

(c) In practice, some engineers prefer using m, rather than C, to calculate
the settlements. This is because in reality the e—log 0 curve may not be
straight. Can you give another reason?

(d) During the consolidation test, 90% of the primary consolidation was
obtained after one hour for the stress interval of 100 to 200 kN/m?. After
what time would a degree of 50% consolidation be obtained?

Solution
(a) From the consolidation test it is observed that the 50 kN/m? stress did
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not result in a significant decrease in sample height. Therefore, one may
expect thate, >~ e5,.

Since the soil is saturated, eq = w(y,/vw) and eqg = €50 = 0.40 x2.7 =1.08.
The variation of void ratio Ae is proportional to the sample height change
Ah. The relation is: Ae/(1 +ey) = Ah/hy, from which: Ae = [(1 + ¢)/
hy] Ah or Ae = [2.08/20] Ah = 0.104 Ah, where Ah is in millimeters.

The compression index C, is given by: C, = —Ae/Alog ¢'. Since the
load is doubled for each increment, we have: A log o’ =log(100/50) =
log(200/100) = log 2 = 0.30103.

Since the sample height change is the same for both load increments,
Ah =19.62 —20=19.24 —19.62 = — 0.38mm. The compression index is
the same in both cases and is: C, = —(0.104 x 0.38)/0.30103 = 0.131.

The coefficient of volumetric compressibility is: m, = —(Ah/h)/Ac.
In the first load increment, then: m, = —(0.38/20)/(100 — 50) = 3.8 x
10™ m?/kN = 3.8 x 1072 cm?/daN and in the second: m, = —(0.38/19.62)/
(200 —100) =1.9x10™*m?/kN = 1.9 x1072 cm?/daN.

(b) The effective vertical stress is within the range 50—200kN/m? for
which we have C, = 0.133. This value may be used to calculate the clay
layer settlement.

For o' =75 kN/m?, the value of the void ratio is: Ae = C, log[(¢0’ + Ac)/0']
therefore: e;s ——eso =-0.131 log (75/50) =—0.023 and e,; = 1.08 —
0.023 = 1.057.

For the increase in stress from 75 to 150 kN/m?, we have:

Ae =e 5y €75 =--0.131 log (150/75) = —0.0394 and
Ah/h = Ae/(1 + eq5) = —0.0394/(1 + 1.057).

The settlement due to the consolidation of the 4-m thick layer will be:
Ah = (0.0394 x 4 x103)/2.052 = 76.7, or 77 mm.

(c) If the settlement is calcuated from my,, it is not necessary to calculate
the void ratio.

(d) From the Terzaghi and Frohlich theories, we have: T, = (¢, /h?)t. The
functions U = f(T,) and T, = ¢(U) are given in Tables 3F and 3G [8].

During the laboratory consolidation test, the sample is drained both at the
upper and lower faces. The height to consider is that corresponding to the
shortest drainage path, or half the sample height. Therefore h; =10mm.

A degree of consolidation U; = 90%, gives by interpolation (see Table
3F) a time factor T,; =~ 0.85:

Ty, = cyt,/h? = 0.85. 1)

However, the clay layer in situ is only drained through the top surface,
the drainage path therefore corresponds to the clay layer thickness and
h, =4m. For a degree of consolidation of 50%, the same source [8] gives
a time factor 7,, = 0.20 and therefore:

Ty, = cyty/h3 = 0.20. (2)
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The ratio of egs. (1) and (2) eliminates ¢, which is the coefficient of
consolidation and assumed to be the same for both cases. Therefore:

(¢, /h3)/(t,/R?) = 0.20/0.85 = 0.235

from which, expressing /, and h, in meters,

t, = 0.235 x t; x (h%/h%) = 0.235 x 3600 x (4/1072)? =1.3536 x108 sec =
4.29 years.

Thus, over 4 years would be needed to achieve 50% consolidation of the
clay layer,

3920 kN
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dikProblem 3.17 Settlement of shallow footings

During the preliminary foundation studies for a proposed steel mill plant, it
was found necessary to determine the settlement of a typical column of the
laminating plant expected to be loaded up to 3920 kN. From the soil investi-
gation, it is known that sound, gneiss bedrock is at an average depth of 11 m.
The alluvial soil profile above the rock consists of, from the surface to the
gneiss: sandy silt, clay, silt, clayey and micaceous sand layers.
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Fig. 3.24.



PROBLEM 3.17 127

The average ground surface elevation is +12.5m. The bottom of a square
footing, 4 by 4 m in plan dimension, is proposed at an elevation of 8.50 m.
The cross-section and the properties of the soil layers are shown on Fig. 3.23.
The ground water table is at the footing level. Four soil layers have been
identified which are: D, =1.00m, Z, =0.50m,; D, = 2.00m, Z, = 2.00m;
D;=200m,Z;=4.00m; D, =200m, Z, =6.00m.

Four samples were recovered from depths Z,, Z,, Z5 and Z, and were
tested by means of a consolidometer and a triaxial settlement test.

(1) From the compression curves of the four samples (see Fig. 3.24)
define the state of consolidation of the various layers.

(2) To what laboratory load stresses should the samples be reconsoli-
dated before being tested in the triaxial load frame?

(3) Determine the stress increase caused by the column at elevation + 8.50,
assumed that the footing is flexible. Then, determine the additional stress
increases Aoy, and Aoz, which will have to be applied in the triaxial test, to
reproduce the in situ condition, when the column load is applied. Assume
v =025

(4) With the triaxial test under additional stress tensor (Fig. 8.25) curves
giving settlement as a function of load stress were obtained. Determine the
total settlement of the column. What can be said about the fact that the
footing is well below ground surface? According to the shape of the curves in
Fig 3.25 compute the instantaneous (at 10sec), primary and secondary
settlements. Express each settlement as a percentage of the total settle-
ment.

(5) Determine the settlement of the column from the oedometer test
results. Do not apply Skempton’s correction.

Now go through Skempton’s correction for the settlement calculated by
the oedometric method. What are the conclusions? Time (10g scale)
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(6) What can be said regarding the two methods of settlement calcu-
lations? Use the data of Fig. 3.26.

Solution

The buoyant wet unit weights of the soils in the four layers (the upper
sandy silt layer is not saturated) are determined by: v, = v4(1 + w), ¥’ =
Ysat — Yw - When expressed in kN/m3, they are as tabulated in Table 3M.

Note that for the upper layer, it is not necessary to calculate the buoyant
weight. The wet unit weight is used to evaluate the overburden pressure
(wet because of the capillary zone).

(1) The effective overburden stresses, acting at mid-height of each of the
four layers at depths Z,, Z,, Z, and Z, are:

' =4.00 x 18.7 + 0.50 x 10.0 = 79.8 kPa;

5, =0} +0.50 x 10.0 + 1.00 x 11.0 = 95.8 kPa;
0% = 0% +2.00 x 11.0 = 117.8 kPa;
04 = 0} +2.00 x 11 = 139.8 kPa.
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TABLE 3M
Layers No. Ya w Th Y
Sandy silt 0 17 10% 18.7 -
Brown clay 1 15.5 29% 20.0 10.0
Brown silt 2 16,2 295% 21.0 11.0
Clayey sand 3 17.3 21.5% 21.0 11.0
Micaceous sand 4 18.0 16.5% 21.0 11.0
5 10 20 50 100 200 500
o8 S e N Y | N (Uc), =132 kPa
e
R
| ; | _|(fc), =117 kPa
Wx
®
\\_}LN\“‘E): ~ 157 kPa x\
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Fig. 3.27.
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From Fig. 3.27, the pre-consolidation pressures are:
(0¢)y =~ 117 kPa; (0.), ~ 132kPa; (0); ~ 157 kPa; (0,), ~ 177 kPa.

By comparing these values with those of the overburden pressure, it is
seen that in each instance o{ < (0, )i. So all the layers are over-consolidated.

(2) Before proceeding with the triaxial testing of the samples, they will
have to be reconsolidated under an effective stress equivalent to that under
which the soils were subjected in situ. The ideal consolidation condition
in the lab would be to apply an anisotropic stress such that o} /03 =K, (0.);,
which would require determining the value of K, for each of the layers.
In practice an isotropic reconsolidation under a spherical tensor o; could
be admitted, so that the following confining pressures should be applied:
80 kPa for layer 1; 96 kPa for layer 2; 118 kPa for layer 3; 140 kPa for
layer 4.

(3) The error involved by assuming that the unit weight of concrete (of
the footing) and of the fill material used for seating has the same value as the
soil in place, is negligible when considering the magnitude of the expected
column load.

Since the footing is assumed to be flexible, the vertical stress distribution
below it is uniform. The stress increase due to the column load at El. + 8.5
is: ¢ = 3920/(4 x 4) = 245 kPa.

From graphs of Fig. 3.27a the stress increases in the various layers can be
estimated, and they are given in Table 3N.

I - -

Fig. 3.27a.

To obtain the increments of horizontal stress Aoy, corresponding to the
increase in vertical stress, it is necessary to resort to Fig. 3.26. It can be
used for square footings by letting R = B/2. The results are summarized in
Table 30.

(4) The shape of the curves of Fig. 3.25 indicates that there is not much
difference between the ultimate settlement at ¢ = o0 and that occurring after
48 h. The secondary compression occurring after the initial 48 h may be
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TABLE 3N

A Z/B Aol/q Aol (kPa)
0.50 0.125 0.995 244

2.00 0.50 0.70 171

4.00 1.00 0.33 81

6.00 1.50 0.18 44
TABLE 30

VA ZIR Aas/q (v = 0.25) Agy (kPa)
0.50 0.250 0.45 110

2.00 1.00 0.05 12

4.00 2.00 —0.02 (tension) 0

6.00 3.00 —0.02 (tension) 0

overlooked. Since the sample height in the triaxial is 80 mm, the change in

sample thickness for each test is:

sample no. 1: Ah,. ~12/10 mm;
sample no. 2: Ah,. ~18/10 mm;
sample no. 3: Ah,. ~13/10mm;
sample no. 4: Ah;. ~ 8.3/10 mm.

Thus the total settlement under the footing will be:
AH——‘EXE‘QQ'F'];‘S—X'%@'FEX@'F'S‘EX 2@2113
10 8 10 8 10 8 10 8

AH ~113 mm.

The fact that the footing is 4 m below grade does not greatly influence the
amount of total settlement. Contrary to the outdated method of determining
the stresses in a semi-infinite body by the Mindlin theory, the more accurate
solution today makes use of finite element method which is based more on
the real conditions (Fig. 3.28, 3.29). By Mindlin’s method, tensil stresses are

/ biydd /% / /

Fig. 3.28. Fig. 3.29.

developed in the shaded area of Fig. 3.29 which, we know, cannot exist in
soils. The calculated settlement should not be considered conservative and

therefore the value of AH = 113 mm should be reported.
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Instantaneous settlement
In the given of the problem, it was specified that the settlement at ten

seconds should be considered. This is a purely arbitrary consideration.
Based on that, however, we have:

sample no.1: 0.18 mm; sample no.2: 0.34mm;

sample no. 3: 0.27mm; sample no.4: 0.12mm.
The initial, instantaneous settlement of all soil layers will be:

100 200 200 200
AHia = 0.18 x —8—‘ +0.34 x ——8‘— +0.27 x T +0.12 x ? ~ 20 mm

or: AHi.nitial =~ 18%.

The 10s consideration to estimate instantaneous settlement is completely
arbitrary. In fact, it often occurs in the initial two seconds but it is not
possible to determine accurately the duration of this phenomenon.

The reasons for this instantaneous settlement are numerous.

In the laboratory they may be due to:

— incomplete saturation of the sample,
— the porous stone of the oedometer is not properly seated on the sample
and penetrates in the sample during the first seconds.

In the field, this settlement may be due to:

—-disturbance of the soil immediately below the footing bottom;

— a general deformation of the soil mass with no change in volume occurring
prior to the consolidation. This type of settlement cannot be estimated from
laboratory test results given in this problem.

It should thus be noted that instantaneous settlements in the field and in
the laboratory are of different nature, and that the first one cannot be
estimated by the second.

Primary settlement

The end of the primary consolidation corresponds to the intersection of
the two tangents of the curve of settlement versus time obtained from the
laboratory test. The values thus obtained are summarized in Table 3P.

TABLE 3P

Sample AH (mm) Primary

no. ; settlement
Start of primary End of primary (mm)
consolidation consolidation

1 0.18 0.95 0.77

2 0.34 1.59 1.25

3 0.27 1.09 0.82

4 0.12 0.60 0.48
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The primary settlement, corresponding to the primary consolidation of
all the layers is thus:

100 200 200 200
0.77x—8——+1.25x—8—+0.82x—8—+0.48x? = 73mm

say ~ 65% of the total settlement.
(5) Oedometer method

We must now refer to the oedometer diagrams and the oedometric
equation: AH/H = Ae/(1 + e), on which is based Table 3Q (stresses in kPA).

TABLE 3Q
! ’ ' r ’ Ae
g o + Ad e(0) e(0' + Ad") Ae AH
1+e
78 323 0.749 0.657 0.092 0.0526 5.26
94 265 0.782 0.710 0.072 0.0404 8.08
115 198 0.681 0.658 0.023 0.0137 2.74
136 180 0.580 0.572 0.008 0.005 1.00
Therefore: AH eqometer = 17 cm. 2 =17.08cm

From experimental triaxial curves (Fig. 3.25) tﬁe following correlations can
be anticipated for the oedometer test:

primary ~ total ~ 24h
Soedometer — 35% Soedometer — 65% Soedometer

On the other hand, the soils are slightly overconsolidated.
We can estimate A to be 0.4. With H = 7Tm and B = 4 m we get: H/B = 1.75,
and Skempton and Bjerrum’s graph gives: u = 0.55 to 0.60 or:

sp = 0.55 x (0.65 x 170) ~ 60 mm
and:
s**" =60 + 0.35 x 170 = 119.5 or ~ 120 mm
We then have:
Ah = 113 mm (triaxial test method),
Ah = 170 mm (original oedometer method),
Ah = 120 mm (Skempton corrected oedometer method).

The agreement between the two methods is acceptable, provided Skempton’s
correction is made.



134 PRACTICAL SETTLEMENT CALCULATIONS

(6) The oedometer method leaves something to be desired. It does not
account for the horizontal strains. When calculating the settlements of a
relatively thin clay layer that is loaded by a large area fill or a wide embank-
ment, this method gives much more satisfactory results.

In this example, however, where the thicknesses of the layers are large
with respect to the loaded area (thickness wider than footing dimension) the
oedometer method lacks accuracy. Theoretically, the triaxial test method is
preferable because it reproduces more realistic the in-situ stress conditions.
But the Poisson’s ratio of the soil must be known and it is difficult to deter-
mine this value accurately. Because of this limitation and the complexity of
performing triaxial tests, the theoretical advantage of the method is doubtful.

*kProblem 3.18 Settlement calculation with Newmark’ chart, effect of

adjacent footings

A square footing S, is 2m wide and located 2 m below the ground surface
in a sandy gravel layer assumed to be incompressible. This layer is 5.5m

Footing S

~
N
~
A
(-] o

| 1.00]1.00

- Clay
) 1 Y=172 kN -

Fig. 3.30.
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thick. Below it is a clay layer 3 m thick which overlays a sound bedrock
(see Fig. 3.30). The footing supports a column loaded to 1200kN. The
in-place density of the sandy gravel is 1.9 and that of the clay is 1.72.

The preconsolidation pressure of the clay was found to be o, = 1.29daN/
cm? from laboratory tests. The oedometric modulus is E' = 30 daN/cm?
for stresses less than 10 daN/cm?.

(1) Calculate the settlement at the center of the footing.

(2) This footing is surrounded by other footings, S,, S; and S, as shown
on the plan of Fig. 3.31. All are at the same level and carry loads of 580,
435 and 1085 kN, respectively.

Calculate the settlement of S, under the influence of adjacent loads.
Assume that the unit weights of concrete and the surrounding soil are the
same and that the excavation is filled up after construction. Use Newmarks
chart of Fig. 3.32.

Solution
(1) The settlement beneath the center of the square footing is:
Ahfh = —A0/E’. (1)
2.00
7 77
N7 ¥
Y/
3 2.70 x 3.40 X

X
0~
N

2.50

2.20

3.40

E

[=d

o
N\

1.00
§
&
1
3

o /SS//g:I 200 .
W
{ 1.50 ]

Fig. 3.31.
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The stress increase Ag corresponds to the increase at mid-height in the
clay layer due to the footing load.

To determine Ao, Fig. 3.26a cannot be used, for the fact that Z/B = 2.5
is too large (Z = 5.50 —2.00 + 1.50 = 5m, B =2.00m). Therefore, the
graph shown in Fig. 3.27a may be used if we consider the four quarters of
the square footings as identified in Fig. 3.31.

The stress increase along a vertical passing through the center of the
square footing will be determined from the influence factors I, =1, = I, =
I, =1 and Ao =q x41.

For a quarter, we have: L/B = 1 (square footing), 2/B = 5/1 = 5. We find
that I ~ 2% and 41 = 8/100. Also ¢ = 1200/(2 x 2) = 300 kPa ~ 3 daN/cm?
and Ao = 8 x 3/100 = 0.24 daN/cm?.

0

Fig. 3.32. Newman’s chart. The influence of each curvilinear square on the chart, such as
abed is 0.001. OQ (the lateral vertical scale), represents depth Z, at which the stress is
to be calculated, so that: Ao = 0.001 Xn Xq, where g = vertical stress at the surface of
the soil below the footing bottom, uniformly distributed, n = number of squares covered
by the size of the footing drawn to the same scale as Z = OQ.
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The overburden pressure at mid-height in the clay, prior to the start of
construction, was: 0, = 5.50 x19 +1.50 x17.2 = 130.3 kPa ~ 1.3 daN/cm?.

We know that the preconsolidation pressure is 6, = 1.29 daN/cm?, there-
fore we can say that the clay is normally consolidated. Formula (1) may be
used with E' =30daN/em? which we were told is valid up to a stress level of
10 daN/cm?. Therefore: Ah = —h(Ao¢/E"), |Ah| = 300 x 0.24/30 = 2.4 cm.

(2) Additional settlement will occur under the square footing due to the
loads imposed by adjacent footings S,, S5, S, (Fig. 3.31). Newmark’s chart
is used for calculating these settlements. The size of the footing is drawn on
the chart and the squares within the footing are counted. Here we have
OQ = 6.5 cm which corresponds to Z = 5.00 m.

For the number of squares (see Fig. 3.33) we have:

footing S, : n; = 74 squares
footing S, : n, = 11.5 squares
footing S5: ny = 8.5 squares
footing S, : n, = 22 squares.
2.00
™
Pty
< 2.70 j(‘ 3.40 X
(]
]V 1j00
21
« 7
S
° L 200 E o
© 4
? | .
1
» 3 P:J | 2.00 |
< s

! 1.50 |
Fig. 3.33.



138 PRACTICAL SETTLEMENT CALCULATIONS

The respective footing areas are: S;: 4.00m?,S,: 2.00m?, 85: 1.50m?,
S,: 3.50 m?, from which:

q; = 1200/4 = 300 kPa = 3daN/cm?,

q, = 580/2 = 290 kPa = 2.9daN/cm?,

g3 = 435/1.5 = 290 kPa = 2.9 daN/cm?,
g4 = 1085/3.5 = 310 kPa = 3.1 daN/cm?.

The total is: Ao’ =0.001{74x8+11.5x2.9+85x2.9+22x3.1] =
0.348 ~ 0.35daN/cm?.

The settlement below the center of the square footing will therefore be:
Ah =300 x 0.35/30 = 3.5 cm.

The adjacent footings increase the settlement of the square footing by a
factor of about 46%.

Remark

Newman’s chart may of course also be used to determine the stress for
the isolated footing S;. If used, it gives a value of Ac” = 0.001 x 74 x 3 =
0.22daN/cm? as opposed to 0.24 daN/cm? found in our solution.

¥rkProblem 3.19  Solution of Terzaghi’s consolidation equation by the
finite-difference method: application to a two-layered
system

In order to obtain an approximate numerical solution to Terzaghi’s
consolidation equation, increments to time t and depth Z will be given finite
values At and AZ. Let us adopt the indexes i for depth and j for time;
the pore pressure is noted with two indices: Ui, and u;4q j-1 means the pore

pressure at depth Z + AZ at time t — At.

Drainage

e

H N [

B

Fig. 3.34.

-

Drainage
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(1) By incremental changes the two elements of Terzaghi’s formula, show
that this equation consists of a linear recurrence relation between u; j,
Ui j+1, Ui+r,j and U;_y 5. Let A =c,(At/AZ?). For which value of A is the
relation very simple?

(2) Consider a two-layered system of compressible soils located between
pervious boundaries (Fig. 3.34). To solve Terzaghi’s equation, layer 1 is
divided into n, sub-layers, each of thickness AZ | and layer 2 is divided in n,
sublayers of thickness AZ,.

Show that AZ, and AZ, are not independent and determine what the
relation is between n, and n,.

(83) Find the initial and limit conditions on the upper and lower faces of
the two-layered system which indicate that drainage is ideal.

Assume that the initial excess pore-water pressure is 1 over the entire
height of the layers, except at the boundaries where u(0,0) = u(H, 0) = 0.5.
At the boundaries in fact, at t = 0, the excess pore pressure is 1 and become
zeroatt=1t+ e

Give an equation of continuity at the interface between the two layers
using the principle of continuity of the flow.

(4) For the rest of the problem, assume A = 1/2 to simplify the compu-
tations.

Remark

We could also assume A # 1/2; the accuracy of the method depends on its
value. The smaller the elements, the longer is the computation but the better
is the accuracy.

For computer use, it is generally assumed that A = 1/6. Given are:

h, =25h,; c¢,; =1.8x10%cm?/s; ¢y, =1.62x 1073 cm?/s;
R, =11x10%cm/s; k, =2.2x 10%cm/s; H=7.00m.

Based on the equations obtained above, show that it is possible to con-
struct, point by point, an isochrone net. Show the computation in the form
of tables to the 10th increment of At. Take the minimum whole values for
n, and n,. Draw the net correspondingtot =0, t, =5 At,and t, = 10 At.

If we call the degree of consolidation at time t for depth Z by u(t, Z) =
1—u(t, Z)/uy (uo, = initial excess pore-water pressure) give the formula for
the degree of consolidation of the two-layered system and find its value for
t=t,andt =t,.

Solution
(1) For a function f(x) the formula for finite increments is:
fl@+h) = f(@) +hf'(a+ 6h) with 0<6<1. (1)

Porewater pressure is a function of Z and t: u(Z,t). Let’s fix Z = Z,,
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u(Z,t) then becomes a function of time alone:

u(t) = u(ZOa t)a
u(t + At) = u(t) + At.u'(t + 6 At) 0<e<1.
If At is sufficiently small, then u'(t + 6 At) ~=u'(t) = u'(t + At)and
ou _u(t+ At)—u(t)
ot At

u'(t) =

Ujj+1 7 Ui
it (@)
At

fag

. ... Ou
or, using the indices: 5;

Similarly, for t = t,:

) _ _ .
- s — U - : - u: ; Uiy :
ou ~ Bivni T U 0%u o | Wi,y T U5 U i 1,1] /AZ

3z AZ  0Z? AZ AZ
2 i — U
or 0%u ~ Yit1) 2“1; ux—l,]. (3)
VA AZ
. du 0%u )
The consolidation equation E = CVE)TZ_Z may be written as:
Ui g1 Uiy _ c Uiy, — 22U H Uiy
At Y AZ?
letting A = ¢, (At/AZ?) we get:
ui,]’+1 = (1 _2A)uiyj + A(ui+l,j + ui_lyj) (4)

which is the relation asked for.
This relation may be simplified if A = 1/2, it then becomes:

U541 — lz_(ui+l,i + ui-y5) (5)

(2) We have A =c,,;(At/AZ%) = c,,(At/AZ3) since the same time incre-
ment must be chosen for the two layers. Therefore: AZ,/AZ, =+/cyi/cyva-
Therefore we have: AZ, =h,/n, and AZ, = h,/n,, and

hy [t

n, =— [— *n,. 6

' h2 Cvi : ( )
(3a) The boundary conditions are:

u(0,t)=0

u(H,t) =0

for t+#0 (7
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which implies that drainage at the surfaces of the system is ideal.
(b) The initial conditions may be written:

0
u(z,0) =1 VZ#
{ H (8)

1(0,0) = u(H,0) = 0.5

(c) Let us write the condition of continuity of flow at the interface
between the two compressible layers. Let us start by determining the head
h at a point M at elevation Z. Say H, is the distance to the water table
from an arbitrarily chosen reference level (see Fig. 3.35).

S yWa‘cer table
Reference *. .~ .. - & -
L
plane z
T .M
z
Fig. 3.35.

The pore-water pressure at M at time t is equal to the sum of the
excess pore pressure u(Z,t) and of the hydrostatic pressure (H, + Z)y,,
existing at M prior to the increase u(Z,t). The head & is usually expressed
by h = @/ve) + 2.

The positive vertical direction isdownward andu = (H, + Z)y,, . Therefore:

Yw

The continuity of flow at the interface may be expressed by the con-
tinuity of rate of percolation v, = v, or k,i; = k,i, or also by taking into
account eqn. (9): ky (Au/AZ), = k,(Au/AZ),

therefore by k(uyx; —Ux-1;) = Ra(Uk+1,; — Uk, (AZ,/AZ,) (10)

—Z = Hy+ u(Z,t). (9)

where index k corresponds the value of index i at the interface, and if we
assume that index i increases from bottom to top of the compressible layers.
(4) The numerical applications give:

Cy2 1.62x1073

Co 1.8x107°
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from which:

AZ,JAZ, =+/T]9 =1/3 from which H=7.00m, h, =2.5h,h; =2.00m,
h, =5.00m,
hl cv2

n,=— [——xn, =-—x3xn, =12n,
h, N ¢, 2.5

or n, =5, n; =6, finally k,/k, = 2.
We then have the following relations:
Ui j+1 = %(ui+1,j + Uiy 5) (5)
U ; — Up-1 = 2 X S(Uoyj — g j)- (10bis)

The interface between the two layers corresponds to the value 6 of index k
and since equation (10 bis) is valid regaxdless of t, index j is no longer necess-
ary. Therefore, eqn. (10 bis) may be rewritten as:

U —Us = 3(u; —ug) (10ter)
or ug =1@Bus + 2u,).

Finally, increment At is given by: ¢, At/AZ? =1/2.
For instance, if values applicable to layer 1 are substituted, we have:

2
2 x10? oA L (2><102) L
AZ, = 5 m from which At = 5~ 6 1.8x107*

At >~ 3.09-10° seconds or about 36 days.

The initial and boundary conditions are: ug ¢ =0.5, ug; =0, u;y,9 =0.5,
uy;,; = 0, which allow us to calculate u;; by successive approximations with
eqn. (5). When the value of 6 is reached for index i, equation (10 ter) must
then be used.

Calculations are made easier if tabulated with double entry. For instance,
each column may be made to correspond to a specific index value corre-
sponding to the location of a point in the two-layered system. (i =0, 1,2, ...
11) and each line corresponds to a time increment 0, At, 2At, ..., nAt (=
0,1, 2,...n). As specified in the given of the problem, the limit of j is 10.

The first line of the table may be filled in immediately since it is assumed
that u = 1, except at the end surfaces (i = 0 and i = 11) at which u = 0.5.

Columns 0 and 1 can also be filled in immediately since u,; =0 and
u,y; =0, regardless of j. Line 2 is easily filled in for ug; =0 and u; ; =
(14 0.5)=0.75.

The same procedure is used for u,, ;, at the right end of the table line 1.
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For linej = 4, we would have:
Ug,a = %(3145,4 t2us4) = 5[(8x1) + (2 x0.968)]
ug 4 = 0.987.

t, =104t t,=54t

- \
Interface },

; Y
5 ]
44 / A [
3l __,744, SN | hy
2 = 1w
Y — S—— e l
0 r + + + =g
(o] 0.5 1 Excess of pore water
B B, pressure

Table 3Q is filled in from the extremities of each line and to be terminated
in column 6 with equation (10ter). Each line of the table thus represents a
point-by-point construction of the net.

The isochrons corresponding to t =0, t;, =5 At and ¢, = 10 At are pre-
sented in Fig. 3.36.

The degree of consolidation at time ¢ and depth Z are defined by:

_ u(t,2)

ui,z) =1 (u, = initial excess pore-water pressure).

Uy
The degree of consolidation of the two-layered system is

-~

U(t) = ;}J

1—'M] az.
0o L

Ug

which is the ratio of the cross-hatched area (%) shown in Fig. 3.37 and the
rectangle AMNB, or Hu,:

U(t) = & [Hu,.
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A M
N4
®
H
© 7
N u
B Uo
Fig. 3.37.

The area .« miay be computed by numerical method (trapezoid method) or

by planimeter.
We find: U(t; ) ~ 0.34 and U(t,) =~ 0.49.

Fig. 3.38. Different settlement below a 16th century old building in Lyons, France.
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Chapter 4

PLASTICITY AND SHEAR STRENGTH

*Problem 4.1 'Triaxial test on sand

A dry sample of sand is tested in triaxial compression. It is assumed that
the internal angle of friction is ¢ = 36°. If the minor principal stress, 0;3,
is 300 kPa, at which value of maximum principal stress, 0, will the sample
fail?

Solution

Failure, or plastic deformation of the sample, will occur when Mohr’s
circle becomes tangent to the failure envelope. The failure envelope consists
of two straight lines which, in this case, make an angle of 36° above and
below the principal stress axis Og. At the beginning of the test, the sample
is subjected to a confining isotropic stress, 05. For this condition, Mohr’s
circle reduces to a single point, which abscissa is 05.

When the major principal stress o, is applied, the diameter of Mohr’s
circle increases by a distance of 0, —o0; while 05 remains constant (see
Fig. 4-1). The diameter continues to increase until the circle becomes tan-
gent to the two straight lines.

Fig. 4.1.
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Let d be the abscissa of the center, and R the radius of Mohr’s circle at
failure (see Fig. 4.2), then:

R R 1—siny

d smgs Os d sin ¢ sin ¢

and:

o,r = d+R = .R + R = RI—EM Therefore:
sin ¢ sin ¢

O1r 1+siny s (T

e R A —4 =

03 1—sing i R

Numerical application
With 03 = 300 kPa, ¢ = 36°. We have: 7/4 + ¢/2 = 45 + 18 =63°;tan63° ~
1.96; 0,r =300 x 1.962 = 1155, say 1160 kPa.

Answer
0;r = 1160KkPa.

*Problem 4.2 Triaxial test on sand with cohesion

Using the data of problem 4.1, solve for o,r assuming that the sand has a
cohesion of 12 kPa.

Solution
The failure envelope, as in problem 4.1, consists of two lines inclined at.
36° above and below the principal stresses axis. However, the two straight

lines now no longer cross the axis at the origin but to the left of it at a
point whose coordinates are 0 = 0, 7 = * ¢ (see Fig. 4.3).

Fig. 4.2.
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T

Fig. 4.3.

A computation similar to that of example problem 4.1 gives:
H=c cot ¢ (Fig. 4.4), o;g + H= (03 + H) tan® (1/4 +¢/2), 04x = (05 +
H) tan? (m/4 + ¢/2) —H.

Numerical application

03 = 300 kPa, ¢ = 36°, cot ¢ = 1.376, tan? (m/4 + ¢/2) = 3.85, ¢ = 12kPa,
H = c cot ¢ = 16.5, say 17 kPa from which 0,5 = (300 + 17)x 3.85—17 =
1203, say 1 200 kPa.

Answer
o1g = 1200kPa.

7!

yQ

Fig. 4.4.
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*Problem 4.3 Evaluation of ¢ and ¢ from a triaxial test result

Two triaxial tests are performed on a cohesive soil. In the first test, the
confining pressure is 200 kPa and failure occurs when an increase of 600 kPa
of the vertical stress is applied.

In the second test, the confining pressure is 300 kPa and failure occurs
when an increase of 800 kPa is applied (see Fig. 4.5). What are the values of
¢ and y for this soil?

Solution

Each of the two tests provides a Mohr’s circle tangent to the failure
envelope. In the preceding example, the equation shown below was devel-
oped, which is:

or = (03 + H)tan?(w/4 + ¢/2) — H.

Let: K = tan?(n/4 + ¢/2).

For the first test: 6; = 200 kPa and 0,5 = 200 + 600 = 800 kPa.

For the second test: 6; = 300kPa and 6,5 = 300 + 800 = 1100 kPa.
The following relations therefore exist:

800 —200K = H(K—1) (1)
1100 — 300K = H(K —1) (2)

from which K = 3 tan?(n/4 + ¢/2) = 3.

Therefore /4 + ¢/2 = 60°, p = 30°.
Equation (1) gives: H = 800 — 200 K/(K — 1) = 100 or ¢ cot ¢ =100 from
which: ¢ = 100 tan ¢ = 100 tan 30° = 1004/3/3 = 57.7 kPa, say 58 kPa.

Fig. 4.5.

Summary of answers

¢ = 58kPa, ¢ = 30°.
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Remark
Answers can also be obtained graphically from the diagram of Fig. 4.5
showing the two Mohr’s circles tangent to the failure envelope.

Problem 4.4. Triaxial compression tests performed under different draining
conditions; Mohr’s circles and failure envelopes

A 40 mm diameter saturated sample is 80 mm high and weighs 1.85N.
It is tested in a triaxial compession test. Specific gravity of the soil constitu-
ants is 2.75.

(a) The sample is subjected to a confining pressure of 85 kPa without
allowing any drainage to occur. The pore-water pressure is measured at
69 kPa. What was the value of the initial pore-water pressure u, after the
sample was removed from the borehole but before it was subjected to the
confining pressure in the laboratory? Why is the initial pore pressure, Uy not
equal to zero?

(b) The sample is now allowed to drain until the pore-water pressure is
zero, indicating that the sample has been fully consolidated. If the volume of
the sample has decreased by 10%, what is the compression index C, of the
clay?

(¢) The same sample, after consolidation in the triaxial cell, is submitted
to an undrained compression test, the confining pressure being 85 kPa. At
failure, the pore pressure is 35kPa and the load on the sample is 123 N
(applied to the piston). The height of the resulting sample is 3.6 mm shorter.
Assuming that during the test the sample retained the shape of a right
cylinder, calculate the deviator stress (0, —03) and from the calculated
value, the principal effective stresses 6} and 0.

(d) Another identical sample is tested in a drained condition with a con-
fining pressure of 85 kPa. At failure, the major effective principal stress o}
is 255 kPa. Draw the Mohr’s circles for the two tests at failure with effective
stresses and draw the failure envelope. What are the ¢’ and ¢’ values?

Solution

(a) During sample recovery, a stress relief occurs since the soil sample is
no longer subjected to the overburden pressure. Assuming that the labora-
tory tests are performed a short time after sample recovery, the water losses
are negligible. Since water is incompressible with respect to the soil struc-
ture, the observed volume change will be nil. Furthermore, the effective
stresses remain constant since they are linked to the deformation of soil
structure, therefore to volume change.

Under isotropic stress conditions in the triaxial device we have thus
03 = 03 — u. At atmospheric pressure, just before the test, (0%3)0 = (03) —
u,. Since atmospheric conditions correspond to the zero total stress con-
dition: (03)e = 0, therefore: (03)y = —U,.

The effective stresses are constant, so (03) = 03 and: —u, =03 —Uu
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Uy = — (03 —u) = —(85—69) = —16kPa
u, = —16kPa

(b) First, let us calculate the wet unit weight of the clay sample. The weight is
P =1.85N, its volume is V =7R?h =7 x 2% x 8 cm?® =~ 100.5 cm3. The unit

weight is P/V = 1.85/100 = 0.0185 N/cm?® = 18.4 kN/m?3.
From the relations between vy, v, Yw and e:

1+e)m =7 Tt erw
e=(Ys — ")/ (Y0 — Yw) Yw = 10kN/m3.

Therefore: e = (27.5—18.4)/(18.4 —10)~1.08.

This is the initial void ratio corresponding to an effective initial stress due
to overburden pressure of 6, = 16 kPa. After applying the confining pressure
of 85kN/m? until the pore pressure is zero, the effective stress is equal to
o' = 85kN/m?.

If V is the total volume of the sample and if V, is the volume of soil
particles assumed to be constant (soil grains are assumed incompressible), it is
possible to write:

initial state: V = V, (1 +e),
final state: V +AV=V,(1+e + Ae)
from which: AV =V, e, or: AV =V(1 +e)Ae.

AV/V=Ae/(1+e) and |Ae|=0.10x (1 +1.08)~0.21
So Ae = —0.21.

Stress paths followed during an isotropic triaxial test and that of an
oedometer test are very similar. It can, therefore, be assumed that volume
changes during the test will be controlled by the same equation:

— Ae — Ae 0.21
C. = = So: C, = ——— =
log (85/16)

Alogo’  log (d'/oy) " 0.290

Remark.

The compression index, as defined by an oedometer test was evaluated in
this example from a triaxial test. Since the stress paths for the two tests are
not identical (only similar) it may be that the calculated value of C, may
vary from that obtained from an oedometer test.

(c) At each point during compression, the deviator stress 0;—03 is given
by: 06; — 03 = F/S in which S is the actual cross-sectional area of the sample.
If the sample remained a right cylinder during testing, the following relation-
ship is true since no volume changes occur in an undrained test: H,S, =
H;S;, where subscripts o and f represent initial and final values, respectively,
from which:

40 T x 42
40 -36" 4

S = 13.81cm?
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At failure we have: (0; — 03); = (123 x 107%)/(13.81 x 107%) ~ 89.1 kPa.
The minor effective principal stress is:

03 = 0;—u = 85—35 = 50kPa. Buto, —o03; = 0; —0;.
Then the major effective principal stress is:
67 = 89.1+50 = 139.1kPa

Summary
o7 = 139.1kPa; o3 = 50kPa.

(d) In the drained condition, u = 0 and we have: o3 = 05 = 85 kN/m?,
0; = 255kN/m?.

With this set of values and that obtained in the preceding paragraph it is
possible to draw the Mohr’s circle for the two samples (see Fig. 4.6). The
failure enevelope of these circles passes through the origin. The mechanical
properties of the soil, in terms of effective stresses, are: cohesion ¢’ =0,
angle of internal friction p = 30°.

4

kN/m?
50 85 150 255 (O

Fig. 4.6.

sxProblem 4.5 Shear strength of a clay; effective stresses

A clay layer is 20ft thick and covered by a sandy gravel layer whose
porosity n = 0.30 and which is 40 ft thick. The water table is at 13 ft below
ground surface (see Fig. 4.7). Triaxial tests are performed on the clay
samples. These tests are undrained with pore-water pressure measurements.
The following results were obtained: cohesion ¢’ = 2.91b/in?, angle of
internal friction o' = 24°.

The dry unit weight of the sandy gravel is 103 Ib/ft3 and the saturated
unit weight of the clay is 1121b/ft3. Find: (1) the soil shear strength at mid-
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height of the clay layer, and (2) the effective and total stresses acting on a
vertical face of a soil element at mid-height of the clay layer.

Solution

(1) At mid-height in the clay layer, the vertical total stress is (see Fig. 4.7):
o, =dva + (H; —d)yaw + (Hy/2) V.

?
d‘ .
e L Water table
H, ) ’ T
Sandy gravel
. . _ RN
S .Xd=loslb/ﬂ’
B
H, 2 XA
sat =112 Ib/ft?
T
Fig. 4.7.

The saturated unit weight of the sandy gravel is:
& = v§ +nv., Y. = 10kN/m3 = 62.51b/ft3,
S, 103 + 0.30 x 62.5 = 121.751b/ft3,

from which:

0, =13x 103+ (40 —13)x 121.75+ 10x 112 =5746.251b/ft*® = 38 1b/in?.

The corresponding effective stress is:
g, = 0, —u =0, —v.(H,/2+H,; —d) = 5746.25 —62.5 (10 + 27)
3433.751b/ft? = 241b/in?.

The shear strength in the middle of the clay layer (Fig. 4.8) will be:
s =c +o)tanyp = 2.9+ 24 tan 24° = 2.9 + 24 x0.445 = 13.581b/in?

So s =13.61b/in?.
T4

]

CI/;7

Fig. 4.8.



PROBLEM 4.6 153

(2) Since the clay is saturated, the coefficient of earth pressure at rest, K,
is 0.50. The effective stress acting on a vertical face of a soil element at mid-
height in the clay will be: 05 = Ky0; = 0.50 x 24 = 121b/in?.

The total stress corresponding to this value is:

, 62.5 x 37 -
03 = 03 tu = 12+——I2281b/m (*).

Summary of solutions
s = 13.61b/in? or 94kPa, o3 = 121b/in? or 83kPa, 03 = 281b/in? or
193.5 kPa.

ik Problem 4.6 Interpretation of various types of triaxial tests (drained, un-
drained, consolidated, unconsolidated)

Several triaxial tests have been performed on identical clay samples. The
variation in test procedures for samples X and Y only varied by one factor.

In each of the following tests, draw the Mohr’s circles and failure envel-
opes for both total and effective stresses.

For each of the conditions below, which sample was subjected to the
highest value of shear stress?

(1) Consolidated drained test (C.D. test): consolidation pressure 05, for
sample X, rate of strain is 1 mm/min; for sample Y, rate of strain is
0.005 mm/min.

(2) Consolidated drained test (C.D. test): consolidation pressure: 03 =
0.3 MPa,; sample X was subjected to a pre-consolidation pressure of 0.2 MPa
(rate of strain = 0.005 mm/min.}; sample Y was subjected to a pre-consoli-
dation pressure of 0.4 MPa (rate of strain = 0.005 mm/min).

(3) For sample Y the test was a consolidated drained (C.D.) test, but
for sample X the test was a consolidated, then undrained (C.U.) test. The
consolidation pressure 03 is the same for both samples.

(4) Both samples are overconsolidated to 0.6 MPa: sample X was drained
and consolidated to 0.2 MPa; sample Y was undrained and consolidated
to a pressure 03 such that the effective stress o3 at failure is equal to 03 =
0.2 MPa.

(5) Consolidated undrained test (C.U. test): the consolidation stress was
03, sample Y was not remolded, sample X was remolded and recompacted
to the same density as that of Y. The clay was a sensitive clay.

Solution

For all types of triaxial tests of certain states of stresses, the Mohr’s
circle for effective stresses is obtained from that for total stresses by simply

*Note: 11b/in® = 1441b/ft>, 11b/ft> = 48Pa, 1lb/in® =6.897Pa.
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translating the circle by a value of u (pore-water pressure). If pore-water
pressure is zero in all locations in the sample (drained test condition) the
circles for both effective and total stresses are superimposed. We also know
the maximum shear stress (shear strength) that can be applied to a soil,
corresponds to the radius of the Mohr’s circle at failure.

(1) In the first condition, a rate of strain of 1 mm/min is considered too
fast to represent a drained test condition. Because clays have a very low
coefficient of permeability, pore-water pressure would increase during this
test. Let that pressure be u at failure at mid-height of the sample. The test
on sample X can be assumed to represent drained condition. The higher
shear stress will be applied to sample Y because its effective confining
pressure will be higher than that of sample X (see Fig. 4.9).

T
cffective
Xlstress
Effective and
Y| total stresses
X|Total stresses
o T T [T
3 3 | '
tfor ! qg
. ! X !
Fig. 14.9. ‘ '

Then the diameter of the Mohr’s circle, representing the stress condition at
failure, for sample Y will be larger than that of sample X (see Fig. 4.9).

(2) Since sample Y was subjected to a pre-consolidation pressure greater
than that of sample X, its shear strength is greater (see Fig. 4.10).

T

Y Effective and
total stresses

Effective and
total stresses

N T og
Fig. 4.10.

(3) This is the same test condition as in case (1). The solution is the same.
(4) We agree with Wroth, Roscoe and Schofield [Ref. 33] who have stated
that the limit state conditions are the same in their e, p (average stresses) and
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q (deviator) space, regardless of the type of test. Sample Y is undrained, its
void ratio remains constant at e, during testing. Since sample X is drained,
its void ratio increases during shearing (the clay is overconsolidated) and its
final condition is e; > e, .

In the space diagram p, q, e, for a constant value of p, ¢ decreases with e
[Ref. 33]. The radius of Mohr’s circle at failure will therefore be smaller
for sample X than for sample Y (see Fig. 4.11).

A
T
Effective
stresses
X Total and
effective stresses
Total
stresses
oy N
T 1 >
— o
Fig. 4.11.

(5) If the clay is sensitive, its shear strength decreases immediately after it
has been remolded. The maximum shear stress for sample Y will be higher
than that for sample X (see Fig. 4.12).

Ly

Undrained test
total stresses

X

Fig. 4.12.

**xProblem 4.7 Unconfined compressive strength from a consolidated un-
drained triaxial test

A consolidated, undrained (C. U.) triaxial test is performed on a clay
sample of low plasticity whose dry unit weight is y4 = 1.7 x 10* N/m>. The
sample was recovered from a depth of 8.15m. The porosity of the clay is
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n = 0.85. The triaxial test results yielded the following values: p., = 14°,
Cou =4 x 10 Pa.

Determine the unconfined compressive strength of a saturated sample of
this clay from the same depth (assume that 100% saturation was maintained
after sample recovery and during handling).

Solution

The unconfined compression shear strength of the saturated clay sample is
given by R, = 2¢,. It is necessary to determine ¢, from the parameters ¢.,
and ¢, . Let us draw Mohr’s circle for total stress conditions (see Fig. 4.13)
of the consolidated undrained test. The consolidation pressure o, is the same
during the test. At the end of consolidation, u = 0 since the drainage occurs
then. So 0y = 03 is one of the effective stresses at the start of the test.
At the end of the test, however, since after consolidation of the sample
no more drainage was allowed, u # 0 and 05 = 0, is a total stress.

It will be noticed that line O'T (see Fig. 4.13) is not a failure envelope
during testing, because then two different phases exist, namely a liquid and a
solid one.

Let r be the radius of Mohr’s circle, then:

T
[
T | Yeu
Cu % \r
1 Yeu Ccu \ >
o’ o 0=0; N2 q a
Fig. 4.13.

¢y = (0 —0¢)/2 = r and QT/O'Q = sin g,

r
therefore: = gj
0o +r+ ceu cOt @y S Peu

or: ¢y, = (0g + ¢y) sin Py + oy COS You

and thus: ¢, (1 —sin ¢.,) = O SN Py + Coy COS Py

G $in Yey COS Peu
0 . .
1—siny,, 1 —sin g,

and finally: ¢, =

The consolidation pressure o, corresponding to the effective overburden

pressure o, at depth H of the sample has yet to be determined. It is found as
follows:
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06p = 0y = YH; v = Yo —Yw
Yeat =Ya T NYw = 1.7+ 0.35x 1x 10* = 2.05x 10* N/m?3

!

0, = 1.05x10* x8.15 = 8.56 x 10* Pa.

in 14° °
s1n‘ 4 4x10° cos 14 _
1—sin14 1—sin 14

= 7.85 x10% Pa
or: R, =~1.57 x 10° Pa.

It can be noted that the soil is a stiff clay.

from which: ¢, = 8.56 x 10*

**Problem 4.8 Relation between Young’s modulus, oedometric modulus and
Poisson’s ratio

(1) Consider a linearly elastic soil. Find the change in volume of this
material when subjected to isotropic stress loading. What can be said about
the Poisson’s ratio of this soil. For what condition is v = 0.52

(2) In an oedometric test, assume that for an increase in stress Ao, verti-
cally applied to the sample, the soil shows a linear, elastic behavior. Deter-
mine then the relation between the oedometric modulus E', Young’s modulus
E and the Poisson ratio v. What is the relation for v = 0.33 (usual assumption
made for soils in general).

Solution
(1) Let o0; be the isotropic stress applied to the soil with Young’s modulus
E and Poisson’s ratio v. Adopting the sign convention usually adopted in soil

mechanics, linear elasticity is expressed by:
o;(1 — 2v)
€ = _E(Ui — 2v0;) = __l_E—--

The volume change is equal to the first invariant of the strain tensor:
AV 30;(1 — 2v)
— =8¢ = ———.
| % E
If the isotropic stress is compression (o; > 0) the volume change corre-

sponds to a volume decrease AV/V < 0. Therefore, the following condition
must exist:

1—2v>0 or: v<1/2.

The case when v = 0.5 corresponds to AV/V =0, that is to say, to a
material that is incompressible.
(2) The oedometric modulus is defined by:

E' = —Ao,/(Ah/h) or Ao, = —E'e,. 1)
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The symbol Ao, means that the linear elastic behavior is only valid for a
small range of stress change. In the oedometer, the vertical load corresponds

to a major principal stress and axisymmetry implies 0, = 05. Therefore, (1)
we can write:

Ao, = —E'e;. (2)

Since the elastic deformations of the metal mold holding the sample may
be considered negligible compared with those of the soil, we can formulate:
€, = €3 = 0. Linear elasticity condition then means that:

1 1
€, = Tz [Ao, —v(Ao, + Ao;)] = 7 [Ao, — 2vAo;] (3)
1
€, = €3 = —E[Ao3 —v(Ao, + Aoz)] = 0 (4)
From eqn. (4), we have: 03 —v(Ao; + Ao3)=0 or Ao; = Ao, 1 z
—v
(v# 1 from eqn. 1).
By replacing the value of Ac; in eqn. 3, we obtain:
Ao, 1 202 5)
€, = ——[1—
! E 1—v

and by comparing eqn. (2) and (5), we have:

p=g|1-2
B 1—v

In the particular instance of v = 0.33 or 1/3, we have E = 2/3E".
The soil appears to be less compressible than it is in reality.

*kxProblem 4.9 Evaluation of Poisson’s ratio from triaxial test

A soil sample is tested in a triaxial compression test at small increments of
principal stresses: Ao, and Ao, = Aoj.

Assume that the soil behaves in a linearly elastic manner. Axial strain
(Ah/h = €, ) and volumetric changes AV/V, corresponding to the drainage of
pore water during testing, are measured. (see drained test set up Fig. 4.14).

Derive the formula for Poisson’s ratio of this soil under the test conditions.
For a numerical application, consider the soil to be a loose sand in one case
and a normally consolidated clay in another. The test results for both are
presented in the graphs of Fig. 4.15.

Solution
In the triaxial cell axisymmetry implies, Ao, = Ao and from the elasticity
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Fig. 4.14.
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Loose sand

n=0.46

Qr=21.10° Pa
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Axial

deformation %
I
25 30
2

Loose sand

n=0-46 (;=21.10% Pa

Normally consolidated clay

Qr=2.10° Pa
Fig

. 4.15. Drained triaxial test results on saturated samples.
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equations, we have:

1
€, = —E(Ao1 — 2vAoy) 1)

€, = €3 = —%[(Ao3 —v(Ao, + Aoy)]. (2)

The volumetric strain is equal to the first invariant of the strain tensor
from which: AV/V =¢€; + €, + €3 =€; + 2¢;4
AV

1
—{/— = —-E [Ac, + 2A0, (1 — 2v) (3)

Solving 1/E in eqn. (1) and placing it in eqn. (3) gives:

AV Ah (Ao, +2403)(1 —2v)
\% h Ao, — 2vAo,

from which:

1 Ao, (AV/V)—¢€,(Ao; + 2A0,)
Zy )
2 Aoy (AV/V)—¢€,(Ao; + 2A0,)

Numerical application

For this loose sand, n = 0.46. For small strain increments le,| = 1%,
€; = — 1% (shortened)

0.(=0, =03) = 2.1x10°Pa
0, —0,~1.6x105Pa; AV/V = —0.45%
from which: Ao, =0, —0, = 1.6 x10° Pa, Ag; =0 and:

1 —0.0045 +0.01 :
vV = —x = 0.275~0.28.
2 0.01

For normally consolidated clay:

€, = —1%, o, = 2x10°Pa, Ao, = 0;,—0, = 7x10%Pa,
AV/V = —0.565%, Aoy = 0
1 —0.0055 + 0.01

vV = —x = 0.225 = 0.23.
2 0.01

Note. From Fig. 4.15, it is evident that E, just as v, depends on the state of
stress and the stress path.
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*kProblem 4.10 Comparison of the principal stress rotations in a direct shear
test and in a triaxial test

Let us assume homogeneous stress and strain conditions. Determine the
changes in the Mohr’s circle and in the principal stress directions occurring
during a direct shear test (Casagrande shear box) and during a triaxial test.
What are the conclusions?

Solution

(a) Direct shear test. At the onset of the test, the major principal stress is
vertical then 0, = 0, and the minor principal stress is 03 = K,0; since
lateral strains are nil (rigid-sided box). The Mohr’s circle corresponding to
this state of stress is identified as C, in Fig. 4.16. At failure, the Mohr’s
circle C; is tangent to the failure envelope, the point of tangency then
corresponds to the peak of the stress—strain curve. Therefore, at failure, the

M
G (Cp)
v -
© a
Ko™ co)
I
T
T
ay
: 4
BT V75
Tf ot —

f

Fig. 4.16. Shear test in Casagrande’s shear box
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stress vector acting on the horizontal shear plane is OM (o0,, 0;) whereas
initially it was figured by OA.

Let £ be the center of Mohr’s circle (C¢). The end of OM rotated clock-
wise at an angle of 7/2 + ¢ since (24', QM') = (n/2) + ¢. Therefore the
face on which the major principal stress OA’ acts at failure makes an angle
of + (n/4 + ¢/2) with the horizontal.

(b) Triaxial compression test. During the triaxial test, the vertical stress
acting on a horizontal plane through the sample center remains the major
principal stress throughout. Since the sample is cylindrical, any direction
perpendicular to the vertical is also a principal stress direction.

In conclusion then, the shear plane direction in the direct shear device is
predetermined by the geometry of the test setup. As a consequence, the
orientation of the major principal stresses undergoes a rotation of 7/4 + /2
during the shearing process. In the case of the triaxial test, however, the
orientation of the principal stresses remains the same, the angle of the shear
plane is « = /4 + ¢/2 with the horizontal (Fig. 4.17).

T
o N
To=0y G T
.
™
0=, |
o ) Gy

(1) (2)

Fig. 4.17. Triaxial test.
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*kProblem 4.11 Triaxial test: determination of the pore-water pressure at
failure and of Skempton’s A; coefficient

A mud has the following properties: ¢’ = 25° and ¢' = 16 kPa. A sample
of this material is tested in a triaxial compression test (consolidated, un-
drained). During testing, the pore-water pressure is measured. If the con-
fining pressure is 50 kPa and the deviator stress at failure is 80 kPa, deter-
mine the pore-water pressure at the moment of failure.

What is Skempton’s A; coefficient?

Solution
The Mohr’s circle for effective stress conditions (C') is tangent to the line
representing Coulomb’s equation, 7 =c¢' + ¢’ tan ¢'. Furthermore, from
Mohr’s circle, the total stresses are known by translating the values by — u.
From Fig. 4.18, we see:

QT/AQ = sing’ or R(H' +d—u) = siny. (7)

If we let d be the abscissa of the center of the total stress circle and R its
radius, then we have:
0, — O o, +o0 1
R =", d=—"""="[(0, —0;)+20,]
2 2
and, on the other hand, H' = ¢’ cot ¢'.
From eqgn. 1 we have:

u=H+d— _R ;. = ccoty +d——.
sin @ sin @

t

1

Fig. 4.18. Consolidated, undrained test.

Numerical application
R = 80/2 = 40kPa
d = 1/2(80 + 2 x50) = 90kPa
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sin 25° = 0.423, cot 25° = 2.145

from which: ¥ = 16 x 2.145 + 90 — 40/0.423 = 29.7 kPa
or: u = 30kPa.
For a saturated sample, B = 1, and Skempton’s relation becomes:

Au = Ao, + A(Ao,; — Ao,).
In the standard triaxial test:
Ao, = 0 (03 = constant) and: A; = (Au/Ag,);.

Before starting the compression, the soil sample is consolidated under a
confining pressure of 50 kPa (Fig. 4.19).

03 = 03 = (07) = (07)o = 50kPa; u = 0.

Consolidation stage Compression stage
@)= 5= 50 kPa | 6= +aq;

- T3 =50kPa e 03=50kPa

Lo L

Draining Non-draining

u=0 ug0
Fig. 4.19.

Then the drainage tube is closed and the compression stage starts by
applying a load, whereas 0; = 50 kPa remains constant. Therefore, we have:

Au = u; —0 = 30kPa
Aol = (Ol)f —(01)0 = (01 _03) + (OF —(01)0 = 80 + 50 — 50 = 80 kPa.
and finally: A; = 30/80 == 0.38.
Note

This value for A; corresponds to a saturated clay which is slightly over-
consolidated (0.3 < A; < 0.7 after Leonards). This is a reasonable conclusion
for a ¢’ = 16 kPa (for normally consolidated clay, ¢’ = 0).
Summary of answers

u = 30kPa; A; = 0.38.
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%k Problem 4.12 Stress paths for various test types

The following tests have been performed:

— consolidation test

— direct shear test (normal stress = 0y )

— standard C.D. triaxial test (03 = 0, = constant)
— isotropic C.D. triaxial test (05 =0, = 0,)

— triaxial constant average stress test.

165

(1) Draw in 0,, 0, and 053 space the stress paths corresponding to these

various tests.

0

G

Standard -
N

Y

Fig. 4.20. Stress-paths.

B
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(2) Draw in the p, q plane the stress paths of the tests. Let p and q be
defined by: p = 1/3(0, + 0, t03), q=0; —0, =0, —0,.

(3) Draw on the Mohr-diagram, the circles representing the states of stress
at the beginning and end of each test. Determine for each condition, if the
direction of the principal stress remains constant during the test.

Solution

(1) Fig. 4.20 gives the answer to part 1, and in Fig. 4.21 each of the test
stress paths is shown in the bisector plane 7.

(2) In the plane p, g the stress pathsare: p =1/3(0; + 0, + 03)and g =
0, —0, =0, — 03, from which Fig. 4.22 has been drawn.

The only test wherein principal stresses undergo a rotation of orientation
during the test is the direct shear test (see Problem 4.10). Figs. 4.23, 4.24

T
i
v o]
Z [0
9 %, &
s % ° -
A X O
B @ o
c &
w0, - Q
>
INF—-3X —or—————
5 L Yl <
) i 2 &0
e < I o
G| [
3|
i
i
<
4\ |
<N
k(og\ | }
0 |
R | | vz {,
o I |
Va@, Vak, ), va(l,

Fig. 4.21. Stress paths in bisector plane 7.

p

Average stress constant

/ Isotropic triaxial
0 - > q

Fig. 4.22. Stress paths in plane p, gq.
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End of test

Start
Fig. 4.23. Mohr’s circles for the start and the end of the direct shear test.

e
Fa\\Ure en\/e\op

- End of test

e}

Start

Fig. 4.24. Mohr'’s circle for the start and end conditions of the consolidation test.

and 4.25 present the Mohr’s circles at the start and end of the direct-shear

test, the oedometer test and the various triaxial compression tests.
7

e envelone

- End of test

oF—> T
Start

Standard triaxial (0; =03= constant)

)
o N — -
Start’ NEnd of test ¢

Isotropic triaxial
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[¢] Py '0,
7~ Start

Triaxial constant average stress

Fig. 4.25. Triaxial constant average stress Mohr’s circle at start and end of test.

wkkProblem 4.13 Spherical tensor, deviatoric tensor and volume change

The following strain tensor is considered for any orthogonal axes system:
€x 3V 3Vx
T= 31 €& 37
e 372 €

The average strain is defined by: €, = (e, + €, +€,)/3.
(1) Show that tensor T is equal to the sum of a spherical tensor

€m O 0
S=10 €, O
0 0 €n

and a deviatoric tensor D. Strains may be considered as the superposition of
two sets of strains represented by S and D.

(2) Develop the decomposition of T in the principal axes directions
and show that D may be subdivided into 3 tensors D, D, and Dj.

(3) Consider an elemental rectangular parallelopiped whose sides are
parallel to the principal axes. Formulate an equation for the volume change
as a function of invariants of tensor T. As a first approximation, what is the
value of the volume change 0°?

(4) What may be said about the strain represented by S? What is the term
for the volume variation corresponding to this deformation? Same question
for deviator D.

(5) Apply the above studied decomposition to the stress tensor in the
direction of the principal axes Ooy, 0,, 03.

Let A be the trisector of the three axes and a state of stress be represented
by vector OM. If we let OH be the projection of OM on A and Om be its
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projection on plane (II), perpendicular to A at 0, analyze the decomposition
OM = OH + Om.

Solution
(1) We get immediately:
26, —€, —¢€, ]
Y $vay 1
2€ €y — €,
D = %7yx Y 3 %7yz
2€, — €4, —€
%72.7( %723' .
5]
T=8+D
(2) For the principal axes:
[~ i
2, —€, —€
1 32 3 0 0
26, —€, —
D = 0 RS 0
3
263 — €, — ¢,
0 0
3 i
(e, +€, +¢ T
1 32 3 0 0
€, te, +e
S = 0 ! 32 3 0
L 0 0 €, te, +e;
3 J

Furthermore, it can be stated that:

with:

r -
17 ¢ 0 0
3
€, — €
D, =] 0 132 01,
0 0 0
I )

D = D, +D, +D,



170 PLASTICITY AND SHEAR STRENGTH

(0 0 0 ]
€, —€
D, = |0 -2 3 0
3
€
0 0 €y €5
e 3 b
I Bl
3
D3= 0 0 0
€3 — €
0 0
3

(3) The elemental rectangular parallelopiped has sides AX, AY and AZ
which coincide with the principal axes (see Fig. 4.26). After strains occur,
the volume remains rectangular. Then, its sides have the following dimen-
sions: AX(1 +¢€,), AY(1 +¢€,), AZ(1 + €3) and its volume becomes:

V, =AXAYAZ(1 +€;) (1 +€;)(1 + €3).

The relative volume change 8, is:

AV V, -V, AXAYAZ(1+ €)1 +ey)(1 + €3) _,

|4 Vi AXAYAZ
or, by simplifying the equation:

0

0 =€, +te, tez te e, +e,65 T€3€ +€1€€;

the quantities I}, =€, + €, + €3, I, =€,€, + €563 +€3€,, I3 =€,€,€5 are
the invariants of the strain tensor.
As a first-order approximation, we have:

6 = AV/V=I =€, +te, +te; = €, +te, +¢,.

(4) From the above results, it can be seen that the deformation represented
by the tensor:

€m O 0
S=10 ¢, O
0 0 e,

corresponds to a volume change of AV/V = 3¢, = €4 + €, +€,, which
is the volume change expression represented by tensor T. It is charac-
terized by three equal axial strains and no shear strains. The Lamé quadratic
is a sphere and is the reason why the tensor $ is called spherical tensor.

The deviator D corresponds to a deformation where shear strains are
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4

Ay

AZ () Y

X

Fig. 4.26. Elementary parallelopiped.

different from zero but where the volume remains constant, since:

0 =1, = 2¢, — €, —€, +2ey —€, — €4 + 2¢, —€, — € - o
3 3 3
The deviatoric tensor corresponds to a change of the shape of the sample
without volume change.
(5) The same applies to the stress tensors:

-
20, —0, — 04
0
3 0
om 0 O
20, —03 — 0
o=10 o, 0+ 0 =2 3 0
3
0 0 oy 9
03— 0, — 0O
0 0 3 1 2
3

or: g =s+d.

Tensor s corresponds to the spherical state of stress (or isotropic, some-
times called hydrostatic state because it corresponds to the stress at any
point in a liquid). Tensor d corresponds to the state of deviatoric stresses.

In the principal axes of stress Oo,, 0,, 05 (see Fig. 4.27) the trisector of
the axes (A) has a unit vector k' (1A/3, 1A/8, 1A/3). Let M(0,, 0,, 05) be
the point representing a random stress condition:

OM = OH+HM = OH + Om
|OH| = OM-k' = 1A/3(0, + 0, + 03).

or: 0, +0, + 05 = 30H?.
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Fig. 4.27. Representation of a random state of stress.

If we let:

u
OH{u then: (0, +0, +03)? = 83x3u? = 9u?

u

from which: u = (0; + 0, + 03)/3 =0, .

Point m represents the state of stress (07, 03, 03) so that (0] + 0 + 03)/
3 = 0 since the projection of m onto (A) is at O. Point m then represents a
deviator. This, once again, expresses the geometric interpretation of the
analyses found above. Point H (or vector OH) represents the isotropic (or
spherical) tensors.

Point m (or vector Om) represents the deviator.

“hkkProblem 4.14 Determination of Henkel’s coefficients

On the principal axes Oo,, 0,, 03, consider the decomposition of the stress
tensor and its geometric representation of problem 4.12. It is assumed that
the stresses vary from M (o,, 0,, 63) to N (o, + Ao,, 0, + Aoy, 05 +
Aos).

(1) What is the geometric representation of the stress increase Ao?

(2) If the soil is assumed to be isotropic and homogeneous, to which
quantities can pore-water pressure increment Au which occurs, be related
with?

What relation similar to that of Bishop and Skempton may be written
(introduce two coefficients § and «)?

Solution

From the solution of problem 4.13, and as shown on Fig. 4.28, it is seen
that Ao(Aog,, Ao,, Aogy) of the stress tensor may be represented by the
vector MN(MN = MM, + M, N) which may be divided as:
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il

Fig. 4.28.

Ao; = variation of the isotropic part (vector MM, )
Aoy = variation of the magnitude of the deviator }
A® = variation of the direction of the deviator vector (MN, ).

(2) The soil is assumed to be isotropic and homogeneous. So there are no
reasons for A® to affect the variation in pore-water pressure Au that appears
when stress increase Ao is applied to the soil. Therefore, Au is related to Ao;
and Aoy. By analogy to the formula of Bishop and Skempton, we may

write:
Au = BAo; + aloy, and Ag; = (Ao, + Ao, + Aoy)/3,

we then have: f§ = B.

Let us now express Aog:
If we let the increases Ao, , 3 be sufficiently small, Ay is low and the

variation of the deviator magnitude Aoy may be assumed to coincide with
M, N.

The general expression of the deviator magnitude may be derived then as
shown below.

For the stress tensor (0,, 0,, 03 ) represented by M, we have:

0, + 0, + 04

V3

The magnitude of the deviator is then:

OH =

_ (04 + 0y +03)°
3
= 3[o} + 03 + 03 — (0,0, + 0,05 +030;)]

HP? = OP? —0H? = 0% + 0% + 0}
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but:
(0, —03)° + (03 —0,)* + (0, —03)?
= 2[0%? + 03 + 0% —0,0, — 0,03 —030,]
from which:
HP = §v/(0, —03)* + (05 —0,)* + (0, —03)".
Let us apply the results to the stress increment vector MN:

M,N = {\/(Ao, —Ac;)® + (Ao; — Ac,)? + (Ao, — Ao,)*.

if the increments Ao, , ; are small, then we can write:
Au = 6A01 + %\/(AOz - AO3 )2 + (A03 - AOI )2 + (AOI - AOz )2.

This is the Henkel relation, which is a generalized form of that of Bishop
and Skempton.

*xkProblem 4.15 Coefficients of Henkel. Comparison of two triaxial tests

A saturated clay is tested in two triaxial compression devices. Both tests
are undrained and have the following characteristics:
—in one test, the confining pressure is constant throughout the test and the
axial load is increased until failure occurs (standard triaxial test);
— in the other test, the axial stress is kept constant and the confining press-
ure is increased until failure occurs.

Compare the variations of pore-water pressure occurring during the two
types of testing. Use the Henkel coefficients. What is the conclusion?

Solution:
In the first test, we have: Ao, = Ag; =0, Ao, = o —o0,.
Henkel’s equation (see problem 4.14) gives:

Ao, + Ao, + Aoy
3
+ av/ (Ao, — Ao, )? + (Ao, — Aoy)? + (Ao; — Aoy )?
from which (8 = 1, for saturated clay):

Au = 8

Au = L% + ay/2(0, — ;)
or:
Au = (0, —0,)(1/3 + a/2). (1)

In the second test: Ag; = Ao, = oy, —0,, Aoz =0.

Henkel’s equation here gives:
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2(0L

Au = 3 o) +a\/§(oL o,)

or:
Au = (0p,—0,) (2/3 + a/2).
For the triaxial compression test at constant axial stress the confining

pressure increases result in a higher pore-water pressure than in the standard
triaxial test.

sk Problem 4.16 Influence of loading condition on the behavior of a soil.
Bishop and Skempton’s coefficients

Consider an elemental volume AV of a saturated soil in situ. Assume that
the loading conditions are such that the soil is in a plane strain state (usual
assumption made in soil mechanics). Within the range of deformations being
considered here, the soil structure may be assumed to behave elastically
with a Young’s modulus of E and Poisson’s ratio v.

(1) Find the relation between the principal stresses 0., 0,, and 03 which
express the plane-strain condition.

(2) Find the ‘“‘pseudo” bulk modulus which relates the volume change to
the variation of the average stress of 0, and G3.

(3) What may be concluded about Bishop and Skempton’s parameters?

Solution
(1) From elasticity theory, disregarding the second-order terms, we can
write:

AVIV=¢€; + €, + €;.
For plane-strain condition, we have €, = 0.
From the generalized Hooke’s equation, we have:

€, = 0,/E—(V/E)(0y T 03).
But since the plane-strain condition is that €, = 0 we can write:
0, = v(0, T03) (1)
(2) AV/V =¢, + €, + €3 =€, + €3 since €, = 0. Furthermore:
€y = (0,/E) — (V/E)(0, + 03)
€3 = (03/E)— (V/E)(0y +0;)
AV/V = (0, + 03)/E —(V/E)(20, + 0, T+ 03)
from which:
AV/V = (201, /E)— (V/E)[o, + 2v(0; + 03) + 03]
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from eqn. (1) with:
0, +0;
= Or:
Om 5
AV/V = (20, /E) —2(W/E) 0, (1 + 2v) = (204, /E)[1 —v(1 + 20v)]
AV/V = (20, /E)(1 +v)(1 — 2p).

So we can write:

om = KJ(AV/V) (2)
with:

E
K, = “pseudo” bulk modulus

2(1 +v)(1—2v)

(3) If the soil structure behaves elastically, we have:
— in the triaxial condition (axisymmetry): o, # 0, = 0,
Oy = 0; = (0, +0,+03)/3 and:
E .

K, = ———— from which:

3(1—2v)

1
1+n(K/Ky)

--1in the case of in-situ plane strain: ¢, ¥ 0, ¥ 03,

Au = BAo; with B =

Om = (0, +03)/2, Om 7 0; and:
, E
21+ v)(1—2w)

The volumetric strain AV/V is independent of ¢,, thus, as a result, Au
depends only on Ag,, , therefore:

1

Au = B'Acg,, with B’ = m

Note that the Bishop and Skempton’s parameters, normally measured in a
triaxial test, cannot, in principle, be applied to the frequent condition in
practice of the plane strain condition.

For a numerical example, let’s assume v = 0.33 = 1/3:

E
——ZE
3(1—2x1/3)

. E 9

K, =

2(1+1/3)(1—2x1/3) gt = K.



PROBLEM 4.17 177

Thus for the plane strain condition, usually found in-situ, the soil would
deform less than it does in the triaxial test. On the other hand, the values of
K, and K are relatively close for the usual values of v. This justifies the use
of Bishop and Skempton’s coefficients in plane strain problems and besides,
the assumption that the soil structure behaves elastically, is only an approxi-
mation of real conditions.

dokkProblem 4.17 Measurement of the coefficient of earth pressure at rest K,
using a triaxial device

A saturated clay sample is recovered from a depth of 12 m. Its unit weight
is 19kN/m?3. The pore-water pressure measured with a piezometer at that
depth was 110 kPa. The Atterberg limits of the clay are: wy, = 52%, w, =
17%.

The sample is tested in a triaxial compression test. Drainage is allowed
during compression and zero radial deformation conditions are maintained by
adjusting the confining pressure o, and the axial load 6,. When o, reaches a
value of 50 kPa, the deviator stress is 68 kPa. Calculate the coefficient of
earth pressure at rest, K,. Does this value appear acceptable, knowing that
the clay is normally consolidated and that a consolidated drained test
yielded values of ¢ = 20° and A; = 1.1.?2 What is your estimate of the
apparent cohesion for this soil?

Solution

Since no radial deformation is allowed during testing, the sample is in
the same condition in the lab and in situ, provided that the same stresses
are applied. The test is a drained one, then u = 0. Therefore ¢; = 0; and
0, = 0,.

For o, = 50 kPa, we have ¢} —0, =68kPa or o¢; = 68 + 50 =
118 kPa.

The effective vertical stress in situ is:

Oy = Y H—u = 19x12—110 = 118kPa.

Since the stress conditions in the test and in situ are the same: o, = K07,
from which K, = 0,/07 = 0.50/1.18 ~ 0.42.

We know that for a normally consolidated clay (¢’ = 0) the parameters c,,,
0., ¢, K, and A; are not independent, but are related by the following

equation:

¢y _ sing'[Kg+ A¢(1 —Ko)]
o 1 +sing'(24; — 1)
Therefore:

c, _ sin20°(0.42+1.1x0.58) 0.96
gy 1+sin20°(2x1.1—1) e
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Skempton has given a good correlation between the ratio c, /o, and the
plasticity index of a clay, I, :

%% = 0.11 + 0371,
For this problem: I, = wy, —w, = 0.52 —0.17 = 0.35.
Therefore: ¢, /o, = 0.11 + 0.37 x 0.35 = 0.24,
The agreement between the two results is good. Taking the average of
the two values, 0.25, we have: ¢, = 0.25 x 118 = 30 kPa.

Summary of answers

K, = 0.42; ¢, = 30kPa.

sk Problem 4.18 Stress paths applied on a soil element during the construction
of an earth dam

It is necessary for the design of a clay core earth dam to specify tests on
soil samples which would give representative values for the behavior of the
clay core not only during construction but also during filling of the reser-
voir and under rapid drawdown conditions. The clay core would be com-
pacted in place at a moisture content close to the optimum moisture as
determined by the Proctor test where the effective vertical compaction
pressure is 400 kPa. At optimum, the clay exhibits v, = 18 kN/m? and,
when saturated, Yo, = 20 RN/m?3.

When the reservoir is filled, pore-water pressures at two locations (1 and
2) are measured: u; = 30 kPa and u, = 340 kPa.

(1) Determine the stress history at points 1 and 2 (Fig. 4.29). Draw the
stress path in the principal effective stress 0'1, 0y, 05 space. Draw the stress
path in the plane p, q. Find in each case if the clay is overconsolidated or
normally consolidated.

(2) Determine also the test procedures to subject the clay sample in the
lab to a stress path similar to that it would undergo in the dam.

Substratum

Fig. 4.29.
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Solution

(1) Stress history

(a) During compaction 0} = ¢, = 400 kPa.
If K, is the coefficient of earth pressure at rest, we have 0, = K,0}, = 0}.
The stress tensor is completely defined by 03, 03 in the horizontal plane, ¢
being vertical. Therefore:

‘3(01 +02+03)‘301 (1+2Ko)
q =0} —0y =0} —03 =0,(1 —K).

(b) At the end of construction. Assume that construction progress was
sufficiently slow to allow for the full dissipation of pore-water pressures:
07 = Th?,
07 = 03 = Kgn?2,
where z is the depth from the crest of the dam.

!

g Z
p=2a+2K) = 2% 42k,

3 3
g = 0y =03 = 0] —03 = 12(1—K,).

The soil element at location 1 is overconsolidated because at the end of
construction, the vertical stress is ¢; = 180 kPa and it was previously sub-
jected to a compaction pressure of 400 kPa. The soil element at location 2
is normally consolidated since at the end of construction, it would experi-
ence an overburden pressure of ¢; = 1440 kPa.

(c) Filling of the reservoir. Seepage occurs through the core. At each of
the two locations there will be saturation condition and pore-water pres-
sure u.

We have: 0] = v, (2 —u) and 03 = 03 = KoV (2 — ).

At location 1, the clay will be overconsolidated because 07 = 200 — 30 =
170 kPa.

At location 2, the clay is still overconsolidated because the overburden
effective stress is 07 = 1600 — 340 = 1260 kPa whereas at the end of con-
struction, 0 = 1440 kPa.

(d) Rapid drawdown. The seepage in the core reverses its direction after
drawdown. The pore-water pressure decreases slowly with time. At the start
of the rapid drawdown, the stress conditions are the same as those of the
filling of the reservoir, then, as the pore-water pressure decreases, the ef-
fective stress increases and when u = 0, then:

07 = Yeat? = 200 kPa,
0y =03 = Kyt "2 = 1600 kPa.

At location 1, the clay is overconsolidated and at location 2 it is normally
consolidated. The various stress paths are presented in Figs. 4.30 and 4.31.

(2) Test procedures to be used in the laboratory. The most versatile
equipment to reproduce the stress conditions is that of the triaxial com-
pression test.
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Location 1-clay is overconsolidated
Location 2-ciay is normally consolidated

3 4 Trisector

U3'
o] -

@ Compaction
(® Construction
(® Filing reservoir
T @ Draw down

Bisector plane

U Vi
! In plane orientation 7
3
7
1
2
’__ )
o ——V20,=V2 0,

Fig. 4.30. Stress paths.

(1) Compaction
q‘ (@ Construction

(@ Filing reservoir
@ Draw down
3
2
L 2
0 —=F

Fig. 4.31. Stress paths in plane p—q.
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(a) For compaction conditions. The sample should be anisotropically
consolidated (open drainage) under the effective load of ¢] = 400 kPa,
0y, =03 = K,0}.

(b) During construction. The stress tensor of consolidation should be
increased to the following values:

0y = T2

0y = 03 = Komn?

Depending on the location of the sample, there will either be an increase or
a decrease of stress. All variation is done with drainage.

(¢) Filling of the reservoir. Then drainage is no more allowed and pore-
water pressure u is applied. Seepage is caused to occur in the sample in order
to saturate it completely (this is very difficult to do in practice and very
time consuming). For the filling condition, the reproduction in the lab of
the field condition leaves something to be desired, because in the dam core
seepage is not interrupted.

(d) Drawdown. The drainage is once again open and the pore-water
pressure allowed to dissipate slowly.

Note

The various stress paths assume that the relation o3 = K,0} is always
true and that K, remains constant. This is an approximation which is most
likely not fully representative of the complex actual field conditions.
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Chapter 5

PLASTIC EQUILIBRIUM

**Problem 5.1 The pole of Mohr’s circle

In a two-dimensional space,

(1) show that Mohr’s circle does not sufficiently define the stress con-
ditions at a point in a continuous mass;

(2) assume that the stress tensor at a point A in a continuous mass is
known and defined by the following data: Mohr’s circle and a stress vector £
acting on a small face RR' in direction A. Let M be the point on Mohr’s circle
representing f, and m be the symmetrical point of M with respect to the
principal stress axis, 0. From m, a parallel line to the A direction is drawn
which crosses Mohr’s circle at a point P. Show that when the face RR'
rotates about A, point P remains fixed. This point is called the pole of the
Mohr’s circle.

M
i T
PR |
%&)

(3) Show that knowing the pole location enables the determination of the
orientation of a face for a given stress vector, and, inversely, the stress vector
for a given orientation of the face. Apply this method to find the orientation
of the principal stresses.

Fig. 5.1.

Solution

(1) The Mohr’s circle only gives the magnitude of the principal stresses,
but does not define their orientation in space. For any given Mohr’s circle,
several equal Lamé’s ellipses of various orientations (Fig. 5.2).

(2) Let the small face RR' (Fig. 5.3) be rotated counter-clockwise through
an angle o. When it reaches the orientation QQ’, the stress f', represented by
M’ on Mohr’s circle, is known to act. From the properties of Mohr’s circle,
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Fig. 5.3.

Py — .
we have: MM = — 2c. Therefore: mQm’ = + 2« (symmetry with respect
to Og axis). '

Connect m’ to point P. We now have mPm' = « (inscribed angle). There-
fore m'P is parallel to face QQ' and m'P is colinear with (5').

Consequently, point P is fixed when the face turns about point A.

(3) From the above construction and if we now consider a stress vector
of which N is the end, we know immediately the orientation of the face
upon which it acts by simply connecting pole P to the symmetrical point of
N with respect to the principal stress axis Oo (and reciprocally).

Application: By connecting the pole to points B and C of the diameter
of the circle on the principal stress axis Og, the directions of the faces upon
which the principal stresses act are known (see Fig. 5.4).
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4

Direction of major
principal stress

4 Direction of minor

principal stress
Cwm '
[

Fig. 5.4.

(or direction of face
upon which the major

Ty stress acts)

[«]

**Problem 5.2 Limit equilibrium of a granular, semi-infinite body

Let us assume a point in a granular, semi-infinite mass in a state of limit
equilibrium. Show that if a stress vector is known for the face of a given
orientation, two Mohr’s circles may be constructed. What conditions do
these two circles represent? Find also the orientation of the faces upon
which the stress is the least favorable (corresponding to the limit stress
vectors).

Solution

The properties of every circle meeting the above conditions are:
— the center is on the axis Oo;
— it must go through point M;
— it must be tangent to the failure envelope (therefore to two lines D and D'
which are symmetrical with respect to Oo) (see Fig. 5.5).

The geometric solution shows that there are two circles which satisfy the
above conditions.

The construction of the circles is done in the following manner (see Figs.
5.5. and 5.6).

4

(cy)

o = 0, T

Fig. 5.5.
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Fig. 5.6.

From point M, draw the perpendicular line to O¢ which then intersects D
at point I. Draw a random circle centered on Oc passing through M. From I,
draw a tangent IT to this circle. The dashed circle, centered at I the radius of
which is equal to IT crosses line D at points J and K which are the points
where D contacts the two circles sought. Their centers are at £2, and £,
(Fig. 5.6).

The interpretation shows that two limit equilibrium conditions are poss-
ible for a given granular mass (superior and inferior Rankine equilibria).

**Problem 5.3 Limit equilibrium of semi-infinite granular media with an
inclined free surface

Consider a semi-infinite, granular mass, not loaded at the surface which is
inclined at an angle 3 with respect to the horizontal. Let us assume that the
limit equilibrium corresponds to the lower Rankine equilibrium. The unit
weight of the mass is v and its angle of internal friction is .

(1) Determine the stress at depth z acting on a face parallel to the free
surface of the mass, x'x. From which find, by graphical solution, the stresses
acting at that depth z on a vertical face and on a face at an angle 0 with the
vertical. What are the stress conditions when 8 = 02

(2) With Mohr’s circle, draw the net of slip lines. What is the conclusion?
What is the angle between the slip lines and the free surface x'x?

NB. The pole construction is assumed to be known (see problem 5.1).

Solution

(1) For a cylindrical soil element with its base on the face under consider-
ation dS (see Fig. 5.7), Rankine’s theory states that the forces acting on the
vertical surface of the cylinder cancel each other. The stress acting on face
dS is therefore:

cylinder weight vz dS cos §
g, = = = 72 COS B
ds ds

From Fig. 5.7, it is easily seen that the components of this stress are:
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Fig. 5.7.

0 = yzcos?
o {

T = vz cos f sin 3.

Mohr’s circle corresponding to this condition is drawn in Fig. 5.8. It goes
through point M, which is the end of the stress vector o, and it is tangent to
the failure envelope (Coulomb’s lines) since the soil mass is at limit equi-
librium.

It was shown in problem 5.2. that two circles satisfy the conditions.
Since it is assumed that the soil mass is at the lower Rankine limit equilib-
rium, the circle representing the stresses is the smaller of the two. From the
pole construction (see problem 5.1) we know the stress vectors acting on the
vertical face OM’ and on the face making an angle 6 with the vertical OM".
Note that the point M’ is the same as the pole of Mohr’s circle.

X4

Fig. 5.8.
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In the case where § = 0, the stress o, is perpendicular to the face upon
which it acts. It is therefore a principal stress. Because we are assuming lower

Rankine limit equilibrium it is the major principal stress (Fig. 5.9).

B-=o

Fig. 5.9.

(2) Net of slip lines. From the construction of the pole, we know the
orientation of the faces upon which the limit stresses OT and OT’ acts (these
are stresses with maximum inclination, equal to ¢ with the perpendicular to
the face upon which they act). The directions of these faces are obtained by
joining the pole to points T and T'. It will then be noticed that directions PA
and PB which are the principal directions of the stress vectors, bisect the slip
faces (because A and B are at the middle of arcs whose ends are T and T').
As before, TQ2A = w/2 + ¢, and thus the faces make an angle of (1/2)
(TQRA) = m/4 + ¢/2 with the direction of PA, that of the face upon which
the major principal stress acts (or by the same token, the direction of the

minor principal stress).
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Fig. 5.10.
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When considering the effect of depth z, point M describes a straight line
D inclined at 8 on Og, since this angle remains constant. The Mohr’s circle
remains homothetical and the direction of the slip faces remains the same.
Therefore the slip lines, which are the envelops of slip faces, are straight lines
with an angle of * (7/4 + ¢/2) with the direction of the minor principal
stress.

It should be noticed that it is not possible to have a condition wherein g >
¢ because an equilibrium may not exist in such conditions.

Let us now find the angle between the vertical and the direction of the
minor principal stress. Consider angles OP{2 and P2A (Fig. 5.11). In triangle
OPSl, we have: wg =+ 2v, and in triangle PQ2A, we have: a =1 — 2v,
from which a = 7 — (wg — f).

To define angle wg, we have: sin wg = 2H/R, but sin § = 2H/0L2 and
sin ¢ = R/OS). Therefore: sin w; = sin f/sin p, w; = arcsin (sin B/sin p).

4@

Fig. 5.11.

Fig. 5.12.
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From the properties of Mohr’s circle it is found that 0; makes an angle
with the vertical equal to «/2 or: /2 — (wg— B)/2 and that o, is inclined
to the vertical by angle (w; — 8)/2.

From this, the slip lines (¢,) and (¥ ,) make an angle with the free face of
the mass of:

T ¢ wyt+P T ¢ wtP
= —4+—4+— d ¥, = ~+———
o=ty 2 o 42 2
with wg = arcsin (sin §/sin ¢).
These results are summarized in Fig. 5.12.

**Problem 5.4 Equilibrium of Rankine

Let us consider a semi-infinite mass with a free face inclined at  with
respect to the horizontal. The mass is cohesionless soil, with an angle of
internal friction of ¢ and unit weight of vv. The purpose is to find the stresses
acting along a line OL making an angle 0 with the vertical. Let « be the angle
of inclination of the stress acting at depth h on a face whose center M (0, r)
ison OL (Fig. 5.13).

\f,

Fig. 5.13.

Assume that the mass is at the lower limit equilibrium of Rankine.

(1) Draw Mohr’s circle corresponding to the lower equilibrium at M. Let
£ be the center of this circle and m be the point on the circle representing
the stress acting on a face parallel to the free boundary and passing through
M. Om crosses the circle at point n. Let wy be the angle Qnmi which must be
expressed by one of its trigonometric lines as a function of B and ¢ (see
Fig. 5.15).

Let p and R be the abscissa of the center and the radius respectively of the
Mobhr’s circle. Express R in terms of p and v and p in terms of 8 and wg.

(2) Construct point m, of the Mohr’s circle associated with a face whose
center is M in which lies OL (Fig. 5.13). Calculate the angle « of the corre-
sponding stress and show it is independent of r.

(3) Find the magnitude of the normal stress o acting on the face of
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center M and direction OL. Show it is proportional to vy and to r and that
the equation 6, = Kvyr exists.

Write K as a function of 0, B, ¢ and of angle wz. What can be said about
the stress distribution on segment OL?

Solution
(1) The stress on face dS at M has a value of (Fig. 5.14):

weight of cylinder vh ds cos 8
f — = P = 'yh [0 1) B
s

Fig. 5.14.

Hence Mohr’s circle passes through point m, the coordinates of which are:

vh cos? 8
m . .
\vh cos B sin § (Fig. 5.15)
T
7
/
’
/7
/
/
/
T // Lower Rankine limit
/ equilibrium
!
|
o |
o) P 1
A ! T
H
'm
A
\
T \

Fig. 5.15.



192 PLASTIC EQUILIBRIUM

to find angle wg: sin wg = QH/R
but: sinf=QH/0§2 and siny=R/0Q
therefore: sin wg = (2H/O82) x (OS§2/R) = sin f/sin ¢
sin wg = sin B/sin @.
To find R, we have R = p sin o.
To find p, consider triangle OQ2m (Fig. 5.16). We have:
p/sin wg = Om/sin OQ2m, but:

OQm = wy—B+ (m—2uw;) = 71— (wg +P), sin ORm = sin (w; + P)

from which:

Om
'p = — , but: Om = ~«h cosf,
sin wg sin (wg + B)

hence:
sin wg

p = vhcosfl ———F—,
v 6sin(w5 +0)

Fig. 5.16.

(2) We must first construct the pole P of Mohr’s circle (see problem 5.1
and Fig. 5.17). P is also the representative point of the stress vector acting on
a vertical plane through M. Hence for a plane at an angle + 6 with the
vertical, the representatlve point m; is obtained by rotating by — 20 on
Mohr’s circle. Let m' bit\he projection of m, on axis Oc.

We have then: a =m'Om; or tana= mlm&m

Consider now the triangle Qm'm ; we have: m'Qm, = 20 + wg — 6.
Therefore: m;m' = R sin (20 + wg —B), Om'=p—R cos (20 + wg —P).

From the first part of solution: R = p sin ¢
Om' = p[1 ~—sin g cos (20 + wg — B)]
from which:

p siny sin (20 + wg —f)
pl1 —singpcos (20 + wz; —B)]
This equation shows that tan « is independent of r. Therefore, the incli-

nation « of the stress acting on a face through OL is the same all along the
line OL.

(3)
0g = Om' = p—R cos (20 + w; — )

tano =

Og = p[1l—sinycos (20 + wz —P)].
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Fig. 5.17.

Then, from the first part of the solution:

sin wg

= yhcosff ———.

P v g sin (wg + B)

and from triangle ONM (Fig. 5.18) we also have:
r _ h

sin (w/2 — () sin [1—80 — (/2 — )]

r h

cos 3 B cos (B—0)

Fig. 5.19.
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from which:
cos (f—6)
r cosf
Therefore we have: 05 = K+vy+*r with:
_Cos@—hsines 1 o cos (20 + ws — B
sin (wg + B)

The stress distribution along OL is linear (Fig. 5.19) and to summarize:
Rankine’s equilibrium is characterized by:

— slip lines which are straight lines;
— triangular stress distribution with constant inclination along a straight line
through the mass.

JkkProblem 5.5  Plasticity; limit equilibrium of a weightless mass loaded at the
surface; Prandtl corner
(See pole construction of problem 5.1)

(1) Study the limit equilibrium of a semi-infinite cohesionless mass having
an angle of internal friction of ¢, whose free surface is inclined at an angle 8
with the horizontal. It is subjected to a uniform vertical load of q (Fig.
5.20). What can be said about the stress tensor? Draw the slip lines. What
happens when = 0?

Weightless
mass =0

Fig. 5.20.

(2) Consider the same mass with a horizontal free surface and a point A
at the surface. Assume that a uniform load p, is applied to the surface along
a line to the right of point A and a uniform load p, is applied along the same
line but to the left of point A. Assume that the mass is at limit equilibrium.

(a) Show that it could be assumed that there coexist two limit equilibria
zones. What are they and what are the limit equilibria which could exist
there? What relation must exist between p, and p, for these equilibria to
exist? Show, considering the slip lines net, that this solution is not kine-
matically possible.
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(b) Which three zones configurations can logically be chosen? What will
be the slip lines net in the third zone? What is the relation between p,
and p,?

(c) Compute the value of the coefficient N, and N, of the bearing capacity
formula for shallow footings from the above mentioned result.

Solution

(1) The stresses acting on planes AyA and B,B of the elemental prism of
base dS cancel two by two. (Fig. 5.20).

Since the mass is assumed weightless, the stress acting on plane AB is
equal to g, whatever the depth of the face. The stress tensor is thus the same
at all points. .

The stress vector acting on a face parallel to the free surface is known
(Fig. 5.21). Mohr’s circle must pass through the M-end of this vector and
must be tangent to Coulomb’s straight lines. Two solutions correspond to
this equilibrium (lower and upper Rankine equilibrium).

Draw line Om parallel to the plane through point m which is the mirror
image of M. The line crosses the circles at points P, and P, (the poles), from
which we obtain the slip lines.

Indeed, the stress tensor being the same at all points, the faces upon which
the least favorable stresses act (stress vectors on the Coulomb lines) have
the same direction at all points of the soil mass. Hence, the slip lines, which
are the envelope of these faces, are straight lines.

In Fig. 5.21, it can be seen that the failure planes are straight lines parallel
to P, T, and P, T, for the lower equilibrium and to P, T, and P, T, for the
upper equilibrium.

Fig. 5.21.

For the particular case of 8 = 0, point M is on the axis Qo (M is the end
point of the stress vector acting on plane AB), because the vertical stress is
a principal stress. The two limit Mohr’s circles are tangent at M (Fig. 5.22).

Lower equilibrium. OM = q, the major principal stress. From Fig. 5.22, T,
and T, are obtained from rotation of M of * (/2 + ). Hence the face on
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T2

T

Fig. 5.22.

which OT; (or OT) acts and which coincides with the slip plane orientation,
is obtained from the horizontal face rotated by an angle of £ (n/4 + ¢/2).
Therefore, the slip lines are straight lines inclined at an angle of * (w/4 +
¢/2) with the horizontal, respectively * (/4 — ¢/2) with the vertical.

Upper equilibrium: the results are the same if we change w/4 + ¢/2 to
w4 — p/2.

(2a) At depth Z,, if we are sufficiently far from the vertical AX passing
through A, it may seem acceptable to assume that a limit equilibrium would
develop wherein p, acts as the load g of the preceding question for points in
the mass located to the left (zone II) of A, and that another limit equi-
librium condition would exist wherein p, would act as load g at any point
in the mass located to the right of point A (zone I, see Fig. 5.23).

P2

HIHH I REENEERNEL

1IC

Fig. 5.23.

Let us assume that the boundary between the two zones is a straight line
passing through A. If the boundary is not vertical, such as AX is, an imposs-
ible condition occurs, because if we consider two points, such as M and M’
in the same zone, we find from the above results that the stress tensors at
M and M’ are not the same. Therefore, if such a boundary exists, it can
only be a vertical such as AX.
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In order for equilibrium to be realized, however, the stress acting on a
vertical face through AX must be the same in the two zones. Let p, be that
value. It is clear, that we must necessarily have p, > p, > p, and that the
two equilibrium states are represented by two tangent circles (Fig. 5.24).

G

al
5]
U

Fig. 5.24.
We have already seen that for a limit equilibrium we have:
03/0, = tan®(m/4 —¢/2) and o0,/0; = tan® (7/4 + ¢/2).
That means in this case:
p2/py = tan®(m/4 + ¢/2)
po/py = tan(m/4 — p/2)
and, therefore:
DP2/po = tan* (n/4 + ¢/2) (1)

Thus, for such a state to exist, p, and p, cannot have any value but must
satisfy the relation (1).

This scheme must also be kinematically acceptable, that is to say, it must
be compatible with the continuity of mass and its boundary conditions.

R P <P,

ZONE I ZONE T

PP P> P,
Lower line Upper line

equilibrium equilibrium

Fig. 5.25.
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For the case under consideration (see Fig. 5.25), it is obvious that the
failure planes do not have the same inclination with respect to the vertical.
Line AX is a line of kinematic discontinuity.* Besides, this line does not
coincide with a slip line, then this scheme is not kinematically acceptable.
We must therefore consider a three-zone system.

(b) The simple solution which comes to mind in this context, is to intro-
duce a third zone bounded by two straight lines passing through A which are
slip lines, respectively AY and AZ, for each of the limit equilibrium states.
The second set of slip lines in the third zone must make at any point M,
an angle of (m/2 — ) with the slip line of the first family, that is with
the straight line AM (see Fig. 5.26). But we know that the logarithmic
spiral is a curve the tangent of which at any point makes a constant angle
with the radius. Therefore, the two zones may be linked by a third zone
containing logarithmic spirals with a pole at A and whose tangent makes an
angle of m/2 — ¢ with the radius.

This 3rd zone is called Prandtl’s corner. The slip lines are: —log spirals
with a pole at A, — straight lines issuing from A.

P2
A
i «‘".(P#n .RS el,‘nlblg’lml;ln‘HHHW
S A RN T
T
L\ x, I c 2%
2
L z
q, ¢
5 M
Y ¢
Fig. 5.26.

The 3-zone condition is kinematically acceptable. Now, we must determine
the relation between p, and p, with respect to stresses g, and q, acting on
the faces through AZ and AY. For this purpose, we write that the prism
ABD of Fig. 5.27 is in equilibrium, by equating to zero the sum of the
moments acting on faces AB, BD and AD. The stresses on the portion BD
of the spiral act along the straight slip lines and pass through point A. Their
moment arm is zero. Stress g, acts on face AB. Stress q, acts on face AD
which makes an angle « with AY. Since the mass is weightless, the stress
distribution is uniform along AB and AD. The moment equilibrium with

*Along AX a segment stretches if in Zone I or shrinks if in Zone II.
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respect to point A gives:

AB? AD?
q, COS‘P“Z—’ = qq COS‘P—Z—
from which:
Qe ZE: p%ez(@2 -6,)tany

q, AD2 p%e2(0a—00)tan«p

If we let 8, and 0, be the polar angles corresponding to the radii of

AB and AD with respect to an arbitrary origin corresponding to a value p,
of the radius then: q, = g,e?(%:-%)tany = g g 2atany,

Fig. 5.27.

For the relation between g, and p,, we have to show that

q, = p, tan (7/4 — ¢/2).
Let us draw Mohr’s circle for point B (Fig. 5.28)

I}
q,
\\R
o ¢ k -
\—/ P, a
. —
Fig. 5.28.
p, =d+R
R = dsiny
g, = dcosy
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from which:

cos

p, = d/(1+siny) and gq, = p, m

but:

sin {—— 2sin{———|cos |———
cos ¢ (2 B 4 2 4 2

1+sing T T
sin — + sin ¢ 2sin(£+£ cos T_¥
2 4 2 4 2
T L
sin |[——— sin |[———
s T T P 4 2
cos| —— [—+— cos |[———
2 4 2 4 2

We finally get: g, = p, tan (w/4 — p/2)e 2xtan¥
By drawing Mohr’s circle for point C (Fig. 5.29) a similar calculation as
above gives: g, = py tan (m/4 + ¢/2).
But: ¢; = g(a) = p, tan (/4 —/2) e8¢  foro = 7/2.
Hence p, and p, are related by:
tan (m/4 + p/2) " ¥

= or = tan (w/4 + mtang
p2 po tan (W/4_@/2) p2 pO ( / 50/2)6 .

Fig. 5.29.

(c) Coefficients N, and N, of the bearing capacity formula for shallow
footings. The above calculations are applicable to determine the depth factor
N, in the formula referred to. The assumption is made that the footing does
not alter the inclination of the failure lines. Under this condition the stress
condition under a footing is as shown in Fig. 5.30.

The distribution p, corresponds to the weight of the overburden above
the level of the base of the footing x'x, therefore to Po = ¥D.

We therefore have:
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)
e Sl
g hD p = §D
x T I x

|
|

Fig. 5.30.

m P wtany :
qq = YD Z+E e from which:

N, = tan? (1 + f-) gmtany,
4 2

For a cohesive soil with cohesion ¢, the uniform vertical fictitious stress
H =c cot ¢ is assumed to act at the free face of the weightless mass. The
fictitious bearing capacity would be:

(9a) =qa +H

and we will also have: (gq)' = Ny(H + D)

or: qq +ccoty =Ny (yD + ¢ cot p)

or: qq = YDN, +ccot o(Ny — 1)

and: qq4 =YDNy, +cN, with: N, = cot ¢o(Ng —1).

N, is the coefficient corresponding to the cohesion factor in the bearing
capacity formula. The coefficient N, can of course not be calculated by this
method since it must consider the weight of the mass.

Note on the stress vector of zone III (Prandtl’s corner): When the radius

Fig. 5.31.
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rotates through an angle « from AB, the direction of the stress g rotates
through angle «, but since ¢ makes an angle ¢ — which remains constant —
with the radius, the principal directions also rotate by «. But at B, the major
principal stress direction is vertical. Therefore, at D the direction of the
major principal stress makes an angle a with the vertical. Lamé’s ellipse
rotates and the size of the axes decreases to go from ellipse 1 to ellipse 2
(see Fig. 5.31).

*ak Problem 5.6 Limit equilibrium of a semi-infinite cohesive mass with an
inclined free surface

Refer to problem 5.3 and assume that the soil has a cohesion ¢. Two
cases are then considered in analyzing slip lines, depending on the value of
B. The inclination angle of the slip lines with the free surface x'x and the
orientation of the asymptotes, if any, will be determined. (Refer to problem
5.1 for the construction to determine the pole of the Mohr’s circle).

Solution

(1) This problem is similar to problem 5.3, but a distinction must be
made between real and fictitious stresses.

Real stress at depth z is: 6, = yz cos 8 (Fig. 5.7).

It is represented by vector OM of Mohr’s diagram (Fig. 5.32) and its com-
ponents are:

o = vyzcos? .
gy

Yz cos {3 sin (.

~3
fl

The fictitious stress, represented by vector O'M is:
{o' = H+ yz cos?fl = ccoty+ vz cos?f

T = vyzcosfsinf

therefore: |0, =V 0'? + 72

The pole is determined as above (see problem 5.1), from which the real
and fictitious stresses (OM’, OM" and O'M’, O'M", respectively), acting on a
vertical face and an inclined face at angle 0, are determined (Fig. 5.32).

At the free surface, we have:
real stress: g, = 0,

fictitious stress:
’ !

¢ = o,
T = 0.

The fictitious stress is perpendicular to the free surface.
The condition =0, is represented in Fig. 5.33. In this case, the pole of
Mohr’s circle is located on Oo.
(2) Slip lines.

Mohr’s diagram (Fig. 5.34) shows that two conditions exist depending
on the value of §:

0, = H = ccoty



PROBLEM 5.6 203

T "6’

Fig. 5.33.

condition 1: if § <y, drawing Mohr’s circle corresponding to the limit lower

equilibrium of Rankine is always possible,

condition 2: if 8 > ¢, Mohr’s circle can only be drawn if [0, | < OT’.
Therefore, the magnitude of the stress vector cannot exceed the limit

value of OT, otherwise the equilibrium is not possible. Hence there is a limit

depth, 2z, , for which equilibrium exists (see Fig. 5.34).

(a) Condition of 3 <y (Fig. 5.35)

To determine the orientation of the faces upon which the limit stresses
OT and OT' act, the procedure is identical to the one in problem 5.3. It
will be noted however, that as z varies, the Mohr’s circles are no longer
similar because vector OM does not originate from the intersection of O’
of Coulomb’s lines. The orientation of the faces upon which the limit
stresses act, varies with depth z. Therefore the slip envelopes are no longer
straight lines. The net of the slip lines will then consist of two families of
curves crossing at an angle 7/2 + ¢, because we have:

(QT', QT) = 2(PT’, PT)
(QT', QT) = 2(RQA, QT) = 2(n/2 + ¢).

I
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T T
P=9
T
o o : -
¢ ~ BE\\ a
b |a,| < ot
T

Fig. 5.34.

From which: (PT', PT) =7n/2 + ¢.

Asymptotic direction: whenever depth z becomes infinite, Fig. 5.35 shows
that M tends toward infinite on line D. But, O'M = H + OM and H remains
finite, therefore OM - O’'M when z = . The asymptotes to the slip lines in
the case of a cohesive soil are the straight slip lines of the cohesionless mass.

When point M is at the surface, Mohr’s circle is tangent at O to OT (Fig.
5.36). We then have:

(0, QT) = M2 + )
(0, QT') = —(1/2 + ).

Point O corresponds to the end of the stress vector 0’0 acting on the free
surface. Therefore, from the classic property of Mohr’s circle, the planes
on which OT and OT’' act, are inclined to the slope surface by angles of
t(m/4 + ¢/2).

Summary: In the case of <y the failure lines belong to two families of
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curves crossing at a constant angle to (7/2 + y), the asymptotive directions
of which are the straight slip lines of the associated cohesionless mass of
internal friction angle ¢ and crossing the free surface at an angle equal to
[ (7/4) + ¢/2].

The failure planes orientations are shown in Fig. 5.37.
(b) Condition of B> ¢ (Fig. 5.38)

Calculate the value of the limit depth z, (Fig. 5.38). From the law of
sines:

a b c

sin A - sin B N sin C

applied to triangle O'OT' (Fig. 5.39), we have:
oy o' H

sin ¢ - sin § - sin (8 — )
We have also: OK = ¢, cos?f = vz, cos?f.
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&

Fig. 5.37.

p>f
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Fig. 5.38.
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e Y

Fig. 5.39

Therefore:
Hsin ¢
sin (8 — )

from which:

cos B = vz cos?f.

Hsin g CCosy

z, = =
' ycosfsin(B—w)  ycosBsin(B— )

Equilibrium only exists if the depth of the mass is less than or equal to z,.
Slip lines: when point M is at the surface, there are no changes from the
preceding analysis. Slip lines cross the free surface at angles  (7/4 + ¢/2).

When point M is at depth 2,, OT (on Fig. 5.39) makes an angle § with O¢

Fig. 5.40.
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and one of the two families of curves representing the slip lines is tangent to
a line parallel to the free surface at depth z, .

We also have: (T, QT') = 2a = 2(n/2+ p) =7 + 2p
from which: a =7/2 + pand & =7 — (7/2 + @) = 7/2 — .

The second family of curves is tangent. to the line making an angle of
m/2 — ¢ with the free surface. This result is readily observed since as before,
the slip lines cross each other at an angle of 7/(2 — ¢).

The shape of the net of slip lines for the case § > ¢ is shown in Fig. 5.40.

*xProblem 5.7 Maximum height of an excavation in cohesive soil

Find the maximum height of an unsupported vertical cut in a cohesive
soil with a horizontal surface which supports no load. Let v, c and p be the
unit weight, cohesion and angle of internal friction respectively. For a
numerical application, assume vy = 20 kN/m?3, ¢ = 10% Pa, p = 10°.

Solution

At a point M at depth z in the cut, the total vertical stress is equal to the
weight of the overburden on a horizontal face through M (Fig. 5.41). The
total horizontal stress acting on the vertical face through M is zero since M is
at the free face of the cut.

Let us find at what depth z,, Mohr’s circle becomes tangent to the failure
envelope at the lower Rankine limit equilibrium (Fig. 5.42).

T T
o 8 o R R
M ,'"(];=gz n ¥z o
0;;377777— —
H
Fig. 5.41. Fig. 5.42.

Let R be the radius of the circle, then:

R

Ty

from which: R(1—sing)=Hsinp=c*cotysiny =c*cosy
but: R =0,/2=vz,/2 from which:

2z
1 _ c"gsw = ¢ tan (1+£).

2 1—sing 4 2
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Therefore:
2c
z = 7 tan (m/4 + ¢/2). (1)

Below depth z; the soil becomes in a plastic state. However, because of
stress relaxation, the stresses will redistribute themselves in part to adjacent
upper zones which are in elastic state. It is therefore possible that the maxi-
mum height may be somewhat greater than the calculated value of z; by the
above formula (1). Terzaghi has proposed: z; = 2.67 (¢/v) tan (1/4 + ¢/2).

Numerical application:
vy = 20kN/m® ¢ = 10°, ¢ = 10*Pa = 10kN/m?
tan (m/4 + ¢/2) = tan 50° =1.192: 2z, = 1.19m and 2z = 1.59m.

sk Problem 5.8 Superposition of two limit equilibrium states

Assume a two-dimensional configuration. Consider two limit equilibria
at point M in a soil mass with an internal angle of ¢. The two equilibrium
states are defined by the Lame’s ellipses at M.

(1) Show that the superposition of the two-limit states is generally not
one limit equilibrium state. Consider the Mohr’s circles C, and C, cor-
responding to the two limit equilibrium states and Mohr’s circle C corre-
sponding to the stresses after superposition.

(2) Evaluate the ratio p of the radius of Mohr’s circle C to that of Mohr’s
circle at failure centered at the same point §) (let \ be the ratio of the radii
of the circles C, and C, ). What conclusion may be drawn?

(3) Are there particular cases wherein the superposition leads to an incipi-
ent failure condition? What other notable conclusions can be drawn?

Solution

(1) Assume a cohesionless soil. The case of a cohesive soil is solved in the
same manner but with fictitious stresses.

We may consider the minor principal direction of the first equilibrium
state as vertical without changing the generalized solution. The minor princi-
pal direction of the second equilibrium state is assumed then to be at an
angle a with the vertical. A face of a given orientation A will then have an
angle «; and «, with the two minor principal directions (Fig. 5.43).

Consider the Mohr diagram of Fig. 5.44. For equilibrium state 1, the stress

acting on the plane oriented in A is OM; so that xml = — 20, . The
equilibrium state 2, OM, is such that #8Q,M, = — 2a, to conform to the

properties of Mohr’s circle.
Whatever the direction of the plane may be, we always have a; —a, =
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(8)

8)

£

Fig. 5.43.

Fig. 5.44.

a = constant (for one given location M) because the angle « is the angle of
the principal stresses of the two states at M.
To superimpose the limit equilibrium conditions at M, we add vectorial
stresses acting on each plane. The result is:
OM = OM, + OM, =08, + 08, + Q,M, + Q,M, =02 + QM.
When the orientation of plane A changes, we have:
02, + 0, = 0 = constant
and: , M, + Q,M, = QM with |QM| = constant, since « is constant.
Therefore, the locus of M is a circle C. But this circle is not tangent to the
failure envelopes. Therefore: the superposition of the two equilibrium states
is generally not an incipient failure condition.
(2) From Fig. 5.44, we see:

2 = QM? QM + QMY + 2QM) - QM, cos 2«
Qr? (M, + QM})?

but:
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0, M, _
A= = —, from which:
, _ M +1+2X\cos2a
g A+ 1)

We always have p < 1; hence Mohr’s circle is always inside the failure
envelope.

The superposition of the two limit equilibria results in a stress condition
which can actually exist but is generally on the safe side because p < 1.

(3)If a =0, we have p = 1. The directions of the principal stresses are
the same. We then have QT = Q7' and the superposition of the two limit
states is still a condition of limit equilibrium. In this case, the slip lines
net can be superimposed.

If a=m/2:

QT’ _ QlMl _QzMz _ P2 — D1

Qr  QM, +QM, p,+p;

Furthermore, if p, = p, (see Fig. 5.44), then p = 0 and the Mohr’s circle
reduces to a point.

Hence by superimposing two equal stress conditions whose principal
directions are at right angle, an isotropic stress condition is obtained.

p:
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Chapter 6

INTERPRETATION OF IN-SITU TESTS

*Problem 6.1 Interpretation of static penetration tests

A soil investigation was performed by the static penetrometer along the
Rhone river. Test results were very uniform and are summarized by the
diagram of Fig. 6.1.

Determine what the possible types of foundation are and the allowable
bearing capacities for a four-storey building with basement requiring a 2m
deep excavation (the sand layer will therefore be excavated).

The building will be 10 by 20 m in plan dimensions. Columns will be 4 m
on center. The total weight of the structure will impart an average stress over
its plan dimensions equivalent to 40 kPa. The ground-water table is 1.5m
below the surface.

Soil unit densities: v, /Yw = 1.8 above the water table, ¥'|v, = 1 below
the water table.

Solution

From the penetration diagram of Fig. 6.1 it can be concluded that the soil
conditions consist of a shallow surface sand layer, some 2 m thick, underlain
by a thick clay layer.

In fact the ratio of R;/q. called friction ratio [19], [22], [23] for each of
the layers is less than 2% and over 4%.

It is not possible, however, to determine the foundatlon dimensions
because one important given for the problem is missing, namely, the type of
penetrometer used in the investigation. It is not known if the cone of the
penetrometer is of the Delft type or a simple cone type [22], [23], [29],
[307'.

Without additional information, a dangerously erroneous interpretation
could be made due to the low shear strength of the clay.

*kProblem 6.2 Interpretation of a dynamic penetration test
A dynamic penetration test was performed at a construction site. The

test result is shown in Fig. 6.2 in the form of the number of blows counted
for 20 cm penetration at the respective depth increments.

I The solutions to this problem are given in problems 6.3 and 6.4.
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Fig. 6.1. Static penetration test.

What is the allowable bearing capacity of shallow footings at a depth of
3 m for a three-storey structure with basement?

Solution

It is not possible to make a valid evaluation of the diagram of Fig. 6.2
because the following needed information is missing to characterize Ny
[23], [29]:

— type of penetrometer and height H of fall of the hammer (is the fall
height constant?);

-- weight of the hammer and of the rods;

-~ diameter of the rods, and cross sectional area of the point;
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— was the hole cased with hollow rods of outer diameter equal to the point
diameter to eliminate parasitic side friction?

— was drilling mud used to stabilize the hole?

— type of soil tested;

— location of the ground water table.

On the other hand, one test only has not much meaning. It is necessary to
perform several tests at various locations within a site in order to appreciate
eventual variations. Finally, it is always preferable, for ultimate users of the
diagrams of dynamic penetration tests, to draw the plot values of Ry vs.
depth, where the resistance value R4 is computed by the Dutch formula and
a safety factor of 1, shown as Rq = M2H/(M + P)eA where e is defined as
the average penetration by blow.

5 10 15 20 25 30 35 40 45 Nao [
o + d >

Depth (m)

Fig. 6.2.

%% Problem 6.3 Interpretation of a Delft-type static cone penetrometer test
in clay

The givens are similar to those of problem 6.1, with the added information
that the cone penetrometer test was performed with a Delft-type cone
pushed at a rate of 2 cm/s penetration [19, 22, 23, 29].
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Determine the type of foundation and allowable bearing capacity of the
soil to support an apartment building, 4 storeys high with basement located
2m below finished exterior grade. Refer to problem 6.1 for the geometry
of the building.

Solution

The clay layer is very thick (g. = 400 kPa, R; = 20 kPa, friction ratio
FR > 4%) and contains lenses of sand (2.4 <q, <7.2MPa and FR < 2%)
[29, 30].

The penetration diagrams of Fig. 6.1 shows that it would not be practical
to recommend a semi-deep pier-type foundation or a pile foundation bearing
on a very dense layer. The diagram shows no good bearing layer at depths
down to 20m. A pile foundation would have to be designed with friction
piles whose performance is sensitive to local soil variations and to differential
settlements. The only other solution is to recommend a shallow foundation.

For clays, the apparent cohesion of the soil may be evaluated from the
penetration diagram. From this value then, the allowable bearing capacity
of the soil may be calculated for different types of footings.

For a Delft-cone, the correlation between cone resistance and cohesion is
cy = 4q./15.

From the average value of the end bearing q. = 400 kPa = 4 daN/cm?,
we have ¢, = 400/15 = 26.7 kPa.

Let us now first look at strip footings embedded 1 m below grade. For
a purely cohesive soil (¢ = 0) the allowable bearing capacity of the soil is:
Q.qg =YD + 5.14¢,/3.

For short-term stability, and therefore considering total stresses, and for
v =18kN/m?® and D =1m, we have g,4 =18 x1 + (5.14 x 26.7)/3 ~ 64 kPa.

It must be remembered that in most cases, the long-term stability of
bearing capacity is higher than that of short-term.

The foundation load imposed by the building of 4 stories is, for a spacing
of footings of 4m, about: @ = 40kPax 4 =160kN ~ 16t (per m width).
'The width of the strip footing would then be: B = Q/q.q =160/64=2.50m.

Once the width of a footing is larger than half the spacing distance,
it is generally admitted that a mat-type foundation is more economical.
The formula to use then for this type of foundation is:

514(1 + 0.2B/L)c,
3

where yD corresponds to the overall embedment (2 m), yD =18 x 2 = 36 kPa,
B=10m, L = 20 m.

Qaq = 7D+

+ 5.14[1 + (0.2 x 10/20)] x 26.7 _
3 =

Weget: q,q = 36 86.3

~ 86 kPa.
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But the pressure imparted by the total weight of the building is 40 kPa;
furthermore, 2m of soil were excavated which represent a vertical stress of
36 kPa. The net pressure of the building is only 4 kPa. The raft foundation is
the preferred one for this case. (The buoyant force of the ground water is
generally not counted upon since the level of the water may vary.)

An additional advantage of the mat-type foundation resides in the ease
with which the basement floors may be made impervious.

It should be noted that certain authors use slightly different correlations
to estimate ¢, from the penetrometer test, such as q./18 <c¢, <gq./15
when measured with the Delft-type cone pushed at 2 cm/s.

sk Problem 6.4 Interpretation of a static penetrometer test with simple cone
point in the clay

Once again consider the givens of problem 6.1 but assume that the pen-
etration diagram of Fig. 6.1 pertains to a test done with a simple cone (a
simple cone is one with a constant cross-sectional circular area above the
cone, as opposed to the Delft-cone). Recommend the foundation type and
allowable bearing capacity of the clay, for the building under consideration.

Solution

The initial reasoning presented in problem 6.2 is valid here. Therefore
only shallow foundations are considered.

The apparent cohesion, ¢, is determined to calculate the bearing capacity.
Instead of using the correlation q./15, it is now necessary to use ¢, = q./10.

For an average value of q. = 4 daN/cm?, this gives ¢, = 4/10 = 0.4 daN/
cm? = 40 kPa.

The importance of knowing the type of penetrometer used is well illus-
trated here if this result is compared with that of problem 6.3.

Let us consider the strip footing with 1 m embedment. From the same
formula of problem 6.3, we have:

5.14 x 40
Qaqg = 18><1+'——3—' = 87 kPa.

The load carried by interior partition is @ = 160 kN (per meter width).
The maximum width of the strip footing would then be:

B = Q/q.a = 160/87 = 1.84m.

In this instance, the width of footing is less than half the spacing between
line loads and this type of footing is more economical than would be a raft
foundation.

In conclusion, it is seen that depending on the type of penetrometer used,
for a given diagram one may recommend differing types of foundation. This
illustrates the importance of knowing the type of static-cone penetrometer
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utilized. The test specification should always be included in the test results
[22, 23, 29, 30].

*Problem 6.5 Interpretation of a dynamic penetration diagram

On a fairly horizontal site, dynamic penetration tests were performed.
The results were very closely grouped. The least resistance was encountered
at one test location whose diagram is shown in Fig. 6.3.

To develop the site, about 1 m of the upper soil will have to be excavated.
Under these conditions, determine the allowable bearing capacity for foun-
dations of an industrial building whose footings bottoms will be 1 m below
finish grade (that is 2 m below the 0-level of the penetration diagram). The
building will be supported by steel columns, 10 m on center each way and
each supporting an axial load of 1000 kN.

200  Rq in daN/cm?

table

Depth (m)
- R
T
I

\{

Fig. 6.3. Dynamic penetration test.

Solution

As was the case in problems 6.1 and 6.2, it is not truly possible to solve
the problem. From an examination of the diagram, one could conclude that
no resistance is expected below a low value of 18daN/cm? and from the
usual formula, one would conclude: q,4 = R4 /20 (for cohesionless soils) or
90 kPa would be an allowable bearing pressure. For a net load of 630 kN at
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the surface, a 7m? footing would support the load (or square footings of
2.6 x 2.6 m). Note that the 1000 kN load is not obtained. But it must be
remembered that it is not possible to interpret a penetration diagram with-
out knowing the type of equipment used in testing, and the soil type. The
givens of problem 6.5 are not sufficient to be of value. If this conclusion
appears too critical, consider the diagram of Fig. 6.4 on which, in addition
to the dynamic penetrometer diagram, a static-cone diagram obtained with
the Andina penetrometer has been drawn for comparison purpose. The
dynamic penetration data were in fact obtained with a Durmeyer device.

i 2
200 Jc3nd Rq in daN/cm

SUff clay

Soft clay

Clayey sand

'=—~=Wate|: (éble

Sandy clay

\4

Silts

Depth (m)
”n
!
i
1 1(

\!\I\FW\J _\'\A/\/{ V

Y
=3
T

=II l
ANDINA -] DURMEYER
static A= dynamic

T
Y
]

v

Fig. 6.4. Comparison between static Andina and dynamic Durmeyer penetration tests.

For a foundation level proposed at 2 m, the point bearing resistance of the
static-cone penetrometer test is almost zero and the bearing of 90 kPa would
not have been acceptable.

The main conclusion to be drawn from this problem is that it is not
possible to correctly interpret dynamic penetration tests in soft clays, nor in

any clay below the water table [13, 15].
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*Problem 6.6 Interpretation of a dynamic penetration test of the Sermes
type

Several Sermes-type dynamic penetration tests were performed at a site in
Salies-de-Bearn (France). Assume that the results obtained are represented
by the diagram of Fig. 6.5, which show conventional resistance, Ry, as a
function of depth.

Can this test be interpreted? What would be the allowable bearing pressure
for pier foundations located 4 m deep, having a diameter of 1 m and spaced
10 m on center?

o 50 | 100 150 Ry in daN/cm?2
+ t + + 4 n —»
1 \L_
‘?
£'\, = Water table
B a
~ |
L
5 A~
. L / L
£ ——
< |
a Rgq (dynamic SERMES)
8 i
10
-
v

Fig. 6.5. Dynamic penetration test (Sermes).

Solution

It really is not possible to interpret the diagram because we do not know
the soil type and there are no indications as to whether the test was per-
formed with or without drilling mud. The solution to this problem is pre-
sented in problem 6.7 where all data are provided in the givens.

**Problem 6.7 Interpretation of a dynamic penetration test of the Sermes-
type in submerged clay soil

The conditions are similar to those of problem 6.6. We know the standard
procedures for the Sermes-type test were followed, that is, without the use
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of bentonite mud. We know that the soil is clay and that the water table is
very shallow.

Interpret the diagram for the foundation type described in problem 6.6.

Solution

It is not always possible to interpret the diagram correctly because the
test was performed without mud and in clay soil below the water table.
Under such conditions, the dynamic penetrometer often gives erroneous
indications because of parasitic friction which develops along the tubes due
to the squeezing of the clay around them. At the same site, a static-cone
penetrometer test was also performed with the Gouda-type penetrometer.
The diagram is shown on Fig. 6.6 along with that of the dynamic test.

The comparison between the two shows the danger associated with
interpreting dynamic tests. Note the very large difference between the
resistances R4 and q. (the ratio Rg4/q. is larger than 10 below 5m depth).
The difference is mainly due to the lateral friction of the soil against the
rods and to a smaller extent due to the instantaneous increase in pore-water
pressure which is greater during dynamic testing than in static testing.

To further illustrate the danger, let us interpret the diagrams and calculate
the allowable bearing capacity at a depth of 4 m for a long footing.

Ry and q. in daN/cm?

[s) 50 100
IRRN |
) r> Silty clay
T«, ~ = Water table 2.3} Sitty clay
- \L with
{ 2 thin sand lenses
L :
{ 4,50 ,
S—L*# \'—' ‘F Plastic clay
B ] sa0e |
-~ i ]
E | }
s
- .
a \ \
o | —
R g, (static GOUDA) 3
RN =
10(— :
% Rq (dynamic SERMES)——E
=
(‘ \i
v

Fig. 6.6. Comparison between the static Delft-cone and the dynamic test in clay.
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Dynamic penetration test. A general rule often used to determine allowable
bearing pressure for shallow footings or semi-deep foundation is: R4/20. At
4m, Ry > 6000 kPa (60 daN/cm?) from which:

Gaqa = 6000/20 = 300 kPa (3 daN/cm?).

Static penetrometer test. The Dutch-type penetrometer (Gouda) has a Delft-
type cone. g, is practically constant and equal to 800 kPa (or 8 daN/cm?).
Cohesion of the clay may be estimated at:

¢y = g9./15 = 800/15 = 53kPa’(0.53 daN/cm?)
and the allowable bearing pressure would then be:

5.14c, 5.14 x 53
=== 3 = 90 kPa (0.9 daN/cm?)

neglecting the depth term vyD.

The allowable bearing pressure calculated from the dynamic penetrometer
is about equal to the ultimate bearing capacity calculated by the static
penetrometer. These results speak for themselves.

Qad

*Problem 6.8 Interpretation of a Bevac-type dynamic penetration test in
submerged clay soil

The Bevac-type penetrometer was used at a site near Nantua (France),
in a very thick layer of soft clay and a water table at about 1 m depth.
The results of the test are presented in Fig. 6.7.

Can this diagram be interpreted? If so, give the allowable bearing capacity
of a strip footing of 1 m width constructed at 2.5 m depth.

Ry in daN/cm?

o 10 20 30 50 100 _
1 S R
T“=Water table
2 | S
T3
-3 : Bl
£, L I
E 4 IS
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E 5 7vﬁ T
o
Qe —_ L= -
7, ;‘ L
8 -
9| [ r—l?
NANTUA: Soft clay
v

Fig. 6.7. Dynamic penetration test (Bevac).
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Solution

This type of dynamic test in clay below the water table cannot be inter-
preted for the same reasons as cited in problem 6.7 [13, 15].

To confirm this conclusion, two static penetrometer tests were per-
formed at the same site, one with the Gouda- and the other with the Andina-
penetrometers, very near to the dynamic penetrometer test. The results
are shown in the diagram of Fig. 6.8. Once again a large difference between
R, and q. is noticeable. The two static-cone tests, however, agree quite well
with each other. The difference is due to the same causes as explained in

problem 6.7.
Rq and q. in daN/cm?
o 10 20 30 50 100 200

T Ld
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Fig. 6.8. Comparison between static-cone penetrometer and dynamic penetration test.

If we took R4/20 (as for cohesionless soils) to calculate the allowable
bearing pressure at 2.5 m depth, we would get: q,q = 250 kPa (2.5 daN/cm?).
On the other hand, for the static-cone penetrometer test: q. = 180 kPa
(simple cone) or g, = 300 kPa (Delft-cone).

The Andina penetrometer has a simple point, therefore:

¢y = q./10 = 180/10 = 18 kPa (0.18 daN/cm?)
and the allowable bearing pressure for a smooth strip footing at 2.5 m is:

_ bl4c,  5.14x18
3 3

Qaq = 30 kPa (0.3 daN/cm?)

The allowable bearing pressure is 8 times less with the static penetrometer
than with the dynamic penetrometer. It should be noted that at this site, a
raft-type foundation designed for 30 kPa underwent substantial settlements.
See problem 6.16 and Ref. [14].

It should be remembered that when g, < 1200KkPa, it is absolutely
necessary to recover undisturbed samples for laboratory testing.
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¥okkProblem 6.9 Settlement calculations from cone penetrometer diagrams in

the case of a

two-layer system

A soil investigation was carried out using the static-dynamic Andina-type
penetrometer for an industrial complex near Berre Lake, France (cf. [22],
[23] and [29]). Assume that the diagram of Fig. 6.9 represents the results
of all tests performed. Drilling and sampling made at the site confirmed the
soil profile to be (see Fig. 6.10): from 0 to 4 m: cemented, very dense sand
and gravel; from 4 to 8.5 m: compressible silt; from 8.5 m: dense silty sand.

qc and Ry in daN/cm?2

200 300

400 600 800 1000
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v

Fig. 6.9. Berre Lake static-dynamic Andina penetrometer test result.
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Fig. 6.10.
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Consolidation tests were performed on undisturbed samples of the compres-
sible silt recovered at locations very near to those of cone-penetrometer tests.

The observed correlation between the point resistance q. and oedometric
modulus E' indicates that the coefficient o is equal to 3 and is valid for the
whole site (m, = 1/aq.).

Assuming that the upper sand and gravel and lower sand layers are incom-
pressible, calculate the settlement of a strip footing, 2m wide, imparting a
pressure of 400 kPa and located at 0.5 m below existing grade.

Could the settlement be reduced, assuming the same total load if the
width of the footing was increased to 4 m, therefore reducing the pressure to
200 kPa?

Note: It may appear not logical to correlate an ‘elastic’ characteristic, such
as the modulus of consolidation to an ultimate strength of the penetrometer.
In fact, the soil behavior is a very complex phenomena which always consists
of some reversible and other irreversible mechanisms. Perfect elasticity
and plasticity are only approximations. During the two types of tests, both
phenomena occur, which may account for the possibility of empirical
correlation observed between E' and q.. It should be remembered that the
various correlations established are only valid for well defined soil types.

Solution

First method. Settlement calculations from the Giroud-tables. The tables
for the calculation of settlement of J. P. Giroud, give formulas which permit
direct calculation of settlements for various footing types bearing on homo-
geneous soils of finite thickness and whose deformation modulus is known
and bearing on an unyielding substratum ([10]).

Formulas have been developed for the case of footings bearing directly on
the compressible layer. However, at the Berre Lake site, there exists a sand
and gravel layer overlaying the compressible layer. The analysis, therefore,
may be as follows. Because the sand and gravel layer is very dense and very
rigid, the soil stress at the top of the silt layer may be calculated by assuming
a stress distribution of 45° through the cemented sand and gravel layer as
shown in Fig. 6.11. Normally, such a distribution is assumed to spread over
a 30° angle according to the pressure bulb of Boussinesq.

By utilizing the notations of Giroud tables*, the spread at the top of the
silt layer is: 2a =2 + 3.5 x 2 = 9m and the stress is: p =400 x 2/9 =
89 kPa (0.89daN/cm?) with H/a = 4.50/4.50 =1 and v = 1/3. From the
Giroud table, p. 399* we get: py = 0.31.

. 2
The settlement is given by the formulaw = p Ea Pu-

*Printed by Dunod, Paris in 1972 and 1973 [10].
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Fig. 6.11.

The oedometric modulus is obtained from the static penetrometer test:
E'=0q, = 3q.. ‘ ‘

The average value of q. in the silt layer is calculated from depth 4—8.5m,
and it is g, == 800 kPa, from which:

E' = 3x 800 = 2400 kPa (24 daN/cm?)

and for v = 1/3, Young’s modulus is E = 2/3 E’' = 16 daN/cm?.

Finally, the settlement is w = (0.89 x 900/16) x 0.31 =15.5cm or w =
16 cm.

Let us now consider the case of the 4 m wide footing, imparting a pressure
of 200 kPa.

We have 2a =4+ 2 x3.50 =11m, from which ¢ = 5.50 m. Therefore,
Hja =4.50/5.50 = 0.82 and: py = 0.25, p = 200 x 4/11 = 73 kPa (0.73 daN/
cm?) and the settlement is: w = (0.73 x 1.100/16) x 0.25 = 12.5cm say
w~13cm.

The settlement is decreased very little by doubling the width of the
footing. This is accounted for by the rigidity of the upper layer. It would
therefore not be advisable to recommend an increase of the footing width.
The cemented sand and gravel layer acts like a mat foundation.

Second method. A more classical method is to determine the stresses and
then calculate the settlement layer by layer, using the formula Ah/h =
—AG/E'.

Let us first consider the stress distribution at depth for a flexible footing
and calculate the stress at mid-height in the silt layer as well as at the upper
and lower boundaries of this layer.

Once again, the Giroud table can be used, and Table 6A is compiled
(results along the footing axis).

The silt layer is divided into two equally thick layers of 2.25 m. The
average stress in the upper half-layer is:

Ao, = (140 + 88)/2 = 114kPa (1.14 daN/cm?)
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TABLE 6A

2 Average 2/a ko Ag (kPa)
3.50 3.50 0.35 140
5.75 5.75 0.22 88

8 8 0.16 64

and in the lower half-layer is:
Ag, = (88 +64)/2 = T6kPa (0.76 daN/cm?).
Assuming that the modulus E’ is the same for both half layers; the settle-

h 225
ment is: % = — (Ao, + A = —— (114 +76) = 17.8cm.
an = (Ao, 02) 2400( ) cm

If we now assume the footing to be rigid, and using Giroud’s table (Vol.II,
p. 365) we can make up Table 6B.

The same results are obtained for all practical purposes in assuming the
footing to be rigid. This is understandable because for ratios of z/a over 3
the stress distribution for strip footings is practically the same, regardless of
the assumption on the rigidity of the footing.

TABLE 6B

% Average 2/a ko Ao
3.50 3.50 0.34 136
5.75 5.75 0.22 88
8 8 0.16 64

The conclusion would not have been the same had the footing been resting
directly on the silt layer.

Comparison between the two methods. Settlements computed by the second
method are somewhat higher than those of the first method. This is be-
cause in the second method stress conditions are assumed which corre-
spond to a homogeneous soil and no account is taken of the high rigidity
of the cemented sand and gravel layer. The first method therefore is con-
sidered more representative of reality.

A third method could be used, by referring to the tables of Bottero and
Touzot for settlements on a two-layer system. Assuming a value of 1200 daN/
cm? for the modulus of the cemented sand and gravel layer, a settlement
of 10.3 cm would be obtained for the 2m wide footing. This is close to the
result of the first method.
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*kxProblem 6.10 Settlement calculations based on Schmertmann’s method
and static penetrometer tests in gravels and sands

The city hall of Lyons consists mainly of an administration block sup-
ported by 4 concrete columns of 10 by 10 m (see Fig. 6.12) containing stair
wells, elevators and utility shafts. Spacing between the columns is 20 m.
Each column rests on a square footing bearing a net load of 70 MN after
considering an excavation of 10 m of soil from ground level.

Over the site of this building, the soil profile is:

— fill, 1 to 2m thick;

— clayey silt, 1 to 2m thick;

— sandy gravels to a maximum thickness of 20 m;
— sandstone substratum;

— water table at about 56 m below natural grade.

A penetration test was performed at the location of one of the columns
with an Andina static-dynamic penetrometer after excavation. The test
results are shown in Fig. 6.13.

Qver a depth of about 10 m, dense gravels were encountered which are
underlain by incompressible sandstone whose characteristics are well known
in the area.

Assuming a coefficient o = 3, calculate the settlement of a column from
the test result, using Schmertmann’s method (cf [35]).

We have: y/v,, = 2 for the soil above the water table, and v'lv, =1 for
the soil below the water table.

Solution

Schmertmann’s method is valid only for cohesionless soils. It consists
of drawing a very simple vertical stress diagram at depths due to a rigid
footing.

The stress distribution is assumed to be triangular and the maximum stress
occurs at depth B/2, where B is the width of the footing, and that below
B/2, no appreciable vertical stresses exist in the soil. (Fig. 6.14). If Ap is the
stress increase due to the footing, according to Schmertmann, at depth B/2,
the stress is 0.6 Ap. Correction factors are needed as indicated below.

Section A-A
ANNCANNNNNY , ' Z 77777
10.25m
Io oom 1.oom;t e -
. E jiom
ol ©
o <
ol ©

Fig. 6.12. City Hall of Lyons: plan and section.
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Fig. 6.13. City Hall of Lyons: static-dynamic penetrometer test result.

Influence due to embedment: C, = 1—0.5 (04 /AD).
g, effective stress exerted by the weight of overburden above the bottom
of the footing, therefore:

go = 20x 5+ 10x 5 = 150kPa = 1.5daN/cm?

— i — et
soil above soil below
the water the water

table table
Ap =0 — oy
where ¢’ is the stress due to the footing at the level of the footing.
, 7-10%
= = 700kPa =~ 7daN/cm?, Ap = 7—1.5 = 5.5daN/cm?,
10 x10

C, = 1—0.5x(1.5/5.5) = 0.86.

Time-dependent settlement. Taking into account the very dense state of the
sandy gravel, the time-dependent settlement is not considered and C, =1
(see [35]).
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Interaction between columns. For two identical footings, each 10 m wide,
B, = B, = 10 m and the distance between the footing is known to be 20 m.

We have: 0.6(B; + B,) =0.6 x20=12m, so L > 0.6(B, + B,), and the
footings behave as isolated footings.

Stress diagrams. The maximum stress is: 6 = C; x 0.6 Ap or 0 = 0.86 x 0.6 x
5.5 =~ 2.84 daN/cm?, and the stress diagram is shown on Fig. 6.14.

1 2 3
Y L | 284 | » 02 daN/cm?
1 |
: !
|
5 4
ﬂ//
-
-
,qu - Level of incompressible substratum
=
pre)
o
o
a
20 _
Fig. 6.14.

Settlement calculation

A rigid soil layer is encountered at 10 m below the bottom of the footing,
that is at a depth inferior to 2B = 20 m. The same triangular distribution is
assumed down to the level of the rigid soil layer, but settlements are only
computed to a depth of 10m (Fig. 6.14). The sandy gravel layer of 10 m
may be divided into 10 layers each 1 m thick. The g-value is determined for
each layer as well as the average cone resistance q.. Table 6C is then made
up. The total settlement is computed to be 17 mm.

Actual settlement measurements made on the structure showed:

5—7 mm for a load of 40 MN, 8—10 mm for a load of 60 MN.

This example confirms the validity of settlement estimates based on cone
penetrometer test data.
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TABLE 6C
Depth g, e o 02/34q,
(m) (daN/em?) (daN/em?)
0-1 0.28 160 3 0.00058
1-2 0.85 550 3 0.00052
2-3 1.42 650 3 0.00073
3-4 1.99 400 3 0.00166
4-5 2.56 340 3 0.00251
5-6 2.75 330 3 0.00278
6-7 2.56 200 3 0.00427
7-8 2.37 390 3 0.00203
8-9 2.18 500 3 0.00145
9-10 1.99 740 3 0.00090
0.01743m

w=17mm

btk Problem 6.11  Settlement calculations of a compressible sloping layer,
based on static penetrometer test data

The city of Annecy (France) is built in part on thick lake deposits consist-
ing mainly of compressible silts overlaying a limestone substratum which in
places is overlain by dense morraine deposits. The soil profile shown on Fig.
6.15 was established from numerous static-dynamic Andina penetrometer
tests performed at a particular site in Annecy. Construction consisted of
erecting 2 buildings. Building A was to be constructed over a sloping rock
substratum while building B was planned over the horizontal portion of the
bedrock.

_ Build B Build A
U h: oo
Test 2——————Test 1
—~ 20
£
304 )
b / S . .
B sl 7 el o) D hS
g Cl O MR e 4
50 ! Limestone [ I I
. LT ]
1 T [ T 1]

Fig. 6.15. Longitudinal soil sections.
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Two test results obtained by the Andina-penetrometer are shown in
Figures 6.16 and 6.17. Test 2 is assumed to be representative of the soil con-
ditions throughout the site of building B. The water table is at a depth of
1.5 m. All the buildings have a cellar, excavated to 2.5 m and have 5 stories.
The stress may be assumed at 70 kPa. The width of the cellar is 22 m and
each building is 80 m in length.

Give recommendations for the foundation of each building. Calculate the
settlement of shallow footings at the locations of the penetrometer tests,
assuming « in the silt to be 5§ <a <10 and « = 3 in the gravel layer. We also
have: y/v,, = 2 above the water table, ¥'|y,, = 1 below the water table.
What solution can be chosen for each building?

Solution

(1) Deep footings. Because of the sloping bedrock for building A, and the
low consistency of the silt, the first solution that comes to mind is to sup-
port the buildings on piles driven to the limestone or to the dense moraine.
(g, > 10* kPa or 100 daN/cm?).

From the technical standpoint, this would be the safest solution because

total and differential settlement problems would be virtually non-existent
[30].
(2) Shallow footings. The deep foundation scheme is very costly because of
the great lengths of piles required. It is therefore worthwhile to investigate
the possibility of supporting the structures on shallow footings. The allow-
able bearing capacity of the silt is: taking q, = 300 kPa (8daN/cm?), ¢, =
q./10 = 300/10 = 30 kPa, from which q.q4 =5.14¢,/3 = (5.14 x 30/3)
51.4 kPa (0.5 daN/cm?).

From the total building weight, the only possible shallow footing type
would be a raft-type foundation, as should have been expected. The problem
associated with the raft-foundation is that of evaluating settlements.

The net pressure due to the new structure at the foundation level at the
bottom of the raft at a depth of 2.5 m is the total building pressure less the
weight of the soil excavated to a depth of 2.5 m, or:

20 x 1.50 + 10 x 1 = 40kPa

— T m——

soil above soil below

the water the water
table table

The net pressure at the bottom of the raft is Ao = 70 — 40 = 30 kPa =
0.3daN/cm?.

For each penetrometer test, an idealized soil cross section may be drawn
into a number of layers which also accounts for the gravel layer encountered
in C.P.T. no. 1, as shown in Fig. 6.15.

The vertical stress due to the net building load at mid-height of each layer
is calculated. Because of the plan dimensions of the buildings, the stresses
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Fig. 6.16. Static-dynamic Andina penetrometer test 1.
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Fig. 6.17. Static Andina penetrometer test 2.

may be equated to those generated by a rigid, long narrow footing of 22m
in width [11]*.

Tables 6D and 6E of vertical stresses are shown below, giving Ao the
increment of vertical stress, o« a dimensionless multiplier, q., the average

*It could be taken into account that the footing is rigid and rectangular by using Kerisel’s
method [6] which gives settlements of 9 and 17.2 cm, respectively for C.P.T. no. 1 and
C.P.T. no. 2, i.e. a differential settlement of 8 cm. According to the hypothesis of non-
rigid footing (which does not correspond to reality in this case) the settlements would be
3.8 and 7.4 cm respectively.
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TABLE 6D
Depth =z zJa ko Ao Y q. h hrAojag,
below  (average) (daN/em?) (daNJ/em?) (cm)
mat
0—3 1.5 0.14 0.64 0.19 3 140 300 0.14
3—5 4 0.36 0.67 0.20 10 15 200 0.27
5-10 7.5 0.68 0.69 0.21 10 5 500  2.10
10—15 12.5 1.14 0.66 0.20 10 3 500  3.33
15—17 16 1.45 0.61 0.18 10 8 200  0.45

Total settlement: 6.29 cm

value of the cone resistance and the settlement due to each of the layers:
Ah = hAojag, (h = one layer thickness).

For C.P.T. no. 1, Table 6D summarizes the above values:

The total settlement, due to all layers at C.P.T. location no. 1 is the total
of the last column or 6.29 cm.

Taking o = 5 for cohesive soils, we would calculate a total settlement of
12.44 cm, but local experience indicates that actual settlements are better
evaluated using a value of &« = 10.

The same procedure for C.P.T. no. 2 is given in Table 6E.

TABLE 6E
Depth 2z zfa ko qc o qc h hAojog,
below (average) (daN/cm2 ) (daN/em?) (em) (cm)
mat
0—5 2.5 0.23 0.65 0.20 10 5.6 500 1.79
5—10 7.5 0.68 0.69 0.21 10 3 500 3.50
10—15 125 1.14 0.66 0.20 10 3 500 3.33
15—20 17.5 1.59 0.58 0.17 10 9 500 0.94
20—25 22,5 2.056 0.51 0.15 10 6.5 500 1.15
256—30 27.5 2.50 0.45 0.14 10 9 500 0.78
30—35 325 295 0.38 0.11 10 10 500 0.55

Total settlement: 12.04 cm.
The total estimated settlement is 12.04 cm.

Conclusion

For the first group of buildings, total settlement could be of the order of
6 to 12 cm, from one end of the structures to the other. The resulting differ-
ential settlement could present a problem for the proper operation of the
buildings. The differential settlement is caused by the sloping bedrock and
the presence of a gravel layer. For this reason, it would be recommended to
support the structures of group A on piles. For the other group of buildings,
differential settlements should be nominal and a raft foundation could be
recommended.
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skkProblem 6.12 Pile foundation calculation from static cone test in a tri-layer
system

Cone penetrometer test data were performed in the Annecy (France) area
at a swampy site, with static-dynamic Andina penetrometer. The penetration
record of Fig. 6.18 is representative of the subsurface soil conditions. The
cone point used in the test has a diameter of 8 cm.

The soil cross-section is:

— 0 to 8 m, peat and soft clay;
— 8 to 11.5m, sand and gravel layer;
— from 11.5 m, soft clay.

To support the proposed structures, the obvious solution is to resort to
driven pile foundation, penetrating to the upper part of the sand and gravel
layer.

Estimate the bearing capacity of 0.6 m and 1.0 m diameter piles whose

q. (daN/cm?2)

oO 1 20 30 40 (] 70 EF 90 10
t>

Depth (m)
?

i
v

Fig. 6.18. Tri-layer system Andina static penetrometer test.
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tips would be driven to a depth of 8.5 m, using the following 3 methods:
the Dutch method, Geuze’s rule, Meyerhof’s method [22, 25].

Compare the results. In addition, for the 0.6-m diameter pile, estimate the
load capacity if the pile is driven one additional meter (to —9.50m).

Solution

(1) The Dutch method. This method consists of calculating the average
cone bearing over a depth increment of 8 diameters above the pile tip (qc,)
and the average cone bearing resistance to 4 diameters depth below the pile
tip q., (tip being at —8.5m).

The ultimate bearing pressure at the pile tip is then: qq4 = (g, + q.,)/2
and the allowable bearing pressure is q.q = qq/2 = (q., +q.,)/4 for the
safety factor of 2. )

If a layer of low cone bearing is encountered, with a minimum value of
Gmin; Over a depth of 4 diameters below the pile tip, and if n cone bearing
readings were made in this soft layer, the value of g, is then:

_ g1+t g2+ qn T NQmini
2n )

(a) For the 0.6-m diameter pile (8¢ = 4.8 m and 4¢ = 2.4m) the calculated
average cone bearing values from 3.7 to 8.5m, is q. ~ 6daN/cm?; for
values from 8.5 to 10.9m g., =~ 80 daN/cm?, and the allowable bearing
pressure at the tip of the pile is q,q = (6 + 80)/4 = 21.5daN/cm?, say
20 daN/cm?.

(b) For the 1-m diameter pile (8¢ = 8 m and 4¢ = 4 m) the average value of
qc,, between 0.5 and 8.5 m is g, == 4.6 daN/cm?.

For the depth 4 ¢ below the proposed pile tip elevation the presence of
a soft layer is encountered. The bearing capacity of the soil for the 1 m ¢
pile will have to be decreased to take this into account. The Andina-type
penetrometer measures q. every 0.25m; over 4 m there are 16 readings.
The average value of q., from 8.5 to 12.5 m is equal to 56 daN/cm? and the
minimal value of qe, is 8.5 daN/cm?2. We therefore have:

_ 56 x16 +8.5x16
2 x16

Hence the allowable bearing pressure is:
Gaq = (4.6 + 32.2)/4 = 9.2daN/cm?, say 10 daN/cm?.

dp,

qe, =~ 32daN/cm?.

Remark

Piles of 1 m in diameter have an allowable tip bearing pressure consider-
ably lower than that of the 0.6-m diameter pile (not quite half). Note: The
pressure bulb at the tip of the large-diameter pile is larger than that for the
small-diameter pile and the bulb extends therefore into the soft underlaying
clay. Thus it is advantageous to use smaller-diameter piles. However, it does
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not appear reasonable to use the 20daN/cm? allowable pressure for the
0.6-m diameter pile because there is the soft clay layer at depth. In the event
of accidental overdriving a few of the 0.6-diameter pile below 8.5m depth,
the bearing capacity of the overdriven piles would be greatly reduced.

Let us calculate the allowable bearing pressure at the tip of a 0.60-m
diameter pile driven to 9.5 m depth, instead of the 8.5 m.

Over a depth of 8¢ = 4.8 m above the base, from depth 4.7 to 9.5, we have:
ge, >19.5 daN/cm?, for the 4¢ = 2.4 m depth below the tip, from 9.5 to
11.9 m, the soft clay layer must be accounted for with q;,; = 8.5 daN/cm

For 10 readings of g, of an average value of 55.5 daN/cm?, we have: qe,
(565.5x10+8.5x10)/20 =32daN/cm?, q,4 =(19.5+32)/4 =12.9 daN/cm

This is considerably lower than the allowable pressure calculated for a pile
tip at 8.5 m.

(2) Geuze’s rule. This method is summarized in Fig. 6.19.
(a) The 0.6-m ¢ pile. We have tan o~ 0.062 and tan § ~ 0.038 (see Fig.

qc (daN/cm?)
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Fig. 6.19. Geuze’s rule.
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6.19). The diameter of the Andina penetrometer cone is b = 8cm, and
that of the pile B = 60 cm.

Geuze’s law states: tan «; = B/b tan « = (60/8) x 0.062 = 0.47 and
tan 3, = B/b tan § = (60/8) x 0.038 = 0.29.

The actual cone resistance of Fig. 6.19 is deduced graphically to q, =
50 daN/cm? and, using a safety factor of 4, gq,q4 = 50/4 = 12.5daN/cm?.

(b) The 1.0-m ¢ pile. The same procedure is used for B = 100 cm from
which tan «; = 0.062 x 100/8 = 0.78 and tan f3; = 0.038 x 100/8 = 0.48.
The corrected cone bearing value is g, ~43daN/cm? and q,q = 43/4 ~
11daN/cm?. The allowable bearing pressures for the 2 pile sizes are very
near the same in this instance.

(3) Meyerhof’s method.
(a) The 0.6-m ¢ pile. The tip of the piles at 8.5 m depth is located at a
distance H of 3m above the soft underlaying layer. This is less than the
critical distance 10B = 6 m. The approximate cone bearing value of the
soft layer is q. ~10daN/cm? and that of the sand and gravel layer is
Q. =75 daN/cmc‘k .
According to Meyerhof, the ultimate bearing capacity of the soil is:
(qc —q.)H 65 x 3

Qo = Qe+ = 10+

10B

and for a safety factor of 3 (because the method is a little pessimistic), we
have: q,4 = 42.5/3 = 14daN/cm?.

(b) The 1.0-m ¢ pilee. H=3m<10B =10m, qe, = 10daN/cm? and
g, ~ 75daN/cm?, from which g4 = 10 + (65 x 3)/10 = 29.5daN/cm? and
Qaa =q4q/3 =10daN/cm?.

= 42.5daN/cm?.

Conclusion

The three methods yield closely related results, except for the 0.6-m
diameter pile at 8.5 m depth; however, for practical reasons, it was pointed
out that the high value of allowable pressure for this instance was not
to be recommended.

An average allowable pressure of all the methods may be recommended at
8.5 m. This would be about 13 daN/cm? for the 0.6-m diameter pile. No fill
should be placed on the ground surface and all ground floors should also be
supported on piles to avoid differential settlements between columns, walls
and floors.

sokk Problem 6.13  Settlement estimates of a surcharge fill, from static-cone
penetrometer test data

In the Cannes region (France), it is not uncommon to have recent alluvial

deposits of clays and silts over depths of 40 m above the marly bedrock.

Cone-penetrometer tests performed with the Gouda 100kN device have
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shown that in such soils the cone-bearing value is very constant and of about
1000 kPa for these alluvial deposits. The project consists of the construction
of several relatively low buildings one of which of five storeys.

In order to reduce the total and differential settlements of the structures,
it was decided to surcharge the sites and consequently, a 5m high fill was
placed over a plan dimension of about 40 x 130 m. The vertical cross-section

of the fill has a trapezoidal shape with a top horizontal dimension of 30 m.
The soil density is 1.8.

Calculate the settlement caused by the surcharge fill along its central
axis, assuming the following values of v 3 <a <5 and m, = 1/aq, [23,
27, 28].

Solution

The most direct method of estimating settlements is to resort to vertical

stress distribution and tables of Giroud (vol. II, 6.11, p. 436), formula 2:

Yh a®
" Ea-d
E=2/3E =2/3aq, with v =0.33, ¢ =20m, ¢’ = 15m.
Here, for 3 <a < 6, we get 3000 < E < 6000 kPa and we have:
Hla' = 40/15 = 2.67 from which r, = 1.142,
Hja = 40/20 = 2 from which r, = 0.983
with: E' = 3000 kPa, E = 2000 kPa, we get:

2
w = 18 x5 X fl2(0.983 — (1—5) x 1.142) = 1.23m,
2000 5 20

with E' = 6000 kPa, E = 4000 kPa, we get: w = 0.62m.
Thus, the settlement would be between 62 and 123 cm [32].
Remark

The actual settlement measured at the end of 4 months of preloading
was between 30 and 42cm at different observation stations. These settle-
ments are smaller than the range predicted from penetrometer tests. This
may be due to:

— the ultimate settlements have not yet occurred at the end of 4 months;

—no account was taken of the slight increase in cone-bearing value of the
silt starting at a depth of 20 m, nor of the presence of a few sand lenses.

The actual settlements, however, validate the method of estimating
settlements from static-penetrometer test data.

w [(ra — (@'/a)*ry)], v = 18kN/m3, h = 5m,

ik Problem 6.14  Settlement calculation of a surcharge fill from the results of
an Andina penetrometer test

Two cooling structures were constructed near Lyons for the development

of a nuclear power plant. Each structure is 127 m high and has a diameter of
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102m at the base. These structures are rigid and do not tolerate large differ-
ential settlements. The foundation soil consists of sandy-gravelly alluvium
underlain by a thick compressible clay layer over a sandstone bedrock. '

Assume that the soil conditions are uniform and are represented by the
Denetration diagram of Fig. 6.20.

In order to decrease the total and differential settlements that the struc-
tures could experience, it was decided to surcharge the areas of the cooling
towers. Two preload fills were constructed in the shape of a torus, of trap-
ezoidal cross-section, having an outside diameter of 138 m and an interior
diameter of 62m. The fill height was 10 m and the side slopes inclination
of 3 horizontal to 2 vertical (see Fig. 6.21).

Assuming the unit weight of the surcharge fill to be 20 kN/m3, find the
settlement caused by the fill weight, along its axis, at the location of the test
whose results are shown in Fig. 6.20.

Take o« = 3 in the sandy gravel zones where q, > 4000 kPa, and o« = 10 in
the deep clay layer and o= 5 in the clay lenses present in the superficial
alluvium.

The value of ocin the deep clay is high because it has been proven that this
clay was overconsolidated by the weight of ancient glaciers at the start of the
Quaternary (Fig. 6.20).

Solution

In every settlement problem, the initial calculations consist of determin-
ing the vertical pressure distribution variations as a function of depth. This
was done in this instance according to Cordary’s thesis ‘Contribution to
the study of settlements of shallow footings’, University of Grenoble 1973.
It consists of giving the pressure distribution under circular rings.

The calculations apply to the points located vertically below the axis of
the surcharge fill. The value of g, chosen for each 1 m depth increment
corresponds to the average g, values within each interval measured every
0.25 m with the Andina quasi static penetrometer.

The settlement of an element layer of height H is: Ah = H(A,/xg.) and if
H =1 m, total settlement S = X (Ap/agq.). Table 6F may then be completed,
where the obtained settlement is 0.26 m,

Remark

Compare the result with those given by the following two finite element
methods:

(1) Calculation of the linear elasticity and elasto-plastic behavior of the
soil and assuming that the fill is rectilinear and of infinite length.

(2) Calculation of the linear elasticity of the soil assuming the axisym-
metry of the fill. Note in this case the uneven pressure distribution due to
the annular configuration of the fill (Fig. 6.23).

Note the uneven pressure distribution due to the annular configuration
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Fig. 6.20. Andina static penetrometer test.
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of the fill (Fig. 6.23) in this case. The various computations do indicate
that maximum settlement occur between 15 and 30cm. This is in good
agreement with the result calculated above which is based on the penetro-

meter test result.
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TABLE 6F
Depth Ap @ 9e aRp Aplog,
(daN/em?) (daN/em?)

1 1.98 3 300 900 0.0022
2 1.97 3 250 750 0.0026
3 1.95 3 150 450 0.0043
4 1.92 5 30 150 0.0128
5 1.87 3 45 135 0.0139
6 1.83 3 50 150 0.0122
7 1.78 5 20 100 0.0178
8 1.73 5 20 100 0.0173
9 1.67 5 15 75 0.0223
10 1.62 10 11 110 0.0147
11 1.56 10 8.5 85 0.0184
12 1.50 10 9 90 0.0167
13 1.45 10 13 130, 0.0112
14 1.41 10 11 110 0.0128
15 1.36 10 14.5 145 0.0094
16 1.31 10 16 160 0.0082
17 1.27 10 15.5 155 0.0082
18 1.23 10 13 130 0.0095
19 1.18 10 14.5 145 0.0081
20 1.14 10 14.5 145 0.0079
21 1.10 10 16.5 165 0.0067
22 1.07 10 17 170 0.0063
23 1.04 10 17.5 175 0.0059
24 1.01 10 18 180 0.0056
25 0.98 10 26 260 0.0038

ZAplag, = 0.26 m.
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Fig. 6.23. Settlement under surcharge fill in annular configuration (axisymmetry). Curve
2: rigidity of fill, sand and gravel neglected.

dokkProblem 6.15 Settlement computations based on static penetrometer test
results

Static penetrometer tests of the Parez-type penetrometer [23, 29, 30]
were performed at the location of a proposed building. Fig. 6.24 shows a
representative penetration record of the tests. The building plan dimensions
will be 20 by 20 m.

The substratum, consisting of Plaisancien marns, is overlain by a silty clay
alluvium of about 30 m in thickness [31, 37]. This layer is very compressible.
It was resolved to proceed in the following manner to support the building:
— excavate the soil to a depth of 2m;

— backfill with a compacted selected fill and overfill laterally by 2m in all
directions;

— design the shallow footings for an allowable bearing pressure on the engin-
eered fill of 150 kPa.
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Fig. 6.24. Parez static penetrometer test.

Assume that if the building were to be supported on a mat-foundation,
the uniform soil pressure would be about 70 kPa. In fact spread footings
are 4 m apart.

Calculate the settlement of the structure. Take o = 6 for the silty clay and
assume the fill to be incompressible.

Solution

The replacement of the clay by compacted fill is a common method of
foundation soil improvement. It does not decrease total settlements but does
decrease differential settlements between spread footings.

The load on the footings is: @ = 70 x 4 = 280 kN (per meter length).
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The width of the footing should therefore be: B = Q/q.q = 280/150 =
187 m, say 1.9 m.

Let us calculate the vertical stress at the bottom of the fill, assuming a
distribution of 1 horizontal to 2 vertical slopes, and we obtain the fictitious
width at 2m depth: B'=1.9+ 2=39m.

Since the footings are 4 m apart, the load at the bottom of the fill is equal
to the load of the building if it were evenly distributed over its entire surface
at grade. In effect, the fill acts as a mat-foundation.

The overall settlement of the building can be calculated by assuming
a uniform pressure acting over a plan area of 22 by 22m. The uniform

. 70 x 20 x 20 2
pressure is: p = ——————— = 58 kPa = 0.58 daN/cm~.
22 x 22

To calculate the settlement, the subsurface soil is divided into horizontal
slices for each one of which an average value of the point resistance would
be calculated, and for each of which the increment of vertical load due
to the building must be calculated. Since the fill is assumed to be incom-
pressible, the vertical stress increase starts at the bottom of the fill, or 2m
below grade. The results are tabulated as Table 6G. The total settlement is of
the order of 20 cm but this is an average value because the assumption of a
rigid mat (fill). According to Kerisel ({6], p. 27) the settlement on the axis,
assuming a flexible mat, should be increased by the ratio 2/1.57 = 1.274,
from which a settlement of 25 cm is obtained.

It should be noted that these two different values — one for a rigid and
the other for a flexible foundation — do not give the maximal and minimal
boundaries of the solution.

TABLE 6G
Layer Depth z/B p° Ao a qc hAojagq,
thickness  of fill (daN/em?) (daN/em?)  (em)
(m) bottom
2-5 1.5 0.07 0.50 0.29 6 5 2.90
5-10 5.5 0.25 0.53 0.30 6 7 3.57
10-15 10.5 0.48 0.51 0.29 6 6.5 3.72
15-20 15.5 0.70 0.38 0.22 6 3 6.11
20-25 20.5 0.93 0.32 0.18 6 5 3.00
25-30 25.5 1.16 0.24 0.14 6 15 0.78

Total settlement 20.08cm

Note: B = 22 m width of the fictitious mat (fill).

Remarks

A direct estimate of settlement could have been performed as a first
approximation by the following method, using Giroud’s tables. The constant
q. value in the clay is about 5daN/cm?. The clay layer thickness is 30 m
and the approximate modulus E' = ag, = 6 x 5 = 30 daN/cm?. Therefore,
E =2/3E' = 20daN/cm?.



PROBLEM 6.16 247

Assuming that the settlement of a rigid foundation is close to the average
settlement of a flexible foundation, from Giroud’s tables: w,, = (®B/E)pym ,
p=0.58daN/cm?, L =B=22m from whichL/B=1, H=30 m, H/B
=30/22=1.36, ifv=0.33.

From Giroud’s tables (vol. II, p. 163), we get pyy = 0.6 and: w,, =
(0.58 x 2200/20) x 0.6 = 38 cm.

This approximate method is faster and the result is close to the more
rigorous method, only a bit higher.

*kProblem 6.16 Settlement evaluation in clay soils from static penetrometer
tests; influence of fills

A low-rise building was erected some 15 years ago on the shore of the
Nantua lake [28]. The building width varies as does its total height along
its main axis. The structural frame is reinforced concrete supported on a
mat-foundation. Its plan dimensions and loads are shown on Fig. 6.25.

om 45m

-_7.7.m,. 2.5¢/m? @ 1.8t/m?
. Tom : @ 3.9 t/m?
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Fig. 6.25. Nantua-plan view of building (France).

The building is surrounded by fill of about 1 m in thickness over the adjacent
natural grade (see Fig. 6.26).

Four static penetrometer tests were performed before the start of con-
struction with a Gouda-penetrometer [19, 22, 23, 29]. The results were very
similar and can all be summarized by the diagram of Fig. 6.27. The subsurface
soil consisted of a thick layer of soft organic clay.

The structure underwent substantial settlements. Show that the settle-
ment magnitude could have been predicted from the static-penetrometer test
data. What is the fraction of the settlement atributable to the weight of the
fill?

Calculate the settlement at point M (see Figs. 6.25 and 6.26). Assume the
clay layer thickness to be 30.5 m.
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Figs. 6.26 and 6.27.

Solution

The vertical stress distributions due to the building and the fill may be
evaluated from Newmark’s chart [see Table 6H]. Assume that the cone
bearing value is constant throughout the clay and equal to 3 daN/cm? .

TABLE 6H
h z Ao (total) de « hAojag, Ao hlAo/ag,
(daN/cm?) (cm) (cm)

1.50 0.75 0.233 3 1.5 7.77 0.135 4.50

1 2 0.233 3 1.5 5.18 0.135 3

2 3.5 0.230 3 1.5 10.22 0.135 6

2 5.5 0.227 3 1.5 10.09 0.135 6

4 8.5 0.221 3 1.5 19.64 0.132 11.73

6 13.5 0.203 3 1.5 27.07 0.130 17.33

6 19.5 0.184 3 1.5 24.54 0.123 16.40

8 26.5 0.150 3 1.5 26.66 0.110 19.56
131.17 84.52

a=1.5 w=131cm a=1.5 w=8b5cm

a=4 w=49cm
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Since the clay is organic and has a high water content, assume 1.5 <a <4.
The data to calculate the settlement are shown in Table 6H.

The total settlement should be of the order of 1.30m for o = 1.5 and of
the order of 0.50 m for o = 4.

For the former, the settlement due to the fill is 0.85m or about 65%
of the total settlement. This shows that placement of fill on compressible
soils around a structure significantly contribute to settlements, in this case,
to over 50% of the settlement.

The actual, measured settlement of point M was 1.20 m five years after
construction. This confirms the validity of the estimate based on penetro-
meter test results. However, the soil must be sampled in order to determine
its water content when g, <1.200 kPa.

Yk Problem 6.17 Dimensioning shallow footings on sand, based on SPT
(Standard Penetration Test) results

The results of SPT performed in a sandy layer of 12m thick and with a
water table at a depth of 2m are shown in Fig. 6.28, as a function of depth,
in ft. Determine the allowable bearing values q,4 in pounds per square foot
(Ibs/ft?) for a strip shallow footing of 3 ft width and embedded a distance D
into the sand. Assume D at 0, 1, 5 and 10 ft.

Draw the curve of q,4 as a function of D. Use Terzaghi and Peck’s graphs
[(22), pp. 245--247].

Z¢t)| N(S.PT)
IR 7N YN\

515

Water table =
10 4

15’ 30
20117
25’t 30
30’} 35

35't 35

Fig. 6.28.

Solution
The problem may be solved in three different manners.
(1) Evaluate N, and N, from N values of Fig. 6.28 and determine the
allowable pressure from the classical formula:
vB
gqa = —2—N7 +YDN, +¢N,
wherein the unit weights of the soil must be assumed, (y and ') as a func-
tion of N. Because the soil is sand, ¢ = 0.

For simplicity, the five Terzaghi and Peck graphs will hereafter be referred
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to as A, B, C, D and E, to correspond to the order in which they were
published [22].

(a) D =0, N =5. For this value of N, the sand is very loose. Because of
the proximity of the water table, assume the sand to be saturated by capil-
larity. We can then assume:

Y4 = 901b/ft> and 7, = 100I1b/ft3.

Graph A of Terzaghi and Peck gives, for N=5; N, =5 and Ny = 8 from
which, with B =3 ft: g4 = (100 x 3 x 5)/2 = 750 1b/ft? . For a safety factor
of 3, q.q = 2501b/ft? or 12 kPa.

(b) D =1ft, N=5, we have N, = 5 and N, = 8 from which: g4 = 750 +
100 x 1 x 8 = 15501b/ft? and q,4 = 517 1b/ft> = 25 kPa.

(¢) D = 5ft. Because we are now very close to the water table (at 6 ft) its
influence on the value of N must be taken into account and corrected by:
N = 15+ (N’ —15) where N’ = 4, no correction is necessary and N, =4
and Ny = 7. N' being the SPT value below water table.

To calculate YN, the buoyant weight must be used; we have: v’ =y, —
Yw = (100 —62.4) = 37.6 say 381b/ft>.

For the overburden weight, the saturated weight of soil must be considered:

_ 38 x3 x4

Q4 + 100 x5x7 = 228 + 3500 = 37281b/ft?,

Gaa = 12421b/ft> = 0.6 daN/cm?.

(d) D =10 ft. The average value of N' must be calculated from the value
at the level of the bottom of the footing and 5 ft below that. In this case it is:
N'= (4 + 30)/2 =17 from which: N =15+ }(17 — 15) = 16.

Table A then gives: N, = 14, N, = 16.

N increases between 10 and 15 ft, therefore v4 and v, increase. So it can
be assumed that: v, = 1001b/ft3, <, = 1151b/ft3 and v’ = 53 1b/ft3.

For embedment the effective stress must be calculated at the footing level
according to the water table (6 ft.). From which:

vD =6 x 100 + 4 x 53 = 8121b/ft?

b3 x 3 x 14 )
and g4 = ——2—— +812x 16 = 1.113 +12.992 = 14.1051b/ft*,

Gaa = 4.7001b/ft? = 225 kPa.

Fig. 6.29 shows the variations of the allowable soil bearing pressure as a
function of depth D.

(2) Evaluation of q,4 from graphs.

(a) D = 0. Graph B gives directly q,4 for D = 0 and for a safety factor of
3: q.q = 0.1ton/ft? = 11 kPa. The two methods give identical results.

(b) D =1, N = 5. Graph C gives the increase in bearing pressure as a func-
tion of depth D: g,4 = 0.1 + 0.13 = 0.23 tons/ft? = 25 kPa.

The two methods give identical results.
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(c) D = 5. If there were no water table, we would have g, = 0.1+ 0.52 =
0.62 ton/ft? = 66 kPa. Because of the presence of the water-table 1 ft below
the footing bottom, the first term must be divided by (1 + 2/3) = 1.66.
Then q,4 = 0.06 + 0.52 = 0.58 ton/ft*> = 62 kPa.

(d)yD =10ft. For N'=17, it was shown that N = 16. The allowable
bearing pressure is, according to graph B: q,4 = 1 ton/ft?, but this pressure
must be divided by 2 to account for the water table. The increase of the
stress due to embedment is 2.3 tons/ft? (see graph C).

Since the embedment is 4 ft below the water table, this increase must be
divided by (1 +4/10) = 1.4 or: q,q =1/2+2.3/1.4 =05+ 1.64 = 2.14
tons/ft? = 229 kPa.

A good accordance between the two methods can also be noted.

Remark

The allowable bearing pressures are limited further to account for settle-
ments. All the above calculated allowable bearing pressures have a safety
factor with respect to the ultimate failure pressure. They must be further
reduced to account for the settlements that they could generate. For that
reason, graph D must be used which gives q,4 for a maximum settlement of
1 inch , assuming the water table at depth B below the footing. If the water
table is close to the footing, q,4 given by graph D must be divided by 2.

For B = 3 ft, graph D gives
for N=5: q.q = 0.5tons/ft> = 54 kPa,
for N=16: q,q = 1.9 tons/ft? = 203 kPa.
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(3) Allowable bearing pressures from Meyerhof’s formula [22].
q.a = NB(1 +D/B)(1/30) ' (1)

for B, expressed in feet, q,4 in tons/ft> . The above formula is valid only for
cohesionless soils above the water table. For clayey sands and submerged
sands, q,q must be divided by 2.

Meyerhof also proposed: g4 = N(B + D)/C where C = 10 for fine sand,
6 < C < 8 for coarse sand and gravelly sand, 15 < C < 20 for silty sand and
non-plastic silts.

Equation (1) gives respectively:

(a)D=0,N=5: q,q = (5x 8)/30 = 0.5tons/ft> = 53 kPa.

(b) D=1, N=5: q,q =(5x3)(1+1/3)x 1/30 =0.667 tons/ft>? =
71 kPa.

(c) D=5, N =4, if there were no water table: gq,q =4 x 3(1 + 5/3) x
1/30 = 1.07 tons/ft> but because of the water table, the result must be
divided by 2 and q,4 = 0.54 tons/ft> = 58 kPa.

(d) D=10,N=16: q.q =5[16x 3(1+10/3)x 1/30] = 3.47 tons/ft? =
370 kPa.

For cases (a) and (b), Meyerhof’s formula gives allowable bearing pressures
considerably higher than the other two methods. For cases (¢) and (d) it
gives about the same or slightly higher results. These values should also be
decreased to limit the footing settlements to 1 inch or less.

Meyerhof esimates that for B <4 ft, g, must be limited by N/8 or for
each of the preceding cases:

case a Qaa < 0.62 ton/ft?> = 66 kPa (D =0)

case b Q.4 < 0.62ton/ft> = 66 kPa (D=1")
case ¢ Gaq < 0.5 ton/ft> = 54 kPa (D=5")
cased  Q,q <2ton/ft’? = 214kPa (D=10")

Finally, it can be concluded that all the methods give close results, except
for case a, which is hardly ever encountered in practice anyway.

%k Problem 6.18 Pile capacity determination in sand from SPT

Assume the same givens as in the preceding problem, and assume that the
sand layer overlies bedrock. Determine the ultimate bearing capacity, in tons,
of a driven pile of 1 ft diameter at a depth of 25 ft.

Solution

The ultimate pile bearing capacity is composed of two components,
namely end-bearing and skin frictions: @4 = @, + Q;.

Let A be the end area of the pile of diameter B, from Meyerhof and for
the case of sands:

B xD
50

Qq = 4NA + x N (average over pile shaft). (Qq4 in tons)
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The corrected values of N because of the water table must first be deter-
mined
N' 5 4 30 17 30 35 35

N 5 4 22.5 16 22.56 25 25
The N average value for lateral friction along the pile shaft is:

— 5+4+225+16 + 225
= = 70/5 = 14 from which:

average 5

Qa = 4x22.5 x(n/4) x1? + w x1 x 25 x (14/50) = 70.7 + 22 = 92.7 tons.

For a safety factor of 2, we have: @,4 = 46 tons = 409 kN

*Problem 6.19 Cost comparison of soil investigations based on different
types of in-situ tests

Determine from the unit prices given below in U.S. dollars 1984 the total
costs of soil investigations using different types of in-situ tests, such as
pressuremeter tests, static-electric cone-penetrometer tests and S.P.T. Assume
sites are readily accessible.

Soil investigation A: for the control of vibroflotation or dynamic com-
paction (Menard-method) of a fill, it is proposed to perform 10 tests to 3m
depth and 2 to 7m depth.

Soil investigation B: three tests must be performed to a 20 m depth at the
site of a proposed building. Assume that both sites are 150 km from con-
tractor office. The unit rates are given below:

For the pressuremeter:

Mobilization and demobilization US $ 80/hr
Drilling to 20 m, by linear meter, with a
pressuremeter test, each meter US $ 100/hr

For the static cone-penetrometer:

Mobilization (C.P.T.) demobilization and penetration US $§120/hr
For the S.P.T.:
Mobilization and demobilization US $ 80/hr
Drilling from 0 to 20 m, with a test performed every

1.50 meter US § 80/hr
Solution

Soil investigation A:
(1) Pressuremeter tests:
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These tests should be performed every meter, therefore:

Mobilization and demobilization, 6 hrs at $80 US § 480
Drilling and pressuremeter test (44 m) in, say, 44 hrs at $100 US § 4400
Total US$4880

(2) Cone-penetrometer tests:

Mobilization and demobilization, 6 hrs at $120 US$720

Static penetration, assume 12 hrs at $80 US$1440
Total US$2160

(3) S.P.T.:

Mobilization and demobilization, 6 hrs at $ 80 US$480

Drilling, 44 m in, say, 28 hrs at $80 US$2240
Total US§$2720

To summarize, for soil investigation A:

(1) cone-penetrometer US$2160
(2) pressuremeter tests US §4880
(3) S.P.T. US$2720

Because the nature of the fill is known, it is not necessary in this case to
include drilling and sampling in the cost estimate.

Soil investigation B
Three tests to 20 m are proposed:

(1) Pressuremeter tests:

Mobilization and demobilization, 6 hrs at $80 US$480
Drilling with pressuremeter test, every m, 60 hrs at $100 US$6000
Total US$6480

(2) Cone-penetrometer test:

Mobilization and demobilization, 6 hrs at $120 USs$720
8 hrs of penetration at $120 US$960

Total US$1680
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(3) S.P.T.:
Mobilization and demobilization, 6 hrs at $80 US $480
Drilling, 48 hrs (with a test every 1.50 m) at $80 US $ 3840
Total US'$ 4320
For this example, the summary is:
(1) Cone-penetrometer US$1680
(2) Pressuremeter US $6480
(3) S.P.T. US$4320

However, it should be noted that, unless the site is in a very well known
geologic and geotechnic area, it would be necessary to include one bore
hole with soil sampling to the static-penetrometer investigation. The cost of
this bore hole and sampling must be added to the cost of the cone-penetration
and this additional cost would still make that investigation the cheapest.
Its added cost would be about one-third of the total.

Remarks

Often, in pressuremeter investigations, for the purpose of reducing costs,
tests are made only every 2, 3, 4, or even bm depth intervals, to the detri-
ment of profile definition.

It is important to underline the fact that the cost of the cone-penetrometer
investigation is not high, when considering that it is the only one yielding
continuous information throughout the depth of penetration. The more
expensive alternate of the pressuremeter investigation yields information at
best every meter. More data is made available at a lower total cost with the
penetrometer. However, in addition to the p; and p, limits obtained by the
pressuremeter, the pressuremeter modulus E,, is also determined.

It should also be mentioned that laboratory testing of soils would be more
expensive than SPT or pressuremeter measurements because of the cost of
recovering undisturbed samples (about US $30 each) and the added costs of
the tests themselves. For each sample, the additional laboratory testing cost
would be approximately US $600, depending on performed tests.

As a general rule, both technical and financial considerations must be
evaluated because each type of soil investigation has advantages that the
other two do not present. No single method is always the best for all pro-
jects.

sk Problem 6.20 Comparison of settlement calculation based on static pen-
etrometer tests and consolidometer tests data; determination
of the value of the coefficient «

The following profile was determined at a site along the Sa6ne River near
Lyons (France) with the Andina, static-dynamic penetrometer:
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— from 0 to 3 m: old sandy gravel fill;
— from 3 to 6.5 m: clayey silt;
— below 6.5: sandy-gravelly alluvium.
The penetration diagram of Fig. 6.30 is representative of the soil resist-
ances at the site. It is proposed to erect a light building consisting of 2

2
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Fig. 6.30. Andina static-dynamic penetrometer result.
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stories, which would impart stress of 20 kPa on bearing walls 3 m apart.

Look at a possible shallow footing support with an embedment of 0.5 m
into the old fill. From the penetrometer test results determine the settle-
ments expected due to the loading.

An exploration borehole was made to a depth of 4.5m nearby and an
undisturbed sample of silt was recovered at that depth. A consolidation test
was performed on the sample in the laboratory and the results are plotted on
Fig. 6.31.

Compare the results of the two methods of settlement analysis. Determine
the value of the coefficient o by the method suggested by Sanglerat (1972)
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Fig. 6.31. Consolidation test.
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[27]. Assume the old fill density and that of the silt to be 1.8. The water
table is located at over 6 m depth.

Solution

From the penetrometer test data, it may be concluded that the old fill is
quite dense (50 < g, <150daN/cm?). Because the building loads are light,
the fill is adequate to support the loads. Footings separation, from center to
center would be 3m (that of the bearing walls). The fill thickness below the
footings would be 2.5 m. If we assume a load distribution of 2 to 1 through
the fill, the stress would be almost uniform at the base of the fill and equal
to 20 kPa or 0.2 daN/cm?. The fill layer acts as a mat-type foundation.

(a) Settlement calculations based on the Andina penetrometer test data.

Settlements would occur in the silt layer. The average cone-bearing value
in that layer is ¢. = 5daN/cm?. If we assume the silt to have a low plasticity,
a will be in the range 3 <<a<6. E' =ag, or 15 <E' < 30daN/cm?.

The stress increase at the surface of the silt layer is: Ao = 0.2 daN/cm?
and over the thickness of the silt layer (H = 3.5 m) the settlement would be
Ah = HAo/aq, = 350 x 0.2/15=4.7cm for a« = 3 or: Ah = 350 x 0.2/30 =
2.3 cm for o = 6.

The expected settlement would be between 2cm < Ah < 5cm.

It was implicitly assumed that the fill and underlying sand-gravel sub-
stratum are incompressible because of their density and the light surface
building loads. An accurate calculation from the static penetrometer would
give, for « = 8 and q, = 100 daN/cm? (average value), in the fill a settlement
of about w = 0.2 cm, which is minimal compared to that caused by the silt
layer.

(b) Settlement calculation from the consolidation test result.

The effective overburden pressure at the depth where the sample was
recovered must be computed. It is at depth 4.5 m, or just at mid-height of
the compressible silt layer.

We have: 0, = 18 x 4.5 = 81 kPa =~ 0.8 daN/cm?2.

The compression curve of Fig. 6.31 indicates that the void ratio at that
stress level is e, = 0.586.

The load increment due to the building weight over the thickness of the
silt layer is about Ao = 0.2daN/cm?. The stress at mid-height would then
be: 0 = 0y + Ao = 0.8 + 0.2 = 1 daN/cm?. The corresponding void ratio for
that stress level is: e = 0.576.

The void ratio has decreased by Ae = 0.586 — 0.576 = 0.010. Thus the
consolidation of the sample of thickness & is Ah/h = Ae/(1 + e;)

.010
i f i is: = — =2, .
from which the settlement of the silt layer is: Ah = 350 x 170586 2.2cm
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(c) Comparison of the results of the two methods.

The settlement computed on the basis of the consolidation test is practi-
cally equal to that computed on the basis of the static penetrometer for a
value of = 6.

(d) Evaluation of the o coefficient.

The compression curve shows that the preconsolidation stress o, is equal
to about 0.8daN/cm?. Since this corresponds to the effective overburden
stress, it is indicative that the silt layer is normally consolidated. It also
shows that the consolidation due to the old fill is completed for all practical
purposes.

Therefore, the following formula is applicable:
o= 931t 00

Co 4c
where 0y, = effective overburden stress;
e., = void ratio corresponding to 0g;
. €~ €co
log (1 + 1/0g)

e, = void ratio corresponding to o, + 1 (daN/cm?);

Ceo =

g. = cone bearing value from the penetrometer test at the depth where the
sample was recovered, that is from 4.5 to 4.8 m.

In this case we get ¢, = 4 daN/cm? at that depth.

From the compression curve we have:
for 0, = 0.8daN/cm?, e, = 0.586
for 0, + 1 = 1.8daN/cm?,e, = 0.536

Then:

c 05860536 _ . , g, L0586 08
= — = . = Jgx— _— = .
© = Jog (1 +1/0.8) and « 0142 4

or,say, a = 5.

Remark

This value of « is within the range 3 < a < 6. However, the question arises
why the value of & = 6 was not obtained since the settlement calculations
giving an answer of 2.2 were based on that value.

The difference is due mainly to the following reasons: to calculate «, an
increase of stress of Ac = 1daN/cm? from o, was considered. On the com-
pression curve, it can be seen that for this increment, the slope of the curve
is steeper than that caused by the building load Ao = 0.2 daN /em?. In other
words, a value of @ = 5 would overestimate the settlement.
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*%% Problem 6.21  Evaluation of the pressuremeter parameters p,, p; and E,

for clay

A pressuremeter test [4, 8] was performed at a depth H of 2.5 m, in clay.
The following results were obtained:

Gross pressure P 0.5 1 1.5 2 2.5 3 3.5 4 4.5
(daN/cm?)

Volume at 156s 105 138 154 162 182 192 240 307 555
change at 30s 107 139 154 163 184 195 245 317 564
(cm3) at 60s 110 140 1566 165 185 198 250 325 575

The initial volume of water injected at very low pressure at virgin state
was V; = 15cm?® and the probe volume at virgin state was 593 cm®. The
probe calibration curve may be plotted from the following table:

Pressure P’ 0 0.160 0.230 0.320 0.420 0.510 0.600 0.710 0.750
(daN/em?)

Volume change in the 12 50 73 110 163 233 347 503 700
probe (em®) at 60s

Calculate the pressuremeter parameters assuming that the manometer
was located at a height h = 80cm above grade at the borehole location
(Fig. 6.32).

Solution

To calculate limit pressure p;, creep pressure p; and pressuremeter modu-
lus E, we must consider the actual pressures applied to the borehole wall
(Fig. 6.32).

Taking into account the calibration pressure P’ at any point, which

. Manometer

Ground surface

Pressure cell

r
IEB—
kS

) T Borehole
A o

'//'//i (4

Fig. 6.32.
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gives the same volume change as the gross pressure P and the level i of the
manometer above the ground, the actual pressure to the soil is given by:

P, =P—P + (H+h)y, = P—P'+0.33daN/cm?
(a) Limit pressure. The gross limit pressure is the asymptote’s abscissa
of the pressiometric curve (p, V), i.e.: (p,), = 4.6 daN/cm?.

But for practical purposes the limit pressure is conventially the point

at which the initial borehole volume (at the beginning of the elastic phase)
has doubled, i.e.:

AV = 593 + 15+ 140 =~ 750 cm?®
Therefore:
V = 593 + 2(15 + 140) ~ 903 cm3.

At V=903 cm?3, the corresponding value of P’ is about 0.76 daN/cm? on
the calibration curve (Fig. 6.34).

From this, the limit pressure is: p; = 4.6 — 0.760 + 0.33 = 4.17 daN/cm?.

(b) Creep pressure p;. The pressure at the creep point can be determined
from either:

— Fig. 6.35, which gives (p;), ~ 2.8daN/cm?;

700

variation of volume, V {cm3)
§
~—

(Pf)r =2.7daN/cm’|

W

200 | _
Vp = 190 T—
Vp = 165 +— I
-— A==
V, = 140 4 =~ |
100 Pas
Po) = 1daN/cm’
! —
o 1 2 3

5 P
(P|),. (daN/cm?)

Fig. 6.33. Limit-pressure curve.
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Fig. 6.34. Calibration curve.
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— or, more simply, from the pressuremeter curve at the end of the straight

line section: (p¢),. = 2.7 daN/cm?.
The corrected creep pressure p; is obtained from the curve of Fig. 6.35

and from the calibration curve (Fig. 6.34) at AV =190cm?. From this,

P' = 0.45daN/cm?, p; = 2.8 —0.45 + 0.33 = 2.68 daN/cm?.

(c) Pressuremetric modulus E,. The formula for E, is E;, = K x AP/AV =

2(1 +v)(Vy + vy )AP/AV.
The values for AP and AV correspond to the straight line section of the

curve on Fig. 6.33.

. In this case: V, = 593 + 15 = 608 cm?® and v,, is the volume of water
injected at pressure P at the mid point of the straight-line section of the

gross curve, i.e., v,, = 165cm?3.
For v = 0.33, we have:

AP = (P¢), — (Pp)y >~ 2.7—1 = 1.7daN/cm?
AV = 190 —140 = 50cm?
Vo +v, = 608 +165 = 773 cm?

E, = 70daN/cm?.

Remark
The calibration curve should be taken into account:
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AV {cm3) A

20

15

+

o 1 2 P {daN/cm?)
{°t),

Fig. 6.35. Creep diagram [AV]3{0n,
AP = (2.7—0.44)— (1 —0.38) = 1.64daN/cm?

which yields the very close result for E, = 67.5 daN/cm?.

It should be noted that the above method is only correct for the Menard
pressuremeter and cannot be used for the self-boring pressuremeter. For
this kind of device, the interpretation proposed by Baguelin et al. [2, 3]
should be adopted.

*kkProblem 6.22 Determination of a bridge foundation based on pressure-
meter test results

It is proposed to construct a 15 m road bridge across a river. The soil on
either bank of the river was investigated by means of boreholes and pressure-
meter testing. The results are presented in Fig. 6.36.

Design the foundations scheme using the following criteria
road level: 248 m a.s.l.;
dead load: 200 kN per meter width;
live load: 100 kN per meter width;

A cross-section of the project is shown in Fig. 6.37.

Solution

The retaining walls will be supported on spread footings at the level of the
gravelly clay layer. This will eliminate settlements which would occur if the
footing was placed on the compressible organic silt (see Fig. 6.37).

The access fills of some 3 m in thickness will settle differentially with re-
spect to the retaining wall since they will cause consolidation of the organic
silt layer. It would be advantageous, in this case, to preload the banks. This
would require taking undisturbed samples of the silt to determine the
optimum time for the application of a preload. The following planning may
be adopted:
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Fig. 6.36.

— construct the footings and the deck columns;
— place a preload fill and allow settlements to occur on the banks;
— build the roadway.

(A) Bearing capacity. To evaluate the allowable soil-bearing pressure, only
the vertical loads given will be considered, since the horizontal loads will be
nominal because of the construction method (deck columns). The maxi-
mum load will be of the order of 300 kN per meter width. The limit pressure
is of the order of (4.5 + 6.5)/2 = 5.5daN/cm? at the proposed foundation
level. A foundation whose width will distribute the load so that q,q4 ~p,/3 >~
200 kN/m? must be considered. As a preliminary evaluation, B = 300/200
= 1.50 m. The vertical ultimate bearing pressure, q,, is then:

g = qo + k(p1 — Do)

where:
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Figs. 6.37 and 6.38.

® p, = total horizontal earth pressure (on a vertical plane) at the time of
the test. Assuming a coefficient of earth pressure at rest of K, = 0.5 and
Yeat = Yh = 20 kN/m3 we have:

Po = 25x20x0.5+1x10x0.5+10x1=40kN/m? = 0.4daN/cm?.

® g, = total vertical overburden stress (on a horizontal plane) at the
proposed foundation level after construction of the fill, or:

go = 3x20 + 2.5x20+10x2 = 130kN/m? = 1.3daN/cm?
(access fill) (backfill)

® p, = equivalent limit pressure (the soil at the foundation level is hetero-
geneous, see Fig. 6.38).

e = V/Pi(—3R)xpi(—2R) xpi(—R) xp1(0) xpy (+ R) xpy(+2 R) xpy(+ 3 R)
or: pr.=v4x65x4.5x55x6.5x11x9

=/414,092.5 = 6.4daN/cm?.

This value should not be reduced to account for decompression of the soil
which will occur due to excavation and groundwater flow, because the
proposed method of construction is going to impose a load to reconsolidate
the material prior to finalizing the structure.

® k = bearing factor, from Menard’s curves (Fig. 6.39) which is a function
of embedment, soil type and the footing geometry.

e The embedment ratio: h. /R
where R = foundation radius = 0.75m, h. = embedment:
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h

1
he = — | pi(z) dz.
Pie 6

For a preliminary evaluation, embedment is only considered in the existing
soils:
_ 4x1+65x1+0.5x4.5

2
h, =2m and hJR = — = 2.7.
6.4 0.75

® Soil category
The foundation soil type is a clay, for which the limit pressure is less than
12 daN/cm?, therefore the soil category is I (see Table 61).

® Footing geometry
The length of the footing may be assumed equal to the proposed width of
the road, or L = 15 m, hence: L/2 R = 10.

The % value is calculated from the graph of Fig. 6.39 for the given example
he/R =2.7and L/2 R = 10; k is found as follows:
Set off k vertical line from h./R = 2.7, cutting the category I lines for strip
and square footings at A and B, respectively. Draw lines AyA and BB to
intersect at C. Draw the line L/2R = 10 to C which cuts h, /2R = 2.7 at M,
then the k value, ordinate of M, is 1.26. The ultimate vertical bearing pres-
sure will then be:

g. = 1.3+1.26 x (6.4 —0.4) = 8.9daN/cm?
and the allowable bearing pressure then is:

Qaa = 1.3+ 1.26/3(6.4—0.4) = 3.8daN/cm?.

TABLE 61
Limit
Soil type Nature pressure p;
(daN/ecm?)
I clay 0—12
loam 0—7
II stiff clay and marl 18—40
loam 12—30
loose sand 4—8
weak soil 10—30
111 sand and gravel 10—20
rock 40—100
I1Ib very dense sand and gravel 30—60

(After L. Menard)
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Fig. 6.39. k-values for shallow footings (after Menard).

The allowable load, per meter length of footing, would then be 3.8 x 150 =
570 kN, which is appreciably higher than the expected load of 300 kN per
meter length.

Remarks

(a) The analysis of the consolidation results of the preload on the silt layer
would eventually conclude that the bridge footing could bear on the com-
pacted access fill. This could be checked by a complementary in situ testing
investigation with penetrometer tests performed after unloading.

(b) Another construction method would be to remove ‘the organic silt

TABLE 6J

k values (for homogeneous layer)

D Square footing Strip footing

B I II III IIIb I II III IIIb
0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.5 1.3 1.5 1.9 2.1 1.0 1.1 1.2 1.3
1.0 1.6 1.8 2.5 2.8 1.2 1.3 1.4 1.6
1.5 1.8 2.1 3.0 3.3 1.2 1.4 1.6 1.8

(After L. Menard).
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and replace it by compacted select material to also allow for the construction
of shallow footings on the fill.

This method leads to conservatism because:

(1) a surcharge fill would increase the characteristics of the organic silt
therefore the value of k.. This would make us to take this layer into account;

(2) the compacted fill would have a p; > 15daN/cm?® which would also
lead to a larger h,;

(b) the allowable bearing capacity will in fact be higher because of the
consolidation of the clay due to the surcharge;

(c) it was assumed that the access fills would not impart horizontal
pressures.
(B) Settlement evaluations. The final settlement of the footing will be at
most equal to the sum of the settlements caused by the fill weight and
structural dead loads. Live loads applied only for short durations can be
ignored.

(a) Settlement due to fills. The following formula may be used:

h
_ [a)P(z)p(I")

w, = J E@) dz
where:

® P, = vertical stress increment at depth 2 due to the fill.

Because of the large width of the fill at its base (about 25m) and the
thickness of the soil layers (10.25 m) susceptible to consolidation, P, may be
assumed constant with z and equal to:

P = hyxv,

where h, = fill thickness or 3m, v, = unit weight of wet soil of the com-
pacted fill or v, = 22kN/m3, So P = 66 kN/m?2.

® E(z) = pressuremeter modulus at depth z.

® «(z) = rheologic coefficient depending on soil type at depth z (see
Table 6K): for the organic silt @ = 1/2, for the gravelly clay o = 1/2.

® 3(I)=1if I'>2 (T is the ratio of the limit pressure of the soil to the
actual stress at depth 2).

For the silt: limit stress is ~ 0.8 p;, actual stress is = 66 kN/m? = 0.66
daN/cm? and I' = 4/0.66 = 6.

For the clay, which is stiffer: §(I') = 2/8 x I'/(I' — 1) = 0.8.

Finally:

h;
w, = axPxpI) ZE—(——Z)

1 101 1 1 _
= —x0.66x0.8(»—+—+——+~—+—1—+l+ﬂ
2 60 85 70 42 102 170 180
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0.27
= ﬁ x(1.7+117+143+24+1+1.43+ 0.42)
0.27
= E(Q.SS), w, = 2.6cm.
TABLE 6K
Soil Sand and Type Rock
type Peat Clay Silt Sand gravel
«a Elpp « Elppy a E/p « Eipp « «a
Over- — >16 1 >14 2/3 >12 1/2 >10 1/3 slightly 2/3
consolidated fractured

Normally 1 9.16 2/3 8.14 1/2 7.12 1/3 6.10 1/4 normal 1/2
consolidated

Under- — 7.9 1/2 58 1/2 5.7 1/3 - highly 1/3

consolidated fractured

very loose highly 2/3
weathered

(b) Settlements due to structural dead loads. Menard proposes the follow-
ing formula: W=W, + W, + W5, where W, = immediate settlement, not
usually considered:

04
1.33 R
W, = —— xpXxRogx | Ay X 5~ (settlement due to deviatoric stress)
3Eg R,
Wy = (@/A5Es)xpXx A3 X R (settlement due to isotropic stress).
where:

® R = half width of a rectangular footing or radius of a circular footing,
R =T75cm;

® R, = 30 cm (reference dimension);

® p = average increase in stress due to the footing, with respect to the
natural stress condition, calculated under the permanent structural loads:
p = 200/1.50 = 133 kPa = 1.3 daN/cm?;
TABLE 6L

A2 and A; coefficients in function of L/2 R

1
L{2R 2 3 5 10 20
circle square
Az 1 1.12 1.53 1.78 2.14 2.40 2.65
A3 1 1.1 1.2 1.3 1.4 1.46 1.5
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® A\, and A; =shape factors depending on footing dimensions. For
L/2R =15/1.56 = 10.
Table 6L gives: A, = 2.40 and A; = 1.46.

® E, and Ey are the pressiometric moduli corresponding to the spherical
and deviatoric stresses calculated as shown below.

® o = rheologic coefficient of the soil: & = 1/2 (Table 6K).

Determination of E 5 :
E, =E, harmonic mean of the pressuremeter moduli to a depth R
beneath the footing:

1_1(1, 1
E, 2 \E E(—R)] "’
In this case:

1 1 1 1
—1=—(——+—— + —1 = 0.024
E, 3 |\26 60 60

E, = E, = 41daN/cm?.

Determination of Eg:

Eg =

1 1 1 1 1
— + + + +
E, O085E, Ej3u;s 25E¢qs 25Ege

E, = harmonic mean of the moduli at depths —R and — 2R (Fig. 6.40):

1 1(1 1
E, 2

— + =] = 0.014.
60 85)

2R=1.50m E1
E2

~R—
~2R
_3R
4R
_5R
—~6R
~-7R
~8R
~9R
=10R
- WR
-12R E 9a16
~13R
~14R
~15R
-16R

Fig. 6.40.

E 3iass

Ees/7/8
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E,,4;s = harmonic mean of moduli in layers 3 to 5 (Fig. 6.40):
1 1(1 1 1 1 1
= —|=+—=+ =+ +=| = o018
Es 4 5|8 70 70 42 42
E4,7,4 = harmonic mean of moduli of layers 6 to 8.
1 1)1 1 1 1 1
=~ |- +—+—=+|=+—==|| = 0.014.
E¢/18 5142 102 70 70 180

Eg 016 = harmonic mean of moduli of layers 9—16:

1 1 (/1 1 ) 1 1 1 ( 1 1
== |[=+ + + + = +=|+
Egiw1s 11 |\70  180) 180 350 500 \500 750

1 1 1 1
+ + + + = 0.0035
750 1000 1000 1000
and:
4
e = 1 1
. . . — (0. + —(O.
0.024 + 085 X 0.014 + 0.018 + 2.5(0 014) 2.5(0 003)
or Ez = 61.3daN/cm?.
172
1.33 75
2 =mx1.3x30x 2.40x§6 ~0.7cm
W, x1.3x146 x75 ~ 0.4cm.

T 2x45x41
Finally: W' = W, + W; = 1.1cm.

Note the soft clay layer between 6.5m and 7.5 m of which the pressure-
meter modulus is: E, = 42 daN/cm?.

In this case, Menard’s method increases the settlement W' by a value W"
to account for that of the soft layer:

W" = o, (1/E, —1/Ey)Ap H.

where:
® «, = rheologic coefficient of the soft layer o, = 1/2,
® E, = 42daN/cm?.
® E. = mean modulus of deviatoric state calculated without accounting

for the presence of the soft layer (substitute to E, the modulus values E
as follows:
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E,

1 1{1 .1 1 1 1 1
== —+—+—+—=+—| = 0012
6160 85 70 102 70 180

and E; = 83daN/cm?.

Going back to the calculations of the pressuremeter moduli in the devi-
atoric state, as explained for E, we have:

1/E, = 0.024, 1/E, = 0.014

1 171 1 1
R I I T
Esas 5|8 70 70 83 83
1 111 1 1 1 1
Eqr 5[83 102 " 70 T 70 180] 0.011
1
= 0.004
E9t016
4
and E, = 0.014 0011 0004 = 67daN/cm?.
024 + 2014 L o 0.011 , 0.004
0.024 %7 g 0018+ =+ s

® Ap. increment of the vertical stress in the middle of the soft layer. The
Boussinesq formula estimates this value: Ap, ~0.3Ap=0.3x1.3=04
daN/cm?.

® H = thickness of the soft layer: H = 100 cm.

. " 1/1 1
Finally: W~ = 5 -—— — | x04x100 = 0.2cm.

The expected total settlement of the footing would be:
W;=26+11+0.2=39cm.

To take into account the method of construction, the residual footing
settlements after completion of construction would be reduced to those
caused by the dead loads, or: residual W = 1.3 cm. This is tolerable for most
bridge structures.

Remark
The total settlement of the fill may be estimated by method B-a.

1 15 1,1 1 1 1 1
W= "x066x1ll=—+—+—+-—+—+—+-—[=64cm
2 25 35 25 60 85 70 42

W = 6.4 cm which may be divided into that portion occurring below the
footing (2.6 cm) and that occurring above the footing (4.8 cm).
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The preloading of foundation soil by placement of the fill will have to be
of sufficient time duration to allow for the settlement of 6.4 cm to occur.
This may be controlled by field measurement.

Yk Problem 6.23 Estimation of instantaneous settlement from pressuremeter
test results

Assume the pressuremeter modulus of a thick saturated clay layer to be
E, =42 daN/cm?. Estimate the immediate settlement of a circular footing

of diameter 2R = 2m supported on the clay and imposing a stress 0 =
1.5daN/cm?.

Solution

The instantaneous settlement corresponds to the initial deformation of
the soil and occurs at ‘constant volume’. The Poisson’s ratio for the un-
drained condition is » = 0.5.

The settlement evaluation, taking into account Boussinesq’s formula is:

T 1—2
S = — X
2 E,

A pressuremeter test performed in a saturated clay may be considered to
an undrained test on the soil. Young’s modulus must be considered as the
constant-volume elastic modulus in the formula for E;, if the value of
v, =0.5. However, E, = 2(1 +v)V(AP/AV) is normally calculated for
v =0.33.

If we take v, = 0.5, the corresponding value of E, is:

xgxR.

_Ey(1+w,) _42(1+0.5)
T 14w 1+0.33

u

or E, = 47.4 daN/cm?, and the instantaneous settlement is:
3.14 1—(0.5)2
= X
2 47.5

x1.5x100 = 3.7cm.

Si

Problem 6.24 Design a foundation from static and dynamic penetrometer
data and from results of pressuremeter tests

Various other problems covering the interpretation of in situ tests are to
be found in Volume II, in particular:

Problems 10.14, 10.15, 10.16: Shallow footings designed from pressure-
meter lests.

Problem 11.10: Bearing capacity of a pile from static or dynamic pen-
etrometer or S.P.T. tests.

Problem 11.11: Bearing capacity of a pile from pressuremeter test.
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Absi, Garnier, Giroud, 6.15

Absi’s theory, 3.14

Allowable load, 11.5;11.6

Allowable stress, under a footing,
6.3;56.4;6.5;6.7;6.8;6.11;6.12;
6.17;10.1;10.3; 10.4; 10.5; 10.6;
10.7;10.10;11.1;11.2;11.3;11.8

Anchors, 7.9; 8.1; 8.2; 9.2

—, for retaining walls, 7.9

Anchor wall, 8.2

Anchored wall, 9.4

Andina, penetrometer, 6.5; 6.8;6.9;
6.10;6.11;6.12;6.14

Angle of internal friction, 4.1; 4.2;
4.3;4.4;4.5

Anisotropy, flow through, 2.12

Apparent cohesion, 4.17

Atterberg limits, 1.6;1.7; 6.19

Bearing capacity, 10.1;10.2;10.3;
10.4;10.5;10.6;10.7;10.9;
10.10;10.14;10.15

— — factor, 5.5;6.17;11.6

Bending moment diagram, 8.1; 8.3;
8.5;9.2;9.3;94

Bentonite, trench with, 9.1

Bevac, dynamic penetrometer, 6.8

Bishop, coefficients of, 4.16

Blum, method of, 8.3; 9.2

Bottom heave, 8.6

Boussinesq, equilibrium, 7.3; 7.5

—, formula of, 10.9

Broms, coefficients of, 11.5

Capillary rise, 2.10; 2.14; 2.15

Caquot and Kerisel (method of),
3.17;11.5

Casagrande, chart of, 1.7

—, device, 4.10

—, formula of, 2.3

Circular footing, 10.1;11.8; 6.23

Circular mat, 10.12

Coefficient of compressibility, 3.16

Coefficient of consolidation, 3.8;
3.9;3.10; 3.11, 3.13; 3.14

Coefficient of earth pressure at rest,
4.17;7.1

Coefficient of permeability, 2.1; 2.2;
2.3;2.4;2.18;3.9

Cohesion, 4.2;4.3;4.4;4.5;6.3;6.4

Compaction, 1.9

—, maximum, 1.14

Compression curve, 3.1; 3.2; 3.11

—index, 3.2;3.11; 3.12; 3.16; 4.4

Cone penetrometer, 6.3; 6.4;6.11

Consolidation, 3.8; 3.10; 3.11; 3.13;
3.14;3.19

— curve, 3.11

— pressure, 3.4; 3.11; 3.15; 3.17

— test, oedometric, 3.1; 3.2; 3.11;
3.12;3.15;4.12;6.19;6.20

Cordary, method of, 6.14

Correction of a grain-size distribution,
1.8

Coulomb’s criteria, 10.9

— method, 7.10

— wedge, 7.10
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Cubic dilatation, 4.13
Cullman’s method, 7.5
Cut in clay, 8.6

Dam, homogeneous, 12.3; 12.4

—, seepage under, 2.12

— with core, 12.5;4.18

Deformation tensor, 4.13

Deformations, of a wall, 8.1; 8.5;
9.2;9.3;9.4

Degree of consolidation, 3.8; 3.13;
3.16;3.19

Delft (penetrometer cone), 6.3; 6.4;
6.7

Density, 1.1;1.3;1.4;6.19

—, relative, 1.12

Deviator, 4.13;4.14

Differential uplift, 10.13

Dike, 12.3;12.4;12.5

Drain, sand, 3.13

—, toe, 2.11

Drainage, behind a wall, 7.8

—, blanket, 2.11

Drains, vertical, 2.16

Drawdown, 2.16

Durmeyer (penetrometer), 6.5

Dynamic penetration test, 6.5; 6.6;
6.7;6.8

Dynamic penetrometer, 11.10

Earth pressures, 7.1;7.2;7.3;7.4;
7.5;76;,7.7;7.8;7.9;7.10;
7.11;8.1,8.2;8.3;8.4;9.2;9.3;
9.4

Effective diameter, 1.5

Effective stresses, 2.6; 2.7; 2.14;
2.16;4.5;4.6

Elasto-plasticity, 8.1; 8.5;9.2; 9.4

Elements, of reinforced earth, 7.11

Embankment stability, 12.7

Embedment, 9.2

—, critical, piles, 11.5

—, of sheet piles, 8.1;8.3;8.4

Excavation, limit height of, 5.7; 9.1;
12.1

INDEX
— piping into, 2.9

Failure envelope, 4.4

— lines, 5.4;5.5;5.6;5.13

— plane, 12.1;12.2

Failures, 7.6;7.9; 11.8

Fender pile, 8.5

Fill, preloading, 3.11; 3.14;6.13

— settlement, 3.11; 3.13;6.13;
6.14;6.16

Filter blanket, 2.13

Filters, 2.13

Finite elements, 2.12; 3.19; 8.5

Flow, 2.5;2.11;2.16

—net, 2.12;7.18;12.3

—,of aleak, 2.12;2.13

—, plane, 2.9; 2.11;2.12;2.13;
7.8;12.2

Foundations, deep, 11.1—11.9; 6.11;
6.12;6.19

—, shallow, 3.5;3.6;3.17; 3.18;
3.20;6.3;6.4;6.7;6.8;6.9;6.10;
6.11;6.13;6.14;6.15;6.17;
10.1—10.13

Freezing probe, 2.19

— of soils, 2.19

Friction, lateral, 11.5; 11.6

— ratio, 6.1;6.3

Froéhlich’s formula, 10.9

Fugro, penetrometer, 6.4

Geuze, rule of, 6.12

Giroud, diagrams of, 6.9; 6.11;
6.13;6.15;10.7;10.11

Global method, 12.3

Gouda (penetrometer), 6.3;6.7;
6.8;6.13;6.16

Grain size, 1.5;1.13;1.14; 2.12;
6.19

— distribution, 1.5

——curve, 1.5

Hazen’s coefficient, 1.5
Heave, of the bottom of a cut in
clay, 8.6



INDEX

Height, limit of excavation, 5.7
Henkel’s coefficient, 4.14; 4.15
H.R.B. classification, 1.6
Hydraulic gradient, 2.11

— —, critical, 2.8

Ice wall (freezing), 2.19

Inclined and eccentric load, 7.3;
10.12

Influence coefficient, 3.5

In-situ loading test, 11.10

Interaction of neighbouring footings,
3.5;3.18;6.10

Isochrones, 3.19; 6.16

Isolated footing, 6.22; 6.23;10.2;
10.6;10.7;10.8;10.13

Isotropic tensor, 4.13; 4.14

Limit equilibrium, 5.2; 5.3;5.5; 5.8
Long-term calculations, 10.10;11.8

Mandel and Salencon, method of,
10.11

Mat foundation, 6.3;6.11; 10.6;
10.7;10.8;10.10;10.11

Menard’s graphs, 11.6

Meyerhof’s formula, 6.17

— method, 6.12;7.3;7.10; 7.11

Mixture, grain size of, 1.13

Mohr’s circle, 4.1; 4.2;4.3; 4.4, 4.6;
4.12;5.1;5.2;5.3;5.4;5.5;5.6;
5.8;10.9

Newmark’s chart, 3.18;6.16
Normally consolidated clay, 3.3;
6.20

Oedometric diagram, 3.1; 3.2; 3.11;
3.12;3.15; 3.17;6.20

Oedometric modulus, 3.1; 3.2; 3.12;
4.8

Optimum (Proctor), 1.9

Organic matter content, 1.10

Organic, soils, 1.10
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Overconsolidated clay, 3.4; 3.11;
3.12;3.15

Parez, penetrometer, 6.15

Passive earth pressure, 8.1; 8.2; 8.3;
8.4;9.2;9.3;9.4

Penetrometer, with mud, 6.6

—, Andina, 6.4;6.5;6.8;6.9;6.10;
6.11;6.12;6.14;6.20

—, Bevac, 6.8;6.9

—, Durmeyer, 6.5

—, Gouda, 6.3;6.7;,6.8;6.13;6.16

—, Sermes, 6.6; 6.7

Penetrometer, dynamic, 6.2; 6.5;
6.6;6.7;6.8;6.9

—, static, 6.1;6.4;6.7;,6.8;6.9;
6.10;6.11;6.12;6.13;6.14;
6.15;6.16;6.20;11.1;11.2

—, static-dynamic, 6.19, 11.3

Permeability, coefficient, 2.1; 2.2;
23;2.4;2.18;3.9

Permeameter, constant head, 2.1;
2.18

—, variable head, 2.29

Phase construction of fill, 12.7

— excavation, 9.2; 9.4

Pier (drilled), 11.7

Pile bearing capacity, 11.10; 11.11

Piles, 6.12; 6.19

—, drilled, 11.3;11.6;11.7

—, driven, 11.1;11.2;11.5

—, enlarged base, 11.8

Piping, 2.9; 2.17

— condition, 2.17

Plane strain, 4.16

Plasticity chart, Casagrande graph,
1.17

—index, 1.6

Plate bearing test, 3.7

Poisson’s ratio, 4.8; 4.9

Pole, of Mohr’s circle, 5.1

Porosity, 1.1;1.4;1.9

Prandtl’s wedge, 5.5

Prefabricated wall, 9.2
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Preloading, 3.11;3.14;6.13

Pressure (limit), 6.21;11.6

Pressuremeter, 6.19; 6.21,; 6.22;
6.23;11.6.

— modulus, 6.21; 6.22;6.23

—test, 6.19;6.21;6.22;10.14;
10.15;11.11

Prestressed anchors, slurry wall, 9.2

— —, sheet piles, 8.1;8.2; 8.3; 8.4

Principal directions, 4.10; 5.1

Principal stresses, 4.10;4.12;4.18

Proctor diagram, 1.9

—test, 1.9

Pumping test, 5.5

Radius of influence, 2.5

— of freezing, 2.19

Raft, 10.16

Rankine equilibrium, 5.2; 5.3; 5.4;
56;7.1;7.9;7.11

Rapid drawdown, 12.5

Reaction modulus, 8.5

Regular grain arrangement, 1.14;
2.15

Reinforced earth, 7.10;7.11

Retaining wall, 7.1;7.2;7.3;7.4;
7.5;7.6;7.7,7.8

— —, gravity, 7.3;7.4;7.6,7.7

— —, reinforced earth, 7.10; 7.11

Rido program, 8.1

Rigidity of footings, 6.11

Safety factor of reinforcement,
reinforced earth, 7.10; 7.11

— —, wall sliding, 7.3;7.9; 7.10;
12.1;12.2;12.3;12.4;12.5

Sand liquefaction, 2.9; 2.13

Saturation curve, 1.9

—, degree of, 1.2;1.9;1.10

Schmertmann’s method, 6.10

Schneebeli’s rods, 1.14

Sedimentometry, 1.11

Sermes penetrometer, 6.6; 6.7

INDEX

Settlements, 3.3; 3.4; 3.6, 3.11;
3.16;3.17; 3.18; 3.20;6.9;6.10;
6.11;6.13;6.14;6.15;6.16;6.17;
6.20;6.23;10.7;10.8;12.7

Shallow footing, 10.14

Shear, resistance, 4.5

— strength test, Casagrande box,
410;4.12;6.19

— stress, diagrams, 8.1;9.2;9.3;9.4

Sheet pile wall, 8.1—8.4

— piles, 8.1—8.4

Short term, calculations for, 6.3;
10.10;11.8

Sieving, 1.5

Simple point, penetrometer, 6.4;
6.11

Skempton’s coefficient Af, 4.11

— (Bishop and) coefficients, 4.16

— formula, 3.3; 3.4; 10.7

Slice method, 12.4

Slip circle, 12.1;12.3;12.4;12.56

Slope, drainage in, 2.11

—, failure of, 12.2; 12.3;12.4;12.5

— stability, 12.2;12.3;12.4;12.5

Slurry wall, 9.1;9.2; 9.3

S.PT.,6.17,6.18;6.19;11.10

Square footing, 3.5; 3.18; 10.5;
10.6;10.7;10.8

Stability against overturning (of a
wall), 7.3;7.9;7.10

—, internal, reinforced earth, 7.10

Static penetration test, 6.1; 6.2;
6.3;6.4,6.10;6.11;6.12;6.14;
6.15;6.16;6.19;6.20

— penetrometer, 11.10

Stiffness coefficient, 3.7

Stratified soil, 7.7

Stress path, 4.12; 4.18

— tensors, 4.18;5.1;5.2;5.3,5.4;
5.5;5.6

Stresses under footings, 3.5; 3.18

Swelling, of clays, 10.13;11.7;11.8

Strip footing, 6.4;6.7;6.10;6.11;
6.13;6.15;6.19;10.1;10.3;
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Strip footing, 10.4;10.6; 10.7;

10.8;10.9;10.10;10.13
Superposition, limit equilibrium, 5.8
Surface tension, 2.15

Terzaghi’s diagram, 9.4

— equation, 3.19

— formula, 2.3

Terzaghi and Peck’s charts, 6.17

Time of consolidation, 3.8

— factor, 3.8; 3.9; 3.10; 3.11; 3.16;
3.19

Tip resistance, penetrometer, see
Penetrometer

——, piles, 11.5; 11.6

Total stresses, 4.6

Tran Vo Nhiem, 10.12

Triaxial test, 3.17;4.1;4.2; 4.3; 4.5;
4.6;4.7;4.9;4.10;4.11;4.12;
4.15;4.17;6.19
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Tri-layer system, 6.12; 6.14

Two-layer system, 3.19;6.9; 10.7;
10.8;10.11

Tschebotarioff’s method, 8.4

Ultimate load, 11.5

Unconfined compression (resistance
to) 4.7;6.19

Uniformity coefficient (Hazen’s) 1.5

Unit weight, 1.1;1.3;1.10;1.14

Void, air, 1.9
—ratio, 1.1;1.2;1.4;1.10;1.12;
1.14;3.15

Water content, 1.1;1.2;1.4;6.19
Weightless material, 5.5
Well, pumping, 2.5

Young’s modulus, 4.8



Corrigendum

Practical Problems in Soil Mechanics and Foundation Engineering, 1,
by G. Sanglerat, G. Olivari and B. Cambou

p. XV, 6th line, ‘“‘between two crystal faces’ should read ‘‘between
two soil faces”.
p. XX, Table C, 5th column, 7th line should read 9. 81 X 1073”,



