
http://www.cambridge.org/9780521873154

This page intentionally left blank

Iterative Receiver Design

Iterative processing is an important technique with applications in many fields, including
digital communications, image processing, and machine learning. By exploiting the
power of factor graphs, this detailed survey provides a general framework for
systematically developing iterative algorithms for digital receivers, and highlights
connections between important algorithms. Starting with basic concepts in digital
communications, progressively more complex ideas are presented and integrated,
resulting in the development of cutting-edge algorithms for iterative receivers. Real-
world applications are covered in detail, including decoding for turbo and LDPC codes,
and detection for multi-antenna and multi-user systems. This accessible framework will
allow the reader to apply factor graphs to practical problems, leading to the design of
new algorithms in applications beyond digital receivers.

With many examples and algorithms in pseudo-code, this book is an invaluable
resource for graduate students and researchers in electrical engineering and computer
science, and for practitioners in the communications industry.

Additional resources for this title are available online at www.cambridge.org/
9780521873154.

Henk Wymeersch is a postdoctoral associate in the Laboratory for Information and
Decision Systems at the Massachusetts Institute of Technology. He obtained his PhD in
Electrical Engineering from Ghent University, Belgium, in 2005. In 2006 he received the
Alcatel Bell Scientific Award for “an original study of Information & Communication
Technology, Concepts and Multimedia applications.”

Iterative Receiver Design

Henk Wymeersch
Massachusetts Institute of Technology

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-87315-4

ISBN-13 978-0-511-34147-2

© Cambridge University Press 2007

2007

Information on this title: www.cambridge.org/9780521873154

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

ISBN-10 0-511-34147-4

ISBN-10 0-521-87315-0

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (EBL)

eBook (EBL)

hardback

http://www.cambridge.org/9780521873154
http://www.cambridge.org

Contents

Preface page ix

Abbreviations xiii

Notations xv

List of algorithms xvii

1 Introduction 1
1.1 Motivation 1

1.2 The structure of this book 2

2 Digital communication 5
2.1 Introduction 5

2.2 Digital communication 6

2.3 Single-user, single-antenna communication 9

2.4 Multi-antenna communication 12

2.5 Multi-user communication 15

2.6 Goals and working assumptions 17

2.7 Main points 17

3 Estimation theory and Monte Carlo techniques 19
3.1 Introduction 19

3.2 Bayesian estimation 19

3.3 Monte Carlo techniques 25

3.4 Main points 33

4 Factor graphs and the sum–product algorithm 35
4.1 A brief history of factor graphs 35

4.2 A ten-minute tour of factor graphs 37

4.3 Graphs, factors, and factor graphs 42

4.4 Marginals and the sum–product algorithm 50

4.5 Normal factor graphs 62

4.6 Remarks on factor graphs 66

4.7 The sum and product operators 71

4.8 Main points 74

vi Contents

5 Statistical inference using factor graphs 77
5.1 Introduction 77
5.2 General formulation 77
5.3 Messages and their representations 86
5.4 Loopy inference 100
5.5 Main points 104

6 State-space models 105
6.1 Introduction 105
6.2 State-space models 106
6.3 Hidden Markov models 113
6.4 Linear Gaussian models 117
6.5 Approximate inference for state-space models 127
6.6 Main points 133

7 Factor graphs in digital communication 135
7.1 Introduction 135
7.2 The general principle 135
7.3 Opening nodes 137
7.4 Main points 141

8 Decoding 143
8.1 Introduction 143
8.2 Goals 144
8.3 Block codes 145
8.4 Repeat–accumulate codes 149
8.5 Low-density parity-check codes 154
8.6 Convolutional codes 163
8.7 Turbo codes 170
8.8 Performance illustration 174
8.9 Main points 175

9 Demapping 177
9.1 Introduction 177
9.2 Goals 178
9.3 Bit-interleaved coded modulation 178
9.4 Trellis-coded modulation 182
9.5 Performance illustration 184
9.6 Main points 184

10 Equalization–general formulation 187
10.1 Introduction 187
10.2 Problem description 188
10.3 Equalization methods 189
10.4 Interaction with the demapping and the decoding node 203
10.5 Performance illustration 203
10.6 Main points 205

Contents vii

11 Equalization: single-user, single-antenna communication 207
11.1 Introduction 207
11.2 Single-carrier modulation 208
11.3 Multi-carrier modulation 213
11.4 Main points 216

12 Equalization: multi-antenna communication 217
12.1 Introduction 217
12.2 Single-carrier modulation 218
12.3 Multi-carrier modulation 223
12.4 Main points 225

13 Equalization: multi-user communication 227
13.1 Introduction 227
13.2 Direct-sequence code-division multiple access 228
13.3 Orthogonal frequency-division multiple access 234
13.4 Main points 236

14 Synchronization and channel estimation 237
14.1 Introduction 237
14.2 Channel estimation, synchronization, and factor graphs 237
14.3 An example 239
14.4 Main points 242

15 Appendices 243
15.1 Useful matrix types 243
15.2 Random variables and distributions 243
15.3 Signal representations 246

References 247
Index 253

Preface

In early 2002, I was absent-mindedly surfing the Internet, vaguely looking for a tutorial
on turbo codes. My PhD advisor at Ghent University, Marc Moeneclaey, thought it wise
for his new students to become familiar with these powerful error-correcting codes.
Although I finally settled on W. E. Ryan’s “A turbo code tutorial,” my search led me
(serendipitously?) to the PhD thesis of Niclas Wiberg. This thesis shows how to describe
codes by means of a (factor) graph, and how to decode them by passing messages on
this graph. Although interesting, the idea seemed a bit far-fetched, and I didn’t fully
appreciate or understand its significance. Nevertheless, Wiberg’s thesis stayed in the
back of my mind (or at least, I’d like to think so now).

During 2002 and 2003, I worked mainly on synchronization and estimation algorithms
for turbo and LDPC codes. A colleague of mine, Justin Dauwels, who was at that time
a PhD student of Andy Loeliger at the ETH in Zürich, had developed a remarkable
synchronization algorithm for LDPC codes, based on Wiberg’s factor graphs. Justin
was interested in comparing his synchronization algorithm with ours, and became a
visiting researcher in our lab for the first two months of 2004. I fondly remember many
hours spent in the department lunchroom, with Justin (painstakingly) explaining the
intricacies of factor graphs to me. His discussions motivated me to re-write my source
code for decoding turbo and LDPC codes using the factor-graph framework. To my
surprise, writing the code was an almost trivial process! Understanding factor graphs
made understanding and programming algorithms so much easier. Why didn’t more
people use these graphs? As I became more engrossed in the topic, I realized that,
despite the presence of some excellent tutorials on factor graphs, many researchers still
felt intimidated by them. It would be very useful for someone to write an accessible
tutorial on factor graphs, a “Factor graphs for dummies,” as it were. By the time I felt I
had a reasonable amount of experience on factor graphs, I had to write my PhD thesis
and could not pursue this idea any further.

Late 2005, I was a postdoctoral fellow at MIT trying to survive my first winter
in Boston. For some reason (perhaps tiredness, perhaps cerebral frostbite), I finally
bit the bullet and decided to write a book on factor graphs in the context of digital
communications. I was lucky enough to have a postdoc advisor, Moe Win, who graciously
allowed me to work full-time on this project. The book you are holding now is pretty much
the book I set out to write. Despite being somewhat longer than I originally intended,
this book is limited in many ways, primarily due to time constraints and my limited

x Preface

understanding of the various topics. Many parts of this book reflect my own personal
interests, as well as my inclination for completeness rather than succinctness.

There are many, many people I wish to thank, most importantly my PhD advisor Marc
Moeneclaey at Ghent University and my postdoc advisor Moe Win at MIT. They have
very different personalities, but both are truly excellent in their own fields, both are
genuinely nice people, and I feel privileged to have had the opportunity to work with
them. I am also greatly indebted to the Belgian American Educational Foundation, the
organization that sponsored my US fellowship, and gave me the financial freedom to
work on my own project at MIT. A great deal of my knowledge on factor graphs is a
direct consequence of the technical discussions I have had with some very smart people.
Obviously, Justin Dauwels springs to mind, my own encyclopaedia factorgraphica. Over
the years he has always been more than willing to answer my unending list of questions.
Also critical in shaping the contents of this book was Frederik Simoens, one of Marc’s
PhD students. My interactions with Frederik the past four years, from discussions on
Kalman filters in the middle of the night in Stockholm, to getting wasted in dubious
Boston nightclubs, have been nothing short of amazing. Another essential person in this
list is Cédric Herzet, currently at UC Berkeley, a guy with an uncanny ability for lateral
thinking. Some of the sweeter insights in this book are due to him. And then there is
the long list of people who were at some point involved in my life this last crazy year,
as a proof-reader, as a recipient of my many questions, or as a means to get away from
it all. At MIT and surrounding areas, I thank Pedro Pinto, Faisal Kashif, Jaime Lien,
Watcharapan Suwansantisuk, Damien Jourdan, Erik Sudderth, Wesley Gifford, Marco
Chiani, Andrea Giorgetti, Gil Zussman, Alex Ihler, Hyundong Shin, Sejoon Lim, Sid
Jaggi, Yuan Shen, Atilla Eryilmaz, Andrew Fletcher, Wee Peng Tay, Tony Quek, Eugene
Baik, and the MIT Euroclub (in particular Bjorn-Mr. salsa-Maes). Back in Belgium, I
would like to thank Xavier Jaspar, Valéry Ramon, Frederik Vanhaverbeke, Nele Noels,
and Heidi Steendam. I am also grateful to have had the pleasure to work with Anna
Littlewood and Phil Meyler at Cambridge University Press.

Finally, I wish to thank my family for their understanding, love, and patience, for
helping me when times got tough (and boy, did they ever!), and for letting me pursue
my dreams far from home. I miss you more than you know.

Henk Wymeersch

Cambridge, Massachusetts, October 2006

A Word on Notation

Vectors are written in bold, matrices in capital bold. The ith element in vector x is [x]i
or xi. The element on the ith row, jth column of the matrix A is [A]ij or Ai,j. To access
elements l1 through l2 (l1 ≤ l2) in x, we write [x]l1:l2 or xl1:l2 . Logarithms are to the
base e unless specified otherwise.

Abbreviations

APD a-posteriori distribution
BICM bit-interleaved coded modulation
CDMA code-division multiple access
DS direct sequence
FDMA frequency-division multiple access
GMD Gaussian mixture density
HMM hidden Markov model
iid independent and identically distributed
LDPC low-density parity check
MAP maximum a-posteriori
MC Monte Carlo
MCMC Markov-chain Monte Carlo
MIMO multi-input, multi-output (multi-antenna system)
MMSE minimum mean-squared error
OFDM orthogonal frequency-division multiplexing
OFDMA orthogonal frequency-division multiple access
pdf probability density function
pmf probability mass function
P/S parallel-to-serial conversion
S/P serial-to-parallel conversion
SPA sum–product algorithm
SSM state-space model
TCM trellis-coded modulation
TDMA time-division multiple access

Notations

Common notations A

X domain of variable X , x
x a vector
‖x‖ Frobenius norm of x
X a vector random variable or a matrix

XH conjugate transpose of X
XT transpose of X
x̂ estimate of x

E{·} expectation operator
|S| cardinality of the set S
B the set of binary numbers {0, 1}

I{·} indicator function
δk discrete Dirac distribution
δ(t) continuous Dirac distribution
= (·) equality function

RL(pX (·)) particle representation of distribution pX (·) with L samples
diag{x} a diagonal matrix with the elements of x on the diagonal

f (x) ∝ g(x) f (x) = γ g(x), ∀x, for some scalar γ
IN an N × N identity matrix

µX→f (x) message from edge X to node f , evaluated in x ∈ X
µf→X (x) message from node f to edge X , evaluated in x ∈ X

a � b a is much smaller than b
arg maxx f (x) the value of x that achieves the maximum of f (·)
[a, b] the closed interval {x ∈ R : a ≤ x ≤ b}
[a, b) the half-open interval {x ∈ R : a ≤ x < b}

Common notations B

B, b information word
C, c codeword
A, a coded symbols
Y, y observation

n noise vector
h(·) channel function
H channel matrix
Nb number of information bits per codeword
Nc number of coded bits per codeword
Ns number of coded symbols per codeword
NT number of transmit antennas
NR number of receive antennas
Nu number of users

NFFT number of subcarriers per OFDM symbol
M the model
� signaling constellation

List of algorithms

3.1 Importance sampling 30
3.2 Gibbs sampler 33
4.1 The sum–product algorithm 39

4.2 Variable partitioning: determine S(Xn)
fk

51

5.1 The sum–product rule for continuous variables – importance sampling 98
5.2 Sum–product rule for continuous variables – mixture sampling 99
6.1 Hidden Markov models: sum–product algorithm with message

normalization 114
6.2 Hidden Markov models: sum–product algorithm with message

normalization using vector and matrix representation 115
6.3 Hidden Markov models: max–sum algorithm 116
6.4 The forward phase of sum–product algorithm on a state-space model

using particle representations 129
8.1 Decoding RA codes: forward–backward phase 157
8.2 Decoding RA codes: upward messages 157
8.3 Decoding RA codes: downward messages 157
8.4 Decoding RA codes: complete decoding algorithm 158
8.5 LDPC code: SPA in check nodes 161
8.6 Decoding LDPC codes 164
8.7 Convolutional code: building block 168
8.8 Convolutional code: building block in the log domain 168
8.9 Decoding of a convolutional code 169
8.10 Decoding of a PCCC/SCCC turbo code 174
9.1 Demapping for BICM 181

10.1 Gibbs sampler for p(A|Y = y, M) 199

1 Introduction

1.1 Motivation

Claude E. Shannon was one of the great minds of the twentieth century. In the 1940s, he
almost single-handedly created the field of information theory and gave the world a new
way to look at information and communication. The channel-coding theorem, where he
proved the existence of good error-correcting codes to transmit information at any rate
below capacity with an arbitrarily small probability of error, was one of his fundamental
contributions. Unfortunately, Shannon never described how to construct these codes.
Ever since his 1948 landmark paper “A mathematical theory of communication” [1],
the channel-coding theorem has tantalized researchers worldwide in their quest for
the ultimate error-correcting code. After more than forty years, state-of-the-art error-
correcting codes were still disappointingly far away from Shannon’s theoretical capacity
bound. No drastic improvement seemed to be forthcoming, and researchers were
considering a more practical capacity benchmark, the cut-off rate [2], which could be
achieved by practical codes.

In 1993, two until then little-known French researchers from the ENST in Bretagne,
Claude Berrou andAlain Glavieux, claimed to have discovered a new type of code, which
operated very close to Shannon capacity with reasonable decoding complexity. The
decoding process consisted of two decoders passing information back and forth, giving
rise to the name “turbo code.” They first presented their results at the IEEE International
Conference on Communications in Geneva, Switzerland [3]. Quite understandably, they
were met with a certain amount of skepticism by the traditional coding community.
Only when their findings were reproduced by other labs did the turbo idea really take
off. It is fair to say that turbo codes have caused a paradigm shift in communications
theory. The idea of passing information back and forth between different components in
a receiver (so-called iterative processing or turbo processing) has become prevalent in
state-of-the-art receiver design. Many books and international scientific conferences are
currently devoted to turbo processing.

The original turbo decoder was developed in a somewhat ad-hoc way. An elegant
mathematical framework was provided with the introduction of particular graphical
models for statistical inference [4,5] at the end of the twentieth century, describing how
iterative receivers can be designed in an almost automatic fashion. The goal of this book
is to show how various tasks in the receiver can be cast in this graphical framework.
Important practical problems such as decoding, equalization, and multi-user detection

2 Introduction

will be treated. Wherever possible, algorithms in pseudo-code will be provided to allow
the reader to transfer knowledge from this book directly into a practical implementation.
More importantly, it is my hope that the reader will discover the inherent beauty of these
graphical models, and realize that they can be applied to a wide variety of problems far
beyond Shannon’s original coding problem.

1.2 The structure of this book

This book is organized as follows.

• In Chapter 2, we will give a brief overview of several important digital transmission
schemes. We will cover single- and multi-carrier transmission, single- and multi-
antenna transmission, and single- and multi-user transmission. For every one of these
transmission schemes, a suitable receiver needs to be developed on the basis of some
optimality criterion.
• Chapter 3 deals with this optimality criterion. We will describe basic concepts from

Bayesian estimation theory and Monte Carlo methods.
• In Chapter 4 we will introduce the concept of factor graphs. Factor graphs are a way

to represent graphically the factorization of a function. We will discuss factor graphs
in detail in an abstract setting and show how marginals of functions can be computed
by message-passing on the corresponding factor graph.
• Chapter 5 ties together the knowledge from Chapter 3 and Chapter 4. We will show

how to solve inference and estimation problems using factor graphs.
• Inference on state-space models appears in many engineering problems. Chapter 6

is devoted to the application of factor graphs to such models. We will treat hidden
Markov models, Kalman filters, and particle filters.
• After a detour into estimation theory and factor graphs, we return to receiver design in

Chapter 7. We will show how, at least in principle, a digital receiver based on factor
graphs can be built. Four critical functions will be revealed: decoding, demapping,
equalization, and the conversion of the received waveform into a suitable observation.
• Decoding will be the topic of Chapter 8, where we will discuss four important types

of error-correcting codes: repeat–accumulate codes, low-density parity-check codes,
convolutional codes, and turbo codes.
• In Chapter 9 we will cover demapping for bit-interleaved coded modulation and

trellis-coded modulation in the factor-graph framework.
• Equalization techniques will be treated in Chapter 10 in a general setting. A variety

of general-purpose equalizers will be derived.
• Chapter 11 deals with equalization for single-user, single-antenna transmission. For

every transmission scheme, we show how to convert the received waveform into a
suitable observation, and point out which equalizers from Chapter 10 can be applied.
• Equalization for multi-antenna transmission will be discussed in Chapter 12.

Conversion to suitable observations and factor-graph equalization strategies will be
covered.

1.2 The structure of this book 3

Chapter 2 Chapter 3 Chapter 4

Chapter 5 Chapter 6

Chapter7

Chapter 8 Chapter 9 Chapter 10

Chapter 11 Chapter 12 Chapter 13

Chapter 14

Digital Communication Estimation Theory and MC Methods Factor Graphs

Statistical Inference on Factor Graphs State-space Models

Factor Graphs in Digital Commun.

Decoding Equalization

Channel Estimation/Synchronization

Single-user, Single-antenna Single-user, Multi-antenna Multi-user

Demapping

Figure 1.1. A graph representing the interdependencies between chapters.

• Multi-user transmission is the topic of Chapter 13. As in the previous two chapters,
suitable observations will be determined and equalizers from Chapter 10 will be
selected.
• Chapter 14 will deal with channel estimation and synchronization. We will show how

the unknown channel parameters can be incorporated into the factor-graph framework.
• The appendices make up Chapter 15. The reader is encouraged to browse through

them at this point.

The logical relations between chapters are depicted in Fig. 1.1.

2 Digital communication

2.1 Introduction

As with any good story, it is best to start at the very beginning. Digital communication
deals with the transmission of binary information (obtained as the output of a source
encoder) from a transmitter to a receiver. The transmitter converts the binary information
to an analog waveform and sends this waveform over a physical medium, such as a wire
or open space, which we will call the channel. As we shall see, the channel modifies the
waveform in several ways. At the receiver, this modified waveform is further corrupted
due to thermal noise. Not only does the receiver have to recover the original binary
information, but also it must deal with channel effects, thermal noise, and synchronization
issues. All in all, the receiver has the bad end of the deal in digital communications. For
this reason, this book deals mainly with receiver design, and only to a very small extent
with the transmitter.

In this chapter we will describe several digital transmission schemes, detailing how
binary information is converted into a waveform at the transmitter side, and how a
corrupted version of this waveform arrives at the receiver side. Right now, our focus
is not on how the corresponding receivers should be designed. Since there is a myriad
of digital transmission schemes, we are obliged to limit ourselves to some of the most
important ones. It is my hope that the receivers we will design for this limited set of
transmission schemes will give the reader inspiration in developing novel receivers and
understand existing receivers. We will assume that the reader has at least a passing
familiarity with these transmission schemes. Textbooks and reference books on digital
communications include [6–15].

This chapter is organized as follows.

• We will start with the basic principles of converting a sequence of bits into a baseband
complex waveform in Section 2.2. This process consists of encoding the information,
followed by mapping onto a signaling constellation and pulse-shaping.
• In Section 2.3, we then move on to the classical transmission scheme with a single

transmitter using a single antenna. Both single-carrier and multi-carrier transmission
will be described.
• These transmission schemes are then generalized to multi-antenna (Section 2.4) and

multi-user (Section 2.5) scenarios.
• After this brief overview of transmission schemes, we will outline the main goals and

working assumptions of this book in Section 2.6.

6 Digital communication

2.2 Digital communication

2.2.1 From bits to waveform

In digital communication, the goal is to convey a sequence of binary information digits
(bits, belonging to the set B = {0, 1}) from the transmitter to the receiver. The binary
information sequence (which may be infinitely long) is segmented into blocks of length
Nb. A single block, say b ∈ B

Nb , is referred to as an information word. Every information
word is protected against channel effects by encoding it with a channel encoder, which
converts the Nb information bits into Nc coded bits, with Nc > Nb, using an encoding
function fc : B

Nb → B
Nc . For instance, we can apply a convolutional code, a turbo code,

or a low-density parity-check code. This results in a (longer) binary sequence c = fc(b).

Example 2.1 (Repetition code). Probably the easiest way of encoding an information
stream is by using a repetition code, whereby we simply repeat every bit K times. For
instance, when Nb = 3, K = 2, and b = [011], this yields

c = fc([011])

= [001111]

so that Nc = Nb × K = 6. In practice, Nb can be very large.

After encoding, the coded bits are converted to a sequence a = fa(c) of Ns complex
coded symbols using a mapping function fa, where the kth symbol, ak , belongs to a
signaling constellation �k . For instance, we can use bit-interleaved coded modulation
(BICM) or trellis-coded modulation (TCM).

Example 2.2 (Mapping). The most simple (and most common) way of mapping c to a is
as follows. Suppose that we have a signaling constellation� = {−1,+1,−j,+j}, where
j is the imaginary unit (j = √−1). We select the same constellation for every symbol
ak . With every element in �, we associate a unique bit-string. Since there are |�| = 4
elements in�, we can associate log2|�| = 2 bits with every element in�. This is known
as quadrature phase-shift keying (QPSK). We can now define the following mapping
φ : B× B→ �

φ(0, 0) = +1,

φ(0, 1) = −1,

φ(1, 0) = −j,

φ(1, 1) = +j.

We break up c into blocks of length log2|�| = 2 and map every block to a constellation
point using the function φ(·). In our case, using the sequence from the previous example

2.2 Digital communication 7

c = [001111], we obtain

a = [φ(0, 0)φ(1, 1)φ(1, 1)]

= [+1 + j + j].

Observe that Ns = Nc/ log2|�|.

Finally, once encoding and mapping are completed, the symbols in a are embedded
in a (possibly infinitely long) data stream and pulse-shaped, giving rise to a complex
baseband signal

s(t) = √Es

+∞∑
k=−∞

akpk(t), (2.1)

where Es is the energy per transmitted coded symbol and pk(t) is a unit-energy transmit
pulse corresponding to the kth symbol. This implies that

∫ +∞
−∞
|pk(t)|2dt = 1. (2.2)

The signal s(t) is modulated onto a carrier waveform with carrier frequency fC, yielding
a real (as opposed to complex) radio-frequency (RF) signal

sRF(t) = �
{√

2s(t)ej2π fCt
}

. (2.3)

The RF signal propagates through a physical medium (e.g., a wireless channel, an optical
fiber), and is corrupted by thermal noise in the receiver, resulting in a received signal
rRF(t). The received RF signal is down-converted to complex baseband, giving rise to an
equivalent complex baseband received signal r(t). We will follow the common practice
of working only with equivalent baseband signals. This leads to the following observed
signal at the receiver:

r(t) = √Es

+∞∑
k=−∞

akhk(t)+ n(t), (2.4)

where hk(t) is the equivalent channel for the kth symbol, encompassing the transmit pulse
and the equivalent baseband physical channel hch(t), and n(t) is a zero-mean complex
white Gaussian process with power-spectral density N0/2 both for the real and for the
imaginary component:

E
{
N (t)N ∗(u)

} = N0δ(t − u). (2.5)

8 Digital communication

The equivalent channel hk(t) can be written as the convolution of the transmit pulse and
the physical channel:

hk(t) =
∫ +∞
−∞

pk(u)hch(t − u)du. (2.6)

Example 2.3 (Pulse-shaping). A simple type of complex baseband signal is formed by
setting pk(t) = p(t − kT), where p(t) is a unit-energy square pulse, defined as

p(t) =
{

1/
√

T 0 ≤ t < T
0 else

so that we transmit one data symbol every T seconds. Going back to our previous
example, where Ns = 3 and a = [+1 + j + j], this results in a signal shown in Fig. 2.1
(left-hand side), where we depict the real and imaginary parts of the signal s(t). Let us
assume that the equivalent baseband channel is given by hch(t) = exp(jπ/4)δ(t − τ),
for some propagation delay τ ∈ R, then

r(t) = √Es

2∑
k=0

akejπ/4p(t − kT − τ)+ n(t).

A noiseless version of r(t) is also shown in Fig. 2.1 (right-hand side).

Es/T Es/(2T)

Figure 2.1. Pulse-shaping using square pulses. On the left is the transmitted signal with
transmitted sequence [+1 + j + j]. On the right is the (noiseless) received signal, after a phase
rotation of π/4 and a delay of τ .

2.3 Single-user, single-antenna communication 9

2.2.2 Channel model

A common channel model for wireless communication is the multi-path model, whereby
the channel impulse response consists of a number of distinct paths [16]:

hch(t) =
L−1∑
l=0

αlδ(t − τl), (2.7)

where αl and τl are the complex gain and the propagation delay of the lth path. We
usually consider these paths to be resolvable (meaning that τl+1 − τl � 1/B, where B
represents the bandwidth of p(t)). This is without loss of generality, since unresolvable
paths can be combined into a single path, and the complex gains added.

A channel is said to be frequency-selective when it has at least two resolvable
paths. Otherwise the channel is frequency-non-selective (also known as a frequency-
flat channel). The delay of the first path, τ0, corresponds to the propagation delay of the
signal through the channel.

2.2.3 Communication schemes

We can distinguish between single-antenna and multi-antenna transmission, between
single-carrier and multi-carrier transmission, and between single-user and multi-user
transmission. In the next few sections, we will describe these schemes in more detail.
Our aim is not completeness, but rather to touch on a few selected schemes for which
we will later design appropriate receivers.

2.3 Single-user, single-antenna communication

We first consider a system where there is only a single user transmitting. Both the
transmitter and the receiver are equipped with a single antenna. The transmitter wishes
to transmit a long data stream (consisting of many codewords).

2.3.1 Single-carrier modulation

In single-carrier modulation we transmit a symbol every T seconds over a single carrier.
This gives rise to the following transmitted signal:

s(t) = √Es

+∞∑
k=−∞

akp(t − kT). (2.8)

The transmit pulse p(t) is usually selected according to specific criteria. For instance,
we like our pulses to have finite bandwidth and to be unit-energy square-root Nyquist
pulses for a rate 1/T . We remind the reader that a unit-energy square-root Nyquist pulse

10 Digital communication

p(t) for a rate 1/T satisfies, for k ∈ Z,

g(kT) =
{

1 k = 0,
0 else,

(2.9)

where

g(t) =
∫ +∞
−∞

p(u)p∗(t + u)du. (2.10)

The pulse g(t) is then a Nyquist pulse for a rate 1/T . The received signal can be
expressed as

r(t) = √Es

+∞∑
k=−∞

akh(t − kT)+ n(t), (2.11)

where h(t) is the equivalent channel (given by the convolution of the transmit pulse
and the physical channel hch(t), see (2.6)) and n(t) is a complex white Gaussian noise
process.

2.3.2 Multi-carrier modulation – OFDM

Orthogonal frequency-division multiplexing (OFDM) is a popular multi-carrier trans-
mission technique that avoids inter-symbol interference over frequency-selective
channels [17,18]. Intuitively, the idea of OFDM is to break up the transmission bandwidth
into narrow subbands (subcarriers) such that the channel is frequency-flat on every
subcarrier. Inter-symbol interference is avoided by pre-appending a cyclic prefix to the
transmitted symbols.

More formally, we break up the data stream into segments of length NFFT, where NFFT

is usually a power of 2 (for instance, 256 or 1024). Let us call one such segment a, an
NFFT × 1 vector. We multiply a by an NFFT-point inverse discrete Fourier transform
(IDFT) matrix F, yielding a vector

ǎ = Fa, (2.12)

where

Fm,n = 1√
NFFT

exp

(
j2π

m× n

NFFT

)
, (2.13)

for m, n ∈ {0, . . . , NFFT − 1}. Usually the operation (2.12) is performed by means of a
computationally efficient inverse fast Fourier transform (FFT). We then pre-append the
last NCP of ǎ symbols to ǎ, and obtain a vector of length NFFT+NCP, known as an OFDM

2.3 Single-user, single-antenna communication 11

IFFT

P/S

a0

a1

a
NFFT –1

a0

a1

aNFFT – NCP

aNFFT – 1

a–1

a–NCP

p(t)
s(t)

Figure 2.2. An OFDM transmitter. The data symbols are passed through an IFFT, a cyclic prefix is
added and, after parallel-to-serial conversion, pulse-shaping is employed.

symbol:


ǎ−NCP . . . ǎ−2 ǎ−1︸ ︷︷ ︸

cyclic prefix

ǎ0 ǎ1 ǎ2 . . . ǎNFFT−1︸ ︷︷ ︸
ǎT




T

(2.14)

where ǎ−l = ǎNFFT−l , for l = 1, . . . , NCP. The sequence
[
ǎ−NCP . . . ǎ−2ǎ−1

]T of length
NCP is known as the cyclic prefix. Finally, we transmit one OFDM symbol using the
following complex baseband signal (see Fig. 2.2):

s(t) =
√

EsNFFT

NFFT + NCP

NFFT−1∑
l=−NCP

ǎlp(t − lT), (2.15)

using a unit-energy transmit pulse p(t). We can also transmit a sequence of OFDM
symbols consecutively as

s(t) =
√

EsNFFT

NFFT + NCP

+∞∑
k=−∞

NFFT−1∑
l=−NCP

ǎl,kp(t − lT − kTOFDM), (2.16)

where ǎl,k is the lth component of the kth OFDM symbol and TOFDM = T (NFFT+NCP),
the symbol duration corresponding to a single OFDM symbol. The received signal is
often written as

r(t) =
+∞∑

k=−∞

NFFT−1∑
l=−NCP

ǎlh(t − lT − kTOFDM)+ n(t), (2.17)

12 Digital communication

where h(t) again is the equivalent channel, including the transmit pulse, the physical
channel, and the factor

√
EsNFFT

NFFT + NCP
,

and n(t) is a complex white Gaussian noise process.

Terminology
The quantities ǎl are known as being in the time domain, whereas the symbols aq are
said to be in the frequency domain. We say that there are NFFT subcarriers. The symbol
aq modulates the qth subcarrier.

2.4 Multi-antenna communication

Multi-antenna systems (or MIMO systems, for multiple input, multiple output; Fig. 2.3)
were originally introduced by Winters [19] as a way to increase system capacity by
the use of spatial diversity. Fundamental results are provided in [20, 21]; for pioneering
work in practical coding schemes see [22–24]. Accessible works on MIMO include
[25, 26].

2.4.1 Single-carrier modulation

In MIMO systems, we transmit simultaneously on different antennas. We denote by a(n)k
the symbol transmitted on the nth transmit antenna at the kth symbol duration. Suppose
that we use NT transmit antennas, we can then write the transmitted signal at a particular

receiver

s(t)

r(t)

S/P P/S

transmitter

Figure 2.3. MIMO: a system with NT = 2 transmit and NR = 3 receive antennas.

2.4 Multi-antenna communication 13

time t as an NT × 1 vector s(t),

s(t) = √Es

+∞∑
k=−∞




a(1)k
...

a(NT)
k


 p(t − kT) (2.18)

= √Es

+∞∑
k=−∞

akp(t − kT), (2.19)

where ak is the vector of transmitted symbols during the kth symbol period. At the
receiver, equipped with NR receive antennas, the received signal at the mth receive
antenna is given by

rm(t) =
+∞∑

k=−∞

NT∑
n=1

a(n)k h(n)m (t − kT)+ nm(t), (2.20)

where h(n)m (t) is the equivalent channel between transmit antenna n and receive antenna
m. We can stack the received signals at time t in a vector of length NR,

r(t) =
+∞∑

k=−∞

NT∑
n=1

a(n)k h(n)(t − kT)+ n(t), (2.21)

where h(n)(t) represents the equivalent channel between the nth transmit antenna and
the various receive antennas.

There are two common ways to transmit data in MIMO: space–time coding and spatial
multiplexing. In space–time coding the goal is to achieve maximal exploitation of the
diversity of the MIMO channel. In spatial multiplexing, the goal is to maximize the data
rate [27].

Space---time coding
The most commonly used space–time codes are space–time block codes (STBC) [24].
Within the class of STBC, we focus on the Alamouti scheme [22]. Assume that we
want to transmit two complex numbers (a and b) over an NT = 2, NR = 2 MIMO
channel. The Alamouti scheme requires two symbol durations. During the first symbol
duration, we transmit a0 = [a b]T. During the second symbol duration, we transmit
a1 = [−b∗ a∗]T. As we will see in Chapter 12, this way of transmitting the data leads
to a very simple STBC decoder.

Spatial multiplexing
In spatial multiplexing we simply take our data stream a, and demultiplex it (i.e., serial-to-
parallel conversion) into NT parallel data streams, one for each transmit antenna1 [19,28].

1 In some variations of spatial multiplexing there is an encoder for every transmit antenna (this is known as
V-BLAST). This distinction is irrelevant for our purpose.

14 Digital communication

In other words, at time instant k we transmit

ak =
[
akNT . . . a(k+1)NT−1

]T (2.22)

and then

ak+1 =
[
a(k+1)NT . . . a(k+2)NT−1

]T (2.23)

and so forth. Observe that, for NT = 2, we can transmit twice as much information per
symbol duration as in the Alamouti scheme. The cost we pay is the need for a more
computationally demanding receiver, and a potential loss in diversity.

2.4.2 Multi-carrier modulation – MIMO-OFDM

MIMO-OFDM combines the capacity gains of using multiple antennas and the simple
receiver design of OFDM in a straightforward way [29, 30]. The data stream a is
first demultiplexed onto the various transmit antennas.2 This means that, as in spatial
multiplexing, every antenna works on a unique part of the data stream: the nth transmit
antenna operates on the stream a(n). As shown in Fig. 2.4, at every transmit antenna,
symbols are processed in blocks of size NFFT using standard OFDM: they are passed
through an IFFT, a cyclic prefix is attached and, after pulse-shaping, the signal is
transmitted over the antenna. The transmitted signal at the nth transmit antenna can
be written as

s(n)(t) =
√

EsNFFT

NFFT + NCP

+∞∑
k=−∞

NFFT−1∑
l=−NCP

ǎ(n)l,k p(n)(t − lT − kTOFDM), (2.24)

where ǎ(n)l,k is the lth time-domain component in the kth OFDM symbol, transmitted on
the nth transmit antenna. At the receiver, equipped with NR antennas, the received signal

a(3)

OFDM

OFDM

OFDM

s(2)(t)

s(1)(t)

s(3)(t)

S/P

a(1)

a(2)

Figure 2.4. A MIMO-OFDM transmitter for NT = 3.

2 In some variations of MIMO-OFDM, there is an encoder for every transmit antenna (this is known as
V-BLAST OFDM). This distinction is irrelevant for our purpose.

2.5 Multi-user communication 15

at time t can be expressed as an NR × 1 vector

r(t) =
+∞∑

k=−∞

NT∑
n=1

NFFT−1∑
l=−NCP

ǎ(n)l,k h(n)(t − lT − kTOFDM)+ n(t), (2.25)

where h(n)(t) is an NR × 1 vector representing the equivalent channel between the nth
transmit antenna and the different receive antennas.

2.5 Multi-user communication

When multiple users transmit to the same receiver (see Fig. 2.5), we deal with multi-user
communication and multi-user detection [31,32]. The transmitted signal of the nth user
can be written as

s(n)(t) =
√

E(n)s

+∞∑
k=−∞

a(n)k p(n)k (t), (2.26)

where E(n)s is the nth user’s energy per symbol, a(n)k is the kth symbol of the nth user, and

p(n)k (t) is the corresponding transmit pulse. For a total of Nu users, the received signal
can be written as

r(t) =
Nu∑

n=1

+∞∑
k=−∞

a(n)k h(n)k (t)+ n(t), (2.27)

where h(n)k (t) is the equivalent channel for the kth symbol of the nth user. Since multiple
users are accessing the same medium, we require a way to share the available resources,

user 3

user 2

user 1

receiver
s (1) (t)

s (2) (t)

s (3)(t)

r(t)

Figure 2.5. Multi-user communication: a system with Nu = 3 active users and one receiver.

16 Digital communication

and to ensure that the receiver can recover the information streams coming from each of
the users. Over the past few decades many such schemes have been developed, including
time-division multiple access (TDMA), frequency-division multiple access (FDMA),
code-division multiple access (CDMA), and OFDM multiple access (OFDMA). In
TDMA (FDMA), users are assigned different time-slots (frequency bands), such that
they do not overlap in the time domain (frequency domain). The receiver simply listens
to the different patches in the time (frequency) domain to recover the data streams.
In other multiple-access schemes, the receiver has to perform multi-user detection to
recover the superposition of the signals of the different users. Two important multiple-
access schemes (CDMAand OFDMA) are described below. The corresponding receivers
will be discussed in Chapter 13.

CDMA

We will describe direct-sequence CDMA (DS-CDMA) [33,34]. The kth user applies the
following transmit pulse:

p(n)k (t) = 1√
NSG

NSG−1∑
i=0

d (n)i pS

(
t − i

T

NSG
− kT

)
. (2.28)

Here pS(t) is a unit-energy square-root Nyquist pulse for a rate NSG/T and

d(n) =
[
d (n)0 , . . . , d (n)NSG−1

]T

is referred to as the spreading sequence of the nth user, with d (n)i belonging to some
discrete set (usually {−1,+1} or {−1,+1,−j,+j}). The number NSG is known as the
spreading gain or the processing gain. Users differ in their spreading sequences. At
the receiver, users will also differ in the equivalent channels. This diversity enables
the receiver to recover the different data streams. The spreading sequences d(n), n =
1, . . . , Nu, are chosen in such a way that they have excellent auto- and cross-correlation
properties [35].

OFDMA

OFDMA is a multi-carrier scheme whereby every user is assigned a set of subcarriers
[36,37]. The subcarrier sets for different users are non-overlapping. Consider for instance
a system with Nu = 2 users. During each OFDM symbol duration, both users transmit
NFFT/2 data symbols: a(n)0 , . . . , a(n)NFFT/2−1, n ∈ {1, 2}. User 1 then creates a vector of
length NFFT by using only the even carriers

a(1) =
[
a(1)0 0 a(1)1 0 . . . a(1)NFFT/2−1 0

]T
(2.29)

while user 2 uses only the odd carriers

a(2) =
[
0 a(2)0 0 a(2)1 . . . 0 a(2)NFFT/2−1

]T
. (2.30)

2.7 Main points 17

Both users multiply their vectors by an NFFT-point IDFT matrix, resulting in ǎ(1) and
ǎ(2). They then transmit (after adding a cyclic prefix) the resulting time-domain sequence
over the channel using a pulse p(t). The received signal can be written as

r(t) =
Nu∑

n=1

+∞∑
k=−∞

NFFT−1∑
l=−NCP

ǎ(n)l,k h(n)(t − lT − kTOFDM)+ n(t). (2.31)

As we will see in Chapter 13, the different signals can be separated efficiently as long
the users are synchronized to a certain extent.

2.6 Goals and working assumptions

The reader may have noticed that we have described transmission schemes, but have
not mentioned how the corresponding receivers should be designed. For each of these
transmission schemes, there exist off-the-shelf receivers that are well understood. In this
book, we will step away from these existing receivers and start from scratch (well, maybe
not from scratch, but something close to it). The final goal of any receiver is to recover
the information stream (the information word b), in an optimal (or near-optimal) fashion.
The final goal of this book is to design receivers that are able to perform this task, starting
from basic principles of estimation theory, and exploiting the expressive power of factor
graphs. To design these receivers, we will need make a number of assumptions.

• We consider only linear modulation. Extension to non-linear modulation is possible
in some cases.
• The receiver knows the type of channel encoder and mapping used by the transmitter.
• The receiver knows the characteristics of the noise process. This is a reasonable

assumption, since the noise characteristics usually do not change dramatically over
time.
• The physical channel is linear. Extension to non-linear channels is possible in some

cases.
• The receiver knows the equivalent channel hch(t). This basically means that the

receiver has estimated the channel prior to data detection.As long as the channel varies
slowly over time, this is a reasonable assumption. We will remove this assumption
(partially) in Chapter 14.
• The equivalent channel hch(t) is static during the transmission of the Ns data symbols.

Although this assumption is not necessary for most cases, it is helpful because it will
keep the mathematical derivations simple.

2.7 Main points

In this chapter we have given a brief overview of digital communications, including
channel coding, mapping, and pulse-shaping. Transmission schemes can be divided into

18 Digital communication

various categories, depending on the number of active users, the number of antennas at
receiver and/or transmitter, and whether or not multiple carriers are used. Before we can
develop receivers for these different transmission schemes, we first need to understand
what it means to recover the information bits in an optimal way and how exactly this
recovery can be achieved. It is intuitively clear that we will need to formulate some type
of estimation or optimization problem. To this end, we will now move away from our
digital communication problem, and cover basic estimation theory using the language
of factor graphs. We will return to digital communication from Chapter 7 onward.

3 Estimation theory and Monte Carlo
techniques

3.1 Introduction

Before we can even consider designing iterative receivers, we have a lot of ground
to cover. The ultimate goal of the receiver is to recover optimally the sequence of
information bits that was sent by the transmitter. Since these bits were random in the first
place, and they are affected by random noise at the receiver, we need to understand and
quantify this randomness, and incorporate it into the design of our receiver. We need to
specify what it means to recover optimally the information bits from the received signal.
Optimal in what sense? To answer this problem, we call on estimation theory, which will
allow us to formulate a suitable optimization problem, the solution of which will give
our desired optimal data recovery. Unfortunately, as is common to most optimization
problems of any practical relevance, the issue of finding a closed-form solution is
intractable. There exists a set of tools that can solve these problems approximately by
means of sampling. They go under the name of Monte Carlo (MC) techniques and can
help in describing difficult distributions, and in obtaining their characteristics, by means
of a list of samples. These MC methods will turn out to be very useful in the factor-graph
framework.

This chapter is organized as follows.

• We will start with the basics of Bayesian estimation theory in Section 3.2, covering
some important estimators both for discrete and for continuous parameters.
• In Section 3.3, we will provide a brief introduction to MC techniques, including

particle representations of distributions, importance sampling, and Markov-chain
Monte Carlo (MCMC) methods.

3.2 Bayesian estimation

Bayesian estimation is a branch of estimation theory whereby variables are considered to
be random, with certain a-priori distributions. In this section, we will describe the problem
of Bayesian estimation and derive several important estimators both for continuous and
for discrete variables. Standard works on estimation theory can be found in [38–41].

20 Estimation theory and Monte Carlo techniques

a priori

x̂(y)

x

pX(x)

pY|X(y|x)
y

Figure 3.1. The general problem of estimation theory. The variable of interest x belongs to the
variable space X and has the a-priori distribution pX(x). The variable can be observed only
through y ∈ Y . The probabilistic mapping pY|X(y|x) from X to Y is known.

3.2.1 Problem formulation

In Bayesian estimation theory, we are interested in estimating an instance (a realization)
of a random variable, say X, belonging to a set X , with an a-priori distribution pX(x).
The variable X can be discrete or continuous, and the a-priori distribution can be either
given or assigned by us.1 We do not observe the instance x directly, but only through an
observation y ∈ Y . That is, we observe a realization y of a random variable Y, related
to x by a known probabilistic mapping pY|X(y|x). All possible observations fall into an
observation-space Y . The variable Y can be discrete or continuous. Our goal is to design
an estimator for X. The entire set-up is depicted in Fig. 3.1.

Definition 3.1 (Estimator). An estimator is function from the observation-space Y to
the variable-space X , and is denoted x̂(y). With every element y ∈ Y we associate a
unique element x̂(y) ∈ X . An estimator is designed so as to minimize an expected cost2

C = EX,Y{c(X, x̂(Y))} (3.1)

=
∫
X

∫
Y

c(x, x̂(y))pX,Y(x, y)dx dy (3.2)

=
∫
Y

pY(y)
∫
X

c(x, x̂(y))pX|Y(x|y)dx︸ ︷︷ ︸
C(y)

dy, (3.3)

where c(·) is a cost function from X × X → R, and depends on the specific problem.

1 We will not go into the debate on Bayesian versus non-Bayesian estimation.
2 Integrals should be replaced by summations, where appropriate.

3.2 Bayesian estimation 21

We will consider only cost functions for which c(x, x̂(y)) ≥ 0. In that case, the expected
cost is minimized by minimizing the integrand

C(y) =
∫
X

c(x, x̂(y))pX|Y(x|y)dx. (3.4)

Terminology
For a given observation y, pY|X(y|x) is a function of x, and is known as the likelihood
function. Note that the likelihood function is not a distribution since

∫
pY|X(y|x)dx is

not necessarily equal to unity. On the other hand, for a fixed y, pX|Y(x|y) is a distribution
and is known as the a-posteriori distribution (of x).

3.2.2 Estimators for continuous variables

When X is a continuous random variable, the most important estimators are the minimum-
mean-squared-error (MMSE) estimator, the linear-MMSE estimator, and the maximum
a-posteriori (MAP) estimator.

3.2.2.1 The MMSE estimator
A natural cost function is one where we increase the cost proportionally to the squared
distance between x and x̂(y):

c(x, x̂(y)) = ‖x − x̂(y)‖2 (3.5)

= (x − x̂(y))T(x − x̂(y)). (3.6)

Taking the derivative of C(y)with respect to x̂ and equating to zero gives us (under some
mild conditions)

x̂(y) =
∫
X

xpX|Y(x|y)dx. (3.7)

In other words, the MMSE estimate is given by the mean of the a-posteriori distribution
pX|Y(x|y).

Example 3.1 (Gaussian case). When X and Y are jointly Gaussian, we can write Z =
[XTYT]T, where

z ∼ Nz(m,�)

with m = [mT
X mT

Y]T and

� =
[
�XX �XY

�T
XY �YY

]
.

Here,�XY = E{(X−mX)(Y−mY)
T},�XX = E{(X−mX)(X−mX)

T}, and similarly
for �YY . The a-posteriori distribution is given by

pX|Y(x|y) = Nx(mX |Y (y),�X |Y),

22 Estimation theory and Monte Carlo techniques

where (see appendices in Chapter 15)

mX |Y (y) = mX +�XY�
−1
YY (y −mY)

�X |Y = �XX −�XY�
−1
YY �

T
XY .

It then follows that the MMSE estimate of x is

x̂(y) = mX +�XY�
−1
YY (y −mY).

It is important to note that the estimator is a linear function of the observation y.

3.2.2.2 The linear MMSE estimator
As the example in the previous section indicates, the MMSE estimator is a linear function
of the observation when X and Y are jointly Gaussian. When X and Y are not jointly
Gaussian, we could still try to find the best linear estimator (best in an MMSE sense),
that is, an estimator of the form

x̂(y) = BTy + d. (3.8)

To fix B and d, this estimator should have the minimum mean-squared error among all
linear estimators. It turns out that x̂(y) is given by

x̂(y) = mX +�XY�
−1
YY (y −mY). (3.9)

This estimator is the linear-MMSE (L-MMSE) estimator.

Example 3.2 (The linear model). Consider the following model, with a linear
relationship between x and y:

y = Hx + n.

H is a known matrix, x ∼ pX(·), and n ∼ pN(·), zero-mean, with covariance matrix
�NN . Furthermore, N is independent from X. Let us determine the L-MMSE estimate of
x from y. We know that

x̂(y) = mX +�XY�
−1
YY (y −mY).

Now, mY = HmX and �XY = �XX HT, while

�YY = E

{
(HX + N−HmX)(HX + N−HmX)

T
}

= H�XX HT +�NN .

This all leads to the following L-MMSE estimate of x:

x̂(y) = mX +�XX HT(H�XX HT +�NN)
−1(y −HmX).

3.2 Bayesian estimation 23

3.2.2.3 The MAP estimator
The maximum a-posteriori (or MAP) estimator is based on the following cost function,
for an arbitrarily small δ > 0:

c(x, x̂(y)) =
{

0 ‖x − x̂(y)‖ < δ

1 else
(3.10)

so that

C(y) =
∫
X

c(x, x̂(y))pX|Y(x|y)dx (3.11)

= 1−
∫
X
(1− c(x, x̂(y)))pX|Y(x|y)dx (3.12)

= 1−
∫ x̂(y)+δ

x̂(y)−δ
pX|Y(x|y)dx. (3.13)

Hence, we need to maximize the second term with respect to the function x̂(y) to minimize
the expected cost. On letting δ→ 0, we find that the cost is minimized when x̂(y) is the
maximum of pX|Y(x|y). This explains the name maximum a-posteriori estimation:

x̂(y) = arg max
x∈X

pX|Y(x |y). (3.14)

Note that, when X and Y are jointly Gaussian, pX|Y(x |y) is a Gaussian distribution, so
its mode coincides with its mean. In other words, the MAP estimate coincides with the
MMSE estimate.

Example 3.3 (Coin tossing). Suppose that we have a coin with bias x (the probability
of heads is x and the probability of tails is 1− x). We toss the coins N times and observe
the outcome y, a sequence of heads and tails. We wish to estimate x. We see that the
likelihood is given by pY|X (y|x) = (1− x)NH xNT , where NH (NT) is the number of times
heads (tails) appears in y. Owing to Bayes’ rule, we find that

pX |Y(x|y) = CypX (x)(1− x)NH xNT

for some constant Cy (constant in the sense that it does not depend on x). The MAP
estimate of x is given by

x̂(y) = arg max
x∈[0,1] pX (x)(1− x)NH xNT .

24 Estimation theory and Monte Carlo techniques

Let us set pX (x) to a uniform distribution within some interval
[

1
2 − ε, 1

2 + ε
]
. The MAP

estimate is given by

x̂(y) =




1
2 − ε 1

2 − ε > NH/N ,

NH/N
1
2 − ε < NH/N < 1

2 + ε,
1
2 + ε NH/N > 1

2 + ε.

When ε→ 1
2 , we find the more conventional estimate

x̂(y) = NH

N
.

3.2.3 Estimators for discrete variables

When X is a discrete random variable, it is meaningful to say that an estimate is either
right or wrong. Furthermore, the set X may be an abstract beast without much structure,
such that the concept of distance (which we used for the MMSE estimator) might not
exist (consider the set X = {banana, cow, Stata Center}, for instance). In any case, the
cost C(y) can be written as

C(y) =
∑
x∈X

c(x, x̂(y))pX|Y(x|y). (3.15)

Suppose that we choose the following cost function: we assign a cost 1 when x̂(y) �= x
and 0 otherwise. Such a cost function is always meaningful, no matter what X is. This
leads to

C(y) = 1− pX|Y(x̂(y)|y). (3.16)

Hence, the cost is minimized when

x̂(y) = arg max
x∈X

pX|Y(x|y). (3.17)

We have found again the MAP estimator. In this case the expected cost C can be
interpreted as an error probability. This can be seen as follows:

C =
∑
x∈X

∫
Y

c(x, x̂(y))pX,Y(x, y)dy (3.18)

=
∑
x∈X

pX(x)
∫
Y

c(x, x̂(y))pY|X(y|x)dy (3.19)

=
∑
x∈X

pX(x)
∫
Y(x̄)

pY|X(y|x)dy︸ ︷︷ ︸
Pe(x)

(3.20)

3.3 Monte Carlo techniques 25

where, for a given x, Y(x̄) is the part of the observation-space Y for which the estimator
chooses an estimate x̂ different from x. Now, Pe(x) is clearly the probability of making
an estimation error, given that x is the correct value: it is the probability of y falling
within the region Y(x̄), given that x is the correct value. Hence, the expected cost is the
expected error probability: C = EX{Pe(X)}.

3.3 Monte Carlo techniques

While Bayesian estimation clearly depends on the possibility of determining the mode
(for MAP) or the mean (for MMSE) of the a-posteriori distribution pX|Y(x|y), this is in
general not an easy task. It often requires integration of strange functions and solution
of optimization problems well beyond the means of classical methods. Monte Carlo
techniques form an attractive and powerful alternative to these classical methods, by
representing distributions as a list of samples. Integration and optimization are based not
on the entire distribution, but only on the samples.

In this section we will introduce the concept of a particle representation as a way to
represent a distribution by a finite list of samples. Samples are obtained by sampling
from an appropriate distribution. We will discuss several sampling techniques, including
importance sampling and Gibbs sampling. Many other sampling techniques exist, but
are beyond the scope of this book. The interested reader can consider [42–44] for further
details.

3.3.1 Particle representations

3.3.1.1 Principles
A particle representation is a way to represent a distribution by a list of samples. The
idea of particle representations is best understood through an example.

Example 3.4 (Monte Carlo integration). Suppose that we have a continuous random
variable Z with an associated distribution pZ(z), and our goal is to determine3

I = EZ{ f (Z)}

for some real-valued function f (z). Let us draw L independent samples from pZ(z), say
z(1), . . . , z(L). We can then approximate I by IL, where

IL = 1

L

L∑
l=1

f
(

z(l)
)

.

3 For instance, pZ(z) could be an a-posteriori distribution, and f (z) = z, in which case I is an MMSE
estimate.

26 Estimation theory and Monte Carlo techniques

IL is an approximation of I in the sense that (i) EZ{IL} = I and (ii) EZ{(IL − I)2}
decreases as L increases. This is seen as follows:

EZ{IL} = EZ

{
1

L

L∑
l=1

f (Z(l))

}

= EZ { f (Z)}.

Furthermore, let us introduce σ 2
f = EZ{(f (Z))2} − I2. Then, since the samples are

independent,

EZ

{
(IL − I)2

}
= σ 2

f

L
.

In other words, the variance of the estimation error decreases with L. The samples
z(1), . . . , z(L) can be drawn without knowing the function f (·). The samples can thus
be seen as a representation of pZ(z). Note that, when the samples are not drawn
independently, EZ {IL} = I , but the variance of the estimation error is usually much
larger than with independent sampling (for a fixed L).

We see that a distribution can be represented by a finite number of independent samples
in a meaningful way. This idea is generalized as follows.

Definition 3.2 (Particle representation). We are given a random variable Z, defined
over a set Z . A particle representation of a distribution pZ(z) is a set of L couples
(w(l), z(l)), with

∑
l w(l) = 1 such that, for any integrable function f (z) from Z → C,

I = EZ { f (Z)} (3.21)

can be approximated by

IL =
L∑

l=1

w(l)f
(

z(l)
)

. (3.22)

The approximation should be understood as IL → I almost everywhere as L→+∞. We

use the following notation: RL(pZ(·)) =
{
(w(l), z(l))

}L
l=1 where z(l) is named a properly

weighted sample with weight w(l).

Note that we do not require the samples to be independent, and we make no claim as to
unbiasedness, or variance of the estimation error. How samples and weights should be
chosen will be the topic of Sections 3.3.2–3.3.3.

3.3 Monte Carlo techniques 27

3.3.1.2 Alternative notations
Considering (3.21) and (3.22), it is meaningful to introduce an alternative notation for
continuous Z:

pZ(z) ≈
L∑

l=1

w(l)δ
(

z − z(l)
)

, (3.23)

where δ(·) is the Dirac distribution. On the other hand, for discrete Z, we can write

pZ(z) ≈
L∑

l=1

w(l)I
{

z = z(l)
}

, (3.24)

where, for a proposition P, I {P} is the indicator function, defined as I {P} = 1
when P is true and I {P} = 0 when P is false. The notation “≈” in (3.23)–(3.24)
should be understood as follows: substitution of (3.23) or (3.24) into (3.21) yields the
approximation (3.22). It will turn out to be convenient to use a more general notation by
introducing the equality function:

= (x1, . . . , xD) =
{ ∏D−1

k=1 δ(xk+1 − xk) xk continuous∏D−1
k=1 I

{
xk+1 = xk

}
xk discrete

(3.25)

so that we can write

pZ(z) ≈
L∑

l=1

w(l) =
(

z, z(l)
)

(3.26)

both for continuous and for discrete variables.

3.3.1.3 Fun with particle representations
Some important uses for particle representations are the following.

• Determining marginals: if we have a particle representation of a distribution of

Z = [Z1, Z2, Z3], say RL(pZ(·)) =
{(

w(l),
(

z(l)1 , z(l)2 , z(l)3

))}L

l=1
, we immediately have

particle distributions of the marginals, for instance RL(pZ1(·)) =
{(

w(l), z(l)1

)}L

l=1
and

RL(pZ1,Z3(·, ·)) =
{(

w(l),
(

z(l)1 , z(l)3

))}L

l=1
.

• Resampling: given a particle representation RL(pZ(·)) =
{(

w(l), z(l)
)}L

l=1, we can
consider it as a probability mass function and draw samples from it. This leads to a

new particle representation RK (pZ(·)) =
{(

1/K , z(l)
)}K

l=1, where K can be greater or
smaller than L.
• Regularization: a particle representation can be converted to a smooth density

function by a process called regularization or density estimation. Given a particle
representation

RL(pZ(·)) =
{(

w(l), z(l)
)}L

l=1
,

28 Estimation theory and Monte Carlo techniques

we approximate pZ(·) by a Gaussian mixture4

pZ(z) ≈
L∑

l=1

w(l)Nz

(
z(l),�

)
. (3.27)

The covariance matrix is a diagonal matrix� = σ 2ID, where D is the dimensionality
of Z. The variance σ 2 is referred to as the bandwidth or size in density estimation. In
our case [45], a good choice for the variance is σ 2 = (4/(L(D + 2)))1/(D+4).

3.3.2 Sampling for small-dimensional systems

3.3.2.1 Introduction
While we now understand what a particle representation is, it is still unclear how
the samples and the weights should be selected. One possible way is to draw L
independent samples from pZ(z): z(1), . . . , z(L). This leads to the particle representation

RL(pZ(·)) =
{
(1/L, z(l))

}L
l=1. Unfortunately, it is generally hard to sample from an

arbitrary distribution. Secondly, when we are interested in computing an expectation
EZ { f (Z)}, it may be wise to select the samples only where f (z) takes on significant
values. Otherwise, many samples will not contribute to the summation in (3.22). There
exists a method that deals with these problems, known as importance sampling.

3.3.2.2 Importance sampling
Importance sampling is useful in the following scenarios:

• sampling from pZ(z) is difficult; and
• pZ(z) is not well matched to f (z). This occurs for instance when f (z) takes on

significant values only for those z where pZ(z) is very small. Then, for many samples,
f (z(l)) may be negligible, and a lot of computation is wasted.

Let us look at a short example.

Example 3.5 (Sampling from an a-posteriori distribution). In an estimation problem,
we observe y. We know the a-priori distribution pX(x) the likelihood function pY|X(y|x).
For a given observation y, we wish to find a particle representation of the a-posteriori
distribution pX|Y(x|y). Bayes’ rule tell us that

pX|Y(x|y) = pY|X(y|x)pX(x)
pY(y)

.

Note that y is fixed and that pY(y) does not depend on x. When X is discrete and of a
small dimensionality, we can find the pmf pX|Y(x|y) by simply computing the numerator

4 A mixture of other distributions (kernels) is also possible.

3.3 Monte Carlo techniques 29

for every x ∈ X , φ(xi) = pY|X(y|xi)pX(xi), so

pX|Y(x|y) = φ(x)∑
xi∈X φ(xi)

.

We can then sample from the pmf pX|Y(x|y). When X is continuous, it is not clear how
we can sample from pX|Y(x|y) since pY(y) is in general very hard to determine.

Importance sampling avoids these problems as follows. Our goal is to find a particle
representation of pZ(z) (the target distribution). Take any distribution qZ(z) from which
it is easy to sample (the importance sampling distribution). We introduce an additional
function w(z) = pZ(z)/qZ(z), and restrict qZ(z) to being non-zero where pZ(z) is
non-zero. We can then write

I =
∫ +∞
−∞

f (z)pZ(z)dz (3.28)

=
∫

f (z)w(z)qZ(z)dz∫
w(z)qZ(z)dz

. (3.29)

Let us now draw L iid samples from qZ(z), z(1), . . . , z(L) and approximate both the
numerator and the denominator using Monte Carlo integration:

I ≈ IL (3.30)

=
1

L

L∑
l=1

f
(
z(l)
)

w
(
z(l)
)

1

L

L∑
k=1

w
(
z(l)
) (3.31)

=
L∑

l=1

w(l)f
(

z(l)
)

, (3.32)

where

w(l) = w
(
z(l)
)

L∑
k=1

w
(
z(l)
) . (3.33)

It can then be shown that RL(pZ(·)) =
{(

w(l), z(l)
)}L

l=1. We will often write

w(l) ∝ pZ
(
z(l)
)

qZ
(
z(l)
) , (3.34)

which describes the weight up to a normalization constant (which can be determined
once all the samples have been drawn). Now we can select a suitable qZ(z) so that most

30 Estimation theory and Monte Carlo techniques

of the samples have a non-zero weight. It is clear that we have solved our two problems:
we don’t need to sample from pZ(z) directly, and we can tune qZ(z) according to f (z).

3.3.2.3 Importance sampling revisited
While importance sampling solves our two original problems, we get a new problem in
return: we need to know pZ(z) and qZ(z) analytically in order to compute w(z). In many
cases we know pZ(z) and qZ(z) only up to a constant:

pZ(z) = 1

Cp
p̃Z(z), (3.35)

qZ(z) = 1

Cq
q̃Z(z), (3.36)

where p̃Z(z) and q̃Z(z) are known analytically, and Cp and Cq are unknown constants.
We introduce w̃(z) = p̃Z(z)/q̃Z(z). Note that this function can be evaluated exactly for
any z. The weight of sample z(l) is given by

w(l) = w
(
z(l)
)

∑L
k=1 w

(
z(l)
) (3.37)

= w̃
(
z(l)
)

∑L
k=1 w̃

(
z(l)
) (3.38)

since the factor Cq/Cp cancels out in the numerator and the denominator. This implies
that we can use importance sampling without knowledge of the constants Cp and Cq!
Note that when pZ(z) = qZ(z) the weights are all equal to 1/L. The final algorithm is
described in Algorithm 3.1.

Algorithm 3.1 Importance sampling
1: for l = 1 to L do
2: draw z(l) ∼ qZ(z)
3: compute w(l) = p̃Z(z(l))/q̃Z(z(l))
4: end for
5: normalize weights

6: output: RL(pZ(·)) =
{
(w(l), z(l))

}L
l=1

Example 3.6. Let us return to our example where we wish to have a particle
representation of

pX|Y(x|y) = pY|X(y|x)pX(x)
pY(y)

∝ pY|X(y|x)pX(x).

3.3 Monte Carlo techniques 31

Let us draw L independent samples from the prior pX(x): x(1), . . . , x(L). The weight of
x(l) is then

w(l) ∝ pY|X
(
y
∣∣x(l)) pX

(
x(l)
)

pX
(
x(l)
)

= pY|X
(

y
∣∣∣x(l)).

Hence, after normalization of the weights, RL(pX|Y(· |y)) =
{
(w(l), x(l))

}L
l=1, for a fixed

observation y.

3.3.3 Sampling for large-dimensional systems

Importance sampling is useful when the dimensionality of Z is small. In large-
dimensional systems, importance sampling leads to unreliable representations because
most of the weights will be close to zero [46]. One of the most important techniques for
sampling from large-dimensional distributions is based on Markov chains. This leads to
a set of algorithms that fall under the umbrella of Markov-chain Monte Carlo (MCMC)
techniques. The MCMC approach dates back to the Second World War, and has been
used in a wide variety of engineering applications ever since. The theory behind MCMC
is too dense for our purpose, so we will only attempt to develop some intuition of MCMC,
without any claim to rigorousness. The interested reader is referred to [42–44,46–48] for
additional information. While many MCMC sampling techniques exist, we will focus
only on the well-known Gibbs sampler [49].

In this section, we will describe the concept of Markov chains and invariant
distributions. We then show how to sample from a Markov chain. Finally, we will describe
the Gibbs sampler. Our focus is on discrete random variables (both for convenience of the
exposition and because we will not require MCMC techniques for continuous random
variables in this book).

3.3.3.1 Markov chains
Consider a finite domain Z = {a1, . . . , aN }, containing N elements. A Markov chain is
a sequence Z0, Z1, . . . of random variables over Z , satisfying the Markov property

pZn|Z0...Zn−1(zn|z0, . . . , zn−1) = pZn|Zn−1(zn|zn−1). (3.39)

The set Z is known as the state space, while Zn is the state at time instant n, n ≥ 0. A
Markov chain is homogeneous when the transition probabilities pZn|Zn−1(zn|zn−1) do not
depend on the time instant n. In a homogeneous Markov chain, we can define a so-called
transition kernel

Q
(
z′|z) = pZn|Zn−1

(
z′|z). (3.40)

32 Estimation theory and Monte Carlo techniques

We will write the distribution of the state of the system at time n as pn(·). Suppose that
we are given an initial distribution p0(·), then the distribution of the state at time n = 1
is related to the distribution of the state at time 0 by

p1(z′) =
∑
z∈Z

Q(z′|z)p0(z). (3.41)

Let us represent the distribution pn(·) as an N ×1 column-vector pn, with [pn]i = pn(ai)

and the transition kernel Q(z′|z) as an N × N matrix matrix Q with [Q]ij = Q(ai
∣∣aj).

Note that the elements in pn always add up to unity, as do the columns of Q. This implies
that Q will have at least one eigenvalue equal to 1. We then have

pn = Qpn−1 (3.42)

= Qnp0. (3.43)

We say that a distribution p is invariant for a Markov chain when

p = Qp. (3.44)

In other words, it is a right eigenvector with eigenvalue +1. There exists at least one
such eigenvector. A distribution p is limiting for a Markov chain when it is invariant
and, for every initial distribution p0, p = Qnp0, for some finite n.

3.3.3.2 Sampling from Markov chains
Suppose that we have a target distribution pZ(z) we wish to draw samples from. We
write pZ(z) in vector notation p. Assume that we can find a transition kernel Q for which
p is a limiting distribution.

We draw z(0) from some initial distribution p0(·), then z(1) from Q(· ∣∣z(0)), then z(2)

from Q(· ∣∣z(1)), and so forth. After some time (known as the burn-in time), we will
eventually draw samples from the target distribution p. The samples are usually not
independent. Independent samples (or at least, approximately independent samples) can
be obtained by decimating the MCMC samples (i.e., discarding M − 1 out of every M
samples for some suitably large M ∈ N).

3.3.3.3 Gibbs sampling
Gibbs sampling is a very attractive technique by which to sample from a distribution
pZ(z), where Z is a D-dimensional random variable: Z = [Z1, Z2, . . . , ZD]. For
simplicity, let us focus on D = 3. It is easily verified that the following relations hold:

pZ1Z2Z3

(
z′1, z′2, z′3

)︸ ︷︷ ︸
pZ(z′)

= pZ3|Z1Z2

(
z′3
∣∣z′1, z′2

)
pZ2|Z1

(
z′2
∣∣z′1) pZ1

(
z′1
)

=
∑

z1z2z3

pZ1Z2Z3(z1, z2, z3)︸ ︷︷ ︸
pZ(z)

× pZ3|Z1Z2(z
′
3

∣∣z′1, z′2)pZ2|Z1Z3(z
′
2

∣∣z′1, z3)pZ1|Z2Z3(z
′
1|z2, z3)︸ ︷︷ ︸

Q(z′|z)

.

3.4 Main points 33

In other words, pZ(z) is an invariant distribution for the transition kernel

Q(z′1, z′2, z′3|z1, z2, z3) = pZ3|Z1Z2(z
′
3

∣∣z′1, z′2)pZ2|Z1Z3(z
′
2

∣∣z′1, z3)pZ1|Z2Z3(z
′
1|z2, z3).

For a given z1, z2, z3, sampling from the transition kernel is performed as follows:

• sample z′1 from pZ1|Z2Z3(· |z2, z3),
• sample z′2 from pZ2|Z1Z3(·

∣∣z′1, z3),
• sample z′3 from pZ3|Z1Z2(·

∣∣z′1z′2).

In other words, we need sample only from the conditional distributions. These one-
dimensional conditional distributions are commonly much easier to sample from than
the original D-dimensional distribution. Generalization to D > 3 is straightforward, and
is described in Algorithm 3.2. It turns out that (under some general conditions), pZ(z) is
a limiting distribution for the Markov chain.

Algorithm 3.2 Gibbs sampler

1: initialization: choose an initial state z(−Nburn−1)

2: for l = −Nburn to L do
3: for i = 1 to D do
4: draw z(l)i ∼ p

(
Zi

∣∣∣Z1:i−1 = z(l)1:i−1, Zi+1:D = z(l−1)
i+1:D

)
5: end for
6: end for
7: output: RL(pZ(·)) =

{
(1/L, z(l))

}L
l=1

3.4 Main points

In this chapter we have covered some basic ideas from Bayesian estimation theory. We
have described the maximum a-posteriori (MAP) and minimum-mean-squared-error
(MMSE) estimators. Estimation of both continuous and discrete random variables has
been treated. We can now confidently define estimators and formulate the corresponding
optimization problems for receivers in digital communications. This will be done in
Chapter 7. Since solving such optimization problems is generally intractable, we have
briefly covered some Monte Carlo techniques. Our focus was on particle representations,
importance sampling, and Gibbs sampling.

Now we will leave communication theory and estimation theory for an even more
abstract world, the world of factor graphs.

4 Factor graphs and the sum–product
algorithm

4.1 A brief history of factor graphs

Factor graphs are a way to represent graphically the factorization of a function. The
sum–product algorithm is an algorithm that computes marginals of that function by
passing messages on its factor graph. The term and concept factor graph were originally
introduced by Brendan Frey in the late 1990s, as a way to capture structure in statistical
inference problems. They form an attractive alternative to Bayesian belief networks and
Markov random fields, which have been around for many years. At the same time, factor
graphs are strongly linked with coding theory, as a way to represent error-correcting
codes graphically. They generalize concepts such Tanner graphs and trellises, which are
the usual way to depict codes. The whole idea of seeing a code as a graph can be traced
back to 1963, when Robert Gallager described low-density parity-check (LDPC) codes
in his visionary PhD thesis at MIT. Although LDPC codes remained largely forgotten
until fairly recently, the idea of representing codes on graphs was not, and led to the
introduction of the concept trellis some ten years later, as well as Tanner graphs in 1981.

To get an idea of how factor graphs came about, let us take a look at the following
timeline. It represents a selection of key contributions in the field. I have divided them
into three categories: (S) for works on statistical inference, (C) for works on coding
theory, and (G) for works linking these two fields.

• 1963: (C) R. Gallager, “Low density parity check codes,” MIT. In his PhD thesis,
Gallager describes the relationships between coded bits using a graphical model [50].
• 1971: (S) F. Spitzer, “Random fields and interacting particle systems,” MAA Summer

Seminar Notes. This is probably the first work on Markov random fields [51].
• 1973: (C) G. D. Forney, “The Viterbi algorithm,” Proceedings of the IEEE. Here,

Forney introduces the concept “trellis” as a way to capture the temporal behavior of
a finite-state machine [52].
• 1980: (S) R. Kindermann and J. Snell, Markov Random Fields and Their Applications,

American Mathematical Society. This book provides a readable tutorial on Markov
random fields [53].
• 1981: (C) M. Tanner, “A recursive approach to low complexity codes,” IEEE

Transactions on Information Theory. Tanner describes what are now known as Tanner
graphs: a bipartite graph representation of codes using subcodes [54].

36 Factor graphs and the sum–product algorithm

• 1988: (S) S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with
probabilities on graphical structures and their application to expert systems,” Journal
of the Royal Statistical Society. In this paper, a type of Bayesian network is described,
explicitly taking into account causality [55].
• 1988: (S) J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan-Kaufmann.

This seminal work on probabilistic reasoning and inference describes Bayesian
networks as acyclic directed graphs [56].
• 1996: (G) N. Wiberg, “Codes and decoding on general graphs,” PhD Thesis, Linköping

University. Wiberg unites Forney’s trellises and Tanner graphs with Bayesian belief
networks. In this remarkable work, he describes the sum–product algorithm as a
message-passing algorithm operating over a graph. His algorithms can be specialized
to the Viterbi algorithm, to the LDPC decoding algorithm, and to the turbo-decoding
algorithm [57].
• 1998: (G) B. J. Frey, Graphical Models for Machine Learning and Digital

Communication, MIT Press. Frey introduces the term factor graph. In this book, he
gives an insightful overview of inference on graphical models [5].
• 2000: (G) S. M. Aji and R.J. McEliece, “The Generalized Distributive Law,” IEEE

Transactions on Information Theory. A general framework for marginalizing a
function on the basis of a graphical model is presented. This landmark paper employs
a type of graphical model called junction trees [4].
• 2001: (G) F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor Graphs and

the Sum–product Algorithm,” IEEE Transactions on Information Theory. A very
readable and insightful tutorial on factor graphs. Complementary to the work of Aji
and McEliece. In many ways the inspiration for this book [58].
• 2001: (C) G. D. Forney, “Codes on Graphs: Normal Realizations,” IEEE Transactions

on Information Theory. Forney introduces normal factor graphs [59].
• 2004: (G) H.-A. Loeliger, “An Introduction to factor graphs,” IEEE Signal Processing

Magazine. Factor graphs are becoming mainstream [60].
• 2005: (G), J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free energy

approximations and generalized belief propagation algorithms,” IEEE Transactions
on Information Theory. This remarkable paper reveals an important link between
free-energy minimization in statistical physics and the sum–product algorithm.

This brief timeline is woefully incomplete. Important contributions in this field were
made (and are being made) by M. I. Jordan and M. Wainwright, K. Murphy, R. Kötter,
D. MacKay, and many, many others.

At this point, we are ready to embark on our journey into the world of factor graphs.
I have chosen to give a bottom-up view of factor graphs. While this is somewhat less
elegant than the conventional top-down derivation, I hope that it will provide more
insight. This chapter is structured as follows.

• We will start with a basic introduction of factor graphs and the sum–product algorithm
in Section 4.2. This section is intended to give the reader the possibility to skip the
remainder of this chapter and move on to Chapter 5.

4.2 A ten-minute tour of factor graphs 37

• In Section 4.3 we explain the basics of graphs, factorizations, and factor graphs in
detail.
• With this knowledge, we then introduce the sum–product algorithm in Section 4.4 as

an efficient way to compute the marginals of a function. We also show how the sum–
product algorithm can be seen as a message-passing algorithm on the corresponding
factor graph.
• In Section 4.5 Forney’s normal factor graphs will be introduced. They are equivalent

to the more conventional-style factor graph, but have some notational advantages.
• Some of the finer points of factor graphs will be discussed in Section 4.6.
• Finally, in Section 4.7, the sum–product algorithm is extended to a more general

setting, and the max-sum algorithm is derived.

Comment
The reader should be warned that parts of this chapter are somewhat abstract. Sections
4.4.2, 4.4.3, and 4.4.4 are marked with asterisks, and can be skipped without losing any
essential information. The primary goal of this chapter is to familiarize the reader with
factor graphs and the sum–product algorithm.

4.2 A ten-minute tour of factor graphs

In this section, we will cover the essentials of factor graphs and the sum–product
algorithm (SPA). The remainder of this chapter delves deeper into various aspects, but
is not strictly necessary to understand the rest of the book.

4.2.1 Factor graphs

Let us dive right in and introduce the concept of (normal) factor graphs. Suppose that
we have a function f : X1 × X2 × · · · × XN → R, which is factorized into K factors,

f (x1, x2, . . . , xN) =
K∏

k=1

fk(sk), (4.1)

where sk ⊆ {x1, . . . , xN } is the kth variable subset, and fk(·) is a real-valued function.
We create a factor graph of this factorization as follows. We create a node (drawn as a
circle or a square) for every factor, and an edge (drawn as a line) for every variable. We
attach a certain edge to a certain node when the corresponding variable appears in the
corresponding factor. Since an edge can be attached only to two nodes, we need to take
special measures for variables that appear in more than two factors. For a variable (say
Xl) that appears in D > 2 factors, we introduce a special equality node and D dummy
variables X (1)

l , . . . , X (D)
l . For each of the dummy variables we create an edge and attach

it to the equality node. The equality node corresponds to the following function (see also

38 Factor graphs and the sum–product algorithm

X (1)
1 X (2)

1

X1
(3)

X2

X3

X4
fA

fB

fC

Figure 4.1. A normal factor-graph representation of the factorization
fA(x1) fB(x1, x2) fC(x1, x3, x4).

Section 3.3.1 in Chapter 3):

= (x(1)l , . . . , x(D)l) =
{∏D−1

k=1 δ(x
(k+1)
l − x(k)l) xl continuous,∏D−1

k=1 I{x(k+1)
l = x(k)l } xl discrete.

(4.2)

Example 4.1. Consider the function f (x1, x2, x3, x4, x5)with the following factorization:

f (x1, x2, x3, x4) = fA(x1) fB(x1, x2) fC(x1, x3, x4).

The factor graph is depicted in Fig. 4.1. There is a node for every factor (fA, fB, and fC)
as well as an equality node for variable X1.

4.2.2 Marginals and the sum–product algorithm

Our goal is to compute marginals of the function f (·) with respect to the N variables.
The marginal of Xn is given by

gXn(xn) =
∑
∼{xn}

f (x1, x2, . . . , xN), (4.3)

where the notation ∼{xn} refers to all the variables except xn. In other words, this
marginalization requires the summation over all possible values of all variables except
xn. To avoid this cumbersome computation, we make use of the factorization (4.1). The
N marginals can be determined in a computationally attractive way by passing messages
over the edges of the factor graph, according to the SPA. These messages are functions
of the corresponding variables. The details of the SPA can be found in Algorithm 4.1.

In Algorithm 4.1, we treat the equality nodes just like any other factor. It should be
noted that, to compute the marginal of a variable that appears in D > 2 factors, we can
simply compute the marginal of any of the D corresponding dummy variables.

4.2 A ten-minute tour of factor graphs 39

X1
(1) X1

(2)

X1
(3)

X2

X3

X4
fA

fB

fC

Figure 4.2. The sum–product algorithm (SPA): initialization.

Algorithm 4.1 The sum–product algorithm
1: Initialization ∀ nodes fk connected to a single edge Xm, transmit message
µfk→Xm(xm) = fk(xm), ∀xm ∈ Xm

2: Initialization ∀ edges Xn connected to a single node fl , transmit message
µXn→fl (xn) = 1, ∀xn ∈ Xn

3: repeat
4: select a node fk (say fk(x1, x2, . . . , xD), connected to D edges) which has received

incoming messages
{
µXl→fk (xl)

}
on at least D − 1 edges

5: compute the outgoing message on the remaining edge on the basis of fk and the
incoming messages on the other edges:

µfk→Xm(xm) =
∑
∼{xm}

fk(x1, x2, . . . , xD)
∏
n�=m

µXn→fk (xn)

∀xm ∈ Xm

6: until all messages are computed
7: for n = 1 to N do
8: select any node fk attached to edge Xn

9: the marginal of Xn is given by

gXn(xn) = µfk→Xn(xn)µXn→fk (xn)

∀xn ∈ Xn

10: end for

Example 4.2. Consider again the function f (x1, x2, x3, x4, x5) with the following
factorization:

f (x1, x2, x3, x4) = fA(x1) fB(x1, x2) fC(x1, x3, x4).

The factor graph is depicted in Fig. 4.1. Assume that the variables can take on only the
values+1 and−1, so that Xk = {−1,+1}, k = 1, 2, 3, 4. This implies that all messages
can be represented by vectors with two elements: the value of the message in−1 and the
value of the message in +1. The SPA proceeds as follows:

40 Factor graphs and the sum–product algorithm

(1) We initialize with the message µ
fA→X (1)

1
(x1)= fA(x1), the message µX2→fB(x2)=1,

the messageµX3→fC(x3) = 1 , and the messageµX4→fC(x4) = 1. These four messages
are shown in Fig. 4.2. Observe that the messages can be written in two ways. For
instance, µ

fA→X (1)
1
(x1) can be written as µ

X (1)
1 →=

(x1).

(2) We can now compute that the message µ
fB→X (3)

1
(x1) is

µ
fB→X (3)

1
(x1) =

∑
x2

fB(x1, x2)µX2→fB(x2)

= fB(x1,−1)µX2→fB(−1)+ fB(x1, 1)µX2→fB(1)

for x1 ∈ {−1,+1}. Similarly, µ
fC→X (2)

1
(x1) is given by

µ
fC→X (2)

1
(x1) =

∑
x3,x4

fC(x1, x3, x4)µX3→fC(x3)µX4→fC(x4)

for x1 ∈ {−1,+1}. These two messages are depicted in Fig. 4.3.
(3) In the third phase, we can compute all outgoing messages of the equality node:

µ
=→X (3)

1
(x1) =

∑
x(1)1 ,x(2)1

= (x(1)1 , x(2)1 , x1)µX (1)
1 →=

(
x(1)1

)
µ

X (2)
1 →=

(
x(2)1

)

= µ
X (1)

1 →=
(x1)µX (2)

1 →=
(x1)

and, similarly,

µ
=→X (2)

1
(x1) = µX (1)

1 →=
(x1)µX (3)

1 →=
(x1)

and

µ
=→X (1)

1
(x1) = µX (2)

1 →=
(x1)µX (3)

1 →=
(x1).

We see that, for equality nodes, an outgoing message over a certain edge is simply
the pointwise multiplication of the incoming messages on all other edges. The three
messages are depicted in Fig. 4.4.

(4) In the fourth phase, we compute the messages µfC→X3(x3), µfC→X4(x4), and
µfB→X2(x2), as shown in Fig. 4.5.

X1
(1) X1

(2)

X1
(3)

X2

X3

X4
fA

fB

fC

Figure 4.3. The sum–product algorithm (SPA): message computation.

4.2 A ten-minute tour of factor graphs 41

X1
(1) X1

(2)

X1
(3)

X2

X3

X4
fA

fB

fC

Figure 4.4. The sum–product algorithm (SPA): message computation.

X1
(1) X1

(2)

X1
(3)

X2

X3

X4
fA

fB

fC

Figure 4.5. The sum–product algorithm (SPA): message computation.

(5) At this point all the messages have been computed and the SPA terminates. We can
now compute the marginals of the four variables. For instance

gX3(x3) = µfC→X3(x3)µX3→fC(x3)

for x3 ∈ {−1,+1} and

gX1(x1) = µX (k)
1 →=

(x1)µ
=→X (k)

1
(x1)

for x1 ∈ {−1,+1}, where we can select any k ∈ {1, 2, 3}.
Let us focus on X3 and verify that the correct marginals are computed. Multiplying the
two messages on edge X3 gives us

µfC→X3(x3) µX3→fC(x3)︸ ︷︷ ︸
=1

= µfC→X3(x3)

=
∑
x1,x4

fC(x1, x3, x4)µX (2)
1 →fC

(x1) µX4→fC(x4)︸ ︷︷ ︸
=1

,

where

µ
X (2)

1 →fC
(x1) = µX (1)

1 →=
(x1)µX (3)

1 →=
(x1)

= fA(x1)
∑
x2

fB(x1, x2) µX2→fB(x2)︸ ︷︷ ︸
=1

,

42 Factor graphs and the sum–product algorithm

so that

µfC→X3(x3)µX3→fC(x3) =
∑
x1,x4

fC(x1, x3, x4)fA(x1)
∑
x2

fB(x1, x2)

= gX3(x3).

Comments
• It can be shown that the SPA computes the correct marginals when the factor graph

has no cycles (in other words, when the factor graph is a tree). When cycles are
present, the SPA runs into problems: due to the cyclic dependencies, the SPA has
no natural initialization or termination. Initialization can be forced by introducing
artificial messages, while termination can be achieved by simply aborting the SPA
after some time. Unfortunately, the SPA is no longer guaranteed to give the correct
marginals (see Section 4.6.6).
• The notions of “sum” and “product” can be generalized as long as certain conditions

are satisfied. This leads to algorithms such as the max-sum algorithm (see Section 4.7).

At this point the reader can move on to the next chapter. The remainder of this chapter is
devoted to the intricacies of factor graphs and the sum–product algorithm and is intended
as background information.

4.3 Graphs, factors, and factor graphs

As the title may suggest, this section consists of three parts: we begin with a brief revision
of some basic graph theory. This is followed by the introduction of functions and their
factorizations. We end by combining these, resulting in factor-graph representations of
factorizations.

4.3.1 Some basic graph theory

Definition 4.1 (Graph). A graph is a pair G = (V , E) of sets such that E ⊆ V×V . The
elements in E are (unordered) two-element subsets of V ; V represents the set of vertices1

of the graph, while E is the set of edges. Graphs are usually depicted by drawing a point,
circle or square for every vertex v ∈ V , and a line for every edge e ∈ E connecting the
two corresponding circles. We will restrict our attention to graphs for which there is at
most one edge between any two vertices.

Definition 4.2 (Adjacency). Given an edge e ∈ E, there are two vertices v1, v2 such
that e = (v1, v2). We say that v1 and v2 are adjacent to one another. The set of vertices
adjacent to vertex v is denoted A (v).

1 Most of the time, I will use the term “node” instead of “vertex.” My apologies to graph theorists.

4.3 Graphs, factors, and factor graphs 43

Definition 4.3 (Degree). The degree of a vertex is the number of vertices adjacent
to it.

Definition 4.4 (Incidence). Given an edge e ∈ E, there are two vertices v1, v2 such
that e = (v1, v2). We say that v1 and v2 are incident with e. At the same time, e is said
to be incident with v1 and v2. The set of vertices incident with an edge e is denoted
I (e). Similarly, the set of edges incident with a vertex v is denoted I (v). Clearly,
v ∈ I (e) ⇐⇒ e ∈ I (v).
Definition 4.5 (Bipartite graph). A bipartite graph is a graph in which the set of
vertices V can be partitioned into two subsets (classes), VX and VY , such that E ⊆
VX × VY . In other words, there are no edges between vertices of the same class.

Example 4.3. In Fig. 4.6 we show a graph G = (V , E) with vertex set V =
{v1, v2, . . . , v7} and edge set E = {(v1, v5) , (v1, v7) , (v6, v5) , (v6, v7) , (v4, v3) , (v4, v2)}.
There are two classes of vertices, VX = {v1, v4, v6} (drawn as circles) and VX =
{v2, v3, v5, v7} (drawn as squares). Since there are only edges between vertices of different
classes, the graph is bipartite. Clearly, v1 and v5 are adjacent to the edge (v1, v5), the
degree of vertex v1 is 2, and I (v1) = {(v1, v5) , (v1, v7)}. In Fig. 4.7 an equivalent graph,
obtained by moving the vertices is shown. Observe that the figure represents the same
graph G as in Fig. 4.6.

VX VY

�1

�6

�4 �3

�5

�2

�7

Figure 4.6. A bipartite graph with seven vertices and six edges.

�1 �2

�3

�4�5

�6�7

Figure 4.7. A different depiction of the same bipartite graph as in Fig. 4.6.

44 Factor graphs and the sum–product algorithm

Definition 4.6 (Path). A path is a sequence of vertices, with each couple of successive
vertices belonging to the set of edges E. A path of length N consists of N + 1 vertices
and is written as p = vk1 , vk2 , . . . , vkN+1 , with

(
vkl , vkl+1

) ∈ E.

Definition 4.7 (Cycle). Given a path p of length N (N > 1) in a graph G, a cycle in
G can be formed when

(
vkN+1 , vk1

) ∈ E, by adding v1 to the path. The length of the cycle
is N + 1. A graph without cycles is called acyclic.

Definition 4.8 (Connected graph). A graph G is said to be connected if there exists a
path between any two vertices.

Definition 4.9 (Forests, trees, and leaves). A graph without cycles is called a forest. A
connected graph without cycles is a called a tree. Vertices of degree 1 are called leaves.

Example 4.4. The graph in Fig. 4.7 is clearly disconnected: there exists no path between
vertex v4 and v1. There is a cycle between vertices v1, v5, v6, and v7. The graph is not a
tree, nor is it a forest. In Fig. 4.8 we show a connected graph without cycles (a tree). The
graph is connected since there is a path between any two vertices. A path (p = v1, v3, v2)
between v1 and v2 is shown in bold. In Fig. 4.9, a graph with a cycle is shown. This
graph is again connected, but it is not a tree. However, we can still consider v1 as a
leaf-vertex, since it has degree 1.

4.3.2 Functions, factorizations, and marginals

In this section we will introduce the concept of acyclic factorizations of a function.
Consider a function f : X1 × X2 × · · · × XN → R. We will write the names of the N
variables in capitals and any instantiation of these variables by small letters. The function
(the abstract entity) is written as

f (X1, X2, . . . , XN) (4.4)

and the function evaluated in X1 = x1, . . . , XN = xN as

f (X1 = x1, X2 = x2, . . . , XN = xN). (4.5)

For notational convenience we will usually write (4.5) as f (x1, x2, . . . , xN). Now
consider a factorization of the function (4.4) into K factors:

f (X1, X2, . . . , XN) =
K∏

k=1

fk(Sk), (4.6)

where Sk ⊆ {X1, . . . , XN } is the kth variable subset, and fk(·) is a real-valued function.
A given function f (·) may have many such factorizations. There exists always a trivial
factorization with one factor (f (·) itself) and S1 = {X1, . . . , XN }.

4.3 Graphs, factors, and factor graphs 45

�1

�2
�3

�4 �5

Figure 4.8. A graph that is a tree. The path p = v1, v3, v2 of length 2 is shown in bold.

�1

�2
�3

�4 �5

Figure 4.9. A graph that is not a tree. The cycle of length 4 is shown in bold.

Definition 4.10 (Marginal). The marginal of f (·) with respect to variable Xn (often
simply called the marginal of Xn) is a function from Xn to R and is denoted by gXn(Xn). It
is obtained by summing out all other variables. More specifically, the marginal evaluated
in xn ∈ Xn is given by

gXn(xn) =
∑

x1∈X1

. . .
∑

xn−1∈Xn−1

∑
xn+1∈Xn+1

. . .
∑

xN∈XN

f (X1 = x1, . . . , Xn = xn, . . . , XN = xN).

(4.7)

For notational convenience, we will often use the following shorthand

gXn(xn) =
∑
∼{xn}

f (x1, x2, . . . , xN) (4.8)

=
∑
x:xn

f (x), (4.9)

where ∼{xn} denotes the set of all possible values of all variables, except Xn which is
fixed to Xn = xn. Similarly, x : xn denotes all possible sequences x = [x1, . . . , xN] with
nth component equal to xn.

46 Factor graphs and the sum–product algorithm

Example 4.5. Consider the following function of N = 5 variables:

f (X1, X2, X3, X4, X5) = f1(X1, X3)f2(X2, X3)f3(X1, X2)f4(X2, X4) (4.10)

with S1 = {X1, X3}, S2 = {X2, X3}, S3 = {X1, X2}, and S4 = {X2, X4}. The marginal with
respect to X1 is given by

gX1(x1) =
∑
∼{x1}

f (X1, X2, X3, X4, X5)

=
∑

x2,x3,x4,x5

f1(X1, X3)f2(X2, X3)f3(X1, X2)f4(X2, X4).

Factorizations are not unique: by simply lumping together the first three factors, we can
also have another factorization:

f (X1, X2, X3, X4, X5) = f̃1(X1, X2, X3)f4(X2, X4) (4.11)

with S̃1 = {X1, X2, X3} and S̃2 = {X2, X4}.

Definition 4.11 (Acyclic factorization). A factorization
∏K

k=1 fk(Sk) of a function
f (X1, X2, . . . , XN) contains a cycle of length L ≥ 2 when there exists a list of L distinct
couples

{
Xi1 , Xi2

}
,
{
Xi2 , Xi3

}
, . . .,

{
XiL , Xi1

}
, and L distinct variable subsets Sk1 , . . . , SkL ,

such that
{
Xil , Xil+1

} ⊆ Skl , for all l ∈ {1, . . . , L}. A factorization of a function is acyclic
when it contains no cycles of any length L ≥ 2.

Example 4.6. The factorization (4.10) of f (X1, X2, X3, X4, X5) has a cycle of length
L = 3: {X1, X3} ⊆ S1, {X3, X2} ⊆ S2, {X2, X1} ⊆ S3. On the other hand, the factorization
(4.11) of the same function has no cycles; this factorization is acyclic.

Definition 4.12 (Connected factorization). A factorization
∏K

k=1 fk(Sk) of a function
f (X1, X2, . . . , XN) is said to be disconnected when we can group factors

∏K
k=1 fk(Sk) =

fA(SA)fB(SB) such that SA∩SB = φ. When no such grouping is possible, the factorization
is said to be connected.

Example 4.7. Consider a function f (X1, X2, X3, X4, X5). Suppose that this function can
be factored into three factors as follows:

f (X1, X2, X3, X4, X5) = f1(X1, X2)f2(X3, X4)f3(X4, X5). (4.12)

This factorization is disconnected since we can group factors into fA(X1, X2) =
f1(X1, X2) and fB(X3, X4, X5) = f2(X3, X4)f3(X4, X5) with {X1, X2} ∩ {X3, X4, X5} = φ.

4.3 Graphs, factors, and factor graphs 47

We can obtain a connected factorization as follows: we introduce f̃ (X1, X2, X3, X4) =
f1(X1, X2)f2(X3, X4), then we have a factorization of f into two factors:

f (X1, X2, X3, X4, X5) = f̃ (X1, X2, X3, X4)f3(X4, X5).

This factorization is connected.

All these definitions are rather tedious. In the next section, we will consider factorizations
from a graphical point of view. Concepts such as acyclic and connected factorizations
will then have obvious graphical counterparts.

4.3.3 Factor graphs

Factor graphs are a type of graph that represents the factorization of a function. Before
we formally describe factor graphs, it is useful to introduce the concept of neighbors and
neighborhoods.

Definition 4.13 (Neighborhood). For a given factorization, we associate a
neighborhood with each factor and with each variable. For a factor fk , the neighborhood
of fk , denoted by N (fk), is the set of variables that appear in fk . Similarly, for a variable
Xn, the neighborhood of Xn, denoted by N (Xn), is the set of factors that have Xn as a
variable. Clearly, Xn ∈ N (fk) ⇐⇒ fk ∈ N (Xn).

Example 4.8. Revisiting the factorization (4.10) of f (X1, X2, X3, X4, X5), we find that
N (X1) = { f1, f3} and that N (f2) = {X2, X3}.

Definition 4.15 (Factor graph). Given a factorization of a function

f (X1, X2, . . . , XN) =
K∏

k=1

fk(Sk), (4.13)

the corresponding factor graph G = (V , E) is a bipartite graph, created as follows:

• for every variable Xn, we create a vertex (a variable node): Xn ∈ V ;
• for every factor fk , we create a vertex (a function node): fk ∈ V ; and
• for factor fk , and every variable Xn ∈ N (fk), we create an edge e = (Xn, fk) ∈ E.

The definition of neighborhood is equivalent to the graph-theoretic notion of adjacency:
when a variable Xn appears in a factor fk , then Xn ∈ N (fk) and fk ∈ N (Xn). In terms
of the factor graph, the Xn-node will be adjacent to the fk -node, so we may write (with a
slight abuse of notation) Xn ∈ A (fk) and fk ∈ A (Xn). In the remainder of this chapter,
we will not distinguish between a factor fk in a factorization and the corresponding
vertex/node in the factor graph of that factorization. The same goes for variables Xk and
variable nodes.

48 Factor graphs and the sum–product algorithm

There is a one-to-one mapping between factorizations and factor graphs. For a given
factorization, the factor graph is generally very easy to draw. Given a factor graph,
various properties of the factorization can be obtained by simply looking at the graph.
The concepts of connectedness and cyclic factorizations translate in a natural way to
connected factor graphs and cycles. When we see that a factor graph is a tree, we know
that it corresponds to a connected acyclic factorization.

This brings us to a most important point, the key property of factor graphs: they are
graphs. This may seem a trivial remark, but it is not. Because they are graphs, it is easy
for us humans to reason about them and understand their structure, much easier than
understanding a bunch of equations.

Example 4.9. In the previous section, we have seen several factorizations of functions.
Let us recall some of them. First, we return to Eqs. (4.10) and (4.11), which were two
factorizations of the same function,

f (X1, X2, X3, X4, X5) = f1(X1, X3)f2(X2, X3)f3(X1, X2)f4(X2, X4) (4.14)

and

f (X1, X2, X3, X4, X5) = f̃1(X1, X2, X3)f4(X2, X4). (4.15)

We have shown that (4.14) is a cyclic factorization, whereas (4.15) is acyclic. The
corresponding factor graphs are shown in Figs. 4.10 and Fig. 4.11. Observe the
following: the factor graph of the cyclic factorization (4.14) is cyclic, whereas the factor
graph of the acyclic factorization (4.15) is acyclic.

Example 4.10. In Eq. (4.12), we considered the following factorization of another
function:

f (X1, X2, X3, X4, X5) = f1(X1, X2)f2(X3, X4)f3(X4, X5). (4.16)

We have shown that this factorization was disconnected. The factor graph of (4.16) is
shown in Fig. 4.12. Observe that the factor graph is disconnected.

Example 4.11 (Running example). We will use the following example throughout this
chapter: consider a function of N = 7 variables that can be factored into K = 6 factors
as follows:

f (X1, X2, X3, X4, X5, X6, X7) = f1(X1, X2, X3)f2(X1, X4)f3(X1, X6, X7)

× f4(X4, X5)f5(X4)f6(X2). (4.17)

4.3 Graphs, factors, and factor graphs 49

X1

X2

X3

X4

f1

f2f3

f4

Figure 4.10. A factor graph of (4.14). The graph contains a cycle.

X1

X2

X3

X4

f̃1

f4

Figure 4.11. A factor graph of (4.15). The graph is a tree.

X1 X2

X3

X4

X5

f1

f2f3

Figure 4.12. A factor graph of (4.16). The graph is disconnected, but acyclic. It is a forest.

50 Factor graphs and the sum–product algorithm

X1

X2

X3

X4

X5

X6X7

f1 f2

f3

f4

f5

f6

Figure 4.13. A factor graph of the factorization f1(X1, X2, X3)f2(X1, X4)f3(X1, X6, X7)×
f4(X4, X5)f5(X4)f6(X2).

It is readily verified that this factorization is connected and acyclic. The corresponding
factor graph is shown in Fig. 4.13. From the graph, it is immediately obvious that
{X1, X2, X3} =N (f1), that { f1, f2, f3} =N (X1), and that the graph is connected and
acyclic.

4.4 Marginals and the sum–product algorithm

4.4.1 Marginals of connected acyclic factorizations

As we will see in the next chapter, an important problem is the computation of marginals
of a function, on the basis of a connected acyclic factorization. Let us start from such a
connected acyclic factorization

f (X1, X2, . . . , XN) =
K∏

k=1

fk(Sk). (4.18)

Suppose that we are interested in computing gX1(X1). Computing gX1(x1) directly
requires an (N − 1)-fold summation over X2× · · ·×XN for any x1 ∈ X1. Our goal is to
find a way to compute the marginals in a computationally attractive way by exploiting
the connected acyclic factorization. The algorithm we will obtain is called the sum–
product algorithm (SPA). This algorithm describes how marginals can be computed
in an automated and efficient way. We will focus on a specific variable (say, Xn), and
proceed as follows.

4.4 Marginals and the sum–product algorithm 51

(1) We first re-write the factorization (4.18) explicitly as a function of Xn.
(2) We compute the marginal gXn(Xn) using a recursive technique.

At every step we will first describe the tedious mathematical intricacies, and then relate
these to the fun factor-graph interpretation. We remind the reader that sections marked
with an asterisk are slightly abstract and can be skipped at first reading.

4.4.2 Step 1: variable partitioning

4.4.2.1 The math way*
Consider a factor fk and a variable Xn ∈ N (fk). With this couple (Xn, fk), we associate
a set of variables S(Xn)

fk
, defined recursively as shown in Algorithm 4.2.

Algorithm 4.2 Variable partitioning: determine S(Xn)
fk

1: input: Xn and fk
2: initialization: S(Xn)

fk
= φ

3: for Xm ∈ N (fk) \ {Xn} do
4: add Xm to S(Xn)

fk
5: for fl ∈ N (Xm) \ { fk} do
6: determine S(Xm)

fl
and add to set S(Xn)

fk
7: end for
8: end for
9: output: S(Xm)

fl

Intuitively, this algorithm corresponds to adding all variables that appear in fk (except
Xn) to the set S(Xn)

fk
. Then we look at all the functions (except fk) where these variables

appear as an argument. We then add all the variables of those functions to S(Xn)
fk

, and so
forth.

Example 4.12 (Running example). We return to our example, with

f (X1, X2, X3, X4, X5, X6, X7) = f1(X1, X2, X3)f2(X1, X4)f3(X1, X6, X7)

× f4(X4, X5)f5(X4)f6(X2).

Let us determine S(X1)
f1

. We need to find the variables (except X1) that appear in f1,
then find all functions of those variables (except f1) and add all the variables of those
functions, etc.

• Clearly, N (f1)\ {X1} = {X2, X3}, so X2 and X3 belong in S(X1)
f1

.
• N (X3)\ { f1} = φ, so this branch of the recursion ends.
• N (X2)\ { f1} = { f6}, so we need to add S(X2)

f6
to S(X1)

f1
. Since N (f6)\ {X2} = φ,

S(X2)
f6
= φ, so this branch of the recursion ends.

52 Factor graphs and the sum–product algorithm

X1

X2

X3

X4

X5

X6X7

f1 f2

f3

f4

f5

f6

G1 G2

G3

Figure 4.14. Factor graph of the factorization
f1(X1, X2, X3)f2(X1, X4)f3(X1, X6, X7)f4(X4, X5)f5(X4)f6(X2), with variable partitioning.

In conclusion, we find that S(X1)
f1
= {X2, X3}. Similarly, S(X1)

f2
= {X4, X5} and S(X1)

f3
=

{X6, X7}. We can easily verify that S(X1)
f1
∪ S(X1)

f2
∪ S(X1)

f3
∪ {X1} = {X1, X2, . . . , X7} and

S(X1)
fk′
∩ S(X1)

fk
= φ for k ′ �= k.

4.4.2.2 The factor-graph way
Variable partitioning can be achieved in a very straightforward way using factor graphs.
Take a variable node Xn. This variable node is adjacent to |N (Xn)| function nodes.
Removing the node Xn results in |N (Xn)| factor graphs. Suppose fk ∈ N (Xn), then one
of these factor graphs will have node fk as leaf node. The set of variables in that factor
graph is exactly S(Xn)

fk
.

Example 4.13 (Running example). The factor graph of our running example is shown
again in Fig. 4.14. We focus on variable node X1, with N (X1) = { f1, f2, f3}. Removing
the node X1 results in three factor graphs. The factor graph containing f1 has as variable
nodes S(X1)

f1
= {X2, X3}. Let us add the node X1 again to each of the three factor graphs.

The three resulting factor graphs are denoted G1, G2, and G3 in Fig. 4.14. The variables
in G1 are (apart from X1) S(X1)

f1
= {X2, X3}. The variables in G2 are (apart from X1)

S(X1)
f2
= {X4, X5}. The variables in G3 are (apart from X1) S(X1)

f3
= {X6, X7}. Each of these

three factor graphs represents the factorization of a function. Let us denote the function
represented by G1 as h(X1)

f1
(X1, S(X1)

f1
), the function represented by G2 as h(X1)

f2
(X1, S(X1)

f2
),

4.4 Marginals and the sum–product algorithm 53

and the function represented by G3 as h(X1)
f3

(X1, S(X1)
f3

). Obviously,

f (X1, X2, X3, X4, X5, X6, X7) =
∏

fk∈N (X1)

h(X1)
fk

(X1, S(X1)
fk

).

Note that we can apply the same technique to any other variable. For instance,
considering X2,

f (X1, X2, X3, X4, X5, X6, X7) = h(X2)
f6

(
X2, S(X2)

f6

)
h(X2)

f1

(
X2, S(X2)

f1

)
.

Observe that

h(X1)
f1

(
X1, S(X1)

f1

)
= f1(X1, X2, X3)h

(X2)
f6

(
X6, S(X2)

f6

)
.

In the next section we will formalize this last observation.

4.4.3 Step 2: grouping factors

4.4.3.1 The math way*
When the factorization is acyclic, it follows that S(Xn)

fk
∩ S(Xn)

fk′
= φ, k ′ �= k.

When the factorization is connected, it also follows that
{⋃

fk∈N (Xn)
S(Xn)

fk

}
∪ {Xn} =

{X1, X2, . . . , XN }. These properties allow us to express f (X1, X2, . . . , XN) as follows:

f (X1, X2, . . . , XN) =
∏

fk∈N (Xn)

h(Xn)
fk

(Xn, S(Xn)
fk

), (4.19)

where h(Xn)
fk

(Xn, S(Xn)
fk

) is defined recursively as

h(Xn)
fk

(
Xn, S(Xn)

fk

)
= fk({Xm}Xm∈N (fk))

∏
Xm∈N (fk)\{Xn}


 ∏

fl∈N (Xm)\{ fk }
h(Xm)

fl

(
Xm, S(Xm)

fl

)
.

(4.20)

In (4.20), {Xm}Xm∈N (fk) represents the set of variables appearing in fk . The recursion
ends when either N (fk) \ {Xn} or N (Xm) \ { fk} are empty.

Example 4.14 (Running example). Returning to our example from Section 4.4.2, we can
now express the function f (·) as the product of three factors:

f (X1, X2, X3, X4, X5, X6, X7) = h(X1)
f1

(
X1, S(X1)

f1

)
h(X1)

f2

(
X1, S(X1)

f2

)
h(X1)

f3

(
X1, S(X1)

f3

)

54 Factor graphs and the sum–product algorithm

with
h(X1)

f1
(X1, S(X1)

f1
)= f1(X1, X2, X3) h(X2)

f6
(X2, S(X2)

f6
)︸ ︷︷ ︸

=f6(X2)

,

h(X1)
f2

(X1, S(X1)
f2

)= f2(X1, X4) h(X4)
f4

(X4, S(X4)
f4

)︸ ︷︷ ︸
=f4(X4,X5)

h(X4)
f5

(X4, S(X4)
f5

)︸ ︷︷ ︸
=f5(X4)

,

h(X1)
f3

(X1, S(X1)
f3

)= f3(X1, X6, X7).

Now, while the above equations are undoubtedly true, they are not very insightful. Let
us see whether factor graphs can help.

4.4.3.2 The factor-graph way
We start again from a factor graph of a factorization of f (·). When we focus on a particular
variable node (say Xn), we can break up the factor graph into |N (Xn)| trees that have
the node Xn as leaf node. Each of these trees is of course a factor graph of a function.
Take one of those trees. Then Xn will be adjacent to exactly one function node, say
fk . The tree is a factor graph of the function h(Xn)

fk
(Xn, S(Xn)

fk
). Let us consider a generic

example (see Fig. 4.15). Clearly, N (Xn) = { f1, f2, f3}. The factor graphs of the functions

h(Xn)
f3

(
Xn, S(Xn)

f3

)
and h(Xn)

f2

(
Xn, S(Xn)

f2

)
are marked in dashed boxes. They are easily found

Xn

X1

X2

X3

X4

X5

X6

X7

X8

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

f16

f17

h (Xn)
f2

(Xn,S (Xn)
f2

)
h (Xn)

f3
(Xn,S (Xn)

f3
)

Figure 4.15. Variable partitioning and factor grouping on a factor graph.

4.4 Marginals and the sum–product algorithm 55

X1

X2

X3

X
4

X5

X6X7

f1 f2

f3

f4

f5

f6

h (X1)
f2

(X1,S (X1)
f2

)

h (X1)
f3

(X1 ,S (X1)
f3

)

h (X2)
f6

(X2 ,S (X2)
f6

)

Figure 4.16. The factor graph of the factorization f1(X1, X2, X3)f2(X1, X4)f3(X1, X6, X7)×
f4(X4, X5)f5(X4)f6(X2), with variable partitioning and factor grouping. The factor graph of the

function h(Xn)
fk

(Xn, S(Xn)
fk

) is the part of the graph behind node fk , from the viewpoint of node Xn.

on sight by considering the tree behind the functions f2 and f3, from the viewpoint of node
Xn. The recursive relation (4.20) can be obtained immediately from the factor graph.

Example 4.15 (Running example). The factor graph of our running example is shown
again in Fig. 4.16. The graphs G2 and G3 from Fig. 4.14 correspond to the the functions
h(X1)

f2
(X1, S(X1)

f2
) and h(X1)

f3
(X1, S(X1)

f3
) in Fig. 4.16 (marked in dashed boxes). Also depicted

in Fig. 4.16 is the function h(X2)
f6

(X2, S(X2)
f6

) (note that S(X2)
f6

is the empty set). We see that

h(X1)
f1

(X1, S(X1)
f1

) = f1(X1, X2, X3)h
(X2)
f6

(X2, S(X2)
f6

).

4.4.4 Step 3: computing marginals

4.4.4.1 A key observation
The marginal gXn(Xn), evaluated in xn ∈ Xn, is given by

gXn(xn) =
∑
∼{xn}

f (x1, x2, . . . , xN). (4.21)

56 Factor graphs and the sum–product algorithm

Substituting (4.19) into this gives us

gXn(xn) =
∑
∼{xn}


 ∏

fk∈N (Xn)

h(Xn)
fk

(xn, s(Xn)
fk

)


 (4.22)

=
∏

fk∈N (Xn)



∑
s(Xn)
fk

h(Xn)
fk

(xn, s(Xn)
fk

)


 (4.23)

=
∏

fk∈N (Xn)


∑∼{xn}

h(Xn)
fk

(xn, s(Xn)
fk

)


. (4.24)

The first transition is due to the acyclic factorization: the sets {S(Xn)
fk
}fk∈N (Xn) are non-

overlapping. Ponder this for a few moments. This is a non-trivial result.

Example 4.16 (Running example). From Section 4.4.3, we know that the function in our
running example can be written as

f (X1, X2, X3, X4, X5, X6, X7) = h(X1)
f1

(S(X1)
f1

, X1)h
(X1)
f2

(S(X1)
f2

, X1)h
(X1)
f3

(S(X1)
f3

, X1).

The marginal of X1 is given by

gX1(x1) =
∑
∼{x1}

{
h(X1)

f1

(
s(X1)

f1
, x1

)
h(X1)

f2

(
s(X1)

f2
, x1

)
h(X1)

f3

(
s(X1)

f3
, x1

)}

=
∑

s
(X1)
f1

,s(
X1)

f2
,s(

X1)
f3

{
h(X1)

f1

(
s(X1)

f1
, x1

)
h(X1)

f2

(
s(X1)

f2
, x1

)
h(X1)

f3

(
s(X1)

f3
, x1

)}

=



∑
s
(X1)
f1

h(X1)
f1

(
s(X1)

f1
, x1

)



∑
s
(X1)
f2

h(X1)
f2

(
s(X1)

f2
, x1

)



∑
s
(X1)
f3

h(X1)
f3

(
s(X1)

f3
, x1

)


=
∏

fk∈N (X1)


∑∼{x1}

h(X1)
fk

(
x1, s(X1)

fk

)
.

4.4.4.2 Two special functions: the math way*
Let us introduce two special functions of variable Xn: for any fk ∈ N (Xn), we define
µXn→fk : Xn → R and µfk→Xn : Xn → R as follows:

µfk→Xn(xn) =
∑
∼{xn}

h(Xn)
fk

(xn, s(Xn)
fk

) (4.25)

4.4 Marginals and the sum–product algorithm 57

and

µXn→fk (xn) =
∏

fl∈N (Xn)\{ fk }


∑∼{xn}

h(Xn)
fl

(
xn, s(Xn)

fl

)
. (4.26)

Note that µfk→Xn(xn) = fk(xn) when N (fk) = {Xn}, and that µXn→fk (xn) = 1 when
N (Xn) = { fk}. The functions µXn→fk (Xn) and µfk→Xn(Xn) can be related as follows.
First of all, we can substitute (4.25) into (4.26), yielding

µXn→fk (xn) =
∏

fl∈N (Xn)\{ fk }
µfl→Xn(xn). (4.27)

Secondly, substituting (4.20) into (4.25) gives us, due to the acyclic factorization,

µfk→Xn(xn)

=
∑
∼{xn}

fk({Xm = xm}Xm∈N (fk))
∏

Xm∈N (fk)\{Xn}


 ∏

fl∈N (Xm)\{ fk }
h(Xm)

fl
(xm, s(Xm)

fl
)




=
∑
∼{xn}

fk({Xm = xm}Xm∈N (fk))
∏

Xm∈N (fk)\{Xn}


 ∏

fl∈N (Xm)\{ fk }

∑
∼{xm}

h(Xm)
fl

(xm, s(Xm)
fl

)




=
∑
∼{xn}

fk({Xm = xm}Xm∈N (fk))
∏

Xm∈N (fk)\{Xn}
µXm→fk (xm). (4.28)

These special functions allow us to express the marginal gXn(Xn), evaluated in xn, in the
following two ways, thanks to (4.24):

gXn(xn) =
∏

fk∈N (Xn)

µfk→Xn(xn) (4.29)

= µfl→Xn(xn)µXn→fl (xn), (4.30)

where the last line is valid for any fl ∈ N (Xn).

4.4.4.3 Two special functions: the factor-graph way
In the context of factor graphs, the functions µfk→Xn(Xn) and µXn→fk (Xn) can be
interpreted as messages, passed over the edges of the factor graph. Imagine each of
the nodes in the factor graph to be a small computer, and each of the edges to be
a communication link. There are two types of computers: computers associated with
variables (Xn), and computers associated with functions (fk). A computer can transmit
messages over each of its links. We denote the message from variable node Xn to function
node fk ∈ N (Xn) by µXn→fk (Xn). Similarly, the message from function node fk to
variable node Xn is denoted by µfk→Xn(Xn).

The messages are functions of the associated variable. An outgoing message from Xn

to fk is computed on the basis of incoming messages µfl→Xn (Xn), fl ∈ N (Xn) \ { fk}, as
described in (4.27). This computation is visualized in Fig. 4.17. Similarly, an outgoing

58 Factor graphs and the sum–product algorithm

X
n

f1

f2

f3

fk

µf1 Xn
(Xn)

µf2 Xn
(Xn)

µf3 Xn(Xn)

µXn fk
(Xn)→

→

→

→

Figure 4.17. The sum–product algorithm (SPA): the message-computation rule from variable
node to function node.

Xn

X1

X2

X3

fk

µX1 fk
(X1

)

µX2 fk
(X2

)

µX3 fk
(X3)

µXn fk
(Xn

)→

→

→

→

Figure 4.18. The sum–product algorithm (SPA): the message-computation rule from function
node to variable node.

message from fk to Xn is computed on the basis of the function fk , as well as the incoming
messagesµXm→fk (Xm), with Xm ∈ N (fk)\{Xn}, as described in (4.28). This computation
is visualized in Fig. 4.18.

4.4.5 The sum–product algorithm

Computing marginals based on the functions µfk→Xn(Xn) and µXn→fk (Xn) is known
as the sum–product algorithm (SPA). The name is due to presence of the summation

4.4 Marginals and the sum–product algorithm 59

and product in relation (4.28). The functions µfk→Xn(Xn) can be computed recursively
using (4.27) and (4.28). Once all the functions µfk→Xn(Xn) and µXn→fk (Xn) have been
computed (i.e., for every Xn and every fk ∈ N (Xn)), the marginals of the variables can
be found using (4.30).

For convenience, the algorithm will be described starting from the leaves of the factor
graph. There are three phases: an initialization phase, during which messages at the
leaf nodes are computed; a computation phase, during which all other messages are
computed; and a termination phase, during which the marginals for all the variables are
determined. The details are as follows.

Initialization
• For every leaf function node fk , with {Xm} = N (fk), transmit message to variable

node Xm, with µfk→Xm(xm) = fk(xm), xm ∈ Xm.
• For every leaf variable node Xn, with { fl} = N (Xn), transmit message to function

node fl , with µXn→fl (xn) = 1, ∀xn ∈ Xn.

Message-computation rules
Perform until all µXn→fk (Xn) and all µfk→Xn(Xn) have been computed. Every message
is computed only once.

• For any function node fk of degree D: when fk has received incoming messages from
D − 1 distinct variable nodes Xn ∈ N (fk), then node fk can transmit an outgoing
message µfk→Xm(Xm) to the remaining variable node Xm, according to (4.28),

µfk→Xm(xm) =
∑
∼{xm}

fk
({Xn = xn}Xn∈N (fk)

) ∏
Xn∈N (fk)\{Xm}

µXn→fk (xn). (4.31)

The message computation is visualized in Fig. 4.18.
• For any variable node Xn of degree D: when Xn has received incoming messages from

D − 1 distinct function nodes fk ∈ N (Xn), then node Xn can transmit an outgoing
message µXn→fl (Xn) to the remaining function node fl , according to (4.27),

µXn→fl (xn) =
∏

fk∈N (Xn)\{ fl}
µfk→Xn(xn). (4.32)

The message computation is visualized in Fig. 4.17.

Termination
• To compute the marginal of Xn in xn ∈ Xn, take any fk ∈ N (Xn), then multiply the

two messages on the edge (Xn, fk), so that, according to (4.30),

gXn(xn) = µfk→Xn(xn)µXn→fk (xn). (4.33)

Note that the sets S(Xm)
fl

and the functions h(Xm)
fl

(
Xm, S(Xm)

fl

)
no longer need to be

determined explicitly.

60 Factor graphs and the sum–product algorithm

Example 4.17. Let us return to the running example from Section 4.4.1. We have a
function of N = 7 variables that can be factored into K = 6 factors as follows:

f (X1, X2, X3, X4, X5, X6, X7) = f1(X1, X2, X3) f2(X1, X4) f3(X1, X6, X7)

× f4(X4, X5) f5(X4) f6(X2) (4.34)

with a factor graph shown in Fig. 4.13. Let us now apply the SPA.
• Step 1 We first compute messages from leaf nodes. The leaf nodes are X3, X5, X6, X7

and f5, f6. The messages µX3→f1(X3), µX5→f4(X5), µX6→f3(X6), and µX7→f3(X7) are
all equal to 1 over their respective domains, whereas

µf6→X2(x2) = f6(x2),

µf5→X4(x4) = f5(x4).

These messages are depicted in Fig. 4.19.
• Step 2 Now we can compute three new messages. For instance, function node f3 has

degree 3 and has received two messages (one from X6 and one from X7). It can now
compute a message µf3→X1(X1) to the remaining variable node (X1) using (4.31):

µf3→X1(x1) =
∑
∼{x1}

f3(x1, x6, x7)µX6→f3(x6)µX7→f3(x7).

Similarly, node f4 can transmit a message µf4→X4(X4) to X4, with

µf4→X4(x4) =
∑
∼{x4}

f4(x4, x5)µX5→f4(x5).

X1

X2

X3

X4

X5

X6X7

f1 f2

f3

f4

f5

f6
mf6 X2

(X2)→

mX3 f1→

mX5 f4→

mX7 f3→

mf5 X4
(X4)→

(X5)

(X3)

(X7) mX6 f3→ (X6)

Figure 4.19. Step 1. Messages are sent from the leaf nodes.

4.4 Marginals and the sum–product algorithm 61

X1

X2

X3

X4

X5

X6X7

f1 f2

f3

f4

f5

f6

mf4 X4
(X4)→

mf3 X1
(X1)→

mX2 f1
(X2)→

Figure 4.20. Step 2. Message computations based on available messages.

At the same time, variable node X2 has received an incoming message from f6, so it
can transmit a message µX2→f1(X2) to f1 using (4.32):

µX2→f1(x2) = µf6→X2(x2).

These messages are depicted in Fig. 4.20. Messages computed during the previous
step are marked using dashed arrows.
• Step 3 The third step is depicted in Fig. 4.21. Using (4.31), function node f1 sends a

message µf1→X1(X1) to variable node X1, with

µf1→X1(x1) =
∑
∼{x1}

f1(x1, x2, x3)µX2→f1(x2)µX3→f1(x3).

At the same time, variable node X4 is now in a position to send a message µX4→f2(X4)

to function node f2 using (4.32):

µX4→f2(x4) = µf4→X4(x4)µf5→X4(x4).

• Step 4 The next step is shown in Fig. 4.22, where f2 sends a message µf2→X1(X1) to
X1 using (4.31),

µf2→X1(x1) =
∑
∼{x1}

f2(x1, x4)µX4→f2(x4),

and X1 sends a message µX1→f2(X1) to f2 using (4.32),

µX1→f2(x1) = µf1→X1(x1)µf3→X1(x1).

Note that at this point we are able to compute the marginal gX1(X1) by simple pointwise
multiplication of the messages over the edge (X1, f2), for x1 ∈ X1:

gX1(x1) = µX1→f2(x1)µf2→X1(x1).

The subsequent steps are not depicted, but the reader can easily verify that at step 7 all
the messages have been computed and all the marginals can be obtained.

62 Factor graphs and the sum–product algorithm

X1

X2

X3

X4

X5

X6X7

f1 f2

f3

f4

f5

f6

mX4
(X4)→

mf1 →

f
2

(X1)X
1

Figure 4.21. Step 3. Message computations based on available messages.

X1

X2

X3

X4

X5

X6X7

f1 f2

f3

f4

f5

f6

mX1
f2
(X1)→

mf2 → (X1)X
1

Figure 4.22. Step 4. Message computations based on available messages.

4.5 Normal factor graphs

4.5.1 Motivation

Two different types of factor graphs can be found in the technical literature. The type we
have just covered is the more conventional type. Another type, introduced by Forney, is
known as normal factor graphs. The latter type is equivalent to the conventional factor
graphs in the sense that exactly the same messages are computed. Normal factor graphs
require (at first sight) some strange modifications to the graph structure. Strictly speaking,
normal factor graphs are not even graphs! Personally, I always use normal factor graphs
for two simple reasons. First of all, normal factor graphs require fewer vertices/nodes
than conventional factor graphs do. This makes normal factor graphs easier to understand.
Secondly, there is only one type of vertex/node in normal factor graphs: function nodes.
As a result, there is only a single message computation rule. Before we describe normal

4.5 Normal factor graphs 63

factor graphs explicitly, let us make the following observations regarding conventional
factor graphs.

• Every variable node Xn of degree 1 sends the message “1” over its domain Xn.
• Every variable node Xn of degree 2 simply forwards any incoming message

unmodified. To see this, consider (4.32) for a variable node of degree D = 2.
• Every variable node Xn of degree greater than 2 performs pointwise multiplication

of incoming messages to obtain an outgoing message. On the other hand, consider a
function node fk of degree D, from X D → R, defined as

fk(x1, . . . , xD) = = (x1, . . . , xD), (4.35)

where = (·) was defined in Section 3.3.1:

= (x1, . . . , xD) =
{∏D−1

k=1 δ(xk+1 − xk) xk continuous,∏D−1
k=1 I

{
xk+1 = xk

}
xk discrete,

(4.36)

where, for a proposition P, I {P} is the indicator function, which is defined as I {P} =
1 when P is true and I {P} = 0 when P is false. For such a function node, what
is the message-computation rule? Suppose that incoming messages µXn→fk (Xn) for
n = 2, . . . , D are available, and we wish to compute an outgoing messageµfk→X1(X1).
Using (4.31), we find

µfk→X1(x1) =
∑
∼{x1}

fk(x1, x2, . . . , xD)

D−1∏
n=2

µXn→fk (xn) (4.37)

=
D−1∏
n=2

µXn→fk (x1). (4.38)

We see that such a function node performs exactly the same pointwise multiplication
of incoming messages as a variable node. For obvious reasons, we call such a node
an equality node.

4.5.2 Definition

Let us now formally introduce normal factor graphs. We will associate a vertex with
every factor and an edge with every variable.

Definition 4.14 (Normal factor graph). Given a factorization of a function,

f (X1, X2, . . . , XN) =
K∏

k=1

fk(Sk), (4.39)

and a corresponding conventional factor graph G = (V , E), the normal factor graph is
created as follows.

64 Factor graphs and the sum–product algorithm

X1

X2

X3

X4

X5

X6
X7

f1 f2

f3

f4

f5

f6

Figure 4.23. A conventional factor graph.

• Every variable node Xn of degree 1 is removed. This creates a so-called half-edge
(connected to only a single node). This half-edge is labeled Xn.
• Every variable node Xn of degree 2, with { fk , fl} = N (Xn) is removed, together with

the two adjacent edges. We connect the nodes fk and fl directly with an edge and label
this edge Xn.
• Every variable node Xn of degree D > 2 with

{
fk1 , . . . , fkD

} = N (Xn) is replaced

by an equality node =
(

X (1)
n , . . . , X (D)

n

)
, where X (1)

n , . . . , X (D)
n are dummy variables,

defined over the domain Xn of Xn. The edge between the equality node and the node
fkm is labeled X (m)

n .

Example 4.18 (Running example). Let us return to the running example. We have a
function of N = 7 variables that can be factored into K = 6 factors as follows:

f (X1, X2, X3, X4, X5, X6, X7) = f1(X1, X2, X3) f2(X1, X4) f3(X1, X6, X7)

× f4(X4, X5) f5(X4) f6(X2) (4.40)

with a factor graph shown in Fig. 4.23. The corresponding normal factor graph is shown
in Fig. 4.24. We see that it has fewer nodes, and that the variable nodes for X1 and X4

have each been replaced by an equality node and three dummy variables.

4.5.3 The sum–product algorithm on normal factor graphs

We will now describe the SPA for normal factor graphs. For the sake of clarity, we make
no distinction between dummy variables and real variables. This allows us to treat the
equality nodes just like any other function node. Also, we need to take some extra care
when naming the messages: given an edge (Xn) incident with two function nodes (fk and
fl), the message from function node fk over the edge Xn can have the following names:
µfk→Xn(Xn), µXn→fl (Xn), or even µfk→fl (Xn).

4.5 Normal factor graphs 65

=

=

X1
(3)

X1
(1) X1

(2)

X2

X3

X4
(1)

X4
(2)

X4
(3)

X5

X6X7

f1 f2

f3

f4

f5

f6

Figure 4.24. The normal factor graph corresponding to the conventional factor graph from
Fig. 4.23.

Initialization
• For every leaf node fk with incident edge Xm, transmit message µfk→Xm(Xm), with
µfk→Xm(xm) = fk(xm), ∀xm ∈ Xm.
• For every half-edge Xn, with incident node fl , transmit message µXn→fl (xn) = 1,
∀xn ∈ Xn.

Message-computation rule
Perform until all µXn→fk (Xn) and all µfk→Xn(Xn) have been computed. Every message
is computed only once.

• For any node fk of degree D: when fk has received incoming messages from D − 1
distinct incident edges Xn ∈ N (fk), then node fk can transmit an outgoing message
µfk→Xm(Xm) on the remaining edge Xm, with (see Fig. 4.25)

µfk→Xm(xm) =
∑
∼{xm}

fk
({Xn = xn}Xn∈N (fk)

) ∏
Xn∈N (fk)\{Xm}

µXn→fk (xn). (4.41)

Termination
• To compute the marginal of Xn, take any fk ∈ N (Xn). Then multiply the two messages

on the edge Xn to obtain the marginal gXn(Xn),

gXn(xn) = µfk→Xn(xn)µXn→fk (xn). (4.42)

Example 4.19. The reader can easily verify that executing the SPA on the normal factor
graph in Fig. 4.24 yields exactly the same results as executing the SPA on the conventional
factor graph in Fig. 4.23.

From this point onward, we will use only normal factor graphs.

66 Factor graphs and the sum–product algorithm

fA

fB

fC

fk fl

X1

X2

X3

Xn

mX1
fk
(X1)→

mfk Xn
(Xn)→mX2

fk
(X2)→

mX3
fk
(X3)→

Figure 4.25. The message-computation rule for normal factor graphs. Observe that µX1→fk (X1) is
just another name for µfA→X1(X1).

4.6 Remarks on factor graphs

4.6.1 Why factor graphs?

What’s the big deal? Why do we need these graphs? And who’s interested in marginals
anyway? Factor graphs have some very attractive properties that will become apparent
as we proceed in this book.

• They are simple: constructing a factor graph from a factorization is easy.
• They are easy to read: for a human, interpreting a picture (a graph) is much more

natural than reading a bunch of equations.
• Using the SPA, they allow us to compute marginals in an efficient, automated way.
• They allow hierarchical modeling and functional decomposition: by grouping together

parts of a factor graph into a single super-vertex, we abstract away a certain part of
the function.
• They are compatible with conventional block diagrams and flow charts.

The last two points are important, so let’s look into them in some more detail.

4.6.2 Opening and closing nodes

Given a function node representing the factor fk(X1, . . . , XD), we can replace this
node by a factor graph representation of the acyclic factorization of another function,
g(X1, . . . , XD, U1, . . . , UK), as long as the following conditions are met:

• the variables U1, . . . , UK appear nowhere else in the graph; and
• the functions fk and g satisfy∑

u1,...,uK

g(x1, . . . , xD, u1, u2, . . . , uK) = fk(x1, . . . , xD).

4.6 Remarks on factor graphs 67

It is easy to see that this replacement will not affect the messages computed on the
edges X1, . . . , XD. This process is known as opening the node fk . The inverse operation
is known as closing nodes.

Opening of nodes will be performed frequently in this book since it allows hierarchical
modeling, and allows one to reveal or hide the structure of nodes.

Example 4.20 (Storing intermediate results). We are given a function fk(x1, x2, x3),
structured as

fk(x1, x2, x3) = h(ϕ(x1, x2), x3),

with a factor-graph representation of fk(x1, x2, x3) shown on the left in Fig. 4.26. We can
introduce an additional variable u, with u = ϕ(x1, x2). This enables us to replace the
node fk(x1, x2, x3) by a node representing the factorization:

g(x1, x2, x3, u) = = (u,ϕ(x1, x2))× h(u, x3).

We see that

∑
u

g(x1, x2, x3, u) =
∑

u

= (u,ϕ(x1, x2))× h(u, x3)

= h(ϕ(x1, x2), x3)

= fk(x1, x2, x3).

We open the node fk to reveal its structure (see Fig. 4.26, right): we see an additional
variable, U , and two nodes, h(u, x3) and ϕ̃(u, x1, x2), with

ϕ̃(u, x1, x2) = = (u,ϕ(x1, x2)).

The messages over the edges X1, X2, and X3 will be the same in both graphs.

X1X1

X2X2

X3 X3U
fk ˜ hw

Figure 4.26. Opening a node: fk (x1, x2, x3) = h(ϕ(x1, x2), x3) and
ϕ̃(u, x1, x2) = = (u,ϕ(x1, x2)). Messages on the Xk edges remain the same.

68 Factor graphs and the sum–product algorithm

4.6.3 Computing joint marginals

When we focus on a factor fk(Sk) in the factorization of f (·), we can always write

f (X1, X2, . . . , XN) =
K∏

k=1

fk(Sk) (4.43)

= fk(Sk)
∏

Xn∈N (fk)

∏
fl∈N (Xn)\{ fk }

hXn
fl

(
Xn, SXn

fl

)
. (4.44)

The marginal of Sk = {Xn}Xn∈N (fk) is given by

gSk (sk) =
∑
∼{sk }

f (x1, x2, . . . , xN) (4.45)

= fk(sk)
∏

Xn∈N (fk)


 ∏

fl∈N (Xn)\{ fk }

∑
∼{xn}

hXn
fl

(
xn, sXn

fl

)
 (4.46)

= fk(sk)
∏

Xn∈N (fk)

µXn→fk (xn), (4.47)

where the last transition is due to (4.26). In other words, the SPAcan help us in computing
joint marginals of multiple variables [61].

4.6.4 Complexity considerations

Since a function can have many factorizations, it can have many factor graphs.As long as
the factorizations are acyclic (or, equivalently, the factor graphs have no cycles), the same
marginals will be computed. However, some factorizations may lead to a computationally
more complex SPA. To gain some insight into the computational complexity of the SPA,
consider the following scenario.

We have a function of N variables, all defined over the same domain X , with an
acyclic factorization in K factors, resulting in a (conventional) factor graph with K
function nodes. Suppose that, of the function nodes, d1 have degree 1, d2 have degree
2, . . . , dD have degree D, where D is the maximal degree of the function nodes in the
graph. For simplicity, let us assume that the message-computation time for variable nodes
can be neglected and that it takes 1 CPU cycle to evaluate any factor for any value of its
arguments. In that case the total computational complexity (expressed in cycles) can be
approximated by

C1 =
D∑

k=1

kdk |X |k , (4.48)

4.6 Remarks on factor graphs 69

whereas computing the marginals by simply summing out all other variables has a
complexity

C2 = N |X |N . (4.49)

Generally D
 N , so C1
 C2.

4.6.5 Dealing with continuous variables

Although we have not considered this explicitly, the variables Xn may be defined over
a continuous domain Xn. In this case, all derivations are still valid, provided that we
replace summations by integrals, so that∑

∼{xk }
f (x1, . . . , xD) (4.50)

becomes an integration over all variables except xk , written concisely as∫
f (x1, . . . , xD) ∼ {dxk}. (4.51)

Observe that for equality nodes (say, of degree D)

µ =→Xk (xk) =
∫

= (x1, . . . , xD)
∏

Xl �=Xk

µXl→ = (xl) ∼ {dxk} (4.52)

=
∏

Xl �=Xk

µXl→ = (xk). (4.53)

4.6.6 Disconnected and cyclic factorizations

In some cases we have a factorization that is not acyclic or connected. When the factor
graph is a forest (i.e., disconnected and acyclic), marginals can be found by performing
the SPA on the various trees, followed by a simple scaling. Details are left to the
industrious reader. If the factor graph is connected, but has cycles, the SPA runs into
problems. This is best seen using a simple example.

Example 4.21. We have two variables, X and Y , defined over finite domains X and
Y , respectively. Let us assume that these domains both contain L elements: X =
{x1, x2, . . . , xL} and Y = {y1, y2, . . . , yL}. The function we consider can be factorized
as follows:

f (X , Y) = fA(X , Y) fB(X , Y).

In this case, the normal factor graph has a cycle, as shown in Fig. 4.27. Because X
and Y are finite, the messages can be represented by a list of L numbers; the lth entry
in the list corresponds to the message evaluated in the lth element of the domain X or

70 Factor graphs and the sum–product algorithm

fA fB

X

Y

mA X mB X

mA Y mB Y→ →

→→

Figure 4.27. A normal factor graph of the function fA(X , Y) fB(X , Y). This graph has a cycle.

Y . Hence, we represent µfA→X (X) = µX→fB(X) by the L × 1 column-vector mA→X .
Similarly, µfB→X (X) is represented by mB→X , µfB→Y (Y) by mB→Y , and µfA→Y (Y) by
mA→Y . We evaluate fA(x, y), ∀ (x, y) ∈ X × Y and place the result in an L× L matrix
A with

[A]ij = fA
(
xi, yj

)
.

Similarly, fB(x, y), ∀ (x, y) ∈ X × Y is placed into an L × L matrix B. Using these
notations, we see that the sum-product rules now correspond to two disjunct sets of
message computations: mA→X and mB→Y are updated clockwise in Fig. 4.27,

mB→Y = BmA→X ,

mA→X = ATmB→Y ,

whereas the messages mA→Y and mB→X are updated counterclockwise in Fig. 4.27,

mA→Y = ATmB→X ,

mB→X = BmA→Y .

Because of the cyclic dependencies, the SPA is unable to start: for instance, the message
mB→Y requires the message mA→X , and vice versa.

Owing to the cycles, the SPA is unable to compute all the messages. A natural way to
circumvent this problem is by artificially inserting the missing messages (for instance
as a message that is equal to “1” over the corresponding domain). This allows the SPA
to continue. However, this creates a new problem: the SPA will now run indefinitely, so
it can never terminate. To solve this problem, we artificially terminate the SPA after a
certain time (after which we hope the messages will have converged in some sense), and
compute (what we hope to be) the marginals. Let us return to our example.

Example 4.22. If we choose an initial message m(0)
A→X , then the clockwise messages

can be updated iteratively. On choosing an initial message m(0)
B→X , the same can be done

4.7 The sum and product operators 71

for the counterclockwise messages. After n such iterations, mA→X becomes

m(n)
A→X = Cnm(0)

A→X ,

where C = ABT. Suppose that we can find a set of eigenvectors and corresponding
eigenvalues2 {(λk , vk)}Lk=1 that span R

L. Possibly some eigenvalues are counted multiple

times, and some eigenvalues are zero. We can then express m(0)
A→X as a linear combination

of the eigenvectors,

m(0)
A→X =

L∑
k=1

αkvk ,

so that

m(n)
A→X =

L∑
k=1

αkλ
n
kvk .

We see that, as the iterations progress, the terms for which |λk | < 1 tend to zero, whereas
terms for which |λk | > 1 tend to be dominated by the eigenvalue with the largest absolute
value. Except for some rare cases, messages will generally converge to zero or diverge.

The conclusion is that applying the SPA on a cyclic factor graph is unlikely to yield
the correct marginals. So, this probably means that the factor graphs with cycles have no
practical importance. . .Without any doubt the most ironic aspect of factor graphs is that
the most exciting applications are precisely those in which the factor graph has cycles!
More details will be given in the next chapter.

4.7 The sum and product operators

4.7.1 Generalizations

In this chapter we have considered functions from a domain X1 × · · · × XN → R. The
sum (denoted by

∑
,
∫

, or +) and product (
∏

or ×) are the sum and product we are
all familiar with. However, the SPA can be extended to more general scenarios. In this
chapter, we required only that (R,+,×) forms a commutative semi-ring. The SPA can
be applied to general abstract sets F endowed with suitable “sum” (⊕) and “product”
(⊗) operations, such that (F ,⊕,⊗) forms a commutative semi-ring. This means that

• ⊕ is associative and commutative (there exists an identity element for ⊕: e⊕);
• ⊗ is associative and commutative (there exists an identity element for ⊗: e⊗); and
• ⊗ is distributive over ⊕: a ⊗ (b⊕ c) = (a ⊗ b)⊕ (a ⊗ c) for any a, b, c ∈ F .

The SPA now uses the new sum and product operations, but remains essentially
unmodified. The only subtle point is that, in the initialization step of the SPA, half-edges
transmit the message e⊗ over the corresponding domain.

2 We remind the reader that, for a matrix C with eigenvalue λ and (column) eigenvector v, we have Cv = λv.

72 Factor graphs and the sum–product algorithm

Example 4.23. The triple (R, max,+) forms a commutative semi-ring. Let us verify this.
• max is associative,

max(a, max(b, c)) = max(max(a, b), c).

• max is commutative,

max(a, b) = max(b, a).

• There exists an identity element for max, e⊕, such that max(a, e⊕) = a, ∀a ∈ R. We
see that e⊕ = −∞ satisfies this condition.
• + is associative and commutative with e⊗ = 0.
• + is distributive over max:

a +max(b, c) = max(a + b, a + c).

In this case, the sum–product algorithm is usually given a more appropriate name: the
max–sum algorithm. It is easily verified that, similarly to (R, max,+), (R+, max,×) also
forms a commutative semi-ring with e⊕ = −∞ and e⊗ = 1, leading to the max–product
algorithm. More examples can be found in [4].

4.7.2 The max–sum algorithm

Let us consider the max-sum algorithm. We have a function from X1 × · · · ×XN → R,
with the following acyclic “factorization”:

f (X1, X2, . . . , XN) =
K∑

k=1

fk(Sk). (4.54)

We can then construct a factor graph of this factorization, and apply the max–sum
algorithm as follows.

Initialization
• For every leaf node fk with incident edge Xm, transmit message µfk→Xm(Xm), with
µfk→Xm(xm) = fk(xm), xm ∈ Xm.
• For every half-edge Xn, with incident node fl , transmit message µXn→fl (xn) = 0,
∀xn ∈ Xn.

Message-computation rule
• For any node fk of degree D: when fk has received incoming messages from D − 1

distinct incident edges Xn ∈ N (fk), then node fk can transmit an outgoing message

4.7 The sum and product operators 73

µfk→Xm(Xm) on the remaining edge Xm, with

µfk→Xm(xm) =
⊕
∼{xm}


 fk

({Xn = xn}Xn∈N (fk)
)⊗ ⊗

Xn∈N (fk)\{Xm}
µXn→fk (xn)



(4.55)

= max∼{xm}


 fk

({Xn = xn}Xn∈N (fk)
)+ ∑

Xn∈N (fk)\{Xm}
µXn→fk (xn)


.

(4.56)

Termination
• To compute the marginal of Xn, take any fk ∈ N (Xn). Then add the messages on the

edge Xn to obtain the marginal gXn(Xn), so that for any xn ∈ Xn

gXn(xn) = µfk→Xn(xn)⊗ µXn→fk (xn) (4.57)

= µfk→Xn(xn)+ µXn→fk (xn). (4.58)

The marginals gXn (Xn) are to be interpreted as

gXn(xn) =
⊕
∼{xn}

f (x1, x2, . . . , xN) (4.59)

= max∼{xn}
f (x1, x2, . . . , xN) (4.60)

so that the overall maximum is given by, for any n,

max
x1,...,xN

f (x1, x2, . . . , xN) = max
xn

gXn(xn). (4.61)

This is an important result: the max–sum algorithm allows us to determine the maximum
of a function. Note that this is not the same as determining the values of x = [x1, . . . , xN]
that achieve this maximum! In optimization problems we are usually interested in finding
not the maximum of a function, but rather the values x that achieve this maximum. Can
the max–sum algorithm help? Let us denote by x̂n a value that maximizes gXn(Xn):

x̂n = arg max
xn

gXn(xn). (4.62)

It then follows that

gXn

(
x̂n
) = max

x1,...,xN
f (x1, x2, . . . , xN). (4.63)

When we construct a vector x̂ = [x̂1, x̂2, . . . , x̂N
]
, then we are guaranteed that, when x̂

is unique,

x̂ = arg max
x1,...,xN

f (x1, x2, . . . , xN). (4.64)

74 Factor graphs and the sum–product algorithm

When f (·) has multiple maxima, the arguments that achieve these maxima can (at least
in principle) be found by considering all combinations of the arguments that maximize
the marginals, and then evaluating f (x1, x2, . . . , xN) for all those combinations. We retain
only those combinations that maximize f (·). Hence, the max–sum algorithm allows us
to locate efficiently the maximum of a function, as well as the values of the variables
that achieve this maximum.

4.8 Main points

In this chapter we have taken a leisurely tour in the land of factor graphs and the
sum–product algorithm (SPA). Factor graphs are a way of graphically representing the
factorization of a function. A (normal) factor graph is created as follows: we create
an edge for every variable and a vertex (a node) for every factor in the factorization.
We connect an edge to a node if and only if the corresponding variable appears as an
argument in the corresponding factor. Variables that appear in more than two factors
require a special equality node.

The SPA is an algorithm that efficiently computes the marginals of a function by
passing messages over the edges of the corresponding factor graph. We denote by
µfk→Xm(Xm) the message from node fk over edge Xm. Messages are functions of the
corresponding variables. The SPA starts from the leaf nodes (withµfl→Xm(xm) = fl(xm))
and half-edges (with µXn→fk (xn) = 1 for all xn ∈ Xn) in the graph. Nodes accept
incoming messages and compute outgoing messages. The message-computation rule
relating incoming messages µXn→fk (Xn) to an outgoing message µfk→Xm(Xm) is given

fA

fB

fC

fk fl

X1

X2

X3

Xm

mfk Xm
(Xm)→

mX3
fk
(X3)→

mX2
fk
(X2)→

mX1
fk
(X1)→

Figure 4.28. The update rule for normal factor graphs. Observe that µX1→fk (Xn) is just another
name for µfA→X1(X1).

4.8 Main points 75

by (see also Fig. 4.28)

µfk→Xm(xm) =
∑
∼{xm}

fk
({Xn = xn}Xn∈N (fk)

) ∏
Xn∈N (fk)\{Xm}

µXn→fk (xn). (4.65)

This computation rule is undoubtedly the most important relation in this book. Read it
a few times, and remember it by heart. Once all the messages have been computed, the
marginal of any variable (say, Xn) can be found by point wise multiplication of the two
messages over the corresponding edge. When the factor graph contains cycles, the SPA
runs into difficulties.

We have also introduced the concept of opening a node, and have illustrated
how the SPA can be generalized to arbitrary commutative semi-rings. One particular
extension is the max–sum algorithm, which can be interpreted as an optimization
technique/algorithm.

5 Statistical inference using factor
graphs

5.1 Introduction

In the previous two chapters we have introduced estimation theory and factor graphs.
Although these two topics may seem disparate, they are closely linked. In this chapter
we will use factor graphs to solve estimation problems and, more generally, inference
problems. In the context of statistical inference, factor graphs are important for two
reasons. First of all, they allow us to reformulate several important inference algorithms
in a very elegant way with an all-encompassing, well-defined notation and terminology.
As we will see in the future chapters, well-known algorithms such as the forward–
backward algorithm, the Viterbi algorithm, the Kalman filter, and the particle filter can
all be cast in the factor-graph framework in a very natural way. Secondly, deriving
new, optimal (or near-optimal) inference algorithms is fairly straightforward in the
factor-graph framework. Applying the SPA on a factor graph relies solely on local
computations in basic building blocks. Once we understand the basic building blocks,
we need remember only one rule: the sum–product rule. In this chapter, we will go into
considerable detail on how to perform inference using factor graphs. Certain aspects of
this chapter were inspired by [62].

This chapter is organized as follows.

• We start by explaining the various problems of statistical inference in Section 5.2, and
then provide a general factor-graph-based framework for solving these problems.
• We will deal with how messages should be represented (a topic we glossed over in

Chapter 4) in Section 5.3. The representation has many important implications, as
will become apparent throughout this book.
• We end with Section 5.4, covering the fun topic of loopy inference, that is inference

on factor graphs with cycles.

5.2 General formulation

5.2.1 Five problems of statistical inference

Let us introduce five important problems of statistical inference. We have a number of
random variables that we would like to infer from a number of observations. Let us group

78 Statistical inference using factor graphs

the variables of interest in a vector X = [X1, . . . , XN] defined over X1 × · · · × XN . The
observation is a vector y = [y1, . . . , yM], which is a realization of a random variable Y.
Additionally, there is usually some underlying model describing additional assumptions
related to X and Y. This model will be captured in a parameter M, where p(Y|X, M)

is a known distribution. In statistical inference, we are usually interested in answering
one or more of the following questions [63].

1. What is p(Y = y|M), the likelihood of the model M? Note that, for a given y, the
answer is a positive real number (i.e., in R

+).
2. What is the marginal a-posteriori distribution p(Xk |Y = y, M), given a certain model

M?
3. What are the characteristics (mode, moments, etc.) of the distribution p(Xk |Y =

y, M)?
4. What is the joint a-posteriori distribution p(X|Y = y, M), given a certain model M?
5. What are the characteristics (mode, moments, etc.) of the distribution p(X|Y =

y, M)?

5.2.2 Opening nodes

Before we start applying factor graphs to solve these inference problems, it is instructive
to re-cap the concept of opening nodes in the context of inference. Opening nodes will
happen many times in the course of this book, so let us devote a little time to it.

In inference problems, nodes will usually represent distributions (say, p(X1, . . . , XD))
or likelihood functions (say, p(Y = y|X1, . . . , XD)). In either case, from Section 4.6.2
we know that we can replace a node by a factorization of a distribution with additional
variables, as long as these variables do not appear elsewhere in the factor graph. In other
words, the node representing p(X1, . . . , XD) can be replaced (opened up) by a (cycle-free)
factor graph of a factorization of

p (X1, . . . , XD, U1, . . . , UD′) (5.1)

as long as the Uk are new variables. Similarly, the node representing p(Y = y|X1, . . . , XD)

can be replaced by a factor graph of a factorization of

p(Y = y, U1, . . . , UD′ |X1, . . . , XD). (5.2)

Opening of the node does not change the messages (either incoming or outgoing)
computed on the edges X1, . . . , XD.

5.2.3 Inference on factor graphs

Let us attempt to solve the five inference problems in a general, abstract way, and see how
factor graphs may help. After that, in Section 5.2.4, we will cover some basic examples
to get a feel of the expressive power of factor graphs in the context of inference.

5.2 General formulation 79

5.2.3.1 Problem 1 – likelihood of the model
• Step 1. Consider the joint distribution of the observations and the unknown parameters,

evaluated in Y = y:

p(X, Y = y|M) = p(Y = y|X, M) p(X|M). (5.3)

This is a function from X1 × · · · ×XN → R
+. The first factor p(Y = y|X, M) is the

likelihood function (note that the likelihood function is a function not of Y, but of X).
The second factor p(X|M) is the a-priori distribution of X, given a certain model.
• Step 2. Factorize both the likelihood function and the a-priori distribution:

p(Y = y|X, M) =
K∏

k=1

fk(Sk), (5.4)

where Sk ⊆ {X1, . . . , XN }, and

p(X|M) =
L∏

l=1

gl(Rl), (5.5)

where Rl ⊆ {X1, . . . , XN }. This factorization may require the introduction of additional
variables and opening of nodes.
• Step 3. Create a cycle-free, connected factor graph of the factorization of p(X, Y =

y|M). Remember that y is fixed, and does not appear as a variable (i.e., an edge) in
the graph.
• Step 4. Perform the SPA on this graph. This gives us the marginals gXk (Xk) =

p(Xk , Y = y|M), for k = 1, . . . , N .
• Step 5 – solution. Take any k between 1 and N , then

p(Y = y|M) =
∑

xk∈Xk

p(Xk = xk , Y = y|M). (5.6)

5.2.3.2 Problem 2 – a-posteriori distribution of Xk
We can repeat the first four steps from Section 5.2.3.1, so that we end up with the
marginals p(Xk , Y = y|M), for k = 1, . . . , N .

• Step 5 – solution. Clearly,

p(Xk |Y = y, M) = p(Xk , Y = y|M)

p(Y = y|M)
. (5.7)

Hence, p(Xk |Y = y, M) evaluated in xk ∈ Xk is given by

p(Xk = xk |Y = y, M) = p(Xk = xk , Y = y|M)∑
x∈Xk

p(Xk = x, Y = y|M)
. (5.8)

80 Statistical inference using factor graphs

In other words, the marginal a-posteriori distribution p(Xk |Y = y, M) is obtained by
normalizing the marginal gXk (Xk). Note that, to determine the marginal a-posteriori
distribution p(Xk |Y = y, M), the marginals gXk (Xk) need be known only up to
a multiplicative constant. This may seem a trivial remark, but will turn out to be
important.

5.2.3.3 Problem 3–characteristics of the a-posteriori distribution of Xk
Once we have determined the marginal a-posteriori distribution p(Xk |Y = y, M), its
characteristics can usually easily be found. For instance, the mode

x̂k = arg max
x∈Xk

p(Xk = x|Y = y, M) (5.9)

can be found through complete enumeration (for discrete variables), or using standard
optimization techniques.

5.2.3.4 Problem 4–a-posteriori distribution of X
This problem can be solved only when we consider the trivial factorization

p(X, Y = y|M) = p(Y = y|X, M) p(X|M). (5.10)

The corresponding factor graph has two nodes (one for the likelihood function and one
for the a-priori distribution) and a single edge (X). Factor graphs give us no insight or
computational advantage in solving this particular inference problem.

5.2.3.5 Problem 5–characteristics of the a-posteriori distribution of X
Since p(X, Y = y|M) is hard to determine, finding its moments is usually also very
hard. On the other hand, finding its mode turns out to be (rather surprisingly) feasible:
let us think back to Section 4.7, where we showed how to use the max–sum algorithm
to perform maximization over the (R, max,+) semi-ring. This leads to the following
solution.

• Step 1. Consider the logarithm of the joint distribution of the observations and the
unknown parameters, evaluated in Y = y:

log p(X, Y = y|M) = log p(Y = y|X, M)+ log p(X|M). (5.11)

This is a function from X1 × · · · × XN → R. The first term, log p(Y = y|X, M), is
the log-likelihood function.
• Step 2. We now factorize both the likelihood function and the a-priori distribution,

so that we can write log p(Y = y|X, M) = ∑k fk(Sk), where Sk ⊆ {X1, . . . , XN },
and log p(X|M) = ∑L

l=1 gl(Rl), where Rl ⊆ {X1, . . . , XN }. This factorization may
require the introduction of additional variables and opening of nodes.
• Step 3. Create a cycle-free, connected factor graph of the factorization of log p(X, Y =

y|M). We now need to make a node for every term in the summation. Recall that y is
fixed, and does not appear as a variable (edge) in the graph.

5.2 General formulation 81

• Step 4. Perform the max–sum algorithm on this graph. This gives us the marginals
gXk (Xk), with

gXk (xk) = max∼{xk }
log p(X = x, Y = y|M) (5.12)

for k = 1, . . . , N .
• Step 5 – solution. Take any k between 1 and N , then

x̂k = arg max
x∈Xk

gXk (x). (5.13)

Note that, to determine x̂k , we need to know the marginal gXk (Xk) only up to an
additive constant. As we argued in Section 4.7,

x̂ = [x̂1, . . . , x̂N
]

(5.14)

= arg max
x

log p(X = x, Y = y|M). (5.15)

Now, since the a-posteriori distribution and the joint distribution are related as

p(X, Y = y|M) = p(X|Y = y, M) p(Y = y|M), (5.16)

we find that

x̂ = arg max
x

p(X = x|Y = y, M), (5.17)

which is the desired result.

5.2.4 Examples

Example 5.1 (The burglar-alarm problem).
Problem. A famous example is the burglar-alarm problem from Pearl [56]. Consider
three binary random variables: E represents the event of an earthquake occurring, B
the event of a burglary taking place, and A the event of a burglar-alarm ringing. B
and E are a-priori independent. We have a-priori knowledge, with p(B = 1) = 1/100,
p(E = 1) = 1/100. We also know the distribution of A, conditioned on E and B:

p(A = 1|B = 0, E = 0) = 1/1000,

p(A = 1|B = 0, E = 1) = 1/10,

p(A = 1|B = 1, E = 0) = 7/10,

p(A = 1|B = 1, E = 1) = 9/10.

Suppose that we are at work, and get a call from the neighbor saying that our burglar-
alarm is ringing. What is then the probability that a burglar is in our house, and what is
the probability that an earthquake has occurred?

82 Statistical inference using factor graphs

Solution. Our observation is the ringing of the burglar-alarm, so we can make the
following associations:

Y↔ A,

y↔ 1,

X↔ [B, E].

Our goal is to find the distributions p(B|A = 1) and p(E|A = 1). This corresponds to
the second inference problem from Section 5.2.1. Let us work through the steps of the
solution, as outlined in Section 5.2.3.2. In step 1, we factorize the joint distribution

p(B, E, A = 1) = p(A = 1|B, E) p(B, E).

In step 2, we factorize the likelihood function and the a-priori distribution. This leads to

p(B, E, A = 1) = p(A = 1|B, E) p(B) p(E).

In step 3, we create a factor graph of this factorization. This factor graph is shown in
Fig. 5.1, where we have abbreviated p(B) by fB(B), p(E) by fE(E) and p(A = 1|B, E) by
g(B, E). In step 4, we perform the SPA on this graph. We first send messages from the
leaf nodes,

µfB→B(b) =
{

0.01 b = 1
0.99 b = 0

and

µfE→E(e) =
{

0.01 e = 1
0.99 e = 0.

E

B

fE

fB

g

Figure 5.1. A factor graph for the burglar-alarm problem. We use the following abbreviations:
fE(E) = p(E), fB(B) = p(B), and g(B, E) = p(A = 1|B, E).

5.2 General formulation 83

On the basis of these messages, we can now send messages from the node marked g:

µg→B(b) =
1∑

e=0

p(A = 1|B = b, E = e) µfE→E(e)

=
{

0.70200 b = 1
0.00199 b = 0

and

µg→E(e) =
1∑

b=0

p(A = 1|B = b, E = e) µfB→B(b)

=
{

0.10800 e = 1
0.00799 e = 0.

We obtain the following marginals:

gB(b) = p(A = 1, B = b)

= µg→B(b) µB→g(b)

=
{

0.007020 0 b = 1
0.001970 1 b = 0

and

gE(e) = p(A = 1, E = e)

= µg→E(e) µE→g(e)

=
{

0.0010800 e = 1
0.0079101 e = 0.

Finally in step 5, we find the normalization constants for B and E. They should be
the same: for B, we find 1/0.0089901 ≈ 111.2, while for E we find 1/(0.0010800 +
0.0079101)≈ 111.2, as we would expect. Multiplying the marginals by the normalization
constant yields

p(B = b|A = 1) ≈
{

0.7809 b = 1
0.2191 b = 0

and

p(E =e |A = 1) ≈
{

0.1201 e = 1
0.8799 e = 0.

So, even though a priori an earthquake is equally likely to occur as a burglary, the alarm
ringing tells us that the probability that an earthquake has occurred is only 12%, while
the probability of a burglary is almost 80%.

84 Statistical inference using factor graphs

Example 5.2 (Repetition codes).
Problem. Another basic example is from the world of digital communication. We wish
to convey a single bit b ∈ B of information over an unreliable channel. The bit has the
following a-priori distribution: p(B = 0) = 1/2. The channel is a binary asymmetric
channel with the following transition probabilities (c is the input, y is the output):

p(Y = 0|C = 0) = 0.5,

p(Y = 0|C = 1) = 0.1.

Note that this fully characterizes the channel. In order to protect the bit against this
unreliable channel, we encode our bit b using a rate 1/4 repetition code. The transmitter
then sends 4 bits c = [c1, c2, c3, c4] = [b, b, b, b] over the binary asymmetric channel.
Suppose we receive y = [0, 0, 1, 1]. How can we recover our original bit b?
Solution. Let us create a factor graph of the joint distribution

p(B, Y = y) = p(Y = y|B) p(B).

We will now introduce four additional variables and open up the node p(Y = y|B). We
replace the node p(Y = y|B) by a factor graph of a factorization of p(Y = y, C|B).
Note that this is a valid operation (as defined in Section 4.6.2) since

∑
c∈B4

p(Y = y, C = c|B) = p(Y = y|B).

Now p(Y = y, C|B) factorizes as follows:

p(Y = y, C|B) =
4∏

k=1

p(Yk = yk |Ck) = (Ck , B),

where = (·) is the equality function. A factor graph of the factorization of p(Y = y, C|B)
is shown in Fig. 5.2, where fB(B) is a shorthand for p(B), and fk(Ck) for p(Yk = yk |Ck).
It is clear that performing the SPA on this graph yields the marginal p(B, Y = y). The
SPA is executed as follows. In the first phase, messages from the five leaf nodes are sent
to the equality node:

µfB→B(b) =
{

0.5 b = 1
0.5 b = 0

µfk→Ck (ck) =
{

0.1 ck = 1
0.5 ck = 0

for k = 1, 2 and

µfk→Ck (ck) =
{

0.9 ck = 1
0.5 ck = 0

5.2 General formulation 85

B

C1

C2

C3

C4f1

f2 f3

f4

fB

p(Y = y|B)

=

Figure 5.2. A factor graph of a repetition code. The node p(Y = y|B) is opened up to reveal its
structure. fB(B) is a shorthand for p(B), and fk (Ck) for p(Yk = yk |Ck).

for k = 3, 4. In the second phase, we compute the message from the equality node to the
B-edge, as the pointwise multiplication of the incoming messages over the C-edges:

µ=→B(B = b) =
∑

c1,c2,c3,c4

= (b, c1, c2, c3, c4)

4∏
k=1

µg→Ck (ck) (5.18)

=
4∏

k=1

µg→Ck (b)

so that

µ=→B(B = 0) = (0.5)4

= 0.0625

and

µ=→B(B = 1) = (0.9)2 × (0.1)2

= 0.0081.

We then find that

gB(b) = p(B = b, Y = y)

=
{

0.00405 b = 1
0.03125 b = 0.

Normalization yields (with normalization constant ≈28.33):

p(B = b|Y = y) ≈
{

0.11 b = 1
0.89 b = 0

86 Statistical inference using factor graphs

so that we can say with high confidence that the transmitted bit was equal to zero. We
can also determine the likelihood of having received this particular observation y:

p(Y = y) =
∑
b∈B

gB(b)

= 0.0353.

5.3 Messages and their representations

At this point the reader may very well wonder how messages can be represented in, say,
a computer program. The examples in the previous sections indicate that for discrete
variables a simple vector representation can be used. A problem that has also become
apparent is that messages may have a very small dynamic range. In this section we will
deal with some practical issues, such as message scaling and message representation.

This section is organized as follows. In Section 5.3.1, we show that messages can
be scaled arbitrarily, without affecting the outcome of the SPA. To be more precise: in
the sum–product algorithm we can multiply messages by constants, and in the max–
sum algorithm we can add constants to messages. When we are interested in the first
inference problem (computing the likelihood of the model), we need to keep track of all
the scaling factors. When we are interested in any of the other inference problems, scaling
factors/terms cancel out and can be forgotten. Section 5.3.2 deals with a particular type of
scaling: normalization. Normalization allows us to interpret messages as distributions,
which has some interesting consequences. We then move on to three representations
of messages for discrete variables in Section 5.3.3: probability mass functions, log-
likelihoods and log-likelihood ratios. In the same section, we also reveal a close link
between the SPAand the max–sum algorithm. Finally, in Section 5.3.4 we present several
ways of representing messages for continuous variables: quantization, and parametric
and non-parametric representations.

5.3.1 Message scaling

5.3.1.1 Max–Sum algorithm
In the max–sum algorithm, any real number can be added to any message without
affecting the outcome of the algorithm. Additive constants simply propagate through
the max–sum algorithm. After running the max–sum algorithm, the marginals we obtain
(say g̃Xk (Xk)) are now equal to the true marginals (gXk (Xk)) up to an additive constant
(say, Ck). We find that

x̂k = arg max
x∈Xk

g̃Xk (Xk = x)

= arg max
x∈Xk

gXk (Xk = x)

5.3 Messages and their representations 87

so we don’t need to keep track of the the scaling terms Ck at all! Adding constants to
messages has some implementation advantages.

5.3.1.2 The sum–product algorithm
A common problem in message computation in the SPA for inference problems is
that we multiply probabilities and likelihoods. As a result, messages are functions that
tend to get smaller and smaller in magnitude as the SPA proceeds. When we want to
compute the marginal a-posteriori distributions p(Xk |Y = y, M), we will have to use
large normalization factors. From a theoretical point of view this is not a problem. For
computers, on the other hand, which have only a finite numerical precision, it is simply
disastrous. To get around this problem, we can scale the messages so that they lie with
in some predefined dynamic range. As long as we keep track of the scaling factors, we
can still solve our inference problems exactly.

Consider the SPA computation rule:

µfk→Xm(xm) =
∑
∼{xm}

fk (x1, . . . , xD)
∏
n�=m

µXn→fk (xn). (5.19)

Suppose that we scale the incoming messages µXn→fk (xn) by constants Cn, and denote
CnµXn→fk (xn) by µ̃Xn→fk (xn). When we apply the SPA computation rule to the scaled
messages, we get

µ̃fk→Xm(xm) =
∑
∼{xm}

fk(x1, . . . , xD)
∏
n�=m

µ̃Xn→fk (xn) (5.20)

= µfk→Xm(xm)
∏
n�=m

Cn. (5.21)

We can now scale µ̃fk→Xm(Xm) by some constant Cm so that its values fall within some
predefined dynamic range. Note that from the scaled message µ̃fk→Xm(Xm)we can derive
the original, unscaled message µfk→Xm(Xm) simply by dividing it by

∏
n Cn. When the

SPA terminates, we multiply the two scaled messages over any edge and obtain scaled
marginals for each of the variables

g̃Xn(xn) = γ gXn(xn) (5.22)

for some known constant γ .
Suppose that we are interested in determining the marginal a-posteriori probability

p(Xn|Y = y, M). We find that

p(X1 = x1|Y = y, M) = gXn(xn)∑
x∈Xn

gXn(x)
(5.23)

= g̃Xn(xn)∑
x∈Xn

g̃Xn(x)
. (5.24)

88 Statistical inference using factor graphs

In other words, to determine the marginal a-posteriori distributions, we don’t need to
keep track of the scaling factors at all! We can simply normalize the scaled marginals.

Example 5.3 (The burglar-alarm problem). Going back to our burglar-alarm problem,
suppose that we scale µg→B(B) by CB = 100, so that

µ̃g→B(b) =
{

70.2 b = 1
0.199 b = 0

and we scale µg→E(E) by CE = 10, so that

µ̃g→E(e) =
{

1.0800 e = 1
0.0799 e = 0

This leads to the following scaled marginals:

g̃B(b) =
{

0.702 00 b = 1
0.197 01 b = 0

and

g̃E(e) =
{

0.010800 e = 1
0.079101 e = 0.

The normalization constant for B is now 1/(0.70200+ 0.19701) = 1/0.0899 ≈ 11.12,
and that for E, 1/0.899 ≈ 1.112.
The original normalization constant (i.e., 111.2) can be obtained since CE and CB are
known. This is important for the first inference problem (see Section 5.2.3.1). On the
other hand, to compute the marginal a-posteriori distributions, we don’t need to keep
track of the scaling factors CE and CB, since the marginal a-posteriori distributions can
be obtained simply by normalizing the scaled marginals g̃B(B) and g̃E(E). For instance,
without knowing CE or CB, we find that

p(B = b|A = 1) = g̃B(b)

g̃B(0)+ g̃B(1)

≈
{

0.7809 b = 1
0.2191 b = 0,

which is consistent with our previous results.

5.3.2 Distributions as messages

From this point onward, we will focus almost exclusively on the SPA, rather than on the
max–sum algorithm. Since messages can be scaled arbitrarily in the SPA, we can ask

5.3 Messages and their representations 89

ourselves whether there is some smart way to scale them. One particularly attractive way
of scaling is normalization: we first compute our message in the normal way, assuming
that fk has as variables X1, . . . , XD:

µfk→Xm(xm) =
∑
∼{xm}

fk (x1, . . . , xD)
∏
n�=m

µXn→fk (xn) (5.25)

and then, once we have determined µfk→Xm(xm) for all xm ∈ Xm, we scale (multiply by
some constant γ) the message such that∑

xm ∈Xm

γµfk→Xm(xm) = 1. (5.26)

Remember that we don’t need to keep track of the normalization constants in order to
determine the marginal a-posteriori distributions of Xm. However, when computing the
likelihood of the model, p(Y = y|M), normalization constants are important. Note that
for continuous variables summations become integrals.

Interpretations
1. This normalization process has an important implication: messages can be interpreted

as probability distributions (pmfs or pdfs). This explains the better-known name of
the SPA: belief propagation.

2. We can write (5.25) as

µfk→Xm(xm) ∝ E { fk(X1, . . . , XD)|Xm = xm} (5.27)

when we interpret the variables Xn, n �= m, as being independent random variables
with a-priori distributions p(Xn) = µXn→fk (Xn). Here “∝” refers to equality up to a
multiplicative constant.

3. Since µfk→Xm(xm) is also a distribution, we can go one step further and interpret
(5.25) as

µfk→Xm(xm) = p(Xm = xm) (5.28)

=
∑
∼{xm}

p
(
Xm = xm, {Xn = xn}n�=m

)
(5.29)

=
∑
∼{xm}

p
(
Xm = xm

∣∣{Xn = xn}n�=m
)︸ ︷︷ ︸

∝fk (X1,...,XD)

∏
n�=m

p(Xn = xn)︸ ︷︷ ︸
µXn→fk

(xn)

. (5.30)

In other words, we can interpret fk(x1, . . . , xD) as being proportional to a conditional
distribution

p(Xm = xm|{Xn = xn}n�=m).

These interpretations will allow us to attach meaning to messages and compute them
efficiently, capitalizing on the rich structure of probability theory.

90 Statistical inference using factor graphs

5.3.3 Representation of messages for discrete variables

While we now know that we can scale messages and attach a meaning to them, we are
still left with the question of how to represent them efficiently. In this section we will
describe three common ways to achieve this. We again focus mainly on the SPA. As we
have seen, messages in the max-sum algorithm can be represented by vectors and can
be modified by adding constants without affecting the final result.

5.3.3.1 Probability mass functions
When a variable Xn is defined over a finite domain Xn, the normalized messages are
essentially probability mass functions (pmfs). As such, they can be represented as a
vector of size |Xn|. So, instead of writing the function µfk→Xm(Xm), we can write
a vector pfk→Xm . For notational convenience, we will use the following notation to
access the elements: pfk→Xm(xm) = µfk→Xm(xm). The SPA computation rule (5.25) now
becomes

pfk→Xm(xm) ∝
∑
∼{xm}

fk(x1, . . . , xD)
∏
n�=m

pXn→fk (xn). (5.31)

The normalization constant is found by computing the right-hand side of (5.31) for every
xm ∈ Xn and then normalizing so that

∑
xm∈Xn

pfk→Xm(xm) = 1.

5.3.3.2 Log-likelihoods
Suppose that we have a message µfk→Xm(Xm). We introduce a |Xn| × 1 vector Lfk→Xm

(known as a log-domain representation or log-likelihood):

Lfk→Xm(xm) = logµfk→Xm(xm). (5.32)

Note that the original message can be recovered by exponentiating the vector Lfk→Xm .
This transformation has the benefit of converting the range [0,+∞] of µfk→Xm(Xm) to
the range [−∞,+∞] of Lfk→Xm , effectively increasing the dynamic range of messages.
Now (5.25) becomes

Lfk→Xm(xm) = log


∑
∼{xm}

fk(x1, . . . , xD)
∏
n�=m

eLXn→fk
(xn)


. (5.33)

In the conventional SPA, the marginals are given by

gXm(xm) = µfk→Xm(xm) µXm→fk (xm). (5.34)

In the log-domain this becomes

log gXm(xm) = Lfk→Xm(xm)+ LXm→fk (xm). (5.35)

5.3 Messages and their representations 91

We can add any constant to the message Lfk→Xm without affecting the SPA.

• When determining the likelihood of the model p(Y = y|M) we need to keep track of
all constants added to the messages.
• When determining the marginal a-posteriori distribution p(Xm|Y = y, M), the

constants are irrelevant, since determining

p(Xm = xm|Y = y, M) ∝ exp
(
Lfk→Xm(xm)+ LXm→fk (xm)

)
(5.36)

is not affected by adding any constant to Lfk→Xm or LXm→fk .

In (5.33), we must repeatedly exponentiate messages and take logarithms. This is a
rather costly affair, so we would rather perform message computation directly in the
log-domain. To this end, it is helpful to introduce the Jacobian logarithm.

Definition 5.1 (Jacobian logarithm). For any L ∈ N0, the Jacobian logarithm is a
function M : R

L → R defined according to the following recursive rule:

M (L1, . . . , LL) =M (L1, M (L2, . . . , LL)), (5.37)

where

M (L1, L2) = max(L1, L2)+ log
(

1+ e−|L1−L2|
)

(5.38)

and

M (L1) = L1. (5.39)

Similarly to the summation operator �, we will often abbreviate M(L1, . . . , LL) as
M

L
i=1(Li). The core computation of the Jacobian logarithm (5.38) is usually implemented

using a maximization and a table look-up, requiring a short table as a function of |L1−L2|.
This avoids explicit exponentiation and taking of logarithms, and allows the Jacobian
algorithm to be implemented very efficiently.

The Jacobian logarithm has the following important property [64]:

M (L1, . . . , LL) = log

(
L∑

l=1

eLl

)
. (5.40)

This property allows us to express (5.33) as

Lfk→Xm(xm) =M∼{xm}


log fk(x1, . . . , xD)+

∑
n�=m

LXn→fk (xn)


, (5.41)

where the Jacobian logarithm goes over all configurations [x1, . . . , xD] with mth entry
equal to xm. The low complexity of the Jacobian logarithm allows us to perform the

92 Statistical inference using factor graphs

entire SPA on log-domain messages without resorting to computationally demanding
exponentiations and logarithms.

Example 5.4 (Repitition code). Let us go back to our repetition-code example, with a
factor graph shown in Fig. 5.2. We first write the messages from the leaves to the equality
node as normalized vectors, so that

pfB→B = γ [0.5 0.5]T

=
[

1

2

1

2

]T

and, for k ∈ {1, 2}

pfk→Ck = γ [0.5 0.1]T

=
[

5

6

1

6

]T

and, for k ∈ {3, 4},

pfk→Ck = γ [0.5 0.9]T

=
[

5

14

9

14

]T

.

Taking the logarithm yields LfB→B = [−0.69 − 0.69]T, Lfk→Ck = [−0.18 − 1.79]T for
k ∈ {1, 2} and Lfk→Ck = [−1.03 − 0.44]T for k ∈ {3, 4}. Using (5.41), we transform
(5.18) and compute the message L =→B as follows, for b ∈ {0, 1}:

L =→B(b)=Mc1,c2,c3,c4

(
log = (b, c1, c2, c3, c4)+

4∑
n=1

LCn→= (cn)

)
.

Since log = (b, c1, c2, c3, c4) = 0 when c1 = c2 = c3 = c4 = b and −∞ otherwise, we
find that

L =→B(b) =M

(
−∞,−∞, . . . ,−∞, 0+

4∑
n=1

LCn→= (b)

)

=
4∑

n=1

LCn→= (b)

≈
{−4.46 b = 1
−2.42 b = 0.

5.3 Messages and their representations 93

The marginals in the log-domain are then given by (up to an unknown additive constant)

log gB(b) = L =→B(b)+ LB→= (b)

=
{−5.16 b = 1
−3.12 b = 0.

Since log gB(1) < log gB(0), we can conclude that the transmitted bit was most likely a
zero. If we wish to determine p(B = b|Y = y), we take the exponential of log gB(B) and
then normalize, giving us

p(B = b|Y = y) ≈
{

0.11 b = 1
0.89 b = 0,

which is identical to the result from Section 5.2.4.

5.3.3.3 A link between sum–product and max–sum
Before we move on to a third representation of messages for discrete variables, let
us make a small digression and reveal a link between the max–sum algorithm (which
operates on the logarithm of a distribution) and log-likelihood representations in the SPA.
Suppose that we have a factorization of p(X, Y = y|M), where fk(X1, . . . , XD) appears
as a factor. Let us perform the SPA where messages are represented by log-likelihoods.
We have the following rule:

Lfk→Xm(xm) =M∼{xm}


log fk(x1, . . . , xD)+

∑
n�=m

LXn→fk (xn)


. (5.42)

Since

M (L1, L2) = max(L1, L2)+ log
(

1+ e−|L1−L2|
)

(5.43)

≈ max(L1, L2) (5.44)

when |L1 − L2| is large, we can approximate Lfk→Xm(xm) as

Lfk→Xm(xm) ≈ max∼{xm}


log fk(x1, . . . , xD)+

∑
n�=m

LXn→fk (xn)


. (5.45)

If we were now to perform the max–sum algorithm on the factorization of log p(X, Y =
y|M), then the function log fk(X1, . . . , XD) will appear as a factor. From the definition
of the max–sum algorithm in Section 4.7 from Chapter 4, we know that the message-
computation rule is given by

µfk→Xm(xm) = max∼{xm}


log fk(x1, . . . , xD)+

∑
n�=m

µXn→fk (xn)


. (5.46)

94 Statistical inference using factor graphs

On comparing (5.45) and (5.46), we notice that they are exactly the same. Performing
the SPA with log-domain messages, combined with an approximation of the Jacobian
logarithm, results in the max–sum algorithm.

5.3.3.4 Log-likelihood ratios
When we use log-likelihoods, we can add or subtract any real number to a message
before transmitting it over an edge. One particular choice of such a number is the log-
likelihood of a fixed reference element in Xm. Let us order the elements in Xm as Xm =
{a(1)m , a(2)m , . . . , a(|Xm|)

m } and define a vector

λfk→Xm = Lfk→Xm − Lfk→Xm

(
a(1)m

)
. (5.47)

By subtracting a fixed entry, the vector will always have a zero in a fixed position (in
this case, the first position). This means that we might as well not send this entry (since
the receiving node knows that it is zero anyway). Since Xm contains |Xm| elements, this
results in a memory saving of (|Xm| − 1)/|Xm|. This is useful only when |Xm| is small,
for instance when Xm is a binary variable.

Note the following relation between the message represented as a pmf pfk→Xm and the
message as λfk→Xm ,

λfk→Xm

(
a(n)m

)
= log


pfk→Xm

(
a(n)m

)
pfk→Xm

(
a(1)m

)

, (5.48)

so the message λfk→Xm is usually called a log-likelihood ratio (LLR). Since LLRs are a
special case of log-likelihoods, all comment regarding computation rules and marginals
remain valid.

Example 5.5 (Repitition code). From Section 5.3.3.2, we know that LfB→B ≈ [−0.69 −
0.69]T, Lfk→Ck ≈ [−0.18 − 1.79]T for k ∈ {1, 2} and Lfk→Ck ≈ [−1.03 − 0.44]T for
k ∈ {3, 4}. We take as reference element in the binary domain the element 0, and introduce
the LLRs λfB→B = LfB→B(1) − LfB→B(0) = 0, λfk→Ck ≈ −1.61, for k ∈ {1, 2}, and
λfk→Ck ≈ 0.59, for k ∈ {3, 4}. Since

L =→B(b) =
4∑

n=1

LCn→= (b)

we have also

λ=→B =
4∑

n=1

λCn→=

≈ −2.04.

5.3 Messages and their representations 95

Finally, the LLR of the marginal is given by

λB = λ=→B + λB→=

= −2.04

= log

(
p (B = 1|Y = y)
p (B = 0|Y = y)

)
.

Since λB < 0, we can conclude that the transmitted bit was most likely a zero. If we wish
to determine p(B = b|Y = y), we take the exponential and then normalize, giving us
the same result as before:

p(B = 0|Y = y) = 1

1+ eλB
≈ 0.89,

p(B = 1|Y = y) = eλB

1+ eλB
≈ 0.11.

5.3.4 Representation of messages for continuous variables

While messages for discrete variables can be represented easily by means of a vector,
this is no longer true for continuous variables. We focus solely on the SPA. When a
variable Xn is defined over a continuous domain Xn, the normalized messages in the
SPA are essentially probability density functions (pdfs), and the sum–product rule now
involves multi-dimensional integrations. This poses two problems.

1. How should the messages be represented?
2. How do we implement the sum–product rule?

In these sections, we will describe various ways of describing messages, and how to
implement the sum–product rule. For the sake of clarity, we will focus on a node with
three variables, f (X , Y , Z), resulting in the following sum–product rule:

µf→Z (z) = γ
∫
X

∫
Y

f (x, y, z) µX→f (x) µY→f (y)dx dy (5.49)

where γ is a normalization constant, chosen such that∫
Z
µf→Z (z)dz = 1. (5.50)

The incoming messages over edges X and Y ,µX→f (X) andµY→f (Y), can be interpreted
as pdfs pX (x) and pY (y), respectively. Similarly, the outgoing message µf→Z (Z) is a
pdf pZ (z). As before, we also have the following interpretation of (5.49):

pZ (z) =
∫ ∫

pZ|X ,Y (z|x, y) pX (x) pY (y)dx dy (5.51)

96 Statistical inference using factor graphs

with pZ|X ,Y (z|x, y) equal to γ f (x, y, x). In other words, when computing the message
µf→Z (z), we can use (5.51) and treat X and Y as independent random variables with
known a-priori distributions. The conditional distribution of z, pZ|X ,Y (z|x, y), is known
only up to a constant.

In general, representing the pdfs exactly is impossible, and, even if they can be
represented in closed form, computing the integrals required by the SPA may be very
hard. For these reasons, we often look for approximate representations of the pdfs. We
must (a) take care that the approximations are sufficiently accurate for our purpose, and
(b) make the integrals tractable (either analytically or numerically).

We will describe three common representations: quantization, parametric represen-
tations, and non-parametric representations.

5.3.4.1 Quantization
The most natural way to circumvent the above problems is by quantization of the
domains of X , Y , and Z . This leads to quantized versions of the functions, as well as
the messages. Esentially, we approximate the pdf by a pmf. In this case, the techniques
from Section 5.3.3 can be applied. The main drawback of such techniques is that the
complexity and memory requirements scale exponentially in the dimensionality of the
variables involved.

5.3.4.2 Parametric representations
The idea behind parametric representations is that the distributions can be captured
entirely by a finite set of parameters. A classic example is the Gaussian mixture density
(GMD). Suppose that X is an L-dimensional variable distributed according to a GMD,
then the pdf pX(x) is given by

pX(x) =
L∑

l=1

αlNx(ml ,�l) (5.52)

where αl is the weight of the lth mixture component (with
∑

l αl = 1). In many
applications, such a GMD is a good approximation of the true density. The message
from a node is then given by the list of L mixture weights, L means, and L covariance
matrices.

When the factors in the factorization have a convenient structure (an example will be
given in Section 6.4), the SPA message-computation rule then reverts to transforming
incoming GMD messages into an output GMD message.

5.3.4.3 Non-parametric representations
In non-parametric representations, we resort to particle representations. We recall from
Chapter 3 that we have a particle representation RL(pX (·)) of a distribution pX (·) with

5.3 Messages and their representations 97

f

X

Y

Z

R (pX (·))

R(pY (·))

find R(pZ (·))

Figure 5.3. Non-parametric representations of messages. The function f (x, y, z) is proportional to
pZ|X ,Y (z|x, y).

L properly weighted samples {(wl , xl)}Ll=1 when, for any integrable function f (x),

∫
f (x) pX (x)dx ≈

L∑
l=1

∫
f (x)wl = (xl , x)dx (5.53)

=
L∑

l=1

wlf (xl). (5.54)

Solving (5.51) now becomes equivalent to solving the following problem (see Fig. 5.3):
given two independent random variables X and Y , with RL(pX (·)) = {(wl , xl)}Ll=1,
and RL(pY (·)) = {(vl , yl)}Ll=1, as well as a conditional pdf pZ|X ,Y (z|x, y), known only
up to a constant, find a particle representation of pZ (z), RL(pZ (·)) = {(ul , zl)}Ll=1.
We will describe three possible solutions: importance sampling, mixture sampling, and
regularization.

Approach 1 – importance sampling
We go through the following steps.

• Let us draw L iid samples from pX (x): x(k) ∼ pX (x), and L iid samples from pY (y):
y(k) ∼ pY (y). Since, for the purpose of computing the message pZ (z), we can treat
X and Y as independent, this results in L samples {(x(k), y(k))}Lk=1 from the joint
distribution pX ,Y (x, y) = pX (x)pY (y).
• We now use importance sampling (see Section 3.3.2) to generate samples

from pX ,Y ,Z (x, y, z). For every couple (x(k), y(k)), we draw one sample
z(k) ∼ qZ|X ,Y (z|x(k), y(k)), where qZ|X ,Y (z|x(k), y(k)) is a well-chosen sampling
distribution. The sample (x(k), y(k), z(k)) is thus taken from the distribution

98 Statistical inference using factor graphs

qZ|X ,Y (z|x, y)pX (x)pY (y). We set the weighting of the sample z(k) to

u(k) = pZ|X ,Y
(
z(k)
∣∣x(k), y(k)

)
pX
(
x(k)
)

pY
(
y(k)
)

qZ|X ,Y
(
z(k)
∣∣x(k), y(k)

)
pX
(
x(k)
)

pY
(
y(k)
) (5.55)

∝ f
(
x(k), y(k), z(k)

)
qZ|X ,Y

(
z(k)
∣∣x(k), y(k)

) . (5.56)

We remind the reader that f (x, y, z) can be evaluated for any x, y, z and is proportional
to pZ|X ,Y (z|x, y). We normalize the weights such that

∑
k u(k)= 1. The L weighted

samples {(u(k), (x(k), y(k), z(k)))}Lk=1 form a particle representation of the joint
distribution pX ,Y ,Z (x, y, z) = pZ|X ,Y (z|x, y)pX (x)pY (y).
• Retaining only the third component in the samples results in a list of L properly

weighted samples {(u(k), z(k))}Lk=1, which form a particle representation of pZ (z), the
desired distribution (see Section 3.3.1).

The algorithm is shown inAlgorithm 5.1. In some applications it is necessary to resample
from the particle representation of pZ (z) in order to avoid degeneration problems [65]:
as messages propagate over the factor graph, it can happen that all the weight gets
concentrated on a single sample. Resampling at every message update removes this
problem.

Algorithm 5.1 The sum–product rule for continuous variables – importance sampling

1: input: RL(pX (x)) = {(w(l), x(l))}Ll=1 and RL(pY (y)) = {(v(l), y(l))}Ll=1
2: for k = 1 to L do
3: draw x(k) ∼ pX (x)
4: draw x(k) ∼ pY (y)
5: draw z(k) ∼ qZ|X ,Y (z|x(k), y(k))
6: set u(k) = f (x(k), y(k), z(k))/qZ|X ,Y (z(k)|x(k), y(k))
7: end for
8: normalize weights
9: output: RL(pZ (z)) = {(u(k), z(k))}Lk=1

Approach 2 – mixture sampling
On substituting the particle representations of pX (x) and pY (y) into (5.51), we can write

pZ (z) ≈
∫ ∫

pZ|X ,Y (z|x, y)




L∑
l1=1

w(l1) =
(

x, x(l1)
)




L∑
l2=1

w(l2) =
(

y, y(l2)
)
 dx dy

(5.57)

=
L∑

l1=1

w(l1)
L∑

l2=1

v(l2)pZ|X ,Y

(
z
∣∣∣x(l1), y(l2)

)
(5.58)

5.3 Messages and their representations 99

so that we can interpret pZ (z) as a mixture density with L2 mixture components. We will
now draw a weighted sample from every mixture component: for every combination
(x(l1), y(l2)), we draw a sample z(l1,l2) ∼ qZ|X ,Y (z|x(l1), y(l2)) and set the corresponding
weight to

u(l1,l2) = w(l1)v(l2)
f
(
x(l1), y(l2), z(l1,l2)

)
qZ|X ,Y

(
z(l1,l2)

∣∣x(l1), y(l2)
) . (5.59)

We end up with L2 samples (in general, for a node of degree D, we end up with LD−1

samples). We normalize the weights, resulting in a particle representation {(u(k), z(k))}L2

k=1
of pZ (z) with L2 samples. The number of samples can be reduced by resampling. The
algorithm is shown in Algorithm 5.2.

Algorithm 5.2 Sum–product rule for continuous variables – mixture sampling

1: input: RL(pX (·)) = {(w(l), x(l))}Ll=1 and RL(pY (·)) = {(v(l), y(l))}Ll=1
2: for l1 = 1 to L do
3: for l2 = 1 to L do
4: draw z(l1,l2) ∼ qZ|X ,Y (z|x(l1), y(l2))
5: set u(l1,l2) = w(l1)v(l2)f (x(l1), y(l2), z(l1,l2))/qZ|X ,Y (z(l1,l2)|x(l1), y(l2))
6: end for
7: end for
8: normalize weights
9: output: RL(pZ (·)) = {(u(k), z(k))}L2

k=1

Approach 3 – regularization
The above techniques suffer from one important drawback: in some cases the function
f (x(l1), y(l2), z), as a function of z, is zero almost everywhere. This occurs for instance
when f (·) corresponds to an equality node: f (x(l1), y(l2), z) = = (x(l1), y(l2), z). Since
the sample from pX (x) and the sample from pY (y) will generally not be the same,
f (x(l1), y(l2), z) = 0, ∀z. This problem can be circumvented by regularization (see
Section 3.3.1): we approximate the particle representation by a mixture of Gaussian
densities. The process requires two steps.

1. Convert the particle representations RL(pY (·)) and RL(pX (·)) into an appropriate
Gaussian mixture. Starting from RL(pX (·)) = {(w(l), x(l))}Ll=1, we approximate
pX (x) as

pX (x) ≈
L∑

l=1

w(l)Nx

(
x(l), σ 2

)
, (5.60)

where, for scalar X , σ 2 = (4/(3L))1/5 [45]. We do the same for pY (y). Now we have
approximations of the distributions for all x and for all y.

100 Statistical inference using factor graphs

2. Draw L properly weighted samples from pZ (z). There are many ways to do this,
depending on the structure of f (x, y, z).
(a) In the particular case of an equality node (f (x, y, z) = = (x, y, z)), pZ (z) is also

a Gaussian mixture with L2 components:

pZ (z) = γ pX (z) pY (z). (5.61)

Samples from this Gausssian mixture can be obtained by sampling from z(k) ∼
pX (z), and setting the importance weight u(k) to be pY (zk) (or vice versa). An
alternative technique based on Gibbs sampling is described in [66].

(b) For a more general f (x, y, z), we can sample from some appropriate joint sampling
distribution qXYZ (x, y, z) = ψ(x, y, z), and then set the weight u(k) of sample
(x(k), y(k), z(k)) to be u(k) ∝ pX (x(k))pY (y(k))f (x(k), y(k), z(k))/ψ(x(k), y(k), z(k)).
Retaining only the third component of every sample results in a particle
representation {(u(k), z(k))}Lk=1 of pZ (z).

5.4 Loopy inference

We now know how to solve inference problems on factor graphs, and how to represent
and compute messages both for discrete and for continuous variables. Throughout this
chapter, we have managed to avoid factor graphs with cycles. However, many inference
problems do not lend themselves well to cycle-free graphs. What happens when the
factor graph contains cycles? We have seen in Section 4.6.6 that the SPA needs to be
modified to take into account cyclic dependencies. This is easily achieved as follows.

• A selected set of messages within the graph is set to uniform distributions over the
corresponding domains.
• After a certain (predefined or dynamically decided) number of iterations, the SPA

is halted, and approximate marginal a-posteriori distributions are computed. These
approximate distributions are sometimes referred to as beliefs (in order to distinguish
them from the true a-posteriori distributions).

This at least allows us to execute the SPA on cyclic graphs. The SPA now becomes
iterative (or loopy). This leads to the terms loopy inference, loopy belief propagation,
iterative processing, and turbo processing. In Section 4.6.6, we showed that messages
tend to zero or to infinity with progressive iterations. In inference problems, we normalize
messages so that this problem is removed: messages may possibly converge to reasonable
distributions. But how should we interpret these distributions? Is there any relationship
between the marginals obtained and the true marginal a-posteriori distributions? Do the
messages converge at all? These questions are hard to answer in general, and in fact it
is fair to say that the answer is not yet fully known. The interested reader is directed
to [61,67,68] and references therein for more information. In particular [61] deals with
generalizations of the SPA that may give better performance and reveals an important

5.4 Loopy inference 101

fA fB

X1

X2

mA→X1
mB→X1

mA→X2 mB→X2

Figure 5.4. A factor graph of the distribution p(Y = y|X1, X2)p(X1X2), with fA(X1, X2) =
p(Y = y|X1, X2) and fB(X1, X2) = p(X1, X2).

link between the fixed points of the SPA and free-energy minimization in statistical
physics.

This incomplete understanding doesn’t mean that we should forget about loopy
inference! Indeed, in most practical scenarios where we are interested in determining
marginal a-posteriori distributions it turns out that implementing the SPA for inference
on cyclic factor graphs gives excellent empirical results. Similarly, the likelihood of the
model can be approximated by applying the techniques from [61], where it is shown that
log p(Y = y|M) = −FH, where FH is the Helmholtz free energy, and that FH can be
approximated by the Bethe free energy FBethe, which in turn is a simple function of the
beliefs obtained in the SPA1.

Let us study the simplest of examples: a factor graph with a single cycle and two
nodes. Extension to more general factor graphs with a single cycle is straightforward.
As we will see, there is a nice relationship between the SPA marginals (the beliefs) and
the true marginal a-posteriori distributions, and loopy inference may give good results.

Example 5.6. We have two variables, X1 and X2, defined over a finite domain � =
{a1, a2, . . . , aL} with L > 1 elements. After observing Y = y, we write the joint
distribution of X =[X1X2] and Y = y:

p(X, Y = y) = p(Y = y|X1, X2) p(X1X2)

= p(Y = y|X1, X2) p(X1) p(X2|X1).

When neither the likelihood function nor the a-priori distribution has a
convenient factorizations, we end up with a factorization of the form f (X1, Y2)=
fA(X1, X2)fB(X1, X2), which is exactly the situation we encountered in Section 4.6.6.
The factor graph is shown in Fig. 5.4. As we did in Chapter 4, we will represent the
messages as vectors so that µfA→X1(X1) = µX1→fB(X1) becomes mA→X1 . Similarly,
µfB→X1(X1) becomes mB→X1 , µfB→X2(X2) becomes mB→X2 , and µfA→X2(X2) becomes

1 We will not pursue the use of loopy inference to determine the likelihood of the model. The interested
reader is advised to consult [61, 69].

102 Statistical inference using factor graphs

mA→X2 . We evaluate fA(x1, x2), ∀(x1, x2) ∈ �2 and place the result in an L× L matrix
A. Similarly, fB(x1, x2), ∀(x1, x2) ∈ �2 is placed into an L × L matrix B. Using these
notations, we see that the sum–product computation rules now revert to two disjunct set
of rules: mA→X1 and mB→X2 are updated clockwise (see Fig. 5.4):

mB→X2 ∝ BmA→X1 ,
mA→X1 ∝ ATmB→X2 ,

while the messages mA→X2 and mB→X1 are updated counterclockwise:

mA→X2 ∝ ATmB→X1 ,
mB→X1 ∝ BmA→X2 .

If we initialize m(0)
A→X to some (e.g., random or uniform) distribution, then the clockwise

messages can be updated iteratively. We do the same for m(0)
B→X1

, enabling iterative
updating of the counterclockwise messages. After n iterations, mA→X1 becomes

m(n)
A→X1

= γ (n)Cnm(0)
A→X1

where C = ABT and γ (n) is a normalization constant. Suppose that we can find a set of
eigenvectors of C and corresponding eigenvalues {(λk , vk)}Lk=1 that span R

L, ordered
such that |λk | ≥ |λk−1|. We assume that there is a single dominant eigenvector λ1.
Introducing V = [v1, . . . , vL], and � = diag{λ1, . . . , λL}, we know that CV = V�, so
that CT(VT)−1 = (VT)−1�. In other words, the columns in the matrix (VT)−1 = W
are ordered eigenvectors of CT.
Going back to our messages, we can now express m(0)

A→X1
as a function of the

eigenvectors:

m(0)
A→X1

=
L∑

k=1

αkvk

for some coefficients α1, . . . ,αL. It then follows that

m(n)
A→X1

= γ (n)
L∑

k=1

αkλ
n
kvk .

Assuming that αk �= 0, ∀k, as n→+∞, m(n)
A→X1

will lie along the dominant eigenvector

(corresponding to the eigenvalue with the largest magnitude) of C. Similarly, m(n)
B→X1

will lie along the dominant eigenvector of CT. In both cases, we see that the convergence
rate is proportional to λ1/λ2: when the dominant eigenvalue is much larger than the
other eigenvalues, messages will converge faster (in fewer iterations). In other words,
m(+∞)

A→X1
= γ1v1 and m(+∞)

B→X = γ2w1, where w1 is the first column of W, and γ1 and γ2

5.5 Loopy inference 103

are normalization constants. The normalized marginals are then given by

gX1(ai) = [v1]i [w1]i

= [V]i,1

[
V−1

]
1,i

.

It is easily verified that
∑

a∈� gX1(a) = 1. On the other hand, the true marginal
a-posteriori distribution of X1 is given by

p(X1 = ai|Y = y) = Cii∑L
j=1 Cjj

.

We re-write
∑L

j=1 Cjj = ∑L
j=1 λj , and Cii = eT

i Cei, where ei is a column vector with
all zeros, except a one on index i. We find the following relationship between p(X1 =
ai|Y = y) and gX1(ai):

p(X1 = ai|Y = y)︸ ︷︷ ︸
true a-post. distribution

= eT
i Cei∑L
j=1 λj

= eT
i V�V−1ei∑L

j=1 λj

=
∑L

n=1 λn [V]i,n
[
V−1

]
n,i∑L

j=1 λj

= λ1∑L
j=1 λj

gX1(ai)+
L∑

n=2

λn [V]i,n
[
V−1

]
n,i∑L

j=1 λj

= (1− ε) gX1(ai)︸ ︷︷ ︸
belief

+ ε
L∑

n=2

λn [V]i,n
[
V−1

]
n,i∑L

j=2 λj
,

where

ε = 1− λ1∑L
j=1 λj

.

This leads to the interpretation that the loopy SPA gives us the correct marginal a-
posteriori distributions up to an additive error. This error is small when the largest
eigenvalue is much larger (in magnitude) than the other eigenvalues (i.e., when ε is
close to 0).

104 Statistical inference using factor graphs

5.5 Main points

In statistical inference we are interested in obtaining information regarding certain
variables X, on the basis of an observation Y = y. We have seen how factor graphs
can help in solving the following inference problems.

(1) What is p(Y = y|M), the likelihood of the model M?
(2) What is the a-posteriori distribution p(Xk |Y = y, M) of Xk , given a certain model

M? What are the characteristics of this distribution (its mode, its moments)?
(3) What is x̂ = arg maxx p(X = x|Y = y, M), the mode of the a-posteriori distribution

of X, given a certain model M?

To solve the first two problems, the general idea is to create a cycle-free factor graph
of a factorization of the joint distribution p(X, Y = y|M) and implement the SPA on
this graph. The last problem is solved by working in the (R, max,+) semi-ring and
implementing the max–sum algorithm on the cycle-free factor graph of log p(X, Y =
y|M).

We have described how messages can be scaled without affecting the outcome of
the SPA. For discrete variables, messages can be represented by vectors of three types:
probability mass functions, log-likelihoods, and log-likelihood ratios. For continuous
variables, we must resort to quantization, parametric representations, or particle
representations.

While the SPA guarantees to give the correct marginals only for cycle-free factor
graphs, the most exciting and promising applications are precisely on cyclic factor graphs.
This naturally leads to iterative inference techniques. While not much is known regarding
convergence behavior, it is generally accepted that the marginals obtained (the beliefs)
are approximations of the true marginal a-posteriori distributions. A wealth of empirical
evidence supports this claim.

6 State-space models

6.1 Introduction

State-space models (SSMs) are a mathematical abstraction of many real-life dynamic
systems. They have been proven to be useful in a wide variety of fields, including
robot tracking, speech processing, control systems, stock prediction, and bio-informatics,
basically anywhere there is a dynamic system [70–75]. These models are not only of
great practical relevance, but also a good illustration of the power of factor graphs and
the SPA. The central idea behind an SSM is that the system at any given time can be
described by a state, belonging to a state space. The state space can be either discrete or
continuous. The state changes dynamically over time according to a known statistical
rule. We cannot observe the state directly; the state is said to be hidden. Instead we
observe another quantity (the observation), which has a known statistical relationship
with the state. Once we have collected a sequence of observations, our goal is to infer
the corresponding sequence of states.

This chapter is organized as follows.

• In Section 6.2 we will describe the basic concepts of SSMs, create an appropriate factor
graph, and show how the sum–product and max–sum algorithms can be executed on
this factor graph. Then, we will consider three cases of SSM in detail.
• In Section 6.3, we will cover models with discrete state spaces, known as hidden

Markov models (HMMs), where we reformulate the well-known forward–backward
and Viterbi algorithms using factor graphs.
• Then, in Section 6.4 we go on to linear Gaussian models, and will derive a version of

the Kalman filter and Kalman smoother.
• Lastly, we will consider general SSM with continuous state spaces in Section 6.5, and

show how Monte Carlo techniques can be combined with factor graphs to perform
inference. This leads to the so-called particle filter and variations thereof.

While the concept of an SSM is an important topic in and by itself, for the purpose of
iterative receiver design, the reader can restrict his/her attention to Sections 6.2 and 6.3.
Sections 6.4 and 6.5 are provided merely for the sake of completeness.

106 State-space models

6.2 State-space models

6.2.1 Definition

In discrete-time SSMs, the variable Xk ∈ Xk is referred to as the state at time instant
k. The variable Yk ∈ Yk is the output at time k. We will abbreviate [Xl , X1+1, . . . , Xk]
by Xl:k , and [Yl , . . . , Yk] by Yl:k , for l ≤ k. The states form a first-order Markov chain,
such that

p
(
Xk = xk

∣∣X0:k−1 = x0:k−1, M) = p
(
Xk = xk

∣∣Xk−1 = xk−1, M)
. (6.1)

There are two types of SSM, depending on how the output depends on the states.

• Type 1 – transition-emitting SSMs: the output at time k depends solely on the states
at times k − 1 and k,

p(Yk = yk |X0:N = x0:N , M) = p
(
Yk = yk

∣∣Xk−1 = xk−1, Xk = xk , M)
. (6.2)

• Type 2 – state-emitting SSMs: the output at time k depends solely on the state at
time k,

p(Yk = yk |X0:N = x0:N , M) = p(Yk = yk |Xk = xk , M). (6.3)

The probabilities p(Xk |Xk−1, M) and p(Yk |Xk−1, Xk , M) are known as the transition
probabilities and the output probabilities, respectively. In the world of finite state
machines (where the state space is discrete and finite), a state-emitting SSM is known
as a Moore machine, while a transition-emitting SSM is a Mealy machine. From their
definitions, it is clear that a state-emitting SSM is a particular case of a transition-
emitting SSM. The role of the model M in this context can be the detailed description
of the transition and output probabilities, the number of states, etc.

Higher-order Markov models
In an Lth-order Markov chain, the states satisfy

p
(
Xk = xk

∣∣X0:k−1 = x0:k−1, M) = p
(
Xk = xk

∣∣Xk−1 = xk−1, . . . , Xk−L = xk−L, M)
.

(6.4)

This can be transformed into a first-order Markov chain by introducing the super-
states

Sk = [Xk , Xk−1, . . . , Xk−L+1] (6.5)

such that

p
(
Sk = sk

∣∣S0:k−1 = s0:k−1, M) = p
(
Sk = sk

∣∣Sk−1 = sk−1, M)
. (6.6)

6.2 State-space models 107

This implies that, without any loss in generality, we can focus on first-order Markov
models.

Example 6.1 (Inferring human emotions). We are performing a psychological
experiment on a human being called Nick. By observing Nick’s facial expressions,
we hope to infer his underlying emotions. The state space consists of two emotions
X = {h, s}, where h stands for “happy” and s for “sad.” Let us assume this to be
a reasonable model that captures the possible emotions Nick can have. We observe
Nick every minute (this corresponds to the discrete time index k) and take note of his
facial expression. There are three possible facial expression Nick is able to display
Y = {l, c, b}, where l stands for “laughing,” c for “crying,” and b for “blank.” Nick’s
facial expression depends on his emotion at that time, with

p(Yk = l|Xk = h) = 0.3,

p(Yk = c|Xk = h) = 0.1,

p(Yk = b|Xk = h) = 0.6,

and

p(Yk = l|Xk = s) = 0.1,

p(Yk = c|Xk = s) = 0.2,

p(Yk = b|Xk = s) = 0.7.

We also know the dynamic model of how Nick’s mood changes over time:

p(Xk = h|Xk−1 = s) = 0.1,

p(Xk = s|Xk−1 = h) = 0.9,

as well as the a-priori probabilities of Nick’s mood before we start our observations:

p(X0 = h) = 0.1

p(X0 = s) = 0.9.

Taking note of Nick’s facial expressions, we find that y = [l b]. Our goal is to determine
Nick’s emotions during those 2 minutes. It is clear that the emotions and facial expressions
satisfy the conditions of a state-emitting SSM. We will see how to infer Nick’s underlying
emotions in the next sections.

108 State-space models

6.2.2 Factor-graph representation

The joint distribution of the state sequence X = X0:N and the observation Y = y = y0:N

can be factorized as follows, for a transition-emitting SSM,

p(X, Y = y|M) = p(X0|M)

N∏
k=1

p
(
Yk = yk

∣∣Xk , Xk−1, M)
p
(
Xk
∣∣Xk−1, M)︸ ︷︷ ︸

fk(Xk−1,Xk)

, (6.7)

and for the particular case of a state-emitting SSM,

p(X, Y = y|M) = p(X0|M)

N∏
k=1

p(Yk = yk |Xk , M) p
(
Xk
∣∣Xk−1, M)︸ ︷︷ ︸

fk(Xk−1,Xk)

. (6.8)

The factor graphs of (6.7) and (6.8) are shown in Fig. 6.1 and Fig. 6.2, respectively. In
a state-emitting SSM, we can open up (as described in Section 4.6.2) the nodes fk , for
k > 0. The result is depicted in Fig. 6.2. Note that opening the node fk cannot be applied
to the more general transition-emitting SSM, since this would result in a factor graph
with cycles.

X0 X1 Xk–1 Xk XN–1 XN
f0 f1 fk fN

Figure 6.1. A factor graph for a transition-emitting SSM, with
f0(X0) = p(X0|M) and fk (Xk−1, Xk) = p(Yk = yk |Xk , Xk−1, M)p (Xk |Xk−1, M).

X0 X1

Xk–1

Xk–1

Xk

Xk XN–1 XNf0 f1 fk fN

Xk
(1)

Xk
(2)

gk

hk

Figure 6.2. A factor graph for a state-emitting SSM, with f0(X0) = p(X0) and
fk (Xk−1, Xk) = p(Yk = yk |Xk)p(Xk |Xk−1). The node fk is opened to reveal its structure, with

gk (Xk−1, X (1)k) = p(X (1)k |Xk−1) and hk (X
(2)
k) = p(Yk = yk |X (2)k), and an equality node.

6.2 State-space models 109

6.2.3 The sum–product algorithm for state-space models

6.2.3.1 General solution
In this section we will see how to solve inference on SSMs in a general way, and
how this leads to sequential processing. From Figs. 6.1 and 6.2, we immediately see
(i) that the factor graph has no cycles, and (ii) how to perform the SPA. Messages are
propagated from left to right, and, at the same time, from right to left. These two phases
are known as the forward and backward phases, respectively. Both phases are depicted
in Fig. 6.3.

forward messages

backward messages

X0 X1 Xk–1 Xk XN–1 XNf0 f1 fk fN

µX0 f0
(X0)→

µf0 X0
(X0)→ fk Xk

(Xk)→ µfN XN
(XN)→

µXk fk
(Xk)→ µXN fN

(XN)→

µ

Figure 6.3. The sum–product algorithm on a state-space model with forward and backward
phases.

• Forward phase: initially, a message µf0→X0(X0) is sent at the left-most leaf of the
graph. This allows us to compute µf1→X1(X1), and then µf2→X2(X2), and so forth
up until µfN→XN (XN). The messages are known as forward messages (since they are
propagated from left to right, from the past to the future).
• Backward phase: at the same time, the half-edge XN can send a message (a

constant) to fN : µXN→fN (XN), this allows us to compute µXN−1→fN−1(XN−1), and
then µXN−2→fN−2(XN−2), and so forth up until µX0→f0(X0). The messages are known
as backward messages (since they are propagated from right to left, from the future to
the past).

Once both phases have been completed, the marginals can be computed by pointwise
multiplication of the forward and the backward message on every edge.

Example 6.2 (Inferring human emotions). Returning to our human test subject, we
depict the factor graph of p(X, Y = y|M) in Fig. 6.4. Since the graph is so small, we
will not bother normalizing the messages. The reader can verify that normalizing gives
exactly the same result (the same marginal a-posteriori distributions).

Forward phase
The forward message from node f0 over X0 is given by the a-priori distribution of
X0: µf0→X0(s) = 0.9 and µf0→X0(h) = 0.1. We can then compute µ

g1→X (1)
1
(X (1)

1)

110 State-space models

X0

X1

X 1

X2

X2f0 f1 f2

X2
(1)

X2
(2)

g2

h2

Figure 6.4. A factor graph for an SSM of Nick with four observations, with f0(X0) = p(X0) and
fk (Xk−1, Xk) = p(Yk = yk |Xk , Xk−1)p(Xk |Xk−1). The node fk is opened to reveal its structure,

with gk (Xk−1, X (1)k) = p(X (1)k |Xk−1) and hk (X
(2)
k) = p(Yk = yk |X (2)k), and an equality node.

as follows:

µ
g1→X (1)

1

(
x(1)1

)
=
∑
x0

p
(

X (1)
k = x(1)1 |X0 = x0

)
µf0→X0(x0)

= p
(

x(1)1 |s
)

0.9+ p
(

x(1)1 |h
)

0.1,

so that µ
g1→X (1)

1
(h) = 0.1 and µ

g1→X (1)
1
(s) = 0.9. Next, the upward message on the

edge X (2)
1 is given by h1(X

(2)
1) = p(Y1 = l|X (2)

1), so that

µ
h1→X (2)

1
(s) = 0.1,

µ
h1→X (2)

1
(h) = 0.3.

Pointwise multiplication of µ
g1→X (1)

1
(X (1)

1) by µ
h1→X (2)

1
(X (2)

1) leads to µf1→X1(X1):

µf1→X1(s) = 0.09,

µf1→X1(h) = 0.03.

The remaining forward messages are given by

µ
g2→X (1)

2
(s) = 0.108,

µ
g2→X (1)

2
(h) = 0.012,

6.2 State-space models 111

and

µf2→X2(s) = 0.0756,

µf2→X2(h) = 0.0072.

Backward phase
In parallel with the forward phase, we can start the backward phase: since X2 is a half-
edge, µX2→f2(s) = µX2→f2(h) = 1. We continue computing messages from right to left,
leading to

µ
X (1)

2 →g2
(s) = 0.7,

µ
X (1)

2 →g2
(h) = 0.6,

and µg2→X1(s) = µg2→X1(h) = 0.69. Then

µ
X (1)

1 →g1
(s) = 0.069,

µ
X (1)

1 →g1
(h) = 0.207,

and finally

µX0→f0(s) = 0.0828,

µX0→f0(h) = 0.0828.

Marginals
The marginal of X1 can now be obtained as

p(X1 = s, Y = [l b]|M) = µg2→X1(s)× µX1→g2(s)

= 0.0621,

p(X1 = h, Y = [l b]|M) = µg2→X1(h)× µX1→g2(h)

= 0.0207.

Summing out X1 tells us that p(Y = [l b]|M) = 0.0820. Normalizing gives us p(X1 =
s|Y = [l b], M) = 0.75 and p(X1 = h|Y = [l b], M) = 0.25. We can do the same for
X2, resulting in

p(X2 = s|Y = [l b], M) ≈ 0.91,

p(X2 = h|Y = [l b], M) ≈ 0.09.

At the end of the experiment, we can say with high confidence that Nick is sad.
Suppose that we now note a third observation Y3 = c. In order to perform the forward
phase of the SPA, we can re-use the already computed message µf2→X2(X2). This allows

112 State-space models

the forward phase to process the observations as they are generated. The backward phase,
however, has to wait until all observations are available. This brings us seamlessly to
the next section.

6.2.3.2 Sequential processing
In some applications, N may be very large (or even infinite), and we wish to track
the state of the system as observations become available. This is known as sequential
processing, online processing, or filtering, depending on the context. In such cases,
we implement only the forward phase of the SPA. At each time instant k we compute
the message µfk→Xk (Xk), on the basis of µfk−1→Xk−1(Xk−1) and the observation yk .
When messages are normalized, they have the following meaning: µfk→Xk (Xk) is the
a-posteriori distribution of Xk , given all observations up until time instant k:

µfk→Xk (xk) = p(Xk = xk |Y1:k = y1:k , M). (6.9)

In the case of a state-emitting SSM (see Fig. 6.2), the messages µ
gk→X (1)

k
(X (1)

k) also

have an interesting interpretation: they are the a-posteriori distribution of Xk , given all
past observations:

µ
gk→X (1)

k
(xk) = p

(
Xk = xk

∣∣Y1:k−1 = y1:k−1, M)
. (6.10)

In other words, this message is a prediction of the state at time instant k, before the
observation yk is made.

In certain applications, once all the observations y1:N are available, and all the
forward messages have been computed, we can combine the backward phase with the
computation of the marginal a-posteriori distributions p(Xk |Y1:N = y1:N , M). This is
known as smoothing. Note that now the backward phase is performed after the forward
phase (rather than in parallel).

6.2.4 Three types of state-space model

Hidden Markov models
Those SSMs with discrete state spaces are commonly known as hidden Markov models
(HMMs). They will turn out to be important in the design of iterative receivers, and will
be treated in Section 6.3. Since the state space is discrete, we can represent messages
by vectors. Our example from the previous section was a HMMs with two states. For
HMMs, we will solve the following inference problems: how to determine the likelihood
of the model M, the marginal a-posteriori distributions p(Xk |Y1:N = y1:N , M), and the
mode of the joint a-posteriori distribution p(X0:N |Y1:N = y1:N , M).

Linear Gaussian models
In linear Gaussian models, the state at time instant k is a linear function of the state
at time k − 1 with additive Gaussian noise. Similarly, the output at time k is a linear

6.3 Hidden Markov models 113

function of the state at time k with additive Gaussian noise. Although these models are
not used later on in this book, they are quite important for other applications, and we
will treat them in detail in Section 6.4. For linear Gaussian models, it turns out that all
the messages are Gaussian distributions, and can thus be represented by a mean and a
covariance matrix. We will describe how to determine the likelihood of the model M,
the marginal a-posteriori distributions, and the mode of the joint a-posteriori distribution.

Arbitrary SSMs
Finally, in Section 6.5 we will deal with more general state-emitting SSMs with
continuous state spaces. In general, exact inference is no longer possible since the
messages cannot be represented exactly. We look to Monte Carlo techniques to perform
approximate inference. Similarly to the linear Gaussian models, approximate inference
for SSM will not be used in later chapters of this book, but is of importance in many
applications and is worthy of our attention. We will show how to determine the marginal
a-posteriori distributions and the likelihood of the model M.

6.3 Hidden Markov models

6.3.1 Introduction

We will consider only transition-emitting SSMs, since they are the more general case, and
leave the case of state-emitting SSMs to the reader. We remind the reader that, since the
spaces over which the variables are defined are discrete, messages can be represented
by vectors (see also Section 5.3.3). We will first implement the SPA. This allows us
to determine the marginal a-posteriori distributions p(Xk |Y = y, M), as well as the
likelihood of the model M. We will then use the max–sum algorithm to determine the
mode of the joint a-posteriori distribution p(X|Y = y, M). For more information on
HMMs, the reader is referred to the excellent tutorial [74].

6.3.2 Determining the marginal a-posteriori distributions

Direct implementation
Let us apply the SPA on the factor graph from Fig. 6.1. We start from the half-edge
XN and the node of degree 1, f0. We can then compute messages from left to right
(forward messages) sequentially. At the same time, we can compute messages from
right to left (backward messages) sequentially. At every step we normalize the messages
such that

∑
xk∈Xk

µfk→Xk (xk) = 1 and
∑

xk∈Xk
µfk→Xk (xk) = 1. We will denote

the normalization constants for the forward messages γk , and those for the backward
messages ρk . The entire algorithm is shown in Algorithm 6.1. At the end we have the
marginals gXk (Xk) = p(Xk , Y = y|M), for k = 0, . . . , N . Note that we must take into
account the normalization constants.

114 State-space models

Algorithm 6.1 Hidden Markov models: sum–product algorithm with message
normalization

1: initialization,
µf0→X0(x0) = γ0p(x0), ∀x0 ∈ X0

µXN→fN (xN) = ρN , ∀xN ∈ XN

2: for k = 1 to N do
3: compute forward message, ∀xk ∈ Xk :

µfk→Xk (xk) = γk

∑
xk−1∈Xk−1

fk(xk−1, xk) µfk−1→Xk−1(xk−1)

4: compute backward message ∀xN−k ∈ Xk : set l = N − k

µXl→fl (xl) = ρl

∑
xl+1∈Xl+1

fl+1(xl , xl+1) µXl+1→fl+1(xl+1)

5: end for
6: for k = 0 to N do
7: introduce Ck =∏k

l=0 γl
∏N

n=k ρn

8: marginal of Xk :

gXk (xk) = 1

Ck
µXk→fk (xk) µfk→Xk (xk)

9: end for

Vector–matrix implementation
In discrete state spaces, the messages can be represented by vectors. Suppose that we
index the elements in Xk as Xk = {a(1)k , . . . , a(|Xk |)

k }. Let us represent µfk→Xk (Xk) by the

vector p(F)k and µXk→fk (Xk) by the vector p(B)k . Both are |Xk | × 1 column vectors, with

[
p(F)k

]
i
= µfk→Xk

(
a(i)k

)
(6.11)

and [
p(B)k

]
i
= µXk→fk

(
a(i)k

)
(6.12)

for i = 1, . . . , |Xk |. The transition probabilities p(Xk = xk |Xk−1 = xk−1, M), combined
with the output probabilities p(Yk = yk |Xk−1 = xk−1, Xk = xk , M), can be represented
as matrices: Ak is an |Xk−1| × |Xk | matrix, with

[Ak]i, j = p
(

Yk = yk

∣∣∣Xk = a(j)
k , Xk−1 = a(i)k−1, M

)
p
(

Xk = a(j)
k

∣∣∣Xk−1 = a(i)k−1, M
)

.

(6.13)

In that case, the SPA can be implemented as described in Algorithm 6.2.

6.3 Hidden Markov models 115

Algorithm 6.2 Hidden Markov models: sum–product algorithm with message
normalization using vector and matrix representation

1: initialization,
[p(F)0]i = γ0p(a(i)0), ∀i ∈ {1, . . . , |X0|}.
[p(B)N]i = ρN , ∀i ∈ {1, . . . , |XN |}

2: for k = 1 to N do
3: compute forward message:

p(F)k = γkAT
k p(F)k−1

4: compute backward message:

p(B)N−k = ρN−kAN−k+1p(B)N−k+1

5: end for
6: for k = 0 to N do
7: introduce Ck =∏k

l=0 γl
∏N

n=k ρn

8: marginal of Xk :

gXk

(
a(i)k

)
= 1

Ck

[
p(F)k

]
i

[
p(B)k

]
i

9: end for

Marginal a-posteriori distributions
The marginal a-posteriori distributions p(Xk |Y = y, M) are given by

p(Xk = xk |Y = y, M) = gXk (xk)∑
x∈Xk

gXk (x)
. (6.14)

Note that to find these distributions, keeping track of the normalization constants γk and
ρk is not necessary, since they will cancel out in (6.14).

6.3.3 Determining the likelihood of the model

From the same marginals gXk (Xk), we can now determine the likelihood of the model
p(Y = y|M) as

p(Y = y|M) =
∑

xk∈Xk

gXk (xk) (6.15)

for any k ∈ {0, . . . , N }. In contrast to the case in this previous section, we are now
required to keep track of the normalization constants γk and ρk .

116 State-space models

6.3.4 Determining the mode of the joint a-posteriori distribution

We will work in the (R, max,+) semi-ring, based on the factorization of log p(X, Y =
y|M):

log p(X, Y = y|M) = log p(X0|M)+
N∑

k=1

(log p(Yk = yk |Xk , Xk−1, M))

+ log p(Xk |Xk−1, M)). (6.16)

The corresponding factor graph is again the one from Fig. 6.1, where now f0(X0) =
log p(X0|M), and fk(Xk−1, Xk) = log p(Yk = yk |Xk , Xk−1, M) + log p(Xk |Xk−1, M).
The details of the max–sum algorithm are described in Algorithm 6.3. Notice the
similarities to the SPA in the (R+,+,×) semi-ring. For max–sum, we generally don’t
introduce scaling. However, adding a real number to a message will not affect the outcome
of the max–sum algorithm, in a sense that the marginals will be correct, up to an additive
constant. From the marginals gXk (Xk), we can now determine the mode of the a-posteriori
distributions p(X = x|Y = y, M), given by x̂ = [x̂0, . . . , x̂N] with

x̂k = arg max
xk∈Xk

gXk (xk). (6.17)

Observe that adding a constant to gXk (Xk) does not affect x̂k .

Algorithm 6.3 Hidden Markov models: max–sum algorithm
1: initialization:

µf0→X0(x0) = log p(x0), ∀x0 ∈ X0

µXN→fN (xN) = 0, ∀xN ∈ XN

2: for k = 1 to N do
3: compute forward message, ∀xk ∈ Xk :

µfk→Xk (xk) = max
xk−1∈Xk−1

{
fk(xk−1, xk)+ µfk−1→Xk−1(xk−1)

}
4: compute backward message ∀xN−k ∈ Xk : set l = N − k

µXl→fl (xl) = max
xl+1∈Xl+1

{
fl+1(xl , xl+1)+ µXl+1→fl+1(xl+1)

}
5: end for
6: for k = 0 to N do
7: marginal of Xk :

gXk (xk) = µXk→fk (xk)+ µfk→Xk (xk)

8: end for

6.4 Linear Gaussian models 117

6.3.5 Concluding remarks

The algorithms described above are well known in the technical literature. The SPA
is more commonly known as the forward–backward algorithm [74]. The max–sum
algorithm is equivalent to the Viterbi algorithm [52]. Without knowledge of factor graphs,
deriving both algorithms is more involved. From Section 5.3.3.3 we now understand
that the Viterbi algorithm can also be obtained by implementing the forward–backward
algorithm with log-domain messages, combined with an approximation of the Jacobian
logarithm.

We have solved the following inference problems:

(1) determining the a-posteriori distribution of Xk , p(Xk |Y = y, M),
(2) determining the likelihood of the model M, p(Y = y|M), and
(3) determining the mode of the joint a-posteriori distribution, p(X|Y = y, M).

We have seen that, when the state spaces are discrete, inference problems can be solved
exactly. The complexity is linear in N and in the number of states. When the state space
is continuous, all summations need to be replaced by integrals, and messages can no
longer be represented by vectors. Generally, exact inference is impossible. There is an
important exception, as we will see in the next section.

At this point the reader is free to skip ahead to the next chapter. The remaining two
sections in this chapter deal with types of SSM that are important, but are not necessary
in order to understand the rest of the book. These sections are provided mainly for the
sake of completeness.

6.4 Linear Gaussian models

6.4.1 Introduction

In real1 linear Gaussian models, we have the following state-emitting SSM. The state
at time k is given by a K × 1 vector Xk , the output Yk is an M × 1 vector. With
x0 ∼ Nx0(m0, �0), the system is fully described by the following two equations:

xk = Akxk−1 + Bkvk , (6.18)

yk = Ckxk + Dkwk , (6.19)

where, for all k ∈ {1, . . . , N }, Ak and Bk are known K×K matrices, Ck is a known M×K
matrix, and Dk is a known M ×M matrix. Furthermore, vk and wk are independent zero-
mean Gaussian noise processes with vk ∼ Nvk (0, IK) and wk ∼ Nwk (0, IM). Here, we
use bold capital letters both for matrices and for vector random variables. This should not
cause too much confusion. Only the quantities Ak , Bk , Ck , Dk , and covariance matrices
are matrices, all the rest are vectors. For simplicity, we will assume that Ak , Dk , and Bk

1 The extension to complex models is straightforward.

118 State-space models

X0 X1

Xk–1

Xk–1

Xk

Xk XN–1 XNf0 f1 fNfk

Xk
(1)

Xk
(2)

gk

hk

Figure 6.5. A factor graph for a state-emitting SSM, with f0(X0) = p(X0) and fk (Xk−1, Xk) =
p(Yk = yk |Xk)p(Xk |Xk−1). The node fk is opened to reveal its structure, with

gk (Xk−1, X(1)k) = p(X(1)k

∣∣∣Xk−1) and hk (X
(2)
k) = p(Yk = yk

∣∣∣X(2)k), and an equality node.

are invertible. For more general cases, the reader is referred to the texts that form the
inspiration to this section [76, 77].

We will first transform the general factor graph from Fig. 6.5 by opening the various
nodes. We then execute the SPA and determine the marginal a-posteriori distributions.
We will also show how to determine the likelihood of the model and the mode of the
joint a-posteriori distribution. For notational convenience, we will omit the conditioning
on model M, except in Section 6.4.3.

The factor graph
The joint distribution of X = X0:N and the observation Y = Y1:N factorizes as for any
state-emitting SSM as

p(X, Y = y|M) = p(X0)

N∏
k=1

p(Yk = yk |Xk)p(Xk |Xk−1)︸ ︷︷ ︸
fk (Xk−1,Xk)

(6.20)

with the factor graph shown in Fig. 6.5. As before, we have opened the nodes to reveal
their structure, with gk(Xk−1, X(1)

k) = p(X(1)
k |Xk−1) and hk(X

(2)
k) = p(Yk = yk |X(2)

k).

This leads to the introduction of two additional variables, X(1)
k and X(2)

k for every time
instant k > 0.

Opening the node gk
Because of the model (6.18) and (6.19), the nodes gk and hk can be opened further. Let us
introduce the intermediate variables sk = Bkvk and zk = Akxk−1 so that x(1)k = zk + sk .

We know from Section 5.2.2 that we can replace the node corresponding to p(x(1)k |xk−1)

6.4 Linear Gaussian models 119

Zk

Sk

Vk

Tk

Rk

Wk

Xk–1

Xk–1 Xk

Ak

Bk

Ck

Dk

Xk
(1)

Xk
(1)

Xk
(2)

Xk
(2)

gk

hk

p(Vk)
p(Wk)

Figure 6.6. A factor graph with gk (Xk−1, X(1)k) = p(X(1)k

∣∣∣Xk−1) and hk (X
(2)
k) =

p(Yk = yk |X(2)k). The nodes gk and hk can again be opened to reveal their structure.

by the factor graph of a factorization of p(x(1)k , zk , vk , sk |xk−1). Clearly,

p(x(1)k , zk , vk , sk |xk−1) = = (x(1)k , zk + sk) = (zk , Akxk−1) = (sk , Bkvk)p(vk). (6.21)

This leads to the factor graph shown in Fig. 6.6 (lower left part). The nodes marked Ak and
Bk are defined as = (zk , Akxk−1) and = (sk , Bkvk), respectively. The node marked with
a � is defined as = (x(1)k , zk + sk). The arrows on those three nodes are a representation
of the output of the operation (matrix multiplication and addition). This enables us to
interpret the nodes in the factor graph using a simple notation. For instance, sk is obtained
by multiplying vk by the matrix Bk , so the arrow on the node points toward the edge Sk .

Opening the node hk
We can do the same for p(Yk = yk |Xk): upon introducing tk = Dkwk and rk = Ckx(2)k ,
this gives us the factorization

p(yk , rk , wk , tk |x(2)k−1) = = (yk , rk + tk) = (rk , Ckx(2)k) = (tk , Dkwk)p(wk) (6.22)

leading to the factor graph in Fig. 6.6 (lower right part). The nodes marked Ck and Dk are
defined as = (rk , Ckx(2)k) and = (tk , Dkwk). The node marked with a � is now defined
as = (yk , rk + tk). Notice that the arrow is not pointing toward an edge since yk is not
a variable in the factor graph.

120 State-space models

6.4.2 Determining the marginal a-posteriori distributions

As for any SSM, the SPA consists of a forward phase with messages from left to right in
Fig. 6.5, and a backward phase with messages from right to left. It will become apparent
that all the messages in the factor graph are Gaussian distributions. Note that not all the
messages in the graph need to be computed. For instance, the message µ�→Sk

(Sk) (see
Fig. 6.6) serves no purpose in the inference problem, since we are not interested in the
marginal of Sk .

We will proceed as follows. We will first concentrate on some basic building blocks
and show how messages should be computed. We can then perform the forward and
backward phases in parallel exploiting these basic building blocks. In some cases, it is
preferred to perform the backward phase after the forward phase (rather than in parallel);
this computation will be treated at the end of this section.

6.4.2.1 Building blocks
Looking at the factor graph in Fig. 6.6, we notice a number of building blocks, which
are repeated at every time instant k. We will investigate how the SPA behaves in each
of the building blocks separately. We can distinguish the following types of nodes (see
Fig. 6.7):

rule 3 rule 4 rule 5

rule 2 rule 1

E1 E1

E1

E1E1

E2

E2E2E2

E3

E3

E4

f G

G

Figure 6.7. Five building blocks for linear Gaussian models.

1. f (e) = Ne(m, �),
2. f (e1, e2) = = (e1, Ge2), with G square and invertible,
3. f (e1, e2) = = (y, e1 + e2), with y a fixed vector,
4. f (e1, e2, e3) = = (e3, e1 + e2), and
5. f (e1, e2, e3, e4) = = (e1, e2, e3) = (e4, Ge3) with G non-square.

The sum–product rule for these nodes is then given as follows.

1. RULE 1: µf→E(e) = Ne(m, �).

6.4 Linear Gaussian models 121

2. RULE 2: Given µE1→f (e1) = Ne1(m1, �1) and µE2→f (e2) = Ne2(m2, �2), we
find that

µf→E1(e1) = Ne1

(
Gm2, G�2GT

)
,

µf→E2(e2) = Ne2

(
G−1m1, G−1�1

(
G−1

)T
)

.

3. RULE 3: Given µE1→f (e1) = Ne1(0, �1), then

µf→E2(e2) = Ne2(y, �1).

4. RULE 4: Given µE1→f (e1) = Ne1(m1, �1), µE2→f (e2) = Ne2(m2, �2), and
µE3→f (e3) = Ne3(m3, �3), then

µf→E3(e3) = Ne3(m1 +m2, �1 +�2),

µf→E1(e1) = Ne1(m3 −m2, �3 +�2).

5. RULE 5: Given µE2→f = Ne2(m2, �2), and µE4→f (e4) = Ne4(m4, �4), let us
determine µf→E1(e1):

µf→E1(e1) ∝ µE2→f (e1)µE3→ = (e1), (6.23)

where

µE3→ = (e3) ∝
∫

= (e4, Ge3)µE4→f (e4)de4. (6.24)

Substituting (6.24) into (6.23) yields

µf→E1(e1) ∝ µE2→f (e1)µE4→f (Ge1).

Since µE2→f (e2) = Ne2(m2, �2), we find (and this requires a minimum of effort, to
multiply two Gaussian distributions) that µf→E1(e1) = Ne1(m1, �1), where

�1 =
(
�−1

2 +GT�−1
4 G

)−1

and
m1 = �1

(
�−1

2 m2 +GT�−1
4 m4

)
.

Using the matrix-inversion lemma2, we can re-write �1 as

�1 = (I−KG)�2,

2 One form of the matrix-inversion lemma states that
(A−1 + CTB−1C)−1 = (I− ACT(B+ CACT)−1C)A.

122 State-space models

where K = �2GT(�4 +G�2GT)−1. This leads to

m1 = m2 +K(m4 −Gm2).

In the particular case that the entries in �2 tend to infinity, then we have �1 =
(GT�−1

4 G)−1 and take over m1 = �1GT�−1
4 m4.

Although there are other types of messages in the graph, they are irrelevant since we are
interested only in the marginals of the states Xk . Now that the basic building blocks are
defined, performing the SPA is fairly straightforward.

6.4.2.2 Notation
It is important to note that, in the previous section, all messages are Gaussian
distributions. This means that all messages can be represented by a mean and a covariance
matrix (this is an example of a parametric representation, as described in Section 5.3.4).
We will use the following notations for the messages. The forward messages are denoted

µfk−1→Xk−1(xk−1) = Nxk−1

(
mk−1|k−1, Pk−1|k−1

)
, (6.25)

µX(1)k → =

(
x(1)k

)
= Nx(1)k

(
mk|k−1, Pk|k−1

)
. (6.26)

The backward messages are denoted

µXk→fk (xk) = Nxk

(
nk|k , Qk|k

)
, (6.27)

µ
=→X(1)k

(
x(1)k

)
= Nxk−1

(
nk|k−1, Qk|k−1

)
. (6.28)

The marginals will be written as

p(Xk = xk |Y1:N = y1:N) = Nxk

(
mk|N , Pk|N

)
.

6.4.2.3 The forward phase
The forward phase starts with the message µf0→X0(X0), at time k = 0. The messages in
the forward phase are depicted in Fig. 6.8, for node fk . The numbers indicate which of the
five rules was used to compute a specific message.At a given time instant k, the incoming
message to node fk is µfk−1→Xk−1(Xk−1). The outgoing message is µfk→Xk (Xk). It is
easily verified that

mk|k−1 = Akmk−1|k−1 (6.29)

and

Pk|k−1 = AkPk−1|k−1AT
k + BkBT

k . (6.30)

We also find that

mk|k = mk|k−1 +Kk
(
yk − Ckmk|k−1

)
(6.31)

6.4 Linear Gaussian models 123

Zk

Sk

Vk

Tk

Rk

Wk

Xk–1

Xk

Ak

Bk

Ck

Dk

fk

Xk
(1)

Xk
(2)

gk

hk

p(Vk)
p(Wk)

4

2

1

2

3

2

1

5

Figure 6.8. Linear Gaussian models: forward phase. The circled numbers indicate which rule is
used to generate the message.

and

Pk|k = (I−KkCk)Pk|k−1, (6.32)

where Kk = Pk|k−1CT
k (DkDT

k + CkPk|k−1CT
k)
−1.

6.4.2.4 Backward phase in parallel with forward phase
In a similar vein, the backward phase is executed, starting from time instant N − 1.
The messages in the backward phase are depicted in Fig. 6.9, for node fk . The incoming
message is µXk→fk (Xk). The outgoing message is µXk−1→fk−1(xk−1). We see that

nk|k−1 = nk|k + Lk
(
yk − Cknk|k

)
(6.33)

and

Qk|k−1 = (I− LkCk)Qk|k (6.34)

where Lk = Qk|kCT
k (DkDT

k + CkQk|kCT
k)
−1. It is also clear that

nk−1|k−1 = A−1
k nk|k−1

and

Qk−1|k−1 = A−1
k

(
BkBT

k +Qk|k−1

)(
A−1

k

)T
.

124 State-space models

Zk

Sk

Vk

Tk

Rk

Wk

Xk–1

Xk

Ak

Bk

Ck

Dk

fk

Xk
(1)

Xk
(2)

gk

hk

p(Vk)

p(Wk)

2

5

4

1

2

3

2

1

Figure 6.9. Linear Gaussian models: backward phase. The circled numbers indicate which rule is
used to generate the message.

Note that in the forward and backward phases there are quite a few messages in common
(for instance those on the edges Vk , Sk , Wk , Tk , and Rk). This means that certain results
can be re-used.

Marginals
The marginals p(Xk = xk |Y1:N = y1:N) can finally be obtained as follows. For any
Xk , there is a forward message µfk→xk (xk) = Nxk (mk|k , Pk|k) and a backward message
µXk→fk (xk) = Nxk (nk|k , Qk|k). The marginal is obtained by multiplying these messages,
followed by normalization. This yields

p(Xk = xk |Y1:N = y1:N) = Nxk

(
mk|N , Pk|N

)
, (6.35)

where

mk|N = mk|k +Kk|N
(
nk|k −mk|k

)
(6.36)

and

Pk|N =
(
I−Kk|N

)
Pk|k (6.37)

with Kk|N = Pk|k(Pk|k +Qk|k)−1.

6.4.2.5 Smoothing: backward phase after forward phase
As we mentioned in Section 6.2.3, in some situations the observations become available
only one at a time. In this case, we can start the forward phase as observations become

6.4 Linear Gaussian models 125

available, and postpone the backward phase. This is known as filtering. After time instant
k = N , all observations are available, and all forward messages have been computed.
The message µfN→XN (xN) = NxN (mN |N , PN |N) is equal to the a-posteriori distribution
of XN , given y1:N : p(XN = xN |Y1:N = y1:N) = NxN (mN |N , PN |N).

Rather than performing the backward phase and then determining the marginal a-
posteriori distributions as we did in the previous section, we can combine these two
steps. This is known as smoothing: given the forward messages and Nxk (mk|N , Pk|N),
we compute Nxk−1(mk−1|N , Pk−1|N) for k = N , N − 1, . . . , 1. We know that

p(xk−1|xk , y1:N) = p(xk−1|y1:k−1)
p(xk |xk−1)

p(xk |y1:k−1)
(6.38)

= Nxk−1

(
mk−1|k−1, Pk−1|k−1

)Nxk

(
Akxk−1, BkBT

k

)
Nxk

(
mk|k−1, Pk|k−1

) (6.39)

∝ Nxk−1(µ(xk),�) (6.40)

with

µ(xk) = mk−1|k−1 + Pk−1|k−1AT
k P−1

k|k−1

(
xk − Akmk−1|k−1

)
, (6.41)

� = Pk−1|k−1 − Pk−1|k−1AT
k P−1

k|k−1AkPk−1|k−1. (6.42)

We have used the fact that Pk|k−1 = AkPk−1|k−1AT
k+BkBT

k . Let us recall the well-known
law of iterated expectation:

EX1{ f (X1)} = EX2

{
EX1{ f (X1)|X2}

}
. (6.43)

It then follows that

mk−1|N = EXk−1

{
Xk−1|y1:N

}
(6.44)

= EXk

{
EXk−1

{
Xk−1|Xk , y1:N

}|y1:N
}

(6.45)

= EXk {µ(Xk)|y1:N } (6.46)

= mk−1|k−1 + Pk−1|k−1AT
k P−1

k|k−1

(
mk|N − Akmk−1|k−1

)
(6.47)

and, similarly,

Pk−1|N = EXk−1

{(
Xk−1 −mk−1|N

)(
Xk−1 −mk−1|N

)T |y1:N

}
(6.48)

= EXk

{
EXk−1

{(
Xk−1 −mk−1|N

)(
Xk−1 −mk−1|N

)T |Xk , y1:N

}
|y1:N

}
(6.49)

= Pk−1|k−1 + Pk−1|k−1AT
k P−1

k|k−1

(
Pk|N − Pk|k−1

)
P−1

k|k−1AkPk−1|k−1. (6.50)

126 State-space models

6.4.3 Determining the likelihood of the model

Since we have not kept track of any normalization constants in the previous section, it
may seem hard to determine p(Y1:N = y1:N |M). However, we note that the logarithm
of the likelihood of the model can be written as follows:

log p(Y1:N = y1:N |M) = log p(Y1 = y1|M)

+
N∑

k=2

log p(Yk = yk |Y1:k−1 = y1:k−1, M). (6.51)

It is easy to see that p(Yk |Y1:k−1 = y1:k−1, M) is a Gaussian distribution with mean,
say m(y)

k , and covariance matrix, say �
(y)
k . Using iterated expectation, we can determine

m(y)
k as

m(y)
k = EYk

{
Yk |Y1:k−1 = y1:k−1

}
(6.52)

= EXk

{
EYk

{
Yk |Xk , Y1:k−1 = y1:k−1

}|Y1:k−1 = y1:k−1
}

(6.53)

= EXk

{
EYk{Yk |Xk}|Y1:k−1 = y1:k−1

}
(6.54)

= EXk

{
CkXk |Y1:k−1 = y1:k−1

}
(6.55)

= Ckmk|k−1. (6.56)

Similarly,

�
(y)
k = EYk

{(
Yk −m(y)

k

)(
Yk −m(y)

k

)T ∣∣Y1:k−1 = y1:k−1

}
(6.57)

= EXk

{
EYk

{(
Yk −m(y)

k

)(
Yk −m(y)

k

)T |Xk

}
|Y1:k−1 = y1:k−1

}
(6.58)

= DkDT
k + CkPk|k−1CT

k . (6.59)

This yields

log p(Y = y|M)

=
N∑

k=1

{
−1

2
log
(

2π det �(y)
k

)
− 1

2

(
yk −m(y)

k

)T (
�
(y)
k

)−1 (
yk −m(y)

k

)}
. (6.60)

6.4.4 Determining the mode of the joint a-posteriori distribution

It is easy to show that p(X|Y = y, M) is a Gaussian distribution. Gaussian distributions
have a great deal of useful properties, such as the fact that the mode of a (multivariate)
Gaussian distribution corresponds to the concatenation of the modes of the marginals.
This implies that the mode of p(X|Y = y, M) coincides with the concatenation of the

6.5 Approximate inference for state-space models 127

modes of the marginals:

x̂0:N = arg max
x

p(X0:N = x|Y1:N = y1:N) (6.61)

=
[
x̂T

0 , . . . , x̂T
N

]T
, (6.62)

where x̂k is the mode of p(Xk |Y = y). In other words, x̂k = mk|N .

6.4.5 Concluding remarks

In the technical literature, the forward phase of the SPA is known as Kalman filtering,
while the backward phase after the forward phase is known as Kalman smoothing [70].

We have solved the following inference problems:

1. determining the a-posteriori distribution of Xk , p(Xk |Y = y, M),
2. determining the likelihood of the model M, p(Y = y|M), and
3. determining the mode of the joint a-posteriori distribution, p(X|Y = y, M).

6.5 Approximate inference for state-space models

6.5.1 Introduction

While the above techniques are useful for linear Gaussian models, most practical systems
will be neither Gaussian nor linear. Let us focus on state-emitting SSMs with continuous
state spaces, where both the states Xk and the outputs Yk are scalars. Extension to vector
models is straightforward. The joint distribution of the states and the observation is given
by

p(X, Y = y|M) = p(X0|M)

N∏
k=1

p(Yk = yk |Xk , M)p(Xk |Xk−1, M)︸ ︷︷ ︸
fk(Xk ,Xk−1)

. (6.63)

The factor graph of the factorization (6.63) is depicted in Fig. 6.10. Again, we have
opened the node fk to reveal its structure. The reader should note that we have used a
slightly different notation for some of the variables with respect to previous factor graphs
(such as Figs. 6.2 and 6.5).

Building on the techniques described in Section 5.3.4, we will describe how to execute
the SPA by using particle representations of the messages. This allows us to determine, at
least approximately, the marginal a-posteriori distributions p(Xk |Y = y, M). In general,
finding the mode of the joint a-posteriori distribution p(X|Y = y, M) is hard. On the
other hand, it turns out to be possible to determine the likelihood p(Y = y|M) of the
model M. For notational convenience, we will drop the conditioning on the model M,
except in Section 6.5.3. More information regarding particle methods in the context of
state-space models can be found in [48, 65, 73, 78, 79].

128 State-space models

X0 X1

Xk –1

Xk –1

Xk

Xk XN–1 XNf0 f1 fk fN

Uk

Zk

gk

hk

Figure 6.10. A factor graph for a state-emitting SSM, with f0(X0) = p(X0), and
fk (Xk−1, Xk) = p(Yk = yk |Xk)p(Xk |Xk−1). The node fk is opened to reveal its structure, with
gk (Xk−1, Uk) = p(Uk |Xk−1) and hk (Zk) = p(Yk = yk |Zk), and an equality node.

6.5.2 Determining the marginal a-posteriori distributions

6.5.2.1 Notations
In the forward phase we will use the following particle representations for the messages:

RL
(
µfk−1→Xk−1(Xk−1)

) = {(w(l)k−1|k−1, x(l)k−1|k−1

)}L

l=1
(6.64)

and

RL
(
µgk→Uk (Uk)

) = {(w(l)k|k−1, x(l)k|k−1

)}L

l=1
. (6.65)

For the backward phase, we will use

RL
(
µXk→fk (Xk)

) = {(w̃(l)k|k , x̃(l)k|k
)}L

l=1
(6.66)

and

RL
(
µUk→gk (Uk)

) = {(w̃(l)k|k−1, x̃(l)k|k−1

)}L

l=1
. (6.67)

6.5.2.2 The forward phase
We start from a particle representation of p(X0), RL(p(X0)) = {(w(l)0|0, x(l)0|0)}Ll=1,
which also serves as a representation of µf0→X0(X0). Let us assume that we
have a particle representation of µfk−1→Xk−1(Xk−1): RL(µfk−1→Xk−1(Xk−1)) =
{(w(l)k−1|k−1, x(l)k−1|k−1)}Ll=1. The forward phase consists of two steps.

1. determine a particle representation of µgk→Uk (Uk) based on the particle
representation of µfk−1→Xk−1(Xk−1).

2. determine a particle representation ofµfk→Xk (Xk) based on the particle representation
of µgk→Uk (Uk).

Both steps are described in Algorithm 6.4.

6.5 Approximate inference for state-space models 129

Algorithm 6.4 The forward phase of sum–product algorithm on a state-space model
using particle representations

1: initialization: RL(p(X0)) = {(w(l)0|0, x(l)0|0)}Ll=1
2: for k = 1 to N do
3: for l = 1 to L do
4: draw x(l)k|k−1 ∼ q(Uk = uk |Xk−1 = x(l)k−1|k−1)

5: set importance weight

w(l)k|k−1 = w(l)k−1|k−1

p
(

Xk = x(l)k|k−1

∣∣∣Xk−1 = x(l)k−1|k−1

)
q
(

Uk = x(l)k|k−1

∣∣∣Xk−1 = x(l)k−1|k−1

)
6: end for
7: normalize weights to obtain RL(µgk→Uk (Uk)) = {(w(l)k|k−1, x(l)k|k−1)}Ll=1
8: for l = 1 to N do
9: set x(l)k|k = x(l)k|k−1

10: set importance weight w(l)k|k = p(Yk = yk |Xk = x(l)k|k−1)w
(l)
k|k−1

11: end for
12: normalize weights to obtain RL(µfk→Xk (Xk)) = {(w(l)k|k , x(l)k|k)}Ll=1
13: end for

Step 1
We determine a representation of µgk→Uk (Uk) using mixture sampling (as described
in Section 5.3.4). In other words, we approximate µgk→Uk (uk) as a mixture density by
substituting the particle representation of µfk−1→Xk−1(xk−1) into the sum–product rule
for µgk→Uk (Uk):

µgk→Uk (uk) ∝
∫

p(Xk = uk |Xk−1 = xk−1)µfk−1→Xk−1(xk−1)dxk−1 (6.68)

≈
L∑

l=1

w(l)k−1|k−1p
(

Xk = uk

∣∣∣Xk−1 = x(l)k−1|k−1

)
. (6.69)

Now, for every x(l)k−1|k−1, and for a suitable importance sampling function q(Uk |Xk−1 =
x(l)k−1|k−1), we draw a single sample (say, x(l)k|k−1), with weight

w(l)k|k−1 = w(l)k−1|k−1

p
(

Xk = x(l)k|k−1

∣∣∣Xk−1 = x(l)k−1|k−1

)
q
(

Uk = x(l)k|k−1

∣∣∣Xk−1 = x(l)k−1|k−1

) . (6.70)

Once L samples have been drawn, we normalize the weights, and end up with a particle
representation RL(µgk→Uk (Uk)) = {(w(l)k|k−1, x(l)k|k−1)}Ll=1. As a special case, we can set

130 State-space models

q(Uk = uk |Xk−1 = xk−1) = p(Xk = uk |Xk−1 = xk−1), in which case the weights are
unchanged: w(l)k|k−1 = w(l)k−1|k−1.

Step 2
In the second step in the forward phase, we determine the message µfk→Xk (Xk). Simply
plugging the particle representation into the sum–product rule gives us

µfk→Xk (xk) ∝ µZk→ = (xk) µgk→Uk (xk)

∝ p(Yk = yk |Xk = xk)µgk→Uk (xk)

≈
L∑

l=1

p(Yk = yk |Xk = xk)w
(l)
k|k−1︸ ︷︷ ︸

∝w(l)k|k

=
(

xk , x(l)k|k−1

)
.

We find that RL(µfk→Xk (Xk)) = {(w(l)k|k , x(l)k|k)}Ll=1 with

x(l)k|k = x(l)k|k−1 (6.71)

w(l)k|k ∝ p
(

Yk = yk

∣∣∣Xk = x(l)k|k−1

)
w(l)k|k−1. (6.72)

To avoid degeneration, it may be necessary to resample at this point [65].

6.5.2.3 Backward phase in parallel with forward phase
If the backward phase is executed in parallel with the forward phase, it is an almost perfect
mirror-image of the forward phase. We start with a representation of µXN→fN (XN), as

{(w̃(l)N |N , x̃(l)N |N)}Ll=1, obtained by uniform sampling.

Step 1
Suppose that we have available a particle representation ofµXk→fk (Xk) : {(w̃(l)k|k , x̃(l)k|k)}Ll=1.
Since

µUk→gk (uk) ∝ p(Yk = yk |Xk = xk)µXk→ = (uk) (6.73)

we can apply the same reasoning as in the forward phase to find that µUk→gk (uk) can be

represented by {(x̃(l)k|k−1, w̃(l)k|k−1)}Ll=1, where

x̃(l)k|k−1 = x̃(l)k|k (6.74)

w̃(l)k|k−1 ∝ w̃(l)k|kp
(

Yk = yk

∣∣∣Xk = x̃(l)k

)
. (6.75)

6.5 Approximate inference for state-space models 131

Step 2
In the second phase, we again perform mixture sampling:

µgk→Xk−1(xk−1) ∝
∫

p(Xk = uk |Xk−1 = xk−1)µUk→gk (uk)duk (6.76)

≈
L∑

l=1

w̃(l)k|k−1p
(

Xk = x̃(l)k|k−1

∣∣Xk−1 = xk−1

)
. (6.77)

Now, for every x̃(l)k|k−1, and a suitable importance sampling function q̃(Xk−1 =
xk−1|x̃(l)k|k−1), draw a single sample x̃(l)k−1|k−1, with weight

w̃(l)k−1|k−1 = w̃(l)k|k−1

p
(

Xk = x̃(l)k|k−1

∣∣∣Xk−1 = x̃(l)k−1|k−1

)
q̃
(

Xk−1 = x̃(l)k−1|k−1

∣∣∣x̃(l)k|k−1

) . (6.78)

Once L samples have been drawn, we normalize the weights, and end up with
RL(µxk−1→fk−1(Xk−1)) as {(w̃(l)k−1|k−1, x̃(l)k−1|k−1)}Ll=1. To avoid degeneration, it may be
necessary to resample at this point.

Marginals
The marginals can then by found by regularization of the forward and backward
messages. This regularization process is rather cumbersome and will not be pursued
here. In practice, we commonly prefer to perform the backward phase in combination
with determining the marginals, once all the forward messages have been computed
(this is similar to the smoothing technique for linear Gaussian models described in
Section 6.4.2.5). This is explained in the next section.

6.5.2.4 Smoothing: backward phase after forward phase
As with the linear Gaussian model, we can compute the marginal a-posteriori distributions
by performing the backward after the forward phase. At the end of the forward phase,
we have a particle representation of the message µfN→XN (XN) = p(XN |Y1:N =
y1:N). Suppose now that we have a particle representation of p(Xk |Y1:N = y1:N)

as {(w(l)k|N , x(l)k|N)}Ll=1. Let us try to express p(Xk−1|Y1:N = y1:N) as a function of
p(Xk |Y1:N = y1:N) and the forward messages [78]. Using a notational shorthand, we
find that

p(xk−1|y1:N) = p(xk−1|y1:k−1)

∫
p(xk |y1:N)

p(xk |xk−1)

p(xk |y1:k−1)
dxk . (6.79)

132 State-space models

Substitution of the particle representations of p(xk |y1:N) and p(xk−1|y1:k−1) yields

p(xk−1|y1:N) ≈
L∑

l1=1

w(l1)k−1|k−1

L∑
l2=1

w(l2)k|N
p
(

x(l2)k|N
∣∣∣x(l1)k−1|k−1

)
p
(

x(l2)k|N
∣∣y1:k−1

)
︸ ︷︷ ︸

∝w
(l1)
k−1|N

=
(

xk−1, x(l1)k−1|k−1

)
.

(6.80)

Now we make use of

p
(

x(l2)k|N
∣∣y1:k−1

)
=
∫

p
(

x(l2)k|N
∣∣xk−1

)
p
(
xk−1

∣∣y1:k−1
)
dxk−1 (6.81)

≈
L∑

l3=1

w(l3)k−1|k−1p
(

x(l2)k|N
∣∣∣x(l3)k−1|k−1

)
. (6.82)

After substitution of (6.82) into (6.80), we find that p(xk−1|y1:N) can be represented by
a list of L samples {{(w(l)k−1|N , x(l)k−1|N)}Ll=1}, where

x(l)k−1|N = x(l)k−1|k−1 (6.83)

and

w(l)k−1|N = w(l)k−1|k−1

L∑
l2=1

w(l2)k|N
p
(

x(l2)k|N
∣∣∣x(l)k−1|k−1

)
∑L

l3=1 w(l3)k−1|k−1p
(

x(l2)k|N
∣∣∣x(l3)k−1|k−1

) . (6.84)

Observe that the computational complexity per sample is proportional to L2.

6.5.3 Determining the likelihood of the model

As with linear Gaussian models (see Section 6.4.3), the likelihood of the model p(Y1:N =
y1:N |M) can be obtained after the forward phase. We will work again in the log domain
and compute log p(Y1:N = y1:N |M). We know that

log p(Y1:N = y1:N |M)

= log p(Y1 = y1|M)+
N∑

k=2

log p(Yk = yk |Y1:k−1 = y1:k−1, M), (6.85)

6.6 Main points 133

where

p(Y1 = y1|M) =
∫

p(Y1 = y1, X1 = x1|M) dx1 (6.86)

=
∫

p(Y1 = y1|X1 = x1, M)p(X1 = x1|M) dx1 (6.87)

≈
L∑

l=1

w(l)1|0 p
(

Y1 = y1

∣∣∣X1 = x(l)1|0, M
)

(6.88)

and similarly

p(Yk = yk |Y1:k−1 = y1:k−1, M)

=
∫

p(Yk = yk , Xk = xk |Y1:k−1 = y1:k−1, M) dxk (6.89)

≈
L∑

l=1

w(l)k|k−1p
(

Yk = yk |Xk = x(l)k|k−1, M
)

. (6.90)

Note that p(Y1 = y1|M) and p(Yk = yk |Y1:k−1 = y1:k−1, M) are scalars, not
distributions.

6.5.4 Concluding remarks

In the technical literature, the forward phase is known as particle filtering, while the
backward phase is called particle smoothing. When q(Uk = uk |Xk−1 = xk−1) = p(Xk =
uk |Xk−1 = xk−1), the forward phase is known as the bootstrap filter [80]. Performing
Monte Carlo-based approximate inference for SSM with continuous state spaces allows
us to solve the following inference problems:

(1) determining approximately the a posteriori distribution of Xk , p(Xk |Y = y, M), and
(2) determining approximately the likelihood of the model M, p(Y = y|M).

6.6 Main points

In this chapter, we have covered inference for state-space models (SSMs). They are
important in many applications in which dynamically changing systems are modeled, and
are used in a wide variety of engineering problems. We have given a detailed overview of
inference on three important state-space models: hidden Markov models, linear Gaussian
models, and general models with continuous state spaces. Creating a factor graph and
executing the SPA leads to reformulations of several well-known algorithms from the

134 State-space models

technical literature, including the forward–backward algorithm, the Viterbi algorithm,
the Kalman filter, and the particle filter.

This ends our digression into factor graphs and statistical inference. We now have all
the necessary tools to go back to our problem from Chapter 2: designing receivers for
digital communication.

7 Factor graphs in digital
communication

7.1 Introduction

Let us now return to our original problem from Chapter 2: receiver design. Our ultimate
goal is to recover (in an optimal manner) the transmitted information bits b from the
received waveform r(t). In this chapter, we will formulate an inference problem that
will enable us to achieve this task. In the first stage the received waveform is converted
into a suitable observation y. We then create a factor graph of the distribution p(B, Y =
y|M). This factor graph will contain three important nodes, expressing the relationship
between information bits and coded bits (the decoding node), between coded bits and
coded symbols (the demapping node), and between coded symbols and the observation
(the equalization node). Correspondingly, the inference problem breaks down into three
sub-problems: decoding, demapping, and equalization.

Decoding will be covered in Chapter 8, where we will describe some state-of-the-art
iterative decoding take over schemes, including turbo codes, RAcodes, and LDPC codes.
The demapping problem will be considered in Chapter 9 for two common modulation
techniques: bit-interleaved coded modulation and trellis-coded modulation. Equalization
highly depends on the specific digital communication scheme. In Chapter 10, we will
derive several general-purpose equalization strategies. In the three subsequent chapters,
we will then show how these general-purpose strategies can be applied to the digital
communication schemes from Chapter 2. In Chapter 11 the focus is on single-user,
single-antenna communication. This is then extended to multi-antenna and multi-user
communication in Chapters 12 and 13, respectively.

This short chapter is organized as follows.

• In Section 7.2, we will describe how designing a receiver can be cast in the factor-graph
framework.
• In Section 7.3 we will then open various nodes to reveal their structure.

7.2 The general principle

7.2.1 Inference problems for digital receivers

Before we design a receiver, we will first formulate an inference problem and create a
factor graph. As we have seen in Chapter 2, a sequence of Nb information bits (b) is first

136 Factor graphs in digital communication

encoded to a sequence of Nc coded bits (c), with c = fc(b). The coded bits are converted
into a sequence of Ns complex coded symbols (a, with each symbol belonging to a
constellation), with a = fa(c). The functions fa(·) and fc(·) are deterministic and known
both to the transmitter and to the receiver. The symbol sequence a is further processed
to give rise to the transmitted equivalent baseband signal s(t). This signal propagates
through the equivalent baseband channel, resulting in a received baseband signal r(t)
with vector representation r.

Sequence detection
Since the final goal of the receiver is to recover the information sequence b from the
observation r, the optimal way to proceed is to determine the information sequence that
maximizes the a-posteriori probability:

b̂ = arg max
b∈BNb

p(B = b|R = r, M), (7.1)

where the model M can encapsulate the channel parameters, code type, modulation
format, etc. We know from Section 3.2 that solving (7.1) is optimal in the sense that it
minimizes the probability of error, which in this context is known as the word error rate
or the frame error rate (FER).

In most practical receivers, the received waveform is first converted into a suitable
observation. This can be through filtering, sampling, projection, transformation to
a different domain, etc. As we go through the various transmission techniques in
Chapters 11–13, we will show how exactly this conversion is achieved. The observation
is denoted y. When p(B|R = r, M) = p(B|Y = y, M), Y is known as a sufficient
statistic for B. In this book, we generally don’t care whether or not we are dealing with
sufficient statistics.

Once we have determined a suitable observation y, we can find the MAP information
sequence by creating a factor graph of log p(B, Y = y|M) and applying the max–sum
algorithm.

Bit-by-bit detection
Alternatively, we can also create a factor graph of p(B, Y = y|M) and implement the
SPA. This leads to the marginal a-posteriori distributions p(Bk |Y = y, M), from which
we can make optimal bit-by-bit decisions:

b̂k = arg max
bk∈{0,1}

p(Bk = bk |Y = y, M). (7.2)

This approach is no longer optimal in the sense of minimizing the word error rate.
It is, however, optimal in the sense of minimizing the error probability of the individual
bits, namely the bit error rate (BER). In many receivers, due to the cycles in the factor
graph, sequence detection is not possible, and bit-by-bit detection is the only feasible
approach. Unless mentioned explicitly otherwise, we will always perform bit-by-bit
detection.

7.3 Opening nodes 137

B1 B2 BNb

p(B|)

p(Y=y|B,)

Figure 7.1. A factor graph of the distribution p(B, Y = y|M).

7.2.2 Factor graphs

Factorizing p(B, Y = y|M) leads to

p(B, Y = y|M) = p(Y = y|B, M)p(B|M), (7.3)

where p(Y = y|B, M) is the likelihood function and p(B|M) is the a-priori distribution.
We then create a factor graph (shown in Fig. 7.1). On the basis of relations among the
information bits, coded bits, and coded symbols, we will open the nodes further in the
next section. In most cases the factor graph will have cycles, so that we end up with an
iterative version of the SPA. This raises some additional issues.

• The marginals we compute are beliefs, and are considered approximations of the true
marginals p(Bk |Y = y, M).
• The presence of cycles forces us to initialize some messages with uniform distributions.
• We also have to deal with scheduling, i.e., the order in which messages are computed.

Different scheduling strategies may have different performances. Some strategies may
be preferred from an implementation point of view.
• Finally, at some point the SPA needs to be terminated.

7.3 Opening nodes

7.3.1 Principles

In this section, we will open the nodes p(B|M) and p(Y = y|B, M). We remind the
reader that we can open a node representing the function f (X1, . . . , XD) by replacing
it by the factorization of another function, g(X1, . . . , XD, U1, . . . , UK), as long as the
following conditions are met:

• the variables U1, . . . , UK appear nowhere else in the graph, and
• the functions f and g satisfy

∑
u1,...,uK

g(x1, . . . , xD, u1, u2, . . . , uK) = f (x1, . . . , xD). (7.4)

138 Factor graphs in digital communication

It is easy to see that this replacement will not affect the messages computed on the edges
X1, . . . , XD as long as the factor graph of the factorization of g(X1, . . . , XD, U1, . . . , UK)

has no cycles.

7.3.2 Opening the a-priori node

In this book, we will restrict ourselves to information bits that are independent with
known a-priori probabilities, so that

p(B = b|M) =
Nb∏

k=1

p(Bk = bk |M). (7.5)

7.3.3 Opening the likelihood node

The likelihood function p(Y = y|B, M) can be factorized by introducing suitable
additional variables, say D. We can replace the node p(Y = y|B, M) by a factorization
of p(Y = y, D|B, M). The question is, of course, what should D be? Let us look at an
example to get some insight.

Example 7.1. In a simple communication scheme, the Nb information bits b are
converted into a sequence of Nc coded bits c, with c = fc(b), for some deterministic
mapping fc(·). Then, the Nc coded bits are mapped to Ns = Nc BPSK symbols,
corresponding to the constellation � = {−1,+1}. The mapping works as follows:
an = 2cn − 1, for n = 1, . . . , Nc. This yields a sequence of Ns BPSK symbols a, with
a = fa(c). Let us assume that y is related to a by

y = αa + n,

where α ∈ R is the channel amplitude and n ∼ Nn(0, σ 2INs), a natural choice for D =
[A C]. We then open the node p(Y = y|B, M)and replace it by a factorization of p(Y =
y, A, C|B, M). Upon applying Bayes’ rule, and taking into account the appropriate
conditional dependencies, we find the following factorization:

p(Y = y, A, C|B, M) = p(Y = y|A, C, B, M)︸ ︷︷ ︸
=p(Y=y|A,M)

p(A, C|B, M)

= p(Y = y|A, M) p(A|C, B, M)︸ ︷︷ ︸
=p(A|C,M)

p(C|B, M)

=
Ns∏

l=1

p(Yl = yl |Al , M) = (A, fa(C)) = (C, fc(B))

∝
Ns∏

l=1

{
exp

(
− 1

2σ 2 (yl − Al)
2
)

= (Al , 2Cl − 1)

}
= (C, fc(B))

7.3 Opening nodes 139

B
1

B
1

B
2

B
2

B
N

b

B
N

b

C
1

C
2

C
N

c

A
1

A
2

A
N

s

p 1
p 2

f
1

f
2

f
N

c

h 1
h 2

h N
s

=
(C

,f
c(

B
))

=
(A

,f
a(

C
))

p(
B

|
)

p N
b

p(
Y

=y
|B

,
)

p(
Y

=
y|

B
,

)

p(
Y

=y
|A

,
)

Fi
gu

re
7.

2.
A

fa
ct

or
gr

ap
h

of
th

e
jo

in
td

is
tr

ib
ut

io
n

p(
B

,Y
=

y|M
)

w
ith

in
de

pe
nd

en
ti

nf
or

m
at

io
n

bi
ts

.T
he

no
de

p(
Y
=

y|B
,M

)
is

op
en

ed
to

re
ve

al
its

st
ru

ct
ur

e,
w

ith
φ
(c

l,
a l
)
=

=
(a

l,
2c

l
−

1)
an

d
h l
(a

l)
=

ex
p[−

(y
l
−

a l
)2
/
(2
σ

2
)].

140 Factor graphs in digital communication

decoding

equalization

demapping

B1 B2 BNb

C1 C2 CNc

A1 A2 ANs

p(C|B,)

p(A|C,)

p(Y=y|A,)

p(Y=y|B,)

Figure 7.3. A factor graph of p(Y = y|B, M). The node is opened to reveal its structure.

with the factor graph shown in Fig. 7.2. The node = (C, fc(B)) can again be opened if
we know the structure of a code. Implementing the SPA on the graph from Fig. 7.2 will
give us (approximations of) the desired a-posteriori probabilities p(Bk |Y = y, M).

The above example illustrates that it is a good idea to place C (the coded bits) and A
(the coded symbols) in D. In general, this leads to

p(Y = y, A, C|B, M) = p(Y = y|A, C, B, M)p(A, C|B, M)

= p(Y = y|A, M)p(A|C, M)p(C|B, M).

The corresponding factor graph is shown in Fig. 7.3. We discern three nodes.

1. The node on the top represents p(C|B, M), the relation between the information bits
and the coded bits. We will name the process of executing the SPA on this node
decoding.

2. The node in the middle represents p(A|C, M), the relation between the coded bits
and the coded symbols. We will name the process of executing the SPA on this node
demapping.

3. Finally, the bottom-most node represents the function p(Y = y|A, M), the relation
between the coded symbols and the observation. The SPA on this node is called
equalization.

We have seen in Chapter 4 that factor graphs inherently allow functional
decomposition. This will be of great help as we develop our receivers, since we need
focus only on the various nodes in Fig. 7.3 separately. In Chapter 8 and Chapter 9 we
will focus on the decoding and demapping aspects, respectively. The four subsequent
chapters will deal with equalization.

7.4 Main points 141

7.4 Main points

In this chapter we have seen how (at least in principle) the problem of recovering
information bits from a received signal can be resolved by first converting the received
waveform into a suitable observation and then creating a factor graph of the joint
distribution of the information bits and the observation. Opening nodes has given us
insight into the receiver’s operation. We have exposed three critical functions/nodes:
decoding, demapping, and equalization. These functions will be covered in that order in
the next few chapters.

8 Decoding

8.1 Introduction

Error-correcting codes are a way to protect a binary information sequence against adverse
channel effects by adding a certain amount of redundancy. This is known as encoding.
The receiver can then try to recover the original binary information sequence, using
a decoder. The field of coding theory deals with developing and analyzing codes and
decoding algorithms. Although coding theory is fairly abstract and generally involves
a great deal of math, our knowledge of factor graphs will allow us to derive decoding
algorithms without delving too deep. As we will see, using factor graphs, decoding
becomes a fairly straightforward matter. In contrast to conventional decoding algorithms,
our notation will be the same for all types of codes, which makes it easier to understand
and interpret the algorithms.

In this chapter, we will deal with four types of error-correcting codes: repeat–
accumulate (RA) codes, low-density parity-check (LDPC) codes, convolutional codes,
and turbo codes. Repeat–accumulate codes were introduced in 1998 as a type of toy
code. Later they turned out to have a great deal of practical importance [81]. We then
move on to the LDPC codes, which were invented by Gallager in 1963 [50], and re-
introduced in the early 1990s by MacKay [82]. Both types of codes can easily be cast into
factor graphs; these factor graphs turn out to have cycles, leading to iterative decoding
algorithms. Convolutional codes, on the other hand, are based on state-space models and
thus lead to cycle-free factor graphs [83]. Finally, we will consider turbo codes, which
were introduced in 1993 by Berrou et al. [3], consisting of the concatenation of two
convolutional encoders separated by an interleaver. The RA, LDPC, and turbo codes all
have the following in common: they are decoded using iterative decoding algorithms, and
they contain a pseudo-random component (such as an interleaver). Standard reference
works on coding include [84, 85].

This chapter is organized as follows.

• In Section 8.2 we will describe the main goals of this chapter.
• Section 8.3 gives a brief overview of block codes and their relation to factor graphs.
• Four types of codes will described in detail. We start with the simplest type in

Section 8.4: RA codes.
• This is followed by LDPC codes in Section 8.5.

144 Decoding

• Convolutional codes and two flavors of turbo codes will be the topics of Sections 8.6
and 8.7.
• A performance illustration of a turbo code will be given in Section 8.8.

8.2 Goals

We have two goals in this chapter: first of all, we will replace the node p (C |B, M)

in Fig. 8.1 by a more detailed factor graph depending on the particular type of error-
correcting code. Secondly, we will show how the SPA can be executed on the resulting
factor graphs. For every type of code, we will draw the factor graph, locate the basic
building blocks in the graph, and show how to implement the SPA on these blocks. We
will end by deriving the decoding algorithms in the probability domain, the log-domain,
and the LLR domain. We remind the reader that these message types were discussed in
Section 5.3.3.

To help the reader understand the decoding algorithms, one can imagine the coded
bits being mapped to BPSK symbols, such that ak = 2ck − 1, k = 1, . . . , Nc, and that
yk = ak+nk , where nk ∼ N (

0, σ 2
)
. In that case, p(A|C, M) =∏Nc

k=1 = (Ak , 2Ck−1)

and p(Y = y|A, M) ∝ ∏Nc
k=1 exp[−(yk − Ak)

2/(2σ 2)]. Hence, the upward messages
on the Ck -edges in Fig. 8.1 are given byµCk→dec(ck) ∝ exp[− (yk − 2ck + 1)2/(2σ 2)].
Here, the subscript “dec” stands for the decoding node. From the previous chapter we
know that the downward messages on the Bk -edges are given byµBk→dec(bk) = pBk (bk),
the a-priori probabilities.

decoding

equalization

demapping

B1 B2 BNb

C1 C2 CNc

A1 A2 ANs

p(C|B,)

p(A|C,)

p(Y=y|A,)

p(Y=y|B,)

Figure 8.1. A factor graph of p(Y = y|B, M). The node is opened to reveal its structure. The
node in bold is the topic of this chapter.

8.3 Block codes 145

Table 8.1. Addition and multiplication in the binary field

b1 b2 b1 + b2 b1 × b2

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

8.3 Block codes

Before we delve into specific types of error-correcting codes, let us first review some
basic terminology, show how codes can be related to factor graphs, and introduce the
concept of puncturing.

8.3.1 Basic concepts

We will limit ourselves to binary codes, where the components of b and c belong to
B. The binary field B contains two elements, commonly denoted 0 and 1. The field is
endowed with two operators: addition (+) and multiplication (×), defined in Table 8.1.
Multiplication is distributive over addition.

A code is defined as a set of codewords C ⊂ B
Nc , and the field of coding theory is

mainly concerned with searching and analyzing these sets. For practical purposes, we
also need a function that maps an information word b onto a codeword c ∈ C: c = fc(b).
This is a process known as encoding. The encoding process is reversible, so, for every
codeword c ∈ C, we can write b = f −1

c (c) for some b ∈ B
Nb .

Definition 8.1 (Block code). An (Nc, Nb) block code is a set C ⊂ B
Nc of 2Nb distinct

elements, with Nc ≥ Nb. The elements in C are known as the codewords. The ratio Nb/Nc

is called the rate of the code.

Many state-of-the-art error-correcting codes make use of interleavers, so let us define
the concept of interleaving.

Definition 8.2 (Interleaver). An interleaving function of size N is any bijective function
from π : {1, . . . , N } → {1, . . . , N }. Given an array x of length N , x = [x1, . . . , xN]T ∈
X N , an interleaver is a function fπ : X N → X N , where x̃ = fπ (x) with

x̃k = xπ(k) (8.1)

for k ∈ {1, . . . , N }. We abuse the notation and write x̃ = π(x) instead of x̃ = fπ (x).

Interleaving functions are usually chosen to exhibit particular properties related to
randomness and spreading [86]. For the purpose of this book, think of an interleaver
as a function that spreads bits around in some random fashion.

146 Decoding

8.3.2 Two types of codes

We will consider two types of block codes: linear block codes and trellis block codes.
The latter are based on state-space models.

8.3.2.1 Linear block codes
Definition 8.3 (Linear block code). An (Nc, Nb) linear block code is a set C ⊂ B

Nc of
2Nb distinct elements that form a linear subspace of B

Nc of dimension Nb.

Consider a linear block code C. Since the codewords form a linear subspace, there
exists a set of Nb basis vectors in B

Nc . Let us write these column-vectors as g1, g2, . . . , gNb .
Note that this basis is not unique. Any linear combination of the Nb basis vectors yields
an element in C, so for every Nb binary elements b1, b2, . . . , bNb

c =
Nb∑

k=1

bkgk ∈ C. (8.2)

If we write b = [b1b2 . . . bNb

]T, then (8.2) can be re-written as

c = Gb, (8.3)

where G is an Nc × Nb binary matrix with its kth column equal to gk . We call G the
generator matrix. We see that G maps the information sequence b onto the codeword
c. Hence, it is a way to encode information. Usually the generator matrix is reduced by
suitable operations to a systematic form

Gs =
[

INb

P

]
, (8.4)

where P is an (Nc − Nb) × Nb parity matrix. Note that Gs and G generate exactly the
same code C; they merely correspond to different sets of basis vectors.

For every linear block code, we can introduce a parity-check matrix H, an Nc ×
(Nc − Nb) binary matrix whose columns generate the null space of G. One can then
show that c ∈ C ⇐⇒ HTc = 0. For a systematic code with generator matrix Gs, a
corresponding parity-check matrix Hs can be constructed as

HT
s =

[
P INc−Nb

]
. (8.5)

Note that HT
s Gs = 0, and also HTG = HT

s G = HTGs = 0.

8.3.2.2 Trellis block codes
Trellis block codes are based on state space systems with a state space S. Although some
trellis block codes can be seen as linear block codes, this connection is not important for
our purposes. Trellis block codes start with a description of the encoder (as opposed to
a description of the code space).

8.3 Block codes 147

At time instant k − 1, the encoder is in a certain state sk−1. Given an input of Nin ≥ 1
information bits, the encoder transitions into a state sk and generates an output. Let us
break up b into segments b1, b2, . . . , bNb/Nin , each of length Nin (assuming that Nb/Nin ∈
N). The state at time 0 is given by sstart ∈ S, which is known both to the transmitter
(encoder) and to the receiver (decoder). At every time instant k, the state sk is related to
sk−1 by

sk = fs(sk−1, bk). (8.6)

The output at time k is a string of Nout > Nin bits ck given by

ck = fo(sk−1, bk). (8.7)

The functions fs (·) and fo (·) are deterministic functions from S×B
Nin to S and to B

Nout ,
respectively.Asystematic code an be obtained by selecting fo (·) such that the first Nin bits
of ck are equal to bk . The codeword c is given by the concatenation of c1, c2, . . . , cNb/Nin ,
so Nc = NoutNb/Nin. Hence, the rate of this code is Nb/Nc = Nin/Nout. Since the receiver
has no knowledge of the final state sNb/Nin , such a code is said to be unterminated.

Termination
A trellis block code can be terminated by appending a number of termination segments
to b such that the encoder ends up in a predetermined state, say send ∈ S. We assume
that any state can be reached from any other state in at most L time instants. This is
generally always true by virtue of the design of the function fs (·). After processing the
Nb/Nin segments from b, the encoder is in a certain state sNb/Nin , which is known to the
transmitter. The transmitter then selects L termination segments tNb/Nin+1, . . . , tNb/Nin+L,
each of length Nin. Then, for k = Nb/Nin + 1, . . . , Nb/Nin + L:

sk = fs(sk−1, tk), (8.8)

ck = fo(sk−1, tk). (8.9)

By proper selection of tNb/Nin+1, . . . , tNb/Nin+L, we can ensure that sNb/Nin+L = send. The
rate of this terminated code is

Nb

Nc
= Nin

Nout

1

1+ LNin/Nb
. (8.10)

In other words, termination results in a rate loss.

8.3.3 Codes and factor graphs

8.3.3.1 Introduction
Our goal is to re-write the function p(C|B, M) to reveal the structure of the decoding
node in the factor graph in Fig. 8.1. There are two common ways to achieve this: a
generative approach or a descriptive approach.

148 Decoding

• In a generative approach, we factorize fc(b), possibly introducing new variables. Since

p(C = c|B = b, M) = = (c, fc(b)) (8.11)

we can use the factorization of fc(b) to open the node p(C|B, M).
• In a descriptive approach, we assume that we have available a description of the code-

space C. In other words, we require a factorization of I {c ∈ C}. When f −1
c (c) is very

simple (for instance f −1
c (c) = c1:Nb for a systematic code), then we can write

p(C = c|B = b, M) = I

{
c ∈ C and b = f −1

c (c)
}

(8.12)

= I {c ∈ C} =
(

b, f −1
c (c)

)
. (8.13)

As we will see, RAcodes, convolutional codes and turbo codes are based on the generative
approach, whereas LDPC codes are based on the descriptive approach. Before we tackle
these advanced codes, let us first see how the concepts from linear block codes and trellis
block codes can be used in factorizing the function p(C|B, M).

8.3.3.2 Linear block codes
For linear block codes we know that fc(b) = Gb, so

p(C = c|B = b, M) = = (c, Gb). (8.14)

On the other hand, since c ∈ C ⇐⇒ HTc = 0, we also have

p(C = c|B = b, M) = = (HTc, 0) = (b, f −1
c (c)). (8.15)

Note that when the code is systematic = (b, f −1
c (c)) =∏Nb

l=1 = (bl , cl).

8.3.3.3 Trellis block codes
For trellis block codes, the node p(C|B, M) can be replaced by a factorization of
p(C, S|B, M) (for unterminated codes) or of p(C, S, T|B, M) (for terminated codes),
with

p(C = c, S = s|B = b, M) = = (s0, sstart)

Nb/Nin∏
k=1

= (sk , fs(sk−1, bk))

× = (ck , fo(sk−1, bk)) (8.16)

8.4 Repeat–accumulate codes 149

and

p(C = c, S = s, T = t|B = b, M)

= = (s0, sstart)

Nb/Nin∏
k=1

= (sk , fs(sk−1, bk)) = (ck , fo(sk−1, bk)) (8.17)

×
Nb/Nin+L∏

l=Nb/Nin+1

= (sl , fs(sl−1, tl)) = (cl , fo(sl−1, tl)) = (sNb/Nin+L, send)

︸ ︷︷ ︸
termination part

.

8.3.4 Puncturing

In some cases the intrinsic rate of the code may be very small. For practical reasons,
the transmitter may choose to puncture a number of the coded bits so as to reduce
Nc. Puncturing a coded bit means that we do not transmit that particular bit. For
instance, by puncturing every third coded bit in a rate 1/3 code, we obtain a rate 1/2
code. At the receiver side, a punctured coded bit Ck translates into a half-edge in the
factor graph, with µCk→dec(Ck) set to a uniform distribution. An example is shown in
Fig. 8.2.

0 1 01 1 0 0

B1 B2 BNb

C1 C2 C3

p(C|B,)

p(A|C,)

Figure 8.2. An example of puncturing: every third bit in the coded sequence on the left is
punctured (not transmitted). At the receiver, the corresponding variables become half-edges in
the factor graph.

8.4 Repeat–accumulate codes

8.4.1 Description

Repeat–accumulate (RA) codes are a very simple but powerful type of error-correcting
code. An RA codeword is created as follows: every bit in b is copied Nc/Nb times,1

1 We choose Nc/Nb ∈ N.

150 Decoding

resulting in a sequence d of length Nc. This sequence is passed to an interleaver, which
essentially shuffles the bits around so that they look more random. We will denote the
interleaver function by π(·) and set e = π(d). Finally, the coded sequence c is passed
through an accumulator:

c1 = e1, (8.18)

c2 = c1 + e2,

c3 = c2 + e3,

. . .

cNc = cNc−1 + eNc .

It is easily verified that we can express the relationship between b and c in a generator-
matrix representation as

c = Gb (8.19)

= GaccGπGrepb, (8.20)

where Grep is an Nc × Nb repeater matrix with Nc/Nb consecutive 1s per column and
one 1 per row, the matrix Gπ is an Nc×Nc interleaver matrix (more commonly referred
to as a permutation matrix), with exactly one 1 per row and per column, and Gacc is an
Nc ×Nc accumulator matrix. An accumulator matrix is defined as follows: introduce 1k

as a row-vector of k 1s, and 0k as a row-vector of k 0s, then the kth row (1 ≤ k ≤ Nc)
is given by

[
1k0Nc−k

]
.

Example 8.4. Let us look at an example, for Nb = 3 and Nc/Nb = 2. When b =
[b1b2b3]T, then d = [b1b1b2b2b3b3]T can be formed by d = Grepb, where the repeater
matrix is given by

Grep =




1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1




.

Suppose that our interleaver operates as follows: e = π(d) with e1 = d1, e2 = d3,
e3 = d6, e4 = d4, e5 = d2, and e6 = d5. We can write e = Gπd, where

Gπ =




1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0




.

8.4 Repeat–accumulate codes 151

Finally, the matrix Gacc for Nc = 6 is given by

Gacc =




1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1




.

8.4.2 Factor graphs

With the generative approach described in Section 8.3.3, we know that we can write

p(C = c|B = b, M) = = (c, Gb). (8.21)

We can now open the node p(C|B, M) by replacing it by a factorization of
p(C, D, E|B, M):

p(C = c, D = d, E = e|B = b, M) = = (c, Gacce) = (e, Gπd) = (d, Grepb). (8.22)

Let us introduce an additional function � : B
D → B for any D ∈ N as

�(x1, x2, . . . , xD) =
{

1
∑D

k=1 xk = 0,
0 else,

(8.23)

where the summation takes place in the binary domain (see Table 8.1). The �-operator
allows us to express the three factors in (8.22) as follows:

= (c, Gacce) = = (c1, e1)

Nc∏
k=2

�(ck , ck−1, ek), (8.24)

= (e, Gπd) =
Nc∏

k=1

= (ek , dπ(k)), (8.25)

and finally

= (d, Grepb) =
Nb∏
l=1

Nc/Nb−1∏
n=0

= (bl , dlNc/Nb−n). (8.26)

The factor graph for our example RA code is shown in Fig. 8.3.

152 Decoding

B1 B2 B3

C1 C2 C3 C4 C5 C6

D1 D2 D3 D4 D5 D6

E1
E2 E3 E4 E5 E6

p

p(C|B,)

Figure 8.3. Opening the decoding node for an RA code. The node marked π is a shorthand for∏Nc
k=1 = (Ek , Dπ(k)).

8.4.3 Building blocks

From the factor graph in Fig. 8.3, we discern two types of nodes: equality nodes and
check nodes (marked �). We will now show how messages are computed in these nodes.
Note that each check node is connected to exactly three edges.

8.4.3.1 Equality nodes
Probability domain
Given an equality node = (X1, X2, . . . , XD)with incoming messages pXk→ = , we compute
an outgoing message p =→Xl as

p =→Xl (xl) ∝
∑
∼{xl}

= (x1, x2, . . . , xD)
∏
k
=l

pXk→ = (xk) (8.27)

=
∏
k
=l

pXk→ = (xl). (8.28)

We remind the reader that the probability vectors need to be normalized so that∑
xl∈B p =→Xl (xl) = 1.

The log domain
Usually, we prefer log-domain messages, with LXk→ = (xk) = log pXk→ = (xk). In that
case, we know from Section 5.3.3 that

L =→Xl (xl) =
∑
k
=l

LXk→ = (xl). (8.29)

The LLR domain
Since we can add any real number to a log-domain message, let us always make sure
that the first entry in any log-domain vector (say, L) is zero. This can always be achieved

8.4 Repeat–accumulate codes 153

by subtracting L (0) from the message L. Then messages can be represented by a single
number λXk→ = = LXk→ = (1)− LXk→ = (0) = LXk→ = (1). In that case (8.29) becomes

λ =→Xl =
∑
k
=l

λXk→ = . (8.30)

8.4.3.2 Check nodes
The probability domain
Given a check node � (X1, X2, X3) with incoming messages pXk→�, we compute an
outgoing message p�→Xl

. Since the function � is symmetric in each of its arguments,
let us focus on p�→X1 :

p�→X1(x1) ∝
∑
x2,x3

� (x1, x2, x3)
∏
k
=1

pXk→� (xk) (8.31)

=
∑
x3∈B

pX3→� (x3)pX2→� (x1 + x3) (8.32)

since, for a fixed x1 and x3, � (x1, x2, x3)
= 0 only when x2 = x1 + x3.

The log domain
Transforming (8.32) into the log domain yields

L�→X1(x1) =M∼{x1}


log = (x1 + x2 + x3, 0)+

∑
k
=1

LXk→�(xk)


 (8.33)

=Mx3

(
LX3→�(x3)+ LX2→�(x1 + x3)

)
(8.34)

=M
(
LX3→�(0)+ LX2→�(x1), LX3→�(1)+ LX2→�(x1 + 1)

)
. (8.35)

The LLR domain
As for the equality nodes, we can modify the log-domain messages such that the
first component L (0) in any message L is always zero. Let us introduce λXk→� =
LXk→�(1)−LXk→�(0) = LXk→�(1). Let us compute L�→X1(1) and L�→X1(0) using
(8.35):

L�→X1(1) =M
(
LX3→�(0)+ LX2→� (1), LX3→� (1)+ LX2→� (0)

)
(8.36)

=M
(
λX2→�, λX3→�

)
(8.37)

and

L�→X1(0) =M
(
LX3→� (0)+ LX2→� (0), LX3→� (1)+ LX2→� (1)

)
(8.38)

=M
(
0, λX3→� + λX2→�

)
(8.39)

154 Decoding

The final outgoing message becomes

λ�→X1 = L�→X1(1)− L�→X1(0) (8.40)

=M
(
λX2→�, λX3→�

)−M
(
0, λX3→� + λX2→�

)
. (8.41)

It will turn out to be convenient to introduce an additional function f� : R × R → R

with

f� (x, y) =M (x, y)−M (0, x + y) (8.42)

so that λ�→X1 = f�
(
λX2→�, λX3→�

)
.

8.4.4 Decoding repeat–accumulate codes

Since the factor graph of the RA code contains cycles, we must decide on a particular
scheduling strategy. We will work in the LLR domain and consider the most common
scheduling.

1. Initialization The downward messages over the edges Ek , k = 1, . . . , Nc are
initialized with uniform distributions (or, equivalently, uniform log-domain messages,
or zero LLRs). This is depicted in Fig. 8.4.

2. Forward–Backward step A forward–backward-type algorithm is executed on the
lower part of the graph. The forward and backward phases are shown in Fig 8.5s. and
8.6, respectively, and described in Algorithm 8.1 (see Fig. 8.7 for a description of the
variables).

3. Upward messages Upward messages on the Ek -edges are computed (see Fig. 8.8).
These messages are then de-interleaved to obtain messages over the Dk -edges. This
step is described in Algorithm 8.2.

4. Downward messages Downward messages on the Dk -edges are computed, as shown
in Fig. 8.9. These messages are then de-interleaved to obtain messages over the Ek -
edges. This step is described in Algorithm 8.3. Go back to step 2 (forward–backward
step).

5. Termination After a number of iterations, the decoding algorithm is halted, and
outgoing messages λ =→Bk and λ =→Ck are computed.

The entire algorithm is shown in Algorithm 8.4.

8.5 Low-density parity-check codes

8.5.1 Description

Low-density parity-check (LDPC) codes are a class of codes whose parity-check matrices
are sparse in the sense that they contain very few ones per column. They are generally
created starting from a sparse parity-check matrix H, from which we then derive a

8.5 Low-density parity-check codes 155

B1 B2 B3

C1 C2 C3 C4 C5 C6

D1 D2 D3 D4 D5 D6

E1
E2 E3 E4 E5 E6

p

p(C|B,)

Figure 8.4. Repeat–accumulate codes: initialization. Bold arrows indicate that uniform pmfs are
passed over the corresponding edges.

B1 B2 B3

C1 C2 C3 C4 C5 C6

D1 D2 D3 D4 D5 D6

E1
E2 E3 E4 E5 E6

p

p(C|B,)

Figure 8.5. Repeat–accumulate codes: forward phase. Bold arrows indicate that messages are
passed over the corresponding edges.

B1 B2 B3

C1 C2 C3 C4 C5 C6

D1 D2 D3 D4 D5 D6

E1
E2 E3 E4 E5 E6

p

p(C|B,)

Figure 8.6. Repeat–accumulate codes: backward phase. Bold arrows indicate that messages are
passed over the corresponding edges.

156 Decoding

Ck

Ik–1 Jk Ik Jk+1

Ek Ek+1

Figure 8.7. Repeat–accumulate codes: a detailed view.

B1 B2 B3

C1 C2 C3 C4 C5 C6

D1 D2 D3 D4 D5 D6

E1
E2 E3 E4 E5 E6

p

p(C|B,)

Figure 8.8. Repeat–accumulate codes: upward messages. Bold arrows indicate that messages are
passed over the corresponding edges.

B1 B2 B3

C1 C2 C3 C4 C5 C6

D1 D2 D3 D4 D5 D6

E1
E2 E3 E4 E5 E6

p

p(C|B,)

Figure 8.9. Repeat–accumulate codes: downward messages. Bold arrows indicate that messages
are passed over the corresponding edges.

8.5 Low-density parity-check codes 157

Algorithm 8.1 Decoding RA codes: forward–backward phase
1: take care of special cases:
λ =→I1 = λE1→ = + λC1→ =

λJ2→ = = f�
(
λE2→�, λI1→�

)
λ =→JNc

= λCNc→ =

λ�→INc−1 = f�
(
λENc→�, λJNc→�

)
2: for k = 2 to Nc − 1 do
3: compute forward messages:

λ =→Ik = λJk→ = + λCk→ =

λJk+1→ = = f�
(
λEk+1→�, λIk→�

)
4: compute backward message:

set l = Nc − k + 1
λ =→Jl = λCl→ = + λIl→ =

λ�→Il−1
= f�

(
λEl→�, λJl→�

)
5: end for

Algorithm 8.2 Decoding RA codes: upward messages
1: λE1→π = λC1→ = + λI1→ =

2: for k = 2 to Nc do
3: compute upward message:

λEk→π = f�
(
λIk−1→�, λJk→�

)
4: end for
5: for k = 1 to Nc do
6: deinterleave message:

λD
π−1(k)→ = = λEk→π

7: end for

Algorithm 8.3 Decoding RA codes: downward messages
1: for k = 1 to Nb do
2: for n = 0 to Nc/Nb − 1 do
3: compute downward message, with K = Nc/Nb

λ =→DkK−n = λBk→ = +
∑K−1

m=0,m
=n λDkK−m

4: interleave message
λπ→Eπ(kK−n) = λ =→DkK−n

5: end for
6: end for

158 Decoding

Algorithm 8.4 Decoding RA codes: complete decoding algorithm
1: input: λBk→ = , k = 1, . . . , Nb

2: input: λCk→ = , k = 1, . . . , Nc

3: initialization:
λE1→ = = 0
λEk→� = 0, k > 1.

4: for iter = 1 to Niter do
5: compute forward and backward messages using Algorithm 8.1
6: compute upward messages using Algorithm 8.2
7: compute downward messages using Algorithm 8.3
8: end for
9: for k = 1 to Nb do
10: λ =→Bk =

∑K−1
n=0 λDkK−n→ = with K = Nc/Nb

11: end for
12: λ =→C1 = λE1→ = + λI1→ =

13: for k = 2 to Nc do
14: λ =→Ck = λIk→ = + λJk→ =

15: end for

systematic generator matrix G [46, 87]. In this section we will cover how LDPC codes
are created, what their factor graphs look like, and how they are decoded using the SPA.
As with RA codes, we will work with a running example. We start from a parity-check
matrix H given by

HT =




1 0 0 1 0 1 0 1
0 1 1 1 0 0 1 0
1 1 1 0 1 0 0 1
0 0 1 0 1 1 1 1


. (8.43)

Since H is an 8 × 4 matrix, it is the parity-check matrix of a (Nc = 8, Nb = 4) code.
Let us find a systematic generator matrix for this code. We first transform (through row
operations) HT into the form [P INc−Nb] as

HT
s =




1 1 0 0 1 0 0 0
1 0 1 1 0 1 0 0
0 1 1 1 0 0 1 0
0 0 1 0 0 0 0 1


 (8.44)

= [P I4]. (8.45)

8.5 Low-density parity-check codes 159

Note that Hs is a parity-check matrix for the same code C as H. We find that the systematic
generator matrix is given by

Gs =
[

I4

P

]
(8.46)

=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 1
0 1 1 1
0 0 1 0




. (8.47)

Clearly, HT
s Gs = HTGs = 0.

8.5.2 Factor graphs

We can now apply (8.15) to our systematic code, leading to

p(C = c|B = b, M) =
Nc−Nb∏

k=1

= (hT
k c, 0)

Nb∏
l=1

= (bl , cl), (8.48)

where hT
k is the kth row of HT. For our example, the factor graph is shown in Fig. 8.10.

As for RA codes, the check nodes (marked �) are defined as follows, for xk ∈ B:

�(x1, x2, . . . , xD) =
{

1
∑D

k=1 xk = 0
0 else.

(8.49)

For instance, consider the first check (the first row in HT):

=
(

hT
1 c, 0

)
= = (c1 + c4 + c6 + c8, 0) = �(c1, c4, c6, c8).

B1 B2 B3 B4

C1 C2 C3 C4 C5 C6 C7 C8

p(C|B,)

Figure 8.10. Opening the decoding node.

160 Decoding

8.5.3 Building blocks

Looking at the factor graph from Fig. 8.10, we discern two types of nodes: equality nodes
and check nodes (marked �). The equality nodes were discussed in Section 8.4.3 for
RA codes. Note that check nodes can now be of any degree, as opposed to their being of
degree three for RA codes. As we will see, the computational complexity is exponential
in the degree D of the check node. This can be avoided by opening the check node,
leading to a complexity linear in D.

8.5.3.1 Check nodes
Given an equality node � (X1, X2, . . . , XD)with incoming messages pXk→�, we compute
an outgoing message p�→X1 as

p�→X1(x1) ∝
∑
∼{x1}

= (x1 + x2 + · · · + xD, 0)
∏
k
=1

pXk→� (xk) (8.50)

=
∑

x2,x3,...,xD

= (x1 + x2 + · · · + xD, 0)
∏
k
=1

pXk→� (xk) (8.51)

=
∑

x3,...,xD

pX2→� (x1 + x3 + · · · + xD)
∏

k
=1,2

pXk→� (xk). (8.52)

The summation goes over 2D−2 terms. Computing all messages p�→Xk
for k = 1, . . . , D

requires on the order of 2D computations.

8.5.3.2 Opening the check node
The computational complexity can be reduced by opening the node � (X1, X2, . . . , XD)

and considering only �-nodes of three variables. We can introduce binary variables
U2, . . . , UD−2 such that

UD−2︷ ︸︸ ︷
U3︷ ︸︸ ︷

X1 + X2︸ ︷︷ ︸
U2

+X3+X4

︸ ︷︷ ︸
U4

+ · · · + XD−2+XD−1 + XD = 0

and a function

f (X1, . . . , XD, U2, . . . , UD−2) = � (X1, X2, U2)� (UD−2, XD−1, XD)

D−2∏
k=3

� (Uk−1, Xk , Uk).

(8.53)

It is easily verified that

∑
u2,...,uD−1

f (x1, x2, . . . , xD, u2, . . . , uD−2) = � (x1, x2, . . . , xD). (8.54)

8.5 Low-density parity-check codes 161

X1

X1

X2

X2

X3

X3XD–1

XD–1

XD

XD

U2 U3 UD–2

Figure 8.11. Opening a check node.

This implies (see Section 4.6.2) that we can replace � (X1, X2, . . . , XD) by the
factorization (8.53). The corresponding factor graph is shown in Fig. 8.11. We see that
only check nodes of degree three remain. Such nodes were discussed in Section 8.4.3
for RA codes. Let us focus on LLR-domain messages. Re-using the function f� (·)
(see (8.42)) from RA codes, the new algorithm for computing the messages in a node
� (X1, X2, . . . , XD) is then given in Algorithm 8.5, where we again refer to Fig. 8.11,
with λ(→)Uk

representing a message from left to right on edge Uk in Fig. 8.11, and λ(←)Uk

representing a message from right to left on edge Uk in Fig. 8.11. It is easy to see that
the complexity is now linear in D.

Algorithm 8.5 LDPC code: SPA in check nodes

1: λ
(→)
U2
= f�

(
λX1→�, λX2→�

)
2: λ

(←)
UD−2
= f�

(
λXD→�, λXD−1→�

)
3: for k = 3 to D − 2 do
4: λ

(→)
Uk
= f�

(
λ
(→)
Uk−1

, λXk→�
)

5: λ
(←)
UD−k
= f�

(
λ
(←)
UD−k+1

, λXD−k+1→�
)

6: end for
7: λ�→X1 = f�

(
λ
(←)
U2

, λX2→�
)

, λ�→X2 = f�
(
λ
(←)
U2

, λX1→�
)

8: λ�→XD = f�
(
λ
(→)
UD−2

, λXD−1→�
)

, λ�→XD−1 = f�
(
λ
(→)
UD−2

, λXD→�
)

9: for k = 3 to D − 2 do
10: λ�→Xk

= f�
(
λ
(→)
Uk−1

, λ(←)Uk

)
11: end for

8.5.4 Decoding low-density parity-check codes

We will again work in the LLR domain. Remember that HTc = 0 for any codeword c.
Let us introduce the following notation.

• The check nodes (marked as � in the factor graph) are numbered 1, 2, . . . , Nc − Nb.
The nth check node corresponds to the nth row in HT.

162 Decoding

• The equality nodes (marked as = in the factor graph) are numbered 1, 2, . . . , Nc. The
kth equality node corresponds to the kth column in HT (to Ck).
• The message from the kth equality node to the nth check node is denoted λ = k→�n .

Since the matrix HT is sparse, we need to keep track only of the locations of the non-
zero entries. Let us assume that some suitable data structure is available, so that we
can introduce functions ψr(·) and ψc(·) such that ψr(n) returns the indices of the non-
zero elements in nth row of HT and ψc(k) returns the indices of the kth column of
HT. For instance, in our example with HT from (8.43), ψr (3) = {1, 2, 3, 5, 8} and
ψc(4) = {1, 2}. Since the factor graph of an LDPC code has cycles, we again need to
decide on a scheduling strategy. We will discuss the most common strategy.

• Initialization. The decoding algorithm is initialized by setting the messages
λ�n→ = k

= 0, ∀k ∈ {1, . . . , Nc}, n ∈ ψc(k) (see Fig. 8.12).
• Upward messages λ = k→�n are computed for all k and all n ∈ ψc(k) (see Fig. 8.13).
• Downward messagesλ�n→ = k

are computed for all n and all k ∈ ψr(n) (see Fig. 8.14).

The decoding algorithm iterates between the upward and downward phases, as described
in Algorithm 8.6. In LDPC codes, we commonly check after every iteration whether the
hard decisions on the coded bits form a codeword. The hard decisions are determined
by the mode of the beliefs (the approximation of the a-posteriori distribution at that
iteration):

ĉk = arg max
ck∈B

p(Ck = ck |Y = y, M) (8.55)

=
{

0 λ =→Ck + λCk→ = < 0
1 λ =→Ck + λCk→ = > 0.

(8.56)

We then check whether HTĉ = 0. If so, the SPA on the factor graph of p(B, Y = y|M)

can be halted.

B1 B2 B3 B4

C1 C2 C3 C4 C5 C6 C7 C8

p(C|B,)

Figure 8.12. LDPC codes: initialization. Bold arrows indicate that uniform pmfs are passed over
the corresponding edges.

8.6 Convolutional codes 163

B1 B2 B3 B4

C1 C2 C3 C4 C5 C6 C7 C8

p(C|B,)

Figure 8.13. LDPC codes: upward phase. Bold arrows indicate that messages are passed over the
corresponding edges.

B1 B2 B3 B4

C1 C2 C3 C4 C5 C6 C7 C8

p(C|B,)

Figure 8.14. LDPC codes: downward phase. Bold arrows indicate that messages are passed over
the corresponding edges.

8.6 Convolutional codes

8.6.1 Description

In convolutional codes, a codeword is obtained by passing a binary information sequence
through a finite-length shift register. A typical convolutional encoder is depicted in
Fig. 8.15. Note that Nin = 1 and Nout = 2. We will consider only codes with Nin = 1.
The encoder consists of a sequence of L memory blocks (registers), and binary adders.
In our example, L = 3. Observe that the code is systematic, since c(1)k = bk .

Convolutional codes are usually described by feedforward and feedback polynomials,
reflecting the relation between the outputs and the values in the registers. In our example,
the feedback polynomial is gFB(D) = 1+D2+D3 (since we feed back the output of the

164 Decoding

Algorithm 8.6 Decoding LDPC codes
1: input: λBk→ = , k = 1, . . . , Nb

2: input: λCk→ = , k = 1, . . . , Nc

3: initialization:
λ�n→ = k

= 0, ∀k ∈ {1, 2, . . . , Nc}, ∀n ∈ ψc(k)
4: for iter = 1 to Niter do
5: for k = 1 to Nc do
6: for n ∈ ψc(k) do
7: compute upward messages:

λ = k→�n = λCk→ = + I {k ≤ Nb} λBk→ = +
∑

m∈ψc(k)\{n} λ�m→ = k

8: end for
9: end for
10: for n = 1 to Nc − Nb do
11: compute downward messages λ�n→ = k

using Algorithm 8.5 for all k ∈ ψr(n).
12: end for
13: if HTĉ = 0 then
14: STOP iterations {this step is optional}
15: end if
16: end for
17: for k = 1 to Nb do
18: λ =→Bk = λCk→ = +

∑
m∈ψc(k) λ�m→ = k

19: end for
20: for k = 1 to Nc do
21: λ =→Ck = I {k ≤ Nb} λBk→ = +

∑
m∈ψc(k) λ�m→ = k

22: end for

bk

c(1)
k

ck
(2)

sk
(1) sk

(2) sk
(3)

ak

Figure 8.15. A recursive systematic convolutional encoder with Nin = 1 and Nout = 2.

second and third register), while the feedforward polynomial is gFF(D) = 1+ D + D3

(since we feed forward the output of the first and third register). When the feedback
polynomial is trivial (i.e., gFB(D) = 1), we say that the code is non-recursive. In our
example from Fig. 8.15, we have a recursive systematic convolutional code.

8.6 Convolutional codes 165

The bit values in the registers are known as the state. Since there are L registers,
the state space S contains 2L elements (all binary sequences of length L). The state
sk and the output ck depend on the input bk and the previous state sk−1. Hence, we
have a state-space system, as described in Section 8.3.2.2, where the functions fs(·) and
fo(·) depend on the feedback and feedforward polynomials. In our example, introducing
ak = bk + s(2)k−1 + s(3)k−1, we have

sk = fs(sk−1, bk) =
[
ak s(1)k−1 s(2)k−1

]
, (8.57)

ck = fo(sk−1, bk) =
[
c(1)k c(2)k

]
, (8.58)

where c(1)k = bk and c(2)k = ak + s(1)k−1 + s(3)k−1.

Termination
Termination of a convolutional code can be achieved by adding L termination input bits
t = [

tNb+1, . . . , tNb+L
]
. Suppose that we wish to terminate our code so that the final

state sNb+L is the all-zero state. From the state sNb , we input tNb+1, . . . , tNb+L, so that,

when we input tNb+k , we make sure that s(k)Nb+k becomes zero. In that way, we can insure
that sNb+L is the all-zero state. In the remainder of this chapter we will deal only with
terminated convolutional codes. Unterminated codes can be obtained by puncturing the
last LNout coded bits.

Example 8.2. Let us consider a simple example in which initially the register values

are all zero: sstart =
[
s(1)0 s(2)0 s(3)0

]
= [0 0 0] and b = [0 1 1 0].

• Time 1: b1 = 0 is the input. Then a1 = b1 + s(2)0 + s(3)0 = 0. Now, c(1)1 = b1 = 0

and c(2)1 = a1 + s(1)0 + s(3)0 = 0. Finally, the state is changed from s0 = [0 0 0] to
s1 = [a1 0 0] = [0 0 0].
• Time 2: b2 = 1 is the input. Then a2 = b2 + s(2)1 + s(3)1 = 1. Now, c(1)2 = b2 = 1

and c(2)2 = a2 + s(1)1 + s(3)1 = 1. Finally, the state is changed from s1 = [0 0 0] to
s2 = [a2 0 0] = [1 0 0].
• Time 3: b3 = 1 is the input. Then a3 = b3 + s(2)2 + s(3)2 = 1. Now, c(1)3 = b3 = 1

and c(2)3 = a3 + s(1)2 + s(3)2 = 0. Finally, the state is changed from s2 = [1 0 0] to
s3 = [a3 1 0] = [1 1 0].
• Time 4: b4 = 0 is the input. Then a4 = b4 + s(2)3 + s(3)3 = 1. Now, c(1)4 = b4 = 0

and c(2)4 = a4 + s(1)3 + s(3)3 = 0. Finally, the state is changed from s3 = [1 1 0] to
s4 = [a4 1 1] = [1 1 1].

Starting from the state s0 = [0 0 0], we have encoded b = [0 1 1 0] into c =
[0 0 1 1 1 0 0 0]. The final state is s4 = [1 1 1]. The code is unterminated.
The reader can verify that we can terminate the code into send = sstart by providing the
encoder with t = [0 0 1]. The corresponding output is [0 0 0 1 1 1] and is

166 Decoding

concatenated to c. Hence, for a terminated code,

[0 0 1 1 1 0 0 0 0 0 0 1 1 1] = fc([0 1 1 0]).

Puncturing the last LNout = 6 coded bits yields the sequence [0 0 1 1 1 0 0 0]
of the unterminated code.

8.6.2 Factor graphs

Following Section 8.3.3, we open the node p(C|B, M) and replace it by the factorization
of p(C, S, T|B, M), where

p(C = c, S = s, T = t|B = b, M)

= = (s0, sstart)

Nb∏
k=1

= (sk , fs(sk−1, bk)) = (ck , fo(sk−1, bk)) (8.59)

×
Nb+L∏

l=Nb+1

= (sl , fs(sl−1, tl)) = (cl , fo(sl−1, tl)) = (sNb+L, send)

︸ ︷︷ ︸
termination part

.

The corresponding factor graph is shown in Fig. 8.16 for our example convolutional
code. Note that for a terminated code Nc = Nout(Nb + L), whereas for an unterminated
code the bits cNoutNb+1 until cNout(Nb+L) are punctured so that Nc = NoutNb.

termination partB1 B2 B3 B4

T5 T6 T7

S0 S1 S2 S3 S4 S5 S6 S7

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

g hf1 f2 f3 f4 f5 f6 f7

p(C|B,)

Figure 8.16. A factor graph for a convolutional code with Nin = 1 and Nout = 2,
with g(s0) = = (s0, sstart), h(sNb+L) = = (sNb+L, send) and fk (sk−1, sk , bk , c2k−1, c2k) =
= (sk , fs(sk−1, bk)) = ([c2k−1, c2k], fo(sk−1, bk)).

8.6.3 Building blocks

In the factor graph from Fig. 8.16 we see two types of nodes: nodes of degree five
(in general of degree Nin + Nout + 2) marked fk and nodes of degree one (g and h).
Note that messages over the edges Bk , Ck , and Tk are functions of binary variables,
whereas messages over the edges Sk are functions of variables defined over S. Remember
that |S| = 2L, where L is the number of one-bit registers. Since the receiver does

8.6 Convolutional codes 167

not know the termination bits, we always have µTk→fk (tk) = 1/2, for all k, tk ∈ B.
When the code is unterminated, the bits cNoutNb+1 until cNout(Nb+L) are punctured so that
µC2k→fk (c2k) = 1/2 = µC2k−1→fk (c2k−1), k > Nb.

8.6.3.1 Nodes of degree one
The probability domain
Clearly pg→S0 is a vector of size 2L, with pg→S0(s) = 1 when s = sstart and zero
otherwise. Similarly, ph→SNb+L(s) = 1 when s = send and zero otherwise. Note that for

an unterminated code pSNb→fNb
(s) = 1/2L for all s ∈ S. In other words, the termination

part in Fig. 8.16 can be omitted for an unterminated convolutional code.

The log domain
In the log domain, we just take the logarithm of the messages in the probability domain.
For instance, Lg→S0(s) = 0 when s = sstart and −∞ otherwise.

8.6.3.2 Nodes of degree five
We will consider the scenario where Nin = 1 and Nout = 2. Generalizations are
straightforward.

The probability domain
Let us consider time instant k, with

fk(sk−1, sk , bk , c2k−1, c2k) = = (sk , fs(sk−1, bk)) = ([c2k−1 c2k], fo(sk−1, bk)).
(8.60)

For a terminated code and k > Nb, we replace bk by tk . Assuming that we have
available all incoming messages, we would like to compute all outgoing messages:
pfk→Bk , pfk→C2k−1 , pfk→C2k , pfk→Sk , and pfk→Sk−1 . Since the input bk and the current
state sk−1 uniquely determine the output ck as well as the next state sk , the most efficient
way to compute all outgoing messages is as shown in Algorithm 8.7, provided that we
initialize pfk→Bk , pfk→C2k−1 , pfk→C2k , pfk→Sk , and pfk→Sk−1 to all-zero vectors.

The log domain
We simply take the logarithm of the messages in the probability domain, replacing ×
by + and + by M (·). The resulting algorithm is shown in Algorithm 8.8, provided that
we initialize Lfk→Bk , Lfk→C2k−1 , Lfk→C2k , Lfk→Sk , and Lfk→Sk−1 to all-minus-infinity
vectors.

The LLR domain
For reasons of computational complexity, the messages of binary variables are usually
represented as LLRs. The algorithm remains essentially unmodified from the log-domain
algorithm, except that the incoming messages (LLRs) are converted into log-domain
vectors. Conversion from LLR to log-domain vectors is commonly achieved in one of

168 Decoding

Algorithm 8.7 Convolutional code: building block
1: for sk−1 ∈ S do
2: for bk ∈ {0, 1} do
3: sk = fs(sk−1, bk)

4: [c2k−1 c2k] = fo(sk−1, bk)

5: let pBk = pBk→fk (bk), pC2k−1 = pC2k−1→fk (c2k−1), pC2k = pC2k→fk (c2k),
pSk−1 = pSk−1→fk (sk−1), pSk = pSk→fk (sk).

6: pfk→Bk (bk) = pfk→Bk (bk)+ pC2k−1 pC2k pSk pSk−1

7: pfk→C2k−1(c2k−1) = pfk→C2k−1(c2k−1)+ pBk pC2k pSk pSk−1

8: pfk→C2k (c2k) = pfk→C2k (c2k)+ pC2k−1 pBk pSk pSk−1

9: pfk→Sk (sk) = pfk→Sk (sk)+ pC2k−1 pC2k pBk pSk−1

10: pfk→Sk−1(sk−1) = pfk→Sk−1(sk−1)+ pC2k−1 pC2k pSk pBk

11: end for
12: end for
13: normalize pfk→Bk , pfk→C2k , pfk→C2k−1 , pfk→Sk , and pfk→Sk−1

Algorithm 8.8 Convolutional code: building block in the log domain
1: for sk−1 ∈ S do
2: for bk ∈ {0, 1} do
3: sk = fs(sk−1, bk)

4: [c2k−1 c2k] = fo(sk−1, bk)

5: let LBk = LBk→fk (bk), LC2k−1 = LC2k−1→fk (c2k−1), LC2k = LC2k→fk (c2k),
LSk−1 = LSk−1→fk (sk−1), LSk = LSk→fk (sk).

6: Lfk→Bk (bk) =M
(
Lfk→Bk (bk), LC2k−1 + LC2k + LSk + LSk−1

)
7: Lfk→C2k−1(c2k−1) =M

(
Lfk→C2k−1(c2k−1), LBk + LC2k + LSk + LSk−1

)
8: Lfk→C2k (c2k) =M

(
Lfk→C2k (c2k), LC2k−1 + LBk + LSk + LSk−1

)
9: Lfk→Sk (sk) =M

(
Lfk→Sk (sk), LC2k−1 + LC2k + LBk + LSk−1

)
10: Lfk→Sk−1(sk−1) =M

(
Lfk→Sk−1(sk−1), LC2k−1 + LC2k + LSk + LBk

)
11: end for
12: end for

the following two ways (we focus on λBk→fk ; the same technique is applied to λC2k−1→fk
and λC2k→fk):

• given λBk→fk , set LBk→fk (1) = λBk→fk and LBk→f (0) = 0;
• given λBk→fk , set LBk→fk (1) = λBk→fk /2 and LBk→fk (0) = −λBk→fk /2. This allows

us to write LBk→fk (bk) = (2bk − 1)λBk→fk /2.

At the end of the algorithm, the outgoing log-domain vectors are converted back into
LLRs, for instance λfk→Bk = Lfk→Bk (1)− Lfk→Bk (0).

8.6 Convolutional codes 169

8.6.4 Decoding convolutional codes

Since a convolutional code is a state-space model, decoding is based on the forward–
backward algorithm. This algorithm was originally derived in [88] and is known as the
BCJR algorithm (after the four authors). The entire algorithm is given in Algorithm 8.9.
Observe that the complexity scales as O (

Nb2L
)

and that, for an unterminated code, lines
11–13 can be omitted.

Algorithm 8.9 Decoding of a convolutional code
1: input: λBk→dec, k = 1, . . . , Nb

2: input: λCk→dec, k = 1, . . . , Nc

3: initialization:
Lg→S0(s0) = 0 when s0 = sstart and −∞ otherwise,
Lh→SNb+L(s) = 0 when s = send and −∞ otherwise
LTk→fk (tk) = 0, tk ∈ B, ∀k > Nb

LC2k→fk (c) = 0 = LC2k−1→fk (c), c ∈ B, k > NoutNb for an unterminated code
set Lfk→Bk , Lfk→Tk , Lfk→C2k , Lfk→C2k−1 , Lfk→Sk , and Lfk→Sk−1 to all-minus-
infinity vectors, ∀k.

4: for k = 1 to Nb + L− 1 do
5: compute forward message Lfk→Sk using Algorithm 8.8 (without lines 6, 7, 8, and

10)
6: compute backward message LSNb+L−k→fNb+L−k using Algorithm 8.8 (without lines

6–9)
7: end for
8: for k = 1 to Nb do
9: compute messages λfk→Bk , λfk→C2k , and λfk→C2k−1 using Algorithm 8.8 (without

lines 9 and 10)
10: end for
11: for k = Nb + 1 to Nb + L do
12: compute messages λfk→C2k and λfk→C2k−1 using Algorithm 8.8 (without lines 9

and 10)
13: end for

8.6.5 Sequence detection

Although we have considered only the standard SPA for convolutional codes, it is clear
that, when the factor graph of p(B, Y = y|M) contains no cycles, we can also apply
the max–sum algorithm (Viterbi algorithm) to the factorization of log p(B, Y = y|M).
This leads to the most likely sequence

b̂ = arg max
b

log p(B = b|Y = y, M). (8.61)

In view of our observations from Section 5.3.3.3, we can find the most likely sequence
by implementing the SPA in the log domain and replacing M (·) by the max operation.

170 Decoding

Note that for RA codes and LDPC codes (and also for turbo codes, as we will see
shortly), the factor graph of p(B, Y = y|M) necessarily contains cycles, so optimal
sequence detection is not possible.

8.7 Turbo codes

8.7.1 Description

We will consider the two most important types of turbo codes: parallel concatenation of
convolutional codes (PCCC) and serial concatenation of convolutional codes (SCCC).
The former were the original turbo codes, as described by Berrou et al. in 1993 [3]. The
latter were introduced a few years later by Benedetto et al. [89]. As the names suggest,
turbo codes consist of the concatenation of two convolutional encoders, separated by an
interleaver.

PCCC
In PCCC, we encode our information sequence b using a (Nin = 1, Nout = 2) systematic
convolutional encoder (CC(A)). This leads to a codeword c(A) = f (A)c (b). We will write
the coded bits in a funny way,

c(A) =


d1, c3, . . . , dNb , c3Nb , c3Nb+1, c3Nb+2, . . . , c3Nb+2L(A)︸ ︷︷ ︸

termination part


 (8.62)

such that dk = bk for k = 1, . . . , Nb (since the code is systematic). The last 2L(A)

bits correspond to the termination. As always, puncturing these last 2L(A) bits leads to
an unterminated code. We then interleave the information bits, e = π(d) = π(b), and
encode this interleaved sequence using a (Nin = 1, Nout = 2) systematic convolutional
encoder, leading to c(B) = f (B)c (e) = f (B)c (π(b)). We will write the coded bits as follows:

c(B) =


c1, c2, c4, c5, . . . , c3Nb−2, c3Nb−1, c3Nb+2L(A)+1, . . . , c3Nb+2L(A)+2L(B)︸ ︷︷ ︸

termination part


. (8.63)

Since the code is systematic, we know that c3k−2 = ek = bπ(k), for k = 1, . . . , Nb.
We can again choose to puncture the last 2L(B) bits from c(B) to obtain an unterminated
code. The final codeword is given by concatenating all the coded bits, and dropping the
bits dk :

c = fc(b) (8.64)

= [c1, c2, c3, . . . , c3Nb+2L(A)+2L(B)
]
, (8.65)

8.7 Turbo codes 171

where we set L(A) (L(B)) to zero when CC(A) (CC(B)) is unterminated. Generally
f (B)c (·) = f (A)c (·). The rate of this code is given by

r = Nb

Nc
(8.66)

= 1

3

1

1+ 2(L(A) + L(B))/Nb
, (8.67)

where L(A) and L(B) can be zero depending on whether or not encoder A or encoder B is
terminated. Observe that termination leads to a small rate loss.

SCCC
In SCCC, we again encode our information sequence b using a (Nin = 1, Nout = 2)
systematic convolutional encoder. This leads to a codeword d = f (A)c (b) of length
N (A) = 2Nb + 2L(A), where L(A) = 0 when the encoder is unterminated. In contrast
to PCCC, we now interleave the entire sequence d leading to e = π (d). We encode
e to c = f (B)(e) using a (Nin = 1, Nout = 2) systematic convolutional encoder. The
codeword has length Nc = 2N (A) + 2L(B), where L(B) = 0 when the second encoder is
unterminated. Hence, the overall rate is

r = Nb

Nc
(8.68)

= 1

4

1

1+ 2(2L(A) + L(B))/Nb
. (8.69)

8.7.2 Factor graphs

PCCC
We replace the node p(C|B, M) by the following factorization:

p
(

C = c, D = d, E = e, C(A) = c(A), C(B) = c(B)|B = b, M
)

= =
(

c(A), f (A)c (b)
)

=
(

c(B), f (B)c (e)
)

×
Nb∏

k=1

=
(

dk , c(A)2k−1

)
= (e,π(d))

×
Nb∏

k=1

=
(

c3k−2, c(B)2k−1

)
=
(

c3k−1, c(B)2k

)
=
(

c3k , c(A)2k

)

×
2L(A)∏
k=1

=
(

c3Nb+k , c(A)2Nb+k

) 2L(B)∏
k=1

=
(

c3Nb+2L(A)+k , c(B)2Nb+k

)
︸ ︷︷ ︸

termination part

(8.70)

with the factor graph shown in Fig. 8.17.

172 Decoding

B1 B2 BNb

D1 D2
DNb

C3 C6 C3Nb
C3Nb+2L(A)

E1 E2 ENb

C1 C2 C4 C5 C3Nb–1 C3Nb+2L(A)+2L(B)

CC(B)

CC(A)

p

Figure 8.17. A factor graph for a PCCC turbo code. The variables C(A)k and C(B)k are omitted for
notational convenience. Both codes are assumed to be terminated. The factor graph for
unterminated codes can be obtained by puncturing the coded bits corresponding to termination.

SCCC
We replace the node p(C|B, M) by the following factorization

p(C = c, D = d, E = e|B = b, M) = =
(

d, f (A)c (b)
)

= (e,π(d)) =
(

c, f (B)c (e)
)

.

(8.71)

The corresponding factor graph is shown in Fig. 8.18.

D1 D2

E1 E2

B1 B2 BNb

C1 C2 C3 C4

CC(B)

CC(A)

p

C4Nb+4L(A)+2L(B)

D2Nb+2L(A)

E2Nb+2L(A)

Figure 8.18. A factor graph for an SCCC turbo code. Both codes are assumed to be terminated.
The factor graph for unterminated codes can be obtained by puncturing the coded bits
corresponding to termination.

8.7 Turbo codes 173

8.7.3 Decoding turbo codes

Since the factor graphs in Figs. 8.17 and 8.18 have cycles, the SPA becomes iterative.
We choose the following scheduling.

1. Initialize the downward messages on the Ek -edges with uniform distributions:
LEk→CC(B) = 0. See Fig. 8.19.

2. Decode CC(B) using Algorithm 8.9. This results in upward messages λCC(B)→Ek
.

3. de-interleave the upward messages on the Ek -edges. See Fig. 8.20. This results in
upward messages λDk→CC(A) .

4. Decode CC(A) using Algorithm 8.9. This results in downward messages λCC(A)→Dk
.

B1 B2 BNb

D1 D2
DNb

C3 C6 C3Nb

E1 E2 ENb

C1 C2 C4 C5 C3Nb–1 C3Nb+2L(A)+2L(B)

C3Nb+2L(A)

CC(B)

CC(A)

p

Figure 8.19. Decoding a turbo code: initialization.

B1 B2 BNb

D1 D2
DNb

C3 C6 C3Nb

E1 E2 ENb

C1 C2 C4 C5 C3Nb–1 C3Nb+2L(A)+2L(B)

C3Nb+2L(A)

CC(B)

CC(A)

p

Figure 8.20. Decoding a turbo code: upward messages after decoding code CC(B).

174 Decoding

B1 B2 BNb

D1 D2
DNb

C3 C6 C3Nb

E1 E2 ENb

C1 C2 C4 C5 C3Nb–1 C3Nb+2L(A)+2L(B)

C3Nb+2L(A)

CC(B)

CC(A)

p

Figure 8.21. Decoding a turbo code: downward messages after decoding code CC(A).

5. Interleave the downward messages on the Dk -edges. See Fig. 8.21. This results in
downward messages λEk→CC(B) . Go to step 2.

The final algorithm for decoding a turbo code is described in Algorithm 8.10.

Algorithm 8.10 Decoding of a PCCC/SCCC turbo code
1: input: λBk→dec, k = 1, . . . , Nb

2: input: λCk→dec, k = 1, . . . , Nc

3: initialization
λEk→CC(B) = 0, ∀k

4: for iter = 1 to Niter do
5: decode convolutional code B using Algorithm 8.9. This yields λCC(B)→Ek

, ∀k
6: de-interleave the messages: λπ→Dk = λCC(B)→Eπ(k) , ∀k
7: decode convolutional code A using Algorithm 8.9. This yields λDk→π , ∀k
8: interleave the messages: λEk→CC(B) = λD

π−1(k)→π , ∀k
9: end for

8.8 Performance illustration

Let us consider an example of a PCCC turbo code with gFF (D) = 1+D4 and gFB (D) =
1+D+D2+D3+D4. The first encoder is terminated, while the second encoder is not.
We set Nb = 330, so that Nc = 998. We use BPSK modulation. The interleaver between
the encoders is pseudo-random and changes from codeword to codeword. The channel
is an AWGN channel so that yk = √Esak + nk , where nk are iid complex Gaussian,
zero mean and E{|Nk |2} = N0. We evaluate the performance in terms of bit error rate

8.9 Main points 175

–2 –1 0 1 2 3 4
107

106

105

104

103

102

101

100

E
b
/N

0
 [dB]

B
E

R
uncoded
turbo code

iteration 1

iteration 2

iteration 3

Figure 8.22. Turbo code: BER versus SNR performance. Observe the gain in BER with every
iteration. After four iterations, the gain becomes negligible. As a reference, we include the
performance of an uncoded system (where Es = Eb).

(BER) versus signal-to-noise ratio (SNR). The SNR is expressed as Eb/N0 (in decibels2),
with Eb = Es/(R log2 |�|), where R denotes the code rate. The resulting performance
is shown in Fig. 8.22. As the iterations proceed, the BER drops by several orders of
magnitude. We discern three SNR regions for the turbo code: below 0 dB, the BER is
fairly high. Then, above 0 dB the BER suddenly drops. The SNR value at which the
BER suddenly drops is known as the pinch-off point (0 dB in our case). Above 0 dB the
turbo code enters the so-called waterfall region, where the BER drops dramatically with
increasing number of iterations. Above 2 dB, the BER becomes flatter. The high-SNR
region where the BER flattens out is known as the error-floor region. The BER in this
region is mainly dependent on the Hamming distance of the turbo code. As a reference
we include the BER for an uncoded system (with R = 1). The performance gain of the
turbo code is quite impressive.

8.9 Main points

In this chapter we have focused on opening the node representing the function
p(C|B, M) and describing the SPA on the resulting factor graph, assuming that
messages from the Ck -edges and the Bk -edges are available. We covered four types
of error-correcting codes.

2 We can express an SNR in decibels (dB) as 10 log10 SNR.

176 Decoding

• RA codes: the factor graph consists of equality nodes and check nodes of degree three,
as well as an interleaver. The graph contains cycles, so the SPA is iterative.
• LDPC codes: these codes are based on sparse parity-check matrices. The factor graph

consists again of equality nodes and check nodes. The graph contains cycles, so the
SPA is iterative.
• Convolutional codes: these codes are based on state-space models. The factor graph is

a variation of those presented in Chapter 6. The SPA is not iterative. When the factor
graph of the factorization of p(B, Y = y|M) contains no cycles, we can apply the
max–sum algorithm (the Viterbi algorithm) to log p(B, Y = y|M) to obtain the most
likely sequence.
• Turbo codes: by concatenating two convolutional encoders separated by an interleaver

we obtain a turbo code. The factor graph consists of linking together the two factor
graphs of the convolutional codes. This creates cycles, resulting in an iterative SPA.
We covered PCCC and SCCC turbo codes.

The decoder requires messages µBk→dec(Bk), ∀k and µCk→dec(Ck), ∀k. The messages
µBk→dec(Bk) are the a-priori distributions of the information bits, and are assumed to be
known by the receiver. The messages µCk→dec(Ck) are obtained by executing the SPA
on the demapping node, representing the distribution p(A|C, M). How these messages
are to be computed will be the topic of the next chapter.

9 Demapping

9.1 Introduction

In the previous chapter we have seen how messages are computed in the decoding node
in the factor graph of the distribution p(B, Y = y|M) (see Fig. 9.1). Now we will deal
with the second node, the demapping node, representing the distribution p(A|C, M),
where C is a sequence of Nc coded bits, and A is a sequence of Ns coded symbols, each
belonging to some constellation � (for instance, 16-QAM). By mapping the coded bits
onto a signaling constellation, we can tune the spectral efficiency of the system: the
more bits we map onto any constellation point, the fewer complex symbols we need to
transmit.

While there exists a wide variety of mapping schemes, we will focus on two popular
instances: bit-interleaved coded modulation (BICM) and trellis-coded modulation
(TCM). The former was first introduced by Zehavi [90] and later analyzed in detail
by Caire et al. [91]. It was only with [92–94] that it was realized that employing BICM
at the transmitter naturally leads to an iterative receiver. Trellis-coded modulation, on the

demapping

equalization

decoding

B1 B2 BNb

C1 C2 CNc

A1 A2 ANs

p(Y=y|B,)

p(Y=y|A,)

p(C|B,)

p(A|C,)

Figure 9.1. A factor graph of p(Y = y|B, M). The node is opened to reveal its structure. The
node in bold is the topic of this chapter.

178 Demapping

other hand, was proposed by Ungerboeck in [95] as a way to combine (convolutional)
coding and mapping to obtain a receiver that could perform optimal sequence detection.

This chapter is organized as follows.

• In Section 9.2 we will describe the main goal of this chapter.
• Section 9.3 deals with BICM, while TCM is covered in Section 9.4. For both

modulation schemes, we will describe the corresponding demapping algorithm in
the probability domain, the log domain, and the LLR domain.
• A performance illustration of BICM will be given in Section 9.5.

9.2 Goals

We have two goals in this chapter: first of all, we will replace the node p(A|C, M) in
Fig. 9.1 by a more detailed factor graph depending on the particular mapping scheme.
Secondly, we will show how the SPA can be executed on the resulting factor graphs. We
will derive the demapping algorithms in the probability domain, the log domain, and the
LLR domain.

The node p(A|C, M) has incoming messages from the decoder block µCk→dem(Ck)

(which is just another notation for µdec→Ck (Ck)), as well as the equalization
block µAk→dem(Ak). Here “dem” stands for the demapper node. When the
messages µCk→dem(Ck) are not available because of cycles in the factor graph of
p(A|C, M)p(C|B, M), they are assumed to be uniform distributions over B. To help the
reader understand the demapping algorithms, let us assume that yk = ak + nk , where
nk ∼ N C(0, σ 2), p(Y = y|A = a, M) ∝ ∏Nc

k=1 exp(−|yk − ak |2/σ 2). This means that
µAk→dem(ak) ∝ exp(−|yk − ak |2/σ 2).

9.3 Bit-interleaved coded modulation

9.3.1 Principles

Bit-interleaved coded modulation (BICM) operates as follows: the sequence of Nc coded
bits is interleaved,1 resulting in a sequence d = π(c). The bits in d are then grouped into
consecutive blocks of length m = log2|�|. The kth block is mapped onto a constellation
point ak ∈ �, leading to a sequence a of Ns = Nc/m coded symbols. The mapping
B

m → � is achieved using a mapping function φ(·), such that, for k = 1, . . . , Nc/m,

ak = φ
(
d(k−1)m+1, d(k−1)m+2, . . . , dkm

)
. (9.1)

An example of a mapping strategy for a 16-QAM constellation is shown in Fig. 9.2. The
interleaver ensures that when a symbol ak is greatly affected either by the channel or by
noise, this will not result in a sequence of m erroneous bits in c. This is especially critical

1 The interleaver for BICM is not the same interleaver as in RA or turbo codes. It is a separate interleaver.

9.3 Bit-interleaved coded modulation 179

1010

0000

0001

0011

0010

0100

0101

0111

0110

1100

1101

1111

1110

1000

1001

1011

Figure 9.2. Gray mapping for 16-QAM.

C1 CNc

D1 Dm D(k–1)m+1 Dkm D(Ns–1)m+1 DNsm

A1 Ak ANs

f f f

p(A|C,)

Figure 9.3. A factor graph for BICM. The nodes φ are shorthand for the mapping constraint:
φ
(
d(k−1)m+1:km

)
. The node marked π represents the function = (d,π(c)).

when combined with certain types of error-correcting codes (such as convolutional
codes), which are notoriously bad at coping with burst errors.

9.3.2 Factor graphs

We replace the node p(A|C, M) by a factorization of p(A, D|C, M) with

p(A = a, D = d|C = c, M) =
Ns∏

k=1

= (ak ,φ(d(k−1)m+1:km))

Nc∏
n=1

= (dk , cπ(k)), (9.2)

where we have abbreviated d(k−1)m+1, d(k−1)m+2, . . . , dkm by d(k−1)m+1:km. The
corresponding factor graph is shown in Fig. 9.3.

180 Demapping

9.3.3 Building blocks

Since the factor graph in Fig. 9.3 consists of Ns disjoint nodes, we have to deal with only
a single building node, say = (ak ,φ(d(k−1)m+1:km)). Let us see how to implement the
SPA on this node.

The probability domain
We are given the incoming messages pD(k−1)m+n→φ , n ∈ {1, . . . , m} and pAk→φ . Note
that pD(k−1)m+n→φ is a vector of size 2, while pAk→φ is a vector of size |�| = 2m. Let us
compute an outgoing message on edge D(k−1)m+n:

pφ→D(k−1)m+n(d) ∝
∑

d̃∈Bm:d̃n=d

pAk→φ
(
φ
(

d̃
))∏

l �=n

pD(k−1)m+l→φ
(

d̃l

)
. (9.3)

This computation requires summation over all binary sequences of length m, with the
nth entry fixed to d ∈ B. An outgoing message on the edge Ak is simply

pφ→Ak (a) ∝
m∏

n=1

pD(k−1)m+n→φ
([
φ−1(a)

]
n

)
. (9.4)

The log domain
On replacing × by + and + by M, we immediately find that

Lφ→D(k−1)m+n(d) =Md̃∈Bm:d̃n=d


LAk→φ

(
φ
(

d̃
))
+
∑
l �=n

LD(k−1)m+l→φ
(

d̃l

) (9.5)

and

Lφ→Ak (a) =
m∑

n=1

LD(k−1)m+n→φ
([
φ−1(a)

]
n

)
. (9.6)

The LLR domain
Given messages (scalars) λD(k−1)m+n→φ , n ∈ {1, . . . , m} and (vectors) LAk→φ , we find
that

λφ→D(k−1)m+n =Md̃∈Bm:d̃n=1


LAk→φ

(
φ
(

d̃
))
+
∑
l �=n

=
(

d̃l , 1
)
λD(k−1)m+l→φ




−Md̃∈Bm:d̃n=0


LAk→φ

(
φ
(

d̃
))
+
∑
l �=n

=
(

d̃l , 1
)
λD(k−1)m+l→φ



(9.7)

9.4 Bit-interleaved coded modulation 181

and

Lφ→Ak (a) =
m∑

n=1

=
([
φ−1(a)

]
n

, 1
)
λD(k−1)m+n→φ . (9.8)

9.3.4 Demapping algorithm

The complete demapping algorithm for BICM is given in Algorithm 9.1.

Algorithm 9.1 Demapping for BICM
1: input: λCk→dem, k = 1, . . . , Nc

2: input: LAk→dem, k = 1, . . . , Ns

3: interleave the messages
λDπ(k)→φ = λCk→dem, ∀k

4: for k = 1 to Ns do
5: for a ∈ � do
6: Lφ→Ak (a) =

∑m
n=1 = ([φ−1(a)]n, 1)λD(k−1)m+n→φ , ∀a ∈ �

7: end for
8: for n = 1 to m do
9: compute λφ→D(k−1)m+n using (9.7)
10: end for
11: end for
12: de-interleave the messages

λCk→dem = λDπ(k)→φ , ∀k

9.3.5 Interaction with decoding node

Using BICM in combination with an error-correcting code always leads to cycles between
the demapping node and the decoding node, even when the decoding node has no cycles
by itself. This cyclic dependency can be seen from Eq. (9.7): an upward message on
the edge D(k−1)m+n depends on the downward messages on the edges D(k−1)m+l , l �= n
(except in the case of BPSK modulation, where m = 1). Hence, given messages from
the equalization block, µAk→φ(ak), ∀k, we can iterate between the demapping node and
the decoding node. This is known as bit-interleaved coded modulation with iterative
decoding (BICM-ID). Initially, the messages from the decoder to the demapper are set
to uniform distributions. When the decoding node also contains cycles, we end up with
a doubly iterative system. For instance, in an LDPC code with BICM, we can choose
the number of decoding iterations we perform with each BICM-ID iteration. Different
scheduling strategies may lead to differences in BER performance.

182 Demapping

9.4 Trellis-coded modulation

9.4.1 Description

Trellis-coded modulation (TCM) is a technique to combine convolutional coding and
mapping in such a way that the factor graph of the decoder and demapper has no cycles.
We start with a convolutional code with Nin = 1. Convolutional codes were covered
in Section 8.6. At every time k, the encoder is in a state sk−1. When we input bk , the
encoder goes into state

sk = fs(sk−1, bk) (9.9)

and outputs a sequence of Nout bits ck , with

ck = fo(sk−1, bk). (9.10)

Instead of interleaving the coded bits as in BICM, we map ck onto a coded symbol
ak ∈ �, where log2 |�| = Nout:

ak = φ(ck) (9.11)

for k = 1, . . . , Ns.

9.4.2 Factor graphs

We find that

p(A = a|C = c, M) =
Ns∏

k=1

= (ak ,φ(ck)). (9.12)

The node of p(C|B, M) can be replaced by the following factorization (see Eq. (8.63)):

p(C = c, S = s, T = t|B = b, M)

= = (s0, sstart)

Nb∏
k=1

= (sk , fs(sk−1, bk)) = (ck , fo(sk−1, bk))

×
Nb+L∏

l=Nb+1

= (sl , fs(sl−1, tl)) = (cl , fo(sl−1, tl)) = (sNb+L, send)

︸ ︷︷ ︸
termination part

. (9.13)

The factor graph of the decoding and demapping node is shown in Fig. 9.4. Note the
following.

• This factor graph has no cycles. This is because we consider bit-sequences ck (rather
than individual bits) as variables.

9.4 Trellis-coded modulation 183

termination partB1 B2 BNb

C1 C2 CNb

A1 A2 ANb

S0 S1 S2 SNb – 1 SNbg h

TNb+ L
SNb + L–1 ffff

f f f f

p(C|B,)

p(A|C,)

ANb+L

CNb+L

SNb+L

Figure 9.4. A factor graph for TCM for Nin = 1, with g(s0) = = (s0, sstart),
h(sNb+L) = = (sNb+L, send) and f (sk−1, sk , bk , ck) = = (sk , fs(sk−1, bk))

= (ck , fo(sk−1, bk)), where ck is a binary sequence of length Nout and the nodes φ are
shorthand for the mapping constraint = (ak ,φ(ck)).

• The variables ck are elements of B
Nout , Nout = log2|�|.

• Ns = Nb + L when Nin = 1.
• When some coded bit-sequences ck are punctured, the messages µφ→Ck (ck) become

uniform distributions (for instance in an unterminated code).

9.4.3 Demapping algorithms

We will focus exclusively on the mapper nodes from Fig. 9.4 (marked φ). The SPA on
the convolutional code is very similar to what we discussed in Section 8.6. The only
difference is that now we treat the bit-sequences ck as variables over B

Nout , rather than
Nout binary variables. This results in messages pφ→Ck and pCk→φ , which are vectors of
size 2Nout .

Given pAk→φ (a vector of length 2Nout = |�|), we find that pφ→Ck (another vector of
length 2Nout = |�|) is given by

pφ→Ck (ck) = pAk→φ(φ−1(ck)). (9.14)

Similarly,

pφ→Ak (ak) = pCk→φ(φ(ak)). (9.15)

Transformation to the log domain is trivial.

9.4.4 Sequence detection

Although we have considered only the standard SPA for TCM, it is clear that we can
also apply the max–sum/Viterbi algorithm when the factor graph of log p(B, Y = y|M)

184 Demapping

111

000

001

010

011

100

101

110

Figure 9.5. Set-partitioning mapping for 8-PSK.

is cycle-free. This leads to the most likely sequence

b̂ = arg max
b

log p(B = b|Y = y, M). (9.16)

In view of our observations from Section 5.3.3.3, we can find the most likely
sequence by implementing the SPA in the log domain and replacing M(·) by the max
operation.

9.5 Performance illustration

Let us evaluate the performance of BICM with a terminated systematic convolutional
code with generators gFF(D) = 1+D2 and gFB(D) = 1+D+D2, and coded sequences
of length Nc = 240. The modulation format is 8-PSK with set-partitioning mapping
(see Fig. 9.5). The bit-interleaver is pseudo-random and changes from codeword to
codeword. The channel is an AWGN channel so that yk = √Esak + nk , where nk are
iid complex Gaussian, zero mean and E{|Nk |2} = N0. We evaluate the performance in
terms of bit error rate (BER) versus signal-to-noise ratio (SNR). The SNR is expressed
as Eb/N0 (in decibels2), with Eb = Es/(R log2|�|), where R denotes the code rate.
The resulting performance is shown in Fig. 9.6. The BER drops by several orders of
magnitude with increasing number of iterations between demapper and decoder.

9.6 Main points

We have described two important modulation schemes, leading to elegant factor-graph
representations.

2 We can express an SNR in decibels (dB) as 10 log10 SNR.

9.6 Main points 185

–1 0 1 2 3 4 5 6 7
10–5

10–4

10–3

10–2

10–1

100

Eb/N0 (dB)

B
E

R

iteration 1

iteration 2

iteration 3

Figure 9.6. The BER versus SNR performance for BICM. Observe the reduction in BER with
every iteration. After four iterations, the reduction becomes negligible.

• Bit-interleaved coded modulation (BICM): the factor graph consists of an interleaver
node and a set of disjoint nodes, each node relating a group of coded bits to a single
coded symbol. In combination with an error-correcting code, the factor graph of
p(A|C, M)p(C|B, M) always contains cycles, resulting in an iterative demapping
algorithm. This scheme can be combined with any decoding block from Chapter 8.
• Trellis-coded modulation (TCM): trellis-coded modulation combines a convolutional

code with mapping in such a way that the factor graph of p(A|C, M)p(C|B, M)

contains no cycles. When combined with a transmission scheme such that the factor
graph of p(B, Y = y|M) is cycle-free, we can also implement the max–sum algorithm
on log p(B, Y = y|M) leading to optimal sequence detection.

The demapping node requires messages µAk→dem(Ak), ∀k. These are obtained by
executing the SPA on the equalization node, representing the distribution p(Y =
y|A, M). How these messages can be computed will be the topic of the next chapter.

10 Equalization–general formulation

10.1 Introduction

Apart from decoding and demapping, a factor-graph-based receiver also requires an
equalizer. The equalizer performs the SPA on the equalization node p(Y = y|A, M),
seen in Fig. 10.1, where a is the sequence of unknown coded data symbols and y is the
known observation. The observation is obtained by suitable processing of the received
waveform. This processing depends highly on the specific communication scenario
(number of users, number of antennas, etc.) and will be dealt with in Chapters 11–13.
Here we work in a more abstract setting. This chapter builds on the works [96–100].

The observation y is generally a non-deterministic function of the data symbols a. As
we have seen in Chapter 2, the signal at the receiver is corrupted by noise, has been passed
through a physical channel, and may depend on symbols other than the Ns data symbols
we are interested in. This gives rise to the following very general relation between the
observation y and the coded symbols a:

y = h(a, ã)+ n, (10.1)

decoding

demapping

equalization

B1 B2

C1 C2 CNc

BNb

A1 A2 ANs

p(Y=y|B,)

p(Y=y|A,)

p(C|B,)

p(A|C,)

Figure 10.1. A factor graph of p(Y = y|B, M). The node is opened to reveal its structure. The
node in bold is the topic of this chapter.

188 Equalization–general formulation

where n is a complex Gaussian noise vector, ã represents symbols that affect the
observation y but are not part of a and h(·) is the transformation encapsulating the
physical channels as well as any processing at the transmitter and the receiver. Since
such a model will recur throughout the rest of this book, we will devote some effort to
seeing how the equalization process is executed. As in the previous two chapters, we
assume that we have messages µAk→eq(Ak) available, for all k, and are interested in
computing µeq→Ak (Ak). Here “eq” stands for equalizer.

This chapter is organized as follows.

• We will start by outlining the equalization problem in Section 10.2.
• In Section 10.3 we will describe a collection of general-purpose equalization

techniques, including a sliding-window equalizer, a Gaussian equalizer, and a Monte
Carlo equalizer.
• In Section 10.4 we give a brief discussion related to how equalization interacts with

the demapping and decoding.
• A performance illustration will be given in Section 10.5.

10.2 Problem description

We consider the following problem: we have a complex-valued sequence a =[
a1, . . . , aNs

]T, with each element belonging to a finite set� ⊂ C. We observe a complex

vector y = [
y1, . . . , yNo

]T, which is related to a as

y = h(a, ã)+ n, (10.2)

where h : �Ns ×�Nd → C
No is a known function, ã are Nd other symbols that affect y,

and n is an No × 1 vector, independent of a, with n ∼ pN(n). The constellation � has
the properties

∑
a∈� a = 0 and

∑
a∈� |a|2 = |�|. The model (10.2) immediately tells

us that the node p(Y = y|A, M) can be opened and replaced by a factorization of

p(Y = y, Ã = ã|A = a, M) = pN(y − h(a, ã))p(Ã = ã). (10.3)

The symbols in ã are either unknown or known. We can replace p(Ã= ã) by∏Nd
k=1 p

(
Ãk = ãk

)
, where p(Ãk = ãk) is either a uniform distribution (for unknown

symbols) or a discrete Dirac distribution (for known symbols). For notational convenience,
we will combine a and ã into a single vector denoted by a and introduce µAk→eq(Ak) as
either uniform or discrete Dirac for those ak not belonging to the coded data symbols of
interest. This allows us to write

y = h(a)+ n, (10.4)

where a should be understood as a vector of length Ns+Nd, including the coded symbols
of interest as well as additional symbols. We will generally make no distinction between
a and [a, ã], or between Ns and Ns + Nd. An example should make things clearer.

10.3 Equalization methods 189

Example 10.1. Consider the situation in which a is part of a much longer data stream,
and that, for n ∈ Z,

yn =
L−1∑
l=0

hlan−l + nn,

where the noise samples nn are iid zero-mean complex Gaussian with E{|Nn|2} =
2σ 2. Suppose that y = [

y1, . . . , yNs

]T
. In that case a = [

a1, . . . , aNs

]T
and ã =

[a−L+1, . . . , a0]T and we can write

y = H
[

ã
a

]
+ n,

where H is a suitable Toeplitz matrix. In some cases, the symbols in ã are known, for
instance when they belong to a block that the receiver has already correctly decoded. In
other cases, the symbols are unknown. As we mentioned, we shall write

y = Ha + n,

where a should now be understood as being the vector of data symbols of interest as well
as any known or unknown symbols.

10.3 Equalization methods

10.3.1 Overview

In the following sections we will describe a set of techniques that solve the equalization
problem in a very general setting. We distinguish between exact techniques and
approximate techniques, depending on whether or not the messages µeq→Ak (Ak) to
the demapper are computed exactly. Often different methods can be combined.

Exact techniques
• SPA equalizer: straightforward application of the SPA will give rise to the messages
µeq→Ak (Ak) to the demapper. The computational complexity is exponential in the
length of a.
• Structured equalizer: opening the node p(Y= y|A, M) and exploiting the under-

lying structure results in the messages µeq→Ak (Ak) at a much smaller computational
cost.
• State-space-models equalizer: in some cases, exploiting structure naturally leads to

a state-space model (SSM). Computation of the messages µeq→Ak (Ak) can then be
performed in a time linear in the length of a, using the forward–backward algorithm.

190 Equalization–general formulation

Approximate techniques
• Sliding-window equalizer: rather than considering the entire observation y, we look

at a suitable window yk and compute µeq→Ak (Ak) on the basis of p(Yk = yk |Ak =
ak , M), where ak is a window around ak . A sliding-window equalizer artificially
creates structure in the factor graph, and thus leads to a lower complexity.
• Monte Carlo equalizer: Monte Carlo sampling methods approximate µeq→Ak (Ak)

through sampling. The complexity scales linearly with the number of samples. Monte
Carlo equalization can be combined with a structured equalizer or sliding-window
equalizer.
• Gaussian/MMSE equalizer: when we temporarily work under the assumption that

ak is Gaussian, computing the message µeq→Ak (Ak) is straightforward as long as y
is a linear function of a. The complexity of the resulting algorithm heavily depends
on the structure of H. Gaussian equalizers also go by the name of MMSE equalizers.
MMSE equalization can be combined with a structured equalizer or a sliding-window
equalizer.

We will derive only algorithms in the probability domain. The messages obtained can
be transformed to the log domain by taking the natural logarithm.

10.3.2 Sum–product-algorithm equalizers

Our goal is to compute the messages µeq→Ak (Ak), on the basis of incoming messages
from the demodulator µAl→eq(Al), l �= k. Using the SPA, we find that the message is
given by

µeq→Ak (ak) ∝
∑
∼{ak }

p(Y = y|A = a, M)
∏
l �=k

µAl→eq(al). (10.5)

Complexity
For any ak ∈ �, the complexity of (10.5) scales as O(|�|Ns−1), so the total message
µeq→Ak (Ak) requires a complexity of O(|�|Ns). This is the complexity per symbol. Since
there are Ns symbols in a, this leads to an overall complexity of O(Ns|�|Ns).

Interpretation of messages
As we have seen in Section 5.3.2, since the incoming messages µAl→eq(Al)

are normalized, we can interpret them as (artificial) a priori distributions of the
coded symbols. We can then introduce an artificial joint a-posteriori distribution
p(A|Y= y, M), where the symbols Al are independent with a-priori probabilities
p(Al = al)=µAl→eq(al). The marginal with respect to Ak of this artificial distribution

10.3 Equalization methods 191

is given by (by definition)

p(Ak = a|Y = y, M) =
∑

a:ak=a

p(A = a|Y = y, M) (10.6)

∝
∑

a:ak=a

p(Y = y|A = a, M)p(A = a) (10.7)

=
∑

a:ak=a

p(Y = y|A = a, M)
∏

l

p(Al = al) (10.8)

∝ µAk→eq(a)µeq→Ak (a), (10.9)

where we have used (10.5) in the last transition. Note that, when the factor graph is
cycle-free, relation (10.9) is the actual a-posteriori distribution of Ak . When the factor
graph has cycles, relation (10.9) is the current1 approximation of the actual a-posteriori
distribution of Ak (the belief). In many technical papers, the message µeq→Ak (Ak) is
known as the extrinsic probability of Ak , so that (10.9) can be interpreted as

a-posteriori probability ∝ a-priori probability× extrinsic probability.

This relationship will be useful in deriving equalizers. In particular, for the MC and
Gaussian equalizers, we can determine the message µeq→Ak (Ak) by first computing the
(artificial) marginal a-posteriori distribution p(Ak |Y = y, M), interpreting the various
coded symbols as independent with a-priori distributions given byµAl→eq(Al), ∀l. Once
p(Ak |Y = y, M) has been found, we divide by µAk→eq(Ak), normalize, and obtain the
message µeq→Ak (Ak).

10.3.3 Structured equalizers

In many cases the node p(Y = y|A, M) can be opened to reveal the underlying structure.
A common situation occurs when p(Y = y|A, M) can be factored as a function of the
symbols Ak or small blocks of symbols. In other words, there exists a factorization

p(Y = y|A, M) ∝
Np∏

n=1

fn(ASn , y), (10.10)

where ASn denotes the elements of A whose indices fall in some set Sn. The sets Sn are
disjoint. Computing an outgoing message µeq→Ak (Ak), where k ∈ Sm, for some unique

1 As the iterations proceed, this approximation changes (because the messages µAl→eq(Al) change), and,
we hope, improves.

192 Equalization–general formulation

m then gives

µeq→Ak (ak) ∝
∑
∼{ak }

p(Y = y|A = a, M)
∏
l �=k

µAl→eq(al) (10.11)

∝
∑
∼{ak }

fm(ASm = aSm , y)
∏

l∈Sm,l �=k

µAl→eq(al), (10.12)

which reduces the complexity from O(|�|Ns) to O(|�||Sm|) per data symbol. In other
cases, a more complicated factorization of p(Y = y|A, M)may be required.An example
will be covered in the next section on SSM equalizers.

Example 10.2. Consider the observation

y = Ha + n,

where y is an Ns × 1 vector, n ∼ N C
n (0, 2σ 2INs), and

H =




h1 0 . . . 0
0 h2 . . . 0
...

...
. . .

...
0 0 . . . hNs


.

We can then factorize p(Y = y|A, M) as follows:

p(Y = y|A = a, M) ∝ exp

(
− 1

2σ 2
‖y −Ha‖2

)

=
Ns∏

n=1

exp

(
− 1

2σ 2
|yn − hnan|2

)
.

The message µeq→Ak (Ak) is then given by

µeq→Ak (ak) ∝
∑
∼{ak }

p(Y = y|A = a, M)

Ns∏
l=1,l �=k

µAl→eq(al)

∝ exp

(
− 1

2σ 2
|yk − hkak |2

)
.

Complexity
The overall complexity depends highly on the structure of the function h(·) and can
range from O(Ns|�|Ns) to O(Ns).

10.3 Equalization methods 193

10.3.4 State-space-model equalizers

An important special case of structure is that of a state-space model (SSM). The
observation y and the data symbols a are related by2

yk = hk(ak , ak−1, . . . , ak−L+1)+ nk , (10.13)

where the noise samples nk are iid complex Gaussian with E{|Nk |2} = 2σ 2. We refer to
L as the channel length.

Assume that we have observations y = [
y1, y2, . . . , yNs+L−1

]T, where the data symbols
ak for k < 1 and for k > Ns are unknown. We can transform (10.13) into a transition-
emitting state-space model with state at time k−1 given by sk−1 = [ak−1, . . . , ak−L+1] ∈
�L−1 and the following update equations:

sk = fs(sk−1, ak) (10.14)

= [
ak [sk−1]1:L−2

]
, (10.15)

where [sk−1]1:L−2 denotes the vector of length L−2 containing the first until the second-
last entry in sk−1 and

yk = hk(ak , [sk−1]1, [sk−1]2 , . . . , [sk−1]L−2)+ nk , (10.16)

where [sk−1]i is the ith entry in sk−1 =
[
[sk−1]1 , . . . , [sk−1]L−1

]
.

The SSM allows us to replace the node p(Y = y|A, M) by a factorization of
p(Y = y, S|A, M):

p(Y = y, S = s|A = a, M)

= p(Y = y|S = s, A = a, M)p(S = s|A = a, M) (10.17)

∝
Ns+L−1∏

k=1

= (sk , fs(sk−1, ak))p(Yk = yk |Sk−1 = sk−1, Ak = ak , M). (10.18)

The corresponding factor graph is shown in Fig. 10.2. Given messages µAl→eq(Al), we
can execute the forward–backward algorithm from Section 6.3 on this graph and obtain
µeq→Ak (Ak). Observe that the messages µS0→f (s0) and µSNs+L→f (sNs+L) as well as
µAk→eq(Ak) for k > Ns are all uniform distributions over their corresponding domains.

Complexity
The overall complexity of the SPA on this factor graph scales as O(Ns|�|L).

2 In particular, we have yk =
∑L−1

l=0 hlak−l + nk .

194 Equalization–general formulation

A1 A2

ANs+L–1

SNs+L–1SNs+1SNs–1

ANs+1

fffff
S0 S1 S2

p(Y=y|A,)

SNs

ANs

Figure 10.2. A factor graph of p(Y = y|A, M). The node is opened to reveal its structure, where
f (sk−1, sk , ak) = = (sk , fs(sk−1, ak))p(Yk = yk |Sk−1 = sk−1, Ak = ak , M).

10.3.5 Sliding-window equalizers

In many equalization problems, the structured approach may still be too complex for a
practical implementation. In such cases, applying a sliding window is a useful technique.
We focus again on the model

yk = hk(ak , ak−1, . . . , ak−L+1)+ nk , (10.19)

where we now allow the total noise vector to be n ∼ N C
n (0,�) (i.e., not necessarily iid).

Suppose that we are interested in computing the message µeq→Ak (Ak) to the demapper.
This message is given by

µeq→Ak (ak) ∝
∑
∼{ak }

p(Y = y|A = a, M)
∏
l �=k

µAl→eq(al). (10.20)

We now select a suitable segment or window yk in y of length W and approximate (10.20)
as

µeq→Ak (ak) ∝
∑
∼{ak }

p(Yk = yk |A = a, M)
∏
l �=k

µAl→eq(al). (10.21)

The window is chosen such that it contains most of the observations which depend on
ak . Because of the model (10.19), p(Yk = yk |A = a, M) = p(Yk = yk |Ak = ak , M)

where ak is a window in a of length W + L− 1, allowing us to write

µeq→Ak (ak) ∝
∑
ak :ak

p(Yk = yk |Ak = ak , M)
∏
l �=k

µAl→eq(al). (10.22)

It is up to the designer of the receiver to select suitable windows that result in (i) good
performance and (ii) a significant reduction in computational complexity.

Complexity
The overall complexity of the SPA on this factor graph scales as O(Ns|�|W+L−1). This
complexity can be further reduced by combining the sliding-window equalizer with an
MC or a Gaussian/MMSE equalizer.

10.3 Equalization methods 195

Example 10.3 (Sliding window equalizer for linear models). We will work with the
observation model

yk = αak + βak−1 + nk ,

where α = 0.01 and β = 1 and the noise samples nk are iid zero-mean complex
Gaussian with E{|Nk |2} = 2σ 2. This corresponds to a channel of length L = 2. We
observe y = [y1 y2 y3 y4 y5]T, which can be written as

y = Ha + n

with 


y1

y2

y3

y4

y5


 =



β α 0 0 0 0
0 β α 0 0 0
0 0 β α 0 0
0 0 0 β α 0
0 0 0 0 β α







a0

a1

a2

a3

a4

a5



+




n1

n2

n3

n4

n5


.

Note that H is a Toeplitz matrix. Suppose that our Ns = 4 coded symbols of interest are
[a1 a2 a3 a4]T and we wish to compute µeq→Ak (Ak), for k = 1, . . . , 4. The symbols
a0 and a5 are unknown, so we set µAk→eq(Ak) to uniform distributions for k = 0 and
k = 5. Note that executing the SPA leads to an overall complexity of O(Ns|�|Ns+L),
whereas transformation into an SSM will result in a complexity O(Ns|�|L).
To approximateµeq→Ak (Ak), k = 1, . . . , 4, we can select different windows, for instance
the following.
(1) yk = yk , leading to

yk =
[
β α

] [ak−1

ak

]
+ nk ,

so that

ak =
[

ak−1

ak

]
.

The SPA rule becomes

µeq→Ak (ak) ∝
∑

ak−1∈�
p(Yk = yk |Ak = ak , M)µAk−1→eq(ak−1).

(2) yk = yk+1, leading to

yk =
[
β α

] [ak

ak+1

]
+ nk+1,

196 Equalization–general formulation

so that

ak =
[

ak

ak+1

]
.

The SPA rule becomes

µeq→Ak (ak) ∝
∑

ak+1∈�
p(Yk = yk |Ak = ak , M)µAk+1→eq(ak+1).

(3)

yk =
[

yk

yk+1

]
,

leading to

yk =
[
β α 0
0 β α

] ak−1

ak

ak+1


+ [nk

nk+1

]
,

so that

ak =

 ak−1

ak

ak+1


.

The SPA rule becomes

µeq→Ak (ak) ∝
∑

(ak−1,ak+1)∈�2

p(Yk = yk |Ak = ak , M)

× µAk+1→eq(ak+1)µAk−1→eq(ak−1).

The overall computational complexity of SPA using the first two windows is the same,
namely O(Ns|�|L) (or O(|�|L) per data symbol). However, since |α| 	 |β|, it is
reasonable to expect that yk = yk+1 is a more suitable window for approximating
µeq→Ak (Ak). The third window results in an overall complexity O(Ns|�|L+1).

10.3.6 Monte Carlo equalizers

While the structured, SSM, and sliding-window equalizers work well in most
circumstances, their computational complexity may still be prohibitively large. We
call on Monte Carlo (MC) techniques to reduce the computation requirements. Let us

10.3 Equalization methods 197

introduce Ak̄ =
[
A1, . . . , Ak−1, Ak+1, . . . , ANs

]T. Then the message from equalizer to
demapper can be written as

µeq→Ak (ak) ∝
∑
∼{ak }

p(Y = y|A = a, M)

Ns∏
l=1,l �=k

p(Al = al) (10.23)

=
∑

ak̄∈�Ns−1

p(Y = y|Ak̄ = ak̄ , Ak = ak , M)

Ns∏
l=1,l �=k

p(Al = al). (10.24)

We know from Section 10.3.2 that we can interpret µeq→Ak (ak) as follows:

µeq→Ak (ak) ∝ p(Ak = ak |Y = y, M)

µAk→eq(ak)
, (10.25)

where p(Ak |Y = y, M) is the marginal of an artificial joint a-posteriori distribution
p(A|Y = y, M). We will describe three common MC equalization techniques, which
approximate the distribution p(Ak |Y = y, M) by means of sampling methods. Each of
these techniques requires sampling from a specific target distribution. In Section 10.3.6.2,
we will then show how this sampling can be performed. The methods require sampling
from a distribution qAk̄

(·)or qA(·) (we remind the reader that, when we have samples from
a distribution qA(·), samples from qAk̄

(·) can be obtained by dropping the kth component
of every sample). According to (10.25), we can divide the approximate a-posteriori
distribution p(Ak |Y = y, M) by µAk→eq(Ak) to obtain the message µeq→Ak (Ak).

Monte Carlo equalizers can be combined with sliding-window equalizers by replacing
p(Y = y|A = a, M) by p(Yk = yk |Ak = ak , M) in (10.23), where yk is a windowed
observation and ak the corresponding window of data symbols. Monte Carlo equalizers
can also be combined with structured equalizers by applying the MC techniques on a
single factor.

10.3.6.1 Three equalization methods
Distinct samples from p

(
Ak̄ |Y = y, M)

The idea behind this method is that only a few terms in (10.23) actually contribute to the
summation. Most terms will be very close to zero. When we limit the summation to the
most relevant terms, the result should be very close to the correct value.

Given the list Lk̄ of samples from p
(
Ak̄ |Y = y, M)

, we first remove all duplicates.
We end up with a new list Ld

k̄
of Ld ≤ L distinct samples. We now perform the following

198 Equalization–general formulation

approximation:

µeq→Ak (ak) ∝
∑

ak̄∈�Ns−1

p(Y = y
∣∣Ak̄ = ak̄ , Ak = ak , M)

Ns∏
l=1,l �=k

p(Al = al) (10.26)

≈
∑

ak̄∈Ld
k̄

p(Y = y
∣∣Ak̄ = ak̄ , Ak = ak , M)

Ns∏
l=1,l �=k

p(Al = al). (10.27)

When Ld 	 |�|Ns−1, this results in a significant decrease in computational complexity.

Unweighted sampling
A second approach is first to determine an approximation of p(Ak = ak |Y = y, M), and
then divide by p(Ak = ak) to obtain µeq→Ak (ak), as described in (10.25). Now, suppose
that we have a list L of samples from the joint distribution p(A|Y = y, M). These

samples form a particle representation RL(p(A|Y = y, M)) = {
1/L, a(n)

}L
n=1. It then

follows that {1/L, a(n)k }Ln=1 is a particle representation of the marginal p(Ak |Y = y, M).
In other words, we can approximate

p(Ak = ak |Y = y, M) ≈
L∑

n=1

1

L
=
(

ak , a(n)k

)
. (10.28)

Dividing by p(Ak = ak), followed by normalization, leads to µeq→Ak (ak).

Importance sampling
This technique is similar to the previous one, in that we again try to approximate
p(Ak |Y = y, M). Suppose that we have a list of L samples from a distribution qAk̄

(
ak̄

)
.

Then

p(Ak = ak |Y = y, M) =
∑

ak̄∈�Ns−1

p
(
Ak = ak , Ak̄ = ak̄ |Y = y, M)

=
∑

ak̄∈�Ns−1

p
(
Ak = ak

∣∣Ak̄ = ak̄ , Y = y, M)
p
(
Ak̄ = ak̄ |Y = y, M)

.

Given L samples from qAk̄

(
ak̄

)
, we have the following sample representation:

RL(p(Ak̄ |Y = y, M)) = {(w(n), a(n)
k̄
)}Ln=1, where we set

w(n) ∝
p
(

Ak̄ = a(n)
k̄
|Y = y, M

)
qAk̄

(
a(n)

k̄

) . (10.29)

10.3 Equalization methods 199

This enables us to approximate p(Ak = ak |Y = y, M) by

p(Ak = ak |Y = y, M) ≈
L∑

n=1

w(n)p
(

Ak = ak

∣∣∣Ak̄ = a(n)
k̄

, Y = y, M
)

. (10.30)

As we will see shortly, the factor p(Ak = ak |Ak̄ = a(n)
k̄

, Y = y, M) is very easy to

compute. The weights are normalized such that
∑L

n=1 w(n) = 1. In the special case
qAk̄

(
ak̄

) = p
(
Ak̄ = ak̄ |Y = y, M)

, wn = 1/L. Dividing by p(Ak = ak), followed by
normalization, leads to µeq→Ak (ak).

10.3.6.2 Sampling
The above methods require sampling from a distribution qAk̄

(
ak̄

)
, with as a special case

p
(
Ak̄ |Y = y, M)

. We will focus only on the special case, since this is most interesting. It
is clear that when we can draw samples from p(A|Y = y, M), samples from p(Ak̄ |Y =
y, M) are obtained by simply dropping the kth component. So, how do we draw samples
from p(A|Y = y, M)? We resort to a Gibbs sampler as described inAlgorithm 10.1. Note
that sampling from conditional distributions p

(
Al
∣∣Al̄ = Al̄ , Y = y, M)

can be achieved
as follows. We know that

p
(
Al = al

∣∣Al̄ = al̄ , Y = y, M) ∝ p(Al = al) p(Y = y|A = a, M). (10.31)

Since Al is defined over a small set (�), we can determine, for a fixed ak̄ ,
p(Al = al) p(Y = y|A = a, M) for every value al ∈ �. We then determine the
normalization constant. This creates the pmf p

(
Al
∣∣Al̄ = al̄ , Y = y, M)

, from which
we can draw a sample. Note that p

(
Al
∣∣Al̄ = al̄ , Y = y, M)

is also required in the
computation (10.30).

Algorithm 10.1 Gibbs sampler for p(A|Y = y, M)

1: initialization: choose an initial state a(−Nburn−1)

2: for i = −Nburn to L do
3: for l = 1 to Ns do
4: determine p

(
Al

∣∣∣A1:l−1 = a(i)1:l−1, Al+1:Ns = a(i−1)
l+1:Ns

, Y = y, M
)

5: draw a(i)l ∼ p
(

Al

∣∣∣A1:l−1 = a(i)1:l−1, Al+1:Ns = a(i−1)
l+1:Ns

, Y = y, M
)

6: end for
7: end for

200 Equalization–general formulation

10.3.7 Gaussian/MMSE equalizers

10.3.7.1 Model
In this section, we will use a specialization of the model (10.2), namely a linear model
with Gaussian noise, so that

y = Ha + n, (10.32)

where H is a complex No×Ns matrix, and n ∼ N C
n (0,�). The MMSE equalizers operate

by temporarily assuming a to be a Gaussian vector. We will describe only the most
common approaches to MMSE equalization. The MMSE equalizers can be combined
with sliding-window equalizers by replacing y = Ha+n by yk = Hkak+nk in (10.23),
where yk is a windowed observation, and Hk , ak , and nk are the corresponding data
symbols, sub-matrix of the matrix H, and noise vector. The MMSE equalizers can also
be combined with structured equalizers by applying the MMSE techniques per factor.

10.3.7.2 Step 1: the Gaussian assumption
Although ak belongs to a finite set�, let us temporarily assume that a has the following
a-priori distribution: a ∼ N C

a (ma,�a), where ma =
[
ma,1, . . . , ma,Ns

]T and �a =
diag

(
σ 2

a,1, . . . , σ 2
a,Ns

)
, an Ns × Ns matrix, with

ma,l =
∑
al∈�

alp(Al = al), (10.33)

σ 2
a,l =

∑
al∈�

∣∣al − ma,l
∣∣2 p(Al = al). (10.34)

We will use the subscripts “a,” “p” and “e” for a priori, a posteriori, and extrinsic,
respectively. Now Y and A are jointly Gaussian, so A has the following a-posteriori
distribution:

p(A = a|Y = y, M) = N C
a
(
mp,�p

)
, (10.35)

where

�p =
(
�−1

a +HH�−1H
)−1

= (
INs −KH

)
�a (10.36)

and

mp = ma +K(y −Hma) (10.37)

with K = �aHH
(
H�aHH +�)−1

. Observe the resemblance between mp and the
MMSE estimator from Section 3.2.2.1. From p(A = a|Y = y, M), it is our goal to
compute the message µeq→Ak (Ak).

10.3 Equalization methods 201

10.3.7.3 Step 2: determine p(Ak = ak |Y = y, M)

The kth element of mp is given by

mp,k = eT
k mp, (10.38)

where ek is an Ns × 1 vector of all zeros, but with a 1 on the kth position. We find that

mp,k = ma,k + σ 2
a,khH

k

(
H�aHH +�

)−1
(y −Hma), (10.39)

where hk is the kth column of H (or, hk = Hek). Similarly, the kth diagonal element of
�p is given by

σ 2
p,k = eT

k�pek (10.40)

= σ 2
a,k − eT

k�aHH
(

H�aHH +�
)−1

H�aek (10.41)

= σ 2
a,k − σ 2

a,khH
k

(
H�aHH +�

)−1
hkσ

2
a,k (10.42)

= σ 2
a,k

(
1− hH

k

(
H�aHH +�

)−1
hkσ

2
a,k

)
. (10.43)

10.3.7.4 Step 3: remove the dependence of p(Ak = ak |Y = y, M) on p(Ak = ak)

We know that the extrinsic probability µeq→Ak (ak) cannot depend on the a-
priori probability p(Ak = ak). Taking into account that 1/|�|∑a∈� a = 0 and
1/|�|∑a∈� |a|2 = 1, we replace ma,k by 0, and σ 2

a,k by 1, resulting in

me,k = hH
k

(
H�k̄HH +�

)−1

︸ ︷︷ ︸
wH

k

(
y −Hmk̄

)
, (10.44)

σ 2
e,k = 1− wH

k hk , (10.45)

where mk̄ is ma with the kth entry replaced by 0, and�k̄ is�a with the kth entry replaced
by 1.

10.3.7.5 Step 4: convert the Gaussian distribution into a message over �
We consider two common techniques to convert the Gaussian distribution N C

ak
(me,k , σ 2

e,k)

into the message µeq→Ak (ak).

Probabilistic data association
We set [101]

µeq→Ak (ak) ∝ exp

(
− 1

σ 2
e,k

∣∣ak − me,k
∣∣2). (10.46)

The normalization constant is found by setting
∑

ak∈� µeq→Ak (ak) = 1.

202 Equalization–general formulation

Equivalent Gaussian channel
The most common technique works under the assumption that me,k is a noisy version of
ak [31, 97]:

me,k = µkak + vk , (10.47)

where vk ∼ N C
vk

(
0, σ 2

ch

)
. We find that

µk = E
{
AkMe,k

}
(10.48)

= wH
k E

{
Ak
(
Y −Hmk̄

)}
(10.49)

= wH
k hk . (10.50)

Note that µk ∈ R. We have

σ 2
ch = E

{
|Vk |2

}
(10.51)

= E

{∣∣Me,k − µkAk
∣∣2} (10.52)

= E

{∣∣Me,k
∣∣2}− |µk |2 (10.53)

= E

{∣∣∣wH
k

(
Y −Hmk̄

)∣∣∣2}− |µk |2 (10.54)

= wH
k

(
H�k̄HH +�

)
wk − |µk |2 (10.55)

= wH
k hk − |µk |2 (10.56)

= µk − µ2
k . (10.57)

The equivalent Gaussian channel then tells us that

µeq→Ak (ak) ∝ exp

(
− 1

σ 2
ch

∣∣me,k − akµk
∣∣2), (10.58)

where the normalization constant is found by setting
∑

ak∈� µeq→Ak (ak) = 1.

10.3.7.6 Comments
In the above technique, we must invert the matrix

(
H�k̄HH +�). This is an No × No

matrix. The matrix H, on the other hand, is an No × Ns matrix. When No < Ns, we say
that the matrix is fat. When No > Ns, we say that the matrix is tall. In many inference
problems, we like our matrices tall, since then we have a problem with more observations
than unknowns. However, this also means that we have to invert large (No×No) matrices.
This can be avoided as follows. Using the matrix-inversion lemma,3 we can write K in

3 One form of the matrix-inversion lemma tells us that (I+ AB)−1A = A(I+ BA)−1.

10.5 Performance illustration 203

(10.36) and (10.37) as

K = �aHH
(

H�aHH +�
)−1

(10.59)

=
(
�−1

a +HH�−1H
)−1

HH�−1. (10.60)

Assuming that �−1 can be computed efficiently (in many cases �−1 can be pre-
computed), we need only invert an Ns × Ns matrix. Note that �a is a non-singular
diagonal matrix, so its inverse is easily found. This leads to an alternative formulation
of me,k and σ 2

e,k :

me,k = eT
k

(
�−1

k̄
+HH�−1H

)−1
HH�−1(y −Hmk̄

)
, (10.61)

σ 2
e,k = 1− eT

k

(
�−1

k̄
+HH�−1H

)−1
HH�−1hk . (10.62)

We see that, depending on whether the matrix H is fat or tall, we can express K such that
we need only invert matrices of size min{Ns, No}×min{Ns, No}. Generally, the matrices
to invert are highly structured, so the inverses can be computed efficiently [98].

10.4 Interaction with the demapping and the decoding node

As we have seen, the messages µeq→Ak (Ak) from the equalizer to the demapper depend
on the messages µAl→eq(Al), l �= k from the demapper to the equalizer. This means
that, even when the factor graph of p(Y = y|A, M) does not contain any cycles, the
overall factor graph of p(Y = y, B|M) may contain cycles. This in turn implies that
equalization can be performed in an iterative fashion: for the first iteration, the messages
µAl→eq(Al) are set to uniform distributions; at all subsequent iterations, these messages
are obtained from the demapper. There are various ways to schedule the computation of
messages, with different scheduling strategies leading to different performances.

10.5 Performance illustration

To illustrate the performance of these equalization strategies, let us consider an example.
Consider an observation model of the form

yk =
√

Esh(ak , ak−1, ak−2)+ nk ,

204 Equalization–general formulation

where the noise samples are iid, nk ∼ N C
n (0, N0) and h(·) is a third-order non-linear

Volterra channel [15],

h(ak , ak−1, ak−2) = (0.780855+ j0.413469)ak + (0.040323− j0.000640)ak−1

+ (0.015361− j0.008961)ak−2 + (−0.04− j0.009)a2
k a∗k

+ (−0.035+ j0.035)a2
k a∗k−1 + (0.039+ j0.022)a2

k a∗k−2

+ (−0.001− j0.017)a2
k−1a∗k + (0.018− j0.018)a2

k−2a∗k .

We use QPSK signaling with Gray mapping, and employ a terminated recursive
systematic convolutional code with gFF(D) = 1+D4 and gFB(D) = 1+D+D2+D3+D4.
We set Ns = 256. The encoder and mapper are separated by a pseudo-random bit-
interleaver. Three equalizers will be considered: the state-space-model (SSM) equalizer
from Section 10.3.4, and two MC equalizers from Section 10.3.6:

• an MC equalizer using importance sampling, drawing L= 10 samples from p(A|Y =
y, M) with a burn-in period of five samples; and
• an MC equalizer using distinct samples with a sliding window yk = [yk , yk+1, yk+2]T

and ak = [ak−2, ak−1, ak , ak+1, ak+2]T, drawing L= 10 samples from p(Ak |Yk =
yk , M), with a burn-in period of five samples.

0 1 2 3 4 5 6 7 8
10–5

10–4

10–3

10–2

10–1

100

Eb/N0 (dB)

B
E

R

genie bound
SSM equalizer
MC–importance sampling
MC–distinct samples

Figure 10.3. Equalization: BER versus SNR performance. The performance of the SSM equalizer
is shown for three iterations, while the performance of two MC equalizers is shown for the third
iteration only. The genie bound corresponds to perfect a-priori information from the demapper to
the equalizer.

10.6 Main points 205

We evaluate the performance in terms of bit error rate (BER) versus signal-to-noise ratio
(SNR). The SNR is expressed as Eb/N0 (in decibels4), with Eb = Es/(R log2|�|), where
R denotes the code rate. The results are shown in Fig. 10.3.As a reference, we also include
the genie bound, where the equalizer is provided with perfect a-priori information from
the demapper. The SSM equalizer converges after three iterations, and, for BER below
10−3, is quite close to the genie bound. Both MC equalizers exhibit a performance that
almost coincides with the SSM equalizer.

10.6 Main points

The equalization process deals with computing messages µeq→Ak (Ak) to the demapper,
on the basis of the node p(Y = y|A, M) in the receivers factor graph, and the incoming
messages µAl→eq(Al). We have considered a model

y = h(a, ã)+ n, (10.63)

where n is a Gaussian noise-vector, ã represents symbols that affect the observation
y, but are not part of a, and h(·) is a known transformation encapsulating the physical
channels, as well as any processing at the transmitter and the receiver. We have described
exact equalization methods and approximate equalization methods.

Exact methods:
• SPA equalizer,
• structured equalizer,
• SSM equalizer.

Approximate methods:
• sliding-window equalizer,
• MC equalizer (possibly combined with the structured equalizer or the sliding window

equalizer),
• Gaussian/MMSE equalizer (usually combined with the structured equalizer or the

sliding-window equalizer).

These general equalization techniques need to be combined and tailored to the
specific structure of the problem. In the following chapters, we will revisit our digital
communication schemes from Chapter 2 and derive suitable observation models of the
form (10.63).

4 We can express an SNR in decibels (dB) as 10 log10 SNR.

11 Equalization: single-user,
single-antenna communication

11.1 Introduction

As depicted in Fig. 11.1, in single-user, single-antenna transmission, both the receiver and
the transmitter are equipped with a single antenna. There are no other transmitters. This is
the most conventional and well-understood way of communicating. Many receivers for
such a set-up have been designed during the past few decades. These receivers usually
consist of a number of stages. The first stage is a conversion from the continuous-time
received waveform to a suitable observation (to allow digital signal processing), followed
by equalization (to counteract inter-symbol interference), demapping (where decisions
with respect to the coded bits are taken), and finally decoding (where we attempt to
recover the original information sequence). This is a one-shot approach, whereby no
information flows back from the decoder to the demapper or to the equalizer. Here the
terms decoder, demapper, and equalizer pertain to the more conventional receiver tasks,
not to nodes in any factor graph. In a conventional mind-set it is hard to come up with
a non-ad-hoc way of exploiting information from the decoder during the equalization
process. In the factor-graph framework, the flow of information between the various
blocks appears naturally and explicitly. These two approaches to receiver design are
depicted in Fig. 11.2.

In this chapter we will see how to convert the received waveform into a suitable
observation y. This conversion is exactly the same as in conventional receivers. From
y we will then show how to perform equalization using factor graphs by computing
the messages µeq→Ak (Ak) from the equalization node to the demapping node. The
sequence of coded symbols of interest will generally consist of Ns consecutive symbols

transmitter
receiver

b
b̂

s(t)
r(t)

hch(t)

Figure 11.1. Single-user, single-antenna communication: the equivalent baseband transmitted
signal s(t) propagates through the equivalent baseband channel hch(t), and is corrupted by
thermal noise at the receiver. The resulting equivalent baseband received signal is denoted r(t).

208 Equalization: single-user, single-antenna communication

demapper

front–end

equalizer

decoder

front–end

r(t) r(t)

yy

b̂

b̂

p(Y=y|A,)

p(A|C,)

p(C|B,)

p(B|)

Figure 11.2. A conventional receiver (left) and a factor-graph receiver (right). The observation y
is fed to the factor graph as a parameter. Implementing the SPA on the factor graph of
p(B, Y = y|M) gives us the marginal a-posteriori distributions p(Bk |Y = y, M) on the basis of
which decisions on the information bits can be made.

[ak0 , ak0+ 1, . . . , ak0+Ns−1]T for some k0 ∈ Z, though indexing will heavily depend on
the transmission scheme under consideration.

This chapter is organized as follows.

• In Section 11.2 we will deal with single-carrier modulation. We will describe three
ways of converting the received waveform into an observation y and show how to
compute the messages from the equalization node to the demapping node.
• Multi-carrier modulation will be the topic of Section 11.3, where we discuss the

standard OFDM receiver.

Whenever applicable, equivalent receivers from the technical literature are mentioned.

11.2 Single-carrier modulation

11.2.1 The received waveform

Going back all the way to Section 2.3.1, we know that the baseband equivalent received
signal is given by

r(t) = √Es

+∞∑
k=−∞

akh(t − kT)+ n(t), (11.1)

where Es is the energy per transmitted symbol, h(t) is the convolution of the transmit
pulse p(t) and the baseband equivalent physical channel hch(t), and n(t) is a complex

11.2 Single-carrier modulation 209

white Gaussian noise process with power-spectral density N0/2 for the independent real
and imaginary components. We model the physical channel as a multi-path channel with
L resolvable paths,

hch(t) =
L−1∑
l=0

αlδ(t − τl), (11.2)

where αl ∈ C and τl ∈ R denote the complex gain and the propagation delay of
the lth path, respectively. We will assume that the Ns data symbols of interest are
[a0, a1, . . . , aNs−1]T. We will consider three types of receivers: a matched filter receiver,
a whitened matched filter receiver, and an oversampling receiver.

On noise and sampling
Given a spectrally white Gaussian noise process n(t)with independent real and imaginary
components, each with power-spectral density N0/2, and a filter q(t), then the filtered
noise is given by

w(t) =
∫ +∞
−∞

q(u)n(t − u)du. (11.3)

Sampling w(t) at time instants kTs yields samples wk , k ∈ Z. These samples are Gaussian,
and have zero mean, with

E{WkW ∗k ′ } = g((k − k ′)Ts)N0, (11.4)

where

g(t) =
∫ +∞
−∞

q∗(u)q(t + u)du. (11.5)

In the particular case when q(t) is a square-root Nyquist pulse for a rate 1/Ts, g(kTs) = δk ,
so the noise samples {wk} are uncorrelated (and, since they are Gaussian, they are also
independent).

11.2.2 Matched filter receiver

In a matched filter receiver, we filter the incoming signal r(t) with a filter, h∗(−t), that
is matched to the equivalent channel, followed by sampling at the symbol rate [38,102].
The signal at the output of the matched filter is

yMF(t) =
∫ +∞
−∞

h∗(u)r(t + u)du (11.6)

= √Es

+∞∑
k=−∞

akg(t − kT)+ nMF(t), (11.7)

210 Equalization: single-user, single-antenna communication

where g(t) = ∫ h∗(u)h(t + u)du and nMF(t) is the filtered noise. Sampling at time k ′T
yields

yMF(k
′T) = √Es

+∞∑
k=−∞

akgk ′−k + nMF(k
′T) (11.8)

= √Es

Lmax∑
l=Lmin

glak ′−l + nMF(k
′T), (11.9)

where gl = g(lT) and E{NMF(k ′T)N ∗MF(k
′′T)} = gk ′−k ′′N0. We have assumed that g(lT)

takes on significant values only for Lmin ≤ l ≤ Lmax. Let us stack samples (for instance,
for k ≥ Lmin until k = Ns + Lmax − 1) into a vector yMF and write

yMF = HMFa + nMF, (11.10)

where a contains the coded data symbols of interest [a0, a1, . . . , aNs−1]T, as well as
several unknown data symbols ak<0 and/or ak>Ns−1. The matrix HMF is a Toeplitz
matrix in which the elements on the diagonals are given by

√
Esgk , k = Lmin, . . . , Lmax.

The equalizer
We discern two cases, depending on whether or not g(t) is a scaled Nyquist pulse for
rate 1/T .

• Nyquist pulse. When g(t) is a scaled Nyquist pulse for rate 1/T , gl = 0 for l 	= 0.
This has two implications: on the one hand, that noise is white, and on the other hand,
there is no inter-symbol interference:

yMF(kT) = √Esg0ak + nMF(kT). (11.11)

This situation occurs when p(t) is a square-root Nyquist pulse for rate 1/T and the
physical channel is frequency-flat hch(t) = αδ(t − τ) so that h(t) = αp(t − τ). We
find that, with σ 2 = N0g0/2,

p(Y = yMF|A = a, M) ∝ exp

(
− 1

2σ 2

∥∥∥yMF −
√

Esg0a
∥∥∥2
)

(11.12)

=
Ns−1∏
k=0

exp

(
− 1

2σ 2

∣∣∣√Esg0ak − yMF(kT)
∣∣∣2), (11.13)

which immediately gives us a structured equalizer:

µeq→Ak (ak) ∝ exp

(
− 1

2σ 2

∣∣∣√Esg0ak − yMF(kT)
∣∣∣2). (11.14)

11.2 Single-carrier modulation 211

• Not a Nyquist pulse. When g(t) is not a scaled Nyquist pulse for rate 1/T , the noise
nMF is not white (it is said to be colored) and inter-symbol interference occurs. We
are constrained to use a sliding-window MMSE equalizer.

11.2.3 Whitened matched-filter receivers

A whitened matched filter processes the matched-filter samples {yMF(kT)} by filtering
them with a suitable whitening filter[103]. It turns out that we then obtain samples of
the form

yWMF(kT) =
LWMF−1∑

l=0

hlak−l + nWMF(kT), (11.15)

where E{N ∗WMF(kT)NWMF(k ′T)} = N0δk−k ′ . Stacking samples (for instance for k = 0
until k = Ns − 1+ LWMF) yields

yWMF = HWMFa + nWMF, (11.16)

where a contains the coded data symbols of interest [a0, a1, . . . , aNs−1]T, as well as
several unknown data symbols ak<0 and/or ak>Ns−1. The matrix HWMF is a Toeplitz
matrix in which the elements on the diagonals are given by hk , k = 0, . . . , LWMF − 1.

Example 11.1. For LWMF = 2, suppose that we take as observations ym = yWMF(kT),
for k = −1, 0, 1, 2, 3. Then y is given by




y−1

y0

y1

y2

y3


 =




h1 h0 0 0 0 0
0 h1 h0 0 0 0
0 0 h1 h0 0 0
0 0 0 h1 h0 0
0 0 0 0 h1 h0







a−2

a−1

a0

a1

a2

a3



+




n−1

n0

n1

n2

n3


.

The equalizer
Since the noise is white, the observation model allows for an SSM equalizer [96]. For
long channels (large LWMF) or large constellations (large |�|), the SSM equalizer is
computationally too demanding. We can then look to a sliding-window MMSE equalizer
[99,104] or a (sliding-window) MC equalizer. The Toeplitz structure of the matrix HWMF

can be exploited in the MMSE equalizer to reduce the computational complexity.

11.2.4 The oversampling receiver

The oversampling receiver forms an alternative to the matched-filter receivers. We now
first filter the signal r(t)with a square-root Nyquist pulse q(t) for a rate N/T .The resulting

212 Equalization: single-user, single-antenna communication

signal can be written as

yOS(t) =
∫ +∞
−∞

q(u)r(t − u)du (11.17)

=
+∞∑

k=−∞
akhOS(t − kT)+ nOS(t). (11.18)

Sampling at time instants k ′T + mT/N (for m = 0, . . . , N − 1 and k ′ ∈ Z) yields
yOS(k ′T + mT/N), which we abbreviate by y(m)k ′ . We can express the observation as

y(m)k ′ =
+∞∑

k=−∞
akh(m)k ′−k + n(m)k ′ (11.19)

where h(m)k = hOS(kT + mT/N) and

E

{
N (m)

k ′
(

N (m′)
k ′′

)∗} = N0δk ′−k ′′δm−m′ .

Since hOS(t) is usually (approximately) time-limited to t ∈ [LminT , LmaxT], we can also
write

y(m)k =
Lmax∑

l=Lmin

h(m)l ak−l + n(m)k . (11.20)

Stacking samples (first for fixed k, then for different successive k) yields

yOS = HOSa + nOS. (11.21)

Observe that HOS is no longer a Toeplitz matrix, but is now a band matrix.

Example 11.2. Suppose that N = 2, Lmin = 0, and Lmax = 1, and we observe
yOS(−T), . . . , yOS(2T), then




y(0)−1

y(1)−1

y(0)0

y(1)0

y(0)1

y(1)1

y(0)2



=




h(0)1 h(0)0 0 0 0

h(1)1 h(1)0 0 0 0

0 h(0)1 h(0)0 0 0

0 h(1)1 h(1)0 0 0

0 0 h(0)1 h(0)0 0

0 0 h(1)1 h(1)0 0

0 0 0 h(0)1 h(0)0







a−2

a−1

a0

a1

a2


+ nOS.

11.3 Multi-carrier modulation 213

Oversampling receivers are attractive from a practical point of view because the
observation yOS can be generated without explicit knowledge of the channel h(t). The
enables channel estimation in the digital domain. This is in contrast to the matched-filter
receivers, which rely explicitly on h(t) to obtain the observation yMF or yWMF.

The equalizer
Since the noise is white, we could in principle use an SSM equalizer. However, the
channel length LOS = Lmax − Lmin + 1 is usually fairly high, so that in practice only
sliding window MMSE equalization [105] or (sliding window) MC equalization can be
applied.

11.3 Multi-carrier modulation

11.3.1 The received waveform

For OFDM, we know from Section 2.3.1 that the received waveform can be expressed as

r(t) =
+∞∑

k=−∞

NFFT−1∑
l=−NCP

ǎl,kh(t − lT − kTOFDM)+ n(t), (11.22)

where ǎl,k is the lth time-domain value of the kth OFDM symbol, h(t) is the equivalent
channel (including the transmit energy factor

√
EsNFFT/(NFFT + NCP)), n(t) is a complex

white Gaussian noise process with power-spectral density N0/2 for the real and imaginary
components, and TOFDM is the OFDM symbol duration. Suppose that our vector a
corresponds to N OFDM symbols, corresponding to k = 0, . . . , N−1 in (11.22). In other
words, Ns = NNFFT (assuming that all the subcarriers are used for data transmission).

11.3.2 The OFDM receiver

We first filter r(t) with a unit-energy square-root Nyquist filter q(t) for a rate 1/T ,
resulting in

y̌(t) =
∫ +∞
−∞

q(u)r(t − u)du (11.23)

=
+∞∑

k=−∞

NFFT−1∑
l=−NCP

ǎl,k ȟ(t − lT − kTOFDM)+ ň(t). (11.24)

Let us introduce the notion of the support of ȟ(t): let tmin be the largest time instant for
which ȟ(t) = 0, for all t < tmin. Similarly, let tmax be the smallest time instant for which
ȟ(t) = 0, for all t > tmax. The support of ȟ(t) is then given by the interval [tmin, tmax].
One of the key properties of an OFDM systems is that the delay spread of the channel

214 Equalization: single-user, single-antenna communication

FFT

S/PADC

discard

r(t) q(t)

l'T+k'TOFDM

y0,k '

y–NCP+1,k'

yNFFT–1,k'

y–1,k'

y0, k '

yNFFT–1,k '

Figure 11.3. OFDM receiver with filter, analog-to-digital conversion (ADC) and serial-to-parallel
(S/P) conversion. The samples corresponding to the cyclic prefix are discarded. The remaining
NFFT samples are converted to the frequency domain and provided to the equalization node.

ȟ(t) may not exceed the duration of the cyclic prefix NCPT . To be more exact:

tmax − tmin

T
< NCP + 1. (11.25)

For the sake of convenience, let us assume that the support of ȟ(t) is [0, NDST), with
NDS ≤ NCP + 1. Sampling y̌(t) at time instants l′T + k ′TOFDM, l′ = 0, . . . , NFFT − 1,
k ′ = 0, . . . , N − 1, yields (see Fig. 11.3)

y̌l′,k ′ =
+∞∑

k=−∞

NFFT−1∑
l=−NCP

ǎl,k ȟ
(
l′T + k ′TOFDM − lT − kTOFDM

)+ ňl′,k ′ (11.26)

with E{Ňl′,k ′Ň ∗l′′,k ′′ } = δl′−l′′δk ′−k ′′N0. Note that the NCP samples corresponding to the
cyclic prefix are discarded (this correspond to l′ = −NCP, . . . ,−1). The finite support
of ȟ(t) allows us to write y̌l′,k ′ in a more compact form,

y̌l′,k ′ =
NFFT−1∑
l=−NCP

ǎl,k ′ ȟl′−l + ňl′,k ′ , (11.27)

where ȟl = ȟ(lT). Observe that, for a fixed k ′, the samples y̌l′,k ′ , for l = 0, . . . , NFFT−1,
do not suffer from interference of the time-domain values ǎl,k from other OFDM symbols
(i.e., k 	= k ′). Note also that ȟl is zero for l < 0 and l ≥ NDS. For a fixed k ′, stacking
the NFFT samples yields

y̌k ′ = Ȟǎk ′ + ňk ′ , (11.28)

11.3 Multi-carrier modulation 215

where E{Ňk ′ŇH
k ′ } = INFFTN0, ǎk ′ = [ǎ0,k ′ , . . . , ǎNFFT−1,k ′]T and Ȟ is an NFFT × NFFT

circulant matrix. For NFFT = 8 and NDS = 3, the circulant matrix looks as follows:

Ȟ =




ȟ0 0 0 0 0 0 ȟ2 ȟ1

ȟ1 ȟ0 0 0 0 0 0 ȟ2

ȟ2 ȟ1 ȟ0 0 0 0 0 0
0 ȟ2 ȟ1 ȟ0 0 0 0 0
0 0 0 ȟ1 ȟ0 0 0 0
0 0 0 ȟ2 ȟ1 ȟ0 0 0
0 0 0 0 ȟ2 ȟ1 ȟ0 0
0 0 0 0 0 ȟ2 ȟ1 ȟ0




. (11.29)

Any circulant matrix Ȟ has the property that FHȞF is a diagonal matrix, so

yk ′ = FHy̌k ′ (11.30)

= FHȞFak ′ + FHňk ′ (11.31)

= Hak ′ + nk ′ , (11.32)

where E{Nk ′NH
k ′ } = INFFTN0 and H = diag(H0, H1, . . . , HNFFT−1) with

Hq = 1

NFFT

NFFT−1∑
l=0

ȟle
j 2πql/NFFT. (11.33)

In other words,

yk ′,q = Hqak ′,q + nk ′,q (11.34)

for k ′ = 0, . . . , N − 1 and q = 0, . . . , NFFT−1. The complete observation y is obtained
by stacking yk ′ for k ′ = 0, . . . , N − 1.

The equalizer
Our observation model allows us to derive a structured equalizer [7] by factorization of
p(Y = y|A, M). Since the noise samples are independent across time instants (k) and
subcarriers (q),

p(Y = y|A = a, M) ∝
N−1∏
k=0

exp

(
− 1

N0
‖yk −Hak‖2

)
(11.35)

=
N−1∏
k=0

NFFT−1∏
q=0

exp

(
− 1

N0

∣∣yk,q − Hqak,q
∣∣2). (11.36)

Hence, the factor graph of p(Y = y|A, M) consists of N × NFFT disjoint graphs. It
then follows immediately that µeq→Ak,q(a) ∝ exp(−|yk,q − Hqa|2/N0). Note that the

216 Equalization: single-user, single-antenna communication

messages from the equalizer to the demapper do not require the messages µAk′ ,q′→eq(a)
from the demapper to the equalizer. Hence, equalization for OFDM needs to be performed
once only; no iterations are necessary.

In practical OFDM systems, different subcarriers may use different constellations (for
instance, depending on the channel quality

∣∣Hq
∣∣ on subcarrier q). The extension to such

a scheme is straightforward.

11.4 Main points

In this chapter, we have shown how to obtain suitable observation models y from
the received signal r(t), for transmission schemes with a single user, where both the
transmitter and the receiver are equipped with one antenna. We have considered both
single-carrier and multi-carrier modulation. In contrast to the conventional one-shot
approach in receiver design, factor graphs allow us to derive near-optimal iterative
receivers in an elegant way.

For single-carrier transmission, we have described the matched-filter receiver, the
whitened matched-filter receiver, and the oversampling receiver. In most cases a sliding-
window equalizer combined with MMSE or MC equalization needs to be used. For
multi-carrier modulation, the standard OFDM receiver was derived. The observation
leads to the well-known structured (non-iterative) equalizer for OFDM.

12 Equalization: multi-antenna
communication

12.1 Introduction

From Chapter 2 we know that in multi-antenna (or MIMO) communication the
transmitter and/or the receiver are equipped with multiple antennas (see Fig. 12.1).
Multiple receive antennas allow the reception of multiple independent copies of the
transmitted signal, translating into more reliable communications through diversity:
when one receive antenna is in a deep fade, another antenna may experience a better
channel. Multiple transmit antennas can be used either to increase throughput (since
independent data streams can be transmitted on the different antennas) or to ensure more
reliable communication (through diversity). The receiver has the task of combining
the information on its antennas and of possibly separating the signals coming from
different transmit antennas. In this chapter, we will apply the factor-graph framework
and derive receivers for single- and multi-carrier modulation. In particular, receivers for
space–time coding, spatial multiplexing, and MIMO-OFDM will be detailed.

This chapter is organized as follows.

• In Section 12.2 we focus on single-carrier modulation and describe how a suitable
observation y can be obtained, and how messages from the equalizer node to the

receiver

S/P P/S

transmitter s(t)

r(t)

Figure 12.1. Single-user, multi-antenna communication with NT = 2 transmit and NR = 3
receive antennas: the NT-dimensional equivalent baseband transmitted signal s(t) propagates
through the equivalent baseband channel, and is corrupted by thermal noise at the receiver. The
resulting equivalent baseband received signal is denoted by an NR-dimensional vector r(t).

218 Equalization: multi-antenna communication

demapper node can be computed. Both spatial multiplexing and space–time coding
will be covered.
• Section 12.3 deals with multi-carrier modulation in the form of MIMO-OFDM.

Whenever applicable, equivalent receivers from the technical literature are cited.

12.2 Single-carrier modulation

12.2.1 The received waveform

As we have seen in Section 2.4.1, we can write the transmitted signal at a particular time
t as an NT × 1 vector s(t),

s(t) = √Es

+∞∑
k=−∞

akp(t − kT), (12.1)

where ak is the vector of transmitted symbols for the kth symbol period. At the receiver
side, we can stack the received signals at time t in a vector of length NR:

r(t) =
+∞∑

k=−∞

NT∑
n=1

a(n)k h(n)(t − kT)+ n(t), (12.2)

where h(n)(t) represents the equivalent channels between the nth transmit antenna and
the various receive antennas. The symbol a(n)k is the symbol transmitted over the nth
transmit antenna during the kth symbol period. The Gaussian noise is spectrally white
per antenna, and independent from antenna to antenna (we say that the noise is spatially
white). We distinguish between two transmission schemes: space–time coding and spatial
multiplexing.

Space–time coding
Let us revisit the Alamouti scheme from Chapter 2. Our goal is to transmit the sequence
a0, a1, . . . , aNs−1 over an NT = 2, NR = 1 MIMO channel using the Alamouti space–
time block code [22]. Assuming that Ns is even, we group the data symbols in couples
so that the kth group is given by (a2k , a2k+1), k = 0, . . . , Ns/2− 1. For the transmission
of each couple we use two symbol durations. During symbol duration 2k, we transmit
a2k = [a2k a2k+1]T, while during symbol duration 2k + 1, we transmit a2k+1 =
[−a∗2k+1 a∗2k]T. The Alamouti code is a special case of an orthogonal space–time block
code [23, 24].

Spatial multiplexing
In spatial multiplexing, the symbols are sent over the MIMO channel directly: a sequence
of Ns data symbols (say a0, . . . , aNs−1) can be sent in Ns/NT symbol durations. At time

12.2 Single-carrier modulation 219

k ∈ {0, . . . , Ns/NT − 1} we transmit

ak =
[
a(1)k , a(2)k , . . . , a(NT)

k

]T
(12.3)

= [akNT , akNT+1, . . . , a(k+1)NT−1]T. (12.4)

12.2.2 The receiver for a frequency-flat channel

In a frequency-flat channel, we can express the channel between the nth transmit antenna
and the mth receive antenna as

h(n)m (t) = α(n)m p(t − τ), (12.5)

where p(t) is the square-root Nyquist transmit pulse for rate 1/T , τ is the propagation
delay between transmitter and receiver (which is equal for all transmit and receive
antennas), and α(n)m represents the complex channel gain (including transmit energy)
between the nth transmit antenna and the mth receive antenna. In other words,

h(n)(t) =



α
(n)
1
...

α
(n)
NR


 p(t − τ). (12.6)

On the mth receive antenna, a filter p∗(−t − τ) is applied. Sampling the output of the
filter at time k ′T , k ′ ∈ Z, yields the observation

ym,k ′ =
+∞∑

k=−∞

∫ +∞
−∞

p∗(−u − τ)r(−u + k ′T)du (12.7)

=
NT∑

n=1

α(n)m a(n)k ′ + nm,k ′ . (12.8)

The noise samples are both spatially uncorrelated and temporally uncorrelated:
E{Nm,kN ∗m′,k ′ } = N0δk−k ′δm−m′ . Stacking for fixed k ′ gives us an NR × 1 vector

yk ′ = Hak ′ + nk ′ , (12.9)

where H is the NR × NT channel matrix, with [H]m,n = α(n)m .

Space–time coding
The channel matrix in (12.9) is now a 1 × 2 vector. We can write the observation at
time 2k as

y2k = [α(1) α(2)]
[

a2k

a2k+1

]
+ n2k (12.10)

220 Equalization: multi-antenna communication

and that at time 2k + 1 as

y2k+1 = [α(1) α(2)]
[−a∗2k+1

a∗2k

]
+ n2k+1. (12.11)

Taking the complex conjugate of y2k+1 and stacking yields

[
y2k

y∗2k+1

]
=
[
α(1) α(2)

(α(2))∗ −(α(1))∗
] [

a2k

a2k+1

]
+
[

n2k

n∗2k+1

]
(12.12)

= H̃
[

a2k

a2k+1

]
+
[

n2k

n∗2k+1

]
. (12.13)

By virtue of the design of the Alamouti scheme, the matrix H̃ is an orthogonal
matrix, so

H̃HH̃ =
[

Eh 0
0 Eh

]
, (12.14)

where Eh = |α(1)|2 + |α(2)|2. Hence

ỹk = 1

Eh
H̃H

[
y2k

y∗2k+1

]
(12.15)

=
[

a2k

a2k+1

]
+ ñk (12.16)

=
[

ỹ2k

ỹ2k+1

]
, (12.17)

where E{ÑkÑH
k ′ } = δk−k ′I2N0/Eh. Let us stack ỹk for k = 0, . . . , Ns/2− 1 into ỹ, then

ỹ = a + n. (12.18)

This results in the following likelihood function:

p(Y = ỹ|A = a, M) ∝ exp

(
−Eh

N0
‖ỹ − a‖2

)
(12.19)

=
Ns−1∏
k=0

exp

(
−Eh

N0
|ỹk − ak |2

)
. (12.20)

Thus the factor graph of p(Y = y|A, M) consists of Ns disjoint graphs. Applying the
SPA to these disjoint graphs results in a structured equalizer [22] with

µeq→Ak (ak) ∝ exp

(
−Eh

N0
|ỹk − ak |2

)
.

12.2 Single-carrier modulation 221

Note that the messages from the equalizer to the demapper do not require the messages
from the demapper to the equalizer µAl→eq(al). Hence, equalization for space–time
block codes needs to be performed once only; no iterations are necessary. The Alamouti
scheme can also be used when the channel varies slowly: the channel needs to remain
constant for only two successive symbol durations.

Spatial multiplexing
We can use a structured approach based on the observation (12.9). We stack the
observations y0, . . . , yNs/NT−1 to obtain a long vector y. Since the noise samples for
different time instants k are independent,

p(Y = y|A = a, M) =
Ns/NT−1∏

k=0

p(Yk = yk |Ak = ak , M) (12.21)

∝
Ns/NT−1∏

k=0

exp

(
− 1

N0
‖yk −Hak‖2

)
(12.22)

with the factor graph shown in Fig. 12.2. This leads to a structured equalizer [106–108]:

µ
eq→A(n)k

(a) ∝
∑

ak∈�NT :a(n)k =a

exp

(
− 1

N0
‖yk −Hak‖2

) ∏
n′ �=n

µ
A(n
′)

k →eq

(
a(n
′)

k

)
.

(12.23)

The overall complexity of the equalizer scales as O(Ns|�|NT). The complexity can be
further reduced by using an MMSE equalizer [109] or an MC equalizer [100] on the
observation yk = Hak + nk . Note that both these approximate techniques operate only
on a single node in Fig 12.2. For NT > 1, the equalizers are all iterative, since messages
from equalizer to demapper depend on messages from demapper to equalizer.

A0 A1 A2 A3 ANs–1ANs–2

p(Y=y|A,)

f0 f1 fNs/2–1

Figure 12.2. Factor graph of p(Y = y|A, M) for a frequency-flat MIMO system with spatial
multiplexing. In this example, NT = 2 with fm(a2m, a2m+1) = exp(−‖ym −Ham‖2/N0), where
am = [a2m a2m+1]T.

222 Equalization: multi-antenna communication

12.2.3 The receiver for a frequency-selective channel

A possible receiver operates by oversampling the signals on the various receive antennas
as follows. We filter the received waveforms on the receive antennas by a square-
root Nyquist pulse for a rate N/T . We then sample the filtered signals at time instants
kT + mT/N , for m = 0, . . . , N − 1 and k ∈ Z. Stacking the NR observations at time
instant kT + mT/N yields (see also Section 11.2.4)

y(m)k =
NT∑

n=1

Lmax∑
l=Lmin

h(n,m)
l a(n)k−l + n(m)k , (12.24)

where h(n,m)
l is an NR × 1 vector containing the values of the channel impulse responses

at time lT + mT/N (with Lmin ≤ l ≤ Lmax and 0 ≤ m ≤ N − 1) between the nth
transmit antenna and the NR receive antennas and n(m)k is the noise component at time
kT+mT/N on the NR receive antennas. The noise samples are both spatially uncorrelated
and temporally uncorrelated:

E{N(m)k (N(m
′)

k ′)
H} = δk−k ′δm−m′INR N0. (12.25)

We introduce ak = [a(1)k , . . . , a(NT)
k]T and the NR × NT matrix H(m)

l = [h(1,m)
l ,

. . . , h(NT,m)
l] and write

y(m)k =
Lmin∑

l=Lmin

H(m)
l ak−l + n(m)k . (12.26)

Stacking the samples (first for fixed k and then for all k) again leads to

y = Ha + n. (12.27)

Example 12.1. For Lmin = 0, Lmax = 1, N = 1, NT = 2, and NR = 2, since N = 1,
only m = 0 can occur, and we can safely drop the superscript m. Suppose that we take
as observations yk , for k = −1, 0, 1, 2, 3. Then

y = [yT−1yT
0 yT

1 yT
2 yT

3]T

=




H1 H0 0 0 0 0
0 H1 H0 0 0 0
0 0 H1 H0 0 0
0 0 0 H1 H0 0
0 0 0 0 H1 H0







a−2

a−1

a0

a1

a2

a3



+




n−1

n0

n1

n2

n3


.

12.3 Multi-carrier modulation 223

The equalizer
We consider only spatial multiplexing: an MMSE equalizer with windowing [110–112]
or possibly MC equalizers (with windowing) can be applied. Observe that MIMO
equalizers for spatial multiplexing always require the messages from the demapper.
Hence, equalization can be performed in an iterative fashion.

12.3 Multi-carrier modulation

12.3.1 The received waveform

We know from Section 2.4.2 that the transmitted signal at the nth transmit antenna can
be written as

s(n)(t) =
√

EsNFFT

NFFT + NCP

+∞∑
k=−∞

NFFT−1∑
l=−NCP

ǎ(n)l,k p(n)(t − lT − kTOFDM), (12.28)

where ǎ(n)l,k is the lth time-domain value in the kth OFDM symbol, transmitted on the
nth transmit antenna. At the receiver, equipped with NR antennas, the received signal at
time t can be expressed as an NR × 1 vector

r(t) =
+∞∑

k=−∞

NT∑
n=1

NFFT−1∑
l=−NCP

ǎ(n)l,k h(n)(t − lT − kTOFDM)+ n(t), (12.29)

where h(n)(t) is an NR × 1 vector representing the equivalent channel between
the nth transmit antenna and the various receive antennas (including the factor√

EsNFFT/(NFFT + NCP). The sequence of Ns coded data symbols is sent during N =
Ns/(NFFTNT) consecutive OFDM symbols. We will denote by a(n)q,k the symbol over the
qth subcarrier during the kth OFDM symbol on the nth transmit antenna.

12.3.2 MIMO-OFDM receivers

At every receive antenna we have a basic OFDM receiver (see Fig. 12.3): we filter the
signal with a square-root Nyquist pulse for a rate 1/T , resulting in an NR×1 observation
at time t:

y̌(t) =
+∞∑

k=−∞

NT∑
n=1

NFFT−1∑
l=−NCP

ǎ(n)l,k ȟ(n)(t − lT − kTOFDM)+ ň(t). (12.30)

The support of the channel ȟ(n)(t) is defined in a similar way to that for the single-
antenna case: the channel ȟ(n)(t) = 0 for all t outside the support [tmin, tmax], as depicted
in Fig. 12.4. For notational convenience, we assume the support of ȟ(n)(t) to be [0, NDST),
for all n ∈ {1, . . . , NT}, with NDS ≤ NCP+ 1. Sampling at time instants l′T + k ′TOFDM,

224 Equalization: multi-antenna communication

OFDM

OFDM

r(t)

y0, k

y1, k

y2, k

y3, k

Figure 12.3. A MIMO-OFDM receiver for NR = 2, with NFFT = 4 subcarriers and a cyclic prefix
of length 3.

0

t

t

t

t

h(n)(t)
tmin tmax

Figure 12.4. Support for a MIMO-OFDM channel ȟ(n)(t) for NR = 4.

l′ = 0, . . . , NFFT − 1, k ′ = 0, . . . , N − 1, discarding the samples corresponding to the
cyclic prefix, and applying the DFT matrix FH yields the following observation for
OFDM symbol k, receive antenna m, and subcarrier q (see also Section 11.3.2):

yq,k,m =
NT∑

n=1

H (n)
q,ma(n)q,k + nq,k,m. (12.31)

If we focus on a single subcarrier and a single OFDM symbol, we can stack the
observations from the various receive antennas into an NR × 1 vector, and write

yq,k = Hqaq,k + nq,k , (12.32)

12.4 Main points 225

where E{Nq,kNH
q′,k ′ } = δk−k ′δq−q′N0INR , aq,k = [a(1)q,k , . . . , a(NT)

q,k]T, and Hl is an NR×NT

matrix containing the channel gains on the lth subcarrier between the various transmit and
receive antennas. The MIMO-OFDM receiver boils down to a bank of standard MIMO
receivers for frequency-flat channels, one for each subcarrier. The final observation y is
obtained by stacking yq,k for all q and k.

The equalizer
Since noise samples at different time instants (k) and for different subcarriers (q) are
independent, we can express the likelihood function as

p(Y = y|A = a, M) =
NFFT−1∏

q=0

N−1∏
k=0

p(Yq,k = yq,k |Aq,k = aq,k , M) (12.33)

∝
NFFT−1∏

q=0

N−1∏
k=0

exp

(
− 1

N0
‖yq,k −Hqaq,k‖2

)
, (12.34)

leading to a structured equalizer [113, 114]:

µ
eq→A(n)q,k

(a) ∝
∑

aq,k∈�NT :a(n)q,k=a

exp

(
− 1

N0
‖yq,k −Hqaq,k‖2

) ∏
n′ �=n

µ
A(n
′)

q,k →eq

(
a(n
′)

q,k

)
.

(12.35)

The overall complexity of the equalizer scales as O(Ns|�|NT). Alternatively, we can
apply an MMSE equalizer [113] or an MC equalizer to reduce the overall complexity.
Note that for NT > 1 the equalizers are iterative.

12.4 Main points

The MIMO systems theoretically exhibit significant capacity gains compared with single-
antenna transmission. In order to exploit these potential gains fully in a practical setting,
state-of-the-art iterative receivers must be considered. We have derived such receivers
both for single- and for multi-carrier modulation. With the exception of orthogonal
space–time codes over frequency-flat channels, all receivers require iterating between
equalization and demapping/decoding.

13 Equalization: multi-user
communication

13.1 Introduction

In multi-user communications, users transmit signals to a single receiver over the same
channel (see Fig. 13.1). For the receiver to recover the information from the various
users successfully, the channel must be shared between the users.

Multiple-access techniques such as time-division multiple access (TDMA) and
frequency-division multiple access (FDMA) make users completely orthogonal to each
other, resulting in simple receivers, but at the same time giving rise to significant losses
in terms of bandwidth efficiency. To overcome this, techniques such as direct-sequence
code-division multiple access (DS-CDMA) were developed, whereby all users transmit
simultaneously over the same frequency band.Aconventional DS-CDMAreceiver would
consist of a bank of single-user detectors (so-called Rake receivers [115]), one for each
user. Multiple-access interference (MAI) is ignored at the output of the Rake receiver.

Thanks to the pioneering work of Verdú [31], it has become clear that detecting the
information from the various users jointly can lead to significant performance gains. This

user 3

user 2

user 1

receiver
s(1)(t)

s(2)(t)

s(3)(t)

r(t)

Figure 13.1. Multi-user, single-antenna communication with Nu = 3 active users transmitting to a
single receiver. The equivalent baseband transmitted signal from user k is s(k)(t). After
propagation through the channel, the receiver obtains the superposition of Nu signals, corrupted
by thermal noise.

228 Equalization: multi-user communication

is known as multi-user detection (MUD). Since optimal MUD is usually intractable,
iterative MUD has received a great deal of attention from the research community
[97, 116]. The standard reference work on iterative MUD is by Wang and Poor [98].
In this chapter, we will see how such iterative MUD schemes for DS-CDMA fit into the
general factor-graph framework.

Another popular multiple-access technique is orthogonal frequency-division multiple
access (OFDMA), whereby users are assigned different subcarriers. As we will see,
provided that some synchronization constraints are met, users remain orthogonal at
the receiver, resulting in simple non-iterative equalization.

Although many other multiple-access schemes exist, the equalizers we will derive
here will give the reader a flavor of the general techniques. The reader should also bear
in mind that multi-user communication is very similar to multi-antenna communication:
a multi-user system can be considered as a MIMO system in which the transmit antennas
are separated in space (since they belong to different users).

This chapter is organized as follows.

• We will start with DS-CDMA in Section 13.2, considering both synchronous and
asynchronous transmission.
• We then move on to OFDMA in Section 13.3.

13.2 Direct-sequence code-division multiple access

13.2.1 The received waveform

The transmitted signal of the nth user can be written as (see Section 2.5)

s(n)(t) =
√

E(n)s

+∞∑
k=−∞

a(n)k p(n)(t − kT), (13.1)

where a(n)k is the kth symbol sent by the nth user and p(n)(t) is the nth user’s transmit
pulse. This pulse is given by

p(n)(t) = 1√
NSG

NSG−1∑
i=0

d (n)i pS

(
t − i

T

NSG

)
, (13.2)

where d(n) = [d (n)0 , . . . , d (n)NSG−1]T is the kth user’s spreading sequence and pS(t) is a
square-root Nyquist pulse for a rate NSG/T . For a total of Nu users, the received signal
can be written as

r(t) =
Nu∑

n=1

+∞∑
k=−∞

a(n)k h(n)(t − kT)+ n(t), (13.3)

13.2 Direct-sequence code-division multiple access 229

where h(n)(t) is the equivalent channel for the nth user:

h(n)(t) =
√

E(n)s

∫ +∞
−∞

h(n)ch (u)p
(n)(t − u)du. (13.4)

13.2.2 The receiver for synchronous transmission

In the conventional synchronous transmission scheme, the transmitters are synchronized
in such a way that the signals arrive at the same time at the receiver. Additionally, a
frequency-flat channel is assumed, so that

h(n)ch (t) = α(n)δ(t − τ) (13.5)

and thus

h(n)(t) =
√

E(n)s α(n)p(n)(t − τ). (13.6)

We filter the received signal by a bank of Nu matched filters, one for every user:
(h(n

′)(−t))∗, n′ = 1, . . . , Nu. Sampling the output of the n′th filter at time k ′T yields

y(n
′)

k ′ =
Nu∑

n=1

+∞∑
k=−∞

a(n)k g(n
′,n)

k ′−k + n(n
′)

k ′ (13.7)

with

g(n
′,n)

k ′ =
∫ +∞
−∞

(h(n
′)(u))∗h(n)(k ′T + u)du (13.8)

= A(n
′,n)δk ′

NSG
(d(n

′))Hd(n) (13.9)

where we have introduced A(n
′,n) =

√
E(n)s E(n

′)
s (α(n

′))∗α(n). Stacking y(n
′)

k ′ for all n′ yields
an Nu × 1 observation vector at time k ′T :

yk ′ = Hak ′ + nk ′ , (13.10)

where H is an Nu × Nu matrix such that

[H]n′,n = A(n
′,n)

NSG
(d(n

′))Hd(n) (13.11)

and

E{Nk ′N
H
k ′′ } = δk ′−k ′′N0H. (13.12)

230 Equalization: multi-user communication

In some cases, the spreading sequences of the users are designed so that they are
orthogonal. In those cases, (13.8) simplifies to

A(n
′,n)

NSG
(d(n

′))Hd(n) = A(n,n)δn−n′ (13.13)

so that H becomes a diagonal matrix. The final observation y is obtained by stacking yk ′
for all k ′.

The equalizer
Since the noise vectors nk at different time instants k are independent,

p(Y = y|A = a, M) =
Ns−1∏
k=0

p(Yk = yk |Ak = ak , M) (13.14)

∝
Ns−1∏
k=0

exp

(
− 1

N0
(yk −Hak)

HH−1(yk −Hak)

)
(13.15)

with a factor-graph shown in Fig. 13.2. This leads to a structured equalizer[116]:

µ
eq→A(n)k

(a) ∝
∑

ak∈�Nu :a(n)k =a

exp

(
− 1

N0
(yk −Hak)

HH−1(yk −Hak)

)

×
∏
n′ �=n

µ
A(n
′)

k →eq

(
a(n
′)

k

)
. (13.16)

The complexity scales as O(Ns|�|Nu). This equalizer can be simplified by using an
MMSE equalizer [98] or an MC equalizer [100]. Observe that, when Nu > 1, the
equalizers will be iterative.

demap. user 3

decoder user 1 decoder user 2 decoder user 3

demap. user 1 demap. user 2

f0 f1

B (1) (1)
1 BNb

(2)BNb

(3)BNb
(2)B1

(3)B1

fNs–1

p(Y=y|A,)

Figure 13.2. Factor graph for DS-CDMA with synchronous transmission for Nu = 3 users. The
node fk represents the function p(Yk = yk |Ak = ak , M), for k = 0, . . . , Ns − 1.

13.2 Direct-sequence code-division multiple access 231

In the particular case when users have orthogonal spreading codes, p(Y = y|A, M)

can be factorized as

p(Y = y|A = a, M) ∝
Ns−1∏
k=0

exp

(
− 1

N0
(yk −Hak)

HH−1(yk −Hak)

)
(13.17)

∝
Ns−1∏
k=0

Nu∏
n=1

exp

(
− 1

N0A(n,n)
|y(n)k − A(n,n)a(n)k |2

)
, (13.18)

so that

µ
eq→A(n)k

(a) ∝ exp

(
− 1

N0A(n,n)
|y(n)k − A(n,n)a|2

)
, (13.19)

leading to a non-iterative structured equalizer.

13.2.3 Receivers for asynchronous transmission

In asynchronous transmission, users are no longer synchronized and the channels may
be frequency-selective. This means that the nth user’s channel, as seen by the receiver
is given by

h(n)ch (t) =
L−1∑
l=0

α
(n)
l δ(t − τ (n)l). (13.20)

Two types of receivers will be considered: the matched-filter receiver and the
oversampling receiver.

13.2.3.1 The matched-filter receiver
The matched-filter receiver operates as in the synchronous case (see Fig. 13.3): we filter
the received signal by a bank of matched filters, one for every user: (h(n

′)(−t))∗ for

ADC

ADC

ADC

r(t)

kT

kT

kT

(h(3)(– t))*

(h(2)(– t))*

(h(1)(– t))*

yk

Figure 13.3. Matched-filter receiver for asynchronous DS-CDMA with Nu = 3 users.

232 Equalization: multi-user communication

n′ = 1, . . . , Nu. Sampling the output of the n′th filter at time k ′T yields

y(n
′)

k ′ =
Nu∑

n=1

+∞∑
k=−∞

a(n)k g(n
′,n)

k ′−k + n(n
′)

k ′ (13.21)

=
Nu∑

n=1




L(n)max∑
l=L(n)min

g(n
′,n)

l a(n)k ′−l


+ n(n

′)
k ′ (13.22)

for some L(n)min ∈ Z and L(n)max ∈ Z, where g(n
′,n)

l was defined in (13.8). The noise is now
correlated with

E

{
N (n′)

k ′
(

N (
n′′)

k ′′
)∗}
= N0g(

n′,n′′)
k ′−k ′′ . (13.23)

Introducing Lmin = minn L(n)min and Lmax = maxn L(n)max, we can write

y(n
′)

k ′ =
Nu∑

n=1

Lmax∑
l=Lmin

g(
n′,n)

l a(n)k ′−l + n(n
′)

k ′ . (13.24)

Stacking for a fixed k ′ gives us

yk ′ = H̃ãk ′ + nk ′ (13.25)

where ãk ′ is an Nu(Lmax − Lmin + 1) × 1 vector: ãk ′ =
[
aT

k ′−Lmax
, . . . , aT

k ′−Lmin

]T
with

ak ′ =
[
a(1)k ′ , . . . , a(Nu)

k ′
]
. H̃ is an Nu×Nu(Lmax−Lmin+ 1)matrix. Stacking for different

k ′ gives rise to

y = Ha + n, (13.26)

where H is a band matrix. Note that the noise generally is not white.

Example 13.1. Consider a system with Nu = 2 users, NSG = 2, Lmin = 1 and Lmax = 3.
Then

yk ′ =
[
y(1)k ′ y(2)k ′

]T
,

ak ′ =
[
a(1)k ′ a(2)k ′

]T
,

ãk ′ =
[
a(1)k ′−3 a(2)k ′−3 a(1)k ′−2 a(2)k ′−2 a(1)k ′−1 a(2)k ′−1

]T
,

13.2 Direct-sequence code-division multiple access 233

and

H̃ =
[

g(1,1)
3 g(1,2)

3 g(1,1)
2 g(1,2)

2 g(1,1)
1 g(1,2)

1

g(2,1)
3 g(2,2)

3 g(2,1)
2 g(2,2)

2 g(2,1)
1 g(2,2)

1

]
.

Stacking for k ′ and k ′ + 1 then yields




y(1)k ′
y(2)k ′

y(1)k ′+1

y(2)k ′+1


 =




g(1,1)
3 g(1,2)

3 g(1,1)
2 g(1,2)

2 g(1,1)
1 g(1,2)

1 0 0

g(2,1)
3 g(2,2)

3 g(2,1)
2 g(2,2)

2 g(2,1)
1 g(2,2)

1 0 0

0 0 g(1,1)
3 g(1,2)

3 g(1,1)
2 g(1,2)

2 g(1,1)
1 g(1,2)

1

0 0 g(2,1)
3 g(2,2)

3 g(2,1)
2 g(2,2)

2 g(2,1)
1 g(2,2)

1







a(1)k ′−3

a(2)k ′−3

a(1)k ′−2

a(2)k ′−2

a(1)k ′−1

a(2)k ′−1

a(1)k ′
a(2)k ′




+




n(1)k ′
n(2)k ′

n(1)k ′+1

n(2)k ′+1


.

13.2.3.2 The oversampling receiver
We filter r(t) by a square-root Nyquist filter for a rate T/N and obtain

yOS(t) =
Nu∑

n=1

+∞∑
k=−∞

a(n)k h(n)OS(t − kT)+ nOS(t). (13.27)

Sampling at time k ′T + mT/N (m = 0, . . . , N − 1 and k ′ ∈ Z) yields

y(m)k ′ =
Nu∑

n=1

+∞∑
k=−∞

a(n)k h(n)OS

(
k ′T + m

T

N
− kT

)
︸ ︷︷ ︸

h(n,m)
k′−k

+n(m)k ′ (13.28)

=
Nu∑

n=1

Lmax∑
k=Lmin

h(n,m)
k a(n)k ′−k + n(m)k ′ , (13.29)

where now the noise samples are uncorrelated: E

{
N (m)

k

(
N (m′)

k ′
)∗} = N0δm−m′δk−k ′ .

This is exactly the same model as for the oversampling MIMO receiver with NR = 1.
Stacking the observations (first for fixed k ′ and then for all k ′) leads again to the model

y = Ha + n. (13.30)

234 Equalization: multi-user communication

Equalizers
Both the matched-filter receiver and the oversampling receiver require either a sliding-
window MMSE equalizer [97,98] or an MC equalizer, possibly combined with a sliding
window.

13.3 Orthogonal frequency-division multiple access

We introduced OFDMA in Section 2.5. In OFDMA, there are Nu users with a single
antenna. Every user applies standard OFDM for data transmission. From the point of
view of the receiver, this makes OFDMA very similar to MIMO-OFDM. It should come
as no great surprise that we can essentially re-use the techniques from MIMO-OFDM
(see Section 12.3).

13.3.1 The received waveform

At the receiver, equipped with NR antennas, the received signal at time t can be expressed
as an NR × 1 vector

r(t) =
+∞∑

k=−∞

Nu∑
n=1

NFFT−1∑
l=−NCP

ǎ(n)l,k h(n)(t − lT − kTOFDM)+ n(t), (13.31)

where h(n)(t) is an NR × 1 vector representing the equivalent channel between the nth
user and the various receive antennas.

In OFDMA, different users (n) are assigned different subcarriers (q): user n is assigned
set Sn ⊂ {0, . . . , NFFT−1}, with Sn ∩ Sn′ = φ, for all n′ �= n. Users are allowed only
to transmit on the assigned subcarriers. For the sake of simplicity, let us assume that
|Sn| = NFFT/Nu, for all n. Hence, the sequence of Ns coded data symbols of user n is
sent using N = Ns/|Sn| = NsNu/NFFT consecutive OFDM symbols. We will denote by
a(n)q,k the symbol sent over the qth subcarrier of the nth user during the kth OFDM symbol,

with q ∈ Sn. When q /∈ Sn, a(n)q,k = 0.

13.3.2 The OFDMA receiver

At every receive antenna we have a basic OFDM receiver: we filter the signal with a
square-root Nyquist pulse for a rate 1/T , resulting in the following NR × 1 observation
at time t:

y̌(t) =
+∞∑

k=−∞

Nu∑
n=1

NFFT−1∑
l=−NCP

ǎ(n)l,k ȟ(n)(t − lT − kTOFDM)+ ň(t). (13.32)

The support of the channel ȟ(n)(t) is defined in a similar way to that for the MIMO-OFDM
case: ȟ(n)(t) = 0 for all t outside the support [tmin, tmax]. For notational convenience,

13.3 Orthogonal frequency-division multiple access 235

we assume the support of ȟ(n)(t) to be [0, NDST) for all n ∈ {1, . . . , Nu}, with NDS ≤
NCP + 1. Note that this constraint on the support requires the users to be synchronized
to a certain extent. This synchronization constraint can be loosened by increasing NCP:
the supports ȟ(n)(t) of the different users must overlap in a time window not exceeding
(NCP + 1)T . Sampling at time instants l′T + k ′TOFDM, l′ = 0, . . . , NFFT − 1, k ′ =
0, . . . , N −1, discarding the samples corresponding to the cyclic prefix, and applying the
FFT matrix FH yields the following observation of OFDM symbol k, receive antenna
m, and subcarrier q (see also Section 12.3):

yq,k,m =
∑

n:q∈Sn

H (n)
q,ma(n)q,k + nq,k,m (13.33)

with

E{Nq,k,mN ∗q′,k ′,m′ } = δk−k ′δm−m′δq−q′N0. (13.34)

Since Sn ∩ Sn′ = φ, for all n′ �= n, (13.33) simplifies to

yq,k,m = H (
iq)

q,m a(
iq)

q,k + nq,k,m, (13.35)

where iq is the index of the (unique) user assigned to subcarrier q. If we focus on a single
subcarrier and stack the observations from the different receive antennas into an NR × 1
vector, we can write

yq,k = H
(iq)
q a

(iq)
q,k + nq,k , (13.36)

where H
(iq)
q is an NR × 1 vector H

(iq)
q = [H (iq)

q,1 , . . . , H
(iq)
q,NR
]T. Note that

E{Nq,kNH
q′,k ′ } = N0INRδk−k ′δq−q′ . (13.37)

The final observation y is obtained by stacking yq,k for all q and k.

The equalizer
Because users are assigned non-overlapping sets of subcarriers, and thanks to the noise
being independent across time and subcarriers, the likelihood function can now be
expressed as

p(Y = y|A = a, M) =
NFFT−1∏

q=0

N−1∏
k=0

p
(

Yq,k = yq,k

∣∣∣A(iq)q,k = a
(iq)
q,k , M

)
(13.38)

∝
NFFT−1∏

q=0

N−1∏
k=0

exp

(
− 1

N0

∥∥∥yq,k −H(
iq)

q a(
iq)

q,k

∥∥∥2
)

, (13.39)

236 Equalization: multi-user communication

leading to a non-iterative structured equalizer:

µ
eq→A

(iq)
q,k
(a) ∝ exp

(
− 1

N0

∥∥∥yq,k −H
(iq)
q a

(iq)
q,k

∥∥∥2
)

. (13.40)

The overall complexity scales as O(NsNu|�|). The receivers can easily be extended to
a scenario in which different users use different constellations.

13.4 Main points

Receivers for multi-user communication closely resemble those for multi-antenna
communication. In this chapter we have considered two multiple-access schemes: DS-
CDMA and OFDMA. For DS-CDMA both the synchronous and the asynchronous
scenario were investigated, leading to iterative equalizers. In OFDMA where users
are assigned non-overlapping subcarriers, the factor-graph framework leads to a
non-iterative equalizer.

14 Synchronization and channel
estimation

14.1 Introduction

In the previous chapters, we invariably ended up with a model y = h(a) + n, where
h(·) was a known function (often in the form of a matrix H). The function h(·) depends
on the physical channel (hch(t)) as well as on any processing done in the receiver.
Since the physical channel may vary in time, the receiver needs to estimate the channel.
Furthermore, transmission may be of a bursty nature, so that, for every incoming burst,
the receiver has to lock on to the signal. This requires synchronization in terms of timing,
carrier phase, and carrier frequency.

During the past few decades a wide variety of channel estimation and synchronization
algorithms has been developed for just about any digital transmission scheme imaginable.
They usually exploit statistical properties of the received signal, or sequences of known
symbols in the data stream (training symbols). The resulting algorithms are known as
non-data-aided (NDA) and data-aided (DA), respectively. Standard works on channel
estimation and synchronization are [117, 118]. Iterative channel-estimation algorithms,
which iterate between decoding/demapping/equalization and estimation, have recently
become more popular. The resulting algorithms are known as code-aided (CA) [119,120].
These algorithms generally make use of the expectation–maximization (EM) algorithm
[121], or variations thereof.

Since factor graphs are well suited to solving inference problems, it makes sense to try
to apply them to the channel estimation and synchronization. This idea was originally
proposed in [122] and later successfully applied to phase-noise tracking in [123, 124].

This chapter is organized as follows.

• In Section 14.2 we describe how to perform channel estimation using factor graphs and
illustrate how this approach differs from conventional channel-estimation algorithms.
• An example is provided in Section 14.3 in the context of a tracking a frequency-flat

time-varying channel.

14.2 Channel estimation, synchronization, and factor graphs

14.2.1 The conventional approach

Our goal has been to create a factor graph of the distribution p(B, Y = y|M). The model
M included the channel function h(·). In most cases, this function can be fully described

238 Synchronization and channel estimation

by a small set of parameters, say d. For instance, in a multi-path channel, d consists of
the L channel gains and L propagation delays: d = [(τ0,α0), . . . , (τL−1,αL−1)]. Prior to
data detection, a conventional receiver can determine an estimate d̂ of d. How exactly d̂
is determined depends on the specific scenario. Once d has been estimated, we can create
a factor graph of p(B, Y = y|D = d̂, M). Now the model M no longer includes the
channel function. Implementing the SPA on this factor graph yields (approximations of)
the marginal distributions p(Bk |Y = y, D = d̂, M). Final decisions with respect to the
information bits can then be made. Throughout this book, we have implicitly assumed
this approach.

14.2.2 The factor-graph approach

The conventional approach is somewhat ad-hoc. A more systematic way of dealing with
D is as follows. As always, we create a factor graph of p(B, Y = y|M):

p(B, Y = y|M) = p(Y = y|B, M)p(B|M) (14.1)

Opening up the node p(Y = y|B, M) to include the coded bits and the coded symbols
gives us

p(Y = y, A, C|B, M) = p(Y = y|A, M)p(C|A, M)p(C|B, M). (14.2)

We can now open up the node p(Y = y|A, M) to include the channel parameters and
obtain

p(Y = y, D|A, M) = p(Y = y|A, D, M)p(D|M), (14.3)

assuming the channel parameters to be independent from the data symbols (this is
generally true). The resulting factor graph is shown in Fig. 14.1.

Applying the SPA to this graph results in p(Bk |Y = y, M), on which final decisions
with respect to the information bits can be made. Observe the difference from the previous
section. No explicit estimate regarding the channel parameters d needs to be made. Hence,
the factor-graph receiver can be interpreted as being non-coherent. The reader can easily
verify that the conventional approach can be interpreted as the node p(D|M) sending
Dirac distributions over the Dk edges:

µDk→eq(dk) = δ(dk − d̂k). (14.4)

Comments
There are some important differences between the parameter D and the other parameters
(information bits B, coded bits C, and coded symbols A).

• Usually D belongs to a continuous (instead of a discrete) domain. This means that
messages will be probability density functions (instead of probability mass functions).
Consequently, we must represent messages as described in Chapter 5, Section 5.3.4.

14.3 An example 239

decoding

demapping

equalization

B1 B2

D1 D2 DNd

C1 C2 CNc

BNb

ANs
A1 A2

p(C|B,)

p(B|)

p(A|C,)

p(Y=y|B,)

p(Y=y|A,D,)

p(D|)

Figure 14.1. Factor graph of p(B, Y = y|M). The nodes are opened to reveal its structure. Apart
from the standard tasks of decoding, demapping, and equalization, there is now a new node
p(D|M) related to channel estimation/synchronization.

• The conversion from the received waveform r(t) to the observation y may depend
on the value of D. For instance, a matched-filter receiver relies on knowledge of the
equivalent channel h(t). In such cases, it is not meaningful to create a factor graph of
p(B, Y = y|M). Instead, we must create a factor graph of p(B, R = r|M), where r
is a vector representation of r(t).
• The parameter D is related to the model of the physical channel. This model may but

need not reflect the true behavior of the physical channel. The corresponding a-priori
distribution p(D|M) is also based on a model.

14.3 An example

14.3.1 Problem description

To see how to perform channel estimation using factor graphs, let us consider
an example (inspired by [123, 124]): channel estimation for frequency-flat time-
varying channels in a single-carrier, single-user, single-antenna setting. Suppose after
suitable matched filtering and sampling, that we can express the observation at time

240 Synchronization and channel estimation

k (k = 0, . . . , Ns − 1) as

yk = dkak + nk , (14.5)

where dk ∈ C is the (unknown) channel gain at time k and E{NkN ∗k ′ } = δk−k ′N0/Es.
Stacking the observations gives us

y = Ha + n, (14.6)

where H = diag{d} with d = [d0 d1 . . . dNs−1]T. In order to apply the technique
from the previous section, we require the a-priori distribution p(D). Let us assume that
the channel varies according to a first-order Markov model:

p(D) = p(D0)

Ns−1∏
k=1

p(Dk |Dk−1), (14.7)

where both the initial distribution p(D0) and the transition distribution p(Dk |Dk−1) are
known to the receiver.

14.3.2 The factor graph

The factor graph of p(B, Y = y) can be opened up to (using a notational shorthand)

p(b, a, c, d, y) ∝ p(y|a, d)p(a|c)p(c|b)p(b)p(d) (14.8)

= p(d0)p(y0|a0, d0)

Ns−1∏
k=1

p(yk |ak , dk)p(dk |dk−1)p(a|c)p(c|b)p(b).

(14.9)

The corresponding factor graph is shown in Fig. 14.2.

14.3.3 The sum-product algorithm

We will denote the message as shown in Fig. 14.3. Since there are cycles in the
graph, there are many ways to schedule the messages. Let us consider the following
scheduling.

Initialization
• We initialize µf→Dk (Dk) to uniform distributions.
• We set µg→D0(d0) = p(D0 = d0).

14.3 An example 241

demapping

decoding

A0 A1 ANs–1

DNs–1

h1 h2 hNs–1

f f

D0 D1

g

f

p(B|)

p(C|B,)

p(A|C,)

p(Y=y|A,D,)

p(D|)

Figure 14.2. Factor graph of p(B, Y = y|M). The nodes are opened to reveal their structure. The
node f (Ak , Dk) represents the function p(yk |Ak , Dk), g(D0) represents p(D0) and hk (Dk , Dk−1)

represents p(Dk |Dk−1).

Dk

hk+1

µ ()
h k =

(Dk)

µhk+1

()
= (Dk)

µ ()
= hk+1

(Dk)

µ ()
= hk

(Dk)

→

→ →

→→
→ →

→

Figure 14.3. A detailed view of messages

Messages update
(1) Compute forward messages from left to right:

µ
(→)
=→h1

(d0) ∝ µf→D0(d0)µg→D0(d0),

µ
(→)
hk→ =

(dk) ∝
∫

p(Dk = dk |Dk−1 = dk−1)µ
(→)
=→hk

(dk−1)ddk−1,

µ
(→)
=→hk+1

(dk) ∝ µf→Dk (dk)µ
(→)
hk→ =

(dk).

242 Synchronization and channel estimation

(2) Compute messages from right to left:

µ
(←)
=→hNs−1

(dNs−1) = µf→DNs−1(dNs−1),

µ
(←)
hk→ =

(dk−1) ∝
∫

p(Dk = dk |Dk−1 = dk−1)µ
(←)
=→hk

(dk)ddk ,

µ
(←)
=→hk

(dk) ∝ µ(←)hk+1→ =
(dk)µf→Dk (dk).

(3) Compute upward messages:

µDk→f (dk) ∝ µ(←)hk+1→ =
(dk)µ

(→)
hk→ =

(dk),

µAk→dem(ak) ∝
∫

p(yk |ak , dk)µDk→f (dk)ddk .

(4) Perform demapping and decoding. This results in downward messagesµdem→Ak (Ak).
(5) Compute downward messages:

µf→Dk (Dk) ∝
∑

ak∈�
p(yk |ak , dk)µdem→Ak (ak).

(6) Go back to step 1.

Termination
• After a number of iterations, we compute the approximate marginals p(Bk |Y = y, M)

and make final decisions:

b̂k = arg max
b∈B

p(Bk = b|Y = y, M).

Since the messages over the Dk -edges have no convenient closed form, we must resort
to approximate techniques such as quantization or particle representations to represent
and compute messages, as discussed in Section 5.3.4. Furthermore, the temporal model
(14.7) we assume may be incorrect, leading to an estimator that is not robust. These
practical aspects are treated in detail in [123, 124].

14.4 Main points

Factor graphs can be applied to scenarios in which the channel function is unknown
by including channel and synchronization parameters in the factor graph of p(B, Y =
y|M), albeit with the introduction of additional cycles into the graph. The receiver
requires explicit knowledge of the a-priori distribution of the channel parameters. This
a-priori distribution may but might not be accurate (or even available). The channel
function is usually characterized by a set of continuous variables, so messages over the
corresponding edges must be represented in an efficient way. For this, we must look to
quantization, parametric representations, and non-parametric representations.

15 Appendices

15.1 Useful matrix types

• A Toeplitz matrix A from a sequence a = [a−N+1, . . . , aM−1] of length M + N − 1
is an M × N matrix where Ai,j = ai−j, i = 0, . . . , M − 1, j = 0, . . . , N − 1, in other
words, a matrix where every diagonal from left to right is constant. For instance a
4× 5 Toeplitz matrix is given by

A =




a0 a−1 a−2 a−3 a−4

a1 a0 a−1 a−2 a−3

a2 a1 a0 a−1 a−2

a3 a2 a1 a0 a−1


.

• An M × N circulant matrix A from a sequence a = [a0, . . . , aM−1] is a Toeplitz
matrix where ai = ai+N , so that

A =




a0 a3 a2 a1 a0

a1 a0 a3 a2 a1

a2 a1 a0 a3 a3

a3 a2 a1 a0 a3


.

• A band matrix (or banded matrix) A is a matrix for which Ai,j = 0 for j− i < −K1 or
j − i > K2 for some K1, K2 > 0.
• The concept of Toeplitz, circulant, and band matrices can be extended to block

matrices, by replacing scalars in the above definitions by matrices.

15.2 Random variables and distributions

We will write random variables using capital letters, and realizations/instances of random
variables by small letters. So Z is a random variable and z is a realization belonging to a
set Z . This has as a disadvantage that matrices and vector random variables use the same
notation: Z can be a vector random variable or a matrix. Random variables can be either
discrete or continuous. Continuous random variables are defined over a closed subset
of R

N or C
N for some N ≥ 1. Discrete random variables can take on values in either a

finite or an infinite set. The distribution (the probability mass function or the probability

244 Appendices

density function) of Z , evaluated in z ∈ Z , is written as pZ (z), p(Z = z), or p(z). The
distribution itself (the function from Z to R

+) will be denoted by pZ (·) or1 p(Z). We
will use the notation z ∼ pZ (z) or z ∼ pZ (·)when z is drawn from the distribution pZ (z).
The expectation of a function f (z) with regard to a random variable Z is denoted as

EZ { f (Z)} =
∫
Z

f (z)pZ (z)dz.

For discrete random variables, integrations should be replaced by summations.

The Dirac distribution
The Dirac distribution δ(z) is defined as∫ +∞

−∞
h(z)δ(z − z0)dz = h(z0)

for any z0 ∈ R and any integrable function h(z). The discrete Dirac distribution δk

(k ∈ Z) is defined as δk = 1 when k = 0 and δk = 0 otherwise.

The Gaussian distribution
Arguably the most important distribution is the Gaussian (or normal) distribution. Any
Gaussian random variable Z is fully determined by its mean

E{Z} = m

and its covariance matrix

E{(Z −m)(Z −m)H} = �,

where AH(AT) stands for the conjugate transpose (transpose) of the matrix A. When Z
is real, we write pZ(z) = Nz(m, �), while for complex Z with independent real and
imaginary parts, each with the same covariance matrix 1

2�, we write N C
x (m, �). When

� is non-singular, the probability distribution of Z can be expressed in closed form:

Nz(m,�) = 1√
(2π)N det�

exp

(
−1

2
(z −m)T�−1(z −m)

)

and

N C
z (m,�) = 1

πN det�
exp

(− (z −m)H�−1(z −m)
)
.

When � is singular, Gaussian distributions cannot be described through their probability
distributions. Other techniques2 exist but will not be pursued in this book: all covariance

1 This is a somewhat unorthodox notation, but it will serve us well later.
2 Such as the Cramer–Wold argument.

15.2 Random variables and distributions 245

matrices are assumed to be well-behaved. Gaussian distributions have some very useful
properties. We will focus on real distributions. For complex distributions transposition
should be replaced by conjugate transposition.

• When Z1 and Z2 are independent Gaussian random variables with pZ1(z1) =
Nz1(m1,�1) and pZ2(z2) = Nz2(m2,�2), then Z3 = AZ1 + BZ2, for matrices
A and B (of the proper dimensions), is also a Gaussian random variable with
pZ3(z3) = Nz3(m3,�3), where

m3 = Am1 + Bm2

and

�3 = A�1AT + B�2BT.

• Multiplying two Gaussian distributions pZ(z) = Nz(m1,�1) and pZ(z) =
Nz(m2,�2) gives a Gaussian distribution, up to a multiplicative constant,

Nz(m1,�1)Nz(m2,�2) = C ×Nz(m3,�3),

where C does not depend on z, and

�−1
3 = �−1

1 +�−1
2 ,

�−1
3 m3 = �−1

1 m1 +�−1
2 m2.

• When Z is Gaussian with z = [z1 z2]T ∼ Nz(m,�), where

m =
[

m1

m2

]
,

� =
[
�11 �T

12
�12 �22

]
,

then the marginal of Z1 is given by pZ1(z1) = Nz1(m1,�11) and the conditional
distribution by pZ1|Z2(z1|z2) = Nz1(m1|2(z2),�1|2), where

m1|2(z2) = m1 +�12�
−1
22 (z2 −m2),

�1|2 = �1 −�12�
−1
22 �

T
12.

Bayes’ rule
This entire book builds on the work of the Reverend Thomas Bayes (1702–1761),
who introduced the concept of inverse probability. While the term “Bayesian” is
now much broader than inverse probability, it is still useful to recall the basic idea.
We wish to estimate a parameter x from an observation y. The direct probability
is the function pY|X(y|x) (which now goes under the name “likelihood function”).

246 Appendices

The inverse probability is the a-posteriori distribution pX|Y(x|y.). One form of Bayes’rule
gives the following relations for a joint distribution, the marginals, and the conditional
distributions:

pZ1,Z2(z1, z2) = pZ1|Z2(z1|z2)pZ2(z2)

= pZ2|Z1(z2|z1)pZ1(z1).

Assuming that z2 is a discrete random variable, pZ1(z1) =∑z2
pZ1,Z2(z1, z2), so we can

also write

pZ2|Z1(z2|z1.) = pZ1|Z2(z1|z2)pZ2(z2)∑
z pZ1|Z2(z1|z)pZ2(z)

.

This equation nicely encapsulates the various operations we use throughout this book:
we multiply probabilities, add probabilities, and normalize functions so that they become
distributions.

15.3 Signal representations

In general, a vector representation r of a signal r(t) is obtained by expanding r(t) onto
a set of orthonormal basis functions: {φ0(t),φ1(t), . . . ,φN−1(t)} as follows:

rk =
∫ +∞
−∞

r(t)φk(t)dt

so that r = [r0, r1, . . . , rN−1]T. Since the basis functions are orthonormal, we have

r(t) =
N−1∑
k=0

rkφk(t).

Note that sampling a bandlimited signal at a sufficiently high rate corresponds to a
particular set of basis functions (i.e., delay-shifted sinc pulses). In many cases N = +∞.
When the signal is a random process, the values {rk} will be random variables.

References

[1] C. E. Shannon. “A mathematical theory of communication.” Bell System Technical Journal,
27:379–423, July 1948.

[2] G. D. Forney and G. Ungerboeck. “Modulation and coding for linear Gaussian channels.”
IEEE Transactions of Information Theory, 44(6):2384–2415, October 1998.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima. “Near Shannon limit error-correcting coding
and decoding: turbo codes.” In Proc. IEEE International Conference on Communications
(ICC), pages 1064–1070, Geneva, Switzerland, May 1993.

[4] S. Aji and R. McEliece. “The generalized distributive law.” IEEE Transactions on
Information Theory, 46:325–353, March 2000.

[5] B. J. Frey. Graphical Models for Machine Learning and Digital Communications. MIT
Press, 1998.

[6] J. M. Wozencraft and I. M. Jacobs. Principles of Communications Engineering. Wiley,
1967.

[7] J. G. Proakis. Digital Communications. McGraw-Hill, 4th edition, 2001.
[8] S. Haykin. Communication Systems. Wiley, 2000.
[9] T. S. Rappaport. Wireless Communications: Principles and Practice. Prentice-Hall, 2001.

[10] B. Sklar. Digital Communications: Fundamentals and Applications. Prentice-Hall, 2001.
[11] J. R. Barry, E. A. Lee, and D. G. Messerschmitt. Digital Communication. Springer, 2003.
[12] D. Tse and P. Viswanath. Fundamentals of Wireless Communication. Cambridge University

Press, 2005.
[13] A. Goldsmith. Wireless Communications. Cambridge University Press, 2005.
[14] A. Molisch. Wireless Communications. Wiley–IEEE Press, 2005.
[15] S. Benedetto and E. Biglieri. Principles of Digital Transmission with Wireless Applications.

Springer, 1999.
[16] J. D. Parsons. The Mobile Radio Propagation Channel. Wiley, 2000.
[17] J. A. C. Bingham. “Multicarrier modulation for data transmission: an idea whose time has

come.” IEEE Communications Magazine, 28(5):5–14, May 1990.
[18] S. B. Weinstein and P. M. Ebert. “Data transmission by frequency-division multiplexing

using the discrete Fourier transform.” IEEE Transactions on Communication Technology,
19(5):628–634, 1971.

[19] J. H. Winters, J. Salz, and R. D. Gitlin. “The impact of antenna diversity on the
capacity of wireless communication systems.” IEEE Transactions on Communications,
COM-42:1740–1751, 1994.

[20] G. J. Foshini and M. J. Gans. “On limits of wireless communication in a fading
environment when using multiple antennas.” Wireless Personal Communications,
6(3):311–335, March 1998.

248 References

[21] I. Telatar. “Capacity of multi-antenna Gaussian channels.” Technical report, AT&T Bell
Labs internal Technical Memorandum, 1995.

[22] S. M.Alamouti. “Asimple transmit diversity technique for wireless communications.” IEEE
Journal on Selected Areas in Communications, 16(8):1451–1458, October 1998.

[23] V. Tarokh, N. Seshadri, and A. R. Calderbank. “Space–time codes for high data rate wireless
communications: performance criterion and code construction.” IEEE Transactions on
Communications, 44(2):744–765, March 1998.

[24] V. Tarokh, H. Jafarkhani, and A. R. Calderbank. “Space–time block codes from orthogonal
design.” IEEE Transactions on Information Theory, 45(5):1456–1467, July 1999.

[25] D. Gesbert, M. Shafi, D. Shiu, P. J. Smith, and A. Naguib. “From theory to practice: an
overview of MIMO space–time coded wireless systems.” IEEE Journal on Selected Areas
in Communications, 21(3):281–302, April 2003.

[26] A. Paulraj, R. Nabar, and Dhananjay Gore. Introduction to Space–Time Wireless
Communications. Cambridge University Press, 2003.

[27] L. Zheng and D. Tse. “Diversity and multiplexing: a fundamental tradeoff in
multiple antenna channels.” IEEE Transactions on Information Theory, 49:1073–1096,
May 2003.

[28] G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky. “Detection algorithm
and initial laboratory results using the V-BLAST space–time communication architecture.”
Electronics Letters, 35(1):14–15, January 1999.

[29] G. G. Raleigh, and J. M. Cioffi. “Spatio-temporal coding for wireless communication.” IEEE
Transactions on Communications, 46(3):57–366, March 1998.

[30] H. Bölcskei, D. Gesbert, and A. J. Paulraj. “On the capacity of OFDM-based spatial
multiplexing systems.” IEEE Transactions on Communications, 50(2):225–234, February
2002.

[31] S. Verdú. Multiuser Detection. Cambridge University Press, New York, 1998.
[32] A. Jamalipour, T. Wada, and T. Yamazato. “A tutorial on multiple access technologies for

beyond 3G mobile networks.” IEEE Communications Magazine, 43(2):110–117, February
2005.

[33] R. Pickholtz, D. Schilling, and L. Milstein. “Theory of spread-spectrum communications – a
tutorial.” IEEE Transactions on Communications, 30(5):855–884, May 1982.

[34] R. Scholtz. “The spread spectrum concept.” IEEE Transactions on Communications,
25(8):748–755, August 1977.

[35] R. L. Peterson, R. E. Ziemer, and D. E. Borth. Introduction to Spread Spectrum
Communications. Prentice-Hall, 1995.

[36] H. Sari and G. Karam. “Orthogonal frequency division multiple access and its applications
to CATV networks.” European Transactions on Telecommunications, 9(6):507–516,
November 1998.

[37] Cheong Yui Wong, R. S. Cheng, K. B. Lataief, and R. D. Murch. “Multiuser OFDM
with adaptive subcarrier, bit, and power allocation.” IEEE Journal on Selected Areas in
Communications, 17(10):1747–1758, October 1999.

[38] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part I. Wiley, October
2001.

[39] S. M. Kay. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory.
Prentice-Hall, 1993.

[40] E. L. Lehmann and G. Casella. Theory of Point Estimation. Springer, 2003.
[41] V. Poor. An Introduction to Signal Detection and Estimation. Springer, 1998.
[42] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, 2005.

References 249

[43] W. R. Gilks, S. Richardson, and D. J. Speigelhalter. Markov Chain Monte Carlo in Practice.
Chapman & Hall, 1995.

[44] G. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer, 2003.
[45] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall,

1986.
[46] D. J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge

University Press, 2003.
[47] R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical

Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto, 1993.
[48] A. Doucet and X. Wang. “Monte Carlo methods for signal processing: a review in the

statistical signal processing context.” IEEE Signal Processing Magazine, 22(6):152–170,
November 2005.

[49] S. Geman and D. Geman. “Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images.” IEEE Transactions on Pattern Analysis and Machine Intelligence,
6:721–741, 1984.

[50] R. G. Gallager. Low Density Parity Check Codes. MIT Press, 1963.
[51] F. Spitzer. “Random fields and interacting particle systems.” In M.A.A. Summer Seminar

Notes, Mathematical Association of America, 1971.
[52] G. D. Forney, Jr. “The Viterbi algorithm.” Proceedings of the IEEE, 61:286–278, March

1973.
[53] R. Kindermann and J. Snell. Markov Random Fields and their Applications. American

Mathematical Society, 1980.
[54] R. M. Tanner. “A recursive approach to low complexity codes.” IEEE Transactions on

Information Theory, IT-27(5):533–547, September 1981.
[55] S. J. Lauritzen and D. J. Spiegelhalter. “Local computations with probabilities on graphical

structures and their application to expert systems.” Journal of the Royal Statistical Society
B, 50:157–224, 1988.

[56] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, 1988.

[57] N. Wiberg. Codes and decoding on general graphs. PhD thesis, Linköping University,
Sweden, 1996.

[58] F. Kschischang, B. Frey, and H.-A. Loeliger. “Factor graphs and the sum-product
algorithm.” IEEE Transactions on Information Theory, 47(2):498–519, February 2001.

[59] G. D. Forney. “Codes on graphs: normal realizations.” IEEE Transactions on Information
Theory, 47(2):520–545, February 2001.

[60] H.-A. Loeliger. “An introduction to factor graphs.” IEEE Signal Processing Magazine,
21(1):28–41, January 2004.

[61] J. S. Yedidia, W. T. Freeman, and Y. Weiss. “Constructing free energy approximations and
generalized belief propagation algorithms.” IEEE Transactions on Information Theory,
51(7):2282–2312, July 2005.

[62] J. Dauwels. On graphical models for communications and machine learning: algorithms,
bounds, and analog implementation. PhD thesis, ETH Zürich, December 2005.

[63] M. J. Wainwright and M. I. Jordan. “Graphical models, exponential families, and
variational inference.” Technical Report 649, UC Berkeley, Dept. of Statistics,
September 2003.

[64] P. Robertson, P. Hoeher, and E. Villebrun. “Optimal and sub-optimal maximum a posteriori
algorithms suitable for turbo decoding.” European Transactions on Telecommunications
(ETT), 8(2):119–125, March 1997.

250 References

[65] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. “A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking.” IEEE Transactions on Signal
Processing, 50(2):174–188, February 2002.

[66] E. Sudderth, A. Ihler, W. Freeman, and A. Willsky. “Nonparametric belief propagation.”
Technical Report 551, MIT, Laboratory for Information and Decision Systems, October
2002.

[67] Y. Weiss. “Correctness of local probability propagation in graphical models with loops.”
Neural Computation, 12:1–41, 2000.

[68] S. Ikeda, T. Tanaka, and S. Amari. “Information geometry of turbo and low-density parity-
check codes.” IEEE Transactions on Information Theory, 50(6):1097–1114, June 2004.

[69] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. “A new class of upper bounds on the
log partition function.” IEEE Transactions on Information Theory, 51(7):2313–2335, July
2005.

[70] B. D. O. Anderson and J. B. Moore. Optimal Filtering. Prentice-Hall, 1979.
[71] A. C. Harvey. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge

University Press, 1991.
[72] J. Durbin and S. J. Koopman. Time Series Analysis by State Space Methods. Oxford

University Press, 2001.
[73] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice.

Springer, 2001.
[74] L. R. Rabiner. “A tutorial on hidden Markov models and selected applications in speech

recognition.” Proceedings of the IEEE, 77(2):257–286, 1989.
[75] D. Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley,

2006.
[76] S. Korl. A factor graph approach to signal modelling, system identification, and filtering.

Dissertation 16 170, ETH Zürich, July 2005.
[77] H.-A. Loeliger. “Least squares and Kalman filtering on Forney graphs.” In Festschrift in

Honour of David Forney on the Occasion of His 60th Birthday, pages 113–135. Kluwer,
2002.

[78] A. Doucet, S. Godsill, and C. Andrieu. “On sequential Monte Carlo sampling methods for
Bayesian filtering.” Statistics and Computing, 10(3):197–208, 2000.

[79] P. M. Djuric, J. H. Kotecha, Jianqui Zhang, Yufei Huang, T. Ghirmai, M. F. Bugallo, and
J. Miguez. “Particle filtering.” IEEE Signal Processing Magazine, 20(5):19–38, 2003.

[80] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation.” IEE Proceedings – F, Radar and Signal Processing,
140(2):107–113, 1993.

[81] D. Divsalar, H. Jin, and R. J. McEliece. “Coding theorems for ‘turbo-like codes’.” In
Proc. 36th Allerton Conf. on Communications, Control and Computing, pages 201–210,
September 1998.

[82] D. J. C. MacKay. “Good error-correcting codes based on very sparse matrices.” IEEE
Transactions on Information Theory, 45(2):399–431, March 1999.

[83] P. Elias. “Coding for noisy channels.” IRE Convention Record, 3, pt. 4:37–46, 1955.
[84] Shu Lin and D. J. Costello. Error Control Coding. Prentice-Hall, 2004.
[85] E. Biglieri. Coding for Wireless Channels. Springer, 2005.
[86] S. Benedetto and G. Montorsi. “Design of parallel concatenated convolutional codes.” IEEE

Transactions on Communications, 42(5):409–429, May 1996.

References 251

[87] D. J. C. MacKay. “Online database of low-density parity check codes.”
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.

[88] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. “Optimal decoding of linear codes for
minimising symbol error rate.” IEEE Transactions on Information Theory, 20:284–287,
March 1974.

[89] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. “Serial concatenation of interleaved
codes: performance analysis, design, and iterative decoding.” IEEE Transactions on
Information Theory, 44(3):909–926, May 1998.

[90] E. Zehavi. “8-PSK trellis codes for Rayleigh fading channels.” IEEE Transactions on
Communications, 41:873–883, May 1992.

[91] G. Caire, G. Taricco, and E. Biglieri. “Bit-interleaved coded modulation.” IEEE Transactions
on Information Theory, 44:927–946, May 1998.

[92] S. ten Brink, J. Speidel, and J. C. Yan. “Iterative demapping and decoding for multilevel
modulation.” In IEEE GLOBECOM’98, volume 1, pages 579–584. IEEE, 1998.

[93] X. Li and J. A. Ritcey. “Trellis-coded modulation with bit interleaving and iterative
decoding.” IEEE Journal on Selected Areas in Communications, 17(4):715–724,April 1999.

[94] X. Li, A. Chindapol, and J. A. Ritcey. “Bit-interleaved coded modulation with iterative
decoding and 8PSK signaling.” IEEE Transactions on Communications, 50(8):1250–1257,
August 2002.

[95] G. Ungerboeck. “Channel coding with multilevel/phase signal.” IEEE Transactions on
Information Theory, 28:55–66, January 1982.

[96] A. Glavieux, C. Laot, and J. Labat. “Turbo equalization over a frequency selective channel.”
In Proceedings of the International Symposium on Turbo Codes, pages 96–102. Brest,
France, September 1997.

[97] X. Wang and H. V. Poor. “Iterative (turbo) soft interference cancellation and decoding for
coded CDMA.” IEEE Transactions on Communications, 47(7):1046–1061, July 1999.

[98] X. Wang and H. V. Poor. Wireless Communication Systems: Advanced Techniques for Signal
Reception. Prentice-Hall, 2003.

[99] R. Koetter,A. C. Singer, and M. Tüchler. “Turbo equalization.” Signal Processing Magazine,
21(1):67–80, January 2004.

[100] B. Farhang-Boroujeny, H. Zhu, and S. Shi. “Markov chain Monte Carlo algorithms for
CDMA and MIMO communication systems.” IEEE Transactions on Signal Processing,
54(5):1896–1909, May 2006.

[101] J. Luo, K. R. Pattipati, P. K. Willett, and F. Hasegawa. “Near-optimal multiuser detection in
synchronous CDMA using probabilistic data association.” IEEE Communications Letters,
5(9):361–363, September 2001.

[102] D. O. North. “An analysis of the factors which determine signal/noise discrimination in
pulsed carrier systems.” Technical Report PTR-6C, RCA Labs, Princeton, NJ, 1943.

[103] G. D. Forney. “Maximum-likelihood sequence estimation of digital sequences in the
presence of intersymbol interference.” IEEE Transactions on Information Theory,
18(3):363–378, May 1972.

[104] M. Tüchler, R. Koetter, and A. C. Singer. “Turbo-equalization: principles and new results.”
IEEE Transactions on Communications, 50(5):754–767, May 2002.

[105] D. Reynolds and X. Wang. “Low-complexity turbo-equalization for diversity channels.”
Signal Processing, 81(5):989–995, 2000.

[106] B. M. Hochwald and S. ten Brink. “Achieving near-capacity on a multiple-antenna channel.”
IEEE Transactions on Communications, 51(3):389–399, March 2003.

252 References

[107] S. Haykin, M. Sellathurai, Y. de Jong, and T. Willink. “Turbo-MIMO for wireless
communications.” IEEE Communications Magazine, 42(10):48–53, October 2004.

[108] R. Visoz and A. O. Berthet. “Iterative decoding and channel estimation for space–time
BICM over MIMO block fading multipath AWGN channel.” IEEE Transactions on
Communications, 51(8):1358–1367, August 2003.

[109] M. Witzke, S. Baro, F. Schreckenbach, and J. Hagenauer. “Iterative detection of MIMO
signals with linear detectors.” In Conference Record of the Thirty-Sixth Asilomar
Conference, volume 1, pages 289–293, 2002.

[110] G. Bauch and N. Al-Dhahir. “Reduced-complexity space–time turbo-equalization for
frequency-selective MIMO channels.” IEEE Transactions on Wireless Communications,
1(4):819–828, October 2002.

[111] Shoumin Liu and Zhi Tian. “Near-optimum soft decision equalization for frequency
selective MIMO channels.” IEEE Transactions on Signal Processing, 52(3):721–733,
May 2004.

[112] X. Wautelet, A. Dejonghe, and L. Vandendorpe. “MMSE-based fractional turbo receiver for
space–time BICM over frequency selective MIMO fading channels.” IEEE Transactions
on Signal Processing, 52(6):1804–1809, June 2004.

[113] B. Lu, Guosen Yue, and X. Wang. “Performance analysis and design optimization of LDPC-
coded MIMO OFDM systems.” IEEE Transactions on Signal Processing, 52(2):348–361,
February 2004.

[114] R. Piechocki. Space–time techniques for W-CDMA and OFDM. PhD thesis, University of
Bristol, 2002.

[115] R. Price and P. E. Green. “Acommunication technique for multi-path channels.” Proceedings
of the IRE, pages 555–570, 1958.

[116] J. Boutros and G. Caire. “Iterative multiuser joint decoding: unified framework and
asymptotic analysis.” IEEE Transactions on Information Theory, 48(7):1772–1793,
July 2002.

[117] H. Meyr, M. Moeneclaey, and S. A. Fechtel. Synchronization, Channel Estimation, and
Signal Processing, volume 2 of Digital Communication Receivers. Wiley, 1997.

[118] U. Mengali and A. N. D’Andrea. Synchronization Techniques for Digital Receivers. Plenum
Press, 1997.

[119] C. N. Georghiades and J. C. Han. “Sequence estimation in the presence of random
parameters via the EM algorithm.” IEEE Transactions on Communications, 45(3):300–308,
March 1997.

[120] N. Noels, V. Lottici, A. Dejonghe, H. Steendam, M. Moeneclaey, M. Luise, and
L. Vandendorpe. “A theoretical framework for soft information based synchronization
in iterative (turbo) receivers.” EURASIP Journal on Wireless Communications and
Networking JWCN, Special issue on Advanced Signal Processing Algorithms for Wireless
Communications, 2005(2):117–129, April 2005.

[121] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood from incomplete data
via the EM algorithm.” Journal of the Royal Statistical Society B, 39(1):1–38, 1977.

[122] A. P. Worthen and W. E. Stark. “Unified design of iterative receivers using factor graphs.”
IEEE Transactions on Information Theory, 47(2):843–849, February 2001.

[123] J. Dauwels and H.-A. Loeliger. “Phase estimation by message passing.” In Proc. IEEE
International Conference on Communications (ICC), pages 523–527, Paris, France,
June 2004.

[124] G. Colavolpe,A. Barbieri, and G. Caire. “Algorithms for iterative decoding in the presence of
strong phase noise.” IEEE Journal on Selected Areas in Communications, 23(9):1748–1757,
September 2005.

Index

a posteriori distribution, 21, 78
a priori distribution, 20, 79, 89, 137
adjacency, 42
alamouti space–time block code, 218
Alamouti space–time block code, 13, 219

Band matrix, 243
Baseband signal, 7
Bayes’ Rule, 245
BCJR algorithm, 169
Belief, 100, 137, 191
Belief propagation, 89
Bit-interleaved coded modulation, 178
Bootstrap filter, 128
Burn-in time, 32

CDMA, 16, 228
Channel estimation, 237
Channel model, 9
Circulant matrix, 243
Coding, 6, 143
Commutative semi-ring, 71
Continuous variables, 69, 95, 238
Convergence, 100
Convolution, 8
Convolutional code, 163
Cost function, 20
Cycles, 44, 69, 100
Cyclic prefix, 11

Decibel, 175
Decoding, 143
Degree, 43
Demapping, 177
Dirac distribution, 244
Discrete variables, 90

Edge, 42
Equality function, 27
Equalization, 187

Error probability, 24, 136
Error-floor region, 175
Expectation operator, 244

Factor Graph
definition, 37, 47
Normal graphs, 62

Factorization, 44
Acyclic factorization, 46
Connected factorization, 46
Cyclic factorization, 69

Filtering, 112
Forest, 44
Forward-backward algorithm, 113, 169, 193
Frequency-flat channel, 9, 210, 219, 229
Frequency-selective channel, 9, 208, 213, 222, 223,

231, 234

Gaussian distribution, 244
Gaussian equalizer, 200
Generator matrix, 146
Graph, 42

Bipartite graph, 43
Connected graph, 44

Importance sampling distribution, 29
Incidence, 43
Indicator function, 27, 63
Interleaver, 145, 149, 170, 178
Invariant distribution, 32
Iterated expectation, 125

Jacobian logarithm, 91

Kalman filter, 122
Kalman smoother, 124

LDPC code, 154
Leaf, 44

254 Index

Likelihood, 78
Likelihood function, 21, 78, 79, 137
Limiting distribution, 32
Log-likelihood, 90
Log-likelihood function, 80
Log-likelihood ratio, 94
Loopy inference, 100

MAP estimator, 23, 78, 136
Mapping, 6, 177
Marginal, 27, 45
Markov chain, 31, 106, 240
Matched filter receiver, 209, 229, 231
Matrix inversion lemma, 121, 202
Max-sum algorithm, 72, 80
Messages, 57, 86
Mixture sampling, 98, 129
MMSE equalizer, 200
MMSE estimator, 21, 200
Monte Carlo equalizer, 196
Monte Carlo techniques, 25
Multi-antenna communication, 12, 217, 234
Multi-carrier transmission

Multi-user, 16, 234
Single user, multi-antenna, 14, 223
Single user, single antenna, 10, 213

Multi-path channel, 9
Multi-user communication, 15, 227

Non-parametric representations, 96
Normalization, 80, 88
Nyquist pulse, 10

square root Nyquist pulse, 9

OFDM, 10, 14, 213, 223
OFDMA, 16, 234
Opening nodes, 66, 78
Oversampling receiver, 211, 222, 233

Parametric representation, 96, 122
Parity check matrix, 146
Particle methods

Message representation, 96
Particle filter, 127
Particle representation, 25
Particle smoother, 131

Path, 43
Pinch-off point, 175
Prediction, 112

Pulse-shaping, 7
Puncturing, 149

Quantization, 96

RA code, 149
Regularization, 27, 99
Resampling, 27
RF signal, 7

Sampling methods
Gibbs sampling, 32, 199
Importance sampling, 28, 30, 97, 128, 198

Sequential processing, 112
Signaling constellation, 6
Single-carrier transmission

Multi-user, 16, 228
Single user, multi-antenna, 12, 218
Single user, single antenna, 9, 208

Sliding window equalizer, 194
Smoothing, 112, 124
Space-time code, 13, 218
Spatial multiplexing, 13, 218
State, 31, 106, 165
State-Space model equalizer, 193
State-space models, 105
Statistical inference, 77
Subcarrier, 12
Sufficient statistic, 136
Sum-product algorithm, 58
Support, 213
Synchronization, 237

Target distribution, 29
Termination, 147
Toeplitz matrix, 243
Transition kernel, 31
Tree, 44
Trellis coded modulation, 182
Turbo code, 170

Vertex, 42
Viterbi algorithm, 116, 169, 183

Waterfall region, 175
White Gaussian noise, 7

	Cover
	Half-title
	Title
	Copyright
	Contents
	Preface
	A Word on Notation
	Abbreviations
	Notations
	Common notations A
	Common notations B

	List of algorithms
	1 Introduction
	1.1 Motivation
	1.2 The structure of this book

	2 Digital communication
	2.1 Introduction
	2.2 Digital communication
	2.2.1 From bits to waveform
	2.2.2 Channel model
	2.2.3 Communication schemes

	2.3 Single-user, single-antenna communication
	2.3.1 Single-carrier modulation
	2.3.2 Multi-carrier modulation – OFDM

	2.4 Multi-antenna communication
	2.4.1 Single-carrier modulation
	Space—time coding
	Spatial multiplexing

	2.4.2 Multi-carrier modulation – MIMO-OFDM

	2.5 Multi-user communication
	CDMA
	OFDMA

	2.6 Goals and working assumptions
	2.7 Main points

	3 Estimation theory and Monte Carlo techniques
	3.1 Introduction
	3.2 Bayesian estimation
	3.2.1 Problem formulation
	Terminology

	3.2.2 Estimators for continuous variables
	3.2.2.1 The MMSE estimator
	3.2.2.2 The linear MMSE estimator
	3.2.2.3 The MAP estimator

	3.2.3 Estimators for discrete variables

	3.3 Monte Carlo techniques
	3.3.1 Particle representations
	3.3.1.1 Principles
	3.3.1.2 Alternative notations
	3.3.1.3 Fun with particle representations

	3.3.2 Sampling for small-dimensional systems
	3.3.2.1 Introduction
	3.3.2.2 Importance sampling
	3.3.2.3 Importance sampling revisited

	3.3.3 Sampling for large-dimensional systems
	3.3.3.1 Markov chains
	3.3.3.2 Sampling from Markov chains
	3.3.3.3 Gibbs sampling

	3.4 Main points

	4 Factor graphs and the sum–product algorithm
	4.1 A brief history of factor graphs
	Comment

	4.2 A ten-minute tour of factor graphs
	4.2.1 Factor graphs
	4.2.2 Marginals and the sum–product algorithm
	Comments

	4.3 Graphs, factors, and factor graphs
	4.3.1 Some basic graph theory
	4.3.2 Functions, factorizations, and marginals
	4.3.3 Factor graphs

	4.4 Marginals and the sum–product algorithm
	4.4.1 Marginals of connected acyclic factorizations
	4.4.2 Step 1: variable partitioning
	4.4.2.1 The math way
	4.4.2.2 The factor-graph way

	4.4.3 Step 2: grouping factors
	4.4.3.1 The math way
	4.4.3.2 The factor-graph way

	4.4.4 Step 3: computing marginals
	4.4.4.1 A key observation
	4.4.4.2 Two special functions: the math way
	4.4.4.3 Two special functions: the factor-graph way

	4.4.5 The sum–product algorithm
	Initialization
	Message-computation rules
	Termination

	4.5 Normal factor graphs
	4.5.1 Motivation
	4.5.2 Definition
	4.5.3 The sum–product algorithm on normal factor graphs
	Initialization
	Message-computation rule
	Termination

	4.6 Remarks on factor graphs
	4.6.1 Why factor graphs?
	4.6.2 Opening and closing nodes
	4.6.3 Computing joint marginals
	4.6.4 Complexity considerations
	4.6.5 Dealing with continuous variables
	4.6.6 Disconnected and cyclic factorizations

	4.7 The sum and product operators
	4.7.1 Generalizations
	4.7.2 The max–sum algorithm
	Initialization
	Message-computation rule
	Termination

	4.8 Main points

	5 Statistical inference using factor graphs
	5.1 Introduction
	5.2 General formulation
	5.2.1 Five problems of statistical inference
	5.2.2 Opening nodes
	5.2.3 Inference on factor graphs
	5.2.3.1 Problem 1 – likelihood of the model
	5.2.3.2 Problem 2 – a-posteriori distribution of X
	5.2.3.3 Problem 3–characteristics of the a-posteriori distribution of Xk
	5.2.3.4 Problem 4–a-posteriori distribution of X
	5.2.3.5 Problem 5–characteristics of the a-posteriori distribution of X

	5.2.4 Examples

	5.3 Messages and their representations
	5.3.1 Message scaling
	5.3.1.1 Max–Sum algorithm
	5.3.1.2 The sum–product algorithm

	5.3.2 Distributions as messages
	Interpretations

	5.3.3 Representation of messages for discrete variables
	5.3.3.1 Probability mass functions
	5.3.3.2 Log-likelihoods
	5.3.3.3 A link between sum–product and max–sum
	5.3.3.4 Log-likelihood ratios

	5.3.4 Representation of messages for continuous variables
	5.3.4.1 Quantization
	5.3.4.2 Parametric representations
	5.3.4.3 Non-parametric representations

	Approach 1 – importance sampling
	Approach 2 – mixture sampling
	Approach 3 – regularization

	5.4 Loopy inference
	5.5 Main points

	6 State-space models
	6.1 Introduction
	6.2 State-space models
	6.2.1 Definition
	Higher-order Markov models

	6.2.2 Factor-graph representation
	6.2.3 The sum–product algorithm for state-space models
	6.2.3.1 General solution
	Forward phase
	Backward phase
	Marginals

	6.2.3.2 Sequential processing

	6.2.4 Three types of state-space model
	Hidden Markov models
	Linear Gaussian models
	Arbitrary SSMs

	6.3 Hidden Markov models
	6.3.1 Introduction
	6.3.2 Determining the marginal a-posteriori distributions
	Direct implementation
	Vector–matrix implementation
	Marginal a-posteriori distributions

	6.3.3 Determining the likelihood of the model
	6.3.4 Determining the mode of the joint a-posteriori distribution
	6.3.5 Concluding remarks

	6.4 Linear Gaussian models
	6.4.1 Introduction
	The factor graph
	Opening the node gk
	Opening the node hk

	6.4.2 Determining the marginal a-posteriori distributions
	6.4.2.1 Building blocks
	6.4.2.2 Notation
	6.4.2.3 The forward phase
	6.4.2.4 Backward phase in parallel with forward phase
	Marginals

	6.4.2.5 Smoothing: backward phase after forward phase

	6.4.3 Determining the likelihood of the model
	6.4.4 Determining the mode of the joint a-posteriori distribution
	6.4.5 Concluding remarks

	6.5 Approximate inference for state-space models
	6.5.1 Introduction
	6.5.2 Determining the marginal a-posteriori distributions
	6.5.2.1 Notations
	6.5.2.2 The forward phase
	Step 1
	Step 2

	6.5.2.3 Backward phase in parallel with forward phase
	Step 1
	Step 2
	Marginals

	6.5.2.4 Smoothing: backward phase after forward phase

	6.5.3 Determining the likelihood of the model
	6.5.4 Concluding remarks

	6.6 Main points

	7 Factor graphs in digital communication
	7.1 Introduction
	7.2 The general principle
	7.2.1 Inference problems for digital receivers
	Sequence detection
	Bit-by-bit detection

	7.2.2 Factor graphs

	7.3 Opening nodes
	7.3.1 Principles
	7.3.2 Opening the a-priori node
	7.3.3 Opening the likelihood node

	7.4 Main points

	8 Decoding
	8.1 Introduction
	8.2 Goals
	8.3 Block codes
	8.3.1 Basic concepts
	8.3.2 Two types of codes
	8.3.2.1 Linear block codes
	8.3.2.2 Trellis block codes
	Termination

	8.3.3 Codes and factor graphs
	8.3.3.1 Introduction
	8.3.3.2 Linear block codes
	8.3.3.3 Trellis block codes

	8.3.4 Puncturing

	8.4 Repeat–accumulate codes
	8.4.1 Description
	8.4.2 Factor graphs
	8.4.3 Building blocks
	8.4.3.1 Equality nodes
	Probability domain
	The log domain
	The LLR domain

	8.4.3.2 Check nodes
	The probability domain
	The log domain
	The LLR domain

	8.4.4 Decoding repeat–accumulate codes

	8.5 Low-density parity-check codes
	8.5.1 Description
	8.5.2 Factor graphs
	8.5.3 Building blocks
	8.5.3.1 Check nodes
	8.5.3.2 Opening the check node

	8.5.4 Decoding low-density parity-check codes

	8.6 Convolutional codes
	8.6.1 Description
	Termination

	8.6.2 Factor graphs
	8.6.3 Building blocks
	8.6.3.1 Nodes of degree one
	The probability domain
	The log domain

	8.6.3.2 Nodes of degree five
	The probability domain
	The log domain
	The LLR domain

	8.6.4 Decoding convolutional codes
	8.6.5 Sequence detection

	8.7 Turbo codes
	8.7.1 Description
	PCCC
	SCCC

	8.7.2 Factor graphs
	PCCC
	SCCC

	8.7.3 Decoding turbo codes

	8.8 Performance illustration
	8.9 Main points

	9 Demapping
	9.1 Introduction
	9.2 Goals
	9.3 Bit-interleaved coded modulation
	9.3.1 Principles
	9.3.2 Factor graphs
	9.3.3 Building blocks
	The probability domain
	The log domain
	The LLR domain

	9.3.4 Demapping algorithm
	9.3.5 Interaction with decoding node

	9.4 Trellis-coded modulation
	9.4.1 Description
	9.4.2 Factor graphs
	9.4.3 Demapping algorithms
	9.4.4 Sequence detection
	9.5 Performance illustration

	9.6 Main points

	10 Equalization–general formulation
	10.1 Introduction
	10.2 Problem description
	10.3 Equalization methods
	10.3.1 Overview
	Exact techniques
	Approximate techniques

	10.3.2 Sum–product-algorithm equalizers
	Complexity
	Interpretation of messages

	10.3.3 Structured equalizers
	Complexity

	10.3.4 State-space-model equalizers
	Complexity

	10.3.5 Sliding-window equalizers
	Complexity

	10.3.6 Monte Carlo equalizers
	10.3.6.1 Three equalization methods
	Distinct samples from p…
	Unweighted sampling
	Importance sampling

	10.3.6.2 Sampling

	10.3.7 Gaussian/MMSE equalizers
	10.3.7.1 Model
	10.3.7.2 Step 1: the Gaussian assumption
	10.3.7.3 Step 2: determine…
	10.3.7.4 Step 3: remove the dependence of p…
	10.3.7.5 Step 4: convert the Gaussian distribution into a message over Tonos
	Probabilistic data association
	Equivalent Gaussian channel

	10.3.7.6 Comments

	10.4 Interaction with the demapping and the decoding node
	10.5 Performance illustration
	10.6 Main points
	Exact methods
	Approximate methods

	11 Equalization: single-user, single-antenna communication
	11.1 Introduction
	11.2 Single-carrier modulation
	11.2.1 The received waveform
	On noise and sampling

	11.2.2 Matched filter receiver
	The equalizer

	11.2.3 Whitened matched-filter receivers
	The equalizer

	11.2.4 The oversampling receiver
	The equalizer

	11.3 Multi-carrier modulation
	11.3.1 The received waveform
	11.3.2 The OFDM receiver
	The equalizer

	11.4 Main points

	12 Equalization: multi-antenna communication
	12.1 Introduction
	12.2 Single-carrier modulation
	12.2.1 The received waveform
	Space–time coding
	Spatial multiplexing

	12.2.2 The receiver for a frequency-flat channel
	Space–time coding
	Spatial multiplexing

	12.2.3 The receiver for a frequency-selective channel
	The equalizer

	12.3 Multi-carrier modulation
	12.3.1 The received waveform
	12.3.2 MIMO-OFDM receivers
	The equalizer

	12.4 Main points

	13 Equalization: multi-user communication
	13.1 Introduction
	13.2 Direct-sequence code-division multiple access
	13.2.1 The received waveform
	13.2.2 The receiver for synchronous transmission
	The equalizer

	13.2.3 Receivers for asynchronous transmission
	13.2.3.1 The matched-filter receiver
	13.2.3.2 The oversampling receiver
	Equalizers

	13.3 Orthogonal frequency-division multiple access
	13.3.1 The received waveform
	13.3.2 The OFDMA receiver
	The equalizer

	13.4 Main points

	14 Synchronization and channel estimation
	14.1 Introduction
	14.2 Channel estimation, synchronization, and factor graphs
	14.2.1 The conventional approach
	14.2.2 The factor-graph approach
	Comments

	14.3 An example
	14.3.1 Problem description
	14.3.2 The factor graph
	14.3.3 The sum-product algorithm
	Initialization
	Messages update
	Termination

	14.4 Main points

	15 Appendices
	15.1 Useful matrix types
	15.2 Random variables and distributions
	The Dirac distribution
	The Gaussian distribution
	Bayes’ rule

	15.3 Signal representations

	References
	Index

