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Preface

Recent progress in science and technology has led to the revival of an old question
concerning the relevance, of quantum effects in biological systems. Indeed Pascual
Jordan’s 1943 book, Die Physik und das Geheimnis des Lebens had already
posed the question “Sind die Gesetze der Atomphysik und Quantenphysik fiir
die Lebensvorginge von wesentlicher Bedeutung?”’ (Are the laws of atomic
and quantum physics of essential importance for life?) and coined the term
Quanten-Biologie (quantum biology). At the time this question was essentially of
a theoretical nature as the technology did not yet exist to pursue it in experiment.

Indeed quantum biology has been benefiting considerably from the refinement
in experimental tools which is beginning to provide direct access to the observation
of quantum dynamics in biological systems. Indeed, we are increasingly gaining
sensitivity towards quantum phenomena at short length and time scales. In recent
years, these newly found technological capabilities have helped to elevate the
study of quantum biology from a mainly theoretical endeavour to a field in which
theoretical questions, concepts and hypotheses may be tested experimentally and
thus verified or disproved. We should stress here that experiments are essential to
verify theoretical models because biological systems already have a complexity
and structural variety that prevents us from knowing and controlling all of the
aspects. Results obtained using these refined experimental techniques lead to new
theoretical challenges and thus stimulate the development of novel theoretical
approaches. It is this mutually beneficial interplay between experiment and theory
that promises accelerated developments within the field.

Biological systems tend to be warm, wet and noisy when exposed to envi-
ronmental fluctuations, conditions which are normally expected to result in rapid
decoherence and thus suppression of quantum features. Thus quantum phenom-
ena may at first sight seem to be unlikely to play a significant role in biology.
Note, however, that at the level of molecular complexes and proteins, important
biological processes can be very fast (taking place within picoseconds) and well

Xvii
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localised (extending across a few nanometres, the size of proteins) and may thus
exhibit quantum phenomena before the environment has had an opportunity to
destroy them. Hence the possible existence of significant quantum dynamics is
a question of length and timescale; indeed quantum phenomena such as electron
tunneling have been observed in biological systems and there is some evidence
for proton tunneling in enzymes. As such, tunneling phenomena are not intimately
related to biology and the question therefore remains whether on the one hand
biological systems will exhibit more complex quantum-dynamical phenomena that
may either involve several interacting particles or multiple interacting components
of a network, or on the other hand whether the specifics of the biological sys-
tems and their environments will play a crucial role in allowing or supporting
certain quantum-dynamical phenomena in biology. Only then could we call these
‘non-trivial’ quantum effects in biological systems. Indeed, it appears that there
are biological processes such as transport in photosynthesis, magneto-reception in
birds or the olfactory sense that rely at a fundamental level on such ‘non-trivial’
quantum-dynamical processes. Thus quantum effects in biology may well be pos-
sible and more importantly relevant towards function.

This book reports on quantum biology, its theoretical foundations, experimental
findings and future possibilities as they have emerged over the past few years.
Needless to say not all subjects can be covered and we have had to make a sub-
selection that has been driven by several objectives. Firstly, given that the basis of the
field is the fruitful interplay between experiment and theory, we have endeavoured to
choose subjects that are either already under experimental investigation or for which
it could be expected that technology will give access to these theoretical predictions
in the foreseeable future. This has led us to exclude subjects such as quantum
conciousness or the speculations concerning the origin of life. Secondly, it is our
aim to provide a reasonably coherent set of chapters, starting from experimental
and theoretical foundations and leading on to specific topics of interest. Finally, of
course, personal preferences and tastes do also play a role.

The original plan for this book was hatched during the first conference on Quan-
tum Effects in Biological Systems (QuEBS 2009), held from 7-10 July, 2009 in
Lisbon, Portugal, which has become the first of the annual QUEBS conferences.
Subsequent QUEBS meetings were held at Harvard University in 2010, Ulm Uni-
versity in 2011, Berkeley in 2012 and Vienna in 2013, and their ever growing
attendance attests to a growing interest in the field.

This steady development has convinced us that the time is right for an introduc-
tory book on quantum effects in biology and we do hope that the present text will
help scientists, especially young and adventurous scientists, during or shortly after
their PhD, to gain a first insight into the field of quantum biology. It is our hope
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that in this way we can assist the further development of the field by converting an
increasing number of scientists into becoming quantum biologists.

We would like to acknowledge financial support from the Natural Sciences
and Engineering Research Council of Canada, the DARPA QuBE Program,
the MIT-ENI Energy Initiative, the Center for Excitonics at RLE, and the
Quantum Artificial Intelligence Lab at Google, to Masoud Mohseni; the Fundagao
para a Ciéncia e a Tecnologia (Portugal), namely through the programme
POCTI/POCI/PTDC (PEst-OE/EGE/UI0491/2013, PEst-OE/EEI/LA0008/2013,
PTDC/EEA-TEL/103402/2008), partially funded by FEDER (EU), and from
the EU FP7 (LANDAUER, PAPETY), to Yasser Omar; The Searle Foundation
and DARPA QuBE Program to Greg Engel; the Alexander von Humboldt
Professorship, the SFB TR/21, the European Research Council and the European
Union, to Martin Plenio. There have also been a number of friends, students and
colleagues who have supported us in the completion of this book. Here, we would
especially like to thank Robert Rosenbach for his considerable help in compiling
the final edition of the book.






I

Introduction






1

Quantum biology: introduction

GRAHAM R. FLEMING AND GREGORY D. SCHOLES

1.1 Introduction

Key features of quantum mechanics are the uncertainty principle, wave—particle
duality, quantization of energies and the modification of classical probability laws.
Biology is concerned with how natural systems function — from understanding
how genetically coded information is replicated, to attaining a mechanistic model
for complex multistep reactions. Recently researchers have been asking whether
quantum mechanics, normally the domain of physics, is also needed to understand
some biological processes. This field includes fascinating developments in theory
and experiment, as well as multidisciplinary discussion, and the state-of-the-art is
documented in this book. Erwin Schrodinger, in his famous book What is Life?
(Schrodinger, 1944), noted that quantum mechanics accounts for the stability of
living things and their cellular processes because of our understanding, via quantum
mechanics, of the stability and structure of molecules. The fact that quantum effects
create, sometimes large, energy gaps between different states of a chemical system
is also important. Such energy gaps, between electronic energy levels, enable
living organisms to capture and store the energy carried from the sun by photons,
and to visualize the world around them via optically induced chemical reactions.
Davydov’s view in Biology and Quantum Mechanics (Davydov, 1982) was that
quantum mechanics is most relevant for isolated systems in pure states and therefore
is of little importance for biological systems that are in statistical states at thermal
equilibrium.

If we set aside the fact that quantum mechanics is required to explain the
properties of molecules and their reactions — obviously important in biochemical
processes ranging from the action of enzymes to genetic expression of phenotypes
and the very construction of a living organism — then quantum biology identifies
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4 Quantum biology: introduction

biological phenomena that make explicit use of quantum mechanics to attain func-
tionality or to carry out a process. Of course the application of quantum mechanics
to the study of biological problems is still important, but we do not include that
in our definition of quantum biology. Early work pursuing such directions was the
main focus of the, now discontinued, International Journal of Quantum Chem-
istry: Quantum Biology Symposium series. However, there remains the question
of precisely where we draw the line separating unsurprising manifestations of
quantum mechanics from those of interest for quantum biology. For example,
intermolecular forces, including hydrogen bonding and van der Waals forces, are
prevalent in defining protein structures, the helical motif of DNA; they account
for enzyme—substrate association, aid protein synthesis, and cause membrane for-
mation, to name just a few examples. In general, such non-bonding interactions,
while described by quantum-mechanical models, do not appear to introduce spe-
cial properties or function because of quantum mechanics, so we would exclude
them from quantum-biological examples. Instead the field is mostly concerned
with excited electronic states and their dynamics, long-range tunnelling through
barriers, interference effects and other abilities conferred by quantum mechanics.

A molecular basis for biology, including atomic-scale descriptions of complex
processes, has transformed biology over the past decades. One motivation for the
emerging field of quantum biology is to elucidate new insights into biological
function that may emerge from a quantum perspective. Hence the discovery and
objective assessment of examples of quantum biology is important. Key criteria
for identifying quantum-biological processes include their amenability to experi-
mental verification and predictions or theoretical modelling using appropriate and
rigorous frameworks. It is worthwhile distinguishing between phenomena where
the detailed dynamics of the process are susceptible to experimental and theoretical
investigation, and those in which only overall rates are observable and the challenge
is to explain the magnitudes and trends found from experiments. The chapters to
follow in this book will explore these examples is greater depth.

1.2 Excited states in biology

In 1962, Longuet-Higgins wrote in his paper entitled ‘Quantum mechanics and
biology’ that quantum mechanics only helps us to understand a few biological
processes that involve radiation (Longuet-Higgins, 1962). Research since then has
revealed that this rather conservative view requires modification. Indeed, quantum
phenomena in biological systems that require explicit reference to quantum theory
abound. For example, the ‘energy wealth’ of a molecule defines the energy stored
in quantum states; usually chemical bonds that can be transformed in reactions,
thereby storing or releasing a quantum of energy. There are many examples that
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are of importance for biology, including nucleoside phosphates (ATP), thioesters,
imidazoles and others (Pullman and Pullman, 1963). The special properties of
molecules such as quinones that are important in electron transport chains can
also be attributed to their quantum-mechanical energy gaps. Research present, as
documented in this book is, however, largely restricted to light-induced processes.

1.2.1 Photosynthetic light-harvesting

Light-harvesting in photosynthesis has recent become the paradigmatic model
for quantum effects in biology. Photosynthetic pigment—protein complexes collect
sunlight and transfer energy in the form of electronic excitation to the reaction
centre, where charge separation initiates a web of biochemical processes. Light-
harvesting in photosynthetic organisms occurs with remarkable quantum efficiency;
usually a quantum efficiency of >95% for initiation of charge separation per
absorbed photon is found under conditions of low irradiance. Therefore it is of
great interest to investigate the design principles of this extremely efficient process
(Scholes et al., 2011).

The success of natural light-harvesting depends on ultra fast excited state dynam-
ics including energy transfer and charge separation, where quantum superposition
and coherence dynamics turn out to play roles (Ishizaki and Fleming, 2012). Thus,
models based on quantum theory are crucial for the understanding of the primary
process of photosynthesis. Moreover, the recent development of two-dimensional
electronic spectroscopy and its utility for examining these systems has placed
photosynthetic light-harvesting in a unique position for investigating quantum-
dynamical phenomena in biological systems.

Many quantum phenomena are often regarded as exceedingly delicate and not
likely to survive over relevant timescales in ‘warm, wet and noisy’ living things.
Thus, the experimental observation by Engel et al. of long-lived quantum-electronic
coherence in a photosynthetic protein (the FMO complex) (Engel e al., 2007)
produced widespread interest. The initial experiments were carried out at 77K, but
subsequent work by Scholes and co-workers on a light-harvesting protein from
marine algae (Collini ez al., 2010) confirmed the persistence of quantum coherence
at physiological (room) temperature. Engel and co-workers then demonstrated
that quantum coherence in the FMO protein survives up to room temperature
(Panitchayangkoon et al., 2010). These studies used femtosecond-duration laser
pulses. The relevance of the coherent phenomena observed in such experiments
to the behaviour of systems illuminated by sunlight requires careful clarification
(Jiang and Brumer, 1991). It might be worth saying that, while the experiments are
carried out with coherent excitation, the underlying Hamiltonian probed by these
experiments is the same Hamiltonian that governs the dynamics under sunlight
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irradiance. A key point is that the simulations inspired by these experiments do not
need to assume coherent excitation, and it is really these simulations that ultimately
give us an insight into how coherences modify the dynamics.

1.2.2 Other excited state processes: from vision to circadian clocks

One way to answer the question of biological relevance would be to argue that
the process would simply not work without quantum mechanics. Vision is perhaps
one such example, because the quantum-mechanical arrangement of electronic
states and their symmetries is responsible for light-activated isomerization. Light
is absorbed by a chromophore in the rhodopsin protein, which initiates a pho-
tochemical isomerization. This is the quantum-mechanical process. After that, a
series of enzymes are activated, culminating in hydrolysis of cyclic guanosine 3’5’
monophosphate which causes Na™ ion channels to close. The resulting hyperpo-
larization induces an electrical impulse that is transferred to a nerve cell. This
really is a remarkable sequence of events — initiated by a comparatively simple
quantum-mechanical process.

Photochemical reactions like the photo-induced isomerization of retinal in
rhodopsin protein are a subset of chemical reactions in general, and the mech-
anism of many ground state reactions can also only be understood from a quantum-
mechanical viewpoint. For example, the Woodward—Hoffman rules for orbital
symmetry explain how large barriers to chemical transformations in the electronic
ground state can result from the way orbital symmetry must change in a discon-
tinuous fashion during the transformation from reactant to product (Woodward
and Hoffmann, 1969). In photochemical reactions (Michl, 1990), these kinds of
barriers are greatly reduced by using photoexcitation to change the symmetry
of the initial state and provide internal energy to surmount the thermal barrier.
Similarly, the catalytic activity of enzymes can sometimes best be understood
on a quantum-mechanical basis. It is therefore difficult to decide which chemical
reactions, whether light-induced or not, constitute important examples of quantum-
mechanical optimization in biology.

Lastly, it is worth documenting that vision is not the sole photochemical pro-
cess important in biology. Other examples include deactivation of excited states
in DNA, thus avoiding photodamage to the genetic code, vitamin D (calciferol)
biosynthesis, photoinduced electron transfer in photosynthesis, cell photoprotec-
tion using melanin, bioluminescence and sophisticated sunscreens used by coral.
An important class of proteins that operate by light activation are the phytochromes.
They play a role in a multitude of processes including phototropism and phototaxis
(growth/movement determined by response to a light source), photoperiodism, seed
germination and circadian clocks.
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1.3 Light particles and tunnelling
1.3.1 Electron tunnelling

Electron flow between distant (greater than 15 A) redox-active cofactors is cen-
tral to the operation of aerobic respiration and photosynthesis. Proteins are not
electrical conductors, yet charge needs to move in such biological processes. The
quantum-mechanical process of tunnelling allows classical energy barriers to be
circumvented to some extent, basically by virtue of the time—energy uncertainty
principle. Electrons can thereby be directed through space by protein backbones.
Such long-range electron transfer in the biologically relevant timescales of milli-
to microseconds plays a key role in the energy transduction pathways of life.

Tunneling in biological systems was first reported for electron-transfer reactions
in proteins (Marcus and Sutin, 1985). Investigations on ruthenium-modified pro-
teins carried out by Gray and co-workers in the past two decades have yielded a
remarkably detailed description of the distance- and driving-force dependences of
long-range electron tunnelling rates in proteins (Gray and Winkler, 2003). Exper-
imental observations of weak temperature dependence in rates and exponential
decay of the transfer rate as distance increases indicate that long-range electron
transfer in proteins occurs by single-step electron tunnelling across a long distance.
This mechanism is in contrast to a multistep hopping mechanism. The protein
medium provides electronic states associated with pathways along its backbone
that help donor and acceptor wavefunctions delocalize towards each other. The
result is a ‘superexchange’ mechanism that speeds up electron tunnelling rates,
usually by >10 orders of magnitude compared with similar distances through a
vacuum. Theoretical analysis has even predicted the dominant pathways the elec-
tron transfer will take through proteins, and these involve not only covalent bonds,
but also hydrogen bonds or even van der Waals contacts. In spite of the prediction of
tunnelling pathways, Dutton and co-workers have shown that an empirical model
based on average protein density, effectively treating the protein as a structureless
random medium, also explains the experimental data (Page ef al., 2003). Whether
or not proteins have evolved efficient and specialized pathways for electron trans-
duction is still an open question.

1.3.2 Proton tunnelling

In many enzymatic catalytic reactions, the rate-determining step involves the trans-
fer of a proton, hydride or hydrogen atom (Allemann and Scrutton, 2009). The
simultaneous transfer of a proton and an electron from different sites (so-called
proton-coupled electron transfer) also plays an important role in a wide range of
biological functions. Moreover, in some enzymes, quantum effects may contribute
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to catalytic rates because of the energy shift due to the zero-point energy that gives
a quantum correction to the classical activation free energy and the H-tunnelling
effects (Nagel and Klinman, 2006). Such nuclear quantum effects represent another
class of quantum phenomena in biological systems. It is the short de Broglie wave-
length of the proton wavefunction that makes H-tunnelling extremely sensitive to
distance fluctuations, leading to the possibility of strong coupling between pro-
tein motions and the H-tunnelling kinetics. A hotly debated issue in enzymatic
catalysis is whether or not the couplings to slow protein dynamics serve to control
the quantum tunnelling and contribute to an increase in the catalytic reaction rate.
Such ‘gating dynamics’ have been proposed to explain anomalous temperature
dependences found in several enzymes.

1.3.3 Olfaction

A related area of interest is olfactory reception (Turin, 1996; Brookes et al., 2007;
Brookes, 2010). Olfaction is the sense of smell, or the activation of related sensory
cells in invertebrates (for instance to detect pheromones). How these systems work
and particularly how such a range of odorants can be discriminated by a restricted
number of distinct olfactory receptors has not been fully elucidated. It has been
suggested that odorants are not discriminated solely by their shape and therefore
how they bind to olfactory receptors. Among the various theories, it has been
suggested that a second ingredient acts together with the lock and key model; that
is, the vibrational spectrum of the odorant is important. It has been suggested that
the mechanism in play here is a phonon assisted tunnelling of an electron between
two receptor sites via the odorant. Here is an example where a more detailed
understanding of the protein, as well as its interactions with a bound analyte,
are critical for testing this hypothesis for the operation of olfactory receptors and
the possible role of quantum-mechanical tunnelling. A recent detailed study of
the Drosophila odorant receptor mechanism could not find good evidence for the
vibrational theory (Guo and Kim, 2010), yet other (Franco et al., 2011) clinical
studies show fascinating evidence in its favour.

1.4 Radical pairs
1.4.1 Magnetoreception

There is compelling evidence that numerous organisms, including magnetotactic
bacteria, insects, amphibians, birds, fish, sharks and rays, and some animals orient
themselves using the earth’s magnetic field (Wiltschko and Wiltschko, 1995a;
Kirschvink et al., 2001; Rodgers and Hore, 2009; Wajnberg et al., 2010). It has
been shown, for example, that homing pigeons can be trained to recognize a weak
magnetic anomaly. Their response after training can be upset by attaching a magnet
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to a part of their beak known to contain a biogenic magnetite body, suggesting that
this structure — also found in the organisms mentioned above — is involved in
sensing the magnetic field. Other studies have established how the magnetic field
lines are sensed in order to derive direction. There is now no doubt that many
creatures can navigate using a magnetic sense.

One hypothesis for the mechanism underlying magnetoreception is that mag-
netite bodies (arranged as an oriented string) are coupled to special receptors so
that mechanical torque in response to magnetic field changes activates an ion chan-
nel to initiate signalling. This hypothesis explains the presence and use of the
chains of magnetic bodies that have been clearly identified. Nevertheless, precisely
how the signalling happens is unknown. In some studies it has been found that
magnetoreception, at least in the case of newts and birds, is light dependent. This
work has strengthened the case for a second hypothesis for the mechanism of mag-
netoreception, whereby a light-initiated chemical reaction, possibly occurring in a
cryptochrome photoreceptor, is tuned by changes in magnetic field. Changes in rate
of a reaction involving radical pairs, caused by changes in magnetic field orienta-
tion, are suggested to provide magnetic field transduction. A substantial amount
of experimental evidence shows that the light dependence includes wavelength
specificities and is evidently complex.

The magnetic sense has obvious biological relevance because it aids navigation,
orientation and long-range migration, but is the underlying mechanism quantum-
mechanical? The answer depends on which mechanism is ultimately found to
underpin magnetoreception. The first mechanism described above is based on clas-
sical electromagnetism and can therefore be anticipated without resort to quantum
mechanics. The second mechanism builds on the idea that ladders of electronic
states are prevalent in biological examples of quantum mechanics, but in this case
those ladders, specifically the relative energies of singlet and triplet states, are used
to sense an external stimulus. The explicit dependence of this proposed mechanism
on electron spin means that quantum mechanics lies at the heart of the explanation.
The possibility that biological systems are performing a kind of magnetic reso-
nance experiment to guide their seasonal migration patterns or other navigation is
fascinating. Crucial advances, however, are needed to obtain compelling experi-
mental connections between the behaviour of organisms and the molecular level
mechanisms underlying the traits.

1.5 Questions for the present
1.5.1 Do quantum effects introduce new functions in biology?

This is a critical question and one that is being actively pursued by researchers at
present. Finding new ways that quantum mechanics helps biological function will
drive the field forward. Examples might include sensors, catalysis, photoprotection
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Table 1.1 Examples of biological phenomena and putative underlying
quantum-mechanical processes

Biological phenomenon Quantum process
Vision, bioluminescence, light-sensing/ Large energy gaps because of electronic
response (e.g. phytochromes), vitamin D excited states
biosynthesis
Respiration, photosynthesis Electron tunnelling
Magnetoreception Radical pairs and electron spin
Light-harvesting in photosynthesis Electronic energy transfer involving

quantum coherence

and the use or production of light. Thinking in terms of realistic high-level biological
function, this may be one of the hardest questions to answer.

Viewed as a ‘control knob’ or design tool in the construction of biological
devices, one important question is: do quantum effects enable the introduction of
qualitatively new functions in biological systems? In other words, are some biolog-
ical phenomena operating in a regime where classical approximations break down
(see Table 1.1)? Answering this question in general terms is a goal of the present
volume. More specifically, taking photosynthetic light-harvesting as an example,
the answer is clearly yes. A natural pigment—protein system at finite temperature
will of necessity have variations in local energies, producing a rough energy land-
scape. Quantum coherence allows temperature insensitivity and robustness to trap
states. It also enables construction of energy flow rectifiers (Ishizaki and Fleming,
2009a), thereby influencing the relative rates of forward and backward energy flow.

Coherent energy transfer, in principle, allows constructive or destructive inter-
ference between multiple pathways. We are not aware of specific examples of this
phenomenon in natural systems, but it clearly provides a new type of control fea-
ture. For maximum efficiency of transport processes, the key point is to correctly
balance coherent behaviour and dephasing timescales (Rebentrost ef al., 2009a).
Exact models of quantum transport as a function of coupling strength to the envir-
onment (proportional to dephasing rate) show a maximum in the rate for a given
reorganization energy (Ishizaki and Fleming, 2009b). Our present understanding is
that natural photosynthetic light-harvesting systems operate in a parameter range
at or around this maximum value.

1.5.2 Are our experimental methods adequate?

Single-molecule studies of enzyme action have produced remarkable new insights
into enzyme function (Min et al., 2005). These phenomena were previously
hidden in the ensemble average common to, and necessary for, all earlier
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measurements. Studies of quantum-dynamical phenomena at the single molecule
level are very challenging because of the timescales involved. However, this is
encouraging progress in this direction. Brinks ef al. (2010) recently reported the
observation of vibrational coherence in individual molecules at ambient tempera-
tures by means of a phase-locked spontaneous fluorescence technique. Application
of this technique to detection of electronic coherence in photosynthetic complexes
may provide important new insights into quantum energy flow in biology and
motivate the development of new theoretical studies.

1.5.3 Are our theoretical methods adequate?

Again, taking photosynthesis as our example, we note that standard theoretical
approaches are based on the quantum master equation which describes the time
evolution of reduced density matrices. The ensemble (statistical) average inherent
in such an approach may wash out details of the quantum behaviour (Dawlaty ez al.,
2012; Scholes et al., 2012). Recent work using a mixed quantum/classical approach
strongly suggests this is so (Ishizaki and Fleming, 2011; Wong et al., 2012).
The simulations show that quantum-coherent motion is robust in the individual
realizations of the environment-induced fluctuations, contrary to intuition obtained
from the reduced density matrices. Indeed our results imply that experimentally
detected delocalized states (excitons) in the ensemble averaged behaviour indicate
the existence of wave-like energy flow in individual complexes. Taking such recent
results as a first approach, it would seem that investigating quantum phenomena at
the individual protein level for a variety of biological processes should prove very
rewarding.

There has been significant interest from the quantum information community,
and those researchers concerned with exploration of non-classical correlations
from more formal perspectives than are usual in the chemical community. For
example, Wilde et al. state, “Agreement between quantum theoretical models does
not irrevocably demonstrate the presence of quantum effects” (Wilde ez al., 2010),
while Bradler et al. comment, “Standard measures of quantum behaviour are more
convincing than, say, a claim that wave-like motion in population elements in a
density matrix is a signature of quantumness” (Bradler e al., 2010). However, it
remains to be seen whether the methods and insights of quantum information theory
bring new understandings and predictions to quantum biological phenomena.

1.5.4 What opportunities do an understanding of
quantum-biological phenomena bring?

Biology shows the existence of capabilities, efficiencies and emergent phenom-
ena that would perhaps be impossible to imagine otherwise. Biological energy,
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communication and self-repair, for example, are all emergent functionalities. Many,
if not all of these, rely on phenomena that are important only at the nanoscale
and on ultra-precise construction achieved through self-assembly. The methods
of synthetic biology may well offer the best opportunities for making progress in
implementing nature’s design principles in synthetic devices based on quantum
phenomena. Potential areas for quantum devices are in sensing, in energy harvest-
ing and storage, biosynthesis and in quantum simulation, but likely there are many
more possibilities remaining to be discovered.

1.6 Some wide-reaching questions
1.6.1 What is life and consciousness?

Perhaps one of the biggest questions in all of science is that concerning the essence
of life. How does the brain work, what is consciousness, free will and the sense of
self? How does the central nervous system work and how do certain drugs influence
it?

As a consequence of the importance of such questions, and the confluence of
interest from researchers with a range of specializations, one of the most promi-
nently recognized debates on a possible role played by quantum mechanics in
biology is that concerning brain function. The ethereal notion of consciousness is
particularly perplexing and there have been numerous speculations about the spe-
cial roles played by quantum mechanics. Most famously, for example, Hameroff
and Penrose have hypothesized that quantum-mechanical superposition states of
microtubules can rationalize brain activities leading to thoughts, feelings, sense
of self and transitions of consciousness (Hameroff, 1998). Tantalizing questions
have been examined that work, such as the abrupt transition to unconsciousness
caused by anaesthetic drugs (Hameroff, 2006). Nevertheless, the rather qualitative
arguments presented so far are not easily assessed by experimental approaches
(Davies, 2004; Schuster, 2009). Most criticism focuses on decoherence (Tegmark,
2000). Reimers and co-workers recently examined the Penrose—Hameroff orches-
trated objective-reduction proposal for human consciousness in more detail, and
concluded that it is not feasible (McKemmish et al., 2009). To be fair, Hameroff has
noted objections to a number of interpretations of that paper and it is certainly not
easy to dismiss outright the role of microtubules in brain function (Hameroff ez al.,
2010), although the proposed quantum aspects have yet to be proven or justified
(Litt et al., 2006).

1.6.2 Did quantum mechanics play a role in the origin of life?

The confluence of events that led to initiation of life on earth are unknown, but
it is clear that the revolution was the production of a molecular template that can
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be replicated. In the very simple manifestations of life at its outset, was quantum
mechanics more prevalent than now? If photochemistry played a role in produc-
ing the molecules upon which life is based, is this an instance of quantum biol-
ogy? These questions are all very speculative, but could feasibly unveil interesting
hypotheses and might one day be tested by experiments mimicking the dawn of
life.

1.6.3 Is quantum-mechanical mechanism intrinsic or was
it selected through evolution?

What approaches can be used to assess the biological relevance or necessity of
quantum-mechanical phenomena? Biological significance is not easy to quan-
tify directly. For example, quantum-coherent light-harvesting does not necessarily
translate into increased photosynthetic activity because other processes (e.g. CO,
fixation) can be limiting under various environmental conditions. An approach is
to ask whether or not biological systems recognize quantum-mechanical mech-
anisms as a trait that confers fitness. In other words, it would be compelling to
discover whether quantum-mechanical aspects of processes like light-harvesting
have been fine tuned during evolution. The traits of living organisms, their relation-
ships and their evolution from one species to another are described by phylogenetic
reconstruction. Phylogenetic analysis has played an important role in establishing
relationships among species of organisms and between phyla. Perhaps similar
analyses can be used to examine biophysical traits and to establish how photophys-
ical and molecular-level mechanisms have evolved or have contributed to species
diversification.

Finally, sometimes it is said that if quantum mechanics provides the optimum
means of performing a function, then biology will have discovered and harnessed
that ability during billions of years of evolution. That is a misconception. Nature
is not considered to be perfectly optimized. Evolution tends to accumulate new
functions or optimizations into existing motifs, rather than designing from scratch
for a particular task. For example, the respiratory enzymes in mitochondria evolved
from the extant machinery of photosynthetic reaction centres. Therefore, quantum
mechanics will not necessarily be discovered by biology, even if it confers important
new abilities, if the essential precursor infrastructure does not already exist and
serve a function.
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Quantum biology, as introduced in the previous chapter, mainly studies the dynam-
ical influence of quantum effects in biological systems. In processes such as exciton
transport in photosynthetic complexes, radical pair spin dynamics in magnetore-
ception and photo-induced retinal isomerization in the rhodopsin protein, a quan-
tum description is a necessity rather than an option. The quantum modelling of
biological processes is not limited to solving the Schrédinger equation for an iso-
lated molecular structure. Natural systems are open to the exchange of particles,
energy or information with their surrounding environments that often have com-
plex structures. Therefore the theory of open quantum systems plays a key role in
dynamical modelling of quantum-biological systems. Research in quantum biol-
ogy and open quantum system theory have found a bilateral relationship. Quantum
biology employs open quantum system methods to a great extent while serving
as a new paradigm for development of advanced formalisms for non-equilibrium
biological processes.

In this chapter, we overview the basic concepts of quantum mechanics and
approaches to open quantum system or decoherence dynamics. Here, we do not
intend to discuss all aspects of about a century-old theory of open quantum systems
that dates back to the original work of Paul Dirac on atomic radiative emission and
absorption (Dirac, 1927). Instead we mainly focus on the integro-differential equa-
tions that are commonly used for modelling quantum-biological systems. Interested
readers can learn more about open quantum systems in various books and review
articles in both physics and chemistry literature, including the references (Kraus,
1983; Breuer and Petruccione, 2002; Kubo et al., 2003; Weiss, 2008; May and
Kiihn, 2011).
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Published by Cambridge University Press. © Cambridge University Press 2014.
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2.1 Quantum mechanics concepts and notations

Quantum mechanics provides a mathematical framework that allows us to envision
and describe the microscopic world of molecules, atoms and sub-atomic particles.
It is the most complete and experimentally verified physical theory known. Here,
we briefly state the basis of quantum mechanics composed of four postulates on
(i) system state representation, (ii) time evolution, (iii) measurement by an observer
living in a classical world' and (iv) systems with multiple degrees of freedom. In the
following statement of the postulates, we avoid rigorous mathematical definitions
to make it accessible to readers with some linear algebra background.

Postulate 1 (State space) Associated with any physical system is a linear space
of complex vectors called Hilbert space H. The state of a system is described by a
density operator p that is a trace one positive operator defined on the Hilbert space.
A density operator is often called a density matrix for a finite dimension Hilbert
space, e.g. an electron two-state spin space. Specifying the Hilbert space sets the
stage for a mathematical description of a physical system in a quantum regime.

A quantum system is in a pure state if the density matrix is rank-one p = |V ) (V|
(here we use the bra-ket notation for a vector |y) and its Hermitian conjugate (i/|).
A pure state can be simply represented by the vector |i), often referred to as a
wavefunction, with normalization property (¥ |¢) = 1. A quantum state that is not
pure is called a mixed state. A simple test for the purity of a density matrix p is the
equality Tr(p?) = Tr(p).

Postulate 2 (Dynamical evolution) The evolution of an isolated or closed quantum
system is governed by the Liouville—von Neumann equation, a first-order linear
differential equation,

dp(t) o
TR —fl[H(t), p(1)]. (2.1)

The Hermitian operator H is the system Hamiltonian containing all information
about the interactions and forces driving the system dynamics. The coefficient i &
6.63 x 1073* m>kg/s is Planck’s constant which relates the dynamical timescales
to the system energy.
For the special case that a system is in a pure state, p = | ) (|, Equation (2.1)
reduces to the Schrodinger equation,
d|y (1)

i
=~ HOW ). 22)

! Here, we use the orthodox language of quantum mechanics that distinguishes a quantum world from a classical
one. In the context of this book, we generally follow the standard ‘shut up and calculate’ approach to quantum
mechanics, as expressed by David Mermin.
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We can also, equivalently, express the postulate on a closed-system dynamic based
on the solution of the Liouville-von Neumann equation. That is, Equation (2.1)
guarantees a unitary evolution,

p(t) = U)pO)UT (1), (2.3)

with the unitary operator U(¢) = T, exp[—i fol H(t")dt']. The symbol T, denotes
a time-ordering operator.”

Postulate 3 (Observable and measurement) Associated with any physically
measurable property g is a Hermitian operator Q defined on the Hilbert space.
Consider the spectral decomposition Q = ) g, P,, with projective operators P,
satisfying P,, = PZ2. A measurement apparatus randomly outcomes a value g,, for
the property g. For a system in a pre-measurement state p, such a random outcome
occurs with probability Tr(pPy,). As a result the expectation value of the physical
property ¢ is given by (Q) = Y, ¢ Tr(pPm) = Tr(0Q).

Any quantum measurement inevitably changes the state of a quantum system that
is not an eigenstate of the measured observable. A quantum state p collapses into
the state p,, = Py, p P, /Tr(pPy) upon recording outcome ¢, by the measurement
apparatus. The quantum state collapse process is not instantaneous in general and
happens in a timescale determined by the measurement protocol.’

In a real experiment, the average value (Q) is obtained either by a statistically
large number of measurement repetitions on a single system every time prepared in
the same state p, or by simultaneous measurement on a large ensemble of systems
all in the same state p. A quantum biology related example for these two different
approaches is electronic spectroscopy with a single molecule or with an ensemble
of molecules.

Postulate 4 (Composite systems) Suppose we have two quantum systems A and
B with Hilbert spaces H4 and Hp. The Hilbert space of the combined system
A + Bisconstructed as H g = Ha ® Hp, where ® denotes a tensor product. In
another scenario, the combined space of two different degrees of freedom (DOF)
of a system can be formed in a similar way. For instance, a proper Hilbert space to
describe an electron in an electromagnetic field is H,i, ® Hy, where Hy,iy, is the
two-dimensional spin space and H; is the space of a spatial wavefunction.

After this short review on quantum mechanics postulates, we delve into the
theory of open quantum systems. We try to adhere to the mathematical notations
used above.

2 The operator T is defined as 74 A(¢) B(t){= B(r)A(t)if t > t,= A(t)B(r)if T <t}.

3 A more general measurement scheme is to indirectly measure the system by coupling it to a probe, also a
quantum system, and to perform projective measurement on the probe. See (Breuer and Petruccione, 2002) for
such a generalized quantum measurement.
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2.2 Open quantum systems: dynamical map approach

We have learned that the time evolution of an isolated quantum system is governed
by the Liouville equation (2.1). However, no ideally isolated system exists in
the real world except the universe as a whole. Then the question arises of how
to formulate the evolution of an open quantum system. The general approach to
answering this question can be divided into two categories: Quantum Dynamical
Maps and Quantum Master Equations. In the former approach, the system evolution
is described as a mapping between the system states at two different times, ignoring
the intermediate moments. In the latter approach, an integro-differential equation
captures all infinitesimal variations of the system state over time. The counterparts
of these two approaches for closed quantum systems are the unitary map (2.3) and
the Schrodinger equation (2.2), respectively. This analogy may imply that quantum
maps are simply the solutions of master equations. However, in general, this is not
true for open quantum systems. The quantum map and master equation formalisms
have been developed mostly independently. A quantum map was known as the right
description for sudden changes in the system state aftermath of a measurement event
(Kraus, 1983; Alicki and Lendi, 1987), while quantum master equations were first
developed in quantum optics to describe photon emission processes (Scully and
Zubairy, 1997).* An example of where the two approaches meet is the famous
Gorini—Kossakowski—Sudarshan—Lindblad master equation (Section 2.6), which
is derived from the complete positivity property of quantum maps. In this chapter,
we briefly review quantum-dynamical maps and their classification as completely
positive and non-completely positive maps.

In a full quantum-mechanical treatment of an open quantum system, the environ-
ment (or commonly called the bath) is also modelled as a second quantum system
coupled to the primary system of interest. The ideal model of the bath as the world
minus the system is mathematically intractable, therefore bath is usually modelled
as an effective set of external DOF, for instance, a set of harmonic oscillators
(Leggett et al., 1987) or a set of spins (Prokof’ev and Stamp, 2000).

Consider a quantum system S and a bath B, with respective Hilbert spaces Hg
and Hp, such that together they form one isolated system, described by the joint
initial state (density matrix) psz(0). Applying Equation (2.3), the system—bath state
at time ¢ is given by

psp(t) = USB(Z),OSB(O)USTBU)- 2.4)

The propagator Ugp(?) is a unitary operator, the solution to the Schrodinger equa-
tion Usp = —(i /h)HspUsp, where Hgp is the total system—bath Hamiltonian. The

4 We exclude the Pauli rate equation which describes population transfer only.
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state of the system of interest S is found by the standard quantum-mechanical
prescription

ps(t) = Trp[psp(t)] = TYB[USB(t)PSB(O)USTB(t)], (2.5)

where Trp represents partial trace operation, corresponding to an averaging over
the bath DOF. The quantum-dynamical process (QDP) (2.5) is a transformation
from pgp(0) to ps(t). However, since we are not interested in the state of the
bath, it is natural to ask: under which conditions is the QDP a map from pg(0) to
ps(1)? A simple answer to this question is an initial uncorrelated system—bath state:
0s5(0) = ps(0) ® pp(0). This condition always holds if the system is in a pure state
ps = |¥) (| (Shabani, 2009), otherwise the physics of the system determines the
validity of this assumption. The corresponding quantum-dynamical map can be
derived as follows. Consider the diagonal form of the bath initial state which is
usually assumed to be a thermal equilibrium state pg(0) = >, Ax|¢i) (¢x|. In this
case Equation (2.5) reduces to

pst) = Y Al Uss(0)1e) psO) e Us (). (2.6)
Lk

where {|y;)} is a complete basis for the bath Hilbert space. In the case of a
closed system, this equation simply reduces to a unitary transformation pg(t) =
Us(t)ps(0O)U ;r(t). A compact representation of the above equation, known as
Kraus representation, is ps(t) =), Eo,(t),oS(O)E;E(t) (Kraus, 1983). The prop-
erty » ., El(t)Ea(t) = Ig guarantees the unity trace of the final state pg(¢). The
above map (2.6) was independently studied by Choi on the classification of com-
pletely positive (CP) maps (Choi, 1975). A linear map & acting on the space of
complex matrices, ® : C"** — C™*™ is called positive semi-definite if $(A) > 0
for all positive matrices A € C**". The map & is called CP if the extended map
Iy ® ® acting on the extended Hilbert space C¥** @ C™"*" is positive semi-definite
for all k (I denotes the identity operator acting on C***). Choi showed that a map
is CP if and only if there exist operators E, such that (.) =), Ea.EJ,. The CP
property has an interesting interpretation in the context of quantum dynamics. A
real system is not isolated and evolves in the presence of other systems. Using a
CP map to represent the dynamics of the system, not only preserves the positivity
of the system density matrix but also the density matrix of all present systems.
This property was so appealing that it led some quantum physicists to assume it
as a necessary condition for any dynamical map, either obtained directly from the
Liouvillian equation (2.5), or indirectly as a solution to a master equation. Next,
we challenge this idea and go beyond Kraus/CP maps and discuss an approach for
obtaining non-CP quantum-dynamical maps.
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Inverse of a CP map is almost never CP
(unless it's unitary)

Figure 2.1 A periodic dynamics of coupled two-level systems with time period
T. The dynamics of a TLS from time origin to some time 7, ®¢p(0 — 1), can
be described by a CP map while the evolution between times t and the end of a
period, ®(r — T'), must be a non-CP mapping.

2.2.1 Non-completely positive quantum maps

As stated in the preceding section, the old school of open quantum system theory
assumes a CP map as the only acceptable form of a quantum dynamical map. This
belief has been seriously challenged both theoretically and experimentally. For a
historical background, we refer the interested reader to Shabani (2009).

Here we exemplify the violation of CP for a simple quantum system. Consider
two coupled two-level systems (TLS) interacting via the Hamiltonian H =hyo, ®
o, for some coupling strength y.> We treat one of the TLSs as a system and the
other as a bath. The dynamics of these TLSs is periodic in time with a period of
y~!, which means that if they start from a product state psp(0) = ps ® pp, after
time 7 = y ! system and bath return to state ps(T) = ps ® pp. This scenario is
depicted in Figure 2.1. The evolution of the system state between the time origin
and some intermediate time 7 can be represented by a CP map ®¢p(0 — 1), as
explained before. On the other hand, the total evolution from the time origin to the
end of a period T is the trivial identity map, ®cp(0 — T) = Is. Now we ask what
is the dynamical map between the states ps(t) and ps(7")? The answer is simply
[®cp(0 — 7)]7!. Note that the inverse of a CP map can be a CP map if and only
if the map is a unitary transformation. Hence in this example, the dynamical map
®cp(t — T) exists and is non-CP.

Now let us go back to the question we originally asked. Is it always possible
to describe an arbitrary evolution of a quantum system Equation (2.5) as a map
from pg(0) to ps(¢)? A constructive affirmative answer to this question was given
in Shabani and Lidar (2009a,b), which we outline here.

We first construct a quantum map for an initial system-bath state of the form,

psp(0) = Y ali)(j| ® gy 2.7)
ij

5 The Pauli operator o, is defined as o = ((1) Pl ) in a basis representing the levels of a TLS.
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with bath operator ¢;; satisfying Tr[¢;] # 0 or ¢;; = 0 ({|7)} is an orthonormal basis
for Hg). A state of this form is called special linear (SL). What is interesting about
a SL state is that any state not in this form can be approximated arbitrarily close
by a SL state. The dynamical equation (2.5) for a SL state (2.7) is

pst) = Y oy Tep[Us(D)i) (| ® 9y Uls(0)]. (2.8)

iy

This relation can be equivalently written as a map dgp between pg(0) =
> @ili) (jl and ps(2):

ps(t) = PsL(t, Olps@] = Y AVEPpsOP;(WE)',  29)

i,j.k.a

where ALY are the singular values in the singular value decomposition ¢; =
S M x5 (981, Also, V& = (Yl Usslxd) and Wi = (9l Usplyg), with {yc))
being an orthonormal basis for the bath Hilbert space Hp. The quantum map
®g;. is constructed as a function of the bath operators {¢;;} only and does not
depend on the system state ps(0) specified by the coefficients e;;. In this sense, for
fixed bath operators {¢;;}, the map ®g is a linear map acting on density matrices
ps = Trg[psp] corresponding to the system—bath states psp = Zij a;li) (| ® @i
This is similar to the linearity of the Kraus map representation (2.6), as fixing the
bath state pg(0) ensures the linearity of the map.

Next we describe how to derive a map representation for an arbitrary initial
system—bath state. The density matrix psp(0) can be split into two parts: one is a
summation of the SL product terms «;;|i) (j| ® ¢;; with bath operator ¢;; satisfying
Tr[g;] # 0 or ¢; = 0, the other includes product terms B;li){j| ® v, of which
Yij # 0 and Tr[v;;] = 0:

psp©0) = > ayli)(jl @i+ Y Bylid(il® . (2.10)

ij(SL) ij(non—SL)

The set of traceless matrices {1/;;} is a zero measure in the space of all bath operators.
This explain why any non-SL state can be well approximated by a SL state.

The dynamics for a non-SL state is also described by a map. By inserting the
decomposition (2.10) into Equation (2.5), we find,

ps) = D ey Teg[Uss(D)]i){j] ® 9y Udp(0)]
ij(SL)
+ > BTealUss0i)(j| ® WyUls(0)]. @.11)
ij(non—SL)

Notice that the second term in decomposition (2.11) has no contribution to the sys-
tem, only state pg = Trg[psp], thus can be treated as a constant K,,,_s1 . Therefore
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Equation (2.11) can be expressed as an affine quantum map,

D1, 0)[ps(0)] = Ds(2, 0)[ps(0)] + Knon—sL, (2.12)

where the linear map ®g; is givenin Equation (2.9). Itis argued in Shabani and Lidar
(20092) that the above affine map is actually linear, considering the map acting
only on the space of the density matrices. Furthermore, this map is Hermitian,
meaning that it preserves the Hermiticity of its input state. The generalized Kraus
representation for a non-CP Hermitian map is

ps) =Y Ea(0psOELN) — Y Eg(t)ps(OE} (), (2.13)
a B

with the trace preserving condition ) El(t)Ea(t) — Z,s Eg(t)Eﬂ(t) = [g. This
completes an explicit expression for a non-CP map based on the system-bath
parameterization in Equation (2.10). However, other derivations of a quantum map
are possible upon different representations for the state pgp(0) that can reflect
experimental constraints.

A CP or non-CP dynamical process corresponds to different physical conditions.
A biology related example is the case of the light absorption process by electronic
state of a molecule, where the applicability of the Franck—Condon condition can
distinguish a CP from a non-CP dynamical process of electronic states. The Franck—
Condon principle states that the internal dynamics of electronic states can happen
over much faster timescales than the dynamics of nuclear states, such that nuclear
DOF can be considered to be dynamically frozen (Atkins and Friedman, 1999)
during the light absorption process. Under these circumstances, there would be no
initial correlation between the electronic and nuclear DOF. Therefore the dissipative
dynamics of electronic states after initial excitement can be described by a CP
quantum map. Conversely, violation of the CP property is evidence for the violation
of the Franck—Condon approximation.

2.3 Open quantum systems: master equation approach

Although quantum-dynamical maps provide a full description for the dynamics of
an open system, this is not an effective formalism to represent continuous-time
dynamics. To be specific, in order to model the dynamics for a time period [0, T'],
we need to assign one full map for every time instance ¢ € [0, T']. In the context of
closed systems, that means specifying the set of unitary transformations U;¢(o, 7],
which is clearly redundant as all dynamical information can be expressed by a single
Liouville (2.1) or Schrédinger (2.2) equation. A proper approach to formulating
continuous open quantum system dynamics is to use quantum-dynamical equations,
generally known as quantum master equations (QME). In the following sections,



22 Open quantum system approaches to biological systems

we review different QMEs employed in modelling quantum-biological systems. We
exemplify the application of QMEs by modelling energy transfer in photosynthetic
complexes. Therefore, we focus on bosonic environments representing vibrational
modes of a protein structure or an electromagnetic reservoir. The other class of
environmental models is spin-bath (Prokof’ev and Stamp, 2000), which can be
relevant to some biological processes such as magnetoreception. This chapter does
not address this latter class, although some of the presented master equations can,
in principle, be used to describe decoherence dynamics induced by a spin-bath.

The rest of this chapter is organized as follows. We first present a formally exact
QME based on the projection operator technique. Then we consider its perturbative
limits in weak and Markovian system—bath coupling regimes. After this we focus
on the energy transfer process in pigment—protein complexes and discuss a number
of QMEs that can be applied in the regimes of strong decoherence with non-
Markovian characters.

2.4 Formally exact QME
The total Hamiltonian governing the dynamics of system and bath can be written
as follows:

H = Hg + Hgz + Hp. (2.14)

The total density operator of system and bath, denoted as pgp(¢), is governed by
the following quantum Liouville equation:

) .
(1) = =i L psa(t) = —%[H, ps(®)]. (2.15)

Let us introduce the zeroth order Hamiltonian as follows:
Hy = Hg + Hjp. (2.16)

Then, in the interaction picture of Hy, Equation (2.15) becomes

%m(t) = —iLsn1(0)p1(1) = — = [ Hsp (). /(1) 2.17)
where p;(t) = e/ pgp(t)e="Hot/t and Hgp j(t) = ' M0'/" Hope=iH!/h In general,
exact numerical solution of Equation (2.17) is impossible because the bath consists
of virtually infinite degrees of freedom. On the other hand, the dimension of the
system is relatively small. Thus, it is more plausible and economical to solve for
the system part, which is the primary interest, and to make approximations for the
bath part if necessary. For this, let us define the following reduced system density
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operator:
ps,1(t) = Trg[pr(1)]. (2.18)
Let us define a projection operator and its complement as follows:
P() = Trl1® pp(0), (2.19)
Q=1-"7P. (2.20)

Here, (-) represents an arbitrary operator. For a bath at temperature 7, we assume
05(0) = e PHs /Tr[e PHr] with B = 1/kgT.° Applying P and Q to Equation
(2.17) and inserting the identity, P + Q = 1, between Lgp ;(¢) and p;(¢), we obtain
the following time evolution equations for the projected and unprojected portions
of the total density operator:

d
Eppl(f) = —iPLsp ()P + Q)p;s(1), (2.21)

d
EQ'O[O) = —iQLsp ()P + QQ)pi(1). (2.22)

First, consider the equation for the unprojected portion, Equation (2.22), which
can be written as

d
EQ'OI ) +iQLsp1(1)Qp(t) = —i QLsp ((1)Pps(1). (2.23)

A formal solution of this equation can be shown to be

Qpi(1) = Ty exp [—i /0 erESB,1<r)] Qp1(0)

—i/ dtT, exp [—i/ dr’QLSB,,(r/)] QLsp(T)Ppi(t). (2.24)
0

T

Inserting this into Equation (2.21), we obtain the following time evolution equation
for the projected portion of the total density operator:

d
E,P/)I(l) = —iPLsp1(t)Pp;(t)

—iPLsp (t)Ty exp |:—i/ dt Q£SB,1(T)] Qp;(0)
0

—/ dtPLgp (1)T; exp |:—i/ df/Qﬁss,I(fl)i| QLsp 1(T)Ppi(7).
0 T
(2.25)

6 We should explain a subtle point in modelling an open quantum system. We assume an open system is coupled
to a second quantum system, bath B. However, this is not the whole story as under actual physical conditions,
the bath is also coupled to the rest of the world, not accounted for in defining B. Such a secondary environmental
influence manifests itself in the choice of bath initial state or bath fluctuation characteristics.
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Taking a trace of this over the bath and using the fact that Pp;(¢) = ps.;(t) ® pp(0),
we find that
d
— t
o ps.1(1)
= —iTrp[Lsp.1(t)pp(0)]ps.1(7)

Trp[Las /(T exp [—i / ercSB,1<r>] Qp;(0)]
0

—/ dtTrg[Lsp(t)T4 exp [—i/ dT/Qﬁsz;,l(T/)] QLsp 1(T)pp(M)]ps,1(T).
0 T
(2.26)

This formally exact QME, as shown above, is in a closed form but it is not yet
amenable to computation because 7, exp[—i ftt dt'QLgp (t")] cannot be deter-
mined without full information on the system and bath degrees of freedom. Rather,
it serves as the starting point to make systematic approximations leading to com-
putable equations.

2.5 QME in the weak system—bath coupling limit

For weak system—bath interaction, an approximation can be made such that only
terms exact up to the second order of Lgp;(f) are kept in Equation (2.26). The

resulting equation is the well-known second-order perturbative time-convolution
(TC2) QME shown below:

d
Z)OS,I (t) = —iTrg[Lsp (1) pp(0)]ps,1(1)

i TralLsp. (1) Qpr(0)] — / e p[Lop (1) QLss /(T) Qo1 (0)]
0

- / dtTrp [CSB,I(T) Q£SB,1(T)PB O]ps,1(T). (2.27)
0

Alternatively, we can replace ps ;(7) with pg ;(¢) in Equation (2.27), which does
not affect the accuracy up to the second order of Hgp(¢). Thus, the following
second-order perturbative time-convolutionless (TCL2) QME can be obtained:

d
E,OS,I(I) = —iTrg[Lsp (1) pp(0)]ps, (1)

—iTrp[Lsp,1(t)Qp1(0)] —/ dtTrp[Lsp (t)QLsp 1(T)Qp1(0)]
0

- / dtTrg[Lsp (1) QLsp 1(T)pr(0)]ps,1(1). (2.28)
0
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Further simplification of Equations (2.27) and (2.28) is possible if the bath can
be modelled as a set of harmonic oscillators (bosonic bath) and the system—bath
interaction is linear in the displacements of the oscillators as follows:

1
Hy = ;ha)g (bgbg + 5) , (2.29)
Hsp = Y hwegei(be + bS], (2.30)
1§

with some system operators S;. For these, Trg[Lsg ;(t)pp(0)] = 0. In addition, if
we assume that the initial density operator is given by

p1(0) = ps(0) ® pp(0), (2.31)

all the inhomogeneous terms in Equation (2.27) or (2.28) disappear because
Qp;(0) = 0. As a result, the time non-local equation, Equation (2.27), reduces
to

d t
E:OS,I(I) = —/0 dtTrg[Lsp (1) Lsp 1(T)pp(0)]ps,1(T)

== Z Z/o dt {Cu(t — DSi(1), Sy (D)ps,1(7)]
o

— Ci(t — DISi(), ps.1(T)Sy(0)]}
(2.32)

where S)(1) = ¢ H!/1§e=1H!/ apnd

Co(0) =Y wlgegesTrs{(bee " + ble' ") (bs + b]) p5(0))
&

= /oo doJ(w) (coth (,BhTa)> cos(wt) — i sin(a)t)> (2.33)
0

are bath correlation functions. In the above equation, the following spectral density
has been defined,

(@)=Y geigerd® — wp)o?, (2.34)
§

which carries information about the bath physical structure. The spectral den-
sity can be specified either via direct calculations (Weiss, 2008) or spectroscopy
experiments (Mukamel, 1995). We will learn more about bath spectral density in
Section 2.7.1 in the context of electronic energy transfer. Alternatively, starting
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from Equation (2.28), we obtain the following time local equation:

d
P50 =) Ru(ps.i(0) (2.35)
Ly

where Ry () is a super-operator defined as

Ru (D)) = —/0 dt {Cpp(t — )[S1(2), Sr(T)()] — Cri(r — D[S (@), ()Sr(D)]}
(2.36)

Equations (2.32) and (2.36) are the commonly used forms of TC2 and TCL2.
Note that these equations can be obtained for any bath model as long as the condi-
tions Trg[Lsp 1()pp(0)] = 0 and p;(0) = ps(0) ® pp(0) are satisfied (Breuer and
Petruccione, 2002). It is often believed that the TCL2 equation is less accurate
than the TC2 equation because the former appears to involve an additional approx-
imation. However, in general, it is not true because the additional step needed to
get the time local equation does not affect the accuracy up to the second order of
Hgp 1 (at the level of time evolution equation) and sometimes may include correct
fourth-order terms (Jang et al., 2002a). Thus care should be taken in assessing
which one is appropriate for the nature of the problem.

2.6 QME for weak coupling to a Markovian bath

The presented exact master equation (2.26) and its perturbative reductions (2.32)
and (2.36) describe the influence of a bath with memory. The notion of memory
refers to the fact that the instantaneous bath action pg ; either explicitly depends
on the history of the system states p(t < t) as in TC2, or the dynamical generator
is time dependent (in the Schrédinger picture) as Zz, y Rur(t) in TCL2. The latter
can be interpreted as the bath remembers when the dynamics has started. Such a
dynamical property is known as non-Markovianity.” In contrast, a quantum bath
can be so rigid that the system back-action on the bath is negligible. In this so-called
Markovian regime, the QME is represented by some time-independent generator
R,

d

E'OSO) = Rlps)]. (2.37)
At a microscopic level such a condition is realized when the bath is so large that

it quickly returns to its equilibrium state upon any system induced disturbance.
The correlation functions Cj; () represent the corresponding bath non-equilibrium

7 The notions of Markovian or non-Markovian are concepts borrowed from classical random process literature,
however, the definitions in the quantum realm do not necessarily follow their classical counterparts.
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behaviour. A Markovian or memoryless decoherence dynamics is effective if ™",

the decay timescale of correlation function Cyy (¢), is much shorter than decoherence
timescale 7p.

The Markovian limit of the TC2 and TCL2 equations is the famous Bloch—
Redfield equation.® Consider the system Hamiltonian Hg = > 1, |m)(m| and
the density matrix pg with elements p,,, = (n|ps|m) in the energy eigen-basis. The
Bloch—Redfield equation for a single coupling operator S; = S is

dpzln;(t) = _ihQnmpnm + Z T (238)

n'm’

for Q,,, = Q,, — ,, and the Redfield tensor,

ann’m’ = Am’mnn’ + [\nn’m’m - Z Ankkn’(smm’ + [\kmm’kfsnn’, (239)
k

with A = 5 SumSwm C(Q@um — )y A = 5 SumSwm C* (2 — ), where
Clw) = [, dte C(1).

Equation (2.38) can be recast into the compact form (2.37) describing a Marko-
vian dynamics. The Bloch—Redfield equation has been widely used in different
areas of physics and chemistry to model decoherence and dissipation processes,
however, it suffers from one technical problem that Equation (2.38) does not neces-
sarily yield, a valid density matrix pg(#). We can resolve this problem by applying
secular approximation which ignores some high-frequency terms in (2.38), which
is valid if |Q,, — 2,|™! < p, Vn, m.” In this regime we find the following QME
in a Lindblad form:

dps(t)
dr

i |:HS + ) Im[C(A)IS*(A), ps(t)}
A

+1ZR [C(A)] (S(A) (S(8) — L{s% () <r)}) = Ry ps(t)
) - € Ps 5 » PS = KLPs

(2.40)

for the system operator S(A) = Z(Qer: A) Sum|n) (m|. The quantum map O(¢r) =
e™i!, representing the solution of Equation (2.40), is CP for any time ¢. This
property guarantees a valid density matrix pg(¢). From an abstract mathemati-
cal approach, Gorini—-Kossakowski—Sudarshan (Gorini et al., 1976) and Lindblad

(Lindblad, 1976) derived the following general form for the superoperator R in

8 The TCL2 master equation is often called the time-dependent Redfield equation.
? See Breuer and Petruccione (2002) for other parameter regimes resulting in a Lindblad equation.
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Equation (2.37) that generates an always CP dynamical map e’

1
— _; (I Y
R() = l[H,.]+§a:Aa.Aa 2{AO,AO,,.}, (2.41)

where H is Hermitian. The operators A, and H can be specified not only from a
microscopic picture but also in a phenomenological way. QMEs of the Lindblad
type have been extensively used for simulating energy transfer in light-harvesting
systems, either derived from a microscopic model (Mohseni ez al., 2008; Rebentrost
et al., 2009c¢) or applied phenomenologically (Plenio and Huelga, 2008; Cao and
Silbey, 2009; Caruso et al., 2009; Rebentrost et al., 2009b). We review some of
these studies in Chapter 7 of this book.

2.7 QMEs beyond weak and Markovian limits

In the rest of this chapter, we review various mathematical frameworks for dynam-
ical modelling of quantum systems that interact non-perturbatively with their sur-
rounding environment. As mentioned before, we focus on electronic energy transfer
(EET) in photosynthetic complexes as a biological paradigm to study QME:s. To this
end, we begin by discussing the physical modelling of pigment—protein complexes
in photosynthetic systems.

2.7.1 Quantum modelling a pigment—protein complex

Photosynthesis provides the energy source for essentially all living things on Earth,
and its functionality has been one of the most fascinating mysteries of life. Photo-
synthetic conversion of the energy of sunlight into its chemical form suitable for
cellular processes involves a variety of physicochemical mechanisms. The conver-
sion starts with the absorption of a photon of sunlight by one of the light-harvesting
pigments, followed by transfer of electronic excitation energy (EET) to the reaction
centre, where charge separation is initiated.

To describe EET, we consider a pigment—protein complex (PPC) consisting of
N pigments. We restrict the electronic spectra of the mth pigment in a PPC to the
ground state |¢,,,) and the first excited state |¢,,.). When the mth and nth pigments
are situated in close proximity and the mth pigment is excited, the excitation energy
may be transferred to the nth pigment. We assume that there is no orbital overlap
between the two molecules so that electrons can be assigned unambiguously to
one molecule or the other. In this situation the PPC Hamiltonian for describing
photosynthetic EET can be expressed as (Renger et al., 2001; May and Kiihn,
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2011),

N
Hepc = D Y Hua®)bma) Dnal + Y 1Tl dme) (Dngl ® |ug) (el (2.42)

m=1a=g,e m,n

Here, H,,,(X) = €,,,(x) 4+ (nuclear kinetic energy) (a = g, ¢) is the Hamiltonian
describing the nuclear dynamics associated with an electronic state |¢,,,), where
€ma(X) is the potential energy as a function of the set of the relevant nuclear
coordinates including protein DOF, x. The electronic coupling J,,,, is also influenced
by the nuclear motions and local polarizations of the protein environment (Scholes,
2003; May and Kiihn, 2011). However, we assume that nuclear dependence of J,,
is vanishingly small as usual. The Hamiltonian of the single-exciton manifold
composed of {|m) = |¢me) ]_[k(;ém)|¢kg)}m:1“__,N takes the form,

N
Hrpe = Y [ Hue®0 + Xy Hig®) | Imym] + Y b} (] (2.43)
m=1 m,n

The normal mode treatment is usually assumed for PPC nuclear dynamics,
because anharmonic motion with large amplitudes and long timescales produces
static disorder on timescales irrelevant to photosynthetic EET (Mukamel, 1995;
Renger et al., 2001). Furthermore, it may be assumed that nuclear configurations
for the electronic excited states of pigments are not greatly different from those for
the ground state, owing to the absence of large permanent dipoles on the pigments.
Thus, H,,,(x) and H,,.(x) can be modelled as a set of displaced harmonic oscillators:

ho

ng(X) = Emg(Xi)ng) + Z 2m.§ (ang + q,%,g), (244)
§
HmE(X) = ng(X) +th - ZhwmédeQméa (245)
§
where x?ng is the equilibrium configuration of the nuclear coordinates associated

with the electronic ground state of the mth pigment, and g, is the dimension-
less normal mode coordinate with accompanying frequency w,,: and momen-
tum pye; dpe is the dimensionless displacement. For later convenience, we set
emg(xgzg) = 0 without loss of generality. The Franck—Condon transition energy,
2, = Gme(Xg,g) — emg(xglg), is also termed the site energy in the literature. After
electronic excitation in accordance with the vertical Franck—Condon transition,
reorganization takes place from the nuclear configuration X%g to the actual equilib-
rium configuration in the excited state x_,,, with dissipating reorganization energy

_ O 0 . . . .
defined as A, = eme(xmg — €me(X,,,). This reorganization proceeds on a finite

timescale, 7,". Therefore, we can write the PPC Hamiltonian (2.43) as a system
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(electronic DOF) coupled to a bosonic bath (nuclear DOF):
HPPC = Hel + He[—nuc + Hnuc- (246)

The first term on the right-hand side is the electronic excitation Hamiltonian with
respect to the equilibrium nuclear configuration of the electronic ground state,

(x0,),

Ho =Y hQulm)(m| + Y Rdplm)(nl, (2.47)

where we have set ) emg(xmg) = 0. The second part describes the coupling of
nuclear motion to the electronic excitations,

Hel—nuc = Z Sm Vm s (248)

with §,, = |[m)(m| and V,, = — ZS hwedyeqe. The last term in Equation (2.46)
is the ensemble of the normal mode Hamiltonians, i.e. the phonon Hamilto-
nian expressed as Hy,e = ) hox(p; + qZ)/2. It should be noted that the explicit
expressions of H,; and H,;_,,. depend on the choice of a reference nuclear con-
figuration. To reduce the total PPC density operator, we suppose that the total
system at the initial time ¢ = 0 is in the factorized product state of the form,
pPPC(O) = pel(o) b2 pnuc(o)’ where /Onuc(o) = e_ﬁH"w/Trnuc[e_ﬂHmw]- This factor-
ized initial condition corresponds to the electronic ground state or an electronic
excited state generated in accordance with the vertical Franck—Condon transition.

Because {g;} are normal mode coordinates or phonon modes, Wick’s theorem
(Rammer, 2007) yields the following Gaussian property (Kubo, 1962; Kubo et al.,
2003) of u,,:

(T Vnton) Vintan-1) - . V() Vit g = D [ [TVt Vint)hmg, - (2.49)

a.p.p k¢

where V,,(t) = e'fnt/hy, o= iHnt/h = and (...)mg denotes averaging over p,, =
e PHns /Tr[e~PHne]. The sum is over all possible ways of picking pairs (a.p.p)
among 2n operators. 7 denotes an ordering operator which orders products by
some rule, e.g. time ordering 7 = T,. Therefore, all the phonon-induced relax-
ation processes can be quantified by two-point correlation functions of V,,(¢). We
assume the fluctuation—dissipation processes in one pigment are not correlated
with those in others. Fluctuations in the electronic energy of the mth pigment are
described by the symmetrized correlation function of V,,(t) as

1 _
S(t) = 5 V@), Vin(0)}mg- (2.50)
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Information on this function can be obtained by means of three-pulse photon echo
peak shift measurement (Fleming and Cho, 1996; Joo et al., 1996). In addition,
environmental reorganization involving the dissipation of reorganization energy
can be understood as the response to a sudden change in electronic state via the
vertical Franck—Condon transition, and thus can be characterized by the response
function,

K1) = %([Vma), ¥ (O) - 2.51)

The reorganization dynamics can, in principle, be measured by the time-
dependent fluorescence Stokes shift experiment (Fleming and Cho, 1996; Joo
et al., 1996), where the direct observable quantity is the relaxation function defined
by

() = /00 dt xm(7), (2.52)

with I',,(0) = 24, being the Stokes shift magnitude. The quantum fluctuation—
dissipation relation (Kubo, 1966; Kubo et al., 2003) allows us to express the
symmetrized correlation function and the response function as

B[ 7
Salt) =~ / dw T[] Coth'BTwcosa)t, (2.53)
0

Xm(t) = E/ dw J,|w] sin wt. (2.54)
T Jo

Here, J,,[w] is the imaginary part of the Fourier—Laplace transform of the response
function, 7, [@] = Im [ dte’® x,,(1), the spectral density (Kubo et al., 2003)."0 If
the environmental phonons can be described classically, the symmetrized correla-
tion, response and relaxation functions satisfy the classical fluctuation—dissipation
relation (Zwanzig, 2001),"!

1 d
S(t) = Erm(t) Xm(1) = = (1), (2.55)

Owing to the fluctuation—dissipation relation, the symmetrized correlation func-
tion, the response function, the relaxation function and the spectral density contain

10 The term ‘spectral density’ may mislead unless we draw attention to its definition. It does not in itself give the
distribution of phonon modes.

Generally, fluctuation tends to drive any system to an ‘alive’ state, while dissipation tends to relax the system
to a ‘dead’ state, as described in Zwanzig (2001). The balance between fluctuation and dissipation is required
to guarantee a thermal equilibrium state at long times. This is the physical significance of the fluctuation—
dissipation theorem expressed in Equations (2.53)—(2.55). In reality, stochastic models without any dissipative
effects correspond to unphysical pictures where the fluctuation continues to activate the system toward an
infinite temperature. The Haken—Strobl model (Haken and Strobl, 1973) is in this category.

1
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the same information on the phonon dynamics, whose characteristic timescale is
given by (Kubo, 1963)

1 /°°
T = dt T2, (2.56)
1—‘m (0) 0

although the relaxation function and the associated spectral density may have com-
plicated forms involving various components (Joo ef al., 1996). In fact, an arbitrary
relaxation function can be numerically decomposed to the sum of exponential
functions, as discussed by Meier and Tannor (1999).

2.7.2 Electronic energy transfer in photosynthetic complexes:
a case of failure for perturbative QMEs

The electronic coupling zJ between pigments and the electron—nuclear coupling
characterized by the reorganization energy /il are two fundamental interaction
mechanisms determining the nature of EET in photosynthetic complexes. The
transfer processes are usually described in one of two perturbative limits. When the
electronic coupling /iJ is small in comparison with the electron—-nuclear coupling
hiA, the original localized electronic state is an appropriate representation and the
inter-pigment electronic coupling can be treated perturbatively. This treatment
yields the Forster theory (Forster, 1948) (see the next chapter for a review on the
Forster theory). In the opposite limit, when the electron—nuclear coupling is small,
it is possible to treat it perturbatively to obtain a quantum master equation. The
most commonly used approach for this limit in the literature of photosynthetic EET
is the Redfield equation (2.38) (Redfield, 1957, 1965).

Ordinarily, photosynthetic EET is discussed only in terms of the mutual relation
between magnitudes of the two couplings, as just described. However, we should
not overlook that the nature of EET is also dominated by the mutual relation between
the two timescales, the characteristic timescale of the nuclear reorganization, t™",
and the inverse of the electronic coupling, J ~1 that is, the time the excitation needs
to move from one pigment to another neglecting any additional perturbations. In
the case of T™" « J~!, it is impossible to construct a wavefunction straddling
multiple pigments. The nuclear reorganization introduces fast dephasing, and hence
EET occurs after the nuclear equilibration associated with the excited pigment.
In this situation, EET is described as a diffusive motion similar to the classical
random walk; it follows classical rate laws where the transition rate is given by the
Forster theory. In the contrary case of J~! « ™", the excitation can travel almost
freely from one pigment to others according to the Schrédinger equation, until the
nuclear configurations are quenched by the reorganization. The excitation travels
through photosynthetic complexes as a quantum-mechanical wave packet, keeping
its phase coherence. Thus, this process is termed coherent transfer. It is worth
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noting that the timescale of energy transport does not exceed that of J~! whenever
™ « J~or J7! « ™. Obviously, there exist regimes of EET where the two
coupling magnitudes and/or the two timescales compete against one another, i.e.
A ~ J and/or t™" ~ J~!. These intermediate regimes are typical situations for
photosynthetic EET (van Amerongen et al., 2000; Cho et al., 2005), and therefore
they are of considerable interest. As a result, perturbative or Markovian master
equations fail to provide a proper description of EET in natural systems. We refer
readers to review articles (Ishizaki et al., 2010; Ishizaki and Fleming, 2012) for
detailed numerical analyses of EET using TC2 and TCL2 equations.

2.8 Second-order cumulant time-non-local equation and
its hierarchical representation

As discussed above, it is crucial to consider and describe the dynamics of envi-
ronmental phonons in a more appropriate fashion in order to elucidate quantum
coherence and its interplay with the protein environment in EET. In particular,
areas to be commented on include (Ishizaki er al., 2010):

(A) site-dependent reorganization dynamics of the environment
(B) an appropriate description of Gaussian fluctuations in electronic energies of
pigments to produce optical lineshapes.

To treat both issues (A) and (B), we cast a spotlight on the fact that the cumulant
expansion up to second order is rigorous for phonon operators owing to the Gaussian
property in Equation (2.49). Thus, the formally exact expression for the reduced
density operator can be derived as

N
pat) =Ty [ Jexp [ /0 dn /O dn kP, m] pa0). (257
m=1
with the non-Markovian relaxation kernel,
K@, t) = —hisz(t)X [Sm(t — )8 (1) — i’%xm(z - r)S’m(r)O] . (2.58)
Here, the tilde refers to the interaction picture and we denote O f = Of — fO
and O°f = Of 4+ fO for any operators O and f. The time evolution corre-

sponding with Equation (2.57) is described by the following equation of motion
(Ishizaki and Fleming, 2009b):

d Yo
=T ) / dt K.)(t, T)pa(t). (2.59)
m=1"0
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Although Equation (2.59) is derived in a non-perturbative fashion, its expression
shows close resemblance to those of the second-order perturbative quantum master
equations such as the TC2 and TCL2 equations. Indeed, Equation (2.59) as well as
the TC2 and TCL2 equations reduce to the Redfield equation in the operator form
if the Markov approximation is employed:

d . > (2 ~ .

=3 | s k6.0 5 (260)
which can be recast into the traditional form of the Redfield equation when the
energy—eigenstate representation is employed. This fact implies that it is significant
to discuss timescales of the environment or non-Markovian effects in an appropriate
manner in addition to system—bath coupling strength.

The first point to notice here is that Equation (2.59) is a time-non-local equa-
tion, unlike the TCL2 equation, because the chronological time ordering operator
T, resequences and mixes the hyper-operators S, (t)* and S,,(¢)° comprised in
l@f)(t, s) and pPg(¢). Secondly, when the excitonic coupling 7 J,,, is vanishingly
small, Equation (2.57) leads to an analytically exact expression of absorptive line-
shape of a monomer, unlike the TC2 equation and the Redfield equation. These
two features are significant for the above features described in (A) and (B) in elu-
cidating the quantum aspects of EET processes in protein environments (Ishizaki
et al., 2010).

To perform practical numerical calculations beyond the formally exact struc-
ture, we model the relaxation function by an exponential decay form, I',,(t) =
A e V' in order to focus on the timescale of fluctuation—dissipation pro-
cesses induced by environmental phonons. For this modelling, the timescale of
the fluctuation—dissipation processes is simply t/*" = y,—!, and the spectral den-
sity is expressed as an Ohmic form with a Lorentz—Drude regularization (Breuer
and Petruccione, 2002), i.e. Jnulw] = 2idyymw/(@* + v2). Although this spec-
tral density has been successfully employed for the analysis of experimental results
(Zhang et al., 1998; Novoderezhkin et al., 2005; Zigmantas et al., 2006; Read et al.,
2008), it may produce qualitatively different vibrational sidebands from the exper-
imental results in the zero temperature limit. For this choice of spectral density and
classical fluctuation—dissipation relation in Equation (2.55), the non-Markovian
relaxation kernel, Equation (2.58), leads to

KD, 1) = $p()e 7 708,,(v), (2.61)

where we have defined the relaxation operators as

b, =iS*, © =i<m—mSX—iA S°>
m — m> m — ,Bh m m)/mm N
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Owing to the exponential functions in Equation (2.61), the formal expression in
Equation (2.59) can be represented as

d .
Zom. 1) == (iLa+ L nuyn) o 1)

+ YN [@uoMyy, 1) + 1,000, 1)] (2.62)

for sets of non-negative integers, n = (ny, ny, ..., ny). N,y differs from n only
by changing the specified n,, to n,, £ 1, i.e. n,. = (ny,...,n, £1,...,0y). In
Equation (2.62), only the element o (0, ¢) is identical to the reduced density operator
Pe1(1), while the others o(n # 0, ¢) are auxiliary operators defined as (Takagahara
et al., 1977; Tanimura and Kubo, 1989)

N t N
5, 1) =T, ]_[ [ /0 drt e—VmO—f)@m(r)] Bei(t). (2.63)
m=1

Equation (2.62) is a multidimensional extension of the hierarchical equation
of motion derived in Tanimura and Kubo (1989) and Tanimura (2006), with the
use of the path integral influence functional formalism (Feynman and Vernon,
1963; Caldeira and Leggett, 1983). The hierarchically coupled equations, Equation
(2.62), continue to infinity. However, the numerical calculations can converge at
a finite depth of hierarchy for a finite timescale of phonon dynamics. Note that
quantum correction terms need to be included into Equation (2.62) if the quantum
fluctuation—dissipation theorem, Equation (2.53), is to be applied (Ishizaki and
Tanimura, 2005; Tanimura, 2006; Ishizaki and Fleming, 2009b). For more detailed
numerical analysis for photosynthetic EET processes, we refer readers to Ishizaki
et al. (2010) and Ishizaki and Fleming (2012).

2.9 A post-perturbative time convolution QME

In Section 2.5, we learned that the TC2 non-Markovian master equation can be
obtained in the regime of a weak system—bath coupling. Here we discuss how to
avoid the weak coupling assumption and to derive the TC2 Equation (2.32) in a
near Markovian regime. We refer readers to for a detailed derivation.

Consider a pigment—protein system model with Hamiltonian (2.46). The exact
system dynamics in interaction picture is given by the Liouville equation,

3 pea(t o i o
,Oalt( ) = —1 <[Helfnuc’ ,Oelfnuc(t)])nuc = -1 (ﬁelfnucpelfnuc(t»nuc, (264)
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where pel_nyc denotes the system—bath state. The time evolved density operator of
the system can be expressed by the propagator,

Per(t) = <T+ exp [—i /0 Zel—nuc(f)df:|> pe1(0). (2.65)

Expanding the above time-ordered exponential function, we arrive at the Dyson—
Cumulant expansion for time evolution of the density operator (Breuer and Petruc-
cione, 2002) (from here on the subscripts el — nuc and nuc are dropped for
convenience),

i) RN
= - /0 dn(ED L)

t t t
+ [an [ [ dngosmaie) +- Joao. @66
0 0 0
The n-time correlation superoperator has the following form for #; > 1, ... > #,:

(L) .. L)pO)er = DY (=" KV, (i) - Vi (6,0 V5, (83 - Vi (1)

./1 ./nll ln

x 8, (t) ... 8.t )pOaS i, ) - 8@, (2.67)
with site indices {ji,..., j,} and the second summation is over all indices
{iv,...,i,} €{l,...,n}suchthaty; >...> ¢, andyf;,,, <... <.

Next consider 7 = I in the Gaussian relation (2.49), where I, is an operator
ordering j indices:

(Vi) - Vi (1)) = ) H (L V() V5 (8). (2.68)

all
pazrs

Relation (2.68) is a generalized Wick’s theorem in the form of Wightman functions
(van Vliet, 2008).

In the limit of fast decaying correlations, we keep the leading term (Vj (1) er(tz))
in the above expansion (2.68):

(Vi (i) ... Vi, (1)) & (Vi(t1)V(t2)) (1 rest of operators), (2.69)
where index j(j’) corresponds to time f{(z;). Now we can factor out fot dn

(L(t)L(t))) from Equation (2.66) and obtain a QME in TC2 form:

a t _ ~ 1 %) ~ _
8—,5e1(t) = —/ dti (L()L(1)) [1 — / dlz/ diz(L(t)L(t3)) + - ] Le1(0)
t 0 0 0

— Z/ dtK2(t, 1) pa (7). (2.70)
m 0
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Figure 2.2 Room temperature dynamics of the FMO complex for initial excitation
at pigment 1. In agreement with the experimental results (Panitchayangkoon et al.,
2010) simulation of the TC2 equation predicts oscillation in populations lasting
for a few hundred femtoseconds.

The above derivation provides new insights into the conditions for a TC2 equa-
tion to be applicable beyond the conventional weak system—bath coupling limit.
In addition, the inherent time convolution form can be more appropriate in cap-
turing certain types of non-Markovian effects. Cao (1997) and Shabani er al.
(2012) provide more detailed and in-depth analysis of this issue. Thus, while
the genuine capability and limitations of the TC2 equation remain to be under-
stood, recent computational studies by Fenna—Matthews—Olson (FMO) (Wu et al.,
2010; Mohseni et al., 2011; Shabani et al., 2012) suggest that the TC2 equation
can serve as a highly efficient and qualitatively reliable method for addressing
key issues in quantum biology. Indeed, a heuristic error analysis employed in
these works demonstrates that a TC2 equation may even be quantitatively reli-
able in the intermediate regime depending on the quantities being calculated
(Shabani er al., 2012). An explicit example addressing these points is provided
below.

A FMO unit consists of seven pigments on a protein scaffold that acts as a wire
to transfer energy from antenna to reaction centre in some bacteria. To model the
protein environment of the FMO we choose overdamped Brownian oscillator model
Jlw] = 2iryw/(w* + y?) with parameter values A = 50 cm™', y =35 cm™! at
temperature 7 = 298 K. We use the FMO Hamiltonian given in Cho et al. (2005).
Figure 2.2 shows the time evolution of electronic state populations for the system
initially populated in pigment 1. The simulation illustrated in Figure 2.2 predicts
some oscillations lasting for a few hundred femtoseconds, in agreement with the
experimental results at room temperature (Panitchayangkoon et al., 2010). See
Chapter 7 for the application of TC2 to exploring environment-assisted quantum
transport phenomena.
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2.10 QME in the polaron picture

Polaron transformation (Holstein, 1959a,b; Rackovsky and Silbey, 1973; Jackson
and Silbey, 1983; Silbey and Harris, 1984; Harris and Silbey, 1985; Jang et al.,
2008; Cheng and Silbey, 2008; Nazir, 2009; Kolli et al., 2011; McCutcheon and
Nazir, 2011) can be used to construct a QME that is applicable beyond weak
system—bath coupling, utilizing the fact that the resulting system—bath couplings
after the transformation are of bounded exponential form. The second-order approx-
imation with respect to the fluctuation of these transformed system—bath couplings
serves as a good approximation even in the limit of strong system—bath coupling
of the original Hamiltonian.
Consider the system Hamiltonian

N N
Hs =" Qulm)(m|+ > Juwlm)(m'|, (2.71)
m=1

m#m'’

where in the context of energy transfer in photosynthetic systems, |m) represents
the state where only the mth chromophore is excited and €2,, is its excitation
energy. J,,v is the electronic coupling between states |m) and |m’). For conve-
nience we divide it into population and coherence terms, Hs = H} + H¢, where
HY = ZZZI Q,,|m)(m| and HS = fo#m o lm) (m’|. Suppose chromophore m
is coupled to the nth bath oscillator with strength g ,,,, then S,, = |m)(m| in Equa-
tion (2.30). The generating operator of the polaron transformation is the following
site-dependent momentum operator (except for a factor of i):

N
G=Y " gem(bl —be)im)(ml. (2.72)

m=1 §&

Then, application of the unitary operator ¢~¢ and its Hermitian conjugate to H
leads to the following polaron transformed Hamiltonian:

H=¢"He = HY + HS + Hp. (2.73)

In the above expression, Hp = Zsha)g(bgbg + %), A = ZZZI Qun|m) (m|
with @, = Q — Y, fiwgg? ., and HS = Y0 SO0 |m) (m’| with 6, =
exp(— ZS gg,m(bg — bg)). Accordingly, the total density operator in the polaron

picture becomes fsp(t) = €% psp(t)eC. The time evolution of this is governed by
the following transformed Liouville equation:

d . ~ e ~
EﬁSB(t) = —iLpsp(t) = —i (LY + L{ + L) psp(0), (2.74)
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where £7, Eﬁ and L are quantum Liouville operators corresponding to HY, H S
and Hp.

The transformed Hamiltonian H of Equation (2.73) can be divided into the
zeroth and the first-order terms as follows: H = Hy + H;, where

Hy= HY + (HS)p + Hp = Hy s + Hp, (2.75)
H, = Ay — (H{)3, (2.76)

with (FIS" yg = Trp [FIS" pp(0)]. This term represents the average effect of the system—
bath interaction and can be calculated explicitly. In Equation (2.75), FIO,S =H’ +
(FISC )p represents the system part of the zeroth order Hamiltonian. An explicit
expression for this can be found as follows.

N N
Hos =Y Qulm)(m| + Y o Wy lm) ('], 2.77)
m=1 m#m’
where
W = {66} = (6] 6p) = ¢ Tk TV 2 (2.78)

with 8g¢ um' = 8¢.m — ge.m- The first-order term H,, defined by Equation (2.76),
can also be calculated and has the following expression,

N
= Z Jmm’gmm’ |m> <m/|» (279)
1#m’
where
Bmm’ = leem’ — Wmm' = 325 5g§1mm/(bg—bg) — Wy - (2.80)

Now let us consider the dynamics in the interaction picture of Hy (not Hy). First,
the interaction picture representation of H, becomes

Hy () = Mot/ iy =i Hot/h — Z Tt B () Ty (1), (2.81)
m#m'
where
B (1) = 811 B, =i Hat/h
Toum () = €705 ) (| ¢~ Host /1 (2.82)

Then, the interaction picture representation of the polaron transformed total density
operator, p;(t) = ei Lot Psa(t), evolves according to the following quantum Liouville
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equation:

d ~ .
ZB1(0) = =L1.1(0p1(0) = —%[Hl,,a), 5101, (2.83)

where the second equality serves as the definition of £; ;(t).
As in the case of Equation (2.18), we can define the reduced system density
operator as follows:

Ps.1(t) = Trp[p1(2)]. (2.84)
Then, employing the same projection operator P and O, as defined by Equa-
tions (2.19) and (2.20), we can obtain the following second-order time-non-local
equation:

d ~ 4 - -
& st = ~iTeg [ £1,1(0QBsn(O)] - /0 dvTes[ Ly s (L1 (1) QBs5(0)]

- /0 dvTrg[ L1 ()L 1()ps(0)] Fs.s (1), (2.85)

where we use TI'B[EL[(Z)[)B(O)] = 0 and 5,;(0) = psg(0).

In Equation (2.85), we can replace gs ;(t) with pgg ;(¢) without affecting the
accuracy up to the second order of £, ;(t). The resulting QME has the following
form (Jang, 2009, 2011):

%ﬁs,l(r) = —R@®)ps.1(t) + TV(t) + TP(1), (2.86)
where
R(1) = / dtTrg[Ly,1(DL1,1(0)ps(0)], (2.87)
0
IV@) = —iTrp[L1,1(1)Qpss(0)] (2.88)
It = — / dtTrg[ Ly, (DL, 1(v)Qpsp(0)]. (2.89)
0

In the above expressions, Z\"(¢) and Z®)(¢) are the first-order and the second-
order inhomogeneous terms, respectively. Each term involves Qgsg(0), which is
the unprojected portion of the initial transformed density operator given by

Qpsp(0) = e psp(0)e™C — Trz[e psp(0)e™ %1 ® pp(0). (2.90)

The expression for ﬁ(t)ﬁs, ;1(¢) in Equation (2.86) can be found by inserting Equa-
tions (2.81)—(2.82) into the Liouville operator in Equation (2.83) and making a
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further calculation. It can be expressed as

R(1)ps,1(1)

= Z Z it Ty / (B (t) By (O)[Tur (1), T (0)s.1(1)] + H.C.,
1#l m#£m'
(291

where (Bjy(t)B (1)) is the time correlation function of the fluctuation of the
polaronic bath response By (¢), which is defined by Equations (2.80) and (2.82).
Employing these definitions, the correlation of B, (¢) can be calculated and has
the following expression:

(Bll’(t)gmm’(t» = Wi Wiym' (e_’C“/'mm/(t_r) - 1) ) (292)

where w;; or w,,,, have been defined by Equation (2.78), and
71
Kt () = 851088 mne (coth <’3—2‘°§) cos(wet) — i sin(a)gt)) . (2.93)
§

From the above definition, it is clear that Ky () = —Kipmwm(@) =
_’Cl’l,mm’(t) = ’Cl’l,m’m(t)-

For the calculation of inhomogeneous terms in Equations (2.88) and (2.89), the
initial condition of the exciton state needs to be specified first. The assumed general
initial exciton state is |/) = ZIIY: 1 1,1 p), where the I,s are complex numbers that
can be arbitrary except for the normalization condition ) » Up |> = 1. On the other
hand, the bath is assumed to be in canonical equilibrium for the ground electronic
states of chromophores. Thus, the total initial density operator is given by

psp(0) = [1)(I| ® pp(0) = Z L,1%1p)(p'| ® pp(0). (2.94)

p.p'=1

Physically, the above initial condition corresponds to sudden creation of a single
exciton in a system originally prepared in the ground electronic state in thermal
equilibrium with the environments. After some algebra we find,

. N N
I(l)(l) = _;Tl Z Z Jnm Wiy [7:nm’(t)a 6;719’(0)] { Konm pp/(t)fp mm' (1) — ]}

m#m’ p,p'=1

(2.95)
where KC,,, pp (t) has been defined by Equation (2.93) and
Fot (1) = o2 2ok 8e.py O8en SIN(@el) (2.96)
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The second-order inhomogeneous term defined by Equation (2.89) can be expressed
as

N N N Tl ¢ /
== > > > lhz’"’" /O AT F et O[T (1), T ()77 (0)],

pop'=1 1A mm’

+H.C., (2.97)

where
-7:111”1,7,;1,”/(% 7)) = Wiy Wy { &0 O (@Ko OKont o @ oy 1 (8) o e (1) — 1)
— e KO f, (1) — K © £ () +2) (2.98)

This completes the second-order time local QME in the polaron picture, which is
applicable in the regime that the Hamiltonian H, ;(¢) (2.81) is perturbative.

As an illustration for the application of the polaron QME, results of the calcu-
lation are presented for a model of a donor-bridge—acceptor chromophore system,
denoted as 1, 2 and 3. The population and coherence terms of the system Hamilto-
nian and the system—bath interaction Hamiltonians are as follows:

HP = E1[1) (1] + E2|2)(2] + E5]3)(3], (2.99)

HS = Jp(11) 2] + 12) (1) + J23(12) (3] + 13)(2]), (2.100)
3

Hyp =Y hewn(by + b)) guall) 1. (2.101)
=1

n

Although it is not necessary, for simplicity, it is assumed that each chromophore is
coupled to an independent set of bath modes and there are no common modes. It
is also assumed that all the spectral densities are of super-Ohmic form:

3
Ti@) =Y 82,8 — w0l = % Lo, 1=1,2,3, (2.102)
— " 3y,

The following sets of parameters were used in all of the calculations: 7 =
300K, Ji = Jp3 =100cm™", Jop3 =50cm™', E; — Ey = E; — E3 = 100 cm ™',
/2w =200 cm™~'. Three different choices of 7 = 0.2, 1 and 5 were considered
and the results are shown in Figure 2.3.

For each choice of parameter, Equation (2.85) was solved numerically in the
exciton basis (Jang, 2009), including all inhomogeneous terms. In order to assess
the effect of quantum coherence, exciton populations based on the following Pauli
master equation were also calculated:

dp(t)
dr

Y {kE O Pu) — k(O P(0)} (2.103)
m#l
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Figure 2.3 Time-dependent populations of excitons for different values of system—
bath coupling. The sold black lines are the results for the polaronic QME including
inhomogeneous terms and the grey dashed lines are the results for FRET, Equation
(2.104).

with the rate kernel given by the following non-Markovian version of Forster
resonance energy transfer theory (FRET) (Jang et al., 2002b):

kf—)m(t) _ 2(J1n;;21)1m)2 re [/’ drelEr—En/h (eICIme(r) _ 1)] . (2.104)
0
The FRET theory is reviewed in the next chapter. In the above rate expression,
note that the divergent component that appears due to the neglect of the lifetime of
the excited state has been subtracted. This regularization procedure is needed for
super-Ohmic spectral density and amounts to including the average bath effects in
the polaron picture within the system Hamiltonian.

As can be seen from Figure 2.3, the quantum coherence makes a significant
contribution in the early phase of population dynamics, especially for weak and
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moderate system—bath couplings. It is also important to note that the assumption
of sequential hopping dynamics, in general, underestimates the population transfer
rate in such a coherent regime. It is also interesting to note that such coherent
behaviour is fragile and quickly disappears as the system—bath coupling increases.
Already ata value of n = 5, areasonable agreement between the results of polaronic
QME and hopping dynamics with FRET rate can be seen.

2.11 Path integral techniques

An alternative set of methods for the numerical evaluation of static and dynamic
properties of quantum systems is the path integral techniques, which have found
application in analytical studies right from their inception and have more recently
also been applied to numerical investigations. In order to make the path inte-
gral approach computationally feasible a wide variety of approaches have been
developed. Here, we are focusing on the quasi-adiabatic propagator path integral
(QUAPI) that was originally developed by Makri and Makarov (Makarov and
Makri, 1994; Makri and Makarov, 1995a,b) and which has been applied success-
fully to the problem of excitation transport in the presence of harmonic environ-
ments at finite temperatures (Nalbach and Thorwart, 2010; Thorwart et al., 2009).

In the following we briefly outline the key points in the QUAPI approach that
make it suitable for the study of excitation energy transfer in the presence of
environments. For a Hamiltonian of the form,

2
p.

H=W(x1,...,xN)+§ j (2.105)
i J

which describes an interacting quantum system of N degrees of freedom, the
standard approach to the path integral splits it into a purely kinetic part and a
potential part. Expanding the time evolution operator in small time-steps At =t /n,
inserting the identity in the position representation and applying a second-order
Trotter expansion of the time evolution operator one finds,

iHt/h [ mjn N
(xﬁrle |xlnl 1_[ 27‘”711‘/ d Xn

i i W) + W) XN: mjn

m 2_(xjk_xjk 1) )
k=1 j=1

(2.106)

where (x4,| = (x,| and |x;,;) = |x1). This expression while being exact in the limit
At — 01is of little use for numerical computations. Key problems are the fact that
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the integrand is oscillatory and not local. Hence the computation requires small
time-steps and careful sampling of the integrand, requirements that generally lead
to an effort that grows exponentially in the total integration time ¢. Furthermore,
even for exactly solvable models such as the harmonic oscillator, evaluation of
the integrals does not become simpler. The reason for these shortcomings lies in
the non-optimal decomposition of the Hamiltonian into purely kinetic and purely
potential parts. One innovation of QUAPI is the realization that there are many
decompositions of the Hamiltonian that are all equivalent in the limit Az — 0, but
which may lead to formulations of the problem that are computationally inequiv-
alent. Indeed, one would normally aim to decompose the Hamiltonian into one
part Hy that includes the kinetic part of the Hamiltonian and as much as possible
of the potential energy terms, while remaining either exactly solvable or at least
efficiently computable. If the potential part that one includes in Hy is confining the
system to a finite spatial region, then one finds that in

—iHAt/h —i HyAt /h — 2L [(H — Ho)(xx)—(H — Ho)(x5—1)]

(xxle |x—1) = (xile |Xr—1)e”

the first factor will now be local and decaying quite rapidly, thus greatly assisting
the computation.

Further progress can be made by considering more specific problems. In the
context of the exploration of quantum effects in biology we are particularly inter-
ested in the effect that an environment may have on the coherence properties
of a system. Such environments are successfully described by sets of harmonic
oscillators linearly coupled to the central system, leading to a Hamiltonian of the
form,

p2 N P]2~ 1 ’ cjs 2
H=—24+W —— + —m;w- . — . 2.107
2m + W)+ ; 2m; + 2meJ 4 m]aﬁ ( )

We discussed this model before in the context of EET: Equation (2.46). In this
setting it is clearly natural to choose a decomposition of the total Hamiltonian
into

Ho =25 + ws) (2.108)
2m
and
N 2 2
p; 1 cis
H:p = — 4 miw g — —2 ) 2.109
t ; ij + 2m]w] <QJ m‘[wi) ( )



46 Open quantum system approaches to biological systems

Proceeding again as in the standard path integral approach, we now obtain a
propagator,

—iHAt/R —iHoA g

[Sk—1, gr—1) = (skle

% H(qjk|e—iHj(sk)At/2he—iHj(sk,l)At/Qh|qjk_l>'
j

(Sk» qrle

The first factor in the propagator can usually be computed efficiently for small
systems while the second part can be written out analytically. If the system and
the environment are decoupled, the propagator is in fact exact. For finite cou-
pling, all the computational effort is reserved for determining the perturbations
around this exact solution and hence this is far more efficient than the standard
approach.

As formulated here, we are still evaluating the full dynamics of system and
environment. However, in many cases we are mainly interested in the dynamics of
the system itself, i.e. the state of the reduced density matrix of the system alone,

ps(r, s, 1) = Trp(rle™ " psp(0)e ™M), (2.110)

where the initial state of system and environment is assumed to factor for simplicity:

psp(0) = ps(0) ® pp(0).
Now applying the path integral decomposition to both time evolution operators
we find,

os(Fp, Sy, t) = /dm coodra_ /ds1 cods,—y
A({ri}, AD(rilps(0)s1) B({se}, ADI{ri}, {sx}, A1),

where we abbreviate the propagators as,

2
Alr, Aty = [ T (rele™ 2Py
k=n
B{si}, Ay = [ ] (se-1le™ #0275y

k=2

and introduce the influence functional,

I({rk}, {Sk}, At) — TrB [e_iHinrrn/zhe_iHimrn—l/h . e_iHimrl/thB(O)

iHimSl/zh

xXe

el HintSn—1 /h eiHin[Sn /Qh]
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Because we are considering an environment made up of independent harmonic
oscillators, the influence functional takes the general form,

k
I({re}, {sc}, Ar) = exp |:_;z D on ) k= sour — 77;:151{| : (2.111)
k=1 =1

where the coefficients n;; may be computed analytically for any given spectral
density. We do not present the lengthy solution here, but note that for a smooth
and slowly varying spectral density the influence functional decays quite swiftly in
time, which is essential for efficient computation of the path integral. In fact, for
any finite temperature, these correlations decay exponentially fast at asymptotic
times, thereby setting the associated memory timescale. This timescale increases
with decreasing temperature, which makes treatment of the low temperature limit
computationally more challenging, even though temperatures not too far below the
typical system frequencies are accessible (Thorwart et al., 2000).

The QUAPI approach allows, with modest numerical effort, calculation of the
dynamics for intermediate times extending to a few periods of oscillation of the
system. Longer integration times are hard to achieve because the computation of
multidimensional integrals requires an effort that grows exponentially with integra-
tion time. To overcome this limitation we need to make use of the finite correlation
time of the influence functional, Equation (2.111). Indeed, if the influence func-
tional decays sufficiently fast, this implies that we may neglect all terms for which
k — [ differs by more than a value K. QUAPI then defines an object called the
reduced density tensor, which lives on this memory time window and establishes
an iteration scheme in order to extract the time evolution of this object. Within the
memory time window, all correlations are included exactly over the finite memory
time Tyemory = K 8t, and can safely be neglected for times beyond 7,,epm0ry. Then,
the memory parameter K has to be increased, until convergence is found. The
inclusion of all these tools permits treatment of the system—environment interac-
tion outside of the perturbative regime. As with all approximative schemes that
do not provide intrinsic error bounds, it has to be tested by either increasing com-
putational effort until convergence has been reached or by comparison with other
methods. Indeed, recently, the quasi-adiabatic propagator path integral method has
been compared to the hierarchy methods described in the previous section, leading
to matching results for a dimer subjected to a bath with a spectral density of a
Brownian harmonic oscillator (Nalbach er al., 2011).

2.12 DMRG based approaches

A third class of approach to the system—environment interaction preserves the
full information about the environment state, and is able to treat arbitrary spectral
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densities and coupling strengths within one framework with known and control-
lable error. This method, which was developed in Prior ef al. (2010) and Chin
et al. (2010a, 2011), maps the spin-boson model exactly onto an effective 1D
system, thus permitting deployment of the time-adaptive density matrix renor-
malization group (t-DMRG) technique (Daley et al., 2004) to integrate the time
evolution efficiently. Although the richly structured environments as they appear,
for example, in photosynthetic complexes are perhaps the main application area, it
should be emphasized that this approach is completely general and can be applied
to any system linearly coupled to bosonic and even fermionic environments of
arbitrary spectral density. Importantly, this method also provides complete infor-
mation about the evolving state of the environment and opens the door to detailed
studies of system—environment correlations, which in turn give rise to long-lasting
coherences, entanglement and other novel effects.

Choosing a compromise between generality and transparency, here, we explain
the basics of this method by considering a dimer molecule consisting of two
pigments (henceforth referred to as ‘sites’) each subject to an interaction with a
harmonic environment (see the upper part of Figure 2.4).'” The internal dynamics
of the dimer are described by a Hamiltonian,

€1 €2

Hg = 201+ 5o+ J(014.02- + 02401-),

where o, , 0;_, 0;, are standard Pauli creation, annihilation and z matrices for site i
of the dimer. The spin-down state 0;,||;) = —|{ ;) represents the ground state of the
site and the spin-up state represents a single local excitation which can hop between
sites with a tunnelling amplitude J. Each site i interacts with its own continuous
bath of harmonic oscillators, described by creation and annihilation operators
bj(k), b;(k) respectively. The environments are independent, and hence satisfy the
continuum commutation relation [b;(k), b}(k’)] = §;;6(k — k'). The environment
Hamiltonian Hp can be written as

1
Hy= . / wi (k)b) (k)b; (k)dk, 2.112)
0

i=1,2

while the site—environment interaction Hgp takes the form,

1
Hps= Y O; / g1 (k)i (k) + b (k))dk, (2.113)
0

i=1,2

with an arbitrary operator O; acting on the sites. Equations (2.112) and (2.113)
describe a continuous version of the bosonic bath model given in Section 2.5. In

12 The vast majority of environmental modes in a pigment—protein complex are to a very good approximation
harmonic (Hayward and Go, 1995).
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Figure 2.4 (a) The standard representation of the spin-boson model considers
central systems (grey spheres) coupled individually to an environment of bosonic
modes representing harmonic oscillators. (b) After an exact unitary transformation,
solely affecting the bath degrees of freedom, the same number of bosonic modes
are now arranged in a linear chain with nearest neighbour interactions only. The
latter setting admits straightforward numerical description of the full dynamics
with the time-dependent density renormalization group method.

the context of EET in photosynthetic complexes dephasing is the dominant source
_ (+0i)

of noise which is described by O; = ~—=.

We assume here that both environments have identical dispersions w; (k) = w(k)
and coupling strengths g;(k) = g(k), though as will become evident, we can trivially
accommodate different coupling structures on each site. While it is not essential,
we assume that the spectrum of the environment frequencies is limited by a high-
frequency cut-off y that may be either sharp or realized by some rapidly decaying
function, e.g. an exponential.

As such the spin-boson model is exceedingly hard to integrate in time because
large amounts of entanglement are building up in the system. In order to make
progress we will now need to perform a mathematical transformation that brings
the spin-boson Hamiltonian into a form that then permits application of standard
methods from condensed matter physics and quantum information theory. This is
achieved by a unitary transformation of the configuration depicted in Figure 2.4(a)
into the configuration shown in Figure 2.4(b), where the system couples to the
first site of a linear chain which exhibits only nearest neighbour interaction. The

Hamiltonian for the chain reads
0
HC = Z Zeinajnain + (tinajn+1ain + /’l.C.),
i=1,2 n=0
while the system—chain interaction is given by

1+
Hsc = Z \/2(4—6“)(611‘0 + a,-To),

i=1,2
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with the new modes of the chain given by

1
i = / U, (k)bs (),
0

with real functions U, (k) andn = 0, 1, 2. .. 0o having frequencies €, and nearest
neighbour couplings ¢;,, (j = 1, 2). The coupling of site j to the first member of
its chain is determined by n = f J(w) dw. The determination of U, (k) then yields
the desired nearest neighbour Hamiltonian.

(This paragraph may be omitted on first reading) The key insight in construct-
ing U, (k) is to realize that, as columns of a unitary operator, they are mutually
orthogonal and may be interpreted as members of a family of orthonormal poly-
nomials. Then we can write U, (k) = g(k)N,; 7, (k), where N, is a normalization
constant, and 7, (k) is the nth monic polynomial (that is 7,(0) = 1) of a sequence
of orthogonal polynomials with inner product fol g2 (k) (k)1 (k)dk = p,%(Snm. The
new modes obey bosonic commutation relation [a,, a,L] = §,» and for the nat-
ural choice w(k) = yk we find g%(k) = 7'y J(w(k)). The nearest neighbour
chain structure is a direct consequence of using the basis of orthogonal poly-
nomials and a linear dispersion w(k). When the new operators are substituted
into Equation (2.113), the effective coupling strength of the nth mode of the
chain to the site is fol g2 (k)m, (k) dk, which is only non-zero for n = 0, due to
the orthogonality of m,(x) and the fact that mo(x) = 1. Similarly, when the new
modes are substituted into Equation (2.112), modes n and m couple to each other
with a strength o< [} g2(k) k 70,(k)71,, (k) dk = [} (k) (etn 70, (k) + Butu_1(k) +
Tna1(k))m, (k) dk, where we have used the standard three-term recurrence relation
obeyed by monic orthogonal polynomials to replace the product ki, (k), which
arises from our choice of a linear dispersion. For details see (Chin ef al., 2010a).

The transformation given by U, (k), which can be determined analytically for a
wide variety of spectral densities (Chin ef al., 2010a), or can otherwise be obtained
in a numerically stable and efficient way, acts only on the environment degrees
of freedom. As a consequence, the dynamics of the system is unchanged. But the
complexity of the simulation has decreased considerably as the structure (linear
chain with nearest neighbour interactions) is such that it can now be efficiently inte-
grated numerically, employing the time-dependent density matrix renormalization
group algorithm (Daley et al., 2004). The underlying principle of this approach
is a clever parametrization of many-body quantum states in the form of so-called
matrix product states (MPS) which takes account of the quantum correlations in
the 1D chains in an efficient manner (see Figure 2.5 for an intuitive picture).

This approach has several advantages. Firstly, it works for arbitrary and possibly
highly structured spectral densities of the environment without additional computa-
tional overheads. In particular, it is capable of including narrow features in general
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Figure 2.5 Matrix product states are a family of quantum states. For each physical
site (blue sphere) we choose two virtual d-dimensional particles (red spheres)
where neighbouring virtual particles in different sites are prepared in a maximally
entangled state Y ,_, |k)(k|. The d?-dimensional Hilbert-space of two virtual par-
ticles of one site is mapped onto the space of the physical particle by a linear
map M;. Quantum states for N 51tes that are obtamed in this way can be writ-
tenas ), . Tr[A (N 1li1 .. .in), where the A ) are d x d matrices that
are obtained from the elements of the linear map /\/lk With each time-step the
accurate description of the state requires an increasingly large dimension d but
the time-dependent density matrix renormalization group approximates in each
time-step the evolved state by the closest MPS with dimension fixed d. The error
in this approximation can be bounded in each time-step. The computational effort

scales linearly with the size of the environment and the simulation time and cubic
ind.

backgrounds and spectral densities leading to power-law decay of the environment
correlation function (Prior ef al., 2010) without sacrificing its efficiency. Secondly,
the time-dependent density matrix renormalization group algorithm and hence the
transformation approach can be made arbitrarily precise (at the cost of what is
usually a polynomial increase in computation time) and, crucially, delivers in each
time-step and hence also for the total evolution, an upper bound on the error com-
mitted. Hence the simulation delivers rigorous error bars from a single run. Finally,
this approach provides the full information about system and environment and
their dynamics and opens the possibility of studying system—environment interac-
tions in which the environment is prepared in non-trivial initial states or in which
knowledge about the state of the environment should be extracted. The versatility
of this approach is demonstrated in Prior ef al. (2010), by considering a structured
environment and showing that both exponential decay and oscillatory behaviour
can be treated within the same framework.

While the method presented here has been demonstrated for a dimer in contact
with, zero temperature environments (Prior ef al., 2010; Chin et al., 2010a, 2011),
it is not restricted to this setting. It can be generalized to multi-site systems and
finite temperatures at the expense of a moderate increase in computation time
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(Chin et al., 2013). It should be noted however, that at present the inclusion of
spatial quantum correlations between environments is challenging and restricted
to simple cases. This may be a drawback for certain applications in which spatial
correlations play a significant role, but this does not appear to be the case in
photosynthetic complexes like FMO. It should also be noted that the transformation
approach immediately yields systematic approximation techniques (Woods et al.,
2011) by cutting short the chains that are obtained in the exact transformation and
coupling the last site to a Markovian bath (Chin ez al., 2010a).
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Generalized Forster resonance energy transfer

SEOGJOO JANG, HODA HOSSEIN-NEJAD AND GREGORY D. SCHOLES

3.1 Introduction

Decades of effort in structural biology and ultra fast spectroscopy have elucidated
many details of natural photosynthesis (Blankenship, 2002; Hu et al., 2002), and it
is now a well-established fact that the initial light-harvesting process that leads up to
the collection of energy at reaction centres, where charge transfer reaction occurs,
is a process with almost perfect efficiency. The mechanism underlying the energy
migration in a photosynthetic system is a fundamentally quantum-mechanical one,
known as excitation energy transfer (EET) or resonance energy transfer (RET)
(Silbey, 1976; Agranovich and Galanin, 1982; Scholes, 2003; May and Kiihn,
2011; Olaya-Castro and Scholes, 2011).

Resonance energy transfer is ubiquitous, and had been observed as sensitized
luminescence long before modern quantum-mechanical understanding of molec-
ular systems was established (Agranovich and Galanin, 1982). Normally, when a
molecule becomes excited electronically by absorbing a photon, it luminesces by
emitting another photon, within about a nanosecond if it is fluorescence or much
later for phosphorescence. However, when another molecule with similar excitation
energy is present within a distance of tens of nanometres, it can swap its excitation
with the molecule as follows:

D*+A— D+ A", 3.1

where D* (D) is the excited (ground) state donor of the energy and A (A*) is the
ground (excited) state acceptor. Thus, the excitation of D sensitizes that of A.
Clear and sensible understanding of the RET process had been beyond the
reach of classical mechanics as had any other molecular processes involving
matter—radiation interaction. In 1948, Forster (Forster, 1948) developed the first
quantum-mechanical theory for RET and derived the following celebrated rate

Quantum Effects in Biology, ed. Masoud Mohseni, Yasser Omar, Gregory S. Engel and Martin B. Plenio.
Published by Cambridge University Press. © Cambridge University Press 2014.

53



54 Generalized Forster resonance energy transfer

expression:

F 3.2)

9000(/n 10)x> < d~fD(‘~))€A(‘~))>
UT 5

- 1287° Nt n* RO

where fp(¥) is the normalized emission spectrum of the donor, € 4(P) is the molar
extinction coefficient of the acceptor, R is the distance between the donor and the
acceptor, n, is the refractive index of the medium, N4 is Avogadro’s number, 7, is
the spontaneous decay lifetime of the excited D and «? is the orientational factor,
which is usually taken to be 2/3.

Forster’s rate expression, Equation (3.2), has made a profound contribution to the
fields of chemistry, physics and biology involving luminescence properties (Birks,
1976; Silbey, 1976; Agranovich and Galanin, 1982; Agranovich and Hochstrasser,
1982; Scholes, 2003; Olaya-Castro and Scholes, 2011). It made it possible to under-
stand and describe RET processes (Birks, 1976; Agranovich and Galanin, 1982;
Andrews and Demidov, 1999) at a semi-quantitative level long before the advance
of modern experimental (Ha ef al., 1996; Ranasinghe, M. et al., 2003; Kleiman
et al., 2001; Varnavski et al., 2002; Lipman et al., 2003; Scholes, 2003; Gaab and
Bardeen, 2004b) and computational techniques (Scholes, 2003; Thompson et al.,
2004; Wong et al., 2004; Beljonne et al., 2005; Russo et al., 2007), which were
later able to provide more direct confirmation or reliable application of the theory.
Equation (3.2) has also been used for the modelling of complex spectroscopic and
kinetic data of energy transfer processes (Hsiao et al., 1996; Yang et al., 1998;
Nguyen et al., 2000; Kleiman et al., 2001; Gronheid et al., 2002; Serin et al., 2002;
Varnavski et al., 2002; Aratani et al., 2003; Fan et al., 2003; Gaab and Bardeen,
2004b; Hindin et al., 2004; Chen et al., 2005; Schlosser and Lochbrunner, 2006),
or determination of nanoscale distances through detection of fluorescence signals
(Stryer and Haugland, 1967; Haugland et al., 1969; Selvin, 2000; Hillisch et al.,
2001; Heyduk, 2002). This latter application, referred to as FRET (fluorescence,
or Forster, resonance energy transfer) in the biophysics community, is now well
established as a powerful tool for probing both in vivo and in vitro structural
information of biological molecules (Ha et al., 1996; Selvin, 2000; Hillisch et al.,
2001; Heyduk, 2002; Lipman et al., 2003; Koushik et al., 2006) and synthetic
macromolecular systems (Nguyen et al., 2000; Serin et al., 2002; Kim and Osuka,
2004).

While Forster’s theory laid down the fundamental basis for understanding the
RET process in general, it is a theory based on rather simple assumptions that do
not reflect the complex nature of many molecular systems. This is true in particular
for photosynthetic light-harvesting complexes (Blankenship, 2002; Hu ef al., 2002;
Scholes et al.,2011), where tens or hundreds of pigment molecules are embedded in
soft protein environments with nearest neighbour distances typically in the order of
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(a) (b)

Figure 3.1 (a) Chromophores in the LHCII antenna complex with protein scaffolds
removed. (b) Schematic depiction of a prototype aggregate comprised of several
donor (D) and acceptor (A) molecules, and a set of bridge molecules (B). Couplings

between donors (acceptors) are denoted as le (J,ﬁn). There is also coupling among

the bridge molecules, as well as between the bridge and donor/acceptor sets, which
is not represented in the diagram.

nanometres.As an example, Figure 3.1(a) shows the chromophores (chlorophyll a
and chlorophyll ) of the light-harvesting complex II (LHCII), an antenna complex
of higher plants and green algae. It is obvious that several molecules are clustered
together at separations comparable to their size. Figure 3.1(b) is a schematic rep-
resentation of a generic aggregate where groups of molecules constitute the donor
and the acceptor. For these cases, the approximations underlying Equation (3.2)
become unreliable in many ways. More often than not, the excitation is coherently
shared by a cluster of proximate pigment molecules, and transfer between groups
of delocalized exciton states needs to be considered. Furthermore, the soft nature
of protein environments may incur the possibility of additional inelastic process
where quantum-mechanical exchange between transferring electronic excitation
energy and the vibrational energy of molecules can occur. In recent decades,
theoretical and computational efforts (Sumi, 1999; Jang et al., 2002c; Scholes,
2003; Jang et al., 2004; Jang, 2007; Renger, 2009; Olaya-Castro and Scholes,
2011; Jang and Cheng, 2013) demonstrate that these issues can be addressed by
following in the footsteps of Forster’s theory, but with his original assumptions
relaxed for more general situations. Thus, so-called generalizations (Sumi, 1999;
Jang et al., 2002c; Scholes, 2003; Jang et al., 2004; Jang, 2007) of Forster’s
theory have been developed. The scope of this chapter is to introduce these new
theoretical advances. As a preliminary step for this, a complete and detailed
derivation of Forster’s theory is presented in the next section.
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3.2 Forster’s rate expression: a complete derivation

The derivation of Equation (3.2) has been reviewed by Forster himself (Forster,
1965) and revisited by a few experts at a different level (Agranovich and Galanin,
1982; Andrews and Demidov, 1999), but a concise and comprehensive derivation
employing modern terminology is not easily available. A review of this nature has
been provided recently (Jang and Cheng, 2013) and this section presents a more
detailed exposition of the derivation.

The description of RET at the minimum requires three quantum-mechanical
electronic states. Let us denote the state where both D and A are in their ground
electronic states as |g), the state where only D is excited, as |D) and the state
where only A is excited, as |A). The rest of the dynamical degrees of freedom such
as molecular vibrations and solvent degrees of freedom are represented as a bath
with Hamiltonian H,. If the spontaneous decay of excitation occurs much more
slowly than the energy transfer dynamics, which is typical, the ground electronic
state |g) can be removed effectively from the description. Thus, the following total
Hamiltonian can be used:

H = Hy+ Hpa + Hep, (3.3)
where
Hy = Ep|D)(D| + E4|A)(A| + H,, (3.4)
Hpa = J(ID){A[ +[A)D]), (3.5)
Hep = Bp|D)(D| + BalA)(A. (3.6)

In the above expressions, the zeroth order Hamiltonian Hj represents the sys-
tem states |D) and |A) and the bath degrees of freedom that do not interact
with each other. Hp4 represents the interaction between |D) and |A), with elec-
tronic coupling J. Forster assumed this to be a constant parameter in deriving the
rate expression, but it is possible to treat them as operators, as will be shown in
the next section. H,, is the exciton—bath Hamiltonian, and Bp and B4 are bath
operators.

3.2.1 Fermi’s golden rule

Let us consider the simplest situation, where an impulsive excitation prepares the
state |D) at time ¢t = 0, while the bath remains in canonical equilibrium with
respect to the ground electronic state |g). This corresponds to the following initial
condition of the total density operator:

p(0) = |[D)(D|e P /7, (3.7)
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where B = 1/k,T and Z, = Try{e PH}. Then, the probability of finding A* at
time ¢ is

Pa(t) = Try, {{Ale™ ' p(0)e ™71 A) . (3.8)

For sufficiently short time ¢ compared to7/J, perturbative expansion of P4(¢) with
respect to Hp,4 is well justified. Inserting the first-order approximation of the time
evolution operator e~'//" with respect to Hp, and its complex conjugate into
Equation (3.8), we obtain the following expression valid up to the second order of
J:

]2 t t 7 ’ "
Pa(t) ~ —2/ dt’/ dt" ¢l Ea=Ep)d'=t")/h
h 0 0
1

« Z—Trb { ol (Hy+B )W —~1")/h y—i(Hy+B )1 [h ,—BHy ei(Hb+Bu>t”/h}. (3.9)

b

The time-dependent rate of RET can be defined as the time derivative of P4(¢) as
follows:

d 2J? Lo ,
— ~ i(E,—E t'/h
k(t) = EPA(l‘) ~ h—zRe [/o dt' e Ep=E)r/

< LTrb{ei(Hh—FBn)l/he—i(Hb-FBA)l//he—i(Hb‘i‘BD)(l—[’)/ﬁe—,BHb}i| . (3.10)
b

Let us assume that the bath Hamiltonian is an independent sum of donor and
acceptor baths as follows:

H, = H,, + Hp,. (3.11)
Thus,

1

7« = o, (3.12)

where pr = e‘ﬁHbD/TrbD{e_ﬁHbu} and ,ofA = e‘ﬁHbA/TrbA {e=PHr4}. In addition,
assume that Bp (B4) commutes with H,, (Hp,). Then, the trace over the bath
in Equation (3.10) can be decoupled into those for donor and acceptor baths as
follows:

2 t
k(1) = ziRe [/ dt' e Ep—E
X T},.bA {eiHbAl/he—i(HbA+BA)z’/he_l'HbA(t_l/)/hpfA}

x Try, {ei<HbD+BD)r/he—iHbDr’/he—i<H/,D+BD)(t—z’>/h an}]c (3.13)



58 Generalized Forster resonance energy transfer

Assuming that the bath for the excited donor relaxes fast and reaches the stationary
limit before significant progress of RET occurs, the following approximation can
be made:

—B(Hy,+B,)
—i(Hyp+B )t~V /h \8 i(Hy,+By)t—1)/h 4, € Pl tBp) 314
e Py, € N =0,y (314

Z,
where Z, = Try{e P tP0)}. Inserting the above approximation into Equa-

tion (3.13) and going to the limit of # = oo, we obtain the following steady-state
expression:

2
k(c0) = %Re [/oo di' ¢! Ep=EDI/h
0

1 : ’ : ’
X TrbA{eleAI /he—l(HbA-‘rBA)l /he—ﬂHbA}
bA

Tryp {ei(HbD+BD)t,/heiiHth,/he*ﬂ(HbD+BD) }]
o (3.15)

As the second equality in the above equation suggests, the above expression is
nothing but the Fermi golden rule (FGR) expression for RET, starting from the
relaxed initial state given by Equation (3.14).

Now let us introduce the following lineshape functions of the donor and the
acceptor:

o]
LD(CL)) — / dte—la)t-i—lEDt/hTrbD {el(HbD-‘rBD)t/he—tHth/hple;D} , (316)

o]

[e¢)
]A(a)) — / dt el'a)ffl'EAI/hTrbA {eiHbAf/he*i(HbA+BA)I/hplé’A} . (317)

o0

Then, Equation (3.15) can be expressed as

2J? % °° > (-0
krc = WRG |:/ dl/ da)/ dow' e @ )[LD(CU)IA(Q)/)]
0 —00 —00

J2
- 2mh?

/OO dow /OO dw'§(w — &)L p(w)4(@)

J2 o)
=3 / doL p(w) (o). (3.18)
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This FGR expression can be shown to be equivalent to Equation (3.2). First, the
integration over w can be converted into that over ¥ = w /(27 ¢), as follows:

oo
kpc = hizﬂ / AV L p(2red) 4 (2med). (3.19)

Employing the standard theory of emission and absorption, we can express L p(w)
in terms of fp(¥) and I4(w) in terms of € 4(¥). Detailed derivation of these relations
based on the quantum electrodynamics formalism is provided below.

3.2.2 The relation between Lp(w) and fp(v)

Let us consider only the donor and its bath, for which the total Hamiltonian is
(Ep + Bp)|D){D| + Hp,. The initial condition corresponds to an excited donor
(D*) with fully equilibrated bath, which can be represented by the following density
operator:

Pl = D)(DIp5,. (3.20)

In the formalism of second quantization (Craig and Thirunamachandran, 1984),
the interaction Hamiltonian between matter and radiation has the following form:

1/2
Hing = —i ) (2”h”> {np - €A™ W™ — pp - €D k)a d)e T},
n2v
k,A r

(3.21)

where V is the volume of the medium, w is the (angular) frequency of the radiation,
e® (k) is the polarization of the radiation, a*)(K) is the annihilation operator of
the photon, a7 (k) is the creation operator of the photon and g, is the transition
dipole moment of D*. No local field effect is assumed here and the refractive index
n, is the same as that of the bulk medium.

Let us introduce G5(k) as the rate of photon emission from D* with wave
vector k and polarization A. It can be calculated according to the FGR, starting
from the initial condition of Equation (3.20), for the matter and vacuum state for
the radiation, and employing Equation (3.21) as the matter—radiation interaction
Hamiltonian responsible for the transition. The resulting expression is as follows:

lnp - eP K
hnZv
where L p(w) has been defined by Equation (3.16). The average of Equation (3.22)

over all possible orientations of radiation results in

2w ,u%)a)

3hnZvV

Gi(k)=2n oL p(w), (3.22)

(G5 (K))or =

Lp(w). (3.23)
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Let us also introduce dT'; as the rate of photon emission with a magnitude of wave
vector in the range k to k + dk. Then,

3

14 21,147
AT = (G{(K)) o7 —4mkdk = Lp(@) 525~ dw, (3.24)
—

3hmc3

where the sum over two polarization directions have been made and the fact that
o = ck/n, has been used. From Equation (3.24), the following expression for the
density of emission rate per unit frequency is obtained:

ary 2n, uh o’
do  3hnc3

Lp(w). (3.25)

Then, the spontaneous decay lifetime of D* can be related to the total rate of
emission as follows:

1 2n,M2D 3
— = d L
o 3hncd (/ @ @ Lp()

2n, 1% Qmrc)?
_ 2o ip@re) /df; PLyQ2red) ). (3.26)
3hmc3

The above relation can be used to replace the integration of Lp(2mwc?) in the
normalized emission spectrum as follows:

3L pQ2med) 25n3n,u%c
=T
[doD3LpQrcd)  © 3k

fo() = 2L pQmcD). (3.27)

Inserting the above expression into Equation (3.19), we find that

3 J2 /oo d fD(lj)IA(ZﬂClj)

- 3.28
3273htpn, u3, ~ 3 (3.28)

krg

3.2.3 The relation between I,(w) and € 4(V)

Consider an absorption process where A and the bath are prepared in equilibrium.
Assume that the incident light is in the state |N,(k, 1)), where N, is the number
of photons with wave vector k and polarization A. Let us introduce G4 (k) as the
absorption rate of the corresponding photon by A. Then, according to the FGR,
starting from the initial states described above and employing a matter—radiation
interaction term similar to Equation (3.21), we can obtain the following expression:

| a - €P(K)? 27 Nphw
n? n2v

GY(k) = Li(w). (3.29)
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For N molecules with random orientation, the average of the above expression over
all possible angular distribution results in

,ui 2m N,yhw

G¢(K)),r =
(GL(K)) R

I (w). (3.30)

Let us denote the radiant energy density per unit frequency as 7 (v). Then, the
number of radiation states within @ and w + dw can be expressed as
JW) dw _ Ir(W)n, Vda)
Nyhw 2 Nyhwc = 27’

(3.31)

where Igx(v) = c¢J(v)/n, is defined as the irradiance per unit frequency and is
equal to the radiant energy flux per unit area and frequency interval. Let us define
dT'¢ as the absorption rate of a photon with frequency in the range w to o + dw.
Then, the density of absorption rate per unit frequency is

a 2
T = (Gl ey SOy SR . 632)

Nyiwc 2w dw 3h%n,c
Given that the length of the sample along the direction of the radiation is /, the
irradiance (in the unit of wavenumbers) going out of the sample is equal to

Tr(D) = T o(D)10~AOML (3.33)

where I(D) = cIz(v), I o(D) is the irradiance incident on the sample, € 4(¥) is the
molar extinction coefficient and M is the molarity of the sample. Assuming that
the difference between Ig(¥) and I r.0(P) is infinitesimally small, the number of
photons lost during passage through a sample of length / can be approximated as

Tro(®)(In 10)€A(V)Mld—wcg (3.34)

On the other hand, the number of photons being absorbed into the acceptor
molecules is

NaM _ p; Iro() , 1
I . —hw. .
s V3h2nrc Alw) " da)cha) (3.35)
Equating (3.34) and (3.35), we find that
3000(In 10)n,n  _
Ia(@) = ———=———€aD). (3.36)
2m)*Napsv

Inserting this expression into Equation (3.28), we find the following rate expression:

9000(In 10)  J? / d5 fp(D)ea(D)
P4 ’

FG = (3.37)

1287TSNA‘[D MDMA
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3.2.4 Transition dipole interaction

Equation (3.37) is more general than Equation (3.2) in the sense that no specifica-
tion has been made for the electronic coupling constant, J. This also means that
Equation (3.37) may be used to determine the rate for any mechanism of electronic
coupling, as long as the value of J can be calculated directly by a computational
method. For example, the transition density cube (TDC) method (Krueger et al.,
1998), which will be described in detail in the next section, or evaluation within
the density functional theory (DFT) formalism (lozzi et al., 2004), can be used for
this purpose. At the moment, let us focus on completing the derivation of Forster’s
expression employing the transition dipole approximation.

If the distance between D and A is much larger than the length scales character-
istic of their transition dipoles, the following dipole approximation for the electron
coupling can be made:

_ o s = 3(p - R)(u, - R)

J
n2R3

(3.38)

where R is the distance between the donor and the acceptor and R is the corre-
sponding unit vector. Then,

J2 K2
- = (3.39)
Wpia  mIRS
where
. -3 R R
oo FoHa (1p - R)(py ). (3.40)

HDHA

Then, Equation (3.2), can be recovered by inserting Equation (3.39) into Equa-
tion (3.37). This completes the derivation of the original Forster expression.

Throughout the derivation described above, it was assumed that the dielectric
response near the chromophores is the same as that of the bulk. This simplification
is reasonable (Knox and van Amerongen, 2002) in many cases and its error is often
less significant than those due to the orientational factor, k. However, as progress
is made in accuracy of measurement and theoretical calculation, more rigorous and
careful examination of the effect of the local field effect may become necessary in
the future. For this, consideration within a full quantum electrodynamics formalism
(Juzelitinas and Andrews, 1994) is necessary.

3.3 Transition density cube method

The transition dipole approximation becomes inaccurate if the distance between
the donor and the acceptor is comparable to the size of the molecules, which is
typically the case for less than 2 nm between moderate-sized molecules. For this
situation, Equation (3.37) or its generalizations need to be used along with a more
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general evaluation of the electronic coupling J. As long as the contributions of
exchange interaction (Dexter, 1953) or direct orbital overlap are negligible, the
TDC method (Krueger et al., 1998) described below can serve as a general and
reliable approach to calculate the electronic coupling.

Given that intra-molecular non-adiabatic effects within the donor and the accep-
tor molecule can be disregarded, the microscopic interaction Hamiltonian respon-
sible for the resonance interaction is the following Coulomb interaction between
electrons:

&> 1
H. = , 3.41
T dne ; ( )

Irp, —ral

where € is the dielectric constant of the medium. The electronic coupling J due to
the above Coulomb interaction is given by

J = (D|H,|A) = |Z A). (3.42)

|er I’Al

Let us assume that |D) and |A) can be approximated as the direct products of
independent donor and acceptor electronic states as follows: |D) = |ep) ® |ga);
|A) = |gp) ® |ea). Here, |ep) is the excited state of D, |g4) the ground state of
A, |gp) the ground state of the acceptor and |e4) the excited state of the acceptor.
These are electronic states of the single donor or acceptor molecules. Inserting these
into Equation (3.42) and employing the completeness relation in the configuration
space of electrons, we obtain the following expression:

= (nerk) (UdrA’> (ep|---Tp, -~ )(---Tp - |gp)
1
x (;m)<gA|"‘rA,"‘)("‘rA/"‘|€A>v (3.43)

where (ep|---rp, - - -) is the electron wavefunction of the excited donor in the full
coordinate space, and others are defined in a similar manner. Then, the following
transition densities can be defined:

5o = [ (Hdrgk) (Z 50t —er>>
k k

X {epl---¥p -+ )(---Tp, - -1gD), (3.44)

P (ra) = / (]_[drA,> (Zam —m)
1 I

L S(FYEEES JYREEDICEED JURERNF IR (3.45)
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Figure 3.2 Depiction of two cells in the arbitrary donor (D) and acceptor (A)
transition densities. The positions of the TDC elements are defined by the r; and
r; elements respectively, relative to the centre of D and A. Diagram taken with
permission from (Krueger et al., 1998).

Utilizing the fact that all the electrons in the donor molecule are equivalent, as
are those in the acceptor molecule, Equation (3.43) can be expressed in terms of
the above transition densities as follows:

o2
J=— [ drpdr, o/ (rp)——
4n€/ pdra pp( D)er_rAI

This is referred to as Coulomb coupling, in order to distinguish it from the exchange
interaction (Dexter, 1953) between the donor and the acceptor electrons, which
is neglected here. Except for the fact that Equation (3.46) involves quantum-
mechanical transition densities, it is mathematically equivalent to the Coulomb
interaction between charge densities in classical electrodynamics. Thus, multipolar
expansion of Equation (3.46) can be done by employing a Taylor expansion of the
1/r potential, and the first term in this series is the transition dipole interaction
given by Equation (3.38).

The TDC method is to evaluate Equation (3.46) numerically by computing the
transition densities over the three-dimensional grid, as demonstrated in Figure 3.2.
First, the transition density cube elements can be defined for the donor and the
acceptor transitions and approximated as follows:

Pl (E). (3.46)

Mp(i) = / drp pl5(ep) ~ AV,pL(E), (347)
AV;

Ma(j) = / dr pll(es) ~ AV, (), (3.48)
AV,

where AV; and AV, are volume elements of the cubes shown in Figure 3.1. Then,
Equation (3.46) can be approximated as

e? Z Mp(H)M4(j)

A 3.49
dme [r; — ] (549)

ij
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The only approximation involved here, apart from those in any electronic struc-
ture calculation, is the discretization of the integral over the space. Compared to
multipolar expansion, the TDC method is valid at all molecular separations. The
transition dipole for D can be obtained from the cube elements as follows:

rp e riMp(), (3.50)

which is independent of origin, because the integration of the transition density
is zero due to the orthogonality of the two states. The transition dipole for A can
be obtained in a similar manner. In actual applications, these approximations for
transition dipoles can be compared with experimental values, in order to estimate
the accuracy of the discretization error and to introduce a scaling factor if necessary.

3.4 Generalized Forster theories

As addressed in Section 3.2, there are three major assumptions implicit in Forster’s
theory, assuming that the underlying time-dependent perturbation theory remains
valid. (i) The excited donor molecule and its environments are assumed to be
fully equilibrated before the energy transfer occurs. (ii) It is based on the so-called
Condon approximation, where the electronic coupling constant J is assumed to be
independent of any nuclear motion. (iii) It assumes that the donor and the acceptor
consist of single chromophores. Theories (Sumi, 1999; Scholes and Fleming, 2000;
Jang et al., 2002c, 2004; Jang, 2007) generalizing these assumptions are described
in this section.

3.4.1 Non-equilibrium generalization

If the energy transfer dynamics is fast enough to occur before equilibration in
the excited state becomes complete, the assumption of Equation (3.14) cannot be
justified. In this situation, a more general rate expression, Equation (3.13), needs to
be used. Inserting the inverse Fourier transform of /4 (w) defined by Equation (3.17)
directly into Equation (3.13), we obtain the following expression:

J2 00 t o ) 1
k() = — / dow IA(a))Re|: / dt'e” ' HEI Ty,
Th” J - 0 Zpp

> {ei(an+BD)t/hefiHth’/hefi(HbD+BD)(tfz’)/hefﬁHhD }] . (3.51)

In the above expression, the time-integration with respect to ¢’ can be expressed as
the time-dependent emission profile of D*, as described below.

Let us consider the situation where D is excited at time zero by an impulsive
pulse, as assumed in Section 2.1. The corresponding initial density operator at
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t = 0 is given by p(0) = |D){D| ,ofD. Assuming that there is no A and its bath,
the total matter Hamiltonian governing the dynamics starting from this initial
conditionis Hp = (Ep + Bp)|D)(D| + Hp,,, and the matter—radiation interaction
Hamiltonian is the same as Equation (3.21). Employing the same time-dependent
perturbation theory with respect to the matter—radiation interaction Hamiltonian,
we find that the probability for the donor to emit a photon and return to the ground
electronic state at time ¢ can be expressed as

! ! NI I N |
Pg(l) — |ILD . é|2/ dl// dt" ezw(t —t")—i Ep(t'—t )/h_TrbD
0 0 Zp,

X {e—iHhD(l—l/)/he—i(Bl)"l'Hbl))l//fle—ﬂHbD ei(B[)“l‘HbI))l///heiHbD(t—l//)/h}. (352)

The time-dependent emission profile is defined as the time derivative of this prob-
ability as follows:

1 d
Lp(t,w) = —————P,(t
p(t, w) S dr (1)
t : ! : ! l
:2Re|:/ dt'e= i HE M Ty
0 bo

% {ei(HbD+Bl’)t/he_iHbDl//he_i(HhD+Bl’)(t_l/)/he_/3Hb[) }} . (353)

Inserting Equation (3.53) into Equation (3.51), we find the following rate expression
for the non-equilibrium FRET (N-FRET) (Jang e al., 2002c):

J2 o0
k(t) = py: /Oo dwls(w)Lp(t, o). (3.54)

In the limit where t — o0, this expression approaches Equation (3.18), given that
L p(0c0, w) approaches the emission lineshape in the stationary limit. An expression
analogous to Equation (3.37) can be obtained by employing Equation (3.36) and
an analogue of Equation (3.27) for the time-dependent stimulated emission of D.

3.4.2 Inelastic generalization

The assumption that the electronic coupling J in Hp 4 of Equation (3.5) is a param-
eter is reasonable if the donor—acceptor configuration remains rigid or fluctuates in
a way independent of the electronic excitation dynamics. In the latter case, either
the population or the rate can be averaged over the sample of fluctuating J. How-
ever, if the donor and acceptor are connected by a bridge molecule or locked in
soft environments, significant quantum-mechanical modulation of the electronic
coupling J can occur. Exchange of energy between the electronic excitation and
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nuclear degrees of freedom is possible in this situation, and Forster’s rate expression
needs to be modified accordingly.

Let us assume that the bath Hamiltonian H, can be decomposed into three
components as follows:

H, = Hy, + Hy, + Hp,, (3.55)

where H), is the bath Hamiltonian governing the dynamics of J. The original
Forster assumption that donor and acceptor baths are independent of each other
remains the same. In addition, it is assumed that H,, is independent of H,, and
H),,, and satisfies the following two conditions:

[Hy,, Bpl = [Hp,, Hp,] =0, (3.56)
[Hy,, BAl = [H,,, Hp,] = 0. (3.57)

The starting expression for the population of A at time ¢ is the same as Equa-
tion (3.8). Inserting the first-order approximation for the time evolution operator
e~ "H!/h with respect to Hp4 and its complex conjugated into Equation (3.8), and
taking the fact that J is an operator into consideration now, we obtain the following

perturbative approximation:

1 t t 7 ! "
Pa(t) = b / dr’ / dt’ ¢! Ea—Ep)'=t")/h
0 0
1

% _Trb{ei(HbJrBA)(tLt”)/hJefi(HbJrBD)t’/hef,BHbei(Hb+Bn)t”/h‘]}. (3.58)
b

The time-dependent rate k(¢), which is defined as the time derivative of P4 (), can
be expressed as

2 [ ) ! ) ! ) !
k(1) ~ ;?Re/ dt/el(ED—EA)t /h Trb{el(Hb-l-Bp)t /hJe_l(Hl7+BA)t /h Jpp(t — t/)},
0
(3.59)

where

py(1) = e~ HHBOME . it B (3.60)
b

The assumption that the three bath terms Hy,,, H;, and H,, are independent of each
other makes it possible to decouple the bath density operator, Equation (3.60), as
follows:

efﬂHh

Zy

= 0} 0}, Pp,» (3.61)
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where p and p; have been defined below Equation (3.12) and p,, = e %/
Tryp, {e Py, Inserting Equation (3.61) into Equation (3.60), we find that

Pp(1) = Py, (D)0}, Py, (3.62)
where

—i(Hy+Bp)t/h pfnei(H”+BD)t/h. (3.63)

Py, (1) =€

Inserting Equation (3.62) into Equation (3.59),

2 , o o
k(t) = }?Re/ di ¢! (Ep—Ent /hTrb, {esz,z/hJe—lejt/thhj}

x Try, { i Ho ' 1 y=iCHy, +Bo) [ pbgA}

x Tryp, {ei(HbD+BD)’//he_iH”Dt//h,0bD(t - l‘/)}. (3.64)

Given that the assumption of ergodicity holds in the excited donor space, Equa-
tion (3.64) approaches the following steady state limit:

2 o : . .
kip = }?Re/(; dt e Eo=EDhTy, {e’Hl’”/hJe_’H””/thbJ}

% T’”bA {eiHbAf/he*i(HbA+BA)f/hp§A }

x Try, {ei(an+Bn)f/he—ianf/hpZD} . (3.65)

Inserting the inverse Fourier transforms of /4(w) and L p(w), defined by Equa-
tions (3.16) and (3.17), into the above expression, we find that

1 0 o0
kip = —2/ da)/ do'Lp(@)I4()K j(w — ), (3.66)
2nh” J_o o0
where
1 o0 . . .
Kj(w) = —Re/ di ¢“"Try, {e’H”-/t/hJe_’H”ft/thbJ} ) (3.67)
T 0

The form of Equation (3.66) is generic for inelastic processes where the exchange
of energy between transferring excitation and the modulating degrees of freedom
is possible. Introducing,

K;(®) =2ncK,;2ncd), (3.68)

and inserting Equations (3.27) and (3.36) into Equation (3.66), we find the following
expression for the inelastic FRET (I-FRET) (Jang, 2007):

9000(1n 10) ~/fD(V)€A(1~)/) 5 .
12875N,7,, ,LDMA/ /d K, 7). (3.69)

IF =
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Equation (3.2) corresponds to the limit of the above expression, where K (D)
approaches the delta function and modulation of J is caused by orientational
fluctuation, i.e. K;(0 — ¥') ~ udul k8% — 1')/(n?R®).

3.4.3 Multichromophoric generalization

In natural light-harvesting complexes or synthetic multichromophore systems, it
is common to find transfer of excitons delocalized over multiple chromophores or
sites. As long as the group of donor molecules in these systems is well separated
from that of acceptor molecules, Forster’s theory can be extended to include this
situation as described below.

Assume that the system consists of two distinctive sets of chromophores, donors
(Dj, j=1,..., Np) and acceptors (Ax, k =1, ..., Ny). The state where all the
D; and Ay are in their ground electronic states is denoted as |g). The state where
D is excited while all others remain in the ground electronic state is denoted as
|D;). The state |Ay) is defined similarly. All the remaining degrees of freedom
such as molecular vibrations and solvation coordinates are termed as bath. The
bath Hamiltonian is assumed to be H, = Hp, p + Hj 4, where the subscripts D and
A respectively denote the components coupled to the set of donors and acceptors.

The dynamics of an exciton is assumed to be much faster than its sponta-
neous decay rate. Thus, the latter process is ignored. The zeroth order Hamiltonian
describing the interaction-free dynamics can be written as,

Hy = H,p + H. s + Hp, (3.70)
Np
Hep = E,|Dj)(Djl+ > Api(ID;}(Dy| + |Dp)(D;D, (371
Jj=1 JiJ'
Ny
Hep =Y E AN AL+ Y Apiw(lA) (Ar| + [Ae) (Ac). (3.72)
k=1 k,k’

The resonance interaction between |D;) and | Ay) is represented by
Np Na
Hpa =) Y Ju(ID) (Al + A0)(D;)), (3.73)
j=1 k=1
where Jj; is assumed to be independent of any bath coordinates.
The excitation—bath coupling is assumed to be diagonal in the site excitation
basis as follows:

ND NA
Heb = ZBDJ|DJ><DJ| + ZBAk|Ak><Ak|
j=1 k=1

= Hep,p + Hep.a» (3.74)
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where Bp; and B 4 are bath operators coupled to | D;) and | A) respectively. These
operators and the bath Hamiltonian can be arbitrary, except that they satisfy the
following conditions:

[(Hpp, Hpal = [Hyp, Bax]l = [Hpa, Bpj] =0, (3.75)

which implies that the sets of |D;)s and |Ay)s are coupled to independent bath
modes. However, it is important to note that there can still be common modes
within the respective sets of donors and acceptors. Summing up Equations (3.70)
to (3.74), the total Hamiltonian is given by

H = Hy+ Hpa + Hey = Hp + Ha + Hpa, (3.76)

where
Hp=H,p+ Hyp+ Hepp, (3.77)
Hy=He s+ Hypa+ Hepa (3.78)

Let us consider the situation where excited donor molecules are populated by
an impulsive pulse at 1 = 0, while the bath remains in thermal equilibrium with
respect to the ground electronic state. As in the single chromophoric case, the
duration of pulse is assumed to be short and can be approximated well by a delta
function. Thus, the density operator of the system plus the bath after excitation by
the pulse can be approximated as

p(0) = | De)(Delpj; = |De)(Delpy;, oy, (3.79)
where |Dg) = &- ) i 1;|Dj), with € being the polarization of the impulsive pulse
and p ; the transition dipole moment vector of D ; and ,olf = e P | Try{e Pt} p;f D
and p; , are also defined accordingly as canonical density operators for Hp and H .

The probability for any of the acceptor molecules to be excited at time ¢ is then
given by
Ny

Pat) =) Ty {{Ale™ " p(0)e! "' AL} (3.80)
k=1
For sulfficiently short time compared to /max(J;), a perturbative expansion of
P4(t) withrespectto Hp 4 is well justified. Inserting the first-order approximation of
the time evolution operator e ~/#!/" and its complex conjugate into Equation (3.80),
we obtain the following expression valid up to the second order of Jj:

J'rk/J'//kr/ ! 4 s g
PAND D D /O dr’ /0 A" Ty | (Agle™ o a0 A
j/j// k/k// k

% (Dj,, |e—i(Ho+Heh)l”/hp(O)ei(Ho+Heh)l'/h |Dj/) (Ak/lei(Ho-FHeb)(l—l’)/h |Ak)} )

(3.81)
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The time-dependent RET rate is defined as the derivative of this acceptor probabil-
ity. Thus, taking the time derivative of Equation (3.81), we obtain

2J i’ /J " // 4 . ’
k(t) _ Z Z k k [/ dt/Trb{<Ak/|efz(Ho+He;,)(t7t )/h|Ak”)
0

J J// k k//
x <Dj//|€7i(HO+Heh)t//hp(O)ei(H0+Heb)t/h|Dj/> }] (3.82)

In obtaining the above expression, the following identity has been used:

S Ty { (Al B[ A (AL, Ho + Hple " HrHHa =0 A
k

x (Dj”|e—i(Ho-S-Hm)t”/hp(o)ei(Ho-S-Hd;)t’/h |Dj’>} = 0. (3.83)

Under the assumption of Equation (3.75), the trace over the bath degrees of free-
dom comprising Hj, and H,, can be decoupled from each other. Changing the
integration variable ¢’ to ¢ — ¢’ in Equation (3.82) and decoupling the trace over the
bath degrees of freedom, we obtain the following expression:

2J /k/J /k// 4 i ’ i ’
k(t) = ZZ [/ dt'Try, {Hoat M (Al Hal M| Ay pf )
0

J j// kk//
XTrbD{eiHb'”’//h(DjdeiH”(’t/)/h|Dé),05D(Dé|eiHD’/h|Dj/)}]. (3.84)

Equivalently, this can be expressed as the sum of spectral overlaps as follows (Jang
et al., 2004):

LCEDIS ;/ hz’k/ / oodwl’,i’k"(w)L{;"”(t, ), (3.85)

] ]// k'k" -

where [ ’X"”(w) and L{)j (t; ) represent the absorption of the acceptors and the
stimulated emission of the donors, and are defined as

oo
Iﬁ,kﬁ(w)g/ dteiw,TrbA{<Ak,|eiHb,Aw/he—iHAz//hp§A|Ak,,)}, (3.86)
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In the stationary limit of + — o0, k() approaches the following limit:
/J //k/ o0 I Y
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We call the above a multichromophoric FRET (MC-FRET) rate expression (Jang
et al.,2004). Under the assumption that the dynamics in the donor exciton manifold
is ergodic, we find that

Y 00 . . .
L’ (00, w) = 2Re /0 dte™" ' Tryp {(Djrle™ 2" ) 0| D )}, (3.89)

where pp, , = e PHo /Tr{e=PHr} is the canonical density operator of the donors
and the bath in the single exciton manifold. Sumi’s starting expression in his
theory (Sumi, 1999) is equivalent to Equation (3.88), with the above expression of
emission lineshape.

Equation (3.88) is presented in a tensor product form and is invariant with
respect to any unitary transformation. Thus, when all the matrix elements and the
lineshape functions are transformed to those in the exciton basis, the form of the
rate expression remains the same. Thus, the same expression can be used when
the indices represent delocalized exciton states. As a further simplification, it is
useful to consider the limit where the lineshape functions become diagonal; where
Equation (3.88) reduces to

2
2

ko & Z Xk: 27h
J

Thus, the rate expression is an independent sum of each pairwise contribution. If
j and k represent site-local excitation states, the above approximation represents
the situation where each exciton is completely localized at each chromophore, and
amounts to an independent sum of Forster’s rates. If j and k represent delocalized
exciton states, the above expression represents the limit of weak exciton—bath
coupling, where the bath-mediated inter-exciton coupling can be neglected. This
latter limit is often referred to as the generalized Forster theory (Ritz ef al., 2001;
Scholes, 2003; Renger, 2009).

/ b dwI** ()L (00, w). (3.90)

3.5 Important computational issues in an actual application
3.5.1 Identification of donors and acceptors

In systems with multiple chromophores, identification of appropriate groups of
donors and acceptors is the first important step. Although such identification can be
somewhat arbitrary, as depicted in the schematics of Figure 3.1b, the classification
of different groups is possible, based on observation of the physical proximity of
molecules. Thus, in general, the electronic couplings can be put into three distinct
categories: intra-donor couplings, intra-acceptor couplings, and donor—acceptor
couplings. In the limit where all the coupling constants are small, the Forster’s
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theory can be applied to the energy transfer between each pair. However, if some
of the coupling constants are large, to the extent that the spectral line-shapes
are altered significantly compared with those of independent single molecules,
judicious definition of donor groups and acceptor groups has to be made. In addition,
as shown in Figure 3.1b, it is sometimes necessary to introduce an additional set
of bridge states, which are intermediate molecules or connecting bonds that can
indirectly influence the transfer rate, but are far off resonance. It is possible to
include the effects of these couplings through bridges in the form of effective
couplings between the donors and the acceptors, as will be shown below.

Given all the numerical values of the coupling constants calculated by the TDC
method or any other approaches, an informed decision to partition the electronic
Hamiltonian into contributions from the donor, the acceptor and the bridge states
can be made. Partitioning of the Hamiltonian can be carried out on the basis of
spectroscopic and structural information. In other words, donors and acceptors can
often be identified from the information on the direction of the energy flow. For the
interpretation of spectroscopic data, an ‘optical partitioning’ of the Hamiltonian
has proven useful. The sequence of events that determines the Hamiltonian
partitioning is as follows: (i) the system is initially prepared by a short optical
pulse; (ii) population relaxation leads to an initial thermalized population on a set
of molecules, which are identified as the donor states; (iii) the complementary set of
molecules is identified as the acceptor states; (iv) any remaining molecules that may
indirectly influence the transfer process but are far off resonance are subsequently
identified as the bridge states. This type of protocol is reasonable if the timescales
associated with the initial two processes, (i) and (ii), are distinct from those of
(ii1) and (iv).

The issue of partitioning a multi-state Hamiltonian was addressed by Lowdin
(Lowdin, 1951) and has emerged in many fields treating transitions between quan-
tum states in a perturbative manner. Similarly, we can apply Lowdin partitioning
to the multichromophore exciton Hamiltonian. This provides a natural way to
include superexchange transfer mechanisms, which were first used in electronic
transfer processes (McConnell, 2004). Further theoretical developments that com-
bine superexchange with a coherent hopping mechanism have been shown more
recently (Ratner, 1990; Sumi and Kakitani, 2001; Kimura, 2009; Saito and Sumi,
2009).

For the simple case where there are three states, | D), |A) and | B), the exciton
Hamiltonian in the basis of these states can be represented by the following matrix:

Ep Jpa Jps
H=|J.p Es Tusl. (3.91)
Jep Jea Ep
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Incorporating the off-diagonal bridge coupling matrix elements in either the donor
or acceptor components, we can divide the above exciton Hamiltonian into effective
donor and acceptor Hamiltonians, as follows:

Hp,={1 0 0 0 |, (3.92)
0 O 0
Hy=\10 Ei Jap|- (3.93)

Hp and H, can be diagonalized separately to obtain a set of effective donor and
acceptor states. Among these, the states that have dominant characteristics of the
bridge can be neglected, and the effective donor and acceptor states can be defined
as follows:

1
Do) = D)+ ép|B)), 3.94
[ Defr) m(l ) +3plB)) (3.94)
1
Agp) = A) + 841B)), 3.95
| Aegr) m(l ) +8alB)) (3.95)

where |A), |D) and |B) are the unperturbed acceptor, donor and bridge states
respectively, Np and N, are the normalization constants and the coefficients §p
and 84, which are much smaller than unity, are determined from diagonalization
of Hp and H,. It is important to note that the two states |D.yr) and |A.y) are
not orthogonal to each other. Then, the effective donor—acceptor coupling can be
calculated as follows:

( Dy |H|Aepr) = {Jpa +6pJIpp +8aJpa + Spbal. (3.96)

1
V' NpNa
For the general case where there are multiple states in each group, each matrix
element of Equations (3.91), (3.92) and (3.93) itself becomes a matrix. Thus, the
diagonalization of Hp and H 4 leads to multiple effective donor and acceptor states,
and the effective MC donor—acceptor coupling elements can be calculated as in
Equation (3.96).

3.5.2 Evaluation of spectral overlap and averaging
over inhomogeneous distribution

Reliable calculation of spectral overlap is crucial for any of the rate theories
presented in this chapter. For disordered and condensed phase systems, this can be
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adifficult task. The experimental spectral lineshape of any molecule is a convolution
of various sources of line broadening mechanisms with different timescales; and
not all of them contribute to the lineshape functions that enter the rate expression.
Loosely speaking, any ensemble spectral lineshape consists of homogeneous and
inhomogeneous contributions. The former reflect the dynamics of an individual
molecule and enter the rate expression, whereas the latter result from static or
quasistatic disorder and simply broaden ensemble or single molecule spectroscopy
lineshapes. It is often assumed that homogeneous broadening is identical for all
molecules of the same kind which, however, may not be true for pigment molecules
embedded in proteins or any other disordered media. In this case, there can be
heterogeneity even in the theoretical lineshape of individual pigment molecules.

As a simple case, let us consider an ensemble of single chromophoric donor and
acceptor pairs with fixed relative distance and orientation. All of the conditions for
the FRET theory are assumed to be valid. It is also assumed that inhomogeneous line
broadening originates only from disorder in the excitation energies. The ensemble
emission lineshape of the donor and the absorption lineshape of the acceptor can
be expressed as

Lo(@) = [ don Lo~ )G p(en) (3.97)

Iy(w) = / do}y ' — w)G A(w}), (3.98)

where G p(wp) and G 4(wy) are distributions of transition frequencies of the donor
and the acceptor, wg and w;,. The FRET rate for each pair with excitation frequencies
wo and w;) is

2
27>
Given that the distributions of the donor and the acceptor remain the same in the
ensemble of the pairs of the donor and the acceptor, the average rate becomes

ki (wo, wh) = / doL" (0 — wp) (0 — w)). (3.99)

(k) = / deo / )G p(@0)G (@K (@0, )

2

J
=5 / dwL p(®)s(w), (3.100)

which amounts to using ensemble lineshapes for calculation of the rate.

While the above average rate can serve as a useful estimate for the timescale of
the RET dynamics, there are a number of possibilities where it does not represent
a genuine RET dynamics of the whole ensemble. Firstly, for the case where
the inhomogeneous distribution is broad, there can be a significant discrepancy
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Figure 3.3 Illustration of the inhomogeneously broadened absorption spectra of
molecular aggregates. The disorder in the site energies of the aggregates is uncor-
related in the left panel and correlated in the right panel. In the latter scenario, the
energy offsets (¢; — €p) form a distribution of width X. Both cases have the same

total disorder, o for the left and o = ,/ X2 + 012 for the right.

between the dynamics represented by the average rate and the average of the
time-dependent population dynamics. Secondly, any inhomogeneity in J or in
the homogeneous lineshape invalidates Equation (3.100), because the total average
cannot be expressed as the product of two average quantities in general. In spite
of these issues, the use of Equation (3.100) can provide a reasonable first-order
estimate of the RET timescale, as long as the inhomogeneity is not substantially
larger than the homogeneous contribution.

Further complications arise for aggregates of multiple chromophores. For exam-
ple, the correlation between intra-aggregate and inter-aggregate disorder can lead
to subtle but important effects. Figure 3.3 provides a pictorial representation of
two limiting scenarios of the distribution of disorder: one in which the disorder
is dominated by inter-aggregate offsets ¥ (right panel), and the other in which
the intra-aggregate offsets o are dominant. Both cases have the same total static
disorder. Thus, the resulting ensemble lineshapes should be identical although the
distributions of rates will be significantly different.
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A more fundamental issue that arises in the application of MC-FRET is that
none of the tensor elements of the lineshape functions in Equation (3.88) can be
obtained easily without full quantum-dynamics calculations. Thus, instead of the
full expression, the expression of Equation (3.90) can be used along with an addi-
tional approximation to model each exciton peak with pre-determined independent
lineshape functions. The majority of applications of MC-FRET to light-harvesting
systems employ this approach which seems to result in a reasonable estimate for
the average rate in various light-harvesting systems (Mukai et al., 1999; Scholes
and Fleming, 2000; Ritz et al., 2001; Scholes, 2003; Renger, 2009; Hossein-Nejad
etal.,2011).

3.6 Applications of MC-FRET

Natural photosynthetic antenna complexes (Blankenship, 2002) exhibit a remark-
able degree of diversity, and it is believed that their spacial and spectral cross-
sections have been tailored to maximize their performance under different condi-
tions. The detailed dynamics of the RET processes in these systems differ widely
in different antenna complexes, some of which may involve substantially coher-
ent exciton dynamics. However, in many of these systems, rate processes between
groups of coherent delocalized excitons play an important role. Application of MC-
FRET theory has elucidated the main mechanisms of robust and efficient energy
transfer mechanisms in some systems and helped to identify the rough timescales
of energy flow dynamics in others.

3.6.1 Light-harvesting 2 (LH2) complex of purple bacteria

Light-harvesting 2 (LH2) complex is the major antenna complex found in purple
bacteria, and consists of 24 or 27 bacteriochlorophylls (BChls) and 16 and 18
protein units that serve as scaffolds. The structure was first determined (McDermott
etal., 1995) in 1995 and detailed structural and dynamical information is available
in various reviews (Blankenship, 2002; Hu et al., 2002; Cogdell et al., 2006b;
Hunter et al., 2009). Figure 3.4 shows the LH2 of Rps. Acidophila with all the
proteins stripped off. The densely packed ring of 18 BChls absorb photons at around
850 nm and the loosely packed ring of 9 BChls absorbs photons at around 800 nm.
Thus, the former is called B850 and the latter B800. Pump probe spectroscopy
has confirmed that photons absorbed by the B80O unit transfer quickly to B850 in
about 0.7 ps at room temperature (Jimenez ef al., 1996) and about 1.5 ps in the
low temperature limit of 4 K (Pullerits ef al., 1997; Sundstrom et al., 1999). On the
other hand, the estimate based on FRET theory was found to be at least a factor of
five slower (Jimenez et al., 1996).
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Figure 3.4 Light-harvesting 2 (LH2) of purple bacterium, Rps. Acidophila. Not
all the proteins are shown, for clarity. The upper ring of densely packed 18 BChls
is called B850 and the lower ring of loosely packed 9 BChls is called B80O.

The MC-FRET theory was applied to this system (Jang et al., 2007) representing
the B80O as a single BChl and treating the entire BChls of the B850 as the acceptor.
The electronic coupling Hamiltonian Hp4 is given by

18
Hps =Y _ J,(1D){n| + n)(D]). (3.101)
n=1
where | D) represents the excitation of the B800 BChl and |n) the excitation of the
nth BChl in B850. J,, is the transition dipole interaction between | D) and |n), and
has the following form:
m, -, =3, R, R,

Jy = R . (3.102)

The MC-FRET rate expression, Equation (3.88), for this system has the following
form:

k300 B850 = Z s / dwl s u(®)Lp(w). (3.103)

n,n'=1

Introducing the following linear combination of the acceptor states weighted
by J,

=" Juln), (3.104)
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and based on a non-Markovian Redfield type approach, we find that the double
summation over n and n’ in Equation (3.103) can be approximated as

18 1
Z Jan’IA,nn’(C()) ~ ——ImTrA {
T

n,n'=1

/)4
o+ (E; — HY) + iK(@)

} = Ja(w),

(3.105)

where K(w) represents the effects of the bath on the excitons and is a complex
matrix defined in the exciton space. With this, Equation (3.103) can be expressed
as

k B300— B850

/OO Ja(w)L p(w). (3.106)

—0o0

2h?

The rate expression, Equation (3.106), has been calculated over an ensemble of
disorder that reproduces the experimental ensemble lineshape at a low temperature
limit of k3T = 10 cm™!. A broad distribution of MC-FRET rates has been found.
One of the most important results obtained from this calculation is that the average
MC-FRET is about a factor of five times larger than the FRET rate, which is con-
sistent with experimental finding and previous works based on phenomenological
lineshape functions (Mukai et al., 1999; Scholes and Fleming, 2000). It was also
confirmed that the excitation energies of B800—BChls to those of B850-BChls
have been optimized so as to maximize the energy transfer from B800 to B850.
Similar work, including the coherent delocalization of B80O, also found subtle but
important effects (Cheng and Silbey, 2006).

3.6.2 Antenna complexes in LHCII

In higher plants and algae, the majority of light harvesting occurs at LHCII, which
absorbs light across a broad spectral range and directs the excitation to the exit
sites. Figure 3.5 is a depiction of the LHCII complex. LHCII is not directly linked
to the reaction centre of photosystem II (PSII), but the excitation energy that leaves
its exit sites can ultimately be delivered to the reaction centres of photosystem II
through two or three intervening large protein—pigment complexes. How the overall
long range energy flow occurs with such efficiency and robustness remains to be
understood at a quantitative level.

The structure of LHCII was determined in 2005 with a resolution of 2.5 /OX, which
allowed unambiguous determination of chlorophyll (Chl) species and chromophore
orientations (Standfuss et al., 2005). Following this discovery, two-dimensional
electronic spectroscopy was used to investigate the real-time energy flow dynamics
within the complex (Schlau-Cohen et al., 2009). Two-dimensional spectra provide
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Figure 3.5 Illustration of the structure of plant light-harvesting complex of pho-
tosystem II (LHC-II), a trimeric pigment—protein complex that carries over 50%
of plant chlorophylls (Chl-a molecules contributing to the final energy acceptor
state in green, other Chl-a in blue, Chl-b in orange). (a) Top view from the stromal
side. (b) Side view. (c) Schematic picture of the light-harvesting funnel in a single
monomer of LHC-II, indicating the approximate timescales for energy transfer
(Schlau-Cohen et al., 2009). Figure taken with permission from Andrews et al.
(2011).

a more detailed reconstruction of the energy transfer channels and their associated
timescales, and have unveiled the crucial role played by Chl types and distinct
binding sites in determining energy transfer pathways.

LHCII is a trimer, consisting of three monomeric units. Each monomeric unit
contains a set of chromophores embedded within the protein matrix, located in
the thylakoid membrane of the cell. The shortest inter-pigment distances are of
the order of 4 or 5 A. The monomer subunits contain eight molecules of Chl a,
six molecules of Chl b, four carotenoids and five a-helices. Chl b has an extra
carbonyl group and therefore a higher excitation energy. Energy transfer within
the monomeric subunits consists of fast relaxation (~100 fs) within the exciton
bands of dimeric or trimeric units and slower transfer (~1 ps) between the exciton
bands. Overall, the coherent exciton dynamics within each monomer can be well
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described by the Redfield equation approach. However, this is not the case for the
exciton dynamics between different monomers.

After equilibration within each monomeric subunit, the dynamics becomes
dominated by transfer between the Chl a clusters of adjacent subunits. The weak
coupling between the monomers implies that the MC-FRET theory provides a
better description of the transfer dynamics, and that the Redfield theory would
overestimate transfer rates. For a comparison of the two results in LHCII, readers
are referred to Andrews ef al. (2011), Novoderezhkin et al. (2011a) and Renger
etal. (2011).

3.7 Summary

This chapter has provided a detailed and self-contained review of Forster’s theory
and its generalizations. The main objective is to help readers examine all the major
steps of the derivation and understand the physical assumptions behind them.
This is crucial for clarifying the capability and limitation of the theories when
applied to complex systems, such as photosynthetic light-harvesting complexes. In
an effort to elucidate the design principles behind the extraordinary efficiency of
photosynthetic light-harvesting complexes, this is a critical first step that provides
a solid basis for quantitative analysis. In the case of MC-FRET theory, it has
already been demonstrated that the theory can explain the hidden role of coherent
quantum-mechanical delocalization of excitons for efficient and robust energy flow
dynamics. Further investigation of this issue for other light-harvesting complexes
and new synthetic systems is a promising area of theoretical research. Considering
the softness of these systems, the prospect that inelastic effects play a significant
role seems high. This is still a largely unexplored issue but has potential importance.
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Principles of multi-dimensional electronic spectroscopy

TOMAS MANCAL

4.1 Photo-induced dynamics of molecular systems

Life is intimately connected with the light from the sun, and many properties of
living matter are tuned to its spectrum. Many biological functions, be it for har-
nessing the sun’s power or for protection from its harmful rays, rely on interaction
of specific molecules with ultraviolet (UV), visible or infrared (IR) light. In this
chapter, we will develop a theoretical description of this interaction, which forms
the basis both of our current understanding of photo-induced processes and the
design of experimental methods used to investigate their details.

Among the biologically relevant photo-induced processes, photosynthesis prob-
ably occupies the most prominent place. Essentially, all of the energy that is used by
the biosphere is a result of photosynthesis, and the prospect of connecting humanity
to the same energy source has recently motivated many interdisciplinary research
lines. Insight about the design and function of natural photosynthetic systems is
likely to play an important role in future research. Within the limited scope of this
chapter it is therefore reasonable to limit ourselves to photosynthesis motivated
molecular systems. Much of the theory presented in the following sections applies
even beyond photosynthesis, e.g. in experiments on molecules related to vision,
DNA photo-protection, or in IR spectroscopy of molecular vibrations. However,
one has to keep in mind that approximations and models applicable in one field
might not work well in another. In this chapter we will introduce and discuss
concepts that, together with a good knowledge of a particular physical problem,
should enable the reader to develop a theory in order to understand certain important
classes of spectroscopic experiments on biomolecules.

To understand light—matter interaction as it plays out in modern spectroscopic
experiments, one has to span several fields of classical and quantum physics. Light,

Quantum Effects in Biology, ed. Masoud Mohseni, Yasser Omar, Gregory S. Engel and Martin B. Plenio.
Published by Cambridge University Press. © Cambridge University Press 2014.

82



4.1 Photo-induced dynamics of molecular systems 83

as used in laser spectroscopy, has the convenient property that it can often be
described classically. The equations that describe the absorption and non-linear
signal generation processes in macroscopic samples are the well-known Maxwell
equations of electromagnetism. However, light interacts with individual molecules,
which have to be described quantum mechanically. The theory of spectroscopy
therefore lies on the crossing point of the macroscopic and microscopic (classical
and quantum) theories of light—matter interaction, the theory of open quantum
systems and the theory of molecular structure from which it derives its models.

4.1.1 Semi-classical description of light—matter interaction

Light-matter interaction can in principle be included quantum mechanically into
the Hamiltonian H, which would then remain time-independent. Such a quantum-
mechanical treatment is indeed required in cases where non-classical properties
of light play an important role, e.g. in spontaneous emission. Many spectroscopic
techniques are, however, well described by the electric field of the light entering
the Hamiltonian as an external (classical) parameter. A complete derivation of
the semi-classical Hamiltonian is beyond the scope of this chapter. A detailed
discussion can be found e.g. in Mukamel (1995) and Grynberg ef al. (2010). The
Hamiltonian which describes the matter and its interaction with the classical field
is derived there in a form:

I:I = [:\Isc = Amal + ‘,}imer _/drp(r) : EL(r7t)' (41)

The Hamiltonian ﬁmol is one of the isolated molecules (their electronic and nuclear
degrees of freedom (DOF)), V,-,,,er represents the electrostatic interaction between
molecules, E*(r, t) is the external transverse (radiative) electric field acting on
the molecules and P(r) is the polarization operator. The field EX(r, 1) is coupled
to material polarization P(r,t) = tr{ P(r)W ()} which it generates in the sample
through the Maxwell equations. We assume that the wavelength of the light is much
larger than the typical dimension of the molecular systems under study, and the
interaction of a molecule with light is dominated by its transition dipole moment.
Thus we have,

P(r)= .80 — Ry), (4.2)

where R, is the position of the mth molecule in the sample, and fi,, is the transition
dipole moment operator of the molecule, given by the charges gy of all charged
particles distributed at positions r, in the molecule ft,, = >, qo(F — ry).

Often, molecules carrying the relevant DOF can be grouped into complexes
between which interaction through \7,-,,,6, is negligible. The problem of N such
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complexes interacting with their environment through corresponding terms in V;,,;c,
can then be replaced by N problems of a single complex embedded in its environ-
ment. Integration over the coordinate r in the light-matter interaction Hamiltonian
(third term of Equation (4.1)) leads to H,, = — Doy EX(R,,,t). One can
then choose the centre of a representative complex as the origin of the coordinates.
Because the typical dimension L of the complex satisfies L <« A, where A is a
typical wavelength, one can set EX(R,,, t) ~ E*(0,t) = E(t). This enables us to
write the light-molecular complex interaction by means of the total dipole moment
operator it =) fi,, of the complex, i.e. ﬁm, = —jfi - E(t). The Hamiltonian of
the complex in the absence of external light will be denoted I:IO = I:I,nol + Vim,,
and the equation of motion for the molecular system’s statistical operator (or density
operator) W () has the following form (May and Kiihn, 2011):

3 . i i A
EWG) = —ﬁ[Ho, Wnl- + ﬁ[lL - E(1), W()]-. (4.3)

The complexes we have just introduced are the natural entities to work with
in spectroscopy. The light is resonantly exciting their eigenstates instead of the
eigenstates of the individual molecules, so that we cannot investigate properties of
individual molecules in the complex. On the other hand, molecules usually have a
fixed position and orientation in the complex on the timescale of the experiments
we will be discussing, and their spatial relations are reflected in the properties of the
optical spectra of the complex. We will assume that the complexes are distributed
homogeneously within the sample. This allows us to assume that all points in the
sample are essentially equivalent, except for the differences in arrival times of the
electromagnetic waves of the light (i.e. in the phase factor e'*'®) determined by
the position R of the molecule in the sample. There is no communication between
different points of the sample, except for the light waves travelling through it.
The position of the complex in the sample bears no importance for the quantum-
mechanical calculation, as long as we are able to assign the correct spatial phase
to the resulting response.

4.1.2 Response functions

In a non-linear experiment, the field comes in the form of pulses of various dura-
tions. It is a matter of experimental evidence that spectroscopic methods can be
classified according to the dependency of the signal intensity on the input intensity.
We thus have first-order (linear), second- and higher-order (non-linear) methods,
and somewhere in our description of the light—matter interaction this notion of
orders has to be hidden. Already now, before we connect Equation (4.3) with
macroscopic spectroscopic signals, we can demonstrate how the total density
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operator W (z) can naturally be expressed in terms of contributions of different
orders in E(¢). To simplify the treatment of Equation (4.3), we will take the polar-
ization of the field to be given by a unity vector e, so that E(¢) = eE(t), and we
will introduce a superoperator notation. The commutator with a Hamiltonian H,,
where x is an arbitrary index, will be denoted as/iL,, i.e. W, A=H.A— AH, =
[H,, A], for an arbitrary operator A. Similarly, we will denote /) the commu-
tator with the scalar transition dipole moment operator i = e - ft. We thus have
Equation (4.3) in a form,

%W(z) = —iLoW () +iVW@)E®). (4.4)

To abbreviate this equation we turn to the interaction picture. We define
WD) = Z/{g OW (@) = 00T (W (t)Uy(t), where ordinary evolution operators are
l7x(t) = exp{—%ﬂxt} (for an arbitrary index x), and the evolution superoperators
U, (t) are defined similarly as U, (t) = exp{—iL,t}. By definition, the evolution
(super)operators satisfy Equation (4.4) with E(¢) = 0, and can be used to write the
density operator at a time ¢, knowing its initial condition at time 7y < ¢ as

W) = Up(t — t0)W(to) = Uo(t — t0)W(to)UJ (1 — 10). (4.5)

The equation of motion for the operator W) (¢) reads
0 . N
WO =viOWPOE®, (4.6)

where

V(1) = V(1) = UL (1 — 1) VUo(t — o). (4.7)
The initial condition for Equation (4.6) should be specified at r = #y where
W (1) = W (zo).

A formal solution of Equation (4.6) can be written as the time-ordered
exponential

W) =exp, {—i / dTV(1)E(T)} W(to), (4.8)

fo
which is equivalent to an infinite series W((r) = 300 W")(r), where the nth
order contribution reads,
t Ty T2
W) = i"/dr,,/dr,,_l.../drll)(r,,)...V(rl)W(to)E(rn)...E(rl).
fo fo

To

(4.9)
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Expectation value (A) of an arbitrary operator A can be expressed in orders of the
electric field simply by returning back to the Schrédinger picture and applying the
trace to the expansion, Equation (4.8). In this chapter, we will deal exclusively with
polarization i.e. with the expectation value of the transition dipole moment. This
reads, ( Z tr{alo(t — to)W (1)}. For the nth order we therefore have

<m®:ﬁ/ﬁm/whLu/wmm%o—@wa;me%»

X E(t,) ... E(11). (4.10)

Using the properties of evolution operators and the definition of V(¢), Equa-
tion (4.7), we can rewrite the trace in Equation (4.10) in terms of the differences
ty = Tye1 — Ta (Tya1 = t), wherea = 1, ..., n. Because the initial state of the sys-
tem W (zy) should correspond to a thermal equilibrium, it does not evolve under
the evolution superoperator Uy(¢). The first factor from the right-hand side inside
the trace therefore reads, Uy(t; — tO)W(to) = W(to). After substituting #,s in Equa-
tion (4.10) we obtain

o oo 00
:/dtn/dtn 1. /dtlSL”)(t,,,...,tl)

0 0

X E(t —t)VE({ —ty —ty 1) E(t =ty —ty -+ — 1)), @.11)

where we define the nth order response function Sl(f) as

SOy, ... 1) = Oty) ... O1y)
x iMtr{ (Al (1) VU (ta—1) . . . Up(t))V W (—00)). (4.12)

We have also sent the initial condition formally to negative infinity, t{y — —o0,
and introduced the Heaviside step function, ®(z), to make sure the delays to 7, are
always positive.

4.1.3 Meaning of response functions in time and frequency domains

The response functions represent a key to linear and non-linear spectroscopy. They
will allow us to establish a link between microscopic molecular dynamics and
macroscopic fields. The expectation value of the transition dipole operator can
be identified with the transverse polarization P(¢) = (/1),, and different orders of
polarization can be calculated by the response functions of the corresponding order,



4.1 Photo-induced dynamics of molecular systems 87

Equation (4.12). For example, in the linear case we can write

o]

PO = /drSf})(r)E(z—r), (4.13)

PV(w) = eox V(w)E(w). (4.14)

Here, we denote Fourier transforms of the polarization and electric field by a tilde,
and we define the Fourier transform of the first-order response function as

o0

1 .
xP(w) = - / drSP (e (4.15)

—o0

We have used the fact that Equation (4.13) is a convolution, and the Fourier trans-
form of a convolution leads to a product of Fourier transforms. In Equation (4.14),
we recognize x ! as the linear susceptibility, which is well known to be related to
the effects of absorption and refraction. In a similar manner, higher-order response
functions (and susceptibilities) are related to higher-order spectroscopic signals.

The susceptibility, or in other words, the frequency domain response function,
can be interpreted as a response of the system to a single frequency compo-
nent of the light. We define EP(1) = Ege ™', ES)(1) = Eje'™, so that the real
monochromatic electric field is E,,(1) = ESP(1) + ES7(t). We calculate the linear
polarization resulting from such a field,

o0 o0
PO@) = / drSP(r)e' " Ege ™" + / drS(r)e T Ege’, (4.16)
—0 —o0
which yields
POty = PP + PO(1) = eox V(@) ESY (1) + eox V(—w)ES (1), (4.17)

This means that the polarization can also be split into positive and negative fre-
quency components, and x (w) relates them to the electric field.

Another interpretation can be given to the response function in the time domain.
To this end we will consider the field in the form of an ultra short pulse,

EP @) = E@t)e™, (4.18)
and £(t) = Eyé(t). Now, Equation (4.13) yields
PY® (1) = SV(1)Eo, (4.19)

so the time domain response function can be interpreted as the polarization induced
by a Dirac §-pulse of unit intensity.
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4.1.4 Macroscopic polarization and the spectroscopic signal

The quantity that connects microscopic photo-induced processes in the studied
spectroscopic sample with the detectable macroscopic signal is the polarization
P(r, ¢). It is induced by perturbing the state of the system by light; and in the
previous section we introduced response functions by which it can be calculated.
The Maxwell wave equation describes how the light that enters the sample is
modulated by the polarization it induces.

Non-linear spectroscopic methods discussed in this chapter belong to those
utilizing the so-called N-wave mixing process, where light in the form of N — 1
fields,

N—1
E(r,0) =) e,&(r, e " tcc., (4.20)
n=1
generates a field in a direction given by a combination of the incoming wave vectors
ky = £k, - - - £ ky_; (Mukamel, 1995). The most widely used methods belong to
the four-wave mixing (FWM) type and the direction —k; + k, + k3, where the
index denotes the order in which the pulses enter the sample, corresponds to the
most prominent of the FWM methods, namely the photon echo.

Applying Maxwell theory to the problem of propagation of light through a
simple slab of width 4 (Mukamel, 1995), we can show that the light generated in
the third-order of the perturbation is proportional to the third-order polarization.
Considering the light and polarization in the form of a slowly oscillating envelope
and a carrier frequency w,

E¥1) = EP®e ™ + c.c., PP®t) = PP1)e ™ + c.c., 4.21)
we can write
£y = i —2 PO, (4.22)
n(w)epc

Here, n(w) is the refractive index, € is the permittivity of the vacuum and c is the
speed of light. The light emerges from the sample with sharp intensity maxima in
the directions of the combination wave vectors corresponding to its order, i.e. in
k; = £k, £ k, & k3, in the third order (Mukamel, 1995).

A non-linear method of the third order can also use just two directions. The
pump-probe experiment (Cho et al., 1992) is described by the same general theory
as the photon echo, only with k; = k;. The field generated by the third-order polar-
ization mixes with the incoming field E,,(¢) = E;,(t) + E 3)(#), and the mixing
leads to a decrease in the outgoing intensity I,,,(t) & |Ey(t)|> ~ |E;,(t)|* + 2Re
E*(t)E®(t). Equation (4.22) yields 2Re E(t)E¥(t) = —2’1(60“))Eoclm[E*(t)

P (t)]h. This relation between the absorption, the generating field and the
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non-linear polarization enables us to define ‘absorption’ also in cases where the
field E®)(¢) travels in a direction where it does not mix with any of its generating
fields. By mixing it artificially with a so-called local oscillator field E; o (¢) which
has the same properties as the generating fields, and comparing such a mixed sig-
nal with the real pump—probe measurement, we can define an ‘absorptive’ part of
the non-linear signal. This technique, called heterodyne detection, is used e.g. in
two-dimensional (2D) coherent spectroscopy (Jonas, 2003; Brixner et al., 2004),
which we will introduce in Section 4.4.2

4.2 Non-linear response of multi-state systems

In this section, we will specify a molecular (the three-band) model that will be
treated in the following sections. The resonance condition in the light-matter
interaction enables us to disregard off-resonant transitions, and the three-band
model thus encompasses a broad class of real-world molecular systems.

4.2.1 Two- and three-band molecules

Let us start right away with the notion of bands. Let us assume that the (pulsed)
light we use to investigate matter has a carrier frequency €2, which is similar to
the transition frequency between the electronic ground state of matter and a whole
band of its excited states (see Figure 4.1). Let us denote the ground state by g and
the first excited band by e. Furthermore, once the system is excited in some of the
e-band states, it can be promoted by light to another band f lying at an energy /<2
higher.

An important example of a generic molecular system which fits the above
description are the photosynthetic excitonic complexes. In these complexes some
relatively simple molecules (chromophores) are bound together non-covalently,
and they are held in well-defined positions by a protein scaffold. Thanks to mutual
electrostatic interaction between the chromophores, the complex has spectroscopic
properties different from a simple sum of the individual chromophores (e.g. in
solution). The states of the complex can be well classified using the states of
individual chromophores, however. The complex with N chromophores is said to
be in its ground state |g), if all its constituting chromophores are in their ground
states |g;). Thus, the complex ground state might be represented as

1g) =lg1) - Ign)- (4.23)

If the complex is formed of similar chromophores with transition frequencies
between their ground state and some excited states |e;) equal approximately to



90 Multidimensional electronic spectroscopy

Wige) Wiaf) loe)

=) W i99) ] 0 0

Li/'(cﬂl) W(ﬁﬁ) W(ef) O ﬂ(ef)

X ’ WOl Jite | D o pve 0

Figure 4.1 Energy level structure of a three-electronic-band system, and the block
structure of its statistical operator W and the transition dipole operator fi. The
three-band model consist of the ground state |g) and two bands (e and f) of
excited states |e,) and | f,,). Energy relaxation is allowed within the band, but
not between the bands or to other states with non-resonant transitions (dashed
lines). The statistical operator W has a block structure (centre of the figure) with
six independent blocks (plus three obtained by Hermit conjugation) connected by
optical coupling only.

some €2, then the whole complex will have N excited states of a form,

lex) = 181) - - - [8k—1)€k)8k41) - - - 18N) (4.24)

with this transition frequency. In the same way, we also obtain a band of excited
states that have an energy 242 larger than the ground state |g). There must be two
excitations present in the complex to achieve this, and the two-excitation states
read as

[fu) = lg1) - lg—1)ex)|gk+1) - - - lgi—1)|e)|&uis1) - - - 1gN)- (4.25)

The states |e;) and | fi;) are not the eigenstates of the complex Hamiltonian,
but they can be used as a basis to construct a suitable Hilbert space in which the
eigenstates can be found by diagonalization of the Hamiltonian. The eigenstates
still represent three well-defined bands, as shown in Figure 4.1. Photosynthetic
antennae of bacteria and plants belong to this class of molecular complexes. Con-
sidering their functions as light energy harvesting and transport units, it is a rea-
sonable expectation that the individual molecules do not de-excite non-radiatively
on their ‘operational’ timescale, i.e. on the timescale of the energy transfer. Indeed,
the chlorophyll excited state lifetime is several orders of magnitude longer that
the energy transfer timescale. Consequently, non-radiative relaxation between the
bands can be assumed to be negligible (this is also denoted in Figure 4.1).

The evolution superoperator elements can be organized into blocks according to
the bands, too. The density matrix breaks up into nine blocks (see Figure 4.1) to
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which we can assign corresponding blocks in the evolution superoperator. Because
our model assumes no direct relaxation between the bands, all evolution superoper-
ator blocks connecting two bands are zero. Thus, e.g. 1¢“®)(t) will be the block of
the evolution superoperator governing evolution of the populations and intra-band
coherences in the e band, which is in turn described by the density operator block
W Whenever we need to evaluate the evolution of the density operator block in
detail, we can go back to the indices of the individual states, so we can write, e.g.

N
Wt +10) = Y U W to), nm =1,...N (4.26)
k=1
or
Wt + 19) = U)W (1), (4.27)

with the same meaning.

One important property of the statistical operator is that the elements of the
off-diagonal blocks, e.g. W () or W (r), oscillate with frequencies close to
Q. The block W{/®(r) oscillates with 2. The evolution superoperator has to
reflect this fact, and corresponding frequencies are indeed imprinted in its time
dependence. For further manipulations with its blocks, we will explicitly subtract
this fast frequency, and introduce a slowly varying envelope, as in the following
example,

u(Egeg)(t) — Z](t’geg)(t)e*iﬂf’ u(fgfg)(t) — Z;[(fgfg)([)e*ﬂﬂf‘ (4.28)

From now on in this chapter, tilde will denote these slow envelopes.

The second quantity that enters the response functions in both operator and
superoperator form is the transition dipole moment. Here, we assume that this
operator mediates transitions between bands. Consequently, the dipole operator
has a block form, as in Figure 4.1. Matrices can be multiplied in blocks, and thus
it is easy to verify that the action of the transition dipole moment on the density
operator transforms one block into another. With the transition dipole moment
operator,

A= nCle)(gl+ 2V f el + hec., (4.29)

where h.c. stands for Hermite conjugate, we have e.g. AWE|g) (g| =
;l(eg)W(gg)|e) (gl|. The action of the operator fi can equally well be written using
the corresponding superoperator. Formally, the difference is that, in the case of a
superoperator, its action changes both of the operator (block) indices at the same
time (the superoperator acts on both the ket and the bra of the operator at the
same time). We denote this by writing out both the initial and the final pairs of
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the operator (block) indices in the acting superoperator element. Thus we write
DW= V(ees) (22 We can see that the action of the dipole (super)operator
transforms the diagonal elements of the density operator to the off-diagonal ones;
and similarly we can show that off diagonal blocks are transformed into diagonal
ones by the action of the dipole moment operator from the left or right-hand sides.
For the action of the transition dipole moment superoperator we have

VIWED(D)]g)(g| = VW ED()]e) (g] = VESIWED D) (el (4.30)

The action of a transition dipole moment superoperator on a block of the statistical
operator yields contributions to its two different blocks.

4.2.2 Liouville pathways

Response functions consist of many such actions of transition dipole operators
and propagations by evolution superoperators, with a trace over everything at the
end. In optical spectroscopy, we always start with only the electronic ground state
populated (thermal energy is much smaller than the optical energy gap,i2 > kgT),
and the tracing requires that after all actions of the dipole moment operators, we
end up on the diagonal block. This means that not all terms in the response function,
Equation (4.12), are non-zero. There are only certain pathways through the bands
of the molecular system that can contribute. These pathways occur in the so-called
Liouville space of projectors |a)(b|, where a and b denote bands (or individual
energy levels). To visualize and organize these so-called Liouville pathways, we
can use the diagram in Figure 4.2.

We denote the projector corresponding to the non-zero density matrix element
by a circle with its band indices. The action of a dipole moment operator from the
left-hand side changes the left band index, and similarly, action from the right-hand
side changes the right band index. In the diagram we have denoted the left action of
the dipole operator by a downward pointing arrow, and a corresponding change of
the left index, and the right action by a right arrow and a change of the right index.
Each commutator in Equation (4.12) corresponds to two arrows. In a three-band
system, some actions of the dipole moment operator correspond to two possible
changes of indices (Je) — |g) and |e) — | f)), so we keep both alternatives in
the diagram. Thanks to the cyclic invariance of the operators under the trace, the
dipole moment on the furthest left in Equation (4.12) can be equivalently written
on the furthest right of the expression. It can therefore correspond either to the
downward or the right arrow.

Figure 4.2 shows that there are sixteen possible Liouville pathways between
the three bands that can be travelled by three actions of the dipole moment. The
projectors |a){(b| and |b){a| correspond to mutually Hermite conjugated blocks
of the density matrix. The pathways that are mirrors of each other with respect
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Figure 4.2 Liouville pathways: Left side of the figure shows possible pathways,
starting from the electronic ground state |g). The dashed lines connect the states
after zero, one, two and three perturbative interactions with the field. Pathways
which are mirror images of each other with respect to the thick full line are complex
conjugated to each other. Examples of individual Liouville pathways are given on
the right-hand part of the figure.
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to the diagonal line of the diagram, therefore have mutually complex conjugated
contributions. We have eight independent contributions, four of which contain only
bands g and e, and four of which also include the f band. Moreover, those pathways
that involve an odd number of dipole operator actions from the left, carry a minus
sign, which originates from the second term of a commutator. There are four pairs
of pathways with a plus sign that correspond to four different orderings of left
and right actions of the dipole moment, and which differ by exchanging g and f.
We denote their contributions to the total response function by the letter R with a
lower index 1, . .., 4, denoting the four independent orderings of interactions from
the left and right. Consequently, there are four independent shapes of Liouville
pathways in Figure 4.2. We will introduce a second index, g or f, to distinguish
pathways which reach the f-band from those that do not. Thus, the total third-order
response function reads as

4
SOt3, 12, 1) = POWLYOWIOW) Y | Y [Rualts, 1o, 1) — Ry (13, 12, 11)].

n=1a=g,f

(4.31)

Now it is possible to construct individual Liouville pathways and evaluate them
using the evolution superoperators.

Before we do this it is a good exercise to follow the same approach on a simpler
problem of linear responses. Let us start with the linear response function written
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as
My — r (ge)77(egeg) (egg8) (7 (88 ,— 182
Su () =i0Mtr{a'*“U (304 Wiese
_ i@(I)tr{ﬁ(eg)a(gege)(t)v(gegg)W(gg)}eiﬂt_ (4.32)

We have used the superoperator block notation for the transition dipole operator
and the slow envelopes for the evolution superoperator blocks. We will evaluate this
response function for the case of a single level |e) in the e band and the transition
dipole moment d,, = (e|f1®|g). The two-level first-order response reads as

egeg gege

Sl("l)(t) — }%|deg|zz:{(egeg)(t)e_i9t _ }%|deg|22:{(gege)(t)eiﬂt' (433)

The most practical way of dealing with a two-level system is to choose Q = w,,
(hwey = €, — €4, Where €, and €, are the energy of the state |e) and |g),
respectively). With this choice, /¢¢¢®)(t) would contain just the dephasing of
the |g) — |e) transition. For our purpose here, we can assume it in a form
U (1) = 14#°29)(t) = ¢~ 1!, with some dephasing rate I". The absorption coeffi-
cient can be obtained by Fourier transform of the Sl(f) (Mukamel, 1995). Because
the Fourier transform is performed only over positive frequencies, the second term
in Equation (4.33) will contribute much less then the first, and we can neglect
it. The Fourier transform yields the real and imaginary part of the susceptibility
xV=x"+ix",
2 2
X/(a)) _ |deg| (weg _20)) - X//(a)) _ |deg| r . .
€fi (Weg —w)* +T €t (weg —w)*+ T

The latter gives the well-known Lorentz absorption line-shape.
Let us construct the contributions to the third-order signal. Following Figure 4.2
we can write for Ry and R»,

Ri(t3, 1o, 11) = tr{ LU (1) V(8 (1,)

(4.34)

% V(eeeg)z](eges’)(tl)V(eggg)W(gg)}e—iﬂ(tﬁrts)’ (4.35)
Rag(t3, 12, 11) = tr{ AU D ) VEOU < (1)

% V(fege)z;[(gege)(tl )V(gegg)W(gg)}efiQ(trn)’ (4.36)
Rip(t3, 12, 1) = tr{ @S OUTD (i) VU 1)

% V(eeemz](eg%)(tl)V(eggg)W(gg)}e—iﬂ(h—ts), (4.37)
Rop(t3, 1o, 11) = tr{ U D (1) VT OU < 1)

% V(eege)z;{(gege)([l )V(gegg>W(gg)}eiQ(t1 +t3)’ (4.38)

and the rest of the expressions can be obtained in the same way. The eight functions
Rig, ..., Ragand Ry, ..., R4y completely determine the third-order response of a
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Figure 4.3 Two examples of the double-sided Feynman diagram. Liouville path-
ways Ry, and R, are translated from the scheme of Figure 4.2 into Feynmandia-
grams. Arrows denote absorption and emission events, the dashed arrow represents
the signal emission.

three-band system. Each of the functions involve a sum over a possibly large number
of ‘subpathways’ involving individual levels of bands. The evolution superoperator
Uee® includes the effects of population transfer between different levels of the
excited state band. Very often these are the processes which interest us the most.
The time variables #; and #; are often referred to as coherence times, because they
appear only in the blocks of evolution superoperators that describe optical coher-
ences. The time variable #, is always associated with the propagation of diagonal
block(s) of the statistical operator, and it is therefore referred to as the population
time.

At this point, it is useful to comment on a frequent and powerful way of repre-
senting individual contributions to the response function, namely so-called double-
sided Feynman diagrams. A double-sided Feynman diagram carries at least the
same information as the diagrams on the right-hand side of Figure 4.2. Depending
on notation, additional information can be included, which completely determines
the Liouville pathway’s characteristics (Mukamel, 1995). Figure 4.3 shows two
Feynman diagrams compared with the Liouville pathway diagram from Figure 4.2.
The two vertical lines denote the time evolution of the ket and bra of the system’s
statistical operator (time is running upwards). Each horizontal bar denotes the time
when an interaction with the external field (i.e. multiplication of the statistical
operator from left or right by the transition dipole operator) occurs. The ket and
bra after each interaction are written above the bar.

4.2.3 Third-order polarization in a rotating wave approximation

So far we have evaluated the response functions separately from Equation (4.11)
which connect them with the third-order polarization. In Equation (4.11), the
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Figure 4.4 Pulse scheme of the four-wave mixing experiment. The excitation
pulses are centred at times —7 — v, —t and 0. The third-order signal at time ¢
is then an integral over contributions from all possible combinations of positive
delays 11, t, and #3.

electric field E(¢) carries phase factors not dissimilar to those of Liouville pathways.
The polarization is obtained by integrating the product of the response functions and
the fields. Because the optical frequency is very fast with respect to evolution of the
pulse and response envelopes, it is expected that terms where optical frequencies
cancel out will yield a much larger contribution to the integral than those where
some optical frequency remains uncancelled.

To put these words into equations, let us assume the incoming electric field to
be formed of three pulses with slowly varying envelopes, depicted in Figure 4.4,
ie.

E(r, t) — gl(t + T + r)efiQ](l+T+T)+ik1~r
+ E(t + T)e I RUFDTkT 4 oy ()p=ihitiker 4 oo (4.39)
Here c.c. denotes the complex conjugated term. In the product E(r,t —t3 —
th —t)E(r,t —t3 —t))E(r,t — t3) there are six terms with spatial phase fac-

i(zki+kx+ks)r Each of these field terms also carries a phase factor in #3,
t, and #; over which we integrate (and phase factors in #, T and t which

tor e

can be taken out of the integration). The differences between two laser fre-
quencies are assumed to be small in comparison with optical frequencies, i.e.
0~ Q, —Q, KR, =~ Qnm=1,2,3, where Q2 is the average carrier frequency
of the excitation pulses. Thus the phase factors are of three possible kinds, e/~
e/ SUBFh) and ¥ +20+5) T ooking at the expressions for the Liouville pathways,
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e.g. Equation (4.35), we see that they have similar phase factors in variables 23, 1,
and #;. If a given Liouville pathway does not have a phase factor which cancels
some phase factor of the field, its contribution to the integral will be neglected.
This is a version of the frequently used rotating wave approximation (RWA).

For the third-order polarization in RWA we can now write the following integral
expression (Brixner et al., 2004):

PS) (1. T, 1)

~ el(Ql—Qz—Q:;)t-l—l(Q]—Qz)T-l-lQlT
o0 o0 o0
X /dt3/dt2/dtl{SR(tg,tz,tl)Ef(t +T+1—t5—1h—1)
0 0 0

X [Ex(t + T — 15 — p)Ex(t — t3)e (17 Bl =) =i
+ & — 13 — )&t + T — 1) 1@ mi@=nithn |
+ Snr(ts, 1, 1)EfE+T + 7 — 13 — 1)
x[Et +T +1— 15—t — 1)E(t — t3)e 1R BB @=L+
+ &t — 15—ty — 1)E(t + T — t3)e (BRI @i= )b+ ]

+ Spctz, o, 1)EFX +T + 7 —13)

X [Ex(t + T — 15 — 1y — 1)E(t — 13 — tp)e 17 Bt R+,
F &t —t5 =t —1)EN + T — 13 — y)e =R B H ORI

(4.40)

Here we have collected the Liouville pathways into groups according to their
characteristic oscillating phase factors. Thus we have rephasing pathways,

Sr(t3, 12, 11) = Rog(t3, o, 11) + Rg(t3, 12, 1) — Ry 4(t3, 12, 1), (4.41)
non-rephasing pathways,
Snr(ts, 12, 1) = Rig(t3, o, 11) + Rag(ts, 12, 1) — R3 (13, 1o, 1), (4.42)
and double coherence pathways,
Spc(ts, 12, 1) = Ray(t3, 1o, 11) — Ry, (83, 12, 1). (4.43)

Equation (4.40) enables us to calculate the signal for any third-order non-linear
experiment employing a three-pulse sequence with arbitrary pulse shapes.
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4.2.4 Third-order polarization in the impulsive limit

Laser pulses that are used in the experiment to excite third-order polarization in the
sample may be very short, sometimes with just a few cycles of optical oscillation
within the pulse envelope. It is therefore often possible to simulate the non-linear
response assuming that it was excited by an infinitely short pulse of form,

E(t) = Epd(t)e ™ + c.c.. (4.44)

The above delta function must be understood as itself ‘slowly’ varying with respect
to the optical frequency, and it is allowed to have Dirac delta function properties
only with respect to the slow envelopes of the response functions. Such a delta
function is often referred to as a physical delta function (see e.g. the discussion in
Mukamel (1995)).

Equation (4.40) can be simplified significantly by the assumption, Equa-
tion (4.44). Most importantly, one can immediately see that for different pulse
orderings, different types of Liouville pathways contribute to the signal in any
chosen direction. Let us choose k; = —k; + k; + k3 as the investigated direction
and let us first assume that the pulses arrive in the order k1, k;, k3 (we will denote
this order as 1 — 2 — 3), and that they are not overlapping. We have six combina-
tions of pulse envelopes in Equation (4.40), but only one of them yields a non-zero
integration. Let us examine the first term, i.e.

Et+TH+1—t6—t—1)a(+T — 13 — )& — 13)
X+ T+t—t6—16H—1)5t+T —t3 — 1)t —t). (4.45)

This term yields the conditions, t + T + 7 —t3 —t, —t1 =0,t + T —t3 — 1, =0
and ¢ — t3 = 0, for the integral in Equation (4.40) to give a non-zero contribution.
They can easily be satisfied by t3 = ¢, t, = T and #; = 7, and thus the contribution
to the polarization yields Sg(¢, T, ‘L')ES. The second term in Equation (4.40), which
corresponds with the roles of the second and third pulses switched, similarly yields
the conditions t + T +7—-t3—th —t;, =0, t —t3—t,b =0and t + T — 13 = 0.
This can be satisfied with 3 =¢ + T, t, = —T and t; = T + 7, but for negative
t; (T > 0), the response functions are zero. A similar conclusion will be reached
for all other integrals, and thus the impulsive signal from the (1 — 2 — 3) order of
pulses consists of one contribution only, namely,

Py a(t, T, 7) ~ Sp(t, T, DE;. (4.46)

Switching the order of pulses into (1 — 3 — 2) can be achieved formally by making
T negative and keeping |T'| < t (see Figure 4.4). The time should be measured
from the last arriving pulse, which is the k,-pulse centred at |T'|. We define a new
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time t' =t — |T|, anew time T’ = |T| separating the second and the last arriving
pulses and a new time " = t — |T|. These new ‘natural’ variables ¢, T’ and 1’
again measure the delays between the pulses by positive values. The third-order
polarization in these new variables reads as

Poy (&', T' 7y ~ Sg(t', T', T)E}. (4.47)

We can therefore conclude that for both orderings (1 —2 — 3) and (1 — 3 — 2),
only the rephasing Liouville pathways contribute to the signal.

Let us now switch the order of the first two pulses, to yield the order (2 — 1 — 3).
This corresponds to T < 0. In addition |t| < T, so that pulse k3 does not precede
pulse k;. The corresponding delta functions yield conditions leading to t;3 = ¢,
tp =T + 1 and #; = —7. The natural time variables in this order are t” = 3,
T”" =T + |t| and t” = |t|. Now however, it is the third term in Equation (4.40)
which yields a non-zero contribution and thus,

Prwa" . T",T") ~ Syp(t", T", T")E3. (4.48)

The very same conclusion is reached for pulse order (3 — 1 — 2) in its natural delay
variables.

To conclude, by measuring in the —k; + k, + k3 direction one can selectively
probe the rephasing or non-rephasing groups of Liouville pathways by selecting
which of the pulses k; and k, will act first. In an experimental arrangement,
instead of exchanging the order of pulses in time and keeping the same detection
direction, we may look into a direction with the role of pulses 1 and 2 exchanged
(—ky + k1 + k3), while keeping the original time order (1 — 2 — 3). Thus we can
measure Sg and Sy simultaneously by collecting the signal from two directions.

The suspicious looking pathways Spc contribute to the signal only when the
order of the pulses is (2 —3 — 1) or (3 —2 — 1). The Spc pathways contain a
fast oscillating term, cancelling the 22 term in the field factor which appears
in the orderings (2 —3 — 1) and (3 — 2 — 1). Although the oscillations over the
population interval #, are very fast, they also survive RWA. This signal is emitted
only if the last of the interacting pulses is k.

4.3 Cumulant expansion of a non-linear response

The results discussed in previous sections are valid for a very broad class of two-
and three-band molecules. They are very general, and they can provide a starting
point for calculation of the non-linear response from equations of motion for the
(reduced) density operator. For few electronic level systems, one can go into greater
depth analytically, as we will demonstrate below.
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In this section, we will reduce our original three-band model to just a single
electronic level per band. We will assume that this three-level system interacts
with a bath of harmonic oscillators. For this problem, the response functions can
be evaluated using a so-called cumulant expansion, which is exact for a bath of
harmonic oscillators linearly coupled to the electronic system.

4.3.1 Energy gap correlation function

Let us consider a three-level electronic system with the following Hamiltonian:
H =T+ (e, + Volg) (gl + (. + Volle) el + (e + VOIS [l (449)

This Hamiltonian represents a system with electronic ground state |g), ground state
electronic energy &,, nuclear kinetic energy operator T and ground state nuclear
potential Vg. When the system is in the electronically excited state |e) (| f)), the
electronic energy is &, (¢7), and the nuclei feel electrostatic potential Ve (Vf).
This model does not include any terms allowing a non-radiative transition between
electronic states. Our simple Hamiltonian has to be augmented, if we want to
include these processes into our considerations. Let us consider the Hamiltonian,
Equation (4.49), as fully describing our system of interest. We can proceed by
splitting it into the usual system—bath form, H=H B+ I:IS +H s_p. Because we
are dealing with optical transitions and we assume room temperature (and lower),
the equilibrium density matrix can be written as

Weg = W™ [g)(gl. (4.50)

From this it follows that the Hamiltonian of the bath can be identified with the
nuclear Hamiltonian of the electronic ground state. Thus we have

Hy =T+ V,. (4.51)

To split Equation (4.49) into purely electronic and purely bath parts, we will use
the electronic completeness relation in the form, 1., = |g)(g| + le){el + | f){f].
We can write

H = Hg ® Lo+ Toun ® (8518) (8] + ecle)lel + 71 f)(f1)
+ (Ve = Volle)el + (Vi = VI F)(f1- (4.52)
Here, we have introduced a unity operator i parh, ON the bath Hilbert space. We have
thus split the Hamiltonian as required, and we can identify Hg_p with the last term

of Equation (4.52). It is advantageous to add a condition that the bath part of the
interaction Hamiltonian has an equilibrium expectation value equal to zero, i.e.
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troan i Hs— 5 Wé;’ath)} = 0. To achieve this we define so-called energy gap operators,

AVeg = Vo = Vy — troan{ (Ve — V) Wb}, (4.53)
AVpe = Vy =V — troan{(Vy = Vo) WEP}, (4.54)

so that
Hs_p = AVyledlel + AV | f)(f]. (4.55)

The values that we subtracted from the last two terms of Equation (4.52) are added
in the second one by defining new electronic energies,

€g = &g, € = & + trbath{(ve - Vg)Weq}s
€= e+ trpan{(Vy — Vo) Wey ). (4.56)

The electronic Hamiltonian thus has a very simple form,
Hs = €,1g)(g] + ecle)(el + €/ f)(f]- (4.57)
Let us now evaluate the first-order response function for this system. We will
use the so-called Condon approximation, which states that the transition dipole
moment does not depend on the nuclear coordinates, and it can thus be represented
by a rather simple operator,

= degle)(g| + dgelg) el (4.58)

Here, d,, = (d,.)* are complex numbers.

Let us first demonstrate evaluation of the material response on the first-order
response functions. The first-order response function S, Equation (4.32), is com-
posed of two short Liouville pathways, J(¢) and J*(¢),

SO = %Ideglz(@(t)[J () — J* ()], (4.59)
where
J(t) = w{U U)W}, (4.60)

Here, U,(t) and U.(t) are evolution operators of the molecular system provided
it is in electronic state |g) and |e), respectively. Evaluation of Equation (4.60) is
done in the second cumulant approximation (see e.g. (Mukamel, 1995)). First, we
realize that

t
ton i A .
0J00.) = G0y = exp, 1+ / dt U (1) AV, Uy(r) ¢ . (4.61)
0
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Here, we have defined the so-called coherence Green’s function Gg.(t) which will
be of use later. Equation (4.61) can be verified by taking the time derivative of both
sides. One can see that they satisfy the same differential equation. The idea of the
second cumulant approximation is to replace the equilibrium average of the ordered
exponential of an operator, Equation (4.60), by an ordinary exponential of some
suitable equilibrium averages. We do this by comparing two Taylor expansions of
the same function A, which we expect to have an exponential form A = exp{F}.
An ordinary Taylor expansion yields

A =14+ A A+ A2+, (4.62)
and a Taylor expansion in the exponent gives

A =exp {Fil+ F>A* + - -}

1
=1+ (Fr+ Pl 4 )+ S(FA+ PA - 4o (463)

Here, Ay, A, F| and F; are the coefficients of the corresponding Taylor expansions
in parameter A. Comparing the two expansions to the second order in A yields

1
Fi=A, FF=A,— EAf. (4.64)

Consequently, starting from an ordinary Taylor expansion, Equation (4.62), we can
find coefficients F; and F,, which would enable us to write A as an exponential,
and thus partially sum the expansion terms up to infinity. Equation (4.60) can easily
be expanded to the second order in A Veg and the coefficients A; and A, yield

t
A = é / drtr{ U] (1) AV, Uy (1) WS} = 0, (4.65)
0
and

1 L
= ——2/ /dr tw{Ul(x = T)AVeuUg(r — THAV, WE™Y. (4.66)
0

In both equations we used the fact that W;}[’a‘h) does not evolve under U, (t). Intro-
ducing the energy gap correlation function (EGCF) C,.(t) as

Cee(t) = tr{ UL ) AVeg Uy (1) AV W™, (4.67)
and the line broadening function g..(t) as
1 t T
gt = o [ dr [arcu, (4.68)

0 0
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we can write the first-order Liouville pathway J(¢) in a simple form,
J(t) = e 800t (4.69)

The two indices ee denote the energy gaps of which the C,.(¢) is composed. In more
general problems, various cross-correlation functions such as C,r(¢) may appear.

The EGCF is a central quantity of the response function description of linear
and non-linear spectroscopy. It determines not only the lineshape, but also the
dephasing lifetime of coherences, relaxation dynamics of excitons etc. (May and
Kiihn, 2011). The energy gap correlation function and its Fourier transform satisfy
several general conditions, such as CJ,(t) = C..(—t), and many models of the
C..(t) function exist (Mukamel, 1995; May and Kiihn, 2011; Renger and Marcus,
2002; Jang and Silbey, 2003) which allow its application to a variety of problems.
One of the most useful and intuitive models, the Brownian oscillator, is discussed
in detail in Mukamel (1995).

4.3.2 Energetic disorder

The situation where all molecules in the sample are exactly the same is rather
rare. Parameters, such as energy of transition, might depend, for example, on
some very slowly changing parameter of the environment. This is referred to as
disorder and leads to so-called inhomogeneous broadening of the spectra. The
word inhomogeneous refers to the fact that during the spectroscopic experiment
individual molecules exhibit different parameters from each other, and it is in
contrast to homogeneous broadening, which stems from interaction of the molecule
with some component of its environment which is faster than the typical timescale
of the experiment. These fast fluctuations average out quickly so that they are
essentially the same for all molecules. Our averaging that leds to the line broadening
function was of this latter type.

For simplicity, let us assume that the disorder concerns only the energy levels of
the system in question, and that the fast fluctuations of the environment responsible
for the EGCF are independent of the slow fluctuations that cause the disorder. This
enables us to perform two averaging procedures, one over fast and the other over
slow fluctuations, independently. We might assume that to a good approximation,
the total density matrix reads as W,, = W W(low) and the evolution operator
corresponding to the slow bath is ljl(;low)(t) ~ 1. As the origin of the two types of
fluctuations is essentially the same, we may add the slow component to the energy
gap operator, Equation (4.53), and write for its time dependence,

AVeg(t) = AVS? + AVIS(r). (4.70)
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The response functions can now be constructed in the same way as in Section 4.3.1,
i.e. by cumulant expansion. We assume only the term tr{ A V;gl"w) A Ve(glow) We(;low)} =
12 A? to be non-zero. Because of the independence of the two types of fluctua-
tion, the response functions can be written as products of the slow and fast parts,
R,(t3, 1, 1) = Rffl”w)(g, th, 1 )R,(f am(tg, fp, t1), and the fast and slow response func-
tions differ only in their corresponding EGCF. The slow EGCF and the lineshape
function read as

ee

1
Cglow)(t) — FZZAZ, g(slow)(t) — EAZZ‘Z. (4.71)
Interestingly, the slow part of the response is the same for all rephasing pathways,
Y Y 2
RS (13, 1. 11) = RO (13, . 11) = Ln(ts — 1) = e~ 707 (4.72)

and for all non-rephasing pathways,

) A2
RUt3, 12, 11) = RO (13, 12, 11) = L(t3 + 1) = e~ T (4.73)

We have introduced the inhomogeneity factor /;,,,(¢) here, which will be useful in
Section 4.4. This form of the response function contains the famous photon echo
effect. The inhomogeneity factor /;,,(t3 — t;) is equal to one at #; = t3, and thus
the rephasing responses are equal to their fast (homogeneous) part at this time
point. For a given time ¢, this leads to a recovery in the macroscopic experimental
signal from some value Soe 2 to Sy. The non-rephasing responses and their
corresponding spectroscopic signal, however, continue to decay with #3, and would
never rephase.

4.3.3 Response functions of a three-level system

Third-order response functions can be expressed using the same line broadening
function g..(¢) as for linear absorption. We deal with three levels and two transitions
with transition dipole moment d,, and d, . For this simple case, response functions
corresponding to Liouville pathways from Section 4.2.2 can be written in terms of
a single function (see e.g. (Zhang et al., 1998; Brixner et al., 2004)),

Fy(t1, T, 73, 1) = |deg ldge Por{ G0 (1 — 2)G ) (v — 1)
X Go (1 — )G (1 — )W}, (4.74)
where B = g, f, and we define another coherence Green’s function,

G (1) = U.()US (1), (4.75)



4.3 Cumulant expansion of a non-linear response 105

Individual pathways read,

Rip(tz, 1o, 11) = Fg(t1, 1 + 1o, 11 + 12 + 13, 0), 4.76)
Rop(t3,tr, 1) = Fp(0, 1y + 1o, 1) + 1o + 13, 1), 4.77)
Rip(t3, 12, 11) = Fp(0, 11,11 + 1o, 1y + 1o + 13, 1), (4.78)
Rup(tz, 12, 11) = Fg(ti + 1 + 13, 11 + 12, 11, 0). 4.79)

The second cumulant evaluation of Fg proceeds as follows. First we expand
all coherence Green’s functions (see Equations (4.75) and (4.61)) to the second
order in their respective energy gap operator AV . Then we perform the product of
the second-order expansions, and collect separately the first and the second-order
terms in AV. The first-order terms become zero after the trace, similarly to
Equation (4.65). The second-order terms are then all rewritten using the line
broadening functions, Equation (4.68). The calculation, details of which can
be found e.g. in Mukamel (1995) and Zhang et al. (1998), is rather tedious but
straightforward. The method yields

Fg(t1, T2, T3, T) = |dog|*|dpe|?e @MW Hi0a(mmT) explho (1), 1, T3, Ta)},

(4.80)

where

hp(T1, T2, 13, T4) = gee(T1 — T2) + 8pp(T2 — T3) + 8ee(T3 — T4) — gpe(T1 — T2)
+ 8pe(T1 — 73) — 8ep(T2 — T3) — Zee(T1 — T3) + &ee(T2 — T3)
+ 8ee(T1 — T4) — 8ee(T2 — Ta) — 8pe(T2 — T3) + gep(T2 — T4)
— 8ep(T3 — Ta). (4.81)

For B = g, the expression simplifies because ggo(t) = g,5(t) = gge(t) = 0. The
rephasing Liouville pathways read as

Rzg(t3’ t2’ tl) — |deg|4e_gjg(t3)_gjg(tl)+gee(t2)_gee(t2+t3)

x e 8hnHn) T8 +t2+z3)e—iwgg(t3—t1), (4.82)

R3g(t3, ht)) = |d€g|4e_g”(t3)_g:f(l')+g:f(t2)_gjf(l2+t3)

% e—g;l(ll+f2)+ng(ll+lz+f3)e—iweg(l3—ll) (4.83)

Rif(ts, o, 1)) = |deg|2|def|26—g}f(13)—gee(11)—gee(n+tz+t3)+gef(tl+tz+t3)

% e_gef(tl +0)+8ee (1 +12)+87, (13)— 80, (13)+ 80, (L2 +13) 8, (13)

w e 8o ()8l (1) =g (1) y—iwsets—iweth (4.84)
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All other pathways can be obtained analogically. The non-linear spectroscopy of
a three-level system is fully characterized by the eight response functions. They
enable us to calculate the complete three-level system response, based on three
correlation functions Ce,(t), Css(t) and Cz(2).

4.4 Selected non-linear spectroscopic methods

Non-linear interaction between light and matter enables us to devise a variety of
spectroscopic methods (Parson, 2007; Mukamel, 1995) suited to extract different
types of information from the studied molecular systems. Some of the most fun-
damental information about photon induced time evolution of excited states, e.g.
about excitation energy processes in photosynthesis and other biologically relevant
processes, can be obtained from so-called pump—probe spectroscopy (Sundstrom
et al., 1999). This is one of the most widely used time-resolved spectroscopic
methods, and nowadays it still represents a certain reality check for more involved
non-linear methods. A description of pump—probe spectroscopy is possible using
theory presented in previous sections (Yan et al., 1989; Mukamel, 1995; Parson,
2007).

In this section, we will discuss in some detail another two non-linear methods
and the information they can reveal about molecular systems. Firstly, we will
consider an example of a non-linear method, sensitive to system—bath interaction,
the photon-echo peakshift. We will show how its measurement reveals the shape
of the energy gap correlation function. Secondly, we will see how a 2D coherent
spectrum uncovers coherence in a system of excitons, and how this method is
sensitive to resonance coupling between molecules in an excitonic complex. The
same method can also reveal coherent vibrational motion.

4.4.1 Photon echo: learning about system—bath interactions

Linear and non-linear spectra provide us with information about both the electronic
properties of the studied molecules (positions of the absorption band) and the
properties of the molecular environment (lineshapes). The latter is carried by the
correlation function C,.(¢) of the energy gap. The so-called photon-echo peakshift
experiment is one from which an energy gap correlation function can be extracted.
In the analysis of the photon-echo peakshift, we will demonstrate that even in the
theory of non-linear spectroscopy, one can obtain highly interesting and relevant
analytical results. This is achieved here by a short time expansion of the exponent
in the non-linear response functions.

In the photon-echo peakshift experiment, a third-order non-linear signal in the
direction —k; + k, + k> (photon echo) is measured by a slow detector in a FWM



4.4 Selected non-linear spectroscopic methods 107

set-up, with delays 7 > 0 and T > 0 between the three pulses. The detector inte-
grates the signal intensity over time ¢. Thus we measure

Spe(T, 1) = /dtlS(3)(t, T, 7)%. (4.85)
0

In Spr we look for the value 7#(T') of the delay T for which Spg is maximal at a
given population time 7. This value is called the photon-echo peakshift and can be
formally defined by the relation

aa_tSPE(T’ T)|r=c+r) = 0. (4.86)

In the impulsive limit, the third-order signal reads as
ISP, T, T)* ~ I7,(t — T)|R3g(t, T, T) + Rag(t, T, I, (4.87)
where 1;,,(t) = e 212 is the inhomogeneity factor, introduced in Section 4.3.2.

If we denote the real and imaginary parts of the lineshape function g..(¢) by P(t)
and Q(¢) respectively, we can write

|R3,(t, T, T) + Roy(t, T, .[)|2 — o HPO=P(D+PO+PE+T)+P+0)—P+T+1)}

x cos?[Q(T) + Q(t) — O(T + 1)]. (4.88)

Because the signal is expected to decay quickly with ¢, an expansion of the exponent
in ¢, up to the second order, could yield a reasonable approximation. We will
follow the derivation of Cho ef al. (1996) to reveal striking insights into the relation
between the photon-echo peakshift and the energy gap correlation function. To this
end we expand the g(¢) function as g(a + t) ~ g(a) + g(a)t + g(a)t>/2, where the
dot denotes a time derivative. The definitions in Section 4.3.1 lead to

P0)=0, P@0)=0, P()=ReC,(t) (4.89)
and
00)=0, Q0)=0, O@) =Im / dtC,.(7). (4.90)
0

The cosine part of Equation (4.88) can be expressed in a second cumulant expan-
sion as cos’[Q(T) + Q(t) — Q(T + 1)] ~ exp{—(Q(T))*t}, and the exponent of
the exponential part could also be expanded to the second order in ¢. Equation (4.85)
will thus become

o

Spe(T, T) ~ /dt eB(T,r)th(T,r)ﬁfZP(r)fA?nr2’ (4.91)

0
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where
A(T, 1) = A}, +(Q(T))* + P(0) — P(T)— P(x + T), (4.92)
B(T,t)=2A2 1 —2[P(T) — P(t + T)]. (4.93)

Integration of Equation (4.91) gives

T 2 2 B
Spe(t, T) ~ 2/AT D) exp{ —2P(x) — AL T + 4A(T, r)}
x [1+ f(Mﬂ (4.94)
“\evaT o) |

Equation (4.94) represents an approximate result for the photon-echo signal, and it
can be used to calculate the photon-echo peakshift.

If the inhomogeneous broadening is much larger than the homogeneous broad-
ening, i.e. P(0) < Afn, the integrated photon echo is approximately given by
Spe(T, 1) = exp{—2P(7)} for T > Ai_nl. This can be verified by noticing that in
this limit, B ~ 2Ai2n1: and A ~ Al.zn, and the error function erf(x) ~ 1 for x > 1.
The integrated photon-echo signal does not depend on T here, and the time-
dependent photon-echo signal has its maximum at # = 7. The peakshift is given by
the condition P(r)|T:,*(T) =0, which leads to 7*(T) =0 at t > Afnl.

However, if the inhomogeneous and homogeneous line widths A? and P(0)
are comparable, one can apply another expansion of the signal, this time in 7. We
expand all quantities in the second order of t, which leads to B ~ 2[Ai2n + P(D)]r,
A= P(0)+ Aj, + (Q(T))?, P(r) ~ P(0)r%/2, and then expand Equation (4.94)
to the second order in t. Taking the derivative of such an expanded integrated signal
SpE according to T and solving the resulting linear equation leads to the following

expression for the peakshift:

(AL + B(L/BO) + A2 + (O(T))?
V7 POIPO) 2% + (OT)P1 + ALQD)?
In the case where inhomogeneous broadening can be completely ignored (e.g. in
liquids), the peakshift expression simplifies dramatically to
1 B(T)

~ VT BO)WPO) + (O

Often Q(T) is small compared with P(0) and it can be neglected, and thus the
peakshift directly reveals the real part of the energy gap correlation function () =
ReC(t). The long time peakshift is correspondingly equal to zero, t*(T — oo) = 0.

Most interestingly, if we take the limit of long population times 77 — oo in
Equation (4.95), i.e. for Al.zn comparable to P(0), the long time peakshift remains

™(T)

(4.95)

(T) (4.96)
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non-zero. We have Q(T — oo) ~ A, P(T — 00) & 0, where A is the reorganiza-
tion energy (Mukamel, 1995) and thus,

A2\ JBO) + A2, 492

1243

T U7 PO)[P0) + 242, + 22 + A2 2

mn

(T — o0) 4.97)
Consequently, the non-zero long time value of the peakshift is evidence of finite
inhomogeneity. An interesting biological application of the peakshift measurement
is reported in Zimmermann et al. (2006). A chromophore molecule was injected
into a mouse, and the evolution of the photon-echo peakshift of the chromophore
captured by the mouse antibody was monitored as the antibody matured (on a
timescale of days). Over time the antibody became more specifically designed for
binding the chromophore, which resulted in a decrease in the inhomogeneity of
the chromophore’s environment in the trapping site. The chromophore fitted better
into the trapping site of a matured antibody. This was observed as a decrease in the
long time limit of the peakshift.

According to Equations (4.95) and (4.96), peakshift can be used to estimate
the bath correlation function, i.e. it can be used to investigate fluctuations of
the energy gap. If a complex of two or more molecules is measured, several
molecules may contribute to a single electronic transition, and the total energy
gap correlation function is built from the contributions of individual molecules.
For the case of two identical molecules with uncorrelated energy gap fluctuations,
a certain combination of one-colour peakshifts (measured with all three pulses
of the same frequency) and two-colour peakshifts (measured with the first two
pulses of one frequency and the third pulse of another frequency) allows us to
estimate excitonic mixing and thus the value of excitonic coupling between the two
molecules (Yang and Fleming, 1999). For two different molecules, one can even
estimate the difference between the correlation functions on the two molecules
(Mancal and Fleming, 2004).

4.4.2 Two-dimensional spectroscopy: resonance coupling, population
transfer and coherence dynamics

The signal recorded in a photon-echo peakshift measurement is by itself already
two-dimensional. One special feature of the two-dimensional signal, the position
of its maximum along the 7 axis as a function of the population time 7', is used to
extract interesting information from this two-dimensional data set. Now we intro-
duce yet another multidimensional spectroscopic method (Jonas, 2003) that has
yielded interesting insights into the properties of molecular systems on femtosec-
ond timescales, and whose potential has certainly not yet been fully exploited.
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We start by comparing the general structure of the first-order and the third-order
response. We compare the first-order response function of Equation (4.60) which
we write as

J(t) = itr{ &) Fes8) (1) W (&) e~ (4.98)

where [7(888)(¢) = U(¢s¢8)(¢))(888) | with some representative R function, e.g. Ry,
of Equation (4.36). The R function can be written as

Rzg(f3, 1) = _itr{ﬂ(gE)j(c’gee)(ta)u(eeee)(tz)ﬂ(eg)j(gegg)(tl)W(gg)}e*iﬂ(trtl)‘
(4.99)

The comparison suggests an analogy between the absorption spectrum given
by the Fourier transform of the response function J(¢) and a possible non-linear
spectrum given by Fourier transforms along the times #; and #. In this analogy,
the frequency w; dependence obtained by the Fourier transform of the third-order
response in time ¢, would be the same as the frequency dependence of an absorption
spectrum. The frequency ws dependence obtained by the Fourier transform in time
t3 would be the same as that of an ‘absorption’ of a system out of equilibrium,
whose statistical operator is initially Weee) = U () e T (gegg)(tl)W(gg). In
this particular case, W©® corresponds to the system in the excited state, and
thus the non-equilibrium ‘absorption’ in fact also includes stimulated emission.
In between the two generalized absorption spectra the evolution superoperator
U (t,) resides, and the spectrum evolves with a delay #,. If we were able to
record the full time dependence of the third-order response in ¢, #, and 3 times,
we could construct two-dimensional plots correlating the absorption and the non-
equilibrium absorption—emission spectra at any given delay #,. The #, evolution of
the spectra may involve features that reveal relaxation of energy among several
excited states. From Section 4.2.4, we know that for #; > 0, i.e. when the pulse
k, precedes the pulse k,, only the rephasing pathways contribute to the signal
in direction —k; 4+ k, + k3 (here we neglect pulse overlap effects). Thus we can
define the rephasing 2D spectrum as

o [e¢)
Er(w3, b, 01) = / ds / A1 813, 1y, 1y)e I MBI giests—ienn (4.100)
0 0

Alternatively, we could also measure the non-rephasing signal and construct a
similar quantity as above,

00 00
ENR(a)3, f, a)l) = /dt3 /dtl SS&(Z:},, b, ll)eiiQ([3+tl)eiw3t3+iwltl . (4101)
0 0
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The limits of the integration are set naturally, because for #3 < 0 and #; < 0O, the
response is zero. The signs in the Fourier transforms are chosen to reflect the phase
factors of the response. The quantities defined in Equations (4.100) and (4.101)
can be directly measured experimentally. The heterodyne detection scheme of
Section 4.1.4 enables us to measure the third-order signal electric field, which is in
the impulsive limit directly proportional to S©.

What the actual relation is between absorption spectra and the 2D spectra defined
above can be found by considering a simple case of a two-level system. For long
population times #, the dependence of the g(¢) function on #, becomes linear. Both
contributing rephasing response functions then have a form,

Roy(t3, 1, 11) = Rag(t3, ta, 1) A e 818 ()=iQ(=0) (4.102)

The Fourier transform, Equation (4.100) then leads to

Er(ws, b, w1) ~ G(ws — Q)G* (w0 — Q), (4.103)
where we define,
T r
: +iw
Gw)= [ dte 8070 g 4.104
(w) / e . ( )

0

The G function is related to the susceptibility x " and it determines the linear
absorption spectrum a(w) ~ Re G(w — 2). In Equation (4.104) we use the form
g(t) = I't, with some real dephasing rate I' corresponding to the so-called homo-
geneous limit of g(¢#) (Mukamel, 1995). We can see that the rephasing 2D spectrum
is not strictly proportional to the absorption spectrum, but it is a mixture of the
absorptive and dispersive (related to Im G(w — 2)) contributions. To isolate the
absorptive contributions, we have to investigate the non-rephasing spectrum, too.
In the same limit as above we notice that

Enr(w3, B, 1) & G(ws — Q)G(w; — ), (4.105)
and thus,
E(ws3, i, w1) = Er(ws, B, w1) + Exr(@3, 12, 1)
~ G(w; — Q)Re G(w; — Q). (4.106)
This means that the real part of the sum 2D spectrum,
ReE(ws, th, w1) = Re G(ws — Q)Re G(w; — Q) (4.107)

corresponds to a product of two absorption spectra, i.e. to the desired correla-
tion plot of the absorption and absorption—emission frequencies. With a simple
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W3

W3

Figure 4.5 Basic homogeneous and inhomogeneous lineshapes of 2D spec-
troscopy. (a) shows real (upper) and imaginary (lower) parts of the homogeneous
2D spectrum of a two-level system. (b) shows a rephasing 2D spectrum, the non-
rephasing one can be obtained by mirroring the picture with respect to the axis
w1 = . (c) represents the 2D spectrum with a Gaussian distribution of the tran-
sition frequencies. Full (dashed) contours denote positive (negative) values of the
spectral amplitude.

homogeneous form of the g(¢) function, we can construct the expected 2D spec-
trum of a simple two-level system in the homogeneous limit (see Figure 4.5a).
For more on 2D lineshapes, see e.g. Tokmakoff (2000). Interpretation of many 2D
spectra can be based on this simple shape. Firstly, the rephasing and non-rephasing
spectra have certain characteristic orientations (Figure 4.5b), and both their real
and imaginary parts contain positive and negative contributions. The real part of a
total homogeneous 2D spectrum is however positive. The contribution of the R,
pathway, Equation (4.99), which contains evolution in the excited state during the
waiting time f,, could be readily interpreted as a stimulated emission (SE). Com-
bined with the corresponding non-rephasing pathway, this would lead to a decrease
in absorption, if they were measured in a pump—probe (k; = k,) configuration.
This defines the meaning of the positive features in the (total!) 2D spectrum. The
R; pathway contains propagation in the ground state, and it has the same sign as
R;. It cannot therefore represent absorption. Rather, it has to stand for ground state
bleaching (GSB). The non-rephasing counterparts of this signal can be classified
in the very same way. For higher-lying excited states, pathways with negative sign
containing propagation in the excited state during waiting time #,, contribute to
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both the rephasing and non-rephasing signals. Their combined negative signal is
the one corresponding to the so-called excited state absorption (ESA).

So far, we have considered all molecules in the sample to be identical. Now,
let us introduce inhomogeneity in the form of energetic disorder. We will see that
with respect to disorder there is more to a 2D spectrum than just a product of
absorption spectra. The response function formalism can handle simple disorder
by including it into the lineshape function g(¢), as we have seen in Section 4.3.2.
The product expressions, Equation (4.103) and Equation (4.105), are not valid any
more, because the response

Rog(t3, 12, 11) = Rag(ts, 1o, 1)) = ¢~ 8)=g ()= Alts—n) =i —1) (4.108)

cannot be split into a product of 73 and #; dependent functions. To perform the
double Fourier transforms, Equations (4.100) and (4.101), analytically is possible,
but rather tedious. The result of the analytical calculation is depicted in Figure 4.5c.
To guess this 2D lineshape, we could have employed the fact that 2D spectra of non-
interacting sub-ensembles are additive. The inhomogeneity can thus be represented
as an averaging over 2D spectra of species with different transition frequencies 2.
Because all such spectra differ only by their position at the diagonal of the spectrum,
the combined lineshape becomes elongated along the diagonal (see Figure 4.5).
Anti-diagonal line width is not affected by the disorder, and consequently, both the
homogeneous and the inhomogeneous line widths can, in principle, be estimated
from a single measurement of the 2D spectrum.

An important effect which can be monitored by 2D (and also by pump—probe)
spectroscopy is the excitation energy transfer (EET). The pathways R, and R, that
contain contributions from excited state propagation (the SE and ESA contribu-
tions) will display changes due to excited state population transfer; while ground
state pathways R; and R4 (the GSB contributions) will not. As the contributions
of the SE and GSB to the positive peaks are of a similar amplitude, population
transfer to the neighbouring state exhibits itself in a 2D spectrum as a transfer of
one half of the peak amplitude to a different spectral position. This results in a
cross-peak between two frequency regions, as in Figure 4.6c. In the same way, the
ESA contributions can appear in a new spectral position, if the acceptor molecule
possesses a higher-lying excited state.

Population transfer is not the only way a cross-peak can occur in a 2D spectrum.
In the dimer from Figure 4.6a, one can imagine e.g. an R3; pathway starting with
a transition from the ground state of the monomer A to its excited state, followed
by its de-excitation by the second pulse, and further followed by an excitation of
monomer B by the third pulse. Such an R; pathway contributes a cross-peak in
the same spectral position as the one previously identified to be due to population
transfer. With contributions like this, the question is, why should we actually
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Figure 4.6 Schemes of energy levels and 2D spectra of a weakly coupled dimer.
(a) represents the dimer by the states of its monomers, (b) shows the same by
collective states |g) = |ag)|bg), |1) = |ac)|b), |2) = lag)|be) and | f) = |ac)|be).
(c) demonstrates the features of the corresponding 2D spectra. The full circles rep-
resent diagonal peaks of a weakly coupled dimer including the energy relaxation
peak. Dashed circles represent the peaks of a coupled dimer.

expect two uncoupled two-level molecules to yield a cross-peak-free spectrum at
all? (We have stated before that 2D spectra of uncoupled transitions are additive.)
The answer lies in counting correctly all pathways expected in the dimer. This can
be done with the help of Figures 4.6a and 4.6b. The latter figure represents the
dimer in terms of collective states, introduced in Section 4.2.1. The two schemes
of levels are equivalent for an uncoupled dimer. Let us now count the rephasing
pathways, Equation (4.41), that can contribute to the cross-peak, i.e. those that have
different first and third interval frequencies. These are summarized in Figure 4.7,
where one can immediately see that there are four positive (R», and Rs3,) and
four negative (R, ) contributions to the signal. Although the doubly excited state
| f) is reached in the R;; part of the rephasing response, all transitions can be
viewed as normal ground state to excited state transitions on the monomers. For
example, |1) — | f) is the |b,) — |b,) transition, while monomer a remains in
its excited state |a.). In fact, for each positive contribution to the signal, we can
find a corresponding negative one, and all cross-peaks cancel. For complexes of
uncoupled monomers, no cross-peak can appear. In other words, the cross-peaks
can appear only in complexes of coupled chromophores.

As we have seen, cross-peaks are of two kinds. Firstly, they can result from
population transition. Such cross-peaks have to build up gradually as the population
transfer proceeds over time #,. Secondly, cross-peaks can appear instantaneously
when the cancelling between different pathways is not perfect. The resonance
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Figure 4.7 Rephasing Liouville pathways for a cross-peak in a dimer 2D spec-
trum. The pathways denoted by the same lower case letter cancel exactly for an
uncoupled dimer. Using the definitions from Figure 4.6, the R}, pathways can be
shown to contain the same transitions as those of the R», and Rs, type.

coupling between molecules in a complex introduces, among other things, transition
dipole moment redistribution among the collective transitions (van Amerongen
etal.,2000), and a perfect cancellation of the cross-peaks thus becomes impossible.
The presence of a cross-peak at £, = 0 reveals resonance coupling. The effect of the
resonance coupling can therefore be understood as lifting a cancellation due to a
certain special relation between the Liouville pathways. This is not exclusive to non-
linear spectroscopy. In the IR version of the same experiment, which is performed
on molecular vibrations, no signal at all would appear due to a similar cancellation
effect, if the molecular vibrations were perfect harmonic oscillators (Hamm and
Zanni, 2011). All detectable signal is a consequence of anharmonicities. The main
message of the present analysis is that one must not neglect higher-lying excited
states. In the situation where one would expect it the least, i.e. when no or very weak
coupling is present between individual chromophores in a complex, the omission
of two-exciton states in calculating a 2D spectrum leads to a forest of unphysical
cross-peaks.

Let us now assume that a non-zero coupling is present between the energy levels
in Figure 4.6a. Only Figure 4.6b is then valid for assigning the Liouville pathways
of Figure 4.7. We can see that the cross-peaks get half of their contributions from
the pathways that contain evolution of off-diagonal density matrix elements in
the one-exciton band. These elements are the so-called one-exciton coherences.
A non-zero coherence, 045(t) = (a|trpam{ W(t)}lb), means that the corresponding
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state of the system can be written (at least partially) as a linear combination of the
excited states |a) and |b). The corresponding Liouville sub-pathway, e.g.

Rélgz)(f& 1, 1) = tr{ o1l g15(13)V1g12U1212(12) Vi2goUg2g2(11) V200 Wg(egq) 1,
(4.109)

has a characteristic phase factor from the evolution superoperator Uf);12(t2) &
e~i“n In the 2D spectrum, the phase factor is acquired by all similar response
functions corresponding to the cross-peaks. Part of the cross-peak contributions
therefore changes amplitude and shape with the delay #,. This results in a com-
plicated time evolution of the cross-peaks during time #, which can be resolved
experimentally, and which can yield direct information about the coherence dephas-
ing processes.

The 2D spectrum thus reveals homogeneous and inhomogeneous lineshapes,
resonance coupling by the presence of cross-peaks, relaxation processes between
electronic levels by a build-up of cross-peaks in time #,, the presence of coherence
between pairs of levels by oscillation of the cross-peaks and many other detailed
pieces of information. All this in an ideal case of ultra-broadband excitation and
well-separated peaks. In real-world measurements, many overlapping 2D features
of interest may be congested into a single spectral region, and it becomes difficult
to separate them from each other. Adding new degrees of freedom within the
experiment, such as varying the polarization of the incoming pulses, may help
to distinguish different contributions. The method is based on one aspect of the
response functions that we have so far omitted from our discussion, namely, on the
tensor nature of the response. Both the three electric fields entering the sample, and
the polarization generated by them are vectors. The four dipole moment operators
entering each third-order response have directions, and the response is thus a
rank four tensor. In an isotropic sample, we have to average over all possible
orientations of the molecular dipoles with respect to polarizations of the entering
fields. By varying them we can enhance or suppress the contributions of certain
Liouville pathways (Hochstrasser, 2001; Dreyer et al., 2003; Read et al., 2007)
and correspondingly of some spectral features.

A further increase in the information content of non-linear spectroscopy, or sim-
ply a better resolution of the currently available information, might be achieved
by going into higher dimensions. One can e.g. devise new pulse sequences pro-
viding more pulse delays. Three-dimensional spectra can thus be constructed,
yielding more detailed information and requiring higher-order perturbation theory
(Hamm, 2006; Fidler et al., 2010). The utility of higher-dimensional spectroscopic
techniques will greatly depend on the development of suitable representations of
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Figure 4.8 Electronic homodimer (b) and a two-level system with pronounced
vibrational features (c). The absorption spectra of the two systems (a) are almost
identical for a suitably chosen structure of the dimer. The mean transition frequency
into the excited state is chosen the same, and the distance between the absorption
maxima is 2J = 2AQ.

multidimensional data, which will allow us to overcome intrinsic human limitations
to our 3 + 1-dimensional world.

4.4.3 Electronic versus vibrational coherences

One of the most interesting early results of electronic 2D spectroscopy on photosyn-
thetic systems was the experimental detection of long-lived coherent oscillations.
These oscillations were interpreted as signatures of electronic coherence (Engel
et al., 2007). The consequences of its presence in a biologically relevant process
of energy transfer and its relatively long lifetime became a matter of intense theo-
retical and experimental research. Oscillation patterns in non-linear spectra could,
however, also originate from the presence of molecular vibrations of a suitable
frequency.

A few simple electronic level systems with well-defined vibrations present an
important case study of the general phenomena of electron—phonon interaction
in molecular systems. Figure 4.8 presents a level structure of two systems, a
molecular homo-dimer with resonance coupling J and a two-level molecule with
one dominant vibrational mode. The frequency of the vibrational mode is equal to
2A 2, which equals the splitting of the dimer excited state energies 2J. Absorption
spectra of both systems can look very similar if the transition dipole moments
from the ground states to the excited state manifold are the same. There may be
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some trace of the third peak in the absorption spectrum of the oscillator, but in a
more complicated system it might be mixed with other transitions and therefore
difficult to detect. The two systems, when excited by light with a spectrum covering
just the two main peaks of the absorption spectrum (see Figure 4.8), are two
different realizations of the same quantum-mechanical problem, namely a two-level
system interacting with its environment. Two dimensional spectroscopy allows us
to monitor this evolution in the two different settings. The vibrational case allows us
to see the cross-peaks fairly easily, because there is no cancellation of the cross-peak
contributions thanks to the absence of ESA. On the other hand, purely electronic
systems exhibit only one state in the ground-state band, and the oscillating 2D
feature thus always originates in the excited state. This leads to clear differences in
the 2D spectra of the two systems. The electronic spectrum contains a strong ESA
feature with position depending on the structure of the dimer. The vibrational case
should contain only positive contributions with well expressed cross-peaks. The
cross-peaks evolve in time and may become negative during this time evolution.
However, negative cross-peaks in a vibrational case do not automatically mean
ESA contribution, as there is no ESA in the model in Figure 4.8c.

The presence of vibrational modes achieves a distinct effect in the electronic
2D spectrum, even if the vibrational frequency is so small that the cross-peaks
completely overlap with the homogeneous lineshape of the electronic transition
(Nemeth et al., 2008). An electronic two-level system can be studied theoretically
within the response function formalism, Equations (4.82) and (4.83). A Brownian
oscillator model (Mukamel, 1995) of both the solvent and the molecular oscilla-
tor provides a good theoretical base for developing the suitable two-component
g(1), describing the solvent and vibrational mode interaction with the electronic
transitions. When all transient (¢, dependent) effects of the solvent reorganization
disappear, long living oscillations due to the vibrational motion modulate the real
and imaginary part of the 2D spectrum. The response function theory leads to a
good quantitative agreement with the measured spectra (Nemeth e al., 2008), and
it enables us to make predictions of lineshapes and their time evolution, depending
on the strength of the electron—phonon interaction.

In complexes of coupled molecules with transitions possibly modulated by
vibrational modes, it might be difficult to decide what is the origin of the oscillations
in a 2D spectrum. Separating the 2D spectra into rephasing and non-rephasing
parts helps to achieve the classification. Among the rephasing Liouville pathways
of a purely electronic system which yield a signal on the diagonal of the 2D
spectrum, we cannot find any that would oscillate during the interval #,. In the
rephasing part of the purely electronic 2D spectrum, only the cross-peaks should
oscillate. Analysis of the non-rephasing part of the response yields, however, several
pathways (R, y and Ry, type) thatinvolve 7,-oscillations contributing to the diagonal
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peaks. Thus a characteristic feature of the 2D spectra of purely electronic coherence
is that diagonal peaks oscillate only in the non-rephasing part of the 2D spectrum
(Cheng and Fleming, 2009). The rephasing vibrational spectrum, on the other
hand, contains a R3, Liouville pathway with a ground state vibrational coherence
|g2){g1|, which oscillates with the vibrational frequency and contributes to the
peak at w; = Q + AQ (le;) — |g2) transition) and w3 = Q2 + AQ (les) — |g2)
transition). Thus unlike the pure electronic case, vibrational coherence leads to
oscillations of the diagonal peaks even in the rephasing 2D spectrum. Also, the
additional ground state level |g,) contributes a peak into the 2D spectrum which
cannot appear in a purely electronic system, and this peak provides clear evidence
of the presence of a vibration DOF (Mancal et al., 2012).

The most complicated situation occurs when vibrational levels participate in
the resonance interaction between chromophores. The resulting eigenstates of the
system Hamiltonian have a mixed exciton—vibrational character, and they are often
referred to as vibrons, vibrational excitons. The coherences between vibronic states
can have a comparatively long lifetime due to their partially vibrational character,
and the state can have increased transition dipole moments due to their partially
electronic character (Christensson et al., 2012). These vibronic states might hold
a key to the long-lived coherences observed in 2D spectra of some photosyn-
thetic systems, while at the same time rendering attempts to classify the origin of
coherence into either vibrational or electronic classes meaningless.

4.5 Conclusions

We started by stating that the molecular systems investigated in this chapter have
to be treated quantum mechanically, while light can be treated classically. We
have based the response theory on this statement, and the success of experimental
methods discussed in this chapter confirms its validity. Studying molecular systems
with a method so well described by semi-classical theory has one more important
advantage. As the light enters the Hamiltonian as a classical parameter, all quantum
effects observed in the experiment originate, undeniably, in the molecular system
itself. Non-linear spectroscopy therefore provides a faithful picture of the nature
of microscopic processes initiated by photo-excitation.

The greatest advantage of the response theory is its close relationship to the
density matrix description of molecular systems. Often, using response functions,
specific spectral features can be related to the properties of density matrix
elements, the evolution of which can therefore be revealed by analysing non-linear
experiments. An opposite approach, when response functions are constructed from
the elements of the reduced density matrix calculated from some equations of
motion, also often provides a viable way of understanding photo-induced molecular
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processes. In principle, however, one has to be careful not to overestimate this close
relationship. For example, the reduced density matrix does not carry information
about the part of the system that we consider as environment, and as a result it does
not correctly account for evolution of the environmental DOF between the interac-
tions of the system with light (Mancal and Sanda, 2012). This does not seem to be a
problem for recently proposed propagation schemes based on the Kubo—Tanimura
hierarchy (Ishizaki and Fleming, 2009b). The choice of model and especially the
formal splitting between the system and its environment plays a crucial role in
successful calculation of the response functions from the density matrix evolution.

One must also not forget that non-linear spectroscopies of certain order provide
insight only into a specific term of a perturbation series. One often describes
response functions as a sequence of excitation processes where ‘coherence states’
and ‘population states’ are excited and de-excited. Such ‘perturbative’ language is
very useful in recording the contributions to the non-linear spectra, but does not
describe actual state of the system. Only the complete perturbation series must
have the properties required for the proper density matrix, and it is not surprising
that the ‘coherence states’ do not satisfy the requirements.

In this chapter, we have followed the main ideas of non-linear response theory
to derive relations between the external stimulus and non-linear signals. We have
demonstrated how to translate the general theory into a description of particular
experimental methods, the photon-echo peakshift and 2D coherent spectroscopy.
Together with some more extended accounts on the theory of non-linear spec-
troscopy available in the literature (Mukamel, 1995; Cho, 2009; Hamm and Zanni,
2011), the reader should now be able to apply the formalism discussed here to solve
their own problems, and to follow the detail in some of the following chapters.
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Structure, function, and quantum dynamics of
pigment—protein complexes

IOAN KOSZTIN AND KLAUS SCHULTEN

5.1 Introduction

Photosynthesis is fundamental to life on Earth as it establishes access to the main
energy source of the biosphere, sunlight (Blankenship, 2002). Photosynthesis is
based on the interaction between living matter and the sun’s radiation field, mainly
visible light. This interaction involves the electrons of biological macromolecules
and, accordingly, the process of light absorption is governed by quantum physics.
During the course of biological evolution, photosynthetic lifeforms learned to
exploit quantum physics in ingenious ways, in particular, under the circumstances
of physiological temperature. A description of quantum phenomena under the
influence of strong thermal effects as arise under these circumstances is challenging.
Indeed, the quantum biology of photosynthesis is an active and fascinating research
area.

Photosynthesis, in general, is understood to encompass the various processes in
living cells by which lifeforms utilize sunlight to drive chemical synthesis. This
involves primary processes of light-harvesting, transformation of electronic excita-
tion energy into a membrane potential, as well as the splitting of water into oxygen,
abstracting electrons that are added to molecules of nicotinamide adenine dinu-
cleotide phosphate (NADPH™) at a high redox potential. The membrane potential
drives the synthesis of adenosine triphosphate (ATP) which is used to fuel many
processes in living cells. In plant photosynthesis NADPH™ and ATP are needed for
the synthesis of sugar and starch, the most widely known products of photosynthe-
sis. Because of its fundamental importance in cellular energetics, photosynthesis
has been the subject of great evolutionary pressure such that, amidst a deep over-
all similarity, many variants have developed in the competition for habitats and
efficiency.
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Purple bacteria carry out only a highly rudimentary variant of photosynthesis,
one that neither splits water nor produces NADPH™, but leads to synthesis of ATP
through provision of a membrane potential (Hu ef al., 2002). The photosynthesis
variant of purple bacteria involves, nevertheless, the key molecular apparatus and
primary processes present in all photosynthesis found on Earth. In particular, the
apparatus realizes the main facets of light-harvesting as also found, for example,
in plants.

Light-harvesting in purple bacteria and other photosynthetic lifeforms funnels
electronic excitation energy into a molecular apparatus that converts it first into elec-
tron transfer across a cell membrane in a protein complex called the photosynthetic
reaction centre (RC) (Hu er al., 2002; Striimpfer et al., 2011). The light-harvesting
apparatus must absorb photons at a high enough rate to feed electronic excitation
energy into the reaction centres, which requires hundreds to thousands of light
absorbing molecules. Because of the size of the pool of absorbers, these molecules
actually need to fulfil two functions, namely, light absorption as well as excitation
transfer to the RCs (Sener er al., 2011). This is obvious if one considers the fact
that the many absorbers are necessarily spread over a wide area and, if a molecule
distant from an RC absorbs light, the molecules between the primary absorber
and the RC need to conduct the electronic excitation energy. To achieve an opti-
mal structure for the dual role, the light absorbing molecules are organized and
held into place by a scaffold of protein molecules, the light-harvesting complexes.
Typically, about a hundred light-harvesting complexes hold 3000 light absorbing
molecules.

The overall structure and function of the light-harvesting and RC system of
purple bacteria have been covered in several recent reviews (Hu ez al., 1998, 2002;
Sener et al., 2011; Striimpfer et al., 2011). The present chapter focuses only on the
quantum biology of initial light absorption in the light-harvesting system and, in
addition, but more briefly, on the initiation of electron transfer in the RC. The light
absorbing molecules are chlorophylls and carotenoids. Carotenoids absorb light
in the middle of the visible spectrum, i.e. at around 500 nm ((Damjanovic et al.,
1999)). Light excitation reaches an optically strongly allowed electronic excitation
and is transferred quickly, namely within about 100 fs, to chlorophyll excitations
that absorb at lower energy like themselves, namely in the range 800—900 nm (Ritz
et al., 2000a). The quantum physics of light absorption and excitation transfer by
carotenoids, including the additional role of carotenoids in quenching chlorophylls
in their triplet state, which can be harmful to the organism otherwise, is remarkable
and has been described at length (Damjanovic et al., 1999).

Electron transfer in the RC is initiated by a pair of electronically excited chloro-
phyll molecules. This pair is actually realizing the first energy conversion step in
photosynthesis, as it changes light excitation energy, received indirectly from a
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large pool of chlorophylls and carotenoids, into a membrane potential generated
through the electron transfer (Berg ef al., 2002).

In this chapter we want to discuss first light absorption by chlorophylls. This
process poses two conceptual challenges to quantum biologists. Firstly, the chloro-
phylls develop their broad absorption characteristic, due to coupling between vibra-
tional and electronic degrees of freedom, only when close to physiological temper-
ature. As a broad absorption, capable of utilizing the continuous solar spectrum, is
key to biological function, the role of temperature for chlorophyll spectral shape is
of great relevance from a biological perspective.

The spectra of chlorophylls in bacterial photosynthesis are also shaped by
chlorophyll—chlorophyll interactions. Indeed, the light-harvesting proteins of the
purple bacteria contain rings of closely (about 10 A centre—centre distance) spaced
chlorophylls that form excitons after light absorption. The excitonic interaction
affects the light absorption characteristics of chlorophyll rings present in the light-
harvesting proteins (Hu and Schulten, 1997; Hu et al., 1998; Damjanovic et al.,
2002).

In the following, we will introduce firstly the light-harvesting proteins of purple
bacteria. Secondly, we will describe the optical transitions in the chlorophyll—
protein systems under the condition of physiological temperature. Lastly, the
description is extended briefly to RC electron transfer.

5.2 Light-harvesting complexes from purple bacteria: structure,
function and quantum dynamics

The light-harvesting apparatus in purple bacteria is organized in a special cellular
membrane formed through invagination of the so-called inner bacterial membrane,
which actually surrounds the bacterial cell, into the cell interior. The invaginations
come about either in the form of hundreds of spherical bulbs, roughly 60 nm
in diameter, or in the form of lamellar sheets, both filling much of the bacterial
cell. Figure 5.1a shows the spherical bulb as found in Rhodobacter (Rba.)
spheroides (Sener et al., 2010); lipids are not shown. The sphere is formed by a
lipid bilayer that consists of about 200 trans-membrane proteins. These proteins,
altogether, hold about 1000 carotenoids and 3000 bacteriochlorophylls (BChls).
The arrangement of the BChls, without their protein scaffolds, is shown in Fig-
ure 5.1b, where one can recognize a hierarchical arrangement: four (blue) BChls
forming a small cluster in each of the RCs, 56 BChls (red) form a figure eight line
in a dimer of light-harvesting complexes 1 (LH1), and 27 BChls (green) form a ring
(18 BChls) and a ‘crown’ (nine BChls) in each of the light-harvesting complexes
2 (LH2).
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Figure 5.1 Supramolecular architecture of the chromatophore. (a) The chro-
matophore, a membrane vesicle of approximately 60 nm radius, consists of about
200 membrane proteins, shown in three different colours (blue, red and green),
as there are three different proteins, reaction centres (RC, blue), light-harvesting
complexes 1 (LH1, red), and light-harvesting complexes 2 (LH2, green). BChls
and carotenoids in the chromatophore are held by LH1, LH2 and RC. (b) Here the
3000 BChls are shown solely, without protein and carotenoids. One can recognize
an arrangement of LH1 and LH2 BChls in ring-like clusters. The LH1s in the
particular chromatophore shown are dimerized into complexes (LH1-RC), with
their BChls forming a figure eight. The BChls of LH2 form a crown-like ring
(green).
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In the light-harvesting apparatus, conventionally called a chromatophore, the
RC BClhls are the ultimate recipients of the light energy absorbed. The RC BChls
either absorb light directly or receive excitation energy from the LH1 BChls. The
LH1 BChls, being most proximate to the RC BChls, furnish excitation energy to
the RC BChls after they either absorb sunlight directly, or receive excitation energy
from neighbouring LH1 BChls or LH2 BChls. LH2 BChls are the main entry
route for light energy into the chromatophore, as they contribute most to the BChl
pool, outweighing RC and LH1 BChls by a factor of about four, the exact value
depending on light conditions in the growth medium (Sener et al., 2010).

The chromatophore, as shown in Figure 5.1, is an exquisite quantum-biological
device that rivals in its simplicity, efficiency and functionality man-made solar
energy devices. The design reached in biological evolution packs a maximum
number of BChls into the available membrane space, while leaving space in the
membrane for key chemical reactions that require diffusion of molecules, in particu-
lar, of quinones. The protein system is extremely modular and achieves its assembly
into a spherical shape and proper stoichiometry of RC, LH1, LH2 in a self-organized
process. The system is extremely stable functionally against unavoidable radiation
damage of its components and, because of its modular form, repair or reuse of
components is straightforward.

While all these aspects of the biological function of chromatophores deserve
in-depth study, we will focus in this chapter mainly on the light absorption char-
acteristics of the chromatophore, the very first step of light-harvesting. In the
following, we will briefly describe the BChl systems of RC, LH1, and LH2.

5.2.1 The photosynthetic reaction centre

The photosynthetic reaction centre is depicted in Figure 5.2a, while Figure 5.2b
shows how the RC is fitted into the inner part of a ring-shaped LH1 protein. The
non-proteinaceous prosthetic groups in the RC are the main carriers of function:
four BChls, two bacteriopheophytins (these are BChls without a central Mg ion),
a permanently bound quinone, a temporarily bound quinone and an iron atom.
The prosthetic groups are involved in accepting, or directly absorbing, electronic
excitation energy and utilizing it for electron transfer to a temporarily bound
quinone, where the electron, through recruitment of a proton, becomes bound in
the form of a hydrogen atom.

Of the four BChls in the RC, two BChls lying closest to an approximate, two-fold
symmetry axis (oriented vertically in Figure 5.2a), form a so-called ‘special pair’
(SP) that is the main acceptor of light excitation into the RC, although all four BChls
are actually involved in light absorption or electronic coupling to the LH1 BChl
system via fluorescent resonant energy transfer (Striimpfer and Schulten, 2012).
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(@)

Figure 5.2 Pigments and cofactors of proteins found in the chromatophores of
purple bacteria and acting as a scaffold for BChls, carotenoids and a few other
prosthetic groups. (a) Reaction centre (RC) with the protein shown in transpar-
ent blue. Four molecules of BChl (green), two molecules of bacteriopheophytin
(cyan), two molecules of quinones (grey) and one iron atom (red) in the RC inte-
rior are also shown; two carotenoids are not depicted. Of the four molecules of
chlorophyll shown, the two central ones form the so-called special pair of chloro-
phylls that, after it receives electronic excitation through the LH1 chlorophylls,
initiates electron transfer going first to one of the bacteriopheophytins and then, in
further steps, to one of the quinones; since the RC is located in a membrane,
the special pair-to-quinone electron transfer generates a membrane potential.
(b) LH1-RC complex with the proteins shown in transparent red and blue, respec-
tively. One can recognize a ring of 32 BChls (green) and carotenoids (yellow).
(c) LH2 with the protein shown in transparent green; interior BChls are shown in
green, carotenoids in yellow.

A subject of intense discussion regarding the RC prosthetic groups is that, in spite
of near two-fold symmetry, the electron transfer from the excited SP state proceeds
along just one of the two branches of the symmetric system. This fact is intriguing
and brings up the question of why the RC exhibits a two-fold symmetry, i.e. two
potential electron transfer branches, when only one is utilized for electron transfer.
A likely answer is that the two-fold symmetry is used, in fact, solely to enhance
the RC absorption characteristic and electronic coupling to the LH1 BChl system
through so-called superradiance, as discussed in (Strumpfer and Schulten, 2011).
Superradiance involves in this case a redistribution of absorption and emission
strength (transition dipole moments) from all BChls to key low energy exciton
states; a quantum coherence effect that speeds up excitation transfer between RC
BChls and LH1 BChls (Striimpfer et al., 2012; Striimpfer and Schulten, 2012).

5.2.2 The light-harvesting complex LH1

The light-harvesting complex LH]1 is depicted in Figure 5.2b along with its associ-
ated RC. LH1 contains 32 BChls and 16 carotenoids. The carotenoids absorb light
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at 600 nm and transfer the excitation absorbed within about 100 fs, i.e. extremely
fast, to the BChls (Striimpfer et al., 2012; Striimpfer and Schulten, 2012).

The BChls are arranged in a ring and are strongly interacting. The ring in its
equilibrium structure exhibits a 16-fold symmetry, each symmetry unit containing
two oppositely oriented BChls beside one carotenoid. The centre (Mg)—centre (Mg)
distance between neighbouring BChls measures about 10 A; these BChls exhibit
strong excitonic coupling of about 300 cm~'; non-nearest neighbour BChls are
coupled in leading order through induced dipole—induced dipole interaction whose
strength is described by the formula,

_ 1 dndm 3(dn : rnm) (dm : rnm)
T dmege, ’

G.D

rn m rn m

where ¢, is the relative dielectric permittivity of the medium, d, is the transition
dipole moment of the nth BChl and r,,, is the centre—centre distance between
BChls n and m.

The BChls are excited by light into either their so-called Q, state absorbing at
around 600 nm or their Q, state, absorbing at around 800 nm; due to sub-picosecond
internal conversion the lower energy Q, is quickly the only excited state populated.
The excitonic coupling just mentioned leads to delocalization of Q, excitations
across the BChl ring. The resulting excitations, termed excitons, form a band of
excited states. The states around 875 nm carry the main oscillator strength and
form the strongest absorption band.

The role of the LH1 protein is to furnish the scaffold into which BChls and
carotenoids are inserted, assuring effective interaction that channels, within a
picosecond, all light absorbed into the lower energy part of the exciton band
formed by the Q, excitations. The states in this exciton band are coupled through
their transition dipole moments to the BChl exciton states of the RC, such that
within about 20-30 picoseconds the excited LH1 BChl ring transfers its energy
to the RC BChls (Striimpfer and Schulten, 2012). The excited RC BChls utilize
their energy for electron transfer as described above, or send the energy back to the
LHI1 ring. The latter, seemingly wasteful, process is actually essential for spread-
ing energy loss and heat dissipation under intense light condition equally over the
chromatophore system, rather than absorbing all energy into the RC where heat
and other radiation damage could be destructive (Sener et al., 2007, 2010).

Altogether, the function of the LH1 system is to enlarge the cross-section for
light absorption beyond what the four BChls in the RC can achieve by themselves.
The RC is a device of about 14 000 atoms that would be too costly if it were served
only through four BChls and one carotenoid absorbing the sun’s energy; the LH1
system adds about 33 000 atoms, i.e. triples the mass of the system, but increases
the BChl and carotenoid counts by factors of nine and seventeen, respectively;
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clearly, the increase in protein mass is outweighed by the increase in absorption
cross-section.

5.2.3 The light-harvesting complex LH2

In fact, even the addition of an LH1 does not tax the operating speed of a single RC
and purple bacteria add, therefore, further protein mass and BChl—carotenoid light
absorption strength, namely in the form of LH2s (Striimpfer er al., 2012). These
proteins are smaller versions of LH1 and come in two similar sizes, one which adds
about 18 000 atoms with 27 BChls and nine carotenoids and one which adds about
16 000 atoms with 24 BChls and eight carotenoids.

Either LH2 forms, like LH1, aring, but with about half the diameter. The symme-
try units of the LH2s are very similar to the building blocks of LH1, except that they
carry three BChls and one carotenoid in the LH2 case, as opposed to two BChls and
one carotenoid in the LH1 case. The overall LH2 proteins exhibit a nine-fold or an
eight-fold symmetry axis for the larger or smaller versions, respectively. The struc-
tures of the two sizes of LH2 have been determined crystallographically, namely, for
LH2 of Rhodopseudomonas (Rps.) acidophila (nine-fold symmetric) (McDermott
et al., 1995; Papiz et al., 2003) and of Rhodospirillum molischianum (eight-fold
symmetric) as presented in (Koepke et al., 1996). The third BChl in the LH2 build-
ing blocks is oriented parallel to the ring plane. The structure of an LH2 is shown in
Figure 5.2¢, where one can recognize that LH2 forms two BChl rings, one similar
(but smaller) to the one in LH1 and one with wider spaced (Mg—Mg distance of
about 20 A) BChls that adopt a perpendicular orientation.

The LH2s, as described, are the most prevalent light-harvesting proteins in pur-
ple bacteria, outnumbering LH1s and RCs by a factor of about ten; the exact ratio
depending on light intensity in the bacterium’s habitat or growth medium (Sener
et al., 2010). The LH2s are the smallest light-harvesting proteins and structurally
better characterized than LH1s, as the latter have been described structurally
only through electron microscopy images below atomic resolution, combined with
homology modelling based on LH2 crystallographic structures (Hu and Schulten,
1998). The LH1s also come in 1:1 complexes with RCs. The better characterization
and easier handling of LH2s have made them the favourites of spectroscopists who
have achieved characterization of the complexes’ optical properties down to the
single LH2 level.

The remainder of this chapter will, hence, focus on LH2 spectra at low and phys-
iological temperatures. We will also discuss, but more briefly, the characteristics
of electron transfer under low and physiological temperature conditions.
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5.3 Optical transitions in pigment—protein complexes

Membrane bound pigment—protein complexes (PPCs) fulfil crucial biochemical
functions in photosynthetic organisms, e.g. conversion of absorbed light energy
into electronic excitations and facilitation of primary electron charge separations
that lead to electrochemical potential gradients. As the number of available high
resolution crystal structures of a variety of PPCs continues to increase, it becomes
more crucial than ever to develop new efficient and accurate computational meth-
ods to describe and predict their quantum-biophysical properties, using as input
only structural information. The theoretical description of PPCs at physiological
temperature in their native environment requires one to determine and characterize
the quantum states of the interacting pigment molecules in the presence of thermal
fluctuations.

While useful for interpreting experimental data, standard theoretical approaches
for calculating electronic transfer rates and optical spectra of PPCs, which are
based on empirical stochastic models containing several fitting parameters, are
neither capable of predicting experimental outcomes, nor very helpful in guiding
and designing new experiments. Here we present a general approach, which com-
bines MD simulations, quantum chemistry (QC) calculations and quantum many-
body theory, for predicting and characterizing charge transfer, and spectral and
optical properties (e.g. linear absorption and circular dichroism spectra) of PPCs
(Damjanovic et al., 2002; Janosi et al., 2006; Kosztin and Schulten, 2008). The
method requires only atomic-level crystal structure information. Firstly, the con-
formational dynamics of the PPC embedded into a fully solvated lipid bilayer is
followed by means of classical MD simulations. Next, the lowest energy quan-
tum states of the pigment molecules are determined along the MD trajectory by
means of QC calculations. Finally, the transfer rate and/or optical spectra of the
PPC are determined in terms of a lineshape function which, within the cumulant
approximation, can be calculated from the results of the QC calculations. The fea-
tures and viability of the method are exemplified by calculating the linear optical
(OD) and circular dichroism(CD) spectra of the light-harvesting complex LH2
from Rs. molischianum (Koepke et al., 1996) and the electron transfer rates in the
photosynthetic reaction centre from Rb. sphaeroides (Deisenhofer et al., 1985).

In order to calculate the OD spectrum of a PPC, one assumes that the electronic
properties of individual pigment molecules can be described in terms of a two-
level system, formed by the ground state and the lowest excited singlet state
(in the case of BChls, the Q, state) involved in the optical absorption process.
When the interaction between pigments can be neglected (e.g. when the spatial
separation between them is sufficiently large, as in the case of B800 BChls in
LH?2), one denotes these two states for pigment n =1, ..., N, as |0,) and |1,),
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respectively. In the presence of a fluctuating environment composed of the protein
matrix, lipid membrane and solvent molecules, these two levels transform into
energy bands |0,; Ao,) = |0,)|Aon) and |1,; A1) = |1,)|A1,), characterized by the
quantum numbers Ag, and Aj,, which specify the state of the nth pigment on
the ground- and excited-state potential energy surface, respectively. Because exact
calculation of the eigenstates |0,,; Ao,), |1,; A1) and of the corresponding energy
eigenvalues &, ,,,. £1,.2,, 1S not practical, an approximate solution is usually sought
by identifying the quantum numbers Ay, and A, with the vibronic states of the
PPC, which can be modelled within the harmonic approximation as a phonon heat
bath. An alternative, even better approach is to follow the dynamics of the nuclear
degrees of freedom of the PPC by all-atom MD simulations, and determination
of the energy gap time series AE,(t) = &£1,(t) — Eun(?) at each MD timestep by
means of QC calculations. The main assumption of this approach is that the obtained
energy gap time series, A E, (), can be used to calculate approximately equilibrium
quantities (e.g. energy gap density of states and time autocorrelation functions)
of the original system without a knowledge of the exact energy gap spectrum
Aglm)‘-]m)‘-[)n = glmlm - goln)‘-[)n'

The Hamiltonian of the PPC in the absence of the excitonic coupling between
the pigment molecules can be written as H = Hy + H, where

Ho =" 104 200)€0,.10, (O Aoul. (5.2)
n,Aon
and
H= Z Hn = Z |1n;}\]n>gln,)»1”<1n;)“]n|- (53)
n n,A

The electric dipole moment operator through which the incident light field couples
to the nth pigment molecule is given by

i, = Z dy a0, 1105 210) (O Aon (5.4)

AlnsAon

where the transition dipole moment (TDM) matrix element d, ,, ,, in the Condon
approximation (May and Kiihn, 2011) is

dn,)»n,)u() ~ dn (AlnMOn)- (55)

Hered, = (1,|4,]0,) is the real TDM vector whose time series can be determined
from the same combined MD/QC calculations as A E, (). Note that while (1,,]0,,) =
0, in general the Franck—Condon factors (A, |A¢,) are finite (May and Kiihn, 2011).

In the case of N excitonically coupled pigment molecules (e.g. the B850 BChls
in LH2), formally Equations (5.2)—(5.5) remain valid provided that the site index n
is replaced with the excitonic index J. Because the QC calculation of the energies
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&y, and TDMs d; of the excitonic states [J;A;), J =1,..., N, of a quantum
system formed by N coupled pigments is still prohibitively expensive, a practi-
cal solution is to employ an effective Hamiltonian for determining the time series
AE;() = E5(t) — E(t) and d;(r) from AE,(t) and d,(¢) of the individual pig-
ments. Assuming a point dipole—dipole coupling between the pigment molecules,
given by Equation (5.1), the eigenvalue equation one needs to solve at every MD
time step is

D IAESum + Vam) = AE 8umcy’ = 0. (5.6)

m

In term of the coefficients ¢/’ = (J|1,) the excitonic TDMs are

d; =) (JIL,)d,. (5.7)

n

5.3.1 Linear absorption and lineshape function

According to standard linear response theory, the OD spectrum /(w) of a PPC is
proportional to the dipole—dipole correlation function (Mukamel, 1995; May and
Kiihn, 2011),

I(@)xw ) Re [ /0 N dze"wf(@jm.(ombn,,-(z)ﬂ : (5.8)

where f1,:(t) = e "H', ;(0)e!" is the i € {x,y,z} component of the time-
dependent electric dipole operator, and (...) = Z; "Tr{exp(—BHy) ...} with B =
1/kpT being the usual temperature factor and Z; the corresponding partition func-
tion. To simplify notation we use units in which 7 = 1, and apply the convention
of implicit summation over repeated indices.

It can be shown (Janosi et al., 2006) that for an aggregate of non-interacting
pigments in their native environment the OD spectrum given by Equation (5.8) can
be expressed in terms of the lineshape function,

An(w) = Re / dre' (et~ '), (5.9)
0
namely as

I(@) <o) dAy(o). (5.10)

In a similar fashion, for N excitonically coupled pigment molecules, which can
be regarded as a system of N non-interacting excitons, one obtains for the OD
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Figure 5.3 Normalized density of states, N (w), for individual B80O BChls (solid
line) and B850 BChls (dashed line), and B850 excitons (dashed-dotted line) in
LH2 from Rs. molischianum computed as binned histograms of the corresponding
Q, excitation energy time series obtained from combined MD/QC simulations.

spectrum (Janosi ef al., 2006),

I(@) <o) diA/ (o), (5.11)
J
where the lineshape function is
o
Aj(w) = Re / dre' (' e~ 1), (5.12)
0

In general, the Hamiltonians Hy and H,, do not commute and thus calculation of
the quantum time correlation function in Equation (5.9) is non trivial. Otherwise,
one would have (e!f0'e=iHnty ~ (exp(—i AH,t)), with AH, = H, — Hy, and the
lineshape function could be expressed in terms of the energy gap density of states
(DOS) as

Ay (w) = N (w), (5.13)
N(w) = (§(w — AH,)) = (8(w — AE,(1))), (5.14)

where the DOS N (w) is approximated by the binned histogram of the energy gap
fluctuations A E,(¢) obtained from combined MD/QC calculations (Mercer ef al.,
1999; Damjanovic et al., 2002; Janosi et al., 2006).

N (w) calculated for the individual B800 (solid lines) and B850 (dashed lines)
BChls are shown in Figure 5.3. The striking difference between these two DOSs
is due to the fact that in LH2 from Rs. molischianum, the B800s and B850s are
surrounded by mainly polar and non-polar residues, respectively. Npgso(w) is
only slightly red-shifted to 1.502 eV (825 nm) and has essentially the same shape
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Figure 5.4 Absorption spectrum Ipos(w) of LH2 for Rs. molischianum. The spec-
trum was calculated as a combined DOS of B800 BChls and B850 weighted by the
corresponding dipole strengths (solid line). Ipps(w) was blue-shifted by 20 meV

in order to overlay its B850 peak with the corresponding one in the experimental
OD spectrum (Zhang et al., 2000) (dashed line).

(with FWHM= 53 meV) as the DOS obtained in similar MD/QC calculations by
(Mercer et al., 1999) for BChl solvated in methanol, also at room temperature. This
observation indicates that the thermal motion of the nuclei in individual BChls
leads to Q, energy gap fluctuations that are insensitive to the actual nature of the
non-polar environment (Janosi ef al., 2006). By contrast, the polar environment has
a profound effect on Npgoo(w), making it broad and asymmetric, characterized by:
(i) a blue-shifted peak at 1.528 eV (811 nm); (ii) a considerably increased mean
energy gap (AEpgop) of 1.556 eV (797 nm), which matches rather well the
experimental value of 800 nm; (iii) a large FWHM of about 100 meV. The DOS of
the excitonic energies, computed as a binned histogram of AE;(#,), J =1,...,16
(calculated by solving for each MD snapshot, within the point-dipole approxima-
tion, the eigenvalue Equation (5.6)), are also shown in Figure 5.3 (dashed-dotted
line) (Janosi et al., 2006).

According to Equations (5.10) and (5.13)—(5.14), a rough estimate of the OD
spectrum of the BS0O0 BChls and B850 excitons is given by the corresponding TDM
strength-weighted DOS,

Ipos(®) o @ [Z d7(8(w — AE)) + Y dge(8(e — AEBsoo»} . (5.15)
J B800

where the B800 index means summation over all BS0O BChls. The calculated
Ipos(w) (blue-shifted by 20 meV) is shown in Figure 5.4 (solid line) along with
the experimental OD spectrum (Zhang et al., 2000; Ihalainen et al., 2001) (dashed
line). While the B850 band and the relative heights of the two peaks in Ippg(w)
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match rather well with the experimental data, the position and the broadening of
the B80O peak do not. This result clearly shows that, in general, peak positions in
optical spectra may be shifted from that observed in the excitation energy spectrum
due to correlation effects between the ground and optically active excited states.
Therefore, methods for simulating optical spectra, in which the positions of the
peaks are identified with the computed excitation energies (stick spectrum), are
not entirely correct and one should instead use more sophisticated methods that
include quantum correlation effects.

In general, Equations (5.13)—(5.14) overestimate the broadening of the lineshape
function. Indeed, by employing the exact spectral representation of the correlation
function (e~ H1) the lineshape function (5.9) can be expressed as a Franck—
Condon-weighted and thermally averaged density of state (May and Kiihn, 2011),
i.e. as

An@) =210 > pag, | honldin) P8@ — A, ). (5.16)

A0nsAn

where p;,, = Z; " exp(—B&o, 1, is the statistical matrix of the electronic ground
state. Indeed, Equations (5.13)—(5.14) follow directly from Equation (5.16) if one
sets the Franck—Condon factors (Ag,|A1,) equal to unity.

A systematic way of calculating the correlation function in Equation (5.9) is to
employ the cumulant expansion method (Mahan, 1990; Mukamel, 1995; May and
Kiihn, 2011). Within the second-order cumulant approximation (Mukamel, 1995)
one has,

(1M =1 )~ exp |:—i(AHn)t B /t dr(t — r)Cn(T):| , (5.17)
0

where AH,(t) = e/ ! AH, e~ "t C,(t) = (§ H,(t)§ H,(0)),and § H,(t) = AH,(t) —
(A H,). The quantum statistical averages in Equation (5.17) can be approximated
by the corresponding classical ones, involving the energy gap time series AE,,(¢),
as follows:

(AH,) ~ (AE,(1)) = wy, (5.18)
Re[C,(1)] = Cy (1) = (SE ()3 E,(0)). (5.19)

Note that while Equation (5.19) is widely used (Schulten and Tesch, 1991; Makri,
1999; Mercer et al., 1999), other approximation schemes have also been applied
and tested (Egorov ef al., 1999).

By employing the fluctuation dissipation theorem (Mukamel, 1995), the imag-
inary part of the quantum correlation function C,(t) can also be expressed in
terms of the energy gap correlation function C,(f). One finds (Mukamel, 1995;
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Figure 5.5 Spectral density function J(w) for B80O (solid line) and B850 (dashed
line) obtained according to Equation (5.21).

Janosi et al., 20006),
Im[C,(1)] = /Ooo df],,(a)) sin wt, (5.20)
where the real spectral density is given by
Jy(w) = 2tanh(Bw/2) /Ooo dt Cy(t)cos wt. (5.21)

The spectral densities J(w) calculated for the BS0O and B850 BChls are shown
in Figure 5.5. The prominent peaks (especially for B800) at about w, = 0.22 eV,
are due to the fast initial decay of C(¢), which is most likely caused by a strong
coupling of the BChls to an intra-molecular C=0 vibronic mode (Mercer et al.,
1999; Damjanovic et al., 2002). The complex structure of the spectral functions
indicate that all inter- and intra-molecular vibronic modes with frequency below w,,
will contribute to the lineshape function. Hence, attempts to use simplified model
spectral functions appear to be unrealistic, even if these may lead to absorption
spectra that match the experimental results.
Finally, the lineshape function within the second cumulant approximation is

An(w) = A0 — w,) = /0 ” dt e D cos[(w — w,) t + @a(1)], (5.22)
where the broadening and frequency shift functions are given by
bui = [ dri— o6, (523)
and
o = [~ 2 g T (5.24)

The lineshape functions of individual B800 and B850, calculated from Equa-
tion (5.22), are plotted in Figure 5.6 (Janosi er al., 2006). The origin of the
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Figure 5.6 Lineshape functions A psoo(Aw) (dashed line) and 23850(Aa)) (solid
line).

frequency axis corresponds to the mean energy gaps wpgsoo and wpggso, respectively.
The highly polarized surrounding of the B§00 BChls in Rs. molischianum renders
A pgoo(w) twice as broad (FWHM ~ 26 meV) as Apggso(w) (FWHM =~ 13 meV).
Also, the red-shift of the peak of the former (Aw & 25 meV) is more than three
times larger than that of the latter (Aw ~ 7 meV).

Although the 1 ps-long energy gap time series provides a proper estimate of the
B800 and B850 lineshape functions, the same data is insufficient to determine with
reasonable accuracy the individual excitonic lineshape functions A ;(w).

By neglecting the effect of exchange narrowing (Somsen et al., 1996; van
Amerongen et al., 2000), one can approximate with reasonable accuracy the indi-
vidual excitonic lineshape functions A;(w) &~ Apgso(w) and, similarly to Equa-
tion (5.15), the OD spectrum of the LH2 BChls can be calculated as (Janosi et al.,
2006)

I(w) x |:Z dj Apsso(w — @) + 8d pgoo A soo(@ — a)Bsoo)j| : (5.25)
J

where w; = (AE;). Asshownin Figure 5.7, I (») (subject to an overall blue-shift of
20 meV) matches remarkably well with the experimental OD spectrum, especially
if one takes into account that it was obtained from the sole knowledge of the high
resolution crystal structure of LH2 from Rs. molischianum (Janosi et al., 2006).
The reason why both the B800 and B850 peaks of /(w) are somewhat narrower
than the experimental ones is most likely the fact that, in the above calculations,
the effect of static disorder was ignored. Indeed, the calculations were based on
a single LH2 ring, while the experimental data is averaged over a large number
of such rings. While computationally expensive, in principle, the effect of static
disorder can be taken into account by repeating the above calculations for different
initial configurations of the LH2 ring, and then averaging the corresponding OD
spectra.
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Figure 5.7 Absorption spectrum of the BChl aggregate in Rs. molischianum LH2.
Shown is the comparison of the computed (solid line) and experimental (dashed
line) absorption spectrum (in arbitrary units). The computed spectrum has been
blue shifted by 20 meV for best match.

5.3.2 Circular dichroism

The CD spectrum is defined as Icp(w) = I (w) — Ir(w), where I r(w) is the
OD spectrum for left/right circularly polarized light. Unlike the case of the OD
spectrum, calculation of Icp(w), even within the leading order approximation,
requires taking into account the spatial variation of the light field across the PPC
as well as the excitonic coupling between the pigment molecules, regardless of
how small this may be (Somsen et al., 1996). The sensitivity of the CD spectrum
to geometrical and local details of the PPC makes it a quantity difficult to predict
by theoretical modelling. The CD spectrum can be calculated as (van Amerongen
et al., 2000)

Icp(w) X Z R, A (o), (5.26)
J
where
T
Ry =7 nin;uumrn -(d, x (1] J) (5.27)

is the rotational strength of the excitonic state J. The rotational strength plays
the same role for the CD spectrum as the TDM strength for the OD spectrum.
According to Equation (5.27), in the absence of the excitonic coupling (1,,|J) =
8,y and R; = Oholds. Consequently, as already mentioned above, the CD spectrum
vanishes in the case of vanishing excitonic coupling. R; accounts for the coupling
between the TDM of the excitonic state J and the orbital magnetic moment of
the other excitons. The coupling to the local magnetic moment (Cotton effect) is
assumed to be small and is usually neglected (Somsen ef al., 1996; van Amerongen
et al., 2000).
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Figure 5.8 Comparison between the computed (solid line) and experimental CD
spectrum of the BChl aggregate in Rs. molischianum LH2.

Employing the same MD/QC data used to determine the OD spectrum, the
CD spectrum of the BChls in LH2 from Rs. molischianum was calculated using
Equation (5.26), where the summation index J runs over all B850 and B800
excitonic states and A ;(w) = Aq(w — @), with o € {B850, B800} (Janosi ef al.,
2006). The obtained /¢ p(w), shown in Figure 5.8 (solid line), matches surprisingly
well with the experimental spectrum (dashed line) (Ihalainen et al., 2001).

5.4 Electron transfer in pigment—protein complexes

Other quantum processes of great interest in PPCs involve electrons switching
between two states. Two examples are: (1) electron transfer processes when an
electron moves in the PPC from an orbital on the donor moiety D to an orbital
on the acceptor moiety A; (2) bond formation/breaking processes in an enzyme
when electrons shift between a non-bonding state and a bonding state. Here we
focus only on the electron transfer processes in a PPC. Our goal is to present a
general approach for calculating the rate using only high resolution crystal structure
information and MD data.

Quite generally, the electron transfer process can be described as a chemical
reaction, AD — ATD~, where S; = AD and S, = AT D~ are the reactant and
product states, respectively. The energy of the two states, E;(¢) and E,(¢), changes
in time due to (i) motions along a reaction coordinate (that describes the electron
transfer process) and (ii) thermal fluctuations of the remaining degrees of freedom
of the PPC. Often the interaction energies that couple the two electronic states
involved in the reaction are small compared to the temporal variations of E;(¢) and
E,(¢). In this rather typical case, the actual reaction process is confined to moments
when the two electronic states become energetically degenerate [E(t) = E,(1)].
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In the case of membrane bound PPCs, such curve crossing processes are strongly
dependent on the thermal fluctuations of the entire system, including the protein
matrix, the solvent and the lipid membrane. In a quantum-mechanical description
one defines the Hamiltonians H; and H, which describe the collective motion of
the system in the reactant (initial) and product (final) electronic states of the PPC.
The weak coupling between the two states can be described by a tunnelling matrix
element V.

Similarly to the case of optical absorption spectra, the effect of dynamic disorder
on the electron transfer processes in PPCs can also be determined by employing
the combined MD/QC method described in the previous section. Once the A and D
moieties have been identified, the time series of the electronic ground state energies
Ei,(%),i =0,1,...,of the two redox states can be determined by QC calculation
for each snapshot #; along the MD trajectory.

5.4.1 Electron transfer rate

Assuming that the tunnelling matrix element V does not change significantly due
to the thermal motion of the protein matrix, within the lowest order of perturbation
theory in V, the electron transfer rate kgr in a PPC can be expressed as (May and
Kiihn, 2011)
o0
ker = |V|? / dt (et e, (5.28)
—0o0

Similarly to Equation (5.17), by employing the cumulant approximation one obtains

o] t
kpr ~ |V|2/ dt exp [—i(AH)t — / dr(t — r)C(r)} , (5.29)

—00 0
where AH = H, — H;, AH(t) =M AHe 1 C(t) = (§H(t)§H(0)), and
SH(t) = AH(t) — (AH). By following the same methodology as in the derivation

of the OD spectrum of a PPC [Equations (5.18), (5.19) and (5.22)], the rate can be
brought to the form, compare

o
kgr =2|V|? / dt e=®" cosfet — @(1)], (5.30)
0

where ¢ = (AH) ~ (AE(t)) is the mean energy gap,

o) = / dt’' (¢t —tHC(p), (5.31)
0
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with C(1) = Re[C(1)] ~ (SE(1)SE(0)). and
o(t) = / Tdo S O sinet Szi“ ot (5.32)
0 T w

where the spectral function has the usual form,
o
J(w) = 2tanh(/3a)/2)/ dt C(t) cos wt. (5.33)
0

Thus, the calculation of kg7 and J(w) requires only a knowledge of the energy
gap time series A E(¢) and not those of the individual energies E; »(¢). This simple
observation is important because most QC methods do not allow the accurate
determination of individual energy levels, but they can provide accurate energy
differences.

One can show that in the high temperature limit (i.e. Bw < 1), the cumulant
approximation of the electron transfer rate [Equations (5.30)—(5.33)] approaches
the classical Marcus theory (Kosztin and Schulten, 2008). Indeed, assuming that
C(t) = Cy(t) = A?exp(—t /1), where A2 = (8E?) = (AE?) — (AE)?is the vari-
ance of the energy gap fluctuations and 7 is the corresponding relaxation time, the
integrals in Equations (5.31) and (5.33) can be performed exactly with the results,

AZ
du(t) = A’ [t — (1l —e /) ~ ERE for 1 <1, (5.34)

and
BA* BAwr
1+ (0?2 14 (o2

Ju(w) = 2tanh(Bw/2) (5.35)

Note that the maximum of the spectral function Jjs(w) corresponds to the energy
gap,

AZ
€m = 'B— (5.36)
2
Within the same range of approximations the phase factor (5.32) becomes
“dw J
om(t) ~ t/ do Ju(@) _ eut. (5.37)
0 T w

Inserting Equations (5.37) and (5.34) into (5.30) and performing the Gaussian
integral, one obtains the well-known Marcus formula (Marcus, 1956b,a; May and
Kiihn, 2011),

—IV|? (€ — em)?
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Figure 5.9 Comparison of electron transfer rates k(e; 7') shown as a function of €
evaluated in the framework of the spin—boson model (solid lines) and by Marcus
theory (dashed lines) at temperatures 10 K and 300 K.

Because, in general, the spectral function (5.33) has a complex structure
(Damjanovic et al., 2002; Janosi et al., 2006), the simple exponential approximation
of the correlation function C(¢) may not be justified, so that differences between the
electron transfer rates calculated with the simple Marcus formula (5.38) and with
the cumulant approximation (5.30) may be expected even at high temperatures.

A detailed study of electron transfer rates kg7 in the photosynthetic reaction
centre of Rhodopseudomonas viridis by employing the spin—boson model (which
yields, formally, the same results as the cumulant approach with J(w) representing
the phonon spectral function) was reported in (Xu and Schulten, 1992, 1994). The
model parameters A and T were determined by means of all atom MD simulations.
Because of large errors in calculating the mean redox energy gap €, the authors used
this as a fitting parameter. The calculated kgy(e; T) for temperatures 7 = 10 K
and 7 = 300 K are shown in Figure 5.9, and are compared with the corresponding
results predicted by the Marcus theory (Marcus, 1956b,a). As expected, at high
(physiological) temperature the rate evaluated from the Marcus theory in a wide
range of € values agrees well with the rate evaluated from the spin—boson model at

T = 300 K. However the Marcus theory and the spin—boson model differ signifi-
cantly at 7 = 10 K. At such a low temperature the rate as a function of € for the
spin—boson model is asymmetrical. This result agrees with observations reported
in Gunn and Dawson (1989), which show a distinct asymmetry with respect to €,
at low temperatures. Such an asymmetry is not predicted by the models of Marcus
and Hopfield (Hopfield, 1974; Marcus and Sutin, 1985; Sumi and Marcus, 1986).
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Direct observation of quantum coherence

GREGORY S. ENGEL

6.1 Detecting quantum coherence

Observing quantum coherence is a tricky business. Even before we fire up the
femtosecond laser systems and start our search, we need to ask ourselves some basic
questions: What is coherence? How does coherence manifest in measurements?
What methods can we use to detect and measure coherence? Only then, can we
begin to interpret data to search for coherence and to try to make sense of the
observed signals. In this section, I will discuss detecting quantum coherence both
in theory and in practice. The goal of this section is to present a unified view of
experimental approaches in broad strokes and to provide useful references to guide
further exploration.

6.1.1 Whatis ‘quantum coherence’?

Firstly, the precise meaning of ‘quantum coherence’ must be pinned down. I define
quantum coherences to be off-diagonal elements of the density matrix representing
the ensemble. (I am explicitly setting aside questions of ‘quantum’ versus ‘classical’
coherences; let us simply assume that the system in question is best described
quantum mechanically and presume that the coherences in such a system are also
quantum in nature. The simple fact is that we don’t yet have the tools to answer
this debate definitively.) This definition, however, is still insufficient. The density
matrix and the magnitudes of its off-diagonal elements in particular depend on the
basis set used to write down the matrix. For the purposes of this chapter, I will
consider the density matrix only in the Hamiltonian eigenbasis.

Constructing the definition of quantum coherence using the Hamiltonian eigen-
basis creates enormous experimental and interpretive simplifications. Firstly, this
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definition is very well suited to spectroscopic methods that measure the energy of
transitions. Because the Hamiltonian operator corresponds with energy observa-
tions, the population elements along the main diagonal of the density matrix rep-
resent the probability of finding the system in a given energy level. Secondly, the
Hamiltonian governs temporal evolution in quantum mechanics. Therefore, unitary
dynamics of both the populations (diagonal) and coherences (off-diagonal) density
matrix elements in the Hamiltonian eigenbasis are also quite simple. Populations
do nothing. Coherences evolve phase based on the energy difference between the
two associated Hamiltonian eigenstates. The equation of motion for the density
matrix in any basis set is

ap I~
— =——[H, p]. 6.1
o7 FLH. Pl (6.1)
When expressed in the Hamiltonian eigenbasis, this equation simplifies to
00; i
B_tl] = _}Tl(ei — €;)Pij> (6.2)

where ¢; is the energy of the ith eigenstate. Therefore, populations (i = j) remain
constant while coherences (i # j) evolve phase with time according to the relation

—i(e;—€ )t

pij(t)=e "7 p;(0) for izj. (6.3)

This bright line rule showing that populations of Hamiltonian eigenstates remain
constant while coherences oscillate appears to point to a clear strategy for observing
quantum coherence. Unfortunately, it’s not quite that easy.

6.1.2 How does quantum manifest in observations?

We have now shown that, under unitary evolution, populations of Hamiltonian
eigenstates remain constant while coherences oscillate. For the moment, we will
even set aside the fact that temporal evolution need not be unitary when describing a
subsystem in a reduced dimensional description. (That is, if we ignore states of the
system such as a bath, energy can flow into those states giving rise to dissipative
dynamics.) Instead, let us focus on the oscillatory beating signals as a marker
of quantum coherence in the Hamiltonian eigenbasis. Such oscillatory beating
signals do not generally arise from coherence in other basis sets. For example,
delocalization, which is coherence in the site basis, can exist without creating any
observable oscillatory signals.

It would appear that we now have a simple rule identifying quantum: coherences
oscillate. However, we need to actually observe this oscillation, and for that we
need to make observations of the system. Within the density matrix formalism,
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making an observation, A, corresponding to operator, A, is simple:
(A) = Tr(Ap). (6.4)

So far, we have only used the Hamiltonian operator in our discussion. If we try
a measurement of the energy of any system evolving under unitary dynamics, we
find that we are blind to coherences. (This result should not come as a surprise—
unitary dynamics conserve energy so no oscillations are possible!) We can show
this fact explicitly by simply recalling that the Hamiltonian matrix is diagonal when
expressed in its own eigenbasis,

(E) = Tr(H p) (6.5)
=D i (6.6)

Recall that populations are constant under unitary dynamics. The equation above
shows that the observed energy is independent of the coherences (and any phase
associated with them). Thus, measurements of energy cannot probe quantum coher-
ences. Clearly, we need a new measurement.

In selecting a new approach to observing quantum coherence, we must select a
measurement that does not commute with the Hamiltonian. Operators that do not
commute do not (in general) share eigenfunctions, and we therefore ensure that the
operator is not diagonal in the Hamiltonian eigenbasis. Spectroscopically, the most
convenient operator to select is the dipole operator, although we could select any
operator.'

We know that the dipole operator, which governs the interaction between light
and matter, does not commute with the Hamiltonian. Firstly, we have seen detailed
perturbative expansions of this interaction in Chapter 2. Secondly and more intu-
itively, we know that molecular systems absorb light and change energetic states.
In the most simple form, the light of a proper colour (through the dipole operator)
couples the ground and excited states leading to some probability of being found
in the excited state after the interaction. Because this operator does not commute
with the Hamiltonian, it must contain off-diagonal elements when written in the
Hamiltonian eigenbasis. Thus, from Equation 6.4 we can see that these off-diagonal
elements will allow coherences to contribute to the observable quantity.

In a spectroscopic measurement, the manifestation of the observable associated
with the dipole operator is amplitude (and therefore intensity). That is, when we
set out to measure quantum coherence, we will look for periodic oscillations in the
amplitude of the signal. These amplitude fluctuations are called ‘quantum beats.’

1 Commonly, theory papers work in the site basis to simplify interpretation of calculations. Although no simple

physical operator coincides with the site basis per se, this approach is very intellectually satisfying, because it
conveniently represents spatial locations.
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Quantum beating is a ubiquitous feature of quantum coherence. In the practical
example above, we examined the dipole operator, but the same beating would occur
with any operator that does not commute with the Hamiltonian. Thus, we can think
of this beating as probability washing back and forth across sites, or equally well
as oscillations of the electrodynamic polarization via the dipole operator. In reality,
it is all of these things.

6.2 Observation of quantum coherence using 2D electronic spectroscopy

On one hand, observations of quantum coherence are inherent to all spectroscopic
measurements. That is, absorption involves a momentary coherence between the
ground and excited states induced by the light. This coherence generates the oscil-
lating field that we observe. (For example, the signal field oscillates out of phase
with the driving field in linear absorption spectroscopy, creating the destructive
interference that we see as absorption.) We are looking for something more,
however. In particular, we want to know the fate and role of coherence after
excitation — especially if such coherences persist on the timescale of chemical
dynamics. To understand this phenomenon and whether it can matter, we have
to create coherences and then probe the fate of the coherences among excited
states.

The first hint of coherence among excited states in a photosynthetic light-
harvesting complex came in 1997 when Savikhin, Buck and Struve saw unusual
oscillations in their pump—probe data (Savikhin et al., 1997). Oscillations in pump-—
probe data were commonplace by this time, but interestingly, these oscillations
appeared in anisotropy measurements indicating that a simple vibrational wave
packet was not the cause. The authors created a model wherein the seven acces-
sible electronic states of the system were grouped into two bins and argued that
electronic coherence among the binned states was the cause. This insightful model
was later verified with 2D electronic spectroscopy (Engel er al., 2007).

The first direct observations of quantum coherence biological systems occurred
in 2007, when the same Fenna—Matthews—Olson complex (Fenna and Matthews,
1975; Camara-Artigas et al., 2003; Tronrud et al., 2009) was interrogated with 2D
spectroscopy (Engel et al., 2007). Before I discuss this measurement in detail, I
would like to introduce the excitonic energy transfer system that has provided the
platform for all of this early work: the Fenna—Matthews—Olson complex.

6.2.1 Biology of the Fenna—Matthews—Qlson photosynthetic complex

The Fenna—Matthews—Olson complex (FMO) comes from green sulphur bacteria,
which live in extremely low light environments such as under microbial mats
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or in the deep ocean. As such, they have evolved large, extremely broadband
antennae that operate at near perfect quantum efficiency. (Note that thermodynamic
efficiency is nowhere near unity. This lack of thermodynamic efficiency arises from
a series of ‘downhill’ energy transfer steps. These steps make the process fast and
irreversible at the cost of thermodynamic efficiency.) Thus, this archaea provides
a fabulous model organism for studying strategies for light-harvesting and energy
transfer. Effectively, we are exploiting 2.4 billion years of evolutionary research
and development.

The Fenna—Matthews—Olson complex provides an ideal model system for pho-
tosynthetic light-harvesting because:

o The X-ray structure is known to within 2.2 A;

o The complex is (sparingly) water soluble;

o The complex is highly asymmetric, yielding not optically dark states;

« With only seven strongly coupled bacteriochlorophyll pigments, each monomer
is computationally tractable;’

o The three monomeric units in the trimer are extremely weakly coupled.

The crystal structure solved by Tronrud et al. is shown in Figure 6.1 (Tronrud
et al., 2009). This protein acts as a ‘spacer’ that separates the chlorosome antenna
(a gigantic almost crystalline rod-like structure containing 250 000 bacteriochloro-
phylls) from the reaction centre to permit reductant to diffuse to the reaction centre
and refill the hole after charge separation. Effectively, the Fenna—Matthews—Olson
complex serves as an excitonic wire linking the chlorosome to the reaction centre,
as shown in Figure 6.2. The complex itself is trimeric, but the monomeric units are
very weakly coupled. Recently, an additional eighth bacteriochlorophyll molecule
has been discovered by Tronrud ef al. to sit between the baseplate and the rest of
the FMO complex (Tronrud et al., 2009).

Thinking spectroscopically, we are blind to everything but the optically active
modes. The FMO complex contains seven bacteriochlorophyll molecules each
with an electronic transition near 800 nm (formally a Q, transition). The seven
states couple to one another electrostatically (typically estimated with dipole—
dipole interactions). Thus, we can construct a 7 x 7 Hamiltonian, as has been done
by Vulto et al., Renger et al. and Hayes and Engel (Vulto et al., 1999; Renger
et al., 2001; Hayes and Engel, 2011). After diagonalizing the matrix, we get seven
delocalized, excitonic states. It is these states that we will probe.

2 Recently, an eighth bacteriochlorophyll pigment has been discovered; this new pigment is weakly bound to the
complex and is not present in all isolated samples. The new bacteriochlorophyll is sited between FMO and the
chlorosome. It has not yet been observed spectroscopically.
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Figure 6.1 The Fenna—Matthews—Olson complex consists of a protein backbone
(grey) containing a hydrophobic pocket that holds seven strongly coupled bacte-
riochlorophyll molecules (green).

6.2.2 Detecting quantum coherence among excited states

With the sample of the FMO complex at the ready, we can now think about how
to detect quantum coherence signals. To make the signal detectable, we seek to
create large, prescribed coherences across the entire ensemble using our laser.
Ultra fast pulses have sufficient bandwidth to span all the excitonic states within
the bacteriochlorophyll Q, band.” Further, pulses less than 40 fs permit detailed
observations of coherent quantum beating among these states. From the energy
gaps in the Hamiltonian, we find that electronic coherences will exhibit oscillatory

3 For details of the electronic transitions of chlorin pigments and their nomenclature, the reader is directed to
(Blankenship, 2002).
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Figure 6.2 The Fenna—Matthews—Olson complex serves as an excitonic wire link-
ing the chlorosome to the reaction centre.

periods ranging from 80-500 fs (corresponding with the energy differences of
70 cm™! to 400 cm™1).

Clearly, we require an ultra fast spectroscopy, but the problem is harder than that.
Proteins are not terribly ordered objects, with every protein folded slightly differ-
ently. Thatis, we also need a spectroscopy that can help us eliminate inhomogeneity
from our signal. Photon-echo spectroscopy (the same strategy as a spin-echo) does
this for us. Now, all that is left is getting sufficient spectral resolution to see the
different states. However, spectral resolution has a natural relationship with tem-
poral resolution through the Fourier transform. Just like the uncertainty principle,
these conjugate variables are not generally compatible. However, 2D electronic
spectroscopy, while not escaping the Fourier limit, naturally allows for an optimal
combination of the temporal and spectral resolutions because the spectral resolution
is effectively determined by the molecular response.
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Thus, we implement 2D electronic spectroscopy, described in Chapter 4.
Experimental implementation of this spectroscopy has been described in detail
elsewhere (Brixner ef al., 2004; Cowan et al., 2004). Briefly, a sequence of three
pump pulses interacts with the sample and causes stimulation of a third-order coher-
ent response, which is then frequency and phase resolved using frequency domain
heterodyne detection. The resulting interferogram provides both the magnitude
and phase of the signal. During the time period between the first two pulses, the
response evolves as a coherence between the ground and resonant excited states,
defined as a one-quantum coherence, and the initial time delay is therefore referred
to as the coherence time (7). The second interaction promotes the evolution to
populations of the excited states, populations of the ground state and coherences
between excited states, zero-quantum coherences. The time delay between the sec-
ond and third pulses is referred to as the waiting time (7). The final pulse stimulates
the sample into a radiative coherence which emits the third-order signal. The delay
between the third pulse and the emitted signal is referred to as the rephasing time
(t). Two-dimensional spectra at fixed waiting times are then generated by taking a
two-dimensional Fourier transform of the properly apodized signal over the t and
t dimensions. The relative pulse ordering of the first two beams can be varied to
access additional non-rephasing pathways, which provide complementary infor-
mation. The total signal can thus be separated into rephasing and non-rephasing
contributions.

For multi-chromophoric systems, however, the spectroscopic description above
is incomplete. Because the ultra fast pulses have broad bandwidth that will gen-
erally span multiple transitions. Thus, after the initial excitation of a coherence
between the ground and excited state, the second pulse may or may not inter-
act with the same excited state. (In general, all such interaction necessarily hap-
pens, and our focus on specific terms in the perturbative sum is a bit disingenu-
ous; nevertheless, this approach provides a very convenient physical and intuitive
description of the process.) If the second pulse interacts with a different state,
we are left in a coherence between excited states rather than a population. This
coherence evolves phase at the energy difference between the excitonic excited
states. The period of this phase is slow enough to be observed in the waiting time
dimension of the 2D spectra. A beating pathway is shown diagrammatically in
Figure 6.3.

6.3 Identifying and characterizing quantum coherence signals

The quantum beating signals that indicate the presence of quantum coherence are
visible during the waiting time delay 7. The signals manifest as oscillations in
both the absolute amplitude of the response and in the real portion of the response.
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Figure 6.3 The left panel shows a constant (population) pathway that does not
beat during the waiting time, 7. The pathway is expressed both as a Feynman
diagram and also as a lens diagram showing how phase spreads and rephases. The
time evolution is shown below the lens diagram in the form of a time-dependent
factor in front of the density matrix element. The right panel shows a pathway that
beats during the waiting time because the pathway involves a coherence between
excited states.

Interestingly, the signal appears in the absolute magnitude because it interferes with
a constant, non-oscillating signal. Firstly, there is constructive interference, then
destructive interference, and so on. Two pathways that appear in the same place in
the spectrum and interfere in this way are shown in Figure 6.3.

Prior to the data published in 2007 (Engel ef al., 2007) shown in Figure 6.4,
electronic coherence had never been observed in 2D spectra. The beating signals
observed were reproducible in both phase and frequency, indicating that the signal
was of molecular origin. (Nevertheless, over the course of about six months, control
experiments were run and double-checked to ensure that simple explanations such
as cryostat expansion and contraction upon filling, yaw in translation stages, laser
power fluctuations, etc. were not the cause of the beating.) The signals observed
were fully consistent with the expected beating pattern, predicted by looking at
excitonic energy differences and weighting the intensity with the appropriate exci-
tonic transition dipole moments. Because this first signal came as a surprise in an
experiment expected to show beating for only 70 fs based on theoretical predictions
(Pisliakov et al., 2006), the sampling times were not uniform. (The sampling started
with 10 fs steps, moving to 15 fs steps, then 20 fs steps until finally sheer panic
cased 30 fs step sizes as the beating persisted.) Such non-uniform steps required
adaptation of the non-uniform fast Fourier transform (NFFT) (Potts and Kunis,
2007). This algorithm identifies a large family of solutions consistent with the data.
One such solution is show in Figure 6.4. Much later, a more thorough analysis on
a more complete data set would confirm this assignment (Hayes and Engel, 2011).
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Figure 6.4 The first data to show electronic coherence between single states comes
from FMO. The non-rephasing portion of the data beats along the main diagonal
(a). The time course of this beating is shown in (b). The beating pattern of the
lowest exciton peak (c) shows frequencies that correspond well to the predicted
beat frequencies and intensities (d).

The precise origin of the beating pattern itself was only explained later by
carefully dissecting the Feynman diagrams associated with quantum coherence
(Cheng et al., 2007). This work led directly to a detailed understanding of the
lineshape of the beating signals as well.

The quantum beating in FMO can be used to interrogate many new aspects
of the Hamiltonian that govern energy transfer and relaxation. For example, the
beating signals arise from energetic differences among states and therefore the
beating spectrum can be used to understand the Hamiltonian. Fourier transforming
along the waiting time axis shows many new features within the still congested 2D
spectrum (Hayes and Engel, 2011). Additionally, the beating signals are remarkably
robust (Hayes er al., 2011). Attempts to scramble vibrational modes or to shift
resonances with isotopic substitution miserably failed to affect the beating signals.
This failure significantly constrains microscopic models of the role of the protein
bath, because the most simple models invoked a single finely tuned mode (out of
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over 100000) to drive the coherence — the isotopic data shows that this simply
cannot be the case. There is still active discussion regarding how vibrational modes
may mediate this long-lived coherence. Regardless of the microscopic explanation,
such robustness implies that the quantum coherence presents a tractable engineering
target.

After suggestions by Voronine et al. (Palmieri et al., 2009), signals were isolated
that show direct coupling between populations and coherences (Panitchayangkoon
et al., 2011). This signal arises from quantum beating on peaks in the main diag-
onal in rephasing spectra that were not expected to show beating (Cheng et al.,
2007). Such beating indicates that populations are oscillating, indicating that the
probability of finding the excitation in a given state is oscillating in time. Such
non-secular effects require populations to be driven by coherences. When an oscil-
latory coherence drives a population, the population oscillates 90 degrees out of
phase from the coherence, which is exactly the signal that is observed.

However, this observation creates many new questions. For example, FMO is a
non-degenerate system such that population oscillation implies energetic oscilla-
tions. It is important to recall, however, that energy oscillations within a subsystem
are not forbidden — energy can still be conserved, but it must be traded with the
environment.

This interpretation significantly changes our view of the role of the protein bath
again. The protein is strongly coupled to the bacteriochlorophylls and actively
trades energy with the system. In some sense, this observation is a relief! Scientists
had long wondered how chlorophyll could sit in a soft, polarizable environment
yet not dissipate energy. Coherence solves this problem. The coupling exists, but
prior measurements (hole burning, transfer efficiency, Stokes shifts) were blind
to the coupling, because interpretation of that data implies incoherent, dissipative
coupling. In addition, this coupling between coherences and populations explains
not only why populations oscillate, but it also explains why coherences persist for
so long. The long-lived coherence borrows lifetime from the populations to which
it couples.

Finally, analysis of the dephasing rates of coherences provides yet another
handle to analyse quantum beating. Early on, Hayes et al. recognized that different
coherences dephase with rather different rates (Hayes et al., 2010). The pattern does
not match any simple scheme such as higher frequency beats dephasing faster, nor
are resonances evident with any particular bath modes. As more complete data sets
emerged, a more formal analysis approach was introduced that exploits a modified
Fourier transform (z-transform) which involves complex frequencies — essentially
isolating both dephasing rates and beat frequencies at the same time (Caram and
Engel, 2011; Caram et al., 2012).
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Figure 6.5 Lee, Cheng and Fleming captured the first data to show long-lived
quantum coherence in the bacterial reaction centre, proving that quantum beating
signals were not unique to FMO. The data also showed that the coherence was of
unusual character such that excited states maintained phase relative to one another,
but not with the ground state.

6.4 Quantum coherence in reaction centres using two colour electronic
coherence photon echo spectroscopy

Almost simultaneously, a new spectroscopic technique was developed by Lee,
Cheng and Fleming that was exquisitely sensitive to electronic coherences, Two
Colour Electronic Coherence Photon Echo Spectroscopy (2CECPES) (Lee et al.,
2007). This new variant of photon-echo peakshift spectroscopy has many advan-
tages over 2D spectroscopy, such as improved sensitivity, but 2CECPES lacks
frequency resolution within the pulse envelope.

Using this new approach, Lee, Cheng and Fleming simultaneously measured
dephasing of the coherences within the reaction centre between the B exciton
(accessory bacteriochlorophyll) and the ground state, between the H exciton (bac-
teriopheophytin) and the ground state and between B and H. The data showed that
the B-H coherence lasted more than an order of magnitude longer than either the
B—ground or H-ground coherence (Figure 6.5). Lee et al. then intuited that the
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spectral motion that causes dephasing of the B-ground and H-ground coherence
must be correlated to generate the long-lived B—H coherence. This phenomenologi-
cal mechanism implies that the protein is likely “protecting’ the coherence between
B and H, and indicates that the protein plays an important role in electronic energy
transfer.

Taken in conjunction with the earlier FMO data, this reaction centre data implies
that the protein scaffold is not simply a rigid framework that holds the chromophores
in a strict geometric relationship, but rather that the protein dynamics help to govern
energy transfer processes.

6.5 Observing quantum coherences at physiological temperatures

All early experiments showing quantum coherence were performed at liquid nitro-
gen temperature or slightly elevated temperature (150 K). Such low tempera-
tures tend to prolong coherence by reducing the thermal motion in the environ-
ment. A burning question remained: does quantum coherence affect biological
function? (This question still remains at the time of printing.) However, it is
clear that for coherence to affect biological function, it must exist at biological
temperature.

The first reported results of quantum coherence at high temperature came from
Scholes and co-workers showing quantum coherence among phycobiliproteins
from cryptophyte algae using two time anisotropy spectroscopy (Collini et al.,
2010). Shortly thereafter, quantum beating was reported in FMO at physiologi-
cal temperature as well, as shown in Figure 6.6 (Panitchayangkoon et al., 2010).
Both of these experiments require significantly improved signal-to-noise over ear-
lier measurements. However, the heart of the experiment is identical to earlier
observations of quantum coherence.

In each case, the observed dephasing rates match very well with theoretical
predictions of the broad optimum transport regime predicted by Plenio and Huelga,
and separately by Aspuru and co-workers (Plenio and Huelga, 2008; Rebentrost
et al., 2009a). Also, in each case, the coherence persists on the same timescale as
energy transfer. Even in light-harvesting complex 2 (LH2) from purple bacteria, the
coherence appears to persist at room temperature on the same timescale as energy
transfer (although inhomogeneity in the ensemble frustrates direct measurements)
(Fidler et al., 2012).

These data stop short of proving biological function, but they unequivocally
establish the presence of long-lived coherence after excitation at physiological
temperatures. Furthermore, the agreement with phenomenological models indi-
cates that our understanding of this coherence is reasonably good. However, our
microscopic understanding of the effect remains incomplete.
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Figure 6.6 Quantum beating signals in photosynthetic complexes persist to room
temperature. The signals agree in phase and frequency with low temperature
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The experiments conducted so far create at least as many questions as they answer.
There are many frontiers for new measurements of quantum coherence and quantum
effects in photosynthesis. Single-molecule experiments pose one of the most inter-
esting and difficult challenges. Non-linear single-molecule measurements prior to
bleaching or photodamage would answer many questions about inhomogeneity
and provide clear new insights into the microscopic basis for long-lived coherence.
Another equally important measurement involves inter-complex energy transfer.
Studies on isolated proteins illuminate energy transfer within complexes, but how
transfer among complexes may behave is still entirely speculative.
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Finally, we need more control over the chemical systems. Either in the form
of genetic manipulation of biological systems or creation of synthetic systems
that exhibit similar behaviour, we desperately need new model systems that are
amenable to theory, spectroscopy and chemical manipulation. The ultimate goal is
to create and control quantum coherence in chemical systems to manipulate energy
transfer, information processing and/or chemical reactivity.
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Environment-assisted quantum transport

MASOUD MOHSENI, ALAN ASPURU-GUZIK, PATRICK REBENTROST,
ALIREZA SHABANI, SETH LLOYD, SUSANA F. HUELGA
AND MARTIN B. PLENIO

Transport phenomena at the nanoscale exhibit both quantum (coherent) and clas-
sical (noisy) behaviour. Coherent and incoherent transfer are normally viewed as
limiting cases of a certain underlying dynamics. However, there exist parameter
regimes where an intricate interplay between environmental noise and quantum
coherence emerges, and whose net effect is an increase in the efficiency of the
transport process. In this chapter we illustrate this phenomenon in the context of
excitation transport across quantum networks. These are model systems for the
description of energy transfer within molecular complexes and, in particular, pho-
tosynthetic pigment—protein molecules, a type of biologically relevant structures
whose dynamics has been recently shown to exhibit quantum coherent features.
We show that nearly perfect transport efficiency is achieved in a regime that uti-
lizes both coherent and noisy features, and argue that Nature may have chosen this
intermediate regime to operate optimally.

7.1 Introduction

The dynamical behaviour of a quantum system can be substantially affected by
interaction with a fluctuating environment and one might initially be led to expect
a negative effect on quantum transport involving coherent hopping of a (quasi-)
particle between localized sites. In this section, however, we demonstrate that quan-
tum transport efficiency can be enhanced by a dynamical interplay of the quantum
dynamics imposed by the system Hamiltonian with the pure dephasing induced
by a fluctuating environment. Within the context of this book, one of the most
relevant transport processes concerns energy transfer across molecular systems
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(May and Kiihn, 2011), whose quantum nature has been recently observed exper-
imentally, for example in chromophoric light-harvesting complexes (Engel ez al.,
2007; Lee et al., 2007). Many aspects of the role of the environment in such chro-
mophoric systems (Grover, 1971; Yang and Fleming, 2002; Gilmore and McKenzie,
2008) and model geometries (Gaab and Bardeen, 2004a) have been widely studied.
As we will explain here, in a large variety of quantum networks and under appropri-
ate conditions, interaction with an environment can result in an increased transport
efficiency.

Indeed, in model systems of chromophoric complexes, it was suggested that
quantum transport, assisted by environmental noise, relaxation and dephasing,
explains the observed high energy transfer efficiency (Mohseni et al., 2008; Plenio
and Huelga, 2008). This approach was also used to quantify the percentage contri-
butions of quantum coherence and environment-induced relaxation to the overall
efficiency (Rebentrost et al., 2009a) and the basic building blocks governing the
dynamics of noisy quantum network dynamics were discussed in some detail in
(Caruso et al., 2009; Chin et al., 2010b) and applied to the description of exci-
ton energy transfer across the Fenna—Matthews—Olson (FMO) pigment—protein
complex, a prototype for larger photosynthetic energy transfer systems. While a
fully quantitative treatment of the system environment interaction is challenging
and requires the development of sophisticated and numerically intensive methods
(see Chapter 2 for further details), some first insights into the phenomenon, that
is variously termed environment-assisted quantum transport (ENAQT) or noise-
assisted transport (NAT), may be gained from simplified noise models based on
the Haken—Strobl model, which is used to describe a classical Markovian bath in
the high temperature limit (Haken and Strobl, 1973; Leegwater, 1996; Gaab and
Bardeen, 2004a).

In the following, we present a simple set of equations of motion that cap-
ture the essential dynamical features required to exhibit ENAQT or NAT, and
identify the fundamental processes involved in assisting excitation transfer by
dephasing noise. Then we proceed to consider this phenomenon analytically for a
two-site system and numerically for the FMO complex. In the final two sections,
we employ an efficient technique to estimate energy transfer efficiency of complex
excitonic systems, within more realistic interactions with vibrational and radia-
tive environments beyond Markovian and perturbative assumptions. We show that
the FMO energy transfer efficiency is optimum and robust with respect to impor-
tant environmental parameters including reorganization energy A, bath frequency
cut-off y and temperature 7. We identify the ratio of kTA/fiy g as a single key
parameter governing quantum transport efficiency, where g is the average excitonic

energy gap.
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7.2 Master equations for quantum transport

The time evolution of a system of N chromophores in the presence of a single
excitation can be modelled by a quantum network of N sites subject to a tight-
binding Hamiltonian of the form (May and Kiihn, 2011),

N N
Hs =" enlm)(m| + Y Vuu(Im){n] + |n)(m)). (7.1)
m=1

n<m

The states |m) denote the excitation being at site m while the other sites are in
the ground state. The site energies and interactions are given by &, and V,,,,
respectively. The site energies are due to different local environments of otherwise
identical molecules. For chromophores, the coupling is mediated by the Coulomb
interaction (Forster coupling) or electron exchange (Dexter coupling). Under low
light conditions such as those found in the natural habitat of green sulphur bacteria
or in recent experiments, it is appropriate to study the dynamics in the single exciton
manifold, spanned by the states |m).

A multi-chromophoric system interacts with the surrounding environment, such
as a solvent or protein, which is usually a macroscopic system with many degrees of
freedom. This coupling leads to irreversible dynamics characterized by dephasing
and relaxation. Here, we employ the Haken—Strobl pure-dephasing model, which
assumes classical Gauss—Markovian fluctuations (Haken and Strobl, 1973) (for
more sophisticated, but also numerically more intensive methods, see Chapter 2
for further details). We consider only diagonal fluctuations which are typically
larger than fluctuations of the inter-molecular couplings (Adolphs and Renger,
2006; Cho et al., 2005). Additionally, we assume that fluctuations at different
sites are uncorrelated, an assumption that is supported by recent numerical studies
(Olbrich et al., 2011) and that all chromophores experience the same coupling to
their respective environments. With these assumptions, one obtains the Haken—
Strobl equation for the density operator in the Schrodinger picture as (Haken and
Strobl, 1973),

p(t) = —;l—[Hs, p(t)] + Lyp(1), (72)

where the pure dephasing Lindblad operator is given by,

1 1
Lyp(t) =y ) [Ampa)AI,, = SAnALp(1) - 5p<r>AmAl,] . (13

with the generators A,, = |m)(m|, and a pure dephasing rate is given by y. The
equation of motion presented here leads to exponential decay of all coherences
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in the density operator and, in the absence of a sink site, which models the final
irreversible transfer, to an equalization of all populations in the long-time limit
and hence corresponds to the high-temperature limit. There are several possible
ways to measure or quantify the success rate of an energy transfer process. Given
that the primary aim of the excitation energy transfer is to deliver energy to a
particular site with the highest possible efficiency, it appears to be natural to use
the energy transfer efficiency. To account for exciton recombination and exciton
trapping, we augment the Hamiltonian (7.1) with anti-Hermitian parts (Mohseni
et al., 2008; Plenio and Huelga, 2008; Mukamel, 1995), Hs — ifi Hyecomb — ili Hirap,
with Hrecomb = T')_,,, Im)(m| and Hyap = Y, km|m)(m|. The exciton recombines
with a rate I' at every site (in general, this exciton’s lifetime is of the order of
~1 ns) and is trapped with a rate «,, at certain sites. The probability that the exciton
is successfully captured at a site m within the time interval [z, t + d¢] is given by
2k, (m|p(t)|m)dt. Thus, the efficiency n(¢) for transfer within the time interval
[0, ] can be defined as the integrated probability of trapping at multiple sites and
is given by

10=2% k0 [ s miptom 7.4)

7.3 Quantum transport in a two-chromophore system

A particularly simple and illustrative example is given by quantum transport in a
system of two sites without trapping and recombination: a particle hops from sites
1 to 2 with a significant energy mismatch between 1 and 2 (see Plenio and Huelga
(2008) for a treatment of the three-site case). With |1) and |2), the states where
the exciton is localized at site 1 and 2, respectively, the Hamiltonian for such a
system can be written H = %8(|1)(1| —12)2]) + %V(|1)(2| + |2)(1|), where ¢ is
the energy mismatch between 1 and 2, and V is the strength of the hopping term.
The coherent evolution of the system, starting from site 1, is simply a rotation about
an axis displaced by angle # = sin~!(V /i2) from the z-axis in the x—z plane. The
maximum probability of finding the system at site 2 is sin?26, and the average
probability of finding it there is sin? #. If the energy mismatch is sufficiently large,
substantial hopping does not occur and the system remains localized at site 1.

In the presence of decoherence, the system obeys the Bloch equation. Pure
dephasing corresponds to a Lindblad operator, ,/y(|1)(1| — |2)(2[), where y =
1/Tg. Ty is the pure dephasing time. The conventional Bloch analysis now holds.
The system, instead of remaining localized at site 1, gradually diffuses, ultimately
becoming a uniform mixture of |1) and |2). In the equilibrium state the system
has a 50% chance of being found at site 2. The diffusion process can be thought
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of as a random walk on the Bloch sphere, with step length € and time per step,
y . Accordingly, the system must perform = (77 /6)* steps and the diffusion time
is Tairr ~ (w/0)*y ! to reach a steady state. For a system with more than two
sites, the transport will be more complicated. Nevertheless, we still expect the
transport rate to increase in direct proportion with the inverse of the individual site
decoherence time. This is indeed true if the decoherence time does not substantially
exceed the timescales defined by the transport terms in the Hamiltonian, and the
energy mismatch from site to site. This fact supports the second prediction of
environment-assisted quantum transport.

In the case of rapid dephasing, y > €2, the angle ¢ that the system precesses
before being decohered is & €2/y. The probability of remaining in site 1 becomes
cos? ¢ ~ 1 — (22/y)?, and the system enters the Quantum Zeno regime (Misra and
Sudarshan, 1977). The system essentially performs a biased random walk with step
size ¢ and an average time per step of (y/ Q)?y ! = y/Q?. In time ¢, the system
diffuses by an angle Q/7/y - Q/y = Q*t'/2y =32, In the case where the system
has more than two states, we still expect this analysis to hold, taking y to be the
dephasing rate and €2 to be an average eigenfrequency. This supports our third
prediction: as the dephasing rate grows larger than the Hamiltonian energy scale,
the transport rate is suppressed by a polynomial in the dephasing rate. The system
will obviously converge to the same statistical mixture as mentioned above, albeit
on a very long timescale.

We now proceed to a quantitative discussion of the ENAQT effect for a two-
level system in terms of efficiency. In this case, the efficiency can be obtained
exactly as a function of the parameters y, x, ¢ and V. Firstly, we use the iden-
tity n = — % D omkm (m| L~ p(0)|m), which is obtained for Lindblad master equa-
tions as Equation (7.2). It involves the inverse of the superoperator £, defined
by Lp(1) = —i/h[H, p(t)] + Lyp(t) — {Hiap, p(1)} — {Hirap, p(1)}, which can be
readily computed. Here, we assume that the initial state is p(0) = |m)(m|, k; = 0,
and « = k» # 0. Then the efficiency for a two-chromophore system is

V2k(y + 2T + k)
V22 4+ &)(y + 2T + k) + DT + k)(e2 + A%y + 2T + )2

(7.5)

nTLS =

Consistently, one finds perfect entrapment, nps = 1, for I' = 0 (note however, that
is no longer the case in more complex geometries, when destructive interference
can also become important (Caruso et al., 2009)). From this analytical formula we
can derive the optimal dephasing rate, y,p, > 0 for observing ENAQT. This exists
when |e|/h > k + 2T" (Plenio and Huelga, 2008) and turns out to be

Yopt = l&|/h — 1k — 2T, (7.6)
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Thus, the optimal dephasing rate together with the level broadening induced by
trapping and recombination exactly matches the energy level difference. The cor-
responding optimal efficiency is ntrs opt = V2 / (V22T + k) + 28T |e|(T" + k),
which gives the maximal efficiency that can be obtained by tuning the dephasing
rate given the other parameters. At large dephasing rates the efficiency is suppressed
as the inverse of the dephasing rate, nrs.co & V2k/R*I'(I' + &) - 1/y. These gen-
eral predictions of ENAQT are also observed in numerical simulations of the FMO
complex, as we show in a coming section.

7.4 The principles of noise-assisted quantum transport

Prior to discussing the numerical simulation of a model system exemplifying an
actual chromophoric system, we will elucidate the basic building blocks underpin-
ning the noise-assisted dynamics discussed above. In subsequent subsections we
will demonstrate using explicit examples the existence of noise-assisted transport
and will argue that both noise and coherence are important for the evolution of
quantum networks in the presence of an environment. But, how does the interplay
between these processes occur? Here we would like to precede these examples with
a brief summary of the basic dynamical principles for noise-assisted transport, as
have been developed and explained, for example, in Plenio and Huelga (2008),
Caruso et al. (2009) and Chin (2010b, 2012).

Bridging energy gaps and blocking paths

Multi-chromophoric systems consist of a number of sites whose energies will
generally differ from site to site. In the previous subsection we have seen that
if this energy difference is larger than the intersite hopping matrix element in
the relevant Hamiltonian, then transitions will be strongly suppressed. Dephasing
noise can help to overcome these energy gaps, as it will lead to line broadening
thus leading to increased overlap between sites without the loss of excitations from
the system, see Figure 7.1. Alternatively, one may view dephasing noise as arising
from the random fluctuations of energy levels. Then, the fluctuating energy levels
will occasionally come energetically close with a level separation smaller than the
coupling strength, thus allowing enhanced excitation energy transfer between the
sites. A moderate amount of fluctuations serves to enhance the transport while
excessive amplitude noise on the site energies will make the probability smaller of
sites to be energetically close. Hence we expect an optimal finite noise strength that
maximizes transport between two sites. This view is corroborated by the analysis
in Section 7.3. However, the application of excessive noise and the concommitant
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Figure 7.1 Local dephasing leads to random fluctuations of site energies and
line-broadening of energy levels. As a result, overlap between sites is increased
and excitation transport is facilitated by this type of noise. Alternatively, viewing
these fluctuations dynamically, one obtains that the energy gap A between levels
varies in time. A non-linear dependence of the transfer rate on the energy gap
may therefore lead to enhancement of the average transfer rate in the presence of
dephasing noise.

reduction of effective transition rate between sites can also be an advantage as it
may effectively block unfavourable transfer paths from being followed.

Constructive and destructive interference

As we have seen in the previous subsection, the bridging of energy gaps may
already occur in linear chains as short as two sites. A general quantum network,
however, will possess many different paths between two sites of the network and
hence it may exhibit a wealth of constructive and destructive interference effects.
The essential nature of this type of effect may be seen in a simple network where
the coherent interaction is described by a Hamiltonian with an exchange coupling
term, H = Zizlhwiﬁ)(il + Zizl Ji(lk) (k| + h.c), where |i) corresponds to an
excitation in site / and where we assume j; = j,. Furthermore, we assume that site 3
is dissipatively coupled to the reaction centre, see Figure 7.2. An excitation initially
prepared in the antisymmetric state, [{) = (|1) — |2))/ /2, now forms an ei genstate
of this Hamiltonian which has zero overlap with site 3. Under natural conditions a
multi-chromophoric system is not excited in such an antisymmetric state. Rather,
as the FMO complex it will tend to receive a single excitation locally, for example
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Figure 7.2 Inhibition of destructive interference. A three-site network provides
the simplest scenario to illustrate NAT. Sites |1) and |2) are each coupled to a
third site |3) via a coherent exchange interaction of the same strength, while
site |3) is irreversibly connected to a sink (trapping site). In (a) the excitation is
delocalized over sites |1) and |2) in a singlet-like state |4 ™), so that there is an
equal probability of finding the excitation at either site, but with a wavefunction
that is antisymmetric with respect to the interchange of 1 and 2. Due to destructive
interference of the tunnelling amplitudes, state |/ ~) is not evolving and hence
no excitation will ever reach the sink. In (b) pure dephasing causes the loss of
phase coherence between sites |1) and |2) and the two tunnelling amplitudes to
site |3) no longer cancel. The excitation is now eventually transferred to site |3)
and transport is completed after a subsequent irreversible transfer to the trapping
site.

on site 1. But, noting that |1) = [(|1) — [2))/v/2 + (|1) + [2))/+/2]/+/2, we realize
that through constructive interference the symmetric part of the initial state will
propagate very rapidly into site 3, and from there into the reaction centre, while
the antisymmetric part will not evolve at all. This trapping of population will be
suppressed either via energetic disorder, which will release trapped population by
inducing coherent oscillations between symmetric and anti-symmetric states, or by
environmental dephasing noise which degrades interference effects and therefore
destroys coherent trapping.

Splitting energy levels — the phonon antenna

The quantum coherent dynamics between energy levels can also be used to optimize
the efficiency of energy transport in different ways. To this end, it should be noted
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2 = S(o)

Figure 7.3 Phonon antenna. A typical situation encountered in energy transfer
involves two closely spaced energy levels |1) and |2) that are separated from a third
level |3) to which excitations should be delivered. A coherent interaction between
the upper two energy levels leads to dressed levels |+) and an energy splitting
which, if matched to the maximum of the environment spectral density S(w), will
optimize transport from the upper to the lower level. Hence the coherently split
levels act as an antenna for environmental fluctuations.

that the energy levels of two sites that are coupled coherently will split, leading
to new eigenstates of the global system, one of which is shifted upwards and
one that is shifted downwards. In the dressed state basis, dephasing noise will
induce transitions between these eigenstates (phase noise in the site basis becomes
amplitude noise in the dressed basis) leading to energy transport towards the lower
lying of the two energy levels, see Figure 7.3. The transition rate between these
two states will depend on temperature, the matrix element between these two
eigenstates and, crucially, the spectral density at the energy difference between the
two eigenstates. Matching the energy level splitting to the maximum of the spectral
density of the environmental fluctuations can thus Optimize energy transport. In
this sense, we can argue that the two eigenstates of the coupled Hamiltonian harvest
environmental noise to enhance excitation energy transport through the formation
of a ‘phonon antenna’ (Chin ef al., 2012; del Rey et al., 2013).

7.5 Quantum transport in the Fenna—Matthews—Olson protein complex

The trimeric Fenna—Matthews—Olson pigment—protein complex is found in green
sulphur bacteria Chlorobium tepidum (Engel et al., 2007; Cho et al., 2005; Miih
et al., 2007) which live in stratified lakes and close to hydrothermal oceanic vents
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(Blankenship, 2002). Recently, each of the three subunits was found to have eight
chlorophyll molecules spatially arranged within several nm (Schmidt am Busch
et al., 2011). The three subunits can be treated independently from each other.
The FMO complex transfers excitation energy from the chlorosomes, the main
light-harvesting antennae, to a reaction centre where a charge separation event and
subsequent biochemical reactions occur.

Because of the disorder in the site energies of the FMO complex we expect, as
before in the two-level system discussed above, the presence of ENAQT or NAT.
The dynamics of a single excitation is governed by a Hamiltonian of the form
Equation (7.1) for the eight sites with a distribution of site energies and inter-
site couplings, as given in (Schmidt am Busch ef al., 2011). The chromophoric
Forster couplings are up to 100 cm~!. The chlorophyll transition frequencies are
shifted by the electrostatic protein environment, resulting in site-dependent elec-
trochromic shifts of several 100 cm™! (Adolphs and Renger, 2006; Miih et al.,
2007; Schmidt am Busch et al., 2011). Fluctuations of the protein in the solvent
lead to fluctuations of the transition frequency of the chlorophyll molecules and
therefore to loss of excitonic phase coherence. We use the master Equation (7.2)
with a site-independent dephasing rate y according to the Haken—Strobl model.
This model is expected to deliver insight into the high-temperature dynamics of an
excitation in the FMO complex and, under the given assumptions, does not place
any restrictions on the dephasing rate y .

The initial state for our simulation of the system is localized at the eighth
chromophore, which is believed to be physically close to the chlorosome antenna
complex (Schmidt am Busch et al., 2011). In the FMO complex, chromophore 3 is
in the vicinity of the reaction centre (Li ez al., 1997; Adolphs and Renger, 2006; Miih
et al., 2007). Thus, one can assume that chlorophyll 3 is the main excitation donor
to the reaction centre (Mohseni et al., 2008; Plenio and Huelga, 2008). The precise
transfer rate to the reaction centre is not fully characterized. Yet, based on typical
transfer rates in chromophoric complexes with similar inter-molecular distances,
we estimate it to be k3 = 1 ps~! (Mohseni et al., 2008). Thus, the efficiency of
energy transfer according to Equation (7.4) becomes n = 2«3 fooo dt(3|p(1)|3).

In Figure 7.4 the efficiency of transfer and the transfer time is given as a function
of the dephasing rate y. At low dephasing, purely quantum-mechanical evolution
leads to an efficiency of below 20%. With increasing dephasing the efficiency
increases considerably, up to almost 100%, where it remains approximately con-
stant for a range of y of one order of magnitude. For stronger dephasing the
efficiency is slowly suppressed again, delocalization is destroyed, and the overlap
with the target site vanishes. The transfer time is around 300 ps in the fully quantum
limit and improves significantly to 7 ps in the intermediate ENAQT regime. For
large dephasing, the transfer slows down again entering a Quantum Zeno regime
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Figure 7.4 Environment-assisted quantum transport. Efficiency (blue) and transfer
time (purple) as a function of the pure-dephasing rate is demonstrated for the eight
chromophore Fenna—Matthew—Olsen sub-complex. A clear picture of the three
dephasing regimes is obtained: from left to right, the fully quantum regime which
is dominated by localization induced by the intrinsic static disorder of the pigment
energies; the ENAQT regime, where unitary evolution and dephasing collaborate
with the result of increased efficiency; finally, the quantum Zeno regime, where
strong dephasing suppresses quantum transport. The estimated dephasing rate at
room temperature for the FMO spectral density is drawn as a dashed line.

(Misra and Sudarshan, 1977) more than 500 ps, the same order of magnitude as
the excitation lifetime; the exciton is more likely to recombine than to be trapped.

One can estimate the dephasing rate as a function of temperature by employ-
ing a standard system-reservoir model (Breuer and Petruccione, 2002). In this
context, the spectral density is given by J(w) =, a)l.z)»izé(a) — w;), where w; are
frequencies of the harmonic-oscillator bath modes and A; are dimensionless cou-
plings to the respective modes. In the continuum limit, we assume an Ohmic
spectral density with cut-off, J(w) = h%"a) exp(—w/w,). For the FMO complex,
the reorganization energy is found to be Eg = 35 cm™! (Cho er al., 2005) and the
cut-off w. = 150 cm™!, inferred from Fig. 2 in (Adolphs and Renger, 2006). In
the Markovian regime, the dephasing rate y is given as the zero-frequency limit
of the Fourier transform of the bath correlator (Breuer and Petruccione, 2002).
As a result, y is found to be proportional to the temperature and the derivative of
the spectral density at vanishing frequency, y(T) = 2n kh—T % |w=0. For the above
spectral density, the rate turns out to be y(7T) = 2x kh—T h%“ This gives a rough esti-
mate for the dephasing rate at room temperature of around 300 cm™!, which is
indicated in Figure 7.4. An experimental measurement of the dephasing rate deliv-
ered a value of 250 & 100 cm~! at T = 277 K (Panitchayangkoon et al., 2010).
Hence, the natural operating point of the FMO complex is estimated to be well
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within the regime of ENAQT, where the dephasing introduced by a fluctuating
environment enhances the energy transfer efficiency.

7.6 Optimality and robustness of quantum transport

Natural light-harvesting complexes live in a variety of totally different ambient
conditions, from deep regions of the Pacific Ocean to the hot springs of Tibet.
Some of these photosynthetic complexes can manage to transfer excitonic energy
with almost 100% efficiency in the presence of environmental disturbances. Hence
in addition to the optimality, the stability of quantum transport process in such
complexes is surprising. In previous sections we have introduced the notion and
underlying mechanisms of ENAQT or NAT using simple dynamical equations
of a pure-dephasing model. The validity of these types of equations is limited
to the regime of Markovian and high temperature with a classical white noise
bath. In order to explore the optimality and robustness of natural or artificial light-
harvesting complexes, we need to compute the energy transfer efficiency landscape
as a function of the independent degrees of freedom of the pigment—protein complex
over a wide range of values. Such analysis necessitates employing a numerically
tractable, while reliable, master equation to calculate transport efficiency beyond
Markovian and perturbative regimes.

7.6.1 Efficient simulation of quantum transport beyond
Markovian and perturbative limits

In Chapter 2, we discussed that the TC2 master equation can be applied
beyond the weak system—bath coupling regime. Here we employ TC2 for sim-
ulating quantum transport phenomena. For a system-bath Hamiltonian Hgp =
Hs + H,,; + Hp, interaction term H;,, = ) ; §jB; and bath correlation function
Ci(t —t) = (B j(t)B (")), TC2 has the following convolutional form:

3
—p(t) = Lsp(t
5 P = Lsp(t)
1 ! : ’ H ’
-> [Sj, = / Ci(t — t)e U= g, p(t")e st =gy — hc]
: 0
J

(7.7)

where Lsp(t) = —i/h[Hg, p(¢)]. In the context of exciton transport, we need
to add an extra non-unitary superoperator to incorporate exciton recombination
and trapping processes, Ls + Ly ccomb + Lirap With Lyecomp = —T Y, |m)(m| and
Lirap = — Y, km|m){m|. We can estimate the energy transfer efficiency (7.4) with
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TC2 modelling without explicitly solving for the time evolution of p(z),

n=2Y nim|p(0)m), (7.8)

where p(s) is the Laplace transform of p(¢). The master equation (7.7) describes an
approximation to the exact dynamics of an open quantum system in the presence of
a Gaussian bath (see Chapter 2). This leads to an inevitable error in quantifying the
efficiency 7. In Shabani ez al. (2012), using a combination of phenomenological and
analytical approaches, we estimate this error for weak and intermediate system—
bath couplings and bath memory timescales of the FMO complex, indicating the
reliability of TC2 for estimating quantum transport efficiency in such regimes.

7.6.2 Optimality and robustness with respect to reorganization
energy and cut-off frequency

The time-non-local master equation (7.7) was employed in Mohseni ez al. (2011) to
efficiently estimate the energy transfer efficiency landscape as a function of various
independent system and environmental degrees of freedom over a wide range of
values. This efficient simulation allows us to examine comprehensively all relevant
regimes of the multiparameter space for finding possible high efficienly and robust
neighbourhoods. Such studies could shed light on the maximum capabilities that
can be achieved for optimal material design to engineer and characterize fault-
tolerant artificial light-harvesting systems; this will be addressed in Chapter 15.
We first explore the variation of the FMO energy transfer efficiency versus
reorganization energy and bath cut-off frequency using a Drude—Lorentzian spectral

density,
S i
Ci(t) = /0 dwﬁy;'; (coth (57(”) cos(wr) — sin(a)t)) (7.9)

The reorganization energy, A, is proportional to the squared value of the system—
bath couplings. The bath cut-off frequency is the inverse of the bath coherence
timescale that captures the non-Markovian nature of the environment. That is, the
non-Markovianity measure, defined as the information flow from the system to the
phonon bath, by Breuer et al. (Breuer et al., 2009), increases exponentially with
decreasing bath cut-off frequency.

The optimality and robustness of ETE for the FMO protein complex at the
experimentally estimated values of A = 35cm~! and y = 50-166 cm™! are evident
in Figure 7.5. An independent study on the optimality of ETE versus reorganization
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Figure 7.5 Top view of ETE landscape, indicating that the ratio of the reorga-
nization energy over bath frequency cut-off can be considered as the parameter
that governs the energy transfer efficiency at a fixed temperature. As we inspect
this plot in an angular coordinate from the vertical axis, y, toward the horizontal
axis, A, we can distinguish different regions of the ETE landscape that are sepa-
rated by straight lines A/y. At a very small decoherence rate, the FMO complex
experiences weak localization due to static disorder. As we increase this ratio, an
optimal region of ETE emerges that is induced by an appropriate level of inter-
play between environmental fluctuations and coherent evolution. At higher levels
of this parameter, ETE drops significantly due to strong localization induced by
dynamical disorder.

energy has also been reported in Wu et al. (2010). It can be observed that the non-
Markovianity of the bath can slightly increase ETE in the regimes of weak system—
bath coupling. However, such slow bath behaviour can significantly decrease ETE
when the system interacts strongly with it. The main question is how can one
understand this phenomenon for all non-Markovian and Markovian regimes in the
context of ENAQT described in previous chapters? The landscape in Figure 7.5
shows a remarkable interplay of reorganization energies A and bath frequency cut-
off y. The ETE takes values below unity if the FMO operates at the limit of very
small A and large y. On the other limit, the FMO efficiency drops significantly
when operating at large A and very small y. These two regimes can be understood
as manifestations of weak- and strong quantum localization, respectively (Mohseni
etal.,2011).

Careful examination of Figure 7.5 reveals three distinct regions of energy transfer
efficiencies at room temperature that are governed by a single parameter propor-
tional to A /y . For small and for large values of this parameter, the efficiency is low.
The efficiency reaches its maximum for intermediate values of this parameter. In
both strong and weak quantum localization limits the excitation will be spatially
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trapped in the regions typically far from the reaction centre and eventually dissipat-
ing to bath due to adversarial electron—hole recombination processes, which occur
on a three orders of magnitude slower timescale. In the intermediate regime, the
right amount of interplay of quantum coherence and environmental fluctuations
can facilitate an optimal energy transport in a robust fashion by various physical
mechanisms, including minimizing site energy mismatches, washing out potential
destructive quantum interference effects and enhancing the energy funnelling by
providing an appropriate vibrational energy sink.

We can understand these observations in terms of ENAQT by noting that the
effective decoherence rate is given by A/y in the perturbative limit at a fixed tem-
perature (Breuer and Petruccione, 2002). This ratio becomes smaller as we raise
y, therefore a stronger coupling X is needed to guarantee the level of decoherence
strength required for ENAQT. The overlap of a delocalized exciton wavefunction
with the trap enables an almost complete, 98% quantum transport in the opti-
mal range of A/y at the ambient temperature. As we increase the reorganization
energy and bath coherence timescale, the ETE starts to drop. In this regime, the
excitonic wavefunction again experiences localization as the environmental fluctu-
ations change their role to exert a strong adversarial effect on the quantum transport,
essentially as a source of strong dynamical disorder. The ETE landscape in Fig-
ure 7.5, clearly has level sets that exhibit a linear relationship with A and y . Indeed
the ratio A/y, known as the Kubo number, is the parameter that governs Anderson
localization transition in stochastic classical modelling of environmental interac-
tions. (Krameri and MacKinnont, 1993; Castiglione, 2000; Goychuk and Hénggi,
2005). In the fixed high-temperature limit of ETE, illustrated in Figure 7.5, one can
observe that A /y is a determining parameter for transport efficiency in the regions
beyond the optimal ENAQT area. In the next section, we go beyond the Kubo num-
ber, by directly investigating the temperature-dependent energy transfer dynamics,
leading to a general governing parameter as AT /y. For a more quantitative study
of the degree of optimality and robustness of the energy transfer as functions of
system—bath coupling strength and bath memory see Mohseni er al. (2011).

7.6.3 Optimality and robustness with respect to reorganization
energy and temperature

As shown in the previous section, the parameter A /y governs the shape of the ETE
landscape at a fixed high-temperature limit. However, in the perturbative limit,
the decoherence rate can be expressed by AT /y which captures the suboptimal
ETE in the weak localization region. Now, we investigate if the ETE behaviour
in all regimes can be globally captured by the parameter AT /y, for the given
FMO Hamiltonian. Specifically, we need to verify whether one can predict the
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Figure 7.6 The ETE landscape as a function of inverse temperature and reorga-
nization energy. In the high temperature regime (8~! > y), the three regions of
weak localization, ENAQT and strong localization can be distinguished by the
parameter kT A, given the free Hamiltonian of FMO and y = 50 cm™!. These
results, combined with Figure 7.5 suggest that the parameter AT /y governs the
shape of the overall FMO energy transfer landscape.

optimal noise-assisted transport region as well as ETE suppression levels at the
strong localization regions by a single parameter, AT /y. To examine the validity
of this theory, we study ETE as a function of the reorganization energy and the
inverse temperature for a fixed y = 50 cm™!, see Figure 7.6. Similarly to the plot
of efficiency as a function of A, y, Figure 7.5, here the efficiency landscape is
also divided by lines of approximately A7 (with some deviations from linearity
in the high A and low temperature regime). It can be observed from the figure
that for small AT weak localization is dominant. At the intermediate AT values
environment-assisted energy transport occurs. As we move towards larger system—
bath interactions and higher temperatures, strong dynamical disorder diminishes
the coherence and the exciton migration can be fully described by an incoherent
hopping process, since the wavefunction is essentially localized over spatial sites.
At this regime, the effect of high temperature can be understood from the dynamics
of BChls energy fluctuations which is described by the symmetrized correlation
function S(¢) = %({E(t), B(O)})ph (Bj = B, for any BChl j). The function can
be extracted experimentally by three-pulse photon-echo peakshift measurement.
For a Drude-Lorentzian spectral density and fixed y, the temperature 7" and the
reorganization energy A determine the amplitude of the site energy fluctuations.
Our simulation demonstrates that a highly efficient energy transfer can be achieved
at moderate site energy fluctuations away from both weak and strong localization
limits.
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Combining different regimes of three important environmental parameters, A,
y, and T, the effective decoherence strength k7'A/y emerges as the parameter
that governs the energy transfer efficiency landscape. For the FMO free Hamil-
tonian energy gaps, by increasing the single parameter k7X/y from small to
intermediate, and from intermediate to large values, one can describe the transi-
tion from weak localization to ENAQT, and from ENAQT to strong localization.
More generally, when the effective decoherence rate k7 A /y is either much smaller
or much larger than the typical energy splitting g between delocalized energy
eigenstates, then transport is suppressed. Thus, in order to predict the general pat-
terns of quantum transport in generic light-harvesting systems, we should compare
the relative strength of kT A/y to the average excitonic energy gap of the free
Hamiltonian.

7.6.4 Conclusion

Environment-assisted quantum transport is a fundamental effect which occurs in a
wide variety of transport systems. Broadly speaking, ENAQT is similar in flavour
to the phenomenon of stochastic resonance (Gammaitoni et al., 1998): adding noise
to a coherent system enhances a suitable figure of merit characterizing its perfor-
mance. In the case of excitation transport across the type of molecular complexes
we have focused on, that figure of merit is the transport efficiency in a given time
from the chlorosome antenna to a reaction centre. While a purely coherent evolution
would lead to inefficient transport as a result of the emergence of non-propagating
quantum states, the presence of a fluctuating environment can assist the transport by
means of a combination of effects whose building blocks can be traced back to very
fundamental processes: the removal of destructive interference and/or the elimina-
tion of inefficient coherent transport paths and the exploitation of line broadening
effects. Qualitative agreement with observed transport times and efficiencies can
already be achieved with simple dynamical models using master equations of the
Lindblad form. The maximum efficiency of ENAQT occurs when the decoherence
rate is comparable to the energy scales of the coherent system, as defined by the
energy mismatch between states and the hopping terms. By changing the energy
mismatch and the hopping terms, the temperature at which the maximum transport
efficiency occurs can be tuned. In the Fenna—Matthews—Olson protein complex
within the pure dephasing model and with the spectral density as discussed above,
this maximum occurs at approximately room temperature. However, accounting
for efficient transport is only one part of the puzzle, and the accurate description
of additional dynamical properties recently unveiled by 2D spectroscopy requires
a more sophisticated approach to describe the system—environment interactions.
Recent work has already paved the way towards a more complete understanding,
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and both non-Markovian (Rebentrost ef al., 2009b; Thorwart er al., 2009; Reben-
trost and Aspuru-Guzik, 2011; Shabani er al., 2012) and numerically exact tech-
niques (Prior et al., 2010) are being developed, as well as detailed quantum chem-
istry calculations (Shim et al., 2012). Our simulation based on a TC2 master
equation is an attempt in this direction. These analyses are expected to finally
elucidate whether or not it is necessary for the environment to display quantum
features and what system—environment interactions allow for long-lived delocal-
ized excitations while simultaneously quickly destroy local (site) coherences. The
proposed idea of delocalization as a facilitator for environmental sensing favours
the idea of an environment supporting discrete features. Further experimental evi-
dence would refute or corroborate this hypothesis but, importantly, the general
concept of noise-assisted transport is clearly resilient to the specific details of the
environmental mode structure, and is an essential ingredient to account for the
observed high transfer efficiency in actual photosynthetic complexes.
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Excitation energy transfer in higher plants

ELISABET ROMERO, VLADIMIR I. NOVODEREZHKIN
AND RIENK VAN GRONDELLE

In photosynthesis, the energy of the Sun is absorbed by light-harvesting antenna
and transferred to the reaction centre (RC) within several tens of picoseconds. In
the RC the solar energy is converted into electrochemical energy by means of a
trans-membrane charge separation. Photosynthetic purple bacteria employ a single
reaction centre. In contrast, in photosynthesis of plants, algae and cyanobacteria two
reaction centres, Photosystem II (PSII) and Photosystem I (PSI), operate in series.
In this chapter we discuss photosynthetic charge separation and photosynthetic
light-harvesting with an emphasis on the role of quantum effects.

8.1 Photosynthesis

In photosynthesis solar energy is absorbed by the light-harvesting antenna and trans-
ferred to the photosynthetic reaction centre (RC) within several tens of picoseconds.
In the RC, the absorbed excitation energy is converted into electrochemical energy
by means of an ultra fast charge separation. Photosynthetic purple bacteria employ a
single reaction centre, in contrast, in photosynthesis of plants, algae and cyanobac-
teria, two reaction centres, Photosystem II (PSII) and Photosystem I (PSI), operate
in series. PSII uses light to extract electrons from water (to produce oxygen), while
PSI uses light to reduce NADP* to NADPH. The subsequent electron transfer from
PSII to PSI is coupled to the build-up of a proton motive force (pmf) that is used to
form ATP. NADPH and ATP are required in the Calvin—Benson cycle to produce
a reduced sugar. In the following we will discuss photosynthetic charge separa-
tion and photosynthetic light-harvesting with an emphasis on the role of quantum
effects.
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8.2 Photosynthetic energy conversion: charge separation

Following elucidation of the structure of the bacterial RC (Deisenhofer et al.,
1984), a detailed picture of photosynthetic charge separation has emerged. During
past decades the primary electron transfer processes of all of the different types
of RCs, purple bacterial, Photosystem I (Ben-Shem et al., 2003), Photosystem 11
(Ferreira et al., 2004; Loll et al., 2005; Umena et al., 2011) have been extensively
studied. In the following we will discuss charge separation in the bacterial RC and
the Photosystem II RC in some detail.

In the bacterial RC (BRC), for which a structure with atomic resolution has been
available since 1984 (Deisenhofer er al., 1984), the bacteriochlorophyll (BChl)
pigments are arranged in two branches labelled A and B (also called L and M) with
the symmetry axis running through the centrally located ‘special pair’ (P) BChls
(see Figure 8.1). Surprisingly, light-driven electron transfer occurs only along the
A (or ‘active’) branch. In addition to the special pair P the BRC contains in each
branch a ‘monomeric’ or assessory BChl (Ba, Bg), a bacteriopheophytin (BPhe)
(Ha, Hp) and a quinone (Qa, Q). Primary charge separation in BRCs occurs
within &~ 3 ps with the formation of P*Ho~ (Martin ef al., 1986). Currently, there
is general agreement that B acts as an electron transfer intermediate, with electron
transfer from the excited state of P (P*) to B occurring in 3 ps; almost three times
slower than the electron transfer from Ba to H, in about 1 ps (Holzapfel ef al.,
1989, 1990; Arlt et al., 1993).

In spite of the obvious symmetry of the BRC, the electron transfer essentially
occurs only along the active or A-branch. Estimates of the electronic coupling
strengths along both paths do indeed favour the active branch, but not in the
experimentally observed 200:1 ratio. Spectacular variations in the rate of electron
transfer were observed upon variation of the identity of Tyr M210 (Nagarajan et al.,
1990; Beekman et al., 1996), strategically positioned between the cofactors in the
active branch. These could be explained within the framework of the Marcus theory
for electron transfer, and consequently were largely ascribed to changes in the free
energy of the initial radical pair as a result of the mutation.

In the Marcus model for electron transfer, the rate k., is given by (Marcus, 1993)

2
ke = 77[|Vel|2(4rr)»k,,T)’1/2exp{—(AG0 + A)? 4k, T}, (8.1)

where V,; is the electronic coupling matrix element, AG® is the free energy,
A is the reorganization energy, T is the temperature and k, is the Boltzmann
constant. Other types of mutants were also generated, for instance, mutants in
which hydrogen bonds of the protein surrounding the ‘special pair’ P were modified
produced dramatic changes in the redox potential of P, again without affecting the
asymmetry of charge separation (Lin et al., 1994). In a triple mutant with the
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200 ps

Figure 8.1 The photosynthetic reaction centre of the purple bacterium Rhodopseu-
domonas viridis. The reaction centre consists of three proteins that non-covalently
bind four bacteriochlorophylls (P4 and Pg forming the ‘special pair’ in red and
blue, respectively; B, (purple), Bg (cyan)), two bacteriopheophytins (Ha (orange)
and Hp (green)), two quinones (Qa (light purple) and Qg (light blue)), one Fe-
atom (red), and one carotenoid (yellow). The arrows (black) show the sequence
of electron transfer events following excitation of the ‘special pair’ (via direct
light absorption or energy transfer from the antenna) leading to transmembrane
charge separation. This was the first membrane protein for which a structure was
solved and this gave the Nobel prize in Chemistry 1988 to Michel, Deisenhofer
and Huber. X-ray structure adapted from (Deisenhofer et al., 1995).

BPhe Hy replaced by a BChl, in which P*B,~ was upshifted in free energy and
PTBg~ was stabilized, a measurable amount of P*Hg~ was obtained (Kirmaier
et al., 1999). This again suggests that the free energy of the charge separated
states controls the asymmetry of the electron transfer, rather than the differences
in electronic coupling. A third possibility is that the protein matrix plays an active
role in driving the charge separation selectively along the A-branch. A hint that
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this is actually the case was obtained from Stark spectroscopy which revealed a
substantially higher dielectric strength along the A-branch (Steffen ef al., 1994)
clearly favouring charge separation along the active branch.

The initial electron transfer reactions in BRC show an increase in rate with
decreasing temperature. This unusual temperature dependence is seen in the elec-
tron transfer from P* to the nearby bacteriopheophytin (H, ), in the individual steps
that underlie this reaction (electron transfer from P* to B, and from B to Hp)
and in the transfer of an electron from Ha to Q (Fleming et al., 1988). Equa-
tion (8.1) shows that the rate should increase with decreasing temperature if the
potential energy surfaces of the reactant and product intersect near the zero-point
level of the reactant state: AG® = —A. Early experiments by Devault and Chance,
who observed electron transfer from a cytochrome to P™ at cryogenic temperatures
(Devault and Chance, 1966; Devault et al., 1967) laid the basis for the concept of
electron and nuclear tunnelling in biology (Marcus and Sutin, 1985; Moser et al.,
1992). Because Equation (8.1) neglects nuclear tunnelling it can overestimate the
contribution of the exponential factor when T is small compared with the character-
istic frequencies involved or when AG® < —A. A quantum-mechanical treatment
based on the theory for radiationless transitions, that includes nuclear tunnelling,
gave a qualitatively similar picture for the speeding up of charge separation with
decreasing temperature. If it is assumed that charge separation is strongly cou-
pled to some harmonic vibrational mode with energy o, then the rate is given by
(Jortner, 1976),

12 e 27 2 —12
ker = koftanh(ieo/2k,T)"'/2) with ko = == |Vail* @ 24i) "'/ (8.2)

The temperature dependence of the rate of electron transfer from P* to Ha in
Rb. sphaeroides RCs fits well with Equation (8.2), taking /iw = 80 cm™! (Fleming
etal., 1988).

So far all of this is based on the assumption that vibrational relaxation occurs
rapidly relative to electron transfer. Although relaxation phenomena in RCs are
known to occur on timescales even longer than 10 ns, this assumption is probably
valid for slow electron transfers like PTQA~ recombination. But what about the
fast events?

8.2.1 In bacterial reaction centres charge separation is coupled to
coherent nuclear motions

In the BRC the excited state of the special pair P is coupled to low-frequency
vibrations (Vos et al., 1993, 1994; Streltsov et al., 1996), which represent col-
lective nuclear motions of the pigments and their surroundings. The vibrational
wavepacket, created upon excitation of P by a femtosecond laser pulse consists of
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modes in the 100-200 cm~! range decaying on a few 100 fs timescale. The Fourier
transform (FT) spectrum showed that the range <35 cm™! also has significant vibra-
tional strength. Remarkably, in native and pheophytin-modified Rb. sphaeroides
R-26 RCs a wavepacket-like motion could be observed in the absorption band of
the primary photoproduct P*BA~ (Yakovlev e al., 2000, 2002a,b). Thus, the FT
spectra of the components corresponding to the stimulated emission (SE) of the
reactant P* and the excited state absorption (ESA) of the product P*BA~ contain
two modes (30 and 130 cm™"), with the low-frequency 30 cm™! mode significantly
increased in the photoproduct. The 30 cm~! mode was ascribed to rotation of the
H,O molecule located between P and B (Yakovlev ef al., 2002a,b). Observation
of the oscillatory components in the H,-band (760 nm) suggested that the 30 cm ™!
mode results in coherent PYH, ~ state formation.

To describe the observed spectral evolution, the electron-vibrational dynamics
has been modelled using the density matrix equation with the Redfield superop-
erator in the basis of electron-vibrational states. The model includes two diabatic
states, i.e. an excited state P* and a charge-transfer (CT) state P*B, ™. Strong cou-
pling of these states with two collective nuclear modes is proposed (Novoderezhkin
et al.,2004). The mixing of diabatic states (with different displacements along each
of the two nuclear coordinates) results in a complicated potential energy surface
that determines the dynamics of the excited-state wavepacket.

This model resulted in a quantitative fit of the experimental kinetics of the SE
near 900-950 nm and the ESA in the 1020 nm region of the pheophytin-modified
Rb. sphaeroides R-26 RC (Novoderezhkin ez al., 2004). Thus non-equilibrated
vibrational modes involved in electron transfer play an important role in photo-
product formation in the BRC. The configuration of the two vibrational coordinates
involved plays an essential role in establishing the high efficiency of charge separa-
tion, both for coherent and non-coherent excitation. In particular, a strong coupling
to the 130 cm~! mode allows an effective electron transfer from the primary donor
P* to the photoproduct P*B, ™ state, whereas strong coupling of the product state
to the second 30 cm™~! mode (resulting in pronounced displacement of its potential
surface along the y-coordinate, as shown in Figure 8.2), causes a motion of the
P*tBA~ part of the wavepacket along the y-coordinate, i.e. away from the crossing
point, thus stabilizing the charge-separated state.

8.2.2 Alternative ultra fast pathways for charge separation
in bacterial reaction centres

Until the late 1990s, it was generally assumed that photosynthetic charge separa-
tion only occurs from the excited special pair P*, and that excitation of all other
pigments results in energy transfer to P, followed by charge separation from P*
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Figure 8.2 The lowest excited state potential energy surface of the BRC as deter-
mined by the mixing of the states PB4 (left minimum) and P*B~ (right min-
imum). Both states are assumed to be strongly coupled to two nuclear modes
(130 cm~! and 30 cm™") represented by the coordinates x and y. The 3D-contour
shows the amplitude of the nuclear wavepacket 250 fs after impulsive excitation,
when it reaches the crossing point between the two states. Part of it will flow into
P*BA~, part of it will bounce and try to reach the P*B,~ state again. Reprinted
with permission from (Novoderezhkin ez al., 2004). Copyright 2004 American
Chemical Society.

(Jonas et al., 1996). However, experiments on a mutant of the bacterial RC where
the residue YM210 had been replaced by a Trp (YM210W) demonstrated the
presence of another ultra fast pathway of charge separation (van Brederode ef al.,
1997). In this mutant excitation of the primary donor P gives rise to very slow
charge separation (40 ps at RT, 1 ns at 77 K). Most likely, in the YM210W mutant
RC the first intermediate P*B, ™~ is higher in energy than P* (it has indeed been
speculated that the Tyr YM210 stabilizes B~ by its hydroxyl dipole (Alden et al.,
1996). In contrast, excitation of the accessory BChl B, in the YM210W RC led to
a significant amount of P*B ~ formation in less than 1 ps, without the involvement
of P*. Then P*B,~ decayed into P"Ho™ on a few ps timescale. The very same
process was identified later for wild-type BRCs (van Brederode et al., 1999).

8.2.3 Electronic coherence in bacterial reaction centres

Under broadband excitation it was possible to create electronic coherence between
the two exciton states (P*); and (P*)_ (Arnett ez al., 1999). The coherent motion of
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the exciton wavepacket resulted in oscillations of the anisotropy with a frequency
of 593 cm~! (which is close to the exciton splitting) and damping constant of
35 fs. This indicates that electronic coherence may play a role in the early stages
of charge separation in BRCs.

8.2.4 Charge separation in the photosystem II reaction centre

The reaction centre of Photosystem II (PSII RC) performs the initial charge sep-
aration reaction in oxygenic photosynthesis (Dekker and van Grondelle, 2000;
Raszewski ef al., 2008). The thereby created oxidized state eventually leads to the
oxidation of H,O and the production of O, via the accumulation of four positive
charges on the Mn4CaOs cluster upon four subsequent illuminations. According to
the X-ray structure (Ferreira et al., 2004; Loll et al., 2005; Umena et al., 2011) the
overall pigment organization in the PSII RC is similar to that of the BRC, with two
additional chlorophylls bound to the periphery of the complex. Charge separation
in the PSII RC occurs on a multitude of timescales ranging from sub-ps to hundreds
of ps (Dekker and van Grondelle, 2000). In contrast with the BRC, visible-pump-
mid-infrared probe experiments have shown initial formation of the radical pair
Chlp; "Pheop; ~ in a significant fraction of the PSII RCs on a ps-timescale (Groot
et al., 2005) (in the PSII RC the active branch is called D1 while the inactive is
D2). In that work, the Pp; ™ formation was observed only after 5-6 ps, followed by
radical pair relaxation. In this view, the observed multi-exponential kinetics of the
charge separation process originates, in part, from the fact that, on average, only
small energy differences exist between most of the excited and charge separated
states of the PSII RC. A factor that should be taken into account in explaining
these kinetics is the intrinsic disorder. Within the sample ensemble, many different
protein configurations (realizations of the disorder) with different relative distance
and orientation of the cofactors/protein residues are possible, due to slow protein
motions (Novoderezhkin ef al., 2005¢). This means that the sample ensemble con-
tains a collection of energetically different reaction centres. Therefore, the small
energy differences between the electronic states in the PSII RC, in combination
with the intrinsic disorder, result in the observed highly multi-exponential kinetics.
The first attempt to explain the spectra and kinetics in the PSII RC was performed
using the so-called ‘multimer model’, which was based on the idea that in the core
of the PSII RC, in contrast with the BRC, all the chlorins are spectroscopically
‘equal’, giving rise to exciton states delocalized over 2—-3 pigments (Durrant ef al.,
1995). In a more realistic model, site energies were extracted from a simultaneous
evolutionary-based fit of the linear spectra using the modified Redfield approach
(Novoderezhkin ef al., 2005¢c; Raszewski et al., 2005; Novoderezhkin et al., 2007a;
Raszewski et al., 2008). The result of such a model is shown in Figure 8.3.



186 Excitation energy transfer in higher plants

Lowest exciton state Primary charge separation Stark signal, 77K

o A
P"emé-‘” e NG,
4 g
Pot| Po2

D LA =
Ch‘o 4 l"}i:hfnz
o

Py

Chl,, 666.7 |
Phe,, 664.5

Phe,, s64.0 | 2° i 772
PR, 6814 / 6750
Chl,, 60.9 135

P, 6587 6722 —x
Py, 6583 \4671@ s |

— 693
= — -
Chiz;, 8429 862.1

Wavelength Wavelength
of the site of the exciton
transition (am)

transition (nm)

680
Wavelength (nm)

700

Figure 8.3 Left frame: Exciton structure of the PSII RC. Energies corresponding
with the unperturbed site energies of eight pigments and the first CT intermediate
Ppo"Pp;~ (lines indicate participation of the pigments in the exciton states), and
the 77 K absorption spectra with individual exciton components. Inset on the top
shows the averaged structure of the lowest exciton state, where the circles show
the pigments that on average are coherently mixed in the lowest exciton state. The
area under the circle is proportional to the population of the corresponding site.
Middle frames: Possible pathways for primary charge separation in the PSII RC.
Circles show localization of the electron and hole in the CT states (i.e. PpyTPp;
Chlp; tPhep; ™ and Pp; TChlp; 7) that can be coupled to the lowest exciton state.
Right frame: Stark spectra calculated with the same CT states as shown in the
middle frame. Red dots correspond with the experimental data, the Stark signal is
calculated with coupling to CT (blue) and without coupling to CT state (green).
Adapted from (Novoderezhkin et al., 2007a), Copyright 2007, with permission
from Elsevier.

The lowest state with an absorption band centred near 682 nm corresponds with
the Ppy " Pp;~ charge-transfer (CT) state. This state has become weakly allowed,
borrowing dipole strength due to mixing with the pure exciton states and due
to reorganization has shifted significantly to the red. Thus, the introduction of a
coupling between the excited and the CT state produces relatively small changes
in the absorption-type spectra, but has a dramatic effect on the fluorescence (FL)
profile. The FL spectrum is mostly determined by contributions from the two lowest
states, i.e. a mixed exciton—CT state [(Pp,Pp1)*- Pp,TPp;~ peaking at 682 nm]|
and a superradiant ‘multimeric’ exciton state (delocalized over the D1 branch and
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peaking at 680 nm), which means that the FL profile will be extremely sensitive
to the precise energy of the CT state. On the other hand, the degree of mixing of
the CT state with its huge static dipole with the exciton states is the factor that
determines the shape and amplitude of the Stark spectrum (Figure 8.3, right frame).

The excited state from which the charge separation is initiated consists of a
coherent superposition of four pigments, i.e. Chlp;, Phep;, Pp;, and Pp, (Fig-
ure 8.3). Since there is a strong coherence between these four sites, some CT state
coupled to any of these four pigments will be effectively mixed with the whole
set of exciton states (the amount of mixing depending on the size of the energy
gap between each of the excitonic states and a certain CT state). Thus, the pri-
mary electron transfer towards Phep; can, in principle, start from Pp,, Chlp; or
Pp; producing the first charge-separated configuration Pp;"Pp;~, Chlp; "Phep; ™
or Pp; "Chlp; ~, respectively.

The predominant population of Chlp, is a strong argument for considering this
pigment as the primary electron donor, producing the CT state Chlp; " Phep; . On
the other hand, Pp; and Pp; are characterized by a bigger overlap of the electronic
wavefunctions of the two pigments, thus creating a better coupling between the
excited states of Pp; and Pp, and the Pp, "Pp; ~ CT state. Clearly, these two factors
compete. In this case, the relative participation of the pigments (Pp;, Pp, and Chlp,)
in the lowest exciton state as well as the energy gap between the lowest exciton
state and the corresponding CT state will be strongly dependent on the specific
realization of the disorder. For instance, in some realizations, i.e. in some of the
RCs, the excitation can be strongly localized on Chlp;; moreover, this localized
state can be even lower in energy than the Pp,TPp;~ CT state. Obviously, in such
realizations, even in the presence of mixing between the excited states and the
P, tPp;~ intermediate, the charge separation will be initiated from Chlp; with
the formation of the Chlp; "Phep; ~ radical pair. On the other hand, in delocalized
‘multimeric’ realizations, the Pp,TPp; ™ state is much better connected with the
whole excited-state manifold, and thus can play the role of the initial CT state.

In order to test experimentally the hypothesis formulated above, i.e. disorder-
induced charge separation pathways, we have performed a detailed transient
absorption investigation (Romero et al., 2010). Because of the well-known spec-
tral congestion in the PSII RC and similar timescales predicted for the proposed
charge-separation pathways (where the first charge-separated state configurations
are Ppy"Pp; ~, Chlp; "Phepy, and/or Pp;*Chlp,; ~), the transient absorption exper-
iments were carried out at 77 K (to enhance spectral resolution and reduce back-
reactions and uphill energy transfer) and various excitation conditions had to be
used to allow photoselection of subpopulations with different proportions of the
different pathways. Additionally, the changes in absorption due to excitation had
to be probed over the whole visible range and during an extensive time range.
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Figure 8.4 Two different pathways for charge separation in the PSII RC: exci-
tation energy and charge distribution of the electronic states involved in charge
separation. Top and bottom: Charge separation via the Pp; path. Centre: Charge
separation via the Chlp; path. The excited states are represented as stars, the
radical pairs are represented as rectangles. X-ray structure adapted from (Umena
et al.,, 2011). Adapted with permission from (Romero et al., 2010). Copyright
2010 American Chemical Society.

Combining all of the obtained results (13 experiments) and using global and tar-
get analysis according to a kinetic scheme (van Stokkum ef al., 2004), we have
demonstrated that, in agreement with the theoretical model (Novoderezhkin et al.,
2007a), at least two different excited states, (Chlp;Phep;)* and (PpiPp,Chlp;)*,
give rise to two different pathways for ultra fast charge separation. These results
indicate that, indeed, the disorder produced by the slow protein motions causes
energetic differentiation among the reaction centre complexes, which opens up the
possibility of different pathways for charge separation (Figure 8.4).

As can be seen in Figure 8.4, the charge separation process consists of two steps:
(1) the energy conversion step, exciton — CT state, in which the sunlight excitation
energy is converted into a charge-separated state; and (2) the separation of charge
step, CT1 — CT2, in which the positive and negative charges must be physically
separated to avoid energy losses by charge recombination.

The efficiency of the energy conversion step depends on the electronic character-
istics of the exciton states. The efficiency is high if the electron density distribution
in the exciton is similar to that in the CT state. To investigate the presence and
properties of the CT states in the PSII RC, Stark spectroscopy is the most suitable
technique (Boxer, 1996). However, due to spectral congestion, this technique has
to be applied to site-directed mutant PSII samples in order to allow unambiguous
assignment of the absorption spectral bands (Diner ef al., 2001). In that work,
each of the site-directed mutants studied contains a single amino acid mutation,
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near one of the chlorins involved in charge separation (Pp;, Ppy, Chlp;, Phep),
which induces an energy shift of its transition energy with respect to the wild-type
(WT) energy. Comparison of the Stark spectra of WT with eight mutants (mutants
studied close to: Pp; (3), Ppy (3), Chlp; (1), Phep,; (1)), unravels the configuration
and transition energy of three electronic states which initiate charge separation
with both exciton and CT character. These states are: two exciton states with CT
character, (Pp,®"Pp;®~Chlp;)i,5, . and (Chlp;*Phep;®")%,,..; and one CT state
with exciton character, (Ppy Pp; ) *¢sanm (Romero ez al., 2012). In this exciton—
CT representation, the subscript indicate the approximate centre wavelength of the
electronic transition and the §+/8— and &* indicate the CT and exciton character,
respectively.

In addition, these results show that the pigment—protein interactions fine-tune
the energy of the exciton and CT states, and hence the mixing between these
states which ultimately controls the selection and efficiency of a specific charge
separation pathway. In this view, the protein is not just a passive spectator of the
electron transfer reactions, the protein is the active director of the action (Lin et al.,
2005; Wang et al., 2007; Brecht et al., 2009). Combining the conclusions obtained
by transient absorption and Stark spectroscopy, we obtain the following charge
separation pathways:

Pp; path:

(Pp2*"Pp1°~Chlp)*¢730m — Pp2tPpi~ — Ppi T Chlp;~ — Pp; TPhep; ~

Chlp, path:

(Chlp;°Phep;®™)*6s1nm — Chlp; *Phep;~ — Pp;tPhep; ~
Pp; path:

(Pp2"Pp17)%* 684nm — Ppy™Pp;~ — Pp;"Chlp;~ — Pp; "Phep; ~

8.2.5 Quantum coherence and charge separation in the
photosystem II reaction centre

Recently, this model of charge separation has been further studied using two-
dimensional electronic spectroscopy (2DES) because of the suitability of this tech-
nique to the study of quantum effects in photosynthetic complexes (Ginsberg ez al.,
2009; Read et al., 2009; Schlau-Cohen et al., 2012). In these experiments the sam-
ple is excited with a pair of temporally ultra short and spectrally broad excitation
laser pulses, while the photon echo stimulated by a third laser pulse is measured.
The 2D spectrum is obtained by a double Fourier transform of the measured signal.
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The 2D electronic spectra of the PSII RC contains cross-peaks, reflecting couplings
between exciton states (Brixner et al., 2005), as well as oscillatory features in the
spectral traces which reveal the dynamics of quantum coherences (Engel ef al.,
2007; Cheng and Fleming, 2008; Collini et al., 2010; Panitchayangkoon et al.,
2010). However, the presence of electronic and/or vibrational coherences as well
as the coupling between them is under investigation. Our current model predicts
that the degree of coherent mixing between exciton—CT states (determined by ener-
getic disorder induced by slow conformational changes of the complex) is related
to the high speed and efficiency of the charge separation process. Nevertheless, the
role of quantum coherence in the charge separation process in the PSII RC has to
be confirmed by exhaustive analysis and modelling of the 2DES experimental data.

8.3 Light-harvesting

In photosynthesis most of the pigments are organized in a light-harvesting antenna
(LH), to collect solar photons and transfer the electronic excitations to the RC to
drive charge separation. But, why is the LH needed? Photosynthesis must be able to
operate at low light levels, such as those that generate less than one electronic exci-
tation per Chl per second (normal sunlight). Yet the most important biochemical
reactions associated with photosynthesis require several electron-transfer events.
For example, water oxidation in the PSII RC requires the cumulative effect of
four electronic excitations, all of which must occur within a certain time. Light-
harvesting overcomes this problem by concentrating the available light energy
and feeding the electronic excitations from hundreds of light-absorbing pigment
molecules into a single RC. Another reason for having an LH is that they allow
photosynthetic organisms to survive using fewer RCs. This is beneficial because
RCs are ‘expensive’ — each one requires a large investment of resources from the
organism. The LH also allows a broad range of the spectrum to be exploited for
photosynthesis, because it may be composed of a variety of pigment proteins that
contain different pigments (and which therefore absorb different colours of light)
connected to one RC. Finally, in a multi-protein LH the flow of excitation energy
can be regulated by modulating the quenching properties of one of the constituent
antenna proteins; which provides a way of protecting plants from potentially harm-
ful absorbed energy from excess sunlight (Holt er al., 2004).

8.3.1 Excitation energy transfer and excitons

Figure 8.5 summarizes the excitation energy transfer for the purple bacterial pho-
tosynthetic membrane for which this process of energy transfer and capture has
been extensively studied (van Grondelle ef al., 1994; Hu et al., 1998; Sundstrom
et al., 1999; van Grondelle and Novoderezhkin, 2006).
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Figure 8.5 Bacterial light-harvesting. In the bacterial photosynthetic apparatus.
LH1-RC complexes are surrounded by LH2 complexes. Both in LH1 and LH2
the BChls are organized in ring-like structures (McDermott et al., 1995; Roszak
et al., 2003; Codgell et al., 2006a). The BRC is positioned in the centre of the
LH1 ring. In the LH2 complex the BChls are shown in blue (the B800 ring,
named due its absorption maximum) and red (B850 ring) while the carotenoids
are shown in yellow. The excitations around 400-500 nm are mainly absorbed
by the carotenoids and transferred to the BChls in less than 1 ps (Polivka and
Sundstrom, 2004). The excitation absorbed by the B80O ring is transferred to the
red B850 ring in about 1 ps (van der Laan et al, 1990). Within a single LH2
or LHI the excitations move around very rapidly, typically in a few hundred fs
(Bradforth et al., 1995; Visser et al., 1996). The transfer between rings is slower,
between 1-10 ps. Since the LH1 rings absorb more to the red than the LH2 ring
(875 nm versus 850 nm) the excitations are concentrated around the BRC. In fact,
the transfer of electronic excitations from the LH1 antenna to the BRC is the rate
limiting step that occurs in about 40 ps (Visscher ef al., 1989). Once the BRC gets
excited, a fast (3 ps) charge separation occurs.

In this case, the pigments BChl and carotenoid, bound to proteins, are organized
as an energetic funnel. In the periphery we find the circular LH2 complex (McDer-
mott et al., 1995), absorbing light at 800 nm and 850 nm and surrounding the RC
we have the LH1 complex (Roszak et al., 2003), absorbing at around 870 nm,
also the main transition of the RC is at about 870 nm. Carotenoids absorb in the
visible and transfer the absorbed solar photons often in less than 1 ps (Polivka
and Sundstrom, 2004) to a BChl close by. The overall probability for an excitation
to be transferred to the RC may easily exceed 95%. The observed lifetime of an
excitation in the bacterial antenna is about 50 ps (van Grondelle, 1985; Sundstrom
et al., 1986).

Plant antenna systems operate in a very similar manner, they employ Chl a
and Chl b as major pigments, complemented by a variety of carotenoids. Chl a
absorbs light at around 670-680 nm and Chl b at around 650 nm. Carotenoids,



192 Excitation energy transfer in higher plants

1
L
=
2
]
e
5]
<
S
ks]
g
2
£

Figure 8.6 Plant light-harvesting complex II (LHCII). Left: Trimeric LHCII struc-
ture (view from the top of the thylakoid membrane) as determined by (Liu ef al.,
2004). In the monomers shown at the bottom, Chls a are shown in red, Chls b are
shown in blue and the carotenoids are shown in green. In the top monomer some
Chls clusters are indicated: Chls a 610-612 (magenta), Chls a 602—603 (orange),
Chls a 613-614 (yellow) and the Chls a/b 604—607 (cyan). Right: Interaction ener-
gies for the LHCII monomer with pigments 1-14 representing Chl601-Chl614.
Pigments are numbered following the crystal structure. Note the strongly inter-
acting clusters Chls a 610-612, Chls a 613-614, Chls a 602-603 and the Chl
a/b cluster 604-607. Intermonomer interactions occur mainly between Chls b 601
and Chls b 608/609 from adjacent subunits. The bottom frame shows the side
view of the bar plot shown in the top frame. Reprinted with permission from
(Novoderezhkin et al., 2005). Copyright 2005 American Chemical Society.

like lycopene or S-carotene absorb light in the 400-500 nm spectral region. Also,
in plants, the pigments are organized in pigment—proteins, which occur highly
organized in the thylakoid membrane. The structure of he LHCII pigment—protein
is shown in Figure 8.6. There are two characteristic distinctions between plant and
bacterial antennae: (1), there are no highly symmetric structures like LH1 and LH2
in plants; (2), the number of pigments per unit volume can easily be two to three
times higher than in the bacterial antennae, with the distance between neighbouring
Chls less than 1 nm.

What is the mechanism of this amazingly efficient energy transfer process by
which the excitations of hundreds of pigments are collected at a single site? In PSI of
plants, the energy absorbed by about 200 chlorophylls is transported in a few tens of
picoseconds to the PSI RC in the centre of the complex, to drive a transmembrane
charge separation. In the RC-LH1 core complex, about 30 bacteriochlorophylls
surround the RC and the absorbed energy is transferred to the RC in about 40 ps. In
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such densely packed structures the excited states of the pigments are coupled via
dipole—dipole interactions. The strength of this coupling is one of the major factors
that determine how fast the excitation moves through the assembly of coupled
pigments.

If the dipole—dipole coupling is very weak, say much weaker than the coupling of
the excited state to its environment (electron—phonon coupling), the excitation will
be essentially localized before energy transfer can occur and the energy transfer
will take place according to a hopping process, with a rate Wp,, given by the
Forster equation,

e NEn(D
Wi =88 107 % £ [ 4@

RS o 0, (8.3)

where R is the centre-to-centre distance between donor and acceptor in nm and O
expressed in cm™ !, k? is the radiative rate of the donor, 7 is the index of refraction
and « is a factor describing the mutual orientation of the transition dipoles of donor
and acceptor. As is obvious from Equation (8.3), the rate depends critically on the
overlap of the emission spectrum of the donor Fp(¥) with the absorption spectrum
of the acceptor €4 (D), essentially reflecting energy conservation during the transfer
process. It is straightforward to calculate the Forster rate for pigments like Chl and
BChl at a distance of 2 nm; W ap can easily be of order 10''-10'? s~1.

However, in photosynthetic pigment—proteins the coupling between neighbour-
ing pigments are of the order of several tens—several hundreds of wavenumbers,
due to the close proximity of the pigments (< 1 nm). This is shown in Figure 8.6 by
the interaction Hamiltonian of LHCIL. In that case the excitation will not be local-
ized, but becomes ‘delocalized’. Such a delocalized excitation is called an exciton
and the excited state wavefunction iy, of the exciton is given by the following
expression:

wk = chn(pn, (84)

in which the ¢, represent the locally excited states. The 1/ are delocalized and the
participation of each locally excited state in 1, is given by the coefficient c,;. As
a result, the whole antenna is generally characterized by a complicated manifold
of excited states, including collective electronic excitations (excitons) with a high
degree of delocalization, in combination with more localized excitations due to the
presence of weakly coupled pigments.

Modulation of the electronic transition energies by slow conformational motion
of the protein matrix produces disorder of the site energies within a single complex
(thus resulting in more localized exciton wavefunctions), as well as inhomogeneous
broadening of the electronic transitions due to ensemble averaging. Evolution of the
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antenna complex through a number of conformational sub-states can be monitored
directly using single-molecule techniques (Bopp ez al., 1999; van Oijen et al., 1999;
Rutkauskas et al., 2004; Novoderezhkin et al., 2006; cha, 2006; Kruger et al.,
2010). Coupling of excited states to fast nuclear motions (intra- and interpigment
vibrations, phonons) results in homogeneous broadening of the electronic transition
spectra and their red shift due to reorganization effects, together with a further
decrease of the delocalization size due to polaron effects (Meier et al., 1997;
Freiberg et al., 2003).

Because of the collective character of the excitation in photosynthetic complexes,
the Forster theory cannot give an adequate picture of energy transfer. The general-
ized Forster theory (Novoderezhkin and Razjivin, 1994, 1996; Sumi, 1999; Scholes
and Fleming, 2000; Jang et al., 2004) considers energy transfer between clusters
with an arbitrary degree of delocalization, but is restricted to weak inter-cluster
interactions. In the standard Redfield theory (Redfield, 1957), all exciton couplings
are taken into account explicitly, thus allowing a description of all types of exciton
relaxation/migration within strongly coupled antenna complexes, including cou-
pled dynamics of the populations and coherences between the exciton states. In this
theory, the dynamics is described in the pure exciton basis, where the relaxation
between exciton states is accounted for by including exciton—phonon coupling as
an off-diagonal perturbation. The standard Redfield approach can be generalized
by including strong coupling of excitations to a few vibrational modes. Relaxation
in such a system can be described in the basis of electron-vibrational eigenstates.
This approach has allowed us to describe the electron transfer coupled to coherent
nuclear motion in the bacterial RC, discussed above (Novoderezhkin er al., 2004),
long-lived vibrational coherences in LH1 (Chachisvilis ez al., 1994; Novoderezhkin
et al., 2000) and coupled exciton-vibrational relaxation in LH1 (Novoderezhkin
and van Grondelle, 2002).

In the modified version of the Redfield theory (Zhang er al., 1998), the diagonal
(in the exciton basis) part of the electron—phonon coupling is taken into account non-
perturbatively, thus giving more realistic lineshapes and relaxation rates due to the
inclusion of multiphonon processes (Yang and Fleming, 2002). The modified Red-
field theory allows a quantitative treatment of spectra and dynamics in many sys-
tems: LH2/LH1 (Novoderezhkin et al., 2006), FMO (Adolphs and Renger, 2006),
LHCII (Novoderezhkin et al., 2005¢; Novoderezhkin and van Grondelle, 2010;
Novoderezhkin et al., 2011b; Renger et al., 2011), PSII-RC (Novoderezhkin et al.,
2005c¢; Raszewski et al., 2005; Novoderezhkin et al., 2007a; Raszewski et al., 2008;
Novoderezhkin ez al.,2011b), the cryptophyte LH-complex PE545 (Novoderezhkin
et al., 2010) and PSII-core (Raszewski and Renger, 2008), including the con-
formational fluctuations of the single-molecule spectra observed for LH1/LH2
(Rutkauskas et al., 2004; Novoderezhkin et al., 2006; cha, 2006; Novoderezhkin
et al., 2007b), and later in LHCII (Kruger et al., 2010). Recently the theory was
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Figure 8.7 Arrangement of Chls within the LHCII trimer at the stromal (a) and
lumenal (b) sides. Chls are represented by three atoms: the central magnesium
atom and two nitrogen atoms. The connecting line between the two nitrogens
defines the direction of the Qy transition dipole. Red, Chl a nitrogen; blue, Chl b
nitrogen; grey, magnesium; green, nitrogen of Chl a604 and Chl 5605 (according
to the structure reported by (Liu er al., 2004). Clusters of Chls a, Chls b, and a
mixed group containing long-lived intermediate sites (Chl a604 and Chl b605)
are encircled by red, blue and green, respectively. ¢, d, e: Simultaneous fit of
optical density or absorption (OD), linear dichroism (LD), circular dichroism
(CD) and time-dependent transient absorption (TA) spectra using the modified
Redfield approach. Experimental OD/LD spectra (van Amerongen et al., 1994)
and CD spectrum (Hemelrijk ef al., 1992) have been measured for the LHCII
trimer at 77 K (c, red points). Experimental TA spectra are obtained upon 650 nm
(d, red points), 662 nm (e, red points) excitation with 120 fs pulses and pump—
probe delays of 150, 300, 650 and 1650 fs. Calculated spectra (c, d, e, blue lines)
are obtained with the disordered exciton model for the whole trimer, where the
unperturbed site energies within a monomeric unit have been adjusted in order to
obtain the best simultaneous fit of all the data. Reproduced from (Novoderezhkin
and van Grondelle, 2010) with permission from the PCCP Owner Societies.

used to model the 2D-photon echo spectra in FMO (Cho et al., 2005), B800-820
complex (Zigmantas et al., 2006) and LHCII (Schlau-Cohen et al., 2009). Notice
that the present version of the modified Redfield theory is restricted to relaxation
dynamics of populations and does not include one-exciton coherences. For a fur-
ther discussion on the role of quantum coherence in photosynthetic light-harvesting
and charge separation, we refer the reader to Chapters 6 and 7 by Engel et al. and
Robentrost et al., respectively, in this book.

An example of quantitative fit of the linear and non-linear spectral responses for
LHCII using modified Redfield theory (Novoderezhkin and van Grondelle, 2010)
is shown in Figure 8.7. The Chls a (red), Chls b (blue), and long-lived intermediate
sites Chls a604, b605 (green) contribute to the 675 nm, 650 nm and 662 nm bands
(shown by arrows in Figure 8.7c¢). Selective excitation of the 650 or 662 nm bands
allows a visualization of the energy transfer dynamics from Chls b or intermediate
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Figure 8.8 Oscillatory dynamics in the bacterial light-harvesting complex LH2,
as revealed by analysis of single-molecule exciton spectra and femtosecond spec-
troscopy (for details see (Novoderezhkin et al., 2006)). Dynamics of populations
after impulsive excitation is shown. A colour scale is used to indicate the absolute
values of the site population from zero (blue) to the maximal value (red). Coherence
between the collective exciton states created by the impulsive excitation manifests
itself as reversible oscillatory jumps (half-period of 350 fs) between small groups
of molecules (encircled). Within each group, faster oscillations between individual
sites (with a half-period of 60 fs) are discernible. Reprinted from (Novoderezhkin
et al., 2006), Copyright 2006, with permission from Elsevier.

sites to the Chls a with final localization of excitation at the peripheral Chl a
cluster a610-612. The spectral signatures of this dynamics can be quantitatively
reproduced by our model, as shown in Figure 8.7d,e. Details of the current model
can be found in Novoderezhkin et al. (2005¢), Novoderezhkin and van Grondelle
(2010) and Novoderezhkin et al. (2011b).

8.3.2 Quantum coherence and photosynthetic light-harvesting

Dipolar couplings between localized excited states not only delocalize the excited
state, also ‘coherences’ are generated, meaning that products such as ¢;c’ have a
value that may give rise to oscillatory dynamics, depending on the excitation con-
ditions. The existence of such coherences implies that the excitation ‘remembers’
where it has been. An example of such predicted coherent, oscillatory dynamics in
LH2 (for one arbitrarily taken realization of the disorder) is shown in Figure 8.8
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(van Grondelle and Novoderezhkin, 2010). It is clear that in this realization the
excitation prefers to be localized either on sites 2—4 or on sites 10,11 of the LH2
ring and the excitation ‘hops’ between these two sites in about 350 fs. Once in
position 24, the excitation oscillates between pigments 2 and 4 in about 60 fs; a
similar dynamics is observed in position 10, 11.

Recently, coherent oscillatory behaviour could be visualized using 2DES. In
the 2DES spectra cross-peaks are observed, that directly reflect the coherences
between exciton states, while their oscillatory time dependence reveals the coherent
dynamics (Engel er al., 2007; Ginsberg et al., 2009; Collini et al., 2010). In an
experiment at cryogenic temperatures (Engel ef al., 2007) long-lived coherences
(660 fs) were observed to occur among the exciton states of the FMO complex.
Recently (Collini ez al., 2010), in light-harvesting complexes of cryptophytes, long-
lived coherences could be observed at room temperature, even between relatively
weakly coupled states, suggesting an explicit role of the protein in maintaining
these coherences (Chin et al., 2013). Much effort is put into understanding the
persistence of these quantum phenomena in such a noisy environment and to
relate these ‘non-trivial’ quantum properties of photosynthetic pigment—proteins
to the efficiency of the excitation energy transport process and energy conversion
by the RC (Mohseni et al., 2008; Olaya-Castro et al., 2008; Plenio and Huelga,
2008; Caruso et al., 2009; Ishizaki and Fleming, 2009a; Rebentrost et al., 2009a,c;
Fassioli and Olaya-Castro, 2010; Sarovar et al., 2010). It is of interest to discover
whether these properties of the natural system were designed, meaning optimized
by evolution to enhance the efficiency of energy and/or electron transfer, or if they
are simply a consequence of the dense packing of pigments in the pigment—protein
complexes.
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Electron transfer in proteins

SPIROS S. SKOURTIS

9.1 Introduction

Protein electron transfer (ET) reactions are central to biological function. They are
important components of bioenergetic pathways (photosynthesis and respiration)
and they are involved in biological signalling and in the generation and the control
of disease (Marcus and Sutin, 1985; Bendall, 1996; Canters and Vijgenboom, 1997;
Page et al., 1999; Blankenship, 2002; Gray and Winkler, 2003, 2005). For a funda-
mental understanding of these biological processes it is necessary to study protein
ET mechanisms at the molecular level. Protein ET physics is very rich because
it involves charge transport through dynamic and responsive (to the transferring
charge) molecular media organized in cellular molecular assemblies. A common
feature among protein ET assemblies is that they are designed to move electrons
to specific locations along transport pathways that partially suppress backward
ET (Figure 9.1b). In many cases the structures and dynamics of the protein ET
complexes are such that ET takes place with high efficiency (Blankenship, 2002).
Needless to say, an understanding of structural and dynamical effects on protein ET
processes is very important for the development of new biomimetic electronic and
energy-conversion materials with controlled functionalities (Jortner and Ratner,
1997; Balzani et al., 2001; Adams et al., 2003; Blankenship et al., 2011). The field
of biological ET (and in particular protein ET) is one of the oldest fields in molec-
ular biophysics (Marcus and Sutin, 1985; Bendall, 1996; Page et al., 1999; Jortner
and Bixon, 1999; Kuznetsov and Ulstrup, 1999; May and Kiihn, 2011; Balzani
et al., 2001; Blankenship, 2002; Gray and Winkler, 2003, 2005; Nitzan, 2006).
This chapter covers only some of the basic concepts of biomolecular ET theory
and a few examples of ET systems. The quantum nature of biological ET processes
has long been recognized, but the field is continuously enriched by experimental

Quantum Effects in Biology, ed. Masoud Mohseni, Yasser Omar, Gregory S. Engel and Martin B. Plenio.
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bridge (protein)

D -e —> A

(b)

Figure 9.1 (a) A biomolecular ET reaction between an electron-donating moiety
(electronic state D) and an electron-accepting moiety (electronic state A) that
are connected by a protein bridge. In single-step tunnelling ET reactions, the
bridge acts as a tunnelling barrier for the electron (see Figure 9.2). (b) Biological
ET chains are often comprised of single-step tunnelling ET reactions between
successive D—A pairs. The forward D-to-A ET reaction rate for each step is
usually greater than the backward A-to-D ET rate.

discoveries that present new challenges for experiment, theory and computation
(see Chapters 5, 10 and 12).

To start with I will briefly describe some general features of biological ET
reactions. They often involve chains of electron (hole) transfer steps in specialized
molecular assemblies (Figure 9.1). Each step is the transfer of an electron (hole)
from a localized donor (D) electronic state to a localized acceptor (A) electronic
state, through an intervening molecular matrix (the bridge). The bridge between D
and A is often protein (there are also protein/DNA and pure DNA ET systems) and
it may include other cofactor molecules. From a practical point of view the D and
A states of a charge-transfer step are initial and final electronic states that have long
lifetimes and high populations, such that they can not be observed experimentally.
The donor (acceptor) moieties of an ET biomolecular assembly can be metals
atoms, aminoacids, other small organic molecules, or DNA bases. This variety
of ET molecular assembly structures leads to a richness of transport mechanisms
that includes coherent deep tunnelling, coherent resonant tunnelling and thermally
activated hopping (Jortner and Bixon, 1999; Kuznetsov and Ulstrup, 1999; May
and Kiihn, 2011; Balzani et al., 2001; Nitzan, 2006). Coherent deep tunnelling
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Figure 9.2 Relationship between D-to-bridge (A-to-bridge) energy gap and tem-
perature for the deep tunnelling mechanism of ET. The figure refers to the D-to-A
resonance conformation of the ET system (Q,.s of Figure 9.3). The bridge is a
tunnelling barrier for the transferring electron, i.e. AEg > KT . Through-bridge
resonant tunnelling or hopping can be observed if AEg < KpT.

is the transfer mechanism when the bridge medium between D and A presents a
tunnelling barrier for the transferring electron, with a height AEg > KT (Kp
is Boltzmann’s constant and T is the temperature, Figure 9.2). Since the electron
tunnels through the bridge, it occupies the intermediate bridge electronic states
with very low probabilities and for very short times. Electronic coherence in the
bridge is maintained because the bridge medium is not perturbed by the transferring
electronic charge and there is no electron—phonon energy exchange in response to
the charge. The electronic coupling that induces electron transfer from D to A
is described by a D-to-A tunnelling matrix element. According to the simplest
(average-tunnelling-barrier) model, the tunnelling matrix element is

Tpa o< expl(v2m.AEg/M)Rpal, .1

where A E g is the average D/A-to-bridge energy gap and Rp4 the D-to-A distance
(Figure 9.2) (Jortner and Bixon, 1999; Kuznetsov and Ulstrup, 1999; May and
Kiihn, 2011; Balzani et al., 2001; Nitzan, 2006). In coherent resonant tunnelling
mechanisms, A Eg is small enough such that thermally induced structural fluctua-
tions can bring one or more bridge electronic states into resonance with the D and/or
A states (AEp < KpT). In these mechanisms, the transferring electron occupies
the resonant bridge states with high probability, but electronic coherence in the
bridge is maintained because the occupation time of bridge states is too short for
the bridge to respond. The thermally activated hopping regime also refers to cases
where AEp < KT, but the bridge occupation time of the electron transferring
from D is long enough such that the bridge relaxes to the electronic charge, trapping
the electron in a bridge electronic state (B). For ET to take place from the B to the
A state, the system must be thermally activated to a conformation that brings B into
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resonance with A. For biological ET the D—A distance for through-protein single-
step tunnelling can be up to ~10 A. Hopping mechanisms comprised of many
tunnelling steps support much greater distances (Gray and Winkler, 2009; Winkler
and Gray, 2010) that in some cases reach the micron length scale (EI-Naggar et al.,
2010).

What is it in the molecular architecture that determines transport mechanism?
Usually deep tunnelling steps involve metal D and A moieties whose electronic
energies are separated from the bridge electronic state energies (Page er al., 1999;
Gray and Winkler, 2003, 2005). In the context of a multi-step ET chain comprised
of through-protein tunnelling steps (Figure 9.1b), the donor and acceptor moieties
define the topology of the ET chain because they act as relay stations for the
transferring electron (the electron cannot be localized in the bridge which is a
tunnelling barrier). Through-protein resonant tunnelling and hopping mechanisms
are encountered when the D and A states are aminoacids or organic molecules
whose electronic states are similar to the protein electronic states (Jortner and
Bixon, 1999; May and Kiihn, 2011; Nitzan, 2006; Gray and Winkler, 2009; Winkler
and Gray, 2010). This chapter focuses on ET reactions mediated by through-protein
deep tunnelling, as these reactions are the elementary steps of most ET chains and
they are very well understood experimentally and theoretically.

9.2 The rate for a single-step electron transfer reaction mediated
by elastic through-bridge tunnelling

The measurable quantity in a biological ET reaction is usually the ET rate from D
to A which is often probed by time-resolved optical spectroscopy (Balzani et al.,
2001). Electron transfer reactions in the deep tunnelling regime involve weak
D-A electronic couplings (tunnelling matrix elements Tp 4 ) and are therefore rate-
limited by these electronic couplings. The simplest description of the D-to-A ET
rate for such reactions is the ‘non-adiabatic’ Marcus-rate expression (Marcus and
Sutin, 1985; Jortner and Bixon, 1999; Kuznetsov and Ulstrup, 1999; May and
Kiihn, 2011; Nitzan, 2006) which captures the essential physics. The ET rate is
a product of a classical Boltzmann activation factor p%‘g for the conformational
degrees of freedom of the ET system, and a tunnelling probability (27 /3)T5 , for
the transferring electron,
kpa = %’TT;A pss, 9.2)
What is the physical picture behind Equation (9.2)? Electron tranfser from D
to A can take place only if the total energy of the system (ET molecule and
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Figure 9.3 Potential energy (Born—Oppenheimer) surfaces of an ET system when
the electron is at the initial (D) and the final (A) electronic states (Up and Uy
respectively). The surfaces are plotted as a function of a collective system coordi-
nate Q that modulates the relative electronic energies of D and A (see boxes below
plot). It is assumed that the collective coordinate is classical. ET can take place
only when the potential energy surfaces cross at O, i.e. when D and A elec-
tronic energies are resonant at Q = Q.. Therefore, the D-to-A ET rate contains a
Boltzmann activation factor to reach the resonance conformation (Equations (9.2),
(9.3)). This figure does not show bridge-electonic-state surfaces. At the resonance
conformation the transferring electron feels the bridge as a tunnelling barrier
(see Figure 9.2) and the bridge Born—Oppenheimer surfaces have higher energies
compared with Up and Uy.

solvent) is conserved. If we assume that the conformational degrees of freedom
of the ET system are classical, then energy-conserving ET can happen when the
D and A electronic state energies Ep and E,4 are resonant (Ep = E4). This is
because the timescale of the D-to-A electronic transition is much faster than the
classical motions of the molecular system, such that during the D-to-A transi-
tion these motions are frozen and cannot exchange energy with the transferring
electron. In general, there will be a set of system motions (denoted the reac-
tion coordinate Q) that modulate the relative energies of the D and A electronic
states, i.e. Ep(t) = Ep(Q(t)) and E4, = EA(Q(t)). Thermal fluctuations of the
reaction coordinate enable ET because they bring the system to a D-to-A reso-
nance conformation Q. for which Ep(Qes) = EA(Qes). Figure 9.3 shows the
potential energy (diabatic Born—-Oppenheimer) surfaces of the ET system as a func-
tion of O, when the electron is either in the D electronic state (Up) or in the A
electronic state (U 4). These surfaces will generally have different minimum-energy
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values and minimum-energy reaction-coordinate values, i.e. U™ = U™, where
Upin = Up(Qmimy, UMM = Ua(Q"%™) and Q" # Q"™ When the electron is in
the D state, the reaction coordinate’s dynamics is determined by the Up energy
surface and the system fluctuates around the reaction-coordinate conformation that
minimizes Up (i.e. around Q""). Since Q™" # Q,,, the system has to wait for a
thermal fluctuation Qg”’ — Qs to bring the D and A energies to resonance. The
classical (high-temperature) Boltzmann probability for this activation step is

1
Pt = ——— exp[—US! /KpT]| 9.3)
20},

(often denoted the classical Franck—Condon factor). In the equation above,

; ; 2
) ymin _ gymin + A
Ut = Uy — g = i TS ) (94)

is the activation energy to reach the resonance conformation Q. (U,s =
Up(Qres) = Ua(Qes)). The subscript ‘ela’ stands for elastic tunnelling, which
means that the tunnelling electron does not lose energy during tunnelling. A
denotes the reorganization energy, given by A = Up(Q"{™) — Up(Q™") or,
equivalently, by A = Ua(Q'M™) — U4(Q"™). This reorganization energy is often
called the classical reorganization energy because it involves reorganization of
low-frequency (classical) motions that are perturbed by ET and that contain
delocalized (protein) and environmental (solvent) degrees of freedom. The name
is used to distinguish it from inner-sphere reorganization energies which involve
the reorganization of high frequency (quantum) vibrational modes perturbed by
ET that often contain local (D/A and protein) degrees of freedom. 02, = 2AKpT
is the variance in the energy gap between Up and U, potential energy surfaces,
given by O'iU =< AU%D > — < AUyp >2, where AUxp = Ua(Q) — Up(0Q)
(< .. > denotes the thermal average with respect to motion in the Up, surface).

Once the resonance conformation is reached, ET takes place by tunnelling with
a probability (27t /i) T} ,. The dependence of this probability on the square of the
electronic coupling is valid for weak electronic coupling in the non-adiabatic limit.
This dependence can be understood in terms of lowest-order perturbation theory
with respect to the coupling, since the golden-rule expression for a transition rate
is proportional to the square of the matrix element that induces the transition. It
can also be derived from the Landau—Zener expression for a transition between
two states with time-dependent energies that cross. This derivation is useful for
understanding the terminology ‘non-adiabatic’ (Marcus and Sutin, 1985; Jortner
and Bixon, 1999; Kuznetsov and Ulstrup, 1999; May and Kiihn, 2011; Balzani
et al., 2001; Nitzan, 2006).
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Consider the D-A electronic Hamiltonian,
H(Q) = |D)(D|Ep(Q) + |A)(A|EA(Q) + {ID)(A|Tpa + h.c.}, 9.5)

whose elements depend on the reaction coordinate . We assume that initially the
electronic state is D and that the reaction coordinate is time-dependent, Q = Q(¢)
(its dynamics is determined by Up). At some point in time t,,, the D and A
state energies cross, Q(tys) = Qres such that Ep(Q,es) = EA(Qres) = Eres. The
probability for a transition from D to A during this crossing event can be com-
puted using the Landau—Zener approach, which assumes a linear dependence of
the D-A energy gap on time around t,,, i.6. Epa)(Q(t)) = E,s +{dQ/dt};,, x
{dEpay/dQ}o,, X (t — trs). The Landau—Zener probability for a transition from
D to A is given by

Pps =1 —expl27)*y], (9.6)

where y = t;7/Trapi 1S the Landau—Zener parameter, written as a ratio of two
times, the Rabi time and the Landau—Zener time. The Rabi time tgyp; = h/|Tpal
is taken from time-independent quantum mechanics. It is a measure of the time it
takes in a static D-A system at resonance, i.e. when |Ep — E4| < |Tpal, for Pp4(t)
to become unity given that Pp4(0) = 0 (Pp(0) = 1). The Landau—Zener time,

_ [Tpal
HdQ/dt}, {dEp/dQ —dE4/dQ}g,,]

is a measure of the time the D and A energies spend in the resonance region
(|Ep — Ea| < |Tpal). The non-adiabatic limit means that the D and A energies
cross fast, such that they do not remain in the resonance region long enough
for a complete D to A transition, i.e. ¥ = Ty z/Trapi <K 1 . In this case, Ppy =~
Qr)’y T,% 4~ Itis important to note that Equations (9.2) and (9.3) assume that the
reaction coordinate is thermalized on the U surface (hence the classical Boltzmann
distribution in Equation (9.3)). This is a good approximation for weak-coupling
non-adiabatic ET, because the ET rate is slow with respect to thermalization times
of molecular motions. Adiabatic ET reactions (y > 1) are also encountered in
biology for strong-coupling short-distance ET and they often involve fast ET rates
(see Conclusions, Section 9.7).

A central prediction of Equation (9.2) is that the rate is maximum for U —
U X”'” = A, because it becomes activationless (U4 = 0), and it decreases otherwise

TLZ 9.7)

since it becomes activated. In particular, if U gi" > UM the rate is activated for
U ;)”i" -U ’Af“” < A (normal region) and for U ;)"i” — 1’;“'” > A (inverted region). The

inverted region has been observed for small-molecule ET, where it is possible to
modify U™ — U™ by changing artificially the donor (acceptor) chemical groups.
Activationless ET reactions are fast and are often used by biological systems,
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whenever it is necessary to rapidly transfer electrons (e.g. in the primary charge
separation of photoysnthesis (Page ef al., 1999; Blankenship, 2002)).

9.3 Dependence of tunnelling on protein structure:
tunnelling pathways and their interferences

An important effort in the field of bridge-mediated ET, especially in the coher-
ent deep-tunnelling regime, is to understand how molecular conformation and
molecular electronic structure influence the D—A electronic coupling. The depen-
dence of the D—A tunnelling matrix element (7p4) on molecular structure has
long been established, both theoretically and experimentally for a large number of
protein and small-molecule systems ((Winkler ef al., 1982; Beratan et al., 1991)
and (Skourtis and Beratan, 1999; Balzani et al., 2001; Gray and Winkler, 2003,
2005) for reviews). Sophisticated techniques exist for the computation of Tpa
and for its analysis in terms of bridge structure and of D-bridge and A-bridge
connectivity. ((Skourtis and Beratan, 1999; Newton, 2001; Stuchebrukhov, 2001;
Rosch and Voityuk, 2004; Hsu, 2009) for reviews). All such methods start from
the D-bridge-A molecular structure which is experimentally derived (from X-ray
crystallography or NMR techniques). The electronic Hamiltonian of the system
is built at the semi-empirical (e.g. Huckel, INDO/S) or ab initio level (HF, DFT),
depending on the size of the system. T 4 is computed from the electronic Hamilto-
nian by partitioning the system into D, A and bridge subsystems. This partitioning
is usually based on chemical and physical arguments. Once such subsystems are
defined, one can use either effective Hamiltonian and Green’s function techniques
to compute bridge-mediated couplings between specific D and A electronic states.
Alternatively one can start from the entire D-B—A system eigenstates and employ
diabatization methods that derive D and A electronic states, localized on the D
and A subsystems using some localization criterion (e.g. maximal charge local-
izations on the D and A subsystems). The Hamiltonian matrix element between
such diabatic states is taken to be equal to Tp 4. There also exist different methods
for the structural analysis of T4, such as tunnelling pathways, tunnelling-current
and pruning analysis ((Skourtis and Beratan, 1999; Newton, 2001; Stuchebrukhov,
2001; Rosch and Voityuk, 2004) for reviews). The structural analysis of Tp 4 ulti-
mately leads to a description of how the bridge bonding topology influences the
tunnelling paths of the electron from D to A. In general, increasing the number
of bridge through-space jumps compared to through-bond jumps that the electron
has to tunnel through reduces T4, because it introduces higher (through-space)
tunnelling barriers in the electron’s path (Beratan ez al., 1991).

To give an idea of how tunnelling pathways can be extracted from 7Tpy, I
will describe the basics of computation and structural analysis methods that use
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Green’s function theory (Skourtis and Beratan, 1999). Consider the full electronic
Hamiltonian of the system at Q = Q,.,, which is usually expressed as a tight-
binding effective one-electron Hamiltonian:

A =APA+ A 4+ V, (9.8)

comprised of D—A, bridge and interaction parts. The D—A Hamiltonian at the D-A
resonance conformation (Q,., in Figure 9.3) is

AP* = |D)(D|Ees + |A)(A| Ees, (9.9)

where the direct coupling between | D) and |A) electronic states is neglected due
to the large D—A distance. The bridge Hamiltonian is

ﬁhr — I:Ié)ira + "}br’ (910)
where
A =" |B)(Bi|Epi (0.11)
is the diagonal part and
V=" UIBi)(B)|Vaig +h.c} 9.12)
i j>i

is the off-diagonal part. The interaction Hamiltonian between D(A) and bridge
electronic states is

V = {ID)(B;|Vp.pi + |A)(Bi|Va g + h.c.}. 9.13)
1
The | B;) are often chosen to be localized bridge electronic states (e.g. two-centre
bonding and antibonding orbitals), and the V;; are electronic couplings between
states (either intra-bridge or D-bridge and A-bridge).
The bridge-mediated D-to-A tunnelling matrix element (i.e. Tps in Equa-
tion (9.5)) is given by

Tpa = (D|V G (Eun)V|A), (9.14)
where E,,, = E,.; and

! | )|

Gbr(Eun) = Euni_ I:Ibr = . (9.15)
t ( 11 ) p Etun _ Ell{)r

The |lIJ,f’) and Eﬁ’(’ denote the eigenstates and eigenenergies of H”". The above
expression for the coupling (Equation (9.14)) is valid in the tunnelling limit,
i.e. when [(D|V|W}/")|/|Ewn — EX"| < 1 and [(A|V|WE)|/|Epn — EPY| < 1 for
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Figure 9.4 The bridge (protein)-mediated tunnelling matrix element between D
and A electronic states can be expressed as a sum of interfering tunnelling pathways
through localized electronic states of the bridge. This can be done by use of Green’s
function theory (Equations (9.14), (9.17), (9.18) and (9.19)). The method relates
the tunnelling matrix element to protein-bridge secondary and tertiary structure.

all [WP") and E?" (Skourtis and Beratan, 1999). Having computed Tp, via Equa-
tions (9.14) and (9.15), analysis of the coupling value in terms of bridge structure
can be done by expanding G? in Equation (9.15) to different orders of the Vi Bj
intra-bridge matrix elements. We define the diagonal bridge Green’s function,

Abr 7 ybr |1

gb (Etn) = (Etunl - H;,'a) (9.16)
and perform a Dyson expansion in V¥, i.e. G = Y"%_, g7 (V?" g"")N=1, Substi-
tuting the Dyson expansion into Equation (9.14) gives

o0
Tpa= Y Tpa(N), (9.17)
N:Nmin
where
Tpa(N)= Y _ Pathy(D, B;,. By, .... By, A) (9.18)
Pathy
and
1
Pathy (D, Bil,B,-z,...,B,-N,A):VD,B,.IEVBI.I,B,-Z..-AE‘ Vp,.a (9.19)
1] N

(AE;, = Eyn — Ep, ). Equation (9.19) defines a through-bridge tunnelling path-
way from to D to A that visits N bridge states (Figure 9.4). The tunnelling matrix
element is formally a sum of an infinite number of such tunnelling pathways,
(Equation (9.17)), but often a relatively small subset of pathways give most of the
Tp4 value. Each pathway in this subset is not necessarily of the same order in vor
as the other members of the subset, because the Vg, B; have variable values.



208 Electron transfer in proteins

Identifying the subset of the most important pathways enables the structural
analysis of T4, since each pathway represents a sequence of tunnelling steps of
the transferring charge through local bridge structural units (bonds and antibonds).
Further, since different pathways in the sum may carry opposite signs, constructive
and destructive inteferences can be analysed in terms of structure. In this method-
ology there is an arbitrariness in the choice of the bridge basis set | B;), although the
validity of Equation (9.17) in the tunnelling limit is independent of basis set. The
choice of two-centre bridge bonding and antibonding orbitals for the |B;) is use-
ful, because it allows one to identify critical through-space jumps (low-magnitude
Vg, .p;) that weaken the overall coupling strength and, thereby, to relate Tpy to
protein secondary and tertiary structure. Another choice of basis set may be the
occupied and unoccupied eigenstates of individual aminoacids or the eigenstates of
the entire bridge. The important point is that different parts of the bridge structure
provide alternative tunnelling paths for the transferring electron, which interfere
constructively and/or destructively. Because of the variability of protein structures,
there exist few pathway and multiple pathway protein ET systems (Skourtis et al.,
2006; Beratan et al., 2009; Skourtis et al., 2010). The former are more sensitive to
bridge structural changes (e.g. local mutations that introduce new through-space
jumps into the few critical pathways). The success of structural analysis methods
for Tp4 is reflected by their ability to predict protein-bridge mutations that will
reduce or enhance Tp4 and thus the ET rate.

9.4 Tunnelling matrix element fluctuations
in deep-tunnelling ET reactions

The Marcus rate expression (Equation (9.2)) takes into account the energy gap
fluctuations that are caused by thermal molecular motions (and which provide
activation events to D—A resonance conformations). For an ensemble of ET systems
in the deep-tunnelling ET regime, Equation (9.3) gives the percentage of ensemble
members for which D and A electronic-state energies cross (the D—A resonance sub-
ensemble). An assumption behind Equation (9.2) is that the D—A tunnelling matrix
element T 4 is the same for all members of the resonance sub-ensemble. However,
biomolecules are floppy, with a large range of molecular-motion timescales and
magnitudes. Therefore, each member of the resonance sub-ensemble generally sees
a different bridge structure compared with other members and has a different T4
value. In this situation the ET rate expression should be modified to account for
Tp fluctuation effects. In the simplest theory of coupling-modulated rates,

21
kpa = ——(T5a)0i¢ (9.20)
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where (. ..) denotes ensemble average ((Daizadeh et al., 1997; Troisi et al., 2003,
2004; Nishioka et al., 2005; Skourtis et al., 2005) and (Skourtis et al., 2006; Beratan
et al., 2009; Skourtis et al., 2010) for reviews). The above expression for the rate
is valid in the slow coupling-fluctuation regime. We define the average timescale
of significant coupling fluctuations (z..,,;) as the shortest decay time of the Tpu
correlation function, < Tpa(#)Tpa(0) >. We define the average amount of time
that D and A remain in resonance as Tpc = /i/oay >~ h/+/2 KT (the Franck—
Condon time) (Troisi et al., 2003; Skourtis et al., 2005) ((Skourtis et al., 2006,
2010) for reviews). In the slow coupling-fluctuation regime, 7oy > Trc, Which
means that for each D-A energy crossing event, the D and A states see a static
Tp 4 value (not necessarily the same for all sub-ensemble members). Usually .,
is determined by valence angle motions, because these motions destroy atomic
orbital overlaps and modulate atomic orbital-to-orbital couplings (Skourtis et al.,
2005). The periods of valence angle motions are of the order of tens of fs, so that
Teoupt > 10 fs. For solution-phase ET, trc =h/+/2AKpT = fs, because » ~ 1 eV
(Skourtis et al., 2005). Therefore, the slow-coupling fluctuation regime is quite
common in molecular ET (Skourtis et al., 2006, 2010).

In Equation (9.20), (T3,) = (Tpa)* + o},. The small and large coupling-
fluctuation regimes correspond to ops < (Tpa) and opa > (Tpa), respectively
(Balabin and Onuchic, 2000; Troisi et al., 2004; Skourtis et al., 2005, 2006; Bal-
abin et al., 2008; Skourtis et al., 2010). When ops > (Tpa), the most populated
low-energy structures of the ET-system ensemble do not provide the largest T4
values. For significant ET to take place, the system has to access higher energy
molecular conformations that enhance Tp 4 (as well as conformations that bring D—
A resonance). Therefore, the coupling fluctuations op 4 introduce an additional (to
p;’%‘) temperature dependence to the rate that modifies the rate’s activation energy
U ((Skourtis er al., 2006, 2010) for reviews). The occurrence of large coupling-
fluctuations depends on the D—A distance Rp 4 and on the bridge medium (Balabin
et al., 2008). The large fluctuation regime ops > (Tp4) sets in, on average, for
Rpa > R., where R. >~ 3-4 A for water-mediated tunnelling and R, ~ 6-7 A for
protein-mediated tunnelling with metal donors and acceptors (Balabin ez al., 2008).
R. is a statistically derived medium-dependent quantity which measures the bridge
length beyond which T 4 fluctuations are likely to become important due to bridge
motion. For example, for water-mediated tunnelling, R, ~ 3-4 A reflects the size
of the non-covalently bound bridge units (i.e. the size of the water molecule). As
discussed in the previous section, the structural analysis of Tp4 is important for
relating biomolecular structure to the ET rate. However, in the large coupling-
fluctuation regime, applying structural analysis methods to the minimum energy
(or crystallographic) ET-molecule structures cannot reveal the important tunnelling
pathways for ET, because the important pathways are provided by higher-energy
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Figure 9.5 (a) Probability densities of Tp, for two distinct D-protein-A systems
(I and II) with the same average D-to-A distances (and D/A moieties), the same
activation energies, but different protein-bridge structures. The densities are cen-
tred at distinct Tp, values due to bridge structural differences between the two
systems. The widths op 4 of the probability densities are measures of the strengths
of Tp, fluctuations for each of the systems. The small Tp,4 fluctuation regime
shown in (a) means that the widths of P;(Tp4) and P;;(Tp,) are not large enough
to make T7)° (1) >~ T}x*(I11). Therefore, the differences in the Tp, values of the
two systems cause differences in the D-to-A rates through 77}° (Equation (9.20)).
(b) The case for which the op4s become large (due to an increase in D—A dis-
tance, the floppiness of the bridge, or an increase in temperature). In this case,
T (1) = T)%*(I1) and bridge structural fluctuations that cause fluctuations in
Tpa wash out the differences of T}"}° and thus in the ET rates.

molecular conformations. Therefore, it is necessary to find these conformations
(via molecular dynamics simulations, if possible), and then to do Tp4 structural
analysis on them, or to do a structural analysis of the statistical quantity (T3 ,) that
enters the rate. Methods that do a structural analysis of (T2 ,) have appeared in the
literature (Prytkova et al., 2007; Nishioka and Kakitani, 2008).

In the large coupling-fluctuation regime (ops > (Tp4)), an important question
is whether the coupling fluctuations wash out structural differences in 74 among
ET species (Balabin et al., 2008; Skourtis ef al., 2010). A way to visualize this
effect is to consider ensemble probability densities of Tp, (Figure 9.5) ((Balabin
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et al., 2008) supporting information). Suppose two different D-bridge-A systems
(ET species (I) and (II)) have identical average Rps and UJ values, such that
differences in their ET rates may only be due to their bridge-mediated electronic
couplings Tp4. If we plot the ensemble probability densities of T4 for the two
species, denoted P;(Tpa) and P;;(Tpa), we will find that the densities have finite
widths opa (due to coupling fluctuations) and different averages (Tpa) (due to
structural differences). Figure 9.5a shows the small coupling-fluctuation regime

(opa < (Tpa)) where the probability-density widths op4 are small enough such

that the rms coupling values 75" = /(T3 ,) of the two species are distinguish-
able. In this case, differences in the electronic couplings will lead to distinct ET
rates (Equation (9.20)). Figure 9.5b shows a case with ops > (Tp4) such that
the probability densities overlap substantially and 7/} (1) >~ (T;x*(I11). In this
case coupling fluctuations wash out the structural differences in the couplings
and in the corresponding rates (an average-tunnelling-medium picture would then
describe the couplings for both I and II, Equation (9.1)). This limit has not yet
been encountered for protein ET in the deep-tunnelling regime (i.e. metal D and
A (Balabin et al., 2008)). To explore coupling fluctuation effects on rates one can
try to enhance bridge motions (op4) by increasing the temperature of the system.
Another, more direct method is the IR-induced modulation of o4, where specific
bridge vibrations in regions critical to the coupling pathways are vibrationally
excited by an IR pulse (Skourtis ef al., 2004; Skourtis and Beratan, 2007; Xiao
et al., 2009). This method has been realized experimentally for small-molecule
ET systems, where it was shown that IR excitation of specific bridge vibrations
changes the ET rate (Lin ef al., 2009).

9.5 Vibrational quantum effects and inelastic tunnelling

Inderiving Equation (9.2) it was assumed that the reaction coordinate Q is classical.
However, there may exist quantum degrees of freedom which are perturbed by ET,
such as a high frequency vibrational mode with iw > KgT, whose equilibrium
position changes upon ET from D to A. In this situation the reaction coordinate has
to be extended to include the quantum degree of freedom (Jortner and Bixon, 1999;
Kuznetsov and Ulstrup, 1999; May and Kiihn, 2011; Nitzan, 2006). For simplicity,
let us assume that there is one high frequency vibrational mode and denote by y
the displacement of the mode from its equilibrium position when the electron is in
| D). The mode Hamiltonian is

h2 242 )
Dy mw°y
=+ = ) () ), ©9.21)

[flvi

nD:0
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where |np(y)) denotes the vibrational (mode) eigenstates and €, = hw(np + 1/2)
the vibrational eigenenergies. When the electron transfers from D to A, the mode
feels a force F4. The equilibrium position of the mode thus shifts from yj; = 0 to
vy = Fa/ma?. The Hamiltonian for the mode—electron interaction is given by

AV = —F,$|A)(A]. (9.22)

With the electron in |A), the vibrational Hamiltonian is A + (A|H¢~"'|A) and
its eigenstates are |n4(y)). They are related to |np(y)) by [n4(y)) = [np(y — y5)
and their eigenenergies are €,, = €,, — Fﬁ /(2mw?). If we assume that the mode is
thermally equilibrated prior to ET, then the ET rate from D to A can be written as a
thermally weighted sum of independent rates for vibronic (electronic-vibrational)
transitions from initial vibronic states |D;np) = |D)|np) to final vibronic states
|Asna) = |A)|na),

kpa=)_ Pu, Y _k(D.np— A,ny). (9.23)

np na

P,, is the thermal equilibrium probability of state |np) and k(D, np — A, ny)is
the rate for the vibronic transition |D;np) — |A;n,),

2
KD, np = A,na) = —Tps (FOR, pi¢(Donp — A,na), (9.24)
where (FC)ir¢,. = |(np|na)|* is a quantum Franck—Condon factor. It is the

square of the overlap between the undisplaced and displaced mode wavefunc-
tions, i.e. |(np(¥)|np(y — yzq)) |2. Franck—Condon factors depend on the mode fre-
quency and the (inner-sphere) reorganization energy, A" = mw?(yy! — y5)?/2 =
Fj/(2ma)2). For example, (FC)ZZ“ZO’HA = (exp(—=A" [hw))(M" [iw)™ /n ). The
term p;f“CS(D, np — A, n,) in Equation (9.24) is the Boltzmann activation fac-
tor for the classical reaction coordinate, given by Equation (9.3), with a modified

activation energy,
U“(D,np — A, ng) = (UP" + €,,) — (UR" + €,) +1)° /41K 5T,
(9.25)

instead of UJ (Equation (9.4)). For all channels with €,, = €,, the activation
energy is the same as for the classical reaction coordinate, i.e. U*“/(D,np —
A, na) = US. These channels describe elastic tunnelling with respect to this mode
because the mode does not lose or gain energy due to ET. All channels for which
€n, 7 €,, describe inelastic tunnelling, because the perturbation of the mode upon
arrival of the electron at A causes the exchange of energy (in multiples of iw)
between the mode and the electron. Inelastic channels have modified activation
energies and can be activationless even if the elastic channels are activated.
For example, suppose that U™ — U™ = 3, such that in Equation (9.4),
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Ul = A. In this case the elastic rate is suppressed because p;’g x exp(—A/KpT)
and A > KpT. Consider an inelastic channel for which €,, >~ €,, + 2A. Then
U*(D,np — A,ns) >~ 0 and this inelastic channel becomes activationless
because the electron has given energy to the mode. If for this channel (FC)}",
is not small then the corresponding inelastic rate will be significant. This type of
inelastic ET enhances the ET rate in the inverted region where the elastic channels
are suppressed because U™ — U™ > ).

It is also possible that the quantum vibrational mode coupled to ET is a bridge-
localized mode that is perturbed by the electronic occupation of a bridge electronic
state |B) ((Onuchic and Da Gama, 1986; Medvedev and Stuchebrukhov, 1997,
Troisi et al., 2003; Skourtis et al., 2004; Teklos and Skourtis, 2005; Nishioka
et al., 2005; Skourtis et al., 2005; Skourtis and Beratan, 2007; Xiao et al., 2009)
and (Skourtis er al., 2006, 2010) for reviews). Consider the simplest case of a
single bridge electronic state | B) where HY = Eg|B)(B|and V = Vb.g|D)(B| +
Va.p|D){B| + h.c. in Equations (9.10) and (9.13). When | B) is not occupied (i.e.
the electronic state is either |D) or |A)), the vibrational Hamiltonian is AY =
ijo €,|n(¥))(n(y)|, where |n(y)) denote the vibrational (mode) eigenstates and

€, = how(n + 1/2) the vibrational eigenenergies. When the electron is at |B) it
exerts a force Fg on the mode, i.e.

H™" = —Fp$|B)(B|. (9.26)

The mode Hamiltonian then becomes HY + (B|H¢~V'|B), with eigenstates
In(y — ygq ) where y;q = Fp/mw? and eigenenergies €, — F ; /(2mw?). The total
electron-vibrational Hamiltonian of the bridge is H br c=Umin 4 H + AV +
He=Y | with eigenstates |B;n(y — y5)) = |B)|n(y — yg)) (UF™ is the minimum
of the bridge-electronic-state Born—Oppenheimer surface).

As the electron tunnels through the bridge it may exchange energy with this
bridge mode and cause a transition from an initial state |i g(y)) to a final state | f5(y))
of the undisplaced mode. Elastic tunnelling corresponds to |ig(y)) = | fz(y)) and
inelastic to |ig(y)) # | f(y)). If we assume that the mode is thermally equilibrated
prior to ET, then the ET rate from D to A can be written as a thermally weighted sum
of independent rates for vibronic transitions from initial vibronic states |D;ig) =
|D)|ig) to final vibronic states |A; fg) = |A)| fB),

kpa =Y P, > k(D,ig— A, fp). (9.27)
iB iB
P;, is the thermal equilibrium probability of state |ig) and k(D, ip — A, fp)is the
rate for the vibronic transition |D;ig) — |A; f5), given by

2

k(D9iB — A? fB): h

(D;iglT|A; f8)12054(D,ig — A, fz).  (9.28)
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p;‘;l?(D, ipg = A, fp) is the Boltzmann activation factor (Equation (9.3)) with
an activation energy similar to (9.25) where ¢,, is replaced by ¢;, and €,, by
€r,- (D3 s|T|A; f5) is a vibronic bridge-mediated tunnelling matrix element that
contains the vibronic bridge Green’s function, i.e.

(D;ig|T|A; f3) = (D3ig|VGY_ (Ewn)V|A; f3), (9.29)
where
A P - Bin(y — yg')) (B;n(y — yi')|
Gbr (Eun) = ELmI_Hbr i 1: | -B 2 >
- ) = (5 ) = L (U + 0 — Fofmo?)
(9.30)

(here E,,, is the energy of the initial (D) and final (A) vibronic states at resonance).
Substituting Equation (9.30) into (9.29) gives

(isMn(y =y n(y = y5) | f5()
Eun — (Up™ + €, — Fg/2ma?))

(D;ig|T|A; f8) = VsV . Z

n

El

(9.31)

(Skourtis et al., 2004, 2006; Skourtis and Beratan, 2007; Xiao et al., 2009; Skourtis
et al., 2010). The above expression is a generalization of the elastic 74 formulae
(Equations (9.14) and (9.15)). The relevance of inelastic-tunnelling ET in bio-
logical processes is largely unexplored (for recent developments in olfaction see
Chapter 12).

9.6 Biological ET chains with tunnelling and hopping steps
through the protein medium

ET reactions mediated by electron tunnelling where the D and A moieties are
metal atoms and the tunnelling barrier is protein are often the components of
biological ET chains (Bendall, 1996; Page et al., 1999; Blankenship, 2002; Gray
and Winkler, 2003, 2005). The latter can be thought of as networks of D—A pairs
connected by forward (kp_, 4) and backward (k4_, p) tunnelling-mediated ET rates
where, usually, kp_. 4 > ka_.p (Figure 9.1b). In these rate networks the role of
the protein medium is to provide a scaffold for the stabilization of the D and A
locations in space, to influence the energy gap and reorganization energy of each D—
A tunnelling step and to provide the tunnelling barrier (tunnelling matrix element
value) for each tunnelling step. The advantage of having electron tunnelling as
the basic ET transfer mechanism of the elementary transfer steps in biological ET
chains is that tunnelling forces the electron to occupy only the D and A moieties of
the rate network and to avoid the protein bridge. Therefore, biological ET chains
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are designed to transfer electrons to specific locations (the D/A moieties) and along
specific directions (defined by the sequences D and A pairs).

There is compelling evidence that metal-protein—metal ET chains can support
very long distance (micron scale) ET. This situation can arise in extra-cellular ET
(EET) processes such as the respiratory chains of dissimilatory metal-reducing
bacteria (DMRB) (Lovley and Phillips, 1988; Myers and Nealson, 1988; Nealson
et al.,2002; Gralnick and Newman, 2007). In DMRB, the final respiratory-electron
acceptors of the respiratory chains lie outside the cell and are often environmental
metal oxides. When there are no soluble electron acceptors in the immediate cell
environment of a DMRB, the bacterium can grow very long pilus-like appendages,
(bacterial nanowires), in order to find environmental metal oxides and to transfer
its electrons to them (Reguera er al., 2005; Gorby et al., 2006; El-Naggar et al.,
2008, 2010; Malvankar et al., 2011). Conductive probe atomic force microscopy
has been used to measure the electron current along bacterial nanowires of the
DMRB S. Oneidensis MR-1 (El-Naggar et al., 2010). In El-Naggar et al. (2010),
bacterial nanowires were connected to Au electrodes and it was shown that nA
currents could be sustained over bacterial wire lengths of 0.6 microns under a bias
voltage of 100 mV (resistivity 1 € cm). There is evidence that such transport is
mediated by multi-heme cytochromes (Fe-containing proteins) because mutants
of the bacterium which did not express two types of decaheme cytochromes were
not conductive (El-Naggar ef al., 2010). Although the structures and assembly
architectures of these proteins within the nanowires are still unknown (Fredrickson
et al., 2008), theoretical models of bacterial nanowire transport (Strycharz-Glaven
et al., 2011; Polizzi et al., 2012; Pirbadian and El-Naggar, 2012) suggest that
a multi-site hopping mechanism can explain the observed current magnitudes
(El-Naggar et al., 2010). If each each site-to-site hopping step is D-A tunnelling
(e.g. Fe to Fe), then the site-to-site rates must lie in the fast limit of biological ET
(rate™! ~ 1-10 ps). Such rates require short (~nm) D—A distances and relatively
small reorganization energies (less than eV). Therefore, the ET proteins responsible
for EET must be closely packed within the bacterial nanowire. Another mechanism
of transport that has been proposed for EET is band-like pi-stacking conductivity
(Malvankar ef al., 2011). However, there is no theoretical analysis yet supporting
this mechanism (Malvankar et al., 2012; Strycharz-Glaven and Tender, 2012).
The observed micron-sized transport distances of EET in bacterial nanowires raise
new and exciting questions in the field of ET, as they force us to re-think charge
transport optimization on a cellular length scale. Understanding EET is important
for biogeochemistry and for energy-harvesting and bioelectrochemical devices
(Hau and Gralnick, 2007; Logan, 2009).

Although metal-protein—metal ET chains are very common in biology, there are
biological ET chains examples where the D and A are aminoacid moieties or other
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organic molecules rather than metals. In these cases, for many ensemble members,
the D and A electronic states will have similar energies to the bridge electronic
states (i.e. AEg < KT or, more precisely, (AU) < oay, where AU refers to
D-B and A-B energy gaps). Then, ET from D to A cannot be described as a single
tunnelling step, since there will be a high number of ensemble members for which D
(or A) become resonant to a protein bridge state (B). For these ensemble members
the electron (hole) will hop from D to B and then from B to A. Therefore the
Tpp and T4 p electronic couplings are important to the overall transfer, rather than
Tpa (Skourtis and Onuchic, 1993; Skourtis et al., 1993; Skourtis and Mukamel,
1995; Xie et al., 1999; Skourtis et al., 2001). In general, when AEp < KT,
through-bridge hopping takes over and the fluctuations that minimize AEpg are
more important to the overall rate than the fluctuations in couplings. It is well
established that base-mediated hole hopping is important for long-distance hole
transfer in DNA (Schuster, 2004). Hopping within protein bridges, with aminoacids
acting as D and A, is encountered in biological systems such as DNA photolyases
and cryptochromes (Sancar, 2003; Kao et al., 2008; Brettel and Byrdin, 2010), in
some ribonuclease reductases (Stubbe et al., 2002), and in synthetically-modified
azurin (Shih ez al., 2008; Gray and Winkler, 2009; Winkler and Gray, 2010). These
systems support charge transport reactions involving hole hopping along tyrosyl
or tryptophan aminoacids, which act as hole donors and acceptors (see Chapter 10
for relevanse to magnetoreception).

9.7 Conclusions

Because of the large variety of biomolecular ET architectures, the mechanisms
of biological ET are variable, ranging from coherent deep tunnelling to thermally
activated hopping. This chapter has focused on protein-mediated ET and describes
ET reactions for which the timescale of ET is long compared to that of ther-
mal equilibration of the ET reaction coordinate on the Up energy surface. This
assumption leads to the Boltzmann activation factors in the rate expressions (Equa-
tions (9.2), (9.24)). It has long been recognized that thermal equilibration of the
reaction coordinate is not a valid assumption for fast ET reactions, for which the
timescale of ET is similar to a timescale of relaxation of the reaction coordinate
motions on the Up surface. This is often the case with fast (ps) photo-excited
ET, where ET competes with vibrational relaxation. Examples of such reactions
are the primary charge separation in photosynthesis (Blankenship, 2002) and the
flavin-to-Trp hole transfer step in cryptochromes and DNA photoylases (Sancar,
2003; Kao et al., 2008; Brettel and Byrdin, 2010). These cases need theoretical and
computational methods that go beyond the Marcus-type non-adiabatic rate expres-
sions and that involve density matrix approaches with non-equilibrium vibrational
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dynamics (Warshel et al., 1989; Schulten and Tesch, 1991; Xu and Schulten, 1994;
Jortner and Bixon, 1999; Sumi and Kakitani, 2001; Warshel et al., 2001), or direct
propagation of the electronic and nuclear degrees of freedom (e.g. (Woiczikowski
etal.,2011)). However, in all types of ET reactions, the quantum-mechanical nature
of the electron (and in some cases of the high-frequency molecular vibrations) play
a central role in determining the ET rate. An interesting and largely unanswered
question is how evolution has optimized biomolecular ET assemblies and whether
this optimization involves the quantum or the classical components of the ET rate.
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A chemical compass for bird navigation

ILIA A. SOLOV’YOV, THORSTEN RITZ, KLAUS SCHULTEN
AND PETER J. HORE

10.1 Introduction

Migratory birds travel spectacular distances each year, navigating and orienting
by a variety of means, most of which are poorly understood. Among these is a
remarkable ability to perceive the intensity and direction of the Earth’s magnetic
field (Mouritsen and Ritz, 2005; Wiltschko and Wiltschko, 2006; Johnsen and
Lohmann, 2008). Biologically credible mechanisms for the detection of such a
weak field (25-65 uT) are scarce, and in recent years just two proposals have
emerged as front-runners. One, essentially classical, centers on clusters of magnetic
iron-containing particles in the upper beak, which appear to act as a magnetometer
for determining geographical position (Kirschvink and Gould, 1981; Kirschvink
et al., 2001; Fleissner et al., 2007; Solov’yov and Greiner, 2007; Walker, 2008;
Solov’yov and Greiner, 2009a,b; Falkenberg et al., 2010). The other relies on the
quantum spin dynamics of transient photoinduced radical pairs (Schulten et al.,
1978; Schulten, 1982; Schulten and Windemuth, 1986; Ritz et al., 2000b; Cintolesi
et al., 2003; Moller et al., 2004; Mouritsen et al., 2004; Heyers et al., 2007;
Liedvogel et al., 2007b,a; Solov’yov et al., 2007; Feenders et al., 2008; Maeda
et al., 2008; Solov’yov and Schulten, 2009; Ritz ef al., 2009; Rodgers and Hore,
2009; Zapka et al., 2009). Originally suggested by Schulten in 1978 (Schulten
et al., 1978) as the basis of the avian magnetic compass sensor, this mechanism
gained support from the subsequent observation that the compass is light dependent
(Wiltschko et al., 1993) (for a review see e.g. (Wiltschko er al., 2010)). The
radical pair hypothesis began to attract increased interest following the proposal
in 2000 that free radical chemistry could occur in the bird’s retina, initiated by
photoexcitation of cryptochrome, a specialized photoreceptor protein (Ritz et al.,
2000b).
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Figure 10.1 A simple radical pair reaction scheme.

The quantum evolution of highly non-equilibrium electron spin states of pairs of
transient spin-correlated radicals is conjectured to change the yields of their reaction
products in ‘wet, warm and noisy’ biological surroundings, even though the Zeeman
interaction with the geomagnetic field is more than six orders of magnitude smaller
than the thermal energy per molecule (kg 7). The classical thermodynamic effect
of such minuscule interactions on the positions of chemical equilibria and the rates
of activated reactions would be entirely negligible. The radical pair mechanism is
the only well-established way in which an external magnetic field can influence
a chemical reaction (Steiner and Ulrich, 1989; Brocklehurst, 2002; Timmel and
Henbest, 2004; Rodgers, 2009).

The origin of the magnetic field effect (MFE) can be understood by reference
to the simple reaction scheme shown in Figure 10.1: (1) A pair of radicals A°B*®
is formed (e.g. by an electron transfer reaction) in an entangled state which may
be either singlet (spin quantum number, S = 0) or triplet (S = 1), depending on
the spin of the precursor molecule(s), which is conserved in the reaction. (2) The
radical pair is able to recombine from both the S and T states to form chemically
distinct products (°P and TP in Figure 10.1) with rate constants ks and kr respec-
tively. (3) S and T radical pairs coherently interconvert under the influence of local
magnetic fields arising from hyperfine interactions of the electron spins with mag-
netic nuclei in the two radicals. As a consequence, the fractional yields of the two
products are determined not only by kg and kr, but also by the extent and timing
of the magnetically controlled S<>T interconversion step. (4) This step is also,
crucially, enhanced or hindered by electron Zeeman interactions with an external
magnetic field. Thus, the fractional yields of the two products and the lifetime of
the radical pair become magnetic field dependent. If the radical pair is immobi-
lized, the tensorial nature of the hyperfine interactions implies a directionality in
the response to an external magnetic field, which could form the basis of a compass
sensor (Timmel et al., 2001; Cintolesi et al., 2003; Lau et al., 2010; Hill and Ritz,
2010; Solov’yov et al., 2010). The theory of the radical pair mechanism is well
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developed and has been successfully used over the last 40 years for the quantitative
interpretation of a variety of in vitro experimental data — not just MFEs, but also
electron and nuclear spin polarizations (Muus ef al., 1977) and magnetic isotope
effects (Salikhov, 1996).

There is no doubt whatsoever that radical pair MFEs rely on coherent quantum
dynamics. When a radical pair is formed in a spin-conserving reaction from a
singlet or triplet precursor, it is created in a non-stationary coherent superposition
of the eigenstates of its spin Hamiltonian. As a consequence, the spin state of the
radical pair oscillates coherently at frequencies and with amplitudes determined by
the internal and external magnetic interactions. The frequencies typically fall in the
107-10° Hz range and can be significantly faster than the spin relaxation processes
(often <107 s~!) that cause decoherence and loss of spin-correlation.' In many
cases, there is ample time for weak magnetic interactions to influence the spin
dynamics before the radicals react, and therefore to affect the product yields. The
clearest experimental demonstrations of this fundamentally quantum-mechanical
behavior, without which there would be no significant response to an external mag-
netic field, are the observations of quantum beats in the recombination luminescence
of radical ion pairs in non-polar solvents (Grigoryants et al., 1995; Bagryansky
et al., 2000, 2007) and the detection by EPR (electron paramagnetic resonance) of
zero-quantum coherences in radical pairs in photosynthetic reaction centers (Bittl
and Kothe, 1991; Kothe et al., 1991; Wang et al., 1992; Dzuba et al., 1996).

In most demonstrations of MFEs on radical pair reactions, the applied magnetic
field is comparable to or stronger than the internal hyperfine interactions, producing
significant changes in the spin energy levels of the radical pair and so altering
the yields of reaction products. One might therefore expect MFEs to be rather
slight when the electron Zeeman interaction is smaller than most of the hyperfine
interactions, as is probably the case for an in vivo radical pair magnetoreceptor.
In fact, a somewhat different mechanism, known as the ‘low field effect’ (LFE)
(Brocklehurst, 1976; Timmel et al., 1998; Eveson et al., 2000), comes into play in
this regime.

In the following, we first summarize the origin and properties of the LFE, then
review the important physical and chemical constraints on a possible radical-pair-
based compass sensor and discuss the suggestion that radical pairs in cryptochromes
might provide a biological realization for a magnetic compass. We then summarize
pertinent in vitro experimental data, and discuss their relevance to detecting the
direction of the Earth’s magnetic field. Finally, we review the current evidence
supporting a role for radical pair reactions in the magnetic compass of birds.

! The term ‘spin relaxation’ is used here in the sense normally employed in magnetic resonance spectroscopy,
to denote the return of the radical pair electron—nuclear spin system to thermal equilibrium as a result of the
modulation of spin interactions by stochastic molecular motions.
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10.2 Theoretical basis for a chemical compass
10.2.1 Theoretical model and origin of the low field effect

Following Timmel et al. (Timmel et al., 1998), we first outline a simple theoretical
model of radical pair spin dynamics focusing on the effects of weak applied mag-
netic fields. Imagine a pair of radicals produced at time ¢t = 0 in a pure S state, e.g.
by photoinduced inter- or intramolecular electron transfer. The density operator of
the spin system is then simply proportional to the singlet projection operator, PS,

. s 1 ¥
pO) = - = ; ISv)(Sv], (10.1)

where the sum runs over the M nuclear spin configurations, v. The probability
that the radical pair is found to be singlet at some later time is determined by the
spin Hamiltonian H, which we assume to be a time-independent sum of hyperfine
(FIHF) and electron Zeeman (FIZ) contributions:

<ﬁs>(t) = Tr[pslb\([)] = Tr[ﬁs —iHt A(O)elHt]
= %Tr[ﬁse_iﬁ’ﬁseim]. (10.2)

Defining P = (m|PS|n) and w,,, = (m|H|m) — (n|H|n), where |m) and |n) are
eigenstates of H, we have (Timmel et al., 1998),

AM 4AM

(BS)(t) = —ZZ\ P cos(@mt) . (10.3)

m=1 n=1

In general, neither Hyr nor Hz, commutes with PS, meaning that the spin system
is formed in a non-stationary state. The coherent superpositions PS5 oscillate
at frequencies w,,,, causing S<>T interconversion (Timmel et al., 1998). In the
absence of an applied magnetic field, this coherent time dependence, driven by
the hyperfine interactions, is typically in the MHz range. Assuming, for simplicity,
that the S and T states recombine spin-selectively with the same first-order rate
constant k (k = ks = k, in Figure 10.1), the ultimate yield of the reaction product
formed from the S state of the radical pair (the ‘singlet yield’) is given by
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Thus, the contribution of a coherence P3, to ®g is determined by its frequency
relative to the recombination rate. If k£ is much larger than all |w,, |, then all
f(wmn) =1, and &g = 1. For the hyperfine and Zeeman interactions to have a
significant effect on the product yields (i.e. s < 1), the recombination must be
slow enough that k < |w,,, | for at least some (m, n), to allow time for the coherent
spin dynamics to drive the spin system out of the S state.

The origin of the effect of a very weak applied magnetic field may now be
seen (Timmel ef al., 1998). In zero-field, there will, in general, be some coherent
superpositions that do not oscillate, because w,,, = 0. If an applied field lifts such a
degeneracy, the coherence can then evolve and contribute to S<>T interconversion.
Provided the splitting so produced (w;,,) is not much smaller than k, this will result
in a reduction in ®g (if the initial state of the pair is S). For a sufficiently long-
lived radical pair, even a field much weaker than the hyperfine interactions can
“unlock” zero-frequency coherences in this way. The energy-level shifts produced
by the field are of the order of the electron Zeeman frequency, y.By/2m, i.e.
~1.4 MHz for a 50 uT field. Such a weak field can therefore be expected to have
a significant effect on ®g if the radical lifetime k~! exceeds about 100 ns. An
additional condition for a significant LFE is that the rate of electron spin relaxation
R must also be slow enough (R~! > 100 ns) to allow the electron—nuclear spin
coherence to persist throughout the lifetime of the radical pair. Depending on the
number and distribution of hyperfine couplings, changes in ®g of up to ~50%
are predicted (Timmel er al., 1998). For examples of observations of LFEs on
chemical reactions in solution, see (Batchelor et al., 1993; Saik et al., 1995; Stass
et al., 1995a,b; Sacher and Grampp, 1997; Eveson et al., 2000; Henbest et al.,
2006; Rodgers et al., 2007).

10.2.2 Requirements for a magnetic compass

To form the basis of an effective compass magnetoreceptor, a radical pair reaction
must satisfy a number of conditions (Rodgers and Hore, 2009), which fall into
five broad overlapping areas: chemical, magnetic, kinetic, structural and dynamic.
(1) The radical pair must be formed in a coherent superposition of its electron—
nuclear spin states and at least one of the S and T states should undergo a spin-
selective reaction that the other cannot. (2) There should be suitable anisotropic
hyperfine interactions. (3) The lifetime of the radical pair must be long enough to
allow the weak magnetic field to affect the spin dynamics, and the rate constants
ks and kt should not be too dissimilar. (4) The Zeeman interaction can only
modulate the S<>T interconversion if inter-radical spin—spin (exchange and dipolar)
interactions are sufficiently weak. (5) To deliver directional information, the radical
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pairs must be aligned and immobilized and the spin system should relax sufficiently
slowly. These criteria are interlinked and not automatically mutually compatible.
For example, (3) places an upper limit on the separation of the radicals, while
(4) may require larger inter-radical distances. Both (3) and (4) may constrain the
chemistry, e.g. by requiring the magnetically sensitive radical pair to be formed
by sequential electron transfers rather than in a single step (Solov’yov et al.,
2007; Rodgers and Hore, 2009). Motional modulation of anisotropic hyperfine
interactions is a major source of spin relaxation in radicals so that (2) may be
incompatible with (5) unless the radicals are strongly immobilized.

Most of these factors and others have been investigated experimentally or the-
oretically (Timmel ef al., 1998; Solov’yov et al., 2007; Efimova and Hore, 2008;
Lau et al., 2010; Hill and Ritz, 2010; Solov’yov et al., 2010). Our impression is
that there is no obvious “show-stopper” as far as a biological magnetic compass
is concerned and that cryptochromes (see below) appear to be fit for this purpose.
One great area of uncertainty, though, is how large the primary effect needs to
be. In practice, isotropic LFEs in vitro rarely exceed 10% and are smaller still in
magnetic fields approaching 50 pT. Anisotropic effects are likely to be no bigger.
As so little is known about cryptochrome signalling, it is unclear whether magnetic
responses at the 1-10% level would be sufficient. However, a few semi-quantitative
conclusions can be drawn from the above list (Rodgers and Hore, 2009). For exam-
ple, at 50 uT, the MFE, is expected to saturate when the spin coherence persists
for roughly 1 ps, so that there would be little evolutionary pressure for the lifetime
or the relaxation time to be much longer than this, and a sensitivity penalty if they
were much shorter. Perhaps coincidentally, the lifetime of the magnetically sensi-
tive radical pair in DNA photolyase (a close relation of cryptochrome, see below)
is about 1 us in vitro (Henbest et al., 2008).

10.2.3 Cryptochrome magnetoreception

Ritz et al. (Ritz et al., 2000b) proposed in 2000 that radical pairs formed pho-
tochemically in the protein cryptochrome could form the basis of the compass
magnetoreceptor. No other candidate molecule has been put forward in the inter-
vening years. Cryptochromes occur in several of the organisms for which magnetic
field effects have been reported, including fruit flies, plants and migratory birds
and have been shown to act as photoreceptors in a variety of species (Lin and
Todo, 2005). In plants, they serve as photosensors for a number of developmental
responses such as hypocotyl growth, leaf expansion, induction of flowering time
and entrainment of the circadian clock. In insects, cryptochromes act as circadian
photoreceptors.
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Figure 10.2 (a) Structure of cryptochrome, the protein implicated in avian magne-
toreception. Cryptochrome internally binds the FAD (flavin adenine dinucleotide)
cofactor which governs the functioning of the protein. The signalling state is
achieved via a light-induced photoreduction pathway involving a chain of three
tryptophan amino acids, indicated as Trpsgo, Trp377 and Trpsp4 using the amino
acid sequence numbers for Arabidopsis thaliana cryptochrome-1. (b) The cryp-
tochrome photocycle. The signalling function of cryptochrome is controlled by
the oxidation state of its flavin cofactor, which can exist in three interconvertible
redox forms, FAD, FADH® (or FAD*~), and FADH™ (or FADH,) (Bouly et al.,
2007; Kao et al., 2008; O’Day, 2008). The FAD form is inactive and is thought
to be the resting state of the protein in the dark. Blue light triggers photoreduc-
tion of FAD to establish a photo-equilibrium that favors FADH*® over FAD and
FADH™. The semiquinone radical FADH? state is the signalling state of the protein.
FADH? can be further reduced to the inactive FADH™ form. The FAD—FADH*
and FADH®*—FADH™ reactions may be affected by an external magnetic field.
The excited state of the flavin cofactor, FAD* is a short-lived intermediate in the
photocycle.

Light-induced cryptochrome signalling appears to proceed via electron transfer
involving a chain of three tryptophan amino acids (the Trp-triad) and the cofactor,
flavin adenine dinucleotide (FAD) (Giovani et al., 2003; Bouly et al., 2007; Hoang
et al., 2008; Biskup et al., 2009), shown in Figure 10.2a. Photo-excitation of the
FAD in its fully oxidized state leads to the formation of three consecutive radical
pairs by donation of an electron along the Trp-triad to the FAD to form the FADH*®
radical, as illustrated in Figure 10.2b. It is this state that is thought to be responsible
for biological signalling. Any factor that increases (decreases) the yield of this state
of the protein should result in an increased (decreased) cryptochrome signal for a
given light intensity. In principle, an external magnetic field could alter the yield
of the signalling state via its effect on the flavin—tryptophan radical pair (Cintolesi
etal.,2003; Solov’yov et al.,2007). In vitro, the FADH® state of cryptochrome has a
lifetime of about 1-10 ms with respect to reversion to the FAD state (Giovani et al.,
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2003; Liedvogel et al., 2007a; Biskup et al., 2009). There has been speculation that
this back-reaction might involve the superoxide radical O3~ (Ritz ez al., 2009), and
could also therefore be modulated by the Earth’s magnetic field (Hogben er al.,
2009; Solov’yov and Schulten, 2009). If external fields influence the rate of flavin
reoxidation, they could alter the yield of the signalling state and so affect biological
activity.

Experimental evidence provides some support for a magnetosensing role for
cryptochrome. Growth of Arabidopsis thaliana seedlings in a 500 uT magnetic
field has been reported to enhance cryptochrome activity, such that the plants
responded as though they had been exposed to higher intensities of blue light than
was in fact the case (Ahmad er al., 2007). Magnetically enhanced cryptochrome
activity was manifest in shorter hypocotyls and higher anthocyanin levels compared
with control plants grown under identical blue-light intensities in weaker magnetic
fields. However, none of these effects could be replicated in a subsequent study,
which also failed to detect responses using substantially stronger magnetic fields
where radical pair effects might be expected to be more pronounced (Harris et al.,
2009). Related effects have been found for the circadian clocks of fruit flies in which
cryptochrome acts as a photoreceptor (Yoshii ef al., 2009). In response to blue
light, cryptochrome activity increases the circadian period in Drosophila, an effect
that was found to be more pronounced in the presence of a weak magnetic field,
indicating enhanced cryptochrome signalling. Cryptochrome knock-out mutants
showed no magnetic field sensitivity, while flies overexpressing cryptochrome in
the clock neurons showed enhanced magnetic responses compared to wild type.
A recent investigation of behavioral responses of Drosophila in applied magnetic
fields has also implicated cryptochrome (Gegear et al., 2008, 2010). In these
experiments, flies were trained to associate the magnetic field with a food source,
and learned to use it as an orientational cue. These responses were absent in
cryptochrome-deficient flies.

In the context of avian magnetoreception, it is noteworthy that cryptochromes
have been found in birds’ retinas (Moller er al., 2004; Mouritsen et al., 2004).
There are some genetic indications of an involvement of cryptochromes in mag-
netoreception in birds (Freire ef al., 2008), but the lack of transgenic birds has
hitherto precluded more clear-cut evidence. Theoretical considerations also pro-
vide support for the cryptochrome hypothesis. For example, the theory of electron
transfer reactions (Moser and Dutton, 1992) indicates that a radical pair in a protein
environment could have a lifetime as long as 1 ps if the edge-to-edge inter-radical
separation, r, were less than about 1.5 nm (Rodgers and Hore, 2009). This appears
to be consistent with the crystal structure of Arabidopsis thaliana cryptochrome
in which r. = 1.47 nm for the FAD cofactor and the terminal residue of the tryp-
tophan triad (Brautigam et al., 2004). A further, related kinetic constraint can be
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Figure 10.3 Schematic illustration of the visual modulation patterns that might
be induced by the geomagnetic field for a bird flying in the eight cardinal direc-
tions (N, NE, E, SE, S, SW, W and NW). The geomagnetic field inclination
angle is 66° (appropriate for Frankfurt am Main, Germany) (Wiltschko and
Wiltschko, 1995b; Wiltschko et al., 2008). The modulation patterns are calcu-
lated for different degrees of orientational disorder of the cryptochrome molecules
within the receptor cells, characterized by the parameter &y: (a) &g = 100 (highly
ordered); (b) &9 = 10; (¢) &9 = 3; (d) &g = 1 (moderately disordered). For details,
see (Solov’yov et al., 2010).

derived from the reasonable assumption that the magnetically responsive radical
pair should be formed in less than 1 ns (so as to have a high quantum yield and
a pure initial spin state). Estimates, also based on Marcus theory, suggest that
this could be achieved if every electron transfer step involved in the formation of
the pair had a donor—acceptor separation r. < 1.0 nm, a condition which again is
consistent with the FAD/Trp triad structure in Arabidopsis thaliana cryptochrome
(Rodgers and Hore, 2009).
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Finally, we turn to the degree of molecular ordering that would allow an array
of cryptochromes to show a significant directional response to a 50 uT magnetic
field and therefore to act as a compass sensor. Assuming that the magnetic signal-
transduction mechanism is linked into the rhodopsin-mediated visual detection
system, so that the bird literally sees a representation of the Earth’s magnetic
field, one can derive a filter function to model the transformation of the visual
field produced by a cryptochrome-based magnetoreceptor (Solov’yov et al., 2010).
Figure 10.3 shows examples of visual modulation patterns simulated in this way for
a bird flying horizontally in eight cardinal directions. Such calculations indicate that
even modest uniaxial molecular alignment could be sufficient to yield a directional
response suitable for compass detection (Lau er al., 2010; Hill and Ritz, 2010;
Solov’yov et al., 2010).

10.3 In vitro magnetic field effects on radical pair reactions
10.3.1 Anisotropic magnetic field effects

Radical pairs with lifetimes in excess of 100 ns can in principle form the basis of
a field-intensity sensor in the ~50 pT range. However, for a compass, the reaction
must also respond to the direction of the field, implying that the radicals cannot
be free to rotate rapidly. As Schulten originally argued, (Schulten er al., 1978;
Schulten, 1982; Schulten and Windemuth, 1986), radical pairs are expected to
show anisotropic MFEs by virtue of the anisotropy of their hyperfine interactions,
provided the radicals are both immobilized and aligned. The theory of anisotropic
LFEs is essentially as presented above, with the exception that the spin Hamiltonian
now depends on the direction of the applied magnetic field with respect to the
molecular frame of the radical pair (Timmel et al., 2001; Cintolesi et al., 2003). As
before, the electron Zeeman interaction can unlock zero-frequency coherences and
so affect S«<>T interconversion, but now the amplitudes of the relevant coherences
(P3,) will depend on the direction of the field. To make this more concrete, we
consider briefly the simple case in which one radical has no magnetic nuclei and
the other has an axial anisotropic hyperfine interaction with a single spin-1/2
nucleus. In the limit k£ < || H, Rl ﬁHF|| , the singlet yield, calculated as above, is
(Timmel et al., 2001; Cintolesi et al., 2003)

r 1 5 7
Ps=—+-cos" Y = —

1 2
— -1 10.
173 24+24(3cos1p ), (10.5)

where ¥ is the angle between the magnetic field and the symmetry axis of the
hyperfine tensor. In this case, ®g has a rather simple form that varies between 1/4
and 3/8. In zero-field, ®g is isotropic and equal to 3/8.
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Figure 10.4 Anisotropy of the singlet recombination yield, ®g, calculated for the
8-nucleus flavin-tryptophan radical pair described in the text. The magnetic field
strength was 50 uT and the recombination rate constant, k = 2 x 10° s~!. [Taken
from (Cintolesi ef al., 2003).]

Any in vivo radical pair magnetoreceptor is unlikely to have magnetic responses
as simple as the one-nucleus case just considered. Figure 10.4 shows the result
of a simulation of the anisotropic part of ®g for a more realistic, multinuclear,
flavin-tryptophan radical pair, [FH® Trp°®] (Cintolesi ef al., 2003). This calculation
was performed for a spin system comprising two electrons and a total of eight
nuclear spins (two '*N and three 'H in FH®, one '*N and two 'H in Trp®). The
hyperfine tensors were taken from EPR and ENDOR data and DFT calculations,
and the relative orientation of the two radicals is that of the FAD cofactor and Trpsoe
in the crystal structure of E. coli DNA photolyase. The polar plot in Figure 10.4
shows the anisotropy of ®g for different directions of the static field, with red
and blue representing values of ®g that are respectively larger and smaller than
the spherical average. It is clear, at least for this particular radical pair, that the
orientation dependence of the reaction yield is not very different from that in
Equation (10.5). The approximate symmetry axis of ®g appears to be determined
by the two nitrogens in the flavin radical which have strong, near-axial hyperfine
tensors with almost collinear principal axes (Cintolesi et al., 